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Preface

One important goal of human civilization is to build intelligent machines, not
necessarily machines that can mimic our behavior perfectly, but rather ma-
chines that can undertake heavy, tiresome, dangerous, and even inaccessible
(for man) labor tasks. Computers are a good example of such machines. With
their ever-increasing speeds and higher storage capacities, it is reasonable to
expect that in the future computers will be able to perform even more useful
tasks for man and society than they do today, in areas such as health care,
automated visual inspection or assembly, and in making possible intelligent
man–machine interaction. Important progress has been made in the develop-
ment of computerized sensors and mechanical devices. For instance, according
to Moore’s law, the number of transistors on a chip roughly doubles every two
years – as a result, microprocessors are becoming faster and more powerful
and memory chips can store more data without growing in size.

Developments with respect to concepts, unified theory, and algorithms for
building intelligent machines have not occurred with the same kind of lightning
speed. However, they should not be measured with the same yardstick, because
the qualitative aspects of knowledge development are far more complex and
intricate. In 1999, in his work on building anthropomorphic motor systems,
Rodney Brooks noted: “A paradigm shift has recently occurred – computer
performance is no longer a limiting factor. We are limited by our knowledge
of what to build.” On the other hand, at the turn of the twenty-first century,
it would seem we collectively know enough about the human brain and we
have developed sufficiently advanced computing technology that it should be
possible for us to find ways to construct real-time, high-resolution, verifiable
models for significant aspects of human intelligence.

Just as great strides in the dissemination of human knowledge were made
possible by the invention of the printing press, in the same way modern scien-
tific developments are enhanced to a great extent by computer technology. The
Internet now plays an important role in furthering the exchange of informa-
tion necessary for establishing cooperation between different research groups.
Unfortunately, the theory for building intelligent machines or perception-and-
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action systems is still in its infancy. We cannot blame a lack of commitment
on the part of researchers or the absence of revolutionary concepts for this
state of affairs. Remarkably useful ideas were proposed as early as the mid-
nineteenth century, when Babbage was building his first calculating engines.
Since then, useful concepts have emerged in mathematics, physics, electronics,
and mechanical engineering – all basic fields for the development of intelligent
machines. In its time, classical mechanics offered many of the necessary con-
ceptual tools. In our own time, Lie group theory and Riemann differential
geometry play a large role in modern mathematics and physics. For instance,
as a representation tool, symmetry, a visual primitive probably unattentively
encoded, may provide an important avenue for helping us understand per-
ceptual processes. Unfortunately, the application of these concepts in current
work on image processing, neural computing, and robotics is still somewhat
limited. Statistical physics and optimization theory have also proven to be
useful in the fields of numerical analysis, nonlinear dynamics, and, recently,
in neural computing. Other approaches for computing under conditions of
uncertainty, like fuzzy logic and tensor voting, have been proposed in recent
years. As we can see, since Turing’s pioneering 1950 work on determining
whether machines are intelligent, the development of computers for enhanced
intelligence has undergone great progress.

This new handbook takes a decisive step in bringing together in one volume
various topics highlighting the geometric aspects necessary for image analysis
and processing, perception, reasoning, decision making, navigation, action,
and autonomous learning. Unfortunately, even with growing financial support
for research and the enhanced possibilities for communication brought about
by the Internet, the various disciplines within the research community are
still divorced from one another, still working in a disarticulated manner. Yet
the effort to build perception–action systems requires flexible concepts and
efficient algorithms, hopefully developed in an integrated and unified manner.
It is our hope that this handbook will encourage researchers to work together
on proposals and methodologies so as to create the necessary synergy for more
rapid progress in the building of intelligent machines.

Structure and Key Contributions

The handbook consists of nine parts organized by discipline, so that the reader
can form an understanding of how work among the various disciplines is con-
tributing to progress in the area of geometric computing. Understanding in
each individual field is a fundamental requirement for the development of
perception-action systems. In this regard, a tentative list of relevant topics
might include:

• brain theory and neuroscience
• learning
• neurocomputing, fuzzy computing, and quantum computing
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• image analysis and processing
• geometric computing under uncertainty
• computer vision
• sensors
• kinematics, dynamics, and elastic couplings
• fuzzy and geometric reasoning
• control engineering
• robot manipulators, assembly, MEMS, mobile robots, and humanoids
• path planning, navigation, reaching, and haptics
• graphic engineering, visualization, and virtual reality
• medical imagery and computer-aided surgery

We have collected contributions from the leading experts in these diverse
areas of study and have organized the chapters in each part to address low-
level processing first before moving on to the more complex issues of decision
making. In this way, the reader will be able to clearly identify the current
state of research for each topic and its relevance for the direction and content
of future research. By gathering this work together under the umbrella of buil-
ding perception–action systems, we are able to see that efforts toward that goal
are flourishing in each of these disciplines and that they are becoming more
interrelated and are profiting from developments in the other fields. Hopefully,
in the near future, we will see all of these fields interacting even more closely
in the construction of efficient and cost-effective autonomous systems.

Part I Neuroscience

In Chapter 1 Haluk Öğmen reviews the fundamental properties of the pri-
mate visual system, highlighting its maps and pathways as spatio-temporal
information encoding and processing strategies. He shows that retinotopic and
spatial-frequency maps represent the geometry of the fusion between structure
and function in the nervous system, and that magnocellular and parvocellular
pathways can resolve the trade-off between spatial and temporal deblurring.

In Chapter 2 Hamid R. Eghbalnia, Amir Assadi, and Jim Townsend a-
nalyze the important visual primitive of symmetry, probably unattentively
encoded, which can have a central role in addressing perceptual processes.
The authors argue that biological systems may be hardwired to handle fil-
tering with extreme efficiency. They believe that it may be possible to appro-
ximate this filtering, effectively preserving all the important temporal visual
features, by using current computer technology. For learning, they favor the
use of bidirectional associative memories, using local information in the spirit
of a local-to-global approach to learning.
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Part II Neural Networks

In Chapter 3 Hyeyoung Park, Tomoko Ozeki, and Shun-ichi Amari choose
a geometric approach to provide intuitive insights on the essential properties
of neural networks and their performance. Taking into account Riemann’s
structure of the manifold of multilayer perceptrons, they design gradient lear-
ning techniques for avoiding algebraic singularities that have a great negative
influence on trajectories of learning. They discuss the singular structure of
neuromanifolds and pose an interesting problem of statistical inference and
learning in hierarchical models that include singularities.

In Chapter 4 Gerhard Ritter and Laurentiu Iancu present a new paradigm
for neural computing using the lattice algebra framework. They develop mor-
phological auto-associative memories and morphological feed-forward net-
works based on dendritic computing. As opposed to traditional neural net-
works, their models do not need hidden layers for solving non-convex problems,
but rather they converge in one step and exhibit remarkable performance in
both storage and recall.

In Chapter 5 Tijl De Bie, Nello Cristianini, and Roman Rosipal de-
scribe a large class of pattern-analysis methods based on the use of genera-
lized eigenproblems and their modifications. These kinds of algorithms can
be used for clustering, classification, regression, and correlation analysis. The
chapter presents all these algorithms in a unified framework and shows how
they can all be coupled with kernels and with regularization techniques in
order to produce a powerful class of methods that compare well with those
of the support-vector type. This study provides a modern synthesis between
several pattern-analysis techniques.

Part III Image Processing

In Chapter 6 Jan J. Koenderink sketches a framework for image processing
that is coherent and almost entirely geometric in nature. He maintains that
the time is ripe for establishing image processing as a science that departs from
fundamental principles, one that is developed logically and is free of hacks,
unnecessary approximations, and mere showpieces on mathematical dexterity.

In Chapter 7 Alon Spira, Nir Sochen, and Ron Kimmel describe ima-
ge enhancement using PDF-based geometric diffusion flows. They start with
variational principles for explaining the origin of the flows, and this geometric
approach results in some nice invariance properties. In the Beltrami frame-
work, the image is considered to be an embedded manifold in the space-feature
manifold, so that the required geometric filters for the flows in gray-level and
color images or texture will take into account the induced metric. This chapter
presents numerical schemes and kernels for the flows that enable an efficient
and robust implementation.

In Chapter 8 Yaobin Mao and Guanrong Chen show that chaos theory
is an excellent alternative for producing a fast, simple, and reliable image-
encryption scheme that has a high degree of security. The chapter describes
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a practical and efficient chaos-based stream-cipher scheme for still images.
From an engineer’s perspective, the chaos image-encryption technology is very
promising for the real-time image transfer and handling required for intelligent
discerning systems.

Part IV Computer Vision

In Chapter 9 Kalle Åström is concerned with the geometry and algebra
of multiple one-dimensional projections in a 2D environment. This study is
relevant for 1D cameras, for understanding the projection of lines in ordinary
vision, and, on the application side, for understanding the ordinary vision of
vehicles undergoing planar motion. The structure-of-motion problem for 1D
cameras is studied at length, and all cases with non-missing data are solved.
Cases with missing data are more difficult; nevertheless, a classification is
introduced and some minimal cases are solved.

In Chapter 10 Anders Heyden describes in-depth, n-view geometry with
all the computational aspects required for achieving stratified reconstruction.
He starts with camera modeling and a review of projective geometry. He de-
scribes the multi-view tensors and constraints and the associated linear recon-
struction algorithms. He continues with factorization and bundle adjustment
methods and concludes with auto-calibration methods.

In Chapter 11 Amnon Shashua and Lior Wolf introduce a generalization
of the classical collineation of Pn. The m-view tensors for Pn referred to as
homography tensors are studied in detail for the case n=3,4 in which the indi-
vidual points are allowed to move while the projective change of coordinates
takes place. The authors show that without homography tensors a recovering
of the alignment requires statistical methods of sampling, whereas with the
tensor approach both stationary and moving points can be considered alike
and part of a global transformation can be recovered analytically from some
matching points across m views. In general, the homography tensors are useful
for recovering linear models under linear uncertainty.

In Chapter 12 Abhijit Ogale, Cornelia Fermüller and Yiannis Aloimonos
examine the problem of instantaneous finding of objects moving independently
in a video obtained by a moving camera with a restricted field of view. In this
problem, the image motion is caused by the combined effect of camera motion,
scene depth, and the independent motions of objects. The authors present a
classification of moving objects and discuss detection methods; the first class
is detected using motion clustering, the second depends on ordinal depth from
occlusions and the third uses cardinal knowledge of the depth. Robust methods
for deducing ordinal depth from occlusions are also discussed.
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Part V Perception and Action

In Chapter 13 Eduardo Bayro-Corrochano presents a framework of con-
formal geometric algebra for perception and action. As opposed to standard
projective geometry, in conformal geometric algebra, using the language of
spheres, planes, lines, and points, one can deal simultaneously with incidence
algebra operations (meet and join) and conformal transformations represented
effectively using bivectors. This mathematical system allows us to keep our
intuitions and insights into the geometry of the problem at hand and it helps
us to reduce considerably the computational burden of the related algorithms.
Conformal geometric algebra, with its powerful geometric representation and
rich algebraic capacity to provide a unifying geometric language, appears
promising for dealing with kinematics, dynamics, and projective geometry
problems without the need to abandon a mathematical system. In general,
this can be a great advantage in applications that use stereo vision, range
data, lasers, omnidirectionality, and odometry-based robotic systems.

Part VI Uncertainty in Geometric Computations

In Chapter 14 Kenichi Kanatani investigates the meaning of “statistical
methods” for geometric inference on image points. He traces back the ori-
gin of feature uncertainty to image-processing operations for computer vision,
and he discusses the implications of asymptotic analysis with reference to “ge-
ometric fitting” and “geometric model selection.” The author analyzes recent
progress in geometric fitting techniques for linear constraints and semipara-
metric models in relation to geometric inference.

In Chapter 15 Wolfgang Förstner presents an approach for geometric
reasoning in computer vision performed under uncertainty. He shows that
the great potential of projective geometry and statistics can be integrated
easily for propagating uncertainty through reasoning chains. This helps to
make decisions on uncertain spatial relations and on the optimal estimation
of geometric entities and transformations. The chapter discusses the essential
link between statistics and projective geometry, and it summarizes the basic
relations in 2D and 3D for single-view geometry.

In Chapter 16 Gérard Medioni, Philippos Mordohai, and Mircea Nico-
lescu present a tensor voting framework for computer vision that can address
a wide range of middle-level vision problems in a unified way. This framework
is based on a data representation formalism that uses second-order symmetric
tensors and an information propagation mechanism that uses a tensor voting
scheme. The authors show that their approach is suitable for stereo and mo-
tion analysis because it can detect perceptual structures based solely on the
smoothness constraint without using any model. This property allows them
to treat the arbitrary surfaces that are inherent in non-trivial scenes.
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Part VII Computer Graphics and Visualization

In Chapter 17 Lawrence H. Staib and Yongmei M. Wang present two robust
methods for nonrigid image registration. Their methods take advantage of
differences in available information: their surface warping approach uses local
and global surface properties, and their volumetric deformation method uses
a combination of shape and intensity information. The authors maintain that,
in nonrigid images, registration is desirable for designing a match metric that
includes as much useful information as possible, and that such a transforma-
tion is tailored to the required deformability, thereby providing an efficient
and reliable optimization.

In Chapter 18 Alyn Rockwood shows how computer graphics indicates
trends in the way we think about and represent technology and pursue re-
search, and why we need more visual geometric languages to represent tech-
nology in a way that can provide insight. He claims that visual thinking is
key for the solution of problems. The author investigates the use of implicit
function modeling as a suitable approach for describing complex objects with
a minimal database. The author interrogates how general implicit functions
in non-Euclidean spaces can be used to model shape.

Part VIII Geometry and Robotics

In Chapter 19 Neil White utilizes the Grassmann–Cayley algebra framework
for writing expressions of geometric incidences in Euclidean and projective
geometry. The shuffle formula for the meet operation translates the geometric
conditions into coordinate-free algebraic expressions. The author draws our
attention to the importance of the Cayley factorization process, which leads
to the use of symbolic and coordinate-free expressions that are much closer
to the human thinking process. By taking advantage of projective invariant
conditions, these expressions can geometrically describe the realizations of a
non-rigid, generically isostatic graph.

In Chapter 20 Jon Selig employs the special Clifford algebra G0,6,2 to
derive equations for the motion of serial and parallel robots. This algebra is
used to represent the six component velocities of rigid bodies. Twists or screws
and wrenches are used for representing velocities and force/torque vectors,
respectively. The author outlines the Lagrangian and Hamiltonian mechanics
of serial robots. A method for finding the equations of motion of the Stewart
platform is also considered.

In Chapter 21 Calin Belta and Vijay Kumar describe a modern geome-
tric approach for designing trajectories for teams of robots maintaining rigid
formation or virtual structure. The authors consider first the problem of gene-
rating minimum kinetic energy motion for a rigid body in a 3D environment.
Then they present an interpolation method based on embedding SE(3) into
a larger manifold for generating optimal curves and projecting them back to
SE(3). The novelty of their approach relies on the invariance of the produced
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trajectories, the way of defining and inheriting physically significant metrics,
and the increased efficiency of the algorithms.

Part IX Reaching and Motion Planning

In Chapter 22 J. Michael McCarthy and Hai-Jun Su examine the geometric
problem of fitting an algebraic surface to points generated by a set of spatial
displacements. The authors focus on seven surfaces that are traced by the
center of the spherical wrist of an articulated chain. The algebraic equations
of these reachable surfaces are evaluated on each of the displacements to define
a set of polynomial equations which are rich in internal structure. Efficient
ways to find their solutions are highly dependent upon the complexity of the
problem, which increases greatly with the number of parameters that specify
the surface.

In Chapter 23 Seth Hutchinson and Peter Leven are concerned with
planning collision-free paths, one of the central research problems in intelligent
robotics. They analyze the probabilistic roadmap (PRM) planner, a graph
search in the configuration space, and they discuss its design choices. These
PRM planners are confronted with narrow corridors, the relationship between
the geometry of both obstacles and robots, and the geometry of the free
configuration space, which is still not well understood, making a thorough
analysis of the method difficult. PRM planners tend to be easy to implement;
however, design choices have considerable impact on the overall performance
of the planner.

Guadalajara, Mexico Eduardo Bayro-Corrochano
December 2004
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Spatiotemporal Dynamics of Visual Perception
Across Neural Maps and Pathways

Haluk Öğmen

Department of Electrical and Computer Engineering
Center for Neuro–Engineering and Cognitive Science
University of Houston
Houston, TX 77204–4005 USA
ogmen@uh.edu

1.1 Introduction

The relationship between geometry and brain function presents itself as a dual
problem: on the one hand, since the basis of geometry is in brain function,
especially that of the visual system, one can ask what the brain function can
tell us about the genesis of geometry as an abstract form of human mental
activity. On the other hand, one can also ask to what extent geometry can
help us understand brain function. Because the nervous system is interfaced
to our environment by sensory and motor systems and because geometry has
been a useful language in understanding our environment, one might expect
some convergence of geometry and brain function at least at the peripheral
levels of the nervous system. Historically, there has been a close relationship
between geometry and theories of vision starting as early as Euclid. Given
light sources and an environment, one can easily calculate the corresponding
images on our retinae using basic physics and geometry. This is usually known
as the “forward problem” [41]. A straightforward approach would be then to
consider the function of the visual system as the computation of the inverse
of the transformations leading to image formation. However, this “inverse op-
tics” approach leads to ill-posed problems and necessitates the use of a priori
assumptions to reduce the number of possible solutions. The use of a priori
assumptions in turn makes the approach unsuitable for environments that
violate the assumptions. Thus, the inverse optics formulation fails to capture
the robustness of human visual perception in complex environments. On the
other hand, visual illusions, i.e. discrepancies between the physical stimuli and
the corresponding percepts, constitute examples of the limitations of the hu-
man visual system. Nevertheless, these illusions do not affect significantly the
overall performance of the system, as most people operate succesfully in the
environment without even noticing these illusions. The illusions are usually
discovered by scientists, artists, and philosophers who scrutinize deeply the re-
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lation between the physical and psychological world. These illusions are often
used by vision scientists as “singular points” to study the visual system.

How the inputs from the environment are transformed into our conscious
percepts is largely unknown. The goals of this chapter are twofold: first, it
provides a brief review of the basic neuroanatomical structure of the visual
system in primates. Second, it outlines a theory of how neural maps and
pathways can interact in a dynamic system, which operates principally in a
transient regime, to generate a spatiotemporal neural representation of visual
inputs.

1.2 The Basic Geometry of Neural Representation:
Maps and Pathways

The first stage of input representation in the visual system occurs in the
retina. The retina is itself a complex structure comprising five main neuronal
types organized in direct and lateral structures (Fig. 1). The “direct structure”

P

B

G

P

B

G

P

B

G

P

B

G

H

A

Fig. 1.1. The general architecture of the retina. P, photoreceptor; B, bipolar cell; G,
ganglion cell; H, horizontal cell; A, amacrine cell. The arrows on top show the light
input coming from adjacent spatial locations in the environment, and the arrows at

the bottom represent the output of the retina, which preserves the two-dimensional
topography of the inputs. This gives rise to “retinotopic maps” at the subsequent
processing stages

consists of signal flow from the photoreceptors to bipolar cells, and finally to
retinal ganglion cells, whose axons constitute the output of the retina. This
direct pathway is repeated over the retina and thus constitutes an “image
plane” much like the photodetector array of a digital camera. In addition to
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the cells in the direct pathway, horizontal and amacrine cells carry out sig-
nals laterally and contribute to the spatiotemporal processing of the signals.
Overall, the three-dimensional world is projected to a two-dimensional retino-
topic map through the optics of the eye, the two-dimensional sampling by the
receptors, and the spatial organization of the post-receptor direct pathway.
The parallel fibres from the retina running to the visual cortex via the late-
ral geniculate nucleus (LGN) preserve the retinal topography, and the early
visual representation in the visual cortex maintains the retinotopic map.

In addition to this spatial coding, retinal ganglion cells can be broadly
classified into three types: P, M, and K [15, 27]. The characterization of the
K type is not fully detailed, and our discussion will focus on the M and P
types. These two cell types can be distinguished on the basis of their anato-
mical and response characteristics; for example, M cell responses have shorter
latencies and are more transient than P cell responses [16, 33, 36, 42]. Thus
the information from the retina is not carried out by a single retinotopic map,
but by three maps that form parallel pathways. Moreover, different kinds of
information are carried out along these pathways. The pathway originating
from P cells is called the parvocellular pathway, and the pathway originating
from M cells is called the magnocellular pathway.

The signals that reach the cortex are also channeled into maps and path-
ways. Two major cortical pathways, the dorsal and the ventral, have been
identified (Fig. 1.2) [35]. The dorsal pathway, also called the “where path-
way”, is specialized in processing information about the position of objects.
On the other hand, the ventral pathway, also called the “what pathway”, has
been implicated in the processing of object identities [35]. Another related
functional interpretation of these pathways is that the dorsal pathway is spe-
cialized for action, while the ventral pathway is specialized for perception
[34]. This broad functional specialization is supplemented by more speciali-
zed pathways dedicated to the processing of motion, color, and form [32, 59].
Within these pathways, the cortical organization contains maps of different
object attributes. For example, neurons in the primary visual cortex respond
preferentially to the orientations of edges. Spatially, neurons that are sensi-
tive to adjacent orientations tend to be located in adjacent locations forming
a “map of orientation” on the cortical space [30]. This is shown schematically
in Fig. 1.3. Similar maps have been observed for location (retinotopic map)
[30], spatial frequency [19], color [52, 58], and direction of motion [2].

Maps build a relatively continuous and periodic topographical representa-
tion of stimulus properties (e.g., spatial location, orientation, color) on cortical
space. What is the goal of such a representation? In neural computation, in
addition to the processing at each neuron, a significant amount of processing
takes place at the synapses. Because synapses represent points of connec-
tion between neurons, functionally both the development and the processing
characteristics of the synapses are often specialized based on processing and
encoding characteristics of both pre- and post-synaptic cells. Consequently,
map representations in the nervous system appear to be correlated with the
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Fig. 1.2. Schematic depiction of the parvocellular (P), magnocellular (M), and
the cortical dorsal (D), ventral (V) pathways. LGN, lateral geniculate nucleus; V1,
primary visual cortex

Fig. 1.3. Depiction of how orientation columns form an orientation map. Neurons
in a given column are tuned to a specific orientation depicted by an oriented line

segment in the figure. Neurons sensitive to similar orientations occupy neighboring
positions on the cortical surface
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geometry of synaptic development as well as with the geometry of synap-
tic patterns as part of information processing. According to this perspective,
maps represent the geometry of the fusion between structure and function in
the nervous system.

On the other hand, pathways possess more discrete, often dichotomic, re-
presentation. What is more important, pathways represent a cascade of maps
that share common functional properties. From the functional point of view,
pathways can be viewed as complementary systems adapted to conflicting but
complementary aspects of information processing. For example, the magnocel-
lular pathway is specialized for processing high-temporal low-spatial frequency
information, whereas the parvocellular system is specialized for processing
low-temporal and high-spatial frequency information. From the evolutionary
point of view, pathways can be viewed as new systems that emerge as the
interactions between the organism and the environment become more sophis-
ticated. For example, for a simple organism the localization of stimuli without
complex recognition of its figural properties can be sufficient for survival. Thus
a basic pathway akin to the primate where/action pathway would be sufficient.
On the other hand, more evolved animals may need to recognize and catego-
rize complex aspects of stimuli, and thus an additional pathway specialized
for conscious perception may develop.

In the next section, these concepts will be illustrated by considering how
the visual system can encode object boundaries in real-time.

1.3 Example: Maps and Pathways in Coding Object
Boundaries

1.3.1 The Problem of Boundary Encoding

Under visual fixation conditions, the retinal image of an object boundary is
affected by the physical properties of light, the optics of the human eye, the
neurons and blood vessels in the eye, eye movements, and the dynamics of
the accommodation system [19]. Several studies show that processing time on
the order of 100 ms is required in order to reach “optimal” form and sharp-
ness discrimination [4, 11, 29, 55] as well as more veridical perception of the
sharpness of edges [44].

A boundary consists of a change of a stimulus attribute, typically lumi-
nance, over space. Because this change can occur rapidly for sharp bounda-
ries and gradually for blurred boundaries, measurements at multiple scales
are needed to detect and code boundaries and their spatial profile. The vi-
sual system contains neurons that respond preferentially to different spatial
frequency bands. Moreover, as mentioned in the previous section, these neu-
rons are organized as a “spatial frequency map” [19, 51]. The rate of change
of a boundary’s spatial profile also depends on the contrast of the boundary
as shown in Fig. 1.4. For a fixed boundary transition width (e.g. w1 in Fig.
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Fig. 1.4. The relationship between contrast and blur for boundaries. Boundary
transition widths w1 and w2 for boundaries at a low contrast level c1 (solid lines)
and a high contrast level c2 (dashed lines)

1.4), the slope of the boundary increases with increasing contrast (c1 to c2 in
Fig. 1.4). The human visual system is capable of disambiguating the effects of
blur and contrast, thereby generating conrast-independent perception of blur
[23]. On the other hand, discrimination of edge blur depends on contrast,
suggesting that the visual system encodes the blur of boundaries at least at
two levels, one of which is contrast dependent, and one of which is contrast
independent.

1.3.2 A Theory of Visual Boundary Encoding

How does the visual system encode object boundaries and edge blur in real-
time? We will present a model of retino-cortical dynamics (RECOD) [37, 44]
to suggest (i) how maps can be used to encode the position, blur, and contrast
of boundaries; and (ii) how pathways can be used to overcome the real-time
dynamic processing limitations of encoding across the maps. The fundamental
equations of the model and their neurophysiological bases are given in the
Appendix. Detailed and specialized equations of the model can be found in
[44].

Figure 1.5 shows a diagrammatic representation of the general structure of
RECOD. The lower two populations of neurons correspond to retinal ganglion
cells with slow-sustained (parvo) and fast-transient (magno) response proper-
ties [16, 33, 36, 42]. Each of these populations contains cells sampling different
retinal positions and thus contains a spatial (retinotopic) map. Two pathways,
parvocellular (P pathway) and magnocellular (M pathway), emerge from these
populations. These pathways provide inputs to post-retinal areas. The model
also contains reciprocal inhibitory connections between post-retinal areas that
receive their main inputs from P and M pathways. Figure 1.6 shows a more
detailed depiction of the model. Here, circular symbols depict neurons whose



1 Spatiotemporal Dynamics of Visual Perception 9

input

t

post-retinal 

areas

retina
t

t

M
 p

a
t
h

w
a

y

P
 p

a
t
h

w
a

y

Inter-channel 

inhibition

Fig. 1.5. Schematic representation of the major pathways in the RECOD model.
Filled and open synaptic symbols depict excitatory and inhibitory connections, re-
spectively

spatial relationship follows a retinotopic map. In this figure, the post-retinal
area that receives its major input from the P pathway is decomposed into two
layers. Both layers preserve the retinotopic map and add a spatial-frequency
map (composed of the spatial-frequency channels). For simplicity, only three
elements of the spatial-frequency map ranging from the highest spatial fre-
quency class (H) to the lowest spatial frequency class (L) are shown. The
M pathway sends a retinotopically organized inhibitory signal to cells in the
first post-retinal layer. The direct inhibitory connection from retinal transient
cells to post-retinal layers is only for illustrative purpose; in vivo the actual
connections are carried out by local inhibitory networks. The first post-retinal
layer cells receive center-surround connections from the sustained cells (par-
vocellular pathway). The rows indicated by H, M, and L represent elements
with high, medium, and low spatial frequency tuning in the spatial frequency
map, respectively. Each of the H, M, and L rows in the first post-retinal
layer receive independent connections from the retinal cells, and there are no
interactions between the rows. Cells in the second post-retinal layer receive
center-surround connections from the H, M, and L rows of the first post-retinal
layer. They also receive center-surround feedback. Sample responses of model
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Fig. 1.6. A more detailed depiction of the RECOD model. Filled and open synaptic

symbols depict excitatory and inhibitory connections, respectively. To avoid clutter,
only a representative set of neurons and connections are shown. From [44]

neurons tuned to low spatial frequencies and to high spatial frequencies are
shown for sharp and blurred edge stimuli in Fig. 1.7. As one can see in the
left panel of this figure, for a sharp edge neurons in the high spatial-frequency
channel respond more strongly (dashed curve) compared to neurons in the
low spatial-frequency channel (solid curve). Moreover, neurons tuned to low
spatial-frequencies tend to blur sharp edges. This can be seen by comparing
the spread of activity shown by the dashed and solid curves in the left panel.
The right panel of the figure shows the responses of these two channels to
a blurred edge. In this case, neurons in the low spatial-frequency channel
respond more strongly (solid curve) compared to neurons in the high spatial-
frequency channel. Overall, the peak of activity across the spatial-frequency
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Fig. 1.7. Effect of edge blur on model responses: model responses in the first post-
retinal layer for sharp (left) and blurred (right) edges at high spatial-frequency (dot-
ted line) and low spatial-frequency (continuous line) loci of the spatial-frequency
map. From [44]

map will indicate which neuron’s spatial frequency matches best the sharp-
ness of the input edge, and the level of activity for each neuron for a given
edge will provide a measure of the level of match. Thus the distribution of ac-
tivity across the spatial-frequency map provides a measure of edge blur. Even
though the map is discrete in the sense that it contains a finite set of neurons,
the distribution of activity in the map can provide the basis for a fine discri-
mination and perception of edge blur. This is similar to the encoding of color,
where the distributed activities of only three primary components provide the
basis for a fine discrimination and perception of color.

The model achieves the spatial-frequency selectivity by the strength and
spatial distribution of synaptic connections from the retinal network to the
first layer of the post-retinal network. A neuron tuned to high spatial fre-
quencies receives excitatory and inhibitory inputs from a small retinotopic
neighborhood, while a neuron tuned to low spatial frequencies receives exci-
tatory and inhibitory inputs from a large retinotopic neighborhood (Fig. 1.8).
Thus the retinotopic map allows the simple geometry of neighborhood and
the resulting connectivity pattern to give rise to spatial-frequency selectivity.
By smoothly changing this connectivity pattern across cortical space, one ob-
tains a spatial-frequency map (e.g. L, M, and H in Fig. 1.6), which in turn,
as mentioned above, can relate the geometry of neural activities to the fine
coding of edge blur.

The left panel of Fig. 1.9 shows the activities in the first post-retinal layer
of the model for a low (dashed curve) and a high (solid curve) contrast input.
The response to the high contrast input is stronger. The first post-retinal
layer in the model encodes edge blur in a contrast-dependent manner. The
second post-retinal layer of cells achieves contrast-independent encoding of
edge blur. Contrast independence is produced through connectivity patterns
that exploit retinotopic and spatial-frequency maps. The second post-retinal
layer implements retinotopic center-surround shunting between the cells in
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Fig. 1.8. The connectivity pattern on the left produces low spatial-frequency se-
lectivity because of the convergence of inputs from an extended retinotopic area.
The connectivity pattern on the right produces a relatively higher spatial frequency
selectivity

the spatial frequency map. Each cell in this layer receives center excitation
from the cell at its retinotopic location and only one of the elements in the
map below it. However, it receives surround inhibition from all the elements
in the map in a retinotopic manner, from a neighborhood of cells around its
retinotopic location [12, 18, 20, 49, 50]. In other words, excitation from the
bottom layer is one-to-one whereas inhibition is many-to-one pooled activity.
This shunting interaction transforms the input activity p1i for the ith element
in the spatial frequency map into an output activity p2i = p1i/(A1+

∑
i p1i),

where A1 is the time constant of the response [12, 25]. Therefore, when the
total input

∑
i p1i is large compared to to A1, the response of each element in

the spatial frequency map is contrast-normalized across the retinotopic map,
resulting in contrast-constancy. This is shown in the right panel of Fig. 1.9:
the responses to low contrast (dashed curve) and high contrast (solid curve)
are identical.

In order to compensate the blurring effects introduced at the retinal level,
the RECOD model uses a connectivity pattern across retinotopic maps, but
instead of being feedforward as those giving rise to spatial-frequency selec-
tivity, these connections are feedback (or re-entrant), as illustrated at the
top of Fig. 1.6. Note that, for simplicity, in this figure only the connections
for the medium spatial frequencies (M) are shown. Because of these feedback
connections and the dynamic properties of the network, the activity pattern
is “sharpened” in time to compensate for the early blurring effects. [25, 37]. In
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Fig. 1.10. Temporal sharpening of model responses to a blurred edge in the second
post-retinal layer: responses at 40 ms (continuous line) and 120 ms (dashed line) are
shown superimposed. From [44]

Fig. 1.10, the response of the model neurons in the second post-retinal layer
to an edge stimulus with 2 arcmin base blur at 40 ms after stimulus onset is
shown by the dashed curve. The response at 120 ms after stimulus onset is
shown by the solid curve. Comparing the width of these activities, one can
see that the neural encoding of the edge is initially (at 40 ms) blurred but
becomes sharper with more processing time (at 120 ms).

1.3.3 Perception and Discrimination of Edge Blur

The proposed encoding scheme across retinotopic and spatial-frequency maps
has been tested by comparing model predictions to a wide range of expe-
rimental data [44]. For example, Fig. 1.11 provides a comparison of model
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predictions to experimental data on the effect of exposure duration on per-
ceived blur for base blurs of 0, 2, and 4 arcmin. The model has been also
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Fig. 1.11. Model predictions (solid lines) and data (dashed lines) for the effect of
exposure duration on perceived blur for base blurs of 0, 2, and 4 arcmin. From [44]

Fig. 1.12. To measure the blur discrimination threshold, first a base blur is chosen
(solid curve). The ability of the observer to tell apart slightly more blurred edges
(dashed line) in comparison to this base blur is quantified by psychophysical methods

tested for blur discrimination thresholds, i.e. the ability of the observer to
tell apart two slightly different amounts of edge blur. As shown in Fig. 1.12,
first a base blur (solid curve) is chosen, and the ability of the observer to tell
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apart slightly more blurred edges (dashed line) in comparison to this base
blur is quantified by psychophysical methods. Figure 1.13 compares model
predictions and data from [55] for the effect of exposure duration on blur
discrimination thresholds. For both blur perception and discrimination, one
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Fig. 1.13. Model predictions (solid line) and data (dashed lines) of three observers
from [55] for blur discrimination threshold as a function of exposure duration. From
[44]

observes that an exposure duration on the order of 100 ms is required to reach
veridical perception and optimal discrimination of edge blur, and that a good
agreement between experimental data and model predictions is found.

Figure 1.14 compares model predictions and data for blur discrimination as
a function of base blur. Discrimination thresholds follow a U-shaped function
with a minimum value around 1 arcmin. The optics of the eye limits perfor-
mance for base blurs less than 1 arcmin. For base blurs larger than 1 arcmin,
neural factors limit performance.

1.3.4 On and Off Pathways and Edge Localization

Receptive fields of retinal ganglion cells can also be classified as on-center off-
surround (Fig. 1.15, left) and off-center on-surround (Fig. 1.15, right). These
receptive fields contain two concentric circular regions, called the center and
the surround. If a stimulus placed in the center of the receptive field excites the
neuron, then a stimulus placed in the surround will inhibit the neuron. Thus
the center and the surround of the receptive field have antagonistic effects
on the neuron. A receptive field whose center is excitatory is called on-center
off-surround. Similarly, a receptive field whose center is inhibitory is called
off-center on-surround. The outputs of the on-center off-surround cells give
rise to the on pathway, and the outputs of the off-center on-surround cells
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Fig. 1.14. Model predictions and data from [26] (for observers JH and CD) and
from [40] (for observer RO) plotting blur discrimination thresholds as a function of
base blur. From [44]

give rise to the off pathway. Because the spatial integration of inputs for the
P cells is linear, the signals generated by an edge in the on and off pathways
will exhibit an odd-symmetry; and their point of balance would correspond
to the location of the edge. It has been shown that a contrast-dependent
asymmetry exists between the on and off pathways in the human visual system
[53]. An implication of this asymmetry is that, if edges are localized based
on a comparison of activities in the on and off channels then a systematic
mislocalization of the edge should be observed as the contrast of the edge is
increased. Indeed, Bex and Edgar [5] showed that the perceived location of
an edge shifts towards the darker side of the edge as the contrast is increased.
Their data are shown in Fig. 1.16. Negative values on the y-axis indicate that
the perceived edge location is shifted towards the darker side of the edge. For a
sharp edge (0 arcmin blur), no mislocalization is observed for contrasts ranging
from 0.1 to 0.55. However, as the edge blur is increased a systematic shift
towards the darker side of the edge is observed. To estimate quantitatively this
effect in the model, we introduced an off pathway whose activities consisted
of negatively scaled version of the activities in the on pathway. This scaling
took into account the aforementioned asymmetry. As a result, as contrast is
increased above approximately 0.2, the activities in the off pathway increased
slightly more than those in the on pathway. The quantitative predictions of
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Fig. 1.15. Left: On-center off-surround receptive field; right: off-center on-surround
receptive field. Plus and minus symbols indicate excitatory and inhibitory regions of
the receptive field, respectively

the model are superimposed on the data in Fig. 1.16. Overall, one can see a
good quantitative agreement between the model and the data.

1.3.5 Trade-off Between Spatial and Temporal Deblurring

The aforementioned simulations studied model behavior under the conditions
of visual fixation for a static boundary, i.e. when the position of the bounda-
ry remains fixed over retinotopic maps. Under these conditions, feedforward
retino-cortical signals send blurred boundary information, and gradually post-
retinal feedback signals become dominant and construct sharpened represen-
tation of boundaries. However, because post-retinal signalling involves positive
feedback, at least two major problems need to be taken into consideration:

1) When the positive feedback signals become dominant, the system loses
its sensitivity to changes in the input. For example, if the input moves spa-
tially, the signals at the previous location of the input will persist through
positive feedback loops and the resulting perception would be highly smeared,
similar to pictures of moving objects taken by a camera at long exposure du-
ration. Thus, within a single pathway spatial sharpening comes at the cost of
temporal blurring.

2) If left uncontrolled, positive feedback can make the system unstable.
We suggest that the complementary magnocellular pathway solves these

problems by rapidly “resetting” the parts of retinotopic map where changes in
the input are registered. Accordingly, the real-time operation of the RECOD
model unfolds in three phases:

(i) Reset phase: Assume that the post-retinal network has some residual
persistent activity due to a previous input. When a new input is applied to
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Fig. 1.16. Model predictions and data showing the effect of contrast on the per-
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puted from two observers. From [44]

the RECOD model, the fast-transient neurons respond first. This transient
activity inhibits the post-retinal network and removes the persisting residual
activity.

(ii) Feedforward dominant phase: The slow-sustained neurons respond next
to the applied input and drive the post-retinal network with excitatory inputs.

(iii) Feedback dominant phase: When the activity of the sustained neurons
decays from their peak to a plateau, the feedback becomes dominant com-
pared to the sustained feedforward input. This results in the sharpening of
the input spatial pattern. Thus, the feedforward reset mode achieves temporal
deblurring, and the feedback mode achieves spatial deblurring.

According to the three-phase operation of the model, a single continuous
presentation of a blurred edge is necessary for the feedback to sufficiently
sharpen the neural image across the retinotopic map. Multiple short expo-
sures cannot achieve the same amount of sharpening as a single long exposure
since the post-retinal feedback is reset by the retinal transients. Westheimer
[55] measured blur discrimination thresholds for an edge whose blur was tem-
porally modulated in different ways. The reference stimulus was a sharp edge.
In the first experiment, the test stimulus was a blurred edge presented alone
for durations of 30 ms and 130 ms. Next, the test stimulus was presented
as a combination of (i) a sharp edge for 100 ms and a blurred edge for the
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next 30 ms, (ii) a blurred edge for the first 30 ms and a sharp edge for the
next 30 ms, and (iii) a blurred edge for 100 ms and a sharp edge for the next
100 ms. As shown in Table 1, the RECOD model predicts lower differences in
the luminance gradients between the test and reference stimuli for conditions
(i) and (ii) above than for a 30 ms presentation of a blurred edge. This gives
higher blur discrimination thresholds. Similarly, condition (iii) above yields
a lower difference in the luminance gradients between the test and reference
stimuli than when the test stimuli is a blurred edge presented for 130 ms.

Table 1.1. Model and data from Westheimer [55] for blur discrimination thres-
holds (arcmin) obtained with hybrid presentations

30 ms 130 ms (i) (ii) (iii)
Data 3.8 1.43 7.17 8.56 2.06
Model 2.6 1.2 5.33 5.33 1.44

1.3.6 Perceived Blur for Moving Stimuli

Another way to test the proposed reset phase is to compare model predic-
tions with data on the perception of blur for moving stimuli. In normal view-
ing conditions, moving objects do not appear blurred. Psychophysical studies
showed that perceived blur for moving objects depends critically on the ex-
posure duration of stimuli. For example, moving targets appear less blurred
than predicted from the visual persistence of static targets when the exposure
duration is longer than about 40 ms [10, 28]. This reduction of perceived blur
for moving targets was named “motion deblurring” [10].

Model predictions for motion deblurring were tested using a “two-dot
paradigm”, where the stimulus consisted of two horizontally separated dots
moving in the horizontal direction, as shown in the top panel of Fig. 1.17.
The middle panel of the figure shows a space-time diagram of the dots’ tra-
jectories. The afferent short-latency-transient and long-latency-sustained sig-
nals are depicted in the bottom panel of Fig. 1.17 by dashed lines and the
gray region, respectively. The sustained activity corresponding to both dots
are highly spread over space. However, at the post-retinal level, the inter-
action between the transient activity generated by the trailing dot and the
sustained activity generated by the leading dot results in a substantial de-
crease of the spatial spread of the activity generated by the leading dot. From
Fig. 1.17, one can see that the exposure duration needs to be long enough for
the transient activity conveyed by the magnocellular pathway for the trailing
dot to spatiotemporally overlap with the sustained activity conveyed by the
parvocellular pathway for the leading dot.
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Fig. 1.17. Top: Two-dimensional representation of the input. Arrows indicate mo-
tion. Middle: spatiotemporal representation of the input. Bottom: superimposed af-
ferent transient and sustained signals

In order to compare model predictions quantitatively with data, Fig. 1.18
plots the duration of perceived blur (calculated as the ratio of the length of
perceived blur to the speed) for the leading and the trailing dot, respectively,
for two dot-to-dot separations along with the corresponding experimental data
[14].

In all cases, when the exposure duration is shorter than 60 msec, no signi-
ficant reduction of blur is observed and the curves for the leading and trailing
dots for both separations largely overlap. The mechanistic explanation of this
effect in our model is as follows: due to the relative delay between transient
and sustained activities, no spatial overlap is produced when the exposure
duration is short. When the moving dots are exposed for a longer duration,
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Fig. 1.18. Duration of blur as a function of exposure duration for the leading (left)
and trailing (right) dots in the two-dot paradigm for two dot-to-dot separations.
From [43]

these two activities overlap and the inhibitory effect of the transient activity
on the sustained one reduces the persistent activity from the leading dot. A
significant reduction of perceived blur is observed for the leading dot when the
dot-to-dot distance is small both in the model and in data. When the dot-to-
dot separation is larger, the spatiotemporal overlap of transient and sustained
activities is reduced, thereby decreasing the effect of deblurring in agreement
with data (Fig. 1.18). For the trailing dot, dot-to-dot separation has no effect
on post-retinal activities, and no significant reduction in perceived blur is
observed. Quantitatively, the model is in very good agreement with data with
the exception of some underestimation for long exposure duration in the case
of the trailing dot.

1.3.7 Dynamic Viewing as a Succession of Transient Regimes

Under normal viewing conditions, our eyes move from one fixation point to
another, remaining at each fixation for a few hundred millisecons. Our studies
show that a few hundred milliseconds is the time required to attain an “opti-
mal” encoding of object boundaries (Figs. 1.11, 1.13, and 1.18). Therefore, the
timing of eye movements correlates well with the timing of boundary analysis.
We also suggest that these frequent changes in gaze help the visual system
remain mainly at its transient regime and thus avoid unstable behavior that
would otherwise result from extensive positive feedback loops observed in the
post-retinal areas. Within our theoretical framework, the visual and the oculo-
motor system together “reset” the activities in the positive feedback loops by
using the inhibitory fast transient signals originating from the magnocellular
pathway.
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1.3.8 Trade-off Between Reset and Persistence

If the system is reset by exogenous signals, as suggested above, one needs to
consider the problem that may arise because of internal noise: internal noise in
the M pathway could cause frequent resets of information processing in areas
that compute object boundaries and form. In addition, such rapid undesirable
reset cycles may also occur because of small involuntary eye movements as well
as because of small changes in the inputs. We suggest that the inhibition from
the P-driven system on the M-driven system prevents these resets through
a competition between the two systems (see Fig. 1.5). In our simulations re-
ported in the previous sections, for simplicity we did not include sustained
on transient inhibition, for both the inputs and the neural activities were
noise-free. The proposed competition between the M-driven and the P-driven
systems can be tested by using stimuli that activate successively in time spa-
tially nonoverlapping but adjacent regions. The perceptual correlates for such
stimuli have been studied extensively in the masking literature [3, 6, 8]. If we
label the stimulus whose perceptual and/or motor effects are measured as the
“target” stimulus and the other stimulus as the “mask” stimulus (Fig. 1.19),
then the condition where the mask is presented in time before the target
is called paracontrast. The condition where the mask is presented after the
target is called metacontrast [3, 6, 8]. Based on a broad range of masking

Fig. 1.19. A typical stimulus configuration used in masking experiments. The cen-
tral disk serves as the target stimulus and the surrounding ring serves as the mask
stimulus

data Breitmeyer [7, 6] proposed reciprocal inhibition between sustained and
transient channels, and this reciprocal inhibition is also an essential part of
the RECOD model. Consider metacontrast: here the aftercoming mask would
reset the activity related to the processing of the target. Indeed, a typical
metacontrast function is a U-shaped function suggesting that the maximum
suppression of target processing occurs when the mask is delayed so that the
fast transient activity generated by the mask overlaps in time with the slower
sustained activity generated by the target. If the transient activity generated
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by the mask can be suppressed by sustained activity, then it should be possible
to introduce a second mask (Fig. 1.20) whose sustained activity can suppress
the transient activity of the primary mask. This in turn results in the disin-
hibition of the target stimulus. In support of this prediction, several studies

time

outer ring
(secondary mask)

disk (target)

inner ring
(primary mask)

Fig. 1.20. Left: modification of the stimulus configuration shown in Fig. 1.19. The
second outer ring serves as the secondary mask. Right: The temporal order of the
stimuli

showed that the second mask allows the recovery of an otherwise suppressed
target (e.g. [17]). Furthermore, Breitmeyer et al. [9] showed that the effect of
the secondary mask in producing the disinhibition (or recovery) of the target
starts when it is presented at about 180 ms prior to the target and gradually
increases until it becomes simultaneous with the primary mask. This relatively
long range of target recovery provides a time window during which sustained
mechanisms can exert their inhibitory influence so as to prevent reset signals
generated by noise.

1.3.9 Attention: Real-time Modulation of the Balance Between
Reset and Persistence

Having a mechanism to reduce reset signals opens another possibility: mo-
dulatory mechanisms can bias the competition in favor of the sustained me-
chanisms and thereby allow a more persistent and enhanced registration and
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analysis of stimuli. We suggest that attention serves that purpose. Although a
universally adopted definition of attention does not exist, it is often defined as
a selection mechanism whereby resources are focused on certain item(s), loca-
tion(s), etc. Within the framework of the RECOD model, the reset mechanism
curtails cortical activity and therefore attention necessitates a reduction of the
reset signals for the attended locations, features, objects, and so on. Similarly,
attention can also increase the gain of reset signals for unattended locations
and objects. A simple way to achieve this in RECOD is to bias the com-
petition between transient and sustained systems in favor of the sustained
system for attended locations, features, and objects; and bias the competi-
tion in favor of the transient system for unattended locations, features, and
objects. For example, assume that attention primes part of the retinotopic
map as illustrated in Fig. 1.21. The model then predicts in agreement with
experimental data that attention should increase visible persistence [54], de-
crease temporal sensitivity [57], increase spatial sensitivity [56], and decrease
masking [21, 45, 48]. Similarly, it is predicted that attention should enhance
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Fig. 1.21. Illustration of attention in RECOD. Priming the activation of the cells
in the P pathway biases the competition between sustained and transient systems
in favor of the sustained system
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target recovery, should increase reaction times to a target in paracontrast,
and increase motion blur. These predictions have not been tested.

1.4 Summary

In this chapter we reviewed some fundamental properties of the primate vi-
sual system and highlighted maps and pathways as spatiotemporal informa-
tion encoding and processing strategies. We suggest that maps represent the
geometry of the fusion between structure and function in the nervous system,
and that the pathways represent complementary aspects of processing whose
interactions can solve conflicting requirements arising within a single proces-
sing stream. The use of retinotopic and spatial-frequency maps was illustrated
by considering the problem of object boundary encoding. The use of parallel,
complementary pathways was illustrated by considering how the interactions
between magnocellular and parvocellular pathways can resolve the trade-off
between spatial and temporal deblurring. We suggested that the interactions
between magnocellular and parvocellular pathways play a fundamental role
in keeping the system in a succession of transient regimes, thereby avoiding
unstable behavior that would result from complex feedback loops that in-
clude extensive positive feedback. Finally, we suggested that attention can
be viewed as a modulation of the dynamic balance between sustained and
transient systems.

Appendix: Fundamental Equations of the Model and Their Neuro-
physiological Bases

The first type of equation used in the model has the form of a generic
Hodgkin–Huxley equation:

dVm

dt
= −(Ep + Vm)gp + (Ed − Vm)gd − (Eh + Vm)gh, (1.1)

where Vm represents the membrane potential; gp, gd, gh are the conductances
for passive, depolarizing, and hyperpolarizing channels, respectively; with Ep,
Ed, Eh representing their Nernst potentials. This equation has been used
extensively in neural modeling to characterize the dynamics of membrane
patches, single cells, as well as networks of cells (rev. [25, 31]). For simplicity,
we will assume Ep = 0 and use the symbols B, D, and A for Ed, Eh, gp,
respectively, to obtain the generic form for multiplicative or shunting equation
(rev. [25]):

dVm

dt
= −AVm + (B − Vm)gd − (D + Vm)gh. (1.2)



26 Haluk Öğmen

The depolarizing and hyperpolarizing conductances are used to represent
the excitatory and inhibitory inputs, respectively. The second type of equa-
tion is a simplified version of Eq. (2), called the additive model, or the leaky-
integrator model, where the external inputs influence the activity of the cell
not through conductance changes but directly as depolarizing Id and hyper-
polarizing Ih currents yielding the form:

dVm

dt
= −AVm + Id − Ih. (1.3)

Mathematical analyses showed that, with appropriate connectivity pat-
terns, shunting networks can automatically adjust their dynamic range to
process small and large inputs (rev. [25]). Accordingly, we use shunting equa-
tions when we have interactions among a large number of neurons so that a
given neuron can maintain its sensitivity to a small subset of its inputs with-
out running into saturation when a large number of inputs become active. We
use the simplified additive equations when the interactions involve few neu-
rons. Finally, a third type of equation is used to express biochemical reactions
of the form

S + Z → Y → X → S + Z, (1.4)

where a biochemical agent S, activated by the input, interacts with a trans-
ducing agent Z (e.g. a neurotransmitter) to produce an active complex Y that
carries the signal to the next processing stage. This active complex decays to
an inactive state X, which in turn dissociates back into S and Z. It can be
shown that (see Appendix in Sarikaya et al. [47]), when the active state X
decays very fast, the dynamics of this system can be written as:

1
τ

dz
dt

= α(β − z)γSz, (1.5)

with the output given by y(t) = γ
δ S(t)z(t), where s, z, y represent the con-

centrations of S, Z, and Y, respectively, and γ, δ, α denote rates of complex
formation, decay to inactive state, and dissociation, respectively. This equa-
tion has been used in a variety of neural models, in particular to represent
temporal adaptation, or gain control property, occurring, for example, through
synaptic depression (e.g. [1, 13, 22, 24, 37, 38]).
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2.1 Introduction

There is growing evidence that a number of problems in perception and per-
ceptual geometry, for example, the problems of figure-ground separation and
scene segmentation could be formulated in terms of structural regularity of
regions of images in statistical and information theoretic terms. Intuitively, as
well as in psychophysical studies performed by cognitive scientists, perception
of local structural regularity is fundamentally correlated with perception of
local symmetry of surfaces, and under parallel projection of planar surfaces,
with local symmetries of their images [50, 14, 37]. In other words, such local
symmetries distinguish prevalent regularity of common surfaces in the envi-
ronment from randomness in arbitrary composition of colored dots; or what
is the same, they distinguish meaningful images from a generic pattern of a
totally random selection of light intensities in matrices encoding local incohe-
rence in optical properties. Are there features that encode, in a sparse format,
such local regularities?

Consider being given an image described by a set of values at a discrete
set of points on a finite grid. The task is to find some specific “feature” of the
image and to do so in a finite amount of time and with finite computational
resources. For example, if the image is that of a rug, the task may be the
determination of whether the rug pattern has any symmetric structure. Or,
the task may simply be recognition of whether an object in the image is a face
or not. This search task may need multiple queries or “looks” at the image in
order to obtain pertinent information. What is the pertinent or right structure
that needs to be learned, what is the learning? What is to be learned [46]?
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Symmetry is widely believed to be an important visual primitive that is
probably encoded without the need for attention. The definition of effortless
perception proposed by Julesz [20] states that any stimulus property per-
ceived for exposure durations of 160 msec or less is detected preattentively.
This notion of effortless perception has contributed greatly to views regar-
ding preattentive symmetry detection. However, there is ample psychophysical
data to support the view that a number of symmetry detection tasks require
selective attention and may be spatially imprecise, although some grouping
or segmentation tasks may operate preattentively [32, 50, 18]. A number of
computational approaches to symmetry detection have been proposed. An
overview of the various approaches, a discussion of symmetry groups in the
context of crystallographic groups, and many references to the computational
literature can be found in Liu [24].

Symmetry as a representation tool can take on a central role in addres-
sing perceptual processes. The channel theory in processing of early parts of
visual input can be seen as an example of this role. Fourier transform is the
most widely known form of symmetry operation arising from group represen-
tation. In this new role, symmetry principles are the driving force in obtaining
mathematical models for filters (or channels) as well as describing how their
information content should be analyzed. In this chapter, we will motivate our
approach in the first section and give a brief review of the structure of data
flow in the human visual system and the psycophysical evidence for the possi-
ble forms of representations used for search tasks. Inspired by the prominent
role of symmetry in the description of our physical world as well as its per-
ception through our cognitive processes, our goal in the next section is to
use symmetry in a systematic way to formulate the representation and detec-
tion of learned signals. This formulation leads to the notion of overcomplete
representations [9]. We call this formulation a dynamic search and focus our
attention on the central problem of addressing the mathematical formulation
for the machinery necessary to solve the dynamic search problem. Next, we
describe a measure for the information content of the signals that accounts for
the symmetries of our dynamic search representation. We coin the terminolo-
gy information dynamics, referring to our formulation of search that exploits
the idea of overcomplete representations. In the final section, we give a brief
overview of the computational implementation and results for the proposed
model. A more detailed discussion of the model and the results is found in [7].

Shepherd [38] argues that principles of invariance and elegance are natural
principles for formulation of representations of biologically significant objects.
Using arguments based on symmetry principles, Palmer [33] develops the “iso-
morphism constraint”, a principled distinction between what can and cannot
be determined about the nature of color experience by objective behavioral
means. From a mathematical point of view, it can be shown that in the space
of all possible patterns of light (i.e. all large matrices of same size with non-
negative coefficients), the set of possible images of natural scenes is a very
small subset.
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2.2 Motivations From the Visual System

The current weight of experimental evidence to support a high-fidelity internal
representation for search tasks is at best equivocal. What appears to be a
dominant factor is what is referred to as “features”. Furthermore, search tasks
appear to be segmented to solve simpler problems first, rejecting features
irrelevant to the tasks and seeking information for features relevant to the
task. If search tasks are based on finding features that involve a decision based
on the tasks at hand, in what way are these features compared? It seems likely
that a task-dependent feature representation map may exist. What is a likely
model of feature comparison? Clues from the theory of guided search combined
with the ideas of search for similarity provide the motivation for mathematical
models and computational methods presented in the forthcoming sections.

2.2.1 A Quick Review of Retinal Data Flow

The structure of the primate retina is highly inhomogeneous with an ex-
tremely high density of receptor and ganglion cells in the center, a specialized
fovea, and a rapid decline of the cell densities to the periphery. The lattice
spacing of ganglion cell receptive field centers limits certain forms of visual
acuity, according to the Nyquist limit. Spatial resolution of ganglion cells and
the spacing of receptive field centers appear approximately equal. Given this
observed relationship, the spatial low-pass filtering action of ganglion cell re-
ceptive fields would appear to attenuate periodic patterns at or above the
Nyquist limit by about a factor of five or more, thus reducing the likelihood
of detecting potentially confusing higher spatial frequencies with potential for
aliasing. However, small offsets or stimulus movements much finer than any
retinal cell mosaic spacing can be detected by ganglion cells. This is referred
to as visual hyperacuity.

Ganglion cell fields partially overlap in visual space. Moreover, ganglion
cells share an overlapping neural substrate composed of retinal interneurons
and circuitry. As a result, the physiological signals they transmit are often
highly correlated among neighboring cells. Retinal ganglion cells have no true
threshold for detection of dim stimuli [3]. When many responses are averaged,
signals can be seen for light stimuli as dim as desired, and this includes stimuli
so dim that only a few physical quanta of light are delivered to the surface of
the eye at the cornea. Of course in total darkness retinal ganglion cells still
exhibit a maintained but variable spontaneous firing rate, and it is against
this background noise that quantal responses must be detected. Barlow et al.
[3] concluded that a single quantum absorption resulted in the firing of 2 or
3 extra ganglion cell nerve impulses. Because of fluctuations in spontaneous
background firing, single quantal events might not be readily detected in a
single cell. However 3-4 quantal absorptions within the cell’s receptive field
would be easily noticed in the discharge pattern.
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Ganglion cell axons terminate in brain visual centers, principally the late-
ral geniculate nucleus (LGN) and the superior colliculus. The LGN neurons
mainly project to the primary visual cortex, also known as area V1. There is a
qualitative difference between neurons in the LGN and those of area V1. For
example, while most V1 neurons do not have circularly symmetric receptive
fields, most LGN neurons do. Cortical neurons mainly fall into two major
categories, simple and complex cells (see Fig. 2.1.).

Fig. 2.1. A cartoon presentation of simple and complex cells and their receptive
fields.

The sampling of the visual field in V1 is known to be sparse with ap-
proximately 5-6 samples of scale and 16–18 samples of orientation spread
in a 100-by-100 hypercolumn. The so-called pinwheel structures arise from
the attempt to map the external world onto the two-dimensional surface of
the cortex parameterized by scale and orientation [34]. This structure of the
retina suggests that moving the fovea to different positions is a requirement
of having a homogeneous and simultaneous percept of the total visual field.
This movement should provide the means for successive “looks” used for ac-
quiring and integrating information. The existence of a fovea requires both,
eye movements and periods of fixation, as seen in human saccades. The close
relationship of visual perception, cognition, movements of the retinal image,
and eye movements has made the independent study of each field without the
influence of other effects a difficult task.
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2.2.2 Search Tasks

Yarbus [56] was among the first to demonstrate that eye movements reflect
cognitive events. However, understanding the relationship between eye move-
ments and cognitive events remained largely unexplored [49]. In his thesis,
using the block-copying task, Pelz [35] demonstrated a number of findings
that corroborated a number of prior experiments.

Subjects in Pelz’s studies made frequent eye movements, returning to in-
spect the model pattern again and again while copying the eight colored
blocks. In essence, they used eye movements to serialize the task into sim-
pler subtasks that were executed sequentially. The constraints of the task and
the subjects’ common, stereotyped behavior led to a relatively small number
of strategies used to copy each block. The modal strategy was the “model-
pickup-model-drop” (MPMD) strategy [35]. The subject looked first to the
model, then to the resource area (guiding the block pickup), returned gaze to
the model, and finally on to the workspace to guide the block drop. Because
subjects were given no direction on how to perform the task, other than to
complete the copy as quickly as possible without making errors, it is impor-
tant that subjects chose to complete the task by referring to the model so
frequently. None of the subjects in the study used the alternative strategy
of first locating and identifying several objects in the scene, then moving a
number of blocks without fixating the model again. At least in the context
of this study, subjects’ use of temporary, task-specific visual representations
suggested that vision may be much more “top-down” than was previously
thought.

Pelz’s work challenged the idea that the visual system is tasked to gather
information for integration into a high-fidelity, general-purpose representation
of the environment without regard to the immediate task. In comparison, in
the classical view of visual perception (also embraced by traditional computer
vision approaches (e.g., Marr [26]), planning and cognition was performed by
referencing the internal representation. The frequent eye movements used by
subjects in these experiments suggest that in real tasks, humans apparently
maintain only sparse, transient representations of task-relevant information.

These experiments suggest that the role of perception may be to create
descriptions that are relevant to the immediate task. To the extent that mani-
pulations on a given block are largely independent of the information acquired
in previous views, performance in this task suggests that it is unnecessary to
construct an elaborate scene description to perform the task, and that there
is only minimal processing of unattended information. These observations
support the suggestion made previously that only minimal information about
a scene is represented at any given time, and that the scene can be used
as a kind of “external” memory [31, 30, 19] (see also related suggestions by
Nakayama [28]).

Research in human visual search over the past 20 years has established
three factors that are powerful determinants of search speed and accuracy.
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These determinants are the number of objects to be searched for, the degree
of target and background similarity, and training [16, 39, 53]. Targets that
differ from their backgrounds by a single feature (e.g., a red circle among
green circles) usually lead to “pop-out” in that search is fast and relatively
independent of the number of distracter objects.

The pop-out effect is in contrast to searching for a conjunction of features
(e.g., a red vertical line in a background of red horizontals and green verticals).
This type of search is generally slower and more error-prone. Some researchers
[42] have suggested that pop-out effects are mediated by preattentive, para-
llel stages in the visual system, while conjunction searches engage a covert
visual attention system that is directed at each display item in turn. This is
commonly referred to as feature integration theory. Feature integration theory
has been amended to address such variations in search efficiency by suggesting
that features are coarsely coded, that the attentional focus may vary in size,
and that the representations of distractor features not shared with the target
can be inhibited [43, 44, 45]. Independent of the validity of this theory, there
is clear evidence that similarity of target and background exerts a powerful
influence on search efficiency [53].

Another theory that attempts to account for variations in search efficiency
is the guided search theory proposed by Wolfe and coworkers [4, 53, 54, 52].
According to this theory, during visual search, preattentive processes guide
shifts of attention by pinpointing stimulus locations likely to contain the tar-
get. This preattentive information encompasses both “bottom-up” (i.e., how
closely a particular item resembles other items in the display) and “top-down”
(i.e., how closely the features of a given item match those characterizing the
target) influences. In guided search theory, the sources of information combine
to create an “activation map”. The activation map contains peaks of activity
at likely target locations. The activation map is used during the search process
to focus attention on the stimulus location showing the most activity.

A common assumption for explaining the effects of target/background
similarity as well as its interaction with the number of objects in the display
and training, is based on the idea of a two stage search. The initial stage
in visual search is a parallel stage that locates likely target candidates. In
a second serial stage, attention is allocated to the target object resulting in
its identification [16, 17, 53]. These models have been simulated in computer
programs in simple settings and appear to provide a good fit to a variety of
search data. However, more realistic situations in which search is accomplished
with eye movements and observers must search through complex scenes have
not been studied using these models.

The evidence discussed in this section motivates a view of visual pro-
cessing in which short-term, task-specific, and sparse information plays an
important role in natural human tasks. Top-down and bottom-up processing
form a synergistic process that creates a map used to guide further visual
processing. The sparse and transient nature of this map suggests a feature-
based construct that may be coded at multiple scales. Coding the percept
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using features further suggests an invariant coding to avoid the computation
of rotation deconvolution. A more detailed source of the material presented
in this section can be found in [7].

2.3 Overview of the Model

To pursue the ideas of search in perceptual mechanisms expressed above,
we need to propose a model that has as its main ingredients the element
we have called features as well as an invariant measure for comparison of
features. In our framework, the analysis of a signal proceeds in three steps
that could be potentially coupled. The first stage involves the generation of
an overcomplete representation of the signal. Our condition on the generation
of the overcomplete representation is the existence of a parameterizing system
that can be used to structure the resulting representation. Here, our paramete-
rizing system is the Lie group of symmetries that parameterizes a set of wavelet
coefficients obtained by analysis using a mother wavelet. More specifically, a
search structure for an image is a collection of elements g belonging to the
Lie group of transformations G of the image.1 The search implementation
applies these transformations g to a 2D mother wavelet (or filter), called the
initial search filter, to commence the process of feature extraction. The role of
dynamics is to select an ordering for search transformations g belonging to G.
This ordering is dependent on the search objective. The ordering would idea-
lly describe the time parametrization for the path in analogy with attention
shifts in the primate visual system.

To select the set of initial filters, we have relied on a physical interpretation
of a family of distributions known as Lorentz–Cauchy distributions. These dis-
tributions give rise to a family of filters that retain the optimal uncertainty
bound under all transformations of the group of rotations, scaling and trans-
lations. This property turns out to be unique within this class of wavelets and
offers an additional reason for selection of these wavelets as feature processors.
These wavelets act as projection operators providing a set of coefficients that
describe a multiscale and multiresolution, local-to-global version of the object
or signal under consideration.

Another set of projection operators, called decision operators, is used to
model the search objective. Decision operators act on the multiparameter
signal obtained from the filtering stage to obtain task-specific feature infor-
mation. One decision operator we focus on is based on detection of nonde-
generate local extrema. We remark that ideally such an operator should be
learned using methods of statistical learning theory using data obtained from
experiments. The resulting features are points in a compact subset of the plane
1 More generally, a search structure can be any parameterized family of probes

where the parameterizing set has a structure with the required properties defined
by the problem.
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that are encoded in a normalized complex vector called the feature. Thus G,
in combination with the decision operators, can be thought of as inducing a
map from the signal s to a set of feature vectors parameterized by elements
g in G. The variation, measured by the Fubini–Study metric on the resulting
complex projective space of feature vectors [36], as g varies in G gives rise to
information dynamics.

An unstructured search among the set of possible matches can lead to
computationally intractable problems. Matching one face against a collection
of faces at the finest level of detail requires a great deal of computational
power. This would require evaluating some form of distance comparison in a
large class of objects. Because of the variability of conditions in the collection
of pictures, as well as variabilities in the picture to be matched, the compa-
rison of results may be difficult to evaluate. A potential result could be that
many faces fall within “the same distance” from the item to be matched. This
collection of partial matches might not be particularly useful since it is not
given any helpful structure. Is there a method of search that in the case of
potential rejection, discriminates efficiently, while at the same time the novelty
that led to the rejection is captured at its most robust form? A biologically
plausible solution of the problem must deal with relevant constraints posed
by the human visual system.

It is well known that from the earliest stage of the processing determined
by the retinal mosaic, the system is subject to resolution limits. Additionally,
the computational machinery of vision is highly evolved and is designed to
be particularly efficient for tasks crucial to the ability of humans to reliably
perform normal tasks in their environments. Consequently, there are limits
imposed on both the computation time and the resolving power of the system
for optimal decision. Therefore, it is reasonable to assume that our mechanism
is constrained by a level of granularity and to seek solutions that are optimal
with respect to time and resources for computation. Not only in the visual
system, but also in other systems, such optimal search mechanisms are subject
to comparable constraints. Accordingly, we introduce a granularity parameter
during the extraction of features in order to accurately represent the limits of
computation offered by this machinery.

The second step involves the action of a decision operator.2 A decision
operator is a task-specific projection operator that acts on the overcomplete
representation to extract features of significance specific to the signal. We pro-
pose to use the nondegenerate zero sets of the derivative operator to construct
the decision operator. By appealing to stability theorems [27] we guarantee
that the resulting signal is discrete, isolated, and thus the problem now in-
volves a finite set of feature points. We note that in the setting of a learning
system the appropriate decision operator should be learned.
2 In the language of cognitive science, our choice of a decision operator is a top-down

process.
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In the final step, we require that the features selected above interact with
the learning system in order to either reject or accept a hypothesis defined
by the task, or to identify specific needs for further information. Within the
general framework of dynamics search, this step can be coupled to any learning
algorithms. For example, support vector machines (SVM), multiscale entropy
minimization, and principal component analysis (PCA) methods [1, 2, 47] can
be utilized. Our approach is to define a space of features and the corresponding
metric in the setting of complex projective spaces. Many methods of learning
theory become immediately available to be applied to this problem. We apply
learning theoretic estimates to perform PCA on the feature vectors in CPn.
This is the complex analog of PCA that is normally performed in R

n.
In the course of presenting this material we employ a number of results

and conditions relevant to the task at hand. To find a suitable representation,
we use a condition on the optimality of the overcomplete basis that arises
from non-commutativity of operators. We also use the topological stability
properties of transversality theory as developed by Thom, Sard, and Smale [27]
to extract combinatorics in a signal in a form that can be used for encoding and
representation. This discretization process applied to an ensemble of signals is
therefore suitable for statistical analysis. To this end, we further transform the
ensemble of combinatorial data by eliminating the effects of location, scale,
and orientation of features. We call this the ensemble of standardized features.
The ensemble of features has a natural metric that arises as a natural analog
of the Fisher information metric. The existence of the metric along with the
ensemble of data means that methods of statistics and learning theory are
available for implementation and computation of parameters. In addition, we
note that since our metric is defined in terms of an inner product, nonlinear
kernel methods based on reproducing kernel Hilbert spaces (RHKS) can be
brought to bear on the problems at hand.

2.4 The Structure of Light as a Signal

Filtering theory has historical ties to statistics and probability. In recent years,
in the context of signal processing, other ties such as those to wavelet theory
have been explored [41]. Through filtering theory, wavelets share some ties
to statistics, and in some rough sense, wavelets can be viewed as filters that
estimate statistics for various source signals. We start with a description for
the source signal of our interest in terms of a random process and its Fourier
transform and ask the following question: “what is the probability distribution
of photon detection from a given source incident on a set of detectors ?” We
will start with a 1D signal and present the 2D case as an extension of the 1D
arguments. This approach establishes some properties of interest and opens
the door for further analysis of filters of the following type:

Theorem 1. There exists a 2D mother wavelet ψ, arising from a probability
distribution p(x, y) describing a physical process with the following properties:
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1. The restriction of the probability distribution to the principal coordinate
axis is given by the Lorentz–Cauchy distribution that we denote by the LC
distribution for short.

2. The probability distribution is related to the physical process of a source
with emissions within an angular cone.

3. The characteristic function of the process is described by an exponential
decay.

4. The mean has the distribution of any random variable of the process.

More specifically, the following propositions can be proven by direct com-
putation.

Proposition 1. Let O be a source located at point (0, 1) in the plane that
emits particles with uniform probability at angle θ ∈ (−π/2, π/2) to the y-
axis. Let (t, 0) be the point where this particle is detected on the x-axis. Then,
the probability distribution of the detected signal is given by:

p(x) =
d

dt
(
1
2

+
tan−1x

π
) =

1
π(1 + x2)

(2.1)

Proposition 2. The Fourier transform of p(x) is given by exp(−|k|).

Proposition 3. Let x1, . . . , xn be independent random variables drawn from
the LC distribution. Then, P (< x > < ε) does not approach 1 as n increases.

The Fourier transform of a distribution is referred to as the characteristic
function in the probability literature. Characteristic functions are particularly
useful since their derivatives at zero give the moments of the probability distri-
bution. Viewed as a random process, it is well-known that for the LC process
the average of n independent trials does not settle down. This is in contrast
to, for example, the Gaussian distribution. However, if the light is detected by
a detector of finite width, such as a photoreceptor, an LC process has better
estimation accuracy than a Gaussian process. One can show that the efficient
equivariant estimator for an LC process is determined by the extreme values
of the sample with accuracy of the order of the reciprocal of number of quanta
of light hitting the photoreceptor. For a Gaussian process, the accuracy is of
the order of the reciprocal of the square root of the number of samples, and
therefore the estimate improves more slowly.

These observation can be generalized in a number of ways to develop the
2D analogs of this idea. One possible generalization is to consider the same
source now at (0, 0, 1) emanating at an angle θ to the z-axis along the y-
direction as well as along the x-direction and striking the x-y plane with the
product probability distribution with Fourier transform of exp(−|kx| − |ky |).

Note that the shape of the 2D filter in the spatial domain is symmetric.
However, simple modifications can yield more directionality of shape in the
spatial domain, for example, one with Fourier transform of exp(−a|kx|−b|ky|).
These distributions, viewed as filters, have a directional feature in the spatial
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Fig. 2.2. A plot of a 2D LC distribution

domain and allow for immediate generalizations where one can easily construct
the filter in a nonorthogonal system. We will see that this will lead to con-
sideration of filters with Fourier transform of the form F (x, y) exp(−a|kx| −
b|ky|), where F is in a restricted class of polynomials in x and y that will
be defined later. Since multiplication in the Fourier domain corresponds to
differentiation in the spatial domain, this filter corresponds to differentials
of different orders for the filter above. Therefore, not only directions can be
biased but also the rate of change can be biased as well. In the following
sections we will investigate these generalizations and additional properties in
the wavelet setting.

2.5 Symmetry and Signal Representations

Using the action of groups as generators of infinitesimal symmetries, we pro-
ceed to use symmetry in a systematic way to derive our filters. We begin by
introducing the basic notation and the ideas necessary for developing the re-
presentation of signals of interest. Let H be a Hilbert space, and U(H) be the
group of unitary operators acting on H.

Definition 1. A unitary representation is a homomorphism

U : G→ U(H) x→ U(x) (2.2)

from the group G to the group of unitary operators.

The set of vectors that can be reached by the action of the representation
on the vector g ∈ H is called the orbit of g. A subspace of H is called an
invariant subspace iff it is mapped into itself under the action of U(x) for all
x ∈ G.

Definition 2. A representation is called irreducible iff the only closed inva-
riant subspaces are the trivial one and the whole space.
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Consider two unitary representations U1 and U2 of the same group G in
Hilbert spaces H1, and H2, respectively.

Definition 3. A bounded operator D : H1 → H2 is called an intertwining
operator iff DU1(x) = U2(x)D for all x ∈ G.

Denote the set of all intertwining operators as R(U1, U2). For U an irre-
ducible representation, the following important fact [25] is a generalization of
Schur’s lemma and assures us that our unitary representations on the same
Hilbert space differ only by a scalar multiple of identity (see Warner [51] for
a proof).

Theorem 2. R(U,U) is one dimensional and consists of scalar multiples of
identity.

Let G be a group and S an arbitrary set. We say that G is acting on S on
the left iff for every x ∈ G there is a transformation of S into itself, Ax : S → S,
such that Axy = AxAy for all x, y ∈ G. A right action can be similarly defined.
Let G be a locally compact topological group acting on the set S equipped
with a Borel measure µ. Let J ⊂ S be a measurable subset with ‘volume’
µ(J). The left action of G on S transforms J into GJ . We say that µ is a
left- invariant (or simply invariant) measure if µ(GJ) = µ(J). Right-invariant
measures may be equivalently defined. In general, such invariant measures
need not always exist. However, when S = G, invariant measures always exist
and are referred to as Haar measures denoted by dµ. With these definitions
at hand, the notion of scalar product, square integrability and convolution in
the Hilbert space L2(G, dµ) can be defined.

Definition 4. A representation U of a group G in a Hilbert space H is said
to be square integrable if there exists a nonzero g ∈ H such that∫

G

dµ| < U(x)g|g > |2 <∞. (2.3)

We can now define the wavelet transform for a locally compact group
acting in a Hilbert space [13].

Definition 5. Let g ∈ H be a wavelet and s ∈ H a function. The (left)
transform over G of s with respect to g is given by

Wgs(x) =< U(x)g|s >H, x ∈ G (2.4)

The left transform maps a vector in the Hilbert space H to a function over the
group G.
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2.5.1 Gabor and Wavelet Analysis

Gabor analysis can be put in the group theoretical setting. This setting will
be useful to establish the link between our analogous use of the uncertainty
principle for our group of interest in the next section. The group-theoretical
view has been advanced in the atomic decomposition theory of Feichtinger
and Gröchenig [9, 10], which applies to general representations on Banach
spaces. A survey specifically of Gabor and wavelet analysis on L2(R) from
the group viewpoint can be found in [15]. For example, the group for Gabor
analysis is the Heisenberg group H = T×R×R, where R is the real line and
T is the unit circle. The group action is induced by the representation ρ of H
on L2(R) [12] and is defined by

ρ(z, a, b)f(t) = z eπiab e2πibt f(t + a) for (z, a, b) ∈ H f ∈ L2(R). (2.5)

Then, one way to analyze a function g ∈ L2(R) is in terms of the inner
products {〈g, ρ(a, b)f〉 : (a, b) ∈ Ω} for Ω ⊂ R2 with f ∈ L2(R) fixed. The
collection of inner products 〈g, ρ(a, b)f〉 are termed Gabor coefficients, and
the mapping g �→ {〈g, ρ(a, b)f〉 : (a, b) ∈ R

2} is called the continuous Gabor
transform of g by f . Stable reconstruction by using all possible Gabor coeffi-
cients can be obtained for any g. By selecting a discrete subset Ω of R2, less
redundant representations can be obtained. However, for stable reconstruc-
tion, and for g to be completely determined by the Gabor coefficients, the
collection

S(f, Λ) = {ρ(a, b)f : (a, b) ∈ Ω} (2.6)

must be complete in L2(R) and form a frame for L2(R).
By replacing the Heisenberg group with the affine group A = (R\{0})×R

we can investigate the parallels between wavelet and Gabor analysis. Then,
time-scale replace time-frequency translates. Let U be the representation of
A on L2(R) defined by U(a,b)(at − b) for (a, b) ∈ A and ψ ∈ L2(R). We may
define a continuous transform as above, or seek frames or bases of the form

T (ψ,Ω) = {U(a,b)ψ : (a, b) ∈ Ω}. (2.7)

For Ω that are “sufficiently dense”, Feichtinger–Gröchenig theory guaran-
tees the existence of frames. However, the considerable difference in the struc-
ture of the two groups is of significant consequence. For example, there are
several significant differences in the properties of S(f, Λ) versus T (ψ,Ω). One
of the most important results is that T (ψ,Ω) can form an orthonormal basis
with smooth, well-localized ψ. A typical choice for Ω is the “regular” discrete
subset Ω = {(an,mb) : m,n ∈ Z}, with a = 2 and b = 1 [6].

To study local properties of objects at any orientation, location and scale,
we focus on the group G = E(2), the Euclidean group of motions and dilations
in the plane R2. We will further focus our discussion to analysis of square
integrable functions of two variables s(x, y). The elements of the group can
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be identified with the vector v = [tx, ty, θ, a], where tx, ty parameterize the
translations, θ parameterizes the rotations, and a parameterizes the (positive)
dilations in the plane. The group E(2) contains the translation group T ≡ R

2,
the dilation group D ≡ R+ and the rotation group R ≡ S1. There is a left Haar
measure on this group and each of the subgroups above have the corresponding
left action on L2(R2). The unitary representation of E(2) in terms of T , R
and D can be written as

U : E(2)→ U(L2(R2)), [tx, ty, θ, a]→ U(tx, ty, θ, a) (2.8)

Note that E(2) is R2 
� (SO(2) × R+), where 
� is the semidirect product.
Suppose we are given the signal s ∈ L2(R2, d2x), then s has the continuous
transform with respect to the wavelet ψ:

S = 〈ψtx,ty,a,θ|s〉=a−1

∫
ψ(a−1rθ(x− tx, y − ty)) s(x, y) dxdy (2.9)

=a

∫
eitxkx+ityky ψ̂(arθ(kx, ky)) ŝ(kx, ky) dkxdky. (2.10)

The wavelet ψ generates, by translation, rotation and dilation, the dictionary
H = {ψtx,ty,a,θ}, indexed by a > 0, θ ∈ [0, 2π), (tx, ty) ∈ R2. The projections
of s onto this family generates the family of wavelet coefficients of the signal
s. For G to be a wavelet analysis on R

2 we must require that:
1. U to be irreducible
2. U to be square integrable

This can be shown for unitary group representations [13]. Therefore, we have:

Proposition 4. U is square-integrable and irreducible.

Note that although scale and orientation are not specified to be functions
of time, global changes of scale and orientation, which may occur as a function
of time, are represented by the action of G. In other words, when a natural
ordering among scales and orientations is given, one can view scale and orien-
tation change as occurring in a flow of time.

2.5.2 LC Wavelets

In the construction of filters, the properties of signals under study and the de-
sired filter output drive the construction of filters. For example, band-limited
signals are typically analyzed by low-pass, band-pass or high-pass filters and
support-limited filters operate in the spatial domain. In addition to limiting
the support of the function in either the frequency or the spatial domain, there
is another method, used by Gabor, which borrows from the notions of simul-
taneous localization bounds introduced in quantum mechanics. The bounds in
quantum mechanics are known as the Heisenberg Uncertainty Principle and
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define how well the position operator (x) and the momentum operator (−i d
dx)

can be simultaneously localized by bounding the product of the variance of
the operators3. In this section, we show how to derive filters that satisfy a
bound similar to the uncertainty principal. The derivation shows that LC
wavelets arise naturally as the solution to problem of satisfying a form of un-
certainty principle with respect to rotation, scaling and translation operators.
This property is important to our goal of shifting our focus from perfect re-
construction to efficient feature detection and search. Aside from significance
in quantum mechanics, the choice of bounding the product of variances has a
rationale of its own in our context. This bound guarantees that, to the first
approximation, and over a set of repeated identical observations (or measure-
ments), variance is controlled in a prescribed way.

Let M and P be two self-adjoint operators in a Hilbert space H with inner
product < ·|· >. Let ψ be a vector in the domain of both operators above with
norm equal to one (||ψ|| = 1).

Definition 6. The average of the operator M in the state ψ is defined as

< M >=< ψ|Mψ > . (2.11)

Definition 7. The variance of the operator in the sate ψ is defined as

∆M =
(
< M2 > − < M >2

) 1
2 . (2.12)

Let M̄ = M− < M >. The following theorem, proved by Gabor using
analytic methods, was instrumental in showing that in the case of short-time
Fourier transform, Gaussian envelopes saturate the time-frequency localiza-
tion bounds4.

Proposition 5. With the above definitions for M , P and ψ,

2∆M ·∆P ≥ | < [M,P ] > |. (2.13)

Furthermore, the equality holds iff

iM̄ψ = λP̄ψ, (2.14)

where λ > 0 is a positive constant.

We wish to study other properties of LC distributions within the frame-
work of the uncertainty principle outlined above. These ideas were first utilized
in [40] in the context of 2D Gabor wavelets. The use of LC distributions was
also investigated5 in the context of quantum mechanics. We will show that
the statistical filters defined above through the LC process have an analogous
simultaneous localization property. In fact, more is true and we can prove the
following.
3 see [11] pp. 16-20 for a good discussion of this topic and later chapters for a

discussion of alternative strategies.
4 A simple proof based on the algebraic properties of operators can be given.
5 Reference to Paul’s dissertation in French can be found in [11].
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Theorem 3. The LC filter

ψ̂(kx, ky) = |(c1k1 + c2k2)| exp(−|(m1k1 + m2k2)|). (2.15)

achieves the simultaneous localization bounds for constants c1, c2,m1,m2.

The factor for the exponential can be any polynomial H satisfying the proper
conditions.

To give an outline of the derivation of the above, let g(η) be a one-
parameter group of transformations with parameter η ∈ R. Let s̄(x̄, ȳ) =
g(η)s(x, y) be the function obtained from the action of g on the square inte-
grable function s(x, y). The Leibnitz chain rule defines the infinitesimal trans-
formation of s about the identity

d

dx
(g(η))s|η=0 =

(
∂x

∂η

∂

∂x
+

∂y

∂η

∂

∂y
+

∂

∂η

)
|η=0s̄ = Ds̄. (2.16)

The differential operator D is known as the infinitesimal generator of the
transformation. The following propositions follow from computations using
the Leibnitz rule and the use of commutation relations.

Proposition 6. The infinitesimal operator Tx for the x-translation is − ∂
∂x .

The infinitesimal operator Ty for the y-translation is − ∂
∂y .

The infinitesimal operator Rθ for the rotation through the angle θ is x ∂
∂y −

y ∂
∂x .

The infinitesimal operator D for the scaling is −x ∂
∂x − y ∂

∂y + 1.

Proposition 7. For the operators R, D, Tx, and Ty, the following relations
hold:

[Tx, Ty] = [D,R] = 0, [R, Tx] = [D,Ty] = Ty, [D,Tx] = −[R, Ty] = Tx.
(2.17)

We can now apply the conditions of Proposition 5 to obtain a set of di-
fferential equations. We will consider the pair [D,Tx] = −[R, Ty] = Tx -
symmetry considerations yields the other pair. From the proposition 5, to
achieve the bound, we must have:

(D̄ − iλT̄x)ψ = 0 (2.18)

(R̄− iλ∗T̄y)ψ = 0 (2.19)

Proposition 8. The filter described by 3 satisfies the pair of differential equa-
tions.

One can obtain the solutions directly by first using the integrability condi-
tion requiring that λ = λ∗. Then, follow by direct substitution and note that
it is in the form of the general solution below. To obtain the complete form,
we need to compute the solution for the other pair of operators and combine
the results to obtain the form of the filter discussed above.
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2.6 The Space of Features

In the sections above, we have described how an overcomplete representation
of the signal s can be obtained. Our next task is to extract a set of stable
features based on our representation. In this section we show how such a set
of features can be extracted, and in what sense they can said to be stable.
The propositions and statements of this section will lead to the proof of the
following theorem:

Theorem 4. Existence of stable features. There exists a parameterized set of
scale, translation, and rotation-invariant stable and finite features associated
with the signal s.

Recall that our representation assigns to every function s from a set of
signals {sα} a function on the group G based on the definitions given above,
therefore, we have an overcomplete representation. In this section, we set out
to define methods that

1. distinguishes the class of signals under consideration efficiently through a
sparse representation.

2. gives information as to how additional information about the signal can
be obtained when potential ambiguities arise.

The first item above amounts to the determination of a decision opera-
tor discussed earlier. The notion of sparse or minimal representation will be
defined through features shortly. In this representation, features will be pa-
rameterized by angle and scale. It is important to note that a key property
used in the succeeding analysis is the ability to parameterize the response of a
set of filters to a given signal, which in this case is achieved by the role of the
action of G. It is possible to apply the ideas in the remainder of this analysis
to the action of another group or another parametrization.

We start with parameterizing the rotations by the angle θ in our fixed
coordinates. Our intention is to find the information content carried by the
wavelet transform of the signal s at a fixed scale d with respect to all local
rotations. Since our rotations are parameterized in a fixed global coordinate
system and since translations and rotations in the global system do not com-
mute (unlike a local coordinate system), we must use the appropriate language
of semidirect products. Namely, the subset H = D 
� S1 of the group G, op-
erate on the wavelet ψ by rotations and translations, denoted by ψθ,(u,v) in
which θ is the global rotation and (u, v) is a point in D ⊂ R2. D parameterizes
the translation of signal by the corresponding point. We associate with ψ the
wavelet operator ψ∗

θ,(u,v).
Consider Ψ(θ, u, v) =< s, ψ∗

θ,(u,v) > that associates to each ψ∗
θ,(u,v) a com-

plex number. Denote by ϕθ(u, v) = |ψ∗
t,(u,v)| the modulus of complex wavelet

coefficient. ϕt(u, v) defines a real two-dimensional surface denoted by Mθ over
the subset D that measures the information content of the signal s with respect
to the wavelet for each angle θ. We call the isolated extrema of this surface for
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which the Gaussian curvature is non-zero, non-degenerate. We wish to define
a finite feature set for each θ associated with D. To do so, we introduce a
granular resolution δ that defines the resolution of the system under conside-
ration. Then, the maxima and minima as well as the Gaussian curvature of
the surface are defined within the said resolution δ. In the neighborhood of a
point (u1, v1), δ allows us to replace the set of all point with values within δ
with a single point at the center of gravity of the said neighborhood. We call
these points δ −maximum and δ −minimum points.

Definition 8. Let Fθ : Mθ → {−1, 0, 1} be the function that sends every
nondegenerate local δ − maximum to 1, δ − minimum to −1 and all other
points to 0. The set of coordinates Cθ = (x1, ..., xn), for which Fθ assigns the
value 1 or −1 is called the feature set parameterized by θ.

Proof of the following proposition follows using Thom’s transversality theo-
rem and Sard–Smale stability theorem ([27], p. 10) and justifies our finite point
list above.

Proposition 9. Existence of stable nondegenerate features. With the notation
and hypothesis above, there exists a small perturbation η of the signal such that
the resulting surface s̄ will have only nondegenerate features. Further, η can be
arbitrarily small, so that for a choice η̄, all features in any finite set of scales
and orientations will be nondegenerate.

Numerically we ensure stability and nondegeneracy by introducing a
method of differentiation that we coin noise-enhanced differentiation. Heuris-
tically, a noise-enhanced differentiation achieves the small perturbation η.
Furthermore, control over noise allows us to ignore all spurious features that
could be theoretically nondegenerate and stable but fall within the same gra-
nularity, or disappear with possibly large perturbations but are still bounded
by the granularity. In particular, control over noise allows us to ignore all ar-
tifacts of numerical computation that may potentially give rise to accidental
features that should not be counted due to any errors tolerated by granularity.
Further, the ultimate objective is to perform statistics on ensembles of such
features. As a result, a number of potentially error prone features that might
have escaped the above-mentioned computation due to special circumstances
of the image (as we must be prepared for a great deal of variable conditions
within the images of faces with possible outliers in one case or another) will
not have influence on the statistical analysis of the ensemble, being filtered by
the approximations. This indicates that numerical results depend on the size
of the data set for images. If the data set is not too large, then the statistics
are affected by numerical outliers. On the other hand, for a large data set we
have a stable statistical feature set.

We point out that the introduction of δ makes this definition system de-
pendent. Additionally, we note that a number of other system dependent defi-
nitions for the choice of a discrete set of features is possible. For example, one
may choose the sparse points obtained from using a support vector machine
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(SVM) at a given resolution defined by ε-sensitivity of SVM [48]. Additionally,
system-independent definitions based on probabilistic definitions may be pos-
sible. Our choice for this set of features is motivated by observations (explained
below) that may be replaced with a more definite theory. The remainder of
this work only assumes that a finite discrete set of features depending on the
search task is available. In the definition above, θ parameterizes a collection
of sets, each of which contains a finite set of points. Note that for each Cθ, n
may be a different number. However, for a finite parameter set θ, the following
proposition allows us to view all coordinates in a suitably high-dimensional
space (maximum dimension of the coordinates in the coordinate set) by or-
dering the coordinates.

Proposition 10. If θ is a finite set, the coordinates describing the feature set
can be ordered in a consistent manner.

It is also important to see how these features vary under other transfor-
mations of interest such as the addition of a constant.

Proposition 11. a. Cθ is invariant with respect to addition of a constant
b. If we apply a translation in the plane to s, then Cθ changes with the same
translation in the plane.

We need a few words about the motivation for the above choice of features.
Zero-crossings (edges) are well-known for the information they carry about
images. Viewing the image as a function, these points are the points where the
function vanishes. On the other hand, proof of the Shannon Sampling Theorem
for band-limited signals in one dimension results from the statement that the
zeros of an entire holomorphic function are isolated. Shannon discovered that
the highest rate of zero-crossings of the Fourier transform of the signal can be
used to define a sampling frequency for perfect reconstruction of the signal,
and he gave a specific formula for its reconstruction. Also, Logan’s theorem
shows how a band-limited signal of bandwidth less than an octave can be
reconstructed from its zero-crossings in the Fourier domain. For holomorphic
functions of two variables, the zero set is no longer discrete. In fact, it is a
one dimensional analytic submanifold. Therefore, analogous properties in two
dimensions are not immediately obvious nor may they exist.

However, we propose an alternative approach in which we simply restrict
the class of signals that have a given extremal set. For a sampled signal, the
Fourier representation of the signal is a weighted sum of frequency compo-
nents. For any signal, the extrema in the spatial domain yield restrictions on
frequencies in the Fourier domain, since the derivative of the signal in the
spatial domain corresponds to multiplication by frequency in the Fourier do-
main. Representing a band-limited signal via extrema hints at the feasibility
of classifying a signal s from the knowledge of the frequencies not present
(it is only up to amplitude modulation). From a biological point of view, the
selection of extrema can be likened to a neuronal winner-take-all strategy by
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the neural substrate sensitive to a specific direction. The following lemma is
the formal statement of the above strategy.

Lemma 1. Let s be a smooth band-limited (finite energy) signal whose deriva-
tive is also band-limited. Let the Fourier transform of s be denoted by s̃. Then,
in the quantized frequency plane, the extrema of s specify the class of signals
to which s can belong within the quantization resolution and amplitude mod-
ulation.

2.6.1 Information Content of Features

Our goal now is to show how the points in Cθ can be used as features for
representation of signals by introducing an information theoretic measure of
distinguishability among signals. The approach to deriving this measure has
a distinct geometric character and may hide the information theoretic con-
text. The first subsection is meant to give a brief overview of the relationship
between information theory and geometry. A more detailed and in-depth dis-
cussion of these connections can be found in [1, 5, 21].

One objective of most learning systems can be formulated as a mechanism
to use the given sample for extraction of information about the true distribu-
tion. Therefore, we need to state what information is and how its is measured.
This problem was considered by Fisher, who provided a solution as follows.
Fisher considered the likelihood function of θ given x, p(x|θ). One observes the
random variable x, and uses θ as parameters that represent the unknown dis-
tribution from which x has been observed. Let x|n denote n samples of events
for a process. Now, suppose that we are given a sample x|n = [x1, . . . , xn],
and we obtain an estimate θe for θ. Then, for large samples, a reasonable
estimate θe would tend to a normal distribution in many cases (The Central
Limit Theorem). Thus, in such cases and at least for large samples, estimates
are characterized by their variance and bias. This idea is often referred to as
asymptotic normality.

The intuitive description of how to approach the characterization of infor-
mation based on the observation above is as follows. Since bias can be removed
beforehand, it does not affect the amount of information. However, when two
estimates approach θ, the estimate with the smaller variance preserves more
information compared to the estimate with the larger variance. This again can
be intuitively explained by noting that the estimate with the smaller variance
can always be made to look similar to the estimate with the larger variance
by adding appropriate noise to the one with smaller variance. Using these
ideas, Fisher derived a lower bound for the variance of any estimate of the
true parameters.

In information theory, Fisher information plays an important role in de-
scribing the local statistical properties of an object under study. The geo-
metric interpretation of Fisher information can be given as follows: The state
space of a classical n-point system given by all probability distributions is
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the simplex of probability distribution on the n-point space and is seen to be
an (n − 1)-simplex, which is an (n − 1)-dimensional manifold. Let Pi denote
the probability of the ith event. Introduce the parameterizations Zi = 2

√
Pi.

Since
∑

Pi = 1, we have
∑

Z2
i = 4. In this way, the probability simplex is

parameterized with a portion of the (n−1)-sphere. Let x(t) be a curve on the
sphere, then the square of the tangent length to x(t) is given by:

< ∂tx, ∂tx >=
∑

i

(∂txi)2 =
∑

i

Pi(t)[∂tlogPi(t)]2 (2.20)

Observe that this is the Fisher information. Recall that for two matrices A
and B of the same dimension, the relation A > B is defined as A − B being
positive definite. Then, the following theorem shows the utility of the Fisher
information.

Theorem 5. Let V (θe) be the covariance matrix of the estimator, then

< ∂il∂jl >≥ [V (θe)]−1,

where V (θe) is the covariance matrix of any unbiased estimate.

The quantity gij =< ∂il∂j l > is called the Fisher information ma-
trix and is considered a measure of information. It is easy to see that if
x|n = [x1, . . . , xn] is a sample of independent events, then gij(x|n) = ngij(x).
This simply follows from the observation that for independent events, the
probability distribution is the product of distributions and the log of the
product distribution is the sum of the log of each distribution. For exam-
ple, for a binomial distribution with parameter p (probability of heads),
gij(x|n) = ngij(x) = n/p(1− p).

Suppose now that we have a small sample coming from p(x|θ) that is not
itself normal. Can we find a suitable measure of information for this case?
Fisher answered this affirmatively using the same measure above. To see this
consider a small sample x|k and a large sample x|m. Note that x|m and
[x|k, x|m] satisfy the asymptotic normality and thus carry m and m+ k units
of information, respectively. Then, x|k must carry k units of information.
Therefore, gij provides a suitable measure of information regardless of sample
size. Rao’s suggestion to consider gij as defining a Riemannian metric on
the parameterized statistical model set the groundwork for the introduction
of many concepts of geometry into the arena of statistical inference. In this
setting a distance element ds specifying distance between nearby distributions,
which is invariant under coordinate transformation, is defined:

ds2 =
∑
i,j

gijdθidθj

To achieve the utmost generality, Cencov [5] wrote his theory in the lan-
guage of modern differential geometry. In this setting, rather than treating the
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properties of specific distributions or samples, invariant properties of families
were treated. Using these tools Cencov was able to prove a far-reaching theo-
rem regarding the uniqueness of the Riemannian metric and invariant affine
connections for any finite sample space.

