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Preface

One important goal of human civilization is to build intelligent machines, not
necessarily machines that can mimic our behavior perfectly, but rather ma-
chines that can undertake heavy, tiresome, dangerous, and even inaccessible
(for man) labor tasks. Computers are a good example of such machines. With
their ever-increasing speeds and higher storage capacities, it is reasonable to
expect that in the future computers will be able to perform even more useful
tasks for man and society than they do today, in areas such as health care,
automated visual inspection or assembly, and in making possible intelligent
man—machine interaction. Important progress has been made in the develop-
ment of computerized sensors and mechanical devices. For instance, according
to Moore’s law, the number of transistors on a chip roughly doubles every two
years — as a result, microprocessors are becoming faster and more powerful
and memory chips can store more data without growing in size.

Developments with respect to concepts, unified theory, and algorithms for
building intelligent machines have not occurred with the same kind of lightning
speed. However, they should not be measured with the same yardstick, because
the qualitative aspects of knowledge development are far more complex and
intricate. In 1999, in his work on building anthropomorphic motor systems,
Rodney Brooks noted: “A paradigm shift has recently occurred — computer
performance is no longer a limiting factor. We are limited by our knowledge
of what to build.” On the other hand, at the turn of the twenty-first century,
it would seem we collectively know enough about the human brain and we
have developed sufficiently advanced computing technology that it should be
possible for us to find ways to construct real-time, high-resolution, verifiable
models for significant aspects of human intelligence.

Just as great strides in the dissemination of human knowledge were made
possible by the invention of the printing press, in the same way modern scien-
tific developments are enhanced to a great extent by computer technology. The
Internet now plays an important role in furthering the exchange of informa-
tion necessary for establishing cooperation between different research groups.
Unfortunately, the theory for building intelligent machines or perception-and-
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action systems is still in its infancy. We cannot blame a lack of commitment
on the part of researchers or the absence of revolutionary concepts for this
state of affairs. Remarkably useful ideas were proposed as early as the mid-
nineteenth century, when Babbage was building his first calculating engines.
Since then, useful concepts have emerged in mathematics, physics, electronics,
and mechanical engineering — all basic fields for the development of intelligent
machines. In its time, classical mechanics offered many of the necessary con-
ceptual tools. In our own time, Lie group theory and Riemann differential
geometry play a large role in modern mathematics and physics. For instance,
as a representation tool, symmetry, a visual primitive probably unattentively
encoded, may provide an important avenue for helping us understand per-
ceptual processes. Unfortunately, the application of these concepts in current
work on image processing, neural computing, and robotics is still somewhat
limited. Statistical physics and optimization theory have also proven to be
useful in the fields of numerical analysis, nonlinear dynamics, and, recently,
in neural computing. Other approaches for computing under conditions of
uncertainty, like fuzzy logic and tensor voting, have been proposed in recent
years. As we can see, since Turing’s pioneering 1950 work on determining
whether machines are intelligent, the development of computers for enhanced
intelligence has undergone great progress.

This new handbook takes a decisive step in bringing together in one volume
various topics highlighting the geometric aspects necessary for image analysis
and processing, perception, reasoning, decision making, navigation, action,
and autonomous learning. Unfortunately, even with growing financial support
for research and the enhanced possibilities for communication brought about
by the Internet, the various disciplines within the research community are
still divorced from one another, still working in a disarticulated manner. Yet
the effort to build perception—action systems requires flexible concepts and
efficient algorithms, hopefully developed in an integrated and unified manner.
It is our hope that this handbook will encourage researchers to work together
on proposals and methodologies so as to create the necessary synergy for more
rapid progress in the building of intelligent machines.

Structure and Key Contributions

The handbook consists of nine parts organized by discipline, so that the reader
can form an understanding of how work among the various disciplines is con-
tributing to progress in the area of geometric computing. Understanding in
each individual field is a fundamental requirement for the development of
perception-action systems. In this regard, a tentative list of relevant topics
might include:

e Dbrain theory and neuroscience
e learning
e neurocomputing, fuzzy computing, and quantum computing
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image analysis and processing

geometric computing under uncertainty

computer vision

sensors

kinematics, dynamics, and elastic couplings

fuzzy and geometric reasoning

control engineering

robot manipulators, assembly, MEMS, mobile robots, and humanoids
path planning, navigation, reaching, and haptics
graphic engineering, visualization, and virtual reality
medical imagery and computer-aided surgery

We have collected contributions from the leading experts in these diverse
areas of study and have organized the chapters in each part to address low-
level processing first before moving on to the more complex issues of decision
making. In this way, the reader will be able to clearly identify the current
state of research for each topic and its relevance for the direction and content
of future research. By gathering this work together under the umbrella of buil-
ding perception—action systems, we are able to see that efforts toward that goal
are flourishing in each of these disciplines and that they are becoming more
interrelated and are profiting from developments in the other fields. Hopefully,
in the near future, we will see all of these fields interacting even more closely
in the construction of efficient and cost-effective autonomous systems.

Part I Neuroscience

In Chapter 1 Haluk Ogmen reviews the fundamental properties of the pri-
mate visual system, highlighting its maps and pathways as spatio-temporal
information encoding and processing strategies. He shows that retinotopic and
spatial-frequency maps represent the geometry of the fusion between structure
and function in the nervous system, and that magnocellular and parvocellular
pathways can resolve the trade-off between spatial and temporal deblurring.

In Chapter 2 Hamid R. Eghbalnia, Amir Assadi, and Jim Townsend a-
nalyze the important visual primitive of symmetry, probably unattentively
encoded, which can have a central role in addressing perceptual processes.
The authors argue that biological systems may be hardwired to handle fil-
tering with extreme efficiency. They believe that it may be possible to appro-
ximate this filtering, effectively preserving all the important temporal visual
features, by using current computer technology. For learning, they favor the
use of bidirectional associative memories, using local information in the spirit
of a local-to-global approach to learning.
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Part IT Neural Networks

In Chapter 3 Hyeyoung Park, Tomoko Ozeki, and Shun-ichi Amari choose
a geometric approach to provide intuitive insights on the essential properties
of neural networks and their performance. Taking into account Riemann’s
structure of the manifold of multilayer perceptrons, they design gradient lear-
ning techniques for avoiding algebraic singularities that have a great negative
influence on trajectories of learning. They discuss the singular structure of
neuromanifolds and pose an interesting problem of statistical inference and
learning in hierarchical models that include singularities.

In Chapter 4 Gerhard Ritter and Laurentiu lancu present a new paradigm
for neural computing using the lattice algebra framework. They develop mor-
phological auto-associative memories and morphological feed-forward net-
works based on dendritic computing. As opposed to traditional neural net-
works, their models do not need hidden layers for solving non-convex problems,
but rather they converge in one step and exhibit remarkable performance in
both storage and recall.

In Chapter 5 Tijl De Bie, Nello Cristianini, and Roman Rosipal de-
scribe a large class of pattern-analysis methods based on the use of genera-
lized eigenproblems and their modifications. These kinds of algorithms can
be used for clustering, classification, regression, and correlation analysis. The
chapter presents all these algorithms in a unified framework and shows how
they can all be coupled with kernels and with regularization techniques in
order to produce a powerful class of methods that compare well with those
of the support-vector type. This study provides a modern synthesis between
several pattern-analysis techniques.

Part IIT Image Processing

In Chapter 6 Jan J. Koenderink sketches a framework for image processing
that is coherent and almost entirely geometric in nature. He maintains that
the time is ripe for establishing image processing as a science that departs from
fundamental principles, one that is developed logically and is free of hacks,
unnecessary approximations, and mere showpieces on mathematical dexterity.

In Chapter 7 Alon Spira, Nir Sochen, and Ron Kimmel describe ima-
ge enhancement using PDF-based geometric diffusion flows. They start with
variational principles for explaining the origin of the flows, and this geometric
approach results in some nice invariance properties. In the Beltrami frame-
work, the image is considered to be an embedded manifold in the space-feature
manifold, so that the required geometric filters for the flows in gray-level and
color images or texture will take into account the induced metric. This chapter
presents numerical schemes and kernels for the flows that enable an efficient
and robust implementation.

In Chapter 8 Yaobin Mao and Guanrong Chen show that chaos theory
is an excellent alternative for producing a fast, simple, and reliable image-
encryption scheme that has a high degree of security. The chapter describes
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a practical and efficient chaos-based stream-cipher scheme for still images.
From an engineer’s perspective, the chaos image-encryption technology is very
promising for the real-time image transfer and handling required for intelligent
discerning systems.

Part TV Computer Vision

In Chapter 9 Kalle Astrém is concerned with the geometry and algebra
of multiple one-dimensional projections in a 2D environment. This study is
relevant for 1D cameras, for understanding the projection of lines in ordinary
vision, and, on the application side, for understanding the ordinary vision of
vehicles undergoing planar motion. The structure-of-motion problem for 1D
cameras is studied at length, and all cases with non-missing data are solved.
Cases with missing data are more difficult; nevertheless, a classification is
introduced and some minimal cases are solved.

In Chapter 10 Anders Heyden describes in-depth, n-view geometry with
all the computational aspects required for achieving stratified reconstruction.
He starts with camera modeling and a review of projective geometry. He de-
scribes the multi-view tensors and constraints and the associated linear recon-
struction algorithms. He continues with factorization and bundle adjustment
methods and concludes with auto-calibration methods.

In Chapter 11 Amnon Shashua and Lior Wolf introduce a generalization
of the classical collineation of P". The m-view tensors for P" referred to as
homography tensors are studied in detail for the case n=3,4 in which the indi-
vidual points are allowed to move while the projective change of coordinates
takes place. The authors show that without homography tensors a recovering
of the alignment requires statistical methods of sampling, whereas with the
tensor approach both stationary and moving points can be considered alike
and part of a global transformation can be recovered analytically from some
matching points across m views. In general, the homography tensors are useful
for recovering linear models under linear uncertainty.

In Chapter 12 Abhijit Ogale, Cornelia Fermiiller and Yiannis Aloimonos
examine the problem of instantaneous finding of objects moving independently
in a video obtained by a moving camera with a restricted field of view. In this
problem, the image motion is caused by the combined effect of camera motion,
scene depth, and the independent motions of objects. The authors present a
classification of moving objects and discuss detection methods; the first class
is detected using motion clustering, the second depends on ordinal depth from
occlusions and the third uses cardinal knowledge of the depth. Robust methods
for deducing ordinal depth from occlusions are also discussed.
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Part V Perception and Action

In Chapter 13 Eduardo Bayro-Corrochano presents a framework of con-
formal geometric algebra for perception and action. As opposed to standard
projective geometry, in conformal geometric algebra, using the language of
spheres, planes, lines, and points, one can deal simultaneously with incidence
algebra operations (meet and join) and conformal transformations represented
effectively using bivectors. This mathematical system allows us to keep our
intuitions and insights into the geometry of the problem at hand and it helps
us to reduce considerably the computational burden of the related algorithms.
Conformal geometric algebra, with its powerful geometric representation and
rich algebraic capacity to provide a unifying geometric language, appears
promising for dealing with kinematics, dynamics, and projective geometry
problems without the need to abandon a mathematical system. In general,
this can be a great advantage in applications that use stereo vision, range
data, lasers, omnidirectionality, and odometry-based robotic systems.

Part VI Uncertainty in Geometric Computations

In Chapter 14 Kenichi Kanatani investigates the meaning of “statistical
methods” for geometric inference on image points. He traces back the ori-
gin of feature uncertainty to image-processing operations for computer vision,
and he discusses the implications of asymptotic analysis with reference to “ge-
ometric fitting” and “geometric model selection.” The author analyzes recent
progress in geometric fitting techniques for linear constraints and semipara-
metric models in relation to geometric inference.

In Chapter 15 Wolfgang Forstner presents an approach for geometric
reasoning in computer vision performed under uncertainty. He shows that
the great potential of projective geometry and statistics can be integrated
easily for propagating uncertainty through reasoning chains. This helps to
make decisions on uncertain spatial relations and on the optimal estimation
of geometric entities and transformations. The chapter discusses the essential
link between statistics and projective geometry, and it summarizes the basic
relations in 2D and 3D for single-view geometry.

In Chapter 16 Gérard Medioni, Philippos Mordohai, and Mircea Nico-
lescu present a tensor voting framework for computer vision that can address
a wide range of middle-level vision problems in a unified way. This framework
is based on a data representation formalism that uses second-order symmetric
tensors and an information propagation mechanism that uses a tensor voting
scheme. The authors show that their approach is suitable for stereo and mo-
tion analysis because it can detect perceptual structures based solely on the
smoothness constraint without using any model. This property allows them
to treat the arbitrary surfaces that are inherent in non-trivial scenes.
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Part VII Computer Graphics and Visualization

In Chapter 17 Lawrence H. Staib and Yongmei M. Wang present two robust
methods for nonrigid image registration. Their methods take advantage of
differences in available information: their surface warping approach uses local
and global surface properties, and their volumetric deformation method uses
a combination of shape and intensity information. The authors maintain that,
in nonrigid images, registration is desirable for designing a match metric that
includes as much useful information as possible, and that such a transforma-
tion is tailored to the required deformability, thereby providing an efficient
and reliable optimization.

In Chapter 18 Alyn Rockwood shows how computer graphics indicates
trends in the way we think about and represent technology and pursue re-
search, and why we need more visual geometric languages to represent tech-
nology in a way that can provide insight. He claims that visual thinking is
key for the solution of problems. The author investigates the use of implicit
function modeling as a suitable approach for describing complex objects with
a minimal database. The author interrogates how general implicit functions
in non-Euclidean spaces can be used to model shape.

Part VIII Geometry and Robotics

In Chapter 19 Neil White utilizes the Grassmann—Cayley algebra framework
for writing expressions of geometric incidences in Euclidean and projective
geometry. The shuffle formula for the meet operation translates the geometric
conditions into coordinate-free algebraic expressions. The author draws our
attention to the importance of the Cayley factorization process, which leads
to the use of symbolic and coordinate-free expressions that are much closer
to the human thinking process. By taking advantage of projective invariant
conditions, these expressions can geometrically describe the realizations of a
non-rigid, generically isostatic graph.

In Chapter 20 Jon Selig employs the special Clifford algebra Gy 2 to
derive equations for the motion of serial and parallel robots. This algebra is
used to represent the six component velocities of rigid bodies. Twists or screws
and wrenches are used for representing velocities and force/torque vectors,
respectively. The author outlines the Lagrangian and Hamiltonian mechanics
of serial robots. A method for finding the equations of motion of the Stewart
platform is also considered.

In Chapter 21 Calin Belta and Vijay Kumar describe a modern geome-
tric approach for designing trajectories for teams of robots maintaining rigid
formation or virtual structure. The authors consider first the problem of gene-
rating minimum kinetic energy motion for a rigid body in a 3D environment.
Then they present an interpolation method based on embedding SE(3) into
a larger manifold for generating optimal curves and projecting them back to
SE(3). The novelty of their approach relies on the invariance of the produced
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trajectories, the way of defining and inheriting physically significant metrics,
and the increased efficiency of the algorithms.

Part IX Reaching and Motion Planning

In Chapter 22 J. Michael McCarthy and Hai-Jun Su examine the geometric
problem of fitting an algebraic surface to points generated by a set of spatial
displacements. The authors focus on seven surfaces that are traced by the
center of the spherical wrist of an articulated chain. The algebraic equations
of these reachable surfaces are evaluated on each of the displacements to define
a set of polynomial equations which are rich in internal structure. Efficient
ways to find their solutions are highly dependent upon the complexity of the
problem, which increases greatly with the number of parameters that specify
the surface.

In Chapter 23 Seth Hutchinson and Peter Leven are concerned with
planning collision-free paths, one of the central research problems in intelligent
robotics. They analyze the probabilistic roadmap (PRM) planner, a graph
search in the configuration space, and they discuss its design choices. These
PRM planners are confronted with narrow corridors, the relationship between
the geometry of both obstacles and robots, and the geometry of the free
configuration space, which is still not well understood, making a thorough
analysis of the method difficult. PRM planners tend to be easy to implement;
however, design choices have considerable impact on the overall performance
of the planner.

Guadalajara, Mexico Eduardo Bayro-Corrochano
December 2004
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Spatiotemporal Dynamics of Visual Perception
Across Neural Maps and Pathways

Haluk Ogmen

Department of Electrical and Computer Engineering
Center for Neuro—Engineering and Cognitive Science
University of Houston

Houston, TX 77204-4005 USA

ogmen@uh.edu

1.1 Introduction

The relationship between geometry and brain function presents itself as a dual
problem: on the one hand, since the basis of geometry is in brain function,
especially that of the visual system, one can ask what the brain function can
tell us about the genesis of geometry as an abstract form of human mental
activity. On the other hand, one can also ask to what extent geometry can
help us understand brain function. Because the nervous system is interfaced
to our environment by sensory and motor systems and because geometry has
been a useful language in understanding our environment, one might expect
some convergence of geometry and brain function at least at the peripheral
levels of the nervous system. Historically, there has been a close relationship
between geometry and theories of vision starting as early as Euclid. Given
light sources and an environment, one can easily calculate the corresponding
images on our retinae using basic physics and geometry. This is usually known
as the “forward problem” [41]. A straightforward approach would be then to
consider the function of the visual system as the computation of the inverse
of the transformations leading to image formation. However, this “inverse op-
tics” approach leads to ill-posed problems and necessitates the use of a priori
assumptions to reduce the number of possible solutions. The use of a priori
assumptions in turn makes the approach unsuitable for environments that
violate the assumptions. Thus, the inverse optics formulation fails to capture
the robustness of human visual perception in complex environments. On the
other hand, visual illusions, i.e. discrepancies between the physical stimuli and
the corresponding percepts, constitute examples of the limitations of the hu-
man visual system. Nevertheless, these illusions do not affect significantly the
overall performance of the system, as most people operate succesfully in the
environment without even noticing these illusions. The illusions are usually
discovered by scientists, artists, and philosophers who scrutinize deeply the re-
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lation between the physical and psychological world. These illusions are often
used by vision scientists as “singular points” to study the visual system.

How the inputs from the environment are transformed into our conscious
percepts is largely unknown. The goals of this chapter are twofold: first, it
provides a brief review of the basic neuroanatomical structure of the visual
system in primates. Second, it outlines a theory of how neural maps and
pathways can interact in a dynamic system, which operates principally in a
transient regime, to generate a spatiotemporal neural representation of visual
inputs.

1.2 The Basic Geometry of Neural Representation:
Maps and Pathways

The first stage of input representation in the visual system occurs in the
retina. The retina is itself a complex structure comprising five main neuronal
types organized in direct and lateral structures (Fig. 1). The “direct structure”

N ORNO
N OSNO
® @
N RO
N ORRO

Fig. 1.1. The general architecture of the retina. P, photoreceptor; B, bipolar cell; G,
ganglion cell; H, horizontal cell; A, amacrine cell. The arrows on top show the light
input coming from adjacent spatial locations in the environment, and the arrows at
the bottom represent the output of the retina, which preserves the two-dimensional
topography of the inputs. This gives rise to “retinotopic maps” at the subsequent
processing stages

consists of signal flow from the photoreceptors to bipolar cells, and finally to
retinal ganglion cells, whose axons constitute the output of the retina. This
direct pathway is repeated over the retina and thus constitutes an “image
plane” much like the photodetector array of a digital camera. In addition to
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the cells in the direct pathway, horizontal and amacrine cells carry out sig-
nals laterally and contribute to the spatiotemporal processing of the signals.
Overall, the three-dimensional world is projected to a two-dimensional retino-
topic map through the optics of the eye, the two-dimensional sampling by the
receptors, and the spatial organization of the post-receptor direct pathway.
The parallel fibres from the retina running to the visual cortex via the late-
ral geniculate nucleus (LGN) preserve the retinal topography, and the early
visual representation in the visual cortex maintains the retinotopic map.

In addition to this spatial coding, retinal ganglion cells can be broadly
classified into three types: P, M, and K [15, 27]. The characterization of the
K type is not fully detailed, and our discussion will focus on the M and P
types. These two cell types can be distinguished on the basis of their anato-
mical and response characteristics; for example, M cell responses have shorter
latencies and are more transient than P cell responses [16, 33, 36, 42]. Thus
the information from the retina is not carried out by a single retinotopic map,
but by three maps that form parallel pathways. Moreover, different kinds of
information are carried out along these pathways. The pathway originating
from P cells is called the parvocellular pathway, and the pathway originating
from M cells is called the magnocellular pathway.

The signals that reach the cortex are also channeled into maps and path-
ways. Two major cortical pathways, the dorsal and the ventral, have been
identified (Fig. 1.2) [35]. The dorsal pathway, also called the “where path-
way”, is specialized in processing information about the position of objects.
On the other hand, the ventral pathway, also called the “what pathway”, has
been implicated in the processing of object identities [35]. Another related
functional interpretation of these pathways is that the dorsal pathway is spe-
cialized for action, while the ventral pathway is specialized for perception
[34]. This broad functional specialization is supplemented by more speciali-
zed pathways dedicated to the processing of motion, color, and form [32, 59].
Within these pathways, the cortical organization contains maps of different
object attributes. For example, neurons in the primary visual cortex respond
preferentially to the orientations of edges. Spatially, neurons that are sensi-
tive to adjacent orientations tend to be located in adjacent locations forming
a “map of orientation” on the cortical space [30]. This is shown schematically
in Fig. 1.3. Similar maps have been observed for location (retinotopic map)
[30], spatial frequency [19], color [52, 58], and direction of motion [2].

Maps build a relatively continuous and periodic topographical representa-
tion of stimulus properties (e.g., spatial location, orientation, color) on cortical
space. What is the goal of such a representation? In neural computation, in
addition to the processing at each neuron, a significant amount of processing
takes place at the synapses. Because synapses represent points of connec-
tion between neurons, functionally both the development and the processing
characteristics of the synapses are often specialized based on processing and
encoding characteristics of both pre- and post-synaptic cells. Consequently,
map representations in the nervous system appear to be correlated with the
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Vi

Fig. 1.2. Schematic depiction of the parvocellular (P), magnocellular (M), and
the cortical dorsal (D), ventral (V) pathways. LGN, lateral geniculate nucleus; V1,
primary visual cortex

Fig. 1.3. Depiction of how orientation columns form an orientation map. Neurons
in a given column are tuned to a specific orientation depicted by an oriented line
segment in the figure. Neurons sensitive to similar orientations occupy neighboring
positions on the cortical surface
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geometry of synaptic development as well as with the geometry of synap-
tic patterns as part of information processing. According to this perspective,
maps represent the geometry of the fusion between structure and function in
the nervous system.

On the other hand, pathways possess more discrete, often dichotomic, re-
presentation. What is more important, pathways represent a cascade of maps
that share common functional properties. From the functional point of view,
pathways can be viewed as complementary systems adapted to conflicting but
complementary aspects of information processing. For example, the magnocel-
lular pathway is specialized for processing high-temporal low-spatial frequency
information, whereas the parvocellular system is specialized for processing
low-temporal and high-spatial frequency information. From the evolutionary
point of view, pathways can be viewed as new systems that emerge as the
interactions between the organism and the environment become more sophis-
ticated. For example, for a simple organism the localization of stimuli without
complex recognition of its figural properties can be sufficient for survival. Thus
a basic pathway akin to the primate where/action pathway would be sufficient.
On the other hand, more evolved animals may need to recognize and catego-
rize complex aspects of stimuli, and thus an additional pathway specialized
for conscious perception may develop.

In the next section, these concepts will be illustrated by considering how
the visual system can encode object boundaries in real-time.

1.3 Example: Maps and Pathways in Coding Object
Boundaries

1.3.1 The Problem of Boundary Encoding

Under visual fixation conditions, the retinal image of an object boundary is
affected by the physical properties of light, the optics of the human eye, the
neurons and blood vessels in the eye, eye movements, and the dynamics of
the accommodation system [19]. Several studies show that processing time on
the order of 100 ms is required in order to reach “optimal” form and sharp-
ness discrimination [4, 11, 29, 55] as well as more veridical perception of the
sharpness of edges [44].

A boundary consists of a change of a stimulus attribute, typically lumi-
nance, over space. Because this change can occur rapidly for sharp bounda-
ries and gradually for blurred boundaries, measurements at multiple scales
are needed to detect and code boundaries and their spatial profile. The vi-
sual system contains neurons that respond preferentially to different spatial
frequency bands. Moreover, as mentioned in the previous section, these neu-
rons are organized as a “spatial frequency map” [19, 51]. The rate of change
of a boundary’s spatial profile also depends on the contrast of the boundary
as shown in Fig. 1.4. For a fixed boundary transition width (e.g. wy in Fig.
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Luminance

Retinal cell index (space)

Fig. 1.4. The relationship between contrast and blur for boundaries. Boundary
transition widths wy and ws for boundaries at a low contrast level ¢1 (solid lines)
and a high contrast level ca (dashed lines)

1.4), the slope of the boundary increases with increasing contrast (¢ to ¢z in
Fig. 1.4). The human visual system is capable of disambiguating the effects of
blur and contrast, thereby generating conrast-independent perception of blur
[23]. On the other hand, discrimination of edge blur depends on contrast,
suggesting that the visual system encodes the blur of boundaries at least at
two levels, one of which is contrast dependent, and one of which is contrast
independent.

1.3.2 A Theory of Visual Boundary Encoding

How does the visual system encode object boundaries and edge blur in real-
time? We will present a model of retino-cortical dynamics (RECOD) [37, 44]
to suggest (i) how maps can be used to encode the position, blur, and contrast
of boundaries; and (ii) how pathways can be used to overcome the real-time
dynamic processing limitations of encoding across the maps. The fundamental
equations of the model and their neurophysiological bases are given in the
Appendix. Detailed and specialized equations of the model can be found in
[44].

Figure 1.5 shows a diagrammatic representation of the general structure of
RECOD. The lower two populations of neurons correspond to retinal ganglion
cells with slow-sustained (parvo) and fast-transient (magno) response proper-
ties [16, 33, 36, 42]. Each of these populations contains cells sampling different
retinal positions and thus contains a spatial (retinotopic) map. Two pathways,
parvocellular (P pathway) and magnocellular (M pathway), emerge from these
populations. These pathways provide inputs to post-retinal areas. The model
also contains reciprocal inhibitory connections between post-retinal areas that
receive their main inputs from P and M pathways. Figure 1.6 shows a more
detailed depiction of the model. Here, circular symbols depict neurons whose



1 Spatiotemporal Dynamics of Visual Perception 9

Inter-channel

inhibition
post-retinal
areas
/\
>
«
2
<
-
<
o,
T&» E
t
retina

Fig. 1.5. Schematic representation of the major pathways in the RECOD model.
Filled and open synaptic symbols depict excitatory and inhibitory connections, re-
spectively

spatial relationship follows a retinotopic map. In this figure, the post-retinal
area that receives its major input from the P pathway is decomposed into two
layers. Both layers preserve the retinotopic map and add a spatial-frequency
map (composed of the spatial-frequency channels). For simplicity, only three
elements of the spatial-frequency map ranging from the highest spatial fre-
quency class (H) to the lowest spatial frequency class (L) are shown. The
M pathway sends a retinotopically organized inhibitory signal to cells in the
first post-retinal layer. The direct inhibitory connection from retinal transient
cells to post-retinal layers is only for illustrative purpose; in vivo the actual
connections are carried out by local inhibitory networks. The first post-retinal
layer cells receive center-surround connections from the sustained cells (par-
vocellular pathway). The rows indicated by H, M, and L represent elements
with high, medium, and low spatial frequency tuning in the spatial frequency
map, respectively. Each of the H, M, and L rows in the first post-retinal
layer receive independent connections from the retinal cells, and there are no
interactions between the rows. Cells in the second post-retinal layer receive
center-surround connections from the H, M, and L rows of the first post-retinal
layer. They also receive center-surround feedback. Sample responses of model
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Fig. 1.6. A more detailed depiction of the RECOD model. Filled and open synaptic
symbols depict excitatory and inhibitory connections, respectively. To avoid clutter,
only a representative set of neurons and connections are shown. From [44]

neurons tuned to low spatial frequencies and to high spatial frequencies are
shown for sharp and blurred edge stimuli in Fig. 1.7. As one can see in the
left panel of this figure, for a sharp edge neurons in the high spatial-frequency
channel respond more strongly (dashed curve) compared to neurons in the
low spatial-frequency channel (solid curve). Moreover, neurons tuned to low
spatial-frequencies tend to blur sharp edges. This can be seen by comparing
the spread of activity shown by the dashed and solid curves in the left panel.
The right panel of the figure shows the responses of these two channels to
a blurred edge. In this case, neurons in the low spatial-frequency channel
respond more strongly (solid curve) compared to neurons in the high spatial-
frequency channel. Overall, the peak of activity across the spatial-frequency
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Responses for a sharp edge Responses for a blurred edge
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Fig. 1.7. Effect of edge blur on model responses: model responses in the first post-
retinal layer for sharp (left) and blurred (right) edges at high spatial-frequency (dot-
ted line) and low spatial-frequency (continuous line) loci of the spatial-frequency
map. From [44]

map will indicate which neuron’s spatial frequency matches best the sharp-
ness of the input edge, and the level of activity for each neuron for a given
edge will provide a measure of the level of match. Thus the distribution of ac-
tivity across the spatial-frequency map provides a measure of edge blur. Even
though the map is discrete in the sense that it contains a finite set of neurons,
the distribution of activity in the map can provide the basis for a fine discri-
mination and perception of edge blur. This is similar to the encoding of color,
where the distributed activities of only three primary components provide the
basis for a fine discrimination and perception of color.

The model achieves the spatial-frequency selectivity by the strength and
spatial distribution of synaptic connections from the retinal network to the
first layer of the post-retinal network. A neuron tuned to high spatial fre-
quencies receives excitatory and inhibitory inputs from a small retinotopic
neighborhood, while a neuron tuned to low spatial frequencies receives exci-
tatory and inhibitory inputs from a large retinotopic neighborhood (Fig. 1.8).
Thus the retinotopic map allows the simple geometry of neighborhood and
the resulting connectivity pattern to give rise to spatial-frequency selectivity.
By smoothly changing this connectivity pattern across cortical space, one ob-
tains a spatial-frequency map (e.g. L, M, and H in Fig. 1.6), which in turn,
as mentioned above, can relate the geometry of neural activities to the fine
coding of edge blur.

The left panel of Fig. 1.9 shows the activities in the first post-retinal layer
of the model for a low (dashed curve) and a high (solid curve) contrast input.
The response to the high contrast input is stronger. The first post-retinal
layer in the model encodes edge blur in a contrast-dependent manner. The
second post-retinal layer of cells achieves contrast-independent encoding of
edge blur. Contrast independence is produced through connectivity patterns
that exploit retinotopic and spatial-frequency maps. The second post-retinal
layer implements retinotopic center-surround shunting between the cells in
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Fig. 1.8. The connectivity pattern on the left produces low spatial-frequency se-
lectivity because of the convergence of inputs from an extended retinotopic area.
The connectivity pattern on the right produces a relatively higher spatial frequency
selectivity

the spatial frequency map. Each cell in this layer receives center excitation
from the cell at its retinotopic location and only one of the elements in the
map below it. However, it receives surround inhibition from all the elements
in the map in a retinotopic manner, from a neighborhood of cells around its
retinotopic location [12, 18, 20, 49, 50]. In other words, excitation from the
bottom layer is one-to-one whereas inhibition is many-to-one pooled activity.
This shunting interaction transforms the input activity pl; for the ith element
in the spatial frequency map into an output activity p2; = pl;/(A1+ )", pl;),
where Al is the time constant of the response [12, 25|. Therefore, when the
total input ), pl; is large compared to to A1, the response of each element in
the spatial frequency map is contrast-normalized across the retinotopic map,
resulting in contrast-constancy. This is shown in the right panel of Fig. 1.9:
the responses to low contrast (dashed curve) and high contrast (solid curve)
are identical.

In order to compensate the blurring effects introduced at the retinal level,
the RECOD model uses a connectivity pattern across retinotopic maps, but
instead of being feedforward as those giving rise to spatial-frequency selec-
tivity, these connections are feedback (or re-entrant), as illustrated at the
top of Fig. 1.6. Note that, for simplicity, in this figure only the connections
for the medium spatial frequencies (M) are shown. Because of these feedback
connections and the dynamic properties of the network, the activity pattern
is “sharpened” in time to compensate for the early blurring effects. [25, 37]. In
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Fig. 1.9. Effect of contrast on model responses: Model responses for a high-contrast
edge (solid curve) and a low-contrast edge (dashed curve) of 2 arcmin blur in the
first post-retinal layer (left) and the second post-retinal layer (right). From [44]
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Fig. 1.10. Temporal sharpening of model responses to a blurred edge in the second
post-retinal layer: responses at 40 ms (continuous line) and 120 ms (dashed line) are
shown superimposed. From [44]

Fig. 1.10, the response of the model neurons in the second post-retinal layer
to an edge stimulus with 2 arcmin base blur at 40 ms after stimulus onset is
shown by the dashed curve. The response at 120 ms after stimulus onset is
shown by the solid curve. Comparing the width of these activities, one can
see that the neural encoding of the edge is initially (at 40 ms) blurred but
becomes sharper with more processing time (at 120 ms).

1.3.3 Perception and Discrimination of Edge Blur

The proposed encoding scheme across retinotopic and spatial-frequency maps
has been tested by comparing model predictions to a wide range of expe-
rimental data [44]. For example, Fig. 1.11 provides a comparison of model
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predictions to experimental data on the effect of exposure duration on per-
ceived blur for base blurs of 0, 2, and 4 arcmin. The model has been also

Percelved Blur (arcmin)

200 400 600 800 1000
Exposure Duration (msec)

Fig. 1.11. Model predictions (solid lines) and data (dashed lines) for the effect of
exposure duration on perceived blur for base blurs of 0, 2, and 4 arcmin. From [44]

v

Fig. 1.12. To measure the blur discrimination threshold, first a base blur is chosen
(solid curve). The ability of the observer to tell apart slightly more blurred edges
(dashed line) in comparison to this base blur is quantified by psychophysical methods

tested for blur discrimination thresholds, i.e. the ability of the observer to
tell apart two slightly different amounts of edge blur. As shown in Fig. 1.12,
first a base blur (solid curve) is chosen, and the ability of the observer to tell
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apart slightly more blurred edges (dashed line) in comparison to this base
blur is quantified by psychophysical methods. Figure 1.13 compares model
predictions and data from [55] for the effect of exposure duration on blur
discrimination thresholds. For both blur perception and discrimination, one

4
17}
o
o 35
<
7}
o 3
IS
g E 25
= £
g S
E=Rr
g ~ 15
=
o
L2 1
[a)
5 05
m

0

50. 100. 500. 1000. 5000.

Exposure Duration (msec)

Fig. 1.13. Model predictions (solid line) and data (dashed lines) of three observers
from [55] for blur discrimination threshold as a function of exposure duration. From
[44]

observes that an exposure duration on the order of 100 ms is required to reach
veridical perception and optimal discrimination of edge blur, and that a good
agreement between experimental data and model predictions is found.

Figure 1.14 compares model predictions and data for blur discrimination as
a function of base blur. Discrimination thresholds follow a U-shaped function
with a minimum value around 1 arcmin. The optics of the eye limits perfor-
mance for base blurs less than 1 arcmin. For base blurs larger than 1 arcmin,
neural factors limit performance.

1.3.4 On and Off Pathways and Edge Localization

Receptive fields of retinal ganglion cells can also be classified as on-center off-
surround (Fig. 1.15, left) and off-center on-surround (Fig. 1.15, right). These
receptive fields contain two concentric circular regions, called the center and
the surround. If a stimulus placed in the center of the receptive field excites the
neuron, then a stimulus placed in the surround will inhibit the neuron. Thus
the center and the surround of the receptive field have antagonistic effects
on the neuron. A receptive field whose center is excitatory is called on-center
off-surround. Similarly, a receptive field whose center is inhibitory is called
off-center on-surround. The outputs of the on-center off-surround cells give
rise to the on pathway, and the outputs of the off-center on-surround cells
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Fig. 1.14. Model predictions and data from [26] (for observers JH and CD) and
from [40] (for observer RO) plotting blur discrimination thresholds as a function of
base blur. From [44]

give rise to the off pathway. Because the spatial integration of inputs for the
P cells is linear, the signals generated by an edge in the on and off pathways
will exhibit an odd-symmetry; and their point of balance would correspond
to the location of the edge. It has been shown that a contrast-dependent
asymmetry exists between the on and off pathways in the human visual system
[53]. An implication of this asymmetry is that, if edges are localized based
on a comparison of activities in the on and off channels then a systematic
mislocalization of the edge should be observed as the contrast of the edge is
increased. Indeed, Bex and Edgar [5] showed that the perceived location of
an edge shifts towards the darker side of the edge as the contrast is increased.
Their data are shown in Fig. 1.16. Negative values on the y-axis indicate that
the perceived edge location is shifted towards the darker side of the edge. For a
sharp edge (0 arcmin blur), no mislocalization is observed for contrasts ranging
from 0.1 to 0.55. However, as the edge blur is increased a systematic shift
towards the darker side of the edge is observed. To estimate quantitatively this
effect in the model, we introduced an off pathway whose activities consisted
of negatively scaled version of the activities in the on pathway. This scaling
took into account the aforementioned asymmetry. As a result, as contrast is
increased above approximately 0.2, the activities in the off pathway increased
slightly more than those in the on pathway. The quantitative predictions of
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Fig. 1.15. Left: On-center off-surround receptive field; right: off-center on-surround
receptive field. Plus and minus symbols indicate excitatory and inhibitory regions of
the receptive field, respectively

the model are superimposed on the data in Fig. 1.16. Overall, one can see a
good quantitative agreement between the model and the data.

1.3.5 Trade-off Between Spatial and Temporal Deblurring

The aforementioned simulations studied model behavior under the conditions
of visual fixation for a static boundary, i.e. when the position of the bounda-
ry remains fixed over retinotopic maps. Under these conditions, feedforward
retino-cortical signals send blurred boundary information, and gradually post-
retinal feedback signals become dominant and construct sharpened represen-
tation of boundaries. However, because post-retinal signalling involves positive
feedback, at least two major problems need to be taken into consideration:

1) When the positive feedback signals become dominant, the system loses
its sensitivity to changes in the input. For example, if the input moves spa-
tially, the signals at the previous location of the input will persist through
positive feedback loops and the resulting perception would be highly smeared,
similar to pictures of moving objects taken by a camera at long exposure du-
ration. Thus, within a single pathway spatial sharpening comes at the cost of
temporal blurring.

2) If left uncontrolled, positive feedback can make the system unstable.

We suggest that the complementary magnocellular pathway solves these
problems by rapidly “resetting” the parts of retinotopic map where changes in
the input are registered. Accordingly, the real-time operation of the RECOD
model unfolds in three phases:

(i) Reset phase: Assume that the post-retinal network has some residual
persistent activity due to a previous input. When a new input is applied to



18 Haluk Ogmen

q|---O-- Data 0 arcmin
-3 40 Data 15 arcmin
---/-- Data 30 arcmin
—@— Model 0 arcmin
-4 4| —=— Model 15 arcmin
4| —&— Model 30 arc min

Distance from center (arcmin)
[-ve: to dark; +ve: to light]

_5 v L} v L} v L} v T v T v T v 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Contrast

Fig. 1.16. Model predictions and data showing the effect of contrast on the per-
ceived mislocalization of edges with different amounts of blur. The data points are
digitized from [5] and represent the mean and the standard error of the mean com-
puted from two observers. From [44]

the RECOD model, the fast-transient neurons respond first. This transient
activity inhibits the post-retinal network and removes the persisting residual
activity.

(i1) Feedforward dominant phase: The slow-sustained neurons respond next
to the applied input and drive the post-retinal network with excitatory inputs.

(#1i) Feedback dominant phase: When the activity of the sustained neurons
decays from their peak to a plateau, the feedback becomes dominant com-
pared to the sustained feedforward input. This results in the sharpening of
the input spatial pattern. Thus, the feedforward reset mode achieves temporal
deblurring, and the feedback mode achieves spatial deblurring.

According to the three-phase operation of the model, a single continuous
presentation of a blurred edge is necessary for the feedback to sufficiently
sharpen the neural image across the retinotopic map. Multiple short expo-
sures cannot achieve the same amount of sharpening as a single long exposure
since the post-retinal feedback is reset by the retinal transients. Westheimer
[55] measured blur discrimination thresholds for an edge whose blur was tem-
porally modulated in different ways. The reference stimulus was a sharp edge.
In the first experiment, the test stimulus was a blurred edge presented alone
for durations of 30 ms and 130 ms. Next, the test stimulus was presented
as a combination of (i) a sharp edge for 100 ms and a blurred edge for the
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next 30 ms, (i) a blurred edge for the first 30 ms and a sharp edge for the
next 30 ms, and (iii) a blurred edge for 100 ms and a sharp edge for the next
100 ms. As shown in Table 1, the RECOD model predicts lower differences in
the luminance gradients between the test and reference stimuli for conditions
(i) and (ii) above than for a 30 ms presentation of a blurred edge. This gives
higher blur discrimination thresholds. Similarly, condition (iii) above yields
a lower difference in the luminance gradients between the test and reference
stimuli than when the test stimuli is a blurred edge presented for 130 ms.

Table 1.1. Model and data from Westheimer [55] for blur discrimination thres-
holds (arcmin) obtained with hybrid presentations

30 ms 130 ms (i) (i) (i)
Data 3.8 1.43 7.17 8.56 2.06
Model 2.6 1.2 5.335.331.44

1.3.6 Perceived Blur for Moving Stimuli

Another way to test the proposed reset phase is to compare model predic-
tions with data on the perception of blur for moving stimuli. In normal view-
ing conditions, moving objects do not appear blurred. Psychophysical studies
showed that perceived blur for moving objects depends critically on the ex-
posure duration of stimuli. For example, moving targets appear less blurred
than predicted from the visual persistence of static targets when the exposure
duration is longer than about 40 ms [10, 28|. This reduction of perceived blur
for moving targets was named “motion deblurring” [10].

Model predictions for motion deblurring were tested using a “two-dot
paradigm”, where the stimulus consisted of two horizontally separated dots
moving in the horizontal direction, as shown in the top panel of Fig. 1.17.
The middle panel of the figure shows a space-time diagram of the dots’ tra-
jectories. The afferent short-latency-transient and long-latency-sustained sig-
nals are depicted in the bottom panel of Fig. 1.17 by dashed lines and the
gray region, respectively. The sustained activity corresponding to both dots
are highly spread over space. However, at the post-retinal level, the inter-
action between the transient activity generated by the trailing dot and the
sustained activity generated by the leading dot results in a substantial de-
crease of the spatial spread of the activity generated by the leading dot. From
Fig. 1.17, one can see that the exposure duration needs to be long enough for
the transient activity conveyed by the magnocellular pathway for the trailing
dot to spatiotemporally overlap with the sustained activity conveyed by the
parvocellular pathway for the leading dot.
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Fig. 1.17. Top: Two-dimensional representation of the input. Arrows indicate mo-
tion. Middle: spatiotemporal representation of the input. Bottom: superimposed af-
ferent transient and sustained signals

In order to compare model predictions quantitatively with data, Fig. 1.18
plots the duration of perceived blur (calculated as the ratio of the length of
perceived blur to the speed) for the leading and the trailing dot, respectively,
for two dot-to-dot separations along with the corresponding experimental data
[14].

In all cases, when the exposure duration is shorter than 60 msec, no signi-
ficant reduction of blur is observed and the curves for the leading and trailing
dots for both separations largely overlap. The mechanistic explanation of this
effect in our model is as follows: due to the relative delay between transient
and sustained activities, no spatial overlap is produced when the exposure
duration is short. When the moving dots are exposed for a longer duration,
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Fig. 1.18. Duration of blur as a function of exposure duration for the leading (left)
and trailing (right) dots in the two-dot paradigm for two dot-to-dot separations.
From [43]

these two activities overlap and the inhibitory effect of the transient activity
on the sustained one reduces the persistent activity from the leading dot. A
significant reduction of perceived blur is observed for the leading dot when the
dot-to-dot distance is small both in the model and in data. When the dot-to-
dot separation is larger, the spatiotemporal overlap of transient and sustained
activities is reduced, thereby decreasing the effect of deblurring in agreement
with data (Fig. 1.18). For the trailing dot, dot-to-dot separation has no effect
on post-retinal activities, and no significant reduction in perceived blur is
observed. Quantitatively, the model is in very good agreement with data with
the exception of some underestimation for long exposure duration in the case
of the trailing dot.

1.3.7 Dynamic Viewing as a Succession of Transient Regimes

Under normal viewing conditions, our eyes move from one fixation point to
another, remaining at each fixation for a few hundred millisecons. Our studies
show that a few hundred milliseconds is the time required to attain an “opti-
mal” encoding of object boundaries (Figs. 1.11, 1.13, and 1.18). Therefore, the
timing of eye movements correlates well with the timing of boundary analysis.
We also suggest that these frequent changes in gaze help the visual system
remain mainly at its transient regime and thus avoid unstable behavior that
would otherwise result from extensive positive feedback loops observed in the
post-retinal areas. Within our theoretical framework, the visual and the oculo-
motor system together “reset” the activities in the positive feedback loops by
using the inhibitory fast transient signals originating from the magnocellular
pathway.
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1.3.8 Trade-off Between Reset and Persistence

If the system is reset by exogenous signals, as suggested above, one needs to
consider the problem that may arise because of internal noise: internal noise in
the M pathway could cause frequent resets of information processing in areas
that compute object boundaries and form. In addition, such rapid undesirable
reset cycles may also occur because of small involuntary eye movements as well
as because of small changes in the inputs. We suggest that the inhibition from
the P-driven system on the M-driven system prevents these resets through
a competition between the two systems (see Fig. 1.5). In our simulations re-
ported in the previous sections, for simplicity we did not include sustained
on transient inhibition, for both the inputs and the neural activities were
noise-free. The proposed competition between the M-driven and the P-driven
systems can be tested by using stimuli that activate successively in time spa-
tially nonoverlapping but adjacent regions. The perceptual correlates for such
stimuli have been studied extensively in the masking literature [3, 6, 8|. If we
label the stimulus whose perceptual and/or motor effects are measured as the
“target” stimulus and the other stimulus as the “mask” stimulus (Fig. 1.19),
then the condition where the mask is presented in time before the target
is called paracontrast. The condition where the mask is presented after the
target is called metacontrast [3, 6, 8]. Based on a broad range of masking

Fig. 1.19. A typical stimulus configuration used in masking experiments. The cen-
tral disk serves as the target stimulus and the surrounding ring serves as the mask
stimulus

data Breitmeyer [7, 6] proposed reciprocal inhibition between sustained and
transient channels, and this reciprocal inhibition is also an essential part of
the RECOD model. Consider metacontrast: here the aftercoming mask would
reset the activity related to the processing of the target. Indeed, a typical
metacontrast function is a U-shaped function suggesting that the maximum
suppression of target processing occurs when the mask is delayed so that the
fast transient activity generated by the mask overlaps in time with the slower
sustained activity generated by the target. If the transient activity generated
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by the mask can be suppressed by sustained activity, then it should be possible
to introduce a second mask (Fig. 1.20) whose sustained activity can suppress
the transient activity of the primary mask. This in turn results in the disin-
hibition of the target stimulus. In support of this prediction, several studies

outer ring

ﬂ (secondary mask)

disk ﬂ (target)

inner ring
(primary mask)

»
»

time

Fig. 1.20. Left: modification of the stimulus configuration shown in Fig. 1.19. The
second outer ring serves as the secondary mask. Right: The temporal order of the
stimuli

showed that the second mask allows the recovery of an otherwise suppressed
target (e.g. [17]). Furthermore, Breitmeyer et al. [9] showed that the effect of
the secondary mask in producing the disinhibition (or recovery) of the target
starts when it is presented at about 180 ms prior to the target and gradually
increases until it becomes simultaneous with the primary mask. This relatively
long range of target recovery provides a time window during which sustained
mechanisms can exert their inhibitory influence so as to prevent reset signals
generated by noise.

1.3.9 Attention: Real-time Modulation of the Balance Between
Reset and Persistence

Having a mechanism to reduce reset signals opens another possibility: mo-
dulatory mechanisms can bias the competition in favor of the sustained me-
chanisms and thereby allow a more persistent and enhanced registration and
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analysis of stimuli. We suggest that attention serves that purpose. Although a
universally adopted definition of attention does not exist, it is often defined as
a selection mechanism whereby resources are focused on certain item(s), loca-
tion(s), etc. Within the framework of the RECOD model, the reset mechanism
curtails cortical activity and therefore attention necessitates a reduction of the
reset signals for the attended locations, features, objects, and so on. Similarly,
attention can also increase the gain of reset signals for unattended locations
and objects. A simple way to achieve this in RECOD is to bias the com-
petition between transient and sustained systems in favor of the sustained
system for attended locations, features, and objects; and bias the competi-
tion in favor of the transient system for unattended locations, features, and
objects. For example, assume that attention primes part of the retinotopic
map as illustrated in Fig. 1.21. The model then predicts in agreement with
experimental data that attention should increase visible persistence [54], de-
crease temporal sensitivity [57], increase spatial sensitivity [56], and decrease
masking [21, 45, 48]. Similarly, it is predicted that attention should enhance
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Fig. 1.21. Ilustration of attention in RECOD. Priming the activation of the cells
in the P pathway biases the competition between sustained and transient systems
in favor of the sustained system
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target recovery, should increase reaction times to a target in paracontrast,
and increase motion blur. These predictions have not been tested.

1.4 Summary

In this chapter we reviewed some fundamental properties of the primate vi-
sual system and highlighted maps and pathways as spatiotemporal informa-
tion encoding and processing strategies. We suggest that maps represent the
geometry of the fusion between structure and function in the nervous system,
and that the pathways represent complementary aspects of processing whose
interactions can solve conflicting requirements arising within a single proces-
sing stream. The use of retinotopic and spatial-frequency maps was illustrated
by considering the problem of object boundary encoding. The use of parallel,
complementary pathways was illustrated by considering how the interactions
between magnocellular and parvocellular pathways can resolve the trade-off
between spatial and temporal deblurring. We suggested that the interactions
between magnocellular and parvocellular pathways play a fundamental role
in keeping the system in a succession of transient regimes, thereby avoiding
unstable behavior that would result from complex feedback loops that in-
clude extensive positive feedback. Finally, we suggested that attention can
be viewed as a modulation of the dynamic balance between sustained and
transient systems.

Appendix: Fundamental Equations of the Model and Their Neuro-
physiological Bases

The first type of equation used in the model has the form of a generic
Hodgkin—Huxley equation:

dVi,

dt = _(EP + Vm)gP + (Ed - Vm)gd - (Eh + Vm)gh7 (11>

where Vy, represents the membrane potential; gy, ga, gn are the conductances
for passive, depolarizing, and hyperpolarizing channels, respectively; with £,
FEq4, Eyn representing their Nernst potentials. This equation has been used
extensively in neural modeling to characterize the dynamics of membrane
patches, single cells, as well as networks of cells (rev. [25, 31]). For simplicity,
we will assume E, = 0 and use the symbols B, D, and A for Eq, Ey, gp,
respectively, to obtain the generic form for multiplicative or shunting equation
(rev. [25]):

dtm = — AV + (B = Vi)ga — (D + Vi) gn. (1.2)
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The depolarizing and hyperpolarizing conductances are used to represent
the excitatory and inhibitory inputs, respectively. The second type of equa-
tion is a simplified version of Eq. (2), called the additive model, or the leaky-
integrator model, where the external inputs influence the activity of the cell
not through conductance changes but directly as depolarizing Iq and hyper-
polarizing I, currents yielding the form:

dV,
=-AV, + 15 — L. 1.3
dt +Ii— I (1.3)

Mathematical analyses showed that, with appropriate connectivity pat-
terns, shunting networks can automatically adjust their dynamic range to
process small and large inputs (rev. [25]). Accordingly, we use shunting equa-
tions when we have interactions among a large number of neurons so that a
given neuron can maintain its sensitivity to a small subset of its inputs with-
out running into saturation when a large number of inputs become active. We
use the simplified additive equations when the interactions involve few neu-
rons. Finally, a third type of equation is used to express biochemical reactions
of the form

S+Z—-Y ->X—->S+72, (1.4)

where a biochemical agent S, activated by the input, interacts with a trans-
ducing agent Z (e.g. a neurotransmitter) to produce an active complex Y that
carries the signal to the next processing stage. This active complex decays to
an inactive state X, which in turn dissociates back into S and Z. It can be
shown that (see Appendix in Sarikaya et al. [47]), when the active state X
decays very fast, the dynamics of this system can be written as:

d
L o - 2ps (15)

with the output given by y(t) = 7S(t)z(t), where s, z,y represent the con-
centrations of S, Z, and Y, respectively, and +, J, @ denote rates of complex
formation, decay to inactive state, and dissociation, respectively. This equa-
tion has been used in a variety of neural models, in particular to represent
temporal adaptation, or gain control property, occurring, for example, through
synaptic depression (e.g. [1, 13, 22, 24, 37, 38]).

Acknowledgements
This study is supported by NIH grant RO1-MH49892.

References

1. Abbott L. F., Varela K., Sen K., Nelson S.B. (1997) Synaptic depression and
cortical gain control. Science 275:220-223



10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

1 Spatiotemporal Dynamics of Visual Perception 27

Albright T.D., Desimone R., Gross C.G. (1984) Columnar organization of di-
rectionally selective cells in visual area MT of the macaque. J. Neurophysiol.
51:16-31

Bachmann T. (1994) Psychophysiology of Visual Masking: The Fine Structure
of Conscious Ezxperience. Nova Science, New York

Baron M., Westheimer, G. (1973) Visual acuity as a function of exposure dura-
tion. J. Opt. Soc. Am. 63:212-219

Bex P.J., Edgar G.K. (1996) Shifts in perceived location of a blurred edge in-
crease with contrast. Perception and Psychophysics 58:31-33

Breitmeyer B.G. (1984) Visual masking: An Integrative Approach. Oxford Uni-
versity Press, Oxford

Breitmeyer B.G., Ganz, L. (1976) Implications of sustained and transient chan-
nels for theories of visual pattern masking, saccadic suppression, and information
processing. Psychological Rev. 83:1-36

Breitmeyer B.G., Ogmen H. (2000) Recent models and findings in visual back-
ward masking: A comparison, review, and update. Perception and Psychophysics
62:1572-1595

Breitmeyer B.G., Rudd M., Dunn K. (1981) Metacontrast investigations of
sustained-transient channel inhibitory interactions. J. of Exp. Psych: Human
Perception and Performance 7:770-779

Burr D. (1980) Motion smear. Nature 284:164-165

Burr D.C., Morgan, M.J. (1997) Motion deblurring in human vision. Proc. R.
Soc. Lond. B 264:431-436

Carandini M., Heeger D.J. (1994) Summation and division by neurons in primate
visual cortex. Science 264:1333-1336

Carpenter G. A., Grossberg S. (1981) Adaptation and transmitter gating in
vertebrate photoreceptors. J. of Theor. Neurobiology 1:1-42

Chen S., Bedell H.E., Ogmen H. (1995) A target in real motion appears blurred
in the absence of other proximal moving targets. Vision Res. 35:2315-2328
Croner L.J., Kaplan E. (1995) Receptive fields of P and M ganglion cells across
the primate retina. Vision Res. 35:7-24

De Monasterio F.M. (1978) Properties of concentrically organized X and Y
ganglion cells of macaque retina. J. Neurophysiol. 41:1394-1417

Dember W.N., Purcell D.G. (1967) Recovery of masked visual targets by inhi-
bition of the masking stimulus. Science 157:1335-1336

De Valois K.K. (1977) Spatial frequency adaptation can enhance contrast sen-
sitivity. Vision Res. 17:209-215

De Valois R.L., De Valois K.K. (1990) Spatial Vision. Oxford University Press,
New York

De Valois K.K., Switkes E. (1980) Spatial frequency specific interaction of dot
patterns and gratings. Proc. Nat. Acad. Sci. USA 77:662-665

Enns J.T., DiLollo V. (1997) Object substitution: A new form of masking in
unattended visual locations. Psychological Science 8:135—139

Gaudiano P. (1992) A unified neural network of spatio-temporal processing in
X and Y retinal ganglion cells. 2: Temporal adaptation and simulation of expe-
rimental data. Biol. Cybern. 67:23-34

Georgeson M.A. (1994) From filters to features: location, orientation, contrast
and blur. CIBA Foundation Symposia 184:147-169

Grossberg S. (1972) A neural theory of punishment and avoidance, II: Quanti-
tative theory. Mathematical Biosciences 15:253-285



28

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Haluk Ogmen

Grossberg S. (1988) Nonlinear neural networks: Principles, mechanisms and
architectures. Neural Networks 1:17-61

Hamerly J.R., Dvorak, C.A. (1981) Detection and discrimination of blur in edges
and lines. J. Opt. Soc. Am. 71:448-452

Hendry S.H.C., Reid, R.C. (2000) The koniocellular pathway in primate vision.
Annu. Rev. Neurosci. 23:127-153

Hogben J.H., Di Lollo V. (1985) Suppression of visible persistence in apparent
motion. Perception and Psychophysics 38:450-460

Hood D. (1973) The effects of edge sharpness and exposure duration on detection
threshold. Vision Res. 13:759-766

Hubel D.H., Wiesel T.N. (1968) Receptive fields and functional architecture of
monkey striate cortex. J. Physiol. London 195:215-243

Koch C., Segev 1. (1989) Methods in Neuronal Modeling. MIT Press, Cambridge,
MA

Livingstone M., Hubel, D. (1988) Segregation of form, color, movement, and
depth: Anatomy, physiology, and perception. Science 240:740-749

Maunsell J.H.R., Gibson J.R. (1992) Visual response latencies in striate cortex
of the macaque monkey. J. Neurophysiol. 68:1332—1344

Milner A.D., Goodale M.A. (1995) The Visual Brain in Action. Oxford Univer-
sity Press, Oxford

Mishkin M., Ungerleider L.G., Macko, K.A. (1983) Object vision and spatial
vision: Two cortical pathways. Trends in Neurosciences 6:414-417

Nowak L.G., Munk M.H.J., Girard P., Bullier J. (1995) Visual latencies in areas
V1 and V2 of the macaque monkey. Visual Neuroscience 12:371-384

Ogmen H. (1993) A neural theory of retino-cortical dynamics. Neural Networks
6:245-273

Ogmen H., Gagné S. (1990) Neural models for sustained and on-off units of
insect lamina. Biol. Cybern. 63:51-60

Ogmen H., Breitmeyer B.G., Melvin R. (2003) The what and where in visual
masking. Vision Res. 43:1337-1350

Padkkonen A.K., Morgan M.J. (1994) Effect of motion on blur discrimination.
J. Opt. Soc. Am. A 11:992-1002

Pizlo Z. (2001) Perception viewed as an inverse problem. Vision Res. 41:3145—
3161

Purpura K., Tranchina D., Kaplan E., Shapley R.M. (1990) Light adaptation
in primate retina: Analysis of changes in gain and dynamics of monkey retinal
ganglion cells. Visual Neuroscience 4:75-93

Purushothaman G., Ogmen H., Chen S., Bedell H.E. (1998) Motion deblurring
in a neural network model of retino-cortical dynamics. Vision Res. 38:1827-1842
Purushothaman G., Lacassagne D., Bedell H.E., Ogmen H. (2002) Effect of ex-
posure duration, contrast, and base blur on coding and discrimination of edges.
Spatial Vision 15:341-376

Ramachandran V.S., Cobb S. (1995) Visual attention modulates metacontrast
masking. Nature 373:66—68

Salin P.-A., and Bullier J. (1995) Corticocortical connections in the visual sys-
tem: structure and function. Physiological Reviews 75:107-154

Sarikaya M., Wang W., Ogmen H. (1998) Neural network model of on-off units
in the fly visual system: simulations of dynamic behavior. Biol. Cybern. 78:399—
412



48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

1 Spatiotemporal Dynamics of Visual Perception 29

Shelley-Tremblay J., Mack A. (1999) Metacontrast masking and attention. Psy-
chological Science 10:508-515

Stecher S., Sigel C., Lange R.V. (1973) Composite adaptation and spatial fre-
quency interactions. Vision Res. 13:2527-2531

Tolhurst D.J. (1972) Adaptation to square-wave gratings: Inhibition between
spatial frequency channels in the human visual system. J. Physiol. 226:231-248
Tootell R.B.H., Silverman M.S., De Valois R.L. (1981) Spatial frequency
columns in primary visual cortex. Science 214:813-815

Tootell R.B.H., Silverman M.S., Hamilton S.L., De Valois R.L., Switkes E.
(1988) Functional anatomy of macaque striate visual cortex. 3. Color. J. Neu-
rosct. 8:1569-1593

Virsu V., Laurinen, P. (1977) Long-lasting afterimages caused by neural adap-
tation. Vision Res. 17:853-860

Visser T.A., Enns J.T. (2001) The role of attention in temporal integration.
Perception 30:135-145

Westheimer G. (1991) Sharpness discrimination for foveal targets. J. Opt. Soc.
Am. 8:681-685

Yeshurun Y., Carrasco M. (1998) Attention improves or impairs visual perfor-
mance by enhancing spatial resolution. Nature 396:72-75

Yeshurun Y., Levy L. (2003) Transient spatial attention degrades temporal res-
olution. Psychological Science 14:225-231

Youping X., Yi W., Felleman D.J. (2003) A spatially organized representation
of colour in macaque cortical area V2. Nature 421:535-539

Zeki S. (1997) The color and motion systems as guides to conscious visual per-
ception. Cerebral Cortex 12:777-809



2

Symmetry, Features, and Information

Hamid R. Eghbalnia,! Amir Assadi,’ Jim Townsend?

(1) Department of Mathematics - University of Wisconsin-Madison
480 Lincoln Dr., Madison, WI 53706
eghbalni@nmrfam.wisc.edu, ahassadi@facstaff.wisc.edu

(2) Department of Psychology - Indiana University
Bloomington, IN 47405
jtownsen@indiana.edu

To Bill Browder on His Birthday
With Admiration and Friendship

2.1 Introduction

There is growing evidence that a number of problems in perception and per-
ceptual geometry, for example, the problems of figure-ground separation and
scene segmentation could be formulated in terms of structural regularity of
regions of images in statistical and information theoretic terms. Intuitively, as
well as in psychophysical studies performed by cognitive scientists, perception
of local structural regularity is fundamentally correlated with perception of
local symmetry of surfaces, and under parallel projection of planar surfaces,
with local symmetries of their images [50, 14, 37]. In other words, such local
symmetries distinguish prevalent regularity of common surfaces in the envi-
ronment from randomness in arbitrary composition of colored dots; or what
is the same, they distinguish meaningful images from a generic pattern of a
totally random selection of light intensities in matrices encoding local incohe-
rence in optical properties. Are there features that encode, in a sparse format,
such local regularities?

Consider being given an image described by a set of values at a discrete
set of points on a finite grid. The task is to find some specific “feature” of the
image and to do so in a finite amount of time and with finite computational
resources. For example, if the image is that of a rug, the task may be the
determination of whether the rug pattern has any symmetric structure. Or,
the task may simply be recognition of whether an object in the image is a face
or not. This search task may need multiple queries or “looks” at the image in
order to obtain pertinent information. What is the pertinent or right structure
that needs to be learned, what is the learning? What is to be learned [46]?
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Shepherd [38] argues that principles of invariance and elegance are natural
principles for formulation of representations of biologically significant objects.
Using arguments based on symmetry principles, Palmer [33] develops the “iso-
morphism constraint”, a principled distinction between what can and cannot
be determined about the nature of color experience by objective behavioral
means. From a mathematical point of view, it can be shown that in the space
of all possible patterns of light (i.e. all large matrices of same size with non-
negative coefficients), the set of possible images of natural scenes is a very
small subset.

Symmetry is widely believed to be an important visual primitive that is
probably encoded without the need for attention. The definition of effortless
perception proposed by Julesz [20] states that any stimulus property per-
ceived for exposure durations of 160 msec or less is detected preattentively.
This notion of effortless perception has contributed greatly to views regar-
ding preattentive symmetry detection. However, there is ample psychophysical
data to support the view that a number of symmetry detection tasks require
selective attention and may be spatially imprecise, although some grouping
or segmentation tasks may operate preattentively [32, 50, 18]. A number of
computational approaches to symmetry detection have been proposed. An
overview of the various approaches, a discussion of symmetry groups in the
context of crystallographic groups, and many references to the computational
literature can be found in Liu [24].

Symmetry as a representation tool can take on a central role in addres-
sing perceptual processes. The channel theory in processing of early parts of
visual input can be seen as an example of this role. Fourier transform is the
most widely known form of symmetry operation arising from group represen-
tation. In this new role, symmetry principles are the driving force in obtaining
mathematical models for filters (or channels) as well as describing how their
information content should be analyzed. In this chapter, we will motivate our
approach in the first section and give a brief review of the structure of data
flow in the human visual system and the psycophysical evidence for the possi-
ble forms of representations used for search tasks. Inspired by the prominent
role of symmetry in the description of our physical world as well as its per-
ception through our cognitive processes, our goal in the next section is to
use symmetry in a systematic way to formulate the representation and detec-
tion of learned signals. This formulation leads to the notion of overcomplete
representations [9]. We call this formulation a dynamic search and focus our
attention on the central problem of addressing the mathematical formulation
for the machinery necessary to solve the dynamic search problem. Next, we
describe a measure for the information content of the signals that accounts for
the symmetries of our dynamic search representation. We coin the terminolo-
gy information dynamics, referring to our formulation of search that exploits
the idea of overcomplete representations. In the final section, we give a brief
overview of the computational implementation and results for the proposed
model. A more detailed discussion of the model and the results is found in [7].
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2.2 Motivations From the Visual System

The current weight of experimental evidence to support a high-fidelity internal
representation for search tasks is at best equivocal. What appears to be a
dominant factor is what is referred to as “features”. Furthermore, search tasks
appear to be segmented to solve simpler problems first, rejecting features
irrelevant to the tasks and seeking information for features relevant to the
task. If search tasks are based on finding features that involve a decision based
on the tasks at hand, in what way are these features compared? It seems likely
that a task-dependent feature representation map may exist. What is a likely
model of feature comparison? Clues from the theory of guided search combined
with the ideas of search for similarity provide the motivation for mathematical
models and computational methods presented in the forthcoming sections.

2.2.1 A Quick Review of Retinal Data Flow

The structure of the primate retina is highly inhomogeneous with an ex-
tremely high density of receptor and ganglion cells in the center, a specialized
fovea, and a rapid decline of the cell densities to the periphery. The lattice
spacing of ganglion cell receptive field centers limits certain forms of visual
acuity, according to the Nyquist limit. Spatial resolution of ganglion cells and
the spacing of receptive field centers appear approximately equal. Given this
observed relationship, the spatial low-pass filtering action of ganglion cell re-
ceptive fields would appear to attenuate periodic patterns at or above the
Nyquist limit by about a factor of five or more, thus reducing the likelihood
of detecting potentially confusing higher spatial frequencies with potential for
aliasing. However, small offsets or stimulus movements much finer than any
retinal cell mosaic spacing can be detected by ganglion cells. This is referred
to as visual hyperacuity.

Ganglion cell fields partially overlap in visual space. Moreover, ganglion
cells share an overlapping neural substrate composed of retinal interneurons
and circuitry. As a result, the physiological signals they transmit are often
highly correlated among neighboring cells. Retinal ganglion cells have no true
threshold for detection of dim stimuli [3]. When many responses are averaged,
signals can be seen for light stimuli as dim as desired, and this includes stimuli
so dim that only a few physical quanta of light are delivered to the surface of
the eye at the cornea. Of course in total darkness retinal ganglion cells still
exhibit a maintained but variable spontaneous firing rate, and it is against
this background noise that quantal responses must be detected. Barlow et al.
[3] concluded that a single quantum absorption resulted in the firing of 2 or
3 extra ganglion cell nerve impulses. Because of fluctuations in spontaneous
background firing, single quantal events might not be readily detected in a
single cell. However 3-4 quantal absorptions within the cell’s receptive field
would be easily noticed in the discharge pattern.
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Ganglion cell axons terminate in brain visual centers, principally the late-
ral geniculate nucleus (LGN) and the superior colliculus. The LGN neurons
mainly project to the primary visual cortex, also known as area V1. There is a
qualitative difference between neurons in the LGN and those of area V1. For
example, while most V1 neurons do not have circularly symmetric receptive
fields, most LGN neurons do. Cortical neurons mainly fall into two major
categories, simple and complex cells (see Fig. 2.1.).

Layer 4c

Complex

Fig. 2.1. A cartoon presentation of simple and complex cells and their receptive
fields.

The sampling of the visual field in V1 is known to be sparse with ap-
proximately 5-6 samples of scale and 16-18 samples of orientation spread
in a 100-by-100 hypercolumn. The so-called pinwheel structures arise from
the attempt to map the external world onto the two-dimensional surface of
the cortex parameterized by scale and orientation [34]. This structure of the
retina suggests that moving the fovea to different positions is a requirement
of having a homogeneous and simultaneous percept of the total visual field.
This movement should provide the means for successive “looks” used for ac-
quiring and integrating information. The existence of a fovea requires both,
eye movements and periods of fixation, as seen in human saccades. The close
relationship of visual perception, cognition, movements of the retinal image,
and eye movements has made the independent study of each field without the
influence of other effects a difficult task.
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2.2.2 Search Tasks

Yarbus [56] was among the first to demonstrate that eye movements reflect
cognitive events. However, understanding the relationship between eye move-
ments and cognitive events remained largely unexplored [49]. In his thesis,
using the block-copying task, Pelz [35] demonstrated a number of findings
that corroborated a number of prior experiments.

Subjects in Pelz’s studies made frequent eye movements, returning to in-
spect the model pattern again and again while copying the eight colored
blocks. In essence, they used eye movements to serialize the task into sim-
pler subtasks that were executed sequentially. The constraints of the task and
the subjects’ common, stereotyped behavior led to a relatively small number
of strategies used to copy each block. The modal strategy was the “model-
pickup-model-drop” (MPMD) strategy [35]. The subject looked first to the
model, then to the resource area (guiding the block pickup), returned gaze to
the model, and finally on to the workspace to guide the block drop. Because
subjects were given no direction on how to perform the task, other than to
complete the copy as quickly as possible without making errors, it is impor-
tant that subjects chose to complete the task by referring to the model so
frequently. None of the subjects in the study used the alternative strategy
of first locating and identifying several objects in the scene, then moving a
number of blocks without fixating the model again. At least in the context
of this study, subjects’ use of temporary, task-specific visual representations
suggested that vision may be much more “top-down” than was previously
thought.

Pelz’s work challenged the idea that the visual system is tasked to gather
information for integration into a high-fidelity, general-purpose representation
of the environment without regard to the immediate task. In comparison, in
the classical view of visual perception (also embraced by traditional computer
vision approaches (e.g., Marr [26]), planning and cognition was performed by
referencing the internal representation. The frequent eye movements used by
subjects in these experiments suggest that in real tasks, humans apparently
maintain only sparse, transient representations of task-relevant information.

These experiments suggest that the role of perception may be to create
descriptions that are relevant to the immediate task. To the extent that mani-
pulations on a given block are largely independent of the information acquired
in previous views, performance in this task suggests that it is unnecessary to
construct an elaborate scene description to perform the task, and that there
is only minimal processing of unattended information. These observations
support the suggestion made previously that only minimal information about
a scene is represented at any given time, and that the scene can be used
as a kind of “external” memory [31, 30, 19] (see also related suggestions by
Nakayama [28]).

Research in human visual search over the past 20 years has established
three factors that are powerful determinants of search speed and accuracy.
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These determinants are the number of objects to be searched for, the degree
of target and background similarity, and training [16, 39, 53]. Targets that
differ from their backgrounds by a single feature (e.g., a red circle among
green circles) usually lead to “pop-out” in that search is fast and relatively
independent of the number of distracter objects.

The pop-out effect is in contrast to searching for a conjunction of features
(e.g., ared vertical line in a background of red horizontals and green verticals).
This type of search is generally slower and more error-prone. Some researchers
[42] have suggested that pop-out effects are mediated by preattentive, para-
llel stages in the visual system, while conjunction searches engage a covert
visual attention system that is directed at each display item in turn. This is
commonly referred to as feature integration theory. Feature integration theory
has been amended to address such variations in search efficiency by suggesting
that features are coarsely coded, that the attentional focus may vary in size,
and that the representations of distractor features not shared with the target
can be inhibited [43, 44, 45]. Independent of the validity of this theory, there
is clear evidence that similarity of target and background exerts a powerful
influence on search efficiency [53].

Another theory that attempts to account for variations in search efficiency
is the guided search theory proposed by Wolfe and coworkers [4, 53, 54, 52].
According to this theory, during visual search, preattentive processes guide
shifts of attention by pinpointing stimulus locations likely to contain the tar-
get. This preattentive information encompasses both “bottom-up” (i.e., how
closely a particular item resembles other items in the display) and “top-down”
(i.e., how closely the features of a given item match those characterizing the
target) influences. In guided search theory, the sources of information combine
to create an “activation map”. The activation map contains peaks of activity
at likely target locations. The activation map is used during the search process
to focus attention on the stimulus location showing the most activity.

A common assumption for explaining the effects of target/background
similarity as well as its interaction with the number of objects in the display
and training, is based on the idea of a two stage search. The initial stage
in visual search is a parallel stage that locates likely target candidates. In
a second serial stage, attention is allocated to the target object resulting in
its identification [16, 17, 53]. These models have been simulated in computer
programs in simple settings and appear to provide a good fit to a variety of
search data. However, more realistic situations in which search is accomplished
with eye movements and observers must search through complex scenes have
not been studied using these models.

The evidence discussed in this section motivates a view of visual pro-
cessing in which short-term, task-specific, and sparse information plays an
important role in natural human tasks. Top-down and bottom-up processing
form a synergistic process that creates a map used to guide further visual
processing. The sparse and transient nature of this map suggests a feature-
based construct that may be coded at multiple scales. Coding the percept
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using features further suggests an invariant coding to avoid the computation
of rotation deconvolution. A more detailed source of the material presented
in this section can be found in [7].

2.3 Overview of the Model

To pursue the ideas of search in perceptual mechanisms expressed above,
we need to propose a model that has as its main ingredients the element
we have called features as well as an invariant measure for comparison of
features. In our framework, the analysis of a signal proceeds in three steps
that could be potentially coupled. The first stage involves the generation of
an overcomplete representation of the signal. Our condition on the generation
of the overcomplete representation is the existence of a parameterizing system
that can be used to structure the resulting representation. Here, our paramete-
rizing system is the Lie group of symmetries that parameterizes a set of wavelet
coefficients obtained by analysis using a mother wavelet. More specifically, a
search structure for an image is a collection of elements g belonging to the
Lie group of transformations G of the image.! The search implementation
applies these transformations g to a 2D mother wavelet (or filter), called the
initial search filter, to commence the process of feature extraction. The role of
dynamics is to select an ordering for search transformations g belonging to G.
This ordering is dependent on the search objective. The ordering would idea-
lly describe the time parametrization for the path in analogy with attention
shifts in the primate visual system.

To select the set of initial filters, we have relied on a physical interpretation
of a family of distributions known as Lorentz—Cauchy distributions. These dis-
tributions give rise to a family of filters that retain the optimal uncertainty
bound under all transformations of the group of rotations, scaling and trans-
lations. This property turns out to be unique within this class of wavelets and
offers an additional reason for selection of these wavelets as feature processors.
These wavelets act as projection operators providing a set of coefficients that
describe a multiscale and multiresolution, local-to-global version of the object
or signal under consideration.

Another set of projection operators, called decision operators, is used to
model the search objective. Decision operators act on the multiparameter
signal obtained from the filtering stage to obtain task-specific feature infor-
mation. One decision operator we focus on is based on detection of nonde-
generate local extrema. We remark that ideally such an operator should be
learned using methods of statistical learning theory using data obtained from
experiments. The resulting features are points in a compact subset of the plane

! More generally, a search structure can be any parameterized family of probes
where the parameterizing set has a structure with the required properties defined
by the problem.
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that are encoded in a normalized complex vector called the feature. Thus G,
in combination with the decision operators, can be thought of as inducing a
map from the signal s to a set of feature vectors parameterized by elements
g in G. The variation, measured by the Fubini—Study metric on the resulting
complex projective space of feature vectors [36], as g varies in G gives rise to
information dynamics.

An unstructured search among the set of possible matches can lead to
computationally intractable problems. Matching one face against a collection
of faces at the finest level of detail requires a great deal of computational
power. This would require evaluating some form of distance comparison in a
large class of objects. Because of the variability of conditions in the collection
of pictures, as well as variabilities in the picture to be matched, the compa-
rison of results may be difficult to evaluate. A potential result could be that
many faces fall within “the same distance” from the item to be matched. This
collection of partial matches might not be particularly useful since it is not
given any helpful structure. Is there a method of search that in the case of
potential rejection, discriminates efficiently, while at the same time the novelty
that led to the rejection is captured at its most robust form? A biologically
plausible solution of the problem must deal with relevant constraints posed
by the human visual system.

It is well known that from the earliest stage of the processing determined
by the retinal mosaic, the system is subject to resolution limits. Additionally,
the computational machinery of vision is highly evolved and is designed to
be particularly efficient for tasks crucial to the ability of humans to reliably
perform normal tasks in their environments. Consequently, there are limits
imposed on both the computation time and the resolving power of the system
for optimal decision. Therefore, it is reasonable to assume that our mechanism
is constrained by a level of granularity and to seek solutions that are optimal
with respect to time and resources for computation. Not only in the visual
system, but also in other systems, such optimal search mechanisms are subject
to comparable constraints. Accordingly, we introduce a granularity parameter
during the extraction of features in order to accurately represent the limits of
computation offered by this machinery.

The second step involves the action of a decision operator.? A decision
operator is a task-specific projection operator that acts on the overcomplete
representation to extract features of significance specific to the signal. We pro-
pose to use the nondegenerate zero sets of the derivative operator to construct
the decision operator. By appealing to stability theorems [27] we guarantee
that the resulting signal is discrete, isolated, and thus the problem now in-
volves a finite set of feature points. We note that in the setting of a learning
system the appropriate decision operator should be learned.

2 In the language of cognitive science, our choice of a decision operator is a top-down
process.
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In the final step, we require that the features selected above interact with
the learning system in order to either reject or accept a hypothesis defined
by the task, or to identify specific needs for further information. Within the
general framework of dynamics search, this step can be coupled to any learning
algorithms. For example, support vector machines (SVM), multiscale entropy
minimization, and principal component analysis (PCA) methods [1, 2, 47] can
be utilized. Our approach is to define a space of features and the corresponding
metric in the setting of complex projective spaces. Many methods of learning
theory become immediately available to be applied to this problem. We apply
learning theoretic estimates to perform PCA on the feature vectors in CP".
This is the complex analog of PCA that is normally performed in R™.

In the course of presenting this material we employ a number of results
and conditions relevant to the task at hand. To find a suitable representation,
we use a condition on the optimality of the overcomplete basis that arises
from non-commutativity of operators. We also use the topological stability
properties of transversality theory as developed by Thom, Sard, and Smale [27]
to extract combinatorics in a signal in a form that can be used for encoding and
representation. This discretization process applied to an ensemble of signals is
therefore suitable for statistical analysis. To this end, we further transform the
ensemble of combinatorial data by eliminating the effects of location, scale,
and orientation of features. We call this the ensemble of standardized features.
The ensemble of features has a natural metric that arises as a natural analog
of the Fisher information metric. The existence of the metric along with the
ensemble of data means that methods of statistics and learning theory are
available for implementation and computation of parameters. In addition, we
note that since our metric is defined in terms of an inner product, nonlinear
kernel methods based on reproducing kernel Hilbert spaces (RHKS) can be
brought to bear on the problems at hand.

2.4 The Structure of Light as a Signal

Filtering theory has historical ties to statistics and probability. In recent years,
in the context of signal processing, other ties such as those to wavelet theory
have been explored [41]. Through filtering theory, wavelets share some ties
to statistics, and in some rough sense, wavelets can be viewed as filters that
estimate statistics for various source signals. We start with a description for
the source signal of our interest in terms of a random process and its Fourier
transform and ask the following question: “what is the probability distribution
of photon detection from a given source incident on a set of detectors 77 We
will start with a 1D signal and present the 2D case as an extension of the 1D
arguments. This approach establishes some properties of interest and opens
the door for further analysis of filters of the following type:

Theorem 1. There exists a 2D mother wavelet v, arising from a probability
distribution p(x,y) describing a physical process with the following properties:
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1. The restriction of the probability distribution to the principal coordinate
axis is given by the Lorentz—Cauchy distribution that we denote by the LC
distribution for short.

2. The probability distribution is related to the physical process of a source
with emissions within an angular cone.

3. The characteristic function of the process is described by an exponential
decay.

4. The mean has the distribution of any random variable of the process.

More specifically, the following propositions can be proven by direct com-
putation.

Proposition 1. Let O be a source located at point (0,1) in the plane that
emits particles with uniform probability at angle 0 € (—n/2,7/2) to the y-
axis. Let (t,0) be the point where this particle is detected on the x-axis. Then,
the probability distribution of the detected signal is given by:

d.1 tan"lz 1

pa) = . (,+ ) = (2.1)

S dt ™ (14 22)
Proposition 2. The Fourier transform of p(x) is given by exp(—|k|).

Proposition 3. Let x1,...,x, be independent random variables drawn from
the LC distribution. Then, P(< x > < €) does not approach 1 as n increases.

The Fourier transform of a distribution is referred to as the characteristic
function in the probability literature. Characteristic functions are particularly
useful since their derivatives at zero give the moments of the probability distri-
bution. Viewed as a random process, it is well-known that for the LC process
the average of n independent trials does not settle down. This is in contrast
to, for example, the Gaussian distribution. However, if the light is detected by
a detector of finite width, such as a photoreceptor, an LC process has better
estimation accuracy than a Gaussian process. One can show that the efficient
equivariant estimator for an LC process is determined by the extreme values
of the sample with accuracy of the order of the reciprocal of number of quanta
of light hitting the photoreceptor. For a Gaussian process, the accuracy is of
the order of the reciprocal of the square root of the number of samples, and
therefore the estimate improves more slowly.

These observation can be generalized in a number of ways to develop the
2D analogs of this idea. One possible generalization is to consider the same
source now at (0,0,1) emanating at an angle 6 to the z-axis along the y-
direction as well as along the z-direction and striking the z-y plane with the
product probability distribution with Fourier transform of exp(—|ks| — |ky|).

Note that the shape of the 2D filter in the spatial domain is symmetric.
However, simple modifications can yield more directionality of shape in the
spatial domain, for example, one with Fourier transform of exp(—al|ky|—b|ky]).
These distributions, viewed as filters, have a directional feature in the spatial
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Fig. 2.2. A plot of a 2D LC distribution

domain and allow for immediate generalizations where one can easily construct
the filter in a nonorthogonal system. We will see that this will lead to con-
sideration of filters with Fourier transform of the form F(z,y)exp(—alk.| —
blky|), where F is in a restricted class of polynomials in = and y that will
be defined later. Since multiplication in the Fourier domain corresponds to
differentiation in the spatial domain, this filter corresponds to differentials
of different orders for the filter above. Therefore, not only directions can be
biased but also the rate of change can be biased as well. In the following
sections we will investigate these generalizations and additional properties in
the wavelet setting.

2.5 Symmetry and Signal Representations

Using the action of groups as generators of infinitesimal symmetries, we pro-
ceed to use symmetry in a systematic way to derive our filters. We begin by
introducing the basic notation and the ideas necessary for developing the re-
presentation of signals of interest. Let H be a Hilbert space, and U (H) be the
group of unitary operators acting on H.

Definition 1. A unitary representation is a homomorphism
U:G—-UH) x— U(x) (2.2)
from the group G to the group of unitary operators.

The set of vectors that can be reached by the action of the representation
on the vector g € H is called the orbit of g. A subspace of H is called an
invariant subspace iff it is mapped into itself under the action of U(x) for all
req.

Definition 2. A representation is called irreducible iff the only closed inva-
riant subspaces are the trivial one and the whole space.
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Consider two unitary representations U; and Uy of the same group G in
Hilbert spaces H;, and Hs, respectively.

Definition 3. A bounded operator D : Hy — Hs is called an intertwining
operator iff DUy (x) = Us(x)D for all z € G.

Denote the set of all intertwining operators as R(Uy, Us). For U an irre-
ducible representation, the following important fact [25] is a generalization of
Schur’s lemma and assures us that our unitary representations on the same
Hilbert space differ only by a scalar multiple of identity (see Warner [51] for
a proof).

Theorem 2. R(U,U) is one dimensional and consists of scalar multiples of
identity.

Let G be a group and S an arbitrary set. We say that G is acting on .S on
the left iff for every x € G there is a transformation of S into itself, A, : S — 5,
such that A, = A, A, for all z,y € G. A right action can be similarly defined.
Let G be a locally compact topological group acting on the set S equipped
with a Borel measure pu. Let J C S be a measurable subset with ‘volume’
wu(J). The left action of G on S transforms J into GJ. We say that p is a
left- invariant (or simply invariant) measure if u(GJ) = p(J). Right-invariant
measures may be equivalently defined. In general, such invariant measures
need not always exist. However, when S = G, invariant measures always exist
and are referred to as Haar measures denoted by du. With these definitions
at hand, the notion of scalar product, square integrability and convolution in
the Hilbert space L?(G,du) can be defined.

Definition 4. A representation U of a group G in a Hilbert space H is said
to be square integrable if there exists a nonzero g € H such that

/Gd,u| < U(z)glg > |* < oc. (2.3)

We can now define the wavelet transform for a locally compact group
acting in a Hilbert space [13].

Definition 5. Let ¢ € H be a wavelet and s € H a function. The (left)
transform over G of s with respect to g is given by

Wys(z) =< U(x)gls >, redG (2.4)

The left transform maps a vector in the Hilbert space H to a function over the
group G.
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2.5.1 Gabor and Wavelet Analysis

Gabor analysis can be put in the group theoretical setting. This setting will
be useful to establish the link between our analogous use of the uncertainty
principle for our group of interest in the next section. The group-theoretical
view has been advanced in the atomic decomposition theory of Feichtinger
and Grochenig [9, 10], which applies to general representations on Banach
spaces. A survey specifically of Gabor and wavelet analysis on L?(R) from
the group viewpoint can be found in [15]. For example, the group for Gabor
analysis is the Heisenberg group H = T x R x R, where R is the real line and
T is the unit circle. The group action is induced by the representation p of H
on L2(R) [12] and is defined by

p(z,a,0)f(t) = ze™®e?™0 f(t 4 a) for (z,a,b) € Hf e L*(R). (2.5)

Then, one way to analyze a function g € L?(R) is in terms of the inner
products {(g, p(a,b)f) : (a,b) € 2} for 2 C R? with f € L*(R) fixed. The
collection of inner products (g, p(a,b)f) are termed Gabor coefficients, and
the mapping g — {(g,p(a,b)f) : (a,b) € R?} is called the continuous Gabor
transform of g by f. Stable reconstruction by using all possible Gabor coeffi-
cients can be obtained for any g. By selecting a discrete subset 2 of R2, less
redundant representations can be obtained. However, for stable reconstruc-
tion, and for g to be completely determined by the Gabor coefficients, the
collection

S(F.A) = {pla,b)f : (a.b) € 2} (2.6)
must be complete in L?(R) and form a frame for L?(R).

By replacing the Heisenberg group with the affine group A = (R\{0}) xR
we can investigate the parallels between wavelet and Gabor analysis. Then,
time-scale replace time-frequency translates. Let U be the representation of
A on L*(R) defined by U, p)(at — b) for (a,b) € A and ¢ € L*(R). We may
define a continuous transform as above, or seek frames or bases of the form

T, 2) = {U@p¥ : (a,b) € £2}. (2.7)

For 2 that are “sufficiently dense”, Feichtinger—Grochenig theory guaran-
tees the existence of frames. However, the considerable difference in the struc-
ture of the two groups is of significant consequence. For example, there are
several significant differences in the properties of S(f, A) versus T'(¢, 2). One
of the most important results is that T'(¢, 2) can form an orthonormal basis
with smooth, well-localized 1. A typical choice for {2 is the “regular” discrete
subset 2 = {(a", mb) : m,n € Z}, with a =2 and b =1 [6].

To study local properties of objects at any orientation, location and scale,
we focus on the group G = E(2), the Euclidean group of motions and dilations
in the plane R2. We will further focus our discussion to analysis of square
integrable functions of two variables s(x,y). The elements of the group can
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be identified with the vector v = [tg,t,, 60, a], where t,,t, parameterize the
translations, 8 parameterizes the rotations, and a parameterizes the (positive)
dilations in the plane. The group F(2) contains the translation group 7' = R?,
the dilation group D = R and the rotation group R = S*. There is a left Haar
measure on this group and each of the subgroups above have the corresponding
left action on L?(R?). The unitary representation of E(2) in terms of T', R
and D can be written as

U: E(2) — U(L*(R?)), [te,ty,0,a] — Ulty,t,,0,a) (2.8)

Note that E(2) is R? x1 (SO(2) x Ry), where < is the semidirect product.
Suppose we are given the signal s € L?(R? d?x), then s has the continuous
transform with respect to the wavelet 1):

S = <'(/}tx,ty,a,9|s>:a71/ Y(a trg(z —ty,y — ty)) s(z,y) dzdy  (2.9)
=a / etekatituky o (arp(ky, ky)) S(ka, ky) dkadky. (2.10)

The wavelet 1 generates, by translation, rotation and dilation, the dictionary
H = {t1, t,.a,0}, indexed by a > 0,0 € [0,27), (tz,t,) € R% The projections
of s onto this family generates the family of wavelet coefficients of the signal
s. For G to be a wavelet analysis on R? we must require that:

1. U to be irreducible

2. U to be square integrable
This can be shown for unitary group representations [13]. Therefore, we have:

Proposition 4. U is square-integrable and vrreducible.

Note that although scale and orientation are not specified to be functions
of time, global changes of scale and orientation, which may occur as a function
of time, are represented by the action of G. In other words, when a natural
ordering among scales and orientations is given, one can view scale and orien-
tation change as occurring in a flow of time.

2.5.2 LC Wavelets

In the construction of filters, the properties of signals under study and the de-
sired filter output drive the construction of filters. For example, band-limited
signals are typically analyzed by low-pass, band-pass or high-pass filters and
support-limited filters operate in the spatial domain. In addition to limiting
the support of the function in either the frequency or the spatial domain, there
is another method, used by Gabor, which borrows from the notions of simul-
taneous localization bounds introduced in quantum mechanics. The bounds in
quantum mechanics are known as the Heisenberg Uncertainty Principle and
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define how well the position operator (z) and the momentum operator (—i )

can be simultaneously localized by bounding the product of the variance of
the operators®. In this section, we show how to derive filters that satisfy a
bound similar to the uncertainty principal. The derivation shows that LC
wavelets arise naturally as the solution to problem of satisfying a form of un-
certainty principle with respect to rotation, scaling and translation operators.
This property is important to our goal of shifting our focus from perfect re-
construction to efficient feature detection and search. Aside from significance
in quantum mechanics, the choice of bounding the product of variances has a
rationale of its own in our context. This bound guarantees that, to the first
approximation, and over a set of repeated identical observations (or measure-
ments), variance is controlled in a prescribed way.

Let M and P be two self-adjoint operators in a Hilbert space H with inner
product < |- >. Let ¢ be a vector in the domain of both operators above with
norm equal to one (||¢]| = 1).

Definition 6. The average of the operator M in the state i is defined as
<M >=<yp|My > . (2.11)

Definition 7. The variance of the operator in the sate 1 is defined as
1
AM = (< M? > — < M >?)2. (2.12)

Let M = M— < M >. The following theorem, proved by Gabor using
analytic methods, was instrumental in showing that in the case of short-time
Fourier transform, Gaussian envelopes saturate the time-frequency localiza-
tion bounds?.

Proposition 5. With the above definitions for M, P and 1,
2AM - AP > | < [M,P] > |. (2.13)
Furthermore, the equality holds iff
iMep = AP, (2.14)
where A > 0 is a positive constant.

We wish to study other properties of LC distributions within the frame-
work of the uncertainty principle outlined above. These ideas were first utilized
in [40] in the context of 2D Gabor wavelets. The use of LC distributions was
also investigated® in the context of quantum mechanics. We will show that
the statistical filters defined above through the LC process have an analogous
simultaneous localization property. In fact, more is true and we can prove the
following.

3 see [11] pp. 16-20 for a good discussion of this topic and later chapters for a
discussion of alternative strategies.

4 A simple proof based on the algebraic properties of operators can be given.

5 Reference to Paul’s dissertation in French can be found in [11].
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Theorem 3. The LC filter

U(ka, ky) = [(c1k1 + coka)| exp(—|(m1ky + maks)|). (2.15)
achieves the simultaneous localization bounds for constants cq,ca, m1, mo.

The factor for the exponential can be any polynomial H satisfying the proper
conditions.

To give an outline of the derivation of the above, let g(n) be a one-
parameter group of transformations with parameter n € R. Let §(Z,5) =
g(n)s(z,y) be the function obtained from the action of g on the square inte-
grable function s(x,y). The Leibnitz chain rule defines the infinitesimal trans-
formation of s about the identity

d or 0 Oy 0 0

-0 = = _:D_. 21
o aso = (o o+ o0 o)+ o s =Ds. (216)

The differential operator D is known as the infinitesimal generator of the
transformation. The following propositions follow from computations using
the Leibnitz rule and the use of commutation relations.

Proposition 6. The infinitesimal operator T, for the x-translation is —;m.

The infinitesimal operator Ty for the y-translation is —gy.
The infinitesimal operator Ry for the rotation through the angle 0 is scaay —
12}
You-
The infinitesimal operator D for the scaling is fxaaw - yaﬁ; + 1.
Proposition 7. For the operators R, D, T, and Ty, the following relations
hold:

[T.,T,) = [D,R]=0, [RT.)=[D,T,)=T, [D,T:=~[RT,)]="T,.
(2.17)

We can now apply the conditions of Proposition 5 to obtain a set of di-
fferential equations. We will consider the pair [D,T;] = —[R,Ty] = T, -
symmetry considerations yields the other pair. From the proposition 5, to
achieve the bound, we must have:

(D —iXT,) =0 (2.18)
(R—iN*Ty)p =0 (2.19)

Proposition 8. The filter described by 3 satisfies the pair of differential equa-
tions.

One can obtain the solutions directly by first using the integrability condi-
tion requiring that A = A*. Then, follow by direct substitution and note that
it is in the form of the general solution below. To obtain the complete form,
we need to compute the solution for the other pair of operators and combine
the results to obtain the form of the filter discussed above.
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2.6 The Space of Features

In the sections above, we have described how an overcomplete representation
of the signal s can be obtained. Our next task is to extract a set of stable
features based on our representation. In this section we show how such a set
of features can be extracted, and in what sense they can said to be stable.
The propositions and statements of this section will lead to the proof of the
following theorem:

Theorem 4. Ezistence of stable features. There exists a parameterized set of
scale, translation, and rotation-invariant stable and finite features associated
with the signal s.

Recall that our representation assigns to every function s from a set of
signals {s,} a function on the group G based on the definitions given above,
therefore, we have an overcomplete representation. In this section, we set out
to define methods that

1. distinguishes the class of signals under consideration efficiently through a
sparse representation.

2. gives information as to how additional information about the signal can
be obtained when potential ambiguities arise.

The first item above amounts to the determination of a decision opera-
tor discussed earlier. The notion of sparse or minimal representation will be
defined through features shortly. In this representation, features will be pa-
rameterized by angle and scale. It is important to note that a key property
used in the succeeding analysis is the ability to parameterize the response of a
set, of filters to a given signal, which in this case is achieved by the role of the
action of G. It is possible to apply the ideas in the remainder of this analysis
to the action of another group or another parametrization.

We start with parameterizing the rotations by the angle 6 in our fixed
coordinates. Our intention is to find the information content carried by the
wavelet transform of the signal s at a fixed scale d with respect to all local
rotations. Since our rotations are parameterized in a fixed global coordinate
system and since translations and rotations in the global system do not com-
mute (unlike a local coordinate system), we must use the appropriate language
of semidirect products. Namely, the subset H = D 1 S! of the group G, op-
erate on the wavelet ¢ by rotations and translations, denoted by g (4, in
which 6 is the global rotation and (u,v) is a point in D C R2. D parameterizes
the translation of signal by the corresponding point. We associate with 1 the
wavelet operator 1/1;’(%1)).

Consider ¥(0, u,v) =< s, w;,(u,v) > that associates to each 1/1;’(%1)) a com-
plex number. Denote by ¢g(u,v) = "% (4| the modulus of complex wavelet
coefficient. ¢;(u,v) defines a real two-dimensional surface denoted by My over
the subset D that measures the information content of the signal s with respect
to the wavelet for each angle §. We call the isolated extrema of this surface for
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which the Gaussian curvature is non-zero, non-degenerate. We wish to define
a finite feature set for each 6 associated with D. To do so, we introduce a
granular resolution ¢ that defines the resolution of the system under conside-
ration. Then, the maxima and minima as well as the Gaussian curvature of
the surface are defined within the said resolution 4. In the neighborhood of a
point (u1,v1), ¢ allows us to replace the set of all point with values within §
with a single point at the center of gravity of the said neighborhood. We call
these points § — mazrimum and 6 — minimum points.

Definition 8. Let Fy : My — {—1,0,1} be the function that sends every
nondegenerate local § — maximum to 1, § — minimum to —1 and all other
points to 0. The set of coordinates Cyp = (21, ..., Tn), for which Fy assigns the
value 1 or —1 is called the feature set parameterized by 6.

Proof of the following proposition follows using Thom'’s transversality theo-
rem and Sard-Smale stability theorem ([27], p. 10) and justifies our finite point
list above.

Proposition 9. Existence of stable nondegenerate features. With the notation
and hypothesis above, there exists a small perturbation n of the signal such that
the resulting surface § will have only nondegenerate features. Further, 1 can be
arbitrarily small, so that for a choice 1, all features in any finite set of scales
and orientations will be nondegenerate.

Numerically we ensure stability and nondegeneracy by introducing a
method of differentiation that we coin noise-enhanced differentiation. Heuris-
tically, a noise-enhanced differentiation achieves the small perturbation 7.
Furthermore, control over noise allows us to ignore all spurious features that
could be theoretically nondegenerate and stable but fall within the same gra-
nularity, or disappear with possibly large perturbations but are still bounded
by the granularity. In particular, control over noise allows us to ignore all ar-
tifacts of numerical computation that may potentially give rise to accidental
features that should not be counted due to any errors tolerated by granularity.
Further, the ultimate objective is to perform statistics on ensembles of such
features. As a result, a number of potentially error prone features that might
have escaped the above-mentioned computation due to special circumstances
of the image (as we must be prepared for a great deal of variable conditions
within the images of faces with possible outliers in one case or another) will
not have influence on the statistical analysis of the ensemble, being filtered by
the approximations. This indicates that numerical results depend on the size
of the data set for images. If the data set is not too large, then the statistics
are affected by numerical outliers. On the other hand, for a large data set we
have a stable statistical feature set.

We point out that the introduction of § makes this definition system de-
pendent. Additionally, we note that a number of other system dependent defi-
nitions for the choice of a discrete set of features is possible. For example, one
may choose the sparse points obtained from using a support vector machine
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(SVM) at a given resolution defined by e-sensitivity of SVM [48]. Additionally,
system-independent definitions based on probabilistic definitions may be pos-
sible. Our choice for this set of features is motivated by observations (explained
below) that may be replaced with a more definite theory. The remainder of
this work only assumes that a finite discrete set of features depending on the
search task is available. In the definition above, 6 parameterizes a collection
of sets, each of which contains a finite set of points. Note that for each Cy, n
may be a different number. However, for a finite parameter set 6, the following
proposition allows us to view all coordinates in a suitably high-dimensional
space (maximum dimension of the coordinates in the coordinate set) by or-
dering the coordinates.

Proposition 10. If 6 is a finite set, the coordinates describing the feature set
can be ordered in a consistent manner.

It is also important to see how these features vary under other transfor-
mations of interest such as the addition of a constant.

Proposition 11. a. Cy is invariant with respect to addition of a constant
b. If we apply a translation in the plane to s, then Cy changes with the same
translation in the plane.

We need a few words about the motivation for the above choice of features.
Zero-crossings (edges) are well-known for the information they carry about
images. Viewing the image as a function, these points are the points where the
function vanishes. On the other hand, proof of the Shannon Sampling Theorem
for band-limited signals in one dimension results from the statement that the
zeros of an entire holomorphic function are isolated. Shannon discovered that
the highest rate of zero-crossings of the Fourier transform of the signal can be
used to define a sampling frequency for perfect reconstruction of the signal,
and he gave a specific formula for its reconstruction. Also, Logan’s theorem
shows how a band-limited signal of bandwidth less than an octave can be
reconstructed from its zero-crossings in the Fourier domain. For holomorphic
functions of two variables, the zero set is no longer discrete. In fact, it is a
one dimensional analytic submanifold. Therefore, analogous properties in two
dimensions are not immediately obvious nor may they exist.

However, we propose an alternative approach in which we simply restrict
the class of signals that have a given extremal set. For a sampled signal, the
Fourier representation of the signal is a weighted sum of frequency compo-
nents. For any signal, the extrema in the spatial domain yield restrictions on
frequencies in the Fourier domain, since the derivative of the signal in the
spatial domain corresponds to multiplication by frequency in the Fourier do-
main. Representing a band-limited signal via extrema hints at the feasibility
of classifying a signal s from the knowledge of the frequencies not present
(it is only up to amplitude modulation). From a biological point of view, the
selection of extrema can be likened to a neuronal winner-take-all strategy by
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the neural substrate sensitive to a specific direction. The following lemma is
the formal statement of the above strategy.

Lemma 1. Let s be a smooth band-limited (finite energy) signal whose deriva-
tive is also band-limited. Let the Fourier transform of s be denoted by §. Then,
in the quantized frequency plane, the extrema of s specify the class of signals
to which s can belong within the quantization resolution and amplitude mod-
ulation.

2.6.1 Information Content of Features

Our goal now is to show how the points in Cy can be used as features for
representation of signals by introducing an information theoretic measure of
distinguishability among signals. The approach to deriving this measure has
a distinct geometric character and may hide the information theoretic con-
text. The first subsection is meant to give a brief overview of the relationship
between information theory and geometry. A more detailed and in-depth dis-
cussion of these connections can be found in [1, 5, 21].

One objective of most learning systems can be formulated as a mechanism
to use the given sample for extraction of information about the true distribu-
tion. Therefore, we need to state what information is and how its is measured.
This problem was considered by Fisher, who provided a solution as follows.
Fisher considered the likelihood function of 6 given z, p(z|¢). One observes the
random variable x, and uses 0 as parameters that represent the unknown dis-
tribution from which x has been observed. Let z|n denote n samples of events
for a process. Now, suppose that we are given a sample z|n = [z1,..., 2],
and we obtain an estimate 6. for 6. Then, for large samples, a reasonable
estimate 6. would tend to a normal distribution in many cases (The Central
Limit Theorem). Thus, in such cases and at least for large samples, estimates
are characterized by their variance and bias. This idea is often referred to as
asymptotic normality.

The intuitive description of how to approach the characterization of infor-
mation based on the observation above is as follows. Since bias can be removed
beforehand, it does not affect the amount of information. However, when two
estimates approach 6, the estimate with the smaller variance preserves more
information compared to the estimate with the larger variance. This again can
be intuitively explained by noting that the estimate with the smaller variance
can always be made to look similar to the estimate with the larger variance
by adding appropriate noise to the one with smaller variance. Using these
ideas, Fisher derived a lower bound for the variance of any estimate of the
true parameters.

In information theory, Fisher information plays an important role in de-
scribing the local statistical properties of an object under study. The geo-
metric interpretation of Fisher information can be given as follows: The state
space of a classical n-point system given by all probability distributions is
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the simplex of probability distribution on the n-point space and is seen to be
an (n — 1)-simplex, which is an (n — 1)-dimensional manifold. Let P; denote
the probability of the ith event. Introduce the parameterizations Z; = 2v/F;.
Since Y. P; = 1, we have > Z2? = 4. In this way, the probability simplex is
parameterized with a portion of the (n — 1)-sphere. Let :(¢) be a curve on the
sphere, then the square of the tangent length to z(t) is given by:

< O, O >= Y (Qwi)® =Y Pi(t)[0ilogP;(t)]? (2.20)

Observe that this is the Fisher information. Recall that for two matrices A
and B of the same dimension, the relation A > B is defined as A — B being
positive definite. Then, the following theorem shows the utility of the Fisher
information.

Theorem 5. Let V(0.) be the covariance matriz of the estimator, then

< 9;10;1 >> [V(0.)] 71,

where V(0.) is the covariance matriz of any unbiased estimate.

The quantity g;; =< 0;l0;1 > is called the Fisher information ma-
triz and is considered a measure of information. It is easy to see that if
z|n = [z1, ...,y is a sample of independent events, then g;;(x|n) = ng;;(x).
This simply follows from the observation that for independent events, the
probability distribution is the product of distributions and the log of the
product distribution is the sum of the log of each distribution. For exam-
ple, for a binomial distribution with parameter p (probability of heads),
gij(xn) = ngi;(xz) = n/p(1 —p).

Suppose now that we have a small sample coming from p(z|#) that is not
itself normal. Can we find a suitable measure of information for this case?
Fisher answered this affirmatively using the same measure above. To see this
consider a small sample z|k and a large sample z|m. Note that z|m and
[x|k, z|m] satisfy the asymptotic normality and thus carry m and m + k units
of information, respectively. Then, x|k must carry k units of information.
Therefore, g;; provides a suitable measure of information regardless of sample
size. Rao’s suggestion to consider g;; as defining a Riemannian metric on
the parameterized statistical model set the groundwork for the introduction
of many concepts of geometry into the arena of statistical inference. In this
setting a distance element ds specifying distance between nearby distributions,
which is invariant under coordinate transformation, is defined:

d82 = Zgijdeid@-
4,J

To achieve the utmost generality, Cencov [5] wrote his theory in the lan-
guage of modern differential geometry. In this setting, rather than treating the
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properties of specific distributions or samples, invariant properties of families
were treated. Using these tools Cencov was able to prove a far-reaching theo-
rem regarding the uniqueness of the Riemannian metric and invariant affine
connections for any finite sample space.

2.6.2 Features and Information

Suppose we are given n points (21, ...,2Z,) in the plane where each point is
specified by Cartesian coordinates. View (1, ..., ¥,,) as a point in (R?"), which
provides a 2n-dimensional summary of major geometric characteristics (fea-
tures) of an object, including location, orientation, scale, and shape informa-
tion. To analyze these features in the context of specifying a shape encoding,
we must determine the class of all functions of the vector (z1,...,x,) that
measure its shape invariants while at the same time eliminating information
in (1, ..., ) that describes the location, scale, or orientation of the features.
That is, our encoding must be invariant under F(2) symmetries. Standard
statistical tools can be applied to describe the location and scale statistics of
a set of points. The location of a data set (z1,...,2,) can be described by its
sample mean, or centroid, given by

1 n
T=_> m. (2.21)
n
i=1

The size or scale of our features can be described by a variety of statistics.
Let (z;1,2;2) for j = 1,...,n, be two features (feature vectors), centered about
their mean, and consider the matrix:

T T
X = (f”lf”lT “W”lT) , (2.22)

T2y T2Ty

where T denotes the transpose operation. The trace of X, given by

n
r(X) = diag(X) =Y [lay — @l* (2.23)
i=1
is an invariant of the matrix and is therefore a natural measure of the size of
the set of features. The matrix X can then be standardized to have trace equal
to one. This eliminates location and size information in a data set, which we
then call the standardized feature set:

1
= \TL1y.-.yTp) = xll—fl,...7xn1—551. 2.24
= )= ! L @2

We abuse the notation and write the new coordinates also as (x1, ..., ).
One point must be noted here. In order for this representation to be meaning-
ful, the features defined above by x must not all be collinear. However, this
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does not present a problem for our application. In general, a set of features
that are all coincident will be treated separately. Henceforth, we assume that
this degeneracy does not occur, as is the case for natural images such as faces.

To eliminate dependence on orientation,® we first make the following ob-
servation. The vector x lies in a constrained subset of the original Euclidean
space R?", which is just a lower dimensional sphere,

SQTL—?) — V21’L—2 m S2n_1, (225)

where
VA2 = (1, wn) €ERPY 1)y =0}, (2.26)

and S?"~! is the standard (2n — 1)-dimensional sphere.

Therefore, this subset is represented by the intersection of a subspace of
(2n — 2)-dimensional space with the unit sphere. To eliminate dependence on
orientation angle in the plane, consider the following “function of coordinates”
from the feature space S?"~3 to the circle S*, heuristically defined via:

983 5 8t (2.27)
1 can be used to eliminate orientation by forming the orbit space
Y ={o(x):x €S} (2.28)

Note that standardizing for the location and scale of x does not disturb its
orientation. More rigorously, we have an action of the rotation group identified
with

St St x §2n=3 _, g3 (2.29)

whose orbits coincide with the representation of the same point under trans-
formation by all rotations. For every representation, we have also its rotations.
Therefore, the group action is well defined, provided we allow the images that
are transformations of our original image and may potentially lie not entirely
within the domain D. This only adds extra representation points to the en-
semble. This does not affect the statistics, since we shall only consider the set
of orbits, thus eliminating the spurious additions of these points of orbits.
To compare features we need to devise a metric. The natural metric we
consider measures the geodesic distance between two feature sets specified by
X up to the action of S! (orientation). For spheres this is easy to compute:

§(z1,22) = cos (< @1, 29 >), (2.30)
with the induced metric

d(x1,z2) = inf{é(z,w) : z € o(x1),w € o(x2)}, (2.31)

6 Short for orientation angle with the plane.



54 Hamid R. Eghbalnia, Amir Assadi, Jim Townsend

where the notion o(.) means the orbit space of (.), so the inf is computed
over the orbit of the action of S'. One can show that this definition satisfies
the properties of a metric (see e.g. [36]) . With the metric defined above we
now have a manifold that is also known as complex projective space together
with the Fubini—Study metric [36]. Since we intend to encode features with
complex coordinates, we restate the above features making use of the algebraic
properties of the complex plane. Once again, consider the features represented
by x = (z1,...,7,), with z; € R%. Consider z; to be elements of the complex
plane by identification of the complex numbers C with R2. Given two features
we may choose representatives up to the action of the circle. Let us denote
complex conjugation by the symbol *. Then, it is a standard argument to
show that the minimum distance can be obtained as:

d(xy,z2) = cos ! |Zx1jx§j\ . (2.32)
j=1

This definition is independent of the orientation since multiplying both
arguments by an element of U(1) does not change the distance. Starting from
any point, the direction of maximal information lies along the curve x(t) where
x(t) is a geodesic — that is, the information rate is maximal. The geodesic
distance between two probability distributions is computed along the great
circle of the (n — 1)-sphere. In complete analogy, the Fubini-Study metric
(F'S) introduced earlier is the minimal (geodesic) distance between two great
circles for an n-level system in the complex projective Hilbert space described
by the feature vectors earlier.

Definition 9. Let ¢t be a parameter of a system and x(t) be the state vector
of the system parameterized by t. Let z(t + dt) denote a small change in the
system parameter t by the amount dt. The FS distance between x(t) and
x(t + dt) is called information distance.

This definition can be understood by considering the analogy to the stan-
dard definition of Fisher information. Let g; be the estimate for the probability
P; on the n-point probability distribution above obtained from the observed
frequency after drawing N random samples. For large N it is standard to
estimate the frequency distributions given by the multinomial distribution for
P; using the Gaussian exp[—N(q; — P;)?/(2P;)]. When the exponent of the
Gaussian is small, nearby distributions are easily distinguishable. Thus, we
have a natural distinguishability described by:

dp? apy > Pi(dlnP,)? (2.33)
= = i nir;) . .
v P,

This is the same Fisher information. For the state vector z in CP", we can
write:

o >=>" pi/? exp(ip;)|b; >, (2.34)
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where b; is an orthonormal basis for H. A small change for z will result in the
vector & = x(¢ + dt), which we can write as:

|2 >=" (p; +dp;)"/? expi(p; + di;)|b; > . (2.35)

Then, it is easy to show that FS[xz(t), z(t 4+ dt)] is given by:
FS[z(t), (t + dt)] = dp® + Var(yp), (2.36)

where
Var(p) = Y pjde? — (D pjdip;)*. (2.37)

Therefore, F'S is a metric of distinguishability that has the additional term
introduced by the variance of phase. F'S as an information measure describes
the change of the state vector along the geodesic between the two states as the
process is evolving, much in the same way that Fisher information achieves the
same. When the parameter describing the process is periodic, x(t) traces out
a closed loop, and this loop encodes the information dynamics of the process.
Note that since a global change of angle does not affect the F'S, two periodic
processes with the same information evolution and related by a rotation are
indistinguishable.

2.7 Information Dynamics

Learning theory, in the mathematical setting, is the study and development
of models and the behavior of these models with respect to “learnability”
issues [1, 22, 29, 47]. We refer the reader to these references for an in-depth
discussion. Our goal here is limited to describing the setup of a dynamics
process that can be used to distinguish sets of features. We will first discuss
how the dynamics of one set of features parameterized by the angle 6 is set
up. Next, we show that rigorous computational methods can be applied to
establish the dynamics of an ensemble based on their features. We will note
that our view of learning here is that of function approximation. This is in line
with the views of learning in support vector machines (SVM) and probably
approximately correct (PAC) learning.

As discussed earlier, the parametrization of the underlying topological
group G gives a natural parameterization to analyze signals. We used this
parameterization earlier to define and parameterize a map at a fixed scale d
from each angle parameter 6 to the corresponding feature set Cy. We then
showed how each Cy defines a vector in the complex Hilbert space specifying
a feature. Next, we defined a metric on this space in a manner analogous to
the Fisher information metric.

Similar to a quantized n-state system, where the magnitude of state
changes (with respect to the probes) provides information about the system,
we consider state changes with respect to the family of probes generated from
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1 under the group action. It is important to emphasize that one specific set
of probes may provide little or no information under the same dynamics while
other probes may. In other words, the choice of probes may be critical in
obtaining information about specific processes.”

To discuss dynamics search using the features and the metric above we
proceed as follows. First, since our features are defined up to the action of S*,
we do not need to find a method to register features corresponding to the same
parameter value. Before we proceed, we need to explore the nature of our filter
(or probe) and understand its behavior with respect to a given signal s. The
next subsection will show that features will vary. The following subsection
will address the registration problem. Finally, we deal with learning of the
features in the context of principal components analysis (PCA) for vector in
CP™. This will set up all the machinery necessary to address the problem
posed at the beginning of this chapter.

2.7.1 Feature Variation

We have established our filter through the action of the elements of the group
of Euclidean motion. Specifically, at every fixed scale we have established our
probe parameterized by the rotation angle 6 as a function of location. To see
what information is provided by our probe, we need to examine how feature
vectors change with 6. The next proposition tells us that the generic (common)
feature coordinates recorded by the directional wavelet h:y) as h; take values
in SO(2) are features of s that remain approximately invariant under the local
rotation of the wavelet.

Proposition 12. Let h; vary in the rotation subgroup of the group G. Con-
sider the set of nondegenerate extrema P of s regarded as hyp at t = 0. As-
sume all such P are fized under hytp as hy varies in the rotation subgroup of
the group G. Then, P forms a subspace of feature coordinates locally invariant
to rotation.

If the feature vector for a signal s does not vary under action of the rotation
group under a particular rotational wavelet, then that group has local rota-
tional symmetry about the “mean” of the wavelet. If this holds for all points
in the signal, then the signal is featureless in all directions and thus constant.
Therefore, generic signals have feature vectors that vary under the action of
the rotation group on a directional wavelet. Roughly speaking, this shows that
the feature coordinates highlight locally inhomogeneous structures (with res-
pect to rotation) against a background of rotationally symmetric structures.
When a directionally nonhomogeneous signal (defined as a signal that does

7 In fact, it may be necessary to recruit the machinery of learning theory to address
the problem of determining probes most suitable to the problem. This is work in
progress.
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not remain invariant under the action of a group of interest) is transformed
via a directional wavelet, the expansion coefficients do not remain constant.

The F'S metric is a natural Riemannian metric on the complex projective
space that parallels the notion of the Fisher information. For a fixed scale,
a vector describing the features of the subset of the Euclidean plane for all
orientations is called an information loop. We will view an information loop as
a probabilistic indicator for the signal class from which the signals arise. By
varying the scale parameter and computing new feature vectors as a function
of scale, we have constructed a structure that measures feature variations
across scales. Can we associate an information loop to a class of signals that
encodes statistical information about the collection? This is the generalization
from a single signal to an ensemble of signals that is our learning portion of
the problem.

2.7.2 Learning

The methods of learning theory can be applied to learn the information loop
and the corresponding feature vector. Given a training set of samples, an
information structure can be constructed describing the signal at different
scales.

Our approach to build an information structure and its associated loop
for the class of signals is to use the eigenstructure of feature vector corre-
lations for a set of signals. Given a data set in R™ | this eigenstructure can
be obtained using the PCA method. However, it is not immediately obvious
if this method (in its standard formulation in R™) can be applied to vectors
in CP". However, the space of features, namely CP", has the associated F'S
metric. Therefore, arguments based on minimal reconstruction error in R"
can be applied to CP"™ using the F'S metric. Another approach with a direct
computational implementation is based on the use of the Gram matrix. Given
a set of observation vectors x;, the ijth element of the Gram matrix is given
by W;; =< x;,z; >. The eigenvector of W corresponding to the largest eigen-
value gives the solution of the least square problem. Using the inner product
structure we have described, we can show that:

Proposition 13. The eigenvalues and eigenvectors of the Gram matriz are
the same as those of the autocovariance matrix.

In fact, since the modified Gram—Schmidt orthogonalization process gives
an iterative algorithm for this computation, a straightforward implementa-
tion of this approach with tolerances within the granularity of the system is
available. Furthermore, methods of RKHS apply whenever the properties of
interest are defined using inner products. In particular, extensions of existing
methods to the complex setting for many approaches such as nonlinear kernels
and SVM can be considered.

To finalize the role of the scale parameter, we remark on the following
hueristic reasoning. We note that in our formulation of the problem, the search
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and detection dynamics occur simultaneously. If the information loop at the
fine scale is compatible with any element in the learned class of templates,
then the dynamics proceeds. However, it is possible that the dynamics at the
fine scale detect an incompatibility. In this case, at a finite number of values
t, the fine scale dynamics is incompatible (as defined by the F'S metric) with
all templates in the learned class. Using the F'S metric, there is at least one
element in the learned class that best matches the feature dynamics at the
current scale. If there is more than one, we may choose one selected at random.
For this element of the learned class, there is a feature vector that is maximally
different from the corresponding feature vector of the element of the learned
class. We use this pair of feature vectors to determine the novelty point, as
this maximal difference corresponds to the direction of maximal information
gain.

These features have emerged as a result of scale change and describe the
elements of the underlying signal that emerge in the scale transition from scale
ds > dy at the angular parameter ¢t. The subset of features where the largest
changes occurs are optimal search locations. The word optimal is used in the
information theoretic sense in that this is the point at which our measure
of information defined by the F'S metric makes the largest contribution to
change. This subset can be found as the difference of the two feature vectors
at the same angular parameter. Then, the largest components of this vector
define locations, or possibly, clusters of maximal change.

If dynamics at all scales agree, how likely is it that the signals are different?
To answer this question we need to consider error probabilities of testing a
hypothesis H. For example, if our goal is to find a yes or no answer to a
detection problem, then our hypothesis space is the binary decision. A direct
argument yields the following proposition.

Proposition 14. Let |H| be the cardinality of the hypothesis space. If the
probability of error at each scale and orientation is pe (which may be a function
of granularity), then the hypothesis h € H can be determined with probability

p>1-|HpI™, (2.38)

where m is the number of scale and orientation angle comparisons.

2.8 Application and Computation

Our goal in this section is to give visual examples demonstrating the appli-
cation of certain aspects of the work we have described, and to remark on
future directions of our work. The examples presented pertain to the detec-
tion of human faces from a computational perspective. We refer to [7] for an
extended discussion regarding computational issues.

Detection of faces and recognition of their identity has long been an im-
portant problem in computational vision [34]. Among the reasons that make
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face detection hard, one can point to both intrinsic and extrinsic effects. Ex-
trinsic effects arise from the context in which faces are viewed, or specifically,
from changes in the light intensity distribution that arrives at the detecting
instrument (e.g. the eye). For example, illumination conditions can vary from
a dimly lit room to sunlight conditions, faces can be viewed from a vari-
ety of viewpoints, and the existence of shadows or occlusions can cause local
changes in the intensity map detected by the eye. Intrinsic effects also in-
troduce changes. Among them, we can point to color of skin, facial gestures,
and changes in appearance by wearing glasses, growing beards, or wearing
makeup. Our computational experiments so far have not explicitly addressed
variations of facial expression or occlusions and shadows. Although we believe
that a learning machine based on these principles can address a number of
these issues, we have concentrated on a more realistic goal of obtaining results
under more restricted conditions.

The input to our algorithm consists of grayscale images of faces selected
from the ATT database of faces. We preprocess each image by normalizing
and compensating for the effect of “boundaries” or “edges” of an image. We
then apply the LC wavelets to an oversampled representation of the image and
find local maxima and minima based on stability criteria derived using our
earlier theoretical work on the existence of such points. Figure 2.3 shows the
phase and amplitude component of a filtered image at three scales, illustrating
the information recovered by the phase component of the LC filters. Figure
2.4 shows the points detected as the extrema by the detection procedure,
where we note that the detected extrema in filtered faces carry a good deal of
information despite their sparse representation (see Fig. 2.5)

The learned feature vectors were obtained by applying the singular value
decomposition (SVD) method using the F'S metric. Feature vectors (maxima
and minima) for all faces at a single scale and orientation are used to build a
single matrix. In this case, since the entries are complex, it may be natural to
refer to them as density matrices. Application of singular value decomposition
gives a set of eigenvectors sorted by decreasing eigenvalue. After training, we
used our method to match faces and nonfaces from a random training set
against the learned set. Our test case showed a 94% correct detection against
a test set that was not used in the training trials.

Our promising results for the small sample data set motivate the need
for a larger study to obtain further experimental verification. Guided by our
mathematical framework, we find it reasonable to expect good results with a
larger data set as well. A larger experimental setup requires addressing some
limitations in our implementation. Biological systems may be hardwired to
handle filtering with extreme efficiency, while our software filtering in the im-
age domain has a large computational cost. We have considered two changes
to improve the efficiency of this approach. The first consideration is to use a
parallel and distributed approach, essentially following a model of the brain
circuits. In addition, we believe that an approximation to the filtering ap-
proach where all important features are effectively preserved is possible. A
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Fig. 2.3. The amplitude (top) and phase of wavelet coefficients at various scales
and angles for an example face
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Fig. 2.4. Top three rows represent Maxima while the bottom three represent minima.
From left to right and top to bottom of each set angles vary at 10-degree increments.
This image represents projection at the coarsest scale

good approximation would require a detailed study of the numerical behavior
of the filters.