2.6.2 Features and Information

Suppose we are given n points (x1, ..., xn) in the plane where each point is
specified by Cartesian coordinates. View (x1, ..., xn) as a point in (R2n), which
provides a 2n-dimensional summary of major geometric characteristics (fea-
tures) of an object, including location, orientation, scale, and shape informa-
tion. To analyze these features in the context of specifying a shape encoding,
we must determine the class of all functions of the vector (x1, ..., xn) that
measure its shape invariants while at the same time eliminating information
in (x1, ..., xn) that describes the location, scale, or orientation of the features.
That is, our encoding must be invariant under E(2) symmetries. Standard
statistical tools can be applied to describe the location and scale statistics of
a set of points. The location of a data set (x1, ..., xn) can be described by its
sample mean, or centroid, given by

x̄ =
1
n

n∑
i=1

xi. (2.21)

The size or scale of our features can be described by a variety of statistics.
Let (xj1, xj2) for j = 1, ..., n, be two features (feature vectors), centered about
their mean, and consider the matrix:

X =
(
x1x

T
1 x2x

T
1

x2x
T
1 x2x

T
2

)
, (2.22)

where T denotes the transpose operation. The trace of X , given by

tr(X) =
∑

diag(X) =
n∑

i=1

||xji − x̄i||2. (2.23)

is an invariant of the matrix and is therefore a natural measure of the size of
the set of features. The matrix X can then be standardized to have trace equal
to one. This eliminates location and size information in a data set, which we
then call the standardized feature set:

χ = (x1, . . . , xn) =
1√

tr(X)
(x11 − x̄1, . . . , xn1 − x̄1). (2.24)

We abuse the notation and write the new coordinates also as (x1, . . . , xn).
One point must be noted here. In order for this representation to be meaning-
ful, the features defined above by χ must not all be collinear. However, this
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does not present a problem for our application. In general, a set of features
that are all coincident will be treated separately. Henceforth, we assume that
this degeneracy does not occur, as is the case for natural images such as faces.

To eliminate dependence on orientation,6 we first make the following ob-
servation. The vector χ lies in a constrained subset of the original Euclidean
space R2n, which is just a lower dimensional sphere,

S2n−3 = V 2n−2 ∩ S2n−1, (2.25)

where
V 2n−2 = {(x1, . . . , xn) ∈ R

2n :
∑

xi = 0}, (2.26)

and S2n−1 is the standard (2n− 1)-dimensional sphere.
Therefore, this subset is represented by the intersection of a subspace of

(2n− 2)-dimensional space with the unit sphere. To eliminate dependence on
orientation angle in the plane, consider the following “function of coordinates”
from the feature space S2n−3 to the circle S1, heuristically defined via:

ϑ : S2n−3 → S1. (2.27)

ϑ can be used to eliminate orientation by forming the orbit space

Σ = {o(χ) : χ ∈ S2n−3}. (2.28)

Note that standardizing for the location and scale of χ does not disturb its
orientation. More rigorously, we have an action of the rotation group identified
with

S1 : S1 × S2n−3 → S2n−3 (2.29)

whose orbits coincide with the representation of the same point under trans-
formation by all rotations. For every representation, we have also its rotations.
Therefore, the group action is well defined, provided we allow the images that
are transformations of our original image and may potentially lie not entirely
within the domain D. This only adds extra representation points to the en-
semble. This does not affect the statistics, since we shall only consider the set
of orbits, thus eliminating the spurious additions of these points of orbits.

To compare features we need to devise a metric. The natural metric we
consider measures the geodesic distance between two feature sets specified by
χ up to the action of S1 (orientation). For spheres this is easy to compute:

δ(x1, x2) = cos−1(< x1, x2 >), (2.30)

with the induced metric

d(x1, x2) = inf{δ(z, w) : z ∈ o(x1), w ∈ o(x2)}, (2.31)
6 Short for orientation angle with the plane.
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where the notion o(.) means the orbit space of (.), so the inf is computed
over the orbit of the action of S1. One can show that this definition satisfies
the properties of a metric (see e.g. [36]) . With the metric defined above we
now have a manifold that is also known as complex projective space together
with the Fubini–Study metric [36]. Since we intend to encode features with
complex coordinates, we restate the above features making use of the algebraic
properties of the complex plane. Once again, consider the features represented
by χ = (x1, . . . , xn), with xi ∈ R2. Consider xi to be elements of the complex
plane by identification of the complex numbers C with R2. Given two features
we may choose representatives up to the action of the circle. Let us denote
complex conjugation by the symbol ∗. Then, it is a standard argument to
show that the minimum distance can be obtained as:

d(x1, x2) = cos−1

⎛⎝| n∑
j=1

x1jx
∗
2j |

⎞⎠ . (2.32)

This definition is independent of the orientation since multiplying both
arguments by an element of U(1) does not change the distance. Starting from
any point, the direction of maximal information lies along the curve x(t) where
x(t) is a geodesic – that is, the information rate is maximal. The geodesic
distance between two probability distributions is computed along the great
circle of the (n − 1)-sphere. In complete analogy, the Fubini–Study metric
(FS) introduced earlier is the minimal (geodesic) distance between two great
circles for an n-level system in the complex projective Hilbert space described
by the feature vectors earlier.

Definition 9. Let t be a parameter of a system and x(t) be the state vector
of the system parameterized by t. Let x(t + dt) denote a small change in the
system parameter t by the amount dt. The FS distance between x(t) and
x(t + dt) is called information distance.

This definition can be understood by considering the analogy to the stan-
dard definition of Fisher information. Let qi be the estimate for the probability
Pi on the n-point probability distribution above obtained from the observed
frequency after drawing N random samples. For large N it is standard to
estimate the frequency distributions given by the multinomial distribution for
Pi using the Gaussian exp[−N(qi − Pi)2/(2Pi)]. When the exponent of the
Gaussian is small, nearby distributions are easily distinguishable. Thus, we
have a natural distinguishability described by:

dp2 =
∑ dP 2

i

Pi
=
∑

Pi(d lnPi)2. (2.33)

This is the same Fisher information. For the state vector x in CPn, we can
write:

|x >=
∑

ρ
1/2
j exp(iϕj)|bj >, (2.34)
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where bj is an orthonormal basis for H. A small change for x will result in the
vector x̂ = x(t + dt), which we can write as:

|x >=
∑

(ρj + dρj)1/2 exp i(ϕj + dϕj)|bj > . (2.35)

Then, it is easy to show that FS[x(t), x(t + dt)] is given by:

FS[x(t), x(t + dt)] = dp2 + Var(ϕ), (2.36)

where
Var(ϕ) =

∑
ρjdϕ2

j − (
∑

ρjdϕj)2. (2.37)

Therefore, FS is a metric of distinguishability that has the additional term
introduced by the variance of phase. FS as an information measure describes
the change of the state vector along the geodesic between the two states as the
process is evolving, much in the same way that Fisher information achieves the
same. When the parameter describing the process is periodic, x(t) traces out
a closed loop, and this loop encodes the information dynamics of the process.
Note that since a global change of angle does not affect the FS, two periodic
processes with the same information evolution and related by a rotation are
indistinguishable.

2.7 Information Dynamics

Learning theory, in the mathematical setting, is the study and development
of models and the behavior of these models with respect to “learnability”
issues [1, 22, 29, 47]. We refer the reader to these references for an in-depth
discussion. Our goal here is limited to describing the setup of a dynamics
process that can be used to distinguish sets of features. We will first discuss
how the dynamics of one set of features parameterized by the angle θ is set
up. Next, we show that rigorous computational methods can be applied to
establish the dynamics of an ensemble based on their features. We will note
that our view of learning here is that of function approximation. This is in line
with the views of learning in support vector machines (SVM) and probably
approximately correct (PAC) learning.

As discussed earlier, the parametrization of the underlying topological
group G gives a natural parameterization to analyze signals. We used this
parameterization earlier to define and parameterize a map at a fixed scale d
from each angle parameter θ to the corresponding feature set Cθ. We then
showed how each Cθ defines a vector in the complex Hilbert space specifying
a feature. Next, we defined a metric on this space in a manner analogous to
the Fisher information metric.

Similar to a quantized n-state system, where the magnitude of state
changes (with respect to the probes) provides information about the system,
we consider state changes with respect to the family of probes generated from
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ψ under the group action. It is important to emphasize that one specific set
of probes may provide little or no information under the same dynamics while
other probes may. In other words, the choice of probes may be critical in
obtaining information about specific processes.7

To discuss dynamics search using the features and the metric above we
proceed as follows. First, since our features are defined up to the action of S1,
we do not need to find a method to register features corresponding to the same
parameter value. Before we proceed, we need to explore the nature of our filter
(or probe) and understand its behavior with respect to a given signal s. The
next subsection will show that features will vary. The following subsection
will address the registration problem. Finally, we deal with learning of the
features in the context of principal components analysis (PCA) for vector in
CPn. This will set up all the machinery necessary to address the problem
posed at the beginning of this chapter.

2.7.1 Feature Variation

We have established our filter through the action of the elements of the group
of Euclidean motion. Specifically, at every fixed scale we have established our
probe parameterized by the rotation angle θ as a function of location. To see
what information is provided by our probe, we need to examine how feature
vectors change with θ. The next proposition tells us that the generic (common)
feature coordinates recorded by the directional wavelet htψ as ht take values
in SO(2) are features of s that remain approximately invariant under the local
rotation of the wavelet.

Proposition 12. Let ht vary in the rotation subgroup of the group G. Con-
sider the set of nondegenerate extrema P of s regarded as htψ at t = 0. As-
sume all such P are fixed under htψ as ht varies in the rotation subgroup of
the group G. Then, P forms a subspace of feature coordinates locally invariant
to rotation.

If the feature vector for a signal s does not vary under action of the rotation
group under a particular rotational wavelet, then that group has local rota-
tional symmetry about the “mean” of the wavelet. If this holds for all points
in the signal, then the signal is featureless in all directions and thus constant.
Therefore, generic signals have feature vectors that vary under the action of
the rotation group on a directional wavelet. Roughly speaking, this shows that
the feature coordinates highlight locally inhomogeneous structures (with res-
pect to rotation) against a background of rotationally symmetric structures.
When a directionally nonhomogeneous signal (defined as a signal that does
7 In fact, it may be necessary to recruit the machinery of learning theory to address

the problem of determining probes most suitable to the problem. This is work in
progress.
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not remain invariant under the action of a group of interest) is transformed
via a directional wavelet, the expansion coefficients do not remain constant.

The FS metric is a natural Riemannian metric on the complex projective
space that parallels the notion of the Fisher information. For a fixed scale,
a vector describing the features of the subset of the Euclidean plane for all
orientations is called an information loop. We will view an information loop as
a probabilistic indicator for the signal class from which the signals arise. By
varying the scale parameter and computing new feature vectors as a function
of scale, we have constructed a structure that measures feature variations
across scales. Can we associate an information loop to a class of signals that
encodes statistical information about the collection? This is the generalization
from a single signal to an ensemble of signals that is our learning portion of
the problem.

2.7.2 Learning

The methods of learning theory can be applied to learn the information loop
and the corresponding feature vector. Given a training set of samples, an
information structure can be constructed describing the signal at different
scales.

Our approach to build an information structure and its associated loop
for the class of signals is to use the eigenstructure of feature vector corre-
lations for a set of signals. Given a data set in R

n , this eigenstructure can
be obtained using the PCA method. However, it is not immediately obvious
if this method (in its standard formulation in Rn) can be applied to vectors
in CPn. However, the space of features, namely CPn, has the associated FS
metric. Therefore, arguments based on minimal reconstruction error in Rn

can be applied to CPn using the FS metric. Another approach with a direct
computational implementation is based on the use of the Gram matrix. Given
a set of observation vectors xi, the ijth element of the Gram matrix is given
by Wij =< xi, xj >. The eigenvector of W corresponding to the largest eigen-
value gives the solution of the least square problem. Using the inner product
structure we have described, we can show that:

Proposition 13. The eigenvalues and eigenvectors of the Gram matrix are
the same as those of the autocovariance matrix.

In fact, since the modified Gram–Schmidt orthogonalization process gives
an iterative algorithm for this computation, a straightforward implementa-
tion of this approach with tolerances within the granularity of the system is
available. Furthermore, methods of RKHS apply whenever the properties of
interest are defined using inner products. In particular, extensions of existing
methods to the complex setting for many approaches such as nonlinear kernels
and SVM can be considered.

To finalize the role of the scale parameter, we remark on the following
hueristic reasoning. We note that in our formulation of the problem, the search
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and detection dynamics occur simultaneously. If the information loop at the
fine scale is compatible with any element in the learned class of templates,
then the dynamics proceeds. However, it is possible that the dynamics at the
fine scale detect an incompatibility. In this case, at a finite number of values
t, the fine scale dynamics is incompatible (as defined by the FS metric) with
all templates in the learned class. Using the FS metric, there is at least one
element in the learned class that best matches the feature dynamics at the
current scale. If there is more than one, we may choose one selected at random.
For this element of the learned class, there is a feature vector that is maximally
different from the corresponding feature vector of the element of the learned
class. We use this pair of feature vectors to determine the novelty point, as
this maximal difference corresponds to the direction of maximal information
gain.

These features have emerged as a result of scale change and describe the
elements of the underlying signal that emerge in the scale transition from scale
d2 > d1 at the angular parameter t. The subset of features where the largest
changes occurs are optimal search locations. The word optimal is used in the
information theoretic sense in that this is the point at which our measure
of information defined by the FS metric makes the largest contribution to
change. This subset can be found as the difference of the two feature vectors
at the same angular parameter. Then, the largest components of this vector
define locations, or possibly, clusters of maximal change.

If dynamics at all scales agree, how likely is it that the signals are different?
To answer this question we need to consider error probabilities of testing a
hypothesis H . For example, if our goal is to find a yes or no answer to a
detection problem, then our hypothesis space is the binary decision. A direct
argument yields the following proposition.

Proposition 14. Let |H | be the cardinality of the hypothesis space. If the
probability of error at each scale and orientation is pe (which may be a function
of granularity), then the hypothesis h ∈ H can be determined with probability

p > 1− |H |pm−1
e , (2.38)

where m is the number of scale and orientation angle comparisons.

2.8 Application and Computation

Our goal in this section is to give visual examples demonstrating the appli-
cation of certain aspects of the work we have described, and to remark on
future directions of our work. The examples presented pertain to the detec-
tion of human faces from a computational perspective. We refer to [7] for an
extended discussion regarding computational issues.

Detection of faces and recognition of their identity has long been an im-
portant problem in computational vision [34]. Among the reasons that make
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face detection hard, one can point to both intrinsic and extrinsic effects. Ex-
trinsic effects arise from the context in which faces are viewed, or specifically,
from changes in the light intensity distribution that arrives at the detecting
instrument (e.g. the eye). For example, illumination conditions can vary from
a dimly lit room to sunlight conditions, faces can be viewed from a vari-
ety of viewpoints, and the existence of shadows or occlusions can cause local
changes in the intensity map detected by the eye. Intrinsic effects also in-
troduce changes. Among them, we can point to color of skin, facial gestures,
and changes in appearance by wearing glasses, growing beards, or wearing
makeup. Our computational experiments so far have not explicitly addressed
variations of facial expression or occlusions and shadows. Although we believe
that a learning machine based on these principles can address a number of
these issues, we have concentrated on a more realistic goal of obtaining results
under more restricted conditions.

The input to our algorithm consists of grayscale images of faces selected
from the ATT database of faces. We preprocess each image by normalizing
and compensating for the effect of “boundaries” or “edges” of an image. We
then apply the LC wavelets to an oversampled representation of the image and
find local maxima and minima based on stability criteria derived using our
earlier theoretical work on the existence of such points. Figure 2.3 shows the
phase and amplitude component of a filtered image at three scales, illustrating
the information recovered by the phase component of the LC filters. Figure
2.4 shows the points detected as the extrema by the detection procedure,
where we note that the detected extrema in filtered faces carry a good deal of
information despite their sparse representation (see Fig. 2.5)

The learned feature vectors were obtained by applying the singular value
decomposition (SVD) method using the FS metric. Feature vectors (maxima
and minima) for all faces at a single scale and orientation are used to build a
single matrix. In this case, since the entries are complex, it may be natural to
refer to them as density matrices. Application of singular value decomposition
gives a set of eigenvectors sorted by decreasing eigenvalue. After training, we
used our method to match faces and nonfaces from a random training set
against the learned set. Our test case showed a 94% correct detection against
a test set that was not used in the training trials.

Our promising results for the small sample data set motivate the need
for a larger study to obtain further experimental verification. Guided by our
mathematical framework, we find it reasonable to expect good results with a
larger data set as well. A larger experimental setup requires addressing some
limitations in our implementation. Biological systems may be hardwired to
handle filtering with extreme efficiency, while our software filtering in the im-
age domain has a large computational cost. We have considered two changes
to improve the efficiency of this approach. The first consideration is to use a
parallel and distributed approach, essentially following a model of the brain
circuits. In addition, we believe that an approximation to the filtering ap-
proach where all important features are effectively preserved is possible. A
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Fig. 2.3. The amplitude (top) and phase of wavelet coefficients at various scales
and angles for an example face
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Fig. 2.4. Top three rows represent Maxima while the bottom three represent minima.
From left to right and top to bottom of each set angles vary at 10-degree increments.
This image represents projection at the coarsest scale

good approximation would require a detailed study of the numerical behavior
of the filters.

The form of the learning algorithm used in the current formulation of our
simulation needs modification in order to become biologically more plausible.
A straightforward modification of the learning algorithm to deal with access
to feature vectors of all faces is to use a neural network approach, much in
the spirit of bidirectional associative memories or Hopfield’s model. However,
these models are not entirely satisfactory either. An online version using local
information based on approaches of local to global methods [8] and references
therein) seems to be a more natural approach for this form of learning.
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Fig. 2.5. The reconstruction of basic face features from extrema by summing va-
lues at corresponding grid points at different scales. The extrema representation is
approximately 50 times more compressed than the corresponding GIF image.
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3.1 Introduction

When we use a multilayer perceptron (MLP) model with a fixed architecture,
its functional behavior is determined by the values of weight parameters. We
can modify the parameter values by learning to obtain an optimal network for
our purpose. It is possible to consider the space of all the multilayer percep-
trons, in which the set of modifiable parameters plays the role of coordinates.
The parameter space of a MLP is called the neuromanifold. Learning takes
place in the parameter space, forming a trajectory that approaches the op-
timal point. Such a neuromanifold has rich geometrical structures that are
responsible for various phenomena observed in practical applications of MLP.
By considering those geometrical properties, it is possible to find some so-
lutions to improve the performance as well as some explanations to those
phenomena.

On the other hand, a multilayer perceptron works in a stochastic environ-
ment, and its output may be corrupted by random noise. In this sense, the
behavior of a MLP can be represented by a probability distribution, e.g., a
conditional probability density of the output conditioned on the input. There-
fore, the space of the MLP, the neuromanifold, can also be identified with the
set of conditional probability distributions specified by the weight parameters
of the MLP.

Based on these statistical and geometrical viewpoints on neural networks,
we use information geometrical approaches in order to investigate the proper-
ties of the MLP. Information geometry [2, 3, 5] is a powerful tool to study the
intrinsic geometry of parameter spaces related to probability distributions. It
introduces an invariant Riemannian metric and a dual pair of affine connec-
tions. It is useful for studying statistical inference, system theory, information
theory and many others having stochastic natures as well as nonstochastic
ones such as optimization. In the 1990s, information geometry was also ap-
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plied successfully to neural networks. It was applied to Boltzmann machines,
higher-order neurons, and Expectation-Maximization (EM) algorithms [4].

Based on information geometry, we have succeeded in obtaining a new
efficient learning algorithm called the adaptive natural gradient method [7]. It
gives ideal performances of convergence for learning of multilayer perceptrons.
Natural gradient learning and its adaptive version take the entire geometrical
structure into account and use the Riemannian metric so as to accelerate the
convergence. It is also confirmed that the natural gradient learning method
can avoid or alleviate plateaus, which are known to be the main cause of slow
convergence of the conventional gradient descent learning method [25].

Recently, it was also found that the plateaus in learning dynamics are
closely related to the hierarchical structure and permutation symmetries of
MLP [17, 29]. The hierarchical structure brings complicated singularities in
the space of MLP. At the singularities, the Riemannian metric degenerates
and the conventional statistical theory in the Cramér–Rao paradigm does not
hold. In the theoretical sense, this is an important problem for constructing
theories of nonregular statistical models. At the same time, in the practical
sense, it is also related to necessity of developing a new criterion for model
selection as an alternative to the Akaike information criteria (AIC) [1] and
minimum description length (MDL) [26], which were developed for regular
models.

In the present chapter, we first review the natural gradient learning method
and its adaptive versions, which were derived by using the Riemannian metric
in the space of MLP. Next, we go into the problem of singularities. Using
simple toy models, we analyze the explicit properties at singularities. We also
review some recent results related to the singularities. Finally, we discuss the
influence of singular structures on the learning dynamics of MLP, and show
how the natural gradient method can solve the problem.

3.2 Space of Neural Networks

3.2.1 Stochastic Multilayer Perceptrons

By taking the information geometrical approach, we consider a MLP as a
stochastic model, and then investigate the geometrical properties of the space
of the stochastic MLP. We will first describe the concept of stochastic multi-
layer perceptrons.

In many practical problems such as regressions and time series predictions,
learning data include noises so that the input-output relation is described
stochastically in terms of the conditional probability density p(y|x) of the
output y when an input x is given. In other practical applications such as
classifications, on the other hand, the output has discrete values so that the
continuous values of output nodes of neural networks can be considered as
representing a conditional probability P (C|x) of class C given input x. Thus,
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even though most neural network models are deterministic in their nature, it
can be regarded as a stochastic system estimating a true probability density
function from which the input-output data are generated. This approach leads
to a stochastic model of neural networks.

We will explain this concept more clearly using a simple three-layer MLP
with one output node. However, its generalization can be easily done. The
network calculates an input-output function f(x,θ) that is determined by
the network structure and is written by

f(x,θ) = ϕo

⎛⎝∑
j

vjϕh(wT
j x + bj) + bo

⎞⎠ , (3.1)

where vj , wj , bj , bo are the weight parameters of the network, and are summa-
rized to θ. The functions ϕo and ϕh are the activation functions of output and
hidden nodes, respectively. When we treat a neural network from the stochas-
tic viewpoint, we say that the final output y is emitted through a stochastic
operation S operated on the deterministic function f ,

y = S{f(x; θ)}. (3.2)

The stochastic operation can be defined properly for given applications.
For regression problems, S is usually defined by a Gaussian additive random
noise, so that y can be written by a sum of the deterministic function and a
random noise:

y = f(x; θ) + n, n ∼ N (0, σ2). (3.3)

From the assumption that the random noise is subject to Gaussian distribu-
tion, the corresponding conditional probability density function is given by

p(y|x; θ) =
1√
2πσ

exp
{
−1

2
[y − f(x; θ)]2

}
. (3.4)

For classification problems, we can use the coin-flipping process for the
stochastic operation S, so that the binary output y representing class C1 and
C0 is determined by

y =
{

1 (x ∈ C1), with probability f(x,θ),
0 (x ∈ C0), with probability 1− f(x,θ). (3.5)

Then the corresponding conditional probability density function for y given
input x is written as

p(y|x; θ) = f(x,θ)y[1− f(x,θ)](1−y). (3.6)

Using this stochastic viewpoint, we can describe the behavior of the net-
work with the probability density function p(y|x; θ), and the properties of the
space of MLP can be explained by investigating the space of corresponding
probability density functions.



72 Hyeyoung Park, Tomoko Ozeki, and Shun-ichi Amari

3.2.2 Metric of Neuromanifold

When we consider the space of MLP, the neuromanifold, the most basic pro-
perty is its metric. Since the neuromanifold can be considered as a space of
probability density functions, we can exploit the Kullback–Leibler divergence,
which is often used to show the discrepancy between two probability distri-
butions specified by p(y|x,θ) and p

(
y|x,θ′). It is defined by

D
[
θ : θ′] =

∫
p(y|x,θ)q(x) log

p(y|x,θ)
p
(
y|x,θ′)dxdy, (3.7)

where q(x) is the probability density function of input x [14].
When the two distributions are infinitesimally close, θ′ = θ + dθ, and the

divergence between two nearby distributions is expanded as

D [θ : θ + dθ] =
1
2
dθτG(θ)dθ, (3.8)

where G(θ) is the Fisher information matrix defined by

G(θ) = Ex,y

[
∂ log p(y|x,θ)

∂θ

∂ log p(y|x,θ)τ

∂θ

]
. (3.9)

Ex,y [·] denotes the expectation with respect to p(y|x,θ)q(x), and superfix τ
is transposition of a column vector.

A manifold is said to be Riemannian when it is locally Euclidean, which
means that the metric G(θ) is defined at every point θ such that the square
of the distance between two nearby points θ and θ + dθ is defined by the
quadratic form in Eq. (3.8). When G(θ) does not depend on θ and is equal
to the identity matrix, the manifold is Euclidean and the corresponding coor-
dinate system θ is orthonormal. When G(θ) cannot be reduced to the iden-
tity matrix whatever coordinate system is used, the manifold is intrinsically
Riemannian, and G(θ) is called a Riemannian metric. Especially, the Fisher
information matrix (3.9) is called a Fisher metric.

Since the Fisher metric G(θ) is a unique one that is invariant over the
choice of coordinate system, we can say that it is the most appropriate Rie-
mannian metric for the neuromanifold (see [5] for details). The manifold of
the previous two examples of stochastic MLP models are all Riemannian. In
the case of Gaussian additive noise model defined in Eq. (3.4), the explicit
form of G(θ) is given by

G(θ) = Ex

[
Ey|x; θ

[
{y − f(x,θ)}2 ∂f(x,θ)

∂θ

∂f(x,θ)
∂θ

τ]]
, (3.10)

= σ2Ex

[
∂f(x,θ)

∂θ

∂f(x,θ)
∂θ

τ]
, (3.11)
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where Ex[·] and Ey|x; θ [·] denote the expectations with respect to q(x) and
p(y|x,θ), respectively. In the case of coin-flipping model defined in Eq. (3.6),
the explicit form of G(θ) is given by

G(θ) = Ex

[
Ey|x,θ

[
(y − f)2

f2(1− f)2
∂f(x,θ)

∂θ

∂f(x,θ)
∂θ

τ]]
, (3.12)

= Ex

[
1

f(1− f)
∂f(x,θ)

∂θ

∂f(x,θ)
∂θ

τ]
. (3.13)

By using this metric for the space of MLP, we can derive a new gradient
descent learning method, which is different from the conventional ones, as we
discuss in Sect. 3.

3.2.3 Hierarchical Structure

Another important characteristic of the space of MLP is the hierarchical struc-
tures such that the space of MLP with a smaller number of hidden nodes are
included in the one with a larger number of hidden nodes. The hierarchical
systems have an interesting geometry, which has some influence on the dy-
namical behaviors of learning of the systems. We give a simple example of
such hierarchies.

Let us consider a simple MLP, which receives an input vector signal x and
emits a scalar output signal y. Let h be the number of hidden units, and let wi

be the weight vectors of the ith hidden unit, i = 1 · · ·h. Let ϕ be a sigmoidal
activation function such as the hyperbolic tangent, and let vi be the weight
from the ith hidden unit to the output unit. We assume that the output unit
is linear and is disturbed by Gaussian noise n with mean 0 and variance 1.
The input-output relation of the simple MLP is then represented as

y = f(x,θ) + n, (3.14)

where

f(x,θ) =
h∑

i=1

viϕ (wi · x) , (3.15)

and θ is the vector parameter summarizing all the modifiable parameters
w1 · · · wh and v1 · · · vh.

Let us denote by M(h) the set of all such multilayer perceptrons which
forms a space with coordinates θ. One can easily see that M(h) includes
M(h− 1),M(h− 2), . . . as subspaces. For example, when

vi‖wi‖ = 0 (3.16)

holds, the ith hidden node does not play any role, so it can be removed.
Hence, the subspace defined by Eq. (3.16) in M(h) corresponds to M(h− 1).
In addition, when wi = wj , the ith and jth hidden neurons play the same
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role so that they can be merged into one neuron. Hence, the subspace defined
by wi = wj is also identified with M(h− 1). In the same manner, we can see
that a hierarchy such as

M(h) ⊃M(h− 1) ⊃ · · · ⊃M(0) (3.17)

exists among the spaces of MLP models with different numbers of hidden
nodes. The subspaces M(h − 1), M(h − 2),. . . in the space of M(h) make
complicated singularities as discussed in the next section.

3.2.4 Singular Structure

A point in a neuromanifold M(h) is represented by a parameter vector θ,
and the parameter vector specifies an explicit functional relation of the net-
work. Two points θ and θ′ are said to be equivalent in M(h) when their
corresponding functional relations are the same, that is, the related probabi-
lity distributions are the same. In the case of the MLP model shown in the
previous section, the following three types of equivalence relations are known
[13, 22, 27, 30]:

1. When vi = 0, any points θ and θ′ are equivalent when they differ only by
wi.

2. When ‖wi‖ = 0, any points θ and θ′ are equivalent when they differ only
by vi.

3. When wi = wj (or wi = −wj) holds, any points θ and θ′ are equivalent
when

vi + vj = v′i + v′j
(
vi − vj = v′i − v′j

)
.

Each set of equivalent points forms a subset in M(h). One can easily see that
the subsets correspond to M(h− 1) discussed in the previous section.

Since we are not interested in the individual parameter values but instead
in the functional behavior of the network, we regard all the mutually equi-
valent points (i.e., networks) as one and the same network. Mathematically
speaking, we take the residue class by the equivalence relations as defined
above. Then, an equivalent subspace reduces to one point, and the resultant
space around the point has a cone-type singular structure. Figure 3.1a shows
a conceptual illustration of the singular structure. More generally, many cone-
type singularities can be connected to form a lower-dimensional subset (Fig.
3.1b). More explicit examples of the singular structure of neuromanifolds are
given in [6]. The reduced space has lots of singularities where dimensionalities
are reduced. This type of singularity is closely related to the performance
of the learning dynamics of MLP, and also poses an important problem in
classical statistical theory of inference.



3 Geometric Approach to Multilayer Perceptrons 75

singularities

��

(a) (b)

singularity

Fig. 3.1. Cone-type singular structures

3.3 Learning in Neuromanifolds

3.3.1 Basic Concepts

For learning, we consider a space of conditional probability density functions
{p(y|x; θ)|θ ∈ �M} of stochastic MLP with input x, output y, and a pa-
rameter vector θ. The space of the MLP, the neuromanifold, has a coordinate
system θ. The parameter θ is modified by learning from examples. The set of
examples of input-output pairs {(x1,y1), . . . , (xT ,yT )} is called the training
set. It is assumed that they are generated from the true conditional probabi-
lity distribution p∗(y|x), which might not be included in the neuromanifold.
If we consider the space of all the conditional probability distributions, the
neuromanifold is included in it. The goal of learning is to find the optimum
θ∗ that minimizes the discrepancy from the true probability density function
p∗(y|x) to the neuromanifold (Fig. 3.2).

The discrepancy is generally measured by the Kullback–Leibler divergence,
which has the form

D[p∗(y|x) : p(y|x,θ)] =
∫

p∗(y|x)q(x) log
p∗(y|x)
p (y|x,θ)

dxdy, (3.18)

= Ep∗

[
log

p∗(y|x)
p(y|x,θ)

]
, (3.19)

= Ep∗ [log p∗(y|x)]− Ep∗ [log p(y|x,θ)] , (3.20)

where Ep∗ [·] denotes the expectation with respect to the true probability den-
sity p∗(y|x)q(x). By neglecting the θ-independent part, we obtain the typical
error function, the negative logarithm of the likelihood, which is written as

lgen(θ) = −Ep∗ [log p(y|x,θ)] . (3.21)

This is called the generalization error. In practical implementation, howe-
ver, lgen cannot be calculated because the true probability density is un-
known. Therefore, the empirical error obtained from an observed data set
D = {(xt,yt)}t=1···T is defined by
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probability
conditional
Space of all

distributions

Neuromanifold

Learning

p∗(y|x, θ∗)

p∗(y|x)

Fig. 3.2. Learning in a neuromanifold

ltrain(θ) = − 1
T

T∑
t=1

log p(yt|xt,θ). (3.22)

This is called the training error. Using this error function, one can calculate
the standard gradient ∇l = ∂l/∂θ, which represents the steepest direction
of l when the parameter space is Euclidean. The standard gradient descent
learning algorithm is then given by

θt+1 = θt − ηt∇ltrain(θt) = θt − ηt
∂ltrain(θt)

∂θt
, (3.23)

where ηt is a learning rate. This updating rule uses the whole data set at each
update, and thus is called batch learning. It is also possible to use only one
data in the training data set at each update, giving the updating rule

θt+1 = θt − ηt
∂l(yt,xt,θt)

∂θt
, (3.24)
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where l(y,x,θ) = − log p(y|x,θ). This is called the online learning scheme.
The online learning scheme is realized by the standard stochastic gradient

descent learning method, which uses the standard gradient of the Euclidean
space and a scalar learning rate. If the conditional probability p(y|x; θ) is
defined as a Gaussian distribution with zero mean and unit variance, then the
error function becomes the squared error function and the learning rule given
in Eq. (3.23) has the same form as the standard back-propagation learning
method [28], which is the most popular learning method for neural networks.
However, we can obtain many variations of the gradient learning algorithm by
using different forms of p(y|x; θ). In this sense, the stochastic gradient descent
learning method is a generalization of standard back-propagation. It is also
obvious that we can expect better performance by using a more appropriate
form of p(y|x; θ) for given applications rather than using the standard one.

The gradient is closely related to the metric, and standard gradient des-
cent learning uses the Euclidean metric. As discussed in Sect. 2, however, the
neuromanifold has a Riemannian metric. By using the Riemannian metric, we
developed a new gradient called a natural gradient.

3.3.2 Natural Gradient Learning

Based on the fact that the space of the MLP is Riemannian, the natural
gradient learning method was developed as the true steepest descent learning
method. As discussed in Sect. 2.2, the Riemannian metric of the space is given
by the Fisher information matrix G(θ) defined in Eq. (3.9). Using this Fisher
information matrix, we can obtain the steepest direction ∇̃l,

∇̃l(x,y,θ) = G−1(θ)∇l(x,y,θ) = G−1(θ)
∂l(x,y,θ)

∂θ
, (3.25)

in the Riemannian space. The ∇̃l is called the natural gradient, and the related
learning algorithm is given by

θt+1 = θt − ηt∇̃l(xt,yt,θt). (3.26)

Even though it has been proved that the natural gradient learning algo-
rithm gives a Fisher efficient online estimator [3], there are some problems
in implementation of this method. First, we have to know the probability
density function q(x) to get an explicit form of G(θ), but this information is
hardly given in practical applications. Second, even if we can get the explicit
form of G(θ), the inversion of G(θ) is necessary in order to get the natural
gradient at each learning step, which is very time consuming. To solve these
difficulties, Amari et al. [7] proposed an adaptive method of directly obtaining
an estimate of G−1(θ) for the stochastic neural network having one output
node with Gaussian random noise. Subsequently, Park et al. [24] developed
explicit algorithms of adaptive natural gradient learning for various stochas-
tic models and error functions. These algorithms are widely used in practical
applications.
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In order to implement the adaptive natural gradient explicitly, we need to
define the explicit form of p(y|x; θ) as discussed in Sect. 2. In this section,
we briefly review two explicit forms of adaptive natural gradient learning
developed in Park et al. [24]: one for regression problems and the other for
classification problems.

For regression problems, such as function approximation, time series pre-
diction, and nonlinear system identification, we can use the following type of
the stochastic network:

y = f(x,θ) + n, (3.27)

with an additive noise n ∈ RM . Note that this model is an extension of the
simple Gaussian noise model defined in Eq. (3.3) to multivariate outputs with
M output nodes. The value of each output node yi is decided by the sum
of the output of deterministic function fi(x,θ) and additional random noise
ni. Assuming that each noise element ni is independent and subject to the
standard normal distribution, we can get the conditional probability density
function of output y given input x, which can be written by

p(y|x; θ) =
M∏
i=1

1√
2π

exp
{

1
2
[yi − fi(x,θ)]2

}
. (3.28)

The negative of log-likelihood gives an error function for this model, which is
written by

l(x,y; θ) = −1
2

M∑
i=1

[yi − fi(x,θ)]2. (3.29)

This is the same form as the standard sum of squares error function. Using
this stochastic model, we can obtain the Fisher information matrix G(θ) of
the form,

G(θ) = Ex [∇F (x,θ)∇F (x,θ)τ ] , (3.30)

where

∇F (x,θ) =
(
∂f1(x,θ)

∂θ
, · · · , ∂fM (x,θ)

∂θ

)
. (3.31)

Since we do not know the distribution q(x), we estimate the matrix G(θ)
adaptively at each step t using

Ĝt+1 = (1 − εt)Ĝt + εt∇F (xt,θt)∇F (xt,θt)
τ , (3.32)

where εt is a small time-dependent constant such as 1/t, and Ĝ0 at t = 0
is an arbitrary nonsingular matrix such as the identity matrix. From this



3 Geometric Approach to Multilayer Perceptrons 79

estimation, we can directly get the estimate Ĝ−1
t+1 of the inverse of the Fisher

information matrix, which is given by

Ĝ−1
t+1 =

1
1− εt

Ĝ−1
t

− εt

(1− εt)
Ĝ−1

t ∇Ft

[
(1 − εt)I + εt∇F τ

t Ĝ
−1
t ∇Ft

]−1

∇F τ
t Ĝ

−1
t . (3.33)

Whereas the outputs for regression problems are in general continuous
values, the target output values for classification problems are discrete, re-
presenting the classes of patterns. Therefore, the additive noise model and
the corresponding squared error function are not appropriate for classification
problems. Park et al. [24] used the Bayesian stochastic model for classification
problems [10] and gave an explicit form of adaptive natural gradient learning
for the model.

In this section, we consider the case of M -class classification problems
as the extension of the coin-flipping model defined in Eq. (3.5). We need a
network with M output nodes so that the ith output node represents the ith
class Ci. We use the target coding scheme, that is, yj = δij (j = 1, . . . ,M)
for class Ci. In this coding scheme, the value of the ith output node fi(x,θ)
can be considered as representing the posterior probability P (Ci|x) for class
Ci. The conditional distribution can be written as

p(y|x; θ) =
M∏
i=1

(fi(x,θ))yi . (3.34)

Since the output values fi(x,θ) are interpreted as probabilities, they must lie
in the range [0, 1], and their sum must be equal to 1. This can be achieved by
using a generalized form of the logistic function for the activation function of
output nodes, which is defined as

fi(x,θ) = ϕo(zi) =
exp(zi)∑M

j=1 exp(zj)
. (3.35)

Here zi is the linear sum of hidden outputs given to the ith output node.
The corresponding error function is given by

l(x,y; θ) = −
M∑
i=1

yi log fi(x,θ). (3.36)

This error function is called the cross-entropy error function. It is known that
in the case of classification problems, the cross-entropy function gives better
convergence and generalization performance than the sum of squares error
function [10].

Using this stochastic model, we can obtain the Fisher information matrix
G(θ) and the adaptive estimate Ĝ−1

t+1 of the inverse of the Fisher information
matrix, which is given by
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G(θ) = Ex

[
M∑
i=1

1
fi(x,θ)

∂fi

∂θ

(
∂fi

∂θ

)τ
]
, (3.37)

Ĝ−1
t+1 =

1
1− εt

Ĝ−1
t

− εt

(1− εt)
Ĝ−1

t ∇F̃t

[
(1 − εt)I + εt∇F̃ τ

t Ĝ
−1
t ∇F̃t

]−1

∇F̃ τ
t Ĝ

−1
t , (3.38)

where

∇F̃t =

[
1√

f1(xt,θt)
∂f1(xt,θt)

∂θt
, . . . ,

1√
fM (xt,θt)

∂fM (xt,θt)
∂θt

]
.(3.39)

In general, the natural gradient method is different from second-order
methods such as the Newton method, the conjugate gradient method, and
the like, which use a Hessian matrix instead of a Fisher information matrix
(see [10] for details). However, when log-likelihood is taken as the cost func-
tion, it is locally equivalent to the Newton method and the Fisher scoring
method. Hence, its convergence is second order. The adaptive method of eva-
luating G−1 is similar in this case to the Gauss–Newton method [12]. However,
the natural gradient method is more general and is applicable to various cost
functions other than the square loss or the negative log-likelihood [24].

The merit of the natural gradient method is not merely given by its good
local convergence property. Its merit lies mostly in the global property of
convergence, escaping from plateaus. This is because the Riemannian metric
is responsible for the singularities of the space that are related to plateaus.
We show this in Sect. 4.

3.3.3 Computational Experiments

In order to see the convergence performance of adaptive natural gradient
learning, we show two experimental results on benchmark problems. First
is the Mackey–Glass chaotic time series prediction, which is a well-known
benchmark problem for neural networks. The time series data were generated
from the equation

x(t + 1) = (1− b)x(t) + a
x(t− τ)

1 + x(t− τ)10
, (3.40)

where a = 0.2, b = 0.1, and τ = 17. The input values of the network are given
from four previous time series data, i.e., x(t), x(t−6), x(t−12), and x(t−18).
The output value of the network is given from one future time series datum,
x(t + 6). For training, 500 data generated at t = 200, . . . , 700 were used, and
500 other data at t = 5000, . . . , 5500 were used for testing.
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Since the output values are continuous, the Gaussian additive noise model
was used. The adaptive natural gradient learning was compared to the stan-
dard gradient descent learning. Each learning method was tried ten times with
different initialization in order to get the average result. The learning process
was stopped when the mean square error (MSE) for the training data became
smaller than 2× 10−5.

Table 3.1. Average results on the Mackey–Glass time series prediction problem
(SGL, standard gradient learning; ANGL, adaptive natural gradient learning)

SGL ANGL
Learning rate η = 0.1 η = 0.005, εt = 1/t

No. of hidden nodes 10 10
Rate of success 10/10 10/10
Learning cycle for MSE < 2 × 10−5 836,480 502.2
(standard deviation) (396,320) (132.8)
MSE for test data 7.6265 × 10−5 2.4716 × 10−5

(standard deviation) (3.0823 × 10−5) (4.7204 × 10−6)
Processing time (relative to SGL) 1.0 0.064

The average results are shown in Table 3.1. The learning rates η were
tuned through the experiments so as to get high rates of success and rapid
convergence. For this problem, the adaptive natural gradient converged more
than 1600 times faster than the standard gradient learning method in the
sense of necessary number of learning cycles for convergence. Regarding the
processing time, the proposed learning algorithm was more than 15 times
faster than the ordinary one. Figure 3.3 shows the learning curves of the two
algorithms. From this figure, one can see that the plateaus that appear in
the standard gradient learning method mostly do not exist in the adaptive
natural gradient learning method. Note that the network used for training
has ten hidden units, which implies that its parameter space has very complex
singularities (Sect. 2.4). The plateau observed in standard gradient learning is
known to be caused by the singularities [29]. From this experiment, we can say
that the adaptive natural gradient can alleviate the plateau remarkably. We
will discuss the learning dynamics and singularity in Sect. 4.4 with a simple
and visual model.

As an example of a classification problem, the thyroid disease problem
was exploited, which is also a well-known benchmark problem. It is known to
be hard to train a feedforward neural network by using the standard gradient
leaning algorithm with the data set. The task is to determine whether a patient
referred to the clinic is hypothyroid. Therefore, three classes are built: normal
(not hypothyroid), hyperfunctioning, and subnormal functioning. Each mea-
surement data has 21 attributes. Fifteen of them are binary values, and the
others are continuous values. Since 92% of the patients are not hyperthyroid,
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Fig. 3.3. Learning curves for the Mackey–Glass problem (OGL, standard (ordi-
nary) gradient learning; ANGL, adaptive natural gradient learning). Reprinted with
permission from [24]

a good classifier must give a significantly better classification rate than 92%.
The number of data points in the training set is 3,772, and the number of
data points in the test set is 3,428. The network has 21 input nodes, 5 hidden
nodes, and 3 output nodes. The learning process was stopped when the MSE
became smaller than 10−3.

Table 3.2. Average results on Thyroid disease classification problem (SGL, standard
gradient learning; ANGL, adaptive natural gradient learning)

SGL ANGL
Learning rate η = 0.005 η = 0.0002, εt = 1/t

No. of hidden nodes 5 5
Rate of success 5/5 5/5
Learning cycle for MSE < 10−3 459,900.0 349.0
(standard deviation) (124,100) (172.5)
Classification rate (training) 99.81% 99.87%
(standard deviation) (0.01%) (0.05%)
Classification rate (test) 97.55% 98.19%
(standard deviation) (0.26%) (0.12%)
Processing time (relative to SGL) 1.0 0.24

The average results over five independent runs are shown in Table 3.2.
Regarding the learning cycles, the adaptive natural gradient method was more
than 1,300 times faster than the standard gradient method. Also, considering
the classification performance, the adaptive natural gradient method gave
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higher classification rates for the test data than the ordinary one. As far as
the processing time is concerned, the proposed method was more than four
times faster than the ordinary one.

3.4 Problem of Singular Structures

3.4.1 Singularity Problem

The remarkable superiority of natural gradient learning, which was shown
in the previous section, is achieved by exploiting an appropriate metric, the
Fisher metric, for the neuromanifold. However, in order to gain a deeper un-
derstanding of why the plateaus disappear in natural gradient learning, we
need to consider the singular structure of the neuromanifold. The singular
structure of the neuromanifold seems to be a main cause of various problems
in the learning and designing of neural networks. By paying more attention to
the singularities, we can expect to get remarkable solutions or understanding
of the problems.

The basic problem related to the singular structure is in the case when
the optimal network is exactly on the singular point of the neuromanifold,
which is called the singularity problem. This situation occurs when we use
larger networks than the optimal one; thus we also call it the over-realizable
scenario (note that this situation occurs easily because we do not know the
optimal size of networks and tend to use sufficiently large networks). When
the optimal network is at the singularity, it is impossible to use conventional
model selection criteria such as AIC or MDL in order to find an optimal size of
network. These criteria are based on the classical asymptotic theory of statisti-
cal inference such as the Fisher–Cramér–Rao paradigm, but these theoretical
results lose their validity in the neighborhood of singularities. Therefore, it
is necessary to build a new theory for singular models and to develop a new
criterion for model selection for over-realizable scenarios.

In this section, we present our preliminary approaches toward building a
new theory. We define two simple toy models that have intrinsic attributes
of singularities, and try to evaluate their estimation ability in over-realizable
scenarios. In addition, in the last part of this section, we also show the influen-
ce of singularity in the dynamics of standard gradient learning and natural
gradient learning using the simple toy model.

3.4.2 Related Works

Before presenting our own results on the singularity problem, we briefly review
related works. The singularity problem in hierarchical models has been noted
by statisticians. For example, in the case of the Gaussian mixture model, where
a probability distribution is represented by a mixture of Gaussian distribu-
tions, it has a hierarchical structure determined by the number of Gaussian
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distributions. Hotelling [21] and Weyl [32] investigated the problem of the
degeneracy of the Fisher information matrix by means of a geometrical treat-
ment in the 1930s. In systems theory, these properties were pointed out by
Brockett [11]. Recently, Hartigan [19], Dacunha-Castelle and Gassiat [15], and
Kuriki and Takemura [23] studied statistical models with nonregularity in the
field of statistics.

Related to the neural networks, the problem was first pointed out by Hagi-
wara [18]. Hagiwara clarified that the AIC does not work on MLP through
computer simulations, and suggested that this is caused by the hierarchical
structure of the model. Moreover, Hagiwara used simple models to show that
the least-square error of the estimator does not asymptotically obey the con-
ventional asymptotic rule of 1/T where T is the number of data, but instead
logT/T [18]. This result is consistent with Hartigan’s conjecture [19].

Through these results, it was noted that analysis of the error of estima-
tors is important for model selection of neural networks, and various works
started thereafter. Watanabe [31] applied algebraic geometry to elucidate the
behavior of the Bayesian predictive estimator in MLP, and developed a general
framework for obtaining its generalization error by using Hironaka’s resolution
theorem of singularity [20]. As a result, he showed a sharp difference between
regular cases and singular cases and the superiority of the Bayesian predic-
tive distribution for singular models. Fukumizu [16] gave a general analysis
of maximum likelihood estimators in singular statistical models including the
MLP. He showed that behavior does not obey their regular statistical theory.
He also showed that the estimation error has a variance of logT/T for MLP
models with more than two redundant hidden units.

3.4.3 Analytical Solutions in Simple Models

One of the most important issues related to the singularity problem in neural
networks is to develop a new criterion for model selection. To do this, one
must know the relation between the generalization error and the training error
mentioned in Sect. 3. Unfortunately, it is very difficult to find these relations
for the general model. Thus, we try to attack this problem using some simple
models, and analyze their asymptotic properties.

4.3.1. Asymptotic Statistical Inference: Generalization Error and
Training Error

Before going to our results, we briefly review the asymptotic results of statis-
tical estimators in the regular case. Let D = {x1 · · ·xT } be T independent
observations from the true distribution p∗(x). We first consider the maximum-
likelihood estimator (MLE), which maximizes the log-likelihood of data D.
The estimated distribution from the data is given by p̂MLE(x) = p(x; θ̂),
where
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θ̂ = argmaxθ

{
1
T

T∑
t=1

log p(xt; θ)

}
.

While the MLE searches for an asymptotically optimal point estimator in
the model, the Bayes paradigm studies a posterior probability of the parame-
ters based on the set of observations D. The posterior probability density is
written as

p(θ|D) = c(D)π(θ)
T∏

t=1

p (xt|θ) , (3.41)

where c(D) is the normalization factor depending only on data D, and π(θ)
is the prior distribution on the parameters. The Bayesian predictive distribu-
tion p̂Bayes(x) = p(x|D) is obtained by averaging p(x|θ) with respect to the
posterior distribution of θ, and can be written as

p̂Bayes(x) = p(x|D) =
∫

p(x|θ)p(θ|D)dθ. (3.42)

These estimators are evaluated by the generalization error defined by the
Kullback–Leibler divergence from p∗(x) to p̂(x) (Sect. 3). Since the individual
estimated probability density p̂(x) depends on data set D, we need to take
the expectation with respect to the distribution of data set D. The expected
generalization error is thus defined as

Lgen = −ED [Ep∗ [log p̂(x)]] , (3.43)

where ED represents the expectation with respect to D. Similarly, the ex-
pected training error is defined by using the empirical expectation,

Ltrain = −ED

[
1
T

T∑
t=1

log p̂(xt)

]
. (3.44)

In order to evaluate the estimator p̂(x), it is desirable to use Lgen, which is
not computable because we do not know p∗(x). Instead, we use Ltrain, which
is computable. Hence, it is important to see the difference between Lgen and
Ltrain. This is used as a principle of model selection.

When the statistical model M is regular, or the best approximation to the
true distribution p∗(x) is at a regular point of M , the estimated probability
density p̂(x) is known to have the relations [1],

Ltrain ≈ H∗ − d

2T
, (3.45)

Lgen ≈ H∗ +
d

2T
≈ Ltrain +

d

T
, (3.46)

where d is the dimension number of parameter vector θ, and H∗ represents
the data-independent term, −Ep∗ [log p∗(x)].
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These universal relations are not guaranteed in the singular case. The
relation between the generalization and training errors is different, so that
we need a different criterion to evaluate the generalization performance of
singular models such as the MLP.

4.3.2. Simple Toy Models

For the singular case, we investigated the relation between the generalization
and training errors using two simple toy models (see [8, 9] for detailed dis-
cussions). One is a very simple multilayer perceptron having only one hidden
unit. The other is a simple cone model.

The simple cone model describes a typical singularity in MLP mentioned
in Sect. 1. Let x be a Gaussian random variable x ∈ Rd+2, with mean µ
and identity covariance matrix I, then the probability density function of x
is given by

p(x|µ) =
1

(
√

2π)d+2
exp

{
−1

2
‖x− µ‖2

}
. (3.47)

If we consider a set Sd+2 = {µ|µ ∈ Rd+2}, the cone model Md+1 is a subset
of Sd+2, in which µ is restricted by

M : µ =
ξ√

1 + c2

(
1
cω

)
= ξa(ω). (3.48)

Here c is a constant determining the tangent of the vertical angle of the cone
(tanϑ in Fig. 3.4), ‖a‖2 = 1, ω ∈ Ud, and Ud is a d-dimensional unit sphere.
Then Md+1 is a cone having (ξ,ω) as coordinates, where the apex ξ = 0 is
the singular point. When d = 1, U1 is a circle so that ω is replaced by angle
θ, and we have

µ =
ξ√

1 + c2

⎛⎝ 1
c cos θ
c sin θ

⎞⎠ . (3.49)

Figure 3.4 shows the one-dimensional cone model M2, which is embedded in
S3 = {µ|µ ∈ R3} by the condition given by Eq. (3.49).

We also exploit a simple MLP, which has the input-output relation given
by

y = vϕ(w · x) + n, (3.50)

where n is a Gaussian random noise subject to N (0, 1). When v = 0, the
behavior is the same whatever the value of w. Let us put w = βω, where
β = ‖w‖, ω is on the d-dimensional hypersphere, ξ = v‖w‖, and ψ(x;β,ω) =
ϕ {β(ω · x)} /β. We then have an alternative expression,

y = ξψ(x;β,ω) + n, (3.51)
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µ = ξa(ω)
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Fig. 3.4. One-dimensional cone model M2 embedded in S3(d = 1, c = tanϑ)

which shows the cone structure with apex at ξ = 0. In this section, we assume
that β is known and does not need to be estimated. The conditional probability
density of y given input x and learning parameters ξ and ω is written as

p(y|x; ξ,ω) =
1√
2π

exp
{
−1

2
[y − ξψ(x;β,ω)]2

}
. (3.52)

For these toy models, when the true or optimal parameter is at a singular
point, the conventional asymptotic results for regular models cannot be ap-
plied. In the next section, we gave some analytic results in the singular case,
i.e., ξ∗ = 0.

4.3.3. Analytic Results of MLE

For the cone model defined in Eq. (3.47), the log-likelihood of data D=
{xt}t=1···T is written as

L(D, ξ,ω) = −1
2

T∑
t=1

||xt − ξa(ω)||2. (3.53)

The maximum likelihood estimator (MLE) is the one that maximizes L(D, ξ,ω).
However, ∂kL/∂ωk = 0 at ξ = 0 for any k, so that we cannot analyze the be-
haviors of the MLE by the Taylor expansion at the optimal point. Therefore,
we first fix ω and search for the value of ξ that maximizes L. This is easy
since L is a quadratic function of ξ. The maximum ξ̂ is given by a function of
ω,

ξ̂(ω) = argmaxξL(D, ξ,ω) =
1√
T
Y (ω), (3.54)
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where

Y (ω) = a(ω) · x̃, x̃ =
1√
T

T∑
t=1

xt. (3.55)

Here, Y (ω) = a(ω) · x̃ is subject to the Gaussian distribution depending on
ω. More precisely, Y (ω) is a zero-mean Gaussian random field over Ud with
covariance A(ω,ω′) = a(ω) ·a(ω′). By substituting ξ̂(ω) from Eq. (3.54), the
log-likelihood function becomes

L̂(ω) = −1
2

T∑
t=1

||xt||2 +
1
2
Y 2(ω). (3.56)

Therefore, the MLE ω̂ is given by the maximizer of

ω̂ = argmaxωY 2(ω). (3.57)

Using the MLE, we obtain the expected generalization and training errors in
the following theorem.
Theorem 1. In the case of the cone model, the MLE satisfies

Lgen = H∗ +
1

2T
ED

[
sup
ω

Y 2(ω)
]
, (3.58)

Ltrain = H∗ − 1
2T

ED

[
sup
ω

Y 2(ω)
]
. (3.59)

In the simple cone model, we can obtain the explicit value of ED

[
supω Y 2(ω)

]
.

We show the asymptotic results (the large d limit).

Corollary 1. When d is large, the MLE satisfies

Lgen ≈ H∗ +
1 + 2c

√
2d/π + c2(d + 1)

(1 + c2)2T
≈ H∗ +

c2

(1 + c2)
d

2T
, (3.60)

Ltrain ≈ H∗ − 1 + 2c
√

2d/π + c2(d + 1)
(1 + c2)2T

≈ H∗ − c2

(1 + c2)
d

2T
. (3.61)

It should be remarked that the generalization and training errors depend
on the shape parameter c as well as on the dimension number d. In the regular
case, they depend only on d. As one can easily see, when c is small, the
cone looks like a needle, and its behavior resembles a one-dimensional model.
When c is large, it resembles two (d + 1)-dimensional hypersurfaces, so that
its behavior is like a (d + 1)-dimensional regular model.

In the case of the simple MLP defined in Eq. (3.51), the log-likelihood of
data set D ={(xt, yt)}t=1···T is written as

L(D; ξ,ω) = −1
2

T∑
t=1

{yt − ξϕβ (ω · xt)}2 . (3.62)
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Let us define two random variables that depend on D and ω:

Y (ω) =
1√
T

T∑
t=1

ytϕβ (ω · xt) , (3.63)

AD(ω) =
1
n

T∑
t=1

ϕ2
β(ω · xt). (3.64)

Note that AD(ω) converges to A(ω) =Ex[ϕ2
β(ω · x)] as T goes to infinity,

and Y (ω) defines asymptotically a Gaussian random field with mean 0 and
covariance A(ω, ω′) = Ex[ϕβ(ω · x)ϕβ(ω′ · x)]. From the same approach as
the cone model case, we obtain

ξ̂(ω) = argmaxξL(D; ξ,ω) =
1√
n

Y (ω)
AD(ω)

, (3.65)

L(ξ̂(ω),ω) = −1
2

T∑
t=1

y2
t +

1
2
Y 2(ω)
AD(ω)

, (3.66)

ω̂ = argmaxω
1
2
Y 2(ω)
AD(ω)

. (3.67)

Using the mle, we get the following theorem.

Theorem 2. For the MLE of the simple MLP, we have

Lgen = H∗ +
1

2T
ED

[
sup
ω

Y (ω)2

A(ω)

]
, (3.68)

Ltrain = H∗ − 1
2T

ED

[
sup
ω

Y (ω)2

A(ω)

]
. (3.69)

There is a nice correspondence between the cone model and the simple
MLP. However, because of the existence of nonlinearity of the hidden unit, it
is not easy to get the explicit relation between the error and the dimension
number of parameters like that of the cone in Corollary 1.

We checked the analytic results using computer simulations. The cone
model and MLP were trained by the gradient method to get the MLE. For
each d (d = 1, . . . , 25), we generated 100 training sets with 10× d data from
the true distribution, and repeated the training processes with the sets to get
the average generalization and training errors. We set c = 1, β = 1 in the
simulations. The learning procedure was stopped when the decrease in the
training error was smaller than 10−10. In Figures 3.5 and 3.6, one can see the
symmetry of Lgen and Ltrain, which is obtained in Theorems 1 and 2. For the
cone model, we confirmed that the errors approach the approximate values
of Corollary 1. In addition, it is possible from the figures to suppose that a
similar relationship is also sustained between d and the errors for the MLP.
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Fig. 3.5. Simulation results on cone model
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trainL

d(T = d× 10)

Fig. 3.6. Simulation results on simple MLP

4.3.4. Analytic Results of Bayesian Predictive Distribution

For the Bayesian predictive distribution, we show some results from the cone
model here. For the simple MLP model defined in Eq. (3.51), we can also
apply the same approach and get similar results [9].

Unlike the regular case, the asymptotic behavior of the Bayesian predictive
distribution depends on the prior. Let us define the prior as π(ξ,ω). Then the
probability density of observed samples is given by
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ZT = p(D) =
∫

π(ξ,ω)
T∏

t=1

p(xt|ξ,ω)dξdω. (3.70)

When a new data xT+1 is given, we can similarly obtain the joint probability
density p(xT+1, D) as

ZT+1 = p(xT+1, D) =
∫

π(ξ,ω)
T+1∏
t=1

p(xt|ξ,ω)dξdω. (3.71)

From the Bayesian theorem, we can easily see that the Bayes predictive dis-
tribution is given by

p̂Bayes(x|D) =
ZT+1

ZT
. (3.72)

When the prior is uniform, i.e., π(ξ,ω) = constant, we can calculate ZT

explicitly, and obtain

p̂Bayes(x|D) =
1

√
2π

d+2

√
T

T + 1
exp

{
− ||x||2

2

}
Pd(x̃T+1)
Pd(x̃)

, (3.73)

where

x̃T+1 =
1√

T + 1
(x +

√
T x̃), (3.74)

Pd(x̃) =
∫

exp
{

1
2
Y 2(ω)

}
dω. (3.75)

From the fact that Y (ω) = a(ω) · x̃ and YT+1(ω) = a(ω) · x̃T+1 are subject
to the same probability distribution, the generalization error can be obtained
as

Lgen ≈ H∗ +
1
2n

. (3.76)

Furthermore, using the Edgeworth expansion, we can also have

p̂Bayes(x|D) ≈ 1
√

2π
d+2

exp

{
− ||x||2

2

}
{

1 +
1√
T
∇ logPd (x̃) · x +

1
2T

tr
(
∇∇Pd

Pd
H2(x)

)}
, (3.77)

where ∇ is the gradient, and H2(x) is the Hermite polynomial. Then, the
training error is given by

Ltrain ≈ Lgen −
1
T
ED

[
∇ logPd(x̃) · x̃

]
. (3.78)

In the case of Jeffreys’ prior, i.e., π(ξ,ω) ∝ |ξ|d, we can do similar analysis,
and obtain
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Lgen ≈ H∗ +
d + 1
2n

. (3.79)

One can refer [9] for detailed results.
These results are rather surprising: under the uniform prior, the generaliza-

tion error is constant and does not depend on d. This is completely different
from the regular case. However, this striking result is given rise to by the
uniform prior on ξ. The uniform prior puts strong emphasis on the singularity,
showing that one should be very careful in choosing a prior when the model
includes singularities. In the case of the Jeffreys’ prior, the generalization error
increases in proportion to d, which is the same result as the regular case. In
addition, the symmetric duality between Lgen and Ltrain does not hold for
both the uniform prior and the Jeffreys’ prior.

3.4.4 Learning and Singularities

It has been elucidated in the statistical mechanics framework that the learning
trajectory is ubiquitously attracted by singularities, and that plateaus are the
result of this singular structure [29]. The natural gradient learning method
takes this structure into account by using the Riemannian metric, so that it
works efficiently in learning. It was also confirmed that the natural gradient
can avoid plateaus through statistical mechanical approaches [25].

In this chapter, we show the effect of singularities in learning dynamics of
the simple cone model. We exploited the one-dimensional cone model defined
in Eq. (3.49) with c = 1. The true model generating training data was set to
(ξ∗, θ∗) = (1, 0). Starting from (ξo, θo) = (1, 11

12π), we calculated the average
trajectories of standard gradient learning and natural gradient learning in
order to show how the learning parameters (ξ, θ) approach the optimal point
(1, 0). Here, the average trajectories of standard gradient learning given in Eq.
(3.24) are given by using

(
∆ξ(t)
∆θ(t)

)
SGD

= −ηt

⎛⎝〈
∂l(xt,ξt,θt)

∂ξ

〉〈
∂l(xt,ξt,θt)

∂θ

〉⎞⎠ , (3.80)

and those of the natural gradient learning in Eq. (3.26) are given by

(
∆ξ(t)
∆θ(t)

)
NGD

= −ηtG
−1(ξ, θ)

⎛⎝〈
∂l(xt,ξt,θt)

∂ξ

〉〈
∂l(xt,ξt,θt)

∂θ

〉⎞⎠ , (3.81)

where < · > denotes the expectation with respect to the true distribution of
x.

As shown in Fig. 3.7, the dynamics of standard gradient learning is at-
tracted to the singular point, and it takes a long time to go out from the
trap, making a plateau. On the contrary, Fig. 3.8 shows that the dynamics of
the natural gradient is not affected by the singular point. The differences of
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Fig. 3.7. Standard gradient descent learning dynamics in cone model

Optimal

point

Starting

point

Fig. 3.8. Natural gradient descent learning dynamics in cone model

the two learning algorithms are clearly shown in the learning curves of Fig.
3.9. The plateaus shown in standard gradient learning correspond to the part
of the trajectories trapped in singularity. The plateau has completely disap-
peared in the natural gradient. This phenomenon commonly occurs in the
learning of general MLP with much more complicated singularities as shown
in Fig. 3.3.
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Fig. 3.9. Standard gradient learning (solid line) versus natural gradient descent
learning (dashed line) in the learning of cone model

3.5 Discussion and Conclusions

We have investigated the geometrical structures of the space of MLP, the neu-
romanifold, by using information geometry. There are a number of interesting
characteristics that should be taken into account to design a good network.

First, the parameter space of MLP is not Euclidean, having an intrinsic
Riemannian metric, which is given by the Fisher information matrix of the
corresponding probability density function. By using the metric, we developed
a new learning method, called natural gradient learning. The performance of
natural gradient learning was confirmed through computational experiments
on benchmark data as well as through statistical mechanical analysis.

Second, the neuromanifold includes complicated algebraic singularities,
which are due to its hierarchical structure. At the singularities, the conven-
tional model selection criteria cannot be applied, and we need a new criterion
for the over-realizable scenario. Using simple toy models, we showed some pre-
liminary results toward a new criterion and also briefly reviewed other recent
works related to this problem. The singular structure is also closely related
to the dynamics of the learning method, and we gave a simple example sho-
wing the effect of a singular point on the learning trajectories and the plateau
phenomenon.

These singularities are ubiquitous in hierarchical models such as the Gaus-
sian mixture model and the ARMA model. However, the current results are
very preliminary, and there exist a large number of open problems to be solved.
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4.1 Introduction

During the past decade lattice algebraic operations have been used extensively
to derive a variety of novel artificial neural network models. Many of these
models have been successfully employed to solve real-world problems. Among
the different models based on lattice algebra are the following: morphologi-
cal associative memories [1, 2, 3, 4, 5], shared-weight neural networks [6, 7],
regularization neural networks [8], hybrid morphological-rank-linear neural
networks [9], min-max neural networks [10, 11, 12], morphological percep-
trons [13, 14], fuzzy lattice networks [15, 16], and adaptive logic networks,
which combine linear functions by a tree expression of maximum and mini-
mum operations [17]. In this treatise we restrict our discussion to those neu-
ral networks whose computational basis is strictly limited to lattice-ordered
groups (�-groups) and bounded lattice-ordered groups (blogs). These types of
networks have become known as morphological neural networks (MNNs). The
name morphological neural networks stems from the fact that lattice-ordered
groups and bounded �-groups also provide for the mathematical foundation
of the area of image processing known as mathematical morphology.

Our particular focus will be on matrix memories and feedforward types of
networks. Such a narrow focus allows for a deeper immersion into the funda-
mental computational principles of morphological neural networks, which is
a main goal of this treatise. Before discussing the two very distinct networks
we first provide a quick review of lattice algebra as related to �-groups and
blogs.

4.2 Some Elementary Concepts From Lattice Algebra

The concept of lattices was formed with a view to generalize and unify certain
relationships between subsets of a set, between substructures of an algebraic
structure such as groups, and between geometric structures such as topological
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spaces. The development of the theory of lattices started about 1930 and was
influenced by the work of Garrett Birkhoff [18].

In the subsequent discussion we assume that the reader is familiar with
the basic concepts of lattice theory, in particular those that apply to the real
numbers. The real numbers IR together with the relation of less or equal (≤) is
a totally ordered set; i.e., given any pair x, y ∈ IR, then either x ≤ y or y ≤ x.
If x ∨ y = max{x, y} and x ∧ y = min{x, y} ∀x, y ∈ IR, then IR together with
the operations of ∨ and ∧ is a lattice. However, (IR,∨,∧) is not a complete
lattice as there is no largest and smallest number. A complete lattice can be
obtained by extending the real numbers to include the symbols −∞ and ∞
by setting IR±∞ = IR ∪ {−∞,∞} and defining −∞ < x < ∞ ∀x ∈ IR and
−∞ ≤ x ≤ ∞ ∀x ∈ {−∞,∞}. The extended structure (IR±∞,∨,∧) is now
a complete lattice with largest element ∞ and smallest element −∞. The
dual of this lattice is obtained by replacing ≤ with the relation of greater
or equal ≥. Obviously, (IR,∨,∧) is a sublattice of (IR±∞,∨,∧). Similarly, if
IR+ denotes the set of positive numbers, then the set IR≥0

∞ = IR+ ∪ {0,∞}
with the relation ≤ is a complete lattice. Here 0 is the smallest element and
∞ the largest element.

(
IR≥0

∞ ,∨,∧
)

is a sublattice of (IR±∞,∨,∧) but not of
(IR,∨,∧).

The lattices (IR±∞,∨,∧) and (IR,∨,∧) are distributive lattices because the
distributive law x∧(y∨z) = (x∧y)∨(x∧z) holds. This equation expresses the
similarity with the distributive law x(y+ z) = xy+xz of ordinary arithmetic.
Note also that by duality we have that x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

In addition to being a distributive lattice, the set of real numbers is also
a group under addition, and our early experience in elementary algebra has
taught us the useful properties

• P1 x ≥ y ⇒ z + x ≥ z + y
• P2 x ≥ y ⇒ z + x + w ≥ z + y + w
• P3 z + (x∨ y) = (z + x)∨ (z + y) and z + (x∧ y) = (z + x)∧ (z + y) ,

where x, y, z, w ∈ IR. These properties exhibit the interplay between the lattice
and group operations. A lattice that is also a group and satisfies property P2

is called a lattice-ordered group or �-group.
It is often convenient to deal with only one of the operations ∨ or ∧. Every

partially ordered set IF for which the operation x∨y (or x∧y) is associative and
is defined for each pair x, y ∈ IF is called a semilattice whenever x ∨ x = x.
For example, (IR,∨) is a semilattice with dual (IR,∧). If IR∞ = IR ∪ {∞}
and IR−∞ = IR ∪ {−∞}, then (IR−∞,∨) is a semilattice with dual (IR∞,∧).
Note that the semilattice (IR−∞,∨) is a monoid with zero element −∞ since
r ∨ (−∞) = (−∞) ∨ r ∀r ∈ IR−∞. Similarly, (IR∞,∧) is a monoid with zero
element ∞. If a semilattice is also a group, then it is called a semilattice-
ordered group or s�-group. If (IF,∨,+) is an s�-group and (IF,∧,+′) is also
an s�-group with semilattice operation ∧ and group operation +′ and satisfies
a ∨ (b ∧ a) = a ∧ (b ∨ a) = a ∀a, b ∈ IF, then we say that IF is an s�-group
with duality. If the operations + and +′ coincide, then the operation + is
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called self-dual. If (IF,+) and (IF,+′) are only semigroups, then IF is called
an s�-semigroup with duality or s�-semigroup. The �-group (IR,∨,∧,+) has
the identity element 0 but no null element, as there is no “smallest” element
in IR. As another example, the �-semigroup (IR−∞,∨,∧,+), where + denotes
the extended real addition a + (−∞) = −∞ + a = −∞ ∀a ∈ IR−∞, has the
null element −∞ but has no identity element, as −∞ has no inverse under
extended real addition. Similarly, if we adjoin the element∞, then the �-group
IR degenerates into the �-semigroup (IR∞,∨,∧,+) as ∞ has no inverse under
the addition∞+a =∞ ∀a ∈ IR∞. This is not really as much of a disadvantage
as it seems. We can extend the �-group IR to include the elements ∞ and −∞
in a well-defined manner as follows. If a, b ∈ IR, then a+ b is already defined.
Let +′ = + be the self-dual addition of elements of IR. For a ∈ IR, define

a +−∞ = −∞+ a = a +′ −∞ = −∞+′ a = −∞ , and
a +∞ =∞+ a = a +′∞ =∞+′ a =∞ .

If we now define −∞+∞ =∞+−∞ = −∞ and −∞+′∞ =∞+′−∞ =∞,
then the resultant structure (IR±∞,∨,∧,+,+′) is a distributive lattice which
is called a bounded �-group or blog.

In recent years, lattice-based matrix operations have found widespread
applications in the engineering sciences. In these applications, the usual matrix
operations of addition and multiplication are replaced by corresponding lattice
operations. For example, given the bounded �-group (IR±∞,∨,+) and A =
(aij), B = (bij) two m× n matrices with entries in IF±∞, then the pointwise
maximum, A ∨B, of A and B, is the m× n matrix C defined by A ∨B = C,
where cij = aij ∨ bij . If A is m× p and B is p× n, then the max product of A
and B is the matrix C = A ∨B, where cij =

∨p
k=1(aik + bkj). Observe that

this product is analogous to the usual matrix product cij =
∑p

k=1(aik × bkj),
with the symbol

∑
replaced by

∨
. Since

∨
replaces

∑
in our definition, the

pointwise maximum can be thought of as matrix addition.

Example 1. An illustration of the max product of a 5× 4 and a 4× 3 matrix
with entries from IR±∞ is the following:⎡⎢⎢⎢⎢⎣

−∞ 6 −2 2
7 −5 10 −4
8 4 11 9
−3 +∞ 1 −7
−1 1 0 5

⎤⎥⎥⎥⎥⎦ ∨
⎡⎢⎢⎣
−∞ 6 −2
7 −5 10
8 4 11
−1 1 0

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
13 3 16
18 14 21
19 15 22

+∞ +∞ +∞
8 6 11

⎤⎥⎥⎥⎥⎦ .

The min product of A and B in the dual structure (IR±∞,∧,+′) is the
matrix C = A ∧ B, where cij =

∧p
k=1(aik +′ bkj). Similarly, the pointwise

minimum A ∧ B of two matrices of the same size is defined as A ∧ B = C,
where cij = aij ∧ bij .

Lattice-induced matrix operations lead to an entirely different perspective
of a class of nonlinear transformations. These ideas were applied by Shimbel
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[19] to communications networks, and to machine scheduling by Cuninghame-
Green [20, 21] and Giffler [22]. Others have discussed their usefulness in ap-
plications to shortest path problems in graphs [23, 24, 25, 26]. Additional ex-
amples are given in [27], primarily in the field of operations research. Another
useful application to image processing was developed by Ritter and Davidson
[28, 29].

While lattice theory and lattice-ordered groups have only marginal con-
nections to the computational aspects of linear algebra, Cuninghame-Green
developed a novel nonlinear matrix calculus based on the min and max pro-
duct, called minimax algebra, which is very reminiscent of linear algebra [27].
Problems notated using the minimax products take on the flavor of problems
in linear algebra. By allowing for the minimax matrix products to take on
the character of the familiar matrix products, concepts analogous to those in
linear algebra, such as solutions to systems of equations, linear dependence
and independence, rank, seminorms, eigenvalues and eigenvectors, spectral
inequalities, and invertible and equivalent matrices, can be formulated.

Originally, many of these concepts were developed primarily to help solve
operations research types of problems. Our interest in these notions is due
to their applicability to artificial neural networks. For instance, we will view
associative matrix memories as transforms IRn → IRm. For such memories the
notions of independence, dependence, and fixed points play a major role in the
development of memories that are robust in the presence of noise. All these
notions resemble their analogues encountered in linear algebra. For example,
given a matrix transform M : IRn → IRn and x ∈ IRn, then x is a fixed point
of M if and only if M ∨ x = x (or M ∧ x = x).

Property P3 also holds for the s�-semigroups (IR−∞,∨,+) and (IR∞,∧,+′).
It follows that each of the structures is also a semiring. These two semirings
are in a one-to-one correspondence given by r∗ = −r, where ∞∗ = −∞,
(−∞)∗ = ∞, and r ∈ IR±∞. That is, r∗ is the dual of r as (r∗)∗ = r and
r ∧ u = (r∗ ∨ u∗)∗ ∀r, u ∈ IR±∞.

This conjugacy extends to matrices with entries from IR±∞. Here the
conjugate of a matrix A = (aij) with entries in IR or IR±∞ is the matrix
A∗ = (bij), where bij = [aji]

∗ and [aji]
∗ is the additive conjugate of aji

defined earlier. The notions of pointwise maximum and dual product could
have been defined in terms of conjugation since A ∧ B = (A∗ ∨B∗)∗ and
A ∧B = (B∗ ∨A∗)∗ for appropriately sized matrices.

In the next two sections we will employ the lattice theoretic notions deve-
loped in this section to serve as the underlying mathematical foundation for
the theory of morphological neural networks.

4.3 Morphological Associative Memories

One of the first goals achieved in the development of morphological neural
networks was the establishment of a morphological associative memory net-
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work (MAM). In its basic form, this model of an associative memory resembles
the well-known correlation memory or linear associative memory [30]. As in
correlation encoding, the morphological associative memory provides a simple
method to add new associations. A weakness in correlation encoding is the re-
quirement of orthogonality of the key vectors in order to exhibit perfect recall
of the fundamental associations. The morphological autoassociative memory
does not restrict the domain of the key vectors in any way. Thus, as many
associations as desired can be encoded into the memory [1, 31]. In the real
number case, the capacity for a memory of length n can be as large as desired.
That is, if k denotes the number of distinct patterns of length n to be encoded,
then k is allowed to be any integer, no matter how large. Of course, in the
binary case, the limit is k = 2n, as this is the maximum number of distinct
patterns of length n. In comparison, McEliece et al. showed that the asymp-
totic limit capacity of the Hopfield associative memory is n/2 logn if with
high probability the unique fundamental memory is to be recovered, except
for a vanishingly small fraction of fundamental memories [32]. Likewise, the
information storage capacity (number of bits that can be stored and recalled
associatively) of the morphological autoassociative memory also exceeds the
respective number of certain linear matrix associative memories which was
calculated by Palm [33] and Willshaw et al. [34].

Among the various autoassociative networks the Hopfield network is
the most widely known today [35, 36, 37]. A large number of researchers
have exhaustively studied this network, its variations, and generalizations
[32, 38, 39, 40, 41, 42, 43, 44, 45]. Hardware implementation issues of various
associative memories have also been extensively studied [46, 47, 48, 49, 50].
Unlike the Hopfield network, which is a recurrent neural network, the mor-
phological model provides the final result in one pass through the network
without any significant amount of training.

To begin our discussion on associative memories, let
(
x1,y1

)
, . . . ,

(
xk,yk

)
be k vector pairs with xξ =

(
xξ

1, . . . , x
ξ
n

)′
∈ Rn and yξ =

(
yξ
1, . . . , y

ξ
m

)′
∈ Rm

for ξ = 1, . . . , k. For a given set of pattern associations
{ (

xξ,yξ
)

: ξ = 1,
. . . , k

}
we define a pair of associated pattern matrices (X,Y ), where X =(

x1, . . . ,xk
)

and Y =
(
y1, . . . ,yk

)
. Thus, X is of dimension n× k with i, jth

entry xj
i and Y is of dimension m× k with i, jth entry yj

i .
The earliest neural network approach to associative memories was the

linear associative memory or correlation memory [30]. In this approach the
goal is to store k vector pairs (x1,y1), . . . , (xk,yk) in an m × n associative
memory W such that for any given input vector xξ, the associative memory
W recalls the output vector yξ = Wxξ, ∀ξ = 1, . . . , k. The simplest solution
for this goal is to set

W =
k∑

ξ=1

yξ
(
xξ
)′

. (4.1)
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In this case, the i, jth entry of W is given by wij =
∑k

ξ=1 y
ξ
i x

ξ
j . If the input

patterns x1, . . . ,xk are orthonormal, that is,
(
xj
)′ · xi =

{
1 if i = j
0 if i �= j

, then

Wxξ = yξ
(
(xξ)′ · xξ

)
+
∑

γ �=ξ yγ
(
(xγ)′ · xξ

)
= yξ.

Thus, we have perfect recall of the output patterns y1, . . . ,yk. If x1, . . . ,xk

are not orthonormal (as in most realistic cases), then filtering processes using
activation functions become necessary in order to retrieve the desired output
pattern.

Morphological associative memories are surprisingly similar to these clas-
sical correlation memories. With each pair of pattern associations (X,Y ) we
associate two natural morphological m×n memories WXY and MXY defined
by

WXY =
k∧

ξ=1

[
yξ × (−xξ)′

]
, and MXY =

k∨
ξ=1

[
yξ × (−xξ)′

]
, (4.2)

where the morphological outer product is defined as

y × x′ =

⎛⎜⎝ y1 + x1 · · · y1 + xn

...
. . .

...
ym + x1 · · · ym + xn

⎞⎟⎠ .

It is worthwhile to note that y × x′ = y ∨ x′ = y ∧ x′.
Note the similarities between the definition of the memory given by

Eq. (4.1) and those defined by Eq. (4.2). Also, a consequence of Eq. (4.2)
is that WXY ∨X ≤ Y ≤ MXY ∧ X . Here we use the notion that matrix A
is less or equal than a matrix B of the same dimension, denoted by A ≤ B,
and A is strictly less than B, denoted by A < B, if and only if for each
corresponding entry of these matrices we have that aij ≤ bij and aij < bij ,
respectively.

A fundamental relationship between the canonical MAMs and other mor-
phological associative memories is given by the next theorem, which was
proved in [1].

Theorem 1. Let (X,Y ) denote the associate sets of pattern vector pairs.
Whenever there exist perfect recall memories A and B such that A ∨ xξ =
yξ and B ∧ xξ = yξ for ξ = 1, . . . , k, then A ≤ WXY ≤ MXY ≤ B and
∀ξ, WXY ∨ xξ = yξ = MXY ∧ xξ.

Hence, WXY is the least upper bound of all perfect recall memories in-
volving the ∨ operation, and MXY is the greatest lower bound of all perfect
memories involving the ∧ operation. Furthermore, if there exist perfect recall
memories, then the canonical memories are also perfect recall memories.

If X = Y (i.e., ∀ξ, xξ = yξ), then we obtain the morphological autoasso-
ciative memories WXX and MXX . In [1] we proved that WXX ∨X = X =
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Fig. 4.1. The shaded area including the boundaries L
�
x1

�
and L

�
x2

�
constitutes

the set of fixed points of WXX , where X =
�
x1,x2

�

MXX ∧ X , where X can consist of any arbitrarily large number of pattern
vectors.

Example 2. Let x1 =
(

4
2

)
, x2 =

(
2
5

)
, x3 =

(
2
3

)
; then X =

{
x1,x2,x3

}
,

WXX =
(

0 −3
−2 0

)
, and WXX ∨ xξ = xξ ∀ξ = 1, 2, 3.

It is interesting to note that when taking the subset Y =
{
x1,x2

}
⊂ X ,

then WY Y ∨ x3 = x3. In fact, we have that WXX ∨ x = x ⇐⇒ WY Y ∨ x =
x. That is, WXX and WY Y have identical fixed point sets. The reason is that
WXX = WY Y and x3 is lattice dependent on the set

{
x1,x2

}
. More precisely,

x3 is a “linear” combination of x1 and x2, namely x3 =
(
α + x1

)
∨
(
β + x2

)
,

where α = β = −2. Here addition is again pointwise; i.e., if x = (x1, . . . , xn)′

and α ∈ IR±∞, then α + x = (α + x1, . . . , α + xn).
Lattice dependency and the set of fixed points of the transformation WXX

turn out to be equivalent notions. Figure 4.1 illustrates this for the set X ={
x1,x2

}
, where x1 = (4, 2)′ and x2 = (2, 5)′.

The lines L
(
xξ
)

=
{
α + xξ : α ∈ IR

}
, ξ = 1, 2, passing through the points

xξ form the boundary of an infinite strip as shown. Every point x ∈ IR2 in
this strip is of form

x =
(
α1 + x1

)
∨
(
α2 + x2

)
, (4.3)

as well as
x =

(
β1 + x1

)
∧
(
β2 + x2

)
, (4.4)

for some scalars α1, α2, β1, β2 ∈ IR±∞. Any point satisfying Eq. (4.3) or
Eq. (4.4) is also a fixed point of WXX . In fact, we have the following:

Theorem 2. Suppose X =
{
x1,x2, . . . ,xK

}
⊂ IRn, A(X) =

{
x ∈ IRn : x =∨K

ξ=1

(
αξ + xξ

)
, αξ ∈ IR

}
, and B(X) =

{
x ∈ IRn : x =

∧K
ξ=1

(
αξ + xξ

)
,

αξ ∈ IR
}
. If x ∈ A(X) ∪B(X), then WXX ∨ x = x = MXX ∧ x.
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Proof. Suppose x ∈ A(X). Then x =
∨K

ξ=1

(
αξ + xξ

)
, and hence, xj =∨K

ξ=1

(
αξ + xξ

j

)
∀j = 1, . . . , n. Thus, for each j = 1, . . . , n, there exists an

index k ∈ {1, . . . ,K} depending on j such that xj = αk + xk
j . We denote

this k by k(j). Since WXX is a dilative transform, WXX ∨ x ≥ x ∀x ∈ IRn.
Therefore,

(WXX ∨ x)i ≥ xi ∀i = 1, . . . , n . (4.5)

On the other hand, (WXX ∨ x)i =
∨n

j=1 (wij + xj) =
∨n

j=1

[∧K
ξ=1

(
xξ

i − xξ
j

)
+ xj

]
=
∧K

ξ=1

(
xξ

i − xξ
�

)
+ x�, for some � ∈ {1, . . . , n}. Thus, (WXX ∨ x)i =∧K

ξ=1

(
xξ

i − xξ
�

)
+x� ≤

(
x

k(�)
i − x

k(�)
�

)
+x� =

(
x

k(�)
i − x

k(�)
�

)
+
(
αk(�) + x

k(�)
�

)
= αk(�) + x

k(�)
i ≤

∨K
ξ=1

(
αξ + xξ

i

)
= xi. It follows that

(WXX ∨ x)i ≤ xi ∀i = 1, . . . , n . (4.6)

Equations (4.5) and (4.6) imply that WXX ∨ x = x.
As an easy consequence of Theorem 1, we now also have that MXX ∧x =

x. The case x ∈ B(X) is handled in an analogous manner. Q.E.D. �

As a consequence, it follows that every point in the shaded area of
Fig. 4.1 can be perfectly recalled by the memories WXX and MXX , where
X =

{
x1,x2

}
. Thus, the memories not only store the vectors x1 and x2, but

also an infinite number of patterns, namely those that depend on x1 and x2.
Obviously, A(X) = B(X) in Theorem 2, and it is not difficult to ascertain

that if x1,x2 ∈ IR2, with x1 �= α+x2 ∀α ∈ IR, then x is a fixed point of WXX

if and only if x =
(
α1 + x1

)
∨
(
α2 + x2

)
for some α1, α2 ∈ IR. Although the

condition x ∈ A(X) implies that WXX ∨ x = x, the converse, however, does
not hold if the dimension n > 2.

Example 3. Let X =
{
x1,x2

}
⊂ IR3, where x1 =

⎛⎝0
0
0

⎞⎠ and x2 =

⎛⎝ 2
1
0

⎞⎠. If

x =

⎛⎝1
1
0

⎞⎠, then WXX ∨x =

⎛⎝ 0 0 0
−1 0 0
−2 −1 0

⎞⎠ ∨
⎛⎝1

1
0

⎞⎠ =

⎛⎝1
1
0

⎞⎠. Thus x is a fixed

point for WXX . If x =
(
α1 + x1

)
∨
(
α2 + x2

)
, then(

α1 + x1
1

)
∨
(
α2 + x2

1

)
= 1 , (4.7)(

α1 + x1
2

)
∨
(
α2 + x2

2

)
= 1 , and (4.8)

α1 ∨ α2 = 0 . (4.9)

It follows from Eq. (4.9) that α1 ≤ 0 and α2 ≤ 0 and that at least one of
α1 = 0 or α2 = 0. By Eq. (4.7) we have α1 ∨ (α2 + 2) = 1. Since α1 ≤ 0, we
must have α2 = −1. But according to Eq. (4.8), α1 ∨ (−1 + 1) = 1, which is
impossible. Therefore, x �=

(
α1 + x1

)
∨
(
α2 + x2

)
∀α1, α2 ∈ IR.
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Fig. 4.2. The three patterns in the top row were used in constructing the morpho-
logical autoassociative memories WXX and MXX (of size 2500×2500). The bottom

row shows the perfect output of these memories when presented with the respective
patterns from the top row

The above example shows that a fixed point of WXX need not be an
element of A(X). This raises the question as to the structure of the set
of fixed points of WXX . Before answering this question, observe that x =∨3

j=1

∧2
ξ=1

(
αξ,j + xξ

)
, where α1,1 = α1,2 = 1, α1,3 = α2,2 = α2,3 = 0, and

α2,1 = −1. In terms of lattice theory this means that x is lattice dependent
on X . More precisely, we have the following:

Definition 1. Suppose X = {x1, . . . ,xk} ⊂ IRn. A vector x ∈ IRn is lattice
dependent on X if and only if x = p for some lattice polynomial p over X.

The vector x is said to be lattice independent of X if and only if x is not
lattice dependent on X.

The set X is said to be lattice independent if and only if ∀λ ∈ {1, . . . , k},
xλ is lattice independent of X \

{
xλ
}
.

Recall that a lattice polynomial over X is any finite expression involving
the symbols ∧ and ∨, and letters, of form a + xξ, where xξ ∈ X and a ∈ IR.
Such a polynomial is also referred to as a polynomial of degree one.

It is not difficult to show that if x and y are fixed points of WXX or MXX ,
then so are (a+ x) ∨ (b + y) and (a+ x) ∧ (b + y) for any pair a, b ∈ IR. This
observation implies the following:

Theorem 3. Suppose X =
{
x1, . . . ,xk

}
⊂ IRn. If x ∈ IRn, then WXX ∨ x =

x if and only if x is lattice dependent on X.

The notion of lattice independence is important in the recall of noisy pat-
terns. It is well known that the memories WXX and MXX are extremely robust
in the presence of erosive and dilative noise, respectively [1, 3]. Given a pat-
tern xγ we say that a distorted version x̃γ of the pattern xγ has undergone an
erosive change whenever x̃γ ≤ xγ and a dilative change whenever x̃γ ≥ xγ .
As an example, consider the three pattern images p1, p2, and p3 shown in
Fig. 4.2. Each pξ is a 50 × 50-pixel 256 grayscale image. For uncorrupted
input, perfect recall is guaranteed if we use either memory WXX or MXX .
Using the standard row-scan method, each pattern image pξ can be converted
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Fig. 4.3. The top row shows the input patterns corrupted with dilative (a) and
erosive (b) noise. The bottom row shows the corresponding recalled patterns using
the morphological memory MXX (a) and, respectively, WXX (b)

into a pattern vector xξ = (xξ
1, . . . , x

ξ
2500) by defining xξ

50(r−1)+c = pξ(r, c) for
r, c = 1, . . . , 50.

Corrupting the patterns xξ with 30% randomly generated erosive and dila-
tive noise with an intensity level of 128 results in almost perfect recall (NMSE1

< 10−3) when using the memory WXX and MXX , respectively. Figure 4.3
provides for a visual example of this experiment.

The reason for the robustness of associative memories in the presence of
erosive or dilative noise is a consequence of a sequence of theorems, which are
given in [1]. These theorems provide necessary and sufficient conditions for the
bounds of the corruption of a pattern xγ that guarantees perfect recall; they
also imply that WXX will fail miserably if dilative noise not satisfying these
bounds is present. Our experiments have shown that insertion of only minute
amounts of dilative noise, often in only one vector component, can result in
complete recall failure. Similar comments hold for the memory MXX and
erosive noise. Hence, neither memory WXX or MXX is useful in the presence
of random noise, which, generally, consists of both erosive as well as dilative
noise.

The kernel method proposed in [1] suggests a solution to this dilemma.
However, it became clear that finding an algorithmic method for selecting an
optimal set of proper kernels was not going to be an easy task. Part of the
difficulty is due to the fact that the existence of proper kernels for a given
set of pattern vectors remains an unsolved problem if the definition of kernels
proposed in [1] is used. Additionally, to be useful for pattern recognition in
the presence of large amounts of noise, such kernel patterns need to represent
greatly reduced (eroded) versions of the exemplar patterns. However, simply
eroding exemplar patterns will, generally, not result in kernel vectors. Before
addressing solutions to the problem of random noise, it is necessary to gain

1 Normalized mean-square error, computed as
�

j

�
x̃ξ

j − xξ
j

�2
��

j

�
xξ

j

�2

for

each ξ.
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an understanding of the kernel method and its relationship to the notion of
morphological independence.

4.4 Kernels and Morphological Independence

Since WXX is suitable for recognizing patterns corrupted by erosive noise
and MXX is suitable for recognizing patterns corrupted by dilative noise, an
intuitive idea is to process a noisy version x̃γ of xγ containing both erosive
and dilative noise through a combination of WXX and MXX . Sussner proved
that passing the output of MXX ∧ x̃γ through the memory WXX or, dually,
the output of WXX ∨ x̃γ through MXX will, generally, not result in xγ [51].
Nevertheless, the modified kernel approach proposed by Ritter et al. [3] is
based on this intuitive idea using the memories MXX and WXX in sequence
in order to create a morphological memory that is robust in the presence
of random noise, even in the general situation where X �= Y and X and
Y are not Boolean [1]. The underlying idea is to define a memory M that
associates with each input pattern xγ an intermediate pattern zγ . Another
associative memory W is defined that associates each pattern zγ with the
desired output pattern yγ . In terms of min-max products, one obtains the
equation W ∨ (M ∧ xγ) = yγ .

If the n × k matrix Z = (z1, . . . , zk) satisfies certain conditions, then the
matrices MZZ and WZY can serve as M and W , respectively. Furthermore, if
Z is properly chosen, then W ∨ (MZZ ∧ x̃γ) = yγ for most corrupted versions
x̃γ of xγ . If Z satisfies these basic properties, then Z is called a kernel for
the associated pair (X,Y ). The following formal definition of a kernel was
proposed in [3]:

Definition 2. Let Z = (z1, . . . , zk) be an n × k matrix. We say that Z is a
kernel for (X,Y ) if and only if Z �= X and there exists a memory W such
that W ∨ (MZZ ∧ xγ) = yγ . If Y = X, then we say that Z is a kernel for X.

For kernels to be effective in recognizing patterns that are severely cor-
rupted by random noise, they need not only represent eroded subsets of X
but should also be extremely sparse; i.e., for each γ, zγ consists of mostly zero
entries. The reason for sparseness is roughly based on the following observa-
tion. If Z is sparse, then the corrupted version x̃γ of xγ will generally be able
to afford a high degree of erosive noise and still satisfy the inequality zγ ≤ x̃γ .
As MZZ is robust in the presence of dilative noise, x̃γ will be conceived as a
dilated version of zγ by the memory MZZ . On the other hand, if zγ is not
sparse and x̃γ contains large amounts of erosive noise, then it is far more likely
that zγ �≤ x̃γ and MZZ will have difficulty in recognizing x̃γ . Ideally, we would
like that for each γ, zγ

j = xγ
j for exactly one j ∈ {1, . . . , n} and zγ

j = 0 ∀i �= j.
If Z results in a kernel under these conditions, then we are guaranteed the
recovery of xγ from x̃γ as long as zγ ≤MZZ ∧ x̃γ ≤ xγ . These loose concepts
lead to the definition of minimal representations of a pattern set X .
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Definition 3. A set of patterns Z ≤ X is said to be a minimal representation
of X if and only if for γ = 1, . . . , k,

1. zγ ∧ zξ = 0 ∀ξ �= γ,
2. zγ contains at most one nonzero entry, and
3. WZX ∨ zγ = xγ .

Condition 1 of this definition satisfies part of the following equation from
Sussner’s theorem [51], which provides for binary associative memories that
are robust in the presence of random bit reversals: zγ ∧zξ = 0 and zξ �≤ xγ ∀γ
and ∀ξ with γ �= ξ. Condition 2 assures sparsity, while condition 3 simply says
that X can be reconstructed from Z. In this sense Z acts as an orthogonal
basis within the lattice algebra underlying the morphological operations.

The connection between kernels and minimal representations is given by
the following theorems, which are proven in [3].

Theorem 4. If X is lattice independent, then there exists a set of patterns
Z ≤ X with the property that for γ = 1, . . . , k,

1. zγ ∧ zξ = 0 ∀ξ �= γ,
2. zγ contains at most one nonzero entry, and
3. WXX ∨ zγ = xγ .

Corollary 1. If X and Z are as in Theorem 4, then Z is a minimal repre-
sentation of X.

Corollary 2. If X and Z are as in Theorem 4, then Z is a kernel for X.

According to Corollary 1, a minimal representation is also a kernel. Hence,
for a set of patterns X to be reducible to a kernel, it is sufficient that X is
lattice independent. Furthermore, if X is lattice independent, then in order
to obtain a kernel one simply selects a minimal representation Z of X using
the constructive method given in the proof of Theorem 4.

Given a minimal representation Z that is also a kernel for X and a
noisy version x̃γ of the pattern xγ having the property that zγ ≤ x̃γ and
MZZ ∧ x̃γ ≤ xγ , then it must follow that WXX ∨ (MZZ ∧ x̃γ) = xγ .