The form of the learning algorithm used in the current formulation of our
simulation needs modification in order to become biologically more plausible.
A straightforward modification of the learning algorithm to deal with access
to feature vectors of all faces is to use a neural network approach, much in
the spirit of bidirectional associative memories or Hopfield’s model. However,
these models are not entirely satisfactory either. An online version using local
information based on approaches of local to global methods [8] and references
therein) seems to be a more natural approach for this form of learning.
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10 20 30 40 50 60 70 80 90

Fig. 2.5. The reconstruction of basic face features from extrema by summing va-
lues at corresponding grid points at different scales. The extrema representation is
approximately 50 times more compressed than the corresponding GIF image.
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3.1 Introduction

When we use a multilayer perceptron (MLP) model with a fixed architecture,
its functional behavior is determined by the values of weight parameters. We
can modify the parameter values by learning to obtain an optimal network for
our purpose. It is possible to consider the space of all the multilayer percep-
trons, in which the set of modifiable parameters plays the role of coordinates.
The parameter space of a MLP is called the neuromanifold. Learning takes
place in the parameter space, forming a trajectory that approaches the op-
timal point. Such a neuromanifold has rich geometrical structures that are
responsible for various phenomena observed in practical applications of MLP.
By considering those geometrical properties, it is possible to find some so-
lutions to improve the performance as well as some explanations to those
phenomena.

On the other hand, a multilayer perceptron works in a stochastic environ-
ment, and its output may be corrupted by random noise. In this sense, the
behavior of a MLP can be represented by a probability distribution, e.g., a
conditional probability density of the output conditioned on the input. There-
fore, the space of the MLP, the neuromanifold, can also be identified with the
set of conditional probability distributions specified by the weight parameters
of the MLP.

Based on these statistical and geometrical viewpoints on neural networks,
we use information geometrical approaches in order to investigate the proper-
ties of the MLP. Information geometry [2, 3, 5] is a powerful tool to study the
intrinsic geometry of parameter spaces related to probability distributions. It
introduces an invariant Riemannian metric and a dual pair of affine connec-
tions. It is useful for studying statistical inference, system theory, information
theory and many others having stochastic natures as well as nonstochastic
ones such as optimization. In the 1990s, information geometry was also ap-
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plied successfully to neural networks. It was applied to Boltzmann machines,
higher-order neurons, and Expectation-Maximization (EM) algorithms [4].

Based on information geometry, we have succeeded in obtaining a new
efficient learning algorithm called the adaptive natural gradient method [7]. Tt
gives ideal performances of convergence for learning of multilayer perceptrons.
Natural gradient learning and its adaptive version take the entire geometrical
structure into account and use the Riemannian metric so as to accelerate the
convergence. It is also confirmed that the natural gradient learning method
can avoid or alleviate plateaus, which are known to be the main cause of slow
convergence of the conventional gradient descent learning method [25].

Recently, it was also found that the plateaus in learning dynamics are
closely related to the hierarchical structure and permutation symmetries of
MLP [17, 29]. The hierarchical structure brings complicated singularities in
the space of MLP. At the singularities, the Riemannian metric degenerates
and the conventional statistical theory in the Cramér—Rao paradigm does not
hold. In the theoretical sense, this is an important problem for constructing
theories of nonregular statistical models. At the same time, in the practical
sense, it is also related to necessity of developing a new criterion for model
selection as an alternative to the Akaike information criteria (AIC) [1] and
minimum description length (MDL) [26], which were developed for regular
models.

In the present chapter, we first review the natural gradient learning method
and its adaptive versions, which were derived by using the Riemannian metric
in the space of MLP. Next, we go into the problem of singularities. Using
simple toy models, we analyze the explicit properties at singularities. We also
review some recent results related to the singularities. Finally, we discuss the
influence of singular structures on the learning dynamics of MLP, and show
how the natural gradient method can solve the problem.

3.2 Space of Neural Networks

3.2.1 Stochastic Multilayer Perceptrons

By taking the information geometrical approach, we consider a MLP as a
stochastic model, and then investigate the geometrical properties of the space
of the stochastic MLP. We will first describe the concept of stochastic multi-
layer perceptrons.

In many practical problems such as regressions and time series predictions,
learning data include noises so that the input-output relation is described
stochastically in terms of the conditional probability density p(y|z) of the
output y when an input « is given. In other practical applications such as
classifications, on the other hand, the output has discrete values so that the
continuous values of output nodes of neural networks can be considered as
representing a conditional probability P(C|x) of class C given input x. Thus,
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even though most neural network models are deterministic in their nature, it
can be regarded as a stochastic system estimating a true probability density
function from which the input-output data are generated. This approach leads
to a stochastic model of neural networks.

We will explain this concept more clearly using a simple three-layer MLP
with one output node. However, its generalization can be easily done. The
network calculates an input-output function f(x,0) that is determined by
the network structure and is written by

f(mve) = $o Zngph(w]rerbj) +bo |, (31)
J
where v;, w;, b;, b, are the weight parameters of the network, and are summa-
rized to 6. The functions ¢, and ¢y, are the activation functions of output and
hidden nodes, respectively. When we treat a neural network from the stochas-
tic viewpoint, we say that the final output y is emitted through a stochastic
operation S operated on the deterministic function f,

y=35{f(x;0)}. (3.2)

The stochastic operation can be defined properly for given applications.
For regression problems, S is usually defined by a Gaussian additive random
noise, so that y can be written by a sum of the deterministic function and a
random noise:

y = f(x;0) +n, n ~ N(0,0?%). (3.3)

From the assumption that the random noise is subject to Gaussian distribu-
tion, the corresponding conditional probability density function is given by

soleso) = e {102} (3.4

For classification problems, we can use the coin-flipping process for the
stochastic operation S, so that the binary output y representing class C; and
Cy is determined by

_{1 (x € C1), with probability f(x,8),

0 (z€Cy), with probability 1— f(,0). (3.5)

Then the corresponding conditional probability density function for y given
input x is written as

p(ylz; 0) = f(x,0)Y[1 — f(x,0)]" ). (3.6)

Using this stochastic viewpoint, we can describe the behavior of the net-
work with the probability density function p(y|x; 0), and the properties of the
space of MLP can be explained by investigating the space of corresponding
probability density functions.
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3.2.2 Metric of Neuromanifold

When we consider the space of MLP, the neuromanifold, the most basic pro-
perty is its metric. Since the neuromanifold can be considered as a space of
probability density functions, we can exploit the Kullback—Leibler divergence,
which is often used to show the discrepancy between two probability distri-
butions specified by p(y|z,8) and p (y|z,0"). It is defined by

D [0 : 0’] = /p(y|a:,0)q(:c)log p(ylz,0)

p(ylz.0)

where ¢(x) is the probability density function of input « [14].
When the two distributions are infinitesimally close, 8’ = 8 + d, and the
divergence between two nearby distributions is expanded as

dzdy, (3.7

1
D[6:6+d0] = 2dGTG(O)dG, (3.8)
where G(0) is the Fisher information matrix defined by

dlogp(y|z, 0) dlogp(y|z,0)"

G(0) = Pay 00 06

(3.9)

Eg yl-] denotes the expectation with respect to p(y|x, 8)q(x), and superfix 7
is transposition of a column vector.

A manifold is said to be Riemannian when it is locally Euclidean, which
means that the metric G(0) is defined at every point 8 such that the square
of the distance between two nearby points @ and 6 + d@ is defined by the
quadratic form in Eq. (3.8). When G(0) does not depend on 6 and is equal
to the identity matrix, the manifold is Euclidean and the corresponding coor-
dinate system 6 is orthonormal. When G(0) cannot be reduced to the iden-
tity matrix whatever coordinate system is used, the manifold is intrinsically
Riemannian, and G(0) is called a Riemannian metric. Especially, the Fisher
information matrix (3.9) is called a Fisher metric.

Since the Fisher metric G(0) is a unique one that is invariant over the
choice of coordinate system, we can say that it is the most appropriate Rie-
mannian metric for the neuromanifold (see [5] for details). The manifold of
the previous two examples of stochastic MLP models are all Riemannian. In
the case of Gaussian additive noise model defined in Eq. (3.4), the explicit
form of G(0) is given by

6(6) = B | By | o) T OO | o)
o of(x,0) 0f (x,0)"
UE;C[ iy e ] (3.11)
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where FEg[] and Ey|a:; gl denote the expectations with respect to ¢(z) and

p(y|zx, 8), respectively. In the case of coin-flipping model defined in Eq. (3.6),
the explicit form of G(8) is given by

—£)? 0f(x,0)0f(x,0)"
G(0) = Ex {Ey|m,0{f(2?zl_f;)2 fge ) fge )” (3.12)
B 1 9f(x,0)0f(x,0)
~ e {fuf) 00 06 } (313

By using this metric for the space of MLP, we can derive a new gradient
descent learning method, which is different from the conventional ones, as we
discuss in Sect. 3.

3.2.3 Hierarchical Structure

Another important characteristic of the space of MLP is the hierarchical struc-
tures such that the space of MLP with a smaller number of hidden nodes are
included in the one with a larger number of hidden nodes. The hierarchical
systems have an interesting geometry, which has some influence on the dy-
namical behaviors of learning of the systems. We give a simple example of
such hierarchies.

Let us consider a simple MLP, which receives an input vector signal  and
emits a scalar output signal y. Let h be the number of hidden units, and let w;
be the weight vectors of the ¢th hidden unit, s = 1---h. Let ¢ be a sigmoidal
activation function such as the hyperbolic tangent, and let v; be the weight
from the ¢th hidden unit to the output unit. We assume that the output unit
is linear and is disturbed by Gaussian noise n with mean 0 and variance 1.
The input-output relation of the simple MLP is then represented as

y = f(x,0) +n, (3.14)
where
flx,0) = ZW (w; - ), (3.15)

and @ is the vector parameter summarizing all the modifiable parameters
wi -+ wp, and vy - - Vp.

Let us denote by M (h) the set of all such multilayer perceptrons which
forms a space with coordinates 6. One can easily see that M(h) includes
M(h—1),M(h—2), ... as subspaces. For example, when

holds, the ith hidden node does not play any role, so it can be removed.
Hence, the subspace defined by Eq. (3.16) in M (h) corresponds to M (h —1).
In addition, when w; = w;, the ith and jth hidden neurons play the same
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role so that they can be merged into one neuron. Hence, the subspace defined
by w; = wj is also identified with M (h — 1). In the same manner, we can see
that a hierarchy such as

M) D> MMh—-1)D--- D> M(0) (3.17)

exists among the spaces of MLP models with different numbers of hidden
nodes. The subspaces M(h — 1), M(h — 2),... in the space of M(h) make
complicated singularities as discussed in the next section.

3.2.4 Singular Structure

A point in a neuromanifold M (h) is represented by a parameter vector 6,
and the parameter vector specifies an explicit functional relation of the net-
work. Two points 6 and 8" are said to be equivalent in M (h) when their
corresponding functional relations are the same, that is, the related probabi-
lity distributions are the same. In the case of the MLP model shown in the
previous section, the following three types of equivalence relations are known
[13, 22, 27, 30]:

1. When v; = 0, any points 8 and 8’ are equivalent when they differ only by
w;.
2. When ||Jw;|| = 0, any points 8 and 6’ are equivalent when they differ only
by v;.
3. When w; = w; (or w; = —w;) holds, any points € and 8" are equivalent
when
Vi + vj :’U;+U; (Ui — vy zvg—v;).

Each set of equivalent points forms a subset in M (h). One can easily see that
the subsets correspond to M (h — 1) discussed in the previous section.

Since we are not interested in the individual parameter values but instead
in the functional behavior of the network, we regard all the mutually equi-
valent points (i.e., networks) as one and the same network. Mathematically
speaking, we take the residue class by the equivalence relations as defined
above. Then, an equivalent subspace reduces to one point, and the resultant
space around the point has a cone-type singular structure. Figure 3.1a shows
a conceptual illustration of the singular structure. More generally, many cone-
type singularities can be connected to form a lower-dimensional subset (Fig.
3.1b). More explicit examples of the singular structure of neuromanifolds are
given in [6]. The reduced space has lots of singularities where dimensionalities
are reduced. This type of singularity is closely related to the performance
of the learning dynamics of MLP, and also poses an important problem in
classical statistical theory of inference.
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singularities

Fig. 3.1. Cone-type singular structures

3.3 Learning in Neuromanifolds

3.3.1 Basic Concepts

For learning, we consider a space of conditional probability density functions
{p(y|z;0)|6 € RM} of stochastic MLP with input «, output y, and a pa-
rameter vector 8. The space of the MLP, the neuromanifold, has a coordinate
system 0. The parameter @ is modified by learning from examples. The set of
examples of input-output pairs {(x1,¥y,),. .., (xr,yp)} is called the training
set. It is assumed that they are generated from the true conditional probabi-
lity distribution p*(y|x), which might not be included in the neuromanifold.
If we consider the space of all the conditional probability distributions, the
neuromanifold is included in it. The goal of learning is to find the optimum
0" that minimizes the discrepancy from the true probability density function
p*(y|z) to the neuromanifold (Fig. 3.2).

The discrepancy is generally measured by the Kullback-Leibler divergence,
which has the form

DI (wle)  plyl.0)] = [ 5" (yle)a(a)top P Grdy,  (38)

p(ylx,0)
p*(ylx)
= B { o8 <y|m,e>] (3.19)
p+ llogp™ (y|x)] — Ep- [logp(ylx, 0)], (3.20)

where E,+[-] denotes the expectation with respect to the true probability den-
sity p*(y|x)g(x). By neglecting the #-independent part, we obtain the typical
error function, the negative logarithm of the likelihood, which is written as

lien(8) = — E- [log p(yl. 0)] (3.21)

This is called the generalization error. In practical implementation, howe-
ver, lgen cannot be calculated because the true probability density is un-
known. Therefore, the empirical error obtained from an observed data set
D = {(x¢,y;) }t=1...7 is defined by
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Space of all
conditional
probability
distributions

Learning

Fig. 3.2. Learning in a neuromanifold

T
1
ltrain(e) == 7T E logp(yt‘mtv 0) (322)
t=1

This is called the training error. Using this error function, one can calculate
the standard gradient VI = 0l/90, which represents the steepest direction
of | when the parameter space is Euclidean. The standard gradient descent
learning algorithm is then given by

altrain (et)

2
00, (3.23)

01 =0 — 1 Vlain(0:) = 01 — 1
where 7, is a learning rate. This updating rule uses the whole data set at each
update, and thus is called batch learning. It is also possible to use only one
data in the training data set at each update, giving the updating rule

al(yta T, et)

.24
aet ) (3 )

0111 =0; — 1
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where [(y,x,0) = —logp(y|x, ). This is called the online learning scheme.

The online learning scheme is realized by the standard stochastic gradient
descent learning method, which uses the standard gradient of the Euclidean
space and a scalar learning rate. If the conditional probability p(y|x;0) is
defined as a Gaussian distribution with zero mean and unit variance, then the
error function becomes the squared error function and the learning rule given
in Eq. (3.23) has the same form as the standard back-propagation learning
method [28], which is the most popular learning method for neural networks.
However, we can obtain many variations of the gradient learning algorithm by
using different forms of p(y|x; €). In this sense, the stochastic gradient descent
learning method is a generalization of standard back-propagation. It is also
obvious that we can expect better performance by using a more appropriate
form of p(y|x; @) for given applications rather than using the standard one.

The gradient is closely related to the metric, and standard gradient des-
cent learning uses the Euclidean metric. As discussed in Sect. 2, however, the
neuromanifold has a Riemannian metric. By using the Riemannian metric, we
developed a new gradient called a natural gradient.

3.3.2 Natural Gradient Learning

Based on the fact that the space of the MLP is Riemannian, the natural
gradient learning method was developed as the true steepest descent learning
method. As discussed in Sect. 2.2, the Riemannian metric of the space is given
by the Fisher information matrix G(0) defined in Eq. (3.9). Using this Fisher

information matrix, we can obtain the steepest direction VI,
ol(z,y,0)
00 ’

in the Riemannian space. The V1 is called the natural gradient, and the related
learning algorithm is given by

Vi(z,y,0) = G (0)Vi(z,y,0) = G () (3.25)

011 =0, — nﬁl(wuyp Ht). (3~26>

Even though it has been proved that the natural gradient learning algo-
rithm gives a Fisher efficient online estimator [3], there are some problems
in implementation of this method. First, we have to know the probability
density function g(x) to get an explicit form of G(60), but this information is
hardly given in practical applications. Second, even if we can get the explicit
form of G(0), the inversion of G(8) is necessary in order to get the natural
gradient at each learning step, which is very time consuming. To solve these
difficulties, Amari et al. [7] proposed an adaptive method of directly obtaining
an estimate of G71(0) for the stochastic neural network having one output
node with Gaussian random noise. Subsequently, Park et al. [24] developed
explicit algorithms of adaptive natural gradient learning for various stochas-
tic models and error functions. These algorithms are widely used in practical
applications.
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In order to implement the adaptive natural gradient explicitly, we need to
define the explicit form of p(y|x;0) as discussed in Sect. 2. In this section,
we briefly review two explicit forms of adaptive natural gradient learning
developed in Park et al. [24]: one for regression problems and the other for
classification problems.

For regression problems, such as function approximation, time series pre-
diction, and nonlinear system identification, we can use the following type of
the stochastic network:

y= f(z,0) +n, (3.27)

with an additive noise n € R™. Note that this model is an extension of the
simple Gaussian noise model defined in Eq. (3.3) to multivariate outputs with
M output nodes. The value of each output node y; is decided by the sum
of the output of deterministic function f;(x,0) and additional random noise
n;. Assuming that each noise element n; is independent and subject to the
standard normal distribution, we can get the conditional probability density
function of output y given input x, which can be written by

M
o) = [T o ew{J-r@or}. e

The negative of log-likelihood gives an error function for this model, which is
written by

M

I(z,y;0) = 7; > lyi — filx, 0)]%. (3.29)

i=1

This is the same form as the standard sum of squares error function. Using
this stochastic model, we can obtain the Fisher information matrix G(0) of
the form,

G(0) = Ex [VF(x,0)VF(x,0)], (3.30)
where
Trm = (S0 o) gy

Since we do not know the distribution g(x), we estimate the matrix G(0)
adaptively at each step ¢ using

ét+1 = (1 — Gt)ét + etVF(a:t, Ot)VF(:ct, Ot)T, (332)

where &; is a small time-dependent constant such as 1/t, and Goatt =0
is an arbitrary nonsingular matrix such as the identity matrix. From this
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estimation, we can directly get the estimate G- +11 of the inverse of the Fisher
information matrix, which is given by

A 1 A

Gt-s-l1 = 1 7€th !
N e i va N [ R stVFtTéfVFt}

(1 — Et)

Whereas the outputs for regression problems are in general continuous
values, the target output values for classification problems are discrete, re-
presenting the classes of patterns. Therefore, the additive noise model and
the corresponding squared error function are not appropriate for classification
problems. Park et al. [24] used the Bayesian stochastic model for classification
problems [10] and gave an explicit form of adaptive natural gradient learning
for the model.

In this section, we consider the case of M-class classification problems
as the extension of the coin-flipping model defined in Eq. (3.5). We need a
network with M output nodes so that the ith output node represents the ith
class C;. We use the target coding scheme, that is, y; = d;; (j = 1,..., M)
for class C;. In this coding scheme, the value of the ith output node f;(x,8)
can be considered as representing the posterior probability P(C;|x) for class
C;. The conditional distribution can be written as

1 ~
VEIG;'. (3.33)

M

p(yl=; 0) = [ (fi(z, ). (3.34)

i=1

Since the output values f;(x, 8) are interpreted as probabilities, they must lie
in the range [0, 1], and their sum must be equal to 1. This can be achieved by
using a generalized form of the logistic function for the activation function of
output nodes, which is defined as
exp(z;
fi(®,0) = po(zi) = __ S (3.35)
Zj:l exp(z;)
Here z; is the linear sum of hidden outputs given to the ¢th output node.
The corresponding error function is given by

M
l(m7y;0) = _Zinngi(m>0)' (336>
i=1
This error function is called the cross-entropy error function. It is known that
in the case of classification problems, the cross-entropy function gives better
convergence and generalization performance than the sum of squares error
function [10].
Using this stochastic model, we can obtain the Fisher information matrix
G(0) and the adaptive estimate G’t_ _&1 of the inverse of the Fisher information
matrix, which is given by
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M T
_ 1 dfi (0f;
G(8) = By ;ﬁ(m’e) S (30> 1 (3.37)
A—1 1 AN—1
t+1 7 g _ e t
€t A—1Io I T A1 I -1 T A—1
1) GV [(1—gt)1+atv1«; G, VFt} VETGTL, (3.39)
—ct
where
VE, = Lo Onlen) 1 Ofu(@ 6 g g,
\/fl(iEt,@t) 00, \/fM(fL'tyet) 00,

In general, the natural gradient method is different from second-order
methods such as the Newton method, the conjugate gradient method, and
the like, which use a Hessian matrix instead of a Fisher information matrix
(see [10] for details). However, when log-likelihood is taken as the cost func-
tion, it is locally equivalent to the Newton method and the Fisher scoring
method. Hence, its convergence is second order. The adaptive method of eva-
luating G~ is similar in this case to the Gauss—Newton method [12]. However,
the natural gradient method is more general and is applicable to various cost
functions other than the square loss or the negative log-likelihood [24].

The merit of the natural gradient method is not merely given by its good
local convergence property. Its merit lies mostly in the global property of
convergence, escaping from plateaus. This is because the Riemannian metric
is responsible for the singularities of the space that are related to plateaus.
We show this in Sect. 4.

3.3.3 Computational Experiments

In order to see the convergence performance of adaptive natural gradient
learning, we show two experimental results on benchmark problems. First
is the Mackey—Glass chaotic time series prediction, which is a well-known
benchmark problem for neural networks. The time series data were generated
from the equation

x(t—1)

(3.40)
where a = 0.2, b = 0.1, and 7 = 17. The input values of the network are given
from four previous time series data, i.e., z(t), z(t — 6), z(t — 12), and = (¢ — 18).
The output value of the network is given from one future time series datum,

z(t + 6). For training, 500 data generated at ¢t = 200, ...,700 were used, and
500 other data at ¢ = 5000, . ..,5500 were used for testing.
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Since the output values are continuous, the Gaussian additive noise model
was used. The adaptive natural gradient learning was compared to the stan-
dard gradient descent learning. Each learning method was tried ten times with
different initialization in order to get the average result. The learning process
was stopped when the mean square error (MSE) for the training data became
smaller than 2 x 1075,

Table 3.1. Average results on the Mackey—Glass time series prediction problem
(SGL, standard gradient learning; ANGL, adaptive natural gradient learning)

SGL ANGL
Learning rate n=0.1 n=0.005,e; =1/t
No. of hidden nodes 10 10
Rate of success 10/10 10/10
Learning cycle for MSE < 2 x 107° 836,480 502.2
(standard deviation) (396,320) (132.8)
MSE for test data 7.6265 x 107°  2.4716 x 107°
(standard deviation) (3.0823 x 107°%)  (4.7204 x 107°)
Processing time (relative to SGL) 1.0 0.064

The average results are shown in Table 3.1. The learning rates n were
tuned through the experiments so as to get high rates of success and rapid
convergence. For this problem, the adaptive natural gradient converged more
than 1600 times faster than the standard gradient learning method in the
sense of necessary number of learning cycles for convergence. Regarding the
processing time, the proposed learning algorithm was more than 15 times
faster than the ordinary one. Figure 3.3 shows the learning curves of the two
algorithms. From this figure, one can see that the plateaus that appear in
the standard gradient learning method mostly do not exist in the adaptive
natural gradient learning method. Note that the network used for training
has ten hidden units, which implies that its parameter space has very complex
singularities (Sect. 2.4). The plateau observed in standard gradient learning is
known to be caused by the singularities [29]. From this experiment, we can say
that the adaptive natural gradient can alleviate the plateau remarkably. We
will discuss the learning dynamics and singularity in Sect. 4.4 with a simple
and visual model.

As an example of a classification problem, the thyroid disease problem
was exploited, which is also a well-known benchmark problem. It is known to
be hard to train a feedforward neural network by using the standard gradient
leaning algorithm with the data set. The task is to determine whether a patient
referred to the clinic is hypothyroid. Therefore, three classes are built: normal
(not hypothyroid), hyperfunctioning, and subnormal functioning. Each mea-
surement data has 21 attributes. Fifteen of them are binary values, and the
others are continuous values. Since 92% of the patients are not hyperthyroid,
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Fig. 3.3. Learning curves for the Mackey—Glass problem (OGL, standard (ordi-
nary) gradient learning; ANGL, adaptive natural gradient learning). Reprinted with
permission from [24]

a good classifier must give a significantly better classification rate than 92%.
The number of data points in the training set is 3,772, and the number of
data points in the test set is 3,428. The network has 21 input nodes, 5 hidden
nodes, and 3 output nodes. The learning process was stopped when the MSE
became smaller than 1073,

Table 3.2. Average results on Thyroid disease classification problem (SGL, standard
gradient learning; ANGL, adaptive natural gradient learning)

SGL ANGL
Learning rate n = 0.005 n = 0.0002,¢; = 1/t
No. of hidden nodes 5 5
Rate of success 5/5 5/5
Learning cycle for MSE < 1072 459,900.0 349.0
(standard deviation) (124,100) (172.5)
Classification rate (training) 99.81% 99.87%
(standard deviation) (0.01%) (0.05%)
Classification rate (test) 97.55% 98.19%
(standard deviation) (0.26%) (0.12%)
Processing time (relative to SGL) 1.0 0.24

The average results over five independent runs are shown in Table 3.2.
Regarding the learning cycles, the adaptive natural gradient method was more
than 1,300 times faster than the standard gradient method. Also, considering
the classification performance, the adaptive natural gradient method gave
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higher classification rates for the test data than the ordinary one. As far as
the processing time is concerned, the proposed method was more than four
times faster than the ordinary one.

3.4 Problem of Singular Structures

3.4.1 Singularity Problem

The remarkable superiority of natural gradient learning, which was shown
in the previous section, is achieved by exploiting an appropriate metric, the
Fisher metric, for the neuromanifold. However, in order to gain a deeper un-
derstanding of why the plateaus disappear in natural gradient learning, we
need to consider the singular structure of the neuromanifold. The singular
structure of the neuromanifold seems to be a main cause of various problems
in the learning and designing of neural networks. By paying more attention to
the singularities, we can expect to get remarkable solutions or understanding
of the problems.

The basic problem related to the singular structure is in the case when
the optimal network is exactly on the singular point of the neuromanifold,
which is called the singularity problem. This situation occurs when we use
larger networks than the optimal one; thus we also call it the over-realizable
scenario (note that this situation occurs easily because we do not know the
optimal size of networks and tend to use sufficiently large networks). When
the optimal network is at the singularity, it is impossible to use conventional
model selection criteria such as AIC or MDL in order to find an optimal size of
network. These criteria are based on the classical asymptotic theory of statisti-
cal inference such as the Fisher—-Cramér—Rao paradigm, but these theoretical
results lose their validity in the neighborhood of singularities. Therefore, it
is necessary to build a new theory for singular models and to develop a new
criterion for model selection for over-realizable scenarios.

In this section, we present our preliminary approaches toward building a
new theory. We define two simple toy models that have intrinsic attributes
of singularities, and try to evaluate their estimation ability in over-realizable
scenarios. In addition, in the last part of this section, we also show the influen-
ce of singularity in the dynamics of standard gradient learning and natural
gradient learning using the simple toy model.

3.4.2 Related Works

Before presenting our own results on the singularity problem, we briefly review
related works. The singularity problem in hierarchical models has been noted
by statisticians. For example, in the case of the Gaussian mixture model, where
a probability distribution is represented by a mixture of Gaussian distribu-
tions, it has a hierarchical structure determined by the number of Gaussian
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distributions. Hotelling [21] and Weyl [32] investigated the problem of the
degeneracy of the Fisher information matrix by means of a geometrical treat-
ment in the 1930s. In systems theory, these properties were pointed out by
Brockett [11]. Recently, Hartigan [19], Dacunha-Castelle and Gassiat [15], and
Kuriki and Takemura [23] studied statistical models with nonregularity in the
field of statistics.

Related to the neural networks, the problem was first pointed out by Hagi-
wara [18]. Hagiwara clarified that the AIC does not work on MLP through
computer simulations, and suggested that this is caused by the hierarchical
structure of the model. Moreover, Hagiwara used simple models to show that
the least-square error of the estimator does not asymptotically obey the con-
ventional asymptotic rule of 1/T where T is the number of data, but instead
log T'/T [18]. This result is consistent with Hartigan’s conjecture [19].

Through these results, it was noted that analysis of the error of estima-
tors is important for model selection of neural networks, and various works
started thereafter. Watanabe [31] applied algebraic geometry to elucidate the
behavior of the Bayesian predictive estimator in MLP, and developed a general
framework for obtaining its generalization error by using Hironaka’s resolution
theorem of singularity [20]. As a result, he showed a sharp difference between
regular cases and singular cases and the superiority of the Bayesian predic-
tive distribution for singular models. Fukumizu [16] gave a general analysis
of maximum likelihood estimators in singular statistical models including the
MLP. He showed that behavior does not obey their regular statistical theory.
He also showed that the estimation error has a variance of log T/T for MLP
models with more than two redundant hidden units.

3.4.3 Analytical Solutions in Simple Models

One of the most important issues related to the singularity problem in neural
networks is to develop a new criterion for model selection. To do this, one
must know the relation between the generalization error and the training error
mentioned in Sect. 3. Unfortunately, it is very difficult to find these relations
for the general model. Thus, we try to attack this problem using some simple
models, and analyze their asymptotic properties.

4.3.1. Asymptotic Statistical Inference: Generalization Error and
Training Error

Before going to our results, we briefly review the asymptotic results of statis-
tical estimators in the regular case. Let D = {@;1---xr} be T independent
observations from the true distribution p*(x). We first consider the maximum-
likelihood estimator (MLE), which maximizes the log-likelihood of data D.
The estimated distribution from the data is given by pumLe(xz) = p(m;é),
where
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T

o 1

0 = argmaxy {T Z log p(x+; 0)} .
t=1

While the MLE searches for an asymptotically optimal point estimator in
the model, the Bayes paradigm studies a posterior probability of the parame-
ters based on the set of observations D. The posterior probability density is
written as

p(8|D) = c(D)m(8) [ [ » (.16). (3.41)

t=1

where ¢(D) is the normalization factor depending only on data D, and ()
is the prior distribution on the parameters. The Bayesian predictive distribu-
tion Pprayes(®) = p(x|D) is obtained by averaging p(x|6) with respect to the
posterior distribution of 8, and can be written as

Payes () = p(e|D) = / p(10)p(6] D)do. (3.42)

These estimators are evaluated by the generalization error defined by the
Kullback—Leibler divergence from p*(x) to p(x) (Sect. 3). Since the individual
estimated probability density p(x) depends on data set D, we need to take
the expectation with respect to the distribution of data set D. The expected
generalization error is thus defined as

Lgen = —Ep [Ep- [log p()]], (3.43)

where Ep represents the expectation with respect to D. Similarly, the ex-
pected training error is defined by using the empirical expectation,

Ltrain = _ED

L T
T Zlogﬁ(mt)l . (3.44)

In order to evaluate the estimator p(x), it is desirable to use Lgen, which is
not computable because we do not know p*(x). Instead, we use Liyain, which
is computable. Hence, it is important to see the difference between Lge, and
Lirain- This is used as a principle of model selection.

When the statistical model M is regular, or the best approximation to the
true distribution p*(x) is at a regular point of M, the estimated probability
density p(x) is known to have the relations [1],

d
Lirain ~ H* — , A4
: o (3.45)
d d
Lcn%H* %Lrain ) 4

where d is the dimension number of parameter vector 8, and H* represents
the data-independent term, —E,- [log p*(x)].
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These universal relations are not guaranteed in the singular case. The
relation between the generalization and training errors is different, so that
we need a different criterion to evaluate the generalization performance of
singular models such as the MLP.

4.3.2. Simple Toy Models

For the singular case, we investigated the relation between the generalization
and training errors using two simple toy models (see [8, 9] for detailed dis-
cussions). One is a very simple multilayer perceptron having only one hidden
unit. The other is a simple cone model.

The simple cone model describes a typical singularity in MLLP mentioned
in Sect. 1. Let  be a Gaussian random variable € R*2, with mean pu
and identity covariance matrix I, then the probability density function of @
is given by

el = o e {~3le-wi?}. (3.47)

If we consider a set Sqio = {p|p € R¥2}, the cone model My, is a subset
of Sgqya, in which g is restricted by

13 1
M:p= Jlre (cw) = ¢a(w). (3.48)
Here c is a constant determining the tangent of the vertical angle of the cone
(tand in Fig. 3.4), ||a|? =1, w € U?, and U? is a d-dimensional unit sphere.
Then Mgy is a cone having (§,w) as coordinates, where the apex & = 0 is
the singular point. When d = 1, U is a circle so that w is replaced by angle
0, and we have

1

£

w= ccosf | . (3.49)

V1i+e? csinf
Figure 3.4 shows the one-dimensional cone model M5, which is embedded in
S3 = {pu|p € R3} by the condition given by Eq. (3.49).

We also exploit a simple MLP, which has the input-output relation given
by

y=vp(w-x)+n, (3.50)

where n is a Gaussian random noise subject to A/(0,1). When v = 0, the
behavior is the same whatever the value of w. Let us put w = fw, where
0 = ||w||, w is on the d-dimensional hypersphere, £ = v|w||, and ¥ (x; 8, w) =
o{B(w - x)} /8. We then have an alternative expression,

y=&Y(x; f,w) +n, (3.51)
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Fig. 3.4. One-dimensional cone model M> embedded in S3(d =1, ¢ = tand)

which shows the cone structure with apex at & = 0. In this section, we assume
that (3 is known and does not need to be estimated. The conditional probability
density of y given input ® and learning parameters £ and w is written as

solmew) = o ew{- - ool @)

For these toy models, when the true or optimal parameter is at a singular
point, the conventional asymptotic results for regular models cannot be ap-
plied. In the next section, we gave some analytic results in the singular case,
ie., & =0.

4.3.3. Analytic Results of MLE

For the cone model defined in Eq. (3.47), the log-likelihood of data D=
{x+}1=1..7 is written as

T

LD,&w) =~ O Il ~ Ealw)] . (353)

t=1

The maximum likelihood estimator (MLE) is the one that maximizes L(D, {, w).
However, 9" L/0w* = 0 at € = 0 for any k, so that we cannot analyze the be-
haviors of the MLE by the Taylor expansion at the optimal point. Therefore,
we first fix w and search for the value of £ that maximizes L. This is easy
since L is a quadratic function of £&. The maximum f is given by a function of
w’

§(w) = argmax,L(D,{,w) = ! Y(w), (3.54)

VT
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where
Y(w)=a(lw) & &= Za:t. (3.55)

Here, Y(w) = a(w) - & is subject to the Gaussian distribution depending on
w. More precisely, Y (w) is a zero-mean Gaussian random field over U? with
covariance A(w,w’) = a(w)-a(w’). By substituting &(w) from Eq. (3.54), the
log-likelihood function becomes

L(w) = —; Z ||22:]|* + ;YQ(w). (3.56)

Therefore, the MLE @ is given by the maximizer of
@ = argmax,,Y?(w). (3.57)

Using the MLE, we obtain the expected generalization and training errors in
the following theorem.
Theorem 1. In the case of the cone model, the MLE satisfies

1
Lgen = H* + __Ep |[supY?(w)|, (3.58)
2T w
1
Lizain = H* — ___Ep [supY?(w)]| . (3.59)
2T w

In the simple cone model, we can obtain the explicit value of Ep [supw Y? (w)] .
We show the asymptotic results (the large d limit).

Corollary 1. When d is large, the MLE satisfies
1+ 2cy/2d/7+cA(d+1) 2 d

Lgen ~ H* ~H , 3.60

8¢ + (14 c2)2T + (14 ¢2)2T (360)
1+ 2¢y/2d/7+ 2(d+1) 2 d

Livain ~ H* — ~ H* — : 3.61

e (14 ¢2)2T (14 ¢2)2T (3:61)

It should be remarked that the generalization and training errors depend
on the shape parameter c as well as on the dimension number d. In the regular
case, they depend only on d. As one can easily see, when c¢ is small, the
cone looks like a needle, and its behavior resembles a one-dimensional model.
When c is large, it resembles two (d + 1)-dimensional hypersurfaces, so that
its behavior is like a (d + 1)-dimensional regular model.

In the case of the simple MLP defined in Eq. (3.51), the log-likelihood of
data set D ={(x¢, yt) }t=1...7 is written as

L(D;¢,w) = —; Z {yt — € (w - a:t)}2 . (3.62)
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Let us define two random variables that depend on D and w:

T

¥ (w) = \/IT S gos (w - @0), (3.63)
1 v

Ap(w) = > h(w @), (3.64)

Note that Ap(w) converges to A(w) =FEgx[p3(w - )] as T goes to infinity,
and Y (w) defines asymptotically a Gaussian random field with mean 0 and
covariance A(w,w’) = Exlpg(w - x)pg(w’ - )]. From the same approach as
the cone model case, we obtain

- 1 Y(w)
w) = argmax,L(D; ¢ w) = , 3.65
T
. 1 5  1Y?(w)
. 1Y?(w)
@ = argmaxg, Ap(w)’ (3.67)
Using the mle, we get the following theorem.
Theorem 2. For the MLE of the simple MLP, we have
1 Y (w)?
Loen = H* E , 3.68
ge + 2T D |:S::‘ljp A((AJ) :| ( )
1 Y (w)?
Livsin=H"— _E . 3.69
tra 2T D |:S:;1)p A(W) :| ( )

There is a nice correspondence between the cone model and the simple
MLP. However, because of the existence of nonlinearity of the hidden unit, it
is not easy to get the explicit relation between the error and the dimension
number of parameters like that of the cone in Corollary 1.

We checked the analytic results using computer simulations. The cone
model and MLP were trained by the gradient method to get the MLE. For
each d (d =1,...,25), we generated 100 training sets with 10 x d data from
the true distribution, and repeated the training processes with the sets to get
the average generalization and training errors. We set ¢ = 1,8 = 1 in the
simulations. The learning procedure was stopped when the decrease in the
training error was smaller than 1071%. In Figures 3.5 and 3.6, one can see the
symmetry of Lgen and Lirain, which is obtained in Theorems 1 and 2. For the
cone model, we confirmed that the errors approach the approximate values
of Corollary 1. In addition, it is possible from the figures to suppose that a
similar relationship is also sustained between d and the errors for the MLP.
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Fig. 3.6. Simulation results on simple MLP

4.3.4. Analytic Results of Bayesian Predictive Distribution

For the Bayesian predictive distribution, we show some results from the cone
model here. For the simple MLP model defined in Eq. (3.51), we can also
apply the same approach and get similar results [9].

Unlike the regular case, the asymptotic behavior of the Bayesian predictive
distribution depends on the prior. Let us define the prior as w(£,w). Then the
probability density of observed samples is given by
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T

Zr = p(D) _/ w) [ [ p(a:lé, w)dédw. (3.70)

t=1
When a new data x4 is given, we can similarly obtain the joint probability

density p(xry1,D) as

T+1

Zra =plarn,D) = [ new) [] sl widedo.  (371)
t=1

From the Bayesian theorem, we can easily see that the Bayes predictive dis-
tribution is given by
Zri1
Zr
When the prior is uniform, i.e., 7(§,w) = constant, we can calculate Zr
explicitly, and obtain

5 _ 1 T ll2l|* | Pa(@r+1)
pBayes(iL'|D) = \/271-d+2 \/T+ 1 exp{ 9 Pd(i) s (373)

where

ﬁBayCS($|D) = (372)

Erpl = \/T1+ . (x+ VTZ), (3.74)

Py(x) = /exp { ;YQ(w)} dw. (3.75)

From the fact that YV(w) = a(w) - & and Y741 (w) = a(w) - &741 are subject
to the same probability distribution, the generalization error can be obtained

as
1

2n’
Furthermore, using the Edgeworth expansion, we can also have

R 1 EdlS
pBayes(w‘D) ~ €Xp§ —
\/27Td+2 2

1
1+ ViegP;(x) - = +

Lyen ~ H* + (3.76)

e (vZfd Hz(l')) } . (377)

where V is the gradient, and Hs(x) is the Hermite polynomial. Then, the
training error is given by

1
Lirain ~ Lyen = 1, Ep {v log Py(%) - m} (3.78)

In the case of Jeffreys’ prior, i.e., (&, w) o |£|¢, we can do similar analysis,
and obtain
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d+1

Loen ~ H*
8¢ + 2n

(3.79)

One can refer [9] for detailed results.

These results are rather surprising: under the uniform prior, the generaliza-
tion error is constant and does not depend on d. This is completely different
from the regular case. However, this striking result is given rise to by the
uniform prior on £. The uniform prior puts strong emphasis on the singularity,
showing that one should be very careful in choosing a prior when the model
includes singularities. In the case of the Jeffreys’ prior, the generalization error
increases in proportion to d, which is the same result as the regular case. In
addition, the symmetric duality between Lgen and Lirain does not hold for
both the uniform prior and the Jeffreys’ prior.

3.4.4 Learning and Singularities

It has been elucidated in the statistical mechanics framework that the learning
trajectory is ubiquitously attracted by singularities, and that plateaus are the
result of this singular structure [29]. The natural gradient learning method
takes this structure into account by using the Riemannian metric, so that it
works efficiently in learning. It was also confirmed that the natural gradient
can avoid plateaus through statistical mechanical approaches [25].

In this chapter, we show the effect of singularities in learning dynamics of
the simple cone model. We exploited the one-dimensional cone model defined
in Eq. (3.49) with ¢ = 1. The true model generating training data was set to
(€*,0%) = (1,0). Starting from (&,6,) = (1, [57), we calculated the average
trajectories of standard gradient learning and natural gradient learning in
order to show how the learning parameters (£, 8) approach the optimal point
(1,0). Here, the average trajectories of standard gradient learning given in Eq.
(3.24) are given by using

AE(t Ol(T+,8¢,0¢)
(Ag( )> = Ja :c(% o , (3.80)
(t) SGD ( geft, t)

and those of the natural gradient learning in Eq. (3.26) are given by

OU(T1,&¢,0¢)

AL(1) _ _ ¥
<A9(t))NGD =-mG(&,0) @0 | (3.81)

where < - > denotes the expectation with respect to the true distribution of
x.

As shown in Fig. 3.7, the dynamics of standard gradient learning is at-
tracted to the singular point, and it takes a long time to go out from the
trap, making a plateau. On the contrary, Fig. 3.8 shows that the dynamics of
the natural gradient is not affected by the singular point. The differences of
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the two learning algorithms are clearly shown in the learning curves of Fig.
3.9. The plateaus shown in standard gradient learning correspond to the part
of the trajectories trapped in singularity. The plateau has completely disap-
peared in the natural gradient. This phenomenon commonly occurs in the
learning of general MLP with much more complicated singularities as shown
in Fig. 3.3.
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Fig. 3.9. Standard gradient learning (solid line) versus natural gradient descent
learning (dashed line) in the learning of cone model

3.5 Discussion and Conclusions

We have investigated the geometrical structures of the space of MLP, the neu-
romanifold, by using information geometry. There are a number of interesting
characteristics that should be taken into account to design a good network.

First, the parameter space of MLP is not Euclidean, having an intrinsic
Riemannian metric, which is given by the Fisher information matrix of the
corresponding probability density function. By using the metric, we developed
a new learning method, called natural gradient learning. The performance of
natural gradient learning was confirmed through computational experiments
on benchmark data as well as through statistical mechanical analysis.

Second, the neuromanifold includes complicated algebraic singularities,
which are due to its hierarchical structure. At the singularities, the conven-
tional model selection criteria cannot be applied, and we need a new criterion
for the over-realizable scenario. Using simple toy models, we showed some pre-
liminary results toward a new criterion and also briefly reviewed other recent
works related to this problem. The singular structure is also closely related
to the dynamics of the learning method, and we gave a simple example sho-
wing the effect of a singular point on the learning trajectories and the plateau
phenomenon.

These singularities are ubiquitous in hierarchical models such as the Gaus-
sian mixture model and the ARMA model. However, the current results are
very preliminary, and there exist a large number of open problems to be solved.
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4.1 Introduction

During the past decade lattice algebraic operations have been used extensively
to derive a variety of novel artificial neural network models. Many of these
models have been successfully employed to solve real-world problems. Among
the different models based on lattice algebra are the following: morphologi-
cal associative memories [1, 2, 3, 4, 5|, shared-weight neural networks [6, 7],
regularization neural networks [8], hybrid morphological-rank-linear neural
networks [9], min-max neural networks [10, 11, 12|, morphological percep-
trons [13, 14], fuzzy lattice networks [15, 16], and adaptive logic networks,
which combine linear functions by a tree expression of maximum and mini-
mum operations [17]. In this treatise we restrict our discussion to those neu-
ral networks whose computational basis is strictly limited to lattice-ordered
groups (¢-groups) and bounded lattice-ordered groups (blogs). These types of
networks have become known as morphological neural networks (MNNs). The
name morphological neural networks stems from the fact that lattice-ordered
groups and bounded ¢-groups also provide for the mathematical foundation
of the area of image processing known as mathematical morphology.

Our particular focus will be on matrix memories and feedforward types of
networks. Such a narrow focus allows for a deeper immersion into the funda-
mental computational principles of morphological neural networks, which is
a main goal of this treatise. Before discussing the two very distinct networks
we first provide a quick review of lattice algebra as related to ¢-groups and
blogs.

4.2 Some Elementary Concepts From Lattice Algebra

The concept of lattices was formed with a view to generalize and unify certain
relationships between subsets of a set, between substructures of an algebraic
structure such as groups, and between geometric structures such as topological
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spaces. The development of the theory of lattices started about 1930 and was
influenced by the work of Garrett Birkhoff [18].

In the subsequent discussion we assume that the reader is familiar with
the basic concepts of lattice theory, in particular those that apply to the real
numbers. The real numbers IR together with the relation of less or equal (<) is
a totally ordered set; i.e., given any pair x,y € IR, then either x <y or y < z.
If  Vy = max{z,y} and x Ay = min{z, y} Va,y € R, then IR together with
the operations of V and A is a lattice. However, (IR, V, A) is not a complete
lattice as there is no largest and smallest number. A complete lattice can be
obtained by extending the real numbers to include the symbols —oco and oo
by setting IRio = R U {—00, 00} and defining —o0o < z < 0o Vz € IR and
—00 <z < 0o Vo € {—00,00}. The extended structure (IRioo, V,A) is now
a complete lattice with largest element co and smallest element —oco. The
dual of this lattice is obtained by replacing < with the relation of greater
or equal >. Obviously, (IR, V, A) is a sublattice of (R4, V,A). Similarly, if
IR™ denotes the set of positive numbers, then the set IR?OO =R" U {0,000}
with the relation < is a complete lattice. Here 0 is the smallest element and
oo the largest element. (]Rfoo, Vv, /\) is a sublattice of (R4, V,A) but not of
(IR, V,A).

The lattices (Rico, V, A) and (IR, V, A) are distributive lattices because the
distributive law z A (yV z) = (x Ay)V (A z) holds. This equation expresses the
similarity with the distributive law z(y + z) = 2y + 2z of ordinary arithmetic.
Note also that by duality we have that zV (yAz) = (zVy) A (zV 2).

In addition to being a distributive lattice, the set of real numbers is also
a group under addition, and our early experience in elementary algebra has
taught us the useful properties

o P r>y=z+x>2+4+y
e Py r>y=z4+rt+w>z+yt+w
Ps z+(xVy)=(z+2)V(z+y) and z+ (zAy) = (z+2) A (2+Y),

where z,y, z, w € IR. These properties exhibit the interplay between the lattice
and group operations. A lattice that is also a group and satisfies property Py
is called a lattice-ordered group or £-group.

It is often convenient to deal with only one of the operations V or A. Every
partially ordered set IF for which the operation 2Vy (or zAy) is associative and
is defined for each pair x,y € IF is called a semilattice whenever =V z = x.
For example, (IR, V) is a semilattice with dual (IR,A). If IR, = R U {00}
and R_o, = R U {—o0}, then (IR_, V) is a semilattice with dual (IReo, A).
Note that the semilattice (IR_oo, V) is a monoid with zero element —oo since
rV(—o0) = (—00) Vr Vr € IR_. Similarly, (IR, A) is a monoid with zero
element oco. If a semilattice is also a group, then it is called a semilattice-
ordered group or sl-group. If (IF,V,+) is an sf-group and (IF, A, +') is also
an s¢-group with semilattice operation A and group operation +’ and satisfies
aV(bNa)=aA(bVa)=aVab e T, then we say that IF is an sf-group
with duality. If the operations + and +’ coincide, then the operation + is
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called self-dual. It (IF,+) and (IF,+') are only semigroups, then IF is called
an sl-semigroup with duality or sl-semigroup. The ¢-group (IR, V, A, +) has
the identity element 0 but no null element, as there is no “smallest” element
in IR. As another example, the ¢-semigroup (IR—o, V, A, +), where 4+ denotes
the extended real addition a + (—00) = —00 + a = —00 Va € IR_, has the
null element —oo but has no identity element, as —oo has no inverse under
extended real addition. Similarly, if we adjoin the element co, then the ¢-group
IR degenerates into the ¢-semigroup (IR, V, A, +) as oo has no inverse under
the addition co4+a = 0o Va € IR . This is not really as much of a disadvantage
as it seems. We can extend the ¢-group IR to include the elements co and —oo
in a well-defined manner as follows. If a,b € IR, then a + b is already defined.
Let +' = + be the self-dual addition of elements of IR. For a € IR, define

a+—-o00o=—-oc0+a=a+'—0c0o=—-00+"a=—o0, and
at+oo=00c+a=a+ co=0c0+ a=0c0.

If we now define —o0o+00 = 0o+ —00 = —oo and —oco+' 00 = oo+ —00 = o0,
then the resultant structure (R4, V, A, +,+’) is a distributive lattice which
is called a bounded ¢-group or blog.

In recent years, lattice-based matrix operations have found widespread
applications in the engineering sciences. In these applications, the usual matrix
operations of addition and multiplication are replaced by corresponding lattice
operations. For example, given the bounded ¢-group (R1,V,+) and A =
(@ij), B = (bi;) two m x n matrices with entries in IF1 ., then the pointwise
mazimum, AV B, of A and B, is the m x n matrix C defined by AV B = C,
where ¢;; = a;; V bi;. If Ais m x p and B is p X n, then the maz product of A
and B is the matrix C = AV B, where ¢;; = \/7_,(a;; + bg;j). Observe that
this product is analogous to the usual matrix product ¢;; = > % _; (aik X bij),
with the symbol > replaced by \/. Since \/ replaces > in our definition, the
pointwise maximum can be thought of as matrix addition.

Example 1. An illustration of the max product of a 5 x 4 and a 4 x 3 matrix
with entries from R4, is the following:

o0 6 2 2 o6 o 13 3 16

7 -5 10 —4 . 18 14 21

8 4 11 9 | v = 19 15 22
8 4 11

-3 +o00 1 -7 11 0 400 +00 400

-1 1 0 5 8 6 11

The min product of A and B in the dual structure (IRioo,A,+’) is the
matrix C' = A A B, where ¢;; = AL_,(as + by;). Similarly, the pointwise
minimum A A B of two matrices of the same size is defined as AA B = C,
where Cij = Qij N\ blj

Lattice-induced matrix operations lead to an entirely different perspective
of a class of nonlinear transformations. These ideas were applied by Shimbel



100 Gerhard X. Ritter and Laurentiu Iancu

[19] to communications networks, and to machine scheduling by Cuninghame-
Green [20, 21] and Giffler [22]. Others have discussed their usefulness in ap-
plications to shortest path problems in graphs [23, 24, 25, 26]. Additional ex-
amples are given in [27], primarily in the field of operations research. Another
useful application to image processing was developed by Ritter and Davidson
[28, 29].

While lattice theory and lattice-ordered groups have only marginal con-
nections to the computational aspects of linear algebra, Cuninghame-Green
developed a novel nonlinear matrix calculus based on the min and max pro-
duct, called minimaz algebra, which is very reminiscent of linear algebra [27].
Problems notated using the minimaz products take on the flavor of problems
in linear algebra. By allowing for the minimax matrix products to take on
the character of the familiar matrix products, concepts analogous to those in
linear algebra, such as solutions to systems of equations, linear dependence
and independence, rank, seminorms, eigenvalues and eigenvectors, spectral
inequalities, and invertible and equivalent matrices, can be formulated.

Originally, many of these concepts were developed primarily to help solve
operations research types of problems. Our interest in these notions is due
to their applicability to artificial neural networks. For instance, we will view
associative matrix memories as transforms R™ — IR™. For such memories the
notions of independence, dependence, and fixed points play a major role in the
development of memories that are robust in the presence of noise. All these
notions resemble their analogues encountered in linear algebra. For example,
given a matrix transform M : IR" — IR" and x € IR", then x is a fized point
of M if and only if M Vx =x (or M Ax = x).

Property P3 also holds for the s¢-semigroups (R_c, V,+) and (IReo, A, +/).
It follows that each of the structures is also a semiring. These two semirings
are in a one-to-one correspondence given by r* = —r, where c0o* = —o0,
(—00)* = o0, and 7 € Ric. That is, r* is the dual of r as (r*)" = r and
rAu=(r*Vu*)" Vru € Ric.

This conjugacy extends to matrices with entries from Ri... Here the
conjugate of a matrix A = (a;;) with entries in IR or IR1o is the matrix
A* = (b;), where b;; = [aj;]" and [aj;]" is the additive conjugate of aj;
defined earlier. The notions of pointwise maximum and dual product could
have been defined in terms of conjugation since A A B = (A*V B*)" and
AN B = (B*V A*)" for appropriately sized matrices.

In the next two sections we will employ the lattice theoretic notions deve-
loped in this section to serve as the underlying mathematical foundation for
the theory of morphological neural networks.

4.3 Morphological Associative Memories

One of the first goals achieved in the development of morphological neural
networks was the establishment of a morphological associative memory net-
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work (MAM). In its basic form, this model of an associative memory resembles
the well-known correlation memory or linear associative memory [30]. As in
correlation encoding, the morphological associative memory provides a simple
method to add new associations. A weakness in correlation encoding is the re-
quirement of orthogonality of the key vectors in order to exhibit perfect recall
of the fundamental associations. The morphological autoassociative memory
does not restrict the domain of the key vectors in any way. Thus, as many
associations as desired can be encoded into the memory [1, 31]. In the real
number case, the capacity for a memory of length n can be as large as desired.
That is, if £ denotes the number of distinct patterns of length n to be encoded,
then k is allowed to be any integer, no matter how large. Of course, in the
binary case, the limit is k = 2", as this is the maximum number of distinct
patterns of length n. In comparison, McEliece et al. showed that the asymp-
totic limit capacity of the Hopfield associative memory is n/2logn if with
high probability the unique fundamental memory is to be recovered, except
for a vanishingly small fraction of fundamental memories [32]. Likewise, the
information storage capacity (number of bits that can be stored and recalled
associatively) of the morphological autoassociative memory also exceeds the
respective number of certain linear matrix associative memories which was
calculated by Palm [33] and Willshaw et al. [34].

Among the various autoassociative networks the Hopfield network is
the most widely known today [35, 36, 37]. A large number of researchers
have exhaustively studied this network, its variations, and generalizations
[32, 38, 39, 40, 41, 42, 43, 44, 45]. Hardware implementation issues of various
associative memories have also been extensively studied [46, 47, 48, 49, 50].
Unlike the Hopfield network, which is a recurrent neural network, the mor-
phological model provides the final result in one pass through the network
without any significant amount of training.

To begin our discussion on associative memories, let (xl, yl) ey (xk7 yk)

! !/
be k vector pairs with x¢ = (mﬁ,,xi) € R" and y¢ = (yf,...,yg) e R™

m
for £ = 1,...,k. For a given set of pattern associations { (xf,yf) € =1,
o k } we define a pair of associated pattern matrices (X,Y’), where X =
(x,...,x*) and Y = (y',...,y"). Thus, X is of dimension n x k with i, jth
entry xi and Y is of dimension m x k with ¢, jth entry yf .

The earliest neural network approach to associative memories was the
linear associative memory or correlation memory [30]. In this approach the
goal is to store k vector pairs (x!,y'),...,(x¥,y*) in an m x n associative
memory W such that for any given input vector x¢, the associative memory
W recalls the output vector y¢ = Wx¢, V&€ = 1,..., k. The simplest solution
for this goal is to set

W:ny (Xé)/ . (4.1)

k
=1
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In this case, the 4, jth entry of W is given by w;; = 25 1 y . If the input

1 k . N lifi=j
patterns x*,...,x" are orthonormal, that is, (X ) b 4 {O it 4 , then
Wxt =yt ((xf)’ . X&) 4 Z»y;ég y7 ((Xv)/ .Xé) =yt.

Thus, we have perfect recall of the output patterns y!, ..., y*. If x!, ... x*

are not orthonormal (as in most realistic cases), then filtering processes using
activation functions become necessary in order to retrieve the desired output
pattern.

Morphological associative memories are surprisingly similar to these clas-
sical correlation memories. With each pair of pattern associations (X,Y") we

associate two natural morphological m x n memories Wxy and Mxy defined
by

k
Wxy = /\ [y* x (=x%)'] , and Mxy =
e=1

—x4)] (4.2)

o
£<w
<
A

where the morphological outer product is defined as

Yy1+z1 0 Y1+ 2T
/ . .
yxx = :

It is worthwhile to note that y x x' =y Vx' =y Ax'.

Note the similarities between the definition of the memory given by
Eq. (4.1) and those defined by Eq. (4.2). Also, a consequence of Eq. (4.2)
is that Wxy VX <Y < Mxy A X. Here we use the notion that matrix A
is less or equal than a matrix B of the same dimension, denoted by A < B,
and A is strictly less than B, denoted by A < B, if and only if for each
corresponding entry of these matrices we have that a;; < b;; and a;; < b;j,
respectively.

A fundamental relationship between the canonical MAMs and other mor-
phological associative memories is given by the next theorem, which was
proved in [1].

Theorem 1. Let (X,Y) denote the associate sets of pattern wvector pairs.
Whenever there exist perfect recall memories A and B such that AV x¢ =
y¢ and BAXS = y& for € = 1,...,k, then A < Wxy < Mxy < B and
Ve, Wxy v x¢ :y5 = Mxy AxE.

Hence, Wxy is the least upper bound of all perfect recall memories in-
volving the V operation, and Mxy is the greatest lower bound of all perfect
memories involving the A operation. Furthermore, if there exist perfect recall
memories, then the canonical memories are also perfect recall memories.

If X =Y (ie., V¢, x® = y%), then we obtain the morphological autoasso-
ciative memories Wxx and Mxx. In [1] we proved that Wxx VX = X =
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Fig. 4.1. The shaded area including the boundaries L (xl) and L (x2) constitutes
the set of fixed points of Wx x, where X = {xl7 x2}

Mxx AN X, where X can consist of any arbitrarily large number of pattern
vectors.

Ezample 2. Let x' = <;1>, x? = <§), x3 = (;), then X = {x! x?,x},

0
Wxx = (2

_3>, and Wxx Vxt =xfVE=1,2,3.

It is interesting to note that when taking the subset Y = {Xl,XQ} C X,
then Wyy V x3 = x3. In fact, we have that Wxx Vx =% <= Wyy V x =
x. That is, Wxx and Wyy have identical fixed point sets. The reason is that
Wxx = Wyy and x3 is lattice dependent on the set {xl, X2}. More precisely,
x3 is a “linear” combination of x! and x?, namely x* = (o +x') V (8 + x?),
where a = § = —2. Here addition is again pointwise; i.e., if x = (z1,...,2,)"
and @ € Rico, then a+x = (a + x1,...,a+ x,).

Lattice dependency and the set of fixed points of the transformation Wy x
turn out to be equivalent notions. Figure 4.1 illustrates this for the set X =
{x',x?}, where x' = (4,2)" and x* = (2,5)'.

The lines L (X‘E) = {a +xf:ac ]R}7 & = 1,2, passing through the points
x¢ form the boundary of an infinite strip as shown. Every point x € IR? in
this strip is of form

X = (a1 —|—x1) Vv (a2 + x2) , (4.3)
as well as

x = (ﬁl +x1) A (ﬁg + x2) , (4.4)

for some scalars ag, a9, 81,02 € Ris. Any point satisfying Eq. (4.3) or
Eq. (4.4) is also a fixed point of Wx x. In fact, we have the following:

Theorem 2. Suppose X = {xl,xz,...,xK} CcR", A(X) = {x eR":x=

\/?:1 (e +x%),0¢ € R}, and B(X) = {x e R" : x = /\?:1 (ae +x5),
ageIR}.IfxeA(X)UB(X), then Wxx Vx=x= Mxx NX.
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Proof. Suppose x € A(X). Then x = \/?:1 (ag + x5)7 and hence, z; =
\/?:1 (ag + x§) Vj = 1,...,n. Thus, for each j = 1,...,n, there exists an
index k € {1,...,K} depending on j such that x; = ay + sc;“ We denote
this k by k(j). Since Wxx is a dilative transform, Wxx Vx > x Vx € R".
Therefore,

(WXX\/X)i >x%x;, Vi=1,...,n.