Using the method of proof of Theorem 4, we constructed a kernel ma-
trix Z for the pattern images p1, p2, and p3 shown in the top row of
Fig. 4.2. The patterns are lattice independent and Fig. 4.4a depicts the pat-
terns and associated minimal representation

(
z1, z2, z3

)
. Randomly corrupting

the patterns with 30% of noise with an intensity level of 128, and using the
minimal representation Z as our kernel set, we obtained the perfect recall
WXX ∨ (MZZ ∧ x̃γ) = xγ for γ = 1, . . . , 3, as illustrated in Fig. 4.4b.

It is important to note that minimal representations are not unique. Howe-
ver, given two minimal representations Z and Z̄ of X , then statistically either
representation performs as well as the other. More precisely, if zγ

i = 1 = z̄γ
j ,

where zγ ∈ Z and z̄γ ∈ Z̄, then p (zγ
i |x̃

γ
i ) = p

(
z̄γ

j |x̃
γ
j

)
, where p (zγ

i |x̃
γ
i ) denotes
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Fig. 4.4. In (a) the top row shows the lattice-independent patterns and the bottom

row shows the corresponding nonzero entries in matrix Z used as a minimal repre-
sentation or kernel. In (b) the top row contains the input patterns corrupted with
random noise, while the bottom row illustrates perfect recall using the kernel Z for
the memory scheme MZZ → WXX (also the output of memory WZX)

the probability that x̃γ
i < z̄γ

i . It follows that there is no optimal minimal repre-
sentation unless some a priori knowledge of noise characteristics is available.

The problem of kernels for pattern pairs (X,Y ) where X �= Y follows
from the results established in this section. The following theorem is an easy
consequence of Theorem 4 and its corollaries.

Theorem 5. If X and Z are as in Theorem 4 and WXY is a perfect associa-
tive recall memory, then Z is a kernel for (X,Y ).

In order to verify this theorem, simply let W = WXY ∨ WXX . Then,
for all γ = 1, . . . , k, W ∨ (MZZ ∧ xγ) = (WXY ∨WXX) ∨ (MZZ ∧ xγ) =
WXY ∨

[
WXX ∨

(
MZZ ∧ xγ

)]
= WXY ∨ xγ = yγ . The sequence of this

associative feedforward network is given by xγ →MZZ → WXX → WXY →
yγ or, simply, xγ →MZZ →W → yγ where W = WXY ∨ WXX .

As a final observation, it has been our experience that the method de-
scribed above increases in robustness for noisy pattern recall as the dimension
n of pattern size increases. There are some probabilistic reasons for supporting
this observation [3].

The ring (IR,+,×) forms the computational basis for the traditional arti-
ficial neural model. The matrix associative memories presented in this section
amount to a simple reformulation of the classical matrix associative memories
based on (IR,+,×) in terms of the algebras (IR−∞,∨,+) and (IR∞,∧,+′).
Considering the fact that the latter two lattice algebras are only semirings,
it is somewhat surprising that these weaker algebras provide for more robust
memories with larger storage capacities. Similar observations hold for morpho-
logical feedforward networks discussed in the following sections. However, in
contrast to traditional feedforward networks, the morphological counterparts
also include dendritic computing.
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4.5 Dendritic Computation Based on Lattice Algebra

In the classical theory of artificial neural networks (ANNs), the main proces-
sing element is the neuron. Computation at a neuron N is performed within
the context of the ring of real numbers (IR,+,×) by summing the products
of neural values and connection weights from all neurons in the network con-
nected to N . Generally, a neural activation function is applied to the sum,
which provides for nonlinearity of the neural output. Application of the ac-
tivation function is the only nonlinear component in this model; all other
operations carried out at a neuron are linear algebraic operations.

Morphological neural networks (MNNs) represent the counterpart of the
above model, obtained when lattice algebra is employed instead of linear alge-
bra. Computation here is performed within the general context of the bounded
�-group (IR±∞,∨,∧,+,+′) that was defined in Sect. 4.2, or within context of
the particular s�-semigroups (IR−∞,∨,+) or (IR∞,∧,+′). Thus, the total net
input at a neuron Mj is computed as the maximum (or minimum) of the sums
of neural values and corresponding synaptic weights. It is apparent that, since
the maximum (or minimum) of sums is used instead of the sum of products,
the lattice algebraic model is nonlinear before the application of an activation
function.

The previous sections have discussed one category of MNNs, namely mor-
phological associative memories. In the remaining part of this exposition, we
will examine another MNN category, morphological perceptrons (MPs) with
dendritic structures, and will show that this novel model has greater compu-
tational capability and pattern discrimination power than traditional percep-
trons. Besides being based on lattice algebra, MPs with dendritic structures
bear a closer resemblance to biological neural networks. Neurons in the mam-
malian brain have two important processes, dendrites and axons. The axon is
the principal output fiber that branches toward its end into an axonal tree. Its
tips synapse with the dendritic structures of other neurons at synaptic sites.
Dendrites create large and complicated trees, and the number of synapses on
a single cortical neuron typically ranges between 500 and 200,000. Synapses
are of two types, excitatory and inhibitory.

In biological neural networks, dendrites make up the largest component in
both surface area and volume of the brain, and span all cortical layers in all
regions of the cerebral cortex [52, 53, 54]. Thus, when attempting to model
artificial brain networks, one cannot ignore dendrites, which make up more
than 50% of the neuron’s membrane. This is especially true in light of the fact
that some researchers have proposed that dendrites, and not the neurons, are
the elementary computing devices of the brain, capable of implementing such
logical functions as AND, OR, and NOT [52, 53, 54, 55, 56, 57, 58, 59, 60].

Current ANN models, and in particular perceptrons, do not include den-
dritic structures. As a result, problems occur that may be easily preventable
when employing dendritic computing. For example, M. Gori and F. Scarselli
have shown that multilayer perceptrons (MLPs) are not adequate for pat-
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tern recognition and verification [61]. Specifically, they proved that multilayer
perceptrons with sigmoidal units and a number of hidden units, less than or
equal to the number of input units, are unable to model patterns distributed
in typical clusters. The reason is that these networks draw open separation
surfaces in pattern space. In this case, all patterns not members of the cluster
but contained in an open area determined by the separation surfaces will be
misclassified. When using more hidden units than input units, closed surfaces
may result but, unfortunately, determining whether or not the perceptron
draws closed separation surfaces in pattern space is NP-hard. This is quite
opposite to what is commonly believed and reported in the literature. We have
proven that MPs with dendritic structures do not suffer from these problems,
because the separation surfaces are guaranteed to be closed [13, 62].

Let N1, . . . , Nn denote a collection of neurons with dendritic structures,
whose morphology is based on the biological model described earlier. Suppose
these neurons provide synaptic input to another collection M1, . . . , Mm of
neurons having the same processes. The value of a neuron Ni (i = 1, . . . , n)
propagates through its axonal tree all the way to the terminal branches that
make contact with the neuron Mj (j = 1, . . . ,m). The weight of an axonal
branch of neuron Ni terminating on the kth dendrite of Mj is denoted by w�

ijk ,
where the superscript � ∈ {0, 1} distinguishes between excitatory (� = 1) and
inhibitory (� = 0) input to the dendrite. The kth dendrite of Mj will respond
to the total input received from the neurons N1, . . . , Nn and will either accept
or inhibit the received input. The computation of the kth dendrite of Mj ,
denoted by Djk, is given by

τ j
k (x) = pjk

∧
i∈I(k)

∧
�∈L(i)

(−1)1−�
(
xi + w�

ijk

)
, (4.10)

where x = (x1, . . . , xn) denotes the input value of the neurons N1, . . . , Nn

with xi representing the value of Ni; I(k) ⊆ {1, . . . , n} corresponds to the set
of all input neurons with terminal fibers that synapse on the kth dendrite of
Mj ; L(i) ⊆ {0, 1} corresponds to the set of terminal fibers of Ni that synapse
on the kth dendrite of Mj ; and pjk ∈ {−1, 1} denotes the excitatory (pjk = 1)
or inhibitory (pjk = −1) response of the kth dendrite of Mj to the received
input.

It follows from the formulation L(i) ⊆ {0, 1} that the ith neuron Ni can
have at most two synapses on a given dendrite k. Also, if the value � = 1,
then the input

(
xi + w1

ijk

)
is excitatory, and inhibitory for � = 0 since in this

case we have −
(
xi + w0

ijk

)
.

The value τ j
k(x) is passed to the cell body, and the state of Mj is a function

of the input received from all its dendrites. The total value received by Mj is
given by

τ j(x) = pj

Kj∧
k=1

τ j
k (x) , (4.11)
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Fig. 4.5. Single-layer morphological perceptron with dendritic structures. Here Djk

denotes the kth dendrite of neuron Mj , and Kj the number of dendrites of Mj . An
input neuron can make synapse on a dendrite with excitatory and/or inhibitory
fibers, e.g., w1

nj3 is the weight of an excitatory fiber from neuron Nn to dendrite
Dj3, while w0

1jk is the weight of an inhibitory fiber coming from input neuron N1 to
dendrite Djk

where Kj denotes the total number of dendrites of Mj , and pj = ±1 denotes
the response of the cell body to the received dendritic input. Here again,
pj = 1 means that the input is accepted, while pj = −1 means that the cell
rejects the received input. The next state of Mj is then determined by an
activation function f , namely yj = f

(
τ j(x)

)
. In this exposition we restrict

our discussion to the hard-limiter

f
(
τ j(x)

)
=
{

1 if τ j(x) ≥ 0 ,
0 if τ j(x) < 0 .

(4.12)

A single-layer morphological perceptron (SLMP) is a special case of this
model. Here the neurons Ni, . . . , Nn would denote the input neurons, and
the neurons M1, . . . ,Mm the output neurons. For SLMPs we allow x =
(x1, . . . , xn) ∈ Rn. That is, the value xi of the ith input neuron Ni need
not be binary. The structure of a single-layer morphological perceptron is
illustrated in Fig. 4.5.

4.6 Computational Capability of Perceptrons Based on
the Dendritic Model

The dendritic computing framework introduced in the previous section allows
the construction of novel models of artificial neural networks, which share
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common characteristics with classical models, such as basic architecture, but
exhibit significantly different capabilities. Based on the dendritic model we can
design a single-layer morphological perceptron (SLMP) as an artificial neural
network that is similar in structure to the classical single-layer perceptron
(SLP), but incorporates dendritic structures and operates in terms of lattice
algebraic operations. In this section we will discuss the specific characteristics
of morphological perceptrons with dendritic structures.

Analogous to the classical SLP with one output neuron, an SLMP with
one output neuron consists of a finite number of input neurons that are con-
nected via axonal fibers to the output neuron. However, in contrast to an SLP,
the output neuron of an SLMP has a dendritic structure and performs the
lattice computation embodied by Eqs. (4.10) and (4.11). The computational
capability of an SLMP is vastly different from that of an SLP as well as that
of classical perceptrons in general. For example, no hidden layers are neces-
sary to solve the XOR problem with an SLMP or to specify the points of a
nonconvex region in pattern space. The specific computational capability of
an SLMP with one output neuron is governed by the following:

Theorem 6. If X ⊂ Rn is compact and ε > 0, then there exists a single-layer
morphological perceptron that assigns every point of X to class C1 and every
point x ∈ Rn to class C0 whenever d(x, X) > ε.

The expression d(x, X) in the statement of Theorem 6 refers to the dis-
tance of the point x ∈ Rn to the set X . As a consequence, any compact
configuration, as the one shown in Fig. 4.6a, whether it is convex or noncon-
vex, connected or not connected, contains a finite or infinite number of points,
can be approximated within any desired degree of accuracy ε > 0 by an SLMP
with one output neuron.

The proof of Theorem 6 requires tools from elementary point set topology
and is given in [13]. Although the proof is an existence proof, part of it is
constructive and provides the basic idea for the training algorithms that we
developed.

An SLMP can be extended to multiple output neurons in order to handle
multiclass problems, just like its classical counterpart. However, unlike the
SLP, which is a linear discriminator, the SLMP with multiple outputs can solve
multiclass nonlinear classification problems. This computational capability of
an SLMP with multiple output neurons is attested by Theorem 7 below, which
is a generalization of Theorem 6 to multiple sets.

Suppose X1, X2, . . . , Xm denotes a collection of disjoint compact subsets
of Rn. The goal is to classify, ∀j = 1, . . . ,m, every point of Xj as a point
belonging to class Cj and not belonging to class Ci whenever i �= j. For
each p ∈ {1, . . . ,m}, define Yp =

⋃m
j=1,j �=p Xj . Since each Yp is compact and

Yp ∩Xp = ∅, εp = d (Xp, Yp) > 0 ∀p = 1, . . . ,m. Let ε0 = 1
2 min {ε1, . . . , εp}.

Theorem 7. If {X1, X2, . . . , Xm} is a collection of disjoint compact subsets
of Rn and ε a positive number with ε < ε0, then there exists a single-layer
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Fig. 4.6. a Compact set X, and b collection of disjoint compact sets X1, X2, X3 and
banded region of thickness ε (dashed). Theorems 6 and 7 guarantee the existence
of SLMPs able to classify sets X and, respectively, X1, X2, X3, within desired ε
accuracy

morphological perceptron that assigns each point x ∈ Rn to class Cj whenever
x ∈ Xj and j ∈ {1, . . . ,m}, and to class C0 = ¬

⋃m
j=1 Cj whenever d (x, Xi) >

ε, ∀i = 1, . . . ,m. Furthermore, no point x ∈ Rn is assigned to more than one
class.

Figure 4.6b illustrates the conclusion of Theorem 7 for the case m = 3.
The proof of this theorem is somewhat lengthy and is not included here; it
is given in [62]. Based on the proofs of these two theorems, we constructed
training algorithms for SLMPs [13, 14, 62, 63, 64]. During the learning phase,
the output neurons grow new dendrites while the input neurons expand their
axonal branches to terminate on the new dendrites. The algorithms always
converge and have rapid convergence rate when compared to back-propagation
learning in traditional perceptrons.

These training algorithms are similar in that they all dynamically grow
dendrites and axonal fibers during the learning phase, which will use the pat-
terns of the training set in just one iteration (one epoch). Thus, the architec-
ture of the network is not predetermined beforehand. It is during training that
the network grows new structures as necessary to learn the training patterns.
The algorithms differ in the strategy of partitioning the pattern space. They
either reduce an initial large box through elimination of foreign patterns and
smaller regions that enclose them, or grow a class region by merging smaller
hyperboxes and taking their union when they remain disconnected. In either
case, the separation surfaces drawn in pattern space during training are al-
ways closed, making the SLMPs immune to the problems that MLPs suffer
from due to open separation surfaces [61]. Also, as a consequence of the afore-
mentioned theorems on which the algorithms are based, the trained SLMPs
will always correctly recognize 100% of the patterns in the training set.
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4.7 Training Algorithms for SLMPs with Dendritic
Structures

The mathematical results provided in Sect. 4.6 and proved in [13] and [62]
established that, for any collection of m compact sets, there exists an SLMP
with dendritic structures than can classify the sets as m distinct classes to
within any desired degree of accuracy. Although these results are existence
theorems, their proofs provide the main ideas for developing training methods
for the MP with dendritic structures.

Training can be realized in one of two main strategies, which differ in the
way the separation surfaces in pattern space are determined. One strategy is
based on elimination, whereas the other is based on merging. In the former
approach, a hyperbox is initially constructed large enough to enclose all pat-
terns belonging to the same class, possibly including foreign patterns from
other classes. This large region is then carved to eliminate the foreign pat-
terns. Training completes when all foreign patterns in the training set have
been eliminated. The elimination is performed by computing the intersection
of the regions recognized by the dendrites, as expressed in Eq. (4.11) for some
neuron Mj : τ j(x) = pj

∧Kj

k=1 τ
j
k (x).

The latter approach starts by creating small hyperboxes around indivi-
dual patterns or small groups of patterns all belonging to the same class.
Isolated boxes that are identified as being close according to a distance mea-
sure are then merged into larger regions that avoid including patterns from
other classes. Training is completed after merging the hyperboxes for all pat-
terns of the same class. The merging is performed by computing the union of
the regions recognized by the dendrites. Thus, the total net value received by
output neuron Mj is computed as:

τ j(x) = pj

Kj∨
k=1

τ j
k(x) . (4.13)

The two strategies are equivalent in the sense that they are based on
the same mathematical framework and they both result in closed separation
surfaces around patterns. The equivalence can be attested by examining the
equations employed to compute the total net values in the two approaches
given in Eqs. (4.11) and (4.13), and remarking that the maximum of any K

values a1, a2, . . . , aK , can be equivalently written as a minimum:
∨K

k=1 ak =
−
∧K

k=1(−ak). Thus, if the output value yj at neuron Mj is computed in terms
of minimum as yj = f

(
pj

∧Kj

k=1 τ
j
k (x)

)
, then yj can be equivalently computed

in terms of maximum as yj = f
(
−pj

∨K
k=1−τ

j
k (x)

)
.

The major difference between the two approaches is in the shape of the
separation surface that encloses the patterns of a class, and in the number
of dendrites that are grown during training to recognize the region delimited
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by that separation surface. Since the elimination strategy involves removal of
pieces from an originally large hyperbox, the resulting region is bigger than
the one obtained with the merging strategy. The former approach is thus more
general, while the latter is more specialized. This observation can guide the
choice of the method for solving a particular problem.

Figure 4.7 illustrates two possible partitionings of the pattern space IR2

in terms of intersection (Fig. 4.7a) and, respectively, union (Fig. 4.7b), in
order to recognize the solid circles (•) as one class C1. In Fig. 4.7a the C1

region is determined as the intersection of three regions, each identified by
a corresponding dendrite. The rectangular region marked D1 is intersected
with the complement of the region marked D2 and the complement of the re-
gion marked D3. An excitatory dendrite recognizes the interior of an enclosed
region, whereas an inhibitory dendrite recognizes the exterior of a delimited
region. Thus, the corresponding dendrite D1 is excitatory, while dendrites D2

and D3 are inhibitory. If we assign j = 1 in Eqs. (4.10) and (4.11) as repre-
senting the index of the output neuron for class C1, then the output value is
computed as y1 = f

(
τ1(x)

)
= f

(
p1

∧3
k=1 τ

1
k (x)

)
, where τ1

k (x) is computed
as in Eq. (4.10). There, the responses p1k are p11 = 1 and p12 = p13 = −1.
The response of the cell body is p1 = 1.

In Fig. 4.7b the C1 region is determined as the union of four regions,
each identified by a corresponding dendrite. This time, all dendrites D1, . . . ,
D4 are excitatory, so their responses will be p1k = 1, k = 1, . . . , 4. Us-
ing Eqs. (4.10) and (4.13) we obtain the output value y1 = f

(
τ1(x)

)
=

f
(
p1

∨4
k=1 τ

1
k (x)

)
, where p1 = 1. As noted above, the output value can

be equivalently computed with minimum instead of maximum as y1 =
f
(
τ1(x)

)
= f

(
−p1

∧4
k=1−τ1

k (x)
)
, i.e., by conjugating the responses p1 and

p1k and using the minimum operator.

4.7.1 Training Algorithm Based on Elimination

A training algorithm that employs elimination is discussed in [13]. The algo-
rithm constructs and trains an SLMP with dendritic structures with a single
output neuron, able to recognize the training patterns as either belonging
to the class of interest C1 or not belonging to it. Thus, it solves a one-class
problem, but can be generalized as discussed in Sect. 4.7.3.

In its first step, the algorithm creates the first dendrite, which encloses the
entire training set belonging to class C1 within a single hyperbox. Subsequent
steps carve out regions containing points belonging to class C0 from the hy-
perbox. Thus, the final class C1 region will be contained within the original
hyperbox, hence, making it a bounded region. This is in contrast to the MLP,
which often creates open regions as illustrated by the following example.

Example 4. To illustrate the results of an implementation of the training al-
gorithm based on elimination, we employed a data set from [65], where it was
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Fig. 4.7. Two partitionings of the pattern space IR2 in terms of intersection (a) and
union (b), respectively. The solid circles (•) belong to class C1, which is recognized
as the shaded area. Solid and dashed lines enclose regions learned by excitatory and,
respectively, inhibitory dendrites

used to test a simulation of a radial basis function network (RBFN). The data
set consists of two nonlinearly separable classes of ten patterns each, where the
class of interest C1 comprises the patterns depicted with solid circles (•). All
patterns were used for both training and test. Figure 4.8 compares the class C1

regions learned by an SLMP with dendritic structures using the elimination-
based algorithm (Fig. 4.8a) and, respectively, by a back-propagation MLP
(Fig. 4.8b).

The first step of the algorithm creates the first dendrite, which sends an
excitatory message to the cell body of the output neuron if and only if a
point of IR2 is in the rectangle (solid lines) shown in Fig. 4.8a. This rectangle
encloses the entire training set of points belonging to class C1. Subsequent
steps of the algorithm create two more dendrites having inhibitory responses.
These dendrites will inhibit responses to points in the carved out region of
the rectangle as indicated by the dashed lines in Fig. 4.8a. The only “visible”
region for the output neuron will now be the dark shaded area of Fig. 4.8a.

The three dendrites grown in a single epoch during training of the SLMP
are sufficient to partition the pattern space. In contrast, the MLP created
the open surface in Fig. 4.8b using 13 hidden units and 2000 epochs. The
RBFN also required 13 basis functions in its hidden layer [65]. The separation
surfaces drawn by the SLMP are closed, which is not the case for the MLP,
and classification is 100% correct, as guaranteed by the theorems in Sect. 4.6.

4.7.2 Training Algorithm Based on Region Merging

A second class of training algorithms for SLMPs is based on merging rather
than elimination. This strategy provides for the design of various algorithms
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Fig. 4.8. The closed class C1 region (shaded) learned by an SLMP with dendritic
structures using the elimination algorithm (a), in comparison to the open region
learned by an MLP (b), both applied to the data set from [65]. During training,
the SLMP grows only three dendrites, one excitatory and two inhibitory (dashed).
Compare (a) to the output in Fig. 4.9 of the merging version of the SLMP training
algorithm

depending on the manner in which small hyperboxes can be enlarged to incor-
porate neighboring patterns, or individual boxes can be connected together by
creating new boxes that partially overlap. Customized versions of the training
algorithm can be devised for specific types of problems, e.g., problems where
the patterns are known to be be arranged on curves in 2-D or 3-D space. Such
a tailored, merging-based algorithm was applied to solve the embedded spirals
problem in [66] with 100% correct classification results.

A training algorithm based on region merging for SLMPs is outlined below
and discussed in detail in [62]. The algorithm constructs and trains an SLMP
with dendritic structures to recognize the patterns belonging to the class of
interest C1. The remaining patterns in the training set are labeled as belonging
to class C0 = ¬C1. In the form provided below, the algorithm will construct
an SLMP comprising one dendrite either per pattern in class C1 or per unique
pair of patterns in class C1.

Step 1. Compute dmin as the minimal Chebyshev interset distance between
classes C1 and C0. The Chebyshev distance between two n-dimensional
patterns xξ and xγ is defined as d(xξ,xγ) = maxi=1,...,n |xξ

i − xγ
i |.

Step 2. Initialize a dendrite counter K = 0 and set all patterns in C1 as
unmarked.

Step 3. Select an unmarked pattern xξ belonging to class C1 and mark it.
(Two immediate options are to pick the first pattern encountered in
the training set, or to pick one at random.)

Step 4. For each unmarked pattern xζ situated in the vicinity of xξ, i.e., for
each xζ such that d(xζ ,xξ) < dmin + dε, do step 5. The term dε is
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a tolerance parameter that controls how close two class C1 patterns
must be in order to qualify for merging. A possible value is dε = 1

2dmin.
Step 5. Identify a region in pattern space that would connect patterns xξ and

xζ . (This involves several computations that are not detailed here.)
• If the identified merging region is free of foreign (class C0) pat-

terns, then increment K and grow a new excitatory dendrite DK ,
and assign weights to make DK recognize that region.

• Otherwise, i.e., if there exists at least one close foreign pattern
xγ , do not grow a dendrite in this step.

Step 6. If no dendrite was grown in step 5, i.e., no merging occurred, then
increment K and grow an excitatory dendrite that recognizes an iso-
lated region around xξ. The size of this region must be less than
dmin in each coordinate i = 1, . . . , n to ensure that it will not touch
patterns from class C0.

Step 7. If there are unmarked class C1 patterns remaining, repeat from step 3;
otherwise, stop.

We need to point out that this training algorithm as well as our previously
mentioned algorithm starts with the creation of hyperboxes enclosing training
points. In this sense there is some similarity between our algorithms and those
established in the fuzzy min-max neural networks approach, which also uses
hyperboxes [10, 11]. However, this is also where the similarity ends, as all
subsequent steps are completely different. Furthermore, our approach does
not employ fuzzy set theory.

Example 5. Figure 4.9 illustrates the results of an implementation of the
SLMP training algorithm based on merging, applied to the same data set
as in Example 4. Again, all patterns were used for both training and test.
During training 19 excitatory dendrites are grown, 10 for regions around each
pattern from class C1, and 9 more to merge the individual regions. The sepa-
ration surface is closed and recognition is 100% correct, as expected.

There is one more region in Fig. 4.9, drawn in dashed line, corresponding
to an inhibitory dendrite, and its presence is explained as follows. The merging
algorithm outlined above creates regions that are sized to avoid touching pat-
terns belonging to class C0 or approaching them closer than a certain distance.
In a more general version, larger hyperboxes are allowed to be constructed.
In this case, an additional step would identify foreign patterns that are ap-
proached or touched, and create inhibitory dendrites to eliminate those pat-
terns. This more general approach is being used in the experiment of Fig. 4.9
and explains the presence of the inhibitory dendrite whose region is depicted
with dashed line.



120 Gerhard X. Ritter and Laurentiu Iancu

Fig. 4.9. The class C1 region (shaded) learned by an SLMP with dendritic struc-
tures using the merging-based algorithm, applied to the data set from [65]. During
training, the SLMP grows 20 dendrites, 19 excitatory and 1 inhibitory (dashed).
Compare to the results in Fig. 4.8a obtained with the elimination version of the
algorithm

4.7.3 Generalization of the Training Algorithms to Multiple
Classes

For better clarity of the description, the training algorithms described so far
were limited to a single nonzero class, which corresponds to a single output
neuron of the SLMP with dendritic structures. Following we present a straight-
forward generalization to multiple classes, which will invoke either one of the
procedures in Sects. 4.7.1 or 4.7.2 as a subroutine.

The generalized algorithm consists of a main loop that is iterated m times,
where m represents the number of nonzero classes and also the number of out-
put neurons of the resulting SLMP. Within the loop, the single-class procedure
is invoked. Thus, one output neuron at a time is created and trained to classify
the patterns belonging to its corresponding class. The algorithm proceeds as
follows:

Step 1. For each nonzero class index j = 1, . . . ,m, do steps 2 through 4.
Step 2. Create a new output neuron Mj.
Step 3. For each pattern xξ of the training set:

• If xξ is labeled as belonging to class Cj , then temporarily reassign
xξ as belonging to C1.

• Otherwise, temporarily reassign xξ to class C0.
The assignment is for this iteration only. The original pattern labels
are needed in subsequent iterations.

Step 4. Invoke the single-class procedure to train output neuron Mj on the
training set modified to contain patterns of only one nonzero class.

The straightforward generalization presented above suffers from a potential
problem. The resulting SLMP partitions the pattern space in regions that
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might partially overlap. It is desirable that the learned regions be disjoint.
Otherwise, a test pattern located in an area of overlap will erroneously be
classified as belonging to more than one class. Theorem 7 guarantees the
existence of an SLMP with multiple output neurons that is able to classify
m classes disjointly. Therefore, the generalization of the algorithm can be
modified to prevent overlap between classes.

One way of modifying the algorithm would consist of taking into account
current information during training about the shape of the regions learned
so far, and using this information when growing new dendrites and assigning
synaptic weights. An alternative would be to draw regions of controlled size
based on minimum interset distance, in such a way that two regions that
belong to different classes cannot touch. A similar idea was mentioned in the
training algorithm based on merging (Sect. 4.7.2).

Yet another approach to prevent overlap of different class regions would in-
volve the augmentation of the SLMP with an additional layer of morphological
neurons. The former output layer of the SLMP will thus become the hidden
layer of a two-layer morphological perceptron with dendritic structures. The
role of the supplemental layer is basically to change the neural values of the
hidden nodes, where several can be active simultaneously, into values where
at most one output neuron may be active (may fire) at a time. This approach
is discussed in detail in [62].

It is worthwhile mentioning that multiple layers are not required to solve a
nonlinear problem with a morphological perceptron, as is the case for classical
perceptrons. The theorems in Sect. 4.6 prove that a single layer is sufficient.
The two-layer MP described in the previous paragraph simply provides a
conceivable manner to prevent ambiguous classification in the straightforward
generalization of the training algorithm. Existence of single-layer MPs that
are able to solve a multiclass problem with no class overlap is guaranteed.

4.8 SLMPs with Fuzzy-Valued Outputs

In our SLMP model the values of the output neurons are always crisp, i.e.,
having either value 1 or 0. In many application domains it is often desirable
to have fuzzy-valued outputs in order to describe such terms as very tall,
tall, fairly tall, somewhat tall, and not tall at all. Obviously, the boundaries
between these linguistic concepts cannot be exactly quantified. In particular,
we would like to have output values yj(x) such that 0 ≤ yj(x) ≤ 1, where
yj(x) = 1 if x is a clear member of class Cj , and yj(x) = 0 whenever x has
no relation to class Cj . However, we would like to say that x is close to full
membership of class Cj the closer the value of yj(x) is to value 1.

In order to extend the SLMP to accommodate fuzzy outputs, we redefine
the activation function in Eq. (4.12) from a hard-limiter to a ramp:
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Fig. 4.10. Computing fuzzy output values with an SLMP using the ramp activation
function given by Eq. (4.14)

f(z) =

⎧⎨⎩
1 if z ≥ 1 ,
z if 0 ≤ z ≤ 1 ,
0 if z ≤ 0 .

(4.14)

The following example illustrates an SLMP extended to produce fuzzy outputs
that employs the ramp activation function given by Eq. (4.14).

Example 6. Suppose we would like to have every point in the interval [a, b] ⊂ IR
to be classified as belonging to class C1 and every point outside the interval
[a−α, b+α] as having no relation to class C1, where α > 0 is a specified fuzzy
boundary parameter. For a point x ∈ [a− α, a] or x ∈ [b, b+ α] we would like
y(x) to be close to 1 when x is close to a or b, and y(x) close to 0 whenever
x is close to a − α or b + α. In this case we simply convert the input x ∈ IR
to a new input format x

α . If w0
1 = −b and w1

1 = −a denote the weights found
either by inspection or the aforementioned algorithms for input x, then we set
v0
1 = −w0

1
α − 1 and v1

1 = −w1
1

α + 1 for the weights of the new input x
α and use

the ramp activation function in Eq. (4.14).
Computing τ

(
x
α

)
we obtain τ

(
x
α

)
=
(

x
α + v1

1

)
∧ −

(
x
α + v0

1

)
=
[

1
α (x − a)

+ 1
]
∧
[
− 1

α (x− b) + 1
]
. Thus,

f
[
τ
(x
α

)]
=

⎧⎨⎩1, if x ∈ [a, b] ,
0 ≤ τ

(
x
α

)
< 1, if x /∈ [a, b] ,

0, if x /∈ [a− α, b + α] .
(4.15)

Equation (4.15) is illustrated in Fig. 4.10. By choosing fuzzy factors αi for
each xi, it is intuitively clear how this example generalizes to n-dimensional
pattern vectors.

4.9 Conclusions

We presented a new paradigm of neural computation based on lattice alge-
bra. After a brief introduction to lattice algebra, we focused on two types
of neural networks, namely morphological associative memories and morpho-
logical feedforward networks based on dendritic computing. These networks
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have proven to be radically different in behavior than traditional neural net-
works. In contrast to traditional associative memories, morphological associa-
tive memories converge in one step! Thus, convergence problems do not exist.
Morphological analogues to the Hopfield network not only proved to be far
more robust in the presence of noise, but have also unlimited storage capacity
for perfect inputs. For noisy inputs and carefully chosen kernels, morphological
autoassociative memories again exhibit superior performance in both recall
and storage [3].

For feedforward neural nets, our paradigm takes into account the dendritic
processes of neurons. The theorems, algorithms, and examples presented make
it obvious that the feedforward neural network presented here has several ad-
vantages over both traditional single-layer perceptrons and perceptrons with
hidden layers. For instance, our network needs no hidden layers for solving
nonconvex problems. Also, it does not suffer from the problem of misclas-
sification due to open separation surfaces, which can happen in multilayer
perceptrons as was shown in [61]. Based on the proofs of the two theorems in
Sect. 4.6, we developed training algorithms which always draw closed regions
around pattern clusters [13, 62].

Questions may be raised as to whether dendrites merely represent hidden
layers in disguise. Such questions are valid in light of the fact that, theoreti-
cally, a two-hidden-layer perceptron can also classify any compact region in
IRn. However, there are some major differences between the model presented
here and hidden-layer perceptrons. In comparison to hidden-layer neurons,
which generally use sigmoidal activation functions, dendrites have no activa-
tion functions. They only compute the basic logic functions of AND, OR, and
NOT. Activation takes place only within the neuron via the hard-limiter func-
tion. Also, with hidden layers the number of neurons within a hidden layer is
predetermined before training of weights, which traditionally involves back-
propagation methods. In our model, dendrites are grown automatically as the
neuron learns its specific task. Furthermore, no error remains after training.
All pattern vectors of the training set will always be correctly identified after
the training stops [13, 62].

Since the model presented is still in its infancy, general performance and
comparison to traditional feedforward neural networks need further investi-
gation. The training algorithms constructed thus far are only a first attempt
and will, no doubt, need further refinements.
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5.1 Introduction

The task of studying the properties of configurations of points embedded
in a metric space has long been a central task in pattern recognition, but
has acquired even greater importance after the recent introduction of kernel-
based learning methods. These methods work by virtually embedding general
types of data in a vector space, and then analyzing the properties of the
resulting data cloud. While a number of techniques for this task have been
developed in fields as diverse as multivariate statistics, neural networks, and
signal processing, many of them show an underlying unity. In this chapter
we describe a large class of pattern analysis methods based on the use of
generalized eigenproblems, which reduce to solving the equation Aw = λBw
with respect to w and λ.

The problems in this class range from finding a set of directions in the
data-embedding space containing the maximum amount of variance in the
data (principal components analysis), to finding a hyperplane that separates
two classes of data minimizing a certain cost function (Fisher discriminant),
or finding correlations between two different representations of the same data
(canonical correlation analysis). Also some important clustering algorithms
can be reduced to solving eigenproblems. The importance of this class of
algorithms derives from the facts that generalized eigenproblems provide an
efficient way to optimize an important family of cost functions, of the type
f(w) = w′Aw

w′Bw (known as a Rayleigh quotient); they can be studied with very
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simple linear algebra; and they can be solved or approximated efficiently using
a number of well-known techniques from computational algebra.

Their statistical behavior has also been studied to some extent (e.g. [24]
and [25]), allowing us to efficiently design regularization strategies in order to
reduce the risk of overfitting. However, methods limited to detecting linear
relations among vectors could hardly be considered to constitute state-of-the-
art technology, given the nature of the challenges presented by modern data
analysis. Therefore it is crucial that all such problems can be cast and solved
in a kernel-induced feature space; that is, they only require information about
inner products between data points. The entire toolbox of generalized eigen-
problems for pattern analysis can then be applied to detection of generalized
relations on a wide range of data types, such as sequences, text, images, and
so on.

In this chapter we will first review the general theory of eigenvalue pro-
blems, then we will give a brief review of kernel methods in general. Finally,
we will discuss a number of algorithms based in multivariate statistics: princi-
pal components analysis, partial least squares, canonical correlation analysis,
Fisher discriminant, and spectral clustering, where appropriate both in their
primal and in their dual form, leading to a version involving kernels.

5.1.1 Notation

All matrices are boldface uppercase. Vectors are boldface lowercase. Scalar
variables are lowercase. Sets and spaces are denoted with calligraphic letters.

With
(
a b · · · z

)
, the matrix built by stacking the vectors a,b, . . . , z next

to each other is meant.
The symbols used are:

• The vector containing all ones is denoted by 1. The identity matrix is
denoted by I. The matrix or vector containing all zeros is denoted by 0.
Their dimensionality is clear from the context.

• x or xi, column vectors represent a vector in the X -space. When we have
n samples, the matrix X is built up as X =

(
x1 x2 · · · xn

)′.
• Similarly, y or yi are sample vectors from the Y-space. The matrix Y

containing samples y1 through yn is built up as Y =
(
y1 y2 · · · yn

)′.
• When Y is one-dimensional, a sample from this space is denoted by y or

yi, and the vector containing all samples is y =
(
y1 y2 · · · yn

)′.
• Unless stated differently, all data are assumed to be centered (have zero

mean) throughout this chapter. This means that 1′ ·X = 0′, 1′ ·Y = 0′,
or when Y is one-dimensional, 1′ · y = 0.

• KX and KY are the so-called kernel or Gram matrices corresponding to X
and Y. They are the inner product matrices KX = XX′ and KY = YY′.
When it is clear from the context which data the kernel is built from, we
just use K. When we want to stress the kernel is centered we use Kc.

• For centered data matrices X and Y, the matrices SXX = X′X, SXY =
X′Y, SYY = Y′Y, and SYX = SXY

′ are the scatter matrices.
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• α,αX,αY, αi, αX,i, and αY,i will be referred to as dual vectors and their
respective ith coordinates. When an index i is used as a subscript after a
boldface α, this refers to a dual vector indexed by i, and not to the ith
coordinate.

• w,wX,wY will be referred to as weight vectors. Their respective ith co-
ordinates are denoted by wi, wX,i, wY,i. When an index i is used as a
subscript after a boldface w, this refers to a weight vector indexed by i,
and not to the ith coordinate.

• The feature map from the input space to the feature space is denoted with
φ(xi).

• d, n,m, . . . are scalar integers; d is used for indicating dimensionality.

5.2 Linear Algebra

In this section we will review some basic properties of linear algebra that
will prove useful in this chapter. We use the standard linear algebra notation
in the beginning and translate the important results to the kernel methods
conventions afterwards. Extensive references for matrix analysis can be found
in [12] and [13].

5.2.1 Symmetric (Generalized) Eigenvalue Problems

Notation. In this introductory section, we will use a notation that is to be
distinguished from the notation in the remainder of the chapter:

• A ∈ Rn×m, a general matrix.
• M,N ∈ Rn×n, symmetric matrices. N is invertible.
• Λ,S ∈ Rn×n, diagonal matrices.
• U,V ∈ Rn×n : UU′ = I = U′U,VV′ = I = V′V, orthogonal matrices.
• W ∈ Rn×n, a matrix orthogonal in the metric defined by N: w′Nw = I.
• λ or λi, an eigenvalue.
• σ or σi, a singular value.

Variational Characterization

The optimization problems we are concerned with in this chapter are all ba-
sically of the form (we assume N is invertible)

max
w

w′Mw
w′Nw

.

This is an optimization of a Rayleigh quotient. One can see the norm of w
does not matter: scaling w does not change the value of the object function.
Thus, one can impose an additional scalar constraint on w and optimize the
object function without losing any solutions. This constraint is chosen to be
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w′Nw = 1. Then the optimization problem becomes a constrained optimiza-
tion problem of the form:

max
w

w′Mw s.t. w′Nw = 1,

or by using the Lagrangian L(w):

max
w
L(w) = max

w
w′Mw− λw′Nw.

Equating the first derivative to zero leads to

Mw = λNw. (5.1)

The optimal value reached by the object function is equal to the maximal
eigenvalue, the Lagrange multiplier λ. This is the symmetric generalized eigen-
value problem that will be studied here.

Note that the vector w with the scalar λ leading to the optimum of the
Rayleigh quotient is not the only solution of the generalized eigenvalue pro-
blem given by Eq. (5.1). There exist other eigenvector-eigenvalue pairs that do
not correspond to the optimum of the Rayleigh quotient. For any pair (w, λ)
that is a solution of Eq. (5.1), w is called a (generalized) eigenvector and λ is
called a (generalized) eigenvalue. In many cases several of these eigenvector-
eigenvalue pairs are of interest.

Symmetric Eigenvalue Problems

For the ordinary symmetric eigenvalue problem (where N = I):

Mw = λw.

Eigenvectors wi corresponding to different eigenvalues λi are orthogonal to
each other. Furthermore, the eigenvalues of symmetric matrices are real, and
a real eigenvector corresponds to them.

Proof. For λi �= λj ,

Mwi = λiwi,

⇒ λi(w′
jwi) = w′

jMwi = w′
iM

′wj = w′
iMwj,

= λj(w′
iwj),

⇒ w′
jwi = 0.

Thus, eigenvectors corresponding to different eigenvalues λi and λj are or-
thogonal. Furthermore, with ·∗ the adjoint operator:
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Mwi = λiwi and M = M′ = M∗ (M is real symmetric) ,

⇒ λ∗
i w

′
iw

∗
i = (λiw∗

i
′wi)∗ = (w∗

i
′Mwi)∗ = w′

iM
∗w∗

i = w′
iM

′w∗
i ,

= λiw′
iw

∗
i ,

⇒ λi = λ∗
i .

Therefore the eigenvalues of a real symmetric matrix are real. Then also the
eigenvectors are real up to a complex scalar (and can thus be made real by
scalar multiplication), since if they were not, we could take the real part and
the imaginary part separately, and both would be eigenvectors corresponding
to the same eigenvalue.

When eigenvalues are degenerate, that is, they are equal but correspond
to a different eigenvector, then these eigenvectors can be chosen to be or-
thogonal to each other. This follows from the fact that they are in a subspace
orthogonal to the space spanned by all eigenvectors corresponding to the other
eigenvalues. In this subspace an orthogonal basis can be found. The number
of eigenvalues and corresponding orthogonal eigenvectors of a real symmetric
matrix thus is equal to the dimensionality n of M.

If we normalize all eigenvectors wi to unit length and choose them to be
orthogonal to each other, they are said to form an orthonormal basis. For W
being the matrix built by stacking these normalized eigenvectors wi next to
each other, we have

WW′ = W′W = I,

that is, the matrix W is orthogonal.

Since then Mwi = wiλi for all i, we can state that

MW = WΛ,

where Λ contains the corresponding eigenvalues λi on its diagonal. Then,
taking into account that W−1 = W′, we can express the matrix M as:

M = WΛW′ =
∑

i

λiwiw′
i.

This is called the eigenvalue decomposition of the matrix M, also known as
the spectral decomposition of M.

Symmetric Generalized Eigenvalue Problems

In general, we will deal with generalized eigenvalue problems of the form

Mw = λNw.
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This could be solved as an ordinary but nonsymmetric eigenvalue problem
(by multiplying with N−1 on the left-hand side). We can also convert it to a
symmetric eigenvalue problem by defining v = N1/2w:

MN−1/2N1/2w = λN1/2N1/2w,

and thus by left multiplication with N−1/2:

(N−1/2MN−1/2)v = λv.

For this type of problem, we know that the different eigenvectors v can be
chosen to be orthogonal and of unit length, thus:

V′V = I = W′NW,

which means that the generalized eigenvectors wi of a symmetric eigenvalue
problem are orthogonal in the metric defined by N.

5.2.2 Singular Value Decompositions, Duality

The singular value decomposition of a general real matrix A is defined as

A =
(
U U0

)(S 0
0 0

)(
V V0

)′ = USV′,

where S contains the singular values si in decreasing order (by convention)
on the diagonal, and dimensions of all blocks are compatible. The matrices(
U U0

)
and

(
V V0

)
are orthogonal matrices, respectively containing the

left and the right singular vectors as their columns. This decomposition can
be calculated for any real matrix.

One can see that multiplying A on the left with a column of U0 gives zero:
U′

0A = 0′. Therefore U0 is said to span the left null space of A. Similarly,
V0 is a basis for the right null space of A. On the other hand, U and V
respectively span the column and the row space of A.

Note that AA′ and A′A are symmetric, and their eigenvalue decomposi-
tions are:

AA′ = US2U′,

A′A = VS2V′.

Another important property of singular value decompositions is that the
nonzero singular values and corresponding singular vectors are the nonzero

eigenvalues and corresponding eigenvectors of the matrix
(

0 A
A′ 0

)
:
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(
0 A
A′ 0

)(
ui

vi

)
= si

(
ui

vi

)
, (5.2)

the solution of which leads to the singular value decomposition of A = USV′.
In a pattern recognition problem, the rows of the matrix A may consist of

different data vectors. Above, we used the standard linear algebra notation.
In pattern recognition, the matrix A will then correspond to X, the columns
of V to w being the weight vectors, and the columns of U to α, being the
dual vectors. Thus, in the notation we adopt in this chapter:

X′αi = siwi,

Xwi = siαi.

When the norm is not an issue, which is often the case, the factor si can be
omitted, so up to a scaling factor:

X′αi = wi, (5.3)
Xwi = αi.

The matrix X′X = SXX will be called a scatter matrix. Since the samples
making up the rows of X are assumed to have zero mean, it is proportional
to the finite sample covariance matrix CXX = 1

nSXX. On the other hand,
XX′ = KX is a Gram or kernel matrix . (Note that element (i, j) corresponds
to the inner product of samples xi and xj .) Thus, the weight vectors are the
eigenvectors of the scatter matrix, and the dual vectors are the eigenvectors of
the kernel matrix. Given the dual vectors, the weight vectors can be found by
multiplication with the data matrix X′, and vice versa. This type of relation
between primal and dual variables forms the basis of the duality and enables
the use of kernels.

5.3 Kernel Methods

Kernel methods (KMs) [7, 21, 23, 27, 29] are a relatively new family of algo-
rithms that presents a series of useful features for pattern analysis in data sets.
In recent years, their simplicity, versatility, and efficiency have made them a
standard tool for practitioners, and a fundamental topic in many data ana-
lysis courses. We will outline some of their important features, referring the
interested reader to more detailed articles and books for a deeper discussion
(see, for example, [23] and references therein).

KMs combine the simplicity and computational efficiency of linear algo-
rithms, such as the perceptron algorithm or ridge regression, with the flexibili-
ty of nonlinear systems, such as, for example, neural networks, and the rigor of
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statistical approaches, such as regularization methods in multivariate statis-
tics. As a result of the special way they represent functions, these algorithms
typically reduce the learning step to a simple optimization problem that can
always be solved in polynomial time, avoiding the problem of local minima
typical of neural networks, decision trees, and other nonlinear approaches.

Their foundation in the principles of statistical learning theory makes them
remarkably resistant to overfitting especially in regimes where other methods
are affected by the ‘curse of dimensionality’. Another important feature for
applications is that they can naturally accept input data that are not in the
form of vectors, such as, for example, strings, trees, and images. Their cha-
racteristically modular design makes them amenable to theoretical analysis,
but also makes them well suited to a software engineering approach in which
a general-purpose learning module is combined with a data-specific ‘kernel
function’ that provides the interface with the data and incorporates domain
knowledge.

Many learning modules can be used, depending on whether the task is one
of classification, regression, clustering, novelty detection, ranking, and so on.
At the same time, many kernel functions have been designed, for example, for
protein sequences, for text and hypertext documents, for images, time series,
etc. As a result, this method can be used for dealing with rather exotic tasks,
such as ranking strings, or clustering graphs, in addition to such classical tasks
as classifying vectors. In the remainder of this section, we will briefly describe
theory behind kernel methods, followed by a brief example of how this can be
used in practice: kernelizing least squares regression and ridge regression.

5.3.1 Theory

Kernel-based learning algorithms work by embedding the data into a Hilbert
space and searching for linear relations in such space. The embedding is per-
formed implicitly, that is, by specifying the inner product between each pair
of points, rather than by giving their coordinates explicitly. This approach
has several advantages, the most important being the observation that often
the inner product in the embedding space can be computed much more easily
than the coordinates of the points themselves.

Given an input set X and an embedding vector space F (often called the
feature space), we consider a map φ : X → F (often called the feature map).
The function that, given two points xi ∈ X and xj ∈ X , returns the inner
product between their images in the space F is known as kernel function.

Definition 1. A kernel is a function k, such that for all x, z ∈ X , k(x, z) =
〈φ(x), φ(z)〉, where φ is a mapping from X to a Hilbert space F , and 〈·, ·〉
denotes the inner product.

We also consider the matrix Kij = k(xi,xj), called the kernel matrix or
the Gram matrix . Thanks to the fact it is built from inner products it is al-
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ways a symmetric, positive semidefinite matrix, and since it specifies the inner
products between all pairs of points, it completely determines the relative po-
sitions between those points in the embedding space. For example, given such
information, it is trivial to recover all the pairwise distances between them.1

The solutions sought by kernel-based algorithms are linear functions in the
feature space:

f(x) = w′
φ(x),

for some weight vector w. The kernel can be exploited whenever the weight
vector can be expressed as a linear combination of the training points, w =∑n

i=1 αiφ(xi), implying that we can express f as follows:

f(x) =
n∑

i=1

αik(xi,x).

This will be the case for any of the algorithms considered in this chapter.

5.3.2 Example: Least Squares and Ridge Regression

We consider the well-known problem of least squares regression to start with
and derive a kernelized version for it. Consider the vector y ∈ Rn and the data
points X ∈ Rn×d. We want to find the weight vector w ∈ Rd that minimizes
‖y −Xw‖2. Taking the gradient of this cost function with respect to w and
equating to zero leads to:

∇w‖y −Xw‖2 = ∇w(y′y + w′X′Xw− 2w′X′y),
= 2X′Xw − 2X′y,

= 0,
⇒ w = (X′X)−1X′y.

This is the well-known least squares solution.
However, least squares is highly sensitive to overfitting. Especially when X

lives in a high-dimensional (feature) space, care needs to be taken (ultimately,
when the dimensionality d > n, regression can always be carried out exactly,
which means that any noise sequence could be fit by the model). In order to
avoid overfitting, a standard approach is to reduce the capacity of the learner,
or the effective number of degrees of freedom, by imposing a prior on the
solution, thus introducing a bias. In the case of regression, for example, one
usually prefers a weight vector with small norm. This is taken into account
by introducing an additional term γ‖w‖2 in the cost function, with γ the
regularization parameter. Minimizing leads to the ridge regression estimate:
1 Notice that we do not really need X to be a vector space; in fact, X can be a

generic finite set. This is because we are guaranteed that the data are implicitly

mapped to some Hilbert space by simply checking that the kernel matrix K
satisfies the conditions above.
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∇w

[
‖y−Xw‖2 + γ‖w‖2

]
= ∇w [(y′y + w′X′Xw − 2w′X′y) + γ(w′w)] ,
= 2(X′X + γI)w − 2X′y,
= 0,

⇒ w = (X′X + γI)−1X′y.

To evaluate the regression function in a new test point, it can simply be
projected on the weight vector:

ytest = x′
testw.

So far we have discussed the primal version of the ridge regression method.
The dual version can be derived by noting that the minimum norm weight
vector will always be in the span of the data X. This can be seen by replacing
(X′X + γI)−1 with (VΛV′ + γI)−1 = (V(Λ + γI)V′)−1 = V(Λ + γI)−1V′,
where the columns of V are the right singular vectors of X and are thus a basis
for the row space of X. Thus the weight vector w = V

[
(Λ + γI)−1V′X′y

]
lies in the column space of V, or equivalently in the row space of X, and can
thus be expressed as w = X′α (cf. Eq. (5.3)). Here α ∈ Rn is called the dual
vector. Plugging this into the equations leads to:

∇α
[
‖y −XX′α‖2 + γ‖X′α‖2

]
= 2(XX′XX′)α− 2XX′y + 2γXX′α,
= 2(K2 + γK)α− 2Ky,

= 0,
⇒ K(K + γI)α = Ky. (5.4)

In the second step, XX′, which is the matrix containing the inner products
between any two points as its elements, is replaced by the kernel matrix K.
Since the inner products in K can be inner products in a feature space, they
can in fact be a nonlinear function of the data points, namely the kernel
function. In this way, nonlinearities can be dealt with in a very natural way.
This is the essence of the ‘kernel trick’. A general solution for Eq. (5.4) is
given by:

α = (K + γI)−1y + α0,

where α0 is any vector in the null space of K: X′α0 = Kα0 = 0.
The projection of a test point xtest onto the weight vector w = X′α =

X′ [(K + γI)−1y + α0

]
= X′(K + γI)−1y, can be written as ytest = x′

testX
′α

(as one can see, the actual value of α0 does not matter). Written in terms of
kernel evaluations, this becomes:

ytest =
n∑

i=1

αik(xi,xtest).

This is indeed the standard form.
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5.3.3 Kernels in This Chapter

In this chapter, we will aim at deriving primal and dual versions of spectral
algorithms in pattern recognition. Whereas the primal formulation is usually
the standard form in which algorithms are known, the dual form is formulated
in terms of inner products only.2 This is important, since then the kernel
trick can be used in any algorithm where such a dual version can be derived,
very much in the same way as shown in the example above: by replacing the
matrix containing inner products with the kernel matrix. The inner products
are considered to be carried out implicitly between nonlinear mappings of the
points in a feature space.

As mentioned before, we will assume all data are centered. In primal
space, this centering is a trivial operation, as it is done by simply sub-
tracting the mean of each of the coordinates (n is the number of samples):
Xc =

(
X− 11′

n X
)
. However, centering in feature space deserves some atten-

tion since we do not compute the feature vectors explicitly, but only the inner
products between them. Thus we have to compute the centered kernel matrix
based on the uncentered kernel matrix.

For an uncentered K corresponding to uncentered X, the centered ver-
sion Kc can be computed as the product of the centered matrices Xc =(
X− 11′

n X
)
, where 1 ∈ Rn is the column vector containing n ones:

Kc =
(
X− 11′

n
X
)(

X− 11′

n
X
)′

= K− 11′

n
K−K

11′

n
+

11′

n
K

11′

n
. (5.5)

In this chapter, unless stated otherwise, we assume all kernel matrices are cen-
tered as such. Therefore, the subscript c will be omitted for brevity, wherever
this does not cause confusion.

Similarly, a test sample xtest should be centered accordingly. Let ktest =
[k(xtest,xi)]i=1:n be the vector containing the kernel evaluations of xtest with
all n training samples xi. Then again, we can do the centering implicitly: the
properly centered version (in correspondence with the centering of Eq. (5.5))
of this vector can be shown to be

ktest,c = ktest −K
1
n
− 11′

n
ktest +

11′

n
K

1
n
.

In this chapter we assume all test samples are already centered in this way
as well. Again, the subscript c will be omitted wherever this does not cause
confusion.
2 In many if not all practical cases, the dual can be motivated using an optimization

perspective. The reader is referred to [27] for an in-depth treatment.
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5.4 Dimensionality Reduction: PCA, (R)CCA, PLS

The general philosophy that motivates dimensionality reduction techniques
is the fact that real-life data contain redundancies and noise. Dimensionality
reduction is often a good way to deal with this: by using a low-dimensional ap-
proximate representation, noise can be suppressed and redundancies removed.
The data are replaced by a summary that still captures as much information
as possible. All methods described in this section can be useful as a prepro-
cessing step for other algorithms like clustering, classification, regression, and
so on.

We will discuss various ways to perform dimensionality reduction. They
all share the property that they rely on inner products and on eigenproblems.
This has as a consequence that they can easily be made nonlinear using the
kernel trick, and that they are efficiently solved. The difference between them
lies in the cost function they optimize.

Therefore, each of the subsections will be structured as follows: first the
different cost functions leading to the algorithm are described, subsequently
the primal is derived and some properties are given, and finally the dual
formulation is presented. For a previous treatment of these algorithms in their
primal version, we refer to [6].

5.4.1 PCA

Cost Function

The motivation for performing principal component analysis (PCA) [16] is
often the assumption that directions of high variance will contain more in-
formation than directions of low variance. The rationale behind this could be
that the noise can be assumed to be uniformly spread. Thus, directions of
high variance will have a higher signal-to-noise ratio. Mathematically:

w = argmax‖w‖=1w
′X′(w′X′)′,

= argmax‖w‖=1w
′X′Xw,

= argmax‖w‖=1w
′SXXw. (5.6)

Or, for w not normalized this can be written as:

w = argmaxw

w′SXXw
w′w

.

The solution of Eq. (5.6) is also equivalent to minimizing the 2-norm of
the residuals. This can be seen by projecting all samples X on the subspace
orthogonal to w (by left multiplication with (I −ww′)), and computing the
Frobenius norm:
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w = argmin‖w‖=1‖X(I−ww′)‖2F,
= argmin‖w‖=1trace ([X(I−ww′)]′[X(I−ww′)]) ,

= argmin‖w‖=1trace (X′X + ww′X′Xww′ − 2X′Xww′) ,

= argmin‖w‖=1trace(SXX) + ‖w‖2w′SXXw− 2w′SXXw,

= argmin‖w‖=1 −w′SXXw.

Primal

Differentiating the Lagrangian L(w, λ) = w′SXXw− λw′w corresponding to
Eq. (5.6) with respect to w and equating to zero leads to

∇wL(w, λ) = ∇w(w′SXXw − λw′w) = 0,
⇔ SXXw = λw.

This is a symmetric eigenvalue problem as presented in Sect. 5.2. Such an
eigenvalue problem has d eigenvectors. All are called principal directions, cor-
responding to their variance λ.

Properties

• All principal directions are orthogonal to each other.
• The principal directions can all be obtained by optimizing the same cost

function, where the above property is explicitly imposed.
• The projections of the data onto different principal directions are uncor-

related : (Xwi)′Xwj = 0 for i �= j. Note that one could as well say the
projections are orthogonal. This is equivalent, but we will use the notion
of correlation when we are talking about projections of data onto a weight
vector. Because of this property of PCA, it is sometimes called linear
decorrelation.

• The PCA solution is equivalent to, and can thus be obtained by computing,
the singular value decomposition of X.

Dual

To derive the dual, we use the key fact that w will always be a linear combi-
nation of the columns of X′ (to see this, note that w = 1

λSXXw = X′ Xw
λ ).

We can thus replace w with X′α, where α are the dual variables. The dual
problem is then:

SXXX′α = λX′α,
⇒ XSXXX′α = λXX′α,

⇒ K2
Xα = λKXα. (5.7)
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When KX has full rank, we can multiply Eq. (5.7) by K−1
X on the left-hand

side, leading to:

KXα = λα. (5.8)

On the other hand, when KX is rank deficient, a solution for Eq. (5.7) is not
always a solution for Eq. (5.8) anymore (however, the converse is still true).
Then for α0 lying in the null space of KX, and α a solution of Eq. (5.8) (and
thus also of Eq. (5.7)), also α + α0 is a solution of Eq. (5.7) but generally not
of Eq. (5.8). But, since KXα0 = 0 and thus X′α0 = 0, the component α0 will
have no effect on w = X′(α + α0) = X′α anyway, and we can ignore the null
space of KX by simply solving Eq. (5.8) also in the case KX is rank deficient.

Since KX is a symmetric matrix, the dual eigenvectors will be orthogonal
to each other. The projections of the training samples onto the weight vector
w are Xw = XX′α = λα. Thus, the vector α is proportional with (and thus
up to a normalization equal to) the projections of the training samples onto
this weight vector. The fact that different dual vectors are orthogonal is thus
equivalent to the observation that the projections of the data onto different
weight vectors is uncorrelated.

Projection of a test point onto the PCA direction found can be carried out
as

ytest =
n∑

i=1

αik(xi,xtest).

5.4.2 Canonical Correlation Analysis (CCA) and Regularized CCA

While PCA deals with only one data space X where it identifies directions of
high variance, canonical correlation analysis (CCA, first introduced in [15])
proposes a way for dimensionality reduction by taking into account relations
between samples coming from two spaces X and Y. The assumption is that
the data points coming from these two spaces contain some joint information
that is reflected in correlations between them. Directions along which this
correlation is high are thus assumed to be relevant directions when these
relations are to be captured.

Again a primal and a dual form are available. The dual form makes it
possible to capture nonlinear correlations as well, thanks to the kernel trick
[1, 3, 11].

When data are scarce as compared to the dimensionality of the problem,
it is important to regularize the problem in order to avoid overfitting. This is
provided in the regularized CCA (RCCA) algorithm.

A Small Example

To make things more concrete, consider the following example described in
[31]. Suppose we have two text corpora, one containing English texts, and an-
other one containing the same texts but translated in French. The text corpora
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can be represented by the matrices X and Y containing vectors that are the
bag of words representations of the texts as its rows. Now, since we know that
the same basic semantic information must be present in both the English text
and the French translation, we must be able to extract some information from
every row of X that is similar to information extracted from the rows of Y. If
we do this in a linear way, this would mean that XwX and YwY are similar
in a way, for some wX and wX representing a certain semantic meaning. This
could be: XwX and YwY are correlated, thus motivating the cost function
introduced below. In [31], it is pointed out that many of the wX-wX pairs
found can indeed be related to an intuitively satisfying semantic meaning.
Other examples are available in literature, notably in bioinformatics [30, 35].

Cost Function

We thus want to maximize the correlation between a projection XwX of X
and a projection YwY of Y. Or, another geometrical interpretation is: find
directions XwX,YwY in the column space of X and Y with a minimal angle
between each other (we will use the notation SXY = X′Y, the cross-scatter
matrix):

{wX,wY} = argmaxwX,wY
cos (∠(XwX,YwY)) ,

= argmaxwX,wY

(XwX)′(YwY)√
(XwX)′(XwX)

√
(YwY)′(YwY)

,

= argmaxwX,wY

w′
XSXYwY√

w′
XSXXwX

√
w′

YSYYwY

.

Since the norm of the weight vectors does not matter, we can maximize
correlation along the weight vectors, or ‘fit’ subject to constraints fixing the
value of these weight vectors:

{wX,wY} = argmaxwX,wY
w′

XSXYwY

s.t. ‖XwX‖2 = w′
XSXXwX = 1, ‖YwY‖2 = w′

YSYYwY = 1.

This is equivalent to the minimization of a ‘misfit’ subject to these con-
straints:

{wX,wY} = argminwX,wY
‖XwX −YwY‖2

s.t. ‖XwX‖2 = 1, ‖YwY‖2 = 1.

Primal

We solve the second formulation of the problem. Differentiating the La-
grangianL(wX ,wY, λX, λY) = w′

XSXYwY−λXw′
XSXXwX−λYw′

YSYYwY

with respect to wX and wY and equating to 0, gives
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∂wX
L(wX,wY, λX, λY) = 0,

∂
∂wY
L(wX,wY, λX, λY) = 0,

⇒
{

SXYwY = λXSXXwX,
SYXwX = λYSYYwY.

Now, since from this

λXw′
XSXXwX = w′

XSXYwY = w′
YSYXwX = λYw′

YSYYwY,

and since w′
XSXXwX = w′

YSYYwY = 1, we find that λX = λY = λ, and
thus {

SXYwY = λSXXwX,
SYXwX = λSYYwY.

(5.9)

Or, stated in another way as a generalized eigenvalue problem,(
0 SXY

SYX 0

)(
wX

wY

)
= λ

(
SXX 0
0 SYY

)(
wX

wY

)
. (5.10)

This generalized eigenvalue problem has 2d eigenvalues. But, for each positive

eigenvalue λ and corresponding eigenvector
(

wX

wY

)
, −λ is an eigenvalue too

with corresponding eigenvector
(

wX

−wY

)
. Thus, we get all the information by

only looking at the d positive eigenvalues. The largest one with its eigenvector
corresponds to the optimum of the cost function described earlier. The weight
vectors making up the other eigenvectors will be referred to as other canonical
directions, corresponding to a smaller canonical correlation quantized by their
corresponding eigenvalue.

Properties

• CCA not only finds pairs of directions that capture maximal correlations
between each other. Projections onto canonical directions corresponding
to a different canonical correlation are uncorrelated :

λiw′
Y,j(SYYwY,i) = w′

Y,j(SYXwX,i),
= w′

X,i(SXYwY,j),
= λjw′

X,i(SXXwX,j),
= λjw′

X,j(SXXwX,i).

And similarly,

λiw′
X,j(SXXwX,i) = λjw′

Y,j(SYYwY,i).

So for λi �= λj , the projection of Y onto wY,j is uncorrelated with the
projection of X onto wX,i: w′

Y,jSYXwX,i = 0. Similarly, w′
X,jSXXwX,i =
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0, and w′
Y,jSYYwY,i = 0. Another way to state this is to say that wX,i

is orthogonal to wX,j in the metric defined by SXX; similarly, wY,i is
orthogonal to wY,j in the metric defined by SYY.

• All canonical directions can be captured by a constrained optimization
problem in which the above property is explicitly imposed:

{wX,i,wY,i} = argmaxwX,i,wY,i
w′

X,iSXYwY,i

s.t. ‖XwX,i‖ = w′
X,iSXXwX,i = 1

‖YwY,i‖ = w′
Y,iSYYwY,i = 1

and for j < i :
w′

X,jSXXwX,i = 0,
w′

Y,jSYYwY,i = 0.

• The CCA problem can be reformulated as an ordinary eigenvalue problem:(
0 SXX

−1SXY

SYY
−1SYX 0

)(
wX

wY

)
= λ

(
wX

wY

)
.

This eigenvalue problem can be made symmetric by introducing vX =
SXX

1/2wX and vY = SYY
1/2wY:(

0 SXX
−1/2SXYSYY

−1/2

SYY
−1/2SYXSXX

−1/2 0

)(
vX

vY

)
= λ

(
vX

vY

)
.

Note that this eigenvalue problem is of the form of Eq. (5.2), so here vX

and vY are the left and right singular vectors of SXX
−1/2SXYSYY

−1/2.
The weight vectors can be retrieved as wX = SXX

−1/2vX and wY =
SYY

−1/2vY.
By the orthogonality of the singular vectors, we can derive in an alter-
native way that projections onto noncorresponding canonical directions
are uncorrelated: 0 = v′

X,ivX,j = w′
X,iSXXwX,j , and 0 = v′

Y,ivY,j =
w′

Y,iSYYwY,j. Also, we find that 0 = v′
X,iSXX

−1/2SXYSYY
−1/2vY,j =

w′
X,iSXYwY,j.

• As a last remark, we note that CCA where one of both data spaces is
one-dimensional is equivalent to least squares regression (LSR).

Dual

To derive the dual, again note that the (minimum norm3) wX and wY will lie
in the column space of X and Y, respectively (thus, analogously to Eq. (5.3),
3 The motivation for taking the minimum norm solution is as follows: first of all,

we need to make a choice in cases where there is an indeterminacy as is when
the rows of X and/or Y do not span the whole space. And a component of the
weight vectors orthogonal to the data would never contribute to the correlation of
a projection of the data onto this weight vector anyway; the projection onto this
orthogonal direction would be zero. We do not get any information concerning
the orthogonal subspace, and thus do not want w to make any unmotivated
predictions on this. In this chapter we always look for minimum norm solutions.
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wX = X′αX and wY = Y′αY; see also [3] for a more detailed explanation).
Thus we can write(

0 SXY

SYX 0

)(
X′αX

Y′αY

)
= λ

(
SXX 0
0 SYY

)(
X′αX

Y′αY

)
⇓ multiplying left with

(
X 0
0 Y

)
(

0 XSXYY′

YSYXX′ 0

)(
αX

αY

)
= λ

(
XSXXX′ 0

0 YSYYY′

)(
αX

αY

)
⇓(

0 KXKY

KYKX 0

)(
αX

αY

)
= λ

(
K2

X 0
0 K2

Y

)(
αX

αY

)
.

Projections of test points xtest and ytest onto the CCA directions corres-
ponding to αX and αY can then be carried out as

n∑
i=1

αX,ik(xi,xtest), and
n∑

i=1

αY,ik(yi,ytest). (5.11)

Regularization

Primal problem

Regularization is often necessary in doing CCA for the following reason. The
scatter matrices SXX and SYY are proportional to finite sample estimates
of the covariance matrices. This generally leads to poor performance in case
of small eigenvalues of these covariances. Remember the generalized eigen-
value problem is (theoretically) equivalent with a standard eigenvalue problem
where the right-hand side matrix containing the scatter matrices is inverted.
Any fluctuation of the smallest eigenvalue will thus be blown up in the inverse.
To counteract this effect, one often adds a diagonal to the scatter matrices, or
equivalently to each of their eigenvalues [3]. In this way, a bias is introduced,
but it is hoped that for a certain bias, the total variance will be lower than
the case when no bias is present.

An equivalent way to view this is, as presented above in the ridge regression
derivation, by interpreting the regularization as a reduction of the effective
number of degrees of freedom. Generalization will be more likely to be good.

The primal regularized problem is thus(
0 SXY

SYX 0

)(
wX

wY

)
= λ

(
SXX + γI 0

0 SYY + γI

)(
wX

wY

)
.

Intuitively, this type of regularization boils down to trusting correlations along
high-variance directions more than along low-variance directions. Or, equiva-
lently, it corresponds to a modified optimization problem where the constraints
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contain an additional term constraining the norm of wX and wY, similarly
to the ridge regression cost function.

Note that RCCA with one of both spaces one-dimensional is equivalent to
ridge regression (RR).

Dual problem

The dual of this generalized eigenvalue problem can be derived in the same
way as the unregularized problem, leading to:(

0 KXKY

KYKX 0

)(
αX

αY

)
= λ

(
K2

X + γKX 0
0 K2

Y + γKY

)(
αX

αY

)
.(5.12)

In the dual case, the need for regularization is often even stronger than in the
primal case. This is because the feature space is often infinite-dimensional, so
that the freedom to find correlations is much too high. All correlations would
be equal to 1, which means no generalization is possible at all. Penalizing a
large weight vector as above thus makes sense to improve generalization.

When both the kernels have full rank, left-multiplication on both sides of

Eq. (5.12) with
(

K−1
X 0
0 K−1

Y

)
reveals that this generalized eigenvalue problem

is equivalent with(
0 KY

KX 0

)(
αX

αY

)
= λ

(
KX + γI 0

0 KY + γI

)(
αX

αY

)
. (5.13)

Kernel matrices are often rank deficient, however (e.g. when they are cen-
tered). In that case the solutions of Eq. (5.13) are still solutions for Eq. (5.12),
but the converse is no longer always true. The reason is that for any genera-

lized eigenvector
(

αX

αY

)
of Eq. (5.13) and thus of Eq. (5.12),

(
αX + αX0

αY + αY0

)
,

where αX0 and αY0 are arbitrary vectors lying respectively in the null spaces
of KX and KY, is also an eigenvector with the same eigenvalue of Eq. (5.12)
but generally not of Eq. (5.13). However, similarly as in the ridge regres-
sion derivation, it can be seen that these components αX0 and αY0 play
no role in the calculation of Eq. (5.11). This is because the weight vectors
wX = X′(αX + αX0) = X′αX and wY = Y′(αY + αY0) = Y′αY are unaf-
fected by the components in the null spaces of KX and KY. Therefore, we
can choose to solve either Eq. (5.12) or Eq. (5.13).

5.4.3 Partial Least Squares

Partial least squares (PLS, introduced in [33, 34]; see also [14] for a good
review) can be interpreted in two ways. The first PLS component is the maxi-
mally regularized version of the first CCA component (the case where γ →∞,
after rescaling the eigenvalues by multiplying them with γ). Another view is
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as a covariance maximizer instead of a correlation maximizer, this again for
the first PLS component. Whereas all PLS formulations compute the first
component in the same way, there is no one way to compute the other compo-
nents. We will present two variants: so-called EZ-PLS, which consists of only
one eigenvalue decomposition (or a singular value decomposition) and which
is used mainly for exploratory purposes (similar to CCA), and regression-PLS
which is a more involved version that is most widely used in (multivariate)
regression applications.

Because of the iterative way PLS components are computed in, and be-
cause of the fact that there exist several variants of PLS, the discussion is
somewhat more involved. We will first give a general discussion on the cost
function optimized in all PLS formulations, followed by the eigenproblem op-
timizing this cost function. Next, we will shortly go into some computational
aspects. Finally, we will show the particularities of the two PLS formulations
EZ-PLS and regression-PLS, followed by a discussion of the regression step
in regression-PLS. Again, a primal and a dual (see [19] where this was first
derived) formulation will be provided.

Cost Function

Maximize the sample covariance4 between a projection of X and a projection
of Y:

{wX,wY} = argmaxwX,wY

(XwX)′(YwY)√
w′

XwX

√
w′

YwY

,

= argmaxwX,wY

w′
XSXYwY√

w′
XwX

√
w′

YwY

.

This is equivalent to maximizing the sample covariance, or the ‘fit’ subject
to constraints:

{wX,wY} = argmaxwX,wY
w′

XSXYwY

s.t. ‖wX‖2 = w′
XwX = 1, ‖wY‖2 = w′

YwY = 1,

and equivalent to minimizing the misfit subject to these constraints:

{wX,wY} = argminwX,wY
‖XwX −YwY‖2

s.t. ‖wX‖2 = 1, ‖wY‖2 = 1.

Primal

We solve the second formulation of the problem. Differentiating the La-
grangian L(wX,wY, λX, λY) = w′

XSXYwY − λXw′
XwX − λYw′

YwY with
respect to wX and wY and equating to 0 gives
4 Note the difference between CCA where correlation was maximized.
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∂wX
L(wX,wY, λX, λY) = 0,

∂
∂wY
L(wX,wY, λX, λY) = 0,

⇒
{

SXYwY = λXwX.
SYXwX = λYwY.

Since from this

λXw′
XwX = w′

XSXYwY = w′
YSYXwX = λYw′

YwY,

and since w′
XwX = w′

YwY = 1, we find that λX = λY = λ. Thus{
SXYwY = λwX,
SYXwX = λwY.

(5.14)

Or, stated in another way as an eigenvalue problem,(
0 SXY

SYX 0

)(
wX

wY

)
= λ

(
wX

wY

)
. (5.15)

This eigenvalue problem has d eigenvalues, corresponding to a covariance bet-
ween projections onto wX and wY. The largest one with its eigenvector cor-
responds to the optimum of the cost function described earlier.

Note that Eq. (5.15) is of the form of Eq. (5.2). Thus the EZ-PLS problem
can be solved by calculating the singular value decomposition of SXY.

Dual

The dual problem can easily be found by using Eq. (5.3):(
0 KXKY

KYKX 0

)(
αX

αY

)
= λ

(
KX 0
0 KY

)(
αX

αY

)
,

which includes all solutions of(
0 KY

KX 0

)(
αX

αY

)
= λ

(
αX

αY

)
(5.16)

as its solutions as well. Similarly, as in CCA this is the formulation of the dual
problem that is solved, since it does not suffer from indeterminacies.

Projections of test points xtest and ytest onto the PLS directions corres-
ponding to αX and αY can then be computed as

n∑
i=1

αX,ik(xi,xtest), and
n∑

i=1

αY,ik(yi,ytest).

It is important to note that the first component corresponds to maximally
regularized RCCA. Taking more than one component lessens this regulariza-
tion in an alternative way in comparison to RCCA. This will be the subject
of the remainder of this section on PLS.
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Nonlinear Iterative Partial Least Squares and Primal-Dual
Symmetry in PLS

A straightforward way to solve for the largest eigenvector of Eq. (5.15) could be
by using the power method. However, thanks to the structure of the eigenvalue
problems at hand, it can be solved by using the so-called nonlinear iterative
partial least squares (NIPALS) method [33]. Note that, from Eqs. (5.15) and
(5.16):

• YY′XX′αX = λ2αX.
• X′YY′XwX = λ2wX.
• XX′YY′αY = λ2αY.
• Y′XX′YwY = λ2wY.

Thus it follows that both the primal and the dual eigenvalue problem are
actually solved at the same time, using the following ‘power’ method:

0. Fix initial value wY, normalize. Then iterate over steps 1-4.
1. αX = YwY.
2. wX = X′αX, normalize wX to unit length.
3. αY = XwX.
4. wY = Y′αY, normalize wY to unit length.

After convergence, the normalizations carried out in steps 2 and 4 both
amount to a division by λ; then wX = 1

λX′αX and wY = 1
λY′αY.

In case the feature vectors X are only implicitly determined by a kernel
function, steps 2 and 3 must be combined in one step:

2,3. αY = KXαX, normalize.

It can be seen that each of these weight vectors or dual vectors converge to
the eigenvector of the above four eigenvalue problems (combining four steps
following each other gives the power method for one of these four eigenvalue
problems). Since these are equivalent with Eqs. (5.15) and (5.16), they con-
verge to the PLS weight vectors and dual vectors.

In this way, we can solve efficiently for the largest singular value and sin-
gular vectors. Only this one component is not enough to solve most practical
problems, however. We discuss two ways to extract more information present
in the data: what we call EZ-PLS and regression-PLS. For both methods first
the primal versions will be discussed, then afterwards the dual.

EZ-PLS

Primal

In EZ-PLS, the other PLS directions are the other eigenvectors corresponding
to a different covariance (eigenvalue) λ. This can be accomplished by using
an iterative deflation scheme:
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1. Initialize: SXY
0 ← SXY.

2. Compute the largest singular value of SXY
i with NIPALS. This gives the

ith PLS component. Normalize so that ‖wX,i‖ = ‖wY,i‖ = 1.
3. Deflate the scatter matrices:

SXY
i+1 ← SXY

i − λiwX,iw′
Y,i.

The rank of SXY
i+1 is 1 less than the rank of SXY

i.
4. When the number of desired components (necessarily lower than the rank

of SXY) is not yet reached, go to step 2.

The deflation of the Xi matrix for EZ-PLS, in order to get the desired deflation
of the cross-scatter matrix, is

Xi+1 ← Xi −XiwX,iw′
X,i.

Similarly, one could do the deflation of the Yi matrix

Yi+1 ← Yi −YiwY,iw′
Y,i,

also leading to the same desired deflation of the cross-scatter matrix.

Dual

Taking Eq. (5.3) or equivalently the NIPALS iteration into account, the de-
flation of the kernel matrices corresponding to the EZ-PLS deflation is found
to be

Ki+1
X ← Ki

X −
1
λ2

i

Ki
XαX,iα′

X,iK
i
X = Ki

X − αY,iα′
Y,i.

Properties

• Since the wX,i and the wY,i are the left and right singular vectors of SXY,
all wX,i are orthogonal to each other, and all wY,i are orthogonal to each
other.

• For the same reason, if i �= j: w′
X,iSXYwY,j = 0. In other words, projec-

tions onto noncorresponding wX,i and wY,j are uncorrelated.
• All EZ-PLS components can be calculated at once by optimizing the same

cost function as for the first component, taking the first (orthogonality)
property into account as an additional constraint.

The EZ-PLS form is the easiest, in the sense that because of the nature of the
deflation, it is in fact not more than solving for the most important singular
vectors of SXY. That is why it is discussed here; it is less useful in practice.
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Regression-PLS

Whereas EZ-PLS is not often used for regression (note that it is entirely
symmetric between X and Y, whereas regression is not; it is rather used for
modelling though), regression-PLS is the PLS formulation that is generally
preferred for (multivariate) regression (see [14]). We will first discuss the de-
flations that are characteristic for regression-PLS. Further on we will explain
how regression can be carried out using the results from these deflations.

Primal

The difference between EZ-PLS and Regression-PLS lies in the way the defla-
tion is carried out. Regression-PLS has the intention of modelling one (pos-
sibly) vectorial variable Y with the other vectorial variable X, hence the
name.5 It is thus asymmetric between the two spaces, which is expressed in
the deflation step:

2,4. Deflate by orthogonalizing Xi to its projection onto the weight vector
wX,i, XiwX,i, and recomputing the scatter matrix:

Xi+1 ←
(

I−
XiwX,iw′

X,iX
i′

w′
X,iXi′XiwX,i

)
Xi = Xi −

XiwX,iw′
X,iX

i′

w′
X,iXi′XiwX,i

Xi,(5.17)

=

(
I−

αY,iα′
Y,i

α′
Y,iαY,i

)
Xi. (5.18)

Finally (see later, Eq. (5.28)) we will perform a regression of Y based on
the αY,i. (The αY,i can be computed from X as will become clear later,
see Eq. (5.27).) Therefore, we also deflate Yi with αY,i to remove the
information captured by the ith iteration:

Yi+1 ←
(

I−
αY,iα′

Y,i

α′
Y,iαY,i

)
Yi. (5.19)

This boils down to the following deflation of the scatter matrix:

SXY
i+1 ← SXY

i − λi

w′
X,iSXX

iwX,i

SXX
iwX,iw′

Y,i.

The philosophy behind this kind of deflation is as follows: after step i, part of
the information in Xi, namely its projection αY,i onto the ith PLS direction
wX,i, is captured already: the component αY,iα′

Y,i

α′
Y,iαY,i

Xi of Xi (along αY,i) per-

fectly models the component αY,iα′
Y,i

α′
Y,iαY,i

Yi of Yi. This information should not

be used or modelled again in next steps, so it is ‘subtracted’ from both Xi

and Yi. In the next step, the direction of maximal covariance between the
remaining information Xi+1 and Yi+1 is found, and so on.
5 In literature this form of PLS is best known as PLS2, or PLS1 for the case where

Y is one-dimensional.
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Dual

Using Eqs. (5.18) and (5.19), the deflation of the kernel matrices corresponding
to the regression-PLS deflation can be shown to be

Ki+1
X ←

(
I−

αY,iα′
Y,i

α′
Y,iαY,i

)
Ki

X

(
I−

αY,iα′
Y,i

α′
Y,iαY,i

)
.

Analogously,

Ki+1
Y ←

(
I−

αY,iα′
Y,i

α′
Y,iαY,i

)
Ki

Y

(
I−

αY,iα′
Y,i

α′
Y,iαY,i

)
.

Properties

• The different weight vectors wY,i are not orthogonal (it is even possible
that they are all collinear, e.g. in the case where Y is one-dimensional). The
different weight vectors wX,i, however, are orthogonal. Using Eq. (5.17),

w′
X,iS

i+1
XY = w′

X,i

((
I−

XiwX,iw′
X,iX

i′

w′
X,iXi′XiwX,i

)
Xi

)′

Yi+1 = 0,

so that wX,i is in the left null space of SXY
i+1. Since wX,i+1 is a

left singular vector of SXY
i+1 this means that wX,i+1 will be orthogo-

nal to wX,i. By replacing the left-most Xi in the above equation by(
I− Xi−1wX,i−1w

′
X,i−1X

i−1′

w′
X,i−1X

i−1′Xi−1wX,i−1

)
Xi−1, and so on for Xi−1, . . ., one can see

that also for j < i, wX,j is orthogonal to wX,i. Thus, all wX,i are mutua-
lly orthogonal:

W′
XWX = I,

where WX represents the matrix built by stacking the vectors wX,i next
to each other.

• The vectors αY,i are mutually orthogonal. Using Eq. (5.18), for i ≤ j one
has:

Xj ′αY,i = Xi′
(

I−
αY,iα′

Y,i

α′
Y,iαY,i

)
. . .

(
I−

αY,j−1α′
Y,j−1

α′
Y,j−1αY,j−1

)
αY,i.

For j = i+ 1, this is immediately proven to be zero. When this product is
zero for all j : i < j < j∗, α′

Y,jαY,i = w′
X,jX

j ′αY,i = 0, and the matrices
between brackets in the above product commute. Since this is indeed true
for j = i + 1, by induction it is proved for all i < j that:

Xj ′αY,i = 0, (5.20)
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and thus by left multiplication with wX,j

α′
Y,jαY,i = 0. (5.21)

Note that since αY,i = XiwX,i, this means that the projections αY,i of
Xi onto their weight vectors wX,i are uncorrelated with each other. This
property may remind you of CCA.

• This orthogonality property in Eq. (5.21) of the αY,i leads to the fact that

wY,i = Yi′αY,i = Y′

(
I−

αY,1α′
Y,1

α′
Y,1αY,1

)
. . .

(
I−

αY,i−1α′
Y,i−1

α′
Y,i−1αY,i−1

)
αY,i

⇒ wY,i = Y′αY,i, (5.22)

up to a normalization.
• Furthermore, one finds that for i < j:

XjwX,i =

(
I−

αY,j−1α′
Y,j−1

α′
Y,j−1αY,j−1

)
. . .

(
I−

αY,iα′
Y,i

α′
Y,iαY,i

)
XiwX,i,

=

(
I−

αY,j−1α′
Y,j−1

α′
Y,j−1αY,j−1

)
. . .

(
I−

αY,iα′
Y,i

α′
Y,iαY,i

)
αY,i,

= 0. (5.23)

This generally does not hold for i ≥ j.
• Another consequence of Eq. (5.21) is, for i < j:

Yj ′αY,i = Yi′
(

I−
αY,iα′

Y,i

α′
Y,iαY,i

)
. . .

(
I−

αY,j−1α′
Y,j−1

α′
Y,j−1αY,j−1

)
αY,i,

= 0. (5.24)

• And thus also, for i < j:

α′
X,jαY,i = wX,jYj ′αY,i,

= 0. (5.25)

• From this it follows that

wX,i = Xi′αX,i = X′

(
I−

αY,1α′
Y,1

α′
Y,1αY,1

)
. . .

(
I−

αY,i−1α′
Y,i−1

α′
Y,i−1αY,i−1

)
αX,i

⇒ wX,i = X′αX,i, (5.26)

up to a normalization factor.
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Thus as a summary:

wX,i ∝ X′αX,i,

wY,i ∝ Y′αY,i,

w′
X,jwX,i = 0,

α′
Y,jαY,i = 0,

α′
X,jαY,i = 0 for i < j,

XjwX,i = 0 for i < j,

Yj ′αY,i = 0 for i < j.

Final Regression in Regression-PLS

Primal

The entire regression-PLS algorithm is composed of a (generally noninvertible)
linear mapping of X towards k so-called latent variables (in the current context
we would rather call them dual variables) αY,i = XiwX,i, followed by a
regression of Y on AY, where AY contains αY,i as its columns.

The part of X that has been deflated and thus will be used for regres-
sion is equal to the sum

∑k
i=1

αY,iα′
Y,i

α′
Y,iαY,i

Xi = AYP′, where the vectors pi =

Xi′ αY,i

α′
Y,iαY,i

make up the columns of P. Analogously, define ci = Yi′ αY,i

α′
Y,iαY,i

making up the columns of C.
Now, if we go on with the deflations until the rank of Xi is zero,6 the space

spanned by the orthogonal vectors αY,i is complete and we have that

X = Atot
Y Ptot′ = AYP′ + Arem

Y Prem′ = AYP′ + EX,

with EX the part of X that is not used in regression when the components
corresponding to Arem

Y are not kept. Also, because of Eq. (5.23) and the defi-
nition of P: pj

′wX,i = 0 for i < j, and thus:

Prem′WX = 0.

This leads to the linear mapping from X to AY:

AYP′WX = XWX

⇒ AY = XWX (P′WX)−1
, (5.27)

where the matrix to be inverted is lower triangular (again because pj
′wX,i = 0

for i < j), so the inversion can be carried out efficiently.
6 Note that the number of deflations k will always be smaller (or equal, in full

LSR) than the rank of X. This results in matrices WX,WY,A′
X,A′

Y,P, and C
all having k columns.
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The regression from the latent variables αY towards Y is given by

Y =
k∑

i=1

αY,iα′
Y,i

α′
Y,iαY,i

Yi + Yk+1 = AYC′ + EY, (5.28)

where EY = Yk+1 is the part of Y that is not predicted by the first k PLS
components (the misfit).

Thus, the entire PLS regression formula is given by

ypred =
[
WX (P′WX)−1 C′

]′
xpred =

[
C (W′

XP)−1 W′
X

]
xpred.

Dual

Let us define AX as the matrix containing αX,i as its columns. Now we
use the properties in Eqs. (5.26) and (5.23), showing that WX = X′AX

and Xk+1WX = 0 leading to W′
XP ∝ W′

XX′AY = A′
XKXAY, where

the proportionality is an equality up to a diagonal normalization matrix
A′

YAY on the right-hand side. Furthermore, using Eq. (5.24), it is seen that
E′

YAY = 0 and thus (from Eq. (5.28)) that with the same diagonal norma-
lization matrix as proportionality factor (which will thus be cancelled out),
C ∝ CA′

YAY = Y′AY. This leads to the complete dual form of regression-
PLS:

ypred =
[
Y′AY (A′

XKXAY)−1 A′
XX

]
xpred.

Note that the entire algorithm only requires the evaluation of kernel func-
tions, since Xxpred also consists of inner products only (or equivalently kernel
evaluations k(·, ·)). Using this fact, the solution can be cast in the standard
form of kernel-based pattern recognition algorithms:

ypred =
∑

i

βik(xi,xpred), (5.29)

where βi are the columns of β = Y′AY (A′
XKXAY)−1 A′

X.

5.5 Classification: Fisher Discriminant Analysis (FDA)

Definitions

We first define some symbols necessary to develop the theory. Since these
quantities are defined in general for uncentered data, first this general defi-
nition is given. Afterwards, when appropriate the simplified formula will be
provided for centered data. The latter formulas are the ones used in this sec-
tion.
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• Mean (n is the total number of samples xi)

m =
1
n

∑
i

xi.

• Class mean (Sk is the set of samples belonging to cluster k, and nk = |Sk|,
the number of samples in cluster k; thus n =

∑
k nk)

mk =
1
nk

∑
i:xi∈Sk

xi.

• Total scatter matrix

ST =
∑

k

∑
xi∈Sk

(xi −m)(xi −m)′.

• Within-class k scatter matrix

Sk =
∑

xi∈Sk

(xi −mk)(xi −mk)′.

• Within-class scatter matrix

SW =
∑

k

Sk. (5.30)

• Between-class scatter matrix

SB =
∑

k

nk(mk −m)(mk −m)′.

For centered data (as we will assume in the remainder of this section), we
get:

m = 0,
1
n

∑
k

nkmi = 0,

ST =
∑

k

∑
xi∈Sk

xix′
i = X′X = SXX,

SB =
∑

k

nkmkm′
k.

Finally, the following properties hold:

• ST = SB + SW.
• When the number of classes is 2, they can be indexed as + and −, and:

SB =
n+n−
n

(m+ −m−)(m+ −m−)′. (5.31)
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5.5.1 Cost Function

Fisher discriminant analysis (FDA) [10] is designed for discrimination bet-
ween two classes, indexed by + and −. It finds the direction w along which
the between-class variance divided by within-class variance is maximized:

w = argmaxw

w′SBw
w′SWw

. (5.32)

Note that when w is a solution, cw with c a real number is a solution too.
In fact, we are not interested in the norm of w, but only in the direction it is
pointing at. Thus, equivalently, we could optimize the constrained optimiza-
tion problem

w = argmaxww′SBw (5.33)
s.t. w′SWw = 1.

5.5.2 Primal

This optimization problem can be solved by differentiating the Lagrangian
L(w, µ) = w′SBw − µw′SWw with respect to w and equating to zero:

∇wL(w, µ) = 0

⇒ SBw = µSWw. (5.34)

This is again a generalized eigenvalue problem, with both SB and SW symme-
tric and positive semidefinite. We are interested in the dominant eigenvector.

Another way to get the same result is by maximizing the correlation be-
tween the data projected on a weight vector w with the labels y (for each
sample being 1 or −1, depending on the class the sample belongs to) of the
corresponding data points. This is in fact CCA, applied on the data vectors
on the one hand, and the labels on the other hand:(

0 SXy

SyX 0

)(
wX

wy

)
= λ

(
SXX 0
0 Syy

)(
wX

wy

)
,

from which wX can be solved as

SXX
−1SXyS−1

yySyXwX = λ2wX.

To see that wX = w, note that for centered data X (so m is made equal
to 0 by centering), SXX = ST = SB + SW, Syy = n is a scalar, and SXy =
X′y = n+m+ − n−m−. One can then show that SXyS−1

yySyX = 4n+n−
n2 SB,

and thus
4n+n−

n2
SBwX = λ2(SB + SW)wX

⇒ SBwX =
λ2

4n+n−
n2 − λ2

SWwX.



5 Eigenproblems in Pattern Recognition 159

This is exactly the Fisher discriminant generalized eigenvalue problem, with
µ = λ2

4n+n−
n2 −λ2

and w = wX.

5.5.3 Dual

Define y+ as (y+)i = δyi,1 and y− as (y−)i = δyi,−1 (where we use the Dirac
delta δi,j , which is equal to 1 if i = j and to 0 if i �= j). The dual can again
be derived by using w = X′α:

SBw = µSWw

⇓ Eqs. (5.30), (5.31)
n+n−

n X(m+ −m−)(m+ −m−)′X′α
= µX

∑
k=+,−

∑
xi∈Sk

(xi −mk)(xi −mk)′X′α
⇓

n+n−
n KX

(
y+
n+
− y−

n−

)(
y+
n+
− y−

n−

)′
KXα

= µKX

(
I− 1

n+
y+y′

+ − 1
n− y−y′

−

)
KXα

⇓
Mα = µNα,

where we substituted M = n+n−
n KX

(
y+
n+
− y−

n−

)(
y+
n+
− y−

n−

)
K′

X, and N =

KX

(
I− 1

n+
y+y′

+ − 1
n− y−y′

−

)
KX.

For centered data as is assumed here, the projection of a test point xtest
onto the FDA direction corresponding to α can again be computed as

n∑
i=1

αik(xi,xtest).

5.5.4 Multiple Discriminant Analysis (MDA)

While Fisher discriminant analysis is originally designed for the two-class
problem, optimization of the very same cost function (Eqs. (5.32) and (5.33))
leading to the same generalized eigenvalue problem in Eq. (5.34) can be used
for solving the multiclass problem (e.g. [9]). In that case, a few generalized
eigenvector may be necessary to do the classification (typically the number of
clusters minus one).

The intuition behind this is to maximize the total between-class covariance
for a certain amount of within-class covariance. This amounts to maximizing
the signal-to-noise ratio present in the projections of the samples onto the
discriminant directions. Here, the distance between the projected clusters is
the signal one is interested in, and the variance in the projections of the
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clusters is the noise. Interestingly, it has been shown that PLS also maximizes
the between-class covariance when computed on a class indicator matrix Y,
however, this is done without considering the within-class covariance [4, 20].
Deriving the dual version of MDA can be done in a similar way as for FDA.

5.6 Spectral Methods for Clustering

Clustering is a standard problem in pattern recognition: identify groups of
samples that supposedly belong to the same class, without any information
on the class labels (unsupervised). The problem is often solved with classical
algorithms of which the K-means algorithm is the best known. Most of these
algorithms are designed for data with Gaussian class distributions. In many
cases, however, this is an oversimplification. Furthermore, many well-known
algorithms are based on a nonconvex optimization problem.

Therefore in recent years a significant amount of research has been carried
out in the field of spectral clustering (SC) [2, 5, 8, 17, 18, 22, 26, 32]. The
clustering problem is relaxed or restated, leading to efficient algorithms with a
simple eigenvalue problem at the core. Furthermore, in general no Gaussianity
assumptions are made.

Spectral clustering algorithms generally consist of three components: the
computation of a suitable affinity matrix, expressing the similarities between
the samples; an eigenvalue problem based on this affinity matrix, returning
(eigen)vectors that reflect the cluster structure in the data; and a final step
performing the actual clustering, based on these eigenvectors. In the next three
subsections we will briefly go into each of these aspects.

5.6.1 The Radial Basis Function as the Kernel

Whereas standard clustering methods assume Gaussian class distributions (or
make similar assumptions on the distribution), spectral clustering methods in-
tend not to do this. In order to achieve this goal, the use of the Euclidian inner
product as a similarity measure between the samples is avoided. Instead, the
kernel trick can be used to implicitly compute an inner product between fea-
ture maps of the samples. More specifically, in spectral clustering algorithms,
most often the radial basis kernel function (RBF kernel) is used as similarity
measure:

k(xi,xj) = exp
(
−‖xi − xj‖2

2σ2

)
.

Note that for ‖xi − xj‖ ! σ, the RBF kernel is k(xi,xj) " 1− ‖xi−xj‖2

2σ2 .
Thus, locally, the RBF kernel is related to the Euclidian metric. On the other
hand, for two points at a farther Euclidian distance from each other (that is,
‖xi − xj‖ # σ), we have that k(xi,xj) " 0. The result is that the algorithm
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will not see if a group of points with a ‘diameter’ considerably larger than
σ is Gaussianly distributed or not. Only for samples that are relatively close
to each other, it will give an indication of how close exactly they are. This is
desirable: it allows us to cluster samples that are stretched out in a nonlinear
shape.

Even though, in spectral clustering methods, very often an RBF kernel is
used, it is important to know that the similarity measure does not have to
be positive definite; however, for most spectral clustering variants (such as
the ones described in Sects. 5.6.2 and 5.6.2), it has to be nonnegative (which
is indeed true for the RBF kernel). Because of the absence of the positive
definiteness requirement, the matrix containing the similarities between the
samples is usually called the affinity matrix in this context, instead of the
kernel matrix. Besides the RBF kernel matrix, other affinity matrices are
used in literature, such as the k-nearest neighbor affinity matrix. However, for
uniformity in this chapter, here we will continue to use the term kernel matrix
instead of affinity matrix, and denote it by K.

As opposed to the techniques discussed in the previous sections, in spec-
tral clustering, usually the kernel/affinity matrix is not centered. In case it is
centered, we will denote this explicitly, here, by using Kc.

5.6.2 Which Eigenvectors?

We will only give a brief overview of the methods available in the literature. All
of them compute the eigenvectors of a (generalized) eigenproblem involving
K. We will outline two methods that represent a relaxation of a discrete
optimization problem on a graph, and another method based on the alignment
between two matrices. Every method described is derived for the two-cluster
case. However, they appear to be extendible towards multicluster problems,
by taking more than one eigenvector (often k − 1 when there are k clusters).

Normalized Cut Cost

Shi and Malik [26] start from graph theoretic concepts. They relax the problem
of finding the minimal normalized cut cost (NCut) of the graph, where nodes
of the graph correspond to samples and the (positive) kernel entries are the
weights (affinities) of the edges in between the nodes. Intuitively, an NCut is
the total affinity between the clusters, normalized by the total affinity of each
cluster with the entire sample. Mathematically, this is

NCut(K,y) =

∑
i,j:yi=−yj=1 Kij∑

i:yi=1

∑
j Kij

+

∑
i,j:yi=−yj=−1 Kij∑

i:yi=−1

∑
j Kij

.

Thus, one looks for a label assignment yi ∈ {1,−1} such that NCut(K,y) is
minimized.
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This problem can be proven to be equivalent to minimizing �y′(D−K)�y
�y′D�y

subject to ỹi ∈ {1,−ỹ}, and ỹ′D1 = 0, for some ỹ and for D = diag(K1).
When the discrete vector ỹ is replaced by a continuous vector αi, so the
problem is relaxed, an approximation for the unrelaxed problem solution can
be found by solving the generalized eigenvalue equation:

(D−K)α = λDα s.t. α′D1 = 0,

where one is interested in the vector α corresponding to the smallest eigenvalue
λ while satisfying the constraint. One can show, however, that the constraint is
satisfied for all of the generalized eigenvectors except for the one with smallest
eigenvalue λ = 0 with corresponding generalized eigenvector α = 1. Thus, one
searches for the eigenvector with the smallest nonzero eigenvalue.

Average Cut Cost

Another approach discussed in [26] is based on a relaxation of the minimum
average cut cost (ACut) problem. The ACut cost is the sum of the (positive)
kernel entries corresponding to pairs of points belonging to different classes,
normalized by the number of samples in both classes:

ACut(K,y) =

∑
i,j:yi=−yj=1 Kij∑

i:yi=1 1
+

∑
i,j:yi=−yj=−1 Kij∑

i:yi=−1 1
,

where again yi ∈ {1,−1}. This is similar to the NCut problem, and gives rise
to a similar eigenvalue problem to be solved after relaxation:

(D−K)α = λα.

The eigenvector α corresponding to the smallest nonzero eigenvalue will reflect
the cluster structure of the data.

Alignment-Based Approach

The alignment-based method (proposed in [8]) is a relaxation of the problem
to find a label assignment that maximizes the alignment between the label
matrix and the centered kernel matrix Kc:

max
y

y′Kcy s.t. yi ∈ {1,−1}.

Since this problem would be combinatoric again, it is relaxed by replacing the
discrete vector y with a continuous vector α

max
α

α′Kcα s.t. ‖α‖ = n

for n samples. This corresponds to solving the eigenvalue problem:

Kcα = λα.

Here the dominant eigenvector contains the relaxed labels as its entries.
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5.6.3 What to do With the Eigenvectors?

We have now discussed how to compute eigenvectors that reflect the clustering
in some way. There are different methods to extract the final clustering from
these eigenvectors. In general, one constructs a matrix A = (α1α2 · · ·αk)
containing the eigenvectors as its columns. Then some traditional distance-
based clustering is performed on the rows of A in this k-dimensional space,
sometimes after normalizing all rows of A to unit length. For further reading
on different possible approaches we refer to the literature, see e.g. [18, 22, 36].

5.7 Summary

Table 5.1 contains the cost functions optimized for most of the algorithms
described in this chapter. Tables 5.2 and 5.3 give the primal and the dual
eigenproblems to be solved in order to optimize these cost functions. These
tables contain columns M, N, and v, each indicating which matrices and
eigenvector to use in the generalized eigenproblem of the form Mv = λNv.

Given this, we still need to know how to project test data on the directions
found by solving these generalized eigenproblems. This is summarized as:

• projection of a test sample onto weight vector in primal space w: w′xtest.
• projection of a test sample onto weight vector in feature space correspon-

ding to the dual vector α:
∑n

i=1 αik(xi,xtest).

5.8 Conclusions

Among the algorithms discussed in this chapter, there are a number of classic
methods from multivariate statistics, such as PCA and CCA; some methods
that are virtually unknown in that field but are hugely popular in specific
application domains, such as PLS; and finally some methods that are typi-
cally the product of the machine learning community, such as the clustering
methods presented here, and all the extensions based on the use of kernels. De-
spite coming from so many different fields, the algorithms clearly display their
common features, and we have emphasized them by casting them in a common
notation and with a common language. From those comparisons, and from the
comparison with the family of kernel methods based on quadratic program-
ming, it is clear that this approach based on spectral methods can be consid-
ered another major branch of the KM family. The duality that emerges here
from SVD approaches naturally matches the duality derived by the Kuhn–
Tucker Lagrangian theory developed for those methods, and the statistical
study demonstrates similar properties as shown in [27] and [28].

Some properties of this class of algorithms are already extremely appealing
to machine learning practitioners, while others still need research attention.
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Table 5.1. Cost functions optimized by the different methods

Maximize variance w′SXXw
w′w

PCA w′SXXw s.t. ‖w‖2 = 1

Minimize residuals ‖(I −ww′)X‖2
F

Maximize correlation w′
XSXYwY√

w′
X

SXXwX

√
w′

Y
SYYwY

CCA Maximize fit w′
XSXYwY s.t. ‖XwX‖2 = ‖YwY‖2 = 1

Minimize misfit ‖w′
XX− w′

YY‖2 s.t. ‖XwX‖2 = ‖YwY‖2 = 1

Maximize covariance w′
XSXYwY√

w′
X

wX

√
w′

Y
wY

PLS Maximize fit w′
XSXYwY s.t. ‖wX‖2 = ‖wY‖2 = 1

Minimize misfit ‖w′
XX − w′

YY‖2 s.t. ‖wX‖2 = ‖wY‖2 = 1

Maximize between-class to w′SBw

w′SWw

FDA within-class covariance w′SBw s.t. w′SWw

SC1 Normalized cut cost
�

i,j:yi=−yj=1 Kij
�

i:yi=1
�

j Kij
+

�
i,j:yi=−yj=−1 Kij
�

i:yi=−1
�

j Kij

SC2 Average cut cost
�

i,j:yi=−yj=1 Kij
�

i:yi=1 1
+

�
i,j:yi=−yj=−1 Kij
�

i:yi=−1 1

SC3 Alignment Kc

Table 5.2. Primal forms (not for spectral clustering algorithms)

M N v

PCA SXX I w

RCCA

�
� 0 SXY

SYX 0

�
�
�
�SXX + γI 0

0 SYY + γI

�
�
�
�wX

wY

�
�

PLS

�
� 0 SXY

SYX 0

�
�

�
� I 0

0 I

�
�

�
�wX

wY

�
�

FDA SB SW w

PLS, for example, is designed precisely to operate with input data that are
high-dimensional and present highly correlated features, exactly the situation
created by the use of kernel functions. The match between the two concepts
is perfect, and in a way PLS can be better suited to the use of kernels than
maximal-margin methodologies. Furthermore it is easily extendible towards
multivariate regression. On the other hand, one of the major properties of
support vector machines is not naturally present in eigenalgorithms: sparse-
ness. Deliberate design choices can be made in order to enforce it, but the
optimal way to include sparseness in this class of methods still remains an
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Table 5.3. Dual forms

M N v

PCA K I α

RCCA

�
� 0 KXKY

KYKX 0

�
�
�
�KX

2 + γKX 0

0 KY
2 + γKY

�
�
�
�αX

αY

�
�

PLS

�
� 0 KXKY

KYKX 0

�
�

�
� I 0

0 I

�
�

�
�αX

αY

�
�

n+n−
n

KX

�
y+
n+

− y−
n−

�

FDA ·
�

y+
n+

− y−
n−

�′
KX KX

�
I − y+y′

+
n+

− y−y′
−

n−

�
KX α

SC1 D − K D α

SC2 D − K I α

SC3 Kc I α

open question. Another important point of research is the stability and sta-
tistical convergence of general eigenproblems for finite sample sizes. For work
on the stability of the spectrum of Gram matrices, we refer to [24] and [25].

The synthesis offered by this unified view has immediate practical conse-
quences, allowing for unified statistical analysis and for unified implementation
strategies.
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6.1 Geometrical Aspects of Image Processing

“Image processing” is ill defined, but is perhaps best understood as a disci-
pline defined by the totality of operations people apply to images that yield
again images as their result. This conveniently distinguishes image proces-
sing from “image analysis”, “image interpretation”, “object recognition” and so
forth. Images are thus understood only in a structural, syntactical, but not
semantic sense. Structural analysis is a sine qua non for semantic analysis or
interpretation.

6.1.1 What are “Images”?

There exist two major definitions of images in the literature. In the prag-
matist’s view images are discrete data structures. A rectangular matrix of
nonnegative numbers (typically “bytes”, i.e., in the range [0, 255]) is the pro-
totype. Such images tend to be squarish, and typical sizes are 32 × 32 (an
“icon”) to 4096 × 4096 (presently a very “large” image). In the more sophis-
ticated view images are fields over some base space. For instance, everything
visible from a point is a radiance (in the simplest case a nonnegative radiant
power per area and per solid angle) seen in some direction (base space S2).
The field could be more complicated (we might include spectral density and
state of polarization, for instance) but typically is a scalar physical quantity
with a dimension that is incompatible with the dimensions of the base space.
A common definition of an image is as a cross section I(x, y) of E

2 ×R
+, the

nonnegative reals over the Euclidian plane. Here E2 is conventionally known
as “the image plane”, and I as “the intensity”.

The former definition makes sense in many settings, but I will not consider
it image processing proper (“pixel pushing” is a term one sometimes hears).
My reason is that “images” in common understanding have nothing to do with
discrete data structures. One image may be viewed on a CRT (at 72 ppi, the
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“pixels” having byte values) or on paper from a laser printer (at 600 dpi, the
“pixels” being black (pigment dot) or white (paper base) as the case may be),
and these representations [41] may be considered “the same”. Pixels are, or
at least should be, irrelevant. It is like arithmetic on a computer: The user
should be oblivious of the actual representation of numbers in the machine.
Likewise, image processing is the domain where the pixels are irrelevant.

The latter definition at least does not mention pixels at all. Although
this is as it should be, there are other severe problems with it. One is that the
physical dimensions of the base space and the intensity domain are incommen-
surable. This means that the group of Euclidian similarities cannot possibly
be the group of similarities of image space I. Thus the use of Euclidian diffe-
rential invariants in image processing must be considered nonsensical, albeit
very common in the literature. Another problem is that the image in this
definition has infinite resolution and thus cannot be known. Anything real (I
mean knowable by man) has a finite number of degrees of freedom. Thus the
definition assumes a God’s Eye perspective. We need an operational definition:
The intensity at a given point of the base space can be sampled at a certain
(arbitrary) resolution, and only such samples are real. The resolution may be
as high as you like, but it necessarily has to be finite. The resolution (I will
speak of the “inner scale” of the image) is an essentially arbitrary choice on
the part of the image processor, arbitrary in the sense of not given by nature.
This has numerous important consequences, although this goes often unre-
cognized. In the literature one often considers the resolution as given by the
image (then pixel pushing turns into a vice), or one uses a finite resolution be-
cause forced to (in order to “regularize” the “ill-posed” computations [39]) but
tries to get at the “real” (at infinite resolution) structure. A common example
is the differentiation of images. It is not so much that images are nondifferen-
tiable functions, it is that they are not functions at all. Only derivatives at a
certain scale make sense (and then differentiability is not an issue), the scale
being arbitrary, that is to say, your choice. At any finite resolution the image
(as an ideal, i.e., before being sampled and turned into something real) is a
differentiable function by design (see below).

6.1.2 What is “Image Processing”?

In image processing one operates on images to produce other images. Some
operations are so extremely common that they often escape notice. For ins-
tance, when you print an image seen on the screen, when you view an image
on different screens, and so forth, you perform image processing whether you
know it or not. Sometimes you perform operations on the image that somehow
do not seem to change it. For instance, when you adjust the position of an
image on the CRT screen or adjust the brightness of the display you merely
“translate” the image in I. Likewise, when you print an image at a different
scale or use “gamma transformations”, such as different grades of photo paper,
“contrast” control of your display, you merely “scale” the image in I, and
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so forth. When you use “edge burning” in the darkroom [1] you apparently
“rotate” the image in I, and so forth. In all those cases it seems that only
“congruences” or “similarities” (both to be defined formally) are concerned.

Cases of “true” image processing are also common in the visual arts just
think of solarization, psychedelic coloring, and so forth. In scientific work one
might produce “edginess” images, “zero-crossingness” images and the like.

6.1.3 What Has Geometry To Do With It?

Structural analysis of multiply extended continua is synonymous with geo-
metry. The image space I is intuitively a homogeneous space because we can
easily imagine the “free movement” of configurations in the space. In order to
understand the structure of I we have to formally define its groups of con-
gruences and similarities. An exhaustive study of global and local invariants
then goes a long way towards understanding image structure. Of course, this
is a chore of pure geometry.

Global Geometry

Certain global entities are immediately implicated as invariants because they
are invariant under manipulations of the size, position, rotation, brightness
and gamma controls of your display unit. The images I(x, y) = I0 exp(αx +
βy) are examples. They are “intensity gradient” images, and fiddling with
the controls merely changes their steepness, brightness and direction. Other
examples are images of the kind I(x, y) = I0 exp[(x − a)(y − b)]. These are
remarkable in many respects because of their behavior not only under fiddling
with the aforementioned knobs of the display, but also the focus control: These
images are also invariant under changes of inner scale (see below).

I will show that the gradients are to be considered “planes” in the geometry
of I, whereas the latter type of images are “Clifford planes”, that is, surfaces
that contain two mutually transverse pencils of metrically parallel (to be ex-
plained below) lines. This is typical for the geometry of I; in E

3 such surfaces
would have to be generic planes.

Geometry of the “Deep Structure”

With “deep structure” I mean the structure as a function of resolution. This is
an important problem in practice because many structural elements of images
only occur at certain limited ranges of inner scales. This is intuitively clear
when you consider a “powers of ten” type of scenario [24], where you see a
distant scene, zoom in to see a forest, a treetop, a leaf cluster on a branch,
a leaf, and so forth. Sometimes you “don’t see the forest for the trees”; in
order to see something you have to decide on the relevant inner scale. As you
change your focus (inner scale) the image structure changes and the structure
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of these changes is itself a matter of great interest. Its study is the topic of
“deep structure”, another intrinsically geometric topic.

Human observers are uncannily apt at focussing on the right scales, al-
though this is a moot point as we obviously have an incomplete idea of what
we miss. Increasing resolution is generally considered beneficial (witness the
popularity of microscopes and telescopes), whereas decreasing resolution is
mainly practiced by visual artists in order to better see the composition of
a scene. Indeed, a minifying glass is just as revealing as a magnifying glass.
The image processing literature has only scratched the surface of the topic of
“selecting the right scale” [23].

Local Geometry

Any point of an image is an edge point (or “corner” point, or . . . , you name
it) when defined as the finite activity of edge operators, although some points
carry more “edginess” than others. Thus the very epithet “edge detector” is
void: At any generic point the image is anything you want it to be (i.e., you
run an operator for). Thus feature detectors have no proper place in image
processing. Features are semantic entities (interpretations), not syntactic ones.
Here, (in contradistinction to the bulk of the literature), I talk of “local ope-
rators” instead of feature detectors. The “meaning” of the output of a local
operator is not intrinsic to it, but is dependent upon the context and the task
at hand.

Multilocal Geometry, “Outer Scale”

In “multilocal” geometry it is convenient to define an “outer scale” to com-
plement the notion of “inner scale”. The inner scale is the resolution and is
intuitively thought of as the “size of the points”. Many algorithms imply a
“region of interest” in the sense of the smallest region such that only points
within the region of interest enter the computation. The size of that region
of interest is the outer scale. Here is an example: We think of the points as
circular disks in a densest, thus hexagonal, packing. In order to estimate the
Laplacian of the intensity we would use a region of interest composed of seven
points, the point at the fiducial location and its six nearest neighbors. We esti-
mate the Laplacian as proportional with the difference of the intensity at the
fiducial point and the average intensity over the region. Thus the outer scale
would be three times the inner scale. Now suppose that we had a second-order
jet of differential operators at any point, then we could perform the compu-
tation at a single point! Thus one may trade the complexity of the structure
of a point (the order of the jet of differential operators) with the extent of
the outer scale. For a base space E

2 the nth-order jet has (n + 1)(n + 2)/2
degrees of freedom, thus the diameter of the region in the purely multilocal
(zeroth-order jet) representation is asymptotically roughly the order times the
inner scale.
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Fig. 6.1. A point (left) and another point (center). At right is a locally disordered
region that implements two points at the same location in base space but different
intentities (“parallel points”, see below)

There are many other useful forms of multilocal geometry, of which we
single out one other example [12,13]. Consider a circular region centered at
a given point. Let the diameter of the region (the outer scale) significantly
exceed the inner scale. Then the area contains many independent samples of
intensity. Suppose we ignore their spatial order, then we are left with the local
intensity histogram. When we repeat this for all points we have a histogram-
valued image. Since histograms are invariant against permutation of the sam-
ples all these histogram valued images agree up to local scrambling, which is
why I refer to them as “locally disorderly”. Such structures have many im-
portant applications. Since the histograms are density distributions in the
intensity domain, such images do not correspond to surfaces z(x, y), but to
three-dimensionally extended “clouds” P (x, y, z) in image space. See Fig. 6.1
for the simplest possible and Fig. 6.2 for a more interesting example.

The histogram itself is, of course, also a “deep structure”, since there exist
a continuous family of histograms at different bin widths. In changing the
bin width all the aforementioned constraints that should apply to a proper
deep structure apply. What is especially interesting about histogram-valued
images is that a single location can represent more than one value of the
intensity (because a “point” may contain many “pixels”). Thus it may make
sense to say that the image is both white and black at a certain location,
and a strongly bimodal histogram indeed suggests such an abuse of language.
This is similar to human amblyopic or eccentric vision in which observers can
easily distinguish between average gray surfaces and black and white striped
surfaces, but are at a loss to make out whether the stripes are horizontal or
vertical (or whether the surface is checkered, rather than striped, etc.).

With this kind of structure we arrive at a representation of the image
that is a number of intricately interlocked deep structures, often called “scale
spaces”. The “scales” involved are of various nature: the classical inner scale,
that is, the rock-bottom spatial resolution; the bin width, that is, the resolution
in the intensity domain; and the outer scale of the disorderly representation,
which is the inner scale of the histogram-valued image. In this representation
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Fig. 6.2. A histogram-valued image. The total range of the histogram is represented
by means of cuboids whose tops and bottoms are located at the local maximum and
minimum, respectively, of the intensity

the extremes are “the” image with a definite intensity at every point (then the
histogram degenerates into a single bin!) and “the” histogram of the whole
image (then the “image” has been shrunk to a single point!). In general one
has an image with a certain inner scale (the ultimate spatial resolution), a
certain outer scale (the size of the region over which local histograms are
collected) and a certain bin width (which sets the inner scale, or resolution,
for the local histograms). In the general theory all these entities are described
within a single, unified formalism.

6.2 Theory

Many threads of theory are already well established, but an overall framework
is still sadly lacking. Here I will not spend much discussion on known topics, I
will merely highlight the key principles (from a fundamental perspective, that
is, but the literature often focusses on details that might well be ignored at a
first, global investigation) and indicate how the various threads hang together.
A few topics are much less well known, and I will devote proportionally more
discussion on them.



6 Geometric Framework for Image Processing 177

6.2.1 Image Space

Image space I can hardly be studied without specifying the inner scale in
advance. In this section I assume the inner scale has been settled. Then the
images are differentiable (see below) cross sections of the “intensity” dimension
over the base space (by construction).

The Base Space

The nature of the base space is not too important here. Just for ease of
exposition I will consider two instances, the Euclidian line and the Euclidian
plane. Both are very important in practice. The base space E

1 occurs with
linear CCD arrays in scanners and many industrial imaging applications, as
well as in spectroscopy, and so forth. The base space E2 is, of course the
prototypical example (although an “image” typically covers only a rectangular
region I2 ⊂ E2).

The Intensity Domain

The “intensity domain” can be of very various nature. For this chapter I only
consider a scalar, nonnegative quality; thus the intensity domain is R+, at
least if one abstracts from the physical dimension. However, that the intensity
domain is incommensurable with the base space is crucial [27]. The literature
is rife with nonsensical instances due to neglecting this fact.

Can we find a “natural” representation of the intensity domain? Indeed
we can. Such a representation should (at the very least!) be invariant against
changes of the physical units. For a nonnegative entity this implies that one
should use a logarithmic representation, z = log(I/I0), and consider the z-
dimension to be an affine line. Notice that z is dimensionless because I/I0
is. A change of units would imply I ′ = λI, thus z′ = log(I ′/I ′0) = z. A
change of the reference intensity I0 to I ′0 would imply z′ = log(I/I ′0) =
log(I/I0 × I0/I

′
0) = z + a, which is a mere shift of origin. Moreover, one

would like it to admit of a uniform prior probability density in the absence
of all prior knowledge. Suppose we sample from a two-parameter distribution
P (dx|µ, σ) = h((x− µ)/σ) dx/σ and are given a sample {x1, . . . , xn} (for µ a
location, σ a scale parameter), and we have to estimate µ and σ. What is the
prior f(µ, σ) dµ dσ that expresses total ignorance? Clearly complete ignorance
implies invariance with respect to arbitrary scalings and shifts. Consider the
priors f , g assigned by two observers. You have f(µ, σ) = a g(µ, σ) (a a sca-
ling factor), whereas objectivity implies that f = g. The general solution is
f(µ, σ) = (const)/σ, a result derived by Jaynes [18] that is known in statistics
as “Jeffreys Rule” [19]. This latter finding fits in very well with our earlier con-
siderations based on the physics. Notice that a gamma transformation merely
scales the z-representation, for z′ = [log(I/I0)]′ = log(Iγ/Iγ

0 ) = γz, and thus
conserves constant probability densities. When the z-dimension is treated as
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the affine line A1 (no point singled out as an “origin”, and no “unit” distance)
we have solved the problem of representation. In this chapter I will use z for
the “log-intensity”. (Notice that we now consider points on the full line A

1

instead of the halfline R+.)

6.2.2 Scale Space

An image at different scales is like an atlas [29]: When you page through
the atlas you see the (same) city at various scales. On a world map the city
may fail to be indicated at all, on a finer scale it may be indicated by a
conventional sign (a circle, say) without internal detail, on a still finer map
you may see the structure indicated in a “generalized” manner, on a still finer
scale the generalization becomes less severe and the structure splits up into
substructures, and on the finest scale you may be able to see individual blocks,
parks and major throughways, and, of course, we can image this process to
continue indefinitely. A few general properties are immediately evident. For
instance, everything that is on a coarse map can be traced to a finer map but
not vice versa (see Fig. 6.3). In order to make a coarse map; you need not
even refer to the finest map, you can start at any finer one.

A totally general “scale space” [40] for images should be shift, scale and
rotation invariant (no place, size or orientation being “special”), it should be
build by a linear process (nonlinearity implies specialization too), and the
operation of generalization (called “blurring” here) should yield a semigroup.
Thus one arrives at convolution with a rotationally symmetric kernel that
reproduces itself under convolution. Clearly the kernel should be nonnegative
throughout. It is tricky to formalize the notion that “blurring should only
destroy, not generate detail”. The best way is to insist that the height of
maxima should decrease, while that of minima should increase under blurring.
This guarantees that extrema are not generated by blurring for linear images,
though not for images with a higher dimensional base space. Pairs of critical
points [26] can be generated by blurring, though they tend to live a short life
(blurring even more kills them). It can be shown that the unique kernel with
the desired properties is the Gaussian kernel [9,14].

Since the Gaussian kernel is the Green’s function of the diffusion equation,
the blurring can be described as a diffusion process ∆z(x, y; t) = zt, where t
denotes the scale parameter. This neatly illustrates the semigroup property.
Notice that (with t2 > t1) one has z(x, y, t1)−z(x, y; t2) =

∫ t2
t1

∆z(x, y; t) dt, in
particular z(x, y, t) =

∫∞
t

∆z(x, y; t) dt+ z(x, y;∞). Thus all the information
(except for z(x, y;∞), which is typically a constant) is already contained in
the Laplacian, see Fig. 6.4). The Laplacian of an image can be thought of as
an “infinitesimally thin slice” of scale space. This is of interest because (as I
will show below) there is no intrinsic (local) information in the orders below
the second, as both the level and the gradient can be changed by congruences
of image space at any given point.
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Fig. 6.3. An image (left) and two representations at two different inner scales
(second and thirdly from left). The scales differ by a factor of 8. Notice that you can
find corresponding locations in these images, but only one way (the “atlas principle”).
On the right a three-octave scale space slice between the inner scales of the examples

One may link points at different scales by linking two points at infinitesimal
close scales when they agree in their log-intensity and are as close together
(in the base space) as possible. This generates a field of directions whose
integral curves form the desired linking structure. It can be shown that this
structure has singularities [6] such that structures collapse at some critical
scale the linkage containing branching points. This is what we saw in the
atlas example, when the scale becomes too coarse the structure of the city
collapses to a point and has to be indicated with a conventional sign. For
instance, look for the eyes in the third figure from the left in Fig. 6.3: There
are none! Yet there are on the finer scale. They simply collapsed at some scale.

6.2.3 Image Tangent Spaces

The “tangent space” of the “surface” {x, y, z(x, y)} (I take the example I =
E2 × A1) at the point {x0, y0, z0} is spanned by the tangent vectors in the
coordinate directions, that is to say, {1, 0, zx(x0, y0)} and {0, 1, zy(x0, y0)}.
Thus we have a natural interest in derivatives of z(x, y). When we are inte-
rested in higher order properties (like curvature) we have to consider higher
order derivatives too. In general we need to consider the “nth-order jet” at any
point.

A tangent vector like {1, 0, zx} is a “first-order directional derivative” (in
the x-direction). It can be understood geometrically as the “velocity vector” of
the equivalence class of all arc-length parameterized curves that are tangent
to {1, 0, zx} at the fiducial point (as I will show later x is the arc-length).
Alternatively, it can be understood as a “bilocal” operator as follows: A “point”
is a local operator that acts upon a scalar field to produce a scalar, the value
of the field at the point. A point operator is conceived of as an aperture (slit
of a monochromator, photosensitive area of a CCD array, etc.) that collects a
“flux” in order to produce a sample. The term point is very apt because there
is no way to differentiate spatially between localities inside the aperture. In
Euclid’s terms “a point is that which has no parts”. Notice that this in no
way constrains the size of the point. Points come in all conceivable sizes. The
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size is a choice of you. A bilocal operator can be constructed from two point
operators separated at some finite distance. We wire them up such that the
pair yields a single scalar that is the difference of the point samples divided
by their separation. When the separation is very small its actual value turns
out to be irrelevant. In the limit we obtain a bilocal operator no larger than
the point itself, and we may as well call it a “first-order directional derivative
operator”, or a “structured point”. It is best to think of such operators as
little machines whose internal structures are hidden from us. They take a bite
from the image and spew out a number, which is the value of the directional
derivative of the image at that location in that direction.

Since these operators implement directional derivatives exactly [33], they
span a linear space (the tangent space at the point). Thus arbitrary linear
combinations of outputs of such operators are equivalent to the output of some
single operator. In I3 a basis of just two operators suffices to mimic operators
in arbitrary directions. The literature has picked up on that with the notion of
“steerable filters” [10]. However, this notion is far more limited in its conceptual
scope, it is essentially little more than an engineer’s trick to compute arbitrary
directions cheaply. The geometrical notion of the tangent space at a point is far
richer in its implications. It indicates an exact isomorphism between machine
implementation and abstract differential geometry.

Fig. 6.4. Two different representations of the fourth-order jet. On the left is a
Cartesian representation, on the right is a polar representation. The polar repre-
sentation can be obtained by linear combination of the Cartesian representation of
that order and vice versa. Many different representations are possible and sometimes
convenient. All representations span the same space. The purely directional opera-
tors (first items of the rows in the Cartesian representation) also span the space if
one selects a sufficient (order plus one) number of orientations. Then the number of
distinct types equals the order of the jet. Such (nearly) “Gabor filters” are popular
in many circles [7], though for irrelevant reasons

It works exactly similarly for the higher order differential operators. The
nth-order jet is a bunch of such machines, all stationed at the same location,
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all with the same resolution (the inner scale), only with various orders and
directions (Fig. 6.4). For the nth-order jet we need (n + 1)(n + 2)/2 indepen-
dent machines. In a typical image processing application one limits oneself to
n = 2 and thus has a six degrees of freedom representation of the image at
any location, roughly a “2 × 2 to 3 × 3 pixels” approximation to the image
structure at that location, that is pretty coarse. However, there is no ob-
vious reason not to include higher orders. The endemic fear of differentiation
in the image processing community derives from an abortive understanding
of what differentiation and inner scale mean. When you represent an image
through local jets you may subsample it because each “point” is structured
and represents not a single but roughly n2/2 degrees of freedom. (Namely∑n

0 (i + 1) = 1
2 (n + 1)(n + 2) degrees of freedom, where (i + 1) is the number

of terms of order i in a Taylor development of the intensity at a point.)

6.2.4 Definition of Geometrical Loci

Geometrical loci are commonly defined through constraints, e.g., the con-
straint x = 0 defines the y-axis of E

2 fitted out with a Cartesian frame.
Another way to define loci is the ostensive one: to draw a line, etc. Clearly,
the ostensive manner will not work in image processing (although often done!)
because it means the ex machina introduction of an additional image instead
of processing the given image. There are problems with the former method too
though, for x = 0 would define an entity known at infinite resolution, which
clearly cannot be. In fact, the constraint x = 0 itself is only ideal. Instead,
one might specify z(x, y) = exp−(x2/2σ2) as an alternative. The log-intensity
of this “image” is almost everywhere near zero, except near the points x = 0
(the original constraint!), though with a finite width given by the inner scale
(of the constraint) σ. Such a definition has the additional advantage that the
constraint itself is an image. The major point is that the unrealistic infinite
resolution has been circumvented. The image may be considered as a “soft” or
“blurry” constraint, and its log-intensity specifies the degree (on a zero-to-one
scale) to which the constraint is satisfied.

Many entities of interest in image processing are points, curves or areas. At
finite resolution these must appear as blobs, ribbons and regions with blurry
boundaries. This means that their nature as submanifolds also changes. A
“curve” may become really indistinguishable from a blurry region, although
there will also be clearcut cases, where the curve is a ribbon of about the width
of the inner scale. In this representations there are no points, curves or areas,
instead, they are all images of some kind. This is similar to the problem of
“features”. There are no feature detectors in image processing proper and there
are no “curve finders” (or what have you) either. Features and geometrical loci
are the domain of image interpretation. In the simplest case they are found
through thresholding followed by skeletonization. This is a nonlinear form of
image processing, and thus is admissable up to the point of interpretation,
which involves idiosyncratic selection procedures, etc.
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When we consider submanifolds like surfaces, curves or points in I we
discuss ideal geometrical entities that are often useful in the analysis (like real
numbers are). They do not immediately correspond to anything real though.
Only images are real.

6.2.5 Definition of “Isophotes”

A prototypical example of a geometrical locus is the “isophote” [4] for some
fiducial log-intensity of, say, z(x, y) = z0. The appropriate soft constraint is
exp[−(z(x, y) − z0)2/2∆z2

0]. Here the new parameter ∆z0 is a resolution in
the log-intensity domain. This resolution must be sharply distinguished from
the inner scale (which is the resolution in the base space). One may naturally
conceive of ∆z as the “bin width” of the log-intensity histogram of the image.

Fig. 6.5. An image and two “isophote images”. The images are for the same level,
but have been computed for different histogram bin width

These isophotes are “blurry curves” with a width that is inversely propor-
tional to the width of the surface (Fig. 6.5). They actually look much more
reasonable than the “isophotes of infinite precision”, which often are broken
up in many disconnected components and are almost fractallike. Even when
the surface is as steep as possible the width of the blurry isophotes is finite,
because it is limited by the inner scale.

In this representation the resolution of the log-intensity is a vital para-
meter. It links the log-intensity representation to more general “disorderly”
or “histogram-valued” representations in which the log-intensity resolution is
understood as a (local) histogram “bin width”.

In any real application there exist physical and/or technical limits to the
inner and outer scales. For instance, the spatial inner scale is limited by ei-
ther the size of the photosensitive elements (pixel limited devices) or by the
physical optics of the imaging optics (diffraction-limited devices). The outer
scale is limited by the size of the sensor (CCD chip, photographic plate) or
by the useful field of view of the imaging optics. The inner scale involved in
the log-intensity dimension is typically limited by the photon shot noise, the
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thermal noise of the photoelectric sensors or by the discretization (bit depth),
while the outer scale is limited by saturation effects in the sensor or arbitrary
upper limits set by the encoding. This is similar to the representation of the
(ideal) natural numbers in computer languages through a finite set of bit pat-
terns. In this contribution I completely abstract from such (very real) limits,
and I concentrate upon the ideal case. Although the ideal does not exist, I
believe that any real system should be gauged against the ideal and against
the fundamental physical limits. If one is satisfied with the mere description
of actual systems one has moved from science to engineering. In that case no
general theory is possible in principle.

6.3 Image Processing

In this section I begin with the theory of image processing proper. The first
thing to do is to identify the group of motions. Because image space is a
homogeneous space it “looks the same” from any of its points, the group of
motions defines the geometry. In fact, we are bound to arrive at one of the
classical Cayley–Klein geometries [3,20–22]. That I is indeed homogeneous
is a matter of definition if you want: that is, in the absence of any prior
knowledge we have to assume that the space is the same everywhere, that no
location, direction or log-intensity level is in any way singled out. But then
the same configuration should be realizable everywhere, in short, the space
should admit the free movement of rigid configurations.

6.3.1 Operations in the Intensity Domain and in the Base Space

In this section I restrict the discussion to either I2 = E1×A1 (“linear images”)
or I2 = E2 × A1 (“planar images”), although one could easily generalize to
I = En × A1. Extensions to cinematic images are less immediate (though
possible) because the time dimension is not commensurable with either the
dimensions of the base space nor the intensity dimension. Extensions to color
images, etc., are possible but not immediate.

The base space is either the Euclidian line or plane, thus the movements
are translations and rotations. Similarities have a single modulus because all
dimensions have to be scaled equally due to the freedom of rotation.

The log-intensity dimension is the affine line, and the movements are sim-
ply translations. Scalings are possible too and are similarities with a modulus
unrelated to the modulus of scalings in the base space.

Movements in I involve simultaneously the base space and the log-intensity
domain. They are constrained because–due to reasons of simple physics–no
log-intensity difference may ever end up as a stretch in the base space. This
means that the lines {x, y, λz}, with λ variable, must be invariant under move-
ments. We can set up such a geometry starting from the projective space P3
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with coordinates {x0, x1, x2, x3} such that x0 = 0 denotes the plane at in-
finity, which we assume fixed. Since we need a fixed point for the group of
similarities, we may assume the absolute conic to be of the form x2

1 + x2
2 = 0,

this can be written (x1 + ix2)(x1 − ix2) = 0, and thus represents two complex
lines x1 = ±ix2 (first and second absolute lines) which intersect in the point
F = {0, 0, 0, 1}, the absolute point. General similarities conserve the absolute
line pair, and consequently F is a fixed point. It represents a pencil of parallel
real lines, exactly what we set out to construct.

Thus the group of movements conserves a pencil of parallel lines. This
completely fixes the geometry, and we obtain the singly isotropic Cayley–
Klein plane and the singly isotropic Cayley–Klein space. For I

2 we obtain one
out of the nine, and for I3 one out of the twenty seven possible Cayley–Klein
geometries.

There exist two types of similarities that leave absolute lines invariant,
we single out those that leave each one individually invariant. The similarities
that interchange the absolute lines correspond to inversions, for which we have
no use.

6.3.2 Global Operations

Consider the linear images first. The geometry is the same as that induced by
the kinematical Galilean group [43] on the line (where time corresponds with
log-intensity).

A generic similarity is [30]

x′ = eσ1x + τx,

z′ = ρx + eσ2z + τz ,

where we have proper movements (a typical one shown in Fig. 6.6) for σ1,2 =
0. Notice that it is a five-parameter group, whereas the group of Euclidian
similarities is only a four-parameter group (rotation angle, scaling factor and
two components of translation). The reason is that similarities of I2 have
two (not one) moduli: Both the distances and the angles can be scaled (see
Fig. 6.7), whereas in E

2 only the distances can be scaled. While E
2 has a

parabolic distance measure and an elliptic angle measure, in I2 both measures
are parabolic.

I will use the following terms quite frequently: A point in image space has
a certain log-intensity and a certain trace in the base space (where “it is at”).
Points with the same trace lie on a normal line. Planes that contain a normal
line are normal planes. Lines and planes that are not normal are generic,
though I will seldom use the term explicitly. In image processing one is only
interested in generic lines and planes. Thus lines and planes have well-defined
slopes in all cases. Although I will not make use of it here, there exists a full
metrical duality betweeen the generic lines and the points of I2 and between
the generic planes and the points of I3. Image space is far more elegant and
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x

z

Fig. 6.6. Three phases of a rigid rotation in I
2. Both distances and angles are

conserved, though it may take some time to notice

x

z

Fig. 6.7. Two types of similaries in I
2, in the top row those “of the first-kind” which

affect distances and in the bottom row those those “of the second-kind” which affect
the angles

symmetric than Euclidian space in this respect, because both the distance
and the angle metric are parabolic.

One easily checks that a motion leaves the length of the trace of the linear
segment defined by two points invariant, thus the length of the trace is the
“proper distance”. In the case of I

2 it is a signed distance. When the distance
of two points vanishes they may still be distinct. If so, they lie on a normal
line. Such points are called parallel. The log-intensity difference of parallel
points is not changed by a motion. Thus parallel points (and only those) can
be assigned a “special distance”. “The” distance is defined as either the proper
or the special distance. All pairs of points have a distance and this distance
is invariant under arbitrary motions. When we write the metric of a plane as
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ds2 = dx2 + µdz2, we obtain the Euclidian plane for µ = +1, the Minkowski
plane for µ = −1, and I2 for µ = 0. Thus the metric of I2 appears as a limiting
case of both Euclidian and Minkowski space. Indeed, both views are useful. As
a limit of Minkowski space we see that the normal lines are degenerated light
cones. Thus we have order on the normal lines, but points on different normal
lines are “elsewhere” and their log-intensities cannot be compared. Indeed, it
is easy to find motions that equate their log-intensities. As a limit of Euclidian
space, we see that the “rotations” of I2 appear to our Euclidian eyes as shears
about normal lines or planes (Fig. 6.6). Thus you cannot make a full turn
and turn the image surface upside down. Just try to imagine what that would
mean! If you actually can you should consider to stop reading on.

Notice that the motions leave the area element dx ∧ dz invariant, thus it
makes sense to speak of the area of regions in the normal planes. Physically
the area represents a flux, the construction is dimensionally consistent since
it involves no “mixture” of incommensurable quantities.

The geometry of I2 is perhaps most easily developed in terms of the dual
numbers D, which are a kind of imaginary numbers [5,42] of the form a + εb
with nilpotent imaginary unit, thus ε2 = 0. In terms of these numbers the
motions are simply linear transformations. Consider the point {x, z} which we
represent as the dual number w = x+εz. The linear transformation w′ = aw+
b where a = a1+εa2 and b = b1+εb2 yields w′ = (a1x+b1)+ε(a2x+a1z+b2) =
{a1x+b1, a2x+a1z+b2}, i.e., for a1 = 1 proper motions, otherwise similarities.
All of the standard formulas from the algebra of complex numbers carry over
(though the nilpotency of the imaginary unit often leads to surprises), so we
immediately gain great power over the geometry of I2.

Instead of this analytic model of I2 we may construct a geometric model
using multivector algebra [15] by introducing the orthogonal basis {ex, ez}
such that exex = 1, ezez = 0. With ω = ex ∧ ez as the bivector (oriented
area) and the unit scalar 1 we have the multiplication table

12 = 1, 1ex = ex, 1ez = ez, 1ω = ω,
ex1 = ex, e2

x = 1, exez = ω, exω = ez,
ez1 = ez, ezex = −ω, e2

z = 0, ezω = 0,
ω1 = ω, ωex = −ez, ωez = 0, ω2 = 0.

The zeros signal the presence of divisors of zero, which slightly complicates
the algebra. Notice that ex(xex+zez) = x+ωz, and because ω2 = 0 we regain
the dual number representation. Thus the two models are fully isomorphic.
In the case of planar images one should use the geometric model of course,
but the analytic model is still applicable (and convenient) for the restriction
to normal planes.

Notice that for an analytic real function of a real variable you may write
the Taylor series f(x + a) = f(x) + af ′(x) + a2/2!f ′′(x) + . . ., and on setting
a = εdx, f(x + εdx) = f(x) + εdxf ′(x) (exactly). Thus the dual numbers
“implement the infinitesimal domain”; that is, they are a kind of non-standard
reals [28]. As a consequence we have exp(εx) = 1+εx, sin(εx) = εx, cos(εx) =



6 Geometric Framework for Image Processing 187

1. We can write the dual number a+ εb in the polar representation r exp(εϕ),
with r = a (a signed quantity) and ϕ = b/a. This immediately reveals the
angle measure as b/a. This is also intuitively obvious when you think of the
circle x2 = a2. The arc subtended by the angle is b, and dividing by the radius
a we arrive again at ϕ. Notice that the circle x2 = a2 expresses constant
distance from the normal line x = 0, all of whose points are centers of the
circle (thus any generic line passes through the center!). Notice also that equal
arcs subtend equal angles as should be, and that motions conserve angular
differences and turn all generic lines over the same angle. Finally, notice that
the normal lines subtend infinite angle (“are normal to”, hence the name) with
any generic line.

Fig. 6.8. On the left a gauge figure in I
2. The next two figures show the effect of

a nonlinear transformation, that is, the inversion in spheres of the second-kind with
positive and negative radius, which are conformal transformations. The rightmost

figure shows the effect of a conformal transformation involving an arbitrary function
(in this case a sinewave). The normal direction is the vertical in these figures

The dual number plane as a model of I2 is convenient in many respects. For
instance, one can easily develop the homographies parallel to the conventional
(imaginary unit i2 = −1) case [25] (Fig. 6.8), complex function theory [32],
etc. Especially important for the image domain are the conformal mappings.
Here image space is more flexible than the Euclidian case for one may also
have nontrivial conformal maps in I3 (Fig. 6.8). The examples from Fig. 6.8
are locally rotations (no scaling involved), thus these are still rather special
conformal mappings. In the case of images these correspond to multiplicative
combination of images (“sandwiching negatives” in the photographic dark-
room). Human observers cheerfully “read” such combinations, which perhaps
finds a partial explanation in the fact that this involves a conformal mapping
via an arbitrary additional function.

A circle like (x−a)2 = b2 is known as a “circle of the first-kind”, the circles
“of the second-kind” are parabolæ with normal lines as axes. The latter (like
the former) can be rotated such as to shift along themselves. Such a circle
z(x) = κ(x−a)2/2 has a curvature κ (radius 1/κ), which is a signed quantity.
This curvature equals zxx, which is the lowest order and simplest differential
invariant of I2. The circle z(x) = κx2/2 is shifted over a distance d along itself
by the transformation
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x

z

Fig. 6.9. A “parabolic limit rotation” in I
2. This is the equivalent of a rigid rotation

of E
2. However, the “spokes” are the normal lines and the “hub” is their vanishing

point at infinity. Notice that this is an isometry: All the gauge figures have the same
shape. If it does not look that way to you then adjust your mental eye to the group
of congruences of image space

x′ = x + d,

z′ = 2κdx + z + κd2,

and so are all circles z(x) = κx2/2 + z0 concentric with it (Fig. 6.9). The
transformation is thus a rigid rotation of I2 where the normal lines appear as
the “spokes” of the wheel with “hub” at infinity (at the vanishing point of the
normal lines).

Fig. 6.10. A generic plane intersects a sphere of the second-kind. At left the images,
at the center a disorderly representation, at right the geometry in I

3

The case of geometry of I3 is not that different from that of I2, although
richer because of the higher dimensionality. Notice that the geometry in the
normal planes of I

3 simply repeats the geometry of I
2. Instead of circles we

are mainly interested in spheres (Fig. 6.10), which (to our Euclidian eyes)
appear as paraboloids with normal axes. The generic planes are the duals of
the points.
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Fig. 6.11. A screw movement in I
3. This is a nonperiodic movement that corres-

ponds to a Euclidian rotation in the trace. however, a translation is involved in the
log-intensity direction

Fig. 6.12. A pure rotation in I
3. This example shows a “rotation about a horizontal

axis”, which is actually a shear in the normal planes with vertical traces

Fig. 6.13. A parabolic limit rotation in I
3. This is the equivalent of the transfor-

mation illustrated earlier in Fig. 6.9

The groups of similarities and motions for planar images are quite similar
to that of linear images (it contains the latter, of course, when you restrict
yourself to the normal planes), but it is richer because of the higher dimen-
sionality. (Figs 6.11-6.15.) One obtains a seven-parameter group [31] (against
the six-dimensional group of similarities of E3):
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Fig. 6.14. A Clifford shift in I
3. As the image translates towards the right it pro-

gressively “rotates about the horizontal”. For the other type of Clifford shift this
rotation would be in the opposite sense

Fig. 6.15. Similarities of the first (left) and of the second-kind (right) in I
3. The

similarities of the first-kind are the familiar Euclidian ones. The similarities of the
second-kind scale the isotropic angles and appear as contrast changes or “gamma
transformations”

x′ = ek1(x cosϕ− y sinϕ) + τx,

y′ = ek1(x sinϕ + y cosϕ) + τy,

z′ = σxx + σyy + ek2z + τz.

When you consider only the trace, the groups appear as the group of simi-
larities and motions (for k1,2 = 0) of E2, that is, the base space. There are
two distinct motions that correspond with rotations in the base space though,
one a screw motion with normal axis (which is not periodic) and one that
transforms each one of a family of parallel generic planes in itself. To the
identity in the base space there corresponds a translation into the normal
direction (“brightness adjustment”) and a shear that conserves a family of
parallel normal planes (an “additive plane” adjustment). The latter is a pure
rotation in I3 (Fig. 6.12). The case of translations in the base space is especially
interesting. One has shifts in a generic direction, and a motion that is the
equivalent of the parabolic rotation discussed for the linear images (Fig. 6.13),
neither of them very surprising. The interesting transformations [35-38], are
the so-called “left and right Clifford shifts” (Fig. 6.14). These transformations
shift certain surfaces (Clifford planes) within themselves. The Clifford planes
are denoted “planes” because they are covered with two mutually transverse
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families of metrically parallel generic lines (which would render them proper
planes in Euclidian geometry). The Clifford planes are surfaces of the type
z(x, y) = xy + µx2. Notice that the blur-invariant images z(x, y) = a + bx +
cy + dxy + e(x2 − y2) (with ∆z(x, y) = 0, hence zt = 0, thus blur invariant)
are a special type of Clifford planes.

Fig. 6.16. Example of a conformal transformation in I
3 involving an arbitrary

additional image. Notice that the composite image “reads” without problems

One has conformal mappings in I3 (Fig. 6.16) much like in I2, this is in
contradistinction with the Euclidian case where the conformal mappings in
the plane are much more various than those in space. For image processing
purposes the conformal transformations that appear as identities in the trace
and involve an arbitrary additional image are perhaps the most interesting.

Generic planes z = ux + vy + w are defined to have “plane coordinates”
{u, v, w}; indeed, the triple {u, v, w} defines the plane uniquely. It can be
shown that the plane coordinates transform just like the point coordinates [31]
and that the description can naturally be extended to normal planes and the
plane at infinity. Thus there exists a full metric duality between lines and
planes in I3 (and, likewise, between points and lines in I2), something lacking
in Euclidian space. Geometricaly one defines the plane {u, v, w} dual to the
point {x, y, z} as the polar plane of the in-the-image plane reflected point
{x, y,−z} with respect to the sphere z = 1

2 (x2 + y2), and vice versa. This
correlation is equivalent to the algebraic definition [31]. The duality makes
it trivial to interpret the point invariants in terms of planes and thus define
the angle between planes. The result is what one expects more geometrico:
The angle between two normal planes is the Euclidian angle between their
traces or their normal distance of the traces (in case they are parallel), and
the angle between two generic planes is the isotropic angle in the normal plane
whose trace is perpendicular to the trace of the intersection of the planes, or
the normal separation in the case of parallel planes. In a similar manner one
defines invariants for a plane and a line, two lines, etc. This is often important
because planes appear as local surface elements (tangent planes), that is to
say, local (linear) approximations to images.
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The subgroup of “unimodular limit movements”

x′ = x + τx,

y′ = y + τy,

z′ = σxx + σyy + z + τz,

is arguably very relevant to image processing. It is easily shown that each such
movement can be obtained as the commutative product of a Clifford left shift

x′ = x + α,

y′ = y + β,

z′ = −βx + αy + z + γ,

and a Clifford right shift

x′ = x + A,

y′ = y + B,

z′ = Bx−Ay + z + C,

modulo a pure isotropic shift x′ = x, y′ = y, z′ = z + γ. The group of unimo-
dular limit movements is a normal quotient group of the group of movements,
and the Clifford shifts are three-parameter simply transitive subgroups of it.

There exists an algebraic description that superficially resembles the dual
number model, but is really in a different spirit. We write a point of I3, say
x = λ{1, x, y, z} = {x0, x1, x2, x3} in homogeneous coordinates, as a certain
hypercomplex number x0+x1i+x2j+x3k, with i2 = j2 = k2 = 0, ij = −ji =
k, ik = ki = jk = kj = 0. We conceive of I3 as extended with ideal elements
{0, x1, x2, x3} “at infinity”. Multiplication of these hypercomplex numbers is
not commutative, and we have to reckon with divisors of zero. We have [x,y] =
xy − yx = 2(x1y2 − x2y1)k, that is, the oriented area in the trace. Only
elements with vanishing trace or collinear traces commute. Multiplication is
associative though. Defining conjugation through x = x0 − x1i− x2j − x3k,
we find that xx = xx = x2

0 is real, thus we may define it as the norm
|x|. (Notice that this “norm” has nothing to do with the metric, in practice
it will be zero for elements at infinity and one for generic points.) One has
xy = y x from which we obtain |xy| = |x| |y|. The only elements of norm zero
are the elements at infinity. For generic elements we may define the inverse as
x−1 = x/|x|, for xx−1 = 1. Notice that the inverse is the additive inverse, just
like the product is much like vector addition, except for an additional purely
isotropic shift. When we have a pair of generic elements |a| �= 0, |b| �= 0 we
have that ab = 0 when and only when their corresponding points at infinity
A = a1i + a2j + a3k, B = b1i + b2j + b3k are collinear or coincident with
the absolute point F . In this algebraic system we may write the Clifford left
shifts as x′ = ax and the Clifford right shifts as x′ = xb where |a| �= 0,
|b| �= 0. Moreover, c−1xc generates a pure isotropic shift. Consequently, all
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unimodular movements can be cast in the form x′ = axb, and we obtain a
coherent and very convenient algebraic representation.

Finally, the subgroup

x′ = x, y′ = y,
z′ = σxx + σyy + γz + τ,

of the similarities is the one that is perhaps most pervasive in image proces-
sing since in the trace (the image plane) it boils down to the identity. I will
denote these important transformations Γ σ,τ

γ . It is made up of the subgroups
of pure isotropic rotations z′ = σxx + σyy, the subgroup of pure isotropic
shifts z′ = z + τ and the subgroup of similarities of the second-kind z′ = γ z
(where γ > 0 for regular transformations, γ < 0 inducing an inversion).
These are the well known gradients (or additive planes, or edge burnings),
the intensity adjustments (or lightenings and darkenings) and contrast ad-
justments (or gamma transformations, or scale adjustments via paper grades,
etc.). The group fails to be communitative if contrast changes are involved for
Γ σ2,τ2

γ2
Γ σ1,τ1

γ1
= Γ σ2+γ2σ1,τ2+γ2τ1

γ1γ2
. The unit element is Γ 0,0

1 and the inverse is
Γ

−σ/γ,−τ/γ
1/γ . Notice that movements of this type (γ = 1) suffice to bring any

surface element into some canonical position and orientation. The attitude
of surface elements is something that can be changed through a movement
and hence can have no intrinsic meaning. Consequently, the “local structure”
starts only at the second-order, it is the local curvature. The second-order is
not influenced by the lower orders, thus the curvature is fully determined by
the partial derivatives of log-intensity of the second-order. This makes most
formulas of the differential geometry of surfaces in I3 rather simpler than the
similar (and familiar) formulas from differential geometry of E3.

Concatenation of Processes

Since image processing turns an image into an image, one may “pipeline”
image operations. Since images may also be subjected to arbitrary functions
of log-luminance (f({x, z}) = {x, f(z)}), can be added, multiplied, etc., point
by point (e.g., {x, z}+{x, z′} = {x, z+z′}, etc), we obtain a rich repertoire of
operations. In many cases one really requires an image algebra, one example
being a change of inner scale.

6.3.3 Local Operations

“Local” operations involve only operations at a point. Apart from the obvious
case f({x, z}) = {x, f(z)}, more interesting cases involve intricate structure
of the “point” itself. The point operations of interest here involve convolutions
with derivatives of the point operation and subsequent algebraic combination
of the images. Whereas “differentiation of the image” as such is nonsensical, the
point operator can be differentiated because it is not a real, but an ideal entity
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(an analytic function). The “convolution” of the image with any operator is
best understood as the action of some machine whose internal structure is
forever beyond our ken. It “just happens” (the photographic plate or a CCD
array provide examples). As long as the operation is linear we may interpret
convolution with the derivative of the point operator as the convolution of
the “derivative of the image” (essentially a nonsensical notion) with the point
operator, that is to say, as the derivative of the image at the given inner scale.

Differential Invariants

Perhaps the most important instances of local operations are the computation
of differential invariants [16]. Here we meet with a major cleft between the
present treatment and the bulk of the literature. In the literature either of two
approaches are most common: One group is thoroughly pragmatic and com-
putes such quantities (typically approximately) as Ixx + Iyy or IxxIyy − I2

xy

because these turn out to be useful. Some token remarks make clear one
knows these are not proper differential invariants. Another group is more
sophisticated and computes much more complicated “true” (but Euclidian)
differential invariants. The results are roughly similar. The irony is that the
former group (unknowingly) computes the true invariants (under the group
of congruences of I3; in many cases the “intensity” already is “log-intensity”
due to nonlinearities in the imaging device), where the latter group computes
nonsensical entities. The Euclidian invariants [8,34] assume that configura-
tions that are related through Euclidian movements are congruent in I2. This
is indeed nonsensical (consider what it means to turn an image over 90◦!).
The formal expressions for invariants of I

3 are similar, though different and
generally rather simpler, than those of E3, which is the reason (implicit and
generally unrecognized though) why one is nevertheless happy to live with
such nonsense.

In I the lowest order differential invariant are second-order (i.e., curva-
tures). Notice that at any given point one may apply a movement such that
z(x, y) = (zxxx

2 +2zxyxy+ zyyy
2)/2!+ . . ., and that the coefficients zxx, etc.,

are not affected by that movement.
The most convenient way to represent the second-order is through the

differential invariants 2H = zxx +zyy (the mean curvature), K = zxxzyy−zxy

(the Gaussian curvature) and the pair (not themselves differential invariants)
A = zxy, 2B = zxx−zyy whose sum of squares A2+B2 is invariant and whose
ratio depends only on the direction of principal curvature. In the principal
frame we have 2H = κmax + κmin, K = κmaxκmin, A = 0 and 2B = κmax −
κmin. For a Gaussian random surface the triple {H,A,B} are statistically
independent variables.

Notice that the intrinsic curvature [11] of any surface {x, y, z(x, y)} in
I3 vanishes identically because of the degenerate metric! It is more useful
to define the “Gaussian curvature” as the magnification of the Weingarten
map, that is, the map from the surface to its Gaussian “spherical” image.
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Fig. 6.17. From left to right: an image surface, its parabolic points, and its attitude
image. The folds of the attitude image correspond to the parabolic curves

Fig. 6.18. The hills, dales, saddlelike points and minimal points for the surface
shown in Fig. 6.17 left. Notice that the minimal points lie in the interior of the
region of saddlelike points

Fig. 6.19. On the left is the Casorati curvature, and the second and third are
images the ridges and umbilics. For this example the ridges can be found analytically
(rightmost image). The ridges image (second from the left) is more instructive than
the analytic result: One sees immediately that virtually all points in the outer region
are nearly umbilical (the whole region is nearly spherical). Notice that “the” umbilics
in this region are poorly defined and that the umbilics lie on branchings of the ridges
(the remaining “branches” are not what they seem, but are “fly overs”)

The “Gaussian attitude image” is the map {x, y, z(x, y)} �→ {x, y, (x2 +y2)/2}
(that is, to the unit sphere of I3) such that the tangent planes at corresponding
points are parallel. A stereographic projection from the vanishing points of the
normals maps the unit sphere isometrically(!) on {zx, zy}-space (often called
the map to “gradient space”). The Jacobian of this mapping is the Hessian
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Fig. 6.20. Left are the directions of principal curvature for the surface depicted
in Fig. 6.17 right. The images are isocline images at 45◦ intervals. The isocline
images have been computed for the same angular width, thus the inherent fuzziness
is evident from the widths of the ribbons

of the log-intensity, thus the area magnification is the determinant of the
Hessian which equals the Gaussian curvature as defined above. Likewise, the
magnification in any direction is the “normal curvature” for that direction.
This identification allows one to develop the differential geometry of surfaces
in I3 in analogy to that of E3, with a great many striking parallels (Fig. 6.17).

The differential invariants C =
√

(κ2
max + κ2

min)/2 (the Casorati curva-
ture [2] or “curvedness”) and S = arctan(κmax + κmin)/(κmax − κmin) (the
“shape index”) with the direction of maximum principal curvature form a sys-
tem of polar coordinates in {H,A,B} space (the space one wants to be in
because the coordinates are statistically uncorrelated). The distance to the
origin (C) is a very intuitive notion [2] of “curvature” (it vanishes only for
planar surfaces, which is the reason Casorati invented it), and the latitude
S is an intuitive descriptor of shape (modulo size). The longitude is simply
the orientation of the principal frame. This is by far the most convenient and
intuitive representation of curvature (Figs. 6.18-6.20).

6.3.4 Multilocal Operations

In most cases one is not simply interested in differential invariants at a point,
but in their spatial distribution. From differential geometry we know that
such distributions often define submanifolds. For instance, the “umbilicals”
define sets of isolated points, the “parabolic points” curves (typically closed,
nonbranching), the “ridges and ruts” curves (with characteristic branchings),
the “elliptic convex” points regions (bounded by parabolic curves), and so
forth. Much of the interest is in these geometrical loci and their interrelations.
Typically these loci are defined through the vanishing of differential invariants,
thus one may easily turn the classical expressions into the “fuzzy” (inner scale)
representations needed in image processing.

I illustrate a few of the more interesting examples (Figs 6.21-6.25). Con-
sider what one might call a “hill” or “dale”, I mean, can we put limits to them?
Where does a hill stop being a hill? I propose defining hills as areas of el-
liptic curvature (K > 0) such that the surface is convex (H < 0). Using a
suitable motion in I

3 such a point could be turned into a summit. Notice that
H cannot change sign in a connected region K > 0. Thus we need to find
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Fig. 6.21. From left to right: the original image, the image at the inner scale used
for the calculations, the Casorati curvature and the shape index

Fig. 6.22. From left to right: the Gaussian curvature, the mean curvature, the
parabolic curves and the minimal curves

Fig. 6.23. The sign of the shape index divides the image into predominantly pos-
itively (white) and predominantly negatively (black) curved areas. Such images ty-
pically look like “sketches”, even more so when the black areas are skeletonized

the the region K > 0 and in retrospect sort them with respect to the sign of
H (negative hills, positive dales). The image {x, y, (1 + erf(K(x, y)/K0))/2}
(with erf(z) = 2√

π

∫ z

0
e−z2

dz) expresses this. (Alternatively, one could use the
constraint S > π/4 for hills, S < −π/4 for dales.) It ranges from zero to one
and is only significantly different from zero when K # K0.

The boundaries of the elliptic areas (and thus of the hyperbolic areas) are
the parabolic curves that are the loci K(x, y) = 0. Thus we find them via the
image {x, y, exp(−K(x, y)2/2∆K2)}.
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Fig. 6.24. From left to right: the ridges and the concave and the convex umbilical
points. Notice that the ridge and rut points appear to cluster on curves, whereas
the umbilical point are scattered, thin blobs

Fig. 6.25. The magnitude of the antisymmetric terms A2 +B2 (left) and the (third
and fourth images, respectively) isoclines (second from left, isoclines binned in 45◦

increments), as well as isocline images for the horizontal and the vertical orientation
of the direction of largest principal curvature

The “minimal curves” are the curves H(x, y) = 0, and they are made up
of points where the shape is congruent to its mould. We find these interesting
curves via the image {x, y, exp(−H(x, y)2/2∆H2)}.

The umbilical points are points where the surface is locally isotropic, i.e.,
S = ±π/2. We find them via the images {x, y, exp(−(S(x, y)±π/2)2/2∆S2)}.

The isoclines of the curves of principal curvature are the contour lines of
A/B. The A/B image is easily computed, but the principal curves themselves
have to be determined via numerical integration, a truly multilocal process.

At the ridge and rut points a principal curvature is extremal along the di-
rection of the other principal curvature. The constraint contains cubic terms.
Other entities of potential interest involve even higher orders, i.e., the flec-
nodal points quartic terms. Despite the nearly universal abhorrence of such
matters in image processing circles, this really poses no problems. The im-
plementation is immediate (the expressions from differential geometry can be
blindly compiled into image operators) and robust.
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6.4 Outlook

I have roughly sketched a framework for image processing that is coherent
and almost entirely geometrical in nature. Although complicated through the
importance of many different spaces (the base space, the image domain, image
space, a variety of scale spaces, complicated mixtures in the case of locally
disorderly representations) one arrives at a fully coherent view because the ge-
ometries of all these spaces are variously interrelated. There is no “adhockery”
involved.

Is “image processing” a science? Well, not right now. But there is no reason
it could not be. At this moment the field is only defined by what its prac-
titioners do and I consider it as largely a grab bag of hacks (theory is not
valued highly by a community mainly interested in applications). However,
most of the fundamentals for a principled framework are in place, though
these threads are scattered around throughout the literature and are often
only partially (or not at all) recognized for what they are. In short, I do not
think much fundamental work remains to be done for someone to write a
textbook on image processing that departs from first principles, develops the
field logically, and steers free of hacks, unnecessary approximations and mere
showpieces of mathematical dexterity. All that is needed is “good taste” (in
the mathematician’s sense) and a solid intuitive feeling for what is concep-
tually important and what is mere fluff (no matter how well it works or how
fast, or how impressively flashy the mathematics). Of course, such a textbook
would only serve to establish (or define) the field as a science. Much remains
to be done (I am happy to say). Unfortunately, it may be some time before
someone takes on this challenge seriously, as the field appears to perceive no
need for it.
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7.1 Introduction

Diffusion flows are processes applied to digital images in order to enhance or
simplify them. These flows are usually implemented by appropriate discretiza-
tions of partial differential equations (PDEs). Iteratively applying these dis-
cretizations, called also numerical schemes , to an image results in a series of
images with decreasing detail (Fig. 7.1). Using a suitable flow, one can en-
hance important image features such as edges and objects while filtering the
image from undesired noise. This can be done not only to gray-level and color
images but also to textures, movies, volumetric medical images, and so on.

Diffusion flows are important members of the family of methods for i-
mage processing, computer vision, and computer graphics based on the nu-
merical solution of PDEs. Other members of the family include active con-
tours/surfaces for image segmentation, reconstruction of three-dimensional
scenes from their shading or stereo images, graphic visualization of natural
phenomena, and many others. This family of methods has many advantages,
among them theoretical origin due to derivation from a minimization of (u-
sually geometric) cost functions, efficiency, and robustness.

7.2 Diffusion Flows and Geometric Filters

Diffusion processes are widely spread in many areas of physics. Naturally,
they found their way to the field of image processing. At first, only linear
diffusion was used, but gradually also nonlinear diffusions were introduced
and geometry-based filters proposed. This section reviews the development of
these methods from the early days to the present (mid-2004).
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Fig. 7.1. A diffusion flow of a color image. The original image is top left

7.2.1 The Heat Equation

The simplest diffusion is the one generated by the two-dimensional heat equa-
tion

It = ∆I,

with I(x, y) the two-dimensional data, It its partial derivative according to
time, and ∆ the Laplacian operator (∂xx + ∂yy). This equation depicts, for
instance, the temporal change in the heat profile of a metal sheet. In our case
I(x, y) gives the gray-level values of the image.

The heat equation was the first diffusion process applied to images [45].
It was mainly used to create a scale space for an image, meaning a three-
dimensional volume with a scale coordinate t added to the spatial coordinates
x and y. At the origin of t we have the original image as initial condition,
and as we advance along t we get smoother versions of it. The idea behind
scale space is that important features of the original image should survive
the change of scale, and therefore all the scale space of the image should be
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used to detect these features. Later on, the heat equation was suggested for
filtering noise corrupting the image [9]. After applying the heat equation for
a short duration, the noise that is of fine resolution disappears.

The heat equation as a diffusion flow generating a scale space has an impor-
tant attribute, its linearity. It is therefore also referred to as linear diffusion.
However, it damages the edges of objects in images and does not preserve
connected components (Fig. 7.2). This simple example was presented in the
introduction of the first collection of papers on this topic [38].

Fig. 7.2. The heat equation damages edges and separates connected components

7.2.2 The Geometric Heat Equation

New flows were suggested to overcome the problem of the change in the num-
ber of connected components. One such flow, first introduced by Alvarez et
al. [1] in the context of invariant image processing, is the level set curva-
ture flow. Level set curves are another way to describe the structure of a
gray-level image. Given an image I(x, y), its level set curves are defined as
C(h) = {(x, y) : I(x, y) = h}. See Fig. 7.3 for the level curves of the images
in Fig. 7.2. The interior of a closed contour can be considered as a compo-
nent, and the number of components somehow indicates the complexity of the
image [3].

Fig. 7.3. Level set curves of the images in Fig. 7.2

The idea was to use the powerful Grayson theorem [10] for curve evolution
via its curvature. The theorem states that the curvature flow
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Ct = κn,

with κ the curvature of the closed planar curve C, and n the unit normal
vector to the curve, results in the convergence of the curve to a point.

Using the Osher–Sethian [21] level set formulation the whole image could
be propagated via the curvature flow equation. That is, each and every level
set of the original image could be propagated by its curvature flow, and all
this process could be described by a single evolution equation for the whole
image given by

It = div
(
∇I
|∇I|

)
|∇I|.

This process is possible due to the Evans–Spruck [7] confirmation that as
embedding of such propagating curves is preserved, the level set formulation
is indeed valid for the curvature flow. One nice property of this flow is that
connected components remain connected until they disappear. Moreover, this
flow is invariant to Euclidean transformations in the image plane.

Next came the interesting question of what could be said about more
complicated transformations. In [1] the authors also introduced the equi-affine
invariant flow given by

It =
(

div
(
∇I
|∇I|

))1/3

|∇I|. (7.1)

Again, the connection to curve evolution was presented at the same time by
Sapiro [26]. First, the curvature flow can be equivalently written by

Ct = Css,

where C(s) = {x(s), y(s)}, and s is the Euclidean arc length parameterization.
This is why it is also known as the geometric heat equation. Using similar
writing for the equi-affine flow, that is,

Ct = Cvv,

where v is the equi-affine arc length dv = κ1/3ds, the resulting geometric flow
can be written by

Ct = κ1/3n.

This equation, known as the affine heat equation, enjoys some of the nice
properties of Grayson’s theorem, like preservation of embedding of the propa-
gating contours. It is thus directly related to Eq. (7.1), again via the Osher–
Sethian level set formulation. These beautiful relations and geometric proper-
ties started a new era in the image processing and analysis field. For example,
when smoothing stereo images we would be better off using the affine heat
equation, and not the geometric heat equation, which would distort the geome-
tric structure relating the two images. Applications of these operators include
computation of geometric signatures [8, 12], and extensions of these ideas to
deal with problems like geometric scale space for images painted on surfaces
[13, 34].
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7.2.3 Isotropic Nonlinear Diffusion

At the other extreme, researchers started to explore the field of variational
principles and geometry in image processing. That is, define an integral mea-
sure that somehow captures the norm of the image. For example, the total
variation (TV) norm was a popular selection proposed in [25]. The TV is
defined by ∫∫

|∇I|dxdy,

for which the Euler–Lagrange equation is given by

div
(
∇I
|∇I|

)
= 0.

That is, the level set curvature should be equal to zero. This geometric con-
nection should not come as a surprise, since by the co-area equation we have
that ∫∫

|∇I|dxdy =
∫∫

Ω

dsdh

where s is the arc length parameter of each and every level set contour, and
h is a parameter running over the image intensities I. The zero curvature is
indeed the result of minimizing the arc length of all level set contours in the
image.

The methods used to denoise an image based on the TV norm usually
apply the Euler–Lagrange as a gradient descent via a PDE of the form

It = div
(
∇I
|∇I|

)
.

Again, the corresponding flow of the image level sets can be written as

Ct =
1
|∇I|κn,

[14]. This is nothing but a selective curvature flow, where the flow is enhanced
at smooth regions and suppressed near the image edges (where the image
gradient is high), so that these important features are preserved.

Another popular filter proposed at the same time is the Perona–Malik
[23] anisotropic diffusion. Unlike its name, the filter is an inhomogeneous yet
locally isotropic flow given by

It = div (f(|∇I|)∇I) .

We see that setting f(s) = s−1 we are back with the TV flow, while other
selections lead to other filters.

The role of the diffusivity function f is to control the amount of diffusion
according to the gradient of the image. At image edges, where |∇I| is large,
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the diffusion should be minimal, and vice versa at the interior of objects. To
accomplish that, f should be monotonically decreasing. A popular choice for
f is

f(|∇I|) =
1

1 + |∇I|2/λ2
.

7.2.4 Anisotropic Nonlinear Diffusion

Gabor [2, 9, 16, 20] was probably the first to consider anisotropic diffusion
by smoothing along the edge and inverting the heat operator and thereby
generating an unstable enhancing process across the edge. If we write the
gradient direction as ξ = ∇I/|∇I| and η as the orthogonal direction (Fig.
7.4), It = Iηη is nothing but the curvature flow. Gabor proposed to use one
iteration of a discretization of the equation

It = Iηη − εIξξ,

where ε determines the amount of inverse diffusion. This simple and nice
formulation for image enhancement (which cannot be easily extracted from a
variational principle) was rediscovered many times along the evolution of the
image processing field.

η

ξ

Fig. 7.4. The gradient direction and the tangent direction of the image level sets

A recent interesting anisotropic differential filter for image analysis is Wei-
ckert’s [43] edge direction sensitive flow. Weickert’s idea was to plug a 2 × 2
symmetric positive definite matrix instead of the scalar function f(s) of the
Perona–Malik flow. The orthonormal eigenvectors of the matrix are selected
according to the image gradient direction

v1 ‖ ∇I, v2 ⊥ ∇I,

and their corresponding eigenvalues are taken such that

lim
|∇I|→∞

λ1(|∇I|)
λ2(|∇I|)

= 0.

This way, the smoothing is mostly along the edges and not across them.
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7.2.5 Mean Curvature Flow

Many times the way we represent objects defines the way(s) in which we can
manipulate them. Images, for example, were represented traditionally as a
matrix of numbers. Many image processing techniques followed this repre-
sentation. Recently, a more geometric point of view emerged. An image is
regarded and represented as a surface. In fact, the graph of the intensity func-
tion for gray-valued images is a two-dimensional surface. One may think of
it as embedded in IR3 with coordinates x, y, and I. Once described in this
way it is natural to ask geometric questions such as about the curvature of
the surface at a given point. We may also envisage processes that alter the
geometric properties of the surface. Noting that noise is represented in the
image as points (or small regions) of high curvature, it is natural to give a
smoother version of the image by reducing points with high curvature. One
way to achieve this goal is to define an evolution equation that depends on the
curvature. We move, at each instant, the image surface in the direction of the
normal to the surface. Note that this is the only direction that changes the
shape of the image. Movement along the other two directions simply causes a
reparameterization that does not change the image’s gray-value content. The
amount of change at each point is proportional to the mean curvature in that
point. Denoting the mean curvature H , and the normal to the surface N, we
find the following PDE

St = HN.

How should we understand this equation? How is it applied to images? In
order to answer these questions we go back to the representation of the image
as a surface. The graph of the image embedded in IR3 is represented as the
ternary (x, y, I(x, y)). The two tangent vectors along the canonical coordinates
x and y are given by X1 = (1, 0, Ix) and X2 = (0, 1, Iy). The normal vector is
derived easily as orthogonal to X1 and X2. Its form is

N =
1√

1 + |∇I|2
(−Ix,−Iy, 1).

The mean curvature at each point is

H(x, y) =
(1 + Ix)2Iyy − 2IxIyIxy + (1 + I2

y )Ixx

(1 + I2
x + I2

y )
3
2

.

It follows that the equation is

(x, y, I)Tt = H(−Ix,−Iy, 1)T
1√

1 + |∇I|2
.

Since we work in a constant domain and a constant coordinate system, namely
the Cartesian x and y coordinates, the only change that actually takes place
is the value of the gray value at each pixel. In order to have the required effect
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while changing the gray values only, we change the gray value at each point
such that its projection on the normal has exactly the magnitude of the mean
curvature. A simple calculation shows that we need to multiply by a factor of√

1 + |∇I|2 (Fig. 7.5).

ΗΝ

<Ι,Ν>^
ΗΙ^

x

y

I^

Fig. 7.5. The mean curvature flow for gray level images is accomplished by only
changing the intensity component

The final equation is

It =
(1 + Ix)2Iyy − 2IxIyIxy + (1 + I2

y )Ixx

(1 + I2
x + I2

y )
.

7.2.6 Color Images

Color images are the canonical example of vector value images. The light
that is reflected from a surface is described by the wavelength spectrum
R(λ) = S(λ)ρ(λ), where S(λ) is the spectrum of the illumination and ρ(λ)
is the material reflectance property known as the albedo. Three filters are
applied at each spatial point to the spectrum to produce the three channels
Ii =

∫
dλR(λ)f i(λ). These three channels are usually called red, green, and

blue (RGB) with respect to the regions in spectrum space where the filters ex-
tract most of their energy. The information is then encoded in three functions
R(x, y), G(x, y), and B(x, y).

There are several approaches in the denoising process of color and other
multichannel images. The first and most simple and naive approach is to
apply a denoising process to each channel separately. This approach ignores
completely the correlation between the different channels. Since the channel
edges are not necessarily aligned, an anisotropic channel-by-channel process
may blur regions where only one channel has an edge. In case several strong
edges in all channels exist with small offsets, artificial colors may appear.
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We describe in this section a different approach where the color channels
are correlated via the Di Zenzo metric [5]. More elaborate approaches that
incorporate perceptual psychophysical data will be discussed below in the
context of the Beltrami framework. Here we follow the approach of Sapiro and
Ringach [27]. The Di Zenzo metric is defined in the color space. Its explicit
form is

D =
(

R2
x + G2

x + B2
x RxRy + GxGy + BxBy

RxRy + GxGy + BxBy R2
y + G2

y + B2
y

)
,

where the subscripts x and y mean partial derivation. The elements can be
written more simply with the Einstein summation convention: indices that
appear twice are summed over. The elements are written as Dxx = Ii

xI
i
x, where

the summation is over the index i = 1, 2, 3, and I1 = R, I2 = G, I3 = B. In
general Dµν = Ii

µI
i
ν , where µ and ν take the values 1 and 2. They stand for

xµ and xν , where by convention x1 = x and x2 = y.
The matrix D is real, and symmetric and it can be diagonalized. Formally,

we can write D = U TΛU where Λ = diag(λ+, λ−). The matrix U is composed
of the eigenvectors that give the direction of maximal variation in color space
and its perpendicular direction. The λi indicate the amount of change in
each direction. Sapiro and Ringach suggest in their paper constructing an
anisotropic process in the following manner:

Ii
t = div

(
f(λ+ + λ−)∇Ii

)
.

This equation can be derived as a gradient descent of a functional. It is
simply S[Ii] =

∫
Ψ(λ+ + λ−)dxdy. A new analysis of this and many other

approaches can be found in Tschumperlé’s thesis [40].

7.2.7 The Beltrami Flow

In the Beltrami framework [15, 31] the image is regarded as an embedding of
the image manifold in the space-feature manifold. In more rigorous terms we
describe the image as a section of a fiber bundle. The fiber bundle is composed
of the spatial part, which is usually a rectangle in IR2, called the base manifold,
and the fiber that describes the feature space, i.e. intensity, color, texture, and
so on. A section of the fiber bundle is a choice of a specific feature from the
feature space for every point in the base manifold. The feature space may be
a linear space or a more complicated manifold. In the first case we call the
section a vector field.

The most simple example is the gray-level image. Denote the embedding
map by X . The explicit form of this map for gray-level images is

X(u1, u2) = (u1, u2, I(u1, u2)),

where u1, u2 are the spatial coordinates and I is the intensity component (Fig.
7.6). For color images the embedding map reads:
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X(u1, u2) = (u1, u2, I1(u1, u2), I2(u1, u2), I3(u1, u2)),

where I1, I2, I3 are the three color components (for instance, red, green, and
blue for the RGB color space).

X(U)
u1

u2

U

X

y

I(x,y)

x

Fig. 7.6. A gray-level image according to the Beltrami framework

The geometry of the image manifold, i.e. the section, is determined accor-
ding to its metric tensor G, which is the result of the metric H chosen for the
space-feature manifold, i.e. the fiber bundle. A natural choice for gray-level
images is a Euclidean space-feature manifold with the metric

H = (hij) =

⎛⎝1 0 0
0 1 0
0 0 β2

⎞⎠ ,

where β is the relative scale between the space coordinates and the intensity
component. The metric G of the image manifold is derived from the metric H
and the embedding X by the pullback procedure

(G)ij = ∂iX
a∂jX

bhab .

Using the explicit form of the embedding map X and the metric of the fiber
bundle H for gray-level images, we can find the metric G:

G = (gij) =
(

1 + β2I2
1 β2I1I2

β2I1I2 1 + β2I2
2

)
,

where Ii � ∂I
∂ui .

The Euclidean metric H of the space-feature manifold for color images is
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H = (hij) =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 β2 0 0
0 0 0 β2 0
0 0 0 0 β2

⎞⎟⎟⎟⎟⎠ ,

where the same scaling factor was chosen for the three color channels. The
resulting image metric is

G = (gij) =
(

1 + β2
∑

a(Ia
1 )2 β2

∑
a I

a
1 I

a
2

β2
∑

a I
a
1 I

a
2 1 + β2

∑
a(Ia

2 )2

)
.

The Beltrami flow is obtained by minimizing the area of the image manifold

S =
∫∫ √

gdu1du2,

with respect to the intensity components, where g = det(G) = g11g22 − g2
12.

The gradient descent process is given by the corresponding Euler–Lagrange
equations

Xa
t = −g− 1

2 hab δS

δXb
= g−

1
2 ∂i(g

1
2 gij∂jX

a) + Γ a
bc∂iX

b∂jX
cgij ,

with gij the components of the contravariant metric of the image manifold
G−1 (the inverse of the metric tensor G). The Christoffel symbols (also known
as the Levi–Civita coefficients) Γ a

bc are defined in terms of the fiber bundle
metric H:

Γ a
bc =

1
2
had (∂bhdc + ∂chbd − ∂dhbc) . (7.2)

In matrix form it reads

Xa
t =

1
√
g
div

(√
gG−1∇Xa

)
︸ ︷︷ ︸

∆gXa

+Tr(Γ aF ),

where Γ a is the matrix whose elements are (Γ a)ab = Γ a
ab and Fab =

∂iX
a∂jX

bgij . The symbol ∆g is the Laplace–Beltrami operator, which is the
extension of the Laplacian to manifolds. The resulting diffusion flow for gray-
level images is

It = ∆gI = H〈Î ,N〉,
i.e. the image surface moves according to the intensity component of the mean
curvature flow (Fig. 7.7). Because we chose a Euclidean feature space the
Christoffel symbols are identically zero in this case. They vanish for color
images as well. The diffusion equation for each color component reads

Ii
t = ∆gI

i. (7.3)
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Fig. 7.7. In the Beltrami flow for gray-level images the image surface moves ac-
cording to the intensity component of the mean curvature flow. Geometrically, only
the projection of this movement on the normal to the surface matters

The diffusion process in Fig. 7.1 is actually the Beltrami flow. Figure 7.8
contains a closeup of the images in Fig. 7.1, including the two-dimensional
manifolds of the red, green, and blue color components. It is evident that the
Beltrami flow filters out the noise while not only preserving the edges, but
keeping their location in the three color components aligned.

7.3 Extending the Beltrami Framework

The basic idea of the Beltrami framework of treating the image as a manifold
and enhancing it by minimizing its area can be extended in various ways.
In this section the framework is extended to higher dimensional spaces (for
texture, video, and volumetric data), non-Euclidean feature spaces, and other
diffusion directions.

7.3.1 Texture, Video and Volumetric Data

We have discussed color for which researchers try to give a simple geometric
interpretation, like an arc length that would capture our visual sensitivity
to colors. Next, we claimed that in order to extract technology from such
definitions we need to link the color arc length to another measure of distance
in the image domain. In this way we came up with the hybrid space idea.

Next come interesting questions of what is texture and how should we treat
it? Like color, we try to interpret texture as a region for which homogeneity is
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Fig. 7.8. The results of the Beltrami filter. The original image is on the left and
the filtered one on the right

no longer determined by a single constant like color, but rather by repeating
patterns in the image domain. Again, we need some sort of measure that
defines a distance between different patterns. There are many ways to achieve
this goal [24]. Once such an arc length is defined, all we need to do is to plug
it into our Beltrami framework and we have a filter for texture.

Such filters are reported in [16], where the texture is represented by using
the Gabor–Morlet wavelet transform W (x, y, θ, σ) [19], with x and y the spa-
tial coordinates, θ the wavelet orientation parameter, and σ the wavelet scale
parameter. The texture image is the embedding (x, y, θ, σ)→ (x, y, θ, σ,R, J),
where R = real(W ) and J = imag(W ). Each scale is considered as a different
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space, resulting in the metric

G = (gij) =

⎛⎝ 1 + R2
x + J2

x RxRy + JxJy RxRθ + JxJθ

RxRy + JxJy 1 + R2
y + J2

y RyRθ + JyJθ

RxRθ + JxJθ RyRθ + JyJθ 1 + R2
θ + J2

θ

⎞⎠ ,

and the Beltrami flow

Rt = ∆gR,

Jt = ∆gJ.

Consequently, each scale can be filtered in a different way and to a different
extent. See Fig. 7.9 for a demonstration of texture enhancement using the
Beltrami flow.

Fig. 7.9. Texture enhancement by using the Beltrami filter on the Gabor–Morlet
wavelet transform of the texture image. The original image is on the left

The Beltrami filter for gray-level video and volumetric medical data (such
as CT or MRI) is accomplished by considering them as the embedding
(x, y, z) → (x, y, z, I), where for video z represents time and for volumetric
data the third spatial coordinate. The induced metric in this case is

G = (gij) =

⎛⎝1 + I2
x IxIy IxIz

IxIy 1 + I2
y IyIz

IxIz IyIz 1 + I2
z

⎞⎠ ,

and the Beltrami flow is

It =
1
√
g
div

(
∇I
√
g

)
,

where ∇I = (Ix, Iy, Iz), and g = 1 + I2
x + I2

y + I2
z .
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7.3.2 Non-Euclidean Feature Spaces

We have seen above that the image is represented as an embedding of a surface
in a spatial-feature space. In the previous subsections we treated many tasks
in which the feature space is Euclidean and endowed with a Cartesian coor-
dinate system. There are many instances where the situation is different. We
shall present below two such cases: perceptual color denoising and orientation
diffusion.

Color Image Denoising

The construction of the RGB color space was described in the section on color
images (Sect. 7.2.6). While the coordinates in this color space are perfectly
defined from a physical point of view, they are not enough in order to denoise
color images that are to be seen by human beings. The most important no-
tion in denoising is distance. What is relevant in denoising color images is to
understand how distances between colors are perceived by humans. In other
words, we treat the perceptual color space as a three-dimensional manifold
whose local coordinates are given by the RGB system. What is needed in
order to complete the picture is to provide the metric on this manifold such
that distances between colors can be measured with accordance to perception.
This distance cannot be deduced from physics and must be given from psy-
chophysical experiments and considerations. Albeit its modern appearance,
this paradigm is more than a century old. The first formulation of the per-
ceptual color space as a Riemannian manifold is due to Helmholtz [11] in
1896! Helmholtz suggested a metric that is based on the famous log response
of our senses. While it is good as a first approximation, it was soon realized
that his metric is inappropriate and does not describe well the experiments
in various regions of the perceptual color space. The experiments are based
on the notion of just noticeable differences (JND). In a typical JND expe-
riment two squares of the same color are shown to a subject. One of these
squares gradually changes its color until the subject declares that the colors
are different. This gives a map of infinitesimal distances in color space and
can be compared directly to metrics that model this human color perception.
The construction of such metrics captured the interest of prominent scientists
such as Helmholtz and Schrödinger [28]. The Helmholtz model is given simply
by the following line element:

ds2 = (d logR)2 + (d logG)2 + (d logB)2

This equation ignores the dependence of the JND on the overall luminance.
Schrödinger tried to rectify this line element and suggested the following
model:

ds2 =
1

R + G + B

(
dR2

R
+

dG2

G
+

dB2

B

)
.
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More recent efforts to model the metric of the perceptual color space include
Stiles [37] and Vos and Walraven [42].

We will demonstrate here the denoising with respect to the Helmholtz and
Schrödinger metrics only. For a thorough discussion refer to [32]. Let us denote
the perceptual color Riemannian manifold by Mc. The Beltrami framework
describes a color image as the embedding of a two-dimensional surface in the
fiber bundle IR2 ×Mc. The base manifold is IR2. At each point in the base
manifold the fiber Mc is attached. A color image is a section of this fiber
bundle. The metric on the fiber bundle is simply

ds2 = ds2
spatial + ds2

color = dx2 + dy2 + dIidIjhij ,

where for the Helmholtz model

(hij) =

⎛⎝ 1
R2 0 0
0 1

G2 0
0 0 1

B2

⎞⎠ ,

and for the Schrödinger model it is

(hij) =
1

R + G + B

⎛⎝ 1
R 0 0
0 1

G 0
0 0 1

B

⎞⎠ .

The induced metric on the section is simply

gµν = δµν + Ii
µI

j
νhij ,

and the Levi–Civita coefficients are given by Eq. (7.2). The Beltrami flow is
then

Ii
t = ∆gI

I + Γ I
jk∂µX

j∂νX
kgµν .

Orientation Diffusion

Another example of a non-Euclidean feature space is the orientation [18]. In
this case the feature manifold is the unit circle S1. We again construct the
fiber bundle IR2×S1 and regard the orientation vector field as a section of this
fiber bundle. In order to express the metric on this fiber bundle we cover S1

with two coordinate patches. This can be done in various ways. We present
here the hemispheric coordinates for simplicity. Embedding the orientation
circle in IR2 with Cartesian coordinates u and v we find that S1 is given by
u2 + v2 = 1. We write the metric on the patch of S described by u as

ds2 = du2 + dv2 = (1 +
u2

1− u2
)du2 =

1
1− u2

du2 = A(u)du2.

Having calculated the metric on the fiber we can now deduce the induced
metric on the section
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ds2 = dx2 + dy2 + A(u)du2

= (1 + A(u)u2
x)dx2 + 2A(u)uxuydxdy + (1 + A(u)u2

y)dy2.

Note that the metric on the fiber bundle is given by

(hij) =

⎛⎝1 0 0
0 1 0
0 0 1

1−u2

⎞⎠ .

The Levi–Civita coefficients can be calculated by Eq. (7.2). The Beltrami flow
equation reads:

ut = ∆gu + Γ u
jk∂µX

j∂νX
kgµν .

The Beltrami flow modifies the features in the feature manifold such that a
unit length vector stays always a unit length vector along the flow.

7.3.3 Inverse Diffusion Across Edges

An interesting approach to extend Gabor’s original idea [9] for image enhance-
ment via

It = Iηη − εIξξ,

is to try to manipulate the eigenvalues of the inverse metric matrix in the
Beltrami operator. If these values are kept positive, the result is a diffusion
that can be enhanced in a specific direction, as proposed by Weickert in his
‘coherence enhancement’ filters [44]. More interesting, yet obviously less sta-
ble, is the concept of negative eigenvalues that mimic Gabor’s inverse diffusion
across the edge. This was first introduced in [16].

The concept is simple. We first extract the inverse metric matrix (gij) and
compute its eigenstructure, (gij) = UΛU T. Next, manipulate the eigenvalues
so that the smaller one gets a negative sign. This way, the inverse diffusion
across the edge, because of the negative sign, enhances and sharpens the edges
in the image, while the diffusion along the edges (the direction orthogonal to
the maximal change direction) smooths the boundaries and adds some control
to the process. See Fig. 7.10 for an example of this process. This is an extension
to Gabor’s original idea from 1965 that exploits the geometric structure of the
color image, where there are no level sets or ‘isophots’ due to its multichannel
nature.

7.4 Numerical Schemes

The PDEs describing the diffusion processes are continuous, but they are
implemented on discrete digital images by computer algorithms with discrete
representations. The means to bridge this gap are the numerical schemes that
ensure that the discrete solution will converge to the continuous one as the
grid is refined.
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Fig. 7.10. Edge enhancement by diffusion along the edge and inverse diffusion
across it. The original image is on the left

Many numerical schemes are used for the solution of the image diffusion
PDEs. Among them are fast Fourier transform (FFT), wavelet transforms,
finite element techniques, neural networks, multigrid methods, and many
more. However, in most cases finite difference schemes are used. In these
schemes continuous derivatives are approximated by discrete differences. The
parameter domain is covered by a grid with step sizes k in time and h in
space, and the variables are discretized. For instance, u(t, x) is replaced by
un

m � u (t = nk, x = mh) (Fig. 7.11).

t

x

k

h
un

m

un+1
m

un
m+1

Fig. 7.11. The numerical grid for finite difference schemes

In most cases the design of satisfactory finite difference numerical schemes
is quite straightforward. However, because of the size of the data, simplistic
schemes might be inefficient and require a long run time. In the following
subsections the main principles of the finite difference schemes are presented
along with a few more elaborate schemes required to efficiently tackle the
more challenging PDEs used for image processing.
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7.4.1 Linear Diffusion

For one-dimensional linear diffusion, the first derivative in time of the function
u(t, x) can be approximated by the first-order accurate forward difference

D+
t un

m � un+1
m − un

m

k
,

and the second derivative in space can be approximated by the second-order
central difference

D0
xxu

n
m � un

m+1 − 2un
m + un

m−1

h2
.

The resulting numerical scheme for the linear diffusion is

un+1
m − un

m

k
=

un
m+1 − 2un

m + un
m−1

h2
,

and if we define
r � k

h2
,

we get
un+1

m = (1− 2r) un
m + r

(
un

m+1 + un
m−1

)
.

All we need is to add the initial condition

u0
m = fm,

and to define the boundary conditions.
This is an explicit numerical scheme, because the value of u at iteration

n + 1 is given explicitly by the value of u at previous times (Fig. 7.12). The
update step consists of merely additions and multiplications. The problem
with explicit schemes is that their time step is limited by reasons of stability.
For linear diffusion we require r ≤ 1/2 . Taking a bigger time step may result
in an unstable process, whose outcome does not depend on the initial data but
on the computation errors. In many equations the allowed time step is rather
small and necessitates many iterations till the required output is reached. One
solution is implicit numerical schemes, where the desired value un+1

m depends
on the value of u at the same time n + 1 and at other spatial locations (Fig.
7.12). One example is the Crank–Nicolson second order accurate scheme in
time and space

un+1
m − un

m

k
=

1
2

[
un+1

m+1 − 2un+1
m + un+1

m−1

h2
+

un
m+1 − 2un

m + un
m−1

h2

]
.

In this case we need to solve a tridiagonal system of equations in every update
step. This can be done efficiently by the Thomas algorithm. A large time
step would affect the accuracy of the solution, but it would not generate any
instabilities.
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t

x

un
m

un+1
m

un
m+1

un
m-1

t

x

un
m

un+1
m un+1

m+1un+1
m-1

Fig. 7.12. The time and space dependencies of the explicit (left) and implicit (right)
schemes for linear diffusion

For images where the equations have more than one dimension in space,
explicit schemes are usually impractical due to the decrease of the bound on
the time step. For linear diffusion we have r ≤ 1/(2D), with D the spatial
dimension of the equation. On the other hand, implicit schemes result in
a system of equations that is not tridiagonal and usually cannot be solved
efficiently. More elaborate implicit schemes are required.

One such numerical scheme is the alternating direction implicit (ADI)
scheme. Peaceman and Rachford’s [22] version is(

I− k

2
A1

)
ũn+ 1

2 =
(

I +
k

2
A2

)
un,(

I− k

2
A2

)
un+1 =

(
I +

k

2
A1

)
ũn+ 1

2 , (7.4)

with I the identity matrix, and the operators A1u = uxx and A2u = uyy

replaced by their second-order approximations. It can be seen from Eq. (7.4)
that each iteration includes two steps where first the x direction is solved im-
plicitly and the y direction explicitly, and then the opposite. Both steps consist
of solving a tridiagonal system of equations, which can be done efficiently by
the Thomas algorithm.

7.4.2 Nonlinear Diffusion

The original Perona–Malik filter [23] suffered from instabilities. The regulari-
zation presented by Catté et al. [4] consists of replacing f(|∇I|) with f(|∇Iσ|),
where Iσ is the convolution of I with a Gaussian kernel with a standard
deviation of σ. This smoothing of I eliminates some of the small-scale noise
and makes the filter well-posed.

Weickert et al. [46] introduced the first-order accurate additive operator
splitting (AOS) scheme to numerically implement this filter. The update step
is
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In+1 =
1
m

m∑
i=1

(I−mkAi(In))−1 In,

with m the dimension of the image. The elements of the matrix Ai are given
by

(Ai)pq =

⎧⎪⎨⎪⎩
fp+fq

2h2 q ∈ N(p)
−
∑

l∈N(p)
fp+fl

2h2 p = q

0 otherwise

with N(p) the neighbors of the grid point p in the ith direction, and fp the
value of f(|∇In

σ |) at grid point p.
The AOS scheme is semi-implicit and the size of the time step does not

affect its stability. The scheme is efficient because it only requires the solution
of tridiagonal systems of equations. It creates a discrete scale space [44], and
its additivity gives equal importance to all coordinate axes, as opposed to the
multiplicative locally one dimensional (LOD) scheme, which uses the update
step

In+1 =
m∏

i=1

(I− kAi(In))−1
In.

The AOS may also be used for some anisotropic nonlinear filters applied to
gray level images. For color images and filters like the Beltrami flow, where
each color component depends on the value of the others, the splitting is
impossible. To date, there is no PDE-based implicit scheme for the color
Beltrami. This is one of the main motivations for the construction of numerical
kernels, described in the next section.

7.5 Kernels

It was shown in the previous section that the bound on the time step of some
of the explicit numerical schemes can be alleviated by the use of implicit
schemes. This enables a trade-off between the efficiency of the scheme and
its accuracy. Unfortunately, this is not the case in some of the important
geometric filters, such as the Beltrami filter. Another approach, namely the
use of kernels, is the answer in some of these cases. Moreover, the kernels add
a new perspective to these filters and present connections to other existing
image-enhancing procedures.

7.5.1 The Gaussian Kernel for the Heat Equation

It can be shown that linear diffusion of an image can be accomplished by
convolving it with a Gaussian kernel. Applying the heat equation to the two-
dimensional data I(u1, u2, t0) for the duration t is equivalent to the convolu-
tion
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I(u1, u2, t0 + t) =
∫∫

I(ũ1, ũ2, t0)K(|u1 − ũ1|, |u2 − ũ2|; t)dũ1dũ2

= I(u1, u2, t0) ∗K(u1, u2; t) , (7.5)

where the kernel is given by

K(u1, u2; t) =
1

4πt
exp

(
− (u1)2 + (u2)2

4t

)
.

The use of the kernel enables us to replace the iterative application of the
numerical scheme for the PDE with a one-step filter.

7.5.2 One-Dimensional Kernel for Nonlinear Diffusion

A kernel for the nonlinear diffusion of one-dimensional signals was presented
in [30]. The nonlinear kernel adapts itself to the local amplitude of the signal.
Adaptive filtering has been done before, mainly by using robust estimation
techniques. However, the nonlinear kernel relates to the signal as a curve, and
its adaptivity originates from the geometry of this curve.