Jj=1

(4.5)
On the other hand, (Wxx V), = Vj_, (wi; +z;) = V_, [/\?:1 (xf - xﬁ)
+ x]} = /\?:1 (mf — x?) + x¢, for some £ € {1,...,n}. Thus, (Wxx Vx), =
N (o a0 < (a0 =)= (0 — ) - (a +28)

= Q) + :Ef(z) < \/?:1 <a5 + xf) = ;. It follows that
(WXX\/X)iSXi Vi=1,...,n. (4.6)

Equations (4.5) and (4.6) imply that Wxx Vx = x.
As an easy consequence of Theorem 1, we now also have that Mxx Ax =
x. The case x € B(X) is handled in an analogous manner. Q.E.D. O

As a consequence, it follows that every point in the shaded area of
Fig. 4.1 can be perfectly recalled by the memories Wxx and Mxx, where
X = {xl, x2}. Thus, the memories not only store the vectors x! and x2, but
also an infinite number of patterns, namely those that depend on x! and x2.

Obviously, A(X) = B(X) in Theorem 2, and it is not difficult to ascertain
that if x', x? € IR?, with x! # a+x2 Ya € IR, then x is a fixed point of W x
if and only if x = (o +x') V (az + x?) for some a,az € IR. Although the
condition x € A(X) implies that Wx x V x = x, the converse, however, does
not hold if the dimension n > 2.

0 2
Example 3. Let X = {X17X2} CR? wherex! = [0 ]| andx2 = | 1].1If
0 0
1 0 00 1
x=|1],then WxxVvx=|—-100]Vv|[1]|]=]1].Thusxisa fixed
0 -2-10 0 0
point for Wx x. If x = (a1 +x!) V (a2 +x?), then
(1 +27) V(g +27) =1, (4.7)
(a1 + x%) \% (042 + 333) =1, and (4.8)
a7 vV Qg = 0. (49)

It follows from Eq. (4.9) that ay < 0 and as < 0 and that at least one of
a1 =0 or ag = 0. By Eq. (4.7) we have ag V (ag +2) = 1. Since oy < 0, we
must have as = —1. But according to Eq. (4.8), a1 V (=1 + 1) = 1, which is
impossible. Therefore, x # (a1 +x') V (a2 + x?) Vay, a2 € R.
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Fig. 4.2. The three patterns in the top row were used in constructing the morpho-
logical autoassociative memories Wxx and Mxx (of size 2500x2500). The bottom
row shows the perfect output of these memories when presented with the respective
patterns from the top row

The above example shows that a fixed point of Wxx need not be an
element of A(X). This raises the question as to the structure of the set
of fixed points of Wx x. Before answering this question, observe that x =
\/?:1 /\gz1 (cej +x°), where a1 = a2 =1, aq 3 = ag2 = az3 = 0, and
a1 = —1. In terms of lattice theory this means that x is lattice dependent
on X. More precisely, we have the following:

Definition 1. Suppose X = {x!,...,x*} Cc R". A vector x € R" is lattice
dependent on X if and only if x = p for some lattice polynomial p over X.
The vector x is said to be lattice independent of X if and only if x is not
lattice dependent on X .
The set X is said to be lattice independent if and only if VA € {1,...,k},
x* is lattice independent of X \ {XA}.

Recall that a lattice polynomial over X is any finite expression involving
the symbols A and V, and letters, of form a + x¢, where x¢ € X and a € R.
Such a polynomial is also referred to as a polynomial of degree one.

It is not difficult to show that if x and y are fixed points of Wx x or Mxx,
then so are (a +x) V (b+y) and (a +x) A (b+y) for any pair a,b € IR. This
observation implies the following:

Theorem 3. Suppose X = {x*,...,x*} CR". If x € R", then Wxx Vx =
x if and only if x is lattice dependent on X.

The notion of lattice independence is important in the recall of noisy pat-
terns. It is well known that the memories Wx x and M x x are extremely robust
in the presence of erosive and dilative noise, respectively [1, 3]. Given a pat-
tern x” we say that a distorted version X7 of the pattern x” has undergone an
erosive change whenever X7 < x7 and a dilative change whenever X7 > x7.
As an example, consider the three pattern images p', p%, and p? shown in
Fig. 4.2. Each p¢ is a 50 x 50-pixel 256 grayscale image. For uncorrupted
input, perfect recall is guaranteed if we use either memory Wxx or Mxx.
Using the standard row-scan method, each pattern image p¢ can be converted
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(b)

Fig. 4.3. The top row shows the input patterns corrupted with dilative (a) and
erosive (b) noise. The bottorn row shows the corresponding recalled patterns using
the morphological memory Mxx (a) and, respectively, Wxx (b)

into a pattern vector x¢ = (xf, . ,x§500) by defining xgo(r_1)+c = p&(r,c) for
r,e=1,...,50.

Corrupting the patterns x* with 30% randomly generated erosive and dila-
tive noise with an intensity level of 128 results in almost perfect recall (NMSE!
< 1073) when using the memory Wxx and My, respectively. Figure 4.3
provides for a visual example of this experiment.

The reason for the robustness of associative memories in the presence of
erosive or dilative noise is a consequence of a sequence of theorems, which are
given in [1]. These theorems provide necessary and sufficient conditions for the
bounds of the corruption of a pattern x” that guarantees perfect recall; they
also imply that W x will fail miserably if dilative noise not satisfying these
bounds is present. Our experiments have shown that insertion of only minute
amounts of dilative noise, often in only one vector component, can result in
complete recall failure. Similar comments hold for the memory Mxx and
erosive noise. Hence, neither memory Wx x or Mx x is useful in the presence
of random noise, which, generally, consists of both erosive as well as dilative
noise.

The kernel method proposed in [1] suggests a solution to this dilemma.
However, it became clear that finding an algorithmic method for selecting an
optimal set of proper kernels was not going to be an easy task. Part of the
difficulty is due to the fact that the existence of proper kernels for a given
set of pattern vectors remains an unsolved problem if the definition of kernels
proposed in [1] is used. Additionally, to be useful for pattern recognition in
the presence of large amounts of noise, such kernel patterns need to represent
greatly reduced (eroded) versions of the exemplar patterns. However, simply
eroding exemplar patterns will, generally, not result in kernel vectors. Before
addressing solutions to the problem of random noise, it is necessary to gain

2 2
! Normalized mean-square error, computed as > y (5:§ - x;é) / > y (xf) for
each &.
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an understanding of the kernel method and its relationship to the notion of
morphological independence.

4.4 Kernels and Morphological Independence

Since Wxx is suitable for recognizing patterns corrupted by erosive noise
and Mxx is suitable for recognizing patterns corrupted by dilative noise, an
intuitive idea is to process a noisy version X” of X7 containing both erosive
and dilative noise through a combination of Wx x and Mx x. Sussner proved
that passing the output of Mxx AX” through the memory Wx x or, dually,
the output of Wxx VXY through Mxx will, generally, not result in x7 [51].
Nevertheless, the modified kernel approach proposed by Ritter et al. [3] is
based on this intuitive idea using the memories Mx x and Wx x in sequence
in order to create a morphological memory that is robust in the presence
of random noise, even in the general situation where X # Y and X and
Y are not Boolean [1]. The underlying idea is to define a memory M that
associates with each input pattern x” an intermediate pattern z”. Another
associative memory W is defined that associates each pattern z” with the
desired output pattern y?”. In terms of min-max products, one obtains the
equation WV (M AxY)=y".

If the n x k matrix Z = (z!,... 7zk) satisfies certain conditions, then the
matrices Mzz and Wzy can serve as M and W, respectively. Furthermore, if
Z is properly chosen, then WV (Mzz AX") = y” for most corrupted versions
X7 of x7. If Z satisfies these basic properties, then Z is called a kernel for
the associated pair (X,Y). The following formal definition of a kernel was
proposed in [3]:

Definition 2. Let Z = (z',...,2*) be an n x k matriz. We say that Z is a
kernel for (X,Y) if and only if Z # X and there exists a memory W such
that WV (Mzz AXY) =y". If Y = X, then we say that Z is a kernel for X.

For kernels to be effective in recognizing patterns that are severely cor-
rupted by random noise, they need not only represent eroded subsets of X
but should also be extremely sparse; i.e., for each 7, z7 consists of mostly zero
entries. The reason for sparseness is roughly based on the following observa-
tion. If Z is sparse, then the corrupted version X of x7 will generally be able
to afford a high degree of erosive noise and still satisfy the inequality z7 < X7.
As Myzz is robust in the presence of dilative noise, X” will be conceived as a
dilated version of z7 by the memory Mzz. On the other hand, if z” is not
sparse and X” contains large amounts of erosive noise, then it is far more likely
that z7 £ X7 and Mzz will have difficulty in recognizing X7. Ideally, we would
like that for each v, 2] = 2 for exactly one j € {1,...,n} and 2z = 0 Vi # j.
If Z results in a kernel under these conditions, then we are guaranteed the
recovery of x7 from X7 as long as z¥ < Mzz AX” < x7. These loose concepts
lead to the definition of minimal representations of a pattern set X.
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Definition 3. A set of patterns Z < X is said to be a minimal representation
of X if and only if for vy =1,... k,

1.2V Nz8 =0 VE # 7,
2. 27 contains at most one nonzero entry, and
S WyzxV izl =x7.

Condition 1 of this definition satisfies part of the following equation from
Sussner’s theorem [51], which provides for binary associative memories that
are robust in the presence of random bit reversals: z¥ Az* = 0 and z* £ x7 Vv
and V¢ with v # £. Condition 2 assures sparsity, while condition 3 simply says
that X can be reconstructed from Z. In this sense Z acts as an orthogonal
basis within the lattice algebra underlying the morphological operations.

The connection between kernels and minimal representations is given by
the following theorems, which are proven in [3].

Theorem 4. If X is lattice independent, then there exists a set of patterns
Z < X with the property that forv=1,... k,

1.27 Nz =0 V¢ # 7,
2. 27 contains at most one nonzero entry, and
3. WxxVz =x".

Corollary 1. If X and Z are as in Theorem 4, then Z is a minimal repre-
sentation of X.

Corollary 2. If X and Z are as in Theorem /4, then Z is a kernel for X.

According to Corollary 1, a minimal representation is also a kernel. Hence,
for a set of patterns X to be reducible to a kernel, it is sufficient that X is
lattice independent. Furthermore, if X is lattice independent, then in order
to obtain a kernel one simply selects a minimal representation Z of X using
the constructive method given in the proof of Theorem 4.

Given a minimal representation Z that is also a kernel for X and a
noisy version X7 of the pattern x” having the property that z7 < X7 and
Myzz ANXY < x7, then it must follow that Wxx V (Mzz AX7) = x7.

Using the method of proof of Theorem 4, we constructed a kernel ma-
trix Z for the pattern images p!, p?, and p>® shown in the top row of
Fig. 4.2. The patterns are lattice independent and Fig. 4.4a depicts the pat-
terns and associated minimal representation (zl, z?, z3). Randomly corrupting
the patterns with 30% of noise with an intensity level of 128, and using the
minimal representation Z as our kernel set, we obtained the perfect recall
Wxx V (Mzz ANXY) =x7 for v =1,...,3, as illustrated in Fig. 4.4b.

It is important to note that minimal representations are not unique. Howe-
ver, given two minimal representations Z and Z of X, then statistically either
representation performs as well as the other. More precisely, if z] =1 = Z],
where z7 € Z and 27 € Z, then p (2]|7]) =p (Z;Y|§:;Y), where p (2] |Z]) denotes
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(a) (b)

Fig. 4.4. In (a) the top row shows the lattice-independent patterns and the bottom
row shows the corresponding nonzero entries in matrix Z used as a minimal repre-
sentation or kernel. In (b) the top row contains the input patterns corrupted with
random noise, while the bottom row illustrates perfect recall using the kernel Z for
the memory scheme Mzz — Wxx (also the output of memory Wzx)

the probability that &) < z;. It follows that there is no optimal minimal repre-
sentation unless some a priori knowledge of noise characteristics is available.

The problem of kernels for pattern pairs (X,Y) where X # Y follows
from the results established in this section. The following theorem is an easy
consequence of Theorem 4 and its corollaries.

Theorem 5. If X and Z are as in Theorem 4 and Wxy is a perfect associa-
tive recall memory, then Z is a kernel for (X,Y).

In order to verify this theorem, simply let W = Wxy V Wxx. Then,
forall y =1,...,k, WV (MZZ /\X'Y) = (WXY \/Wxx) vV (Mzz/\X'y) =
Wxy V [WXX V (MZZ A X'Y)] = Wxy VXY = y7. The sequence of this
associative feedforward network is given by x¥ - Mzz; — Wxx — Wxy —
y? or, simply, x¥ =Mzz - W — y” where W = Wxy V Wxx.

As a final observation, it has been our experience that the method de-
scribed above increases in robustness for noisy pattern recall as the dimension
n of pattern size increases. There are some probabilistic reasons for supporting
this observation [3].

The ring (IR, 4+, X) forms the computational basis for the traditional arti-
ficial neural model. The matrix associative memories presented in this section
amount to a simple reformulation of the classical matrix associative memories
based on (IR, 4+, X) in terms of the algebras (IR_~,V,+) and (IReo, A, +').
Considering the fact that the latter two lattice algebras are only semirings,
it is somewhat surprising that these weaker algebras provide for more robust
memories with larger storage capacities. Similar observations hold for morpho-
logical feedforward networks discussed in the following sections. However, in
contrast to traditional feedforward networks, the morphological counterparts
also include dendritic computing.
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4.5 Dendritic Computation Based on Lattice Algebra

In the classical theory of artificial neural networks (ANNs), the main proces-
sing element is the neuron. Computation at a neuron NN is performed within
the context of the ring of real numbers (IR, +, X) by summing the products
of neural values and connection weights from all neurons in the network con-
nected to N. Generally, a neural activation function is applied to the sum,
which provides for nonlinearity of the neural output. Application of the ac-
tivation function is the only nonlinear component in this model; all other
operations carried out at a neuron are linear algebraic operations.

Morphological neural networks (MNNs) represent the counterpart of the
above model, obtained when lattice algebra is employed instead of linear alge-
bra. Computation here is performed within the general context of the bounded
l-group (R4o0, V, A, +,+') that was defined in Sect. 4.2, or within context of
the particular sf-semigroups (IR_, V,+) or (IReo, A, +’). Thus, the total net
input at a neuron M; is computed as the maximum (or minimum) of the sums
of neural values and corresponding synaptic weights. It is apparent that, since
the maximum (or minimum) of sums is used instead of the sum of products,
the lattice algebraic model is nonlinear before the application of an activation
function.

The previous sections have discussed one category of MNNs, namely mor-
phological associative memories. In the remaining part of this exposition, we
will examine another MNN category, morphological perceptrons (MPs) with
dendritic structures, and will show that this novel model has greater compu-
tational capability and pattern discrimination power than traditional percep-
trons. Besides being based on lattice algebra, MPs with dendritic structures
bear a closer resemblance to biological neural networks. Neurons in the mam-
malian brain have two important processes, dendrites and azxons. The axon is
the principal output fiber that branches toward its end into an azonal tree. Its
tips synapse with the dendritic structures of other neurons at synaptic sites.
Dendrites create large and complicated trees, and the number of synapses on
a single cortical neuron typically ranges between 500 and 200,000. Synapses
are of two types, excitatory and inhibitory.

In biological neural networks, dendrites make up the largest component in
both surface area and volume of the brain, and span all cortical layers in all
regions of the cerebral cortex [52, 53, 54]. Thus, when attempting to model
artificial brain networks, one cannot ignore dendrites, which make up more
than 50% of the neuron’s membrane. This is especially true in light of the fact
that some researchers have proposed that dendrites, and not the neurons, are
the elementary computing devices of the brain, capable of implementing such
logical functions as AND, OR, and NOT [52, 53, 54, 55, 56, 57, 58, 59, 60].

Current ANN models, and in particular perceptrons, do not include den-
dritic structures. As a result, problems occur that may be easily preventable
when employing dendritic computing. For example, M. Gori and F. Scarselli
have shown that multilayer perceptrons (MLPs) are not adequate for pat-
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tern recognition and verification [61]. Specifically, they proved that multilayer
perceptrons with sigmoidal units and a number of hidden units, less than or
equal to the number of input units, are unable to model patterns distributed
in typical clusters. The reason is that these networks draw open separation
surfaces in pattern space. In this case, all patterns not members of the cluster
but contained in an open area determined by the separation surfaces will be
misclassified. When using more hidden units than input units, closed surfaces
may result but, unfortunately, determining whether or not the perceptron
draws closed separation surfaces in pattern space is NP-hard. This is quite
opposite to what is commonly believed and reported in the literature. We have
proven that MPs with dendritic structures do not suffer from these problems,
because the separation surfaces are guaranteed to be closed [13, 62].

Let Ni,..., N, denote a collection of neurons with dendritic structures,
whose morphology is based on the biological model described earlier. Suppose
these neurons provide synaptic input to another collection My, ..., M,, of
neurons having the same processes. The value of a neuron N; (i = 1,...,n)
propagates through its axonal tree all the way to the terminal branches that
make contact with the neuron M; (j = 1,...,m). The weight of an axonal
branch of neuron N; terminating on the £th dendrite of M is denoted by wfj >
where the superscript £ € {0,1} distinguishes between ezcitatory (¢ = 1) and
inhibitory (¢ = 0) input to the dendrite. The kth dendrite of M; will respond
to the total input received from the neurons Ny, ..., N, and will either accept
or inhibit the received input. The computation of the kth dendrite of Mj,
denoted by Dy, is given by

&) =pir N\ N\ D7 (i wly) (4.10)

i€l (k) LeL(4)

where x = (x1,...,x,) denotes the input value of the neurons Ni,..., N,
with x; representing the value of N;; I(k) C {1,...,n} corresponds to the set
of all input neurons with terminal fibers that synapse on the kth dendrite of
M;; L(i) C {0,1} corresponds to the set of terminal fibers of N; that synapse
on the kth dendrite of M;; and p;i, € {—1, 1} denotes the excitatory (p;r = 1)
or inhibitory (p;x = —1) response of the kth dendrite of M, to the received
input.

It follows from the formulation L(i) C {0,1} that the ith neuron N; can
have at most two synapses on a given dendrite k. Also, if the value £ = 1,
then the input (scl + wilj k) is excitatory, and inhibitory for ¢ = 0 since in this
case we have — (xz + w?jk).

The value TIZ (x) is passed to the cell body, and the state of M; is a function
of the input received from all its dendrites. The total value received by M is
given by

Ko
P(x)=p; )\ (x) (4.11)
k=1
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Fig. 4.5. Single-layer morphological perceptron with dendritic structures. Here Dy,
denotes the kth dendrite of neuron Mj, and K; the number of dendrites of M;. An
input neuron can make synapse on a dendrite with excitatory and/or inhibitory
fibers, e.g., w}lj3 is the weight of an excitatory fiber from neuron N, to dendrite
Dj3, while w(fjk. is the weight of an inhibitory fiber coming from input neuron N; to
dendrite Dy,

where K; denotes the total number of dendrites of M;, and p; = £1 denotes
the response of the cell body to the received dendritic input. Here again,
p; = 1 means that the input is accepted, while p; = —1 means that the cell
rejects the received input. The next state of M; is then determined by an
activation function f, namely y; = f (Tj (x)) In this exposition we restrict
our discussion to the hard-limiter

. Lif 7 (x) >0

J — ) - )
f(P(x) = {0 if 79 (x) <0 (4.12)
A single-layer morphological perceptron (SLMP) is a special case of this
model. Here the neurons N,,..., N, would denote the input neurons, and
the neurons Mi,..., M,, the output neurons. For SLMPs we allow x =
(x1,...,2y) € R™ That is, the value z; of the ith input neuron N; need

not be binary. The structure of a single-layer morphological perceptron is
illustrated in Fig. 4.5.

4.6 Computational Capability of Perceptrons Based on
the Dendritic Model

The dendritic computing framework introduced in the previous section allows
the construction of novel models of artificial neural networks, which share
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common characteristics with classical models, such as basic architecture, but
exhibit significantly different capabilities. Based on the dendritic model we can
design a single-layer morphological perceptron (SLMP) as an artificial neural
network that is similar in structure to the classical single-layer perceptron
(SLP), but incorporates dendritic structures and operates in terms of lattice
algebraic operations. In this section we will discuss the specific characteristics
of morphological perceptrons with dendritic structures.

Analogous to the classical SLP with one output neuron, an SLMP with
one output neuron consists of a finite number of input neurons that are con-
nected via axonal fibers to the output neuron. However, in contrast to an SLP,
the output neuron of an SLMP has a dendritic structure and performs the
lattice computation embodied by Egs. (4.10) and (4.11). The computational
capability of an SLMP is vastly different from that of an SLP as well as that
of classical perceptrons in general. For example, no hidden layers are neces-
sary to solve the XOR problem with an SLMP or to specify the points of a
nonconvex region in pattern space. The specific computational capability of
an SLMP with one output neuron is governed by the following:

Theorem 6. If X C R" is compact and € > 0, then there exists a single-layer
morphological perceptron that assigns every point of X to class C1 and every
point x € R™ to class Cy whenever d(x,X) > €.

The expression d(x,X) in the statement of Theorem 6 refers to the dis-
tance of the point x € R™ to the set X. As a consequence, any compact
configuration, as the one shown in Fig. 4.6a, whether it is convex or noncon-
vex, connected or not connected, contains a finite or infinite number of points,
can be approximated within any desired degree of accuracy € > 0 by an SLMP
with one output neuron.

The proof of Theorem 6 requires tools from elementary point set topology
and is given in [13]. Although the proof is an existence proof, part of it is
constructive and provides the basic idea for the training algorithms that we
developed.

An SLMP can be extended to multiple output neurons in order to handle
multiclass problems, just like its classical counterpart. However, unlike the
SLP, which is a linear discriminator, the SLMP with multiple outputs can solve
multiclass nonlinear classification problems. This computational capability of
an SLMP with multiple output neurons is attested by Theorem 7 below, which
is a generalization of Theorem 6 to multiple sets.

Suppose X7, X, ..., X,, denotes a collection of disjoint compact subsets
of R™. The goal is to classify, Vj = 1,...,m, every point of X; as a point
belonging to class C; and not belonging to class C; whenever ¢ # j. For
each p € {1,...,m}, define Y, = U;”:Lj?ﬁp X;. Since each Y}, is compact and
Y,NX,=0,6,=d(X,,Y,) >0Vp=1,...,m. Let gg = %min{al,...,sp}.

Theorem 7. If {X1, Xo,..., X} is a collection of disjoint compact subsets
of R™ and € a positive number with € < €g, then there exists a single-layer
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AX, i Xo

Fig. 4.6. a Compact set X, and b collection of disjoint compact sets X1, X2, X3 and
banded region of thickness € (dashed). Theorems 6 and 7 guarantee the existence
of SLMPs able to classify sets X and, respectively, X1, X2, X3, within desired &
accuracy

morphological perceptron that assigns each point x € R™ to class C; whenever
x € Xj andj € {1,...,m}, and to class Co = ~|Jj_, Cj whenever d (x, X;) >
e, Vi=1,...,m. Furthermore, no point x € R™ is assigned to more than one
class.

Figure 4.6b illustrates the conclusion of Theorem 7 for the case m = 3.
The proof of this theorem is somewhat lengthy and is not included here; it
is given in [62]. Based on the proofs of these two theorems, we constructed
training algorithms for SLMPs [13, 14, 62, 63, 64]. During the learning phase,
the output neurons grow new dendrites while the input neurons expand their
axonal branches to terminate on the new dendrites. The algorithms always
converge and have rapid convergence rate when compared to back-propagation
learning in traditional perceptrons.

These training algorithms are similar in that they all dynamically grow
dendrites and axonal fibers during the learning phase, which will use the pat-
terns of the training set in just one iteration (one epoch). Thus, the architec-
ture of the network is not predetermined beforehand. It is during training that
the network grows new structures as necessary to learn the training patterns.
The algorithms differ in the strategy of partitioning the pattern space. They
either reduce an initial large box through elimination of foreign patterns and
smaller regions that enclose them, or grow a class region by merging smaller
hyperboxes and taking their union when they remain disconnected. In either
case, the separation surfaces drawn in pattern space during training are al-
ways closed, making the SLMPs immune to the problems that MLPs suffer
from due to open separation surfaces [61]. Also, as a consequence of the afore-
mentioned theorems on which the algorithms are based, the trained SLMPs
will always correctly recognize 100% of the patterns in the training set.
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4.7 Training Algorithms for SLMPs with Dendritic
Structures

The mathematical results provided in Sect. 4.6 and proved in [13] and [62]
established that, for any collection of m compact sets, there exists an SLMP
with dendritic structures than can classify the sets as m distinct classes to
within any desired degree of accuracy. Although these results are existence
theorems, their proofs provide the main ideas for developing training methods
for the MP with dendritic structures.

Training can be realized in one of two main strategies, which differ in the
way the separation surfaces in pattern space are determined. One strategy is
based on elimination, whereas the other is based on merging. In the former
approach, a hyperbox is initially constructed large enough to enclose all pat-
terns belonging to the same class, possibly including foreign patterns from
other classes. This large region is then carved to eliminate the foreign pat-
terns. Training completes when all foreign patterns in the training set have
been eliminated. The elimination is performed by computing the intersection
of the regions recognized by the dendrites, as expressed in Eq. (4.11) for some
neuron M, : 7 (x) = p; Ard, 72 (x).

The latter approach starts by creating small hyperboxes around indivi-
dual patterns or small groups of patterns all belonging to the same class.
Isolated boxes that are identified as being close according to a distance mea-
sure are then merged into larger regions that avoid including patterns from
other classes. Training is completed after merging the hyperboxes for all pat-
terns of the same class. The merging is performed by computing the union of
the regions recognized by the dendrites. Thus, the total net value received by
output neuron M, is computed as:

77 (x) =pj le (x) . (4.13)

The two strategies are equivalent in the sense that they are based on
the same mathematical framework and they both result in closed separation
surfaces around patterns. The equivalence can be attested by examining the
equations employed to compute the total net values in the two approaches
given in Eqs. (4.11) and (4.13), and remarking that the maximum of any K
values a1, as, ..., ax, can be equivalently written as a minimum: \/f::l ar =
- /\szl(—ak). Thus, if the output value y; at neuron M; is computed in terms
of minimum as y; = f (pj /\,f:]1 T’z (x)) , then y; can be equivalently computed
in terms of maximum as y; = f (fpj \/kK:1 ng (x))

The major difference between the two approaches is in the shape of the

separation surface that encloses the patterns of a class, and in the number
of dendrites that are grown during training to recognize the region delimited
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by that separation surface. Since the elimination strategy involves removal of
pieces from an originally large hyperbox, the resulting region is bigger than
the one obtained with the merging strategy. The former approach is thus more
general, while the latter is more specialized. This observation can guide the
choice of the method for solving a particular problem.

Figure 4.7 illustrates two possible partitionings of the pattern space IR?
in terms of intersection (Fig. 4.7a) and, respectively, union (Fig. 4.7b), in
order to recognize the solid circles (o) as one class C;. In Fig. 4.7a the C;
region is determined as the intersection of three regions, each identified by
a corresponding dendrite. The rectangular region marked D; is intersected
with the complement of the region marked Ds and the complement of the re-
gion marked Ds. An excitatory dendrite recognizes the interior of an enclosed
region, whereas an inhibitory dendrite recognizes the exterior of a delimited
region. Thus, the corresponding dendrite D is excitatory, while dendrites Do
and D3 are inhibitory. If we assign j = 1 in Eqgs. (4.10) and (4.11) as repre-
senting the index of the output neuron for class Cy, then the output value is
computed as y1 = f (7' (x)) = f (p1 /\2:1 T3 (X)), where 7} (x) is computed
as in Eq. (4.10). There, the responses p1j are p1; = 1 and p1a = p13 = —1.
The response of the cell body is p; = 1.

In Fig. 4.7b the C; region is determined as the union of four regions,
each identified by a corresponding dendrite. This time, all dendrites Dy, ...,
D, are excitatory, so their responses will be p;x = 1, & = 1,...,4. Us-
ing Egs. (4.10) and (4.13) we obtain the output value y; = f(7'(x)) =

f (p1 \/i:1 T,%(x)), where p;1 = 1. As noted above, the output value can

be equivalently computed with minimum instead of maximum as y; =

f (Tl(x)) =f (—p1 /\i:1 -7} (x))7 i.e., by conjugating the responses p; and
p1r and using the minimum operator.

4.7.1 Training Algorithm Based on Elimination

A training algorithm that employs elimination is discussed in [13]. The algo-
rithm constructs and trains an SLMP with dendritic structures with a single
output neuron, able to recognize the training patterns as either belonging
to the class of interest C; or not belonging to it. Thus, it solves a one-class
problem, but can be generalized as discussed in Sect. 4.7.3.

In its first step, the algorithm creates the first dendrite, which encloses the
entire training set belonging to class C; within a single hyperbox. Subsequent
steps carve out regions containing points belonging to class Cy from the hy-
perbox. Thus, the final class C; region will be contained within the original
hyperbox, hence, making it a bounded region. This is in contrast to the MLP,
which often creates open regions as illustrated by the following example.

Example 4. To illustrate the results of an implementation of the training al-
gorithm based on elimination, we employed a data set from [65], where it was
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Fig. 4.7. Two partitionings of the pattern space IR? in terms of intersection (a) and
union (b), respectively. The solid circles (o) belong to class C1, which is recognized
as the shaded area. Solid and dashed lines enclose regions learned by excitatory and,
respectively, inhibitory dendrites

used to test a simulation of a radial basis function network (RBFN). The data
set consists of two nonlinearly separable classes of ten patterns each, where the
class of interest C; comprises the patterns depicted with solid circles (o). All
patterns were used for both training and test. Figure 4.8 compares the class C
regions learned by an SLMP with dendritic structures using the elimination-
based algorithm (Fig. 4.8a) and, respectively, by a back-propagation MLP
(Fig. 4.8b).

The first step of the algorithm creates the first dendrite, which sends an
excitatory message to the cell body of the output neuron if and only if a
point of IR? is in the rectangle (solid lines) shown in Fig. 4.8a. This rectangle
encloses the entire training set of points belonging to class C;. Subsequent
steps of the algorithm create two more dendrites having inhibitory responses.
These dendrites will inhibit responses to points in the carved out region of
the rectangle as indicated by the dashed lines in Fig. 4.8a. The only “visible”
region for the output neuron will now be the dark shaded area of Fig. 4.8a.

The three dendrites grown in a single epoch during training of the SLMP
are sufficient to partition the pattern space. In contrast, the MLP created
the open surface in Fig. 4.8b using 13 hidden units and 2000 epochs. The
RBFN also required 13 basis functions in its hidden layer [65]. The separation
surfaces drawn by the SLMP are closed, which is not the case for the MLP,
and classification is 100% correct, as guaranteed by the theorems in Sect. 4.6.

4.7.2 Training Algorithm Based on Region Merging

A second class of training algorithms for SLMPs is based on merging rather
than elimination. This strategy provides for the design of various algorithms



118 Gerhard X. Ritter and Laurentiu Iancu

A o A fo]
T (?I = et
| 14 [ ]
1 1
| Ole °fe
| e i @
! | § o
Q ?: * o J L]
EO TR B - ;
- E E ® ~ H\“-:? ":’.
e leseasOond o™.0 04
. e, ...--‘"; L
® e L e

(a) (b)

Fig. 4.8. The closed class C region (shaded) learned by an SLMP with dendritic
structures using the elimination algorithm (a), in comparison to the open region
learned by an MLP (b), both applied to the data set from [65]. During training,
the SLMP grows only three dendrites, one excitatory and two inhibitory (dashed).
Compare (a) to the output in Fig. 4.9 of the merging version of the SLMP training
algorithm

depending on the manner in which small hyperboxes can be enlarged to incor-
porate neighboring patterns, or individual boxes can be connected together by
creating new boxes that partially overlap. Customized versions of the training
algorithm can be devised for specific types of problems, e.g., problems where
the patterns are known to be be arranged on curves in 2-D or 3-D space. Such
a tailored, merging-based algorithm was applied to solve the embedded spirals
problem in [66] with 100% correct classification results.

A training algorithm based on region merging for SLMPs is outlined below
and discussed in detail in [62]. The algorithm constructs and trains an SLMP
with dendritic structures to recognize the patterns belonging to the class of
interest C7. The remaining patterns in the training set are labeled as belonging
to class Cy = —C'. In the form provided below, the algorithm will construct
an SLMP comprising one dendrite either per pattern in class C; or per unique
pair of patterns in class Cf.

Step 1. Compute dpin as the minimal Chebyshev interset distance between
classes C'7 and Cjy. The Chebyshev distance between two n-dimensional
patterns x¢ and x” is defined as d(xf, x7) = max;=1,. . n \scf — ]|

Step 2. Initialize a dendrite counter K = 0 and set all patterns in C; as
unmarked.

Step 3. Select an unmarked pattern x¢ belonging to class C; and mark it.
(Two immediate options are to pick the first pattern encountered in
the training set, or to pick one at random.)

Step 4. For each unmarked pattern x¢ situated in the vicinity of x¢, i.e., for
each x¢ such that d(x¢,x%) < dpin + de, do step 5. The term d. is
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a tolerance parameter that controls how close two class C; patterns

must be in order to qualify for merging. A possible value is d. = édmin.
Step 5. Identify a region in pattern space that would connect patterns x¢ and
x¢. (This involves several computations that are not detailed here.)
e If the identified merging region is free of foreign (class Cp) pat-
terns, then increment K and grow a new excitatory dendrite D,
and assign weights to make Dg recognize that region.

e Otherwise, i.e., if there exists at least one close foreign pattern
x7, do not grow a dendrite in this step.

Step 6. If no dendrite was grown in step 5, i.e., no merging occurred, then
increment K and grow an excitatory dendrite that recognizes an iso-
lated region around x¢. The size of this region must be less than
dmin in each coordinate ¢ = 1,...,n to ensure that it will not touch
patterns from class Cj.

Step 7. If there are unmarked class C patterns remaining, repeat from step 3;
otherwise, stop.

We need to point out that this training algorithm as well as our previously
mentioned algorithm starts with the creation of hyperboxes enclosing training
points. In this sense there is some similarity between our algorithms and those
established in the fuzzy min-max neural networks approach, which also uses
hyperboxes [10, 11]. However, this is also where the similarity ends, as all
subsequent steps are completely different. Furthermore, our approach does
not employ fuzzy set theory.

Ezxample 5. Figure 4.9 illustrates the results of an implementation of the
SLMP training algorithm based on merging, applied to the same data set
as in Example 4. Again, all patterns were used for both training and test.
During training 19 excitatory dendrites are grown, 10 for regions around each
pattern from class C, and 9 more to merge the individual regions. The sepa-
ration surface is closed and recognition is 100% correct, as expected.

There is one more region in Fig. 4.9, drawn in dashed line, corresponding
to an inhibitory dendrite, and its presence is explained as follows. The merging
algorithm outlined above creates regions that are sized to avoid touching pat-
terns belonging to class Cy or approaching them closer than a certain distance.
In a more general version, larger hyperboxes are allowed to be constructed.
In this case, an additional step would identify foreign patterns that are ap-
proached or touched, and create inhibitory dendrites to eliminate those pat-
terns. This more general approach is being used in the experiment of Fig. 4.9
and explains the presence of the inhibitory dendrite whose region is depicted
with dashed line.
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Fig. 4.9. The class Ci region (shaded) learned by an SLMP with dendritic struc-
tures using the merging-based algorithm, applied to the data set from [65]. During
training, the SLMP grows 20 dendrites, 19 excitatory and 1 inhibitory (dashed).
Compare to the results in Fig. 4.8a obtained with the elimination version of the
algorithm

4.7.3 Generalization of the Training Algorithms to Multiple
Classes

For better clarity of the description, the training algorithms described so far
were limited to a single nonzero class, which corresponds to a single output
neuron of the SLMP with dendritic structures. Following we present a straight-
forward generalization to multiple classes, which will invoke either one of the
procedures in Sects. 4.7.1 or 4.7.2 as a subroutine.

The generalized algorithm consists of a main loop that is iterated m times,
where m represents the number of nonzero classes and also the number of out-
put neurons of the resulting SLMP. Within the loop, the single-class procedure
is invoked. Thus, one output neuron at a time is created and trained to classify
the patterns belonging to its corresponding class. The algorithm proceeds as
follows:

Step 1. For each nonzero class index j = 1,...,m, do steps 2 through 4.
Step 2. Create a new output neuron M;.
Step 3. For each pattern x¢ of the training set:
e Ifx¢ is labeled as belonging to class C}, then temporarily reassign
x¢ as belonging to Cj.
e Otherwise, temporarily reassign x¢ to class Cp.
The assignment is for this iteration only. The original pattern labels
are needed in subsequent iterations.
Step 4. Invoke the single-class procedure to train output neuron M; on the
training set modified to contain patterns of only one nonzero class.

The straightforward generalization presented above suffers from a potential
problem. The resulting SLMP partitions the pattern space in regions that
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might partially overlap. It is desirable that the learned regions be disjoint.
Otherwise, a test pattern located in an area of overlap will erroneously be
classified as belonging to more than one class. Theorem 7 guarantees the
existence of an SLMP with multiple output neurons that is able to classify
m classes disjointly. Therefore, the generalization of the algorithm can be
modified to prevent overlap between classes.

One way of modifying the algorithm would consist of taking into account
current information during training about the shape of the regions learned
so far, and using this information when growing new dendrites and assigning
synaptic weights. An alternative would be to draw regions of controlled size
based on minimum interset distance, in such a way that two regions that
belong to different classes cannot touch. A similar idea was mentioned in the
training algorithm based on merging (Sect. 4.7.2).

Yet another approach to prevent overlap of different class regions would in-
volve the augmentation of the SLMP with an additional layer of morphological
neurons. The former output layer of the SLMP will thus become the hidden
layer of a two-layer morphological perceptron with dendritic structures. The
role of the supplemental layer is basically to change the neural values of the
hidden nodes, where several can be active simultaneously, into values where
at most one output neuron may be active (may fire) at a time. This approach
is discussed in detail in [62].

It is worthwhile mentioning that multiple layers are not required to solve a
nonlinear problem with a morphological perceptron, as is the case for classical
perceptrons. The theorems in Sect. 4.6 prove that a single layer is sufficient.
The two-layer MP described in the previous paragraph simply provides a
conceivable manner to prevent ambiguous classification in the straightforward
generalization of the training algorithm. Existence of single-layer MPs that
are able to solve a multiclass problem with no class overlap is guaranteed.

4.8 SLMPs with Fuzzy-Valued Outputs

In our SLMP model the values of the output neurons are always crisp, i.e.,
having either value 1 or 0. In many application domains it is often desirable
to have fuzzy-valued outputs in order to describe such terms as very tall,
tall, fairly tall, somewhat tall, and not tall at all. Obviously, the boundaries
between these linguistic concepts cannot be exactly quantified. In particular,
we would like to have output values y;(x) such that 0 < y;(x) < 1, where
y;j(x) = 1 if x is a clear member of class C;, and y;(x) = 0 whenever x has
no relation to class C;. However, we would like to say that x is close to full
membership of class C; the closer the value of y;(x) is to value 1.

In order to extend the SLMP to accommodate fuzzy outputs, we redefine
the activation function in Eq. (4.12) from a hard-limiter to a ramp:
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Fig. 4.10. Computing fuzzy output values with an SLMP using the ramp activation
function given by Eq. (4.14)

1if 2>1,
fe)=¢zif 0<2<1, (4.14)
0 if 2<0.

The following example illustrates an SLMP extended to produce fuzzy outputs
that employs the ramp activation function given by Eq. (4.14).

Ezample 6. Suppose we would like to have every point in the interval [a,b] C R
to be classified as belonging to class C'; and every point outside the interval
[a — a, b+ o] as having no relation to class Cy, where a > 0 is a specified fuzzy
boundary parameter. For a point € [a — «, a] or « € [b,b+ «] we would like
y(x) to be close to 1 when z is close to a or b, and y(z) close to 0 whenever
x is close to a — a or b+ «. In this case we simply convert the input z € R
to a new input format . If w) = —b and w{ = —a denote the weights found
either by inspection or the aforementioned algorithms for input z, then we set
) = fu;? —1and v} = fuj + 1 for the weights of the new input * and use
the ramp activation function in Eq. (4.14).

Computing 7 (%) we obtain 7 (%) = (* +v{) A = (X + ) = [L(z —a)

+ 1] A [= L(z—b) +1]. Thus,

2 L, if z € [a,b],
f [T (a)] - 87§ T(2) <1, iii z E{]anJra}. (4.15)

Equation (4.15) is illustrated in Fig. 4.10. By choosing fuzzy factors «; for
each z;, it is intuitively clear how this example generalizes to n-dimensional
pattern vectors.

4.9 Conclusions

We presented a new paradigm of neural computation based on lattice alge-
bra. After a brief introduction to lattice algebra, we focused on two types
of neural networks, namely morphological associative memories and morpho-
logical feedforward networks based on dendritic computing. These networks
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have proven to be radically different in behavior than traditional neural net-
works. In contrast to traditional associative memories, morphological associa-
tive memories converge in one step! Thus, convergence problems do not exist.
Morphological analogues to the Hopfield network not only proved to be far
more robust in the presence of noise, but have also unlimited storage capacity
for perfect inputs. For noisy inputs and carefully chosen kernels, morphological
autoassociative memories again exhibit superior performance in both recall
and storage [3].

For feedforward neural nets, our paradigm takes into account the dendritic
processes of neurons. The theorems, algorithms, and examples presented make
it obvious that the feedforward neural network presented here has several ad-
vantages over both traditional single-layer perceptrons and perceptrons with
hidden layers. For instance, our network needs no hidden layers for solving
nonconvex problems. Also, it does not suffer from the problem of misclas-
sification due to open separation surfaces, which can happen in multilayer
perceptrons as was shown in [61]. Based on the proofs of the two theorems in
Sect. 4.6, we developed training algorithms which always draw closed regions
around pattern clusters [13, 62].

Questions may be raised as to whether dendrites merely represent hidden
layers in disguise. Such questions are valid in light of the fact that, theoreti-
cally, a two-hidden-layer perceptron can also classify any compact region in
TR". However, there are some major differences between the model presented
here and hidden-layer perceptrons. In comparison to hidden-layer neurons,
which generally use sigmoidal activation functions, dendrites have no activa-
tion functions. They only compute the basic logic functions of AND, OR, and
NOT. Activation takes place only within the neuron via the hard-limiter func-
tion. Also, with hidden layers the number of neurons within a hidden layer is
predetermined before training of weights, which traditionally involves back-
propagation methods. In our model, dendrites are grown automatically as the
neuron learns its specific task. Furthermore, no error remains after training.
All pattern vectors of the training set will always be correctly identified after
the training stops [13, 62].

Since the model presented is still in its infancy, general performance and
comparison to traditional feedforward neural networks need further investi-
gation. The training algorithms constructed thus far are only a first attempt
and will, no doubt, need further refinements.
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5.1 Introduction

The task of studying the properties of configurations of points embedded
in a metric space has long been a central task in pattern recognition, but
has acquired even greater importance after the recent introduction of kernel-
based learning methods. These methods work by virtually embedding general
types of data in a vector space, and then analyzing the properties of the
resulting data cloud. While a number of techniques for this task have been
developed in fields as diverse as multivariate statistics, neural networks, and
signal processing, many of them show an underlying unity. In this chapter
we describe a large class of pattern analysis methods based on the use of
generalized eigenproblems, which reduce to solving the equation Aw = ABw
with respect to w and .

The problems in this class range from finding a set of directions in the
data-embedding space containing the maximum amount of variance in the
data (principal components analysis), to finding a hyperplane that separates
two classes of data minimizing a certain cost function (Fisher discriminant),
or finding correlations between two different representations of the same data
(canonical correlation analysis). Also some important clustering algorithms
can be reduced to solving eigenproblems. The importance of this class of
algorithms derives from the facts that generalized eigenproblems provide an
efficient way to optimize an important family of cost functions, of the type
flw) = kol (known as a Rayleigh quotient); they can be studied with very

w’'Bw
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simple linear algebra; and they can be solved or approximated efficiently using
a number of well-known techniques from computational algebra.

Their statistical behavior has also been studied to some extent (e.g. [24]
and [25]), allowing us to efficiently design regularization strategies in order to
reduce the risk of overfitting. However, methods limited to detecting linear
relations among vectors could hardly be considered to constitute state-of-the-
art technology, given the nature of the challenges presented by modern data
analysis. Therefore it is crucial that all such problems can be cast and solved
in a kernel-induced feature space; that is, they only require information about
inner products between data points. The entire toolbox of generalized eigen-
problems for pattern analysis can then be applied to detection of generalized
relations on a wide range of data types, such as sequences, text, images, and
SO on.

In this chapter we will first review the general theory of eigenvalue pro-
blems, then we will give a brief review of kernel methods in general. Finally,
we will discuss a number of algorithms based in multivariate statistics: princi-
pal components analysis, partial least squares, canonical correlation analysis,
Fisher discriminant, and spectral clustering, where appropriate both in their
primal and in their dual form, leading to a version involving kernels.

5.1.1 Notation

All matrices are boldface uppercase. Vectors are boldface lowercase. Scalar
variables are lowercase. Sets and spaces are denoted with calligraphic letters.
With (a b---z ), the matrix built by stacking the vectors a, b, ...,z next
to each other is meant.
The symbols used are:

e The vector containing all ones is denoted by 1. The identity matrix is
denoted by I. The matrix or vector containing all zeros is denoted by O.
Their dimensionality is clear from the context.

e X or X;, column vectors represent a vector in the X-space. When we have
n samples, the matrix X is built up as X = (x1 Xo + Xp )/.

e Similarly, y or y; are sample vectors from the )-space. The matrix Y
containing samples y; through y,, is built up as Y = (y1 Y2 ¥Yn )/.

e When Y is one-dimensional, a sample from this space is denoted by y or
y;, and the vector containing all samples is y = (y1 Y2 Yn )/.

e Unless stated differently, all data are assumed to be centered (have zero
mean) throughout this chapter. This means that 1/-X =0/,1"-Y = 0’,
or when ) is one-dimensional, 1’ -y = 0.

e Kx and Ky are the so-called kernel or Gram matrices corresponding to X
and Y. They are the inner product matrices Kx = XX’ and Ky = YY'.
When it is clear from the context which data the kernel is built from, we
just use K. When we want to stress the kernel is centered we use K..

e TFor centered data matrices X and Y, the matrices Sxx = X'X, Sxy =
X'Y, Syy = Y'Y, and Syx = Sxvy’ are the scatter matrices.
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® 0,0x, 0y, ax 4, and ay; will be referred to as dual vectors and their
respective ith coordinates. When an index ¢ is used as a subscript after a
boldface o, this refers to a dual vector indexed by ¢, and not to the ¢th
coordinate.

e w,wx,wy will be referred to as weight vectors. Their respective ith co-
ordinates are denoted by w;,wx i, wy,;. When an index ¢ is used as a
subscript after a boldface w, this refers to a weight vector indexed by ¢,
and not to the ith coordinate.

e The feature map from the input space to the feature space is denoted with
o (xi).

e d,n,m,... are scalar integers; d is used for indicating dimensionality.

5.2 Linear Algebra

In this section we will review some basic properties of linear algebra that
will prove useful in this chapter. We use the standard linear algebra notation
in the beginning and translate the important results to the kernel methods

conventions afterwards. Extensive references for matrix analysis can be found
in [12] and [13].

5.2.1 Symmetric (Generalized) Eigenvalue Problems

Notation. In this introductory section, we will use a notation that is to be
distinguished from the notation in the remainder of the chapter:

A € R"™™ a general matrix.

M, N € R™*" symmetric matrices. N is invertible.

A, S € R™*™ diagonal matrices.

U, VeR"™".:UU =1=U'U,VV'=1= V'V, orthogonal matrices.
W € R™ "™ a matrix orthogonal in the metric defined by N: w'Nw = 1.
Aor )\;, an eigenvalue.

o or g;, a singular value.

Variational Characterization

The optimization problems we are concerned with in this chapter are all ba-
sically of the form (we assume N is invertible)
w'Mw
max .
w W Nw

This is an optimization of a Rayleigh quotient. One can see the norm of w
does not matter: scaling w does not change the value of the object function.
Thus, one can impose an additional scalar constraint on w and optimize the
object function without losing any solutions. This constraint is chosen to be
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w'Nw = 1. Then the optimization problem becomes a constrained optimiza-
tion problem of the form:

max wMw st. wNw=1,
w

or by using the Lagrangian £(w):

max L(w) = maxw'Mw — A\w'Nw.

Equating the first derivative to zero leads to
Mw = ANw. (5.1)

The optimal value reached by the object function is equal to the maximal
eigenvalue, the Lagrange multiplier A. This is the symmetric generalized eigen-
value problem that will be studied here.

Note that the vector w with the scalar A leading to the optimum of the
Rayleigh quotient is not the only solution of the generalized eigenvalue pro-
blem given by Eq. (5.1). There exist other eigenvector-eigenvalue pairs that do
not correspond to the optimum of the Rayleigh quotient. For any pair (w, \)
that is a solution of Eq. (5.1), w is called a (generalized) eigenvector and A is
called a (generalized) eigenvalue. In many cases several of these eigenvector-
eigenvalue pairs are of interest.

Symmetric Eigenvalue Problems
For the ordinary symmetric eigenvalue problem (where N =1):
Mw = \w.

Eigenvectors w; corresponding to different eigenvalues \; are orthogonal to
each other. Furthermore, the eigenvalues of symmetric matrices are real, and
a real eigenvector corresponds to them.

Proof. For \; # A;,

MWZ' = )\iWi,
! _ / R / / R ! .
= Ni(wiw;) = w,Mw,; = w,M'w; = w,Mw;,
— . / .
= \j(wiw;),

= wiw; = 0.

Thus, eigenvectors corresponding to different eigenvalues A; and \; are or-
thogonal. Furthermore, with -* the adjoint operator:
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Mw; = \;w; and M =M’ = M* (M is real symmetric) ,
= Nwiw! = (\wi'w)" = (w)'Mw,;)" = w.M*w} = w,M'w],
= \wiw],

Therefore the eigenvalues of a real symmetric matrix are real. Then also the
eigenvectors are real up to a complex scalar (and can thus be made real by
scalar multiplication), since if they were not, we could take the real part and
the imaginary part separately, and both would be eigenvectors corresponding
to the same eigenvalue.

When eigenvalues are degenerate, that is, they are equal but correspond
to a different eigenvector, then these eigenvectors can be chosen to be or-
thogonal to each other. This follows from the fact that they are in a subspace
orthogonal to the space spanned by all eigenvectors corresponding to the other
eigenvalues. In this subspace an orthogonal basis can be found. The number
of eigenvalues and corresponding orthogonal eigenvectors of a real symmetric
matrix thus is equal to the dimensionality n of M.

If we normalize all eigenvectors w; to unit length and choose them to be
orthogonal to each other, they are said to form an orthonormal basis. For W
being the matrix built by stacking these normalized eigenvectors w; next to
each other, we have

WW' = W'W =1,
that is, the matrix W is orthogonal.
Since then Mw; = w;\; for all 7, we can state that
MW = WA,

where A contains the corresponding eigenvalues \; on its diagonal. Then,
taking into account that W—! = W', we can express the matrix M as:

M = WAW' =) " \;wiw).

This is called the eigenvalue decomposition of the matrix M, also known as
the spectral decomposition of M.

Symmetric Generalized Eigenvalue Problems
In general, we will deal with generalized eigenvalue problems of the form

Mw = A\Nw.
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This could be solved as an ordinary but nonsymmetric eigenvalue problem
(by multiplying with N—! on the left-hand side). We can also convert it to a
symmetric eigenvalue problem by defining v = N/2w:

MN~!/?N/2w = AN'/2N'/?w,

and thus by left multiplication with N—1/2:

(N"V2MN"Y2)v = Av.

For this type of problem, we know that the different eigenvectors v can be
chosen to be orthogonal and of unit length, thus:

V'V =1=W'NW,

which means that the generalized eigenvectors w; of a symmetric eigenvalue
problem are orthogonal in the metric defined by N.

5.2.2 Singular Value Decompositions, Duality

The singular value decomposition of a general real matrix A is defined as

A=(UU) (3 g) (VVy) =UsV/,

where S contains the singular values s; in decreasing order (by convention)
on the diagonal, and dimensions of all blocks are compatible. The matrices
(U Uo) and (V Vo) are orthogonal matrices, respectively containing the
left and the right singular vectors as their columns. This decomposition can
be calculated for any real matrix.

One can see that multiplying A on the left with a column of Uy gives zero:
ULA = 0'. Therefore Uy is said to span the left null space of A. Similarly,
Vy is a basis for the right null space of A. On the other hand, U and V
respectively span the column and the row space of A.

Note that AA’ and A’A are symmetric, and their eigenvalue decomposi-
tions are:

AA' =US?U/,
A'A = VSV,

Another important property of singular value decompositions is that the
nonzero singular values and corresponding singular vectors are the nonzero

. . . . 0 A
eigenvalues and corresponding eigenvectors of the matrix ( A O ) :
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(25) (2)=s (). 52

the solution of which leads to the singular value decomposition of A = USV’.

In a pattern recognition problem, the rows of the matrix A may consist of
different data vectors. Above, we used the standard linear algebra notation.
In pattern recognition, the matrix A will then correspond to X, the columns
of V to w being the weight vectors, and the columns of U to o, being the
dual vectors. Thus, in the notation we adopt in this chapter:

/
X0y = s;wy,
XWZ' = S;00;.

When the norm is not an issue, which is often the case, the factor s; can be
omitted, so up to a scaling factor:

X/Oti = Wy, (53)
Xw; = 0.

The matrix X’X = Sxx will be called a scatter matrix. Since the samples
making up the rows of X are assumed to have zero mean, it is proportional
to the finite sample covariance matrix Cxx = iSXX. On the other hand,
XX’ = Kx is a Gram or kernel matrix . (Note that element (i, j) corresponds
to the inner product of samples x; and x;.) Thus, the weight vectors are the
eigenvectors of the scatter matrix, and the dual vectors are the eigenvectors of
the kernel matrix. Given the dual vectors, the weight vectors can be found by
multiplication with the data matrix X’, and vice versa. This type of relation
between primal and dual variables forms the basis of the duality and enables
the use of kernels.

5.3 Kernel Methods

Kernel methods (KMs) [7, 21, 23, 27, 29| are a relatively new family of algo-
rithms that presents a series of useful features for pattern analysis in data sets.
In recent years, their simplicity, versatility, and efficiency have made them a
standard tool for practitioners, and a fundamental topic in many data ana-
lysis courses. We will outline some of their important features, referring the
interested reader to more detailed articles and books for a deeper discussion
(see, for example, [23] and references therein).

KMs combine the simplicity and computational efficiency of linear algo-
rithms, such as the perceptron algorithm or ridge regression, with the flexibili-
ty of nonlinear systems, such as, for example, neural networks, and the rigor of
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statistical approaches, such as regularization methods in multivariate statis-
tics. As a result of the special way they represent functions, these algorithms
typically reduce the learning step to a simple optimization problem that can
always be solved in polynomial time, avoiding the problem of local minima
typical of neural networks, decision trees, and other nonlinear approaches.

Their foundation in the principles of statistical learning theory makes them
remarkably resistant to overfitting especially in regimes where other methods
are affected by the ‘curse of dimensionality’. Another important feature for
applications is that they can naturally accept input data that are not in the
form of vectors, such as, for example, strings, trees, and images. Their cha-
racteristically modular design makes them amenable to theoretical analysis,
but also makes them well suited to a software engineering approach in which
a general-purpose learning module is combined with a data-specific ‘kernel
function’ that provides the interface with the data and incorporates domain
knowledge.

Many learning modules can be used, depending on whether the task is one
of classification, regression, clustering, novelty detection, ranking, and so on.
At the same time, many kernel functions have been designed, for example, for
protein sequences, for text and hypertext documents, for images, time series,
etc. As a result, this method can be used for dealing with rather exotic tasks,
such as ranking strings, or clustering graphs, in addition to such classical tasks
as classifying vectors. In the remainder of this section, we will briefly describe
theory behind kernel methods, followed by a brief example of how this can be
used in practice: kernelizing least squares regression and ridge regression.

5.3.1 Theory

Kernel-based learning algorithms work by embedding the data into a Hilbert
space and searching for linear relations in such space. The embedding is per-
formed implicitly, that is, by specifying the inner product between each pair
of points, rather than by giving their coordinates explicitly. This approach
has several advantages, the most important being the observation that often
the inner product in the embedding space can be computed much more easily
than the coordinates of the points themselves.

Given an input set X' and an embedding vector space F (often called the
feature space), we consider a map ¢ : X — F (often called the feature map).
The function that, given two points x; € A and x; € X, returns the inner
product between their images in the space F is known as kernel function.

Definition 1. A kernel is a function k, such that for all x,z € X, k(x,2z) =
(p(x), #(z)), where ¢ is a mapping from X to a Hilbert space F, and (-,-)
denotes the inner product.

We also consider the matrix K;; = k(x;,x;), called the kernel matriz or
the Gram matriz. Thanks to the fact it is built from inner products it is al-
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ways a symmetric, positive semidefinite matrix, and since it specifies the inner
products between all pairs of points, it completely determines the relative po-
sitions between those points in the embedding space. For example, given such
information, it is trivial to recover all the pairwise distances between them.!

The solutions sought by kernel-based algorithms are linear functions in the
feature space:

f(x) = w'o(x),
for some weight vector w. The kernel can be exploited whenever the weight

vector can be expressed as a linear combination of the training points, w =
Yo, a;(x;), implying that we can express f as follows:

Fx) =) aik(xi, x).
i=1
This will be the case for any of the algorithms considered in this chapter.

5.3.2 Example: Least Squares and Ridge Regression

We consider the well-known problem of least squares regression to start with
and derive a kernelized version for it. Consider the vector y € R™ and the data
points X € R™"*?. We want to find the weight vector w € R? that minimizes
ly — Xwl||?. Taking the gradient of this cost function with respect to w and
equating to zero leads to:

Vwly = Xw|? = Vu(y'y + w'X'Xw — 2w'X'y),
= 2X'Xw — 2X'y,
= ()7
=w=(X'X)"'X'y.

This is the well-known least squares solution.

However, least squares is highly sensitive to overfitting. Especially when X
lives in a high-dimensional (feature) space, care needs to be taken (ultimately,
when the dimensionality d > n, regression can always be carried out exactly,
which means that any noise sequence could be fit by the model). In order to
avoid overfitting, a standard approach is to reduce the capacity of the learner,
or the effective number of degrees of freedom, by imposing a prior on the
solution, thus introducing a bias. In the case of regression, for example, one
usually prefers a weight vector with small norm. This is taken into account
by introducing an additional term v||w||? in the cost function, with ~ the
reqularization parameter. Minimizing leads to the ridge regression estimate:

! Notice that we do not really need X to be a vector space; in fact, X can be a
generic finite set. This is because we are guaranteed that the data are implicitly
mapped to some Hilbert space by simply checking that the kernel matrix K
satisfies the conditions above.
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Vw [y = Xw[® +7[|w[’] = Vo [y + w'X'Xw — 2w'X"y) + y(w'w)],
=2(X'X +vI)w — 2X'y,
— 0,
=w=(X'X++I)"'X'y.

To evaluate the regression function in a new test point, it can simply be
projected on the weight vector:

ot
Ytest = XiestW-

So far we have discussed the primal version of the ridge regression method.
The dual version can be derived by noting that the minimum norm weight
vector will always be in the span of the data X. This can be seen by replacing
(X'X +4I)7t with (VAV' +491)7! = (V(A +7D) V)71 = V(A +171)71V/,
where the columns of V are the right singular vectors of X and are thus a basis
for the row space of X. Thus the weight vector w = V [(A +11)7'V'X'y]
lies in the column space of V, or equivalently in the row space of X, and can
thus be expressed as w = X'o (cf. Eq. (5.3)). Here oo € R™ is called the dual
vector. Plugging this into the equations leads to:

Vo [y — XX'a|? + 7| X'a?] = 2(XX'XX)oe — 2X Xy + 27X X/a,
=2(K? +7K)a — 2Ky,
=0,
= K(K +~I)a = Ky. (5.4)

In the second step, XX’, which is the matrix containing the inner products
between any two points as its elements, is replaced by the kernel matrix K.
Since the inner products in K can be inner products in a feature space, they
can in fact be a nonlinear function of the data points, namely the kernel
function. In this way, nonlinearities can be dealt with in a very natural way.
This is the essence of the ‘kernel trick’. A general solution for Eq. (5.4) is
given by:

a=(K+~D) 'y + oo,

where 0 is any vector in the null space of K: X'0p = Koy = 0.

The projection of a test point Xtesy onto the weight vector w = X'a =
X' [(K4+1I) "ty 4+ 0] = X/ (K +~I)" 'y, can be written as yrest = Xjoq X 01
(as one can see, the actual value of oy does not matter). Written in terms of
kernel evaluations, this becomes:

n
Ytest = Z aik(xi> Xtest)~

i=1

This is indeed the standard form.
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5.3.3 Kernels in This Chapter

In this chapter, we will aim at deriving primal and dual versions of spectral
algorithms in pattern recognition. Whereas the primal formulation is usually
the standard form in which algorithms are known, the dual form is formulated
in terms of inner products only.? This is important, since then the kernel
trick can be used in any algorithm where such a dual version can be derived,
very much in the same way as shown in the example above: by replacing the
matrix containing inner products with the kernel matrix. The inner products
are considered to be carried out implicitly between nonlinear mappings of the
points in a feature space.

As mentioned before, we will assume all data are centered. In primal
space, this centering is a trivial operation, as it is done by simply sub-
tracting the mean of each of the coordinates (n is the number of samples):

’ . .
X, = (X — 1; X). However, centering in feature space deserves some atten-

tion since we do not compute the feature vectors explicitly, but only the inner
products between them. Thus we have to compute the centered kernel matrix
based on the uncentered kernel matrix.