The main idea behind the nonlinear kernel is presented in Fig. 7.13. For
the linear kernel the amplitude of the filtered signal at a specific point is
the sum of the neighboring points’ amplitudes weighted according to their
distance along the coordinate axis. For the nonlinear kernel the weighting is
according to the distance on the signal itself. The nonlinear kernel ‘resides’ on
the signal, while for the linear kernel the Gaussian ‘resides’ on the coordinate
axis.

Fig. 7.13. Filtering a signal with a linear Gaussian kernel (top) and a nonlinear
kernel (bottom)

The distance along the signal is calculated using the metric of the curve,
which is the signal. Various metrics are possible, and they yield different filte-
ring results. The Euclidean metric, for instance, using the curve representation
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C(p) = (x(p), y(p)) = (x, y(x)) is g(x) = 1 + y2
x. The kernel is constructed for

the one-dimensional Beltrami flow

Ct = ∆gC.

The kernel cannot be global in time due to its nonlinearity (the kernel
depends on the signal’s local amplitudes, which change in each iteration of
the kernel). Therefore the PDE cannot be replaced with a one-step filter like in
linear diffusion. Only a short time kernel that is applied iteratively is possible.
After each iteration the signal is

C(p, t0 + t) =
∫

C(p̃, t0)K(p, p̃; t)dp̃,

with the kernel

K(p, p̃; t) =
H(p, p̃; t)√

t
exp

(
−ψ(p, p̃)

t

)
.

H(p, p̃; t) can be taken to be a constant [30], and we get

ψ(p) =
1
4

(∫ p̃

p

ds

)2

,

where ds is an arc length element given by ds =
√

g(p)dp. Since
∫ p̃

p ds is the
distance on the signal from point p to point p̃, the resulting kernel is indeed
a Gaussian ‘residing’ on the signal (Fig. 7.13).

7.5.3 The Short Time Kernel for the Beltrami Flow

A short time kernel for the two-dimensional Beltrami flow was introduced in
[36]. If used iteratively, it has an equivalent effect to that of the Beltrami flow.
We replace Eq. (7.5) with

Ii(u1, u2, t0 + t) =
∫∫

Ii(ũ1, ũ2, t0)K(u1, u2, ũ1, ũ2; t)dũ1dũ2 ,

which we denote by

Ii(u1, u2, t0 + t) = Ii(u1, u2, t0) ∗g K(u1, u2; t).

This is not a convolution in the strict sense, because K does not depend
on the differences ui − ũi. It will be shown later that ∗g is the geometric
equivalent for manifolds of convolution. The general form of K is

K(u1, u2; t) =
H(u1, u2; t)

t
exp

(
−ψ2(u1, u2)

t

)
,
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where we take, without loss of generality, (ũ1, ũ2) = (0, 0) and omit from
K the notation of dependency on these coordinates. In order to find K, we
use the fact that it should satisfy Eq. (7.3), and after a few mathematical
manipulations we get

gijψiψj = ‖∇gψ‖2 =
1
4
,

with ∇g the extension of the gradient to the manifold. This is the Eikonal
equation on the manifold, and its viscosity solution is a geodesic distance
map ψ on the manifold. The resulting short time kernel is

K(u1, u2, ũ1, ũ2; t) =
H0

t
exp

⎛⎜⎝−
(∫ (ũ1,ũ2)

(u1,u2)
ds
)2

4t

⎞⎟⎠ ,

=
H0

t
exp

(
−

d2
g

(
(u1, u2), (ũ1, ũ2)

)
4t

)
, (7.6)

where ds is an arc length element on the manifold, and dg(p1, p2) is the
geodesic distance between two points, p1 and p2, on the manifold. Note that in
the Euclidean space with a Cartesian coordinate system dE(p1, p2) = |p1−p2|.
The geodesic distance on manifolds is therefore the natural generalization of
the difference between coordinates in the Euclidean space. It is natural then
to define the convolution on a manifold by

Ii(u1, u2) ∗g K(u1, u2; t) =
∫∫

Ii(ũ1, ũ2)K
(
dg

(
(u1, u2), (ũ1, ũ2)

))
dũ1dũ2.

The resulting update step for the image is

Ii(u1, u2, t0 +t) =

=
H0

t

∫∫
(ũ1,ũ2)∈N(u1,u2)

Ii(ũ1, ũ2, t0) exp

⎛⎜⎝−
(∫ (ũ1,ũ2)

(u1,u2)
ds
)2

4t

⎞⎟⎠dũ1dũ2,

with N(u1, u2) the neighborhood of the point (u1, u2), where the value of the
kernel is above a certain threshold. Because of the monotonic nature of the
fast marching algorithm used for the solution of the Eikonal equation, once a
point is reached where the value of the kernel is smaller than the threshold,
the algorithm can stop and thereby naturally bound the numerical support of
the kernel. The value of the kernel for the remaining points of the manifold
would be negligible. Therefore, the Eikonal equation is solved only in a small
neighborhood of each image point. H0 is taken such that integration over the
kernel in the neighborhood N(u1, u2) of the point equals one.

The short time Beltrami kernel in Eq. (7.6) is very similar to the bilateral
filter kernel [6, 39]. The difference between them is that the Beltrami kernel
uses geodesic distances on the image manifold, while the bilateral kernel uses
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Euclidean distances. As can be seen from the derivation of the Beltrami kernel,
the bilateral filter originates from image manifold area minimization. The
bilateral filter can actually be viewed as an Euclidean approximation of the
Beltrami flow.

The Euclidean distance used in the bilateral filter, while being easier to
calculate, does not take into account the image intensity values between two
image points. A point can have a relatively high kernel value, although it
belongs to a different object than that of the filtered image point. The Beltrami
kernel takes this effect into account and penalizes a point that belongs to a
different connected component. That is, it is not ‘as blind’ as the bilateral
filter to the spatial structure of the image.

The short time kernel for the Beltrami flow requires the solution of the
Eikonal equation on the image manifold. The image manifold is a parametric
manifold, where the metric G is given for every point. The solution to the
Eikonal equation on parametric manifolds [33, 35] is based on the solution of
the same problem on triangulated manifolds [17], which in turn is an extension
of Sethian’s fast marching method [29]. Another Eikonal solver on flat domains
with regular grids was proposed by Tsitsiklis [41].

The original fast marching algorithm [29] solves the Eikonal equation in
an orthogonal coordinate system. This is not the case for image manifolds.
There g12 �= 0 and we get a nonorthogonal coordinate system on the manifold.
The solution for that is similar to that of [17], where a preprocessing stage is
used to construct a suitable numerical stencil for each grid point. In this case
there is no need to perform the unfolding step of [17] because the structure of
the nonorthogonal grid on the manifold is given by its metric G. Figure 7.14
demonstrates the solution of the Eikonal equation for the parametric manifold
z = 0.5 sin(4πx) sin(4πy).

In order to demonstrate the spatial structure of the kernel, we tested it on
the synthetic image in Fig. 7.15. At isotropic areas of the image, the kernel is
isotropic, and its weights are determined solely by the spatial distance from
the filtered pixel. Across edges the significant change in intensity is translated
into a long geodesic distance, which results in negligent kernel weights on the
other side of the edge. The filtered pixel is computed as an average of the
pixels on the ‘right’ side of the edge.

7.6 Conclusion

This chapter described image enhancement using PDE based geometric diffu-
sion flows. On the theoretical side, starting with variational principles explains
the origin of the flows, and the geometric approach results in some nice in-
variance properties. On the practical side, using carefully selected numerical
schemes and developing kernels for the flows enables an efficient and robust
implementation. Combined together, we get a fascinating area of research
yielding state-of-the-art algorithms.
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u2

u1

Fig. 7.14. Fast marching on the manifold z = 0.5 sin(4πx) sin(4πy). Left : imple-
mented on the parameterization plane. Right: projected on the manifold. Lower
values are assigned brighter colors. The black curves are the level curves

Fig. 7.15. Level curves of the kernel at various locations in a synthetic image
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8.1 Introduction

With the proliferation of the Internet and maturation of the digital signal
processing technology, applications of digital imaging are prevalent and are
still continuously and rapidly increasing today. Yet the main obstacle in the
widespread deployment of digital image services has been enforcing security
and ensuring authorized access to sensitive data. In this regard, a direct solu-
tion is to use an encryption algorithm to mask the image data streams, which
has led to the celebrated number-theory-based encryption algorithms such as
Data Encryption Standard (DES), International Data Encryption Algorithm
(IDEA), and the algorithm developed by Rivest, Shamir and Adleman (RSA)
[24, 40, 41]. However, these encryption schemes appear not to be ideal for ima-
ge applications, due to some intrinsic features of images such as bulk data ca-
pacity and high redundancy, which are troublesome for traditional encryption.
Moreover, these encryption schemes require extra operations on compressed
image data, thereby demanding long computational time and high compu-
ting power. In real-time communications, because of their low encryption and
decryption speeds, they may introduce significant latency.

Compared with text encryption, which most existing encryption standards
aim at, image encryption (or more generally, multimedia encryption) has its
own characteristics and special features with many unique specifications. In
order to develop effective image encryption techniques, these have to be fully
understood. In the following section, some basic concepts in cryptography
with respect to image encryption are introduced.

8.1.1 Fundamentals of Cryptology

The basic idea of encryption is to modify the message in such a way that
its content can be reconstructed only by a legal recipient. A discrete-valued
cryptosystem can be characterized by [33]
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• a set of possible plaintexts, P
• a set of possible ciphertexts, C
• a set of possible cipherkeys, K
• a set of possible encryption and decryption transformations, E and D

For each key, k ∈ K, there exists an encryption function e(k , ·) ∈ E and
a corresponding decryption function d(k , ·) ∈ D, such that for each plaintext
p ∈ P the condition for unique decoding, d(k , e(k , p)) = p, is satisfied.

The security of a cryptosystem usually relies on the key only. In other
words, it is assumed that the opponent knows the structure of the encryption
system, has the ciphering algorithm, and has access to the transmission chan-
nel to obtain an arbitrary segment of the ciphertext c. A good cryptosystem
always allows for this situation to happen, and this condition or requirement
is referred to as Kerckhoff’s principle [41].

Encryption algorithms, also called ciphers, can also be classified with res-
pect to the structures of the algorithms. There are two kinds of ciphers: stream
ciphers and block ciphers.

A block cipher is a type of symmetric-key encryption algorithm that trans-
forms a fixed-length block of plain-text data into a block of ciphertext data of
the same length. The fixed length is called the block size, and for many block
ciphers the block size is 64 or 128 bits. The larger the block size, the more
secure the cipher, but the more complex the encipher and decipher algorithms
and devices. Typical block ciphers include DES, Triple DES, Blowfish, IDEA,
and AES; some of them have become cipher standards lately.

Unlike block ciphers, which operate on large blocks of data, stream ciphers
typically operate on smaller units of plaintext, usually bits. So, stream ciphers
can be designed to be exceptionally fast, much faster than a typical block
cipher. Generally, a stream cipher generates a sequence of bits as a key (called
keystream), and the encryption is accomplished by combining the keystream
with the plaintext. Usually, the bitwise Exclusive-OR (XOR) operation [24] is
chosen to perform ciphering, basically for its simplicity. As of today, no stream
cipher has emerged as a standard. The most widely used stream cipher is RC4,
while RC5 has been incorporated into some major products such as BSAFE,
JSAFE, and S/MAIL of the RSA Data Security, Inc. [40]

Traditional cryptology is studied by applying mathematical tools such as
number theory, algebra, algebraic geometry, and combinatorics [9]. In the past
years, a new approach of constructing cryptosystems based on the theory of
chaotic dynamical systems has been gradually developed. The similarity and
difference of both traditional cryptology and chaotic cryptology are further
expounded in Sect. 8.2.

A good cipher should have strong ability to withstand all kinds of crypt-
analysis and attacks that try to break the system. To a certain extent, the
resistance against attacks is a good measure of the performance of a cryp-
tosystem; thus, it is often used to evaluate cryptosystems.
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According to the method of the opponent’s access to additional informa-
tion, attacks on a cryptosystem may be classified into four classes:

• Ciphertext-only attack: Opponent has access to communication channel
and can eavesdrop some segments of the ciphertext, encrypted by a certain
key. The task of the opponent is to reveal as much plaintext as possible,
and even to be able to deduce the cipher key.

• Known-plaintext attack: In addition to the obtained ciphertext segments,
the opponent knows also an associated piece of plaintext. The task of the
opponent is then to deduce the cipher key.

• Chosen-plaintext attack: The opponent not only has access to some seg-
ments of the cipher and the plaintext, but also can choose plaintext to en-
crypt and accordingly gets some corresponding ciphertext that he wants
for comparison. This kind of attack is more intensive than the known-
plaintext attack.

• Chosen-ciphertext attack: The opponent can choose different segments of
the ciphertext and accordingly get its corresponding plaintext.

Apart from the aforementioned typical attacks, there is a type of attack
named exhaustive key search, which tries all possibilities for the key in the
keyspace to completely decrypt the plain message. If the keyspace of a ci-
pher is relatively small, this exhaustive searching works quite well, given the
availability of supercomputing power today.

It should be emphasized that any encryption algorithm, traditional or
chaos-based, should obey basic cryptographical principles in order to be able
to resist serious attacks.

8.1.2 Particularities of Image Encryption

Unlike text messages, image data have special features such as bulk capacity,
high redundancy, and high correlation among pixels, not to mention that they
usually are huge in size, which together make traditional encryption methods
difficult to apply and slow to process. Sometimes image applications also have
their own requirements like real-time processing, fidelity reservation, image
format consistence, and data compression for transmission. Simultaneous ful-
fillments of these requirements, along with high security and high quality
demands, have presented great challenges to real-time imaging practice. One
example is the case where one needs to manage both encryption and compres-
sion. In doing so, if an image is to be encrypted after its format is converted,
say from a TIFF file to a GIF file, encryption has to be implemented be-
fore compression. However, a conventional encrypted image has very little
compressibility. On the other hand, compression will make a correct and loss-
less decipher impossible, particularly when a highly secure image encryption
scheme is used. This conflict between the compressibility and the security is
very difficult, if not impossible, to completely resolve.

Particularities of image encryption may be summarized as follows:
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1. High redundancy and bulk capacity generally make encrypted image data
vulnerable to attacks via cryptanalysis. Based on the bulk capacity, the
opponent can gain enough ciphertext samples (even from one picture) for
statistical analysis. Meanwhile, since data in images have high redundancy,
adjacent pixels likely have similar grayscale values, or image blocks have
similar patterns, which usually embed the image with certain patterns
that result in secret leakage.

2. Image data have strong correlations among adjacent pixels, which makes
fast data-shuffling quite difficult. Statistical analysis on large numbers of
images shows that averagely adjacent 8 to 16 pixels are correlative in
the horizontal, vertical, and also diagonal directions for both natural and
computer-graphical images. According to Shannon’s information theory
[35], a secure cryptosystem should fulfill a condition on the information
entropy, E(P |C) = E(P ), where P stands for plain message and C for
ciphered message; that is, the ciphered (i.e., encrypted) image should not
provide any information about the plain image. To meet this requirement,
therefore, the ciphered image should be presented as randomly as possible.
Since a uniformly distributed message source has a maximum uncertainty
[34], an ideal cipher image should have an equilibrium histogram, and any
two adjacent pixels should be uncorrelated statistically. This goal is not
easy to achieve under only a few rounds of permutation and diffusion.

3. Bulk capacity of image data also makes real-time encryption difficult.
Compared with texts, image data capacity is horrendously large. For
example, a common 24-bit true-color image of 512-pixel height and 512-
pixel width occupies 512 × 512 × 24/8 = 768 KB in space. Thus, a one-
second motion picture will reach up to about 19 MB. Real-time processing
constraints are often required for imaging applications, such as video con-
ferencing, image surveillance, and so on. Vast amounts of image data put a
great burden on the encoding and decoding processes. Encryption during
or after the encoding phase, and decryption during or after the decoding
phase, will aggravate the problem. If an encryption algorithm runs very
slowly, even with high security, it would have little practical value for
real-time imaging applications. That is the reason why current encryp-
tion methods such as DES, IDEA, and RSA are not the best candidates
for this consideration.

4. Image encryption is often to be carried out in combination with data
compression. In almost all cases, the data are compressed before they are
stored or transmitted due to the huge amount of image data and their very
high redundancy. Thus, directly incorporating security requirements in the
data compression system is a very attractive approach. The main challenge
is how to ensure reasonable security while reducing the computational cost
without downgrading the compression performance.

5. In image usage, file format conversion is a frequent operation. It is desi-
rable that image encryption not affect such an operation. Thus, directly
treating image data as ordinary data for encryption will make file format
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conversion impossible. In this scenario, content encryption, where only
the image data are encrypted, leaving file header and control information
unencrypted, is preferable.

6. Human vision has high robustness to image degradation and noise. Only
encrypting those data bits tied with intelligibility can efficiently accom-
plish image protection [47]. However, conventional cryptography treats all
image data bits equally in importance, and thus requires a considerable
amount of computational power to encrypt all of them, which has often
proved unnecessary.

7. In terms of security, image data are not as sensitive as text information.
Security of images is largely determined by the real situation in an ap-
plication. Usually, the value of the image information is relatively low,
except in some specific situations like military and espionage applications
or video conferencing in business. A very expensive attack of encrypted
median data is generally not worthwhile. In practice, many image ap-
plications do not have very strict security requirements. Under certain
circumstances, protection of the fidelity of an image object is more im-
portant than its secrecy. An example is electronic signatures. As another
example, in image database applications, only those users who have paid
for the service can have access to large-size images with high resolution.
Adversaries may be able to get some small-size images with low resolution
by attacks based on cryptanalysis, but those images have little business
values–and perhaps much cheaper than the cost are of preparing and exe-
cuting the attacks. In the worst case, possible partial leakage of some
secrecy in multi-media, within a certain limitations, is always permitted,
while for text information this scenario is largely forbidden because it
is then quite easy to predict the entire message based on the obtained
information from a partial leakage.

Today, there does not seem to be any image encryption algorithm that can
fulfill all the aforementioned specifications and requirements.

Chaos-based image encryption, further described below, cannot solve all
these problems either. However, it can provide a class of very promising me-
thods that can partially fulfill many of these requirements and demonstrate su-
periority over the conventional encryption methods, particularly with a good
combination of speed, security, and flexibility. As seen below, through an e-
laborative design, either chaotic block cipher or chaotic stream cipher can
achieve very good overall performance.

8.1.3 Some Existing Image Encryption Schemes

Some image encryption methods have been proposed in the current literature.
In order to inspire the development of better chaotic ciphers, this review is not
only intended for chaos-based methods, but is also meant for understanding
image encryption technology in general.
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Image encryption algorithms, which can be classified with respect to the
approach in constructing the scheme, are divided into two groups here: chaos-
based methods and non-chaos-based methods. Image encryption also can be di-
vided into full encryption and partial encryption (also called selective encryp-
tion) according to the percentage of the data encrypted. Moreover, they can be
classified into compression-combined methods and noncompression methods.

Some existing proposals of chaos-based image encryption algorithms are
now introduced. In [13], two kinds of schemes based on higher-dimensional
chaotic maps were proposed. By using a discretized chaotic map, pixels in an
image are permuted in shuffling after several rounds of operations. Between
every two adjacent rounds of permutations, a diffusion process is performed,
which can significantly change the distribution of the image histogram that
makes statistical attack infeasible. Empirical testing as well as cryptanalysis
both demonstrated that the chaotic baker map and cat map are good candi-
dates for this kind of image encryption. Similar thoughts also appeared, e.g.,
in [31], where a fast bulk data encryption scheme was designed by combining
chaotic Kolmogorov flows with an adaption of a very fast shift-register-based
pseudorandom number generator.

The aforementioned schemes are block cipher, and they have some promi-
nent merits, including high security and fast processing. However, their defects
are also significant since the encrypted image has very little compressibility
and is unable to abide any lossy compression (e.g., JPEG). To alleviate the
conflict between compressibility and encryption, several suggestions of com-
bining compression and encryption have been proposed. In [47], the so-called
MHT scheme was proposed that encrypts image via a manipulation of Huff-
man coding tables in the image coding system. The MHT scheme chooses
several different Huffman tables from a large number of possible candidates,
and uses them alternatively to encode the image data. The choice of Huffman
tables and the order in which they are used are kept secret as the key. It
was advocated that the method requires very little computational overhead
and can be applied to MPEG and JPEG/JPEG 2000, but it cannot resist
chosen-plaintext attacks [47].

A somewhat different chaos-based image encryption method was proposed
in [2] that makes use of the SCAN language. Through substitution of each pixel
based on an additive noise vector and scramble scanning patterns, an image
can be encrypted and compressed simultaneously. The idea seems to be quite
good, but it was pointed out in [6] that this method is weak against exhaustive
key searching and chosen-plaintext attacks. In [3], another image compression
and encryption algorithm was proposed based on the lossless quadtree image
compression scheme. The quadtree data structure is used to represent the
image, and the scanning sequences of image data comprise a private key for
encryption. Also in [6], numerous attacks on the proposed algorithm were
tested and presented, which include keyspace reduction, histogram attack,
known-plaintext attack, and chosen-plaintext attack.
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In order to speed up encryption processes so as to make them feasible
for real-time applications, most of the existing schemes follow the idea of se-
lective encryption. Actually, according to Shannon’s theory, both encryption
and compression are processes of redundancy reduction [34], but their pur-
poses are different. In [7], several partial encryption schemes were provided.
It was reported that by a partial encryption, only 13% to 27% of the output
from a quadtree compression algorithm is encrypted for a typical image, and
less than 2% is encrypted for a 512×512 image compressed by set-partitioning
in the hierarchical trees algorithm.

There are also several proposed schemes that consider matching the com-
patibility to current international standards. Since many international stan-
dards on videos and images use block-based discrete cosine transform (DCT),
including the familiar JPEG, MPEG-1, MPEG-2, H.261, and H.263 formats,
the current research has been concentrated on selective encryptions within
the framework of DCT. However, with the emergence of MPEG-4 and JPEG-
2000, research emphasis may soon be redirected to a combination of encryption
and wavelet compression. In the following, some proposed schemes are briefly
reviewed and commented upon.

To achieve high encryption speed, in the early stage some elementary cryp-
tographic methods using random permutation lists were suggested. Since the
operations are simple, the encryption does not require high computational
cost. The challenge is how to achieve reasonable security with such simple
operations. The method recommended in [44] replaces the zig-zag scan by the
random permutation lists of MPEG. In doing so, if the decoder does not know
the permutation lists, the DCT coefficients in a block will be in the wrong
order although the values are not modified. It is well known that encryption
using only permutation is not secure enough, therefore it was pointed out in
[45] that the method proposed in [44] and its enhancement version given in
[39] are not able to resist known-plaintext attacks.

Another fast encryption scheme was proposed in [37], which encrypts the
sign bits of the DCT coefficients (i.e., the sign bits of differential DC values for
the DC coefficients). Because DC values significantly affect the quality of an
image, changing them will render the whole image unreadable. For the same
reason as discussed in [44] and [39], the method proposed in [37] is not secure
enough either. Therefore, an enhanced scheme called RVEA was composed in
[38], which tried to implement DES or IDEA aiming to strengthen the sign-bit
encryption.

Since wavelet-based image compression achieves both high compression
rates with reasonably high image quality and low computational complexity,
many image compression standards (for moving or still pictures) have selected
to use wavelets. Integrating an encryption algorithm with wavelet image co-
ding is reasonable and has great usage potential. In [46], a wavelet-based
system combining compression and encryption was recommended. By using
Antonini wavelets [1], an image is decomposed into several subbands. In each
level of the subbands, encryption is performed using random permutation.
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Experiments show that permutation does not affect compression significantly:
according to [46], it causes only 2% compression-rate drops. But permutation
in different levels of the subbands affects the image quality significantly, so
encryption performed on low-pass subbands may render the whole image un-
readable, while one performed on high-pass subbands may only create some
noiselike spots on the image. This scheme is also unable to resist the known-
plaintext attack or chosen-plaintext attack. Knowing this, DES may be used
to strengthen its security, but it brings in extra computational loads.

8.2 Chaos-Based Encryption Schemes

Since the demonstration of possibility for self-synchronization of chaotic oscil-
lations [26], a great deal of work on application of chaos to cryptography has
been carried out in the last decade. Early works on chaos in cryptography were
connected with encrypting messages through modulation of chaotic orbits of
continuous-time dynamical systems. These methods are strongly related to
the concept of synchronization of two chaotic systems and to chaos control
[5]. Several different ways have been proposed to achieve synchronization of
chaotic systems, thereby transmitting information on a chaotic carrier signal.
Some typical forms have been brought up, which includes chaotic masking,
chaotic shift keying, and chaotic modulation using inverse systems [10, 15].

In spite of the fact that many “secure” communication schemes have been
proposed based on the use of the chaos synchronization principle, they all
suffer from some common weakness. The following technical problems were
listed in [23]:

• It is difficult to determine the synchronization time; therefore, the message
during the transient period will be lost, sometimes causing fairly long
transient times.

• Noise throughout the transmission significantly affects the intended syn-
chronization. This means the synchronization noise intensity should be
small compared to the signal level, or the desired synchronization will not
be achieved.

• Technically, it is difficult to implement two well-matched analog chaotic
systems, which are required in synchronization, and if this is not required
(i.e., with certain robustness) then the opponent can also easily achieve
the same synchronization for attack.

In contrast to synchronization-based techniques, a direct application of
a chaotic transformation to a plaintext, or applying a chaotic signal in the
design of an encryption algorithm, seems to be a more promising approach.
The sensitivity to initial conditions and parameters as well as the mixing
(ergodicity) characteristics of chaos are very beneficial to cryptosystems. The
main difference is that cryptosystems are operated on a finite set of integers,
while chaotic maps are defined on an infinite set of real numbers. Therefore,



8 Chaos-Based Image Encryption 239

how to merge these two kinds of systems so as to take advantage of the good
properties of chaos is worthy of further exploration.

In the next section, some basic concepts of chaos are introduced, and the
possibility of integrating chaos into the design of better encryption algorithms
is investigated.

8.2.1 Basic Features of Chaos

Chaos is a ubiquitous phenomenon existing in deterministic nonlinear systems
that exhibit extreme sensitivity to initial conditions and have random-like
behaviors. Since its discovery by Edward N. Lorenz in 1963 [22], chaos theory
has become a branch of scientific studies today [5]. Since discrete chaotic
dynamic systems (i.e., maps) are used in cryptography, this notion is briefly
introduced.

Definition of discrete chaos

There are several definitions of chaos, which are similar but are actually not
equivalent [4]. Only a textbook definition is introduced here for brevity.

For simplicity, one-dimensional maps are discussed. Consider a discrete
dynamical system in the general form of

xk+1 = f(xk), f : I −→ I, x0 ∈ I, (8.1)

where f is a continuous map on the interval I = [0, 1]. This system is said to
be chaotic if the following conditions are satisfied [11]:

1. Sensitive to initial conditions:

∃δ > 0 ∀x0 ∈ I, ε > 0 ∃n ∈ N, y0 ∈ I :
|x0 − y0| < ε ⇒ |fn(x0)− fn(y0)| > δ. (8.2)

2. Topological transitivity:

∀I1, I2 ⊂ I ∃x0 ∈ I1, n ∈ N : fn(x0) ∈ I2. (8.3)

3. Density of periodic points in I:
Let P =

{
p ∈ I|∃n ∈ N : fn(p) = p

}
be the set of periodic points of f .

Then P is dense in I: P = I.

This definition has some redundance, which is not discussed here.
The sensitivity of chaos to initial conditions is often illustrated as the

butterfly effect, which is rooted in Lorenz’s original wording “Does the flap
of a butterfly’s wings in Brazil set off a tornado in Texas?” This sensitivity
property is commonly utilized for the keys of cryptosystems.

The topological transitivity property ensures the ergodicity of a chaotic
map, which means that if we partition the state space into a finite number of
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regions, no matter how many, any orbit of the map will pass through all these
regions. This property is linked to the diffusion feature of cryptosystems.

In chaotic cryptology, the above two properties are often used to construct
stream ciphers and block ciphers. Further comparison given in the following
section.

8.2.2 Relationships Between Chaos and Cryptography

There have been many discussions in the literature about the relationships
between chaotic systems and cryptosystems [10, 16, 17, 18, 32]. As mentioned
above, the main difference between chaos theory and cryptography is that
cryptosystems work on a finite field, while chaos is meaningful only on a
continuum. Nevertheless, these two scientific notions are very closely related.
Many fundamental concepts in chaos theory, such as mixing and sensitivity
to initial conditions and parameters, actually coincide with those in crypto-
graphy.

The following excerpt from Shannon’s masterpiece [35] demonstrates that
cryptographic algorithms have unconsciously used the mixing property of
chaos, even before the dawn of chaos research [12, 13, 16, 17]:

Good mixing transformations are often formed by repeated products
of two simple non-commuting operations. Hopf has shown, for exam-
ple, that pastry dough can be mixed by such a sequence of operations.
The dough is first rolled out into a thin slab, then folded over, then
rolled, and the folded again, etc. . . . In a good mixing transformation
. . . functions are complicated, involving all variables in a sensitive
way. A small variation of any one (variable) changes (the output)
considerably.

The similarities and differences between the two subjects can be listed [16],
as shown in Table 8.1. Chaotic maps and cryptographic algorithms have some
similar properties: both are sensitive to tiny changes in initial conditions and
parameters; both have random like behaviors; and cryptographic algorithms
shuffle and diffuse data by rounds of encryption, while chaotic maps spread
a small region of data over the entire phase space via iterations. The only
difference in this regard is that encryption operations are defined on finite
sets of integers while chaos is defined on real numbers.

8.2.3 Chaos for Cryptography

It is natural to apply the discrete chaos theory to cryptography for the fol-
lowing reasons [18]:

• The property of sensitive dependence of orbits on initial conditions makes
the nature of encryption very complicated. Suppose that one has the fol-
lowing chaos-based encryption scheme:
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Table 8.1. Similarities and differences between chaos and cryptography

Chaotic systems Cryptographic algorithms
Phase space: set of real numbers Phase space: finite set of integers
Iterations Rounds
Parameters Key
Sensitivity to initial conditions and
parameters

Diffusion

For a plaintext P in (0, 1), some parameters of a chaotic map are used as
the key for encryption. Choose a one-dimensional chaotic dynamical sys-
tem (I, φ) to perform encryption. Then, the encryption procedure is the
n-fold iteration of the map φ with the initial value P , and the ciphertext
C is a result of the encryption:

C = φn(P ) = (φ (φ ( · · ·φ(P ) ))) . (8.4)

Since the map is chaotic, it has a positive Lyapunov exponent, namely, at
some point x ∈ I, λx > 0; therefore,

∀ ε > 0 ∃ n1, n2 ∃ Un1,n2 & x,∀ n1 ≤ n ≤ n2, ∀ z1, z2 ∈ Un1,n2

e(λx−ε)n|z1 − z2| < |φn(z1)− φn(z2)| < e(λx+ε)n|z1 − z2|, (8.5)

where Un1,n2 is some neighborhood of x in I. The above expression implies
that, after n iterations, the initial distance |z1−z2| between two arbitrarily
close but distinct points z1 and z2 will increase exponentially as eλx n|z1−
z2|. That means if one uses k1 as the encipher key but the opponent uses
k2 to decipher the message, then even with |k1 − k2| < ε, the difference
|z1 − z2| will be significantly huge. This prevents the system from any
brute-force attack.

• A Lebesgue measure µ is said to be invariant if and only if it satisfies

∀A ∈ σ(X), µ(A) = µ (φ(A)) , (8.6)

where σ(X) is the σ-algebra of all measurable subsets in X . Here, (X,φ) is
called ergodic if and only if it has only trivial invariant sets, i.e., φ(B) ⊆ B
implies either µ(B) = 0 or µ(B) = µ(X). The ergodicity implies that the
state space cannot be nontrivially divided into several subspaces. So, if
some orbit starts from an arbitrary point x, it will then never be restricted
within a small region. This property indicates that if a chaotic map is used
to compose encryption then the plaintext space will not be restricted to
a small subspace. Thus, for ciphertext C, to search for the corresponding
plaintext P one must go over the entire state space X .

• The aforementioned system is mixing if the following condition is satisfied
(assume µ(X) = 1):
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lim
n→∞

µ (φn(B)
⋂

A)
µ(A)

=
µ(B)
µ(X)

. (8.7)

This property implies that after n iterations, part of B will be contained
in A, and the percentage of B that are contained in A is asymptotically
proportional to the percentage of B in X with respect to the measure µ.
Thus, plaintext P is thoroughly contained in its ciphertext C if a chaotic
map is used for encryption.

The above-described properties of chaos are the foundations of chaotic
crytography. To design secure cryptographic algorithms for both stream and
block ciphers, all these properties should be well utilized.

8.3 Chaos-Based Image Encryption

Many chaos-based encryption schemes have been proposed, and some of them
have been extended from text encryption to image encryption. A direct ex-
tension of a chaos-based text encryption scheme to also work for images is
possible, but this simple modification may not provide an efficient solution
to these image encryption problems. As pointed out in Sect. 8.1.2, image en-
cryption has its own specifications such as encryption speed, compatibility
to image format and compression standards, and real-time implementation,
therefore it requires a special design of the encryption algorithm.

Some existing image encryption schemes were briefly reviewed in Sect.
8.1.3. However, with a few exception, dedicated chaos-based image encryption
schemes do not often appear in the literature. These exceptions are further
discussed here.

In [49], an encryption method called chaotic key-based algorithm (CKBA)
was proposed. The algorithm first generates a time series based on a chaotic
map, and then uses it to create a binary sequence as a key. According to the
binary sequence generated, image pixels are rearranged and XOR or XNOR
operated with the selected key. This method is very simple but has defects in
security, as pointed out in [20]: this method is very weak to the chosen/known-
plaintext attack with only one plain image. Moreover, its security to brute-
force attack is also questionable.

In [31], a chaotic Kolmogorov-flow-based image encryption algorithm was
designed. In this scheme, the whole image is taken as a single block and per-
muted through a key-controlled chaotic system based on the Kolmogorov flow.
In order to confuse the data, a substitution based on a shift-registered pseu-
dorandom number generator is applied, which alters the statistical property
of the cipher image. It was advocated that the scheme is computationally ef-
ficient secure, and superior to contemporary bulk encryption systems when
aiming at efficient image and video data encryption.

In [13], a systematic method was suggested for adapting an invertible two-
dimensional chaotic map on a torus or on a square to create a symmetric
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block encryption scheme. The approach to constructing the symmetric block
cipher consists of three steps: (1) choose a chaotic map and generalize it by
introducing some parameters; (2) discretize it to a finite square lattice of points
that represent pixels; (3) extend the discretized map to three dimensions and
compose it with a simple diffusion mechanism. In this design, an example
based on the standard two-dimensional baker map was given to illustrate the
construction procedure and to demonstrate the security.

Furthermore, some other two-dimensional chaos-based encryption exam-
ples such as the chaotic cat map and standard map have also been used for
cipher design. In [21], for example, a chaotic video encryption scheme (CVES)
was proposed based on a multiple digital chaotic system. In this scheme, 2n

chaotic maps controlled by another single chaotic map are used to generate
pseudorandom signals to mask the video, and to perform pseudorandom per-
mutation of the masked video. It was claimed that the CVES is independent
of any video compression algorithms and can provide high security for real-
time digital videoing with a fast encryption speed. In [21], the method was
also extended to the so-called RRS-CVES, which supports random retrieval
of cipher video with maximal time-out.

It seems that most chaotic image encryption methods are concentrated
on block ciphers. Actually, both block cipher and stream cipher have their
own merits and can be used for different applications under different condi-
tions to meet different requirements. In the next two sections, more general
constructive approaches of these two types of chaos-based ciphers are further
discussed.

8.4 Chaos-Based Block Ciphers for Image Encryption

Chaos-based block ciphers have excellent flexibility. Applying block ciphering
on a whole picture can achieve very fast shuffling. Meanwhile, if a huge-sized
image needs to be encrypted by a device with limited memory or compu-
tational power, say a single chip or a mobile phone, the image can be split
into several small blocks, which are then encrypted in serial. Unlike stream
ciphers, block ciphers are suitable for parallel processing. Moreover, using a
block cipher it is easy to balance the requirements of encryption intensity and
cipher speed by simply controlling the cipher rounds.

8.4.1 Construction of Chaos-Based Block Ciphers

Integrating a chaotic map into a block cipher utilizes chaos properties to
rapidly scramble and diffuse data. Two general principles that guide the design
of block ciphers are diffusion and confusion. Diffusion means spreading out
the influence of a single plaintext digit over many ciphertext digits, so that
the statistical structure of the plaintext becomes unclear. Confusion, on the
other hand, means using transformations that complicate the dependence of
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the statistics of the ciphertext on the statistics of the plaintext [16, 17]. These
two principles are closely related to the mixing and ergodicity properties of
chaotic maps.

In [17], a general approach to chaos-based block cipher design was pro-
vided, which consists of four steps:

1. Choosing a chaotic map: one should consider maps with good mixing
property, robust chaos, and a large parameter set.

2. Introducing the parameters.
3. Discretization.
4. Cryptanalysis and key scheduling.

This framework is recapitulative and can be used to direct block cipher
design. However, to design a fast block cipher applicable to real-time ima-
ging, more considerations are in order. For example, since images are highly
correlated, it is better to choose a higher-dimensional chaotic map to speed
up the permutation process. A block image cipher design framework, based
on higher-dimensional chaotic maps, is recommended here:

1. Choose a higher-dimensional chaotic map and generalize it by introducing
a large number of parameters. The chaotic map chosen should have a
large parameter set and good mixing properties. In addition, the map
should be a measure-preserved map, to ensure one-to-one mapping after
discretization, which is needed for decryption. Good examples of such
maps include the generalized cat map, generalized baker map, and so on,
as are further discussed below.

2. Discretize the map. Despite the fact that in theory a discretized map is
only defined over a finite field and therefore can never to truly chaotic, one
should keep certain strong features of chaos, such as mixing and sensitivity
to parameters, while keeping the data shuffling speed fast. For practical
use, this oftentimes proves sufficient.

3. Compose a diffusion process. Although pixel positions of an image were
scrambled in the last step, generally the distribution of gray-scales of the
image is still unchanged, i.e., the histogram of the plain image is about
the same as that of the cipher image. This leaves a door widely open for
statistical attack and chosen-plaintext attack. Thus, a diffusion process
is necessary to make the spread influence of each single pixel over all
of the image. The diffusion process may simply be accomplished using
a one-dimensional chaotic map. In addition, one may also introduce an
additional substitution procedure to speed up the diffusion process.

4. Perform security evaluation. Many cryptanalysis methods that are widely
used in traditional cryptography should be applied to analyze the perfor-
mance of a proposed chaos-based cipher. These methods include keyspace
analysis, statistical attack, differential and linear attacks, know-plaintext
attack, and chosen-plaintext attack.

5. Other performance evaluation. Apart from security analysis, other issues
should also be considered for image encryption. These include cipher
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speed, cipher image size, deciphered image quality (if data compression is
combined), and computational overhead.

Next, the generalized three-dimensional baker map is used as an example
to illustrate the composition of a chaos-based image block cipher.

8.4.2 A Fast Image Cipher Based on Chaotic 3D Baker Map

In applications, there are two kinds of methods for constructing secure en-
cryption algorithms. For quite a long time, many now-classic schemes like
DES and IDEA put more emphasis on substitution than on permutation. Ac-
tually, permutation plus diffusion can also compose good encryption schemes
with fast speed and high security. In the last section, some encryption schemes
using two-dimensional chaotic maps were discussed that were designed based
on this idea [12, 13, 31].

Here, the two-dimensional (2D) baker map is extended to three dimension
(3D), and then is used to compose a fast image encryption scheme. Empirical
results have shown that, compared with encryption using the 2D baker map,
this new 3D version is not only more secure but is also 2 to 3 times faster.

Extending 2D Baker Map to 3D Version

The standard 2D baker map, denoted by B hereafter, is described by [12, 13]

B(x) =

{
(2x, y

2 ) 0 ≤ x < 1
2

(2x− 1, y
2 + 1

2 ) 1
2 ≤ x ≤ 1

(8.8)

This 2D baker map is a chaotic bijection of the unit square I × I onto
itself. The generalized baker map [27, 28] is defined as follows: divide the
unit square into k vertical rectangles, [Fi−1, Fi) × [0, 1), i = 1, · · · , k, Fi =
p1 + p2 + · · ·+ pi, F0 = 0, such that p1 + · · ·+ pk = 1. The lower right corner
of the ith rectangle is located at Fi = p1 + · · ·+pi. The generalized baker map
stretches each rectangle horizontally by a factor of 1/pi. At the same time,
the rectangle is contracted vertically by a factor of pi. Formally,

B(x, y) =
(

1
pi

(x− Fi), piy + Fi

)
, (8.9)

for (x, y) ∈ [Fi, Fi + pi)× [0, 1).
A direct extension of the 2D baker map to 3D version can be accomplished

by the following procedure. First, divide the unit cube into four even, narrow
stripes of small cubes, and then press each of them and pile them up one
by one to form a new unit cube that has the same volume as the former.
Mathematically,
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B(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2x, 2y, z

4 ) 0 ≤ x < 1
2 , 0 ≤ y < 1

2

(2x, 2y − 1, z
4 + 1

2 ) 0 ≤ x < 1
2 ,

1
2 ≤ y ≤ 1

(2x− 1, 2y, z
4 + 1

4 ) 1
2 ≤ x < 1, 0 ≤ y < 1

2

(2x− 1, 2y − 1, z
4 + 3

4
1
2 ≤ x ≤ 1, 1

2 ≤ y ≤ 1

(8.10)

which is illustrated by Fig. 8.1.

Fig. 8.1. The 3D baker map

Similar to the 2D baker map, the 3D baker map also has its general form.
As can be seen from Fig. 8.2, the unit cube is first divided into several small
stripes, and then each stripe is pressed and then piled up to form a new unit
cube of the same volume. Assume that the unit cube is divided into k × t
blocks, [Wi−1,Wi) × [Hj−1, Hj) × [0, 1), i = 1, · · · , k, j = 1, · · · , t, Wi =
w1, w2, · · · , wi, W0 = 0, such that w1 + w2 + · · · + wk = 1, and Hj = h1 +
h2 + · · ·+ hj , H0 = 0, such that h1 + h2 + · · ·+ ht = 1. The generalized 3D
baker map is then defined as follows:

B3(x, y, z) =
(

1
wi

(x−Wi),
1
hj

(y −Hj), wihjz + Lij

)
, (8.11)

for (x, y, z) ∈ [Wi−1,Wi) × [Hj−1, Hj) × [0, 1), where Lij = Wi × hj + Hj ,
i = 1, · · · , k, j = 1, · · · , t.

The continuous 3D baker map is then extended to its discrete version
with an arbitrary cube size. Without loss of generality, assume that the cube
is W × H × L, and is split into k × t blocks. The sequence of k integers,
w1, w2, . . . , wk, is chosen such that Wi = w1 +w2 + · · ·+wi, W = w1 + w2 +
· · ·+ wk, and W0 = 0. The same for the sequence of t integers, h1, h2, . . . , ht,
i.e., Hj = h1 + h2 + · · · + hj , H = h1 + h2 + · · ·+ ht, and H0 = 0. By using
the following formulas:
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Fig. 8.2. The 3D baker map: general form

S = (Hj−1 ×W + Wi−1)× L + wi × hj × l +
(n−Hj−1)× wi + (m−Wi−1),

(m′, n′, l′) = B3D(m,n, l), (8.12)

=
(

(S mod (W ×H)) mod W,

⌊
S mod (W ×H)

W

⌋
,

⌊
S

W ×H

⌋)
,

an arbitrary point (m,n, l) in the original cube is mapped to (m′, n′, l′) in the
new cube.

Image Encryption Scheme Based on 3D Baker Map

The discrete 3D baker map, designed in Sect. 8.4.2, is now applied to construct
a fast image encryption scheme. As mentioned previously, a secure encryption
scheme should have a mechanism of diffusion that makes known-plaintext
attack infeasible. In this new image encryption scheme, an XOR plus modulo
operation is inserted to each pixel in between every two adjacent rounds of the
map used. Below, the diffusion process is first discussed, and then the entire
encryption scheme is described in detail.

1. Diffusion Procedure. First, choose two numbers: one (denoted Li) is a float
number in (0,1), to be used as initial condition; another (denoted S) is an
integer, to be used as seed. Then, use Li as the initial value to compute the
logistic map

x(k + 1) = 4x(k)[1− x(k)]. (8.13)

If the next value obtained is in (0.2,0.8), then go to the next step; otherwise,
the iteration goes on until a desired number in (0.2,0.8) is obtained. Here,
notice that the value of 0.5 is a “bad” point, which will lead the iteration
being trapped in the fixed point 0. If such a case is encountered, a small
perturbation should apply. Once a proper value is obtained from the logistic
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map, digitize it by amplifying it with a proper scale and then do sampling.
The digitized value is designated as φ(k) and is XOR-ed with the values of
the currently operated pixel and the previously operated pixel in the image,
according to the following formulas:

C(k) = φ(k)⊕ {[I(k) + φ(k)] mod N} ⊕ C(k − 1), (8.14)

where I(k) is the currently operated pixel and C(k − 1) is the previously
operated pixel in a vector that was strung out from the image, and C(k)
is the XOR-ed value. One may set the initial value I(0) = S. The inverse
transform of the above is simple, and is given by

I(k) = {φ(k)⊕ C(k)⊕ C(k − 1) + N − φ(k)} mod N. (8.15)

Since in step k the previous value C(k − 1) is known, the value C(k) can be
ciphered out.

2. Image encryption scheme. The integrated image encryption scheme, illus-
trated in Fig. 8.3, consists of five steps of operations:

Fig. 8.3. Block diagram of image encryption using the 3D baker map

Step 1. Key generation. Select a sequence of 128 bits as the key, and split
them into six groups among which the first four groups contain 24 bits each
and the last two groups contain 16 bits each. Map these six groups of bits
into six numbers, k1, k2, k3, k4, k5, and k6, where k1, k2, and k3 are floating
numbers in (0,1), while the rest are integers.

Step 2. Pile up the two-dimensional image to a three-dimensional one. Sup-
pose that the image to be encrypted is with W pixels wide and H pixels high.
First, one needs to pile up all pixels of the image, to form a cube of size
M × N × L. Since the number of total pixels is unchanged, the integers M ,
N , and L must be chosen such that M ×N ×L = W ×H . The decomposition
algorithm for M,N,L is described as follows:



8 Chaos-Based Image Encryption 249

1. Set T = W ×H , and then factor out all prime numbers of T and list them
out as a sequence {p1, p2, . . . , pn} such that T = p1 × p2 · · · × pn × 1.

2. Permute the sequence {p1, p2, . . . , pn, 1}, and then regroup them into three
groups. During the permutation process, two integers are needed: one is
used as the seed and the other determines the shuffle rounds. Here, k5 and
k6 are used for these purposes, respectively.

Step 3. Perform the 3D baker map. First, select k1 and k2 as two initial values
to perform the logistic map, respectively. After several rounds of mappings,
followed by a floating point to integer transformation, one can select two
sequences, {m1,m2, . . . ,mk} and {n1, n2, . . . , nt}, such that M = m1 +m2 +
· · · + mk and N = n1 + n2 + · · · + nt. Then, perform the discrete 3D baker
map (Sect. 8.4.2), on the image cube, to get a shuffled image.

Step 4. Diffusion process. Set k3 = Li and k4 = S, and then perform the
diffusion process once according to the algorithm described in the first part
of this subsection.

Step 5. Reverse process. Transform the 3D cube back to a 2D image for
display or storage.

Note that operations in step 3 and step 4 are often interleaved for several
rounds, which depends on the security requirements.

To this end, the decipher procedure is similar to that of the encipher illus-
trated above, but with the inverse operational sequences to those described in
steps 3 and 4. Since decipher and encipher procedures possess similar struc-
tures, they have the same algorithmic complexity and time consumption.

Security Analysis and Test Results

Compared with other similar encryption schemes, the new one described above
has higher security and can resist all kinds of known attacks, such as the
known-plaintext attack, ciphertext-only attack, and so on. Here, some security
analysis results on the scheme are described, including the most important
ones like keyspace analysis, statistical analysis, and differential analysis.

1. Keyspace analysis. A good image encryption algorithm should be sensitive
to the cipher key, and the keyspace should be large enough to make brute-
force attacks infeasible. For the above-described chaos-based image encryption
algorithm based on the generalized 3D baker map, basic analysis and test
results are summarized as follows:

• Number of control parameters. This algorithm is a 128-bit encryption
scheme whose keyspace size is 2128 ≈ 3.4028 × 1038. Since this scheme
takes advantage of the 3D baker map, the opponent may try to bypass
guessing the key and directly guess all the possible combinations of the
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sequences {m1,m2, ...,mk} and {n1, n2, ..., nt}, as well as all the possi-
ble decomposition of M , N , and L that are used in the 3D baker map.
Therefore, the combinations of the baker map control parameters should
be large enough to prevent such exhaustive search. In [13], the possible
combinations of control parameters for a 2D baker map were estimated.
According to the conservative estimate for an N×N image, the total num-

ber of ciphering keys is about K(N, t) =
(
N
t

)
, where t is the length of

the key sequence {n1, n2, ..., nt}. For a 2D image, since the key sequences
of width and height are different, the size of the keyspace will be twice this
estimate. If each ciphering round of the baker map uses different ciphering
keys, then an increase in round numbers will also enlarge the keyspace.
Compared with the 2D baker map, the keyspace of the 3D one is further
enlarged, since the keyspace of the 2D map is just a subspace of the 3D
one. For example, suppose that an image size is W ×H . In order to per-
form the 3D baker map, the image must be piled up to a cube with size
M ×N ×L such that W ×H = M ×N ×L. Among all possible decompo-
sitions, W ×H × 1 is a special case that reduces the 3D map to a 2D one.
Therefore, it is clear that the 3D baker map has a much larger keyspace
than that of the 2D one.

• Key sensitivity test. Assume that a 16-character ciphering key is used. This
means that the key consists of 128 bits. A typical key sensitivity test is
performed according to the following steps:
1. First, a 512 × 512 image is encrypted by using the test key

“1234567890123456”.
2. Then, the least significant bit of the key is changed, so that the original

key becomes “1234567890123457” in this example, which is used to
encrypt the same image.

3. Finally, the above two cipher images, encrypted by the two slightly
different keys, are compared.

As a result: the image encrypted by the key “1234567890123456” has
99.59% difference from the image encrypted by the key “1234567890123457”
in terms of pixel gray-scale values, although there is only one bit difference
in the keys.

2. Statistical analysis. Shannon said, in his masterpiece [35], “It is possible to
solve many kinds of ciphers by statistical analysis,” and therefore he suggested
two methods of diffusion and confusion for frustrating the powerful statistical
analysis. Next, it is demonstrated that the above-described image encryption
scheme, based on the generalized 3D baker map, has good confusion and
diffusion properties. This is shown by a test on the histogram of the cipher
images and on the correlations of adjacent pixels in the cipher image.

1. Histograms of encrypted images. Select several 256 gray-level images with
size of 512 × 512 that have different contents, and calculate their his-
tograms. One typical example among them is shown in Fig. 8.4. From the
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figure, one can see that the histogram of the cipher-image is fairly uniform
and is significantly different from that of the original image.

Fig. 8.4. Histograms of the plain image and the cipher image

2. Correlation of two adjacent pixels. To test the correlation between two
vertically adjacent pixels, two horizontally adjacent pixels, and two dia-
gonally adjacent pixels in a cipher image, respectively, the procedure is
as follows: First, randomly select 1000 pairs of adjacent pixels from an
image. Then, calculate their correlation coefficient using the following two
formulas:

cov(x, y) = E(x − E(x))(y − E(y)), (8.16)

rxy =
cov(x, y)√

var(x)
√

var(y)
, (8.17)

where x and y are gray levels of two adjacent pixels in the image. Figure
8.5 shows the correlations of two horizontally adjacent pixels in the plain
image and in the cipher image: the correlation coefficients are 0.96638
and 0.0057765, respectively. Similar results for the diagonal and vertical
directions are shown in Table 8.2.

3. Differential attacks. Generally, an opponent may make a slight change (e.g.,
modify only one pixel) of the encrypted image so as to observe the change in
the result. In this way, he may be able to find out a meaningful relationship
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Fig. 8.5. Correlations of two horizontally adjacent pixels in the plain image and in
the cipher image

Table 8.2. Correlation coefficients of adjacent pixels in two images

Plain-image Cipher-image
Horizontal 0.96638 0.0057765
Vertical 0.97961 0.028434
Diagonal 0.95025 0.020662

between the plain image and the cipher image. This is known as the differential
attack. However, if one minor change in the plain image can cause a significant
change in the cipher image, with respect to diffusion and confusion, then the
differential attack would become very inefficient and useless.

To test the influence of a one-pixel change on the whole image encrypted
by the above-described 3D chaos-based algorithm, two common measures can
be used: the number of pixels change rate (NPCR) and the unified avera-
ge changing intensity (UACI). Let two cipher images, whose corresponding
plain images have only one pixel difference be C1 and C2. Label the gray
values of the pixels at grid (i, j) in C1 and C2 by C1(i, j) and C2(i, j), respec-
tively. Define a bipolar array D with the same size as image C1 or C2. Then,
D(i, j) is determined by C1(i, j) and C2(i, j); namely, if C1(i, j) = C2(i, j)
then D(i, j) = 1, otherwise D(i, j) = 0. The NPCR is defined by

NPCR =

∑
i,j

D(i, j)

W ×H
× 100%, (8.18)

where W and H are the width and height of both C1 and C2, and NPCR
measures the percentage of different pixel numbers between the two images.
The UACI is define by

UACI =
1

W ×H

⎡⎣∑
i,j

|C1(i, j)− C2(i, j)|
255

⎤⎦× 100%, (8.19)

which measures the average intensity of differences between the two images.
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One performed test is on the one-pixel change influence on a 512 gray-
level image of size 512×512. The test results are shown in Fig. 8.6. Generally,
with the increase in ciphering rounds, the influence of a one-pixel change is
increased. Hence, it is reasonable to increase the ciphering rounds in the test
to achieve higher security, yet this is at the expense of processing speed.

Fig. 8.6. NPCR vs. ciphering rounds and UACI vs. ciphering rounds

4. Enciphering/deciphering speeds. The above-described 3D chaos-based ima-
ge encryption algorithm is very fast. Simulation shows that the average enci-
phering/deciphering speed is 1.2 MB/s, and the peak speed can reach up to
2.8 MB/s, on a 1-GHz Pentium IV computer. Even the designed cipher based
on the 2D baker map in this study is different from that suggested in [13]
on the diffusion operation. Taking into account improvements in computers,
the speeds of the 3D cipher is slightly faster than that of the 2D cipher. The
encryption rate of the algorithm of [13] is only about 1 MB with an unopti-
mized C code on a 60-MHz Pentium. A comparison between the 2D and 3D
chaos-based schemes is shown in Table 8.3.

8.5 Chaos-Based Stream Cipher for Image Encryption

Compared with a block cipher, the main advantage of a chaotic stream cipher
is that it can be designed to accommodate image compression. An elaborately
designed stream cipher only introduces a small computational overhead in
image coding. Moreover, if the image compression algorithm is an embedded
one, i.e., the decoding procedure is from coarse to fine progressively, the cipher-
image stream can also be truncated at any desired point without influencing
the decoding process.

8.5.1 Design of Chaos-Based Stream Ciphers

Encryption by a stream cipher uses a sequence of random numbers to mask a
sequence of plaintext of the same length, bit by bit. Although using random
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Table 8.3. Comparison of ciphering speed between the 2D baker map and the 3D
baker map schemes

Image size Colors 2D baker map 3D baker map
(in pixels) (in seconds) (in seconds)
256 × 256 2 < 0.3 < 0.3

256 × 256 16 < 0.3 < 0.3

256 × 256 256 < 0.3 < 0.3

256 × 256 16777216 < 0.3 < 0.3

512 × 512 2 1 < 0.3

512 × 512 16 1 < 0.3

512 × 512 256 1.1 < 0.3

512 × 512 16777216 1 < 0.3

1024 × 1024 2 3.3 1.0
1024 × 1024 16 3.3 1.1
1024 × 1024 256 3.3 1.2
1024 × 1024 16777216 3.3 1.3
2048 × 2048 2 13.6 3.4
2048 × 2048 16 13.5 3.2
2048 × 2048 256 14.0 3.4
2048 × 2048 16777216 13.6 4.3

Test Conditions:
(1) The computer used in this test is a Pentium IV, 1-GHz CPU
with 256-MB memory and 40-GB hard disk capacity.
(2) Theoretically, both algorithms are symmetric, i.e., both enci-
pher and decipher procedures have the same complexity. But, due
to the programming realization issue, the decipher procedure may
consume a little more time than enciphering. The time recorded in
Table 8.3 is the average time of the encipher and decipher proce-
dures.

numbers to mask a plaintext can achieve theoretical security [35], its practical
implementation is impossible. John von Neumann once said, “Any one who
considers arithmetical methods of producing random digits is, of course, in a
state of sin.” The fact is that it is practically very difficult, if not impossible, to
generate a truly random number sequence with a deterministic algorithms. In
practice, pseudorandom numbers are used instead. Then, the main problem is
to generate pseudorandom numbers with “good” properties to meet the need of
a key stream. A commonly used pseudorandom number generator (PRNG) is
the linear congruential generator (LCG). Since chaotic systems can generate
orbits that prove to be nondistinguishable from truly random orbits (e.g.,
they both have broad power spectra, and they are both extremely sensitive to
small changes of initial conditions), chaotic pseudorandom number generators
(CPRNG) have attracted more and more attention [19, 42, 43].
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Both compressed and uncompressed image data are treated as bitstreams
in stream ciphers. It is more interesting to construct pseudorandom bit se-
quences. Traditionally, linear feedback shift registers (LFSR) are popular ge-
nerators of pseudorandom bit sequences like the m-sequence. In practice, the
Gold sequence is also used frequently. By using a chaotic map, CPRNG is easy
to construct. As an example, the method introduced in [19] is employed here
to describe the process. Assume that a dynamical system, denoted (X,φ),
has a normalized invariant measure µ. Divide the state space X into two dis-
jointed parts, X0 and X1, such that µ(X0) = µ(X1) = 1/2. Take an initial
value x0 ∈ X as seed, and start to evolute the system governed by φ and x0.
Suppose that after n iterations, a value xn is obtained. The nth bit bn of the
sequence is then determined by the following formula:

bn =
{

0 if xn ∈ X0,
1 if xn ∈ X1.

(8.20)

Thus, one obtains a bit sequence, {b1, b2, . . . , bn, . . . }. Owing to the intrinsic
properties of chaos like ergodicity and mixing, the CPRNG has many good
features: unique dependence of the sequence on the seed, equiprobable occur-
rence of “0” and “1,” and asymptotic statistical independence of bits.

The assessment of pseudorandom number generators (PRNG) is now dis-
cussed. In [14], three postulates concerning properties of periodic PRNG were
recommended; to calculate quantities over one complete period of the genera-
tor, the following three conditions should be satisfied:

• The number of “0” bits should differ from the number of “1” bits by at
most one.

• Among all the runs, half should be of length 1, a quarter should be of
length 2, an eighth should be of length 3, and so on, and for each of these
lengths there should be equally many runs of “0” bits and runs of “1” bits.

• The value of the autocorrelation function is equivalent to the period of the
generator when the offset is 0; otherwise, the value is equal to a certain
constant integer.

A practical and widely used test standard is specified by the National
Institute of Standards and Technology (NIST) in the United States, called
FIPS 140-2 [25]. It consists of 4 tests on a total of 16 aspects. More specifically,
a single stream of 20,000 consecutive bits should be subjected to the following
4 tests:

1. Monobit test. A monobit test first counts the number of “1” in the 20,000
bitstream. Denote this quantity by X . If 9, 725 < X < 10, 275, then the
test is passed.

2. Poker test. Poker test firstly divides the 20,000 bitstream into 5,000 con-
secutive 4-bit segments. Count and store the number of occurrences of the
16 possible 4-bit values. Denote f(i) as the number of each 4-bit value i,
where 0 ≤ i ≤ 15. Evaluate the following value:
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X =
16

5000

n∑
i=1

[f(i)]2 − 5000. (8.21)

The test is passed if 2.16 < X < 46.17.
3. Runs test. A run is defined as a maximal sequence of consecutive bits of

either all “1” or all “0”, which is part of the 20,000 bitstream. The incidences
of runs of all lengths in the bitstream should be counted and stored.
The test is passed if the runs that occurred are within the corresponding
interval specified in Table 8.4. Note that for the purpose of this test, runs
of length greater than 6 are considered to be of length 6.

Table 8.4. Run test specification

Length of run Required interval
1 2,315—2,685
2 1,114—1,386
3 527—723
4 240—384
5 103—209

6+ 103—209

4. Long run test. A long run is defined to be a run of length exceeding 25,
of either all “0” or all “1”. On a sample of 20,000 bits, the test is passed if
there are no long runs.

In the next section, as an example, a secure image coding scheme based
on the hierarchical trees algorithm is introduced. This scheme is incorporated
within a chaos-based stream cipher.

8.5.2 Chaotic Secure Image Coding Based on SPIHT

As mentioned in the previous section, stream ciphers can be incorporated
with image compression. Here, a fast chaos-based image encryption scheme
is proposed that integrates the encryption with the compression in the image
bitstream.

In this design, during the compression process, the set partitioning in hier-
archical trees (SPIHT) image coding algorithm [29] is used, which can achieve
a reasonably good compression rate. By making the ciphertext be correlated
to the plaintext, the encryption scheme can well resist the known-plaintext
attack. Furthermore, the algorithm can decode and decrypt ciphertext with
an arbitrary bit rate. To introduce the new design, the SPIHT image coding
is first reviewed, followed by the chaos-based image cipher scheme, along with
some corresponding security analysis and experiment results.
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A Brief Review of SPIHT

Among all wavelet-based image compression schemes, the embedded zerotree
wavelet (EZW) coding [36] and SPIHT coding [29, 30] show their remarkable
performance not only in terms of efficiency but also in their low computa-
tional cost and progressive coding characteristics. Progressive coding (also
called embedding coding) refers to the way that the most significant bits re-
presenting an image are placed at the beginning of the code, and the code
bits are arranged according to their importance relative to the representation
of the image. A decoder can truncate the code at any position and obtain
an estimate of the image, based on the information up to that point. Both
EZW and SPIHT algorithms are progressive coding schemes, and SPIHT is
a more efficient implementation of the EZW. After the subband decomposi-
tion is applied to the image, the main algorithm works by partitioning the
subband-decomposed image into significant and insignificant partitions using
the following function:

Sn(T ) =

{
1, max

(i,j)∈T
{|ci,j |} ≥ 2n,

0, otherwise,
(8.22)

where Sn(T ) represents the significance of a set of coordinates T , and ci,j is
the coefficient value of coordinate (i, j).

There are two passes in the algorithm: the sorting pass and the refinement
pass. Three lists are defined, which are the list of insignificant sets (LIS), the
list of insignificant pixels (LIP), and the list of significant pixels (LSP), respec-
tively. The LIP and the LSP consist of nodes that contain single pixels, while
the LIS contains nodes that have descendants. The sorting pass is performed
on these three lists and finally makes pixels in the LSP, which is arranged in
an order according to the information importance. The maximum number of
bits required to represent the largest coefficient in the spatially oriented tree
is designated as nmax, and is computed by the following formula:

nmax =
⌊
log2

(
max
(i,j)
{|ci,j |}

)⌋
(8.23)

During the sorting pass, those coordinates of the pixels that remain in LIP
are tested for the significance. The result, Sn(T ), is then sent to the output.
Those that are significant will be moved to LSP, as well as having their sign
bits output. Sets in LIS will also have their significance tested, and, if they are
found to be significant, then they will be removed and consequently the result
will be partitioned into subsets. Subsets with a single coefficient, if found to
be significant, will be added to LSP, or else they will be added to LIP.

During the refinement pass, the nth most significant bit of the coefficients
in LSP is output. The value of n is then decreased by 1, and the sorting and
refinement passes are repeated.



258 Yaobin Mao and Guanrong Chen

This continues until either the desired rate is reached, or n = 0, and all
the nodes in LSP have their bits output. The latter case will result in an
almost perfect reconstruction since all the coefficients have been processed
completely.

Neither EZW nor SPIHT is noise tolerant, i.e., both methods are sensitive
to small modification of bits in their bitstreams. Knowing this, many methods
have been introduced to improve the error-prone nature of SPIHT as well as
EZW coding schemes [8, 48]. The new design to be introduced below, however,
makes use of this error sensitivity that resides in the image source coding.

>From the above discussion, it is clear that there are two kinds of data
contained in a SPIHT-coded bitstream, and similar data structure can also
be found in an EZW-coded one. They are named structure bits and data bits,
respectively. Structure bits refer to those used for synchronizing the encoding
end and the decoding end in the construction of spatially oriented tree. These
bits are extremely sensitive to noise, especially the first few bits in the bit-
stream. Data bits refer to those coding signs of image coefficients or coding
values of coefficients generated in the refinement pass. Change of data bits
does not seriously affect the reconstruction of the image, but only introduces
a small amount of noise to the result.

A large value of the ratio of structure bits to data bits is a basic feature of
this designed encryption scheme, and simulation shows that this requirement
can be met. Table 8.5 lists some ratios of structure bits to data bits under
different coding rates.

Table 8.5. Ratios of structure bits to data bits under different coding rates (test
subject is the 512 × 512 Lena image with 256 gray levels)

Compression rate Number of structure Number of data Ratio of structure
(bpp) bits (bits) bits (bits) bits to data bits
0.125 25,692 7,076 3.63:1
0.25 49,524 16,012 3.09:1
0.5 95,936 35,136 2.73:1
1 188,078 74,066 2.54:1
2 367,562 156,726 2.35:1
3 539,624 246,808 2.19:1
4 638,310 410,266 1.56:1
5 638,310 534,826 1.19:1
6 638,310 534,826 1.19:1
7 638,310 534,826 1.19:1
8 638,310 534,826 1.19:1
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Chaos-Based Binary Stream Encryption

Given the structure of SPIHT coding, image encryption is incorporated into
the SPIHT encoding process. A combination of encoding and encrypting pro-
cesses is actually very simple. Notice that an SPIHT-encoding bitstream is
generated bit by bit, so when each coded bit is output the encryption pro-
cess can be performed. Three kinds of bitwise operations can be defined,
namely, “keep operation”, “exclusive or (XOR) operation”, and “invert oper-
ation”, which are denoted by !, ⊕, and ¬, respectively. Both ! and ¬ are
unary operations, while ⊕ is a binary operation. Rules for each operation are
listed in Table 8.6, where A and B are operands. Note that two operands
of XOR operation are the current-operated bit and its previous-output bit,
respectively.

Table 8.6. Rules for �,¬ and ⊕ operations

B A �A ¬A A⊕B
0 0 0 1 0
0 1 1 0 1
1 0 — — 1
1 1 — — 0

In order to make even the transfer probabilities of 0 to 0, 0 to 1, 1 to 0,
and 1 to 1, which ensures the cipher stream to be more random, operators !
and ¬ each should have about 25% operational opportunity, while ⊕ should
have 50% operational opportunity. To achieve this goal, the logistic map is
employed to determine the kind of operation to be used in each round. The
entire encryption procedure is described as follows:

Step 1. Choose two 24-bit-long sequences, K1 = {K10,K11, . . . ,K123},
and K2 = {K20,K21, . . . ,K223} as the initial key, where K1i,K2j ∈
{0, 1}. By using the formula

x0 = (K20×20 +K21×21 + · · ·+K2i×2i + · · ·+K223×223)/224 (8.24)

sequence K2 is assembled into a floating point number x0, where x0 ∈
(0, 1). Suppose that a binary sequence C = {C0, C1, . . . , Cn−1} is a set of
encrypted bitstream, where n is the total number of bits in the set, and
is increased as the encryption process goes on. Initially, let C = K1, i.e.,
C = {K10,K11, · · · ,K123}.
Step 2. Let x0 be the initial value, and then continuously use the logistic
map

xk = 4 xk−1 (1− xk−1) (8.25)
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to get 23 numbers that fall in (0.2, 0.8). Including the initial value x0,
group the 24 numbers in a set denoted by X = {x0, x1, . . . , x23}. Through
X and the formula

tj = (n× (xj − 0.2)/0.6), j = 0, 1, . . . , 23 (8.26)

the 24 positions in set C are specified, where each position corresponds
to either 1 or 0. Subsequently, take out the above 24 binary numbers and
regroup them into a new set, Cn = {Ct0 , Ct1 , . . . , Ct23}. This set Cn can
be further mapped onto a floating number y0 ∈ (0, 1) according to formula

yn0 =
(
Pt0 × 20 + Pt1 × 21 + · · ·+ Pt23 × 223

) /
224. (8.27)

Then, take y0 as the initial value, and use the logistic map again to get a
new number ym ∈ (0.2, 0.8) through iteration. This ym is the number to
be used to determine the bitwise operation type in the next step.

Step 3. Divide the interval (0.2, 0.8) unevenly into the following three
nonoverlapping intervals: (0.2, 0.35], (0.35, 0.65], and (0.65, 0.8). The type
of bitwise operation in this round is determined according to which interval
ym falls into. If ym ∈ (0.2, 0.35], then the operator ! is chosen; if ym ∈
(0.35, 0.65], operator ⊕ is chosen; if ym ∈ (0.65, 0.8), operator ¬ is chosen.
Suppose that the plain bit of the lth round is Pl. According to the above
convention, one has Cl = op(Pl), where Pl is the corresponding cipher
bit in the same round, and op ∈ {!,⊕,¬}. The last job in this step is to
append Cl to the sequence C and then denote it as Cl+23.

Step 4. Set n = n + 1 and let x0 = x23 if all bits are encrypted. Then,
exit the routine. Otherwise, go to Step 2.

A reversed procedure is performed in the decoding procedure, which de-
crypts the encrypted bitstream with an arbitrary desired bit rate.

Security Analysis and Experimental Results

The security of the above-described chaos-based encryption scheme is now
analyzed. The results show that although this scheme has a moderate size
of keyspace, it already has good key sensitivity and can well resist both
ciphertext-only attack and known-plaintext attack.

1. Keyspace analysis. The keys used in this scheme are composed of several
initial values of the logistic map. For 256 gray-scale pictures, two of them are
used; for 24-bit true-color pictures, 4 of them are used. Theoretically, since the
logistic map in its chaotic phase is very sensitive to initial values, the keyspace
of this encryption scheme can be arbitrarily large. However, because of the
limitation of numerical precision of a computer, a practical implementation
has to be restrained only in a small keyspace. In the simulation of this scheme,
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24 bits are used to assemble a floating number. Thus, for gray-scale images, the
cipher key is chosen to be 48 bits long, which has about 248 " 2.81475× 1014

possible combinations.
It may seem that the keyspace is not very large, but this does not mean

that the designed scheme has little practical value. There are several reasons
for this. First, since images have bulk data, the time consumed for one attack
will be much more than that to a textfile. In other word, a small keyspace does
not mean the total attack time can be reduced for images. Second, because
for true-color images there are two more image channels, each of which will
occupy an additional initial value, the keyspace is actually enlarged to 96 bits
long. Therefore, since one often uses 24-bit true-color images, the keyspace of
this scheme is considered to be large enough for practical applications.

2. Key sensitivity analysis. The logistic map is sensitive to initial values in its
chaotic phase, which ensures the key sensitivity of the encryption scheme.

A test is performed on gray-scale images that randomly changes one of
the 48 bits in the key and calculates the percentage of different bits in the
encrypted bitstreams. Test results are summarized in Table 8.7. Although, on
average, about 52.52% bits are different, the decrypted images with wrong
cipher keys are literally unreadable, for the structural bits are extremely sen-
sitive to the key.

Table 8.7. Test results of percentage of different bits in encrypted bitstreams with
respect to one-bit change in the key

No. 1 2 3 4 5 Average
Percentage of 36.21% 72.58% 54.40% 45.16% 54.25% 52.52%
different bits

3. Ciphertext-only attack analysis. Ciphertext-only attack on this encryption
scheme is impossible. Suppose that an opponent wants to attack only the first
1000 bits of an encrypted image bitstream by exhaustive searching, where each
bit is either 1 or 0. Then, the possible combinations will be a terrible number
of 21000 " 1.0715×10301. Nevertheless, 1000 bits is really trivial as a tiny part
of the data set for an image: according to Table 8.5, for a 64:1 compressed
512× 512 gray-scale image, the structural bits alone will be 25,692.

Another feature of this encryption scheme is that with the increase of
data bits, it is more difficult to break the cryptosystem by brute force attack.
Notice that each time before an operation is chosen from among !, ⊕, and
¬, a comparison with two thresholds will be performed on a floating number,
ym. The generation of the floating number ym is based on a 24-bit binary
sequence, which is correlated to the preceding encrypted plaintext. Even if
the opponent knew the previous n bits, he still could not guess the floating
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number ym because the number of all possible choices would be
(

n
24

)
. So,

with the increase of n, the combinations would increase very significantly.

4. Known-plaintext attack analysis. In this encryption scheme, there exist
three kinds of operations that make four kinds of bit changes with an equal
probability: 1 to 1, 1 to 0, 0 to 1, and 0 to 0. These types of bit operations are
not fixed, and they are correlated to the previously encrypted bits, therefore
frustrating the known-plaintext attack.

If the operation choosing procedure is removed, and only the XOR
operation is used, then the encryption process would be reduced to the
way that a compressed image bitstream has XOR operations bit by bit
with a binary sequence generated by the logistic map followed by a bi-
polarizing operation with a fixed threshold. Here, denote the binary se-
quence as {S0, S1, . . . , Sn, . . . }, where Si ∈ {0, 1}, and denote the com-
pressed image bitstream by {I0, I1, . . . , In, . . . }. The encrypted bitstream
is {C0, C1, . . . , Cn, . . . }, where Ci = Si ⊕ Ii. Once the ciphertext is given,
i.e., once {I0, I1, . . . , In, . . . } is known, the sequence {S0, S1, . . . , Sn, . . . } can
be revealed. Even if the XOR operation is related to the previous data, a
problem still exists. For instance, if the enciphering operation is defined as
Ci = Si ⊕ Ii ⊕ Ci−1, then since I1, C1, and C0 are known, one can get S1,
then S2, and so forth, until finally all Si are obtained iteratively. However, if
the operation selection procedure is added into each step, then because this
operator is unknown, the sequence {S0, S1, . . . , Sn, . . . } could not be revealed
unless the key used for generating it can be obtained.

5. Histogram analysis of encrypted images. The histograms of several 512×512
gray-scale images were analyzed with different contents and natures. Test re-
sults show that histograms of encipher-images are very uniform, which makes
statistical attacks difficult. Figure 8.7 shows one typical result.

8.6 Conclusion: An Engineer’s Perspective

The security of an image is very different from that of a textfile. Because
of its intrinsic characteristics, the encryption speed and algorithm simplicity
are usually considered more important than the “absolute security”, – even if
that were possible. Chaos theory has proved to be an excellent alternative to
provide a fast, simple, and reliable image encryption scheme that has a high
enough degree of security. In this article, two chaos-based cipher schemes
for still images have been described in detail. Both security analysis and ex-
periments show that, taking into account the trade-off between attack ex-
pense and information value as well as other issues such as operational speed,
computational cost, and implementation simplicity, these kind of chaos-based
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Fig. 8.7. Histograms of plain-image and encrypted image

image encryption schemes are very practical. From an engineer’s perspective,
chaos-based image encryption technology is very promising for real-time se-
cure image and video communications in military, industrial, and commercial
applications.
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9.1 Introduction

Reflector

Angle meter
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b

Fig. 9.1. a: A laser guided vehicle. b: A laser scanner or angle meter

Understanding of one-dimensional cameras is important in several appli-
cations. In [21] it was shown that the structure and motion problem using
line features in the special case of affine cameras can be reduced to the struc-
ture and motion problem for points in one dimension less, i.e. one-dimensional
cameras. This was used to solve the problem of three views of seven lines. Two
solutions were obtained. However, no geometrical interpretation of these two
solutions were given.
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Another area of application is vision for planar motion. It is shown that
ordinary vision (two-dimensional retina) can be reduced to that of one-
dimensional cameras if the motion is planar, i.e. if the camera is rotating
and translating in one specific plane only, cf. [12]. In another paper the planar
motion is used for auto calibration [2]. A typical example is the case where a
camera is mounted on a vehicle that moves on a flat plane or flat road.

Our personal motivation, however, stems from autonomous guided ve-
hicles (AGV), which are important components for factory automation. Such
vehicles have traditionally been guided by wires buried in the factory floor,
gives a very rigid system. Removal and change of wires is cumbersome and
costly. The system can be drastically simplified using navigation methods
based on laser sensors and computer vision algorithms. With such a system
the position of the vehicle can be computed instantly. The vehicle can then
be guided along any feasible path in the room. This paper deals with some
navigation problems for laser-guided vehicles (LGV). The navigation system
uses strips of inexpensive reflector tape (called reflectors or beacons) which
are put on walls or objects along the route of the vehicle [15]. The laser scan-
ner, also called the angle meter or meter, measures the direction from the
vehicle to the beacons, but not the distance. This is the information used to
calculate the position of the vehicle.

One interesting problem is the so-called surveying problem [3, 4]. This is
the procedure to obtain a map of the unknown positions of the beacons using
images at unknown positions and orientations. This is usually done off line,
once and for all, when the system is installed, and then occasionally if there
are changes in the environment. High accuracy is needed since the map has
to be hard-coded in the system. The performance of the navigation routines
depends on the precision of the surveyed map. The surveying problem is in
essence a structure and motion problem, i.e. one tries to solve for both the
structure (the map) and the motion of the vehicle.

Note that the discussion here is focused on finding initial estimates of
structure and motion. In practice it is necessary to refine these estimates
using non linear optimization or bundle adjustment [5, 23].

The chapter is a collection of results obtained together with Fredrik Kahl,
Magnus Oskarsson and Niels Christian Overgaard. The chapter is organized
as follows. In Sect. 9.2 a brief introduction to the geometry of the problem is
given. Some important notations are introduced, and the structure and motion
problem is formalized. In Sect. 3 we solve all structure and motion cases with
non missing data. In Sect. 4 we classify similar problems with missing data.
Some of the so-called prime problems are also solved. Both Sects. 3 and 4
assume that points and cameras are in general position. In Sect 5 we discuss
cases in which there might be ambiguous solutions to the structure and motion
problem without missing data.
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9.2 Scanner Geometry

A laser-navigated vehicle is shown in Fig. 9.1a The laser scanner, which is
shown in detail in Fig. 9.1b, is mounted on the top of the vehicle. A laser
beam generated by a vertical laser in the scanner is deflected by a rotating
mirror at the top of the scanner. Thus, the laser beam scans the room at a
fixed height. When the laser beam hits a beacon (a retroreflective tape, also
shown in Fig 9.1a), a large part of the light is reflected back to the scanner.
The reflected light is processed to find sharp intensity changes. When this
happens the bearing α of the laser beam relative to a fixed direction of the
scanner is stored. The time t when the reflection occurs is also stored. All
beacons are identical. This means that the identity of a beacon cannot be
determined from a single measurement.

We introduce an object coordinate system which will be held fixed with
respect to the scene. The bearing α, defined above, depends on the position
of the beacon (Ux, Uy) and the position (Px, Py) and orientation Pθ of the
scanner, according to

α(P,U) = arg[Ux − Px + i(Uy − Py)]− Pθ , (9.1)

where arg is the complex argument (the angle of the vector (Ux−Px, Uy−Py)
relative to the positive x-axis). The vector (Px, Py , Pθ) is called the camera
state.

Equation (9.1) for the measured bearing is non linear. A somewhat simpler
representation of the same equation can be obtained as follows. The vector
between the camera center and the beacon can be written as

λ

[
cos(α + Pθ)
sin(α + Pθ)

]
=
[
Ux − Px

Uy − Py

]
=
[
1 0 −Px

0 1 −Py

]⎡⎣Ux

Uy

1

⎤⎦ . (9.2)

By multiplying each side with a rotation matrix we obtain

λ

[
cos(α)
sin(α)

]
=
[

cos(Pθ) sin(Pθ)
− sin(Pθ) cos(Pθ)

] [
1 0 −Px

0 1 −Py

]⎡⎣Ux

Uy

1

⎤⎦ . (9.3)

We introduce alternative representations for the bearing

α←→ u =
[
cos(α)
sin(α)

]
(9.4)

for the beacon position

(Ux, Uy)←→ U =

⎡⎣Ux

Uy

1

⎤⎦ , (9.5)
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and for the camera state

(Px, Py , Pθ)←→ P =
[

cos(Pθ) sin(Pθ)
− sin(Pθ) cos(Pθ)

] [
1 0 −Px

0 1 −Py

]
. (9.6)

Using these notations, Eq. (9.1) can be written

λu = PU . (9.7)

The alternative representation for the camera state above will be called
the camera matrix. Notice that the structure of this 2× 3 matrix is

P =
[
a b c
−b a d

]
, (9.8)

with a2 + b2 = 1. It is straightforward to obtain the elements of the camera
matrix from the meter state (Px, Py, Pθ) and vice versa.

It is sometimes useful to consider dual image coordinates

α←→ v =
[
− sin(α) cos(α)

]
, (9.9)

so that vu = 0. This is particularly useful since it simplifies the camera
constraint given by Eq. (9.7) to

λvu = 0 = vPU . (9.10)

We will often use capital I to denote image number and capital J to denote
point number. Thus ui,j denotes the image direction for point J in image I,
PI denotes camera matrix for image I and UJ denotes object point number
J .

9.3 Problem Formulation

Motivated by the previous sections the structure and motion problem will now
be defined.

Problem 1. Given n bearings from m different positions

uI,J , ∀(I, J) ∈ I (9.11)

the surveying problem is to find the depths λI,J > 0, the reconstructed
points

UJ =

⎛⎝XJ

YJ

1

⎞⎠ (9.12)

and the camera matrices

PI =
(

aI bI cI

−bI aI dI

)
, (9.13)

such that
λI,JuI,J = PIUJ , (I, J) ∈ I . (9.14)
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Here I is a subset of {1, . . . , n} × {1, . . . ,m} that indicates which points
are visible in which images. If all points are visible in all images, i.e. if I =
{1, . . . , n} × {1, . . . ,m}, we say that there is no missing data.

It is often convenient to consider things to be equal if they are equal up
to scale. The notation ∼ will be used to denote equality up to scale. As an
example two camera matrices P and P̃ are considered equal if P ∼ P̃. The
reason for this is that P and P̃ give the same projections. Only the scale factor
λ is different.

Definition 1. The group of similarity transformations is defined as

S =

⎧⎨⎩S ∼

⎛⎝e cos(θ) −e sin(θ) f
e sin(θ) e cos(θ) g

0 0 1

⎞⎠⎫⎬⎭ , (9.15)

where θ denotes rotation, e change of scale and (f, g) translation.
We consider two solutions (λI,J ,UJ ,PI) and (λ̃I,J , ŨJ , P̃I) to the surve-

ying problem to be the same if they are related by a similarity transformation.
If there exists a transformation matrix S such that

ŨJ = SUJ ,

P̃I = µPIS−1 ,

λ̃I,J = µλI,J ,

then both (λI,J ,UJ ,PI) and (λ̃I,J , ŨJ , P̃I) give the same projections uI,J ,
since

λI,JuI,J = PIUJ , ∀ (I, J) ∈ I .

λ̃I,JuI,J = P̃IŨJ , ∀ (I, J) ∈ I .

In order to understand how much information is needed in order to solve
the structure and motion problem, it is useful to calculate the number of
degrees of freedom of the problem and the number of constraints given by
the projection equation. Each object point has two degrees of freedom, and
each camera state has three. The solution is only defined up to a similarity
transformation, cf. Eq (9.15). This manifold S has dimension 4. Using n points
and m cameras, we thus have 2n+3m−4 degrees of freedom in the parameters.
Each measured bearing gives one constraint on the estimated parameters.
Assuming that each point is visible in every camera, we get mn constraints.
The number of excess constraints mn − (2n + 3m− 4) is given in Table 9.1.
Disregarding the case of 1 point in 1 image, there are two interesting cases
where the number of constraints is exactly equal to the number of degrees of
freedom in the estimated parameters. These two cases

1. three images of five points (m = 3, n = 5)
2. four images of four points (m = 4, n = 4)

will be called the minimal cases of the structure and motion problem.
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Table 9.1. The number of excess constraints mn− (2n + 3m− 4) for the structure
and motion problem with m images of n points.

n
m 1 2 3 4 5 6 7

1 0 −1 −2 −3 −4 −5 −6
2 −2 −2 −2 −2 −2 −2 −2
3 −4 −3 −2 −1 0 1 2
4 −6 −4 −2 0 2 4 6
5 −8 −5 −2 1 4 7 10
6 −10 −6 −2 2 6 10 14

9.4 Structure and Motion Problems Without Missing
Data

9.4.1 Intersection and the Discrete Trilinear Constraint

In this section the simpler problem of determining the position of an object
point using bearings from several known locations is studied. This problem is
usually referred to as intersection or reconstruction in the literature [23].

The intersection problem for three bearings is connected to what is called
the trilinear constraint. These trilinear constraints were originally developed
for understanding of multiple view problems in ordinary vision [22, 24]. These
constraints are interesting for several reasons.

First, they can be used to solve the more difficult surveying problem for
three images. The relative motion of the cameras can be calculated from
bearing measurements alone without calculating the structure of the object
points explicitly. This gives a way to calculate an initial estimate of motion
and of structure.

Second, the multilinear constraints can be used to eliminate faulty image
correspondences, and to find new correct ones. This is essential for a robust,
automatic structure and motion algorithm.

Only the calibrated case will be studied here because it is the natural
situation for laser guided vehicles. Other camera models can be dealt with in
a similar manner.

Problem 2. Given m bearing directions

uI , I = 1, . . . ,m (9.16)

from m known meters states

PI , I = 1, . . . ,m (9.17)

to one object point U in unknown position the intersection problem is to
find the depths λI > 0 and the object point U such that
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λIuI = PIU, ∀ I = 1, . . . ,m . (9.18)

Each measured bearing from known position constrains the location of the
object point to the line of sight. The equation for this line is easy to derive
using dual image coordinates v. Recall that

vIPI︸ ︷︷ ︸
lI

U = 0 , (9.19)

thus lI = vIPI is the line of sight. The geometric interpretation of the in-
tersection problem is to intersect these m lines (l1, . . . , lm) at a point. The
problem has no solution using only one measurement, but using two bearings
the solution is, in general, unique.

9.4.2 The Calibrated Trilinear Tensor

The case of three cameras is of particular importance. Using three measured
bearings from three different known locations, the object point is found by
intersecting three lines. This is only possible if the three lines actually do
intersect. This gives an additional constraint, which can be formulated in the
following way

Theorem 1. Let u1,J , u2,J and u3,J be the bearing directions to the same
object point from three different camera states. Then the trilinear constraint∑

i,j,k

Ti,j,kui
1,Juj

2,Juk
3,J = 0 , (9.20)

is fulfilled for some 2× 2× 2 tensor T .

Proof. By lining up the camera equations

⎛⎝P1 u1,J 0 0
P2 0 u2,J 0
P3 0 0 u3,J

⎞⎠
︸ ︷︷ ︸

M

⎛⎜⎜⎝
UJ

−λ1,J

−λ2,J

−λ3,J

⎞⎟⎟⎠ = 0 (9.21)

we see that the 6× 6 matrix M has a nontrivial right nullspace. Therefore its
determinant is zero. Since the determinant is linear in each column, it follows
that it can be written as

detM =
∑
i,j,k

Ti,j,kui
1,Juj

2,Juk
3,J = 0 , (9.22)

for some 2× 2× 2 tensor T .
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The calibrated trilinear tensor T = Ti,j,k in Eq. (9.20) will now be analyzed
in more detail. Note that the constraint above only involves the motion para-
meters and the bearing directions. It does not involve the structure parameters
U. The tensor components can be calculated from the motion parameters. If
we denote the rows of camera matrix PI by P1

I P2
I it is straightforward to see

that the tensor components are subdeterminants of the first three columns of
the matrix M . In fact, the components can be obtained as

Tijk = ∧ii′∧jj′∧kk′ det

⎡⎢⎣Pi′
1

Pj′
2

Pk′
3

⎤⎥⎦ , (9.23)

where the tensor ∧ is defined as

∧11 = 0, ∧12 = −1, ∧21 = 1, ∧22 = 0 . (9.24)

If the object coordinate system is changed

P1 �→ P̃1 = P1S, P2 �→ P̃2 = P2S, P3 �→ P̃3 = P3S , (9.25)

where S ∈ S denotes a 3 × 3 transformation matrix, the tensor components
change according to

T̃i,j,k = ∧ii′∧jj′∧kk′ det

⎡⎢⎣P̃i′
1 S

P̃j′
2 S

P̃k′
3 S

⎤⎥⎦
= ∧ii′∧jj′∧kk′ det

⎡⎢⎣Pi′
1

Pj′
2

Pk′
3

⎤⎥⎦detS = (detS)Ti,j,k .

(9.26)

A change of coordinate system only changes a common scale of the tensor.
It is natural to think of the tensor as being defined only up to scale. Two

tensors T and T̃ are considered equal if they differ only by a scale factor

T ∼ T̃ . (9.27)

Let Tu denote the set of equivalence classes of trilinear tensors.
As discussed in Sect. 2 only the relative motion of the camera is important.

Definition 2. Let the manifold of relative orientation of three cameras be
defined as the set of equivalence classes of three ordered camera matrices:

P =
{

(P1,P2,P3) |PI =
(

aI bI cI

−bI aI dI

)}/
" (9.28)

where the equivalence is defined as

(P1,P2,P3) " (P̃1, P̃2, P̃3), ∃S ∈ S, P̃I ∼ PIS, I = 1, 2, 3 . (9.29)
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Thus the above discussion states that the map (P1,P2,P3) �→ T is in fact,
a well-defined map from the manifold of equivalence classes P to Tu.

It turns out that this mapping is in essence a two-to-one mapping. In fact,
the following properties can be shown, [6].

Theorem 2. A tensor Ti,j,k ∈ Tu is a calibrated trilinear tensor if and only
if

−T111 + T122 + T212 + T221 = 0,
T112 + T121 + T211 − T222 = 0 .

(9.30)

When these constraints are fulfilled it is possible to solve for the camera ma-
trices in Eq. (9.23). There are, in general, two solutions, possibly nonreal.

Corollary 1. Let T ⊂ Tu denote the submanifold fulfilling the constraint
Eq. (9.30) then the map

T : P −→ T

T (P1,P2,P3)ijk = ∧ii′∧jj′∧kk′ det

⎡⎢⎣Pi′
1

P̄j′
2

P̂k′
3

⎤⎥⎦ (9.31)

is a well-defined two-to-one mapping.

9.4.3 The Surveying Problem for Three Images

The previous section on the calibrated trilinear tensor provided us with the
tool for solving the structure and motion problem for three cameras of at least
five points.

Algorithm 1 Structure and motion from three images.

1. Given three images of at least five points,

uI,J , I = 1, . . . , 3, J = 1, . . . , n, forn ≥ 5 .

2. Calculate the trilinear tensor T that fulfills the linear constraints given in
Eq. (9.30) and

∑
i,j,k Ti,j,kui

1,Juj
2,Juk

3,J = 0, ∀ J = 1, . . . n.
3. Calculate the two possible solutions to the relative orientation (P1,P2,P3)

from T according to the proof of Theorem 2.
4. For each solution to the motion calculate structure using intersection.

Note that five point correspondences give five linear constraints in Eq. (9.20).
The fact that the camera is calibrated gives two additional constraints in
Eq. (9.30). These seven constraints determine the eight components of T
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uniquely up to scale. Additional point correspondences will, in the ideal noise-
free case, not give any additional constraints on T . There is thus a twofold
ambiguity in the solution of the structure and motion problem, irrespective of
the number of corresponding points. The calculations above do, however, not
take the sign of the directions into account. Thus some of the reconstructed
points sometimes have negative depth. This does not, however, guarantee
uniqueness.

a b c

Fig. 9.2. a. The figure illustrates three images used as input in example 1. b. The
first solution obtained from the analysis of the multilinear constraints. c. The second
solution of structure and motion as obtained from the analysis of the multilinear
constraints

Example 1. We illustrate the discussion above with a simple example. Fig. 9.2a
shows three images of the same object points. Algorithm 1 is used to find the
two possible solutions to the structure and motion problem T Fig. 9.2b,c.
Note that in this example all points in both reconstructions have the correct
orientation (positive depth). *+

y

x

P

x’ z

P’ z’

y’

B
A

C

Fig. 9.3. A point P and its isogonal conjugate point P ′ with respect to triangle
ABC
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9.4.4 Understanding the Ambiguity

Looking at the solutions of the numerical examples (Fig. 9.2), one would like
a geometric interpretation of the two possible solutions. It turns out that the
ambiguity is a consequence of the following theorem about isogonal conju-
gacy, which is illustrated in Fig. 9.3 [7].

Theorem 3. Let ABC be a triangle. Let x, y and z be lines through A, B
and C respectively, that intersect in one point, say P . Let the line x′ be the
reflection of x in the bisector of the angle ABC, and similarly for y′ and z′.
Then the three lines x′ y′ and z′ intersect at one point P ′.

A proof of the theorem is given in [11] and [1].
The points P and P ′ are called isogonal conjugate points with respect

to the triangle ABC. An interesting property of such points is that they are
focal points for a conic inscribed in the triangle, i.e. a conic that is tangent to
all three sides of the triangle.

BA

C C

BA C

BA

Fig. 9.4. The leftmost picture illustrates a triangle ABC, with drawn lines from the
vertices to a number of points. The centre picture shows the same triangle, but using
instead the corresponding isogonal conjugate points. The set of angles as seen from
the three corners are the same but have different orientation. The rightmost picture

is obtained from the centre picture by mirroring in the broken line. By turning the
centre picture upside down the same angles are observed from the three corners,
although the shape of points in the interior is different

Making the same constructions as in Fig. 9.3 for another pair of points
Q and Q′, we see that seen from each of the positions A, B and C, the
absolute values of the angles between P , Q and P ′, Q′ are equal. However,
the orientation is wrong. To get the same orientation the construction needs
to be turned up-side-down (or mirrored in an arbitrary line). This leads to
the following corollary:

Corollary 2. For every solution to the structure and motion problem for three
cameras, another solution can be constructed by first changing the object po-
sitions to their isogonal conjugates with respect to the three camera positions,
and then mirroring the camera and object positions in some line.

An illustration is given in Fig. 9.4.
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The other minimal case of four points in four images can be solved in a
similar technique, by introducing a dual quadrilinear tensor. For more details
on this, see [6]. This case is, however, dual to the case of three views of five
points solved previously. This duality is described in the following section.

Example 2. Using the following bearing measurements

αI,J J
I 1 2 3 4
1 −2.3562 2.3562 1.1844 −0.7602
2 −2.1588 2.6779 0.7833 −0.9956
3 −2.5536 2.5536 1.7567 −1.1651
4 −2.3562 2.8198 2.0054 −1.3120

we obtain two possible solutions on the meter states and the object positions,
which are illustrated in Fig. 9.5.

Fig. 9.5. Two different solutions to the structure and motion problem with 4 images
of 4 points. The image directions are shown as unit vectors from the center of the
camera. The object points are shown as small stars

9.4.5 Duality Between Number of Points and Number of Images

Table 9.2 give the number of solutions in general to the surveying problem of
m images of n points.

Table 9.2 has a symmetric appearance. This can be shown using a tech-
nique that Carlsson developed in [8, 9]. The proof that he did for uncalibrated
projections from 3D to 2D can be used even in the case of uncalibrated pro-
jections from 2D to 1D:
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Table 9.2. The number of solutions to the surveying problem with m images of n
points. Superscript stars indicate overdetermined situations

n
m 3 4 5 6 7
2 ∞ ∞ ∞ ∞ ∞
3 ∞ ∞ 2 2� 2�

4 ∞ 2 1� 1� 1�

5 ∞ 2� 1� 1� 1�

6 ∞ 2� 1� 1� 1�

Theorem 4 (Carlsson Duality). The uncalibrated surveying problem with
n points and m images is equivalent to the uncalibrated surveying problem
with m + 3 points and n− 3 images.

Proof. This is simplest seen by choosing the image coordinates of the first
three points according to

u1 =
(

1
0

)
, u2 =

(
0
1

)
, u3 =

(
1
1

)
, (9.32)

and the object coordinates of the first three points according to

U1 =

⎛⎝1
0
0

⎞⎠ , U2 =

⎛⎝0
1
0

⎞⎠ , U3 =

⎛⎝0
0
1

⎞⎠ . (9.33)

Since λiui = PiUi: it follows that the camera matrix has the following form:

P =
(
V1 0 V3

0 V2 V3

)
.

The camera equation for the remaining points,

ui,j =
(
U1V1 + U3V3

U2V2 + U3V3

)
, (9.34)

is symmetric in camera parameters (V1, V2, V3) and structure parameters
(U1, U2, U3). Thus any algorithm for solving n points in m images can be
used to solve the m + 3 points in n− 3 images.

Theorem 5. The calibrated surveying problem with n points and m images
is equivalent to the calibrated surveying problem with m + 1 points and n− 1
images.

Proof. This follows immediately from Theorems 6 and 4.

According to Theorem 5 the 4 points in 4 images problem is equivalent to
the 5 points in 3 images-problem. This explains the symmetry in Table 9.2.
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9.4.6 Connection to Uncalibrated Cameras

In Sect. 3.2 it was shown that the problem of 5 points in 3 images has in
general two solutions. It was also shown that if there is a solution to the
problem of more than 5 points in 3 images, then there are 2 solutions. Similarly
in Sect. 3.4 it was shown that the problem of 4 points in 4 images has two
solutions. If there is a solution to the problem of 4 points in more than 4
images then there are two solutions. The problem of at least 5 points in at
least 4 images is overdetermined, and if there is a solution it is in general
unique. The situation is illustrated in Table 9.2.

In this paper it has been assumed that bearings are measured and therefore
that the camera matrix has the special form given by Eq. (9.8). In many
situations it can be of interest to study the structure and motion problem
for so-called uncalibrated cameras. This is identical to the surveying problem,
except that the camera matrix is allowed to be a general 2 × 3 matrix. The
difference in the study of minimal cases is, however, slight, due to the following
theorem.

Theorem 6. Knowing that the camera is corrected for internal calibration is
equivalent to seeing two extra points (the circular points) in each image.

Thus it follows that for the uncalibrated surveying problem, in the two
minimal cases are three images of seven points and four images of six points.
In both of these situations there is a twofold ambiguity in the solution. The
ambiguity is not resolved by adding points in the 3 image case or adding
images in the 6 point case.

9.4.7 Solution to all Cases with Nonmissing Data

If it is possible to solve a case with a subset of cameras and beacons, then it
is often relatively easy to extend that solution to other cameras and points by
resection and intersection. If all points are visible in all images then any well-
defined case above can be solved by first solving for one of the two minimal
cases with nonmissing data, i.e. 4 views of 4 beacons and 3 views of 5 beacons.

9.5 Structure and Motion Problems With Missing Data

The aim of this section is to solve all structure and motion problems for the
case of missing data. Depending on the index set I, which describes which
points are visible in which images, a structure and motion problem can be
either

• ill-defined, if there is not generally enough data to constrain all unknown
variables
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• well-defined and minimal, if there is exactly enough data to constrain the
unknown variables (up to a discrete number of solutions)

• well-defined but overconstrained, if there is more than enough data to
constrain the unknown variables

The goal of this section is to classify the possible index sets I into these three
categories.

Some of the minimal cases contain a minimal case as a subproblem. An
example of this is the case with 4 points seen in 5 images, but where the
fourth point is missing from the fifth image. It is minimal, but contains a
subproblem (the problem with the first 4 views only), which is well defined
and minimal. We will use the notation prime problem for a minimal problem
which does not contain a well defined minimal problem as a subproblem. A
minimal but not prime problem may in some cases be solved by first solving
the contained prime problem and then extending the solution using resection
and intersection. In other cases the prime problem may be embedded in the
minimal problem in a more complicated manner. We first observe that similar
to the case of nonmissing data a well-defined but overconstrained problem
contains as a subset a problem that is well-defined but minimal. Thus by
finding the minimal cases and solving them, we should be able to solve all
well-defined problems by the following algorithm:

1. Find whether a problem contains a well-defined minimal problem as a
subset.

2. Solve the structure and motion problem for this subset.
3. Extend the solution to the original problem.

As the classification is based on the index set I alone, it is interesting to study
these sets. In this paper we consider these sets as binary matrices, that is
visibility matrices A of size m × n, where black denotes missing data and
white denotes a measurement that is present. Another way of viewing these
index sets is as bipartite graphs with m+ n nodes. There is an edge between
node I in the first set and node J in the second set if the point J is visible in
image I. Thus a well-defined minimal case can be considered to be a subgraph
of a well-defined but overconstrained problem. Here we will use the notation
|I| to denote the number of elements in the set I.

In the following two sections the problem of classifying structure and mo-
tion problems for 1d retina will be addressed. In Sect. 9.5.9 we will consider
the classification of 2D retina problems.

9.5.1 Classification of Structure and Motion Problems

The goal of this section is to give some conditions on what constitutes a well-
defined minimal problem. From these minimal problems the prime problems
can be determined.
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9.5.2 Equivalence Classes of Index Sets

The labeling of the cameras and of the beacons are of no consequence to the
structure of the problem under study. Two index sets are considered equivalent
if one results from the other by suitable relabelings. This means that there are
many structure and motion problems that have different I but that correspond
in principle to the same problem.

Definition 3. An index set I is said to be of type (m,n, l) if it represents a
situation with m images and n points, in which exactly l points are not visible
in all of the images, that is, if |I| = mn− l.

From this definition it is clear that an index set I of type (m,n, l) can be
represented by a binary m × n matrix A = (aIJ) with aIJ = 1 if (I, J) ∈ I,
and aIJ = 0 otherwise, and such that

∑
IJ aIJ = mn− l. The possible index

sets of type (m,n, l) are thus in one-to-one correspondence with the set

M(m,n, l) = {A ∈Matm×n(Z2) :
∑

IJ aIJ = mn− l}.

Let Sk denote the group of permutations on k symbols. With each permutation
σ ∈ Sk is associated a k × k permutation matrix, which will also be denoted
by σ.

Definition 4. Two m×n matrices A and B are said to be permutation equi-
valent if there exist permutations σ ∈ Sm and τ ∈ Sn such that B = σTAτ .
If A and B are permutation equivalent then we write A ∼ B.

The notion of equivalence of index sets can now be given a formal definition

Definition 5. Two index sets I and I′ are called equivalent and we write I ∼ I′

if their corresponding matrix representations are permutation equivalent.

The relation ∼ is easily seen to be an equivalence relation. It follows that
M(m,n, l) (or the corresponding index sets) can be partitioned into equiva-
lence classes M1, . . . ,Mω of matrices (or index sets). The number of essen-
tially different index sets is thus seen to be exactly the same as the number
ω = ω(m,n, l) of equivalence classes. This is the number of principally diffe-
rent problems of type (m,n, l). The number ω also represents the number of
different bipartite graphs with l edges from m to n nodes.

9.5.3 The Germs

A first characterization of a well defined minimal structure and motion pro-
blem is that it contains exactly the same number of equations as unknowns.
If we concentrate on the case of calibrated cameras with 1D retina, then each
object point has two degrees of freedom and each camera state has three. The
solution is only defined up to a similarity transformation. This manifold has
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dimension 4. Using n points and m cameras we thus have 2n+3m−4 degrees
of freedom in the parameters. Each measured bearing gives one constraint on
the estimated parameters. Thus for a problem with visibility index set I we
have |I| equations. This means that minimal problems have |I| = 2n+3m−4.
Since the maximum number of equations with m views of n points is mn, it
is easy to see how many measurements l that have to be occluded to obtain
minimal problems, l = mn−(2n+3m−4). This number is shown in Table 9.1.

In order to find the minimal problems we concentrate our efforts on prob-
lems of type [m,n,mn− (2n + 3m− 4)].
Definition 6. A structure and motion problem of type [m,n,mn−(2n+3m−
4)] is said to be a germ of a minimal problem.

For a structure and motion problem to be minimal and/or prime the con-
dition of being a germ is only a necessary condition.

9.5.4 The Prime Condition

For a given germ the corresponding structure and motion problem can be
minimal or ill-posed. If it is minimal it may or may not be prime. The question
of which class a germ belongs to can be categorized in terms of the graph of
the index set. We will use the following intuitive assumption.
Conjecture 1. For a given germ with index set I, the corresponding structure
and motion problem is minimal iff no subgraph of I is overdetermined.
An empirical method for determining whether a problem is minimal and well
defined is to calculate the Jacobian of the bundle adjustment problem and
study its singular values. We have used this technique to empirically check
our conjecture.

It is clear that if a subgraph of a germwith index set I is overdetermined
then there has to be a part of the problem that is underdetermined, and hence
the whole problem is ill-posed.
Theorem 7. Given a germ with index set I, at least one subgraph of I is
overdetermined ⇒ the corresponding structure and motion problem is ill-posed

We will henceforth identify the class of minimal problems with those that
fulfill Conjecture 1. Under this assumption the notion of being a prime pro-
blem can be given the following formal definition:

Definition 7. A prime problem is a germ with index set I such that all strict
subgraphs of I are underdetermined.

A minimal problem that is not prime is an extension of a prime problem.
The extended minimal problem can in many cases be solved by a succession of
resections and intersections based on the solution to the prime case. In other
cases the extension can be more complicated.
Definition 8. An extension of type (m,n) is an extension with m extra ca-
meras and n extra points of a prime problem. That is, the problem is extended
by m additional cameras and n additional points, see e.g. Fig. 9.9.
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9.5.5 The Germ Investigation

We now concentrate our efforts on finding out how many germs there are for
different numbers of cameras and points. From these germs we then determine
which are minimal and which are prime.

9.5.6 Equivalence Classes of Germs

Let the type (m,n, l) be fixed throughout the remainder of the discussion. To
compute ω = ω(m,n, l) notions and results from group theory will be used.
Our reference here is to Sect. 3.6 of Fraleigh’s text [13].

First, denote the product group Sm × Sn by G. Second, if g = (σ, τ) ∈ G
and A ∈ M = M(m,n, l), then a group action of G on M is defined by the
formula

g · A = σTAτ. (9.35)

Thus two matrices A,B ∈ M satisfy A ∼ B if and only if there exists g ∈ G
such that g · A = B. The equivalence classes M1, . . . ,Mω of ∼ correspond to
the orbits in M under the action of G. Therefore ω can be computed by
the following well-known formula of Burnside: for any g ∈ G let Mg = {A ∈
M : g ·A = A} denote the set of matrices that are fix-points under action by
g. Then

ω =
1
|G|

∑
g∈G

|Mg|. (9.36)

While Eq. (9.36) solves our problem in theory, there are still some practical
problems to overcome. First, given g ∈ G, how do we compute |Mg|? Second,
the sum

∑
g∈G |Mg| must be evaluated, but as |G| = m!n! becomes very large

very quickly, the sheer size of G may become an obstacle, unless the evaluation
is performed cleverly.

A permutation g = (σ, τ) ∈ G may be regarded as an element of Smn,
as A �→ σTAτ permutes the mn entries of A. Let g = g1g2 · · · gs be the
factorization in Smn of g into a product of commuting (or disjoint) cyclic
permutations. It is now easy to see that A ∈ Mg if and only if the entries
in A, which equal zero, are arranged in such a manner that any cycle gi is
either completely occupied by entries equal to zero, or contains no such entry
at all. It follows that |Mg| equals the number of ways in which l zeros can be
allocated to m× n entries, such that the condition just described is satisfied.
It is clear from this discussion that |Mg| only depends on g’s cycle structure
(the number of cycles and their lengths).

Definition 9. If σ ∈ Sk is a permutation in k symbols, let ni(σ), i = 1, . . . , k
denote the number of i-cycles in the factorization of σ into commuting cycles.
The cycle index of σ is the polynomial

Pσ(x1, x2, . . . , xk) = x
n1(σ)
1 x

n2(σ)
2 · · ·xnk(σ)

k . (9.37)
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If H < Sk is a (sub)group of permutations, then the cycle index of H is the
polynomial

PH(x1, x2, . . . , xk) = |H |−1
∑
h∈H

Ph(x1, x2, . . . , xk).

It follows from the theory developed in [26] that

|Mg| = (l!)−1(d/dx)lPg(1 + x, 1 + x2, . . . , 1 + xmn)|x=0,

for any g ∈ G. This formula solves the first of our two problems. Furthermore,
it follows from Burnside’s formula Eq. (9.36) that

ω =
1
l!

(
d
dx

)l

PG(1 + x, 1 + x2, . . . , 1 + xmn)
∣∣∣
x=0

. (9.38)

It turns out that the cycle index PH is reasonably easy to compute when H
is all of Sk. Now, G = Sm × Sn is a proper subgroup of Smn, so in view
of Eq. (9.38) our second problem above becomes: How do we compute PG

when the cycle indices of Sm and Sn are known? Again the authors of [26]
provide the answer: they introduce a new operation beside the usual addi-
tion and multiplication, denoted ∗, on the ring of polynomials in infinitely
many variables x1, x2, x3, . . ., and with rational coefficients. The “product” is
associative, commutative and distributive over both + and ·, so it suffices to
describe ∗ on monomial factors xm

i and xn
j , in which case

xm
i ∗ xn

j = x
imjn/[i,j]
[i,j] , (9.39)

where [i, j] is the least common multiple of i and j. The authors of [26] then
proceed to prove the following beautiful result, which we have used to compute
PG:
Theorem 8 (Wei and Xu). If H < Sm and K < Sn are (sub)groups, then
H ×K < Smn, and PH×K = PH ∗ PK .
Example The cycle index of S3 is 1

6 (x3
1 + 3x1x2 + 2x3) so if G = S3 × S3 then

PG = 1
6 (x3

1 + 3x1x2 + 2x3) ∗ 1
6 (x3

1 + 3x1x2 + 2x3)

= 1
36 (x9

1 + 6x3
1x

3
2 + 9x1x

4
2 + 12x3x6 + 8x3

3),

so

PG(1 + x, . . . , 1 + x9) = 1 + x+ 3x2 + 6x3 + 6x6 + 7x4 + 7x5 + 3x7 + x8 + x9.

It then follows from Eq. (9.38) that

ω(3, 3, 3) =
1
3!

(
d
dx

)3

PG(1 + x, . . . , 1 + x9)
∣∣∣
x=0

= 6.

The procedure for calculating ω, described above, was implemented in
Maple (Maplesoft, Canada). Using this program we are able to compute ω for
any given (m,n, l) and in particular for the germs. Table 9.3 contains ω for
the first few types (m,n, l), with l given by Table 9.1.
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9.5.7 Finding and Classifying Germs

We calculated the equivalence classes for some of the first germs using algo-
rithms described in [20]. In table 9.3 the number of distinct germs for these
cases are given. These germs where then classified as being minimal and pos-

Table 9.3. The number ω of different germs for different m and n

ω n
m 4 5 6 7 8 9
3 – 1 1 3 6 11
4 1 3 16 62 225
5 1 16 155 1402
6 3 79 1799
7 6 361
8 16

sibly also prime. The numbers of such problems are shown in Tables 9.4 and
9.5.

Table 9.4. The number of minimal configurations for different m and n

n
m 4 5 6 7 8 9
3 – 1 1 2 3 4
4 1 3 12 41 118
5 1 12 110 876
6 2 48 1050
7 3 159
8 5

Table 9.5. The number of prime configurations for different m and n

n
m 4 5 6 7 8 9
3 – 1 0 0 0 0
4 1 1 3 5 8
5 0 3 22 145
6 0 6 136
7 0 0
8 0
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In Fig. 9.6 and Fig. 9.7 the prime problems for the configurations of type
(5, 5, 4) and (4, 6, 4) are given. The configurations inf Fig. 9.6a-c seem to be
connected to configurations in Fig. 9.7a-c. The similarity can be explained by
the Carlsson duality.

a b c

Fig. 9.6. The three distinct configurations a-c for prime cases of type (5, 5, 4)

cba

Fig. 9.7. The three distinct configurations a-c for prime cases of type (4, 6, 4)

If one looks at Table 9.5, the number of prime configurations seem to
increase quickly as both m and n increase. This leads to the question whether
this is true or if the number of prime cases after some time stops growing.
One can at least give the result in Theorem 9.

Theorem 9. There are infinitely many prime configurations.

Proof. Given a germ of type (m,m,m2−5m+4), one can construct the follo-
wing prime configuration: the first point is seen in all images. The remaining
m − 1 points are seen in exactly 4 images each. Of these m − 1 points, the
first 4 cameras see exactly 3 points, and the remaining m − 4 cameras see
exactly 4 points. The construction is illustrated in Fig. 9.8. For m̃ ≤ m − 2:
in order to use as much information as possible one should choose the m̃
cameras close together. This gives in the best case 3m̃ + 2m̃ − 4 = 5m̃ − 4
unknowns and m̃ + 4(m̃ − 3) + 3 · 2 = 5m̃ − 6 constraints, so in this case it
is always underdetermined. For m̃ = m − 1 the same reasoning gives at best
3m̃ + 2(m̃ + 1) − 4 = 5m̃ − 2 unknowns and m̃ + 4(m̃ − 3) + 3 · 3 = 5m̃− 3
constraints. So also in this case it is always underdetermined. Finally, for m̃ =
m we have 3m̃+2m̃−4 = 5m̃−4 unknowns matching the m̃+4(m̃−1) = 5m̃−4
constraints.
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m

m

Fig. 9.8. A prime configuration of type (10, 10, 54)

9.5.8 Extensions

Comparing Table 9.4 with Table 9.5, we see that there is only one prime
case for four points. Similarly, there is only one prime case for three cameras.
The extensions in these cases are of type (m, 0) and (0, n). These types of
extensions can always be solved using resection and intersection, respectively.
Extensions of type (1, n) and (m, 1) can always also be solved using only com-
binations of resection and intersection. The first more complicated extension
occurs for the type (2, 2). In order for the extension to be unsolvable with
intersection and resection all cameras and points must be underdetermined
with respect to the prime configuration. And all cameras and points should be
exactly determined with the information contained in the remaining four mea-
surements. For an extension of type (2, 2) this can essentially only be done in
one way. This extension is shown in Fig. 9.9. It would be interesting to classify

prime

Fig. 9.9. The extension of type (2,2)

prime extensions. This would make it possible to express any minimal case as
a prime problem extended by a number of prime extensions.
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9.5.9 Classification of 2D Retina Problems

The tools of Sects. 9.5.1 and 9.5.5 were developed for calibrated cameras with
1D retina viewing point features. These methods work equally well for other
types of cameras and other types of features. In this section we will look at the
classification of minimal problems for uncalibrated cameras with 2D retina,
where the features are points.

Table 9.6. The number of excess constraints for m images of n points

n
m 6 7 8 9 10 11
2 −1 0 1 2 3 4
3 0 3 6 9 12
4 1 6 11 16
5 2 9 16
6 3 12
7 4

A projective camera has 11 degrees of freedom, and a point has 3 degrees
of freedom. Each point gives two constraints on the camera. In addition, we
have the freedom to choose a projective coordinate system that has 15 degrees
of freedom. This means that for m cameras viewing n points the number of
excess constraints l is:

l = 2mn− 11m− 3n + 15. (9.40)

This number is shown in Table 9.6. Since an occlusion will reduce the number
of constraints by two, it follows that there are minimal cases only when l is
even. This means that we only have minimal cases for m and n points when
m + n is odd, see Table 9.6 and Eq. (9.40).

We can now use the same procedures as we did in Sects. 9.5.1 and 9.5.5
for 1D retina for classifying the minimal cases. The number of prime config-

Table 9.7. The number of prime configurations for m 2D cameras and n points

n
m 6 7 8 9 10 11
2 − 1 − 0 − 0
3 1 − 1 − 1
4 − 1 − 14
5 0 − 26
6 − 4
7 0
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urations for 2D retina is shown in Table 9.7. There is only one prime case for
two cameras, the unoccluded case. The same is true for six points.

For the case of three uncalibrated views of 8 points there are 6 distinct
germs. Of these 6 germs, 4 are ill-defined, and of the two remaining minimal
problems one is prime. This prime problem was solved in [17]. For three views
of 9 points there are no minimal configurations. For three views of 10 points
there are 33 distinct germs (30 are ill-defined, two are minimal but not prime
and one is prime, Fig. 9.10.) Just like the case of 1D retina, there are infinitely

cba

Fig. 9.10. The three minimal cases of type (3, 10, 6) for 2D retina. Of these (a) and
(b) are minimal but not prime, and (c) is prime

many prime configurations for 2D retina. This can be shown by a similar
construction as was done for 1D retina in the proof of Theorem 9. Given m
cameras, m+3 points and (2m2− 7m+15)/2 occlusions, where the first four
points are visible in each view, and every subsequent point is visible in three
views (Fig. 9.11) then this is a prime configuration. The proof is completely
analogous to the proof of Theorem 9.

m

m+3

Fig. 9.11. A prime configuration with m cameras and m + 3 points. This configu-
ration can be constructed for any m and is always prime
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9.5.10 Solution of Some Prime Problems

We now turn our attention to the task of solving some of the prime problems
for 1D retina. As such, we will consider the problem with both beacons and
cameras in general positions. As in ordinary vision there exist so-called critical
configurations where there is an inherent ambiguity of the solutions to the
structure and motion problem irrespective of the number cameras and points.
In this chapter we assume noncritical configurations. For nonmissing data and
1D retina the issue of critical configurations was completely resolved in [16].
For missing data it is not known what the critical configurations are, but in
order to understand which they are, an understanding of the minimal cases
for missing data is desirable.

In the previous section it was also shown that some minimal problems can
be solved by extending a prime problem. One such case of a prime extension
is also considered in this chapter.

9.5.11 The Case of Five Points in Four Images

There is only one prime configuration for the case of 5 points in 4 images.
This is the case where one sees all 5 points in 2 images. In image 3, one point
is occluded and in image 4 another point is occluded. We will start by finding
the solutions to this case.

Theorem 10. The structure and motion problem with 4 views of 5 points

λIJuIJ = PIUJ , ∀(I, J) ∈ I ,

with I such that point 1 is missing in view 3 and point 2 is missing in view 4
(see Table 9.8) has in general three solutions.

9.5.12 The Case of Five Points in Five Images

There are three prime problems for the case of 5 points in 5 images. We will
now solve these three prime problems and their three dual cases.

Theorem 11. The structure and motion problem for 5 images of 5 points,

λIJuIJ = PIUJ , ∀(I, J) ∈ I .

with I given by Fig. 9.6a has in general three solutions.

The dual to this case of 5 points in 5 images is the case of 6 points in 4
images given by Fig. 9.7a. This means that there are three solutions to this
case of 6 points in 4 images.

Corollary 3. The structure and motion problem for 4 images of 6 points,

λIJuIJ = PIUJ , ∀(I, J) ∈ I ,

with I given by Fig. 9.7a has in general three solutions.



294 Kalle Åström

Using the same kind of parameterization as in the previous cases, we can
solve the prime problem given by figure 9.6b.

Theorem 12. The structure and motion problem for five images of five
points,

λIJuIJ = PIUJ , ∀(I, J) ∈ I ,

with I given by Fig. 9.6b has in general four solutions.

The dual to this case of 5 points in 5 images is the case of 6 points in 4
images given by Fig. 9.7b. This means that there are three solutions to this
case of 6 points in 4 images.

Corollary 4. The structure and motion problem for 4 images of 6 points,

λIJuIJ = PIUJ , ∀(I, J) ∈ I ,

with I given by Fig. 9.7b has in general four solutions.

Finally, the last prime case of 5 images of 5 points can be shown to have five
solutions.

Theorem 13. The structure and motion problem for 5 images of 5 points,

λIJuIJ = PIUJ , ∀(I, J) ∈ I ,

with I given by Fig. 9.6c has in general five solutions.

The dual to this case of 5 points in 5 images is the case of 6 points in 4
images given by Fig. 9.7c. This means that there are five solutions to this case
of 6 points in 4 images.

Corollary 5. The structure and motion problem for 4 images of 6 points,

λIJuIJ = PIUJ , ∀(I, J) ∈ I .

with I given by Fig. 9.7c has in general five solutions.

9.5.13 The Two-by-Two Extension

Apart from simple extensions based on intersection and resection, the first
extension of a prime problem is the extension by two cameras and two points.
This type of extension is shown in Fig. 9.9. We assume that we have a solution
to a prime problem with m cameras and n points. The task is then to extend
this solution to the solution of the extended problem with m+2 cameras and
n + 2 points. Two extra cameras and two extra points means that we have
2 · 3+2 · 2 = 10 unknowns to solve for. Using intersection, the known cameras
give two linear constraints on the unknown points. And using resection the
known points give four linear constraints on the unknown cameras. This leaves
four parameters, one for each camera (AI , I = 1, 2) and one for each point
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(UJ , J = 1, 2), to solve for. The two new points are seen in both the two new
views. This gives four quadratic constraints on the four parameters,

aIJUJAI + bIJUJ + cIJAI + dIJ = 0; I = 1, 2, J = 1, 2;

with the coefficients (aIJ , bIJ , cIJ , dIJ) only depending on the images. This
means that there could be up to 24 = 16 solutions according to Bezout’s
theorem, cf. [10]. But because of the sparseness of the polynomials this is
not the case. Taking resultants pairwise we can eliminate UJ . This leaves two
polynomial equations in AI :

a′JA1A2 + b′JA1 + c′JA2 + d′J = 0, J = 1, 2.

Taking the resultant of the two polynomials with respect to A2 leaves the
following quadratic equation in A1:

a′′A2
1 + b′′A1 + c′′ = 0.

This discussion leads to Theorem 14:

Theorem 14. Given an extension of type (2, 2) to a structure and motion
problem with m cameras and n points (as depicted in Fig. 9.9), the number
of solutions are in general 2 ×N , where N is the number of solutions of the
original problem with m cameras and n points.

9.5.14 Some Experimental Results

The methods described in the proof of Theorem 10 can easily be implemented.
In Table 9.8 bearings for an example of the minimal case described in Theo-
rem 10 is shown. The resulting solutions are illustrated in Fig. 9.12. In this
case there were three real solutions with all depths positive.

Table 9.8. Some bearing measurements

0.6929 −0.7825 −1.9347 0.3263 −0.6421
0.3206 −0.9479 −1.8732 −0.0041 −0.8289

– −2.5202 2.4474 −0.9746 −2.3323
2.3024 – −1.0540 1.8991 0.6499

In Table 9.9 a setting with 5 cameras and 7 points is shown. This is a
minimal problem but not a prime one. The subproblem of the first 3 cameras
and the first 5 points is a prime problem which can be solved using algo-
rithm for three views of five points. This gives two solutions. The solution
of the whole problem can then be found by the (2, 2) extension described in
Sect. 9.5.13. This gives two solutions for each of the original solutions, in to-
tal four solutions. In this particular case the solutions all had positive depths.
The resulting solutions are shown in Fig. 9.13.
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Fig. 9.12. Three solutions to the minimal case of 5 points in 4 images. Beacons are
indicated by ‘+’

Table 9.9. Some bearing measurements

−1.9786 −0.5736 0.8046 −1.0507 0.5931 – –
−2.5202 −1.1710 1.5796 −1.8684 1.2136 – –
−0.8188 0.6134 3.0339 −0.0885 2.6759 −0.1730 −2.4311
−2.2663 −0.6898 – – – −1.3617 1.5151
−1.8792 −0.3047 – – – −1.1115 2.5170

4

21

3

Fig. 9.13. Four solutions to one minimal case of 7 points in 5 images. Beacons are
indicated by ‘+’
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9.6 Ambiguous Cases of Structure and Motion Problems

We have seen previously that a solution to the structure and motion problem is
only determined up to an unknown projective transformation. Also, for three
cameras and any number of points, there is accordingly a twofold ambiguity.
Additionally, there are two basic ambiguities that will be discussed here.

For the intersection problem there is one critical configuration for which
there is not a unique solution.

Theorem 15. Consider the case of several views of one point with known
camera matrices. The intersection problem is ambiguous if and only if all
camera centres and the point lie on a line.

Resection is the problem of calculating camera positions using image mea-
surements and known object points. In this case, the critical configurations
are not obvious.

Theorem 16. Consider m > 4 object points with known positions and one
unknown camera. The resection problem is ambiguous if and only if all points
and the camera centre lie on a conic curve.

Proof. Consider first the critical configuration for the intersection problem,
i.e. 1 point and n > 1 camera centres lying on a single line. The configuration
is still ambiguous if more object points are added. Four points (where no three
are on a line) and several n > 1 cameras are ambiguous if and only if 1 of
the points and all camera centres are on a single line. If the other 3 points
are taken as base points, the dual statement is: m > 4 object points and one
camera centre are ambiguous if and only if all points and the camera centre
lie on a conic curve.

The intersection and resection ambiguities are illustrated in Fig. 9.14. The
calibrated version follows.

Corollary 6. Consider m > 2 object points with known positions and one
unknown camera. The calibrated resection problem is ambiguous if and only
if all points and the camera centre lie on a circle.

9.6.1 Three View Ambiguities

A structure and motion problem with three views can be ambiguous in three
ways

1. The alternative reconstructions have the same relative camera motion.
2. The alternative reconstruction have different relative camera motion, but

the corresponding trilinear tensor is the same.
3. The alternative reconstructions have different relative camera motion, and

the corresponding trilinear tensor is different.
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C

U

U

C

Fig. 9.14. (left) The intersection ambiguity where a point U and several camera
centres C lie on a line. (right) The dual resection ambiguity where a camera centre
C and several points U lie on a conic curve

For case 1 there is a unique relative motion, so one can without loss of generali-
ty assume that the camera positions are known. The alternative reconstruction
differs in at least one of the object points. This can only happen if the camera
centres and that point are collinear, see Theorem 15. For case 2, Theorem 2
shows that for each trilinear tensor there are two possible relative orientations.
Thus any three-view problem is critical in the sense that there are at least two
possible solutions. For the third case, we ask if there are cases where there
might be more than two solutions to the structure and motion problem, i.e.
when the tensor is not uniquely defined. We will call this case a three-view
ambiguity.

We are now ready to state the theorem describing exactly when there are
three-view ambiguities. For an example, see Fig. 9.15.

Theorem 17. The structure and motion problem for three views and arbitrary
number of points is ambiguous if and only if the three camera centres and all
the object points lie on a cubic curve.

There is an interesting special case when all the points and at least one of the
camera centres lie on a conic. It fits into the theorem since there is a cubic
consisting of the conic through the points and one camera centre and a line
through the remaining camera centres. The cubic thus covers all points and
camera centres. The problem is then critical in the sense that the resection
problem for the first camera is critical, cf. Theorem 16.

Proof. Consider a situation where there is an ambiguity. Consider one of the
solutions to the problem. For this solution there is a placement of cameras,
A, B and C. The condition that there is an ambiguous solution is equivalent
to saying that there is an alternative tensor Tijk such that∑

Tijkaibjck = 0 ,

where a, b and c are image points in the three images, respectively. Since

ai = AiX, bi = BiX, ci = CiX,

the constraint on the object point is a third-degree polynomial in X ∈ P2:
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a b c

Fig. 9.15. Three cameras (circles) are viewing 22 points (crosses). All three con-
figurations (a-c)(out of a one-parameter family) are consistent with the 1D image
points. The 25 plane points lie on a cubic

p(X) =
∑

TijkAiXBiXCiX = 0 .

This shows that all object points pass through this cubic curve. To see that the
camera centres lie on the same curve it is sufficient to observe that AF = 0,
when F is the camera centre for camera 1. This gives directly that p(F) = 0.
Notice that the structure and motion problem is in general well defined for
7 points in 3 views. With 6 object points and 3 camera centres, there is
in general a unique cubic curve passing through these points. That the 7th
object point also lie on this curve is exceptional. To show the only if part,
we consider an object where all camera centres and object points lie on an
arbitrary third-degree polynomial. Without loss of generality we may change
both object coordinate system and image coordinate system so that

A =
(

1 0 0
0 1 0

)
, B =

(
1 0 0
0 0 1

)
, C =

(
0 1 0
0 0 1

)
,

as long as the three cameras are not on a line. The mapping from ambiguous
tensors to cubic curves is a linear mapping. Each ambiguous tensor that has
eight parameters T = (T111, T112, T121, T122, T211, T212, T221, T222) corresponds
to a cubic curve

p(X) =
∑

TijkAiXBiXCiX = 0 ,

where the coefficients c = (cx3 , cx2y, cx2z, cxy2 , cxyz, cxz2 , cy3 , cy2z, cyz2 , cz3) of
the polynomial p(X) depend linearly on the tensor coefficients

c = MT . (9.41)

For this particular choice of coordinates the matrix M becomes
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M =

⎡⎢⎢⎢⎣
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦ .

It is straightforward to see that the matrix M has rank 7. Notice that the
true tensor is a null vector to the matrix, so M must have rank ≤ 7. If the
three camera centres happen to be on a line, it is easy to check that the
corresponding mapping is also linear with rank 7. The mapping given by Eq.
(9.41) is in fact a bijective mapping from the star of tensors through the true
tensor (which can be identified with P6) to the manifold of cubic curves that
pass through the three camera centres (also P6).

Since the mapping is bijective, our arbitrary third-degree curve on which
the object points lie corresponds to an ambiguous tensor. Thus the structure
and motion problem for that case is critical. This concludes the proof.

>From the principle of duality, the following theorem is obtained.

Theorem 18. The structure and motion problem for any number of views of
6 points is ambiguous if and only if the camera centres and the object points
lie on a cubic curve.

Proof. The image under the Carlsson map of a cubic curve through the base
points is again a cubic curve through the base point. The dual of 3 cameras
and n points is m = n−3 cameras and 6 points. So by the principle of duality
and Theorem 17, the statement is proved.

9.6.2 General n Points in m Views Ambiguity

Up to now, we have limited either the number of cameras or the number of
points considered. Based on the previous results, the general problem will now
be solved. A natural generalization of the three-view case for the word “am-
biguous” is that the alternative reconstructions have different relative camera
motion, and (at least) one triplet of cameras has a different trilinear tensor.

Theorem 19. A 1D structure and motion problem is ambiguous regardless of
the number of cameras and points if and only if all the camera centres and
the object points lie on a common third-degree curve.

Proof. We begin by showing that a problem is ambiguous if all points lie on
a third-degree curve. Assume that camera centres and object points lie on a
third-degree curve c. By first restricting the problem to only 6 points, we know
from Theorem 18 that the configuration is ambiguous and there is (at least) a
one-parameter family of solutions. Now, consider a seventh point on the curve
c. We need to show that the constraints generated by the projection equation
for this extra point do not break the ambiguity. However, all these constraints
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a b c

Fig. 9.16. The figure illustrates three solutions (a-c) (out of a one-parameter fam-
ily) to the same structure and motion problem. There are 82 cameras (circles) view-
ing 15 points (crosses). It is critical because all 97 points lie on a cubic

reduce to trilinear constraints, as there are no higher-order constraints for 1D
camera motion [6]. Thus, it suffices to consider three arbitrary cameras Pi,
Pj and Pk. In the proof of Theorem 17, we showed that the map from stars
of tensors to cubic curves (through the camera centres) is bijective. So, from c
and the three camera centres, a star of tensors λT1 + µT2, where (λ, µ) ∈ P1,
is obtained. But according to the proof of Theorem 17, as long as the seventh
point is on c, all tensors in λT1 + µT2 are still valid solutions.

To show that each ambiguous problem has the property that all points lie
on a third-degree curve we use a proof by contradiction. Thus, assume that
there exist ambiguous problems with m views of n points such that the m+n
points do not lie on a common third-degree curve. Such problems must have
m > 3 and n > 6 because of Theorems 17 and 18, respectively. Study such a
problem where m + n is minimal. If we remove one point or one camera, we
obtain an ambiguous problem with one point less. By the assumption, these
m + n − 1 points must lie on a third-degree curve. In particular, this means
that all 10 point subconfigurations must lie on a third-degree curve. But then
all m+ n points lie on a cubic curve. Thus all ambiguous configurations have
the property that all m + n points lie on a third-degree curve.

In Fig. 9.16 an example of a critical configuration is illustrated. Even
though there are 82 views of 15 points, the 1D images alone cannot disam-
biguate between a one-parameter family of solutions. Another example is illus-
trated in Fig. 9.17, where a camera moves along a corridor, which frequently
occurs in practical situations.
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a b c

Fig. 9.17. Three solutions (out of a one-parameter family) to the same structure
and motion problem. In the example, the camera moves in a corridor with scene
points on both walls, which is quite common in robot navigation. There are 25
cameras (circles) viewing 29 points (crosses). It is critical because all 54 points lie
on a cubic

9.7 Conclusions

In this paper we introduced the minimal conditions for solving the structure
and motion problem for cameras with one-dimensional retinae. The emphasis
was on calibrated cameras.

For the minimal case of 3 images with 5 points it was shown how to solve
the problem using the calibrated trilinear tensor. It was shown that there
is a two-to-one map from the relative orientation of three cameras to the
calibrated trilinear tensor. This explains why there are two solutions to the
structure and motion problem for three cameras. A geometric interpretation
of this ambiguity is also given.

For the minimal case of 4 images with 4 points it was shown how to solve
the problem using the dual calibrated quadrilinear tensor. It was shown that
there is a two-to-one map from the shape of four planar points to this tensor.
This explains why there are two solutions to the structure and motion problem
for four points.

Notice that the trilinear tensor encodes the relative motion of the camera
at three instants and that the dual quadrilinear tensor encodes the structure
of four scene points. Thuss there are no relations at all between these two
tensors.

The connection between the calibrated and the uncalibrated cameras is
given. From this it follows that similar results hold for 3 images with 7 points
and for 4 images with 6 points. Using the Carlsson duality it was then shown
that the above two types of ambiguities are in fact dual to each other.

Furthermore, a categorisation of minimal cases for structure and motion
is given. Some of the simpler minimal cases are solved. It is shown that there
are infinitely many such minimal cases.
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Finally a complete categorisation of ll ambiguous configurations for the
structure and motion problem in 1D retina vision is presented. The main
ambiguity is when all object points (regardless of how many) and all camera
centres (again, regardless of the number of cameras) lie on a cubic curve.
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10.1 Introduction

One of the central problems in computer vision is to calculate the three-
dimensional structure of an unknown object from an image sequence (e.g.,
taken by a camcorder) or from several still images. Usually, the positions of
the cameras where the images were taken are unknown, i.e., the motion of the
camera is unknown. Therefore, this problem is often called the structure and
motion problem.

In order to solve the structure and motion problem, it is necessary to
make a mathematical model of the camera. The most widely used model is
the so-called pinhole camera and its specializations to orthographic and affine
cameras. This camera model contains some calibration parameters that need
to be estimated to obtain a Euclidean reconstruction of the scene.

The first step in a reconstruction system is to extract features and track
them through the sequence, alternatively finding corresponding points in se-
veral still images. This is a hard problem in itself and will not be treated in
this chapter. The next step is to estimate the motion of the camera, based on
the multiple-view constraints. These constraints play a central role and in or-
der to derive them some tools from projective geometry are needed. After the
motion is obtained it is fairly straightforward to obtain an initial projective
reconstruction, i.e., to reconstruct the object up to an unknown projective
transformation. However, a nonlinear optimization, called bundle adjustment
is needed to get a statistically optimal result, which is needed in the subse-
quent step. This projective reconstruction usually contains severe nonlinear
distortions and in order to obtain a Euclidean reconstruction the calibration
parameters need to be estimated, so-called autocalibration. This step is also
divided into one initial linear estimation and a final nonlinear bundle adjust-
ment to obtain the best possible reconstruction.

This chapter is organized as follows: In Sect. 10.2, an introduction to pro-
jective geometry is given, with special emphasis on the concepts and results
needed for the investigation of the structure and motion problem. The process

Three- imensional Geometric Computer VisionD
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of modelling a pinhole camera along with specializations leading to different
camera models is given in Sect. 10.3. In Sect. 10.4 the geometry of multiple
views is investigated, leading to the multiple-view tensors. A number of recon-
struction methods are presented in Sect. 10.5 and finally in Sect. 10.6 some
autocalibration methods.

10.2 Projective Geometry

This section deals with the fundamentals of projective geometry, including
the definitions of projective spaces, homogeneous coordinates, duality, projec-
tive transformations and affine and Euclidean imbeddings. For a traditional
approach to projective geometry see [2], and for more modern treatments see
[5, 6, 8].

10.2.1 Projective Spaces

In order to define projective spaces of different dimensions, the standard Rn-
spaces need to be enlarged with some extra points. Consider the set L of all
lines parallel to a given line l in R2 and assign a point to each such set, pideal,
called an ideal point or point at infinity. The projective plane, P2, is
given by

P
2 = R

2 ∪ {ideal points} .

This means that the 2-dimensional projective plane is obtained by adding the
ideal points to R2. The ideal line, l∞, or line at infinity in P2, is defined
by

l∞ = {ideal points} ,

i.e., it consists of all ideal points. The following constructions could easily be
made in P2:

1. Two different points define a line (called the join of the points).
2. Two different lines intersect at a point.

Here there are obvious interpretations for ideal points and the ideal line, e.g.,
the line defined by an ordinary point and an ideal point is the line incident
with the ordinary point with the direction given by the ideal point.

The projective line, P1, is given by

P
1 = R

1 ∪ {ideal point} .

This means that the 1-dimensional projective line is obtained by adding one
ideal point to R1.

In order to define the three-dimensional projective space, P3, start with
R

3 and assign an ideal point to each set of parallel lines, i.e., to each direction.
The projective space, P3, is thus given by
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P
3 = R

3 ∪ {ideal points} .

Observe that the ideal points in P3 constitute a two-dimensional manifold,
called the ideal plane or plane at infinity. This plane at infinity contains
lines, again called lines at infinity. Every set of parallel planes in R3 defines
an ideal line and all ideal lines build up the ideal plane. Many geometrical
constructions can be made in P3, e.g.,

1. Two different points define a line (called the join of the two points).
2. Three different points define a plane (called the join of the three points).
3. Two different planes intersect in a line.
4. Three different planes intersect in a point.

10.2.2 Homogeneous Coordinates

It is often advantageous to introduce coordinates in the projective spaces,
so-called analytic projective geometry. Introduce a cartesian coordinate
system, Oexey in R2, and define the line l : y = 1; see Fig. 10.1. Observe that

lp : (p1.p2)t, t ∈ R

ex

ey

p

l : y = 1

Fig. 10.1. Definition of homogeneous coordinates in P
1

the vectors (p1, p2) and (q1, q2) determine the same line through the origin iff

(p1, p2) = λ(q1, q2), λ �= 0 .

Every line, lp = (p1, p2)t, t ∈ R, through the origin, except for the x-axis,
intersects the line l at one point, p. The pairs of numbers (p1, p2) and (q1, q2)
are said to be equivalent if

(p1, p2) = λ(q1, q2), λ �= 0 ,

written
(p1, p2) ∼ (q1, q2) .

D
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There is a one-to-one correspondence between lines through the origin and
points on the line l if an extra point is added on the line, corresponding
to the line x = 0, i.e., the direction (1, 0). Identifying the line l augmented
with this extra point, corresponding to the point at infinity, p∞, with P1, the
one-dimensional projective space, P1, is obtained, consisting of pairs of
numbers (p1, p2) (under the equivalence above), where (p1, p2) �= (0, 0). The
pair (p1, p2) is called the homogeneous coordinates for the corresponding
point in P1. There is a natural division of P1 into two disjoint subsets

P
1 = {(p1, 1) ∈ P

1} ∪ {(p1, 0) ∈ P
1} ,

corresponding to ordinary points and the ideal point.
The introduction of homogeneous coordinates can easily be generalized

to P2 and P3 using three and four homogeneous coordinates, respectively. In
the case of P2 fix a cartesian coordinate system Oexeyez in R3 and define
the plane Π : z = 1; see Fig. 10.2. The vectors (p1, p2, p3) and (q1, q2, q3)

p

ex

ey

lp : (p1.p2, p3)t, t ∈ R

Π : z = 1

ez

Fig. 10.2. Definition of homogeneous coordinates in P
2

determine the same line through the origin iff

(p1, p2, p3) = λ(q1, q2, q3), λ �= 0 .

Every line through the origin, except for those in the x-y-plane, intersect the
plane Π at one point. Again, there is a one-to-one correspondence between
lines through the origin and points on the plane Π if an extra line is added,
corresponding to the lines in the plane z = 0, i.e., the line at infinity, l∞,
built up by lines of the form (p1, p2, 0). The plane Π augmented with this
extra line, corresponding to the points at infinity, l∞, is identified with P2.
The pairs of numbers (p1, p2, p3) and (q1, q2, q3) are said to be equivalent iff

(p1, p2, p3) = λ(q1, q2, q3), λ �= 0 written (p1, p2, p3) ∼ (q1, q2, q3) .

The two-dimensional projective space P2 consists of all triplets of numbers
(p1, p2, p3) �= (0, 0, 0). The triplet (p1, p2, p3) is called the homogeneous coor-
dinates for the corresponding point in P2. There is a natural division of P2
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into two disjoint subsets

P
2 = {(p1, p2, 1) ∈ P

2} ∪ {(p1, p2, 0) ∈ P
2} ,

corresponding to ordinary points and ideal points (or points at infinity).
The same procedure can be carried out to construct P3 (and even Pn for

any n ∈ N), but it is harder to visualize. In this way, the three-dimensional
(n-dimensional) projective space P3 (Pn) is defined as the set of one-
dimensional linear subspaces in a vector space, V (usually R4 (Rn+1)) of di-
mension 4 (n+1). Points in P3 (Pn) are represented using homogeneous co-
ordinates by vectors (p1, p2, p3, p4) �= (0, 0, 0, 0) ((p1, . . . , pn+1) �= (0, . . . , 0)),
where two vectors represent the same point iff they differ by a global scale
factor. There is a natural division of P3 (Pn) into two disjoint subsets

P
3 = {(p1, p2, p3, 1) ∈ P

3} ∪ {(p1, p2, p3, 0) ∈ P
3}

(Pn = {(p1, . . . , pn, 1) ∈ P
n} ∪ {(p1, . . . , pn, 0) ∈ P

n} ,

corresponding to ordinary points and ideal points (or points at infinity). Fi-
nally, geometrical entities are defined similarly in P

3.

10.2.3 Duality

Remember that a line in P2 is defined by two points p1 and p2 according to

l = {x = (x1, x2, x3) ∈ P
2 | x = t1p1 + t2p2, (t1, t2) ∈ R

2} .

Observe that since (x1, x2, x3) and λ(x1, x2, x3) represent the same point in
P2, the parameters (t1, t2) and λ(t1, t2) give the same point. This gives the
equivalent definition:

l = {x = (x1, x2, x3) ∈ P
2 | x = t1p1 + t2p2, (t1, t2) ∈ P

1} .

By eliminating the parameters t1 and t2 the line could also be written in the
form

l = {x = (x1, x2, x3) ∈ P
2 | n1x1 + n2x2 + n3x3 = 0} , (10.1)

where the normal vector, n = (n1, n2, n3), could be calculated as n = p1×p2.
Observe that if (x1, x2, x3) fulfils Eq. (10.1) then λ(x1, x2, x3) also fulfils Eq.
(10.1) and that if the line, l, is defined by (n1, n2, n3), then the same line
is defined by λ(n1, n2, n3), which means that n could be considered as an
element in P2.

The line equation in EQ. (10.1) can be interpreted in two different ways;
see Fig. 10.3:

• Given n = (n1, n2, n3), the points x = (x1, x2, x3) that fulfil Eq. (10.1)
constitute the line defined by n.

10 Three- imensional Geometric Computer VisionD
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• Given x = (x1, x2, x3), the lines n = (n1, n2, n3) that fulfil Eq. (10.1)
constitute the lines coincident at x.

The set of lines incident with a given point x = (x1, x2, x3) is called a pencil
of lines. In this way there is a one-to-one correspondence between points and
lines in P

2 given by

x = (a, b, c) ↔ n = (a, b, c) ,

as illustrated in Fig. 10.3.

e1

e2 e2

e1

Fig. 10.3. Duality of points and lines in P
2

Similarly, there exists a duality between points and planes in P3. A plane
π in P

3 consists of the points x = (x1, x2, x3, x4) that fulfil the equation

π = {x = (x1, x2, x3, x4) ∈ P
3 | n1x1 + n2x2 + n3x3 + n4x4 = 0} , (10.2)

where n = (n1, n2, n3, n4) defines the plane. From Eq. (10.2) a similar ar-
gument leads to a duality between planes and points in P3. The following
property is fundamental in projective geometry:
Given a statement valid in a projective space, then the dual to that statement
is also valid, where the dual is obtained by interchanging entities with their
duals, intersection with join, etc.
For instance, a line in P

3 could be defined as the join of two points. Thus the
dual to a line is the intersection of two planes, which again is a line, i.e., the
dual to a line in P3 is a line, i.e., lines are self-dual. A line in P3 defined as
the join of two points, p1 and p2, as in

l = {x = (x1, x2, x3, x4) ∈ P
3 | x = t1p1 + t2p2, (t1, t2) ∈ P

1} ,

and is said to be given in parametric form and (t1, t2) can be regarded as
homogeneous coordinates on the line. A line in P3 defined as the intersection
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of two planes, π and µ, consists of the common points to the pencil of planes
in

l : {sπ + tµ | (s, t) ∈ P
1}

is said to be given in intersection form. A conic, c, in P
2 is defined as

c = {x = (x1, x2, x3) ∈ P
2 | xTCx = 0} , (10.3)

where C denotes a 3 × 3-matrix. If C is nonsingular the conic is said to be
proper, otherwise it is said to be degenerate. The dual to a general curve
in P2 (P3) is defined as the set of tangent lines (tangent planes) to the curve.
It is easy to show that the dual, c∗, to a conic c : xTCx is the set of lines

{l = (l1, l2, l3) ∈ P
2 | lTC′l = 0} ,

where C′ = C−1.

10.2.4 Projective Transformations

A projective transformation from p ∈ Pn to p′ ∈ Pm is defined as a linear
transformation in homogeneous coordinates, i.e.,

x′ ∼ Hx , (10.4)

where x and x′ denote homogeneous coordinates for p and p′, respectively, and
H denotes a (m+1)×(n+1)-matrix of full rank. All projective transformations
form a group, denoted GP . For example a projective transformation from
x ∈ P2 to y ∈ P2 is given by ⎡⎣y1

y2

y3

⎤⎦ ∼ H

⎡⎣x1

x2

x3

⎤⎦ ,

where H denotes a nonsingular 3×3-matrix. Such a projective transformation
from P2 to P2 is usually called a homography.

The subspaces

An
i = { (x1, x2, . . . , xn+1) ∈ P

n | xi �= 0 }

of Pn, are called affine pieces of Pn. Using this construction an affine space
is embedded in the projective space. The plane Hi : xi = 0 is called the plane
at infinity, corresponding to the affine piece An

i . Usually, i = n + 1 is used
and called the standard affine piece and in this case the plane at infinity
is denoted H∞. Identify points in An with points, x, in An

i ⊂ Pn, by

P
n & (x1, x2, . . . , xn, xn+1) ∼ (y1, y2, . . . , yn, 1) ≡ (y1, y2, . . . , yn) ∈ A

n .

The subgroup, H, of projective transformations, GP , that preserves the plane
at infinity consists exactly of the projective transformations of the form Eq.
(10.4), with

10 Three- imensional Geometric Computer VisionD
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H =
[
An×n bn×1

01×n 1

]
,

where the indices denote the sizes of the matrices. Identify the affine trans-
formations in A with the subgroup H:

A & x �→ Ax + b ∈ A ,

which gives the affine structure in An
i ⊂ Pn. When a plane at infinity has

been chosen, two lines are said to be parallel if they intersect at a point in
the plane at infinity.

The (singular, complex) conic, Ω, in Pn defined by

x2
1 + x2

1 + . . . + x2
n = 0 and xn+1 = 0

is called the absolute conic. Observe that the absolute conic is located in
the plane at infinity, it contains only complex points, and it is singular. The
dual to the absolute conic, denoted Ω′, is given by the set of planes

Ω′ = {Π = (Π1, Π2, . . . Πn+1) | Π2
1 + . . . + Π2

n = 0} .

In matrix form Ω′ can be written as ΠTC′Π = 0 with

C′ =
[
In×n 0n×1

01×n 0

]
.

The subgroup, K, of projective transformations, GP , that preserves the abso-
lute conic consists exactly of the projective transformations of the form Eq.
(10.4), with

H =
[
cRn×n tn×1

01×n 1

]
,

where 0 �= c ∈ R and R denotes an orthogonal matrix, i.e., RRT = RTR = I.
Observe that the corresponding transformation in the affine space A = An+1

n

can be written as
A & x �→ cRx + t ∈ A ,

which is a similarity transformation. This imposes a Euclidean structure (to
be precise a similarity structure) in Pn given by the absolute conic.

10.3 Camera Modelling

This chapter deals with the task of building a mathematical model of a camera.
It starts with a brief review of optics and continues with a mathematical
model of the standard pinhole camera. Intrinsic and extrinsic parameters are
defined and the six-point algorithm for camera calibration is given. The affine
camera and the scaled orthographic camera are also defined. For more detailed
treatments see [8, 6], and for a different approach see [10].
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10.3.1 Review of Optics

A thin lens optical system consists of a single spherical lens. In a first-
order approximation the lens focuses parallel light rays in the direction of the
optical axis onto a single point, Pf , called the focal point. The distance
from the lens to the focal point is called the focal length of the lens. The
focal length can be calculated from the so-called lens-makers’ formula:

1
f

=
n2 − n1

n1

( 1
R1
− 1

R2

)
, (10.5)

where n1 and n2 denote the refraction indices of the surrounding media (n2 =
1 in the case of air) and the lens material, respectively, and R1 and R2 denote
the radii of the two lens surfaces.

Given an object at finite distance from the lens, the image can be con-
structed using the following simple principles:

• A light ray that passes the centre of the lens will pass the lens system
unaltered.

• A light ray that enters the lens system parallel to the optical axis will pass
through the focal point.

These light rays meet in the focal plane, Πf , of the optical system, where a
sharp image of the object can be found; see Fig. 10.4. The distance, di, from

Pf

Πf

xd

di

xo

do

Cf

Pf

Fig. 10.4. Construction of the image in a single lens system

the lens to the focal plane can be calculated using the lens formula

1
f

=
1
di

+
1
do

, (10.6)

where do denotes the distance from the object to the lens. di is sometimes
called the camera constant, and in computer vision often the focal length,
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although these coincide only when the object is infinitely far away. The centre
of projection, Cf , is in computer vision often referred to as the camera centre
or as the focal point.

Another useful formula for calculating the distance to the object and the
image is the so-called Newton’s formula

xoxd = f2 , (10.7)

where xo and xd denote the distances from the focal point to the object and
focal plane, respectively; see Fig. 10.4.

10.3.2 The Pinhole Camera

The simplest optical system used for modelling cameras is the so-called pin-
hole camera. The camera is modelled as a box with a small hole in one of the
sides and a photographic plate at the opposite side; see Fig. 10.5. Introduce
a coordinate system as in Fig. 10.5. Observe that the origin of the coordinate
system is located at the centre of projection, the so-called focal point, and
that the z-axis coincides with the optical axis. The distance from the focal
point to the image, f , is called the focal length. Similar triangles give

(x, y)

ey

ez

Z

f

X

(X, Y, Z)

x

ex

C

(x0, y0)

Fig. 10.5. The pinhole camera with a coordinate system

x

f
=

X

Z
and

y

f
=

Y

Z
. (10.8)

This equation can be written in matrix form, using homogeneous coordinates,
as

λ

⎡⎣xy
1

⎤⎦ =

⎡⎣f 0 0 0
0 f 0 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ , (10.9)
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where the depth, λ, is equal to Z. Introducing the notation

K =

⎡⎣f 0 0
0 f 0
0 0 1

⎤⎦ , x =

⎡⎣xy
1

⎤⎦ , X =

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ , (10.10)

in (10.9) gives
λx = K[ I3×3 | 03×1 ]X = PX , (10.11)

where P = K [ I3×3 | 03×1 ]. A 3 × 4-matrix P relating extended image coor-
dinates x = (x, y, 1) to extended object coordinates X = (X,Y, Z, 1) via the
equation

λx = PX (10.12)

is called a camera matrix, and Eq. (10.12) is called the camera equation.
Observe that the focal point is given as the right nullspace to the camera
matrix, since PC = 0, where C denotes homogeneous coordinates for the
focal point, C.

10.3.3 The Intrinsic Parameters

In a refined camera model, the matrix K in Eq. (10.10) is replaced by

K =

⎡⎣γf sf x0

0 f y0

0 0 1

⎤⎦ , (10.13)

where the parameters have the following interpretations:

• f : focal length – also called camera constant;
• γ : aspect ratio – modelling nonquadratic light-sensitive elements;
• s : skew – modelling nonrectangular light-sensitive elements;
• (x0, y0) : principal point – orthogonal projection of the focal point onto

the image plane; see Fig. 10.5.

These parameters are called the intrinsic parameters, since they model
intrinsic properties of the camera. For most cameras s ≈ 0 and γ ≈ 1, and the
principal point is located close to the centre of the image. A camera is said to
be calibrated if K is known. Otherwise, it is said to be uncalibrated.

10.3.4 The Extrinsic Parameters

It is often advantageous to be able to express object coordinates in a different
coordinate system than the camera coordinate system. This is especially the
case when the relation between these coordinate systems is not known. For this
purpose it is necessary to model the relation between two different coordinate
systems in 3D. The natural way to do this is to model the relation as a
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Euclidean transformation. Denote the camera coordinate system with ec and
points expressed in this coordinate system with index c, e.g., (Xc, Yc, Zc), and
similarly denote the object coordinate system with eo and points expressed
in this coordinate system with index o. A Euclidean transformation from the
object coordinate system to the camera coordinate system can be written in
homogeneous coordinates as⎡⎢⎢⎣

Xc

Yc

Zc

1

⎤⎥⎥⎦ =
[
R 0
0 1

] [
I −t
0 1

]⎡⎢⎢⎣
Xo

Yo

Zo

1

⎤⎥⎥⎦ =⇒ Xc =
[
R −Rt
0 1

]
Xo , (10.14)

where R denotes an orthogonal matrix and t a vector, encoding the rotation
and translation in the rigid transformation. These parameters, R and t, are
called the extrinsic parameters. Observe that the focal point (0, 0, 0) in the
c-system corresponds to the point t in the o-system. Inserting Eq. (10.14) into
Eq. (10.11), and taking into account that X in Eq. (10.11) is the same as Xc

in Eq. (10.14), gives

λx = KR[ I | − t ]Xo = PXo , (10.15)

with P = KR[ I | − t ]. Usually, it is assumed that object coordinates are
expressed in the object coordinate system and the index o in Xo is omitted.
Observe that the focal point, Cf = t = (tx, ty, tz), is given from the right
nullspace to P according to

P

⎡⎢⎢⎣
tx
ty
tz
1

⎤⎥⎥⎦ = KR[ I | − t ]

⎡⎢⎢⎣
tx
ty
tz
1

⎤⎥⎥⎦ = 0 .

Given a camera, described by the camera matrix P , this camera could also
be described by the camera matrix µP , 0 �= µ ∈ R, since these give the same
image point for each object point. This means that the camera matrix is only
defined up to an unknown scale factor. Moreover, the camera matrix P can
be regarded as a projective transformation from P3 to P2; cf. Eq. (10.11) and
Eq. (10.4).

Observe also that replacing t by µt and (X,Y, Z) with (µX, µY, µZ), 0 �=
µ ∈ R, gives the same image coordinates since

KR[ I | − µt ]

⎡⎢⎢⎣
µX
µY
µZ
1

⎤⎥⎥⎦ = µKR[ I | − t ]

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ .

This ambiguity is referred to as the scale ambiguity.
It is now possible to calculate the number of parameters in the camera

matrix, P :
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• K: 5 parameters (f , γ, s, x0, y0)
• R: 3 parameters
• t: 3 parameters

Summing up gives a total of 11 parameters, which is the same as in a general
3×4-matrix defined up to scale. This means that for an uncalibrated camera,
the factorization P = KR[ I | − t ] has no meaning and instead P can be
considered as a general 3× 4-matrix.

Given a calibrated camera with camera matrix P = KR[ I | − t ] and the
corresponding camera equation

λx = KR[ I | − t ]X ,

it is often advantageous to make a change of coordinates from x to x̂ in the
image according to x = Kx̂, which gives

λKx̂ = KR[ I | − t ]X ⇒ λx̂ = R[ I | − t ]X = P̂X .

Now the camera matrix becomes P̂ = R[ I | − t]. A camera represented with
a camera matrix of this form is called a normalized camera.

10.3.5 Properties of the Pinhole Camera

This section will be concluded with some properties of the pinhole camera.

1. The set of 3D-points that projects to an image point, x, is given by

X = C + µP+x, 0 �= µ ∈ R ,

where C denotes the focal point in homogeneous coordinates and P+

denotes the pseudoinverse of P . This set of points is called the optical
ray corresponding to x.

2. The set of 3D-points that projects to a line, l, is the points lying on the
plane Π = PT l. (Proof: It is obvious that the set of points lie on the plane
defined by the focal point and the line l. A point x on l fulfils xT l = 0
and a point X on the plane Π fulfils ΠT X = 0. Finally, x ∼ PX implies
(PX)T l = XTPT l = 0 and identification with ΠTX = 0 gives Π = PT l.)

3. The projection of a quadric, XTCX = 0 (dually ΠTC′Π = 0, C′ = C−1),
is an image conic, xT cx = 0 (dually lT c′l = 0, c′ = c−1), with c′ = PC′PT .
(Proof: Use the previous property.)

4. The image of the absolute conic is given by the conic xTωx = 0 (dually
lTω′l = 0), where ω′ = KKT . (Proof: The result follows from the previous
property and

ω′ ∼ PΩ′PT ∼ KR
[
I −t

] [I 0
0 0

] [
I
−tT

]
RTKT = KRRTKT = KKT .)
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10.3.6 Specializations of the Perspective Camera

There exist several important special cases of the previously derived perspec-
tive camera. The most common are the orthographic, the scaled orthographic
and the affine camera.

The Orthographic Camera

Consider a parallel projection along the optical axis (considered as the z-axis).
The image coordinates can in this case be calculated simply as

[
x
y

]
=
[
X
Y

]
=⇒

⎡⎣xy
1

⎤⎦ =

⎡⎣1 0 0 0
0 1 0 0
0 0 0 1

⎤⎦
⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ . (10.16)

A Euclidean change of coordinate system for the object gives

⎡⎣xy
1

⎤⎦ =

⎡⎣1 0 0 0
0 1 0 0
0 0 0 1

⎤⎦[R t
0 1

]⎡⎢⎢⎣
Xo

Yo

Zo

1

⎤⎥⎥⎦ =

⎡⎣r1 t1
r2 t2
0 1

⎤⎦
⎡⎢⎢⎣
Xo

Yo

Zo

1

⎤⎥⎥⎦ , (10.17)

where r1 and r2 denote the first two rows in the orthogonal matrix R and
t = (t1, t2, t3). A camera matrix as in Eq. (10.17) is called an orthographic
camera.

The Scaled Orthographic Camera

Consider the camera model, where points first are projected using a parallel
projection onto the plane Πo : Z = Z0 followed by a perspective projection
onto the image plane. This camera model can obtained from Eq. (10.8) with
Z replaced by Z0, i.e.,⎧⎪⎪⎨⎪⎪⎩

x

f
=

X

Z0

y

f
=

Y

Z0

=⇒
[
x
y

]
=

f

Z0

[
X
Y

]
. (10.18)

After a Euclidean change of coordinate system for the object the camera
matrix becomes

P =

⎡⎣λr1 λt1
λr2 λt2
0 1

⎤⎦
⎡⎢⎢⎣
Xo

Yo

Zo

1

⎤⎥⎥⎦ =

⎡⎣λr1 t̂1
λr2 t̂2
0 1

⎤⎦
⎡⎢⎢⎣
Xo

Yo

Zo

1

⎤⎥⎥⎦ , (10.19)
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where λ = f/Z0, r1 and r2 denote the first two rows of the orthogonal ma-
trix R and t̂i = λti. A camera matrix as in Eq. (10.19) is called a scaled
orthographic camera.

The scaled orthographic camera can be seen as an approximation of the
calibrated pinhole camera in the case where the distance from the camera to
the object is much larger than the relative distance for the individual points
in the object. This can be seen as follows: Consider a normalized perspective
camera with the focal point at the origin and the optical axis coinciding with
the z-axis:

x =
X

Z
, y =

Y

Z
.

Assume further that all object points are located close to the plane Z = Z0

and write the object points as (X,Y, Z0 + ∆Z), giving

x =
X

Z0 + ∆Z
=

X

Z0

1
1 + ∆Z/Z0

=
X

Z0
(1 − ∆Z

Z0
+ · · · ) ≈ X

Z0
,

using the Taylor series expansion of the quotient, which is a good approxima-
tion if ∆Z/Z0 is small.

The Affine Camera

Start with the scaled orthographic camera and introduce intrinsic parameters
similar to the perspective camera case

P =
[
γ s
0 1

]⎡⎣λr1 t̂1
λr2 t̂2
0 1

⎤⎦ =

⎡⎣a1 b1
a2 b2
0 1

⎤⎦ , (10.20)

where γ denotes the aspect ratio, s the skew and a1 and a2 are arbitrary
vectors. A camera matrix as in Eq. (10.20) is called an affine camera.

In the same way as for the scaled orthographic it can be argued that the
affine camera is an approximation of the uncalibrated perspective camera,
valid when the distance to the object is much larger than the relative depths
between the object points.

Finally, observe that a camera matrix of the form

P =

⎡⎣a1 b1
a2 b2
0 1

⎤⎦
with a1 and a2 arbitrary vectors is an affine camera, with |a1| = |a2| and
a1 · a2 = 0 is a scaled orthographic camera, and with |a1| = |a2| = 1 and
a1 · a2 = 0 is an orthographic camera.
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10.3.7 Camera Calibration

Usually, the intrinsic parameters of the camera are not provided by the manu-
facturer, and for a zooming camera these will change during zooming. How-
ever, there is a very simple way to estimate the intrinsic parameters and
calibrate the camera. Prepare an object with at least six easily identifiable
points, e.g., the corners of a box, measure the coordinates of these points in
some arbitrary coordinate system and take an image of the object. After iden-
tifying the points in the image, the image consists of six points from a known
object. Write down the camera equation for these points

λjxj = PXj , j = 1, . . . 6 , (10.21)

where λj and P are unknown and xj and Xj are known.
Observe that the constraints in Eq. (10.21) are linear in the unknown

parameters. Every point gives 3 equations, implying in total 18 constraints
and there are 12 parameters in P and 6 different depths, λj , implying 18
unknown parameters. Write Eq. (10.21) for these six points as a linear system
of equations

Mu = 0 , (10.22)

where M is a 12× 12-matrix built up from image coordinates and u contains
the unknown intrinsic parameters. In the case of noisy data Eq. (10.22) may
be solved in the least squares sense using the so-called singular value decom-
position (SVD). This method is called DLT (Direct Linear Transformation).

Now, it remains to calculate the intrinsic parameters from P obtained from
the DLT algorithm. Let Q denote the first 3 × 3-block in P , i.e., Q = KR,
and observe that

QQT = KRRTKT = KKT , (10.23)

from which K can be solved by Cholesky factorization of (QQT )−1.
For numerical reasons it is often advantageous to rescale the coordinates

by making suitable changes of coordinates in the images as well as in the
object.

This linear method works well in situations with a small noise level in the
images. However for noisy date it doesn’t take the noise into account in an
optimal way. An optimal estimate of the camera parameters can be obtained
by solving the optimization problem

min
P

n∑
j=1

|xj(P )− xm
j |2 + |yj(P )− ym

j |2 ,

where (xm
i , ym

i ) denotes measured image coordinates and (xi(P ), yi(P )) image
coordinates calculated from P . This optimization problem can be solved by
using the Gauss-Newton method for nonlinear least squares problems, and the
result of the DLT can be used as a starting point.



321

Recently, several more practical methods for camera calibration have been
proposed. For instance, it is possible to use several images of a planar calibra-
tion grid, by estimating the homographies between the calibration plane and
the images; see [28].

10.4 Multiple-View Geometry

Multiple-view geometry is the subject where relations between coordinates of
feature points in different views are studied. It is an important tool for under-
standing the image formation process for several cameras and for designing
reconstruction algorithms. For a more detailed treatment see [12] or [8], and
for a different approach see [10].

10.4.1 The Structure and Motion Problem

The investigation of multiple-view geometry is motivated by the structure and
motion problem:

Problem 1 (structure and motion). Given a sequence of images with co-
rresponding feature points xij , taken by a perspective camera, i.e.,

λijxij = PiXj , i = 1, . . . ,m, j = 1, . . . , n ,

determine the camera matrices, Pi, i.e., the motion, and the 3D-points, Xj ,
i.e., the structure, under different assumptions on the intrinsic and/or ex-
trinsic parameters. This is called the structure and motion problem.

It turns out that there is a fundamental limitation on the solutions to the
structure and motion problem, when the intrinsic parameters are unknown
and possibly varying, a so-called uncalibrated image sequence. Assume
that Xj is a reconstruction of n points in m images, with camera matrices Pi

according to
xij ∼ Pi Xj , i = 1, . . . ,m, j = 1, . . . , n .

Then H Xj is also a reconstruction, with camera matrices Pi H
−1, for every

nonsingular 4× 4-matrix H , since

xij ∼ Pi Xj ∼ PiH
−1HXj ∼ (PiH

−1) (HXj) .

The transformation
X �→ HX

corresponds to all projective transformations of the object. Thus, given an
uncalibrated image sequence with corresponding points, it is only possible to
reconstruct the object up to an unknown projective transformation.
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10.4.2 The Two-View Case

The investigation of multiple-view geometry will start with a detail treatment
of the two-view case.

The Epipoles

Consider two images of the same point X as in Fig. 10.6. The epipole, ei,j ,

��������������������������������
C1

x1

e2,1

X

e1,2

x2

C2Image 2Image 1

Fig. 10.6. Two images of the same point and the epipoles

is defined as the projection of the focal point of camera i in image j. Let

P1 = [ A1 | b1 ] and P2 = [ A2 | b2 ] .

The focal point of camera 1, C1, is given by

P1

[
C1

1

]
= [ A1 | b1 ]

[
C1

1

]
= A1C1 + b1 = 0 ,

i.e., C1 = −A−1
1 b1 and then the epipole is obtained from

e1,2 = P2

[
C1

1

]
= [ A2 | b2 ]

[
C1

1

]
= A2C1 + b2 = −A2A

−1
1 b1 + b2 .

It is convenient to use the notation A12 = A2A
−1
1 . Assume that the two

camera matrices, representing the two-view geometry, have been calculated:

P1 = [ A1 | b1 ] and P2 = [ A2 | b2 ] .
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According to the projective ambiguity these camera matrices can be multiplied
with

H =
[
A−1

1 −A−1
1 b1

0 1

]
from the right, obtaining

P̄1 = P1H = [ I | 0 ], P̄2 = P2H = [ A2A
−1
1 | b2 −A2A

−1
1 b1 ] .

Thus, it may always be assumed that the first camera matrix is [ I | 0 ].
Observe that P̄2 = [ A12 | e ], where e denotes the epipole in the second
image. Observe also that it is possible to multiply again with

H̄ =
[
I 0
vT 1

]
without changing P̄1, but

P̄2H̄ = [ A12 + evT | e ] ,

i.e., the last column of the second camera matrix still represents the epipole.
A pair of camera matrices is said to be in canonical form if P1 = [ I | 0 ]
and P2 = [ A12 + evT | e ], where v denote a three-parameter ambiguity.

The Fundamental Matrix

The fundamental matrix was originally discovered in the calibrated case in
[15] and in the uncalibrated case in [4]. Consider a fixed point, X, in 2 views:

λ1x1 = P1X = [ A1 | b1 ]X, λ2x2 = P2X = [ A2 | b2 ]X .

Use the first camera equation to solve for X , Y , Z

λ1x1 = P1X = [ A1 | b1 ]X = A1

⎡⎣XY
Z

⎤⎦+ b1 ⇒

⎡⎣XY
Z

⎤⎦ = A−1
1 (λ1x1 − b1)

and insert into the second one

λ2x2 = A2A
−1
1 (λ1x1 − b1) + b2 = λ1A12x1 + (−A12b1 − b2) ,

i.e., x2, A12x1 and t = −A12b1 + b2 = e1,2 are linearly dependant. Observe
that t = e1,2, i.e., the epipole in the second image. This condition can be
written as xT

1 A
T
12Tex2 = xT

1 Fx2 = 0, with F = AT
12Te, where Tx denotes the

skew-symmetric matrix corresponding to the vector x, i.e., Tx(y) = x×y. The
bilinear constraint

xT
1 Fx2 = 0

is called the epipolar constraint and
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F = AT
12Te

is called the fundamental matrix.
Observe that the epipole in the second image is obtained as the right

nullspace to the fundamental matrix and the epipole in the left image is ob-
tained as the left nullspace to the fundamental matrix and that the funda-
mental matrix is singular, i.e., detF = 0.

Given a point, x1, in the first image, the coordinates of the corresponding
point in the second image fulfil

0 = xT
1 Fx2 = (xT

1 F )x2 = l(x1)Tx2 = 0 ,

where l(x1) denotes the line represented by xT
1 F . The line l = FT x1 is called

the epipolar line corresponding to x1.
The geometrical interpretation of the epipolar line is the following geome-

tric construction. The points x1, C1 and C2 define a plane, Π , intersecting
the second image plane in the line l, containing the corresponding point.

From the previous considerations consider the following pair

F = AT
12Te ⇔ P1 = [ I | 0 ], P2 = [ A12 | e ] . (10.24)

Observe that
F = AT

12Te = (A12 + evT )TTe

for every vector v, since

(A12 + ev)TTe(x) = AT
12(e× x) + veT (e× x) = AT

12Tex ,

since eT (e×x) = e · (e×x) = 0. This ambiguity corresponds to the transfor-
mation

H̄P̄2 = [ A12 + evT | e ] .

Thus there are three free parameters in the choice of the second camera matrix
when the first is fixed to P1 = [ I | 0 ].

The Infinity Homography

Consider a plane in the three-dimensional object space, Π , defined by a vector
V: VT X = 0 and the following construction. Given a point in the first image,
construct the intersection with the optical ray corresponding to this point
and the plane Π and project to the second image. This procedure gives a
homography between points in the first and second image, which depends on
the chosen plane Π .

Assume that
P1 = [ I | 0 ], P2 = [ A12 | e ] .

Write V = [ v1 v2 v3 1 ]T = [v 1 ]T (assuming v4 �= 0, i.e., the plane is not
incident with the origin, i.e., the focal point of the first camera) and X =
[X Y ZW ]T = [wW ]T , which gives
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VT X = vT w + W , (10.25)

which implies that vT w = −W for points in the plane Π . The first camera
equation gives

x1 ∼ [ I | 0 ]X = w ,

and using Eq. (10.25) gives vT x1 = −W . Finally, the second camera matrix
gives

x2 ∼ [ A12 | e ]
[

x1

−vT x1

]
= A12x1 − evTx1 = (A12 − evT )x1 ,

which shows that the homography corresponding to the plane Π : VT X = 0
is given by the matrix

HΠ = A12 − evT ,

where e denotes the epipole and V = [v 1 ]T .
Observe that when V = (0, 0, 0, 1), i.e., v = (0, 0, 0) the plane Π is the

plane at infinity. The homography

H∞ = HΠ∞ = A12

is called the homography corresponding to the plane at infinity or the
infinity homography.

Note that the epipolar line through the point x2 in the second image can
be written as x2 × e, implying

(x2 × e)THx1 = xT
1 H

TTex2 = 0 ,

i.e., the epipolar constraint, implying

F = HTTe .

This shows that there is a one-to-one correspondence between planes in 3D,
homographies between two views and factorization of the fundamental matrix
as F = HTTe.

Finally, note that the matrix HT
ΠTeHΠ = FHΠ is skew-symmetric (since

xTHT
ΠTeHΠx = yTTey = y · (e× y) = 0 for all x, y = HΠx), implying that

FHΠ + HT
ΠFT = 0 . (10.26)

10.4.3 Multiple View Constraints and Tensors

This section deals with the general case of multiple-view geometry, i.e., any
number of cameras. A short introduction to tensor calculus is also included.
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Tensor Calculus

Tensor calculus is a natural tool to use when the objects under study are
expressed in a specific coordinate system but have physical properties that
are independent of the chosen coordinate system. Another advantage is that
it gives a simple and compact notation and the rules of tensor algebra make it
easy to remember even quite complex formulas. For a more detailed treatment
see [22] and for an engineering approach see [16].

An affine tensor is an object in a linear space, V , that consists of a
collection of numbers that are related to a specific choice of coordinate system
in V , indexed by one or several indices;

Ai1,i2,··· ,in

j1,j2,··· ,jm
.

Furthermore, this collection of numbers transforms in a predefined way when
a change of coordinate system in V is made. The number of indices (n + m)
is called the degree of the tensor. The indices may take any value from 1 to
the dimension of V . The upper indices are called contravariant indices and
the lower indices are called covariant indices.

There are some simple conventions that have to be remembered:

• The index rule: When an index appears in a formula, the formula is valid
for every value of the index, e.g., ai = 0⇒ a1 = 0, a2 = 0, . . ..

• The summation convention: When an index appears twice in a formula, it
is implicitly assumed that a summation takes place over that index, e.g.,
aib

i =
∑

i=1,dimV aib
i.

• The compatibility rule: A repeated index must appear once as a subindex
and once as a superindex.

• The maximum rule: An index can not be used more than twice in a term.

When the coordinate system in V is changed from e to ê and the points with
coordinates x are changed to x̂, according to

êj = Si
jei ⇔ xi = Si

jx̂j ,

then the affine tensor components change according to

ûk = Sj
kuj and vj = Sj

kv̂
k ,

for lower and upper indices, respectively.
From this definition the terminology for indices can be motivated, since

the covariant indices covary with the basis vectors and the contraviariant
indices contravary with the basis vectors. It turns out that a vector (e.g., the
coordinates of a point) is a contravariant tensor of degree one and that a one-
form (e.g., the coordinate of a vector defining a line in R2 or a hyperplane in
R

n) is a covariant tensor of degree one.
Finally, the second-order tensor
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δij =

{
1, i = j;
0, i �= j

is called the Kronecker delta. When dimV = 3, the third-order tensor

εijk =

⎧⎪⎨⎪⎩
1, (i, j, k) an even permutation;
−1, (i, j, k) an odd permutation;
0, (i, j, k) has a repeated value

is called the Levi-Cevita epsilon.

Matrix Formulation of Multiple-View Constraints

Consider one object point, X, and its m images, xi, according to the camera
equations λixi = PiX, i = 1 . . .m. These equations can be written as

⎡⎢⎢⎢⎢⎢⎣
P1 x1 0 0 . . . 0
P2 0 x2 0 . . . 0
P3 0 0 x3 . . . 0
...

...
...

...
. . .

...
Pm 0 0 0 . . . xm

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X
−λ1

−λ2

−λ3

...
−λm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦ . (10.27)

From Eq. (10.27) it follows that the matrix, M , is rank deficient, i.e.,

rankM < m + 4 ,

which is referred to as the rank condition. The rank condition implies that
all (m + 4) × (m + 4) minors of M are equal to 0. These can be written
using Laplace expansions as sums of products of determinants of four rows
taken from the first four columns of M and of image coordinates. There are
3 different categories of such minors depending on the number of rows taken
from each image, since one row has to be taken from each image and then the
remaining 4 rows can be distributed freely. The three different types are:

1. Take the 2 remaining rows from one camera matrix and the 2 remaining
rows from another camera matrix, giving 2-view constraints.

2. Take the 2 remaining rows from one camera matrix, 1 row from another
and 1 row from a third camera matrix, giving 3-view constraints.

3. Take 1 row from each of four different camera matrices, giving 4-view
constraints.

Observe that the minors of M can be factorized as products of the 2-, 3- or
4-view constraints and image coordinates in the other images. It is convenient
to use (x1, x2, x3) instead of (x, y, z) for homogeneous image coordinates and
also to denote row number i of a camera matrix P by P i.
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The Monofocal Tensor

Before proceeding to the multiple-view tensors observe that the epipole in
image 2 from camera 1, e = (e1, e2, e3) in homogeneous coordinates, can be
written as

ej = det

⎡⎢⎢⎣
P 1

1

P 2
1

P 3
1

P j
2

⎤⎥⎥⎦ . (10.28)

The numbers ej constitute a first-order contravariant tensor, called the mono-
focal tensor, where the transformations of the tensor components are related
to projective transformations of the image coordinates.

The Bifocal Tensor

Consider minors obtained by taking 3 rows from one image, and 3 rows from
another image:

det
[
P1 x1 0
P2 0 x2

]
= det

⎡⎢⎢⎢⎢⎢⎢⎣
P 1

1 x1
1 0

P 2
1 x2

1 0
P 3

1 x3
1 0

P 1
2 0 x1

2

P 2
2 0 x2

2

P 3
2 0 x3

2

⎤⎥⎥⎥⎥⎥⎥⎦ = 0 ,

which gives a bilinear constraint, called the bifocal constraint:

3∑
i,j=1

Fijxi
1x

j
2 = Fijxi

1x
j
2 = 0 , (10.29)

where

Fij =
3∑

i′,i′′,j′,j′′=1

εii′i′′εjj′j′′ det

⎡⎢⎢⎢⎣
P i′

1

P i′′
1

P j′
2

P j′′
2

⎤⎥⎥⎥⎦ .

The numbers Fij constitute a second-order covariant tensor, called the bifocal
tensor, which is the same as the fundamental matrix encountered earlier.
Here the transformations of the tensor components are related to projective
transformations of the image coordinates.

Observe that the indices tell us which row to exclude from the correspon-
ding camera matrix when forming the determinant. The geometric interpre-
tation of the bifocal constraint is that corresponding view-lines in two images
intersect in 3D; see Fig. 10.6.

The bifocal tensor can also be used to transfer a point to the corresponding
epipolar line, according to l2j = Fijxi

1. This transfer can be extended to a
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homography between epipolar lines in the first view and epipolar lines in the
second view according to

l1i = Fijε
jj′
j′′ l

2
j′e

j′′ ,

since εjj′
j′′ l

2
j′e

j′′ gives the vector product between the epipole e and the line l2,
which gives a point on the epipolar line.

The Trifocal Tensor

The trifocal tensor was originally discovered in the calibrated case in [24] and
in the uncalibrated case in [20]. Considering minors obtained by taking 3 rows
from one image, 2 rows from another image, and 2 rows from a third image,
e.g.,

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 1
1 x1

1 0 0
P 2

1 x2
1 0 0

P 3
1 x3

1 0 0
P 1

2 0 x1
2 0

P 2
2 0 x2

2 0
P 1

3 0 0 x1
3

P 3
3 0 0 x3

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 ,

gives a trilinear constraint, called the trifocal constraint:

3∑
i,j,j′,k,k′=1

T jk
i xi

1εjj′j′′x
j′
2 εkk′k′′xk′

3 = 0 , (10.30)

where

T jk
i =

3∑
i′,i′′=1

εii′i′′ det

⎡⎢⎢⎣
P i′

1

P i′′
1

P j
2

P k
3

⎤⎥⎥⎦ . (10.31)

Note that there are in total 9 constraints indexed by j′′ and k′′ in Eq. (10.30).
The numbers T jk

i constitute a third-order mixed tensor, called the trifocal
tensor, that is covariant in i and contravariant in j and k.

Again the lower index tells us which row to exclude from the first camera
matrix and the upper indices tell us which rows to include from the second
and third camera matrices, respectively, and these indices become covariant
and contravariant, respectively. Observe that the orders of the images are
important, since the first image is treated differently. If the images are per-
muted another set of coefficients is obtained. The geometric interpretation of
the trifocal constraint is that the view-line in the first image and the planes
corresponding to arbitrary lines coincident with the corresponding points in
the second and third images (together with the focal points), respectively,
intersect in 3D; see Fig. 10.7.
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l2
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C2

X

Fig. 10.7. Geometrical interpretation of the trifocal constraint.

It is easy to prove that given three corresponding lines, l1, l2 and l3 in
three images, represented by the vectors (l11, l12, l13), etc., then

l3k = T ij
k l1i l

2
j . (10.32)

From this result it is possible to transfer the images of a line seen in two
images to a third image, a so-called tensorial transfer. The geometrical
interpretation is that two corresponding lines define two planes in 3D (one
plane from each line together with the corresponding focal point) that intersect
in a line that can be projected onto the third image. There are also other
transfer equations, such as

xj
2 = T jk

i xi
1l

3
k and xk

3 = T jk
i xj

2l
3
k ,

with obvious geometrical interpretations.

The Quadrifocal Tensor

The quadrifocal tensor was independently discovered in several papers, e.g.,
[27, 10]. Considering minors obtained by taking 2 rows from each one of 4
different images gives a quadrilinear constraint, called the quadrifocal con-
straint:
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3∑
i,i′,j,j′,k,k′,l,l′=1

Qijklεii′i′′x1
i′εjj′j′′x2

j′εkk′k′′x3
k′εll′l′′x4

l′ = 0 , (10.33)

where

Qijkl = det

⎡⎢⎢⎣
P i

1

P j
2

P k
3

P l
4

⎤⎥⎥⎦ .

Note that there are in total 81 constraints indexed by i′′, j′′, k′′ and l′′ in Eq.
(10.33). The numbers Qijkl constitute a fourth-order contravariant tensor,
called the quadrifocal tensor.

Note that there are in total 81 constraints indexed by i′′, j′′, k′′ and l′′.
Again, the upper indices tell us which rows to include from each camera matrix
and they become contravariant indices. The geometric interpretation of the
quadrifocal constraint is that the four planes corresponding to arbitrary lines
coincident with the corresponding points in the images intersect in 3D.

Finally, observe that the multiview tensors have special properties for ca-
meras other than the uncalibrated perspective one. However, it will lead to
far too investigate all these cases.

10.5 Structure and Motion from Image Sequences

The structure and motion problem will now be studied in detail. Firstly, the
problem when the structure is known will be solved, so-called resection, then
when the motion is known, so-called intersection. Then a linear algorithm
to solve for both structure and motion using the multifocal tensors will be
presented, and finally a factorization algorithm will be presented. Again the
reader is referred to [8] for a more detailed treatment.

10.5.1 Resection

Problem 2 (Resection). Assume that the structure is given, i.e., the object
points, Xj , j = 1, . . . , n are given in some coordinate system. Calculate the
camera matrices Pi, i = 1, . . . ,m from the images, i.e., from xi,j .

The most simple solution to this problem is the classical DLT algorithm based
on the fact that the camera equations

λjxj = PXj , j = 1, . . . , n

are linear in the unknown parameters, λj and P .
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10.5.2 Intersection

Problem 3 (Intersection). Assume that the motion is given, i.e., the came-
ra matrices, Pi, i = 1, . . . ,m are given in some coordinate system. Calculate
the structure Xj , j = 1, . . . , n from the images, i.e., from xi,j .

Consider the image of X in cameras 1 and 2{
λ1x1 = P1X,

λ2x2 = P2X,
(10.34)

which can be written in matrix form as (cf. Eq. (10.27))

[
P1 x1 0
P2 0 x2

]⎡⎣ X
−λ1

−λ2

⎤⎦ = 0 , (10.35)

which again is linear in the unknowns, λi and X. This linear method can of
course be extended to an arbitrary number of images.

10.5.3 Linear Estimation of Tensors

The general scheme for solving the structure and motion problem, Problem 1,
is as follows

1. Estimate the components of a multiview tensor linearly from image co-
rrespondences.

2. Extract the camera matrices from the tensor components.
3. Reconstruct the object using intersection, i.e., Eq. (10.35).

The Eight-Point Algorithm

Each point correspondence gives one linear constraint on the components of
the bifocal tensor according to the bifocal constraint:

Fijxi
1x

j
2 = 0 . (10.36)

Thus given at least eight corresponding points the tensor components can
be extracted linearly (e.g., by SVD). After the bifocal tensor (fundamental
matrix) has been calculated it has to be factorized as F = A12T

T
e , which can

be done by first solving for e using Fe = 0 (i.e., finding the right nullspace to
F ) and then for A12, by solving a linear system of equations. One solution is

A12 =

⎡⎣ 0 0 0
F13 F23 F33

−F12 −F22 −F32

⎤⎦ ,
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which can be seen from the definition of the tensor components. In the case
of noisy data it might happen that detF �= 0 and the right nullspace does
not exist. One solution is to solve Fe = 0 in the least-squares sense using
SVD. Another possibility is to project F to the closest rank-2 matrix, again
using SVD. Then the camera matrices can be calculated from Eq. (10.35) and
finally using intersection Eq. (10.34) the structure can be obtained. Similar to
the case of camera calibration, it is numerically advantageous to rescale the
image coordinates to the interval [−1, 1].

The Seven-Point Algorithm

A similar algorithm can be constructed for the case of corresponding points in
three images. The trifocal constraint in Eq. (10.30) contains 4 linearly indepen-
dent constraints in the tensor components T jk

i . Thus, at least 7 corresponding
points in three views are needed in order to estimate the 27 homogeneous com-
ponents of the trifocal tensor. The main difference to the eight-point algorithm
is that it is not obvious how to extract the camera matrices from the trifocal
tensor components. Start with the transfer equation

xj
2 = T jk

i xi
1l

3
k ,

which can be seen as a homography between the first two images, by fixing a
line in the third image. The homography is that corresponding to the plane
Π defined by the focal point of the third camera and the fixed line in the
third camera. Thus, from Eq. (10.26), the fundamental matrix between image
1 and image 2 obeys

FT ·J
· + (T ·J

· )TFT = 0 ,

where T ·J
· denotes the matrix obtained by fixing the index J . Since this is a

linear constraint on the components of the fundamental matrix, it can easily
be extracted from the trifocal tensor. Then the camera matrices P1 and P2

could be calculated and, finally, the entries in the third camera matrix P3

can be recovered linearly from the definition of the tensor components in Eq.
(10.31); see [12].

An advantage of using three views is that lines could be used to constrain
the geometry, using Eq. (10.32), giving two linearly independent constraints
for each corresponding line.

The Six-Point Algorithm

Again a similar algorithm can be constructed for the case of corresponding
points in four images. The quadrifocal constraint in Eq. (10.33) contains 16
linearly independent constraints in the tensor components Qijkl. It seems as
though 5 corresponding points would be sufficient to calculate the 81 ho-
mogeneous components of the quadrifocal tensor. However, the quadrifocal
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constraint in Eq. (10.33) for 2 corresponding points contains 31 linearly inde-
pendent constraints in the tensor components Qijkl, because of the following
relation

3∑
i,i′,i′′,j,j′,j′′,k,k′,k′′,l,l′,l′′=1

Qijklεii′i′′x1
i′ x̂

1
i′′εjj′j′′x2

j′ x̂
2
j′′εkk′k′′x3

k′ x̂3
k′′εll′l′′x4

l′ x̂
4
l′′ = 0 ,

where x̂ denotes coordinates of another corresponding point quadruple. Thus,
at least 6 corresponding points in three views are needed in order to estimate
the 81 homogeneous components of the quadrifocal tensor. Since one indepen-
dent constraint is lost for each pair of corresponding points in four images,
there is 6 · 16− ( 6

2 ) = 81 linearly independent constraints.
Again, it is not obvious how to extract the camera matrices from the

trifocal tensor components. First, a trifocal tensor has to be extracted and
then a fundamental matrix and finally the camera matrices. It is outside the
scope of this work to give the details for this, instead the reader is referred to
[12]. Also in this case corresponding lines can be used by looking at transfer
equations for the quadrifocal tensor.

10.5.4 Other Cameras

The structure and motion problem in the case of calibrated and affine cameras
will be briefly treated.

Calibrated Cameras

Consider the case of two calibrated cameras, assumed to be normalized, i.e.,

λ1x1 = P1X = [ R1 | t1 ]X, λ2x2 = P2X = [ R2 | t2 ]X .

Suppose that Xj is one reconstruction of n points in m images, with camera
matrices Pi, then

xij = Pi Xj , i = 1, . . . ,m, j = 1, . . . , n ,

where Pi = [ Ri | ti ] represent normalized cameras. Then, H Xj is also a
feasible reconstruction, with camera matrices Pi H

−1, for every nonsingular
4× 4-matrix H , of the form [

λR3×3 b3×1

01×3 1

]
where R denotes an orthogonal matrix, as H leaves the normalized form of
the camera matrices unchanged. The transformation

X �→ HX
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gives all similarity transformations of the object. Thus it is only possible to re-
construct an object up to an unknown similarity transformation for calibrated
cameras.

From this ambiguity it may be assumed that the camera matrices have
the form

P1 = [ I | 0 ], P2X = [ R12 | e ]X ,

with R12 = R2R
−1
1 . The same algebra that led to the fundamental matrix can

be applied in this case, leading to exactly the same result, by replacing A12

with R12 = R2r
−1
1 , i.e., an orthogonal matrix. This gives the following form

of the epipolar constraint
xT

1 Ex2 = 0 ,

with E = RT
12Te. The matrix

E = RT
12Te

is called the essential matrix. It can be shown that a 3×3-matrix represents
an essential matrix if and only if it has one zero and two equal singular values.

One way to estimate the structure of the scene from two calibrated cameras
is to just ignore the special form of the essential matrix and use the eight-
point algorithm as above to estimate F . Then a simple SVD can be used to
project F to an essential matrix and from this extract R and t, building up
the camera matrix and via intersection obtain the structure.

Affine Cameras

Consider two affine cameras

P1 =
[
A1 b1
0 1

]
and P2 =

[
A2 b2
0 1

]
.

The fundamental matrix for two affine cameras has the form:

FA =

⎡⎣ 0 0 f1,3

0 0 f2,3

f3,1 f3,2 f3,3

⎤⎦ .

Notice that the epipoles have coordinates

e1,2 = (f2,3,−f1,3, 0), e2,1 = (f3,2,−f3,1, 0) ,

which are points at infinity.
Suppose Xj is one reconstruction of n points in m images with camera

matrices Pi:
xij = Pi Xj , i = 1, . . . ,m, j = 1, . . . , n ,

where Pi represent affine cameras. Then, H Xj is another feasible reconstruc-
tion with camera matrices Pi H

−1, for every nonsingular 4 × 4-matrix H , of
the form
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A3×3 b3×1

01×3 1

]
as H leaves the affine form of the camera matrices unchanged. The transfor-
mation

X �→ HX

gives all affine transformations of the object. Thus, it is only possible to recon-
struct an object up to an unknown affine transformation with affine cameras
from given point correspondences.

As F has only 5 homogeneous parameters it is sufficient with 4 correspon-
ding points to estimate F . Again it is fairly straightforward to extract the
camera matrices and obtain the structure from intersection.

10.5.5 Minimal Cases

There are two interesting minimal cases for uncalibrated cameras: 7 points
in 2 images and 6 points in 3 images. Consider the first case, which gives 7
linear constraints as in Eq. (10.36) on the 8 homogeneous components of the
fundamental matrix F . This gives a two-parameter homogeneous solution for
F :

F = sF1 + tF2 . (10.37)

Inserting Eq. (10.37) in the constraint detF = 0 gives a third-order homoge-
neous polynomial in s and t, resulting in 3 different solutions for the funda-
mental matrix.

The second case, 6 points in 3 images, also has 3 different solutions, but
this is not so easy to prove; see [19, 11].

In the case of calibrated cameras, the only interesting minimal case is 5
points in 2 images. This case is extremely difficult and it has been shown that
there are in general 10 different solutions; see [3, 13].

10.5.6 Factorization

A disadvantage with using multiview tensors to solve the structure and motion
problem is that when many images (»4) are available, the information in all
images can not be used with equal weight. An alternative is to use a so-called
factorization method; see [23] and [25].

Write the camera equations

λi,jxi,j = PiXj , i = 1, . . . ,m, j = 1, . . . , n

for a fixed image i in matrix form as

XiΛi = PiX , (10.38)

where
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Xi =
[
xT

i,1 xT
i,2 . . . xT

i,n

]
, X =

[
XT

1 XT
2 . . . XT

n

]
,

Λi = diag(λi,1, λi,2, . . . , λi,n) .

The camera matrix equations for all images can now be written as

X̂ = PX , (10.39)

where

X̂ =

⎡⎢⎢⎢⎣
X1Λ1

X2Λ2

...
XmΛm

⎤⎥⎥⎥⎦ , P =

⎡⎢⎢⎢⎣
P1

P2

...
P3

⎤⎥⎥⎥⎦ .

Observe that X̂ only contains image measurements apart from the unknown
depths. It follows from Eq. (10.39) that

rank X̂ ≤ 4

since X̂ is a product of a 3m×4- and a 4×n-matrix. Assume that the depths,
i.e., Λi are known, corresponding to affine cameras, the following simple fac-
torization algorithm may be used:

1. Build up the matrix X̂ from image measurements.
2. Factorize X̂ = UΣV T using SVD.
3. Extract P = the first four columns of UΣ and X = the first four rows of

V T .

In the perspective case this algorithm can be extended to the so-called itera-
tive factorization algorithm:

1. Set λi,j = 1.
2. Build up the matrix X̂ from image measurements and the current estimate

of λi,j .
3. Factorize X̂ = UΣV T using SVD.
4. Extract P = the first four columns of UΣ and X = the first four rows of

V T .
5. Use the current estimate of P and X to improve the estimate of the depths

from the camera equations XiΛi = PiX.
6. If the error (reprojection errors or σ5) is too large goto 2.

The fifth singular value, σ5 in the SVD above, is called the proximity mea-
sure and is a measure of the accuracy of the reconstruction. Fig. 10.8 shows
an example of a reconstruction using the iterative factorization method ap-
plied on four images of a toy block scene. Observe that the proximity measure
decreases quite fast and the algorithm converges in about 20 steps.
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Fig. 10.8. Above: Four images. Below: The proximity measure for each iteration,
the standard deviation of reprojection errors and the reconstruction

10.5.7 Long Image Sequences – Missing Data

In the case of long image sequences it often happens that features disappear
and new features appear during the sequence. This implies that all features are
not visible in all images, so-called missing data. There are several different
approaches to solving this problem:

• The factorization method can be modified to handle missing data by in-
vestigating suitable submatrices.