For an uncentered K corresponding to uncentered X, the centered ver-
sion K. can be computed as the product of the centered matrices X, =

(X — 1;/X), where 1 € R" is the column vector containing n ones:

11/ 11\’
K. = (X - X) (X - X)
n n
11/ 1 11 11

1
—K- K-K + K
n n n n

(5.5)

In this chapter, unless stated otherwise, we assume all kernel matrices are cen-
tered as such. Therefore, the subscript ¢ will be omitted for brevity, wherever
this does not cause confusion.

Similarly, a test sample xqs¢ should be centered accordingly. Let kiest =
[k (Xtest, Xi)]i=1:n be the vector containing the kernel evaluations of Xest with
all n training samples x;. Then again, we can do the centering implicitly: the
properly centered version (in correspondence with the centering of Eq. (5.5))
of this vector can be shown to be

1 11/ 117 1
ktest,c = ktest -K - ktest + K
n n n n

In this chapter we assume all test samples are already centered in this way
as well. Again, the subscript ¢ will be omitted wherever this does not cause
confusion.

2 In many if not all practical cases, the dual can be motivated using an optimization
perspective. The reader is referred to [27] for an in-depth treatment.
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5.4 Dimensionality Reduction: PCA, (R)CCA, PLS

The general philosophy that motivates dimensionality reduction techniques
is the fact that real-life data contain redundancies and noise. Dimensionality
reduction is often a good way to deal with this: by using a low-dimensional ap-
proximate representation, noise can be suppressed and redundancies removed.
The data are replaced by a summary that still captures as much information
as possible. All methods described in this section can be useful as a prepro-
cessing step for other algorithms like clustering, classification, regression, and
SO on.

We will discuss various ways to perform dimensionality reduction. They
all share the property that they rely on inner products and on eigenproblems.
This has as a consequence that they can easily be made nonlinear using the
kernel trick, and that they are efficiently solved. The difference between them
lies in the cost function they optimize.

Therefore, each of the subsections will be structured as follows: first the
different cost functions leading to the algorithm are described, subsequently
the primal is derived and some properties are given, and finally the dual
formulation is presented. For a previous treatment of these algorithms in their
primal version, we refer to [6].

5.4.1 PCA
Cost Function

The motivation for performing principal component analysis (PCA) [16] is
often the assumption that directions of high variance will contain more in-
formation than directions of low variance. The rationale behind this could be
that the noise can be assumed to be uniformly spread. Thus, directions of
high variance will have a higher signal-to-noise ratio. Mathematically:

W = argmax||y,—; W' X' (w'X’)’,
= argmaxl‘w‘lzlw/X/Xw,

= argmax||y|—; W' Sxxw. (5.6)
Or, for w not normalized this can be written as:

W ar W/SXXw
= argmax,,
The solution of Eq. (5.6) is also equivalent to minimizing the 2-norm of
the residuals. This can be seen by projecting all samples X on the subspace
orthogonal to w (by left multiplication with (I — ww’)), and computing the
Frobenius norm:
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w = argmin |y, _ [|X(I - ww') ||,

argming o, _y trace ([X(I — ww')]'[X(I — ww’)]),
= argmin s trace (X'X + ww'X'Xww' — 2X'Xww') ,

argmin | trace(Sxx) + [|w|*w'Sxxw — 2w'Sxxw,

. ’
= argmmeH:l — W SXXW

Primal

Differentiating the Lagrangian £L(w, \) = w'Sxxw — Aw’w corresponding to
Eq. (5.6) with respect to w and equating to zero leads to

VwLl(W,\) = Vi (W Sxxw — Aw'w) = 0,
& Sxxw = Aw.

This is a symmetric eigenvalue problem as presented in Sect. 5.2. Such an
eigenvalue problem has d eigenvectors. All are called principal directions, cor-
responding to their variance A.

Properties

All principal directions are orthogonal to each other.
The principal directions can all be obtained by optimizing the same cost
function, where the above property is explicitly imposed.

e The projections of the data onto different principal directions are uncor-
related: (Xw;)'Xw; = 0 for ¢ # j. Note that one could as well say the
projections are orthogonal. This is equivalent, but we will use the notion
of correlation when we are talking about projections of data onto a weight
vector. Because of this property of PCA, it is sometimes called linear
decorrelation.

e The PCA solution is equivalent to, and can thus be obtained by computing,
the singular value decomposition of X.

Dual

To derive the dual, we use the key fact that w will always be a linear combi-
nation of the columns of X’ (to see this, note that w = iSXXW =X’ X}\W).
We can thus replace w with X’a,, where o are the dual variables. The dual
problem is then:

SXXX’oc = )\)(IOL7

= XSXXx/OL = )\XX/OL,
= K%o0 = A\Kxo. (5.7)
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When Kx has full rank, we can multiply Eq. (5.7) by K;(1 on the left-hand
side, leading to:

Kxo = Aa. (5.8)

On the other hand, when Kx is rank deficient, a solution for Eq. (5.7) is not
always a solution for Eq. (5.8) anymore (however, the converse is still true).
Then for 0 lying in the null space of Kx, and o a solution of Eq. (5.8) (and
thus also of Eq. (5.7)), also oo+ oy is a solution of Eq. (5.7) but generally not
of Eq. (5.8). But, since Kx0p = 0 and thus X0y = 0, the component o0,y will
have no effect on w = X' (o + ap) = X'ol anyway, and we can ignore the null
space of Kx by simply solving Eq. (5.8) also in the case Kx is rank deficient.

Since Kx is a symmetric matrix, the dual eigenvectors will be orthogonal
to each other. The projections of the training samples onto the weight vector
w are Xw = XX’a, = Ao.. Thus, the vector o is proportional with (and thus
up to a normalization equal to) the projections of the training samples onto
this weight vector. The fact that different dual vectors are orthogonal is thus
equivalent to the observation that the projections of the data onto different
weight vectors is uncorrelated.

Projection of a test point onto the PCA direction found can be carried out
as

n
Ytest = Z aik(xi7 Xtest)~

i=1

5.4.2 Canonical Correlation Analysis (CCA) and Regularized CCA

While PCA deals with only one data space X where it identifies directions of
high variance, canonical correlation analysis (CCA, first introduced in [15])
proposes a way for dimensionality reduction by taking into account relations
between samples coming from two spaces X and ). The assumption is that
the data points coming from these two spaces contain some joint information
that is reflected in correlations between them. Directions along which this
correlation is high are thus assumed to be relevant directions when these
relations are to be captured.

Again a primal and a dual form are available. The dual form makes it
possible to capture nonlinear correlations as well, thanks to the kernel trick
[1, 3, 11].

When data are scarce as compared to the dimensionality of the problem,
it is important to regularize the problem in order to avoid overfitting. This is
provided in the regularized CCA (RCCA) algorithm.

A Small Example

To make things more concrete, consider the following example described in
[31]. Suppose we have two text corpora, one containing English texts, and an-
other one containing the same texts but translated in French. The text corpora
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can be represented by the matrices X and Y containing vectors that are the
bag of words representations of the texts as its rows. Now, since we know that
the same basic semantic information must be present in both the English text
and the French translation, we must be able to extract some information from
every row of X that is similar to information extracted from the rows of Y. If
we do this in a linear way, this would mean that Xwx and Ywy are similar
in a way, for some wx and wx representing a certain semantic meaning. This
could be: Xwx and Ywy are correlated, thus motivating the cost function
introduced below. In [31], it is pointed out that many of the wx-wx pairs
found can indeed be related to an intuitively satisfying semantic meaning.
Other examples are available in literature, notably in bioinformatics [30, 35].

Cost Function

We thus want to maximize the correlation between a projection Xwx of X
and a projection Ywy of Y. Or, another geometrical interpretation is: find
directions Xwx, Ywy in the column space of X and Y with a minimal angle
between each other (we will use the notation Sxy = X'Y, the cross-scatter
matrix):

{wx,wy} = argmax cos (L(Xwx,Ywy)),

WX, Wy
= argmax (Xwx)'(Ywy)

WY \/(XWX)’(XWX) \/(YWY)'(YWY) ’
= argmax WxSxywy

WX, Wy / / ’
VWi Sxxwx /Wi Syywy

Since the norm of the weight vectors does not matter, we can maximize
correlation along the weight vectors, or ‘fit’ subject to constraints fixing the
value of these weight vectors:

/
{wx,wy} = argmax, o, WxSxywy

s.t. ||)(W)(H2 = W/XSXXWX =1, ||YWYH2 = wQSyywy =1.

This is equivalent to the minimization of a ‘misfit’ subject to these con-
straints:

WX, Wy HXWX - YWYH2

st [ Xwx|? = 1, [ Ywyl? = 1.

{wx,wy} = argmin

Primal

We solve the second formulation of the problem. Differentiating the La-
grangian L(Wx, Wy, Ax, A\y) = W Sxy Wy —Ax Wi Sxxwx —Ay w4, Syywy
with respect to wx and wy and equating to 0, gives
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oo L(wx, Wy, Ax, Ay) = 0,
oo, Lwx, wy, Ax, Ay) = 0,

Sxywy = AxSxxwx,
Syxwx = AySyywy.

Now, since from this
! / / /
)\XwXSXxwX = WXSXYWY = WYsYXwX = )\YWYSYYWY7

and since wi Sxxwx = Wi, Syywy = 1, we find that Ax = Ay = A, and
thus

(5.9)

Sxywy = ASxxWwx,
Syxwx = ASyywy.

Or, stated in another way as a generalized eigenvalue problem,

(ng SEY) (:vvi) =A (S)SX SYOY) (:Vvi) (5.10)

This generalized eigenvalue problem has 2d eigenvalues. But, for each positive
wx

eigenvalue A\ and corresponding eigenvector (w
Y

>, —\ is an eigenvalue too

with corresponding eigenvector < v:f > . Thus, we get all the information by
—Wy

only looking at the d positive eigenvalues. The largest one with its eigenvector
corresponds to the optimum of the cost function described earlier. The weight
vectors making up the other eigenvectors will be referred to as other canonical
directions, corresponding to a smaller canonical correlation quantized by their
corresponding eigenvalue.

Properties

e CCA not only finds pairs of directions that capture maximal correlations
between each other. Projections onto canonical directions corresponding
to a different canonical correlation are uncorrelated:

)\iW/ij(SYYWY,i) = W/Y’j(SYXWX,i)y
= wx ;(Sxywy,j),
= \jwx ;i (Sxxwx j),
= )\jW/XJ(SXXWX,i)~
And similarly,
)\iW/X’j(SXXWX,i) = )\jW/YJ-(SYYwYJ).

So for A; # A;, the projection of Y onto wy ; is uncorrelated with the
projection of X onto wx ;: W’YJSY)(WX’Z' = 0. Similarly, W’ij Sxxwx ;=
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0, and W’YJSYYwY’i = 0. Another way to state this is to say that wx ;
is orthogonal to wx ; in the metric defined by Sxx; similarly, wvy ; is
orthogonal to wy ; in the metric defined by Syv.

e All canonical directions can be captured by a constrained optimization
problem in which the above property is explicitly imposed:

/
{WX,i7WY,i} = argmaxwx,i,WY,iWXJLSXYWY,i

s.t. [ Xwx

| = W/)(7iSXXWX,i =1
[Ywy || = wy Syywy,; =1
wx ;Sxxwx,; =0,

and for j <7 :
J W/YJ'SYYWY,Z' = 0.

e The CCA problem can be reformulated as an ordinary eigenvalue problem:

0 Sxx 'Sxvy wx | _ (Wx
Svyy 'Syx 0 wy | wy )’

This eigenvalue problem can be made symmetric by introducing vx =
SXX1/2WX and Vy = SYY1/2WY:
0 Sxx Y?SxySyy /2 vx ) _ (VX
(SYY1/2SYXSXX1/2 0 ) (VY> - (VY) .
Note that this eigenvalue problem is of the form of Eq. (5.2), so here vx
and vy are the left and right singular vectors of Sxxfl/QSXYsyyfl/?
The weight vectors can be retrieved as wx = Sxx ?vx and wy =
SYY71/2VY-
By the orthogonality of the singular vectors, we can derive in an alter-
native way that projections onto noncorresponding canonical directions
are uncorrelated: 0 = vy ;vx ; = Wx ;Sxxwx j, and 0 = vy vy ; =
W/YJSYYWY,]‘- Also, we find that 0 = V/XJ'SXX_1/2SXYSYY_1/2VY,]‘ =
W/X’iSXYWY,j-

e As a last remark, we note that CCA where one of both data spaces is
one-dimensional is equivalent to least squares regression (LSR).

Dual

To derive the dual, again note that the (minimum norm3) wx and wy will lie
in the column space of X and Y, respectively (thus, analogously to Eq. (5.3),

3 The motivation for taking the minimum norm solution is as follows: first of all,
we need to make a choice in cases where there is an indeterminacy as is when
the rows of X and/or Y do not span the whole space. And a component of the
weight vectors orthogonal to the data would never contribute to the correlation of
a projection of the data onto this weight vector anyway; the projection onto this
orthogonal direction would be zero. We do not get any information concerning
the orthogonal subspace, and thus do not want w to make any unmotivated
predictions on this. In this chapter we always look for minimum norm solutions.
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wx = X'ox and wy = Y'oy; see also [3] for a more detailed explanation).
Thus we can write

0 SXY X/OLX — )\ SXX 0 X/OLX
SYX 0 Y’OLY o 0 SYY Y’OLY
. . X0
| multiplying left with ( 0 Y>

0 XSXyY/ ox - XSXXX’ 0 ox
YSYXX’ 0 Oy - 0 YSYyY/ Oy

U
0 KxKy ox \ A K%( 0 olx
Ky Kx 0 oy ) 0 K%( oy |’

Projections of test points Xtest and yiest onto the CCA directions corres-
ponding to ax and oy can then be carried out as

Z ax ik(Xi, Xtest), and Z ay ik(yi, Yeest)- (5.11)

=1 i=1

Regularization
Primal problem

Regularization is often necessary in doing CCA for the following reason. The
scatter matrices Sxx and Syy are proportional to finite sample estimates
of the covariance matrices. This generally leads to poor performance in case
of small eigenvalues of these covariances. Remember the generalized eigen-
value problem is (theoretically) equivalent with a standard eigenvalue problem
where the right-hand side matrix containing the scatter matrices is inverted.
Any fluctuation of the smallest eigenvalue will thus be blown up in the inverse.
To counteract this effect, one often adds a diagonal to the scatter matrices, or
equivalently to each of their eigenvalues [3]. In this way, a bias is introduced,
but it is hoped that for a certain bias, the total variance will be lower than
the case when no bias is present.

An equivalent way to view this is, as presented above in the ridge regression
derivation, by interpreting the regularization as a reduction of the effective
number of degrees of freedom. Generalization will be more likely to be good.

The primal regularized problem is thus

0 Sxvy wx | _ Sxx +11 0 wWx
Syx O Wy 0 Syy +11 wy )’
Intuitively, this type of regularization boils down to trusting correlations along

high-variance directions more than along low-variance directions. Or, equiva-
lently, it corresponds to a modified optimization problem where the constraints
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contain an additional term constraining the norm of wx and wv, similarly
to the ridge regression cost function.

Note that RCCA with one of both spaces one-dimensional is equivalent to
ridge regression (RR).

Dual problem

The dual of this generalized eigenvalue problem can be derived in the same
way as the unregularized problem, leading to:

0 KxKy ox \ A K%( +vKx 0 ox (5 12)
Ky Kx 0 oy | 0 K%( +vKy oy ’

In the dual case, the need for regularization is often even stronger than in the
primal case. This is because the feature space is often infinite-dimensional, so
that the freedom to find correlations is much too high. All correlations would
be equal to 1, which means no generalization is possible at all. Penalizing a
large weight vector as above thus makes sense to improve generalization.

When both the kernels have full rank, left-multiplication on both sides of
-1

Eq. (5.12) with (Ké( K(11 ) reveals that this generalized eigenvalue problem
Y

is equivalent with

0 Ky ox Kx + ’YI 0 ox
(Kx 0 ) (Oty> _A( 0 Ky+’yI) ((Xy). (5.13)
Kernel matrices are often rank deficient, however (e.g. when they are cen-
tered). In that case the solutions of Eq. (5.13) are still solutions for Eq. (5.12),
but the converse is no longer always true. The reason is that for any genera-
. . ox ax + 0xo
lized eigenvector <QY> of Eq. (5.13) and thus of Eq. (5.12), <0€Y - ),
where axo and Oy are arbitrary vectors lying respectively in the null spaces
of Kx and Ky, is also an eigenvector with the same eigenvalue of Eq. (5.12)
but generally not of Eq. (5.13). However, similarly as in the ridge regres-
sion derivation, it can be seen that these components axg and ovyo play
no role in the calculation of Eq. (5.11). This is because the weight vectors
WX = X’(OCX + OCX()) = X'ox and wy = Y/(OLY + OLY()) = Yoy are unaf-
fected by the components in the null spaces of Kx and Kvy. Therefore, we
can choose to solve either Eq. (5.12) or Eq. (5.13).

5.4.3 Partial Least Squares

Partial least squares (PLS, introduced in [33, 34]; see also [14] for a good
review) can be interpreted in two ways. The first PLS component is the maxi-
mally regularized version of the first CCA component (the case where v — oo,
after rescaling the eigenvalues by multiplying them with 7). Another view is



148 Tijl De Bie, Nello Cristianini, and Roman Rosipal

as a covariance maximizer instead of a correlation maximizer, this again for
the first PLS component. Whereas all PLS formulations compute the first
component in the same way, there is no one way to compute the other compo-
nents. We will present two variants: so-called EZ-PLS, which consists of only
one eigenvalue decomposition (or a singular value decomposition) and which
is used mainly for exploratory purposes (similar to CCA), and regression-PLS
which is a more involved version that is most widely used in (multivariate)
regression applications.

Because of the iterative way PLS components are computed in, and be-
cause of the fact that there exist several variants of PLS, the discussion is
somewhat more involved. We will first give a general discussion on the cost
function optimized in all PLS formulations, followed by the eigenproblem op-
timizing this cost function. Next, we will shortly go into some computational
aspects. Finally, we will show the particularities of the two PLS formulations
EZ-PLS and regression-PLS, followed by a discussion of the regression step
in regression-PLS. Again, a primal and a dual (see [19] where this was first
derived) formulation will be provided.

Cost Function

Maximize the sample covariance* between a projection of X and a projection
of Y:

{WX7 WY} = argmanx,wy \/Wl

/
B Wx SXYWy
= argmaXy, w. , , .
\/ Wi wx \/ Wy Wy

This is equivalent to maximizing the sample covariance, or the ‘fit’ subject
to constraints:
{wx,wy} = argmamx7wywksxywy

st |[wx||? = whkwx = 1, [wy || = whwy =1,
and equivalent to minimizing the misfit subject to these constraints:

{wx,wy} = argming, .. [|[Xwx — Ywy|?

s.t. HWX||2 =1, ||WYH2 =1.

Primal

We solve the second formulation of the problem. Differentiating the La-
grangian L(Wx, Wy, Ax, A\y) = Wy Sxywy — Axwixwx — Ay wi,wy with
respect to wx and wy and equating to 0 gives

4 Note the difference between CCA where correlation was maximized.
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{ 0 L(wx, Wy, Ax, \y)

Owx

o, LWx, Wy, Ax, Ay)

=0,
=0,

SXYwY = )\wa.
SYXwX = )\wa.

Since from this
! / ! /
AXWx WX = WxSXYyWy = Wy Syxwx = AyWy Wy,

and since wiwx = wiwy = 1, we find that Ax = Ay = A. Thus

{SXYWY = \wx, (5.14)

Syxwx = )\WY .

Or, stated in another way as an eigenvalue problem,

<ng S)5Y> (:vvi() *(:Zi) (5.15)

This eigenvalue problem has d eigenvalues, corresponding to a covariance bet-
ween projections onto wx and wy. The largest one with its eigenvector cor-
responds to the optimum of the cost function described earlier.

Note that Eq. (5.15) is of the form of Eq. (5.2). Thus the EZ-PLS problem
can be solved by calculating the singular value decomposition of Sxvy .

Dual

The dual problem can easily be found by using Eq. (5.3):

0 KxKy olx — Kx O ox
Ky Kx 0 oy ) 0 Ky oy )’

which includes all solutions of

(KOX KOY) (32() ”(Zﬁ) (5.16)

as its solutions as well. Similarly, as in CCA this is the formulation of the dual
problem that is solved, since it does not suffer from indeterminacies.

Projections of test points Xiest and yiest onto the PLS directions corres-
ponding to ax and ay can then be computed as

n n
Z aX,ik(Xi7 Xtest)a and Z aY,ik(yiv ytest)~

i=1 i=1

It is important to note that the first component corresponds to maximally
regularized RCCA. Taking more than one component lessens this regulariza-
tion in an alternative way in comparison to RCCA. This will be the subject
of the remainder of this section on PLS.
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Nonlinear Iterative Partial Least Squares and Primal-Dual
Symmetry in PLS

A straightforward way to solve for the largest eigenvector of Eq. (5.15) could be
by using the power method. However, thanks to the structure of the eigenvalue
problems at hand, it can be solved by using the so-called nonlinear iterative
partial least squares (NIPALS) method [33]. Note that, from Egs. (5.15) and
(5.16):

YY'XX'0x = AN20x.
X’YY/XWX = /\QWX.
XX'YY oy = Aoy
Y'XX'Ywy = Mwy.

Thus it follows that both the primal and the dual eigenvalue problem are
actually solved at the same time, using the following ‘power’ method:

Fix initial value wvy, normalize. Then iterate over steps 1-4.
ox = Ywy.

wx = X'ox, normalize wx to unit length.

Oy = XWX.

wy = Y'0y, normalize wy to unit length.

L

After convergence, the normalizations carried out in steps 2 and 4 both
amount to a division by \; then wx = }\X’OLX and wy = }\Y’Ocy.

In case the feature vectors X are only implicitly determined by a kernel
function, steps 2 and 3 must be combined in one step:

2,3. ooy = Kxo0x, normalize.

It can be seen that each of these weight vectors or dual vectors converge to
the eigenvector of the above four eigenvalue problems (combining four steps
following each other gives the power method for one of these four eigenvalue
problems). Since these are equivalent with Egs. (5.15) and (5.16), they con-
verge to the PLS weight vectors and dual vectors.

In this way, we can solve efficiently for the largest singular value and sin-
gular vectors. Only this one component is not enough to solve most practical
problems, however. We discuss two ways to extract more information present
in the data: what we call EZ-PLS and regression-PLS. For both methods first
the primal versions will be discussed, then afterwards the dual.

EZ-PLS
Primal

In EZ-PLS, the other PLS directions are the other eigenvectors corresponding
to a different covariance (eigenvalue) \. This can be accomplished by using
an iterative deflation scheme:
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1. Initialize: SXYO — Sxvy.

2. Compute the largest singular value of Sxy’ with NIPALS. This gives the
ith PLS component. Normalize so that ||wx || = [|[wy.] = 1.

3. Deflate the scatter matrices:

i+

1 i /
Sxy"" — Sxy' — AMiwx, iWy ;-

The rank of SXYH'1 is 1 less than the rank of SXYi.
4. When the number of desired components (necessarily lower than the rank
of Sxvy) is not yet reached, go to step 2.

The deflation of the X* matrix for EZ-PLS, in order to get the desired deflation
of the cross-scatter matrix, is

Xt X = X'wx iwi ;-
Similarly, one could do the deflation of the Y? matrix

Y Y - Yiwy,wy g,
also leading to the same desired deflation of the cross-scatter matrix.
Dual

Taking Eq. (5.3) or equivalently the NIPALS iteration into account, the de-
flation of the kernel matrices corresponding to the EZ-PLS deflation is found
to be
i+1 i - / i i /
Ky —Kx - )2 Kxoxiox Kx = Kx — oy oy ;.
K3

Properties

e Since the wx ; and the wv ; are the left and right singular vectors of Sxv,
all wx ; are orthogonal to each other, and all wy ; are orthogonal to each
other.

e For the same reason, if i # j: W’XJSXYwYJ- = 0. In other words, projec-
tions onto noncorresponding wx ; and wy ; are uncorrelated.

e All EZ-PLS components can be calculated at once by optimizing the same
cost function as for the first component, taking the first (orthogonality)
property into account as an additional constraint.

The EZ-PLS form is the easiest, in the sense that because of the nature of the
deflation, it is in fact not more than solving for the most important singular
vectors of Sxy. That is why it is discussed here; it is less useful in practice.
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Regression-PLS

Whereas EZ-PLS is not often used for regression (note that it is entirely
symmetric between X and Y, whereas regression is not; it is rather used for
modelling though), regression-PLS is the PLS formulation that is generally
preferred for (multivariate) regression (see [14]). We will first discuss the de-
flations that are characteristic for regression-PLS. Further on we will explain
how regression can be carried out using the results from these deflations.

Primal

The difference between EZ-PLS and Regression-PLS lies in the way the defla-
tion is carried out. Regression-PLS has the intention of modelling one (pos-
sibly) vectorial variable Y with the other vectorial variable X, hence the
name.® It is thus asymmetric between the two spaces, which is expressed in
the deflation step:

2,4. Deflate by orthogonalizing X’ to its projection onto the weight vector
wx i, X'Wx ;, and recomputing the scatter matrix:

. Xiwx ;wh X1 . C Xiwyxwh X
Xl (g T T XA ) i e T X s )
WX’Z-XZ Xtwx WXJ.XZ X'wx i

Oy iy ; .
- (I— Y, >X’. (5.18)
ayyiaY,i

Finally (see later, Eq. (5.28)) we will perform a regression of Y based on
the oy ;. (The oy ; can be computed from X as will become clear later,
see Eq. (5.27).) Therefore, we also deflate Y* with oy ; to remove the
information captured by the ith iteration:

. (04 iOC/ i .

Yitl (1— oy, >Y1. (5.19)
0'«YJ*O'«Y,Z'

This boils down to the following deflation of the scatter matrix:

Ai

/ i
W SXX WX,i

Sxy' !« Sxy' — Sxx'Wx,iWy ;.
The philosophy behind this kind of deflation is as follows: after step i, part of

the information in X?, namely its projection oy ; onto the ith PLS direction
wx i, is captured already: the component Z,‘”Zjéxi of X% (along oty ;) per-
Y, )T

fectly models the component z)(gz7Yl of Y?. This information should not
Y, i g

be used or modelled again in next steps, so it is ‘subtracted’ from both X*
and Y". In the next step, the direction of maximal covariance between the
remaining information X**! and Y'*! is found, and so on.

5 In literature this form of PLS is best known as PLS2, or PLS1 for the case where
Y is one-dimensional.
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Dual

Using Egs. (5.18) and (5.19), the deflation of the kernel matrices corresponding
to the regression-PLS deflation can be shown to be

; Oy io(«ly ; ) oy iOCIY )
I<2+1 ’ 5T K ’ st

X I- / X I- / .
OCYJOCYJ' OCYJOCY’Z'

Analogously,

) Oy ;0 ; ) oy ;0 ;
Kt (1- TR (1T .
Oy 0y i Oy 0y i

Properties

e The different weight vectors wy ; are not orthogonal (it is even possible
that they are all collinear, e.g. in the case where Y is one-dimensional). The
different weight vectors wx ;, however, are orthogonal. Using Eq. (5.17),

. ./ /
Xiwx Wh X"
. , X . .
W/ 4SZ+1 _ Wl ) I o ‘ ‘72 Xz Y7.+1 =0
X, iMXY X, W Xl/XZWX‘ )
X, )2

so that wx ; is in the lef‘p null space of SXYH'I. Since wx ;1 is a
left singular vector of Sxv't! this means that wx ;+1 will be orthogo-
nal to wx ;. By replacing the left-most X' in the above equation by

I—

X twx imawy o XY i—1 i—1

, Xi-1/¥i1 X*~*, and so on for X'~ %, ..., one can see
WX, i—1 WX, i—1
that also for j < i, wx ; is orthogonal to wx ;. Thus, all wx ; are mutua-

lly orthogonal:
W5xWx =1,

where Wx represents the matrix built by stacking the vectors wx ; next
to each other.
e The vectors oy ; are mutually orthogonal. Using Eq. (5.18), for ¢ < j one

has:
y y Oy i Oy ; Oy j— 104 i ¢
Xioy,; =X (1 ") (- Y T ) oy
Oy Oy i Oy j100v,j—1
For j =7+ 1, this is immediately proven to be zero. When this product is
. . . . 4 .
zero for all j: i < j < j*, oy ;j0y,i = Wy ;X7 oty ; = 0, and the matrices

between brackets in the above product commute. Since this is indeed true
for j =4+ 1, by induction it is proved for all i < j that:

X7 oy ; =0, (5.20)
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and thus by left multiplication with wx ;
oy Oy, = 0. (5.21)

Note that since oy ; = Xiwxﬂ»7 this means that the projections oy ; of
X% onto their weight vectors wx ; are uncorrelated with each other. This
property may remind you of CCA.

This orthogonality property in Eq. (5.21) of the oy ; leads to the fact that

/ /
. Oy 100 Oy ;—10~, ;_
/ ! VY1 52 Y,i—1
Wy, ; = Y*' Oy, i = Y [I- , | I= , 4 Oy 4
Oy 107 ,1 Oy i—100Y,i—1

= wy,; =Y 0y, (5.22)

up to a normalization.
Furthermore, one finds that for ¢ < j:

: Oy, 100y j Oy iy ;| o
XJWXJ' =I- , 7 o I= o )(ZWXJ'7
Oy 100y, j—1

O‘Y,jflalY,jq O‘Y,ia/Y,i
I-— , o I- , Oy 45
Oy 10y -1 Oy 0y i

=0. (5.23)

This generally does not hold for ¢ > j.
Another consequence of Eq. (5.21) is, for ¢ < j:

y y Oy i 0 ; Oy j— 100y
Yoy, =Y" [I- | B B = , Y oy i,
Oy 00y i Cy 10y ,5-1
=0. (5.24)
And thus also, for ¢ < j:

OL/XJ-OLYJ = WX,ij/O(Y,i,
=0. (5.25)

From this it follows that

/ /
. Oy 106 Oy ;i—10+ ,;_
/ / LYY 1 52 Y,i—1
WX, i = X ox.; = X I- ' o I= ' ) Ox i
Oy 100y ,1 Oy 100y ,i—1

= wx,; = X 0x,i, (5.26)

up to a normalization factor.
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Thus as a summary:

wx ; x X'ox 4,
wy; x Yoy,
W’X’ijﬂ» =0,
oty oy, =0,
ax oy i = 0 for i <,
ijx’i =0 for i < j,
Y7 oy ; = 0 for i < j.

Final Regression in Regression-PLS
Primal

The entire regression-PLS algorithm is composed of a (generally noninvertible)
linear mapping of X towards k so-called latent variables (in the current context
we would rather call them dual variables) oy ; = Xiwxyi, followed by a
regression of Y on Ay, where Ay contains oy ; as its columns.

The part of X that has been deflated and thus will be used for regres-

!
k Oy, Oy 4 Xi

sion is equal to the sum » 7, o = Ay P/, where the vectors p; =
v, %Y,

oy i

X1 %% make up the columns of P. Analogously, define ¢; = YV o o s
v, Y ,i

Uy 0y i
making up the columns of C.
Now, if we go on with the deflations until the rank of X’ is zero,® the space
spanned by the orthogonal vectors oty ; is complete and we have that

X:AtygtPtot’ :AYP/+A$mPrem/ :AYP/+EX,

with Ex the part of X that is not used in regression when the components
corresponding to AY™ are not kept. Also, because of Eq. (5.23) and the defi-
nition of P: p,;’wx ; = 0 for ¢ < j, and thus:

P*™Wx = 0.
This leads to the linear mapping from X to Avy:

AyP'Wx = XWx
= Ay = XWx (P'Wx) ', (5.27)

where the matrix to be inverted is lower triangular (again because p;'wx ; =0
for i < j), so the inversion can be carried out efficiently.

5 Note that the number of deflations k will always be smaller (or equal, in full
LSR) than the rank of X. This results in matrices Wx, Wy, A%, Ay, P, and C
all having k£ columns.
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The regression from the latent variables oy towards Y is given by

k
oy iy ;
Y=Y YUYiyi L yM — AvC 4 Ey, (5.28)
i=1 (XY’L(XYﬂ

where Ey = Y**1 is the part of Y that is not predicted by the first & PLS
components (the misfit).
Thus, the entire PLS regression formula is given by

1

p— ! —
Ypred = WX (P/WX) C/:| Xpred = |:C (W/XP) ! W/)(:| Xpred-

Dual

Let us define Ax as the matrix containing ox,; as its columns. Now we
use the properties in Egs. (5.26) and (5.23), showing that Wx = X'Ax
and X*"1Wx = 0 leading to WxP o« WiX'Ay = A5KxAy, where
the proportionality is an equality up to a diagonal normalization matrix
A%, Ay on the right-hand side. Furthermore, using Eq. (5.24), it is seen that
Ey Ay = 0 and thus (from Eq. (5.28)) that with the same diagonal norma-
lization matrix as proportionality factor (which will thus be cancelled out),
C x CAL, Ay = Y'Ay. This leads to the complete dual form of regression-
PLS:

yPred = |:Y/AY (AIXKxAy)_l A/XX:| Xpred~

Note that the entire algorithm only requires the evaluation of kernel func-
tions, since XxXprea also consists of inner products only (or equivalently kernel
evaluations k(-,-)). Using this fact, the solution can be cast in the standard
form of kernel-based pattern recognition algorithms:

Ypred = Zﬁik(xi7xpred)7 (529>

where B, are the columns of B = Y'Ay (AxKxAy) " Ak.

5.5 Classification: Fisher Discriminant Analysis (FDA)
Definitions

We first define some symbols necessary to develop the theory. Since these
quantities are defined in general for uncentered data, first this general defi-
nition is given. Afterwards, when appropriate the simplified formula will be
provided for centered data. The latter formulas are the ones used in this sec-
tion.
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e Mean (n is the total number of samples x;)
1
m = n Z X;.
?

e Class mean (Sy is the set of samples belonging to cluster k, and ny = |Sk|,
the number of samples in cluster k; thus n =", n)

1
m; = ;.
k ne Z X5
11X, ESk
e Total scatter matrix
St = Z Z (x; —m)(x; — m)’.
k x;ESk
e Within-class k scatter matrix
S, = Z (x; — myg)(x; —myg).
x; ESk

e Within-class scatter matrix
Sw =) Sk (5.30)
k

e Between-class scatter matrix

SB = an(mk — m)(mk — m)'.
k

For centered data (as we will assume in the remainder of this section), we
get:

m =0,

1
n ;nkmi = 07

Sr=)Y_ Y xixj=XX=8xx,

k x;€ES8k

SB: E nkmkmz.
k

Finally, the following properties hold:

e ST =S+ Sw.
e When the number of classes is 2, they can be indexed as + and —, and:

Sp = n+nn_ (my —m_)(m; —m_)". (5.31)
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5.5.1 Cost Function

Fisher discriminant analysis (FDA) [10] is designed for discrimination bet-
ween two classes, indexed by + and —. It finds the direction w along which
the between-class variance divided by within-class variance is maximized:

w/'Spw

W = argmax,, (5.32)

W/ Sww '
Note that when w is a solution, cw with ¢ a real number is a solution too.
In fact, we are not interested in the norm of w, but only in the direction it is
pointing at. Thus, equivalently, we could optimize the constrained optimiza-
tion problem

w = argmax,w' Spw (5.33)

s.t. w'Sww = 1.

5.5.2 Primal

This optimization problem can be solved by differentiating the Lagrangian
L(w, 1) =w'Sgw — uw’Sww with respect to w and equating to zero:

VwLl(w,pu)=0
= Spw = uSww. (5.34)

This is again a generalized eigenvalue problem, with both S and Sw symme-
tric and positive semidefinite. We are interested in the dominant eigenvector.

Another way to get the same result is by maximizing the correlation be-
tween the data projected on a weight vector w with the labels y (for each
sample being 1 or —1, depending on the class the sample belongs to) of the
corresponding data points. This is in fact CCA, applied on the data vectors
on the one hand, and the labels on the other hand:

0 Sxy wx \ A Sxx O WX
Syx 0 wy ) 0 Sy, wy )’
from which wx can be solved as
Sxxilsxys;}}syxwx = )\2WX.

To see that wx = w, note that for centered data X (so m is made equal
to 0 by centering), Sxx = St = Sg + Sw, Syy = n is a scalar, and Sxy =
X'y = nymy; —n_m_. One can then show that SxyS;}Syx = - Qp,
and thus

4 _
n;:Qn Spwx = )\2(SB + Sw)Wx
/\2
4n;2n, Y

= Sgwx = 2Swa.
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This is exactly the Fisher discriminant generalized eigenvalue problem, with
— A2 —
B= an i e and w = wx.

n2

5.5.3 Dual

Define y as (y+); = dy,,1 and y_ as (y—); = d,,,—1 (where we use the Dirac
delta d; ;, which is equal to 1 if i = j and to 0 if ¢ # j). The dual can again
be derived by using w = X'ai:

Spw = uSww
0 Egs. (5.30), (5.31)
e X(my —m_)(my —m_)'X'a

= uX Zk:ﬁi inesk (x; —my)(x; —my)'X'o

I
/
n4n_— Y+ _ Y- Y+ _ Y-

n KX (7l+ 1’7,7) (7l+ 1’7,7) KX(X
= nKx (I - nﬂ Yy — - y—y’_) Kxo
I
Mo = uNa,

where we substituted M = "*"~ Kx <y+ — y’) (y+ - yf) Ky, and N =

n4 n_ n4 n_
Kx (I - n1+ yayi = y-y’_) Kx.
For centered data as is assumed here, the projection of a test point Xest
onto the FDA direction corresponding to o can again be computed as

n
Z aik(xi7 Xtest)~
i=1

5.5.4 Multiple Discriminant Analysis (MIDA)

While Fisher discriminant analysis is originally designed for the two-class
problem, optimization of the very same cost function (Egs. (5.32) and (5.33))
leading to the same generalized eigenvalue problem in Eq. (5.34) can be used
for solving the multiclass problem (e.g. [9]). In that case, a few generalized
eigenvector may be necessary to do the classification (typically the number of
clusters minus one).

The intuition behind this is to maximize the total between-class covariance
for a certain amount of within-class covariance. This amounts to maximizing
the signal-to-noise ratio present in the projections of the samples onto the
discriminant directions. Here, the distance between the projected clusters is
the signal one is interested in, and the variance in the projections of the



160 Tijl De Bie, Nello Cristianini, and Roman Rosipal

clusters is the noise. Interestingly, it has been shown that PLS also maximizes
the between-class covariance when computed on a class indicator matrix Y,
however, this is done without considering the within-class covariance [4, 20].
Deriving the dual version of MDA can be done in a similar way as for FDA.

5.6 Spectral Methods for Clustering

Clustering is a standard problem in pattern recognition: identify groups of
samples that supposedly belong to the same class, without any information
on the class labels (unsupervised). The problem is often solved with classical
algorithms of which the K-means algorithm is the best known. Most of these
algorithms are designed for data with Gaussian class distributions. In many
cases, however, this is an oversimplification. Furthermore, many well-known
algorithms are based on a nonconvex optimization problem.

Therefore in recent years a significant amount of research has been carried
out in the field of spectral clustering (SC) [2, 5, 8, 17, 18, 22, 26, 32]|. The
clustering problem is relaxed or restated, leading to efficient algorithms with a
simple eigenvalue problem at the core. Furthermore, in general no Gaussianity
assumptions are made.

Spectral clustering algorithms generally consist of three components: the
computation of a suitable affinity matriz, expressing the similarities between
the samples; an eigenvalue problem based on this affinity matrix, returning
(eigen)vectors that reflect the cluster structure in the data; and a final step
performing the actual clustering, based on these eigenvectors. In the next three
subsections we will briefly go into each of these aspects.

5.6.1 The Radial Basis Function as the Kernel

Whereas standard clustering methods assume Gaussian class distributions (or
make similar assumptions on the distribution), spectral clustering methods in-
tend not to do this. In order to achieve this goal, the use of the Euclidian inner
product as a similarity measure between the samples is avoided. Instead, the
kernel trick can be used to implicitly compute an inner product between fea-
ture maps of the samples. More specifically, in spectral clustering algorithms,
most often the radial basis kernel function (RBF kernel) is used as similarity
measure:

C_x |2
k(xi,x;j) = exp (— i =l ) .

202
Note that for ||x; — x;|| < o, the RBF kernel is k(x;,x;) ~ 1 — ”"i";f“2.
Thus, locally, the RBF kernel is related to the Euclidian metric. On the other
hand, for two points at a farther Euclidian distance from each other (that is,
|x; —x;|| > o), we have that k(x;,x;) =~ 0. The result is that the algorithm
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will not see if a group of points with a ‘diameter’ considerably larger than
o is Gaussianly distributed or not. Only for samples that are relatively close
to each other, it will give an indication of how close exactly they are. This is
desirable: it allows us to cluster samples that are stretched out in a nonlinear
shape.

Even though, in spectral clustering methods, very often an RBF kernel is
used, it is important to know that the similarity measure does not have to
be positive definite; however, for most spectral clustering variants (such as
the ones described in Sects. 5.6.2 and 5.6.2), it has to be nonnegative (which
is indeed true for the RBF kernel). Because of the absence of the positive
definiteness requirement, the matrix containing the similarities between the
samples is usually called the affinity matriz in this context, instead of the
kernel matriz. Besides the RBF kernel matrix, other affinity matrices are
used in literature, such as the k-nearest neighbor affinity matrix. However, for
uniformity in this chapter, here we will continue to use the term kernel matrix
instead of affinity matrix, and denote it by K.

As opposed to the techniques discussed in the previous sections, in spec-
tral clustering, usually the kernel/affinity matriz is not centered. In case it is
centered, we will denote this explicitly, here, by using K..

5.6.2 Which Eigenvectors?

We will only give a brief overview of the methods available in the literature. All
of them compute the eigenvectors of a (generalized) eigenproblem involving
K. We will outline two methods that represent a relaxation of a discrete
optimization problem on a graph, and another method based on the alignment
between two matrices. Every method described is derived for the two-cluster
case. However, they appear to be extendible towards multicluster problems,
by taking more than one eigenvector (often k — 1 when there are k clusters).

Normalized Cut Cost

Shi and Malik [26] start from graph theoretic concepts. They relax the problem
of finding the minimal normalized cut cost (NCut) of the graph, where nodes
of the graph correspond to samples and the (positive) kernel entries are the
weights (affinities) of the edges in between the nodes. Intuitively, an NCut is
the total affinity between the clusters, normalized by the total affinity of each
cluster with the entire sample. Mathematically, this is

Zi:j:yi:_yjzl Kij Zi:j:yi:_yj:_ Kij
Zi:yizl Zj Kij Zi:yizfl Zj Kij

Thus, one looks for a label assignment y; € {1, —1} such that NCut(K,y) is
minimized.

NCut(K,y) =
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This problem can be proven to be equivalent to minimizing §/(§5?)§
subject to g; € {1,—y}, and y¥D1 = 0, for some y and for D = diag(K1).
When the discrete vector y is replaced by a continuous vector o;, so the
problem is relaxed, an approximation for the unrelaxed problem solution can
be found by solving the generalized eigenvalue equation:

(D -K)ao= Do s.t. o/D1=0,

where one is interested in the vector o corresponding to the smallest eigenvalue
A while satisfying the constraint. One can show, however, that the constraint is
satisfied for all of the generalized eigenvectors except for the one with smallest
eigenvalue A\ = 0 with corresponding generalized eigenvector oo = 1. Thus, one
searches for the eigenvector with the smallest nonzero eigenvalue.

Average Cut Cost

Another approach discussed in [26] is based on a relaxation of the minimum
average cut cost (ACut) problem. The ACut cost is the sum of the (positive)
kernel entries corresponding to pairs of points belonging to different classes,
normalized by the number of samples in both classes:

Ziﬂ'iyi:—yj:l Kij i Zi,jiyi:—yj:—l Kij
)
Zi:yizl 1 Zi:yi:—l 1

where again y; € {1, —1}. This is similar to the NCut problem, and gives rise
to a similar eigenvalue problem to be solved after relaxation:

(D -K)a = Ao

ACut(K,y) =

The eigenvector o corresponding to the smallest nonzero eigenvalue will reflect
the cluster structure of the data.
Alignment-Based Approach

The alignment-based method (proposed in [8]) is a relaxation of the problem
to find a label assignment that maximizes the alignment between the label
matrix and the centered kernel matrix K.:

max vKey sty e{l,-1}.
Since this problem would be combinatoric again, it is relaxed by replacing the
discrete vector y with a continuous vector o
max oK. st o) =n
for n samples. This corresponds to solving the eigenvalue problem:
K.o = Aa.

Here the dominant eigenvector contains the relaxed labels as its entries.
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5.6.3 What to do With the Eigenvectors?

We have now discussed how to compute eigenvectors that reflect the clustering
in some way. There are different methods to extract the final clustering from
these eigenvectors. In general, one constructs a matrix A = (o0 - 0y)
containing the eigenvectors as its columns. Then some traditional distance-
based clustering is performed on the rows of A in this k-dimensional space,
sometimes after normalizing all rows of A to unit length. For further reading
on different possible approaches we refer to the literature, see e.g. [18, 22, 36].

5.7 Summary

Table 5.1 contains the cost functions optimized for most of the algorithms
described in this chapter. Tables 5.2 and 5.3 give the primal and the dual
eigenproblems to be solved in order to optimize these cost functions. These
tables contain columns M, N, and v, each indicating which matrices and
eigenvector to use in the generalized eigenproblem of the form Mv = ANwv.
Given this, we still need to know how to project test data on the directions
found by solving these generalized eigenproblems. This is summarized as:

e projection of a test sample onto weight vector in primal space w: W' Xcst -
e projection of a test sample onto weight vector in feature space correspon-
ding to the dual vector o: D" ; ok (X, Xgest)-

5.8 Conclusions

Among the algorithms discussed in this chapter, there are a number of classic
methods from multivariate statistics, such as PCA and CCA; some methods
that are virtually unknown in that field but are hugely popular in specific
application domains, such as PLS; and finally some methods that are typi-
cally the product of the machine learning community, such as the clustering
methods presented here, and all the extensions based on the use of kernels. De-
spite coming from so many different fields, the algorithms clearly display their
common features, and we have emphasized them by casting them in a common
notation and with a common language. From those comparisons, and from the
comparison with the family of kernel methods based on quadratic program-
ming, it is clear that this approach based on spectral methods can be consid-
ered another major branch of the KM family. The duality that emerges here
from SVD approaches naturally matches the duality derived by the Kuhn-
Tucker Lagrangian theory developed for those methods, and the statistical
study demonstrates similar properties as shown in [27] and [28].

Some properties of this class of algorithms are already extremely appealing
to machine learning practitioners, while others still need research attention.
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Table 5.1. Cost functions optimized by the different methods

Maximize variance w'S)/(xw
w'w
PCA w'Sxxw s.t. |[w|* =1
Minimize residuals (I — ww)X||%
/
. . s
Maximize correlation N va;’zv xx\?:::syy wy
CCA Maximize fit WxSxywy s.t. HXWXH2 = HYWYH2 =1
Minimize misfit [[WxX — wh Y|? st | Xwx|]? = |[Ywy|? =1
.. . wi Sxywy
Maximize covariance W wx /Wl wy
PLS Maximize fit wxSxywy s.t. HWXH2 = HWYH2 =1
Minimize misfit [WiX — wi Y| s.t. |wx|? = [[wy|> =1
’
Maximize between-class to vv:/ss BY
WW
FDA  within-class covariance w'Spw s.t. w'Syww
. Diguy=—vy=1Kij | Xy =—y;=—1Kij
SC1 Normalized cut cost g1 5 Ki EEiﬁyi:*I ¥, Kij
. K. . K.
ijiy=—y;=1"%4j L,JY ==y j=—170
SC2 Average cut cost Sy 1 + Cigmi 1
SC3 Alignment K.

Table 5.2. Primal forms (not for spectral clustering algorithms)

M N v
PCA Sxx I A%
0 S S I 0
RCCA XY XX + 7y Wx
Syx O 0 Svy +91 Wy
0 S I0
PLS x wx
SYX 0 01 Wy
FDA Sp Sw w

PLS, for example, is designed precisely to operate with input data that are
high-dimensional and present highly correlated features, exactly the situation
created by the use of kernel functions. The match between the two concepts
is perfect, and in a way PLS can be better suited to the use of kernels than
maximal-margin methodologies. Furthermore it is easily extendible towards
multivariate regression. On the other hand, one of the major properties of
support vector machines is not naturally present in eigenalgorithms: sparse-
ness. Deliberate design choices can be made in order to enforce it, but the
optimal way to include sparseness in this class of methods still remains an
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Table 5.3. Dual forms

M N v

PCA K I o
0 KxKy Kx? +7Kx 0 ox
KyKx 0 0 Kv?+ 7Ky Oy

0 KxK 10
PLS XmY
KyKx 0 01

nyn_ y y—
SRR (- 0)

RCCA

'VL+ n_
FDA (Y=Y ) Kx  Kx(I-"7" Y7 )Kx @
sC1 D-K D o
SC2 D-K 1 a
SC3 K 1 a

open question. Another important point of research is the stability and sta-
tistical convergence of general eigenproblems for finite sample sizes. For work
on the stability of the spectrum of Gram matrices, we refer to [24] and [25].

The synthesis offered by this unified view has immediate practical conse-
quences, allowing for unified statistical analysis and for unified implementation
strategies.
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6.1 Geometrical Aspects of Image Processing

“Image processing” is ill defined, but is perhaps best understood as a disci-
pline defined by the totality of operations people apply to images that yield
again images as their result. This conveniently distinguishes image proces-
sing from “image analysis”, “image interpretation”, “object recognition” and so
forth. Images are thus understood only in a structural, syntactical, but not
semantic sense. Structural analysis is a sine qua non for semantic analysis or

interpretation.

6.1.1 What are “Images”?

There exist two major definitions of images in the literature. In the prag-
matist’s view images are discrete data structures. A rectangular matrix of
nonnegative numbers (typically “bytes”, i.e., in the range [0, 255]) is the pro-
totype. Such images tend to be squarish, and typical sizes are 32 x 32 (an
“lcon”) to 4096 x 4096 (presently a very “large” image). In the more sophis-
ticated view images are fields over some base space. For instance, everything
visible from a point is a radiance (in the simplest case a nonnegative radiant
power per area and per solid angle) seen in some direction (base space S?).
The field could be more complicated (we might include spectral density and
state of polarization, for instance) but typically is a scalar physical quantity
with a dimension that is incompatible with the dimensions of the base space.
A common definition of an image is as a cross section I(z,y) of E? x RT, the
nonnegative reals over the Euclidian plane. Here E? is conventionally known
as “the image plane”, and I as “the intensity”.

The former definition makes sense in many settings, but I will not consider
it image processing proper (“pixel pushing” is a term one sometimes hears).
My reason is that “images” in common understanding have nothing to do with
discrete data structures. One image may be viewed on a CRT (at 72 ppi, the
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“pixels” having byte values) or on paper from a laser printer (at 600 dpi, the
“pixels” being black (pigment dot) or white (paper base) as the case may be),
and these representations [41] may be considered “the same”. Pixels are, or
at least should be, irrelevant. It is like arithmetic on a computer: The user
should be oblivious of the actual representation of numbers in the machine.
Likewise, image processing is the domain where the pizels are irrelevant.

The latter definition at least does not mention pixels at all. Although
this is as it should be, there are other severe problems with it. One is that the
physical dimensions of the base space and the intensity domain are incommen-
surable. This means that the group of Euclidian similarities cannot possibly
be the group of similarities of image space I. Thus the use of Euclidian diffe-
rential invariants in image processing must be considered nonsensical, albeit
very common in the literature. Another problem is that the image in this
definition has infinite resolution and thus cannot be known. Anything real (I
mean knowable by man) has a finite number of degrees of freedom. Thus the
definition assumes a God’s Eye perspective. We need an operational definition:
The intensity at a given point of the base space can be sampled at a certain
(arbitrary) resolution, and only such samples are real. The resolution may be
as high as you like, but it necessarily has to be finite. The resolution (I will
speak of the “inner scale” of the image) is an essentially arbitrary choice on
the part of the image processor, arbitrary in the sense of not given by nature.
This has numerous important consequences, although this goes often unre-
cognized. In the literature one often considers the resolution as given by the
image (then pixel pushing turns into a vice), or one uses a finite resolution be-
cause forced to (in order to “regularize” the “ill-posed” computations [39]) but
tries to get at the “real” (at infinite resolution) structure. A common example
is the differentiation of images. It is not so much that images are nondifferen-
tiable functions, it is that they are not functions at all. Only derivatives at a
certain scale make sense (and then differentiability is not an issue), the scale
being arbitrary, that is to say, your choice. At any finite resolution the image
(as an ideal, i.e., before being sampled and turned into something real) is a
differentiable function by design (see below).

6.1.2 What is “Image Processing”?

In image processing one operates on images to produce other images. Some
operations are so extremely common that they often escape notice. For ins-
tance, when you print an image seen on the screen, when you view an image
on different screens, and so forth, you perform image processing whether you
know it or not. Sometimes you perform operations on the image that somehow
do not seem to change it. For instance, when you adjust the position of an
image on the CRT screen or adjust the brightness of the display you merely
“translate” the image in I. Likewise, when you print an image at a different
scale or use “gamma transformations”, such as different grades of photo paper,
“contrast” control of your display, you merely “scale” the image in I, and



6 Geometric Framework for Image Processing 173

so forth. When you use “edge burning” in the darkroom [1] you apparently
“rotate” the image in I, and so forth. In all those cases it seems that only
“congruences” or “similarities” (both to be defined formally) are concerned.
Cases of “true” image processing are also common in the visual arts just
think of solarization, psychedelic coloring, and so forth. In scientific work one
might produce “edginess” images, “zero-crossingness” images and the like.

6.1.3 What Has Geometry To Do With It?

Structural analysis of multiply extended continua is synonymous with geo-
metry. The image space I is intuitively a homogeneous space because we can
easily imagine the “free movement” of configurations in the space. In order to
understand the structure of I we have to formally define its groups of con-
gruences and similarities. An exhaustive study of global and local invariants
then goes a long way towards understanding image structure. Of course, this
is a chore of pure geometry.

Global Geometry

Certain global entities are immediately implicated as invariants because they
are invariant under manipulations of the size, position, rotation, brightness
and gamma controls of your display unit. The images I(x,y) = Ipexp(ax +
By) are examples. They are “intensity gradient” images, and fiddling with
the controls merely changes their steepness, brightness and direction. Other
examples are images of the kind I(z,y) = Ipexp[(x — a)(y — b)]. These are
remarkable in many respects because of their behavior not only under fiddling
with the aforementioned knobs of the display, but also the focus control: These
images are also invariant under changes of inner scale (see below).

I will show that the gradients are to be considered “planes” in the geometry
of I, whereas the latter type of images are “Clifford planes”, that is, surfaces
that contain two mutually transverse pencils of metrically parallel (to be ex-
plained below) lines. This is typical for the geometry of I; in E? such surfaces
would have to be generic planes.

Geometry of the “Deep Structure”

With “deep structure” I mean the structure as a function of resolution. This is
an important problem in practice because many structural elements of images
only occur at certain limited ranges of inner scales. This is intuitively clear
when you consider a “powers of ten” type of scenario [24], where you see a
distant scene, zoom in to see a forest, a treetop, a leaf cluster on a branch,
a leaf, and so forth. Sometimes you “don’t see the forest for the trees”; in
order to see something you have to decide on the relevant inner scale. As you
change your focus (inner scale) the image structure changes and the structure
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of these changes is itself a matter of great interest. Its study is the topic of
“deep structure”, another intrinsically geometric topic.

Human observers are uncannily apt at focussing on the right scales, al-
though this is a moot point as we obviously have an incomplete idea of what
we miss. Increasing resolution is generally considered beneficial (witness the
popularity of microscopes and telescopes), whereas decreasing resolution is
mainly practiced by visual artists in order to better see the composition of
a scene. Indeed, a minifying glass is just as revealing as a magnifying glass.
The image processing literature has only scratched the surface of the topic of
“selecting the right scale” [23].

Local Geometry

Any point of an image is an edge point (or “corner” point, or ..., you name
it) when defined as the finite activity of edge operators, although some points
carry more “edginess” than others. Thus the very epithet “edge detector” is
void: At any generic point the image is anything you want it to be (i.e., you
run an operator for). Thus feature detectors have no proper place in image
processing. Features are semantic entities (interpretations), not syntactic ones.
Here, (in contradistinction to the bulk of the literature), I talk of “local ope-
rators” instead of feature detectors. The “meaning” of the output of a local
operator is not intrinsic to it, but is dependent upon the context and the task
at hand.

Multilocal Geometry, “Outer Scale”

In “multilocal” geometry it is convenient to define an “outer scale” to com-
plement the notion of “inner scale”. The inner scale is the resolution and is
intuitively thought of as the “size of the points”. Many algorithms imply a
“region of interest” in the sense of the smallest region such that only points
within the region of interest enter the computation. The size of that region
of interest is the outer scale. Here is an example: We think of the points as
circular disks in a densest, thus hexagonal, packing. In order to estimate the
Laplacian of the intensity we would use a region of interest composed of seven
points, the point at the fiducial location and its six nearest neighbors. We esti-
mate the Laplacian as proportional with the difference of the intensity at the
fiducial point and the average intensity over the region. Thus the outer scale
would be three times the inner scale. Now suppose that we had a second-order
jet of differential operators at any point, then we could perform the compu-
tation at a single point! Thus one may trade the complexity of the structure
of a point (the order of the jet of differential operators) with the extent of
the outer scale. For a base space E? the nth-order jet has (n + 1)(n + 2)/2
degrees of freedom, thus the diameter of the region in the purely multilocal
(zeroth-order jet) representation is asymptotically roughly the order times the
inner scale.
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Fig. 6.1. A point (left) and another point (center). At right is a locally disordered
region that implements two points at the same location in base space but different
intentities (“parallel points”, see below)

There are many other useful forms of multilocal geometry, of which we
single out one other example [12,13]. Consider a circular region centered at
a given point. Let the diameter of the region (the outer scale) significantly
exceed the inner scale. Then the area contains many independent samples of
intensity. Suppose we ignore their spatial order, then we are left with the local
intensity histogram. When we repeat this for all points we have a histogram-
valued image. Since histograms are invariant against permutation of the sam-
ples all these histogram valued images agree up to local scrambling, which is
why I refer to them as “locally disorderly”. Such structures have many im-
portant applications. Since the histograms are density distributions in the
intensity domain, such images do not correspond to surfaces z(z,y), but to
three-dimensionally extended “clouds” P(x,y, z) in image space. See Fig. 6.1
for the simplest possible and Fig. 6.2 for a more interesting example.

The histogram itself is, of course, also a “deep structure”, since there exist
a continuous family of histograms at different bin widths. In changing the
bin width all the aforementioned constraints that should apply to a proper
deep structure apply. What is especially interesting about histogram-valued
images is that a single location can represent more than one value of the
intensity (because a “point” may contain many “pixels”). Thus it may make
sense to say that the image is both white and black at a certain location,
and a strongly bimodal histogram indeed suggests such an abuse of language.
This is similar to human amblyopic or eccentric vision in which observers can
easily distinguish between average gray surfaces and black and white striped
surfaces, but are at a loss to make out whether the stripes are horizontal or
vertical (or whether the surface is checkered, rather than striped, etc.).

With this kind of structure we arrive at a representation of the image
that is a number of intricately interlocked deep structures, often called “scale
spaces”. The “scales” involved are of various nature: the classical inner scale,
that is, the rock-bottom spatial resolution; the bin width, that is, the resolution
in the intensity domain; and the outer scale of the disorderly representation,
which is the inner scale of the histogram-valued image. In this representation
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Fig. 6.2. A histogram-valued image. The total range of the histogram is represented
by means of cuboids whose tops and bottoms are located at the local maximum and
minimum, respectively, of the intensity

the extremes are “the” image with a definite intensity at every point (then the
histogram degenerates into a single bin!) and “the” histogram of the whole
image (then the “image” has been shrunk to a single point!). In general one
has an image with a certain inner scale (the ultimate spatial resolution), a
certain outer scale (the size of the region over which local histograms are
collected) and a certain bin width (which sets the inner scale, or resolution,
for the local histograms). In the general theory all these entities are described
within a single, unified formalism.

6.2 Theory

Many threads of theory are already well established, but an overall framework
is still sadly lacking. Here I will not spend much discussion on known topics, I
will merely highlight the key principles (from a fundamental perspective, that
is, but the literature often focusses on details that might well be ignored at a
first, global investigation) and indicate how the various threads hang together.
A few topics are much less well known, and I will devote proportionally more
discussion on them.
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6.2.1 Image Space

Image space I can hardly be studied without specifying the inner scale in
advance. In this section I assume the inner scale has been settled. Then the
images are differentiable (see below) cross sections of the “intensity” dimension
over the base space (by construction).

The Base Space

The nature of the base space is not too important here. Just for ease of
exposition I will consider two instances, the Euclidian line and the Euclidian
plane. Both are very important in practice. The base space E' occurs with
linear CCD arrays in scanners and many industrial imaging applications, as
well as in spectroscopy, and so forth. The base space E? is, of course the
prototypical example (although an “image” typically covers only a rectangular
region I2 C E?).

The Intensity Domain

The “intensity domain” can be of very various nature. For this chapter I only
consider a scalar, nonnegative quality; thus the intensity domain is R, at
least if one abstracts from the physical dimension. However, that the intensity
domain is incommensurable with the base space is crucial [27]. The literature
is rife with nonsensical instances due to neglecting this fact.