• Use iteratively resection and intersection as soon as an initial structure
and motion is obtained for the first number of frames.

10.5.8 Bundle Adjustment

The previously described methods for structure and motion recovery either
ignore the nonlinear constraints on the multiview tensors or use an iterative
approach. Thus, the solution obtained from these algorithms doesn’t give an
optimal result. Assuming that the measured coordinates of the image points
are corrupted by Gaussian noise of zero mean and equal standard deviation,
statistically optimal results (maximum likelihood) can be obtained by solving
the nonlinear optimization problem

min
Pi,Xj

m∑
i=1

n∑
j=1

(xm
i,j − x̂(Pi,Xj))2 + (ym

i,j − ŷ(Pi,Xj))2 , (10.40)

where xm
i,j and ym

i,j denote the measured x- and y-coordinates of point i
in image j, respectively, and x̂(Pi,Xj) and ŷ(Pi,Xj) denote the x- and y-
coordinates of the reprojected point from Pi and Xj .
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In detail, introduce parameters for all 3D-points, Xj , all unknown intrinsic
parameters in Ki, all rotation matrices Ri and all translation vectors ti, as in
Eq. (10.15). Given these parameters, calculate the coordinates of the resulting
image points x̂i,j ,

x̂i,j = f(Ki, Ri, ti,Xj) . (10.41)

The goal of the bundle adjustment algorithm is to minimize the deviation
of these reprojected coordinates to the actual measured coordinates in the
2-norm, i.e.,

min
Ki,Ri,ti,Xj

∑
i,j

||xm
i,j − x̂i,j ||2 . (10.42)

In general, the Gauss-Newton method is used to find the minimum; see [21, 1].
Other variants of this method can also be found, e.g., Levenberg-Marquardt;
see [9].

Let m denote the number of images and n the number of points. Denote
by m the bundle of all unknown parameters, m = {P1, . . . , Pm,X1, . . . ,Xn}.
Each such element belongs to a nonlinear manifold, M. Introduce a local
parameterization m(∆x), around m0 ∈M, according to

M×RN & (m0, ∆x) �→ m(m0, ∆x) ∈M , (10.43)

where N = 11m+3n. (11 parameters in each camera matrix and 3 parameters
for the coordinates of each reconstructed 3D-point.) For convenience the local
parameter ∆x is divided into two parts according to

∆x = [∆a1, . . . , ∆am, ∆b1, . . . , ∆bn ]T , (10.44)

i.e., ∆ai parameterize changes in camera matrix Pi and ∆bj parameterize
changes in reconstructed point Xj . Each camera matrix is written Pi =
Ki[Ri | −Riti ] and changes in Ki are parameterized as

Ki(m0, ∆x) =
[

(f+∆ai(1))(γ+∆ai(2)) (f+∆ai(1))(s+∆ai(3)) x0+∆ai(4)
0 f+∆ai(1) y0+∆ai(5)
0 0 1

]
,

(10.45)
where the ∆ai are restricted differently according to the different assumptions
on the intrinsic parameters. Changes in Ri are parameterized as

Ri(m0, ∆x) = exp
([

0 ∆ai(8) −∆ai(7)
−∆ai(8) 0 ∆ai(6)
∆ai(7) −∆ai(6) 0

])
Ri , (10.46)

changes in ti as

ti(m0, ∆x) =
[

tx+∆ai(9)
ty+∆ai(10)
tz+∆ai(11)

]
, (10.47)

and changes in each object point, Xj , as

Xj(m0, ∆x) =

[
Xj+∆bj(1)
Yj+∆bj(2)

Zj+∆bj(3)
1

]
. (10.48)
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Introduce a residual vector Y, formed by putting all deviations between
measured and reprojected image coordinates in a column vector. These resi-
duals depend on the measured image positions xm

i,j as well as on the estimated
parameters m. The residual vector Y(∆x) is a nonlinear function of the local
parameterization vector ∆x. The sum of squared residuals f = YT Y is mini-
mized with respect to the unknown parameters ∆x, using the Gauss-Newton
method as follows. A linearization of Y(∆x) gives

Y(∆x) ≈ Y(0) +
∂Y
∂∆x

(0)∆x . (10.49)

To find ∆x so that Y(∆x) = 0, solve

Y(0) +
∂Y
∂∆x

(0)∆x = 0 . (10.50)

The above linear equation is solved in the least-squares sense giving the update

∆x = −
(

∂Y
∂∆x

(0)
)†

Y(0) , (10.51)

where A† denotes the More-Penrose pseudoinverse of A. In practice it is useful
to use the singular value decomposition or the Levenberg-Marquardt method.
Let

A =
∂Y
∂∆x

(0) and b = Y(0) .

Instead of solving
∆x = −(ATA)−1AT b , (10.52)

which might be numerically sensitive if (ATA) has small singular values, the
singular value decomposition of A, A = UΣV T , may be used. Truncate the
smallest singular values so that A ≈ U0Σ0V

T
0 , where U0 consists of the first N

rows of U , V0 consists of the first N rows of V , and Σ0 consists of the N ×N -
matrix with the N largest singular values on the diagonal. Now update the
parameters using

∆x = V0Σ
−1
0 UT

0 b . (10.53)

An alternative is to use the Levenberg-Marquardt method. The update of the
parameters is computed as

∆x = −(ATA + εI)−1AT b , (10.54)

where ε is a small positive number. ε has to be chosen carefully. A common
strategy is to start with a fairly large value and decrease it gradually when
approaching the minima.



341

10.5.9 Robust Methods

When trying to find corresponding features in a sequence of images, a fairly
large number of false matches, called outliers, is usually obtained. This im-
plies that robust methods have to be used to obtain a meaningful result.
The most widely used method is RANSAC (Random Sampling Consensus);
see [7] and [26]. The main idea behind this method is to randomly select a
minimal number of corresponding points needed to estimate the unknown pa-
rameters and then check if the other points agree with these parameters or
not. This process is repeated a fixed number of times and the parameters that
most points agree on are selected. In the case of estimating the fundamental
matrix, the following algorithm can be used:

1. Select randomly 8 corresponding points.
2. Calculate the fundamental matrix, F .
3. Record the number of corresponding points (x1,x2) that fulfil xT

1 Fx2 ≤ ε.
4. Go to 1.

Here ε is a fixed accuracy and the process is repeated a fixed number of times.
Finally, the F with the highest number of agreeing points is selected. Often,
those points that agree on this F are used to reestimate F once again.

10.6 Autocalibration

In Sect. 10.4 it was shown that it is only possible to reconstruct the scene up to
an unknown projective transformation from a sequence taken by uncalibrated
cameras. This projective reconstruction is in most cases useless, since the
unknown projective transformation from the true scene can introduce severe
nonlinear distortions. However, it was shown in Sect. 10.5 that if the cameras
are calibrated, it is possible to obtain a Euclidean reconstruction (more pre-
cisely, a reconstruction up to an unknown similarity transformation), which
is more useful. In Sect. 10.3 it was shown that a camera could be calibrated
from an image of a calibration grid consisting of at least 6 points. However,
this procedure has several drawbacks:

• It is time consuming and cumbersome to precalibrate using a special cali-
bration object.

• The intrinsic parameters might change during the sequence, e.g., when
zooming.

• Several sequences and/or images from cameras with different intrinsic pa-
rameters might be available.

• Sequences might be available from unknown cameras without the possibi-
lity to calibrate.

Therefore, it is desirable to be able to calibrate the camera during the recon-
struction process, so-called autocalibration.

10 Three- imensional Geometric Computer VisionD
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10.6.1 Problem Formulation

Starting with a projective reconstruction in the form of a sequence of camera
matrices, Pi, defined up to an unknown projective transformation, H , auto-
calibration implies finding this projective transformation, H , such that PiH
can be factorized as

PiH ∼ KiRi[ I | − ti ] , (10.55)

where Ri denote orthogonal matrices and Ki contains intrinsic parameters
obeying the constraints at hand. For instance, in the case of constant intrinsic
parameters Ki = K =constant.

10.6.2 Constant Intrinsic Parameters

Assume constant intrinsic parameters and let Ω denote the dual to the ab-
solute conic, represented by a singular 4 × 4-matrix. Then the image of Ω is
given by

ω ∼ PiΩPT
i , (10.56)

where ω denotes the dual to the image of the absolute conic and is related
to the intrinsic parameters via the equation ω = KKT . Actually Eq. (10.56)
is valid for other constraints than constant intrinsic parameters by replacing
ω with ωi. By fixing the gauge freedoms in the Euclidean coordinate system,
i.e., fixing the origin and a reference orientation, by putting P1 = [ I | 0 ],

H =
[
K 0
n̄ 1

]
, (10.57)

and Ω can be parameterized as

Ω = TT T =
[
K
n̄

] [
K
n̄

]T

, (10.58)

where (n̄, 1) denotes the normal to the plane at infinity. In the case of other
constraints than constant intrinsic parameters K has to be replaced by K1,
i.e., the intrinsic parameters for the first camera. To sum up there are from Eq.
(10.56) 5 equations for each image (apart from the first one) and 8 unknowns (5
intrinsic parameters plus 3 parameters for the normal to the plane at infinity).
Again, by counting the number of equations and unknowns, three images are
sufficient.

Equation (10.58) consists of a system of nonlinear equations that has to
be solved; see [14]. Observe that an initial guess of the plane at infinity can
easily be obtained linearly from Eq. (10.56) when the guess for the intrinsic
parameters is inserted.
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10.6.3 The Modulus Constraint

Let Qi denote the first 3× 3 submatrix of Pi, i.e., Pi = Qi[ I | qi ]. Then

PiH = Qi[ I | qi ]H = [QiK −Qitin̄ | −Qiqi ] ∼ [KRi | −KRiti ]

⇒ QiK −Qiqin̄ ∼ KRi ⇒ Qi −Qiqin̄K
−1 ∼ KRiK

−1 ,
(10.59)

saying that Qi −Qiqin̄K
−1 is similar to a scaled orthogonal matrix. In fact,

KRiK
−1 = Hi

∞, the homography of the plane at infinity induced by the
fundamental matrix between image 1 and image i. Thus all eigenvalues of
Qi − Qiqin̄K

−1 have equal moduli, hence the name modulus constraint.
The characteristic polynomial of Qi − qin̄K

−1,

p(λ) = det(λI −Qi + qin̄K
−1) = λ3 + l2λ

2 + l1λ + l0 ,

obeys this modulus constraint,

l31 = l32l0 ,

which is a polynomial equation of degree 4 in the unknown parameters, n̄K−1.
Hence, a unique solution can in general be obtained from at least four images;
see [17]. When the three parameters in n̄K−1 are known it is easy to solve
Eq. (10.56) for the intrinsic parameters. In fact a linear method can be used
to solve for the dual to the image of the absolute conic and then a Cholesky
factorization gives the intrinsic parameters in the following way: Set Hi

∞ =
KRiK

−1, i.e., the homography of the plane at infinity, obtained from Eq.
(10.59) when n̄K−1 is known – observe that the scale of Hi

∞ is known since
det(Hi

∞) = 1. Thus Ri = K−1Hi
∞K, which gives

Hi
∞KKT (Hi

∞)T = KKT ⇒ Hi
∞ω(Hi

∞)T = ω , (10.60)

which is a linear system of equations in the five intrinsic parameters. However,
only four equations are linearly independent, requiring three views to calculate
K.

10.6.4 A Linear Method

Assume that only the focal length is unknown (and possibly varying), which is
a reasonable assumption in order to obtain an initial estimate of the intrinsic
parameters. The only unknown parameters are then the focal lengths and the
plane at infinity. Inserting Eq. (10.58) into Eq. (10.56) gives

KiK
T
i ∼ PT

i

[
KiK

T
i K1n̄

T

n̄KT
1 n̄n̄T

]
Pi . (10.61)

Assuming zero skew, unit aspect ratio and the principal point situated in the
centre of the image, Eq. (10.61) simplifies to

10 Three- imensional Geometric Computer VisionD



344 Anders Heyden

λi

⎡⎣f2
i 0 0
0 f2

i 0
0 0 1

⎤⎦ = PT
i

⎡⎢⎢⎣
f2
1 0 0 a
0 f2

1 0 b
0 0 1 c
a b c a2 + b2 + c2

⎤⎥⎥⎦Pi , (10.62)

where n̄ = (a, b, c). Observe that Eq. (10.62) contains 6 linear equations in
the 7 unknowns λi, λif

2
i , f2

1 , a, b, c and a2 + b2 + c2. For i = 1 a pure identity
due to the specific coordinate change is obtained and thus no constraints. For
i = 2, 7 unknowns and 6 equations are obtained. For each further image 2
new unknowns and 6 equations are added. Thus n̄ and fi can be solved for
using a quasilinear method, when at least three images are available; see [18].

10.6.5 Nonlinear Refinement

When an initial estimate of the dual to the absolute conic has been found this
estimate needs to be refined by solving the nonlinear optimization problem

min
(Ω,ωi)

m∑
i=1

||ωi − PiΩPT
i ||2 , (10.63)

using e.g., nonlinear least squares. Observe that a suitable normalization of
ωi and PiΩPT

i is needed to obtain a non-trivial solution. Finally, bundle
adjustment, with the proper choice of constraints on the intrinsic parameters,
gives the optimal solution.

Figure 10.9 shows one of 42 images of a scene containing point markers and
some curves and silhouettes. The images were taken by the same camera with-
out zooming or focusing. Firstly a projective reconstruction was made using
iterative factorization followed by projective bundle adjustment. Secondly,
the linear autocalibration method was used to calculate the initial Euclidean
structure and motion assuming known skew, aspect ratio and principal point.
This result was then used as an initial value to the bundle adjustment routine
using only the constraint that the skew is zero. In Fig. 10.9 is also shown a
histogram of errors between estimated point positions and reprojected point
positions. In the same figure are shown the two focal lengths (fx and fy) and
the coordinates of the principal point (x0 and y0) for the image sequence.

10.7 Conclusions

This chapter has described how to model a camera, using the perspective
pinhole camera model and its specializations. The multiview constraints and
multiview tensors have been studied using tools from projective geometry.
The structure and motion problem has been solved using these constraints as
well as using factorization methods and bundle adjustment. Finally, autocali-
bration methods have been derived to obtain a final Euclidean reconstruction
of the scene.
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Fig. 10.9. One of 42 images used in the experiment. Histogram of reprojected
residuals. Estimated focal lengths and principal point coordinates for the 42 images
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We introduce in this chapter a generalization of the classical collineation of
Pn. The generalization allows for a certain degree of freedom in the localiza-
tion of points in Pn at the expense of using multiple m > 2 views. The degree
of freedom per point is governed by an additional parameter 1 ≤ k < n,
which stands for the dimension of the subspace in which the indvidual points
are allowed to move while the projective change of coordinates take place. In
other words, the point set is not necessarily stationary, allowing the configu-
ration to change while the entire coordinate system undergoes a projective
change of coordinates. If we denote a change of coordinates as a “view” of the
physical set of points, then in this chapter we discuss the multiview relations
that can be determined from observations (views) of a dynamically changing
point configuration – the underlying transformations and how they can be
recovered.

For example, for a point set in P2 (planar configuration) undergoing linear
motion, the multiple views of the point set generate a multilinear constraint
across three views governed by a 3×3×3 contravariant tensor H. The tensor,
referred to as homography tensor, can be recovered linearly from 26 observa-
tions (matching points across three views), and once recovered can be unfolded
to yield the global coordinate change (the individual pair of homography ma-
trices). A point set in P3 (3D configuration) can undergo motion in a plane
or along a line (each point independently). For the line motion, the multi-
view constraints are governed by a 4 × 4 × 4 family of contravariant tensors
J that capture the dynamic 3D-to-3D alignment problem. More generally,
the family of homography tensors is captured by three parameters: the di-
mension n of the observation space, the dimension k < n of the subspace
along which each point of the point set is allowed to move, and the number
of “views” m. Formally, the homography tensors form a GL(V ) module, de-
noted by V (n,m, k), defined by the set of all tensors v1 ⊗ · · · ⊗ vm ∈ V ⊗m,
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where vi are n-dimensional vectors and dim Span{v1, . . . , vm} ≤ k. We will be
interested in the structure and dimension of V (n,m, k).

The notion of using multiview analysis for nonrigid scenes is interesting
and useful on its own right. In a way, this work extends the notion of “stereo
triangulation” (a stationary point observed by two or more views) to the
notion of “what can be recovered from line of sight measurements only?”. The
chapter includes a detailed exposition of these tensors for P2 and P3, their
properties and applications, and derives the dimension of V (n,m, k) in the
general case.

11.1 Introduction

Consider the classic problem of “3D to 3D” alignment of point sets. We are
given a set of 3D points P1, ..., Pn measured by some device such as a struc-
tured light range sensor [14] or a stereo rig of cameras. When the sensor
changes its position in space while the 3D points remain stationary, the 3D
positions of the measured points P ′

1, ..., P
′
n have undergone a coordinate trans-

formation. In a projective setting, five of these matching pairs in general po-
sition are sufficient to recover the 4 × 4 collineation A such that APi

∼= P ′
i ,

i = 1, ..., n. In a rigid motion setting the coordinate transformation consists of
translation and rotation, which can be recovered using four matching points;
elegant techniques using Singular Value Decomposition (SVD) have been de-
veloped for this purpose [4].

In the same vein, consider another popular group of transformations that
includes planar collineations between two sets of points on the projective plane
P2 undergoing a projective mapping. The planar collineations (homographies)
are the 3 × 3 nonsingular matrices that map between point sets undergoing
a general projectivity. The planar homographies form a fundamental building
block in multiple-view geometry in computer vision. The object stands on
its own as a point-transfer vehicle for planar scenes (aerial photographs, for
example) and in applications of mosaicing, camera stabilization and tracking
[8]. A homography matrix is a standard building block in handling 3D scenes
from multiple 2D projections: the “plane+parallax” framework [3, 6, 7, 11]
uses a homography matrix for setting up a parallax residual field relative to a
planar reference surface, and the trifocal tensor of three views is represented
by a “homography-epipole” structure whose slices are homography matrices
as well [5, 12].

The two examples above, general collineations of P2 and P3, readily ex-
tend to n-dimensional projective spaces Pn. A change of coordinates in an
n-dimensional projective space Pn is determined by an (n + 1)× (n + 1) ma-
trix. Converseley, given two sets of points in Pn that result by having one set
undergo some collineation, the alignment of the two sets can be achieved by a
homography matrix which can be determined uniquely from n + 1 matching
points.
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In this chapter we introduce a “dynamic” version of the Pn to Pn align-
ment problem by allowing the individual points of the point set to undergo
independent motion within k-dimensional subspaces while the entire point
set undergoes a general collineation successively. For example, in the dynamic
P2 → P2 version, we allow for the possibility that any number of the points
may move along straight-line paths during the change of view. A change of
view results in a global change of coordinates (a collineation), but while doing
so the individual points of the point set have changed relative position to one
another. Points that remain in place are called stationary, and points that
move are called dynamic. There can be any number of dynamic points – in-
cluding the possibility that all points are dynamic – and the system need not
know in advance which of the points are stationary and which are dynamic
(an unsegmented configuration). Under these conditions we wish to find the
multiple projective coordinate changes from the point-match observations of
the point set under successive coordinate changes. We will show that this type
of transformation is governed by a 3 × 3 × 3 tensor that captures the mul-
tiview relation of the changing planar point set. The tensor is formed by a
bilinear product of the global pair of homography matrices, which are respon-
sible for the changes of coordinates between the first view and the other two
views. For every triplet of matching points across the three views p, p′, p′′ the
following contravariant relation pip′jp′′kHijk = 0 vanishes. The vanishing con-
straint provides a linear equation on the elements of the tensor, and the global
coordinate changes can later be recovered (also linearly) from the tensor.

The dynamic P3 → P3 alignment problem can be viewed as a 3D sensor
that changes position in 3D space (thus creating global coordinate changes)
while the physical points in space undergo independent motion either along
straight-line paths or along planar subspaces (or they can stay put). We will
show that this type of transformation is governed by a 4 × 4 × 4 family of
tensors that vanishes on each of the matching triplets induced by a physical
point under three coordinate systems.

More generally, the family of tensors governing the Pn → Pn alignment
problem is captured by three parameters: the dimension n of the observa-
tion space, the dimension k < n of the subspace along which each point of
the point set is allowed to move, and the number of “views” m. Formally,
these tensors form a GL(V ) module, denoted by V (n,m, k), defined by the
set of all tensors v1 ⊗ · · · ⊗ vm ∈ V ⊗m, where vi are n-dimensional vectors
and dim Span{v1, . . . , vm} ≤ k. We will be interested in the structure and
dimension of V (n,m, k).

We will describe in detail the tensor families that are associated with P2

and P3, their definition, the way they can be recovered from observations,
their properties and their applications. The general case will be discussed at
a reduced scope, where we will address only the dimension of V (n,m, k) (the
number of independent linear constraints possible for a given value of n,m, k).
Other issues that are addressed in derivations for P2 and P3, such as mixed
stationary and dynamic motions, are left open in the general case. Part of
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the material described in Sects. 11.2 and 11.3 appeared in the proceedings of
[13, 16] and the material of Sect. 11.4 appeared in technical report [10].

11.1.1 Background and Notation

We will be working with the projective space Pn. A point in Pn is defined
by n + 1 numbers, not all zero, that form a coordinate vector defined up to
a scale factor. The dual projective space represents the space of hyperplanes,
which are also defined by a (n + 1)-tuple of numbers. For example, a point p
in the projective plane P2 coincides with a line s if and only if p
s = 0, i.e.,
the scalar product vanishes. In other words, the set of lines coincident with
the point p is represented by the coordinate vectors s that satisfy p
s = 0,
and vice versa: a point represented by the coordinate vector p can be thought
of as the set of lines through it (also known as the pencil of lines through p).
A line s going through two points p1, p2 is represented by the cross product
s ∼= p1 × p2, where ∼= denotes equality up to scale. Likewise, the point of
intersection p of the lines s1, s2 is represented by p ∼= s1×s2. In projective 3D
space P3, a point p lies on a plane π if and only if p
π = 0. In other words,
in P2 points and lines are dual to each other, and in P3 points and planes are
dual to each other - generally, points and hyperplanes are duals.

In projective space any n+1 points in general position (i.e., no subset of n
points lie on a hyperplane) can be uniquely mapped into any other n+1 general
point configuration. Such a mapping is called a collineation and is defined
by an invertible (n + 1) × (n + 1) matrix (also known as the homography
matrix) defined up to scale. In particular, the change of coordinates of a
planar configuration induced by taking a photograph by a pinhole camera
moving freely in the 3D world is represented by a 3 × 3 homography matrix,
and the change of coordinates of a 3D point configuration caused by the
motion of the sensor is represented by a 4 × 4 homography matrix. If H
is a homography matrix (defined by n + 1 matching pairs of points), then
H−T (inverse transpose) is the dual homography that maps hyperplanes onto
hyperplanes.

The projective plane is useful to model the image plane in a pinhole camera
model. Consider a collection of planar points P1, ..., Pk in space living on a
plane π viewed from two views. The projections of Pi are pi, p

′
i in views 1 and

2, respectively. Because the collineations form a group, there exists a unique
homography matrix Hπ that satisfies the relation Hπpi

∼= p′i, i = 1, ..., k,
and where Hπ is uniquely determined by four matching pairs from the set of
k matching pairs. Moreover, H−T

π s ∼= s′ maps between matching lines s, s′

arising from 3D lines living in the plane π. Likewise, H

π s′ ∼= s maps between

matching lines from view 2 to view 1.
It is most convenient to use tensor notations from now on because the

material we are using in this chapter involves coupling together pairs of
collineations into a “joint” object. The distinction of when coordinate vec-
tors stand for points or hyperplanes matters when using tensor notation. A
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point is an object whose coordinates are specified with superscripts, i.e., p =
(p0, p1, ..., pn), thus pi stands for the ith entry of the vector. These are called
contravariant vectors. A hyperplane in Pn is called a covariant vector and is
represented by subscripts, i.e., s = (s0, s1, ..., sn). Indices repeated in covariant
and contravariant forms are summed over, i.e., pisi = p0s0 +p1s1 + ...+pnsn.
This is known as a contraction. For example, if p is a point incident to a line
s in P2, then pisi = 0.

Vectors are also called 1-valence tensors; 2-valence tensors (matrices) have
two indices and the transformation they represent depends on the covariant-
contravariant positioning of the indices. For example, aj

i is a mapping from
points to points (a collineation, for example) and hyperplanes to hyperplanes,
because aj

ip
i = qj and aj

isj = ri (in matrix form: Ap = q and A
s = r);
aij maps points to hyperplanes; and aij maps hyperplanes to points. When
viewed as a matrix the row and column positions are determined accordingly:
in aj

i and aji the index i runs over the columns and j runs over the rows, thus
bk
j a

j
i = ck

i is BA = C in matrix form.
An outer product of two 1-valence tensors (vectors) aib

j is a 2-valence
tensor cj

i whose i, j entries are aib
j. Note that in matrix form C = ba
. A

3-valence tensor has three indices, say Hjk
i . The positioning of the indices

reveals the geometric nature of the mapping: for example, pisjH
jk
i must be a

point because the i,j indices drop out in the contraction process and we are left
with a contravariant vector (the index k is a superscript). Thus, Hjk

i maps a
point in the first coordinate frame and a hyperplane in the second coordinate
frame into a point in the third coordinate frame. A single contraction, say
piHjk

i , of a 3-valence tensor leaves us with a matrix. Note that when p is
(1, 0, 0) or (0, 1, 0) or (0, 0, 1) the result is a “slice” of the tensor.

In the projective plane P2 we will make use of the “cross product tensor”
ε defined next. The cross product (vector product) operation c = a × b is
defined for vectors in P2. The product operation can also be represented as
the product c = [a]×b where [a]x is called the “skew-symmetric matrix of a”
and has the form:

[a]× =

⎛⎝ 0 −a2 a1

a2 0 −a0

−a1 a0 0

⎞⎠ .

In tensor form we have εijka
ibj = ck representing the cross product of two

points (contravariant vectors) resulting in the line (covariant vector) ck. Simi-
larly, εijkaibj = ck represents the point intersection of the two lines ai and bj .
The tensor ε is defined such that εijka

i produces the matrix [a]× (i.e., ε con-
tains 0,−1, 1 in its entries such that its operation on a single vector produces
the skew-symmetric matrix of that vector).
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11.2 Homography Tensor H of the Projective Plane

Consider some plane π whose features (points or lines) are projected onto
three views and let A be the collineation from view 2 to view 1, and B the
collineation from view 3 to 1 (we omit the reference to π in our notation). Let
P be some point on the plane π, and its projections are p, p′, p′′ in views 1,
2 and 3, respectively. We consider two possibilities: first, the point P on the
plane π is stationary, i.e., the three optical rays from the camera centers to
the image points p, p′, p′′ meet at P , and second, the point P moves along a
straight line (in the plane) path, therefore the three optical rays meet at a line
in π instead of a point (see Fig. 11.1). We summarize these two possibilities
in the following definition:

Definition 1. A triplet of points p, p′, p′′ is said to be matching with res-
pect to a stationary point if the points are matching in the usual sense
of the term, i.e., the corresponding optical rays meet at a single point. The
triplet is said to be matching with respect to a moving point if the three
optical rays meet at a line on a plane.

Fig. 11.1. The homography tensor of P2 and moving points. The collineations A, B
are from views 2 to 1 and 3 to 1, respectively. If the triplet p, p′, p′′ is a projection
of a moving point along a line on π, then p, Ap′, Bp′′ are collinear in view 1. Thus,
p�(Ap′ × Bp′′) = 0, or pip′jp′′kHijk = 0, where Hijk = εinuan

j bu
k

The constraint that satisfies both the moving and stationary possibilities
is:

det(p,Ap′, Bp′′) = p
(Ap′ ×Bp′′) = 0.

In other words, det(p,Ap′, Bp′′) = 0 when the rank of the 3 × 3 matrix
[p,Ap′, Bp′′] is either 1 or 2. The rank is 1 when the point P is stationary
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(three optical rays meet at a point) and is 2 when the point P moves along
a straight line path (three optical rays meet at a line on π). The constraint
p
(Ap′×Bp′′) = 0 is bilinear in the entries of the unknown collineations A,B
and is trilinear in the observations p, p′, p′′. Using tensorial notation we can
combine the pair of collineations into a single object, a 3 × 3 × 3 tensor, as
follows. We define indices i, j, k such that index i runs over view 1, index j
runs over view 2 and index k runs over view 3. For example, the operation
Ap′ is translated to ai

jp
′j producing a point in view 1. The cross product

Ap′ × Bp′′ is translated to εinu(an
j p

′j)(bu
kp

′′k), where parenthesis are added
for clarity only (that is, the positions of symbols are not important, only the
positions of the indices). Taken together we have:

piεinu(an
j p

′j)(bu
kp

′′k) = 0.

After rearranging the symbol positions we obtain:

pip′jp′′k(εinua
n
j b

u
k) = 0,

where the object in parenthesis is the homography tensor of P2, referred to
as Htensor:

Hijk = εinua
n
j b

u
k , (11.1)

whose triple contraction pip′jp′′kHijk vanishes on observations p, p′, p′′ arising
from stationary or moving points on the plane π. Each such triplet of matching
points provides a linear constraint on the 27 entries of H; thus 26 matching
triplets are necessary to solve for H uniquely (up to scale).

We see from the above that the tensor H applies to both stationary and
moving points coming from the planar surface π. The possibility of working
with stationary and moving elements was first introduced in [1, 2], where it was
shown that if a moving point along a general (in 3D) straight path is observed
in five views, and the camera projection matrices are known, then it is possible
to set up a linear system for estimating the 3D line. With the Htensor H, on
the other hand, we have no knowledge of the camera projection matrices, but
conversely we require that the straight paths the points are taking should all
be coplanar. This makes it possible to work with three views instead of five
and not require prior information on camera positions. We will address the
following issues:

• What are the minimal point configurations that allow a unique solution
for H? If all points are moving, then 26 of them are needed, and we will
address the issue of the necessary point-set configuration. If some of the
points are known to be stationary, how many constraints (i.e., moving
points) are minimally necessary for a unique solution? If some of the points
are stationary (without the system being told about it), what would be
the minimal number of moving points required for a unique solution?
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• Contraction properties of H and the manners in which H acts as a map-
ping.

• How to recover the component collineations A,B from H.

11.2.1 Recovering Htensor from Image Measurements

The measurements available for recovering H are triplets of matching points
p, p′, p′′ across the three views and prior information whether a triplet arises
from a moving or stationary point. Assuming first that all measurements are
induced by moving points, a triplet of matching points contributes one linear
constraint pip′jp′′kHijk = 0 on the elements of H. Therefore 26 triplets are
necessary for a unique3 solution. The 26 points should be distributed on the
plane π in such a way that they cover at least 4 lines in general position,
such that no more than 8 points are on the first line, no more than 7 points
on the second line, no more than 6 on the third line and no more than 5
on the fourth line. This distribution guarantees a unique solution for H. Of
course, more than 26 points are allowed, where in that case a least-squares
approximation is recovered.

Theorem 1. A minimal configuration of 26 matching triplets arising from
moving points on π is necessary for a unique recovery of H provided that the
distribution of the points is such that the motion trajectories cover at least 4
lines in general position on π and that no more than 8 of the points lie on the
first trajectory, no more than 7 on the second trajectory, no more than 6 on
the third and no more than 5 points lie on the fourth line trajectory.

Proof. Consider a line L1 on the plane π. Let the projections of L onto the
three views be denoted by q1, s1, r1 (Fig. 11.2). Since each line is determined
by two points, we can have at most 23 = 8 linearly independent constraints
of the form pip′jp′′kHijk = 0, where the points p, p′, p′′ are coincident with
the lines q1, s1, r1, respectively. Consider a second line L2 ∈ π projecting onto
lines q2, s2, r2. Since each of the image lines is spanned by two points, choose
one of those points to be the projection of L1∩L2 denoted by p, p′, p′′. Among
the eight choices of choosing three points from the three pairs of points, the
choice p, p′, p′′ is already covered by the span of the eight constraints induced
by L1 thus we are left with seven linearly independent constraints in H. This
argument continues by induction over additional lines Li each inducing one
less constraint than the one before it. The process ends with 4 lines inducing
8 + 7 + 6 + 5 = 26 linearly independent constraints.

Next, we consider the contribution of stationary points to the system of
linear equations for H. A stationary point, known as such (referred to as la-
beled), contributes nine linear constraints of rank seven, as follows: let p, p′, p′′
be a triplet of matching points arising from a known stationary point on π.
3 The dimension of the GL(V ) module Span{p ⊗ p′ ⊗ p′′ ∈ V ⊗3 :

dim Span{p, p′, p′′} = 2} is 26 (see Sect. 11.4)
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Fig. 11.2. A straight line path L1 can induce at most eight independent linear
constraints, as the projections q1, s1, r1 in the three views are determined by two
points each. A second straight-line path L2 can contribute at most seven independent
constraints since the constraint pip′jp′′kHijk = 0 induced by the projection of the
intersection L1 ∩ L2 onto p, p′, p′′ is spanned by the eight constraints from L1

The rank of the matrix [p,Ap′, Bp′′] is 1, which in turn translates to the three
sets of constraints: p × Ap′ = 0, p × Bp′′ = 0 and Ap′ × Bp′′ = 0. In tensor
form, the contractions pip′jHijk, p

ip′′kHijk and p′jp′′kHijk are null vectors.
The nine constraints are explicitly written below (allow the vector e to vary
over the standard basis (1, 0, 0), (0, 1, 0) and (0, 0, 1)):

pip′jekHijk = 0 ∀e, (11.2)
piejp′′kHijk = 0 ∀e,
eip′jp′′kHijk = 0 ∀e.

Note that the constraint pip′jp′′kHijk = 0 is in the span of the three sets of
constraints thus making a total of 7 linearly independent constraints (a system
of nine linear equations of rank 7). Therefore we arrive at the conclusion:

Proposition 1. The matching triplets induced by four labeled stationary points
in general position on π provide a unique solution for H.

We consider next the contribution of unlabeled stationary points. A stationary
point can provide nine constraints (of rank 7) provided it is known to be
stationary otherwise it provides only a single constraint. Consider the case
where all the measurements arise from unlabeled stationary points. It is easy
to see that the rank of the estimation matrix for H is at most 10 (compared to
26 when moving points are used). Each row of the estimation matrix for H is
some “constraint tensor” Gijk such that GijkHijk = 0. It is sufficient to prove
this statement for the case where A = B = I (the identity matrix) because
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all other cases are transformed into this one by local change of coordinates.
In the case A = B = I, Gijk is a symmetric tensor, i.e., remains the same
under permutation of indices. Hence Gijk contains only ten different groups
of indices

111, 222, 333, 112, 113, 221, 223, 331, 332, 123

up to permutations. Generally speaking, the m-fold symmetric powers SymmV
of an n-dimensional vector space V is a vector space of dimension

(
n+m−1

m

)
(substitute n = 3,m = 3 to get 10). We arrive at the following conclusion:

Proposition 2. In a collection of unlabeled matching triplets, there could be
at most ten of which that are induced by stationary points. In other words,
there should be at least 16 moving points in an input collection of unlabeled
points for a unique linear solution for H.

Finally, we consider the situation of mixed labeled and unlabeled triplets.
Consider the case where x ≤ 4 of the triplets are labeled as arising from sta-
tionary points. We saw above that a labeled stationary point is equivalent to
seven constraints; however, some of those constraints may be already included
in the span of the unlabeled stationary points. The theorem below addresses
the question of how many matching triplets arising from moving points are ne-
cessary, given that x ≤ 4 matching triplets are labeled as stationary. Clearly,
when x = 4 there is no need for further measurements, but when x < 4 we
obtain the following result:

Theorem 2. In a situation of matching triplets arising from a mixture of
stationary and moving points, let x ≤ 4 be the number of matching triplets
that are known a priori to arise from stationary points. To obtain a unique
linear solution for H, the minimal number of matching triplets arising from
moving points is 16 − 4x, and at most 10 − 3x can be (unlabeled) stationary
points.

Proof: Each row of the estimation matrix for H is some “constraint tensor”
Gijk such that GijkHijk = 0. It is sufficient to prove this statement for the case
where A = B = I (the identity matrix) because all other cases are transformed
into this one by local change of coordinates. Therefore, a stationary point
induces a symmetric tensor Gijk = pipjpk. The case x = 0 was discussed
above with the conclusion that a minimum of 16 moving points is required.

Consider the case x = 1, i.e., one of the matching triplets contributed nine
constraints of rank 7:

pip′jek
1Hijk = 0, piej

1p
′′kHijk = 0, ei

1p
′jp′′kHijk = 0,

pip′jek
2Hijk = 0, piej

2p
′′kHijk = 0, ei

2p
′jp′′kHijk = 0,

pip′jek
3Hijk = 0, piej

3p
′′kHijk = 0, ei

3p
′jp′′kHijk = 0,

where e1, e2, e3 are the standard basis (1, 0, 0), (0, 1, 0), (0, 0, 1). Add the three
constraints in the first row:
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Eijk = pipjek
1 + piej

1p
k + ek

1p
jpk.

Then, Eijk is a symmetric tensor and thus is spanned by the 10-dimensional
subspace of the unlabeled stationary points. Likewise, the constraint tensors
resulting from adding the constraint of the second and third row above are also
symmetric. Taken together, three out of the seven constraints contributed by
a labeled stationary point are already accounted for by the space of unlabeled
stationary points. Therefore, each labeled stationary point adds only 4 linearly
independent constraints.

11.2.2 Contraction Properties of H and Recovery of A, B

We turn our attention next to single and double contractions of the Htensor:
what can be extracted from them and what is their geometric significance?
Those contractions hold the key for decoupling the collineations A,B from H.

The double contractions perform mapping operations. Consider, for exam-
ple, pip′jHijk, which by the index arrangements must be a contravariant vector
(a line in P2) denoted by l′′. Since the remaining index is k, l′′ is a line in
view 3. Consider the line L ∈ π defined by the projection p, p′ in views 1 and
2. Since pip′jp′′kHijk = 0 for all points p′′ in view 3 that are the projections
from L, we conclude that l′′ is the projection of L onto view 3.

The single contractions produce matrices that form the key for decoupling
the collineations A,B from H. Consider, for example, δkHijk for some con-
travariant vector (a point in view 3) to δ. The result is a matrix E with index
structure suggesting it maps points to lines (a correlation matrix) and between
views 1 and 2. By substitution in the definition of H we obtain:

δkHijk = εinua
n
j (bu

kδ
k) = [Bδ]×A.

Let E = [Bδ]×A, and note that the point µ = Bδ is the matching point to
δ in view 1, i.e., it is the projection onto view 1 of the point defined by the
intersection of the plane π with the optical ray associated with δ (Fig. 11.3).
The matching points to δ, the points µ = Bδ and η = A−1Bδ, can be recovered
directly from E since:

E
µ = −A
[µ]×µ = 0,
Eη = [µ]×Aη ∼= [µ]×µ = 0.

The matrix E forms a point-to-line mapping from view 2 to view 1 as follows.
Consider any point p′ in view 2, then Ep′ = p′jδkHijk is the projection of the
line in π, defined by the optical rays associated with δ and p′, onto view 1.
Therefore, any point p coincident with the projected line satisfies p
Ep′ = 0.
We conclude that the bilinear form p
Ep′ = 0 is satisfied for all pairs of p, p′
that are on matching lines through the fixed points µ, η (Fig. 11.3).

Finally, the collineation A can be recovered from single contractions by
the fact that A
E is a skew-symmetric matrix:
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A
E + E
A = A
[µ]×A−A
[µ]×A = 0,

which provides six linearly independent equations on the entries of A. By
taking δ to range over the standard basis (1, 0, 0), (0, 1, 0), (1, 0, 0) we obtain
three slices of H denoted by E1, E2, E3, each producing six linear equations on
A. Taken together A can be recovered linearly from the slices of H. Likewise,
B can be recovered from the slices δjHijk in the same manner, as can the
collineation A−1B (between views 2 and 3) from the slices δiHijk. These
findings are summarized in the theorem below:

π

δ

ηp’

µ

A’p’

Fig. 11.3. A single contraction, say δkHijk, is a mapping E between views 1 and
2 from points to concurrent lines. The null spaces of E and E� are the matching
points µ, η of δ in views 1 and 2. The image points p′ are mapped by E to the lines
Ap′ × µ, and the image points p are mapped by E� to the lines A−1p × η in view
2. The bilinear relation p�Ep′ = 0 is satisfied for all pairs of p, p′ on matching lines
through the fixed points µ, η

Theorem 3. Each of the contractions

δkHijk (11.3)
δjHijk (11.4)
δiHijk (11.5)

represents a point-to-line (correlation) mapping between views (1, 2), (1, 3) and
(2, 3), respectively. By setting δ to be (1, 0, 0), (0, 1, 0) or (0, 0, 1) we obtain
three different slicings of the tensor: denote the slices of δiHijk by the matrices
G1, G2, G3, the slices of δjHijk by the matrices W1,W2,W3, and the slices of
δkHijk by the matrices E1, E2, E3. Then these slices provide sufficient (and
overdetermined) linear constraints for the constituent homography matrices
A,B and for C = A−1B:
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CG

i + GiC


 = 0, (11.6)
BW


i + WiB

 = 0, (11.7)

AE

i + EiA


 = 0, (11.8)

for i = 1, 2, 3.

In summary, the homography tensor in P2 applies to both cases: optical
rays meet at a single point (matching points with respect to a stationary
point) and optical rays meet at a line on π (matching points with respect to
a moving point). In the case where no distinction can be made to the source
of a matching triplet p, p′, p′′ (stationary or moving) then we saw that in a
set of at least 26 such matching triplets, 16 of them must arise from moving
points. In case a number x ≤ 4 of these triplets are known a priori to arise
from stationary points, then 16− 4x must arise from moving points. Once H
is recovered from image measurements, it forms a mapping of both moving
and stationary points and in particular can be used to distinguish between
moving and stationary points (a triplet p, p′, p′′ arising from a stationary point
is mapped to null vectors pip′jHijk, pip′′kHijk and p′jp′′kHijk). The Htensor
can be useful in practice to handle situations rich in dynamic motion seen
from a monocular sequence; some experiments are shown in Sect. 11.6.

We will next describe the homography tensors of P3 where points lie in the
3D projective space, the collineations which are responsible for the coordinate
changes are 4× 4 matrices and the points are allowed to move along straight
lines or planar subspaces while coordinate changes take place.

11.3 Homography Tensors of P3

We consider stepping up one dimension. Namely, the point configuration lies in
P3, the collineations are 4×4 matrices and the dimension in which the points
are allowed to move while the global collineations take place are k = 1, 2, 3,
where k = 1 stands for stationary points, k = 2 stands for motion along a
straight line path and k = 3 stands for motion along a planar subspace. We
focus on the constraint of straight line motion and stationary points k = 2, 1,
which induce a 4×4×4 homography tensor. The situation of planar dynamic
motion k = 3 induces a 44 tensor, which we will not consider in detail here
and leave for the discussion on general dynamic alignment in Sect. 11.4.

Let X be some stationary point in 3D space with coordinate vector P . Let
P ′ be the coordinate representation of the point X at some other time instant
(i.e., the measurement sensor has changed its viewing position) and let P ′′ be
the coordinate representation of X at a third time instant. Let A,B be the
collineations mapping the second and third coordinate representations back
to the first representation, i.e., P ∼= AP ′ and P ∼= BP ′′.

If the point X happens to move along some straight-line path during the
change of coordinate systems, then P,AP ′, BP ′′ do not coincide, but they
form a rank-2 matrix (Fig. 11.4):
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32

1

P

P’

P"
A

B

Fig. 11.4. The points P ,P ′ and P ′′ are measured at three time instants from diffe-
rent viewing positions of the sensor, i.e., each point is given in a different coordinate
system. While the measuring device changes position, the physical point in space
moves along a straight-line path. In other words, the rank of the 4 × 3 matrix
[P, AP ′, BP ′′] is 2 for a moving point and 1 for a stationary point. The 4×4 matrices
A, B are responsible for the change of coordinate system back to the starting position

rank

⎛⎝ | | |
P AP ′ BP ′′

| | |

⎞⎠ = 2.

And for every column vector V we have

det

⎛⎝ | | | |
P AP ′ BP ′′ V
| | | |

⎞⎠ = 0. (11.9)

Note that because V is spanned by a basis of size 4, we can obtain at
most four linearly independent constraints on some object consisting of A,B
from a triplet of matching points P, P ′, P ′′. Note also that the null vector of
a 4 × 3 matrix can be represented by the 3 × 3 determinant expansion. For
example, let X,Y, Z be three column vectors in a 4×3 matrix, then the vector
W = (w1, ..., w4) representing the plane defined by the points X,Y, Z is

w1 = det

⎛⎝x2 y2 z2

x3 y3 z3

x4 y4 z4

⎞⎠ , w2 = − det

⎛⎝x1 y1 z1

x3 y3 z3

x4 y4 z4

⎞⎠ ,

w3 = det

⎛⎝x1 y1 z1

x2 y2 z2

x4 y4 z4

⎞⎠ , w4 = − det

⎛⎝x1 y1 z1

x2 y2 z2

x3 y3 z3

⎞⎠ .

We can write the relationship between W and X,Y, Z as a tensor operation

wi = εijklx
jykzl,

where the entries of ε consist of +1,−1, 0 in the appropriate places. We will
refer to ε as the “cross product” tensor. Note that the determinant of a 4× 4
matrix whose columns consist of [X,Y, Z, T ] can be compactly written as
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tixjykzlεijkl .

Using the cross product tensor we can write the constraint (11.9)

0 = det

⎛⎝ | | | |
P AP ′ BP ′′ V
| | | |

⎞⎠ ,

= P i(εilmu(al
jP

′j)(bm
k P ′′k)vu),

= P iP ′jP ′′k(εilmua
l
jb

m
k vu).

Note that the tensor form allows us to separate the measurements P, P ′, P ′′

from the unknowns A,B (and vector V ), and we denote the expression in
parentheses as

Jijk = εilmua
l
jb

m
k vu (11.10)

as the the homography tensor of P3. Note that for every choice of the vector
V we get an Htensor. As previously mentioned, since V is spanned by a basis
of dimension 4, there are at most four such tensors; each tensor is defined by
the constraints

P iP ′jP ′′kJijk = 0.

These are linear constraints on the 64 elements of the Htensor. Since there are
four Htensors compatible with the observations, the linear system of equations
for solving for J from the matching triplets P, P ′, P ′′ has a four-dimensional
null space. The vectors of the null space are spanned by the Htensors. In prac-
tical terms, given N ≥ 60 matching triplets P, P ′, P ′′, each triplet contributes
one linear equation P iP ′jP ′′kJijk = 0 for the 64 entries of J . The eigenvec-
tors associated with the four smallest eigenvalues of the estimation matrix are
the Htensors of the dynamic 3D-to-3D alignment problem. We summarize this
in the following theorem:

Theorem 4 (Htensors in P2). Each matching triplet P, P ′, P ′′ arising from
a dynamic point contributes one linear equation P iP ′jP ′′kJijk = 0 to a 4 ×
4 × 4 tensor J . Any N ≥ 60 matching triplets in general position provide
an estimation matrix for Jijk with a four-dimensional null space. The 60
points should be distributed along at least 10 lines, 5 of which can hold up to
8 dynamic points, and the remaining 5 up to 4 dynamic points.

In the remainder of this section we discuss tensor slices and the extraction
of the constituent collineations A,B from the four Htensors. We also discuss
the use of Htensors for direct mapping between coordinate systems (without
extracting A,B along the way) and the use of Htensors to distinguish between
dynamic and stationary points. Finally, we discuss the relationship between
the number of stationary and dynamic points for estimating the Htensors in
unsegmented and segmented configurations.
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AP’ BP"

V

P

2

V1

Fig. 11.5. The points AP ′, BP ′′ and V define a plane. AP ′, BP ′′ and V ′ define
another plane. The line of intersection of these planes contains P

11.3.1 Tensor Slices and the Extraction of the Collineations A, B

The role of J is symmetric with respect to the position of the points P, P ′, P ′′,
which is true for every purely covariant or contravariant tensor, unlike the
mixed covariant-contravariant tensor. It is therefore sufficient to investigate
P ′jP ′′kJijk as one of the tensor double-contractions; the others, P iP ′′kJijk

and P iP ′jJijk, follow by symmetry.
Consider any Htensor with its associated vector V . Recall that from ob-

servations we can recover four Htensors that span the null space of the mea-
surement matrix each Htensor has a different vector V associated with it. We
describe next how to recover the vector V , referred to as the “principal point”
of the tensor, from the Htensor.

Consider the plane π defined by πi = P ′jP ′′kJijk that contains the three
points V,AP ′ and BP ′′:

πi = P ′jP ′′kJijk = εilmu(al
jP

′j)(bm
k P ′′k)vu,

which by definition of the cross-product tensor provides the plane associated
with the three points acted upon by ε. By varying P ′ and P ′′ we obtain a star
of planes all coincident with the point V . As a result, the principal point V
of the tensor can be recovered by taking three double slices of the tensor and
finding their intersection.

We next recover the line in space coincident with the points AP ′ and
BP ′′. Consider two Htensors denoted by J 1 and J 2 (recall that we have
four Htensors at our disposal). The intersection of the planes P ′jP ′′kJ 1

ijk and
P ′jP ′′kJ 2

ijk is the line passing through AP ′ and BP ′′ (Fig. 11.5).
The collineations A,B can be recovered (linearly) from the matrices re-

sulting from single contractions of the Htensors. A single contraction Hij =
P ′′kJijk is a 4×4 matrix H that maps points to planes. As mentioned above,
P ′jHij = P ′jP ′′kJijk is the plane passing through V,AP ′, BP ′′; thus by var-
ying P ′ one obtains a pencil of planes coincident with the line through V and
BP ′′. Hence the rank of the matrix H must be 2.

Because HP ′ is the plane through V,AP ′, BP ′′, we have P ′
A
HP ′ = 0
for every choice of P ′. Therefore A
H is a skew-symmetric matrix and thus
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provides ten linear constraints for A. By varying P ′′ and thereby obtaining
other H-matrices P ′′kJijk we can obtain more constraints on A, but this is
not sufficient to obtain a unique solution for A. A unique solution requires the
H-matrix of at least another Htensor because the principal point must vary
as well. Likewise, one can recover B from the contractions P ′jJijk by varying
P ′ and taking at least two Htensors.

11.3.2 Direct Mapping

We can use the Htensor to map points between the coordinate frames without
the need to extract the collineations A and B. Consider, for example, the direct
mapping P ∼= BP ′′ between the third and the first coordinate frames. The
contraction γjP ′′kJijk for some arbitrary vector γ is a plane in 3D containing
the points BP ′′, Aγ and V (the principal point of J ), all represented in the
first coordinate frame. By varying γ over the standard basis and taking the
four different Htensors (so that V also varies), we get a collection of 16 planes.
These planes intersect in the point P ∼= BP ′′. It is sufficient to use a subset
of these planes (at least three) as long as not all of them are generated using
the same Htensor or the same γ.

As a result, the Htensor can play the same role as a collineation (i.e.,
direct) mapping between coordinate frames. The direct mapping can be used,
for example, to distinguish between stationary and dynamic points. If P is
equal to the direct mapping BP ′′, then the corresponding physical point X is
stationary; otherwise (ignoring noise considerations) X is dynamic.

The segmentation of stationary and dynamic points can be achieved in
other ways as well. For example, from Eq. (11.9) we know that for a stationary
point X with coordinate vectors P ,P ′ and P ′′ in the three frames, any double
contraction vanishes:

P iP ′jJijk = P ′jP ′′kJijk = P iP ′′kJijk = 0.

Hence a vanishing double contraction (under all three possibilities) indicates
a stationary point. In practice, since the double contraction provides only
an algebraic (rather than geometric) measure of error, better segmentation
results are achieved by measuring the distance between the point P and the
direct mapping BP ′′.

11.3.3 Constraints from Stationary Points

We have seen that a matching triplet P , P ′ and P ′′ satisfies the Htensor
constraint

P iP ′jP ′′kJijk = 0,

regardless of whether the corresponding physical point X is moving along a
straight-line path (dynamic) or is stationary. For a dynamic point, the rank
of the 4 × 3 matrix [P,AP ′, BP ′′] is 2, and for a stationary point the rank is
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1. In other words, admissible measurements for recovering the Htensors come
from dynamic and stationary points alike. The natural question is, how much
alike? That is, can all the measurements arise (unknowingly) from stationary
points? If not, what is the maximal number number of stationary points after
which the contributions of additional stationary points become redundant?
These questions are exactly the same as those addressed for H in the context
of P2.

The contribution of unlabeled stationary points, i.e., recovering J from
constraints P iP ′jP ′′kJijk = 0 where the triplet P, P ′, P ′′ are induced by
stationary points only, can fill up a 20-dimensional subspace only (out of 60).
Without loss of generality we can assume that A = B = I, which in turn makes
each constraint GijkJijk = 0, where Gijk = P iP jP k is a symmetric tensor
(remains the same under permutation of indices). The three-fold symmetric
powers Sym3V of a four-dimensional vector space V is

(
4+3−1

3

)
= 20. In other

words, there are only 20 different groups of indices:

111, 222, 333, 444, 112, 113, 114, 221, 223, 224,

331, 332, 334, 441, 442, 444, 123, 124, 134, 234.

This analysis is summarized in the theorem below:

Theorem 5. The constraints P iP ′jP ′′kJijk = 0 made solely from stationary
points span at most a 20-dimensional space.

Consequently, in the unsegmented situation when stationary and dynamic
points are treated alike, it is not possible to obtain a unique solution from
stationary points alone; one needs at least 40 dynamic points in the collection
of N ≥ 60 matching triplets. We consider next the contribution arising from
labeled stationary points, i.e., how many constraints would a triplet P, P ′, P ′′

contribute if it were known that the corresponding physical point X is sta-
tionary? In this case, for every δ4×1 and for every V , the determinant

det

⎛⎝ | | | |
P AP ′ Bδ V
| | | |

⎞⎠
vanishes. Since this is true for every pair of the three points, then for each of
the four Htensors we get:

P iP ′jek
1Jijk = 0, P iej

1P
′′kJijk = 0, ei

1P
′jP ′′kJijk = 0,

P iP ′jek
2Jijk = 0, P iej

2P
′′kJijk = 0, ei

2P
′jP ′′kJijk = 0,

P iP ′jek
3Jijk = 0, P iej

3P
′′kJijk = 0, ei

3P
′jP ′′kJijk = 0,

P iP ′jek
4Jijk = 0, P iej

4P
′′kJijk = 0, ei

4P
′jP ′′kJijk = 0,

(11.11)

where e1, e2, e3, e4 are the standard basis (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1). Note that the constraint
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P iP ′jP ′′kJijk = 0

can be spanned by each row separately, hence the rank of the above system
is at most 10. We thus arrive at the conclusion:

Theorem 6. A labeled stationary point can provide at most ten linearly in-
dependent constraints for the solution of J .

These constraints came from one stationary point, but how many of them are
spanned by the subspace of constraints obtained from unlabeled stationary
points? This question is answered next:

Theorem 7. Out of the ten linearly independent constraints arising from a
labeled stationary point, four lie in the rank-20 subspace spanned by unlabeled
stationary points, and six lie in the subspace spanned only by dynamic points.

Proof. Again, it is sufficient to prove this theorem for the case where A =
B = I. In this case a stationary point satisfies P ∼= P ′ ∼= P ′′.

We look at the 12 constraints of rank 10 described in Eq. (11.11). Adding
the three constraints in the first row gives

Gijk = P iP jek
1 + P iej

1P
k + ek

1P
jP k,

which is a symmetric tensor and thus is spanned by the 20-dimensional sub-
space of the unlabeled stationary points. Similarly, the constraint tensors re-
sulting from adding the other three rows are also symmetric. One can verify
that except for those four constraints (and the ones they span) there are no
other symmetric constraints.

Taken together, four out of the ten constraints contributed by a labeled
stationary point lie in the subspace of unlabeled stationary points, and six
constraints lie in the subspace of dimension 40 spanned by dynamic points.

As a corollary, we can deduce that seven labeled stationary points are
necessary to fill up the 60-dimensional subspace necessary for a solution for
J . Since the ten constraints contributed by a labeled stationary point include
four that are spanned by the subspace of unlabeled stationary points, then five
labeled stationary points will fill up the 20-dimensional subspace of unlabeled
stationary point. Each additional labeled stationary point can contribute at
most six linearly independent constraints.

Corollary 1. A minimum of seven labeled stationary points are necessary for
a unique (up to a 4-dimensional solution space) solution for J .

Note that we used the term “unique” for the solution of J (despite the fact
that J can be recovered only up to a four-fold linear subspace) because the
collineations A,B can be recovered uniquely from the four-dimensional J
tensor space.

Finally, we consider the situation of a mixed labeled and unlabeled triplets.
Consider the case where x ≤ 7 of the triplets are labeled as arising from
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stationary points. The corollary below addresses the question of how many
matching triplets arising from moving points are necessary given that x ≤ 7
matching triplets are labeled as stationary. Clearly, when x = 7 there is no
need for further measurements, but when x < 7 we obtain the following result:

Corollary 2. In a situation of matching triplets arising from a mixture of
stationary and moving points, let x ≤ 7 be the number of matching triplets
that are known a priori to arise from stationary points. To obtain a unique
linear solution for J (up to a four-dimensional solution space), the minimal
number of unlabeled matching triplets required is:⎧⎨⎩

60− 10x x ≤ 5
4 x = 6
0 x = 7

⎫⎬⎭ ,

out of which 40 − 6x, x < 7, should be dynamic and at most 20 − 4x, x ≤ 5,
could be unlabeled stationary points.

11.4 Homography Tensors for Pn

The tensors H and J we have encountered so far belong to the general class
of tensors defined as follows. Let V (n,m, k), where n > k, be a GL(V ) mo-
dule defined by the set of all tensors v1 ⊗ · · · ⊗ vm ∈ V ⊗m, where vi ∈ V are
n-dimensional vectors and dim Span{v1, . . . , vm} ≤ k. What is the structure
and dimension of V (n,m, k)? In the terminology of the previous sections, we
considered the space Pn−1, the number of views to be m and the motion of
the dynamic points are limited to a k-dimensional subspace. Thus we have
encountered V (3, 3, 2) and V (3, 3, 1), which stand for dynamic and stationary
points in P2, and encountered V (4, 3, 2) and V (4, 3, 1), which stand for dy-
namic motion along straight lines and stationary points in P3. To generalize
the construction of homography tensors to Pn we need to find out:

1. The dimension of V (n,m, k). Namely, given linear constraints generated
by a multilinear form over the m-fold Htensor from known observations
of m points moving inside k-dimensional subspaces, what would be the
maximal space those measurements could fill? For example, for V (3, 3, 2)
the maximal space is 26, which means we can obtain a unique solution
for the 3× 3× 3 Htensor, but for V (4, 3, 2) the maximal dimension is 60,
which means we can pinpoint the 4× 4× 4 tensor up to a four-fold linear
space. This will be the focus of this section.

2. Is the dimension of V (n,m, k) sufficient for uniquely recovering the m− 1
individual collineations? How can we recover those collineations using the
tensor slices? For example, we saw that the two collineations A,B can
be recovered uniquely from H and also uniquely from J , even though J
cannot be uniquely recovered from the measurements. In other words, we
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recovered A,B from the four-dimensional linear space of solutions for J .
This generalization is an open area for future research.

3. What are the constraints contributed from a labeled k′ < k-dimensional
point? For example, we saw that the stationary points k′ = 1 for V (3, 3, 2)
contribute seven independent constraints, and ten independent constraints
for V (4, 3, 2). This is left open for future research.

4. What would be the dimension of the space covered by mixed observations,
i.e., from labeled k′ < k, and unlabeled points from k and k′ < k? For
example, we saw that the labeled stationary k′ = 1 points provide only
four new constraints, as three of the seven provided by labeled stationary
points constraints are included in the space of dimension V (3, 3, 1) covered
by unlabeled stationary points. This topic is left for future research.

We focus below on item 1 which is the dimension of V (n,m, k). The sim-
ple cases are dimV (n,m, 1) =

(
n+m−1

m

)
, because V (n,m, 1) = SymmV , and

dimV (n,m,m−1) = nm−
(

n
m

)
, which arises by naive introspection. For exam-

ple, dimV (3, 3, 2) = 26, which means that the Htensor requires 26 matching
triplets across three views of a dynamic planar configuration for a unique so-
lution (27 − 26 = 1), whereas if all the measurements arise from “stationary”
points then dimV (3, 3, 1) = 10. Likewise, dimV (4, 3, 2) = 60, which means
the Jtensors are spanned by 4 tensors (64− 60 = 4), and 60 matching triplets
of 3D points across changes of coordinate systems of a dynamic 3D confi-
guration are required for a solution, and if all the measurements arise from
stationary points then dimV (4, 3, 1) = 20.

We show next that the question of structure and dimension of the GL(V )
module V (n,m, k) can be generally solved by counting irreducibles using the
tools of representation theory [15]. The notation and a brief primer on repre-
sentation theory can be found in Sect. 11.8 The central result of this section
is proving that

V (n,m, k) =
⊕

λk+1=0

Sλ(V )⊕fλ ,

and, in particular,

dimV (n,m, k) =
∑

λk+1=0

fλ dimSλ(V ) ,

where λ is a partition of m, the direct sum is over all partitions with at most
k parts, fλ is the number of standard tableaux on λ and Sλ(V ) is Schur’s
module.

The mathematics of representation theory may be somewhat unfamiliar
as it is not yet in use in computer vision literature, yet it uncovers some
beautiful connections between the recent new efforts of extending the envelope
of structure from motion (SFM) theory and applications to nonrigid scenes
and the representations of finite groups and of GL(V ) on the m-fold tensor
product.
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11.5 The Structure of V (n, m, k)

We would like to prove the following claim:

Claim.
V (n,m, k) =

⊕
λk+1=0

Sλ(V )⊕fλ .

In particular,
dim V (n,m, k) =

∑
λk+1=0

fλsλ.

Proof. Suppose λ . m and λk+1 = 0. Let t be the tableau given by t(i, j) =∑i−1
l=1 λl + j. Noting that V (n, r, 1) = SymrV , it follows that

V ⊗m · at = Symλ1V ⊗ · · · ⊗ SymλkV,

= V (n, λ1, 1)⊗ · · · ⊗ V (n, λk, 1) ⊂ V (n,m, k) .

Therefore,

St(V ) = V ⊗m · aT · bT ⊂ V (n,m, k) · bT ⊂ V (n,m, k) ,

hence, ⊕
λk+1=0

Sλ(V )⊕fλ ⊂ V (n,m, k).

To show the other direction let (·, ·) be a Hermitian form on V , and let
the induced form on V ⊗m be given by

(u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm) =
m∏

i=1

(ui, vi) .

Note that

(u1 ∧ · · · ∧ um, v1 ⊗ · · · ⊗ vm) =
1
m!

(u1 ∧ · · · ∧ um, v1 ∧ · · · ∧ vm),

=
1
m!

det[(ui, vj)]mi,j=1 .

Let λ . m with λk+1 �= 0, then the conjugate partition µ = (µ1 ≥ µ2 ≥ . . . ≥
µt) satisfies µ1 ≥ k + 1. Let lj =

∑j
r=1 µr, and let t be the tableau given by

t(i, j) = lj−1 + i. Then

St(V ) = V ⊗m · at · bt ⊂ V ⊗m · bt,

= ∧µ1V ⊗ · · · ⊗ ∧µlV .

Suppose now that v1, . . . , vm ∈ V ⊗m satisfy dim Span{v1, . . . , vm} ≤ k. Then
v1 ∧ · · · ∧ vµ1 = 0; therefore for any u1, . . . , um ∈ V



11 Dynamic Alignment 371

((u1 ⊗ · · · ⊗ um) · bT , v1 ⊗ · · · ⊗ vm) =
l∏

r=1

1
µr!

⎛⎝ lr∧
i=lr−1+1

ui,

lr∧
i=lr−1+1

vi

⎞⎠ = 0 .

It follows that V (n,m, k) is orthogonal to⊕
λk+1 �=0

Sλ(V )⊕fλ .

Hence,
dimV (n,m, k) ≤ dim

⊕
λk+1=0

Sλ(V )⊕fλ .

This claim can be used to give explicit formulas for dim V (n,m, k) when
either k or m− k are small. In the latter case we write

dimV (n,m, k) = nm −
∑

λk+1 �=0

fλdλ(n),

and note that the partitions of m with λk+1 �= 0 correspond to all partitions
of all numbers up to m− k − 1.

Examples. To calculate dim V (n,m,m−1) note that only λ = (1m) must
be excluded; thus

f(1m) = 1 , d(1m)(n) =
(
n

m

)
,

hence,

dimV (n,m,m− 1) = nm −
(
n

m

)
.

To calculate dimV (n,m,m − 2) we must exclude, in addition to the above,
the partition (2, 1m−2); thus

f(2,1m−2) = m− 1 , d(2,1m−2)(n) = (m− 1)
(
n + 1
m

)
,

hence,

dim V (n,m,m− 2) = nm −
[(

n

m

)
+ (m− 1)2

(
n + 1
m

)]
.

To calculate dimV (n,m,m − 3) we must exclude, in addition to the above,
the partitions (3, 1m−3) and (22, 1m−4); thus

f(3,1m−3) =
(
m− 1

2

)
, d(3,1m−3)(n) =

(
m− 1

2

)(
n + 2
m

)

f(22,1m−4) =
m(m− 3)

2
,
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d(22,1m−4)(n) =
(m− 3)n

2

(
n + 1
m− 1

)
.

Hence,

dim V (n,m,m− 3) = nm −
[(

n

m

)
+ (m− 1)2

(
n + 1
m

)
+
(
m− 1

2

)2(
n + 2
m

)
+

m(m− 3)2n
4

(
n + 1
m− 1

)]
.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 11.6. a-c Three views of a planar scene with four remotes moving on straight
lines. d The first view with the points that were tracked across the sequence. These
points were used for computing the homography tensor H in a least-squares manner.
e Segmentation: the homography tensor was used to choose the stationary points.
Only the stationary points are shown. f Trajectory lines: the homography tensor
was used to calculate the trajectory lines. In this figure we see the trajectory lines
in the third image. g Reprojection: Using the homography tensor we reprojected
the points in view 1 to view 3. The reprojected points are shown as circles and the
tracked points as stars. h A zoom of the previous image
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11.6 Experiments and Applications

We start with an experiment for separating dynamic from stationary points
from a planar configuration. The projections of a planar configuration are
governed by collineations. The conventional way to separate the moving from
the stationary points is to treat the dynamic points as outliers and use ro-
bust estimation to recover the collineations [9]. Using homography tensors we
can treat the dynamic and stationary points alike and recover the governing
Htensor H instead.

The point configuration is illustrated in Fig. 11.6. The moving points were
part of four remote controls that were in motion while the camera changed
position from one view to the next. The points were tracked along the three
views, without knowledge of what was stationary and what was moving. The
triplet of matching points was fed into a least-square estimation for H. We
then checked the error of reprojection on the stationary points these were at
the subpixel level, as can be seen in Fig. 11.6h and the accuracy of the line
trajectory of the moving points. Because the moving points were clustered on
only four objects (the remote controls), then the accuracy was measured by
“eyeballing” the parallelism of the trajectories of all points within a moving
object. The lines are closely parallel, as can be seen in Fig. 11.6f. The Htensor
can also be used to segment the scene into stationary and moving points, as
shown in Fig. 11.6e.

To illustrate the use of the homography tensor J , consider the problem of
3D reconstruction of an object that extends beyond the field of view of the
sensor. For this purpose we can use a stereo rig that contains a texture pattern
projector for obtaining matching points on textureless areas of the object.
Because the field of view of the cameras does not cover the entire object, the
stereo rig must acquire images from multiple viewing positions. Each image
provides a 3D patch of the object, and the goal is to “stitch” these patches
together by aligning their coordinate systems. In other words, we must recover
the relative 3D motion of the rig. The problem is conventional if the texture
projection is stationary (i.e., remains in place while the rig changes position),
but here the projector moves with the rig. In this domain, the dynamic points
are the points arising from the projected texture, and the stationary points
arise from texture markings on the object’s surface. Hence, if the rig moves
in a piecewise straight-line path and the object is polyhedral, Htensor theory
is an appropriate tool for aligning the coordinate systems of the 3D patches.

Once the Htensor J are recovered, one can align the reconstructed patches
using two different approaches. The first approach is to align all the patches
to one coordinate frame using direct mapping (Sect. 11.3.2) or by recove-
ring the transformations A and B (Sect. 11.3.1). The second approach is to
first segment the tracked points into stationary and dynamic points. Then,
using only the stationary points, we can recover the collineation between the
coordinate frames A and B.
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(a) Left view, time 1 (b) Right view, time 1

(c) Left view, time 2 (d) Right view, time 2

(e) Left view, time 3 (f) Right view, time 3

Fig. 11.7. a-f A pair of views from a stereo rig taken at three time instants. The
rig is moving with the texture pattern. The scene therefore contains both stationary
and dynamic points
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We apply the Htensor to the scene with multiple objects shown in Fig.
11.7. Most of the objects are textureless, but there are stationary features
throughout the scene. A texture was projected, and 236 features were tracked
between the images in each stereo pair and across the three stereo pairs. The
feature set contains both stationary and dynamic points, see Fig. 11.8. It can
be seen from the last row of Fig. 11.9 that the correct motion was captured
because the stationary points were stabilized, whereas the dynamic points are
moving on straight-line paths. The last image shows the segmented stationary
points. Note that in our framework we use only projective reconstruction, and
we do not use any calibration. If Euclidean reconstruction is desired, a 4× 4
projective-to-Euclidean transformation can be applied later on.

(a) Left-hand image of first
pair

(b) Right-hand image of first
pair

(c) Tracked points, shown on
(a)

(d) Zoomed part of (c)

Fig. 11.8. a-d Application of the Htensor J to 3D reconstruction. Row 1 displays
two images from one stereo pair. The images show the projected texture. The stereo
rig and the projector are moved together at subsequent time instants (not shown).
Row 2 displays the tracked points. Some of the points are stationary features (phys-
ical objects) and some are from the projected texture
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(a) Stabilized points, shown on
Fig. 11.8.a

(b) Zoomed part of (a)

(c) Segmentation of mov-
ing/static points

Fig. 11.9. a-c Application of the Htensor J to 3D reconstruction. Row 1 displays
the points after the motion was canceled with the Htensor. Notice that points that
are stationary were stabilized, meaning that the Htensor captured the correct 3D
motion. Row 2 shows the stationary points, which were identified by the Htensor

11.7 Summary

In this chapter we have introduced the m-view analogue of the classical
collineation (homography matrix). The extension from 2 to m views intro-
duces an additional parameter k < n, which endows the individual points
of the point configuration that is being transformed projectively from view
to view with the ability to become “dynamic”. The value of k stands for the
dimension of the subspace in which the individual points are allowed to move
while the projective change of coordinates take place. For example, when k = 1
the points are not allowed to move (are stationary) just like with conventional
collineations, and when k = 2 the individual points are allowed to move along
straight-line paths, and so forth.
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The m-view tensors for Pn and for k < n, referred to as homography
tensors, were developed in detail for the case n = 3, 4 and the case k = 2, 1,
which are instances of practical value for applications. In the derivation of the
homography tensor the following issues need to be addressed: the maximal
space contributed by dynamic points of subdimension k, number of constraints
contributed by mixed points where some are labeled to move in k-subspace
and some are unlabeled, and the use of the homography tensor as a mapping
and the recovery of the individual projective mappings between views from
the elements of the tensor.

Those issues were covered in detail for n = 3, k = 2, 1 (the H tensor for
planar configurations) and for n = 4, k = 2, 1 (the J tensor for 3D configu-
rations). For general n,m, k we have covered only the first issue above, that
of dimension of the GL(V ) module V (n,m, k) associated with the question
of how many independent linear constraints are possible for a given value of
n,m, k.

As for applications, we presented two instances, in 2D and 3D, of the
problem of recovering the global alignment under dynamic motion. Without
homography tensors, a recovery of alignment requires the use of statistical
methods of sampling, where the points undergoing dynamic motion are con-
sidered as outliers. Whereas with the homography tensors both stationary and
moving points can be considered alike, and part of a global transformation
can be recovered analytically from observations (matching points across m
views).

Generally, the homography tensors can be used to recover linear models
under linear uncertainty. This generalization is quite straightforward, although
the size of the resulting tensors grows exponentially. The use of such tensors
in dimensions larger than P3 (n > 4) is not straightforward and is left for
further research.

11.8 Representation Theory Digest

In this section we briefly recall some relevant facts concerning the represen-
tation theory of the general linear group. For a thorough introduction see
[15].

Let V be a finite n-dimensional vector space over the complex numbers.
The collection of invertible n× n matrices is denoted by GL(n), which is the
group of automorphisms of V denoted by GL(V ). The vector space V ⊗m (m-
fold tensor product) is spanned by decomposable tensors of the form v1⊗· · ·⊗
vm, where the vectors vi are in V . Hence the dimension of V ⊗m is nm. The
vector space V ⊕m is the m-fold direct sum of V , and thus is of dimension nm.

The exterior powers ∧mV of V , n ≥ m, is the vector space spanned by
the m×m minors of the n×m matrix [v1, ..., vm], where the vectors vi are in
V . Hence the dimension of ∧mV is

(
n
m

)
. The exterior powers are the images

of the map V ×m → V ⊗m given by
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(v1, · · · , vm)→
∑

σ∈Sm

sgn(σ)vσ(1)⊗, · · · , vσ(m),

where Sm denotes the symmetric group (of permutations of m letters).
The symmetric powers SymmV are the images of the map V ×m → V ⊗m

given by
(v1, · · · , vm)→

∑
σ∈Sm

vσ(1)⊗, · · · , vσ(m).

Hence the vector space SymmV is of dimension
(
n+m−1

m

)
. Note that

V ⊗ V = Sym2V ⊕ ∧2V,

with the appropriate dimension: n2 =
(
n+1

2

)
+
(
n
2

)
. This decomposition into

irreducibles (see later) is not true for V ⊗m, m > 2. The remainder of this
section is devoted to the necessary notation for representing V ⊗m as a de-
composition of irreducibles.

A representation of a group G on a complex finite-dimensional space U is
a homomorphism G to GL(U), the group of linear automorphisms of U . The
action of g ∈ G on u ∈ U is denoted by g ·u. The G-module U is irreducible if it
contains no nontrivial G-invariant subspaces. Any finite-dimensional represen-
tation of a compact group G can be decomposed as a direct sum of irreducible
representations. This basic property, called complete reducibility, also holds for
all holomorphic representations of the general linear group GL(V ).

The main focus of Sect. 11.4 is the space

V (n,m, k) = Span{v1 ⊗ · · · ⊗ vm ∈ V ⊗m :
dim Span{v1, . . . , vm} ≤ k } .

Since V (n,m, k) is invariant under the GL(V ) action given by g·v1⊗· · ·⊗vm =
g(v1)⊗ · · ·⊗ g(vm), it is natural to study its structure by decomposing it into
irreducible GL(V )-modules.

The description of the finite-dimensional irreducible representations (ir-
reps) of GL(V ) depends on the combinatorics of partitions and Young dia-
grams, which we now describe. A partition of m is an ordered set λ =
(λ1, ..., λk) such that λ1 ≥ ... ≥ λk ≥ 1 and

∑
λi = m. A partition is repre-

sented by its Young diagram (also called shape), which consists of k left-aligned
rows of boxes with λi boxes in row i. The conjugate partition µ = (µ1, ..., µr)
to a partition λ is defined by interchanging rows and columns in the Young
diagram. Or, without reference to the diagram, µi is the number of terms in
λ that are greater than or equal to i.

An assignment of the numbers {1, ...,m} to each of the boxes of the dia-
gram of λ, one number to each box, is called a tableau. A tableau in which
all the rows and columns of the diagram are increasing is called a standard
tableau. We denote by fλ the number of standard tableaux on λ, i.e., the num-
ber of ways to fill the Young diagram of λ with the numbers from 1 to m, such
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that all rows and columns are increasing. Let (i, j) denote the coordinates of
the boxes of the diagram, where i = 1, .., k denotes the row number and j
denotes the column number, i.e., j = 1, ..., λi in the ith row. The hook length
hij of a box at position (i, j) in the diagram is the number of boxes directly
below plus the number of boxes to the right plus 1 (without reference to the
diagram, hij = λi + µj − i− j + 1). Then,

fλ =
m!∏

(i,j) hij
,

where the product of the hook lengths is over all boxes of the diagram. We
denote by dλ(n) the number of semistandard tablaeux , which is the number
of ways to fill the diagram with the numbers from 1 to n, such that all rows
are nondecreasing and all columns are increasing. We have:

dλ(n) =
∏
(i,j)

n− i + j

hij
.

Let Sm denote the symmetric group on {1, . . . ,m}. The group algebra CSm

is the algebra spanned by the elements of Sm

CG = {
∑

σ∈Sm

ασσ | ασ ∈ C},

where addition and multiplication are defined as follows:

α(
∑

σ∈Sm

ασσ) + β(
∑

σ∈Sm

βσσ) =
∑

σ∈Sm

(αασ + ββσ)σ,

and
(
∑

σ∈Sm

ασσ)(
∑

τ∈Sm

βττ) =
∑

g∈Sm

(
∑

g=στ

ασβτ )g,

for α, β, ασ, βσ ∈ C.
Let t be a tableau on λ (a numbering of the boxes of the diagram), and

let P (t) denote the group of all permutations σ ∈ Sm that permute only the
rows of t. Similarly, let Q(t) denote the group of permutations that preserve
the columns of t. Let at, bt be two elements in the group algebra CSm defined
as

at =
∑

g∈P (t)

g , bt =
∑

g∈Q(t)

sgn(g)g.

The group algebra CSm acts on V ⊗m on the right by permuting factors,
i.e., (v1 ⊗ · · · ⊗ vm) · σ = vσ(1) ⊗ · · · ⊗ vσ(m). For a general shape λ and a
tableau t on λ the image of at, V ⊗m · at, is the subspace:

V ⊗m · at = Symλ1V ⊗ · · · ⊗ SymλkV ⊂ V ⊗m,
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and the image of bt is

V ⊗m · bt = ∧µ1V ⊗ · · · ⊗ ∧µrV ⊂ V ⊗m,

where µ is the conjugate partition to λ. The Young symmetrizer is defined by
ct = at · bt ∈ CSm. The image of the Young symmetrizer

St(V ) = V ⊗m · ct,

is the Schur module associated with t and is an irreducible GL(V ) module.
The isomorphism type of St(V ) depends only on the shape λ, so we may write
St(V ) = Sλ(V ). It turns out that all the polynomial irreps of GL(V ) are of
the form Sλ(V ) for some m and a partition λ . m.

Let Tλ denote the set of standard tableaux on λ. Then the direct sum
decomposition of V ⊗m into irreducible GL(V ) modules is given by

V ⊗m =
⊕
λ�m

⊕
t∈Tλ

St(V ) ∼=
⊕
λ�m

Sλ(V )⊕fλ .

Since dλ(n) = dimSλ(V ), it follows that

dimV ⊗m = nm =
∑
λ�m

dλ(n)fλ.

For example, consider n = m = 3, i.e., V ⊗ V ⊗ V , where dim V = 3. There
are three possible partitions λ of 3: these are (3), (1, 1, 1) and (2, 1). From
the above, S(3)(V ) = Sym3V and S(1,1,1)V = ∧3V . There are two, f(2,1) =
2, standard tableaux for λ = (2, 1), and these are 123 and 132 (numbering
of boxes left to right and top to bottom). There are eight, d(2,1)(3) = 8,
semistandard tableaux, which are: 112, 113, 122, 123, 132, 133, 223 and 233.
We have the decomposition:

V ⊗ V ⊗ V = Sym3V ⊕ ∧3V ⊕ (S(2,1)V )⊕2,

with the appropriate dimensions: 27 = 10 + 1 + (8 + 8).
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12.1 Introduction

Motion segmentation is the problem of finding parts of the scene which pos-
sess independent 3D motion (such as people, animals or other objects like
vehicles). This process is conceptually straightforward if the camera is sta-
tionary, and is often referred to as background subtraction. However, if the
camera itself is also moving, then the problem becomes more complicated,
since the image motion is generated by the combined effects of camera mo-
tion, structure and the motion of the independently moving objects. Isolating
the contribution of each of these three factors is needed to solve the more ge-
neral independent motion problem, which involves motion segmentation (fin-
ding the moving objects) and also finding their 3D motion. In this chapter,
we shall restrict ourselves to the problem of finding moving objects only and
not worry about finding their 3D motion. In the beginning, we present our
philosophy that visual problems such as motion segmentation are inextricably
linked with other problems in vision, and must be approached with a com-
positional outlook which attempts to solve multiple problems simultaneously.
This is followed by a brief review of existing algorithms which detect indepen-
dently moving objects. The main body of this chapter presents our approach
to motion segmentation1 which classifies moving objects and demonstrates
that motion segmentation is compositional and is not about motion alone,
but can also utilize information from sources such as occlusions to detect a
wider array of moving objects.
1 This chapter is based on our paper which is due to appear in the IEEE Tran-

sactions on Pattern Analysis and Machine Intelligence [1]; portions from [1] have
been reprinted with permission ( c© 2004 IEEE). The support of the National
Science Foundation is gratefully acknowledged.
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Fig. 12.1. Compositional problems

12.2 A Compositional Viewpoint

Finding the independently moving objects in an image sequence involves sol-
ving a host of related problems. In Fig. 12.1, we attempt to give our viewpoint
about the relationships between the motion segmentation problem and other
problems. At the beginning, the image stream is described in terms of in-
tensity and/or color, and may be subjected to signal processing operations
using various localized filters which describe features such as edges or the
components of textures using spatial frequency channels. These local mea-
surements are aggregated within a global framework to compute quantities
such as optical flow (2D motion) and occlusions. Occlusions are parts of an
image frame which disappear in the next frame. If binocular input is present,
then disparity measurements and binocular occlusion information can also be
computed. Detection of depth edges is affected by evidence from optical flow,
binocular disparity and also monocular image measurements such as intensity
and texture; in turn, these edges influence the estimation of each of these
quantities.

Optical flow is used to compute egomotion (the motion of the camera),
detect independently moving objects, and recover the background depth map
concurrently. As we shall see, this process is often performed by finding clus-
ters with consistent 3D motion. Later, we also show that occlusions provide
information about ordinal scene structure which can be used to find new
types of moving objects. The depth map of the scene is influenced by struc-
ture estimates from motion, binocular disparity measurements (if present),
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and influences from monocular image measurements such as intensity (i.e.,
via shape from shading) and texture (i.e., via shape from texture). Overall,
the problem of motion segmentation requires a compositional solution which
utilizes the relationships between different modules to obtain better solutions.

12.3 Existing Approaches

Prior research can mostly be classified into two groups: (a) The approaches
relying, prior to 3D motion estimation, on 2D motion field measurements only
[2, 3, 4, 5]. The limitations of these techniques are well understood. Depth
discontinuities and independently moving objects both cause discontinuities
in the 2D optical flow, and it is not possible to separate these factors without
involving 3D motion estimation. (b) Approaches which assume that partial
or full information about egomotion is available or can be recovered. Adiv [6]
first segments on the basis of optical flow, and then groups the segments by
searching for agreeable 3D motion parameters. Zhang et al. [7] utilize rigidity
constraints on a sequence of stereo images to find egomotion and moving
objects. Thompson and Pong’s [8] first method finds inconsistencies between
the egomotion and the flow field by using the motion epipolar constraint, while
the second method relies on external depth information. Nelson [9] discusses
two approaches, the first of which is similar to Thompson and Pong, while the
second relies on acceleration detection. Sinclair [10] uses the angular velocity
field and the premise that independently moving objects violate the epipolar
constraint. Torr and Murray [11] find a set of fundamental matrices to describe
the observed correspondences by hypothesizing clusters using robust statistics.
Costeira and Kanade [12] use the factorization method along with a feature
grouping step (block diagonalization of the shape interaction matrix).

Some techniques, such as [13], which address both 3D motion estimation
and moving object detection, are based on alternate models of image forma-
tion, such as weak perspective. Such additional constraints can be justified for
domains such as aerial imagery. In this case, the planarity of the scene allows
a registration process [14, 15, 16, 17], and uncompensated regions correspond
to independent movement. This idea has been extended to cope with gene-
ral scenes by selecting models depending on the scene complexity [18], or by
fitting multiple planes using the plane plus parallax constraint [19, 20]. The
former [19] uses the best of 2D and 3D techniques, progressively increasing the
complexity based on the situation. The latter [20] also develops constraints on
the structure using three frames. Clearly, improvement in motion detection
can be gained using temporal integration. Yet questions related to the inte-
gration of 3D motion and scene structure are not yet well understood, as the
extension of the rigidity constraint to multiple frames is nontrivial. We there-
fore restrict ourselves to detecting moving objects using two or three frames
only.
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Fig. 12.2. Motion valley (red) visualized as an error surface in the 2D space of
directions of translation, represented by the surface of a sphere. The error is found
after finding the optimal rotation and structure for each translation direction. (Re-
produced from [1] with permission c© 2004 IEEE)

12.4 Ambiguity in 3D Motion Estimation

Many techniques detect independently moving objects based on 3D motion
estimates, either explicitly or implicitly. Some utilize inconsistencies between
egomotion estimates and the observed flow field, while some utilize additional
information such as depth from stereo, or partial egomotion from other sen-
sors. Nevertheless, the central problem faced by all motion-based techniques is
that, in general, it is extremely difficult to uniquely estimate 3D motion from
flow. Several studies have addressed the issue of noise sensitivity in structure
from motion. In particular, it is known that for a moving camera with a small
field of view observing a scene with insufficient depth variation, translation
and rotation are easily confused [21, 22]. This can be intuitively understood
by examining the differential flow equation:

u = −txf+xtz

Z + αxy
f − β

(
x2

f + f
)

+ γy,

v = −tyf+ytz

Z + α
(

y2

f + f
)
− β xy

f − γx
(12.1)

In the above equation, (u, v) is the optical flow, (tx, ty, tz) is the trans-
lation, (α, β, γ) is the rotation and Z(x, y) is the depth map. Notice that
for a planar scene, up to zeroth order, we have u ≈ −txf/Z − βf and
v ≈ −tyf/Z + αf . Intuitively, we see how translation along the x-axis tx
can be confused with rotation β along the y-axis, and ty with α for a small
field of view.

Maybank [23] and Heeger and Jepson [24] have also shown that if the
scene is sufficiently nonplanar, then the minima of the cost function resulting
from the epipolar constraint lie along a line in the space of translation di-
rections, which passes through the true translation direction and the viewing
direction. In [25], an algorithm-independent stability analysis of the structure
from motion problem has been carried out.

Thus, given a noisy flow field, any motion estimation technique will yield
a region of solutions in the space of translations instead of a unique solution;
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we refer to this region as the motion valley. Each translation direction in
the motion valley, along with its best corresponding rotation and structure
estimate, will agree with the observed noisy flow field. Fig. 12.2 shows a typical
error function obtained using the motion estimation technique of Brodsky et
al. [26] plotted on the 2D spherical surface of translational directions. Motion-
based clustering can only succeed if a scene entity has a motion which does not
lie in the background motion valley. In the following sections, we go beyond
motion-based clustering and present a classification of moving objects with
algorithms for detecting each class, laying particular emphasis on the role of
occlusions.

Class 1 Class 2 Class 3

Fig. 12.3. Toy examples of three classes of moving objects. In each case, the inde-
pendently moving object is red colored. Portions of objects which disappear in the
next frame (i.e., occlusions) are shown in a dashed texture. (Reproduced from [1]
with permission c© 2004 IEEE)

12.5 Types of Independently Moving Objects

We now discuss three distinct classes of independently moving objects; the
moving objects belonging to Class 1 can be detected using motion-based
clustering, the objects in Class 2 are detected by detecting conflicts between
depth from motion and ordinal depth from occlusions, and objects in Class 3
are detected by finding conflicts between depth from motion and depth from
another source (such as stereo). Any specific case will consist of a combination
of objects from these three classes. Fig. 12.3 shows illustrative examples of the
three classes.

12.5.1 Class 1: 3D Motion-Based Clustering

The first column of Fig. 12.3 shows a situation in which the background objects
(non-independently moving) are translating horizontally, while the red object
is moving vertically. In this scenario, motion-based clustering approaches will
be successful, since the motion of the red object is not contained in the motion
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valley of the background. Thus, Class 1 objects can be detected using mo-
tion alone. Our strategy for quickly performing motion-based clustering and
detecting Class 1 objects is discussed in Sect. 12.7.

12.5.2 Class 2: Ordinal Depth Conflict between Occlusions and
Structure from Motion

The second column of Fig. 12.3 shows a situation in which the background
objects are translating horizontally to the right, and the red object also moves
towards the right. In this scenario, motion estimation will not be sufficient
to detect the independently moving object, since motion estimation yields a
single valley of solutions. An additional constraint, which may be termed the
ordinal depth conflict or the occlusion-structure from motion (SFM) conflict
needs to be used to detect the moving object.

Notice the occluded areas in the figure: we can use our knowledge of these
occlusions to develop ordinal depth (i.e., front/back) relationships between
regions of the scene. In this example, the occlusions tell us that the red object
is behind the black object. However, if we compute structure from motion,
since the motion is predominantly a translation, the result would indicate
that the red object is in front of the black object (since the red object moves
faster). This conflict between ordinal depth from occlusions and structure
from motion permits the detection of Class 2 moving objects. In Sect. 12.8,
we present a novel algorithm for finding ordinal depth.

12.5.3 Class 3: Cardinal Depth Conflict

The third column of Fig. 12.3 shows a situation similar to the second column,
except that the black object which was in front of the red object has been re-
moved. Due to this situation, the ordinal depth conflict which helped us detect
the red object in the earlier scenario is no longer present. In order to detect
the moving object in this case, we must employ cardinal comparisons between
structure from motion and structure from another source (such as stereo) to
identify deviant regions as Class 3 moving objects. In our experiments, we
have used a calibrated stereo pair of cameras to detect objects of Class 3.
The calibration allows us to compare the depth from motion directly with the
depth from stereo up to a scale. We use k-means clustering (with k = 3) on
the depth ratios to detect the background (the largest cluster). The reason
for using k = 3 is to allow us to find three groups: the background, pixels
with depth ratio greater than the background, and pixels with depth ratio
less than the background. Pixels not belonging to the background cluster are
the Class 3 moving objects. At this point, it may be noted that alternative
methods exist in the literature (e.g., [7]) for performing motion segmentation
on stereo images, which can also be used to detect Class 3 moving objects.
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12.6 Phase Correlation

Before we move on to our approach for motion-based clustering, let us explain
a simple technique which allows us to recover a four-parameter transforma-
tion between a pair of images using phase correlation (see [27]). We use this
technique for initializing background motion estimation, and it may also be
used for stabilizing a jittery video.

Fig. 12.4. An example of a peak generated by the phase correlation method

12.6.1 Basic Process

Consider an image which is moving in its own plane, i.e., every point on the
image has the same flow. Thus, if the image I2(x, y) is such a translated
version of the original image I1(x, y), then we can use phase correlation to
recover the translation in the following manner.

If I2(x, y) = I1(x + tx, y + ty), then their Fourier transforms are related
by:

f2(ωx, ωy) = f1(ωx, ωy)e−i(ωxtx+ωyty) (12.2)

The phase correlation PC(x, y) of the two images is then given by:

PC(x, y) = F−1

[
f∗
1 · f2

|f∗
1 · f2|

]
= F−1

[
e−i(ωxtx+ωyty)

]
(12.3)

PC(x, y) = δ(x− tx, y − ty) (12.4)

where F−1 is the inverse Fourier transform, * denotes the complex con-
jugate and δ is the delta function. Thus, if we use phase correlation, we can
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recover this global image translation (tx, ty) since we get a peak at this posi-
tion (see example in Fig. 12.4).

12.6.2 Log-Polar Coordinates

The log-polar coordinate system (ρ, α) is related to the cartesian coordinates
(x, y) by the following transformation:

x = eρcos(α) (12.5)
y = eρsin(α) (12.6)

If the image is transformed into the log-polar coordinate system (see
Fig. 12.5), then changes in scale and rotation about the image center in the
cartesian coordinates are transformed into translations in the log-polar co-
ordinates. Hence, if we perform the phase correlation procedure mentioned
above in the log-polar domain, we can also recover the scale change s, and a
rotation about the center γ, between two images.

Fig. 12.5. An image in cartesian coordinates (left) and its log-polar representation
(right)

12.6.3 Four-Parameter Estimation

Given two images which are related by 2D translation, rotation about the
center and scaling, we can perform phase correlation in both the cartesian and
log-polar domains to compute a four-parameter transformation T between the
two images:

T =

⎡⎣ s · cos(γ) s · sin(γ) tx
−s · sin(γ) s · cos(γ) ty

0 0 1

⎤⎦ (12.7)
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In practice, initializing this process is tricky, since dominant 2D translation
will cause problems in the log-polar phase correlation by introducing many
large additional peaks, and, similarly, dominant scaling and rotation will cause
problems in the cartesian phase correlation.

To address this, we first perform phase correlation in both the cartesian
and log-polar representations on the original images. Then, for each of the
results, we find the ratio of the magnitude of the tallest peak to the overall
median peak amplitude. If this ratio is greater for the cartesian computation,
it means that translation is dominant over scaling and rotation, and must be
removed first. Then we can estimate scaling and rotation again on the cor-
rected images. Similarly, if the ratio is greater for the log-polar computation,
we perform the correction the other way around. This process can be iterated
a few times until the transformations converge.

Fig. 12.6. Top row shows two input images I1 and I2. Image I2 was created from
I1 by rotating by 5 degrees, scaling by a factor of 1.2, and translating by (−10, 20)
pixels. Bottom row: The left image shows image I ′

2 obtained by unwarping I2 using
the results of the phase correlation. The right-hand side shows the absolute intensity
difference between I1 and the unwarped image I ′

2 to reveal the accuracy of the
registration. Notice that the difference is nearly zero in the area of overlap
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12.6.4 Results

Fig. 12.6 shows the results on a pair of test images which are related by
significantly large values of translation, rotation and scaling. These results
can be improved to subpixel accuracy by using the method of Foroosh et
al. [28]. We have applied the method mentioned above to video sequences and
have achieved good stabilization over long durations, even in the presence of
independently moving objects.

12.7 Motion-Based Clustering

Motion-based clustering is in itself a difficult problem, since the process of
finding the background motion and finding the independently moving clusters
has to be performed concurrently. The problem is a chicken-and-egg problem:
if we knew the background pixels, we could find the background motion, and
vice versa. In Sect. 12.3, we have cited several novel approaches which find mo-
tion clusters by concurrently performing segmentation and motion estimation.
Here, we present a fast and simple method which consists of two steps.

The first step consists of using phase correlation on two frames in the
cartesian representation (to find 2D translation tx, ty), and in the log-polar
representation (to find scale S and z-rotation γ); we obtain a four-parameter
transformation between frames (see the previous section). Phase correlation
can be thought of as a voting approach [29], and hence we find empirically
that these four parameters depend primarily on the background motion even
in the presence of moving objects. This assumption is true as long as the back-
ground edges dominate the edges on the moving objects. This four-parameter
transform predicts a flow direction at every point in the image. We select a
set of points S in the image whose true flow direction lies within an angle
of η1 degrees about the direction predicted by phase correlation or its exact
opposite direction (we use η1 = 45◦) .

In the second step, optical flow values at the points in set S are used
to estimate the background motion valley using the 3D motion estimation
technique of Brodsky et al. [26]. Since all points in the valley predict similar
flows on the image (which is why the valley exists in the first place), we can
pick any solution in the valley and compare the reprojected flow with the true
flow. Regions where the two flows are not within η2 degrees of each other are
considered to be Class 1 independently moving objects (we use η2 = 45◦) .

This procedure allows us to find the background and Class 1 moving ob-
jects without iterative processes. The voting nature of phase correlation helps
us to get around the chicken-and-egg aspect of the problem. To find optical
flow, we can use any algorithm which finds dense flow (e.g., [30, 31]; we use
the former). Although we have not used occlusions here, it is worthwhile to
note that occlusions can be used to reduce the size of the motion valley.
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R1 R2

Occluded region

Fig. 12.7. If the occluded region belongs to R1, then R1 is behind R2, and vice
versa. (Reproduced from [1] with permission c© 2004 IEEE)

12.8 Ordinal Depth from Occlusion Filling Using Three
Frames

12.8.1 Why Occlusions Must Be Filled?

Given two frames from a video, occlusions are points in one frame which
have no corresponding point in the other frame. However, merely knowing the
occluded regions is not sufficient to deduce ordinal depth. In Fig. 12.7, we
show a situation where an occluded region O is surrounded by two regions R1

and R2 which are visible in both frames.
If the occluded region O belongs to region R1, then we know that R1 must

be behind R2, and vice versa.
This statement is extremely significant, since it holds true even when the

camera undergoes general motion, and even when we have independently mo-
ving objects in the scene! Thus, we need to know ‘who occluded what’ as
opposed to merely knowing ‘what was occluded’. Since optical flow estimation
provides us with a segmentation of the scene (regions of continuous flow),
we now have to assign flows to the occluded regions, and merge them with
existing segments to find ordinal depth.