Can we find a “natural” representation of the intensity domain? Indeed
we can. Such a representation should (at the very least!) be invariant against
changes of the physical units. For a nonnegative entity this implies that one
should use a logarithmic representation, z = log(I/Iy), and consider the z-
dimension to be an affine line. Notice that z is dimensionless because I/l
is. A change of units would imply I’ = AI, thus 2’ = log(I'/I}) = z. A
change of the reference intensity Iy to I} would imply 2z’ = log(I/I}) =
log(I/Iy x Ip/I}) = z 4+ a, which is a mere shift of origin. Moreover, one
would like it to admit of a uniform prior probability density in the absence
of all prior knowledge. Suppose we sample from a two-parameter distribution
P(dz|p,0) = h((x — p) /o) dz/o and are given a sample {x1,...,x,} (for p a
location, o a scale parameter), and we have to estimate x4 and 0. What is the
prior f(u, o) dpdo that expresses total ignorance? Clearly complete ignorance
implies invariance with respect to arbitrary scalings and shifts. Consider the
priors f, g assigned by two observers. You have f(u,0) = ag(u,o) (a a sca-
ling factor), whereas objectivity implies that f = g. The general solution is
f(u,0) = (const)/o, aresult derived by Jaynes [18] that is known in statistics
as “Jeffreys Rule” [19]. This latter finding fits in very well with our earlier con-
siderations based on the physics. Notice that a gamma transformation merely
scales the z-representation, for z’ = [log(I/Iy)]’ = log(I7 /1)) = 7z, and thus
conserves constant probability densities. When the z-dimension is treated as
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the affine line A' (no point singled out as an “origin”, and no “unit” distance)
we have solved the problem of representation. In this chapter I will use z for
the “log-intensity”. (Notice that we now consider points on the full line A!
instead of the halfline R™.)

6.2.2 Scale Space

An image at different scales is like an atlas [29]: When you page through
the atlas you see the (same) city at various scales. On a world map the city
may fail to be indicated at all, on a finer scale it may be indicated by a
conventional sign (a circle, say) without internal detail, on a still finer map
you may see the structure indicated in a “generalized” manner, on a still finer
scale the generalization becomes less severe and the structure splits up into
substructures, and on the finest scale you may be able to see individual blocks,
parks and major throughways, and, of course, we can image this process to
continue indefinitely. A few general properties are immediately evident. For
instance, everything that is on a coarse map can be traced to a finer map but
not vice versa (see Fig. 6.3). In order to make a coarse map; you need not
even refer to the finest map, you can start at any finer one.

A totally general “scale space” [40] for images should be shift, scale and
rotation invariant (no place, size or orientation being “special”), it should be
build by a linear process (nonlinearity implies specialization too), and the
operation of generalization (called “blurring” here) should yield a semigroup.
Thus one arrives at convolution with a rotationally symmetric kernel that
reproduces itself under convolution. Clearly the kernel should be nonnegative
throughout. It is tricky to formalize the notion that “blurring should only
destroy, not generate detail”. The best way is to insist that the height of
maxima should decrease, while that of minima should increase under blurring.
This guarantees that extrema are not generated by blurring for linear images,
though not for images with a higher dimensional base space. Pairs of critical
points [26] can be generated by blurring, though they tend to live a short life
(blurring even more kills them). It can be shown that the unique kernel with
the desired properties is the Gaussian kernel [9,14].

Since the Gaussian kernel is the Green’s function of the diffusion equation,
the blurring can be described as a diffusion process Az(z,y;t) = z¢, where ¢
denotes the scale parameter. This neatly illustrates the semigroup property.
Notice that (with to > ¢1) one has z(x,y, t1) —z(z, y; t2) = fttf Az(z,y;t)dt, in
particular z(z,y,t) = [, Az(z,y;t) dt + z(z, y; 00). Thus all the information
(except for z(z,y;00), which is typically a constant) is already contained in
the Laplacian, see Fig. 6.4). The Laplacian of an image can be thought of as
an “infinitesimally thin slice” of scale space. This is of interest because (as I
will show below) there is no intrinsic (local) information in the orders below
the second, as both the level and the gradient can be changed by congruences
of image space at any given point.
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Fig. 6.3. An image (left) and two representations at two different inner scales
(second and thirdly from left). The scales differ by a factor of 8. Notice that you can
find corresponding locations in these images, but only one way (the “atlas principle”).
On the right a three-octave scale space slice between the inner scales of the examples

One may link points at different scales by linking two points at infinitesimal
close scales when they agree in their log-intensity and are as close together
(in the base space) as possible. This generates a field of directions whose
integral curves form the desired linking structure. It can be shown that this
structure has singularities [6] such that structures collapse at some critical
scale the linkage containing branching points. This is what we saw in the
atlas example, when the scale becomes too coarse the structure of the city
collapses to a point and has to be indicated with a conventional sign. For
instance, look for the eyes in the third figure from the left in Fig. 6.3: There
are none! Yet there are on the finer scale. They simply collapsed at some scale.

6.2.3 Image Tangent Spaces

The “tangent space” of the “surface” {z,y, z(x,y)} (I take the example I =
E? x A') at the point {xo,%0,20} is spanned by the tangent vectors in the
coordinate directions, that is to say, {1,0, z4(x0,%0)} and {0,1, z,(x0,y0)}-
Thus we have a natural interest in derivatives of z(z,y). When we are inte-
rested in higher order properties (like curvature) we have to consider higher
order derivatives too. In general we need to consider the “nth-order jet” at any
point.

A tangent vector like {1,0, 2z, } is a “first-order directional derivative” (in
the a-direction). It can be understood geometrically as the “velocity vector” of
the equivalence class of all arc-length parameterized curves that are tangent
to {1,0, z,} at the fiducial point (as I will show later x is the arc-length).
Alternatively, it can be understood as a “bilocal” operator as follows: A “point”
is a local operator that acts upon a scalar field to produce a scalar, the value
of the field at the point. A point operator is conceived of as an aperture (slit
of a monochromator, photosensitive area of a CCD array, etc.) that collects a
“flux” in order to produce a sample. The term point is very apt because there
is no way to differentiate spatially between localities inside the aperture. In
Euclid’s terms “a point is that which has no parts”. Notice that this in no
way constrains the size of the point. Points come in all conceivable sizes. The
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size is a choice of you. A bilocal operator can be constructed from two point
operators separated at some finite distance. We wire them up such that the
pair yields a single scalar that is the difference of the point samples divided
by their separation. When the separation is very small its actual value turns
out to be irrelevant. In the limit we obtain a bilocal operator no larger than
the point itself, and we may as well call it a “first-order directional derivative
operator”, or a “structured point”. It is best to think of such operators as
little machines whose internal structures are hidden from us. They take a bite
from the image and spew out a number, which is the value of the directional
derivative of the image at that location in that direction.

Since these operators implement directional derivatives ezactly [33], they
span a linear space (the tangent space at the point). Thus arbitrary linear
combinations of outputs of such operators are equivalent to the output of some
single operator. In I? a basis of just two operators suffices to mimic operators
in arbitrary directions. The literature has picked up on that with the notion of
“steerable filters” [10]. However, this notion is far more limited in its conceptual
scope, it is essentially little more than an engineer’s trick to compute arbitrary
directions cheaply. The geometrical notion of the tangent space at a point is far
richer in its implications. It indicates an ezact isomorphism between machine
implementation and abstract differential geometry.

Fig. 6.4. Two different representations of the fourth-order jet. On the left is a
Cartesian representation, on the right is a polar representation. The polar repre-
sentation can be obtained by linear combination of the Cartesian representation of
that order and vice versa. Many different representations are possible and sometimes
convenient. All representations span the same space. The purely directional opera-
tors (first items of the rows in the Cartesian representation) also span the space if
one selects a sufficient (order plus one) number of orientations. Then the number of

distinct types equals the order of the jet. Such (nearly) “Gabor filters” are popular
in many circles [7], though for irrelevant reasons

It works exactly similarly for the higher order differential operators. The
nth-order jet is a bunch of such machines, all stationed at the same location,
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all with the same resolution (the inner scale), only with various orders and
directions (Fig. 6.4). For the nth-order jet we need (n + 1)(n + 2)/2 indepen-
dent machines. In a typical image processing application one limits oneself to
n = 2 and thus has a six degrees of freedom representation of the image at
any location, roughly a “2 x 2 to 3 x 3 pixels” approximation to the image
structure at that location, that is pretty coarse. However, there is no ob-
vious reason not to include higher orders. The endemic fear of differentiation
in the image processing community derives from an abortive understanding
of what differentiation and inner scale mean. When you represent an image
through local jets you may subsample it because each “point” is structured
and represents not a single but roughly n?/2 degrees of freedom. (Namely
>o(i+1) = J(n+1)(n+2) degrees of freedom, where (i + 1) is the number
of terms of order 7 in a Taylor development of the intensity at a point.)

6.2.4 Definition of Geometrical Loci

Geometrical loci are commonly defined through constraints, e.g., the con-
straint £ = 0 defines the y-axis of E? fitted out with a Cartesian frame.
Another way to define loci is the ostensive one: to draw a line, etc. Clearly,
the ostensive manner will not work in image processing (although often done!)
because it means the ex machina introduction of an additional image instead
of processing the given image. There are problems with the former method too
though, for x = 0 would define an entity known at infinite resolution, which
clearly cannot be. In fact, the constraint x = 0 itself is only ideal. Instead,
one might specify z(z,y) = exp —(22/20?) as an alternative. The log-intensity
of this “image” is almost everywhere near zero, except near the points z = 0
(the original constraint!), though with a finite width given by the inner scale
(of the constraint) o. Such a definition has the additional advantage that the
constraint itself is an image. The major point is that the unrealistic infinite
resolution has been circumvented. The image may be considered as a “soft” or
“blurry” constraint, and its log-intensity specifies the degree (on a zero-to-one
scale) to which the constraint is satisfied.

Many entities of interest in image processing are points, curves or areas. At
finite resolution these must appear as blobs, ribbons and regions with blurry
boundaries. This means that their nature as submanifolds also changes. A
“curve” may become really indistinguishable from a blurry region, although
there will also be clearcut cases, where the curve is a ribbon of about the width
of the inner scale. In this representations there are no points, curves or areas,
instead, they are all images of some kind. This is similar to the problem of
“features”. There are no feature detectors in image processing proper and there
are no “curve finders” (or what have you) either. Features and geometrical loci
are the domain of image interpretation. In the simplest case they are found
through thresholding followed by skeletonization. This is a nonlinear form of
image processing, and thus is admissable up to the point of interpretation,
which involves idiosyncratic selection procedures, etc.
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When we consider submanifolds like surfaces, curves or points in I we
discuss ideal geometrical entities that are often useful in the analysis (like real
numbers are). They do not immediately correspond to anything real though.
Only images are real.

6.2.5 Definition of “Isophotes”

A prototypical example of a geometrical locus is the “isophote” [4] for some
fiducial log-intensity of, say, z(x,y) = 2zo. The appropriate soft constraint is
exp|—(z(z,y) — 20)?/2A2%]. Here the new parameter Az is a resolution in
the log-intensity domain. This resolution must be sharply distinguished from
the inner scale (which is the resolution in the base space). One may naturally
conceive of Az as the “bin width” of the log-intensity histogram of the image.

I
(O

Fig. 6.5. An image and two “isophote images”. The images are for the same level,
but have been computed for different histogram bin width

These isophotes are “blurry curves” with a width that is inversely propor-
tional to the width of the surface (Fig. 6.5). They actually look much more
reasonable than the “isophotes of infinite precision”, which often are broken
up in many disconnected components and are almost fractallike. Even when
the surface is as steep as possible the width of the blurry isophotes is finite,
because it is limited by the inner scale.

In this representation the resolution of the log-intensity is a vital para-
meter. It links the log-intensity representation to more general “disorderly”
or “histogram-valued” representations in which the log-intensity resolution is
understood as a (local) histogram “bin width”.

In any real application there exist physical and/or technical limits to the
inner and outer scales. For instance, the spatial inner scale is limited by ei-
ther the size of the photosensitive elements (pixel limited devices) or by the
physical optics of the imaging optics (diffraction-limited devices). The outer
scale is limited by the size of the sensor (CCD chip, photographic plate) or
by the useful field of view of the imaging optics. The inner scale involved in
the log-intensity dimension is typically limited by the photon shot noise, the
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thermal noise of the photoelectric sensors or by the discretization (bit depth),
while the outer scale is limited by saturation effects in the sensor or arbitrary
upper limits set by the encoding. This is similar to the representation of the
(ideal) natural numbers in computer languages through a finite set of bit pat-
terns. In this contribution I completely abstract from such (very real) limits,
and I concentrate upon the ideal case. Although the ideal does not exist, I
believe that any real system should be gauged against the ideal and against
the fundamental physical limits. If one is satisfied with the mere description
of actual systems one has moved from science to engineering. In that case no
general theory is possible in principle.

6.3 Image Processing

In this section I begin with the theory of image processing proper. The first
thing to do is to identify the group of motions. Because image space is a
homogeneous space it “looks the same” from any of its points, the group of
motions defines the geometry. In fact, we are bound to arrive at one of the
classical Cayley—Klein geometries [3,20-22]. That I is indeed homogeneous
is a matter of definition if you want: that is, in the absence of any prior
knowledge we have to assume that the space is the same everywhere, that no
location, direction or log-intensity level is in any way singled out. But then
the same configuration should be realizable everywhere, in short, the space
should admit the free movement of rigid configurations.

6.3.1 Operations in the Intensity Domain and in the Base Space

In this section I restrict the discussion to either 12 = E! x A' (“linear images”)
or I? = E? x Al (“planar images”), although one could easily generalize to
I = E" x Al. Extensions to cinematic images are less immediate (though
possible) because the time dimension is not commensurable with either the
dimensions of the base space nor the intensity dimension. Extensions to color
images, etc., are possible but not immediate.

The base space is either the Euclidian line or plane, thus the movements
are translations and rotations. Similarities have a single modulus because all
dimensions have to be scaled equally due to the freedom of rotation.

The log-intensity dimension is the affine line, and the movements are sim-
ply translations. Scalings are possible too and are similarities with a modulus
unrelated to the modulus of scalings in the base space.

Movements in I involve simultaneously the base space and the log-intensity
domain. They are constrained because—due to reasons of simple physics—no
log-intensity difference may ever end up as a stretch in the base space. This
means that the lines {z,y, Az}, with X\ variable, must be invariant under move-
ments. We can set up such a geometry starting from the projective space P3
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with coordinates {xo, 1, 22,23} such that zyp = 0 denotes the plane at in-
finity, which we assume fixed. Since we need a fixed point for the group of
similarities, we may assume the absolute conic to be of the form x? + 22 = 0,
this can be written (27 +ixs)(2; —izz) = 0, and thus represents two complex
lines x1 = +ize (first and second absolute lines) which intersect in the point
F ={0,0,0,1}, the absolute point. General similarities conserve the absolute
line pair, and consequently F is a fixed point. It represents a pencil of parallel
real lines, exactly what we set out to construct.

Thus the group of movements conserves a pencil of parallel lines. This
completely fixes the geometry, and we obtain the singly isotropic Cayley—
Klein plane and the singly isotropic Cayley—Klein space. For I? we obtain one
out of the nine, and for I? one out of the twenty seven possible Cayley—Klein
geometries.

There exist two types of similarities that leave absolute lines invariant,
we single out those that leave each one individually invariant. The similarities
that interchange the absolute lines correspond to inversions, for which we have
no use.

6.3.2 Global Operations

Consider the linear images first. The geometry is the same as that induced by
the kinematical Galilean group [43] on the line (where time corresponds with
log-intensity).

A generic similarity is [30]

/
' =e7'r + 7y,

!/
Z'=pr+e’lz+7T,,

where we have proper movements (a typical one shown in Fig. 6.6) for 1 2 =
0. Notice that it is a five-parameter group, whereas the group of Euclidian
similarities is only a four-parameter group (rotation angle, scaling factor and
two components of translation). The reason is that similarities of I?> have
two (not one) moduli: Both the distances and the angles can be scaled (see
Fig. 6.7), whereas in E? only the distances can be scaled. While E? has a
parabolic distance measure and an elliptic angle measure, in I? both measures
are parabolic.

I will use the following terms quite frequently: A point in image space has
a certain log-intensity and a certain trace in the base space (where “it is at”).
Points with the same trace lie on a normal line. Planes that contain a normal
line are mormal planes. Lines and planes that are not normal are generic,
though I will seldom use the term explicitly. In image processing one is only
interested in generic lines and planes. Thus lines and planes have well-defined
slopes in all cases. Although I will not make use of it here, there exists a full
metrical duality betweeen the generic lines and the points of I? and between
the generic planes and the points of I?. Image space is far more elegant and
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Fig. 6.6. Three phases of a rigid rotation in I?. Both distances and angles are
conserved, though it may take some time to notice

N

.
'

Fig. 6.7. Two types of similaries in I%, in the top row those “of the first-kind” which
affect distances and in the bottom row those those “of the second-kind” which affect
the angles

symmetric than Euclidian space in this respect, because both the distance
and the angle metric are parabolic.

One easily checks that a motion leaves the length of the trace of the linear
segment defined by two points invariant, thus the length of the trace is the
“proper distance”. In the case of I? it is a signed distance. When the distance
of two points vanishes they may still be distinct. If so, they lie on a normal
line. Such points are called parallel. The log-intensity difference of parallel
points is not changed by a motion. Thus parallel points (and only those) can
be assigned a “special distance”. “The” distance is defined as either the proper
or the special distance. All pairs of points have a distance and this distance
is invariant under arbitrary motions. When we write the metric of a plane as
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ds? = da? + pudz?, we obtain the Euclidian plane for i = 41, the Minkowski
plane for i = —1, and I? for 1 = 0. Thus the metric of I? appears as a limiting
case of both Euclidian and Minkowski space. Indeed, both views are useful. As
a limit of Minkowski space we see that the normal lines are degenerated light
cones. Thus we have order on the normal lines, but points on different normal
lines are “elsewhere” and their log-intensities cannot be compared. Indeed, it
is easy to find motions that equate their log-intensities. As a limit of Euclidian
space, we see that the “rotations” of I? appear to our Euclidian eyes as shears
about normal lines or planes (Fig. 6.6). Thus you cannot make a full turn
and turn the image surface upside down. Just try to imagine what that would
mean! If you actually can you should consider to stop reading on.

Notice that the motions leave the area element dx A dz invariant, thus it
makes sense to speak of the area of regions in the normal planes. Physically
the area represents a flux, the construction is dimensionally consistent since
it involves no “mixture” of incommensurable quantities.

The geometry of I? is perhaps most easily developed in terms of the dual
numbers D, which are a kind of imaginary numbers [5,42] of the form a + €b
with nilpotent imaginary unit, thus €2 = 0. In terms of these numbers the
motions are simply linear transformations. Consider the point {z, 2} which we
represent as the dual number w = z+¢e2. The linear transformation w’ = aw—+
b where a = a1 +¢cag and b = by +eby yields w’ = (a1z+b1)+e(azx+ar1z+bs) =
{a1z+b1, asx+a1z+bs}, i.e., for a; = 1 proper motions, otherwise similarities.
All of the standard formulas from the algebra of complex numbers carry over
(though the nilpotency of the imaginary unit often leads to surprises), so we
immediately gain great power over the geometry of I2.

Instead of this analytic model of 1> we may construct a geometric model
using multivector algebra [15] by introducing the orthogonal basis {e,,e.}
such that e,e, = 1, e,e, = 0. With w = e, A e, as the bivector (oriented
area) and the unit scalar 1 we have the multiplication table

12=1, ley=e,;, le.,=e€,, lw=uw,
el =e,, ei =1, e.e, =w, e, w =e,,
e.l=e,, e.e, =—w, ez =0, e;w=0,

wl=w, we,=—e,, we, =0, w?=0.

The zeros signal the presence of divisors of zero, which slightly complicates
the algebra. Notice that e, (ze,+ze.) = r+wz, and because w? = 0 we regain
the dual number representation. Thus the two models are fully isomorphic.
In the case of planar images one should use the geometric model of course,
but the analytic model is still applicable (and convenient) for the restriction
to normal planes.

Notice that for an analytic real function of a real variable you may write
the Taylor series f(x 4+ a) = f(x) + af’'(z) + a?/2!f"(x) + ..., and on setting
a = edz, f(x + edz) = f(z) + edzf'(z) (exactly). Thus the dual numbers
“implement the infinitesimal domain”; that is, they are a kind of non-standard
reals [28]. As a consequence we have exp(ex) = 1+cx, sin(ex) = ex, cos(ex) =
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1. We can write the dual number a + b in the polar representation r exp(ey),
with » = a (a signed quantity) and ¢ = b/a. This immediately reveals the
angle measure as b/a. This is also intuitively obvious when you think of the
circle 2 = a?. The arc subtended by the angle is b, and dividing by the radius
a we arrive again at ¢. Notice that the circle 22 = a? expresses constant
distance from the normal line x = 0, all of whose points are centers of the
circle (thus any generic line passes through the center!). Notice also that equal
arcs subtend equal angles as should be, and that motions conserve angular
differences and turn all generic lines over the same angle. Finally, notice that
the normal lines subtend infinite angle (“are normal to”, hence the name) with

any generic line.

/
\

)

Fig. 6.8. On the left a gauge figure in I2. The next two figures show the effect of
a nonlinear transformation, that is, the inversion in spheres of the second-kind with
positive and negative radius, which are conformal transformations. The rightmost
figure shows the effect of a conformal transformation involving an arbitrary function
(in this case a sinewave). The normal direction is the vertical in these figures

The dual number plane as a model of I? is convenient in many respects. For
instance, one can easily develop the homographies parallel to the conventional
(imaginary unit i> = —1) case 25| (Fig. 6.8), complex function theory [32],
etc. Especially important for the image domain are the conformal mappings.
Here image space is more flexible than the Euclidian case for one may also
have nontrivial conformal maps in I? (Fig. 6.8). The examples from Fig. 6.8
are locally rotations (no scaling involved), thus these are still rather special
conformal mappings. In the case of images these correspond to multiplicative
combination of images (“sandwiching negatives” in the photographic dark-
room). Human observers cheerfully “read” such combinations, which perhaps
finds a partial explanation in the fact that this involves a conformal mapping
via an arbitrary additional function.

A circle like (x —a)? = b? is known as a “circle of the first-kind”, the circles
“of the second-kind” are parabolee with normal lines as axes. The latter (like
the former) can be rotated such as to shift along themselves. Such a circle
2(z) = k(xr —a)?/2 has a curvature & (radius 1/k), which is a signed quantity.
This curvature equals z,,, which is the lowest order and simplest differential
invariant of I2. The circle z(z) = ka2 /2 is shifted over a distance d along itself
by the transformation
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Fig. 6.9. A “parabolic limit rotation” in I2. This is the equivalent of a rigid rotation
of E2. However, the “spokes” are the normal lines and the “hub” is their vanishing
point at infinity. Notice that this is an isometry: All the gauge figures have the same
shape. If it does not look that way to you then adjust your mental eye to the group
of congruences of image space

2 =x+d,

2 = 2kdx + 2 + kd?,
and so are all circles z(x) = kz?/2 + 29 concentric with it (Fig. 6.9). The
transformation is thus a rigid rotation of I> where the normal lines appear as

the “spokes” of the wheel with “hub” at infinity (at the vanishing point of the
normal lines).

Fig. 6.10. A generic plane intersects a sphere of the second-kind. At left the images,
at the center a disorderly representation, at right the geometry in I®

1l

T

The case of geometry of I3 is not that different from that of 12, although
richer because of the higher dimensionality. Notice that the geometry in the
normal planes of I? simply repeats the geometry of 1. Instead of circles we
are mainly interested in spheres (Fig. 6.10), which (to our Euclidian eyes)
appear as paraboloids with normal axes. The generic planes are the duals of
the points.
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Fig. 6.11. A screw movement in I?. This is a nonperiodic movement that corres-
ponds to a Euclidian rotation in the trace. however, a translation is involved in the
log-intensity direction

Fig. 6.12. A pure rotation in I?. This example shows a “rotation about a horizontal
axis”, which is actually a shear in the normal planes with vertical traces

A

Fig. 6.13. A parabolic limit rotation in I®. This is the equivalent of the transfor-
mation illustrated earlier in Fig. 6.9

The groups of similarities and motions for planar images are quite similar
to that of linear images (it contains the latter, of course, when you restrict
yourself to the normal planes), but it is richer because of the higher dimen-
sionality. (Figs 6.11-6.15.) One obtains a seven-parameter group [31] (against
the six-dimensional group of similarities of E3):
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Fig. 6.14. A Clifford shift in I3. As the image translates towards the right it pro-
gressively “rotates about the horizontal”. For the other type of Clifford shift this
rotation would be in the opposite sense

Fig. 6.15. Similarities of the first (left) and of the second-kind (right) in I®. The
similarities of the first-kind are the familiar Euclidian ones. The similarities of the
second-kind scale the isotropic angles and appear as contrast changes or “gamma

transformations”

2’ = e (zcosp — ysing) + 7,
y =eM (msingo—l—ycosgo)—l—ry,
2 x—i—oyy—l—e 22+ T,

When you consider only the trace, the groups appear as the group of simi-
larities and motions (for k12 = 0) of E?, that is, the base space. There are
two distinct motions that correspond with rotations in the base space though,
one a screw motion with normal axis (which is not periodic) and one that
transforms each one of a family of parallel generic planes in itself. To the
identity in the base space there corresponds a translation into the normal
direction (“brightness adjustment”) and a shear that conserves a family of
parallel normal planes (an “additive plane” adjustment). The latter is a pure
rotation in I? (Fig. 6.12). The case of translations in the base space is especially
interesting. One has shifts in a generic direction, and a motion that is the
equivalent of the parabolic rotation discussed for the linear images (Fig. 6.13),
neither of them very surprising. The interesting transformations [35-38], are
the so-called “left and right Clifford shifts” (Fig. 6.14). These transformations
shift certain surfaces (Clifford planes) within themselves. The Clifford planes
are denoted “planes” because they are covered with two mutually transverse
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families of metrically parallel generic lines (which would render them proper
planes in Euclidian geometry). The Clifford planes are surfaces of the type
2(z,y) = xy + pa®. Notice that the blur-invariant images z(z,y) = a + bz +
cy + dzy + e(z? — y?) (with Az(z,y) = 0, hence z; = 0, thus blur invariant)
are a special type of Clifford planes.

Fig. 6.16. Example of a conformal transformation in I® involving an arbitrary
additional image. Notice that the composite image “reads” without problems

One has conformal mappings in I? (Fig. 6.16) much like in 12, this is in
contradistinction with the Euclidian case where the conformal mappings in
the plane are much more various than those in space. For image processing
purposes the conformal transformations that appear as identities in the trace
and involve an arbitrary additional image are perhaps the most interesting.

Generic planes z = ux + vy + w are defined to have “plane coordinates”
{u,v,w}; indeed, the triple {u,v,w} defines the plane uniquely. It can be
shown that the plane coordinates transform just like the point coordinates [31]
and that the description can naturally be extended to normal planes and the
plane at infinity. Thus there exists a full metric duality between lines and
planes in I? (and, likewise, between points and lines in I?), something lacking
in Euclidian space. Geometricaly one defines the plane {u,v,w} dual to the
point {z,y,z} as the polar plane of the in-the-image plane reflected point
{z,y,—z} with respect to the sphere z = }(z* + y?), and vice versa. This
correlation is equivalent to the algebraic definition [31]. The duality makes
it trivial to interpret the point invariants in terms of planes and thus define
the angle between planes. The result is what one expects more geometrico:
The angle between two normal planes is the Euclidian angle between their
traces or their normal distance of the traces (in case they are parallel), and
the angle between two generic planes is the isotropic angle in the normal plane
whose trace is perpendicular to the trace of the intersection of the planes, or
the normal separation in the case of parallel planes. In a similar manner one
defines invariants for a plane and a line, two lines, etc. This is often important
because planes appear as local surface elements (tangent planes), that is to
say, local (linear) approximations to images.
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The subgroup of “unimodular limit movements”

/

8

=+ Tz,
/

<

=Y+ Ty,

' =o,x+oyy+z+Ts,

is arguably very relevant to image processing. It is easily shown that each such
movement can be obtained as the commutative product of a Clifford left shift

x’:era,
Y =y+8,
2= —fr+ay+z+7,

and a Clifford right shift

¥ =x+ A,
y' =y+B,
2 =Bx — Ay+ z+C,

modulo a pure isotropic shift 2’ =z, y' =y, 2/ = 2z +~. The group of unimo-
dular limit movements is a normal quotient group of the group of movements,
and the Clifford shifts are three-parameter simply transitive subgroups of it.

There exists an algebraic description that superficially resembles the dual
number model, but is really in a different spirit. We write a point of I?, say
x = M1,z,y,2} = {x0, 21,22, 3} in homogeneous coordinates, as a certain
hypercomplex number zo+x1i+x2j +ask, with i% = j% = k* = 0,4j = —ji =
k, ik = ki = jk = kj = 0. We conceive of I? as extended with ideal elements
{0, 21, 22, 23} “at infinity”. Multiplication of these hypercomplex numbers is
not commutative, and we have to reckon with divisors of zero. We have [z, y] =
xy — yxr = 2(x1y2 — x2y1)k, that is, the oriented area in the trace. Only
elements with vanishing trace or collinear traces commute. Multiplication is
associative though. Defining conjugation through © = zg — x14 — 225 — x3k,
we find that z@ = xx = 23 is real, thus we may define it as the norm
|z|. (Notice that this “norm” has nothing to do with the metric, in practice
it will be zero for elements at infinity and one for generic points.) One has
xy = y x from which we obtain |zy| = |x| |y|. The only elements of norm zero
are the elements at infinity. For generic elements we may define the inverse as
x~ ! = x/|z|, for zx~! = 1. Notice that the inverse is the additive inverse, just
like the product is much like vector addition, except for an additional purely
isotropic shift. When we have a pair of generic elements |a| # 0, |b|] # 0 we
have that ab = 0 when and only when their corresponding points at infinity
A = a1t + asj + aszk, B = byi + baj + bsk are collinear or coincident with
the absolute point F. In this algebraic system we may write the Clifford left
shifts as @’ = ax and the Clifford right shifts as @’ = xb where |a| # 0,
|b| # 0. Moreover, ¢~ 'xc generates a pure isotropic shift. Consequently, all
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unimodular movements can be cast in the form ' = axb, and we obtain a
coherent and very convenient algebraic representation.
Finally, the subgroup

= Y=y,
2 =ogx oy +yz+T,

of the similarities is the one that is perhaps most pervasive in image proces-
sing since in the trace (the image plane) it boils down to the identity. I will
denote these important transformations I'J>". It is made up of the subgroups
of pure isotropic rotations z’ = o,z + oy, the subgroup of pure isotropic
shifts 2’ = z + 7 and the subgroup of similarities of the second-kind 2z’ = vz
(where v > 0 for regular transformations, v < 0 inducing an inversion).
These are the well known gradients (or additive planes, or edge burnings),
the intensity adjustments (or lightenings and darkenings) and contrast ad-
Justments (or gamma transformations, or scale adjustments via paper grades,
etc.). The group fails to be communitative if contrast changes are involved for
[z roem = [02492007249271 The unit element is '™ and the inverse is

Y172
Fl_/z/%_T/n’. Notice that movements of this type (v = 1) suffice to bring any

surface element into some canonical position and orientation. The attitude
of surface elements is something that can be changed through a movement
and hence can have no intrinsic meaning. Consequently, the “local structure”
starts only at the second-order, it is the local curvature. The second-order is
not influenced by the lower orders, thus the curvature is fully determined by
the partial derivatives of log-intensity of the second-order. This makes most
formulas of the differential geometry of surfaces in I® rather simpler than the
similar (and familiar) formulas from differential geometry of E3.

Concatenation of Processes

Since image processing turns an image into an image, one may “pipeline”
image operations. Since images may also be subjected to arbitrary functions
of log-luminance (f({z, z}) = {z, f(2)}), can be added, multiplied, etc., point
by point (e.g., {z, 2z} +{x, 2’} = {x, 2+ 2'}, etc), we obtain a rich repertoire of
operations. In many cases one really requires an image algebra, one example
being a change of inner scale.

6.3.3 Local Operations

“Local” operations involve only operations at a point. Apart from the obvious
case f({z,z}) = {«, f(2)}, more interesting cases involve intricate structure
of the “point” itself. The point operations of interest here involve convolutions
with derivatives of the point operation and subsequent algebraic combination
of the images. Whereas “differentiation of the image” as such is nonsensical, the
point operator can be differentiated because it is not a real, but an ideal entity
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(an analytic function). The “convolution” of the image with any operator is
best understood as the action of some machine whose internal structure is
forever beyond our ken. It “just happens” (the photographic plate or a CCD
array provide examples). As long as the operation is linear we may interpret
convolution with the derivative of the point operator as the convolution of
the “derivative of the image” (essentially a nonsensical notion) with the point
operator, that is to say, as the derivative of the image at the given inner scale.

Differential Invariants

Perhaps the most important instances of local operations are the computation
of differential invariants [16]. Here we meet with a major cleft between the
present treatment and the bulk of the literature. In the literature either of two
approaches are most common: One group is thoroughly pragmatic and com-
putes such quantities (typically approximately) as I, + Iyy or Ipply, — Igy
because these turn out to be useful. Some token remarks make clear one
knows these are not proper differential invariants. Another group is more
sophisticated and computes much more complicated “true” (but Euclidian)
differential invariants. The results are roughly similar. The irony is that the
former group (unknowingly) computes the true invariants (under the group
of congruences of I?; in many cases the “intensity” already is “log-intensity”
due to nonlinearities in the imaging device), where the latter group computes
nonsensical entities. The Euclidian invariants [8,34] assume that configura-
tions that are related through Euclidian movements are congruent in I?. This
is indeed nonsensical (consider what it means to turn an image over 90°!).
The formal expressions for invariants of I? are similar, though different and
generally rather simpler, than those of E3, which is the reason (implicit and
generally unrecognized though) why one is nevertheless happy to live with
such nonsense.

In T the lowest order differential invariant are second-order (i.e., curva-
tures). Notice that at any given point one may apply a movement such that
2(2,y) = (22202 + 22297y + 2y%) /2! + . . ., and that the coefficients z,, etc.,
are not affected by that movement.

The most convenient way to represent the second-order is through the
differential invariants 2H = zz; + 2y, (the mean curvature), K = 2;52yy — Zay
(the Gaussian curvature) and the pair (not themselves differential invariants)
A = 24y, 2B = 23, — 2, whose sum of squares A2+ B? is invariant and whose
ratio depends only on the direction of principal curvature. In the principal
frame we have 2H = Kmax + Fmin, & = FmaxBmin, A = 0 and 2B = Kpax —
Kmin- For a Gaussian random surface the triple {H, A, B} are statistically
independent variables.

Notice that the intrinsic curvature [11] of any surface {z,y,z(z,y)} in
I3 vanishes identically because of the degenerate metric! It is more useful
to define the “Gaussian curvature” as the magnification of the Weingarten
map, that is, the map from the surface to its Gaussian “spherical” image.
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Fig. 6.17. From left to right: an image surface, its parabolic points, and its attitude
image. The folds of the attitude image correspond to the parabolic curves
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Fig. 6.18. The hills, dales, saddlelike points and minimal points for the surface
shown in Fig. 6.17 left. Notice that the minimal points lie in the interior of the
region of saddlelike points

Fig. 6.19. On the left is the Casorati curvature, and the second and third are
images the ridges and umbilics. For this example the ridges can be found analytically
(rightmost image). The ridges image (second from the left) is more instructive than
the analytic result: One sees immediately that virtually all points in the outer region
are nearly umbilical (the whole region is nearly spherical). Notice that “the” umbilics
in this region are poorly defined and that the umbilics lie on branchings of the ridges
(the remaining “branches” are not what they seem, but are “fly overs”)

The “Gaussian attitude image” is the map {z,y, z(x,y)} — {x,y, (2® +3?)/2}
(that is, to the unit sphere of I?) such that the tangent planes at corresponding
points are parallel. A stereographic projection from the vanishing points of the
normals maps the unit sphere isometrically(!) on {z, 2, }-space (often called
the map to “gradient space”). The Jacobian of this mapping is the Hessian
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Fig. 6.20. Left are the directions of principal curvature for the surface depicted
in Fig. 6.17 right. The images are isocline images at 45° intervals. The isocline
images have been computed for the same angular width, thus the inherent fuzziness
is evident from the widths of the ribbons

of the log-intensity, thus the area magnification is the determinant of the
Hessian which equals the Gaussian curvature as defined above. Likewise, the
magnification in any direction is the “normal curvature” for that direction.
This identification allows one to develop the differential geometry of surfaces
in I? in analogy to that of E3, with a great many striking parallels (Fig. 6.17).

The differential invariants C = /(k2,,, + k2,;,)/2 (the Casorati curva-
ture [2] or “curvedness”) and S = arctan(Kmax + Kmin)/(Fmax — Kmin) (the
“shape index”) with the direction of maximum principal curvature form a sys-
tem of polar coordinates in {H, A, B} space (the space one wants to be in
because the coordinates are statistically uncorrelated). The distance to the
origin (C) is a very intuitive notion [2] of “curvature” (it vanishes only for
planar surfaces, which is the reason Casorati invented it), and the latitude
S is an intuitive descriptor of shape (modulo size). The longitude is simply
the orientation of the principal frame. This is by far the most convenient and
intuitive representation of curvature (Figs. 6.18-6.20).

6.3.4 Multilocal Operations

In most cases one is not simply interested in differential invariants at a point,
but in their spatial distribution. From differential geometry we know that
such distributions often define submanifolds. For instance, the “umbilicals”
define sets of isolated points, the “parabolic points” curves (typically closed,
nonbranching), the “ridges and ruts” curves (with characteristic branchings),
the “elliptic convex” points regions (bounded by parabolic curves), and so
forth. Much of the interest is in these geometrical loci and their interrelations.
Typically these loci are defined through the vanishing of differential invariants,
thus one may easily turn the classical expressions into the “fuzzy” (inner scale)
representations needed in image processing.

I illustrate a few of the more interesting examples (Figs 6.21-6.25). Con-
sider what one might call a “hill” or “dale”, I mean, can we put limits to them?
Where does a hill stop being a hill? I propose defining hills as areas of el-
liptic curvature (K > 0) such that the surface is convex (H < 0). Using a
suitable motion in I? such a point could be turned into a summit. Notice that
H cannot change sign in a connected region K > 0. Thus we need to find
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Fig. 6.21. From left to right: the original image, the image at the inner scale used
for the calculations, the Casorati curvature and the shape index

Fig. 6.22. From left to right: the Gaussian curvature, the mean curvature, the
parabolic curves and the minimal curves

Fig. 6.23. The sign of the shape index divides the image into predominantly pos-
itively (white) and predominantly negatively (black) curved areas. Such images ty-
pically look like “sketches”, even more so when the black areas are skeletonized

the the region K > 0 and in retrospect sort them with respect to the sign of
H (negative hills, positive dales). The image {z,y, (1 + erf (K (z,y)/Ko))/2}
(with erf(z) = \/27r foz e~* dz) expresses this. (Alternatively, one could use the

constraint S > m/4 for hills, S < —m/4 for dales.) It ranges from zero to one
and is only significantly different from zero when K > K.

The boundaries of the elliptic areas (and thus of the hyperbolic areas) are
the parabolic curves that are the loci K (x,y) = 0. Thus we find them via the
image {z,y, exp(—K (z,y)?/2AK?)}.
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Fig. 6.24. From left to right: the ridges and the concave and the convex umbilical
points. Notice that the ridge and rut points appear to cluster on curves, whereas
the umbilical point are scattered, thin blobs

Fig. 6.25. The magnitude of the antisymmetric terms A%+ B? (left) and the (third
and fourth images, respectively) isoclines (second from left, isoclines binned in 45°
increments), as well as isocline images for the horizontal and the vertical orientation
of the direction of largest principal curvature

The “minimal curves” are the curves H(z,y) = 0, and they are made up
of points where the shape is congruent to its mould. We find these interesting
curves via the image {x,y,exp(—H (x,y)%/2AH?)}.

The umbilical points are points where the surface is locally isotropic, i.e.,
S = +7/2. We find them via the images {x,y, exp(—(S(z,y) £ 7/2)?/2A5%)}.

The isoclines of the curves of principal curvature are the contour lines of
A/B. The A/B image is easily computed, but the principal curves themselves
have to be determined via numerical integration, a truly multilocal process.

At the ridge and rut points a principal curvature is extremal along the di-
rection of the other principal curvature. The constraint contains cubic terms.
Other entities of potential interest involve even higher orders, i.e., the flec-
nodal points quartic terms. Despite the nearly universal abhorrence of such
matters in image processing circles, this really poses no problems. The im-
plementation is immediate (the expressions from differential geometry can be
blindly compiled into image operators) and robust.
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6.4 Outlook

I have roughly sketched a framework for image processing that is coherent
and almost entirely geometrical in nature. Although complicated through the
importance of many different spaces (the base space, the image domain, image
space, a variety of scale spaces, complicated mixtures in the case of locally
disorderly representations) one arrives at a fully coherent view because the ge-
ometries of all these spaces are variously interrelated. There is no “adhockery”
involved.

Is “image processing” a science? Well, not right now. But there is no reason
it could not be. At this moment the field is only defined by what its prac-
titioners do and I consider it as largely a grab bag of hacks (theory is not
valued highly by a community mainly interested in applications). However,
most of the fundamentals for a principled framework are in place, though
these threads are scattered around throughout the literature and are often
only partially (or not at all) recognized for what they are. In short, I do not
think much fundamental work remains to be done for someone to write a
textbook on image processing that departs from first principles, develops the
field logically, and steers free of hacks, unnecessary approximations and mere
showpieces of mathematical dexterity. All that is needed is “good taste” (in
the mathematician’s sense) and a solid intuitive feeling for what is concep-
tually important and what is mere fluff (no matter how well it works or how
fast, or how impressively flashy the mathematics). Of course, such a textbook
would only serve to establish (or define) the field as a science. Much remains
to be done (I am happy to say). Unfortunately, it may be some time before
someone takes on this challenge seriously, as the field appears to perceive no
need for it.
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7.1 Introduction

Diffusion flows are processes applied to digital images in order to enhance or
simplify them. These flows are usually implemented by appropriate discretiza-
tions of partial differential equations (PDEs). Iteratively applying these dis-
cretizations, called also numerical schemes, to an image results in a series of
images with decreasing detail (Fig. 7.1). Using a suitable flow, one can en-
hance important image features such as edges and objects while filtering the
image from undesired noise. This can be done not only to gray-level and color
images but also to textures, movies, volumetric medical images, and so on.

Diffusion flows are important members of the family of methods for i-
mage processing, computer vision, and computer graphics based on the nu-
merical solution of PDEs. Other members of the family include active con-
tours/surfaces for image segmentation, reconstruction of three-dimensional
scenes from their shading or stereo images, graphic visualization of natural
phenomena, and many others. This family of methods has many advantages,
among them theoretical origin due to derivation from a minimization of (u-
sually geometric) cost functions, efficiency, and robustness.

7.2 Diffusion Flows and Geometric Filters

Diffusion processes are widely spread in many areas of physics. Naturally,
they found their way to the field of image processing. At first, only linear
diffusion was used, but gradually also nonlinear diffusions were introduced
and geometry-based filters proposed. This section reviews the development of
these methods from the early days to the present (mid-2004).
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Fig. 7.1. A diffusion flow of a color image. The original image is top left

7.2.1 The Heat Equation

The simplest diffusion is the one generated by the two-dimensional heat equa-
tion
It = AI B

with I(z,y) the two-dimensional data, I; its partial derivative according to
time, and A the Laplacian operator (04 + Oyy). This equation depicts, for
instance, the temporal change in the heat profile of a metal sheet. In our case
I(x,y) gives the gray-level values of the image.

The heat equation was the first diffusion process applied to images [45].
It was mainly used to create a scale space for an image, meaning a three-
dimensional volume with a scale coordinate t added to the spatial coordinates
z and y. At the origin of t we have the original image as initial condition,
and as we advance along t we get smoother versions of it. The idea behind
scale space is that important features of the original image should survive
the change of scale, and therefore all the scale space of the image should be
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used to detect these features. Later on, the heat equation was suggested for
filtering noise corrupting the image [9]. After applying the heat equation for
a short duration, the noise that is of fine resolution disappears.

The heat equation as a diffusion flow generating a scale space has an impor-
tant attribute, its linearity. It is therefore also referred to as linear diffusion.
However, it damages the edges of objects in images and does not preserve
connected components (Fig. 7.2). This simple example was presented in the
introduction of the first collection of papers on this topic [38].

Fig. 7.2. The heat equation damages edges and separates connected components

7.2.2 The Geometric Heat Equation

New flows were suggested to overcome the problem of the change in the num-
ber of connected components. One such flow, first introduced by Alvarez et
al. [1] in the context of invariant image processing, is the level set curva-
ture flow. Level set curves are another way to describe the structure of a
gray-level image. Given an image I(z,y), its level set curves are defined as
C(h) = {(z,y) : I(z,y) = h}. See Fig. 7.3 for the level curves of the images
in Fig. 7.2. The interior of a closed contour can be considered as a compo-
nent, and the number of components somehow indicates the complexity of the
image [3].

=0

Fig. 7.3. Level set curves of the images in Fig. 7.2

The idea was to use the powerful Grayson theorem [10] for curve evolution
via its curvature. The theorem states that the curvature flow
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Ct = KN,

with x the curvature of the closed planar curve C, and n the unit normal
vector to the curve, results in the convergence of the curve to a point.

Using the Osher—Sethian [21] level set formulation the whole image could
be propagated via the curvature flow equation. That is, each and every level
set of the original image could be propagated by its curvature flow, and all
this process could be described by a single evolution equation for the whole

image given by
VI
I, =di VI|.
= o) 191

This process is possible due to the Evans—Spruck [7] confirmation that as
embedding of such propagating curves is preserved, the level set formulation
is indeed valid for the curvature flow. One nice property of this flow is that
connected components remain connected until they disappear. Moreover, this
flow is invariant to Euclidean transformations in the image plane.

Next came the interesting question of what could be said about more
complicated transformations. In [1] the authors also introduced the equi-affine
invariant flow given by

I = (div (é;))ugvn. (7.1)

Again, the connection to curve evolution was presented at the same time by
Sapiro [26]. First, the curvature flow can be equivalently written by

Ct = CSS7

where C(s) = {z(s),y(s)}, and s is the Euclidean arc length parameterization.
This is why it is also known as the geometric heat equation. Using similar
writing for the equi-affine flow, that is,

Ct = C’U’U7

where v is the equi-affine arc length dv = £!/3ds, the resulting geometric flow
can be written by
Ct = Hl/3n.

This equation, known as the affine heat equation, enjoys some of the nice
properties of Grayson’s theorem, like preservation of embedding of the propa-
gating contours. It is thus directly related to Eq. (7.1), again via the Osher—
Sethian level set formulation. These beautiful relations and geometric proper-
ties started a new era in the image processing and analysis field. For example,
when smoothing stereo images we would be better off using the affine heat
equation, and not the geometric heat equation, which would distort the geome-
tric structure relating the two images. Applications of these operators include
computation of geometric signatures [8, 12|, and extensions of these ideas to
deal with problems like geometric scale space for images painted on surfaces
[13, 34].
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7.2.3 Isotropic Nonlinear Diffusion

At the other extreme, researchers started to explore the field of variational
principles and geometry in image processing. That is, define an integral mea-
sure that somehow captures the norm of the image. For example, the total
variation (TV) norm was a popular selection proposed in [25]. The TV is
defined by

/ |VI|dzdy,

for which the Euler-Lagrange equation is given by

. VI
div (VI|> =0.

That is, the level set curvature should be equal to zero. This geometric con-
nection should not come as a surprise, since by the co-area equation we have

that
//\V1|d33dy: // dsdh
2

where s is the arc length parameter of each and every level set contour, and
h is a parameter running over the image intensities I. The zero curvature is
indeed the result of minimizing the arc length of all level set contours in the
image.

The methods used to denoise an image based on the TV norm usually
apply the Euler-Lagrange as a gradient descent via a PDE of the form

VI
I, = di .
e <W|)

Again, the corresponding flow of the image level sets can be written as

1

Ct = ‘VI| K1,

[14]. This is nothing but a selective curvature flow, where the flow is enhanced
at smooth regions and suppressed near the image edges (where the image
gradient is high), so that these important features are preserved.

Another popular filter proposed at the same time is the Perona—Malik
[23] anisotropic diffusion. Unlike its name, the filter is an inhomogeneous yet
locally isotropic flow given by

I, = div (f(|VI)VI).

We see that setting f(s) = s~! we are back with the TV flow, while other
selections lead to other filters.

The role of the diffusivity function f is to control the amount of diffusion
according to the gradient of the image. At image edges, where |VI| is large,
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the diffusion should be minimal, and vice versa at the interior of objects. To
accomplish that, f should be monotonically decreasing. A popular choice for
fis

1
FIVID) = 1+ |[VI2/22°

7.2.4 Anisotropic Nonlinear Diffusion

Gabor [2, 9, 16, 20| was probably the first to consider anisotropic diffusion
by smoothing along the edge and inverting the heat operator and thereby
generating an unstable enhancing process across the edge. If we write the
gradient direction as & = VI/|VI| and 7 as the orthogonal direction (Fig.
74), I; = I, is nothing but the curvature flow. Gabor proposed to use one
iteration of a discretization of the equation

It = 117,7 — 6]55,

where € determines the amount of inverse diffusion. This simple and nice
formulation for image enhancement (which cannot be easily extracted from a
variational principle) was rediscovered many times along the evolution of the
image processing field.

Fig. 7.4. The gradient direction and the tangent direction of the image level sets

A recent interesting anisotropic differential filter for image analysis is Wei-
ckert’s [43] edge direction sensitive flow. Weickert’s idea was to plug a 2 x 2
symmetric positive definite matrix instead of the scalar function f(s) of the
Perona—Malik flow. The orthonormal eigenvectors of the matrix are selected
according to the image gradient direction

v || VI, vy L VI,
and their corresponding eigenvalues are taken such that

i)
|VI|—oo A2(|VI])

This way, the smoothing is mostly along the edges and not across them.

=0.
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7.2.5 Mean Curvature Flow

Many times the way we represent objects defines the way(s) in which we can
manipulate them. Images, for example, were represented traditionally as a
matrix of numbers. Many image processing techniques followed this repre-
sentation. Recently, a more geometric point of view emerged. An image is
regarded and represented as a surface. In fact, the graph of the intensity func-
tion for gray-valued images is a two-dimensional surface. One may think of
it as embedded in IR® with coordinates x, y, and I. Once described in this
way it is natural to ask geometric questions such as about the curvature of
the surface at a given point. We may also envisage processes that alter the
geometric properties of the surface. Noting that noise is represented in the
image as points (or small regions) of high curvature, it is natural to give a
smoother version of the image by reducing points with high curvature. One
way to achieve this goal is to define an evolution equation that depends on the
curvature. We move, at each instant, the image surface in the direction of the
normal to the surface. Note that this is the only direction that changes the
shape of the image. Movement along the other two directions simply causes a
reparameterization that does not change the image’s gray-value content. The
amount of change at each point is proportional to the mean curvature in that
point. Denoting the mean curvature H, and the normal to the surface N, we
find the following PDE
St = HN.

How should we understand this equation? How is it applied to images? In
order to answer these questions we go back to the representation of the image
as a surface. The graph of the image embedded in IR? is represented as the
ternary (x,y, I(z,y)). The two tangent vectors along the canonical coordinates
x and y are given by X7 = (1,0, I,) and X2 = (0,1, I;). The normal vector is
derived easily as orthogonal to X; and Xs. Its form is

1

N = I, —1,,1).
\/1+\V1|2( 1)

The mean curvature at each point is

(1+ 1)1,y — 20,1y 1y + (1 + I;)Im

H(z,y) = :
(=.9) (1412 +12)>

It follows that the equation is

1
)T :
V1+|VI2
Since we work in a constant domain and a constant coordinate system, namely

the Cartesian x and y coordinates, the only change that actually takes place
is the value of the gray value at each pixel. In order to have the required effect

(@,y, 1) = H(= Iy, I,
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while changing the gray values only, we change the gray value at each point
such that its projection on the normal has exactly the magnitude of the mean
curvature. A simple calculation shows that we need to multiply by a factor of

V1 + |VI2 (Fig. 7.5).

Fig. 7.5. The mean curvature flow for gray level images is accomplished by only
changing the intensity component

The final equation is

1+ L)Ly — 2L 0y Ly + (14 1) Ly
b (1412 +I2) '

7.2.6 Color Images

Color images are the canonical example of vector value images. The light
that is reflected from a surface is described by the wavelength spectrum
R(A\) = S(M)p(X), where S(A) is the spectrum of the illumination and p())
is the material reflectance property known as the albedo. Three filters are
applied at each spatial point to the spectrum to produce the three channels
I'" = [[dAR(X)f*(M\). These three channels are usually called red, green, and
blue (RGB) with respect to the regions in spectrum space where the filters ex-
tract most of their energy. The information is then encoded in three functions
R(z,y), G(z,y), and B(x,y).

There are several approaches in the denoising process of color and other
multichannel images. The first and most simple and naive approach is to
apply a denoising process to each channel separately. This approach ignores
completely the correlation between the different channels. Since the channel
edges are not necessarily aligned, an anisotropic channel-by-channel process
may blur regions where only one channel has an edge. In case several strong
edges in all channels exist with small offsets, artificial colors may appear.
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We describe in this section a different approach where the color channels
are correlated via the Di Zenzo metric [5]. More elaborate approaches that
incorporate perceptual psychophysical data will be discussed below in the
context of the Beltrami framework. Here we follow the approach of Sapiro and
Ringach [27]. The Di Zenzo metric is defined in the color space. Its explicit
form is

Do R+ G2+ B2 R.Ry, + GGy + BBy
~ \R.Ry + G,Gy + B, By, R; + G2 + B; ’

where the subscripts z and y mean partial derivation. The elements can be
written more simply with the Einstein summation convention: indices that
appear twice are summed over. The elements are written as D, = I I, where
the summation is over the index i = 1,2,3,and I' = R, I? =G, I* = B. In
general Dy, = I' I}, where p and v take the values 1 and 2. They stand for
z, and x,, where by convention x; = x and x2 = y.

The matrix D is real, and symmetric and it can be diagonalized. Formally,
we can write D = UTAU where A = diag(Ay, A_). The matrix U is composed
of the eigenvectors that give the direction of maximal variation in color space
and its perpendicular direction. The ); indicate the amount of change in
each direction. Sapiro and Ringach suggest in their paper constructing an

anisotropic process in the following manner:
I} =div (f(A4 + A-)VIY).

This equation can be derived as a gradient descent of a functional. It is
simply S[I'] = [¥(Ay + A_)dzdy. A new analysis of this and many other
approaches can be found in Tschumperlé’s thesis [40].

7.2.7 The Beltrami Flow

In the Beltrami framework [15, 31] the image is regarded as an embedding of
the image manifold in the space-feature manifold. In more rigorous terms we
describe the image as a section of a fiber bundle. The fiber bundle is composed
of the spatial part, which is usually a rectangle in IR?, called the base manifold,
and the fiber that describes the feature space, i.e. intensity, color, texture, and
so on. A section of the fiber bundle is a choice of a specific feature from the
feature space for every point in the base manifold. The feature space may be
a linear space or a more complicated manifold. In the first case we call the
section a vector field.

The most simple example is the gray-level image. Denote the embedding
map by X. The explicit form of this map for gray-level images is

X(ul,uz) =( l,uz,I(ul,UQ)),
1

where u!, u? are the spatial coordinates and I is the intensity component (Fig.
7.6). For color images the embedding map reads:
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where I', I?, I3 are the three color components (for instance, red, green, and
blue for the RGB color space).

1(x,y)
X
w2 A /_\\

X

Fig. 7.6. A gray-level image according to the Beltrami framework

The geometry of the image manifold, i.e. the section, is determined accor-
ding to its metric tensor G, which is the result of the metric H chosen for the
space-feature manifold, i.e. the fiber bundle. A natural choice for gray-level
images is a Euclidean space-feature manifold with the metric

10 0
H=(hy)={010 |,
00 32

where 3 is the relative scale between the space coordinates and the intensity

component. The metric G of the image manifold is derived from the metric H
and the embedding X by the pullback procedure

(G)ij = % X0; X hay, .

Using the explicit form of the embedding map X and the metric of the fiber
bundle H for gray-level images, we can find the metric G:

oo (1+5717 PN
G—(gl])_< 5211[2 1+ﬁ2122 )

where I; £ gJi.

The Euclidean metric H of the space-feature manifold for color images is
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100 0 O
0 10 00
H=(hij)=]008>0 0 |,
0030
0 0 32

where the same scaling factor was chosen for the three color channels. The
resulting image metric is

G—( ) — 1+B2 Za(Iil)Q 52 Zalflg
SV ey s 1+ 67,192 )

The Beltrami flow is obtained by minimizing the area of the image manifold

~ [ vadusdus,

with respect to the intensity components, where g = det(G) = g11922 — g3-
The gradient descent process is given by the corresponding Fuler—Lagrange
equations

00

08

a __ —1.ab
Xt =9 2h SXb

= giéai(g;gijana) + 180, X%9;X¢g" |

with ¢ the components of the contravariant metric of the image manifold
G~! (the inverse of the metric tensor G). The Christoffel symbols (also known
as the Levi-Civita coefficients) I, are defined in terms of the fiber bundle
metric H:

1
Iy = Qhad (Ophac + Ochva — Dahue) - (7.2)

In matrix form it reads

1
Xt = \/gdiv (V9G 'VX) +Tr(I“F),

- ~ d
AgXo
where I'® is the matrix whose elements are (I'*),, = I'% and Fp, =

0;X%0;X"g%. The symbol A, is the Laplace—Beltrami operator, which is the
extension of the Laplacian to manifolds. The resulting diffusion flow for gray-
level images is

I = A, = H(I,N),

i.e. the image surface moves according to the intensity component of the mean
curvature flow (Fig. 7.7). Because we chose a Euclidean feature space the
Christoffel symbols are identically zero in this case. They vanish for color
images as well. The diffusion equation for each color component reads

=A,I" (7.3)
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Fig. 7.7. In the Beltrami flow for gray-level images the image surface moves ac-
cording to the intensity component of the mean curvature flow. Geometrically, only
the projection of this movement on the normal to the surface matters

The diffusion process in Fig. 7.1 is actually the Beltrami flow. Figure 7.8
contains a closeup of the images in Fig. 7.1, including the two-dimensional
manifolds of the red, green, and blue color components. It is evident that the
Beltrami flow filters out the noise while not only preserving the edges, but
keeping their location in the three color components aligned.

7.3 Extending the Beltrami Framework

The basic idea of the Beltrami framework of treating the image as a manifold
and enhancing it by minimizing its area can be extended in various ways.
In this section the framework is extended to higher dimensional spaces (for
texture, video, and volumetric data), non-Euclidean feature spaces, and other
diffusion directions.

7.3.1 Texture, Video and Volumetric Data

We have discussed color for which researchers try to give a simple geometric
interpretation, like an arc length that would capture our visual sensitivity
to colors. Next, we claimed that in order to extract technology from such
definitions we need to link the color arc length to another measure of distance
in the image domain. In this way we came up with the hybrid space idea.
Next come interesting questions of what is texture and how should we treat
it? Like color, we try to interpret texture as a region for which homogeneity is
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Fig. 7.8. The results of the Beltrami filter. The original image is on the left and
the filtered one on the right

no longer determined by a single constant like color, but rather by repeating
patterns in the image domain. Again, we need some sort of measure that
defines a distance between different patterns. There are many ways to achieve
this goal [24]. Once such an arc length is defined, all we need to do is to plug
it into our Beltrami framework and we have a filter for texture.

Such filters are reported in [16], where the texture is represented by using
the Gabor-Morlet wavelet transform W (x,y, 6, o) [19], with « and y the spa-
tial coordinates, 6 the wavelet orientation parameter, and o the wavelet scale
parameter. The texture image is the embedding (x,y,0,0) — (z,y,0,0, R, J),
where R = real(WW) and J = imag(WW). Each scale is considered as a different
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space, resulting in the metric

I+ Ran + Jz2 R.Ry+ JzJy RyRo+ JzJo
G= (gl]> = RwRy + Jxe]y 1+ Ri + J; Rng + JyJQ ,
R.Rg+ JzJo RyRe + JyJa 1+ Rz + J92

and the Beltrami flow

Ry = AR,
Jp = AgJ.

Consequently, each scale can be filtered in a different way and to a different
extent. See Fig. 7.9 for a demonstration of texture enhancement using the
Beltrami flow.

Fig. 7.9. Texture enhancement by using the Beltrami filter on the Gabor-Morlet
wavelet transform of the texture image. The original image is on the left

The Beltrami filter for gray-level video and volumetric medical data (such
as CT or MRI) is accomplished by considering them as the embedding
(x,y,2) — (x,y,2,I), where for video z represents time and for volumetric
data the third spatial coordinate. The induced metric in this case is

1412 II, LlL
LI I, 1+1I?

and the Beltrami flow is

1 VI
I = div( ) ,
e\
where VI = (I, I,,I.), and g = 1 + I7 + I2 4+ I2.
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7.3.2 Non-Euclidean Feature Spaces

We have seen above that the image is represented as an embedding of a surface
in a spatial-feature space. In the previous subsections we treated many tasks
in which the feature space is Euclidean and endowed with a Cartesian coor-
dinate system. There are many instances where the situation is different. We
shall present below two such cases: perceptual color denoising and orientation
diffusion.

Color Image Denoising

The construction of the RGB color space was described in the section on color
images (Sect. 7.2.6). While the coordinates in this color space are perfectly
defined from a physical point of view, they are not enough in order to denoise
color images that are to be seen by human beings. The most important no-
tion in denoising is distance. What is relevant in denoising color images is to
understand how distances between colors are perceived by humans. In other
words, we treat the perceptual color space as a three-dimensional manifold
whose local coordinates are given by the RGB system. What is needed in
order to complete the picture is to provide the metric on this manifold such
that distances between colors can be measured with accordance to perception.
This distance cannot be deduced from physics and must be given from psy-
chophysical experiments and considerations. Albeit its modern appearance,
this paradigm is more than a century old. The first formulation of the per-
ceptual color space as a Riemannian manifold is due to Helmholtz [11] in
1896! Helmholtz suggested a metric that is based on the famous log response
of our senses. While it is good as a first approximation, it was soon realized
that his metric is inappropriate and does not describe well the experiments
in various regions of the perceptual color space. The experiments are based
on the notion of just noticeable differences (JND). In a typical JND expe-
riment two squares of the same color are shown to a subject. One of these
squares gradually changes its color until the subject declares that the colors
are different. This gives a map of infinitesimal distances in color space and
can be compared directly to metrics that model this human color perception.
The construction of such metrics captured the interest of prominent scientists
such as Helmholtz and Schrodinger [28]. The Helmholtz model is given simply
by the following line element:

ds®> = (dlog R)? + (dlog G)? + (dlog B)?

This equation ignores the dependence of the JND on the overall luminance.
Schrodinger tried to rectify this line element and suggested the following

model:
1 (dR2 dG? dB2>

ds® =
““Rric+B\RrR T ¢ T B
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More recent efforts to model the metric of the perceptual color space include
Stiles [37] and Vos and Walraven [42].

We will demonstrate here the denoising with respect to the Helmholtz and
Schrédinger metrics only. For a thorough discussion refer to [32]. Let us denote
the perceptual color Riemannian manifold by Mc. The Beltrami framework
describes a color image as the embedding of a two-dimensional surface in the
fiber bundle IR? x M. The base manifold is IR?. At each point in the base
manifold the fiber M is attached. A color image is a section of this fiber
bundle. The metric on the fiber bundle is simply

2 _ 342 2 — 4,2 2 iqTin.
ds —dsspatial—l—dscolor—dx + dy* + dI'dI’ hyj,

where for the Helmholtz model

and for the Schrédinger model it is

1

hi)= picyn

o O
o= O
IO O

The induced metric on the section is simply
Guv = 6,uz/ + Iﬁfﬂhm

and the Levi—Civita coefficients are given by Eq. (7.2). The Beltrami flow is
then ‘ .
I} = A" + I'}0,X79,X g

Orientation Diffusion

Another example of a non-Euclidean feature space is the orientation [18]. In
this case the feature manifold is the unit circle S!'. We again construct the
fiber bundle IR? x S and regard the orientation vector field as a section of this
fiber bundle. In order to express the metric on this fiber bundle we cover S!
with two coordinate patches. This can be done in various ways. We present
here the hemispheric coordinates for simplicity. Embedding the orientation
circle in IR? with Cartesian coordinates v and v we find that S' is given by
u? 4+ v? = 1. We write the metric on the patch of S described by u as

u? 1

2 _ 3,2 2 _ 2 _
ds® =du” +dv —(1+17u2)du =2

du? = A(u)du?.

Having calculated the metric on the fiber we can now deduce the induced
metric on the section
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ds? = da® + dy? + A(u)du?
= (14 A(u)u2)dz? + 2A(u)uguydady + (1 + A(u)ul)dy®.

Note that the metric on the fiber bundle is given by

10 0
(hij) = {01 0
00,

The Levi-Civita coefficients can be calculated by Eq. (7.2). The Beltrami flow
equation reads: .
w = Agu+ 1,0, X709, X g

The Beltrami flow modifies the features in the feature manifold such that a
unit length vector stays always a unit length vector along the flow.

7.3.3 Inverse Diffusion Across Edges

An interesting approach to extend Gabor’s original idea [9] for image enhance-
ment via
It = 117,7 — 6]55,

is to try to manipulate the eigenvalues of the inverse metric matrix in the
Beltrami operator. If these values are kept positive, the result is a diffusion
that can be enhanced in a specific direction, as proposed by Weickert in his
‘coherence enhancement’ filters [44]. More interesting, yet obviously less sta-
ble, is the concept of negative eigenvalues that mimic Gabor’s inverse diffusion
across the edge. This was first introduced in [16].

The concept is simple. We first extract the inverse metric matrix (¢*) and
compute its eigenstructure, (¢%) = UAUT. Next, manipulate the eigenvalues
so that the smaller one gets a negative sign. This way, the inverse diffusion
across the edge, because of the negative sign, enhances and sharpens the edges
in the image, while the diffusion along the edges (the direction orthogonal to
the maximal change direction) smooths the boundaries and adds some control
to the process. See Fig. 7.10 for an example of this process. This is an extension
to Gabor’s original idea from 1965 that exploits the geometric structure of the
color image, where there are no level sets or ‘isophots’ due to its multichannel
nature.

7.4 Numerical Schemes

The PDEs describing the diffusion processes are continuous, but they are
implemented on discrete digital images by computer algorithms with discrete
representations. The means to bridge this gap are the numerical schemes that
ensure that the discrete solution will converge to the continuous one as the
grid is refined.
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Fig. 7.10. Edge enhancement by diffusion along the edge and inverse diffusion
across it. The original image is on the left

Many numerical schemes are used for the solution of the image diffusion
PDEs. Among them are fast Fourier transform (FFT), wavelet transforms,
finite element techniques, neural networks, multigrid methods, and many
more. However, in most cases finite difference schemes are used. In these
schemes continuous derivatives are approximated by discrete differences. The
parameter domain is covered by a grid with step sizes k in time and h in
space, and the variables are discretized. For instance, u(¢,z) is replaced by
u 2y (t = nk,z =mh) (Fig. 7.11).

.t N
n+1

oum

h n
n

Um Unn+1
k

X

Fig. 7.11. The numerical grid for finite difference schemes

In most cases the design of satisfactory finite difference numerical schemes
is quite straightforward. However, because of the size of the data, simplistic
schemes might be inefficient and require a long run time. In the following
subsections the main principles of the finite difference schemes are presented
along with a few more elaborate schemes required to efficiently tackle the
more challenging PDEs used for image processing.
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7.4.1 Linear Diffusion

For one-dimensional linear diffusion, the first derivative in time of the function
u(t, ) can be approximated by the first-order accurate forward difference

unJrl _ un

Hm A
Dfuy, = ™ i m
and the second derivative in space can be approximated by the second-order

central difference N N N
DO n A uerl - 2um + Uy —1
zzUm = h2

The resulting numerical scheme for the linear diffusion is
n+1 n n _ n n
Up T = Upy Upygq — 2Ugyy F Uy

k h? ’
and if we define
Ak
r= B2
we get
u:fjl =(1-=2r)uy +r (uﬁ1+1 + u;ihl) )

All we need is to add the initial condition
u'](')n - f’n’m

and to define the boundary conditions.

This is an explicit numerical scheme, because the value of u at iteration
n+ 1 is given explicitly by the value of u at previous times (Fig. 7.12). The
update step consists of merely additions and multiplications. The problem
with explicit schemes is that their time step is limited by reasons of stability.
For linear diffusion we require r < 1/2 . Taking a bigger time step may result
in an unstable process, whose outcome does not depend on the initial data but
on the computation errors. In many equations the allowed time step is rather
small and necessitates many iterations till the required output is reached. One
solution is implicit numerical schemes, where the desired value u" depends
on the value of u at the same time n + 1 and at other spatial locations (Fig.
7.12). One example is the Crank—Nicolson second order accurate scheme in
time and space

+1 n+l _ n+1 n+1 n _ n n
up Tt —ur 1wty — 2upg™ +uy ™y up e — 2up, U, g

k 2 h? h?

In this case we need to solve a tridiagonal system of equations in every update
step. This can be done efficiently by the Thomas algorithm. A large time
step would affect the accuracy of the solution, but it would not generate any
instabilities.
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Fig. 7.12. The time and space dependencies of the explicit (left) and implicit (right)
schemes for linear diffusion

For images where the equations have more than one dimension in space,
explicit schemes are usually impractical due to the decrease of the bound on
the time step. For linear diffusion we have r < 1/(2D), with D the spatial
dimension of the equation. On the other hand, implicit schemes result in
a system of equations that is not tridiagonal and usually cannot be solved
efficiently. More elaborate implicit schemes are required.

One such numerical scheme is the alternating direction implicit (ADI)
scheme. Peaceman and Rachford’s [22] version is

k . k .
(H—2A1)u+2:<ﬂ+2A2)u R
(11— §A2> u"tt = <H+ ];Al) vt (7.4)

with T the identity matrix, and the operators Aju = uy; and Asu = uy,
replaced by their second-order approximations. It can be seen from Eq. (7.4)
that each iteration includes two steps where first the x direction is solved im-
plicitly and the y direction explicitly, and then the opposite. Both steps consist
of solving a tridiagonal system of equations, which can be done efficiently by
the Thomas algorithm.

7.4.2 Nonlinear Diffusion

The original Perona—Malik filter [23] suffered from instabilities. The regulari-
zation presented by Catté et al. [4] consists of replacing f(|VI|) with f(|VI,]),
where I, is the convolution of I with a Gaussian kernel with a standard
deviation of ¢. This smoothing of I eliminates some of the small-scale noise
and makes the filter well-posed.

Weickert et al. [46] introduced the first-order accurate additive operator
splitting (AOS) scheme to numerically implement this filter. The update step
is
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1 zm:(ﬂ—mkAi(I”))_II”,

i=1

InJrl _
m

with m the dimension of the image. The elements of the matrix A; are given
by

Tptfa g€ N(p)
(Ai)pq =N — ZZEN(p) f’;Zf’ b=4q
0 otherwise

with N(p) the neighbors of the grid point p in the ith direction, and f, the
value of f(|VI?|) at grid point p.

The AOS scheme is semi-implicit and the size of the time step does not
affect its stability. The scheme is efficient because it only requires the solution
of tridiagonal systems of equations. It creates a discrete scale space [44], and
its additivity gives equal importance to all coordinate axes, as opposed to the
multiplicative locally one dimensional (LOD) scheme, which uses the update
step

m
it =TJa-kA,am)~' 1

i=1
The AOS may also be used for some anisotropic nonlinear filters applied to
gray level images. For color images and filters like the Beltrami flow, where
each color component depends on the value of the others, the splitting is
impossible. To date, there is no PDE-based implicit scheme for the color
Beltrami. This is one of the main motivations for the construction of numerical
kernels, described in the next section.

7.5 Kernels

It was shown in the previous section that the bound on the time step of some
of the explicit numerical schemes can be alleviated by the use of implicit
schemes. This enables a trade-off between the efficiency of the scheme and
its accuracy. Unfortunately, this is not the case in some of the important
geometric filters, such as the Beltrami filter. Another approach, namely the
use of kernels, is the answer in some of these cases. Moreover, the kernels add
a new perspective to these filters and present connections to other existing
image-enhancing procedures.

7.5.1 The Gaussian Kernel for the Heat Equation

It can be shown that linear diffusion of an image can be accomplished by
convolving it with a Gaussian kernel. Applying the heat equation to the two-
dimensional data I(u',u?, ty) for the duration ¢ is equivalent to the convolu-
tion
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I(u',u? tg +t) = // I(a', a2 t) K (Jut — @t|, [u® — @?|;t)da' da?
= I(u', u?, to) * K (u', u?it) (7.5)

where the kernel is given by

1 (u1)2+(u2)2
K(u',u*t) = — .
i = 4o (<0

The use of the kernel enables us to replace the iterative application of the
numerical scheme for the PDE with a one-step filter.

7.5.2 One-Dimensional Kernel for Nonlinear Diffusion

A kernel for the nonlinear diffusion of one-dimensional signals was presented
in [30]. The nonlinear kernel adapts itself to the local amplitude of the signal.
Adaptive filtering has been done before, mainly by using robust estimation
techniques. However, the nonlinear kernel relates to the signal as a curve, and
its adaptivity originates from the geometry of this curve.

The main idea behind the nonlinear kernel is presented in Fig. 7.13. For
the linear kernel the amplitude of the filtered signal at a specific point is
the sum of the neighboring points’ amplitudes weighted according to their
distance along the coordinate axis. For the nonlinear kernel the weighting is
according to the distance on the signal itself. The nonlinear kernel ‘resides’ on
the signal, while for the linear kernel the Gaussian ‘resides’ on the coordinate
axis.

a> b
!

f
- I

Fig. 7.13. Filtering a signal with a linear Gaussian kernel (top) and a nonlinear
kernel (bottom)

The distance along the signal is calculated using the metric of the curve,
which is the signal. Various metrics are possible, and they yield different filte-
ring results. The Euclidean metric, for instance, using the curve representation
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C(p) = (z(p),y(p)) = (z,y(x)) is g(z) = 1+ y2. The kernel is constructed for
the one-dimensional Beltrami flow

C; = A,C.

The kernel cannot be global in time due to its nonlinearity (the kernel
depends on the signal’s local amplitudes, which change in each iteration of
the kernel). Therefore the PDE cannot be replaced with a one-step filter like in
linear diffusion. Only a short time kernel that is applied iteratively is possible.
After each iteration the signal is

Clovto +1) = [ Clp.to)K .75
with the kernel

Kp.pit) H(p,pst) exp (_1/}(1%15)) .

Vi t

H(p, p;t) can be taken to be a constant [30], and we get

o) =, (/fds)Q,

where ds is an arc length element given by ds = /g(p)dp. Since fj ds is the
distance on the signal from point p to point p, the resulting kernel is indeed
a Gaussian ‘residing’ on the signal (Fig. 7.13).

7.5.3 The Short Time Kernel for the Beltrami Flow

A short time kernel for the two-dimensional Beltrami flow was introduced in
[36]. If used iteratively, it has an equivalent effect to that of the Beltrami flow.
We replace Eq. (7.5) with

I'(u',u? tg +1) = // I'(at, a2, to) K (ut, u?, @', 4 t)datda? |
which we denote by
I'(ut,u? to + 1) = I'(ut,u? to) %4 K(u',u?;t).

This is not a convolution in the strict sense, because K does not depend
on the differences u’ — @*. It will be shown later that x, is the geometric
equivalent for manifolds of convolution. The general form of K is

1,2, 20,1 ,,2
K(ul,u2;t) — H(u ;u 7t) exp (_’(/} (ut>u ))7
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where we take, without loss of generality, (a',a?) = (0,0) and omit from
K the notation of dependency on these coordinates. In order to find K, we
use the fact that it should satisfy Eq. (7.3), and after a few mathematical
manipulations we get

. 1
gty = IVl =

with Vg the extension of the gradient to the manifold. This is the Eikonal
equation on the manifold, and its viscosity solution is a geodesic distance
map 1 on the manifold. The resulting short time kernel is

@) 5 \?
i Jour ) ds
K(u',w? o', a%t) = to exp —( (w? 42; ) ,
H, d? ((ul,u?), (@', a2
to exp < g ( 41 ( ) , (7.6)

where ds is an arc length element on the manifold, and d,(p1,p2) is the
geodesic distance between two points, p; and po, on the manifold. Note that in
the Euclidean space with a Cartesian coordinate system dg (p1,p2) = [p1—p2|-
The geodesic distance on manifolds is therefore the natural generalization of
the difference between coordinates in the Euclidean space. It is natural then
to define the convolution on a manifold by

I'(ut,u?) %y K(ub,u?t) = // I'(@', @*)K (dg ((u',v?), (@', %)) da'da®.
The resulting update step for the image is

I'(u,u?, to +t) =

~1 ~2

@) 5 \?
(i) as)
_ Ho // I'(a', a2 o) exp | — (whu?) datda?,

1, a2)eN (ut u2) 4t

with N (u',u?) the neighborhood of the point (u!,u?), where the value of the
kernel is above a certain threshold. Because of the monotonic nature of the
fast marching algorithm used for the solution of the Eikonal equation, once a
point is reached where the value of the kernel is smaller than the threshold,
the algorithm can stop and thereby naturally bound the numerical support of
the kernel. The value of the kernel for the remaining points of the manifold
would be negligible. Therefore, the Eikonal equation is solved only in a small
neighborhood of each image point. Hy is taken such that integration over the
kernel in the neighborhood N (u!,u?) of the point equals one.

The short time Beltrami kernel in Eq. (7.6) is very similar to the bilateral
filter kernel [6, 39]. The difference between them is that the Beltrami kernel
uses geodesic distances on the image manifold, while the bilateral kernel uses
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Euclidean distances. As can be seen from the derivation of the Beltrami kernel,
the bilateral filter originates from image manifold area minimization. The
bilateral filter can actually be viewed as an Euclidean approximation of the
Beltrami flow.

The Euclidean distance used in the bilateral filter, while being easier to
calculate, does not take into account the image intensity values between two
image points. A point can have a relatively high kernel value, although it
belongs to a different object than that of the filtered image point. The Beltrami
kernel takes this effect into account and penalizes a point that belongs to a
different connected component. That is, it is not ‘as blind’ as the bilateral
filter to the spatial structure of the image.

The short time kernel for the Beltrami flow requires the solution of the
Eikonal equation on the image manifold. The image manifold is a parametric
manifold, where the metric G is given for every point. The solution to the
Eikonal equation on parametric manifolds [33, 35] is based on the solution of
the same problem on triangulated manifolds [17], which in turn is an extension
of Sethian’s fast marching method [29]. Another Eikonal solver on flat domains
with regular grids was proposed by Tsitsiklis [41].

The original fast marching algorithm [29] solves the Eikonal equation in
an orthogonal coordinate system. This is not the case for image manifolds.
There g12 # 0 and we get a nonorthogonal coordinate system on the manifold.
The solution for that is similar to that of [17], where a preprocessing stage is
used to construct a suitable numerical stencil for each grid point. In this case
there is no need to perform the unfolding step of [17] because the structure of
the nonorthogonal grid on the manifold is given by its metric G. Figure 7.14
demonstrates the solution of the Eikonal equation for the parametric manifold
z = 0.5 sin(47z) sin(4ry).

In order to demonstrate the spatial structure of the kernel, we tested it on
the synthetic image in Fig. 7.15. At isotropic areas of the image, the kernel is
isotropic, and its weights are determined solely by the spatial distance from
the filtered pixel. Across edges the significant change in intensity is translated
into a long geodesic distance, which results in negligent kernel weights on the
other side of the edge. The filtered pixel is computed as an average of the
pixels on the ‘right’ side of the edge.

7.6 Conclusion

This chapter described image enhancement using PDE based geometric diffu-
sion flows. On the theoretical side, starting with variational principles explains
the origin of the flows, and the geometric approach results in some nice in-
variance properties. On the practical side, using carefully selected numerical
schemes and developing kernels for the flows enables an efficient and robust
implementation. Combined together, we get a fascinating area of research
yielding state-of-the-art algorithms.
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Fig. 7.14. Fast marching on the manifold z = 0.5sin(47wz)sin(47y). Left: imple-
mented on the parameterization plane. Right: projected on the manifold. Lower
values are assigned brighter colors. The black curves are the level curves

©

Fig. 7.15. Level curves of the kernel at various locations in a synthetic image
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8.1 Introduction

With the proliferation of the Internet and maturation of the digital signal
processing technology, applications of digital imaging are prevalent and are
still continuously and rapidly increasing today. Yet the main obstacle in the
widespread deployment of digital image services has been enforcing security
and ensuring authorized access to sensitive data. In this regard, a direct solu-
tion is to use an encryption algorithm to mask the image data streams, which
has led to the celebrated number-theory-based encryption algorithms such as
Data Encryption Standard (DES), International Data Encryption Algorithm
(IDEA), and the algorithm developed by Rivest, Shamir and Adleman (RSA)
[24, 40, 41]. However, these encryption schemes appear not to be ideal for ima-
ge applications, due to some intrinsic features of images such as bulk data ca-
pacity and high redundancy, which are troublesome for traditional encryption.
Moreover, these encryption schemes require extra operations on compressed
image data, thereby demanding long computational time and high compu-
ting power. In real-time communications, because of their low encryption and
decryption speeds, they may introduce significant latency.

Compared with text encryption, which most existing encryption standards
aim at, image encryption (or more generally, multimedia encryption) has its
own characteristics and special features with many unique specifications. In
order to develop effective image encryption techniques, these have to be fully
understood. In the following section, some basic concepts in cryptography
with respect to image encryption are introduced.

8.1.1 Fundamentals of Cryptology

The basic idea of encryption is to modify the message in such a way that
its content can be reconstructed only by a legal recipient. A discrete-valued
cryptosystem can be characterized by [33]
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a set of possible plaintexts, P
a set of possible ciphertexts, C
a set of possible cipherkeys, K
a set of possible encryption and decryption transformations, £ and D

For each key, k € K, there exists an encryption function e(k,-) € £ and
a corresponding decryption function d(k,-) € D, such that for each plaintext
p € P the condition for unique decoding, d(k, e(k,p)) = p, is satisfied.

The security of a cryptosystem usually relies on the key only. In other
words, it is assumed that the opponent knows the structure of the encryption
system, has the ciphering algorithm, and has access to the transmission chan-
nel to obtain an arbitrary segment of the ciphertext ¢. A good cryptosystem
always allows for this situation to happen, and this condition or requirement
is referred to as Kerckhoff’s principle [41].

Encryption algorithms, also called ciphers, can also be classified with res-
pect to the structures of the algorithms. There are two kinds of ciphers: stream
ciphers and block ciphers.

A block cipher is a type of symmetric-key encryption algorithm that trans-
forms a fixed-length block of plain-text data into a block of ciphertext data of
the same length. The fixed length is called the block size, and for many block
ciphers the block size is 64 or 128 bits. The larger the block size, the more
secure the cipher, but the more complex the encipher and decipher algorithms
and devices. Typical block ciphers include DES, Triple DES, Blowfish, IDEA,
and AES; some of them have become cipher standards lately.

Unlike block ciphers, which operate on large blocks of data, stream ciphers
typically operate on smaller units of plaintext, usually bits. So, stream ciphers
can be designed to be exceptionally fast, much faster than a typical block
cipher. Generally, a stream cipher generates a sequence of bits as a key (called
keystream), and the encryption is accomplished by combining the keystream
with the plaintext. Usually, the bitwise Exclusive-OR (XOR) operation [24] is
chosen to perform ciphering, basically for its simplicity. As of today, no stream
cipher has emerged as a standard. The most widely used stream cipher is RC4,
while RC5 has been incorporated into some major products such as BSAFE,
JSAFE, and S/MAIL of the RSA Data Security, Inc. [40]

Traditional cryptology is studied by applying mathematical tools such as
number theory, algebra, algebraic geometry, and combinatorics [9]. In the past
years, a new approach of constructing cryptosystems based on the theory of
chaotic dynamical systems has been gradually developed. The similarity and
difference of both traditional cryptology and chaotic cryptology are further
expounded in Sect. 8.2.

A good cipher should have strong ability to withstand all kinds of crypt-
analysis and attacks that try to break the system. To a certain extent, the
resistance against attacks is a good measure of the performance of a cryp-
tosystem; thus, it is often used to evaluate cryptosystems.
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According to the method of the opponent’s access to additional informa-
tion, attacks on a cryptosystem may be classified into four classes:

o C(iphertext-only attack: Opponent has access to communication channel
and can eavesdrop some segments of the ciphertext, encrypted by a certain
key. The task of the opponent is to reveal as much plaintext as possible,
and even to be able to deduce the cipher key.

e Known-plaintext attack: In addition to the obtained ciphertext segments,
the opponent knows also an associated piece of plaintext. The task of the
opponent is then to deduce the cipher key.

e Chosen-plaintext attack: The opponent not only has access to some seg-
ments of the cipher and the plaintext, but also can choose plaintext to en-
crypt and accordingly gets some corresponding ciphertext that he wants
for comparison. This kind of attack is more intensive than the known-
plaintext attack.

e Chosen-ciphertext attack: The opponent can choose different segments of
the ciphertext and accordingly get its corresponding plaintext.

Apart from the aforementioned typical attacks, there is a type of attack
named exhaustive key search, which tries all possibilities for the key in the
keyspace to completely decrypt the plain message. If the keyspace of a ci-
pher is relatively small, this exhaustive searching works quite well, given the
availability of supercomputing power today.

It should be emphasized that any encryption algorithm, traditional or
chaos-based, should obey basic cryptographical principles in order to be able
to resist serious attacks.

8.1.2 Particularities of Image Encryption

Unlike text messages, image data have special features such as bulk capacity,
high redundancy, and high correlation among pixels, not to mention that they
usually are huge in size, which together make traditional encryption methods
difficult to apply and slow to process. Sometimes image applications also have
their own requirements like real-time processing, fidelity reservation, image
format consistence, and data compression for transmission. Simultaneous ful-
fillments of these requirements, along with high security and high quality
demands, have presented great challenges to real-time imaging practice. One
example is the case where one needs to manage both encryption and compres-
sion. In doing so, if an image is to be encrypted after its format is converted,
say from a TIFF file to a GIF file, encryption has to be implemented be-
fore compression. However, a conventional encrypted image has very little
compressibility. On the other hand, compression will make a correct and loss-
less decipher impossible, particularly when a highly secure image encryption
scheme is used. This conflict between the compressibility and the security is
very difficult, if not impossible, to completely resolve.
Particularities of image encryption may be summarized as follows:
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. High redundancy and bulk capacity generally make encrypted image data

vulnerable to attacks via cryptanalysis. Based on the bulk capacity, the
opponent can gain enough ciphertext samples (even from one picture) for
statistical analysis. Meanwhile, since data in images have high redundancy,
adjacent pixels likely have similar grayscale values, or image blocks have
similar patterns, which usually embed the image with certain patterns
that result in secret leakage.

. Image data have strong correlations among adjacent pixels, which makes

fast data-shuffling quite difficult. Statistical analysis on large numbers of
images shows that averagely adjacent 8 to 16 pixels are correlative in
the horizontal, vertical, and also diagonal directions for both natural and
computer-graphical images. According to Shannon’s information theory
[35], a secure cryptosystem should fulfill a condition on the information
entropy, E(P|C) = E(P), where P stands for plain message and C for
ciphered message; that is, the ciphered (i.e., encrypted) image should not
provide any information about the plain image. To meet this requirement,
therefore, the ciphered image should be presented as randomly as possible.
Since a uniformly distributed message source has a maximum uncertainty
[34], an ideal cipher image should have an equilibrium histogram, and any
two adjacent pixels should be uncorrelated statistically. This goal is not
easy to achieve under only a few rounds of permutation and diffusion.

. Bulk capacity of image data also makes real-time encryption difficult.

Compared with texts, image data capacity is horrendously large. For
example, a common 24-bit true-color image of 512-pixel height and 512-
pixel width occupies 512 x 512 x 24/8 = 768 KB in space. Thus, a one-
second motion picture will reach up to about 19 MB. Real-time processing
constraints are often required for imaging applications, such as video con-
ferencing, image surveillance, and so on. Vast amounts of image data put a
great burden on the encoding and decoding processes. Encryption during
or after the encoding phase, and decryption during or after the decoding
phase, will aggravate the problem. If an encryption algorithm runs very
slowly, even with high security, it would have little practical value for
real-time imaging applications. That is the reason why current encryp-
tion methods such as DES, IDEA, and RSA are not the best candidates
for this consideration.

. Image encryption is often to be carried out in combination with data

compression. In almost all cases, the data are compressed before they are
stored or transmitted due to the huge amount of image data and their very
high redundancy. Thus, directly incorporating security requirements in the
data compression system is a very attractive approach. The main challenge
is how to ensure reasonable security while reducing the computational cost
without downgrading the compression performance.

. In image usage, file format conversion is a frequent operation. It is desi-

rable that image encryption not affect such an operation. Thus, directly
treating image data as ordinary data for encryption will make file format
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conversion impossible. In this scenario, content encryption, where only
the image data are encrypted, leaving file header and control information
unencrypted, is preferable.

6. Human vision has high robustness to image degradation and noise. Only
encrypting those data bits tied with intelligibility can efficiently accom-
plish image protection [47]. However, conventional cryptography treats all
image data bits equally in importance, and thus requires a considerable
amount of computational power to encrypt all of them, which has often
proved unnecessary.

7. In terms of security, image data are not as sensitive as text information.
Security of images is largely determined by the real situation in an ap-
plication. Usually, the value of the image information is relatively low,
except in some specific situations like military and espionage applications
or video conferencing in business. A very expensive attack of encrypted
median data is generally not worthwhile. In practice, many image ap-
plications do not have very strict security requirements. Under certain
circumstances, protection of the fidelity of an image object is more im-
portant than its secrecy. An example is electronic signatures. As another
example, in image database applications, only those users who have paid
for the service can have access to large-size images with high resolution.
Adversaries may be able to get some small-size images with low resolution
by attacks based on cryptanalysis, but those images have little business
values—and perhaps much cheaper than the cost are of preparing and exe-
cuting the attacks. In the worst case, possible partial leakage of some
secrecy in multi-media, within a certain limitations, is always permitted,
while for text information this scenario is largely forbidden because it
is then quite easy to predict the entire message based on the obtained
information from a partial leakage.

Today, there does not seem to be any image encryption algorithm that can
fulfill all the aforementioned specifications and requirements.

Chaos-based image encryption, further described below, cannot solve all
these problems either. However, it can provide a class of very promising me-
thods that can partially fulfill many of these requirements and demonstrate su-
periority over the conventional encryption methods, particularly with a good
combination of speed, security, and flexibility. As seen below, through an e-
laborative design, either chaotic block cipher or chaotic stream cipher can
achieve very good overall performance.

8.1.3 Some Existing Image Encryption Schemes

Some image encryption methods have been proposed in the current literature.
In order to inspire the development of better chaotic ciphers, this review is not
only intended for chaos-based methods, but is also meant for understanding
image encryption technology in general.



236 Yaobin Mao and Guanrong Chen

Image encryption algorithms, which can be classified with respect to the
approach in constructing the scheme, are divided into two groups here: chaos-
based methods and non-chaos-based methods. Image encryption also can be di-
vided into full encryption and partial encryption (also called selective encryp-
tion) according to the percentage of the data encrypted. Moreover, they can be
classified into compression-combined methods and noncompression methods.

Some existing proposals of chaos-based image encryption algorithms are
now introduced. In [13], two kinds of schemes based on higher-dimensional
chaotic maps were proposed. By using a discretized chaotic map, pixels in an
image are permuted in shuffling after several rounds of operations. Between
every two adjacent rounds of permutations, a diffusion process is performed,
which can significantly change the distribution of the image histogram that
makes statistical attack infeasible. Empirical testing as well as cryptanalysis
both demonstrated that the chaotic baker map and cat map are good candi-
dates for this kind of image encryption. Similar thoughts also appeared, e.g.,
in [31], where a fast bulk data encryption scheme was designed by combining
chaotic Kolmogorov flows with an adaption of a very fast shift-register-based
pseudorandom number generator.

The aforementioned schemes are block cipher, and they have some promi-
nent merits, including high security and fast processing. However, their defects
are also significant since the encrypted image has very little compressibility
and is unable to abide any lossy compression (e.g., JPEG). To alleviate the
conflict between compressibility and encryption, several suggestions of com-
bining compression and encryption have been proposed. In [47], the so-called
MHT scheme was proposed that encrypts image via a manipulation of Huff-
man coding tables in the image coding system. The MHT scheme chooses
several different Huffman tables from a large number of possible candidates,
and uses them alternatively to encode the image data. The choice of Huffman
tables and the order in which they are used are kept secret as the key. It
was advocated that the method requires very little computational overhead
and can be applied to MPEG and JPEG/JPEG 2000, but it cannot resist
chosen-plaintext attacks [47].

A somewhat different chaos-based image encryption method was proposed
in [2] that makes use of the SCAN language. Through substitution of each pixel
based on an additive noise vector and scramble scanning patterns, an image
can be encrypted and compressed simultaneously. The idea seems to be quite
good, but it was pointed out in [6] that this method is weak against exhaustive
key searching and chosen-plaintext attacks. In [3], another image compression
and encryption algorithm was proposed based on the lossless quadtree image
compression scheme. The quadtree data structure is used to represent the
image, and the scanning sequences of image data comprise a private key for
encryption. Also in [6], numerous attacks on the proposed algorithm were
tested and presented, which include keyspace reduction, histogram attack,
known-plaintext attack, and chosen-plaintext attack.
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In order to speed up encryption processes so as to make them feasible
for real-time applications, most of the existing schemes follow the idea of se-
lective encryption. Actually, according to Shannon’s theory, both encryption
and compression are processes of redundancy reduction [34], but their pur-
poses are different. In [7], several partial encryption schemes were provided.
It was reported that by a partial encryption, only 13% to 27% of the output
from a quadtree compression algorithm is encrypted for a typical image, and
less than 2% is encrypted for a 512 x 512 image compressed by set-partitioning
in the hierarchical trees algorithm.

There are also several proposed schemes that consider matching the com-
patibility to current international standards. Since many international stan-
dards on videos and images use block-based discrete cosine transform (DCT),
including the familiar JPEG, MPEG-1, MPEG-2, H.261, and H.263 formats,
the current research has been concentrated on selective encryptions within
the framework of DCT. However, with the emergence of MPEG-4 and JPEG-
2000, research emphasis may soon be redirected to a combination of encryption
and wavelet compression. In the following, some proposed schemes are briefly
reviewed and commented upon.

To achieve high encryption speed, in the early stage some elementary cryp-
tographic methods using random permutation lists were suggested. Since the
operations are simple, the encryption does not require high computational
cost. The challenge is how to achieve reasonable security with such simple
operations. The method recommended in [44] replaces the zig-zag scan by the
random permutation lists of MPEG. In doing so, if the decoder does not know
the permutation lists, the DCT coefficients in a block will be in the wrong
order although the values are not modified. It is well known that encryption
using only permutation is not secure enough, therefore it was pointed out in
[45] that the method proposed in [44] and its enhancement version given in
[39] are not able to resist known-plaintext attacks.

Another fast encryption scheme was proposed in [37], which encrypts the
sign bits of the DCT coeflicients (i.e., the sign bits of differential DC values for
the DC coefficients). Because DC values significantly affect the quality of an
image, changing them will render the whole image unreadable. For the same
reason as discussed in [44] and [39], the method proposed in [37] is not secure
enough either. Therefore, an enhanced scheme called RVEA was composed in
[38], which tried to implement DES or IDEA aiming to strengthen the sign-bit
encryption.

Since wavelet-based image compression achieves both high compression
rates with reasonably high image quality and low computational complexity,
many image compression standards (for moving or still pictures) have selected
to use wavelets. Integrating an encryption algorithm with wavelet image co-
ding is reasonable and has great usage potential. In [46], a wavelet-based
system combining compression and encryption was recommended. By using
Antonini wavelets [1], an image is decomposed into several subbands. In each
level of the subbands, encryption is performed using random permutation.
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Experiments show that permutation does not affect compression significantly:
according to [46], it causes only 2% compression-rate drops. But permutation
in different levels of the subbands affects the image quality significantly, so
encryption performed on low-pass subbands may render the whole image un-
readable, while one performed on high-pass subbands may only create some
noiselike spots on the image. This scheme is also unable to resist the known-
plaintext attack or chosen-plaintext attack. Knowing this, DES may be used
to strengthen its security, but it brings in extra computational loads.

8.2 Chaos-Based Encryption Schemes

Since the demonstration of possibility for self-synchronization of chaotic oscil-
lations [26], a great deal of work on application of chaos to cryptography has
been carried out in the last decade. Early works on chaos in cryptography were
connected with encrypting messages through modulation of chaotic orbits of
continuous-time dynamical systems. These methods are strongly related to
the concept of synchronization of two chaotic systems and to chaos control
[5]. Several different ways have been proposed to achieve synchronization of
chaotic systems, thereby transmitting information on a chaotic carrier signal.
Some typical forms have been brought up, which includes chaotic masking,
chaotic shift keying, and chaotic modulation using inverse systems [10, 15].
In spite of the fact that many “secure” communication schemes have been
proposed based on the use of the chaos synchronization principle, they all
suffer from some common weakness. The following technical problems were

listed in [23]:

e [t is difficult to determine the synchronization time; therefore, the message
during the transient period will be lost, sometimes causing fairly long
transient times.

e Noise throughout the transmission significantly affects the intended syn-
chronization. This means the synchronization noise intensity should be
small compared to the signal level, or the desired synchronization will not
be achieved.

e Technically, it is difficult to implement two well-matched analog chaotic
systems, which are required in synchronization, and if this is not required
(i.e., with certain robustness) then the opponent can also easily achieve
the same synchronization for attack.

In contrast to synchronization-based techniques, a direct application of
a chaotic transformation to a plaintext, or applying a chaotic signal in the
design of an encryption algorithm, seems to be a more promising approach.
The sensitivity to initial conditions and parameters as well as the mixing
(ergodicity) characteristics of chaos are very beneficial to cryptosystems. The
main difference is that cryptosystems are operated on a finite set of integers,
while chaotic maps are defined on an infinite set of real numbers. Therefore,
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how to merge these two kinds of systems so as to take advantage of the good
properties of chaos is worthy of further exploration.

In the next section, some basic concepts of chaos are introduced, and the
possibility of integrating chaos into the design of better encryption algorithms
is investigated.

8.2.1 Basic Features of Chaos

Chaos is a ubiquitous phenomenon existing in deterministic nonlinear systems
that exhibit extreme sensitivity to initial conditions and have random-like
behaviors. Since its discovery by Edward N. Lorenz in 1963 [22], chaos theory
has become a branch of scientific studies today [5]. Since discrete chaotic
dynamic systems (i.e., maps) are used in cryptography, this notion is briefly
introduced.

Definition of discrete chaos

There are several definitions of chaos, which are similar but are actually not
equivalent [4]. Only a textbook definition is introduced here for brevity.

For simplicity, one-dimensional maps are discussed. Consider a discrete
dynamical system in the general form of

Th+1 :f(xk)a f : I*)I7 HARS Ia (81)

where f is a continuous map on the interval I = [0, 1]. This system is said to
be chaotic if the following conditions are satisfied [11]:

1. Sensitive to initial conditions:

F3>0Vegel,e>03Ine N,y €l
lzo —yol <& = [f"(x0) — ["(y0)| > 0. (8.2)

2. Topological transitivity:
VI, I C I Jxg 6[1,n€N:fn(£C0) € I. (83)

3. Density of periodic points in I:
Let P = {p €ll3n e N: f*(p) = p} be the set of periodic points of f.
Then P is dense in I: P =1.

This definition has some redundance, which is not discussed here.

The sensitivity of chaos to initial conditions is often illustrated as the
butterfly effect, which is rooted in Lorenz’s original wording “Does the flap
of a butterfly’s wings in Brazil set off a tornado in Texas?” This sensitivity
property is commonly utilized for the keys of cryptosystems.

The topological transitivity property ensures the ergodicity of a chaotic
map, which means that if we partition the state space into a finite number of
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regions, no matter how many, any orbit of the map will pass through all these
regions. This property is linked to the diffusion feature of cryptosystems.

In chaotic cryptology, the above two properties are often used to construct
stream ciphers and block ciphers. Further comparison given in the following
section.

8.2.2 Relationships Between Chaos and Cryptography

There have been many discussions in the literature about the relationships
between chaotic systems and cryptosystems [10, 16, 17, 18, 32]. As mentioned
above, the main difference between chaos theory and cryptography is that
cryptosystems work on a finite field, while chaos is meaningful only on a
continuum. Nevertheless, these two scientific notions are very closely related.
Many fundamental concepts in chaos theory, such as mixing and sensitivity
to initial conditions and parameters, actually coincide with those in crypto-
graphy.

The following excerpt from Shannon’s masterpiece [35] demonstrates that
cryptographic algorithms have unconsciously used the mixing property of
chaos, even before the dawn of chaos research [12, 13, 16, 17]:

Good mixing transformations are often formed by repeated products
of two simple non-commuting operations. Hopf has shown, for exam-
ple, that pastry dough can be mixed by such a sequence of operations.
The dough is first rolled out into a thin slab, then folded over, then
rolled, and the folded again, etc. ... In a good mixing transformation

. functions are complicated, involving all variables in a sensitive
way. A small variation of any one (variable) changes (the output)
considerably.

The similarities and differences between the two subjects can be listed [16],
as shown in Table 8.1. Chaotic maps and cryptographic algorithms have some
similar properties: both are sensitive to tiny changes in initial conditions and
parameters; both have random like behaviors; and cryptographic algorithms
shuffle and diffuse data by rounds of encryption, while chaotic maps spread
a small region of data over the entire phase space via iterations. The only
difference in this regard is that encryption operations are defined on finite
sets of integers while chaos is defined on real numbers.

8.2.3 Chaos for Cryptography

It is natural to apply the discrete chaos theory to cryptography for the fol-
lowing reasons [18]:

e The property of sensitive dependence of orbits on initial conditions makes
the nature of encryption very complicated. Suppose that one has the fol-
lowing chaos-based encryption scheme:
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Table 8.1. Similarities and differences between chaos and cryptography

Chaotic systems Cryptographic algorithms
Phase space: set of real numbers  Phase space: finite set of integers
Iterations Rounds

Parameters Key

Sensitivity to initial conditions and Diffusion

parameters

For a plaintext P in (0, 1), some parameters of a chaotic map are used as
the key for encryption. Choose a one-dimensional chaotic dynamical sys-
tem (I, ¢) to perform encryption. Then, the encryption procedure is the
n-fold iteration of the map ¢ with the initial value P, and the ciphertext
C is a result of the encryption:

C=¢"(P)=(¢(o(--0(P))))- (8.4)

Since the map is chaotic, it has a positive Lyapunov exponent, namely, at
some point z € I, \; > 0; therefore,

Ve>0 dni,ne IUpyny, D2,V <n<ng, V2,20 €Upyny

P2y — 2o < [@7(21) — @7 (22)] < P T2y — 2], (8.5)

where U, », is some neighborhood of x in I. The above expression implies
that, after n iterations, the initial distance |z; — 23| between two arbitrarily
close but distinct points z; and 2y will increase exponentially as e*s ™|z; —
z9|. That means if one uses k; as the encipher key but the opponent uses
ko to decipher the message, then even with |k1 — k2| < ¢, the difference
|21 — 22| will be significantly huge. This prevents the system from any
brute-force attack.

A Lebesgue measure p is said to be invariant if and only if it satisfies

VA € 0(X), ul4) = u(9(A)), (8.6)

where o(X) is the o-algebra of all measurable subsets in X. Here, (X, ¢) is
called ergodic if and only if it has only trivial invariant sets, i.e., ¢(B) C B
implies either u(B) = 0 or u(B) = u(X). The ergodicity implies that the
state space cannot be nontrivially divided into several subspaces. So, if
some orbit starts from an arbitrary point x, it will then never be restricted
within a small region. This property indicates that if a chaotic map is used
to compose encryption then the plaintext space will not be restricted to
a small subspace. Thus, for ciphertext C, to search for the corresponding
plaintext P one must go over the entire state space X.

The aforementioned system is mizing if the following condition is satisfied
(assume p(X) =1):
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This property implies that after n iterations, part of B will be contained
in A, and the percentage of B that are contained in A is asymptotically
proportional to the percentage of B in X with respect to the measure p.
Thus, plaintext P is thoroughly contained in its ciphertext C' if a chaotic
map is used for encryption.

The above-described properties of chaos are the foundations of chaotic
crytography. To design secure cryptographic algorithms for both stream and
block ciphers, all these properties should be well utilized.

8.3 Chaos-Based Image Encryption

Many chaos-based encryption schemes have been proposed, and some of them
have been extended from text encryption to image encryption. A direct ex-
tension of a chaos-based text encryption scheme to also work for images is
possible, but this simple modification may not provide an efficient solution
to these image encryption problems. As pointed out in Sect. 8.1.2, image en-
cryption has its own specifications such as encryption speed, compatibility
to image format and compression standards, and real-time implementation,
therefore it requires a special design of the encryption algorithm.

Some existing image encryption schemes were briefly reviewed in Sect.
8.1.3. However, with a few exception, dedicated chaos-based image encryption
schemes do not often appear in the literature. These exceptions are further
discussed here.

In [49], an encryption method called chaotic key-based algorithm (CKBA)
was proposed. The algorithm first generates a time series based on a chaotic
map, and then uses it to create a binary sequence as a key. According to the
binary sequence generated, image pixels are rearranged and XOR or XNOR
operated with the selected key. This method is very simple but has defects in
security, as pointed out in [20]: this method is very weak to the chosen/known-
plaintext attack with only one plain image. Moreover, its security to brute-
force attack is also questionable.

In [31], a chaotic Kolmogorov-flow-based image encryption algorithm was
designed. In this scheme, the whole image is taken as a single block and per-
muted through a key-controlled chaotic system based on the Kolmogorov flow.
In order to confuse the data, a substitution based on a shift-registered pseu-
dorandom number generator is applied, which alters the statistical property
of the cipher image. It was advocated that the scheme is computationally ef-
ficient secure, and superior to contemporary bulk encryption systems when
aiming at efficient image and video data encryption.

In [13], a systematic method was suggested for adapting an invertible two-
dimensional chaotic map on a torus or on a square to create a symmetric
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block encryption scheme. The approach to constructing the symmetric block
cipher consists of three steps: (1) choose a chaotic map and generalize it by
introducing some parameters; (2) discretize it to a finite square lattice of points
that represent pixels; (3) extend the discretized map to three dimensions and
compose it with a simple diffusion mechanism. In this design, an example
based on the standard two-dimensional baker map was given to illustrate the
construction procedure and to demonstrate the security.

Furthermore, some other two-dimensional chaos-based encryption exam-
ples such as the chaotic cat map and standard map have also been used for
cipher design. In [21], for example, a chaotic video encryption scheme (CVES)
was proposed based on a multiple digital chaotic system. In this scheme, 2"
chaotic maps controlled by another single chaotic map are used to generate
pseudorandom signals to mask the video, and to perform pseudorandom per-
mutation of the masked video. It was claimed that the CVES is independent
of any video compression algorithms and can provide high security for real-
time digital videoing with a fast encryption speed. In [21], the method was
also extended to the so-called RRS-CVES, which supports random retrieval
of cipher video with maximal time-out.

It seems that most chaotic image encryption methods are concentrated
on block ciphers. Actually, both block cipher and stream cipher have their
own merits and can be used for different applications under different condi-
tions to meet different requirements. In the next two sections, more general
constructive approaches of these two types of chaos-based ciphers are further
discussed.

8.4 Chaos-Based Block Ciphers for Image Encryption

Chaos-based block ciphers have excellent flexibility. Applying block ciphering
on a whole picture can achieve very fast shuffling. Meanwhile, if a huge-sized
image needs to be encrypted by a device with limited memory or compu-
tational power, say a single chip or a mobile phone, the image can be split
into several small blocks, which are then encrypted in serial. Unlike stream
ciphers, block ciphers are suitable for parallel processing. Moreover, using a
block cipher it is easy to balance the requirements of encryption intensity and
cipher speed by simply controlling the cipher rounds.

8.4.1 Construction of Chaos-Based Block Ciphers

Integrating a chaotic map into a block cipher utilizes chaos properties to
rapidly scramble and diffuse data. Two general principles that guide the design
of block ciphers are diffusion and confusion. Diffusion means spreading out
the influence of a single plaintext digit over many ciphertext digits, so that
the statistical structure of the plaintext becomes unclear. Confusion, on the
other hand, means using transformations that complicate the dependence of
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the statistics of the ciphertext on the statistics of the plaintext [16, 17]. These
two principles are closely related to the mixing and ergodicity properties of
chaotic maps.

In [17], a general approach to chaos-based block cipher design was pro-
vided, which consists of four steps:

1. Choosing a chaotic map: one should consider maps with good mixing
property, robust chaos, and a large parameter set.

. Introducing the parameters.

Discretization.

4. Cryptanalysis and key scheduling.

W N

This framework is recapitulative and can be used to direct block cipher
design. However, to design a fast block cipher applicable to real-time ima-
ging, more considerations are in order. For example, since images are highly
correlated, it is better to choose a higher-dimensional chaotic map to speed
up the permutation process. A block image cipher design framework, based
on higher-dimensional chaotic maps, is recommended here:

1. Choose a higher-dimensional chaotic map and generalize it by introducing
a large number of parameters. The chaotic map chosen should have a
large parameter set and good mixing properties. In addition, the map
should be a measure-preserved map, to ensure one-to-one mapping after
discretization, which is needed for decryption. Good examples of such
maps include the generalized cat map, generalized baker map, and so on,
as are further discussed below.

2. Discretize the map. Despite the fact that in theory a discretized map is
only defined over a finite field and therefore can never to truly chaotic, one
should keep certain strong features of chaos, such as mixing and sensitivity
to parameters, while keeping the data shuffling speed fast. For practical
use, this oftentimes proves sufficient.

3. Compose a diffusion process. Although pixel positions of an image were
scrambled in the last step, generally the distribution of gray-scales of the
image is still unchanged, i.e., the histogram of the plain image is about
the same as that of the cipher image. This leaves a door widely open for
statistical attack and chosen-plaintext attack. Thus, a diffusion process
is necessary to make the spread influence of each single pixel over all
of the image. The diffusion process may simply be accomplished using
a one-dimensional chaotic map. In addition, one may also introduce an
additional substitution procedure to speed up the diffusion process.

4. Perform security evaluation. Many cryptanalysis methods that are widely
used in traditional cryptography should be applied to analyze the perfor-
mance of a proposed chaos-based cipher. These methods include keyspace
analysis, statistical attack, differential and linear attacks, know-plaintext
attack, and chosen-plaintext attack.

5. Other performance evaluation. Apart from security analysis, other issues
should also be considered for image encryption. These include cipher
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speed, cipher image size, deciphered image quality (if data compression is
combined), and computational overhead.

Next, the generalized three-dimensional baker map is used as an example
to illustrate the composition of a chaos-based image block cipher.

8.4.2 A Fast Image Cipher Based on Chaotic 3D Baker Map

In applications, there are two kinds of methods for constructing secure en-
cryption algorithms. For quite a long time, many now-classic schemes like
DES and IDEA put more emphasis on substitution than on permutation. Ac-
tually, permutation plus diffusion can also compose good encryption schemes
with fast speed and high security. In the last section, some encryption schemes
using two-dimensional chaotic maps were discussed that were designed based
on this idea [12, 13, 31].

Here, the two-dimensional (2D) baker map is extended to three dimension
(3D), and then is used to compose a fast image encryption scheme. Empirical
results have shown that, compared with encryption using the 2D baker map,
this new 3D version is not only more secure but is also 2 to 3 times faster.

Extending 2D Baker Map to 3D Version

The standard 2D baker map, denoted by B hereafter, is described by [12, 13]

B(x):{(2x—1:§+;)

This 2D baker map is a chaotic bijection of the unit square I x I onto
itself. The generalized baker map [27, 28] is defined as follows: divide the
unit square into k vertical rectangles, [F;_1, F;) x [0,1),é = 1,--- |k, F; =
p1+p2+---+p;, Fo =0, such that p; +---+pr = 1. The lower right corner
of the ith rectangle is located at F; = p1 +- - -+ p;. The generalized baker map
stretches each rectangle horizontally by a factor of 1/p;. At the same time,
the rectangle is contracted vertically by a factor of p;. Formally,

<z !
- 2 (8.8)
<z<l

IA A

0
1
2

B =)

p_(i’?—Fi)7piy+Fi> ) (8.9)

for (z,y) € [F}, F; +pi) x [0,1).

A direct extension of the 2D baker map to 3D version can be accomplished
by the following procedure. First, divide the unit cube into four even, narrow
stripes of small cubes, and then press each of them and pile them up one
by one to form a new unit cube that has the same volume as the former.
Mathematically,
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(2z,2y, %) 0<z<,0<y<]
1 1 1
Ble.y, ) = 22,2y — 1,5+ 5) 0<zr<,,,<y<l (8.10)
e (22 —1,2y,% + 1) l<r<1,0<y<]
2r-12y-1,5+F ,<2<1l,,<y<1
which is illustrated by Fig. 8.1.
m v
I i .
v
3/4
m
12 -
1 1/4 1
I
1.2 0
0 12 1 1

Fig. 8.1. The 3D baker map

Similar to the 2D baker map, the 3D baker map also has its general form.
As can be seen from Fig. 8.2, the unit cube is first divided into several small
stripes, and then each stripe is pressed and then piled up to form a new unit
cube of the same volume. Assume that the unit cube is divided into k x ¢
blOCkS7 [Wi—l,Wi) X [Hj_l,Hj) X [0,1), 1 =1,--- ,k‘, j =1,---,t, W, =
W1, W2, -+, Wy, WO = O7 such that wp +wg + -+ W = 1, and Hj = hl +
hg +---+h;, Hy =0, such that hy + hy + --- + hy = 1. The generalized 3D
baker map is then defined as follows:

Bs(x,y,z) = (111) (x = W), hl (y — Hj), w;hjz + Lij> , (8.11)
i 3

for (SC,:L],Z) € [Wifl,Wi) X [ijlaHj) X [071), where Lij = Wl X hj + Hj,
i=1,---,k j=1,---,t

The continuous 3D baker map is then extended to its discrete version
with an arbitrary cube size. Without loss of generality, assume that the cube
is W x H x L, and is split into k x ¢ blocks. The sequence of k integers,
w1, Ws, . . ., Wk, 18 chosen such that W; = wy +we + -+ +w;, W = wy + wa +
-+ wg, and Wy = 0. The same for the sequence of ¢ integers, hi, ho, ..., hy,
ie, Hi=hi+ho+---+hj, H=hy +hy+---+ hy, and Hy = 0. By using
the following formulas:
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1 el
L1
1 le
hy 1
- H L
1)y " o L2
oM W . Wy Hp 1

Wy Wy e Wy H)

Fig. 8.2. The 3D baker map: general form

S=(Hj-1 xW+W;_1) x L+w; x hj x 1+
(n — Hj_1) X w; + (m — Wi_1),
(m/,n',l") = Bsp(m,n,l), (8.12)

_ ((s mod (W x H)) modW{S mOdV(VWXH)J’{WiHD’

an arbitrary point (m,n,!) in the original cube is mapped to (m/,n’,1’) in the
new cube.

Image Encryption Scheme Based on 3D Baker Map

The discrete 3D baker map, designed in Sect. 8.4.2, is now applied to construct
a fast image encryption scheme. As mentioned previously, a secure encryption
scheme should have a mechanism of diffusion that makes known-plaintext
attack infeasible. In this new image encryption scheme, an XOR plus modulo
operation is inserted to each pixel in between every two adjacent rounds of the
map used. Below, the diffusion process is first discussed, and then the entire
encryption scheme is described in detail.

1. Diffusion Procedure. First, choose two numbers: one (denoted L;) is a float
number in (0,1), to be used as initial condition; another (denoted S) is an
integer, to be used as seed. Then, use L; as the initial value to compute the
logistic map

x(k+1) = 4x(k)[1 — z(k))]. (8.13)

If the next value obtained is in (0.2,0.8), then go to the next step; otherwise,
the iteration goes on until a desired number in (0.2,0.8) is obtained. Here,
notice that the value of 0.5 is a “bad” point, which will lead the iteration
being trapped in the fixed point 0. If such a case is encountered, a small
perturbation should apply. Once a proper value is obtained from the logistic
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map, digitize it by amplifying it with a proper scale and then do sampling.
The digitized value is designated as ¢(k) and is XOR~ed with the values of
the currently operated pixel and the previously operated pixel in the image,
according to the following formulas:

C(k) = o(k) @ {[I(k) + ¢(k)) mod N} & C(k — 1), (8.14)

where I(k) is the currently operated pixel and C(k — 1) is the previously
operated pixel in a vector that was strung out from the image, and C(k)
is the XOR-ed value. One may set the initial value I(0) = S. The inverse
transform of the above is simple, and is given by

I(k) = {6(k) @ O(k) & C(k — 1) + N — ¢(k)} mod N. (8.15)

Since in step k the previous value C(k — 1) is known, the value C(k) can be
ciphered out.

2. Image encryption scheme. The integrated image encryption scheme, illus-
trated in Fig. 8.3, consists of five steps of operations:

i )
image input ? i image oul
B oD %ol BRI L) e e e
key for key for
permutation rounds diffusion
key generation

128 hits user key I

Fig. 8.3. Block diagram of image encryption using the 3D baker map

Step 1. Key generation. Select a sequence of 128 bits as the key, and split
them into six groups among which the first four groups contain 24 bits each
and the last two groups contain 16 bits each. Map these six groups of bits
into six numbers, ki, ks, k3, k4, k5, and kg, where ki, ko, and k3 are floating
numbers in (0,1), while the rest are integers.

Step 2. Pile up the two-dimensional image to a three-dimensional one. Sup-
pose that the image to be encrypted is with W pixels wide and H pixels high.
First, one needs to pile up all pixels of the image, to form a cube of size
M x N x L. Since the number of total pixels is unchanged, the integers M,
N, and L must be chosen such that M x N x L = W x H. The decomposition
algorithm for M, N, L is described as follows:
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1. Set T'= W x H, and then factor out all prime numbers of T" and list them
out as a sequence {p1,pa,...,Pn} such that T =p; X py -+ X p, X 1.

2. Permute the sequence {p1,p2, ..., pn, 1}, and then regroup them into three
groups. During the permutation process, two integers are needed: one is
used as the seed and the other determines the shuffle rounds. Here, k5 and
ke are used for these purposes, respectively.

Step 3. Perform the 3D baker map. First, select k1 and ko as two initial values
to perform the logistic map, respectively. After several rounds of mappings,
followed by a floating point to integer transformation, one can select two
sequences, {mi,ma,...,mg} and {n1,na,...,n}, such that M = mq +mo +
--++mp and N = ny + ng + - -+ + ny. Then, perform the discrete 3D baker
map (Sect. 8.4.2), on the image cube, to get a shuffled image.

Step 4. Diffusion process. Set k3 = L; and k4 = S, and then perform the
diffusion process once according to the algorithm described in the first part
of this subsection.

Step 5. Reverse process. Transform the 3D cube back to a 2D image for
display or storage.

Note that operations in step 3 and step 4 are often interleaved for several
rounds, which depends on the security requirements.

To this end, the decipher procedure is similar to that of the encipher illus-
trated above, but with the inverse operational sequences to those described in
steps 3 and 4. Since decipher and encipher procedures possess similar struc-
tures, they have the same algorithmic complexity and time consumption.

Security Analysis and Test Results

Compared with other similar encryption schemes, the new one described above
has higher security and can resist all kinds of known attacks, such as the
known-plaintext attack, ciphertext-only attack, and so on. Here, some security
analysis results on the scheme are described, including the most important
ones like keyspace analysis, statistical analysis, and differential analysis.

1. Keyspace analysis. A good image encryption algorithm should be sensitive
to the cipher key, and the keyspace should be large enough to make brute-
force attacks infeasible. For the above-described chaos-based image encryption
algorithm based on the generalized 3D baker map, basic analysis and test
results are summarized as follows:

e Number of control parameters. This algorithm is a 128-bit encryption
scheme whose keyspace size is 2'2% ~ 3.4028 x 103%. Since this scheme
takes advantage of the 3D baker map, the opponent may try to bypass
guessing the key and directly guess all the possible combinations of the
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sequences {mi, ma,...,mi} and {ni,na,...,n:}, as well as all the possi-
ble decomposition of M, N, and L that are used in the 3D baker map.
Therefore, the combinations of the baker map control parameters should
be large enough to prevent such exhaustive search. In [13], the possible
combinations of control parameters for a 2D baker map were estimated.
According to the conservative estimate for an N x N image, the total num-

t

the key sequence {ni,na,...,n:}. For a 2D image, since the key sequences

of width and height are different, the size of the keyspace will be twice this

estimate. If each ciphering round of the baker map uses different ciphering
keys, then an increase in round numbers will also enlarge the keyspace.

Compared with the 2D baker map, the keyspace of the 3D one is further

enlarged, since the keyspace of the 2D map is just a subspace of the 3D

one. For example, suppose that an image size is W x H. In order to per-
form the 3D baker map, the image must be piled up to a cube with size

M x N x L such that W x H = M x N x L. Among all possible decompo-

sitions, W x H x 1 is a special case that reduces the 3D map to a 2D one.

Therefore, it is clear that the 3D baker map has a much larger keyspace

than that of the 2D one.

Key sensitivity test. Assume that a 16-character ciphering key is used. This

means that the key consists of 128 bits. A typical key sensitivity test is

performed according to the following steps:

1. First, a 512 x 512 image is encrypted by using the test key
“1234567890123456”.

2. Then, the least significant bit of the key is changed, so that the original
key becomes “1234567890123457” in this example, which is used to
encrypt the same image.

3. Finally, the above two cipher images, encrypted by the two slightly
different keys, are compared.

As a result: the image encrypted by the key “1234567890123456” has

99.59% difference from the image encrypted by the key “1234567890123457”

in terms of pixel gray-scale values, although there is only one bit difference

in the keys.

ber of ciphering keys is about K(N,t) = <N>, where ¢t is the length of

2. Statistical analysis. Shannon said, in his masterpiece [35], “It is possible to
solve many kinds of ciphers by statistical analysis,” and therefore he suggested
two methods of diffusion and confusion for frustrating the powerful statistical
analysis. Next, it is demonstrated that the above-described image encryption
scheme, based on the generalized 3D baker map, has good confusion and
diffusion properties. This is shown by a test on the histogram of the cipher
images and on the correlations of adjacent pixels in the cipher image.

1.

Histograms of encrypted images. Select several 256 gray-level images with
size of 512 x 512 that have different contents, and calculate their his-
tograms. One typical example among them is shown in Fig. 8.4. From the
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figure, one can see that the histogram of the cipher-image is fairly uniform
and is significantly different from that of the original image.

Original Image Higtogeam of Originl mage
ams

omp

o5y

Digtribunizs

50 [} 00 10 2 20 a0
Gray Scale

Encrypted Image 107 Histagram of Encrypied Image

50 00 1. a0 20 W
Gray Scals

Fig. 8.4. Histograms of the plain image and the cipher image

2. Correlation of two adjacent pizels. To test the correlation between two
vertically adjacent pixels, two horizontally adjacent pixels, and two dia-
gonally adjacent pixels in a cipher image, respectively, the procedure is
as follows: First, randomly select 1000 pairs of adjacent pixels from an
image. Then, calculate their correlation coefficient using the following two
formulas:

cov(z,y) = E(x — E(x))(y — E(y)), (8.16)

S cov(z,y)
Y \/var(sc) \/var(y)’

where x and y are gray levels of two adjacent pixels in the image. Figure
8.5 shows the correlations of two horizontally adjacent pixels in the plain
image and in the cipher image: the correlation coeflicients are 0.96638
and 0.0057765, respectively. Similar results for the diagonal and vertical
directions are shown in Table 8.2.

(8.17)

3. Differential attacks. Generally, an opponent may make a slight change (e.g.,
modify only one pixel) of the encrypted image so as to observe the change in
the result. In this way, he may be able to find out a meaningful relationship
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correlation of horizontal adjacent two pixels for original image correlation of horizontal adjacent two pixels for encrypted image
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correlation coefficient = 0.0057765
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Fig. 8.5. Correlations of two horizontally adjacent pixels in the plain image and in
the cipher image

Table 8.2. Correlation coefficients of adjacent pixels in two images

Plain-image Cipher-image

Horizontal 0.96638 0.0057765
Vertical 0.97961 0.028434
Diagonal 0.95025 0.020662

between the plain image and the cipher image. This is known as the differential
attack. However, if one minor change in the plain image can cause a significant
change in the cipher image, with respect to diffusion and confusion, then the
differential attack would become very inefficient and useless.

To test the influence of a one-pixel change on the whole image encrypted
by the above-described 3D chaos-based algorithm, two common measures can
be used: the number of pixels change rate (NPCR) and the unified avera-
ge changing intensity (UACI). Let two cipher images, whose corresponding
plain images have only one pixel difference be C; and Cs. Label the gray
values of the pixels at grid (4, j) in C; and Cy by C1(4,j) and Cs(3, j), respec-
tively. Define a bipolar array D with the same size as image C; or Cs. Then,
D(i, j) is determined by Ci(i,7) and Ca(i, j); namely, if C1(i,j) = Ca(i, )
then D(i,j) = 1, otherwise D(i,5) = 0. The NPCR is defined by

S D(i.j)

NPCR = "/ 1 1
CR wam < 00%, (8.18)

where W and H are the width and height of both C; and Cs, and NPCR
measures the percentage of different pixel numbers between the two images.
The UACI is define by

UACT = x 100%, (8.19)

W x H ; 255

which measures the average intensity of differences between the two images.
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One performed test is on the one-pixel change influence on a 512 gray-
level image of size 512 x 512. The test results are shown in Fig. 8.6. Generally,
with the increase in ciphering rounds, the influence of a one-pixel change is
increased. Hence, it is reasonable to increase the ciphering rounds in the test
to achieve higher security, yet this is at the expense of processing speed.

MPCR vs. cipher rounds UACI vs. cipher rounds
1 04

04 R 0.35

0.8 b 03

5 07 1 0.2%

P
UACI

= 06 1 0z
0.5 - 0.15

0.4 ! 01

n " . " . " 0.0 . . " . " .
i 10 15 20 25 a0 35 i] 5 10 15 20 25 30 35
cipher rounds cipher rounds

Fig. 8.6. NPCR vs. ciphering rounds and UACI vs. ciphering rounds

4. Enciphering/deciphering speeds. The above-described 3D chaos-based ima-
ge encryption algorithm is very fast. Simulation shows that the average enci-
phering/deciphering speed is 1.2 MB/s, and the peak speed can reach up to
2.8 MB/s, on a 1-GHz Pentium IV computer. Even the designed cipher based
on the 2D baker map in this study is different from that suggested in [13]
on the diffusion operation. Taking into account improvements in computers,
the speeds of the 3D cipher is slightly faster than that of the 2D cipher. The
encryption rate of the algorithm of [13] is only about 1 MB with an unopti-
mized C code on a 60-MHz Pentium. A comparison between the 2D and 3D
chaos-based schemes is shown in Table 8.3.

8.5 Chaos-Based Stream Cipher for Image Encryption

Compared with a block cipher, the main advantage of a chaotic stream cipher
is that it can be designed to accommodate image compression. An elaborately
designed stream cipher only introduces a small computational overhead in
image coding. Moreover, if the image compression algorithm is an embedded
one, i.e., the decoding procedure is from coarse to fine progressively, the cipher-
image stream can also be truncated at any desired point without influencing
the decoding process.

8.5.1 Design of Chaos-Based Stream Ciphers

Encryption by a stream cipher uses a sequence of random numbers to mask a
sequence of plaintext of the same length, bit by bit. Although using random
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Table 8.3. Comparison of ciphering speed between the 2D baker map and the 3D
baker map schemes

Image size Colors 2D baker map 3D baker map

(in pixels) (in seconds)  (in seconds)
256 x 256 2 < 0.3 < 0.3
256 x 256 16 < 0.3 < 0.3
256 x 256 256 <0.3 <0.3
256 x 256 16777216 <0.3 <0.3
512 x 512 2 1 <0.3
512 x 512 16 1 <0.3
512 x 512 256 1.1 < 0.3
512 x 512 16777216 1 < 0.3
1024 x 1024 2 3.3 1.0
1024 x 1024 16 3.3 1.1
1024 x 1024 256 3.3 1.2
1024 x 1024 16777216 3.3 1.3
2048 x 2048 2 13.6 3.4
2048 x 2048 16 13.5 3.2
2048 x 2048 256 14.0 3.4
2048 x 2048 16777216 13.6 4.3

Test Conditions:

(1) The computer used in this test is a Pentium IV, 1-GHz CPU
with 256-MB memory and 40-GB hard disk capacity.

(2) Theoretically, both algorithms are symmetric, i.e., both enci-
pher and decipher procedures have the same complexity. But, due
to the programming realization issue, the decipher procedure may
consume a little more time than enciphering. The time recorded in
Table 8.3 is the average time of the encipher and decipher proce-
dures.

numbers to mask a plaintext can achieve theoretical security [35], its practical
implementation is impossible. John von Neumann once said, “Any one who
considers arithmetical methods of producing random digits is, of course, in a
state of sin.” The fact is that it is practically very difficult, if not impossible, to
generate a truly random number sequence with a deterministic algorithms. In
practice, pseudorandom numbers are used instead. Then, the main problem is
to generate pseudorandom numbers with “good” properties to meet the need of
a key stream. A commonly used pseudorandom number generator (PRNG) is
the linear congruential generator (LCG). Since chaotic systems can generate
orbits that prove to be nondistinguishable from truly random orbits (e.g.,
they both have broad power spectra, and they are both extremely sensitive to
small changes of initial conditions), chaotic pseudorandom number generators
(CPRNG) have attracted more and more attention [19, 42, 43].
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Both compressed and uncompressed image data are treated as bitstreams
in stream ciphers. It is more interesting to construct pseudorandom bit se-
quences. Traditionally, linear feedback shift registers (LFSR) are popular ge-
nerators of pseudorandom bit sequences like the m-sequence. In practice, the
Gold sequence is also used frequently. By using a chaotic map, CPRNG is easy
to construct. As an example, the method introduced in [19] is employed here
to describe the process. Assume that a dynamical system, denoted (X, ¢),
has a normalized invariant measure p. Divide the state space X into two dis-
jointed parts, Xy and X7, such that u(Xo) = u(X1) = 1/2. Take an initial
value xg € X as seed, and start to evolute the system governed by ¢ and xg.
Suppose that after n iterations, a value z,, is obtained. The nth bit b, of the
sequence is then determined by the following formula:

~J0 if z, € X,
bn = { 1 if 2, € X, (8.20)
Thus, one obtains a bit sequence, {b1,bs, ..., by, ... }. Owing to the intrinsic

properties of chaos like ergodicity and mixing, the CPRNG has many good
features: unique dependence of the sequence on the seed, equiprobable occur-
rence of “0” and “1,” and asymptotic statistical independence of bits.

The assessment of pseudorandom number generators (PRNG) is now dis-
cussed. In [14], three postulates concerning properties of periodic PRNG were
recommended; to calculate quantities over one complete period of the genera-
tor, the following three conditions should be satisfied:

e The number of “0” bits should differ from the number of “1” bits by at
most one.

e Among all the runs, half should be of length 1, a quarter should be of
length 2, an eighth should be of length 3, and so on, and for each of these
lengths there should be equally many runs of “0” bits and runs of “1” bits.

e The value of the autocorrelation function is equivalent to the period of the
generator when the offset is 0; otherwise, the value is equal to a certain
constant integer.

A practical and widely used test standard is specified by the National
Institute of Standards and Technology (NIST) in the United States, called
FIPS 140-2 [25]. Tt consists of 4 tests on a total of 16 aspects. More specifically,
a single stream of 20,000 consecutive bits should be subjected to the following
4 tests:

1. Monobit test. A monobit test first counts the number of “1” in the 20,000
bitstream. Denote this quantity by X. If 9,725 < X < 10,275, then the
test is passed.

2. Poker test. Poker test firstly divides the 20,000 bitstream into 5,000 con-
secutive 4-bit segments. Count and store the number of occurrences of the
16 possible 4-bit values. Denote f(i) as the number of each 4-bit value i,
where 0 < i < 15. Evaluate the following value:
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= 5(1)30 > [f(@)]? = 5000. (8.21)

i=1

The test is passed if 2.16 < X < 46.17.

3. Runs test. A run is defined as a maximal sequence of consecutive bits of
either all “1” or all “0”, which is part of the 20,000 bitstream. The incidences
of runs of all lengths in the bitstream should be counted and stored.
The test is passed if the runs that occurred are within the corresponding
interval specified in Table 8.4. Note that for the purpose of this test, runs
of length greater than 6 are considered to be of length 6.

Table 8.4. Run test specification

Length of run Required interval

1 2,315—2,685

2 1,114—1,386

3 527—723

4 240—384

5 103—209
6+ 103—209

4. Long run test. A long run is defined to be a run of length exceeding 25,
of either all “0” or all “1”. On a sample of 20,000 bits, the test is passed if
there are no long runs.

In the next section, as an example, a secure image coding scheme based
on the hierarchical trees algorithm is introduced. This scheme is incorporated
within a chaos-based stream cipher.

8.5.2 Chaotic Secure Image Coding Based on SPIHT

As mentioned in the previous section, stream ciphers can be incorporated
with image compression. Here, a fast chaos-based image encryption scheme
is proposed that integrates the encryption with the compression in the image
bitstream.

In this design, during the compression process, the set partitioning in hier-
archical trees (SPTHT) image coding algorithm [29] is used, which can achieve
a reasonably good compression rate. By making the ciphertext be correlated
to the plaintext, the encryption scheme can well resist the known-plaintext
attack. Furthermore, the algorithm can decode and decrypt ciphertext with
an arbitrary bit rate. To introduce the new design, the SPIHT image coding
is first reviewed, followed by the chaos-based image cipher scheme, along with
some corresponding security analysis and experiment results.
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A Brief Review of SPIHT

Among all wavelet-based image compression schemes, the embedded zerotree
wavelet (EZW) coding [36] and SPTHT coding [29, 30] show their remarkable
performance not only in terms of efficiency but also in their low computa-
tional cost and progressive coding characteristics. Progressive coding (also
called embedding coding) refers to the way that the most significant bits re-
presenting an image are placed at the beginning of the code, and the code
bits are arranged according to their importance relative to the representation
of the image. A decoder can truncate the code at any position and obtain
an estimate of the image, based on the information up to that point. Both
EZW and SPIHT algorithms are progressive coding schemes, and SPTHT is
a more efficient implementation of the EZW. After the subband decomposi-
tion is applied to the image, the main algorithm works by partitioning the
subband-decomposed image into significant and insignificant partitions using
the following function:

1, max {‘Ci7j|} Z 2”,
i,J)ET

Su(T) = { (ir)€

(8.22)
0, otherwise,

where S, (T) represents the significance of a set of coordinates T', and ¢; ; is
the coefficient value of coordinate (i, 7).

There are two passes in the algorithm: the sorting pass and the refinement
pass. Three lists are defined, which are the list of insignificant sets (LIS), the
list of insignificant pixels (LIP), and the list of significant pixels (LSP), respec-
tively. The LIP and the LSP consist of nodes that contain single pixels, while
the LIS contains nodes that have descendants. The sorting pass is performed
on these three lists and finally makes pixels in the LSP, which is arranged in
an order according to the information importance. The maximum number of
bits required to represent the largest coefficient in the spatially oriented tree
is designated as nyax, and is computed by the following formula:

Nimax = {logz (rgg§{0i,jl})J (8.23)

During the sorting pass, those coordinates of the pixels that remain in LIP
are tested for the significance. The result, S, (7T'), is then sent to the output.
Those that are significant will be moved to LSP, as well as having their sign
bits output. Sets in LIS will also have their significance tested, and, if they are
found to be significant, then they will be removed and consequently the result
will be partitioned into subsets. Subsets with a single coefficient, if found to
be significant, will be added to LSP, or else they will be added to LIP.

During the refinement pass, the nth most significant bit of the coefficients
in LSP is output. The value of n is then decreased by 1, and the sorting and
refinement passes are repeated.
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This continues until either the desired rate is reached, or n = 0, and all
the nodes in LSP have their bits output. The latter case will result in an
almost perfect reconstruction since all the coefficients have been processed
completely.

Neither EZW nor SPIHT is noise tolerant, i.e., both methods are sensitive
to small modification of bits in their bitstreams. Knowing this, many methods
have been introduced to improve the error-prone nature of SPIHT as well as
EZW coding schemes [8, 48]. The new design to be introduced below, however,
makes use of this error sensitivity that resides in the image source coding.

>From the above discussion, it is clear that there are two kinds of data
contained in a SPIHT-coded bitstream, and similar data structure can also
be found in an EZW-coded one. They are named structure bits and data bits,
respectively. Structure bits refer to those used for synchronizing the encoding
end and the decoding end in the construction of spatially oriented tree. These
bits are extremely sensitive to noise, especially the first few bits in the bit-
stream. Data bits refer to those coding signs of image coefficients or coding
values of coefficients generated in the refinement pass. Change of data bits
does not seriously affect the reconstruction of the image, but only introduces
a small amount of noise to the result.

A large value of the ratio of structure bits to data bits is a basic feature of
this designed encryption scheme, and simulation shows that this requirement
can be met. Table 8.5 lists some ratios of structure bits to data bits under
different coding rates.

Table 8.5. Ratios of structure bits to data bits under different coding rates (test
subject is the 512 x 512 Lena image with 256 gray levels)

Compression rate Number of structure Number of data Ratio of structure

(bpp) bits (bits) bits (bits) bits to data bits
0.125 25,692 7,076 3.63:1
0.25 49,524 16,012 3.09:1
0.5 95,936 35,136 2.73:1
1 188,078 74,066 2.54:1
2 367,562 156,726 2.35:1
3 539,624 246,808 2.19:1
4 638,310 410,266 1.56:1
5 638,310 534,826 1.19:1
6 638,310 534,826 1.19:1
7 638,310 534,826 1.19:1
8 638,310 534,826 1.19:1
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Chaos-Based Binary Stream Encryption

Given the structure of SPTHT coding, image encryption is incorporated into
the SPIHT encoding process. A combination of encoding and encrypting pro-
cesses is actually very simple. Notice that an SPIHT-encoding bitstream is
generated bit by bit, so when each coded bit is output the encryption pro-
cess can be performed. Three kinds of bitwise operations can be defined,
namely, “keep operation”, “exclusive or (XOR) operation”, and “invert oper-
ation”, which are denoted by f, @, and —, respectively. Both f and — are
unary operations, while & is a binary operation. Rules for each operation are
listed in Table 8.6, where A and B are operands. Note that two operands
of XOR operation are the current-operated bit and its previous-output bit,
respectively.

Table 8.6. Rules for #,— and & operations
B A A -A A®B

000 1 0
011 0 1
10— — 1
11— — 0

In order to make even the transfer probabilities of 0 to 0, 0 to 1, 1 to 0,
and 1 to 1, which ensures the cipher stream to be more random, operators f
and — each should have about 25% operational opportunity, while & should
have 50% operational opportunity. To achieve this goal, the logistic map is
employed to determine the kind of operation to be used in each round. The
entire encryption procedure is described as follows:

Step 1. Choose two 24-bit-long sequences, K1 = {K1p, K11,..., K1a3},
and K2 = {K2p,K2q,...,K253} as the initial key, where K1;,K2; €
{0,1}. By using the formula

wo = (K20 x 20+ K2 x 2 4+ £ K2, x 204 - -+ K293 x 223) /22* (8.24)

sequence K2 is assembled into a floating point number zy, where zg €
(0,1). Suppose that a binary sequence C = {Cy,C1,...,Cp—1} is a set of
encrypted bitstream, where n is the total number of bits in the set, and
is increased as the encryption process goes on. Initially, let C = K1, i.e.,
C={Klg,K1q, -+ ,Kla3}.

Step 2. Let xg be the initial value, and then continuously use the logistic
map
zp =4zk—1 (1 —zK_1) (8.25)
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to get 23 numbers that fall in (0.2,0.8). Including the initial value zg,
group the 24 numbers in a set denoted by X = {xz¢, 1, ..., z23}. Through
X and the formula

tj=|nx(z; —0.2)/0.6], j=0,1,...,23 (8.26)

the 24 positions in set C' are specified, where each position corresponds
to either 1 or 0. Subsequently, take out the above 24 binary numbers and
regroup them into a new set, C,, = {C},,C%,,...,Ctas}. This set C,, can
be further mapped onto a floating number yo € (0, 1) according to formula

Yno = (Rﬁo X 20 + Pt1 X 21 et 3523 X 223) /224' (827)

Then, take yo as the initial value, and use the logistic map again to get a
new number y,, € (0.2,0.8) through iteration. This y,, is the number to
be used to determine the bitwise operation type in the next step.

Step 3. Divide the interval (0.2,0.8) unevenly into the following three
nonoverlapping intervals: (0.2, 0.35], (0.35,0.65], and (0.65,0.8). The type
of bitwise operation in this round is determined according to which interval
ym falls into. If y,,, € (0.2,0.35], then the operator £ is chosen; if y,, €
(0.35,0.65], operator & is chosen; if y,, € (0.65,0.8), operator — is chosen.
Suppose that the plain bit of the /th round is P;. According to the above
convention, one has C; = op(F;), where P, is the corresponding cipher
bit in the same round, and op € {f, ®, —}. The last job in this step is to
append C} to the sequence C' and then denote it as Cjya3.

Step 4. Set n = n + 1 and let kg = x93 if all bits are encrypted. Then,
exit the routine. Otherwise, go to Step 2.

A reversed procedure is performed in the decoding procedure, which de-
crypts the encrypted bitstream with an arbitrary desired bit rate.

Security Analysis and Experimental Results

The security of the above-described chaos-based encryption scheme is now
analyzed. The results show that although this scheme has a moderate size
of keyspace, it already has good key sensitivity and can well resist both
ciphertext-only attack and known-plaintext attack.

1. Keyspace analysis. The keys used in this scheme are composed of several
initial values of the logistic map. For 256 gray-scale pictures, two of them are
used; for 24-bit true-color pictures, 4 of them are used. Theoretically, since the
logistic map in its chaotic phase is very sensitive to initial values, the keyspace
of this encryption scheme can be arbitrarily large. However, because of the
limitation of numerical precision of a computer, a practical implementation
has to be restrained only in a small keyspace. In the simulation of this scheme,
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24 bits are used to assemble a floating number. Thus, for gray-scale images, the
cipher key is chosen to be 48 bits long, which has about 24% ~ 2.81475 x 10
possible combinations.

It may seem that the keyspace is not very large, but this does not mean
that the designed scheme has little practical value. There are several reasons
for this. First, since images have bulk data, the time consumed for one attack
will be much more than that to a textfile. In other word, a small keyspace does
not mean the total attack time can be reduced for images. Second, because
for true-color images there are two more image channels, each of which will
occupy an additional initial value, the keyspace is actually enlarged to 96 bits
long. Therefore, since one often uses 24-bit true-color images, the keyspace of
this scheme is considered to be large enough for practical applications.

2. Key sensitivity analysis. The logistic map is sensitive to initial values in its
chaotic phase, which ensures the key sensitivity of the encryption scheme.

A test is performed on gray-scale images that randomly changes one of
the 48 bits in the key and calculates the percentage of different bits in the
encrypted bitstreams. Test results are summarized in Table 8.7. Although, on
average, about 52.52% bits are different, the decrypted images with wrong
cipher keys are literally unreadable, for the structural bits are extremely sen-
sitive to the key.

Table 8.7. Test results of percentage of different bits in encrypted bitstreams with
respect to one-bit change in the key

No. 1 2 3 4 5  Average
Percentage of 36.21% 72.58% 54.40% 45.16% 54.25% 52.52%
different bits

3. Ciphertext-only attack analysis. Ciphertext-only attack on this encryption
scheme is impossible. Suppose that an opponent wants to attack only the first
1000 bits of an encrypted image bitstream by exhaustive searching, where each
bit is either 1 or 0. Then, the possible combinations will be a terrible number
of 21000 ~ 71,0715 x 103°!, Nevertheless, 1000 bits is really trivial as a tiny part
of the data set for an image: according to Table 8.5, for a 64:1 compressed
512 x 512 gray-scale image, the structural bits alone will be 25,692.

Another feature of this encryption scheme is that with the increase of
data bits, it is more difficult to break the cryptosystem by brute force attack.
Notice that each time before an operation is chosen from among £, @, and
=, a comparison with two thresholds will be performed on a floating number,
Ym- The generation of the floating number ¥, is based on a 24-bit binary
sequence, which is correlated to the preceding encrypted plaintext. Even if
the opponent knew the previous n bits, he still could not guess the floating
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24
with the increase of n, the combinations would increase very significantly.

number y,, because the number of all possible choices would be ( n > So,

4. Known-plaintext attack analysis. In this encryption scheme, there exist
three kinds of operations that make four kinds of bit changes with an equal
probability: 1 to 1, 1 to 0, 0 to 1, and 0 to 0. These types of bit operations are
not fixed, and they are correlated to the previously encrypted bits, therefore
frustrating the known-plaintext attack.

If the operation choosing procedure is removed, and only the XOR
operation is used, then the encryption process would be reduced to the
way that a compressed image bitstream has XOR operations bit by bit
with a binary sequence generated by the logistic map followed by a bi-
polarizing operation with a fixed threshold. Here, denote the binary se-
quence as {Sp,S1,...,5n,...}, where S; € {0,1}, and denote the com-
pressed image bitstream by {Io,I1,...,I,,...}. The encrypted bitstream
is {Co,C1,...,Cp,...}, where C; = S; @ I;,. Once the ciphertext is given,
ie., once {Iy, I1,...,Ip,...} is known, the sequence {Sy, S1,...,Sn,...} can
be revealed. Even if the XOR operation is related to the previous data, a
problem still exists. For instance, if the enciphering operation is defined as
C; =8;®I; & C;_1, then since I, Cq, and Cj are known, one can get St,
then S5, and so forth, until finally all S; are obtained iteratively. However, if
the operation selection procedure is added into each step, then because this
operator is unknown, the sequence {Sp, S1,...,Sn, ...} could not be revealed
unless the key used for generating it can be obtained.

5. Histogram analysis of encrypted images. The histograms of several 512x 512
gray-scale images were analyzed with different contents and natures. Test re-
sults show that histograms of encipher-images are very uniform, which makes
statistical attacks difficult. Figure 8.7 shows one typical result.

8.6 Conclusion: An Engineer’s Perspective

The security of an image is very different from that of a textfile. Because
of its intrinsic characteristics, the encryption speed and algorithm simplicity
are usually considered more important than the “absolute security”, — even if
that were possible. Chaos theory has proved to be an excellent alternative to
provide a fast, simple, and reliable image encryption scheme that has a high
enough degree of security. In this article, two chaos-based cipher schemes
for still images have been described in detail. Both security analysis and ex-
periments show that, taking into account the trade-off between attack ex-
pense and information value as well as other issues such as operational speed,
computational cost, and implementation simplicity, these kind of chaos-based
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Fig. 8.7. Histograms of plain-image and encrypted image

image encryption schemes are very practical. From an engineer’s perspective,
chaos-based image encryption technology is very promising for real-time se-
cure image and video communications in military, industrial, and commercial
applications.
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9.1 Introduction

Reflector

Angle meter

Fig. 9.1. a: A laser guided vehicle. b: A laser scanner or angle meter

Understanding of one-dimensional cameras is important in several appli-
cations. In [21] it was shown that the structure and motion problem using
line features in the special case of affine cameras can be reduced to the struc-
ture and motion problem for points in one dimension less, i.e. one-dimensional
cameras. This was used to solve the problem of three views of seven lines. Two
solutions were obtained. However, no geometrical interpretation of these two
solutions were given.
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Another area of application is vision for planar motion. It is shown that
ordinary vision (two-dimensional retina) can be reduced to that of one-
dimensional cameras if the motion is planar, i.e. if the camera is rotating
and translating in one specific plane only, cf. [12]. In another paper the planar
motion is used for auto calibration [2]. A typical example is the case where a
camera is mounted on a vehicle that moves on a flat plane or flat road.

Our personal motivation, however, stems from autonomous guided ve-
hicles (AGYV), which are important components for factory automation. Such
vehicles have traditionally been guided by wires buried in the factory floor,
gives a very rigid system. Removal and change of wires is cumbersome and
costly. The system can be drastically simplified using navigation methods
based on laser sensors and computer vision algorithms. With such a system
the position of the vehicle can be computed instantly. The vehicle can then
be guided along any feasible path in the room. This paper deals with some
navigation problems for laser-guided vehicles (LGV). The navigation system
uses strips of inexpensive reflector tape (called reflectors or beacons) which
are put on walls or objects along the route of the vehicle [15]. The laser scan-
ner, also called the angle meter or meter, measures the direction from the
vehicle to the beacons, but not the distance. This is the information used to
calculate the position of the vehicle.

One interesting problem is the so-called surveying problem [3, 4]. This is
the procedure to obtain a map of the unknown positions of the beacons using
images at unknown positions and orientations. This is usually done off line,
once and for all, when the system is installed, and then occasionally if there
are changes in the environment. High accuracy is needed since the map has
to be hard-coded in the system. The performance of the navigation routines
depends on the precision of the surveyed map. The surveying problem is in
essence a structure and motion problem, i.e. one tries to solve for both the
structure (the map) and the motion of the vehicle.

Note that the discussion here is focused on finding initial estimates of
structure and motion. In practice it is necessary to refine these estimates
using non linear optimization or bundle adjustment [5, 23].

The chapter is a collection of results obtained together with Fredrik Kahl,
Magnus Oskarsson and Niels Christian Overgaard. The chapter is organized
as follows. In Sect. 9.2 a brief introduction to the geometry of the problem is
given. Some important notations are introduced, and the structure and motion
problem is formalized. In Sect. 3 we solve all structure and motion cases with
non missing data. In Sect. 4 we classify similar problems with missing data.
Some of the so-called prime problems are also solved. Both Sects. 3 and 4
assume that points and cameras are in general position. In Sect 5 we discuss
cases in which there might be ambiguous solutions to the structure and motion
problem without missing data.
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9.2 Scanner Geometry

A laser-navigated vehicle is shown in Fig. 9.1a The laser scanner, which is
shown in detail in Fig. 9.1b, is mounted on the top of the vehicle. A laser
beam generated by a vertical laser in the scanner is deflected by a rotating
mirror at the top of the scanner. Thus, the laser beam scans the room at a
fixed height. When the laser beam hits a beacon (a retroreflective tape, also
shown in Fig 9.1a), a large part of the light is reflected back to the scanner.
The reflected light is processed to find sharp intensity changes. When this
happens the bearing « of the laser beam relative to a fixed direction of the
scanner is stored. The time ¢ when the reflection occurs is also stored. All
beacons are identical. This means that the identity of a beacon cannot be
determined from a single measurement.

We introduce an object coordinate system which will be held fixed with
respect to the scene. The bearing «, defined above, depends on the position
of the beacon (U,,U,) and the position (P, P,) and orientation Py of the
scanner, according to

a(P,U) = arg[U; — Py +i(U, — P,)] — Py, (9.1)

where arg is the complex argument (the angle of the vector (U, — Py, Uy — Py)
relative to the positive z-axis). The vector (Py, Py, Py) is called the camera
state.

Equation (9.1) for the measured bearing is non linear. A somewhat simpler
representation of the same equation can be obtained as follows. The vector
between the camera center and the beacon can be written as

\ cos(a+ Py)|  |Uy—PFPy| [10-P, gﬂc 9.2)
sin(a+Py)| = U, =P, T o1-R,| || '

By multiplying each side with a rotation matrix we obtain

A cos(a)| | cos(Pp) sin(Pp)| [10 —P, gx (9.3)
sin(a) | | —sin(Py) cos(Py)| |01 —P, 1y ’ ’
We introduce alternative representations for the bearing
_ |cos(a)
a——u= {sin(a)] (9.4)

for the beacon position

U,
Uz, Uy) «— U = [T, , (9.5)
1
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and for the camera state

| cos(Py) sin(Py)| (10 —-P,
(Po, Py, Py) — P = [ sin(Py) cos(Py)| [01 =P, | (9:6)
Using these notations, Eq. (9.1) can be written
Au=PU. (9.7)

The alternative representation for the camera state above will be called
the camera matrix. Notice that the structure of this 2 x 3 matrix is

P= {_“b Z 2] , (9.8)

with a2 + b2 = 1. It is straightforward to obtain the elements of the camera
matrix from the meter state (Py, Py, Py) and vice versa.
It is sometimes useful to consider dual image coordinates

o «— v = [—sin(a) cos(a)] , (9.9)

so that vu = 0. This is particularly useful since it simplifies the camera
constraint given by Eq. (9.7) to

Avu =0=vPU. (9.10)

We will often use capital I to denote image number and capital J to denote
point number. Thus u; ; denotes the image direction for point J in image I,

P; denotes camera matrix for image I and U; denotes object point number
J.

9.3 Problem Formulation

Motivated by the previous sections the structure and motion problem will now
be defined.

Problem 1. Given n bearings from m different positions
uy.j, V(I, J) el (911)

the surveying problem is to find the depths A; ; > 0, the reconstructed
points

U,=1|vY, (9.12)

and the camera matrices

P, = (‘” bi Cf) , (9.13)

such that
)\1711117J:PIUJ, (I7J)€H (9.14)
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Here T is a subset of {1,...,n} x {1,...,m} that indicates which points
are visible in which images. If all points are visible in all images, i.e. if [ =
{1,...,n} x {1,...,m}, we say that there is no missing data.

It is often convenient to consider things to be equal if they are equal up
to scale. The notation ~ will be used to denote equality up to scale. As an
example two camera matrices P and P are considered equal if P ~ P. The
reason for this is that P and P give the same projections. Only the scale factor
A is different.

Definition 1. The group of similarity transformations is defined as

ecos(f) —esin(0) f
S=41S~ | esin(f) ecos(d) g , (9.15)
0 0 1

where 6 denotes rotation, e change of scale and (f, g) translation.

We consider two solutions (A7 7, Uy, Pr) and (XI’_], ﬁ;, ]31) to the surve-
ying problem to be the same if they are related by a similarity transformation.
If there exists a transformation matrix S such that

U, =SUy,,
ﬁ] = MPIS_I ;
XI,J = pA1,J,

then both (A7,7,Uy,Pr) and (X[7J,ﬁj,ﬁ[) give the same projections uy ,
since

Argury =PrUy, v o (I,J)el.
>\A1,/JU-I,J = f’IﬁJ> v (I1,J) el.

In order to understand how much information is needed in order to solve
the structure and motion problem, it is useful to calculate the number of
degrees of freedom of the problem and the number of constraints given by
the projection equation. Each object point has two degrees of freedom, and
each camera state has three. The solution is only defined up to a similarity
transformation, cf. Eq (9.15). This manifold S has dimension 4. Using n points
and m cameras, we thus have 2n+3m—4 degrees of freedom in the parameters.
Each measured bearing gives one constraint on the estimated parameters.
Assuming that each point is visible in every camera, we get mn constraints.
The number of excess constraints mn — (2n 4+ 3m — 4) is given in Table 9.1.
Disregarding the case of 1 point in 1 image, there are two interesting cases
where the number of constraints is exactly equal to the number of degrees of
freedom in the estimated parameters. These two cases

1. three images of five points (m = 3,n = 5)
2. four images of four points (m = 4,n = 4)

will be called the minimal cases of the structure and motion problem.
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Table 9.1. The number of excess constraints mn — (2n + 3m — 4) for the structure
and motion problem with m images of n points.

n

m 1 2 3 4 5 6 7
1 0-1-2-3-4-5-6
2 -2-2-2-2-2-2-2
3 4-3-2-1 0 1 2
4 -6-4-2 0 2 4 6
5 -8-5-2 1 4 710
6 -10-6-2 2 6 10 14

9.4 Structure and Motion Problems Without Missing
Data

9.4.1 Intersection and the Discrete Trilinear Constraint

In this section the simpler problem of determining the position of an object
point using bearings from several known locations is studied. This problem is
usually referred to as intersection or reconstruction in the literature [23].

The intersection problem for three bearings is connected to what is called
the trilinear constraint. These trilinear constraints were originally developed
for understanding of multiple view problems in ordinary vision [22, 24]. These
constraints are interesting for several reasons.

First, they can be used to solve the more difficult surveying problem for
three images. The relative motion of the cameras can be calculated from
bearing measurements alone without calculating the structure of the object
points explicitly. This gives a way to calculate an initial estimate of motion
and of structure.

Second, the multilinear constraints can be used to eliminate faulty image
correspondences, and to find new correct ones. This is essential for a robust,
automatic structure and motion algorithm.

Only the calibrated case will be studied here because it is the natural
situation for laser guided vehicles. Other camera models can be dealt with in
a similar manner.

Problem 2. Given m bearing directions
u;, I=1,....m (9.16)
from m known meters states

P, I=1,....m (9.17)

to one object point U in unknown position the intersection problem is to
find the depths A; > 0 and the object point U such that
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/\[U[:P[U, VI:L...,m. (918)

Each measured bearing from known position constrains the location of the
object point to the line of sight. The equation for this line is easy to derive
using dual image coordinates v. Recall that

V[PIU:O7 (919)

N
17

thus 1; = v;P; is the line of sight. The geometric interpretation of the in-
tersection problem is to intersect these m lines (1,...,1,) at a point. The
problem has no solution using only one measurement, but using two bearings
the solution is, in general, unique.

9.4.2 The Calibrated Trilinear Tensor

The case of three cameras is of particular importance. Using three measured
bearings from three different known locations, the object point is found by
intersecting three lines. This is only possible if the three lines actually do
intersect. This gives an additional constraint, which can be formulated in the
following way

Theorem 1. Let u; j, up ; and us j be the bearing directions to the same
object point from three different camera states. Then the trilinear constraint

i J ko _
E :Tiyj,kul,Ju2,Ju3,J =0, (9.20)
1,5,k

18 fulfilled for some 2 x 2 x 2 tensor T.

Proof. By lining up the camera equations

P1 up,J 0 0 _I;\IJ
P, 0 upy O _A“ =0 (9.21)
P; 0 0 usy 27
N -~ -\~ A3,y
M

we see that the 6 x 6 matrix M has a nontrivial right nullspace. Therefore its
determinant is zero. Since the determinant is linear in each column, it follows
that it can be written as

det M = Z Ti7j7ku’i7JugyJu’§J =0, (9.22)

.3,k

for some 2 x 2 x 2 tensor 7.
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The calibrated trilinear tensor T' = T ; 5 in Eq. (9.20) will now be analyzed
in more detail. Note that the constraint above only involves the motion para-
meters and the bearing directions. It does not involve the structure parameters
U. The tensor components can be calculated from the motion parameters. If
we denote the rows of camera matrix P; by P} P? it is straightforward to see
that the tensor components are subdeterminants of the first three columns of
the matrix M. In fact, the components can be obtained as

Py
Tk = Niir Ajjo A det Pgl" : (9.23)
Py
where the tensor A is defined as
A1 =0, A2 = —1, Aot =1, Nog =0 . (9.24)
If the object coordinate system is changed
P,— P, =P;S, Py Py,=P,S, P;— P;=P;S, (9.25)

where S € S denotes a 3 x 3 transformation matrix, the tensor components
change according to

_f”ils
Ti gk = Niir Njjr Ak det E’%/S

P5S

P’i/

= Niir Njj Nk det P% det S = (det S)Ti,j,k )
PY

1£3

(9.26)

A change of coordinate system only changes a common scale of the tensor.
It is natural to think of the tensor as being defined only up to scale. Two
tensors T and T are considered equal if they differ only by a scale factor

T~T. (9.27)

Let 7, denote the set of equivalence classes of trilinear tensors.
As discussed in Sect. 2 only the relative motion of the camera is important.

Definition 2. Let the manifold of relative orientation of three cameras be
defined as the set of equivalence classes of three ordered camera matrices:

b
P = {(P1,P27P3)|PI = (aél a; 2§)}/2 (9.28)

where the equivalence is defined as

(P1,Py,P3) ~ (P, Py, P3), 3Se€S,P; ~P;S,1=1,2,3.  (9.29)
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Thus the above discussion states that the map (P, P2, P3) — T is in fact,
a well-defined map from the manifold of equivalence classes P to 7,,.

It turns out that this mapping is in essence a two-to-one mapping. In fact,
the following properties can be shown, [6].

Theorem 2. A tensor T; jr € T, is a calibrated trilinear tensor if and only
if
—T111 + T122 + T212 + Th21 = 0,

(9.30)
Tr12 +Tho1 +T211 — Th22 = 0.

When these constraints are fulfilled it is possible to solve for the camera ma-
trices in Eq. (9.28). There are, in general, two solutions, possibly nonreal.

Corollary 1. Let 7 C 7, denote the submanifold fulfilling the constraint
Eq. (9.30) then the map

T:P—T

Py (9.31)
T(Pl,PQ, Pg)ijk = Niir Njjr Nk det P]2

Py

1s a well-defined two-to-one mapping.

9.4.3 The Surveying Problem for Three Images

The previous section on the calibrated trilinear tensor provided us with the
tool for solving the structure and motion problem for three cameras of at least
five points.

Algorithm 1 Structure and motion from three images.

1. Gliven three images of at least five points,
ury, I=1,...,3,J=1,...,n,fom>5.

2. Calculate the trilinear tensor T' that fulfills the linear constraints given in
Eq. (9.30) and 37, ;. T jrui juh jus ; =0,VJ =1,...n.

3. Calculate the two possible solutions to the relative orientation (P1,Pa, P3)
from T according to the proof of Theorem 2.

4. For each solution to the motion calculate structure using intersection.

Note that five point correspondences give five linear constraints in Eq. (9.20).
The fact that the camera is calibrated gives two additional constraints in
Eq. (9.30). These seven constraints determine the eight components of T'
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uniquely up to scale. Additional point correspondences will, in the ideal noise-
free case, not give any additional constraints on 7. There is thus a twofold
ambiguity in the solution of the structure and motion problem, irrespective of
the number of corresponding points. The calculations above do, however, not
take the sign of the directions into account. Thus some of the reconstructed
points sometimes have negative depth. This does not, however, guarantee
uniqueness.

Fig. 9.2. a. The figure illustrates three images used as input in example 1. b. The
first solution obtained from the analysis of the multilinear constraints. c¢. The second

solution of structure and motion as obtained from the analysis of the multilinear
constraints

Ezxample 1. We illustrate the discussion above with a simple example. Fig. 9.2a
shows three images of the same object points. Algorithm 1 is used to find the
two possible solutions to the structure and motion problem T Fig. 9.2b,c.
Note that in this example all points in both reconstructions have the correct
orientation (positive depth). O

Fig. 9.3. A point P and its isogonal conjugate point P’ with respect to triangle
ABC
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9.4.4 Understanding the Ambiguity

Looking at the solutions of the numerical examples (Fig. 9.2), one would like
a geometric interpretation of the two possible solutions. It turns out that the
ambiguity is a consequence of the following theorem about isogonal conju-
gacy, which is illustrated in Fig. 9.3 [7].

Theorem 3. Let ABC be a triangle. Let x, y and z be lines through A, B
and C respectively, that intersect in one point, say P. Let the line ' be the
reflection of x in the bisector of the angle ABC, and similarly for y' and z'.
Then the three lines ' y' and 2’ intersect at one point P’.

A proof of the theorem is given in [11] and [1].

The points P and P’ are called isogonal conjugate points with respect
to the triangle ABC. An interesting property of such points is that they are
focal points for a conic inscribed in the triangle, i.e. a conic that is tangent to
all three sides of the triangle.

Fig. 9.4. The leftmost picture illustrates a triangle ABC, with drawn lines from the
vertices to a number of points. The centre picture shows the same triangle, but using
instead the corresponding isogonal conjugate points. The set of angles as seen from
the three corners are the same but have different orientation. The rightmost picture
is obtained from the centre picture by mirroring in the broken line. By turning the
centre picture upside down the same angles are observed from the three corners,
although the shape of points in the interior is different

Making the same constructions as in Fig. 9.3 for another pair of points
Q@ and ', we see that seen from each of the positions A, B and C, the
absolute values of the angles between P, Q and P’, Q' are equal. However,
the orientation is wrong. To get the same orientation the construction needs
to be turned up-side-down (or mirrored in an arbitrary line). This leads to
the following corollary:

Corollary 2. For every solution to the structure and motion problem for three
cameras, another solution can be constructed by first changing the object po-
sitions to their isogonal conjugates with respect to the three camera positions,
and then mirroring the camera and object positions in some line.

An illustration is given in Fig. 9.4.
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The other minimal case of four points in four images can be solved in a
similar technique, by introducing a dual quadrilinear tensor. For more details
on this, see [6]. This case is, however, dual to the case of three views of five
points solved previously. This duality is described in the following section.

Example 2. Using the following bearing measurements

ag g J

I 1 2 3 4
1 —2.3562 2.3562 1.1844 —0.7602
2 —2.1588 2.6779 0.7833 —0.9956
3 —2.5536  2.5536 1.7567 —1.1651

4 —2.3562 2.8198 2.0054 —1.3120

we obtain two possible solutions on the meter states and the object positions,
which are illustrated in Fig. 9.5.

&

Fig. 9.5. Two different solutions to the structure and motion problem with 4 images
of 4 points. The image directions are shown as unit vectors from the center of the
camera. The object points are shown as small stars

9.4.5 Duality Between Number of Points and Number of Images

Table 9.2 give the number of solutions in general to the surveying problem of
m images of n points.

Table 9.2 has a symmetric appearance. This can be shown using a tech-
nique that Carlsson developed in [8, 9]. The proof that he did for uncalibrated
projections from 3D to 2D can be used even in the case of uncalibrated pro-
jections from 2D to 1D:
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Table 9.2. The number of solutions to the surveying problem with m images of n
points. Superscript stars indicate overdetermined situations

n
m 3 4 5 6 7
2 00 00 00 00 ™
3 co oo 2 28 2F
4 oo 2 1 1 1F
5 oo 28 1 1* 1%
6 oo 2 1* 1% 1*

Theorem 4 (Carlsson Duality). The uncalibrated surveying problem with
n points and m images is equivalent to the uncalibrated surveying problem
with m + 3 points and n — 3 images.

Proof. This is simplest seen by choosing the image coordinates of the first
three points according to

a() ) wel) om

and the object coordinates of the first three points according to

1 0 0
U =(0o], uUy=[1], Us=][o0]. (9.33)
0 0 1

Since \;ju; = P;U;: it follows that the camera matrix has the following form:
(Vi 0
po (401,
The camera equation for the remaining points,

- (UiVi+UsVs
u; ;= (UQ‘/Q +U3V3) , (9.34)

is symmetric in camera parameters (Vi,Va,V3) and structure parameters
(U1,U2,U3). Thus any algorithm for solving n points in m images can be
used to solve the m + 3 points in n — 3 images.

Theorem 5. The calibrated surveying problem with n points and m images
s equivalent to the calibrated surveying problem with m + 1 points and n — 1
1mages.

Proof. This follows immediately from Theorems 6 and 4.

According to Theorem 5 the 4 points in 4 images problem is equivalent to
the 5 points in 3 images-problem. This explains the symmetry in Table 9.2.
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9.4.6 Connection to Uncalibrated Cameras

In Sect. 3.2 it was shown that the problem of 5 points in 3 images has in
general two solutions. It was also shown that if there is a solution to the
problem of more than 5 points in 3 images, then there are 2 solutions. Similarly
in Sect. 3.4 it was shown that the problem of 4 points in 4 images has two
solutions. If there is a solution to the problem of 4 points in more than 4
images then there are two solutions. The problem of at least 5 points in at
least 4 images is overdetermined, and if there is a solution it is in general
unique. The situation is illustrated in Table 9.2.

In this paper it has been assumed that bearings are measured and therefore
that the camera matrix has the special form given by Eq. (9.8). In many
situations it can be of interest to study the structure and motion problem
for so-called uncalibrated cameras. This is identical to the surveying problem,
except that the camera matrix is allowed to be a general 2 x 3 matrix. The
difference in the study of minimal cases is, however, slight, due to the following
theorem.

Theorem 6. Knowing that the camera is corrected for internal calibration is
equivalent to seeing two extra points (the circular points) in each image.

Thus it follows that for the uncalibrated surveying problem, in the two
minimal cases are three images of seven points and four images of six points.
In both of these situations there is a twofold ambiguity in the solution. The
ambiguity is not resolved by adding points in the 3 image case or adding
images in the 6 point case.

9.4.7 Solution to all Cases with Nonmissing Data

If it is possible to solve a case with a subset of cameras and beacons, then it
is often relatively easy to extend that solution to other cameras and points by
resection and intersection. If all points are visible in all images then any well-
defined case above can be solved by first solving for one of the two minimal
cases with nonmissing data, i.e. 4 views of 4 beacons and 3 views of 5 beacons.

9.5 Structure and Motion Problems With Missing Data

The aim of this section is to solve all structure and motion problems for the
case of missing data. Depending on the index set I, which describes which
points are visible in which images, a structure and motion problem can be
either

e ill-defined, if there is not generally enough data to constrain all unknown
variables
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e well-defined and minimal, if there is exactly enough data to constrain the
unknown variables (up to a discrete number of solutions)

e well-defined but overconstrained, if there is more than enough data to
constrain the unknown variables

The goal of this section is to classify the possible index sets I into these three
categories.

Some of the minimal cases contain a minimal case as a subproblem. An
example of this is the case with 4 points seen in 5 images, but where the
fourth point is missing from the fifth image. It is minimal, but contains a
subproblem (the problem with the first 4 views only), which is well defined
and minimal. We will use the notation prime problem for a minimal problem
which does not contain a well defined minimal problem as a subproblem. A
minimal but not prime problem may in some cases be solved by first solving
the contained prime problem and then extending the solution using resection
and intersection. In other cases the prime problem may be embedded in the
minimal problem in a more complicated manner. We first observe that similar
to the case of nonmissing data a well-defined but overconstrained problem
contains as a subset a problem that is well-defined but minimal. Thus by
finding the minimal cases and solving them, we should be able to solve all
well-defined problems by the following algorithm:

1. Find whether a problem contains a well-defined minimal problem as a
subset.

2. Solve the structure and motion problem for this subset.

3. Extend the solution to the original problem.

As the classification is based on the index set I alone, it is interesting to study
these sets. In this paper we consider these sets as binary matrices, that is
visibility matrices A of size m x n, where black denotes missing data and
white denotes a measurement that is present. Another way of viewing these
index sets is as bipartite graphs with m 4+ n nodes. There is an edge between
node [ in the first set and node J in the second set if the point J is visible in
image I. Thus a well-defined minimal case can be considered to be a subgraph
of a well-defined but overconstrained problem. Here we will use the notation
II| to denote the number of elements in the set L.

In the following two sections the problem of classifying structure and mo-
tion problems for 1d retina will be addressed. In Sect. 9.5.9 we will consider
the classification of 2D retina problems.

9.5.1 Classification of Structure and Motion Problems

The goal of this section is to give some conditions on what constitutes a well-
defined minimal problem. From these minimal problems the prime problems
can be determined.
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9.5.2 Equivalence Classes of Index Sets

The labeling of the cameras and of the beacons are of no consequence to the
structure of the problem under study. Two index sets are considered equivalent
if one results from the other by suitable relabelings. This means that there are
many structure and motion problems that have different I but that correspond
in principle to the same problem.

Definition 3. An index set I is said to be of type (m,n,l) if it represents a
situation with m images and n points, in which exactly | points are not visible
in all of the images, that is, if |1 = mn —[.

From this definition it is clear that an index set I of type (m,n,l) can be
represented by a binary m x n matrix A = (ay;) with ayy = 1if (I,J) € I,
and ay; = 0 otherwise, and such that ZU ary = mn — . The possible index
sets of type (m,n,l) are thus in one-to-one correspondence with the set

M(m,n,l) ={A € Maty,xn(Z2) : > ;a1 = mn —}.

Let Sk denote the group of permutations on k symbols. With each permutation
o € S is associated a k X k permutation matrix, which will also be denoted
by o.

Definition 4. Two m x n matrices A and B are said to be permutation equi-
valent if there exist permutations o € S, and T € S, such that B = o7 Ar.
If A and B are permutation equivalent then we write A ~ B.

The notion of equivalence of index sets can now be given a formal definition

Definition 5. Two index sets 1 and I’ are called equivalent and we write I ~ T’
if their corresponding matriz representations are permutation equivalent.

The relation ~ is easily seen to be an equivalence relation. It follows that
M (m,n,l) (or the corresponding index sets) can be partitioned into equiva-
lence classes Mj, ..., M, of matrices (or index sets). The number of essen-
tially different index sets is thus seen to be exactly the same as the number
w = w(m,n,l) of equivalence classes. This is the number of principally diffe-
rent problems of type (m,n,l). The number w also represents the number of
different bipartite graphs with [ edges from m to n nodes.

9.5.3 The Germs

A first characterization of a well defined minimal structure and motion pro-
blem is that it contains exactly the same number of equations as unknowns.
If we concentrate on the case of calibrated cameras with 1D retina, then each
object point has two degrees of freedom and each camera state has three. The
solution is only defined up to a similarity transformation. This manifold has
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dimension 4. Using n points and m cameras we thus have 2n + 3m — 4 degrees
of freedom in the parameters. Each measured bearing gives one constraint on
the estimated parameters. Thus for a problem with visibility index set I we
have |I| equations. This means that minimal problems have |I| = 2n+ 3m —4.
Since the maximum number of equations with m views of n points is mn, it
is easy to see how many measurements [ that have to be occluded to obtain
minimal problems, [ = mn — (2n+3m —4). This number is shown in Table 9.1.
In order to find the minimal problems we concentrate our efforts on prob-
lems of type [m,n,mn — (2n + 3m — 4)].
Definition 6. A structure and motion problem of type [m,n,mn— (2n+3m—
4)] is said to be a germ of a minimal problem.

For a structure and motion problem to be minimal and/or prime the con-
dition of being a germ is only a necessary condition.

9.5.4 The Prime Condition

For a given germ the corresponding structure and motion problem can be
minimal or ill-posed. If it is minimal it may or may not be prime. The question
of which class a germ belongs to can be categorized in terms of the graph of
the index set. We will use the following intuitive assumption.

Conjecture 1. For a given germ with index set I, the corresponding structure
and motion problem is minimal iff no subgraph of I is overdetermined.

An empirical method for determining whether a problem is minimal and well
defined is to calculate the Jacobian of the bundle adjustment problem and
study its singular values. We have used this technique to empirically check
our conjecture.

It is clear that if a subgraph of a germwith index set I is overdetermined
then there has to be a part of the problem that is underdetermined, and hence
the whole problem is ill-posed.

Theorem 7. Given a germ with index set I, at least one subgraph of 1 is
overdetermined = the corresponding structure and motion problem is ill-posed

We will henceforth identify the class of minimal problems with those that
fulfill Conjecture 1. Under this assumption the notion of being a prime pro-
blem can be given the following formal definition:

Definition 7. A prime problem is a germ with index set I such that all strict
subgraphs of I are underdetermined.

A minimal problem that is not prime is an extension of a prime problem.
The extended minimal problem can in many cases be solved by a succession of
resections and intersections based on the solution to the prime case. In other
cases the extension can be more complicated.

Definition 8. An extension of type (m,n) is an extension with m extra ca-
meras and n extra points of a prime problem. That is, the problem is extended
by m additional cameras and n additional points, see e.g. Fig. 9.9.
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9.5.5 The Germ Investigation

We now concentrate our efforts on finding out how many germs there are for
different numbers of cameras and points. From these germs we then determine
which are minimal and which are prime.

9.5.6 Equivalence Classes of Germs

Let the type (m,n,l) be fixed throughout the remainder of the discussion. To
compute w = w(m,n,l) notions and results from group theory will be used.
Our reference here is to Sect. 3.6 of Fraleigh’s text [13].

First, denote the product group S,, x S, by G. Second, if g = (0,7) € G
and A € M = M(m,n,l), then a group action of G on M is defined by the
formula

g-A=0o"Ar. (9.35)

Thus two matrices A, B € M satisfy A ~ B if and only if there exists g € G
such that g - A = B. The equivalence classes M, ..., M, of ~ correspond to
the orbits in M under the action of G. Therefore w can be computed by
the following well-known formula of Burnside: for any g € G let My, = {A €
M :g- A= A} denote the set of matrices that are fix-points under action by
g. Then

w= |é| > M| (9.36)

geG

While Eq. (9.36) solves our problem in theory, there are still some practical
problems to overcome. First, given g € G, how do we compute |M,|? Second,
the sum > [M,| must be evaluated, but as |G| = m!n! becomes very large
very quickly, the sheer size of G may become an obstacle, unless the evaluation
is performed cleverly.

A permutation g = (0,7) € G may be regarded as an element of Sy,
as A — oTA7T permutes the mn entries of A. Let ¢ = g1go---gs be the
factorization in S, of g into a product of commuting (or disjoint) cyclic
permutations. It is now easy to see that A € M, if and only if the entries
in A, which equal zero, are arranged in such a manner that any cycle g; is
either completely occupied by entries equal to zero, or contains no such entry
at all. It follows that |M,| equals the number of ways in which [ zeros can be
allocated to m x n entries, such that the condition just described is satisfied.
It is clear from this discussion that |M,| only depends on g¢’s cycle structure
(the number of cycles and their lengths).

Definition 9. If o € Sy, is a permutation in k symbols, let n;(c),i =1,...,k
denote the number of i-cycles in the factorization of o into commuting cycles.
The cycle index of ¢ is the polynomial

P,(x1,29,...,25) = x?l(a)xgz’(g) . -xzk(g). (9.37)
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If H < Sk is a (sub)group of permutations, then the cycle index of H is the
polynomial

PH($U1,$C2,. .. 7-75k) = |I‘I‘71 Z Ph(xl,xg,. .. 73%).
heH

It follows from the theory developed in [26] that
|My| = (I)"Hd/dz) Py(1 + 2,1+ 22, ..., 1 4+ 2™)|4—0,

for any g € G. This formula solves the first of our two problems. Furthermore,
it follows from Burnside’s formula Eq. (9.36) that

l
1/d
w= Po(1+x,14+2% ..., 1+2™") . (9.38)
! \dz =0

It turns out that the cycle index Py is reasonably easy to compute when H
is all of Sx. Now, G = S, X S, is a proper subgroup of S,,,, so in view
of Eq. (9.38) our second problem above becomes: How do we compute Pg
when the cycle indices of S,,, and S,, are known? Again the authors of [26]
provide the answer: they introduce a new operation beside the usual addi-
tion and multiplication, denoted *, on the ring of polynomials in infinitely
many variables x1, x2, x3,. .., and with rational coefficients. The “product” is
associative, commutative and distributive over both + and -, so it suffices to
describe * on monomial factors 2" and 27, in which case

it xal = sclej]]'n/[i’j], (9.39)
where [7, ] is the least common multiple of ¢ and j. The authors of [26] then
proceed to prove the following beautiful result, which we have used to compute
Pq:
Theorem 8 (Wei and Xu). If H < Sy, and K < S,, are (sub)groups, then
Hx K< Smn; and Py« = Py * Pk

Example The cycle index of S3 is é(x? + 3z129 + 223) so if G = S5 x S3 then
Pg =§(af + 3z1ma 4 223) * § (¢} + 3w122 + 223)
= (2] + 62t} + 9z 2} + 122376 + 823),
S0
Po(l+z,...,1+2%) =1+ x4 32% + 62° +62° + 72% + 725 + 327 + 2% 4 2°.
It then follows from Eq. (9.38) that

1 /d\° 0
w(3,3,3) = 31 (dx) Pe(l+x,...,1+2") T 6.

The procedure for calculating w, described above, was implemented in
Maple (Maplesoft, Canada). Using this program we are able to compute w for
any given (m,n,l) and in particular for the germs. Table 9.3 contains w for
the first few types (m,n,l), with [ given by Table 9.1.
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9.5.7 Finding and Classifying Germs

We calculated the equivalence classes for some of the first germs using algo-
rithms described in [20]. In table 9.3 the number of distinct germs for these
cases are given. These germs where then classified as being minimal and pos-

Table 9.3. The number w of different germs for different m and n

w n
m 4 5 6 7 8 9
3 - 1 1 3 6 11
4 1 3 16 62 225

5 1 16 155 1402

6 3 791799

7 6 361

8 16

sibly also prime. The numbers of such problems are shown in Tables 9.4 and
9.5.

Table 9.4. The number of minimal configurations for different m and n

n
m 4 5 6 7 8 9
3 - 1 1 2 3 4
4 1 3 12 41 118

5 1 12 110 876

6 2 48 1050

7 3 159

8 5

Table 9.5. The number of prime configurations for different m and n

n
m 4 5 6 7 8 9
3 - 1 0 0 0 0
4 1 1 3 5 8

5 0 3 22 145

6 0 6 136

7 0 0

8 0
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In Fig. 9.6 and Fig. 9.7 the prime problems for the configurations of type
(5,5,4) and (4,6,4) are given. The configurations inf Fig. 9.6a-c seem to be
connected to configurations in Fig. 9.7a-c. The similarity can be explained by
the Carlsson duality.

a b C

Fig. 9.6. The three distinct configurations a-c for prime cases of type (5, 5,4)

a b C

Fig. 9.7. The three distinct configurations a-c for prime cases of type (4, 6,4)

If one looks at Table 9.5, the number of prime configurations seem to
increase quickly as both m and n increase. This leads to the question whether
this is true or if the number of prime cases after some time stops growing.
One can at least give the result in Theorem 9.

Theorem 9. There are infinitely many prime configurations.

Proof. Given a germ of type (m,m, m? —5m+4), one can construct the follo-
wing prime configuration: the first point is seen in all images. The remaining
m — 1 points are seen in exactly 4 images each. Of these m — 1 points, the
first 4 cameras see exactly 3 points, and the remaining m — 4 cameras see
exactly 4 points. The construction is illustrated in Fig. 9.8. For m < m — 2:
in order to use as much information as possible one should choose the m
cameras close together. This gives in the best case 3m + 2m — 4 = 5m — 4
unknowns and m + 4(m — 3) + 3 - 2 = 5m — 6 constraints, so in this case it
is always underdetermined. For m = m — 1 the same reasoning gives at best
3m+2(m+1) —4 = 5m — 2 unknowns and m + 4(m —3) +3-3 = 5m — 3
constraints. So also in this case it is always underdetermined. Finally, for m =
m we have 3m+2m—4 = 5m—4 unknowns matching the m+4(m—1) = 5m—4
constraints.
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Fig. 9.8. A prime configuration of type (10, 10, 54)

9.5.8 Extensions

Comparing Table 9.4 with Table 9.5, we see that there is only one prime
case for four points. Similarly, there is only one prime case for three cameras.
The extensions in these cases are of type (m,0) and (0,n). These types of
extensions can always be solved using resection and intersection, respectively.
Extensions of type (1,n) and (m, 1) can always also be solved using only com-
binations of resection and intersection. The first more complicated extension
occurs for the type (2,2). In order for the extension to be unsolvable with
intersection and resection all cameras and points must be underdetermined
with respect to the prime configuration. And all cameras and points should be
exactly determined with the information contained in the remaining four mea-
surements. For an extension of type (2,2) this can essentially only be done in
one way. This extension is shown in Fig. 9.9. It would be interesting to classify

prime

Fig. 9.9. The extension of type (2,2)

prime extensions. This would make it possible to express any minimal case as
a prime problem extended by a number of prime extensions.
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9.5.9 Classification of 2D Retina Problems

The tools of Sects. 9.5.1 and 9.5.5 were developed for calibrated cameras with
1D retina viewing point features. These methods work equally well for other
types of cameras and other types of features. In this section we will look at the
classification of minimal problems for uncalibrated cameras with 2D retina,
where the features are points.

Table 9.6. The number of excess constraints for m images of n points

n
m 6 7 8 9 10 11
2 -1 0 1 2 3 4
3 0 3 6 9 12
4 1 