12.8.2 Occlusion Filling (Rigid Scene, No Independently Moving
Objects)

In the absence of independently moving objects, knowledge of the focus of
expansion (FOE) or contraction (FOC) can be used to fill occluded regions.
Since camera rotation does not cause occlusions [32], knowing the FOE is
enough. In the simplest case, shown in Fig. 12.8a, where the camera translates
to the right, if object A is in front of object B then object A moves more to
the left than B, causing a part of B on the left of A to become occluded. Thus,
if the camera translates to the right, occluded parts in the first frame always
belong to segments on their left. For general egomotion: First, draw a line L
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from the FOE/FOC to an occluded pixel O. Then: (A) If we have an FOE
(see Fig. 12.8b), the flow at O is obtained using the flow at the nearest visible
pixel P on this line L, such that O lies between P and the FOE. (B) If we
have an FOC (see Fig. 12.8c), then fill in with the nearest pixel Q on line L,
such that Q lies between O and the FOC.

A

B

A

B

FOEO

P

FOEO

P

FOCO

Q

FOCO

QQ

Fig. 12.8. Occlusion filling: from left (a) to (c). Gray regions indicate occlusions
(portions which disappear in the next frame) (Reproduced from [1] with permission
c© 2004 IEEE)

12.8.3 Generalized Occlusion Filling (in the Presence of Moving
Objects)

In the presence of moving objects, even the knowledge of the FOE provides
little assistance for filling occlusions, since the occlusions no longer obey the
criteria presented above; a more general strategy must be devised. The sim-
plest idea which comes to mind is the following: if an occluded region O lies
between regions R1 and R2, then we can decide how to fill O based on its
similarity with R1 and R2. However, similarity is an ill-defined notion in ge-
neral, since it may mean similarity of gray value, color, texture or some other
feature. Using such measures of image similarity creates many failure modes.
We present below a novel and robust strategy utilizing optical flow alone (see
Fig. 12.9) for filling occlusions in the general case using three frames instead
of two.

Given three consecutive frames F1, F2, F3 of a video sequence, we use an
optical flow algorithm which finds dense flow and occlusions (e.g., [30, 31]; we
use the former) to compute the following:

1. Using F1 and F2, we find flow u12 from frame F1 to F2, and the reverse
flow u21 from frame F2 to F1. The algorithm also gives us occlusions O12

which are regions of frame F1 which are not visible in frame F2. Similarly,
we also have O21.

2. Using frames F2 and F3, we find u23 and u32, and O23 and O32.

Our objective is to fill the occlusions O21 and O23 in frame F2 to deduce
the ordinal depth. The idea is simple: O23 denotes areas of F2 which have
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F1 F2 F3

reverse flow x-component u(x)
21

Region which disappears in F3 is visible in F1 and F2

forward flow x-component u(x)
23

F1 F2 F2 F3

Use
segmentation

Use flow 
and occlusions

filled forward flow 
x-component u(x)

23

(c) Fill occlusions

(d) Infer ordinal depth
(green in front of red)

(b)

(a)

Fig. 12.9. Generalized occlusion filling and ordinal depth estimation. (a) Three
frames of a video sequence. The yellow region which is visible in F1 and F2 di-
sappears behind the tree in F3. (b) Forward and reverse flow (only the x-components
are shown). Occlusions are colored white. (c) Occlusions in u23 are filled using the
segmentation of u21. Note that the white areas have disappeared. (d) Deduce ordinal
depth relation. In a similar manner, we can also fill occlusions in u21 using the
segmentation of u23 to deduce ordinal depth relations for the right side of the tree.
(Reproduced from [1] with permission c© 2004 IEEE)
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no correspondence in F3. However, these areas were visible in both F1 and
F2; hence in u21 these areas have already been grouped with their neighboring
regions. Therefore, we can use the segmentation of flow u21 to fill the occluded
areas O23 in the flow field u23. Similarly, we can use the segmentation of u23

to fill the occluded areas O21 in the flow field u21. After filling, deducing
ordinal depth is straightforward: if an occlusion is bounded by R1 and R2,
and if R1 was used to fill it, then R1 is below R2. This method is able to fill
the occlusions and the find ordinal depth in a robust fashion.

12.9 Algorithm summary

1. Input video sequence: V = (F1, F2, ..., Fn)
2. For each Fi ∈ V do

a) find forward ui,i+1 and reverse ui,i−1 flows with occlusions Oi,i+1 and
Oi,i−1

b) select a set S of pixels using phase correlation between Fi and Fi+1

c) find background motion valley using the flows for pixels in S
d) detect Class 1 moving objects and background B1

e) find ordinal depth relations using results of step (a)
f) for pixels in B1, detect Class 2 moving objects, and new back-

ground B2

g) if depth from stereo is available, detect Class 3 objects present in B2

12.10 Experiments

Fig. 12.10 shows a situation in which the background is translating horizon-
tally, while a teabox is moved vertically. In this scenario, since the teabox is
not contained in the motion valley of the background, it is detected as a Class
1 moving object.

Fig. 12.11 shows three frames of a video in which the camera translates
horizontally, while a coffee mug is moved vertically upward, and a red Santa
Claus toy is moved horizontally parallel to the background motion. The coffee
mug is detected as a Class 1 moving object, while the red toy is detected
as a Class 2 moving object using the conflict between ordinal depth from
occlusions and structure from motion. A handwaving analysis indicates that
since the red toy is moving faster than the foreground boxes, structure from
motion (since the motion is predominantly a translation) naturally suggests
that the red toy is in front of the two boxes. But the occlusions clearly indicate
that the toy is behind the two boxes, thereby generating a conflict.

Finally, Fig. 12.12 shows a situation in which the background is translating
horizontally to the right, and the leopard is dragged horizontally towards the
right. In this case, a single motion valley is found, the depth estimates are
all positive, and no ordinal depth conflicts are present. (Although this case
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shows the simplest situation, we can also imagine the same situation as in
Fig. 12.11, with the exception that the red toy does not move fast enough so as
to appear in front of the two boxes and generate an occlusion-motion conflict.)
In this case, depth information from stereo (obtained using a calibrated stereo
pair of cameras) was compared with depth information from motion. k-means
clustering (with k = 3) of the depth ratios was used to detect the background
(the largest cluster). The pixels which did not belong to the background cluster
are labeled as Class 3 moving objects.

Occlusions
(white)

Background 
motion valley

(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 12.10. Class 1: (a,b,c) show three frames of the teabox sequence. (d,e) show X
and Y components of the optical flow using frames (b) and (c). Occlusions are colored
white. (f) shows the computed motion valley for the background. (g) shows the cosine
of the angular error between the reprojected flow (using the background motion)
and the true flow. (h) shows the detected Class 1 moving object (Reproduced from
[1] with permission c© 2004 IEEE)

12.11 Conclusion

In this chapter, we have discussed the motion segmentation problem within
a compositional framework. Moving objects were classified into three classes,
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(k) Class 2 objects

(a) F1

(d)       

(f)

(i)

(h)

(j)

(b) F2 (c) F3

(e)       

Fig. 12.11. (a,b,c) show three frames F1, F2, F3 of the santa-coffee sequence. The
camera translates horizontally to the left, hence the scene moves to the right. The
coffee mug is lifted up, and the red toy santa is pulled by a person (not seen) to
the right. (d) and (e) show optical flow u21 from frame F2 to F1, and u23 from
frame F2 to F3 respectively. Note that each flow is shown as two images, with the
X-component image above the Y -component image. Occlusions are colored white.
(f) shows the estimated background motion. (g) shows the coffee mug detected as
a Class 1 object. (h) shows the computed structure from motion (SFM) for the
background. Note that the toy santa appears in front of the two boxes. (i) and
(j) show two ordinal depth relations obtained from occlusions which tell us that the
santa (marked in red) is behind the boxes (marked in green). (k) shows the toy santa

detected as a Class 2 moving object using the ordinal depth conflict (Reproduced
from [1] with permission c© 2004 IEEE)
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Fig. 12.12. Class 3: (a,b,c) show three frames F1, F2, F3 of the leopardB sequence.
(d) shows the computed motion valley. (e,f) show X and Y components of the flow
u23 between F2 and F3. White regions denote occlusions. (g) shows inverse depth
from motion. (h) shows 3D structure from motion. (p,q) show rectified stereo pair
of images. (q) is the same as (b). (r) shows inverse depth from stereo. (s) shows
3D structure from stereo. Compare (s) with (h) to see how the background objects
appear closer to the leopard in (s) than in (h). (x) shows the histogram of depth
ratios and clusters detected by k-means (k = 3). (y) shows cluster labels: cluster 2
(yellow) is the background, cluster 3 (red) is the leopard, cluster 1 (light blue) is
mostly due to errors in the disparity and flow. (z) shows the moving objects of Class

3 (clusters other than 2) (Reproduced from [1] with permission c© 2004 IEEE)



400 Abhijit S. Ogale, Cornelia Fermüller, Yiannis Aloimonos

and constraints for detecting each class of objects were presented: Class 1 was
detected using motion alone, Class 2 was detected using conflicts between
ordinal depth from occlusions and depth from motion, while Class 3 required
cardinal comparisons between depth from motion and depth from another
source.
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13.1 Introduction

Fig. 13.1. Abstract rendering of the perception action cycle

In this chapter we make use of conformal Clifford geometric algebra for
dealing with the algebra of incidence and directed distance involving Euclidean
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transformations that are represented as spinors. Our mathematical approach
appears promising for the development of perception–action cycle systems
(see Fig. 13.1). This work represents an improvement over previous research
[1, 2, 3, 13] because by using conformal Clifford geometric algebra we are
now able to incorporate group transformations into our computations. Other
researchers have used Grassmann–Cayley algebra in computer vision [6] and
robotics [14]. While the Grassmann–Cayley approach can express the ideas
of projective geometry, such as meet and join, mathematically, it lacks an in-
ner (regressive) product (and, indeed, practitioners often go to great lengths
to “create” an inner product) as well as the ability to define some other key
concepts such as duality and projective split; thus, it cannot easily include
group transformations in its computations. Because of these limitations, we
believe a better approach is to use conformal geometric algebra for robotic vi-
sion applications. In this chapter we present: 3-D motion estimation, body-eye
calibration, 3-D reconstruction, omnidirectional vision, navigation, reaching
and 3-D object manipulation. This work introduces a suitable computational
framework for geometric computations, which, although illustrated for the
cases of stereo- and omnidirectional-guided robotics, can be also of great value
for applications using range data-, laser- and odometry-based systems.

The chapter is organized as follows: Sect. 2 presents a brief introduction to
geometric algebra; Sect. 3 explains conformal geometric algebra, and Sect. 4
explains the n-dimensional affine plane; Sect. 5 presents an estimation of 3-D
motion using points or lines as observations; Sect. 6 describes our method for
body-eye calibration; in Sect. 7 we present real applications of reconstruction,
navigation, reaching, and grasping; Sect. 8 illustrates strategies for object
manipulation; and, finally, Sect. 9 presents our conclusions.

In the text, vectors in 3-D Euclidean space will be represented in boldface
type using lowercase letters. Vectors of any geometric algebra (except for basis
multivectors) will be represented using lowercase letters, italics, and boldface
type, and multivectors in general will be denoted using italics and uppercase
letters.

13.2 Geometric Algebra: An Outline

The algebras of Clifford and Grassmann are well known to pure mathemati-
cians, but they were long ago abandoned by physicists in favor of the vector
algebra of Gibbs, which is still in common use today for most areas of physics.
The approach to Clifford algebra we adopt here was pioneered in the 1960s
by David Hestenes [8], who has since further developed his version of Clifford
algebra into a unifying language for both mathematics and physics. Here, we
will refer to Clifford algebra as geometric algebra [9, 1]. This mathematical
system includes also the antisymmetrical Grassmann–Cayley algebra.
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13.2.1 Basic Definitions

Let Gn denote a geometric algebra of n dimensions–that is, a graded linear
space. In addition to vector addition and scalar multiplication there is a non-
commutative product that is associative and distributive over addition: this is
the geometric or Clifford product. A further distinguishing feature of this type
of algebra is that the square of any vector is a scalar. The geometric product
of two vectors a and b is written ab and can be expressed as the sum of the
vectors’ symmetric and antisymmetric parts,

ab = a·b + a∧b. (13.1)

Using this definition, we can express the inner product a·b and the outer
product a∧b in terms of the noncommutative geometric products,

a·b =
1
2
(a·b + a∧b + a·b− a∧b) =

1
2
(ab + ba),

a∧b =
1
2
(a·b + a∧b− a·b + a∧b) =

1
2
(ab− ba). (13.2)

The inner product of two vectors is the standard scalar or dot product and
produces a scalar. The outer or wedge product of two vectors is a new quantity,
which we call a bivector. We think of a bivector as an oriented area in the plane
containing a and b formed by sweeping a along b (see Fig. 13.2a). Thus, b∧a
will have an opposite orientation, making the wedge product anticommutative,
as given in Eq. (13.2). The outer product is immediately generalizable to

a

b

^B= a b

a

b

c

^T= a b c^

Fig. 13.2. (a) (left) The directed area, or bivector, a∧b; (b) (right) the oriented
volume, or trivector, a∧b∧c

higher dimensions: for example, (a∧b)∧c, a trivector, is interpreted as the
oriented volume formed by sweeping the area a∧b along vector c. In Fig.
13.2b it can be seen that the outer product of k vectors is a k-vector, or
k-blade, and that such a quantity is said to have grade k. A multivector (a
linear combination of objects of different types) is homogeneous if it only
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contains terms of the same grade. Geometric algebra provides a means for
manipulating multivectors which allows us to keep track of different grade
objects simultaneously–much as one does with complex number operations.

13.2.2 Geometric Algebra of n-D Space

In an n-dimensional space we can introduce an orthonormal basis of vectors
{σi}, i = 1, ..., n, such that σi ·σj = δij . This leads to a basis for the entire
algebra:

1, {σi}, {σi∧σj}, {σi∧σj∧σk}, ... , I = σ1∧σ2∧. . .∧σn.(13.3)

Note that the basis vectors are not represented using boldface type. Any
multivector can be expressed in terms of this basis. In this chapter, we specify
a geometric algebra Gn of the n-dimensional space by the expression Gp,q,r ,
where p, q, and r stand for the number of basis vectors which square to 1,
−1 and 0, respectively, and fulfill the condition n = p+ q + r. If a subalgebra
is generated only by a multivector basis of even grade, it is called an even
subalgebra and is denoted by G+

p,q,r .
In the n-D space there are multivectors of grade 0 (scalars), grade 1 (vec-

tors), grade 2 (bivectors), grade 3 (trivectors), etc., ... up to grade n. The
blade of grade n σ1∧σ2∧ . . . ∧σn is called the unit pseudoscalar, which will
denoted by In . Its magnitude is 1 and its square defines the signature of the
geometric algebra Gn. It is non-degenerated if its pseudoscalar has a non-zero
magnitude.

A fundamental concept algebraically related to the unit pseudoscalar I is
that of duality. In a geometric algebra Gn we find dual multivectors and dual
operations. The dual of a multivector A ∈ Gn is defined as follows:

A∗ = AI−1
n , (13.4)

where I−1
n differs from In at most by a sign. Note that, in general, I−1 might

not necessarily commute with A.
The multivector bases of a geometric algebra Gn have 2n basis elements.

It can be shown that the second half is the dual of the first half. For example,
in G3 the dual of the scalar is the pseudoscalar, and the dual of a vector is a
bivector σ23 = Iσ1. In general, the dual of an r-blade is an (n− r)-blade.

The operations related directly to the Clifford product are the inner and
outer products, which are dual to one another. This can be written as follows:

(x ·A)In = x∧(AIn), (13.5)
(x∧A)In = x · (AIn). (13.6)

where x is any vector and A any multivector.
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By using the ideas of duality, we are then able to relate the inner product
to incidence operators in the following manner. In an n-D space, suppose
we have an r-vector A and an s-vector B where the dual of B is given by
B∗ = BI−1 ≡ B ·I−1. Since BI−1 = B ·I−1 + B∧I−1, we can replace the
geometric product by the inner product alone (in this case, the outer product
equals zero, and there can be no (n + 1)-D vector). Now, using the identity

Ar ·(Bs ·Ct) = (Ar∧Bs)·Ct for r + s ≤ t, (13.7)

we can write

A·(BI−1) = A·(B ·I−1) = (A∧B)·I−1 = (A∧B)I−1. (13.8)

This expression can be rewritten using the definition of the dual as follows:

A·B∗ = (A∧B)∗. (13.9)

The equation shows the relationship between the inner and outer products in
terms of the duality operator. Now, if r + s = n, then A∧B is of grade n
and is therefore a pseudoscalar. Using Eq. (13.8), we can employ the involved
pseudoscalar in order to get an expression in terms of a bracket:

A·B∗ = (A∧B)∗ = (A∧B)I−1 = ([A∧B]I)I−1

= [A∧B]. (13.10)

We see, therefore, that the bracket relates the inner and outer products to
nonmetric quantities.

When we work with lines, planes, and spheres, however, it will clearly be
necessary to employ operations for computing the meets (intersections) or
joins (expansions) of geometric objects. For this, we will need a geometric
means of performing the set-theory operations of intersection, ∩, and union,
∪. Herewith, ∪ and ∩ will stand for the algebra of incidence operations of join
and meet, respectively.

If in an n-dimensional geometric algebra the r-vector A and the s-vector
B do not have a common subspace (null intersection), one can define the join
of both vectors as

C = A ∪B = A∧B, (13.11)

so that the join is simply the outer product (an r+s vector) of the two vectors.
However, if A and B have common blades, the join would not simply be given
by the wedge but by the subspace the two vectors span. The operation join ∪
can be interpreted as a common dividend of lowest grade and is defined up to
a scale factor. The join gives the pseudoscalar if (r + s) ≥ n. We will use ∪ to
represent the join only when the blades A and B have a common subspace;
otherwise, we will use the ordinary exterior product,∧ , to represent the join.
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If there exists a k-vector D such that for A and B we can write A = A′D
and B = B′D for some A′ and B′, then we can define the intersection or
meet using the duality principle as follows

D ·I−1 = D∗ = (A ∩B)∗ = A∗ ∪B∗. (13.12)

This is a beautiful result, telling us that the dual of the meet is given by the
join of the duals. Since the dual of A ∩B will be taken with respect to the
join of A and B, we must be careful to specify which space we will use for
the dual in Eq. (13.12). However, in most cases of practical interest, this join
will indeed cover the entire space, and therefore we will be able to obtain a
more useful expression for the meet using Eq. (13.9). Thus,

A ∩B = ((A ∩B)∗)∗ = (A∗ ∪B∗)I = (A∗∧B∗)(I−1I)I = (A∗ ·B).
(13.13)

The above concepts are discussed further in [11].
Let us now analyze a geometric product involving any of two kinds of mul-

tivectors. Consider two multivectors Ar and Bs of grades r and s, respectively.
The geometric product of Ar and Bs can be written as

ArBs = 〈AB〉r+s + 〈AB〉r+s−2 + . . . + 〈AB〉|r−s|, (13.14)

where 〈M〉t denotes the t-grade part of multivector M . An example is the
geometric product of two vectors: ab = 〈ab〉0 + 〈ab〉2 = a · b + a ∧ b.

Another simple illustration is the geometric product of A = 5σ3 + 3σ1σ2

and b = 9σ2 + 7σ3:

Ab = 35(σ3)2 + 27σ1(σ2)2 + 45σ3σ2 + 21σ1σ2σ3

= 35 + 27σ1 − 45σ2σ3 + 21I. (13.15)

Note here that for σiσi = (σi)2 = σi · σi=1 and σiσj = σi∧σj the geometric
product of equal unit basis vectors equals 1 and the product of different unit
bases is equal to their wedge, which for simple notation can be omitted.

Let us now focus on the general definition of the inner product between
the r blades Ar = a1∧a2∧...ar and Bs = b1∧b2∧...bs. The inner product
can be defined recursively as follows:

Ar ·Bs =
{ ((a1∧a2∧...ar) · b1) · (b2∧b3∧...bs) if r ≥ s

(a1∧a2∧...ar−1) · (ar(b1∧b2∧...bs)) if r < s,
(13.16)

where

(a1∧a2∧...ar) · b1 =
r∑

i=1

(−1)r−i
a1∧a2∧...ai−1∧(ai · b1)∧ai+1∧...ar,

(13.17)
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and

ar · (b1∧b2∧...bs) =
s∑

i=1

(−1)i−1
b1∧b2∧...bi−1∧(ar · bi)∧bi+1∧...∧bs.

(13.18)

From Eq. (13.14) and Eq. (13.16), we can express the interior and exterior
products for the multivectors as

Ar ·Bs = 〈ArBs〉|r−s|, (13.19)

and

Ar ∧Bs = 〈ArBs〉r+s. (13.20)

We illustrate the use of these equations with the following examples

a · (b∧c) = (a · b)c − (a · c)b. (13.21)

Given ar = a1 and Bs = b1∧b2∧b3∧b4

ar ·Bs = a1 · (b1∧b2∧b3∧b4) =
n∑

k=1

(−1)k+1(b1∧...(a1 · bk)...b4)

= (a1 · b1)(b2∧b3∧b4)− (a1 · b2)(b1∧b3∧b4)
+(a1 · b3)(b1∧b2∧b4)− (a1 · b4)(b1∧b2∧b3), (13.22)

and, given Ar = a1∧a2∧a3 and Bs = b1∧b2,

Ar ·Bs = (a1∧a2∧a3) · (b1∧b2)
= [(a1∧a2∧a3) · b1] · b2

= [a1∧a2(a3 · b1)− a1∧a3(a2 · b1) + a2∧a3(a1 · b1)] · b2

= (a3 · b1)[a1∧a2 · b2]− (a2 · b1)[a1∧a3 · b2] + (a1 · b1)[a2∧a3 · b2]
= (a3 · b1)[a1(a2 · b2)− a2(a1 · b2)]− (a2 · b1)[a1(a3 · b2)

−a3(a1 · b2)] + (a1 · b1)[a2(a3 · b2)− a3(a2 · b2)]
= [(a3 · b1)(a2 · b2)− (a2 · b1)(a3 · b2)]a1

+[(a1 · b1)(a3 · b2)− (a3 · b1)(a1 · b2)]a2

+[(a2 · b1)(a1 · b2)− (a1 · b1)(a2 · b2)]a3

= α1a1 + α2a2 + α3a3, (13.23)

we get a new point which represents the intersection of the plane Ar = a1∧
a2∧a3 and the line Bs = b1∧b2. It is expressed as a linear combination of
a1, a2, a3 or the points expanding the plane Ar.

Finally, for an r-grade multivector Ar =
∑r

i=0〈Ar〉i, the following opera-
tions are defined:
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Grade Involution: Âr =
r∑

i=0

(−1)i〈Ar〉i, (13.24)

Reversion: Ãr =
r∑

i=0

(−1)
i(i−1)

2 〈Ar〉i, (13.25)

Clifford Conjugation: Ar = ˜̂
Ar =

r∑
i=0

(−1)
i(i+1)

2 〈Ar〉i. (13.26)

The grade involution simply negates the odd-grade blades of a multivector.
The reversion can also be obtained by reversing the order of basis vectors
making up the blades in a multivector and then rearranging them to their
original order using the anticommutativity of the Clifford product. The Clif-
ford conjugation can be used to compute the inverse of a vector a as

a−1 =
ā

aā
. (13.27)

This formula for the inverse can also be applied for homogeneous multivectors
but cannot be used for all multivectors in general.

13.2.3 Geometric Algebra of 3-D Space

The basis for the geometric algebra G3,0,0 of 3-D space has 23 = 8 elements
and is given by

1︸︷︷︸
scalar

, {σ1, σ2, σ3}︸ ︷︷ ︸
vectors

, {σ1σ2, σ2σ3, σ3σ1}︸ ︷︷ ︸
bivectors

, {σ1σ2σ3} ≡ I︸ ︷︷ ︸
trivector

. (13.28)

It can easily be verified that the trivector or pseudoscalar σ1σ2σ3 squares to
−1 and commutes with all multivectors in the 3-D space. We therefore give
it the symbol I, noting that this is not the uninterpreted commutative scalar
imaginary j used in quantum mechanics and engineering.

Multiplication of the three basis vectors σ1, σ2, and σ3 by I results in
the three basis bivectors σ1σ2 = Iσ3 , σ2σ3 = Iσ1, and σ3σ1 = Iσ2. These
simple bivectors rotate vectors in their own plane by 90◦–e.g., (σ1σ2)σ2 = σ1,
(σ2σ3)σ2 = −σ3, etc. By identifying the i, j, k of the quaternion algebra with
Iσ1,−Iσ2, Iσ3, the famous Hamilton relations i2 = j2 = k2 = ijk = −1
can be recovered. Since the i, j,k are bivectors, it comes as no surprise that
they represent 90◦ rotations in orthogonal directions and that they provide a
well-suited system for the representation of general 3-D rotations.

In geometric algebra a rotor (short name for rotator), R, is an even-grade
element of the algebra which satisfies the expression RR̃ = 1, where R̃ stands
for the conjugate of R.
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If A = {a0, a1, a2, a3} ∈ G3,0,0 represents a unit quaternion, then the rotor
which performs the same rotation is simply given by

R = a0︸︷︷︸
scalar

+ a1(Iσ1)− a2(Iσ2) + a3(Iσ3)︸ ︷︷ ︸
bivectors

= a0 + a1σ2σ3 − a2σ3σ1 + a3σ3σ1. (13.29)

The quaternion algebra is therefore seen to be a subset of the geometric algebra
of 3-D space. The conjugate of the rotor is computed as follows:

R̃ = a0 − a1σ2σ3 + a2σ3σ1 − a3σ3σ1. (13.30)

The transformation in terms of a rotor a �→ RaR̃ = b is a very general way
of handling rotations; this works for multivectors of any grade and in spaces
of any dimension, in contrast to quaternion calculus. Rotors combine in a
straightforward manner, i.e., a rotor R1 followed by a rotor R2 is equivalent
to a total rotor R, where R = R2R1.

13.3 Conformal Geometry

The geometric algebra of 3D Euclidean space G3,0,0 has a point basis and the
motor algebra G3,0,1 a line basis. In the latter the lines expressed in terms of
Plücker coordinates can be used to represent points and planes as well [4, 5].
The reader can find a comparison of representations of points, lines and planes
using G3,0,1 and G3,0,1 in [4].

Interesting enough in the case of the conformal geometric algebra we find
that the unit element is the sphere which allows us to represent the other
geometric primitives in its terms. To see how this is possible, we follow the
same formulation presented in [10] and show how the Euclidean vector space
Rn is represented in Rn+1,1. This space has an orthonormal vector basis given
by {e1, ..., en, e+, e−}, with the properties

e2
i = 1, i = 1..., n; (13.31)

e2
± = ±1; (13.32)

ei · e+ = ei · e− = e+ · e− = 0, i = 1, ..., n. (13.33)

Note that this basis is not written in bold.
A null basis {e0, e∞} can be introduced by

e0 =
(e− − e+)

2
, (13.34)

e∞ = e− + e+, (13.35)
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with the properties

e2
0 = e2

∞ = 0, e∞ · e0 = −1. (13.36)

e0 and e∞ are the origin and the point at infinity. A unit pseudoscalar E ∈
R

1,1, which represents the Minkowski plane, is defined by

E = e∞ ∧ e0 = e+ ∧ e− = e+e−, (13.37)

having the properties

E2 = 1, Ẽ = −E, (13.38)
Ee± = e∓ = −e±, (13.39)
Ee∞ = −e∞E = −e∞, Ee0 = −e0E = e0 (absorption), (13.40)

1−E = −e∞e0, 1 + E = −e0e∞. (13.41)

The dual of E is given by

E∗ = EI−1 = −EĨ , (13.42)

where I is the pseudoscalar for R
n+1,1.

Euclidean points xe ∈ Rn can be represented in Rn+1,1 in a general way,
as

xc = xe + αe0 + βe∞, (13.43)

where α and β are arbitrary scalars. A conformal point xc ∈ Rn+1,1 can be
divided into its Euclidean and conformal parts by an operation called the con-
formal split . This split is defined by the projection operators PE (projection)
and P⊥

E (rejection) as follows:

PE(xc) = (xc ·E)E = αe0 + βe∞ ∈ R
1,1, (13.44)

P⊥
E (xc) = (xc ·E∗)Ẽ∗ = (xc ∧E)E = xe ∈ R

n. (13.45)
xc = PE(xc) + P⊥

E (xc). (13.46)

The names “projection” and “rejection” stem from the geometrical meaning
of these operators. The first returns the component of xc which is parallel to
E by a projection (dot product). The latter produces the component of xc

which is orthogonal to E, hence the name (see Fig. 13.3).
To improve our model, we would like to use homogeneous coordinates, as

in the case of projective geometry. In homogeneous coordinates, all points are
equal up to a scale factor. Therefore, we need to define some way to fix the
scale of the points. A point xc ∈ Rn+1,1 is normalized or expressed in standard
form when
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Fig. 13.3. (a) The projection and rejection of vector xc ∈ R
2,1 from the E plane.

The operators are illustrated for the case of 1-D. (b) Horosphere of R2 with triangles
of the 2-D affine plane projected into the horosphere

xc · e∞ = −1. (13.47)

Now, recall that a hyperplane P(n,a) ∈ Rn+1,1 with normal n and passing
through the point a is the solution to the equation

n · (x− a) = 0, x ∈ R
n+1,1. (13.48)

The normalization condition xc · e∞ = e∞ · e0 = −1 is equivalent to the
equation

e∞ · (xc − e0) = 0, (13.49)

which is the equation of a hyperplane P(e∞, e0). Thus, the normalization con-
dition of Eq. (13.47) constrains the points xc to lie in a hyperplane passing
though e0 with normal e∞. Equation (13.47) fixes scale; however, for the con-
formal model, another constraint is needed to fix xc as a unique representation
of xe ∈ Rn.

To complete the definition of generalized homogeneous coordinates for
points in Rn+1,1, the last constraint is that x2

c = 0. The set Nn+1 of vec-
tors that square to zero is called the null cone. Therefore, conformal points
are required to lie in the intersection of the null cone Nn+1 with the hyperplane
P(e∞, e0). The resulting surface Nn

e is called the horosphere:

N
n
e = N

n+1 ∩ P(e∞, e0) = {xc ∈ R
n+1,1|x2

c = 0,xc · e∞ = −1}. (13.50)

These two constraints finally define the mapping from Euclidean space to
conformal space. To see how this mapping is obtained, first we see that any
point xc = xe +αe0 + βe∞ ∈ Nn

e can be expressed as xc = xe + k1e+ + k2e−,
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for some scalars k1, k2, since e0 and e∞ are linear combinations of the basis
vectors e+ and e−. Then, by applying the conformal split to xc we get

xc = xcE
2 = (xc ∧E + xc ·E)E = (xc ∧E)E + (xc ·E)E, (13.51)

since E2 = 1. Now, recall that (xc ∧ E)E = xe is the rejection (see Eq.
(13.46)). The expression (xc ·E)E can be expanded as

(xc ·E)E = (xc · (e∞ ∧ e0))E = e0 + (k1 + k2)e∞. (13.52)

Now, applying the condition that x2
c = 0, we find from Eq. (13.51) that

x2
c = ((xc ∧E)E + (xc ·E)E)2,
0 = (xe + e0 + (k1 + k2)e∞)2 = x2

e − (k1 + k2),
x2

e = (k1 + k2). (13.53)

Finally, using Eq. (13.51), and substituting Eq. (13.53) into Eq. (13.52), we
get

xc = (xc ∧E)E + (xc ·E)E = xe + e0 +
1
2
(k1 + k2)e∞ = xe +

1
2
x2

ee∞ + e0.

(13.54)
An illustration of the null cone, the hyperplane, and the horosphere can be
seen in Fig. 13.4a.

e

e0
Horosphere

e1

e+

e-

Null�Cone

Hyperplane

-
-

-

e+

e1

xe0

xc

1

Fig. 13.4. (a) (left) The null cone (dotted lines), the hyperplane P + (e∞, e0), and
the horosphere for 1-D. Note that even though the normal of the hyperplane is e∞,
the plane is actually geometrically parallel to this vector. (b) (right) Stereographic
projection for 1-D

We can gain further insight into the geometrical meaning of the null vectors
by analyzing Eq. (13.54). For instance, by setting xe = 0, we find that e0
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represents the origin of Rn (hence the name). Similarly, dividing this equation
by xc · e0 = − 1

2x
2
e gives

xc

xc · e0
= − 2

x2
e

(xe +
1
2
x2

ee∞ + e0) = −2x2
e

x2
e

(
1
xe

+
1
2
e∞ +

e0

x2
e

)

= −2(
1
xe

+
1
2
e∞ +

e0

x2
e

) −→
xe→∞

e∞. (13.55)

Thus, we conclude that e∞ represents the point at infinity.

13.3.1 Stereographic Projection

Conformal geometry is equivalent to stereographic projection in Euclidean
space. Generally speaking, a stereographic projection is a mapping, taking
points lying on a hypersphere to points lying on a hyperplane and following
a simple geometric construction. It is well known that this projection is used
in cartography to make maps of the earth. In that case, the projection plane
passes through the equator and the sphere is centered at the origin. To make
a projection, a line is drawn from the North Pole to each point on the sphere,
and the intersection of this line with the projection plane constitutes the
stereographic projection.

Next, we will illustrate the equivalence between stereographic projection
and conformal geometric algebra in R1. We will be working in R2,1, with the
basis vectors {e1, e+, e−} having the usual properties. The projection plane
will be the x-axis, and the sphere will be a circle centered at the origin with
unitary radius.

Given a scalar xe representing a point on the x-axis, we wish to find the
point xc lying on the circle that projects to it (see Fig. 13.4b). The equation
of the line passing through the north pole and xe is given by f(x) = − 1

xe
x+1.

The equation of the circle is x2 + f(x)2 = 1. Substituting the equation of the
line on the circle, we get x2 − 2xxe + x2x2

e = 0, which has the two solutions
x = 0, x = 2 xe

x2
e+1 . Only the latter solution is meaningful. Substituting

in the equation of the line, we get f(x) = x2
e−1

x2
e+1 . Hence, xc has coordinates

xc =
(
2 xe

x2
e+1 ,

x2
e−1

x2
e+1

)
, which can be represented in homogeneous coordinates

as the vector

xc = 2
xe

x2
e + 1

e1 +
x2

e − 1
x2

e + 1
e+ + e−. (13.56)

If we take the limits to Eq. (13.56), we get the expected points at infinity
and the origin of Rn

lim
xe→∞

xc = e+ + e− = e∞, (13.57)

lim
xe→0

xc

2
=

e− − e+

2
= e0.
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This result is a first confirmation that stereographic projection is equiva-
lent to a conformal mapping given by Eq. (13.54). For a second proof we note
that Eq. (13.56) can be rewritten as

xc = 2
xe

x2
e + 1

e1 +
x2

e − 1
x2

e + 1
e+ + e−

=
2

x2
e + 1

(
xee1 +

1
2
(x2

e − 1)e+ +
1
2
(x2

e + 1)e−

)
. (13.58)

Dividing by the scale factor 2
x2

e+1 in order to achieve the constraint imposed
by Eq. (13.47), xc · e∞ = −1, we arrive at

xc = xee1 + (x2
e − 1)e+ + (x2

e + 1)e− = xee1 +
1
2
x2

ee∞ + e0,

= xe +
1
2
x2

ee∞ + e0, (13.59)

where xe = xee1, which is precisely Eq. (13.54). Hence, we have demonstrated
that conformal geometric algebra is projectively equivalent to a stereographic
projection (i.e., up to a scale factor).

13.3.2 Spheres and Planes

The equation of a sphere of radius ρ centered at point pe ∈ Rn can be written
as

(xe − pe)2 = ρ2. (13.60)

Since xc · yc = − 1
2 (xe − ye)2, we can rewrite the formula above in terms of

homogeneous coordinates as

xc · pc = −1
2
ρ2. (13.61)

Since xc · e∞ = −1, we can factor the expression above to

xc · (pc −
1
2
ρ2e∞) = 0. (13.62)

This equation then yields the simplified equation for the sphere as

xc · s = 0, (13.63)

where

s = pc −
1
2
ρ2e∞ = pe + e0 +

p2
e − ρ2

2
e∞ (13.64)
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is the equation of the sphere (note from this equation that a point is just a
sphere with zero radius). The vector s has the properties

s2 = ρ2 > 0, (13.65)
e∞ · s = −1. (13.66)

From these properties, we conclude that the sphere s is a point lying on
the hyperplane but outside the null cone. In particular, all points on the
hyperplane outside the horosphere determine spheres with positive radius,
points lying on the horosphere define spheres of zero radius (i.e., points), and
points lying inside the horosphere have imaginary radius. Finally, note that
spheres of the same radius form a surface which is parallel to the horosphere.

The radius and center of a sphere can be recovered from s using Eq. (13.65)
and Eq. (13.66), as

ρ2 =
s2

(s · e∞)2
, and (13.67)

pc =
s

−(s · e∞)
+

1
2
ρ2e∞. (13.68)

With the normalization s · e∞ = −1, each sphere is represented by a unique
vector and the set {xc ∈ Rn+1,1|xc · s > 0} represents the interior of the
sphere.

Alternatively, spheres can be dualized and represented as (n + 1)-vectors
s∗ = sI−1. Since

Ĩ = (−1)
1
2 (n+2)(n+1)I = −I−1, (13.69)

we can express the constraints of Eqs. (13.65) and (13.66) as

s2 = −s̃∗s∗ = ρ2,

e∞ · s = e∞ · (s∗I) = (e∞ ∧ s∗)I = −1. (13.70)

The equation for the sphere now becomes

xc ∧ s∗ = 0. (13.71)

The advantage of the dual form is that the sphere can be directly computed
from four points (in 3-D) as

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (13.72)

If we replace one of these points for the point at infinity, we get

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (13.73)
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Developing the products, we get

xc1 ∧ xc2 =
(
xe1 +

1
2
x2

e1
e∞ + e0

)
∧
(
xe2 +

1
2
x2

e2
e∞ + e0

)
,

= xe1 ∧ xe2 +
1
2
(x2

e2
xe1 − x2

e1
xe2) ∧ e∞

+(xe1 − xe2 ) ∧ e0 +
1
2
(x2

e1
− x2

e2
)E, (13.74)

xc1 ∧ xc2 ∧ e∞ = xe1 ∧ xe2 ∧ e∞ − (xe1 − xe2 ) ∧E, (13.75)
xc3 ∧ xc1 ∧ xc2 ∧ e∞ = xe3 ∧ xe1 ∧ xe2 ∧ e∞ − xe1 ∧ xe2 ∧E

+xe3 ∧ (xe2 − xe1 ) ∧E. (13.76)

Since xe1 ∧ xe2 = xe1 ∧ (xe2 − xe1 ), we get

xc3∧xc1∧xc2∧e∞ = xe3∧xe1∧xe2∧e∞
−xe1∧(xe2 − xe1 )∧Exe3∧(xe2 − xe1)∧E,

= xe3∧xe1∧xe2∧e∞ + (xe3∧(xe2 − xe1 )
−xe1∧(xe2 − xe1 ))∧E, (13.77)

= xe3∧xe1∧xe2∧e∞ + ((xe3 − xe1)∧(xe2 − xe1)) ∧ E.

But since xe · E = 0, we can rewrite this as

π∗ = xc3∧xc1∧xc2∧e∞
= xe3∧xe1∧xe2∧e∞ + ((xe3 − xe1)∧(xe2 − xe1))E, (13.78)

which is the equation of the plane passing through the points xe1 , xe2 , and
xe3 . We can easily see that xe1∧xe2∧xe3 is a scalar representing the volume
of the parallelepiped with sides xe1 , xe2 , and xe3 . Also, since (xe1 − xe2 ) and
(xe3−xe2) are two vectors on the plane, the expression ((xe1−xe2)∧(xe3−xe2))
is the normal to the plane. Therefore, planes are spheres passing through the
point at infinity.

13.3.3 Geometric Identities, Duals, and Incidence Algebra
Operations

A circle z can be regarded as the intersection of two spheres s1 and s2. This
means that each point on the circle, xc ∈ z, will be on both spheres: xc ∈ s1

and xc ∈ s2. So, xc ∧s∗
i = 0 and for duality xc ·si = 0, i = 1, 2. So, assuming

that s1 and s2 are linearly independent, and xc ∈ z we can write, using Eq.
(13.16) backwards

0 = (xc · s1)s2 − (xc · s2)s1 = xc · (s1 ∧ s2), (13.79)
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so xc ∈ s1 ∧ s2, and hence z = s1 ∧ s2. This means that a circle can be
expressed as the intersection of two spheres. It is easy to see that the intersec-
tion with a third sphere leads to a point pair. We have derived algebraically
that the wedge of two linearly independent spheres yields their intersecting
circle (see Fig. 13.5), this toplogical relation between two spheres can also be
conveniently described using the dual of the meet operation, namely

z = (z∗)∗ = (s∗
1 ∨ s∗

2)
∗ = s1∧s2. (13.80)

This new equation says that the dual of a circle can be computed via the
meet of two spheres in their dual form: z∗ = s1

∗∨s2
∗. This equation confirms

geometrically our previous algebraic computation from Eq. (13.79).
The dual form of the circle (in 3D) can be expressed by three points lying

on it as

z∗ = xc1 ∧ xc2 ∧ xc3 , (13.81)

see Fig. 13.5a.

Fig. 13.5. (a) (left) Circle computed using three points, note its stereographic
projection. (b) (right) Circle computed using the meet of two spheres

Similar to the case of planes shown in Eq. (13.73), lines can be defined by
circles passing through the point at infinity as

L∗ = xc1 ∧ xc2 ∧ e∞. (13.82)

This can be demonstrated by developing the wedge products as in the case of
the planes to yield

xc1 ∧ xc2 ∧ e∞ = xe1 ∧ xe2 ∧ e∞ + (xe2 − xe1 ) ∧E, (13.83)

from where it is evident that the expression xe1∧xe2 is a bivector representing
the plane where the line is contained and (xe2 − xe1) is the direction of the
line.



422 Eduardo Bayro-Corrochano

The dual of a point p is a sphere s. The intersection of four spheres yields
a point, see Fig. 13.6b . The dual relationships between a point and its dual,
the sphere, are:

s∗ = p1∧p2∧p3∧p4 ↔ p∗ = s1∧s2∧s3∧s4, (13.84)

where the points are denoted as pi and the spheres si for i = 1, 2, 3, 4.
A summary of the basic geometric entities and their duals is presented in

Table 13.1.

Fig. 13.6. (a) (left) Conformal point generated by projecting a point of the affine
plane to the unit sphere. (b) (right) Point generated by the meet of four spheres

There is another very useful relationship between a r − 2-dimensional
sphere Ar and the sphere s∗ (computed as the dual of a point s). If from
the sphere Ar we can compute the hyperplane Ar+1 ≡ e∞∧Ar �= 0, we can
express the meet between the dual of the point s (a sphere) and the hyperplane
Ar+1, which gives us the sphere Ar one dimension lower:

(−1)εs∗ ∩Ar+1 = (s∗I) ·Ar+1 = sAr+1 = Ar. (13.85)

This result demonstrates an interesting relationship: that the sphere Ar and
the hyperplane Ar+1 are related via the point s (dual of the sphere s∗). Thus,
we then rewrite the Eq. (13.85) as follows:

s = ArA
−1
r+1. (13.86)

Let us see some particular cases of the relation Eq. (13.86). Given the
circle z∗, (Ar), we can generate the plane π∗ = z∗∧e∞, (Ar+1), and compute
the sphere s
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Table 13.1. Entities in conformal geometric algebra

Entity Representation Grade Dual Representation Grade
Sphere s = p + 1

2
(p2 − ρ2)e∞ + e0 1 s∗ = a∧b∧c∧d 4

Point x = xc + 1
2
x2

ce∞ + e0 1 x∗ = s1∧s2∧s3∧s4

=(−Ex − 1
2
x2e∞ + e0)IE

4

Plane
π = nIE − de∞

n = (a − b)∧(a − c)
d = (a∧b∧c)IE

1 π∗ = e∞∧a∧b∧c 4

Line

L = π1∧π2

L = nIE − e∞mIE

n = (a − b)
d = (a∧b)

2 L∗ = e∞∧a∧b 3

Circle z = s1∧s2 2 z∗ = a∧b∧c 3
Point Pair P p = s1∧s2∧s3 3 P ∗

p = a∧b, X∗ = e∞∧x 2
P p = s∧L 3

s = z∗(π∗)−1 = z(π)−1, (13.87)

see Fig. 13.7a . Observe that z∗ is the great circle in s. Note that we can
apply either s = z∗(π∗)−1 or s = z(π)−1, because the pseudoscalar of z∗ is
canceled with the inverse pseudoscalar from of (π∗)−1.
From Eq. (13.87) we can obtain the center of a circle. Let z∗ = x1∧x2∧x3

be a circle and the plane π∗ = e∞∧x1∧x2∧x3. From Eq. (13.68), pc =
s

−(s·e∞) + 1
2ρ

2e∞ is the center of the sphere s, and then the same center for
the great circle z∗ = sπ∗, where the sphere can be obtained as

s = z∗(π∗)−1 =
z∗

π∗ =
x1∧x2∧x3

e∞∧x1∧x2∧x3
, (13.88)

see Fig. 13.7c.
Similarly we can compute another important geometric relationship called

the pair of points . Let Pp or (Ar) two points and L or (Ar+1), the line
L = P p ∧ e∞. Then there is a sphere s whose intersection with the line L is
the pair of points Pp,

s = PpL−1. (13.89)

Observe that the sphere s is such that the two points Pp are the extremes of
one of its diameters. Now using this result, given the line L and the sphere s
we can compute the pair of points Pp, see Fig. 13.7b.

Pp = sL = s ∧L. (13.90)

Finally it can be shown that the pair of points can also be computed by
the meet of three spheres as follows



424 Eduardo Bayro-Corrochano




s

Z

x
1

x

x
2

3

c




e

z

Fig. 13.7. (a) (left) The meet of a sphere and a plane. (b) (middle) Pair of points
resulting from the meet between a line and a circle. (c) (right) The center of a
circumscribed triangle

Pp = s1∧s2∧s3 = s1∧(s2∧s3) = s1∧z. (13.91)

Note that the intersection of two of these spheres yields a circle and its meet
with a third sphere will produce the pair of points. If we consider that one of
the three points that makes up the circle z is at infinity, the circle turns out
to be a line. As a result the meet of the sphere with this line will yield again
a pair of points, as in Eq. (13.90).

13.3.4 Conformal Transformations

A transformation of geometric figures is said to be conformal if it preserves
the shape of the figures, that is, if it preserves the angles and hence the shapes
of straight lines and circles. Any conformal transformation in Rn,

x �−→ x
1

1 + ax
, (13.92)

can be expressed as a composite of inversions and a translation

x
�−→

inversion
x

x2
, (13.93)

�−→
translation

x

x2
+ a, (13.94)

�−→
inversion

x
x2 + a

( x
x2 + a)( x

x2 + a)
= x

1
1 + ax

. (13.95)

The conformal transformation in geometric algebra uses a versor represen-
tation,

g(xc) = Gxc(G∗)−1 = σx′
c, (13.96)

where xc ∈ Rn+1,1, G is a versor, and σ is a scalar. G can be expressed
in geometric algebra as a composite of versors for inversions in spheres and
reflections in hyperplanes. These individual versors are explained next.
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Inversions

The general form of a reflection about a vector is

s(xc) = −sxcs
−1 = xc − 2(s · xc)s−1 = σx′

c, (13.97)

where sx + xs = 2(s ·x), from the definition of the Clifford product between
two vectors. We will now analyze what happens when s represents a sphere.
Recall that the equation of a sphere of radius ρ centered at point cc is the
vector

s = cc −
1
2
ρ2e∞. (13.98)

If s represents the unit sphere centered at the origin, then s and s−1 reduce
to e0 − 1

2e∞. Hence, −2(s · xc) = x2
e − 1, and Eq. (13.97) becomes

σx′
c = (xe +

1
2
x2

e +e∞)+(x2
e−1)(e0−e∞) = x2

e(x
−1
e +x−2

e e∞ +e0), (13.99)

which is the conformal mapping for x−1
c .

To see how a general sphere inverts a point, we return to Eq. (13.98) to
get

s · xc = cc · xc − ρ2e∞ · xc = −[(xe − ce)2 − ρ2]. (13.100)

Insertion into Eq. (13.97) and a little algebra gives

σx′
c =

(
xe − ce

ρ

)2

[g(xc) +
1
2
g2(xc)e∞ + e0], (13.101)

where

g(xe) =
ρ2

xe − ce
+ ce =

ρ2(xe − ce)
(xe − ce)2

+ ce (13.102)

is the inversion in Rn.

Reflections

A hyperplane with unit normal n and signed distance δ from the origin in Rn

can be represented by the vector

s = n + δe∞. (13.103)

Inserting s · xc = n · xe into Eq. (13.97), we find that

g(xe) = nxen† + 2δn = n(xe − δn)n† + δn, (13.104)
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where n† = −s−1. This expression is equivalent to a reflection nxen† at the
origin, translated by δ along the direction of n. A point ce is on the hyperplane
when δ = n · ce, in which case Eq. (13.103) can be written as

s = n + e∞n · ce. (13.105)

Via Eq. (13.104), this vector represents the reflection in a hyperplane through
point ce.

Translations

Translations can be modeled as two reflections about two parallel hyperplanes.
Without loss of generality, we can assume that both planes have been nor-
malized so that the magnitude of their normals is 1 and one of them passes
through the origin. Then, from Eq. (13.103), we can represent the operator
for translation (called a translator) as

T a = π1π2 = (n + δe∞)(n + 0e∞),
= 1 + ae∞, (13.106)

where a = 2δn and ‖n‖ = 1. The translation distance is twice the separation
between the hyperplanes.

Transversions

The transversion can be generated from two inversions and a translation. The
transversor has the form

Kb = e+T be+ = (e∞ − e0)(1 + be∞)(e∞ − e0) = 1 + be0. (13.107)

The transversion generated by Kb can be expressed in various forms:

g(xe) =
xe − x2

eb
1− 2b · xe + x2

eb2
= xe(1− bxe)−1 = (x−1

e − b)−1. (13.108)

The last form can be written down directly as an inversion followed by a
translation and another inversion.

Rotations

Rotations can be modeled by the composition of two reflections about two
hyperplanes intersecting in a common point ce, as in



13 Robot Perception and Action Using Conformal Geometric Algebra 427

R = (a + e∞a · ce)(b + e∞b · c) = ab + e∞ce · (a ∧ b), (13.109)

where a and b are unit normals. Rotations about the origin can also be written
in exponential form, as in

R = e
1
2 αB , (13.110)

where B is a unit bivector representing the axis of rotation and α is the
magnitude of the angle of rotation.

Dilations

Dilations are the composite of two inversions centered at the origin. Using
the unit sphere s1 = e0 − 1

2e∞, another sphere of arbitrary radius ρ, and
s2 = e0 − 1

2ρ
2e∞ as inversors, we get

(e0 − e∞)(e0 − ρ2e∞) = (1−E) + (1 + E)ρ2. (13.111)

Normalizing to unity, we have

Dρ = (1 + E)ρ + (1−E)ρ−1 = eEφ, (13.112)

where φ = ln ρ. To prove that this is indeed a dilation, we note that

Dρe∞D−1
ρ = ρ−2e, and similarly, (13.113)

Dρe0D
−1
ρ = ρ2e0. (13.114)

Therefore,

Dρ(xe + x2
ee∞ + e0)D−1

ρ = ρ2[ρ−2xe + (ρ−2xe)2e∞ + e0], (13.115)

which is the conformal mapping g(xe) = σx′
c with x′

c = x′
e + x′2e∞ + e0,

where x′
e = ρ−2xe.

Involutions

The bivector E (the Minkowski plane of R1,1) represents an operation which
corresponds to the main involution, but for an r-blade Ar, Ār = (−1)rAr.
In particular, for vectors x̄e = −xe, which can be easily obtained by applying
the versor E,

E(xe + x2
ee∞ + e0)E = −(−xe +

1
2
x2

ee∞ + e0). (13.116)

This expression corresponds to the conformal mapping of −xe, thus confir-
ming that the versor E represents the main involution for Rn. This means
that the main involution is a reflection via the Minkowski plane R1,1.
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Finally, using previous results, we can write down a canonical decom-
position in terms of individual versors, which reveals the structure of the
3-parameter group {G ∈ R1,1|G∗G† = 1} " GL2(R) as follows:

G = KbT aRα. (13.117)

13.4 The 3-D Affine Plane

We have described the general conformal framework and its transformations.
However, many of these operators were not employed in the present work.
Indeed, since in this case only rigid transformations are needed, we will limit
ourselves to the use of the affine plane, which is an n+1-dimensional subspace
of the hyperplane of reference P(e∞, e0).

We have chosen to work in G4,1 algebra. Since we deal with homogeneous
points, the particular choice of null vectors does not affect the properties of
the conformal geometry. Thus, for this work we choose to define these vectors
as

e =
1
2
(e4 + e5), (13.118)

ē = e4 − e5, (13.119)

with the following properties:

e2
i = 1, for i = 1, ..., 4, (13.120)
e2
5 = −1, (13.121)

e2 = ē2 = 0, (13.122)
e · ē = 1. (13.123)

Points in the affine plane x ∈ R4,1 are formed with

xa = xe + e, (13.124)

where xe ∈ R3. From this equation, we note that e represents the origin (by
setting xe = 0), and that, similarly, ē represents the point at infinity. The
equation allows the normalization equation (13.47) to be expressed as

ē · xa = 1. (13.125)

In this framework, the conformal mapping equation is expressed by

xc = xe − x2
eē + e = xa − x2

e ē. (13.126)
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For working on the affine plane exclusively, we will be mainly concerned with
a simplified version of rejection. By noting that E = e∞ ∧ e0 = ē ∧ e, then
Eq. (13.46) becomes

P⊥
E (xc) = (xc ∧E)E = (xc ∧E) ·E = (ē ∧ e) · e + (xc ∧ ē) · e,

xe = −e + (xc ∧ ē) · e. (13.127)

Now, since the points in the affine plane have the form xa = xe + e, we
conclude that

xa = (xc ∧ ē) · e (13.128)

is the mapping from the horosphere to the affine plane.

13.4.1 Lines and Planes

The lines and planes in the affine plane are expressed in a similar fashion to
their conformal counterparts, as the join of 2 and 3 points, respectively:

La = xa
1 ∧ xa

2 , (13.129)
Πa = xa

1 ∧ xa
2 ∧ xa

3 . (13.130)

Note that unlike their conformal counterparts, the line is a bivector and the
plane is a trivector. As seen earlier, these equations produce the expected
moment-direction representation. Thus,

La = ed + B, (13.131)

where d is a vector representing the direction of the line and B is a bivector
representing the (orthogonal) moment of the line. Similarly, we have

Πa = en + δe123, (13.132)

where n is the normal vector to the plane and δ is a scalar representing the
distance from the plane to the origin. Note that in any case, the direction and
normal can be retrieved with d = ē ·La and n = ē ·Πa, respectively.

In this framework, the intersection or meet has a simple expression, too.
If Aa = aa

1 ∧ ... ∧ aa
r and Ba = ba

1 ∧ ... ∧ ba
s , then the meet is defined as

Aa ∩Ba = Aa · (Ba · ĪAa∪Ba), (13.133)

where ĪAa∪Ba is either e12ē, e23ē, e31ē, or e123ē, according to which basis
vectors span the largest common space of Aa and Ba (see Sect. 13.2.2).
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13.4.2 Rigid Transformations in the 3-D Affine Plane

Rotations and translations have the same form as previously stated. In our
new definition, the rotor becomes

R = e
θ
2B = cos(

θ

2
) + B sin(

θ

2
), (13.134)

where θ is the angle of rotation and B is a unit bivector representing the axis
of rotation.

The translator is defined by

T = e
1
2 tē = 1 + tē, (13.135)

where t is a vector representing the translation. For the particular case of
rotors and translators, the inverse is equal to the Clifford conjugate, which in
turn is equal to the reversion. Thus, the transformation rule of a rotor and
translator may be written as

X ′ = R̃XR, and (13.136)

X ′ = T̃XT . (13.137)

Note that when a translator is applied to a geometric entity the result will lie
in the horosphere. Therefore, it is necessary to perform partial rejection, as
defined by Eq. (13.128), followed by the normalization ē ·xa = 1, if applicable.

Rotors and translators can be combined multiplicatively to produce mo-
tors. The motor M is defined, in general, as

M = TR, (13.138)
= (1 + tē) R, (13.139)
= R + tēR = R + ēR′. (13.140)

Therefore, it is rather simple to find the rotational part of a motor by simple
inspection. The translational part can then be computed by right-multiplying
the remainder of M by R−1.

Note, in particular, that the motor defined by

M = T̃RT (13.141)

represents a rotation about an arbitrary axis. There is a simple relationship
between the axis of rotation and the form of a motor that produces the rotation
about it. Let L = m + e∧n be a line such that ‖n‖ = 1. Then, the motor M
that rotates by α radians about the axis defined by L is given by

M = cos(
α

2
) + sin(

α

2
)[ē ∧ (e123m)− (e123n)]. (13.142)
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The converse formula, to extract the axis of rotation from a given motor, is
also simple. First, notice that from the previous equation M can be written
as

M = k1 + k2ē ∧ (e123m)− k2e123n. (13.143)

From this equation, it is easy to see that

m′ = e123(e · (M − k1)), and (13.144)
n′ = −e123 · (M − k1), (13.145)

where m′ and n′ differ from the original m and n by a scale factor. Thus,
the line representing the axis of rotation is given by L = m′ + e ∧ n′.

13.4.3 Directed Distance

Fig. 13.8. (a) (left) Line in 2-D affine space. (b) (right) Plane in the 3-D affine
space (note that the 3-D space is “lifted” by a null vector e)

To derive our equations we can use the line and the plane depicted in Fig.
13.8. We see that any k-plane Aa consists of a momentum of k degree and a
direction of k− 1 degree. Thus, if we take the inner product between the unit
direction and the moment, we will gain a directed distance as the vector pa.
If we dot the equation of Aa with ē and divide this result by its norm, we get
the unit direction Da

u,

Da = ē ·Aa −→Da
u =

Da
a

|Da
a|
, (13.146)

which we can further use to compute a directed distance as follows:
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pa = Da
u ·Aa. (13.147)

Here, the dot operation basically takes place between Da
u and the moment

part of Aa. The point pa is attached to the origin and it touches orthogonally
the k-plane Aa. Interestingly enough, the norm of pa is equal to the Hesse
distance. For the sake of simplicity, in Fig. 13.8a and in Fig. 13.8b only Da ·La

and Da ·Φa are respectively shown.
Now, having calculated this point on the first object, we can use it to

compute the directed distance from the k-plane Aa parallel to the object Ba

as follows:

d[Aa,Ba] = d[Da ·Aa,Ba] = d[(ē ·Aa) ·Aa,Ba]. (13.148)

13.4.4 Incidence Relations in the Affine 3-D Plane

The distance from a point ba to a line La = aa
1∧aa

2 is the magnitude or norm
of their directed distance,

|d| =
∣∣∣[{ē · (aa

1∧aa
2)}∧{ē · (ba)}

]−1[
ē · (aa

1∧aa
2∧ba)

]∣∣∣. (13.149)

The distance of a point ba to the plane Aa = aa
1∧aa

2∧aa
3 is

|d| =
∣∣∣[{ē · (aa

1∧aa
2∧aa

3)}∧{ē · (ba)}
]−1[

ē · (aa
1∧aa

2∧aa
3∧ba

a)
]∣∣∣.(13.150)

The incidence relation between the lines La
1 = aa

1∧aa
2 and La

2 = ba
1∧ba

2 is
completely determined by their join IL1∪L2

= L1 ∪Lh
2 .

If ILa

1∪La

2
is a bivector, the lines coincide and La

1 = tLa
2 for some t ∈ R.

If ILa

1∪La

2
is a trivector, the lines are either parallel or intersect at a common

point; in this case, the meet

pa = La
1 ∩La

2 = La
1 · [(La

2 · ILa

1∪La

2
)]. (13.151)

If e · pa = 0, the lines are parallel; otherwise, they intersect at the point
pa = pa

e·pa in the affine 3-space A3
e. Finally, if ILa

1∪La

2
is a 4-vector, the lines

are skew.
The incidence relation between a line La = aa

1 ∧aa
2 and a plane Ba =

ba
1∧ba

2∧ba
3 is also determined by their join La ∪Ba. Clearly, if the join is a

trivector, the line La lies in the plane Ba. The only other possibility is that
their join is the pseudoscalar I = σ123e. In this case, we calculate the meet

pa = La ∩Ba = La · [(Ba · I)]. (13.152)

If e · pa = 0, the line is parallel to the plane, with the directed distance
determined by Eq. (13.146). Otherwise, pa = pa

e·pa is their point of intersection
in the affine plane.
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Two planes Aa = aa
1∧aa

2∧aa
3 and Ba = ba

1∧ba
2∧ba

3 in the affine plane A3
e are

either parallel, intersect in a line, or coincide. If their join is a trivector, i.e.,
if Aa = tBa for some t ∈ R, they obviously coincide. If they do not coincide,
then their join is the pseudoscalar I = σ123e. In this case, we calculate the
meet,

La = Aa ∩Ba = [(I) ·Aa] ·Ba. (13.153)

If e · L = 0, the planes are parallel, with the directed distance determined
by Eq. (13.146). Otherwise, L represents the line of intersection in the affine
plane having the direction e ·L.

13.5 3-D Rigid-Motion Estimation

In the following sections we describe a series of algorithms and techniques that
help us to calibrate a mobile robot for building a map for navigation purposes.
For that we have to solve first the problem of coordinate-system calibration
between multiple sensors. In this work we will assume that the cameras have
been calibrated and thus metric reconstruction can be easily achieved.

The problem of coordinate-system calibration is basically a problem of
motion estimation. We proceed first to describe two methods for motion esti-
mation which we have employed in this work.

13.5.1 Point-Based Rigid-Motion Estimation

The most basic feature that can be detected is the point. The algorithm we
describe here to perform rigid-motion estimation based on point observations
was originally presented in [12]. The algorithm proceeds thus. Given the 3-D
coordinates of two sets of n corresponding points xi and x′

i in G3,0,0, we wish
to find the rotation R and translation t that minimizes

S =
n∑

i=1

[
x′

i −R(xi − t)R̃
]2

. (13.154)

This therefore involves minimizing S with respect to R and t. The differen-
tiation with respect to t is straightforward:

∂tS =
n∑

i=1

[
x′

i −R(xi − t)R̃
]
∂t(RtR̃) = 0. (13.155)

Equation (13.155) can be easily solved for t to give

t =
1
n

n∑
i=1

[
xi − R̃x′

iR
]
, (13.156)
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which can be rewritten as

t = x− R̃x′R, (13.157)

where x and x′ are the centroids of the data points in the two views.
The differentiation with respect to the rotor R is much more involved. We

direct the interested reader to [12] for details. The result of this differentiation
produces

n∑
i=1

x′
i ∧R(xi − t)R̃ = 0. (13.158)

If we substitute the value of t into the previous equation, we get

n∑
i=1

x′
i ∧R(xi − x− R̃x′R)R̃ = 0. (13.159)

Noting that the term
∑n

i=1 x′
i∧x′ vanishes, the previous equation is thus

reduced to

n∑
i=1

wi∧RuiR̃ = 0, (13.160)

where ui = xi − x and wi = x′
i. With these new values, we obtain a matrix

Fαβ :

Fαβ =
n∑

i=1

(eα · ui)(eβ ·wi). (13.161)

Applying the SVD to matrix Fαβ = USVT, we can find the rotation matrix R:

R = VUT. (13.162)

Once the rotor is R is obtained from R, the translation t can be computed
from Eq. (13.157).

13.5.2 Line-based rigid-motion estimation

Since lines are more robust to noise than points, it is important to describe
how rigid-motion estimation can be performed based on them. The algorithm
we describe here was originally presented in [4, 1] using motors or dual quater-
nions from motor algebra G3,0,1, but we have extended it here for the 3-D affine
plane. In this framework, the motion of the line can be expressed as

La
B = MLa

AM̃ , (13.163)
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where x̃ is the Clifford conjugate of x and, in the case of motors MM̃ = 1,

La
B = b + eb′,

La
A = a + ea′ = RbR̃ + e(RbR̃

′
+ Rb′R̃ + R′bR̃). (13.164)

By separating the real and dual parts,

a = RbR̃, (13.165)

a′ = RbR̃
′
+ Rb′R̃ + R′bR̃, (13.166)

and then multiplying on the right by R, knowing that R̃R′ + R̃
′
R = 0, we

get

aR−Rb = 0,
(a′R−Rb′) + (aR′ −R′b) = 0. (13.167)

This can be rewritten in matrix form for computational purposes as

[
a− b [a + b]× 03×1 03×3,
a′ − b′ [a′ + b′]× a− b [a + b]×

] [
R
R′

]
. (13.168)

Taking n ≥ 2 observations, we stack the n line parameters in the left matrix,
which is decomposed, using SVD, as C = UΣVT . Since the rank of the left
matrix is 6, we use two vectors which span the null space for computing R
and R′. For more details of the method, refer to [4].

13.6 Body-Eye Calibration

The so called hand-eye calibration problem involves the computation of the
transformation between a coordinate system attached to a robotic hand and
the camera on top of it. This works on the premise that the camera is always
fixed at the same position with respect to the robotic arm, which is not the
case for pan-tilt units, where the camera is constantly changing its position
and orientation with respect to the robot’s reference frame. To solve this
problem, we proposed a novel algorithm in the affine 3-space A3

e which we
describe next.

The robot-to-sensor relation can be seen as a series of joints J1, J2, ..., Jn

(where a rotation about joint Ji affects all joints Ji+1, ..., Jn) and a measure-
ment system U which is rigidly attached to the last joint Jn. The problem
can be stated as the computation of the transformations M1,M2, ...,Mn−1
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between the robot frame and the last joint and the transformation Mn bet-
ween the last joint and the measurement device U , using only data gathered
with U .

Note that this formulation is independent of the type of sensor U used;
however, we will discuss how this calibration can be implemented to solve the
robot-to-camera relationship and, later on, how it was slightly modified to
calibrate a laser sensor against the robot coordinate system.

Furthermore, we would like to solve this problem in a way that enables
a real-time response when the spatial location of the joints varies. Therefore,
we have divided our algorithm into two stages. The first stage computes the
screw axes of the joints, and the second stage uses these axes to compute the
final transformation between the coordinate systems.

13.6.1 Screw Axes Computation

To compute the axes of rotation, we use a motion estimator such as the one
described in Sect. 13.5.2. Each joint Ji is moved in turn while leaving the
others at their home position (see Fig. 13.9a) . From the resulting motor M i,
the axis of rotation Si can be extracted using Eqs. (13.144) and (13.145). For
our particular robot, the sequence of motions is presented in Fig. 13.9b . The
general procedure is presented as Algorithm I in Table 13.2.

Table 13.2. Algorithm I–Computation of the axes of rotation

For each joint Ji, i = 1, ...n:
1. Set all joints to their home position.
2. Rotate joint Ji by −α1 degrees.
3. Measure a set of 3-D points xj (or lines La

k) using the stereo camera.
4. Return joint Ji to its home position and rotate it by α2 degrees.
5. Compute the corresponding set of points x′

j (or lines L′a
j ).

6. Compute the motor M i such that x′
j = M ixj

�M (or L′a
j = M iLj

�M ).
7. Compute the axis of rotation Si using Eq. (13.144) and Eq. (13.145) as

Si = e123(e · (M i − k1)) + e ∧ [−e123 · (M i − k1)] ,

where k1 is the scalar part of M i.

13.6.2 Calibration

Note that Algorithm I will produce a set of lines Si in the camera’s coordi-
nate system. Once these axes are known, the transformation taking one point
xk measured in the camera’s framework to the robot’s coordinate system is
easy to derive, provided that we know the angles αi applied to each joint Ji.
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Fig. 13.9. (a) (upper row) Estimation of the screw axes. (b) (lower row) Correction
of the rotation and relocation of the screw axes

Basically, the algorithm undoes the implicit transformations applied on the
camera’s framework by first rotating about joint Jk and then translating the
joint (and the framework, along with the other joints) to the origin (see Fig.
13.9b). The full procedure is described as Algorithm II in Table 13.3.

The functions used in Algorithm II are defined as follows:

nearest(x) =
(ē · x) · x

ē · [(ē · x) · x]
, (13.169)

makeTranslator(t) = 1 +
t

2
ē, (13.170)

lineToMotor(La, α) = cos(
α

2
) + sin(

α

2
)[ē ∧ (e123m)− (e123n)], (13.171)

where La = m+e∧n, and n = 1. The function nearest(x) returns the point
on x which is nearest to the origin, makeTranslator(t) returns a translator
displacing by an amount t, and lineToMotor(La, α), previously explained in
Eq. (13.142), simply returns a motor that rotates α radians about the axis
La.
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a b c

d e f

Fig. 13.10. (a) Reconstruction without calibration. (b-d) Relocation of the screws
according to Algorithm II in Table 13.3. (e) Comparison of the final reconstruction
with the real view

13.6.3 Reconstruction and Navigation

This subsection presents a series of tasks related to the perception and action
of a mobile robot equipped with a 5-degrees-of-freedom manipulator. First,
we present the reconstruction, which confirms that our body-eye calibration
method works. Thereafter, the accuracy of the binocular head and laser cali-
bration is shown by a test: approaching and grasping a target object.

In this experiment, we applied a certain pan and tilt to our robot and
reconstructed the scene shown in Fig. 13.10a. The reconstruction was initially
aligned with the camera coordinate system. Applying Algorithm II from Table
13.3, the reconstruction was transformed to match the robot’s coordinate
system (Figs. 13.10b-d). The comparison between the final reconstruction and
the initial location of the robot is shown in Fig. 13.10e.

The second test consisted making a 3-D map of the surroundings of the
robot by superimposing multiple reconstructions obtained at different pan and
tilt angles. For each pan and tilt position, a reconstruction was obtained and
transformed to the robot’s reference-coordinate system. The robot was not
moved throughout the process. Some of the images used for the reconstruction
can be seen in the top row of Fig. 13.11, and the resulting reconstruction can
be seen in the bottom row.
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Table 13.3. Algorithm II–Computation of the transformation X i �→ X ′
i for a

system of n joints and m points where X i is a point measured in the camera’s
framework and X ′

i is the same point in the robot’s coordinate system

Input: the number of joints n, a set of m points xi,
the screw axes Si, and their angles of rotation αi.

1. (Initialization) set:
k ← n,
x′

i ← xi, for i = 1, ..., m,
S′

i ← S′
i, for i = 1, ..., n.

2. P ← nearest(S′
k).

3. T ← makeTranslator(−(P − e)).
4. M ← T lineToMotor(S′

k,−αk).
5. x′

i ← Mx′
i
�M , for i = 1, ..., m.

6. S′
i ← T S′

i
�T , for i = 1, ..., k − 1.

7. k ← k − 1.
8. Repeat steps 2–7 until k = 0. The final corrected points are x′

i, i = 1, ..., m.

Fig. 13.11. (a) (top row) Some of the stereo pairs used in the reconstruction. (b)
(bottom left) Extracted 3-D data. (c) (bottomright) Texture-mapped reconstruction

As an extension of this experiment which demanded more accuracy, an
approaching and grasping task was tested. First, the laser system of the robot
was calibrated according to Algorithm I in Table 13.2 (note that, in this case,
the only axis of rotation is the robot itself). Then, an object was placed on
a box and the robot’s pan-tilt unit was rotated to look at it. The object’s
coordinates were transformed into the robot’s reference frame according to
Algorithm II in Table 13.3 and then further correlated with the laser system.
Once the coordinates were located in the laser’s frame, the robot automatically
navigated to place itself in position to grab the object. In order to guarantee
a robust navigation, a very simple algorithm for the control of the robot’s
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position was implemented. This algorithm was based on the line measurements
obtained with the laser and on the motion estimation algorithm presented in
Section 13.5.2. Some of the images in the video sequence can be seen in Fig.
13.12.

Fig. 13.12. Full calibration: after the laser and the binocular systems are calibrated,
the robot can navigate and reach objects in 3-D accurately

13.7 Strategies for Object Manipulation

In this section we show how to perform certain object manipulation tasks
in the context of conformal geometric algebra. First, we solve the inverse
kinematics for a pan-tilt unit so that the binocular head will be able to follow
the end-effector and to position the gripper of the arm in a certain position in
space. Then, we illustrate how the robotic arm can follow linear and spherical
paths. Finally, we show how to grasp an object in space.

13.7.1 Inverse Kinematics for a Pan-Tilt Unit

In this task we apply a language of spheres for solving the inverse kinematics;
this can be seen as an extension of an early approach [5], when a language of
points, lines and planes was used instead.

In the inverse kinematics for a pan-tilt unit problem we aim to determine
the angles θtilt and θpan of the stereo-head, so that the cameras fix at the
point pt. We will now show how we find the values of θpan and θtilt using the
conformal approach. The problem will be divided into three steps to be solved.

Step 1: Determine the point p2.

When the θtilt rotates and the bases rotate (θpan) around ly (see Fig.
13.13), the point p2 describes a sphere s1. This sphere has center at the point
p1 and radius d2.

S1 = p1 −
d2
2

2
e∞. (13.172)

Also the point pt can be locked from every point around it. that is the point
p2 is in the sphere:
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Fig. 13.13. Point p2 given by intersection of the plane π1 and the spheres s1 and
s2

S2 = pt −
d2
3

2
e∞, (13.173)

where d3 is the distance between point pt and the cameras, and we can cal-
culate d3 using a Pythagorean theorem d2

3 = D2 − d2
2, where D is the direct

distance between pt and p1. We have restricted the position of the point p2,
but there is another restriction: the vector going from p2 to the point pt must
exist on the plane π1 generated by the ly axis (l∗y = p0 ∧ p1 ∧ e∞) and the
point pt, as we can see in Fig. 13.13. So p2 can be determined by intersecting
the plane π1 with the spheres s1 and s2 as follows

π∗
1 = l∗y ∧ pt, Pp2 = s1 ∧ π1 ∧ s2. (13.174)

(13.175)

Step 2: Determine the lines and planes.

Once p2 has been determined, the line l2 and the plane π2 can be defined.
This line and plane will be useful for calculating the angles θtilt and θpan.

l∗2 = p1 ∧ p2 ∧ e∞, π∗
2 = l∗y ∧ e3. (13.176)

Step 3: Find the angles θtilt and θpan.
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Once we have all the geometric entities, the computation of the angles is
a trivial step:

cos(θpan) =
π∗

1 · π∗
2

|π∗
1 | |π∗

2 |
, cos(θtilt) =

l∗1 · l∗y
|l∗1 |

∣∣l∗y∣∣ . (13.177)

13.7.2 Touching a Point

In order to reconstruct the point of interest, we back-project two rays ex-
tending from two views of a given scene (see Fig. 13.14). These rays will not
intersect, in general, due to noise. Hence, we compute the directed distance
between these lines and use the middle point as target. Once the 3-D point pt

is computed with respect to the cameras’ framework, we transform it to the
arm’s coordinate system.

Fig. 13.14. Point of interest in both cameras (pt)

Once we have a target point with respect to the arm’s framework, there
are three possibilities to consider: there might be several solutions (see Figs.
13.15a and 13.16a); there might be only a single solution (see Fig. 13.15b); or
the point may be impossible to reach (see Fig. 13.16b).

In order to distinguish between these cases, we create a sphere St = pt −
1
2d

2
3e∞ centered at the point pt and intersect it with the bounding sphere

Se = p0 − 1
2 (d1 + d2)2e∞ of the other joints (see Figs. 13.15a and 13.15b),

producing the circle zs = Se ∧ St.
If the spheres St and Se intersect, then we have a solution circle zs which

represents all the possible positions that the point p2 (see Fig. 13.15) may
have in order to reach the target. If the spheres are tangential, then there is
only one point of intersection and a single solution to the problem, as shown
in Fig. 13.15b.

If the spheres do not intersect, then there are two possibilities. The first is
that St is outside the sphere Se. In this case, there is no solution, since the
arm cannot reach the point pt, as shown in Fig. 13.16b. On the other hand, if
the sphere St is inside Se, then we have a sphere of solutions. In other words,
we can place the point p2 anywhere inside St, as shown in Fig. 13.16a. For
this case, we arbitrarily choose the upper point of the sphere St.
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Fig. 13.15. (a) (left) Se and St meet (infinitely solutions). (b) (right) Se and St

are tangential (single solution)

Fig. 13.16. (a) (left) St inside Se produces infinitely solutions. (b) (right) St

outside Se, no possible solution

In the experiment shown in Fig. 13.17a, the sphere St is placed inside the
bounding sphere Se and therefore the point selected by the algorithm is the
upper limit of the sphere, as shown in Figs. 13.17a and 13.17b. The last joint
is completely vertical.

13.7.3 Line of Intersection of Two Planes

In industry, mainly in the industrial sector dedicated to car assembly, it is
often necessary to weld together various assembly components. However, for
a variety of reasons, the components are not always in the same position, thus
complicating the task and making it almost impossible to automate. In many
cases, the task requires the welding of components in a straight line when no
points on the line are available. This is the problem we attempt to solve in
the following experiment.

If one does not have data for points along the line of interest, then the
line can still be deduced via the intersection of the two planes (the welding
planes). In order to determine each plane, we need three points. The 3-D
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Fig. 13.17. (a) Simulation of the robotic arm touching a point. (b) Robot “Geome-
ter” touching a point with its arm

coordinates of the points are triangulated using the stereo vision system of
the robot, which yields a configuration like the one shown in Fig. 13.18.

Fig. 13.18. Images acquired by the binocular system of the robot “Geometer” sho-
wing the points on each plane

Once the 3-D coordinates of the points in space are computed, we are able
to find each plane with π∗ = x1 ∧ x2 ∧ x3 ∧ e∞ and π′∗ = x′

1 ∧ x′
2 ∧ x′

3 ∧ e′∞.
The line of intersection is computed via the meet operator l = π′ ∩ π. Figure
13.19a shows a simulation of the arm as it follows the line produced by the
intersection of these two planes.

Once the line of intersection l is determined, it is sufficient to translate it on
the plane ψ = l∗∧e2 (see Fig. 13.19b) by using the translator T 1 = 1+γe2e∞
in the direction of e2 (the y-axis) for the distance γ. Furthermore, we are able
to build the translator T 2 = 1 + d3e2e∞, with the same direction (e2) but
with a separation d3, which corresponds to the size of the gripper. Once the
translators have been computed, we find the lines l′ and l′′ by translating the
line l with l′ = T 1lT

−1
1 , and l′′ = T 2l

′T−1
2 .

The next step, after computing the lines, is to find the points pt and p2,
which represent the points at which the arm will start and finish its motion,
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Fig. 13.19. (a) (left) Simulation of the arm as it follows the path of a line produced
by the intersection of two planes. (b) (right) Guiding lines for the robotic arm
produced by the intersection (meet) of the planes and vertical translation

respectively. These points were given manually, but they may be computed
by using the intersection of lines l′ and l′′ with the plane that defines the
desired depth. In order to make the motion over the line, we build a translator
T L = 1−∆Lle∞ with the same direction as l, as shown in Fig. 13.19b. Then,
this translator is applied to the points p2 = T Lp2T

−1
L and pt = T LptT

−1
L in

an iterative fashion to yield a displacement ∆L on the robotic arm.
By placing the end point over the lines and p2 over the translated line, and

by following the path with a translator in the direction of l, we get a motion
over l, as seen in the image sequence of Fig. 13.20.

Fig. 13.20. Image sequence of a linear-path motion

13.7.4 Following a Spherical Path

This experiment consists of following the path of a spherical object at a certain
fixed distance from it. For this experiment, only four points on the object are
available (see Fig. 13.21a).

After acquiring the four 3-D points, we compute the sphere S∗ = x1 ∧
x2 ∧x3 ∧x4. In order to place the point p2 in such a way that the arm points
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Fig. 13.21. (a) (left) Points over the sphere as seen by the robot “Geometer”. (b)
(right) Guiding spheres for the arm’s motion

toward the sphere, the sphere was expanded using two different dilators. This
produces a sphere that contains S∗ and ensures that a fixed distance between
the arm and S∗ is preserved, as shown in Fig. 13.21b.

The dilators are computed as follows:

Dγ = e−
1
2 ln( γ+ρ

ρ )E , (13.178)

Dd = e−
1
2 ln(

d3+γ+ρ
ρ )E . (13.179)

The spheres S1 and S2 are computed by dilating St:

S1 = DγStD
−1
γ , (13.180)

S2 = DdStD
−1
d . (13.181)

We decompose each sphere in their parametric form as

pt = M 1(ϕ)M 1(φ)ps1
M−1

1 (φ)M−1
1 (ϕ), (13.182)

p2 = M 2(ϕ)M 2(φ)ps2
M−1

2 (φ)M−1
2 (ϕ), (13.183)

where ps is any point on the sphere. In order to simplify the problem, we
select the upper point on the sphere. To perform the motion on the sphere,
we vary the parameters ϕ and φ and compute the corresponding pt and p2

using Eq. (13.182) and Eq. (13.183). The results of the simulation are shown
in Fig. 13.22a, whereas the results of the real experiment can be seen in Figs.
13.22b and 13.22c.

13.7.5 Grasping an Object

Other interesting experiments involve tasks of grasping objects. First, we con-
sider only approximately cubic objects (i.e., objects with nearly the same
width, length, and height). We begin with four non-coplanar points belonging
to the corners of the object and use them to build a sphere. With this sphere,
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Fig. 13.22. (a) (left) Simulation of the motion over a sphere. (b) and (c) (right)
Two of the images in the sequence of the real experiment

we can make either a horizontal or transversal section, so as to grasp the ob-
ject from above, below, or in a horizontal fashion. Figure 13.23a shows the
sphere obtained using our simulator; the corners of the cube are shown in Fig.
13.23b; and Fig. 13.23c shows the robot arm moving its gripper toward the
object after computing its inverse kinematics.

Fig. 13.23. (a) Algorithm simulation showing the sphere containing the cube. (b)
Image of the object we wish to grasp with the robotic arm. (c) The robot “Geometer”
grasping a wooden cube

Fig. 13.24. (a) Points on the object as seen by the robot. (b) Regular prism with
height d4 and main axis jzb . (c) Simulation of the algorithm showing the robotic
arm grasping the object
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The disadvantage of this algorithm is that not all the objects are cubes;
therefore, we need to design a more general algorithm that allows the grasping
of objects that are in the shape of regular prisms. That procedure is described
next:

1. Take a calibrated stereo pair of images of the object.
2. Extract four non-coplanar points from these images (see, for example Fig.

13.24a).
3. Compute the corresponding 3-D points xi, i = 1, ..., 4 using the stereo

vision system and triangulation.
4. Compute the directed distances (see (13.147)):

d1 = Dist(x1,x2 ∧ x3 ∧ x4 ∧ e∞),
d2 = Dist(x2,x1 ∧ x3 ∧ x4 ∧ e∞),
d3 = Dist(x3,x2 ∧ x1 ∧ x4 ∧ e∞),
d4 = Dist(x4,x2 ∧ x3 ∧ x1 ∧ e∞).

5. Select the point with the greatest distance as the apex xa and label the
others xb1 ,xb2 ,xb3 as belonging to the base of the object.

6. Compute the circle zb = xb1 ∧ xb2 ∧ xb3 .
7. Compute the directed distance da between zb and xa.
8. Translate the circle z in the direction and magnitude of da to produce the

grasping plane.

Some points of the previous algorithm can be explained in more detail.
For example, for the object in Fig. 13.24b, the base circle is z∗

b = x1∧x2∧x3,
whereas the main axis of the object is computed by jzb

= zb ∧ e∞. The
translator that moves zb is produced as T = 1 + 1

4d4e∞. The grasping circle
can be computed with z∗

t = Tz∗
bT

−1, the point of contact being the closest
point from the circle to the y-axis. Finally, the grasping plane is denoted by
π∗ = z∗

t ∧e∞. Note that this last algorithm may grasp the object regardless of
whether it is in a horizontal or vertical position. We illustrate this algorithm
with the simulation shown in Fig. 13.24c.

13.8 Omnidirectional Vision Using Conformal Geometric
Algebra

The model defined by Geyer and Daniilidis [7] is used in this work to find
an equivalent spherical projection of a catadioptric projection. This model is
very useful for simplifying the projections, but the representation is not ideal
because it is defined in a projective geometry context where the basis objects
are points and lines and not spheres. The computations are also complicated
and difficult to follow.
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Our proposal is based on conformal geometric algebra, where the basic
element is the sphere. That is, all the entities (point, point pair, circle, plane)
are defined in terms of the sphere (e.g., a point can be defined as a sphere of
zero radius). This framework also has the advantage that the intersection ope-
ration between entities is mathematically well defined (e.g., the intersection
of a sphere with a line can be defined as L ∧ S). In short, the unified model
is more natural and concise in the context of conformal geometric algebra
(spheres) than of projective algebra (points and lines).

13.8.1 Conformal Unified Model

First, in Fig. 13.25 we present the unified model in terms of conformal geo-
metric algebra. In this regard, we assume that the optical axis of the mirror
is parallel to the e2 axis, then let f be a point in the Euclidean space (which
represents the focus of the mirror which lies in such an optical axis), defined
by

f = α1e1 + α2e2 + α3e3 , (13.184)

with conformal representation given by

F = f +
1
2
f2e + e0 . (13.185)

Using the point F as the center, we define a unit sphere S (see Fig. 13.25) as

S = F − 1
2
e . (13.186)

Now, if N is the point of projection (that also lies on the optical axis) at a
distance l from the point F , then this point can be found using a translator,

T = 1 +
le2e

2
, (13.187)

and then
N = TF T̃ . (13.188)

Finally, the image plane Π is perpendicular to the optical axis at a distance
−m from the point F , and its equation is

Π = e2 + (f · e2 −m)e . (13.189)

13.8.2 Point Projection

Let p be a point in the Euclidean space. Then the corresponding homogeneous
point in the conformal space is
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Fig. 13.25. Conformal unity model

P = p +
1
2
p2e + e0 . (13.190)

Now, for the projection of point P we trace a line joining the points F and
P . Using the definition of the line in dual form, we get

L∗
1 = F ∧ P ∧ e . (13.191)

Then, we calculate the intersections of the line L1 and the sphere S (see Eq.
(13.90)), which results in the point pair

PP ∗ = (L1 ∧ S)∗ . (13.192)

From the point pair, we choose the point P 1, which is the closest point to P ,
and then we find the line passing through the points P 1 and N :

L∗
2 = P 1 ∧N ∧ e. (13.193)

Finally, we find the intersection of the line L2 with the plane Π , using

Q = (L2 ∧Π)∗ . (13.194)

The point Q is the projection in the image plane of point P of the space.
Notice that we can project any point in the space into any type of mirror
(changing l and m) using the previous procedure (see Fig. 13.26). The reader
can now appreciate the simplicity and elegance of the unified model using
conformal geometric algebra.

13.8.3 Inverse Point Projection

We have already seen how to project a point in space to the image plane
through the sphere. Now, we want to back-project a point in the image plane
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a) b)

Fig. 13.26. (a) Unified model and points in the space. (b) Projection in the image
plane

into 3-D space. First, if Q is a point in the image plane, then the equation of
the line passing through the points Q and N is

L∗
2 = Q ∧N ∧ e , (13.195)

and the intersection of the line L2 and the sphere S is

PP ∗ = (L2 ∧ S)∗ . (13.196)

From the point pair, we choose the point P 1, which is the closest point to Q,
and then we find the equation of the line from point P 1 to the focus F :

L∗
1 = P 1 ∧ F ∧ e . (13.197)

Point P should lie on the line L∗
1, however it cannot be calculated exactly

because a coordinate was lost when the point was projected to the image plane
(a single view does not allow us to know the projective depth). However, we
can project this point to some plane and say that it is equivalent to the original
point up to a scale factor (see Fig. 13.27).

13.8.4 Line Projection

Suppose that L is a line in the space and that we want to find its projection
in the image plane (see Fig. 13.28a). First, we find the plane where L and F
lie; its equation is

Φ∗
L = L∗ ∧ F . (13.198)

The intersection of the plane and the sphere is the great circle defined by

C∗ = (ΦL ∧ S)∗ . (13.199)
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Fig. 13.27. Inverse point projection (from the image to the space). The crosses are
the projected points and the dots are the original points

The line that passes through the center of the circle and is perpendicular to
the plane ΦL is

U∗ = (C ∧ e) . (13.200)

Using U as an axis, we make a rotor,

R = e( θ
2U ). (13.201)

We find a point pair PP ∗ that lies on the circle, using

PP ∗ = (C ∧ e2)∗ . (13.202)

We choose any point from the point pair, say P 1, and using the rotor R we
can find the points in the circle,

P ′
1 = RP 1R̃ . (13.203)

For each point P ′
1 we find the line that passes through the points P 1 and N ,

defined as
L∗

2 = P ′
1 ∧N ∧ e . (13.204)

Finally, for each line L2 we find the intersection with the plane Φ,

P 2 = (L2 ∧Π)∗, (13.205)

which is the projection of the line in the space to the image plane (see Fig.
13.28b).
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Fig. 13.28. (a) Line projection to the sphere. (b) Line projection to the image plane
(note that, in this case, the result is an ellipse)

13.8.5 Image-Plane Conic Characteristics

We have shown how a line is projected to the image plane as a conic and that
this conic has parameters which are dependent on the mirror and the line.
Now, we shall see how to find the conic center, the major and minor axis, and
their lengths 2a and 2b, respectively, using the conformal unified model (see
Fig. 13.29).

Using Eq. (13.200) and N , we can calculate the plane where the principal
axis lies as

P ∗ = U∗ ∧N . (13.206)

The principal axis of the conic is the intersection of the planes P and Π ,

A∗
1 = (P ∧Π)∗ . (13.207)

The points at both extremes of the axis are found by the intersection of the
circle C Eq. (13.81) and the plane P ,

PP ∗ = (C ∧ P )∗ . (13.208)

For each of the two points P i (i = 1, 2), we trace a line,

L∗
i = P i ∧N ∧ e , (13.209)

and then we intersect both lines and the plane M ,

Qi = (Li ∧Π)∗, (13.210)

consequently the points Q1 and Q2 lie on the principal axis of the conic and
the distance between them equals 2a.
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Fig. 13.29. Center and principal axis of the conic in the image plane

The center of the conic lies on the axis A∗
1 at half of the distance between

Q1 and Q2. We build a translator using the distance a and the axis A∗
1:

T = (1 +
eA∗

1

2
a) . (13.211)

The center of the conic is found as

C0 = TQ1T̃ . (13.212)

The normal of the plane P is

n = (P ∧ e) · e0 . (13.213)

And, now, the other axis of the conic is found easily:

A∗
2 = n ∧C0 ∧ e . (13.214)

Then we calculate the plane P 2 as

P ∗
2 = A∗

2 ∧N . (13.215)

At the intersection of plane P and the circle C, we get a point pair,

RR∗ = (C ∧ P 2)∗ . (13.216)

We trace a line Lj with each of the two points Ri,
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Lj = Ri ∧N ∧ e , (13.217)

and, finally, we calculate the intersection of the lines and the image plane:

Qj = (Lj ∧Π)∗ . (13.218)

The distance between Q3 and Q4 is equal to 2b.

13.8.6 Navigation Using Omnidirectional Vision

In order to use the omnidirectional image for robot navigation, we first apply
the inverse point projection (defined previously) to each pixel in the image so
as to produce a rectified image (see Fig. 13.30a). As mentioned earlier, our
system is monocular so we cannot make a 3-D reconstruction; but since we are
only interested in the plane of the floor, we can project all the image points
to this plane, though all the points that do not belong to such a plane will
appear distorted. Once we project all the points to the floor plane, the lines in
the floor will appear as lines in the image and not as curves (see Fig. 13.30b).

Robot Navigation

In this experiment, the robot was placed in the corridor of our laboratory, the
objective being that the robot should navigate approximately parallel to the
wall for a distance of d = 50 cm (see Fig. 13.31). Let L be the line of the
corridor, and G the robot, which is modeled by a circle defined as

G∗ = x1 ∧ x2 ∧ x3 . (13.219)

Note that with the wedge of three points lying on the robot circumference
we get the robot contour as an entity for further algebraic manipulations (see

a) b)

Fig. 13.30. (a) Omnidirectional image. (b) Rectified image
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Ea. 13.230). Using the line of the corridor, we calculate the rotor to make the
robot parallel to such a line as

R1 = e(
arccos(L∗

1 ·e3+−)
2 L∗

G). (13.220)

The translator for the parallel line is

T 1 = (1 + d
e

2
e3+−) . (13.221)

With this translator, we can find the line L∗
2 parallel to L∗

1, which is defined
by

L∗
2 = T 1L

∗
1T̃ 1 . (13.222)

The point P 1 is computed as

P 1 = {[[((L1 ∧ e) · e0)IE ] ∧ P ′
c ∧ e] ∧ e2}∗ ∧ (L∗

2 ∧ e2)∗ ∧Π , (13.223)

and using the distance, d2, between the points P 1 and P ′
c we calculate the

translator,

T 2 = (1 +
eL∗

2

2
d2) . (13.224)

To find the next point where the robot will be, we apply

P ′
c = T 2P 1T̃ 2 . (13.225)

The line between points P c and P ′
c is

L∗
3 = P c ∧ P ′

c ∧ e , (13.226)

and with this line we calculate the rotor,

R2 = e(
arccos(L∗

3 ·e3+−)
2 L∗

G). (13.227)

The translator that moves the robot to its final position is

T 3 = (1 +
eL∗

3

2
d3) , (13.228)

where d3 is the distance between P c and P ′
c. The motor is then

M = T 3R2R1 , (13.229)

which can be applied to the robot to obtain its next position,

G∗
2 = MG∗M̃ . (13.230)
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Fig. 13.31. (a) Model of the experiment. (b) Processed image and conformal objects
(note that the mirror reverses the image)

13.9 Conclusion

In this chapter we have presented a series of interesting real applications of
robot vision by employing non-conventional techniques for projective geome-
try. The key to our approach is the use of conformal geometric algebra for
incidence algebra computations involving linear transformations represented
efficiently as spinors. By utilizing our mathematical system, it is no longer ne-
cessary to abandon the mathematical framework in order to carry out simulta-
neous operations of algebra of incidence and conformal transformations. The
author strongly believes that the framework of conformal geometric algebra
can surely be of great advantage for representing and processing information
from robots equipped with stereo-vision systems, laser sensors, omnidirec-
tional vision, and odometry.
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14.1 Introduction

Statistical inference from images is one of the key components of computer
vision research today. Traditionally, statistical methods have been used for
recognition and classification purposes. Recently, however, there are many
studies of statistical analysis for geometric inference based on geometric pri-
mitives such as points and lines extracted by image processing operations.

However, the term “statistical” has somewhat a different meaning for such
geometric inference problems than for the traditional recognition and classi-
fication purposes. This difference has often been overlooked, causing contro-
versies over the validity of the statistical approach to geometric problems in
general. In Sect. 14.2, we take a close look at this problem, tracing back the
origin of feature uncertainty to image processing operations. In Sect. 14.3,
we discuss the implications of asymptotic analysis in reference to geometric
fitting and geometric model selection. In Sect. 14.4, we point out that a corres-
pondence exists between the standard statistical analysis and the geometric
inference problem. We also compare the capability of the geometric AIC and
the geometric MDL in detecting degeneracy. In Sect. 14.5, we review recent
progress in geometric fitting techniques for linear constraints, describing the
FNS method, the HEIV method, the renormalization method, and other re-
lated techniques. In Sect. 14.6, we discuss the Neyman–Scott problem and
semiparametric models in relation to geometric inference. Sect. 14.7 presents
our concluding remarks.

14.2 What Is Geometric Inference?

14.2.1 Ensembles for Geometric Inference

The goal of statistical methods is not to study the properties of observed
data themselves but to infer the properties of the ensemble from which we

Computer Science
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a b
Fig. 14.1. a A feature point in an image of a building. b Its enlargement and the
uncertainty of the feature location

regard the observed data as sampled. The ensemble may be a collection of
existing entities (e.g., the entire population), but often it is a hypothetical
set of conceivable possibilities. When a statistical method is employed, the
underlying ensemble is often taken for granted. However, this issue is very
crucial for geometric inference based on feature points.

Suppose, for example, we extract feature points, such as corners of walls
and windows, from an image of a building and want to test if they are collinear.
The reason why we need a statistical method is that the extracted feature
positions have uncertainty. So, we have to judge the extracted feature points
as collinear if they are sufficiently aligned. We can also evaluate the degree of
uncertainty of the fitted line by propagating the uncertainty of the individual
points. What is the ensemble that underlies this type of inference?

This question reduces to the question of why the uncertainty of the feature
points occurs at all. After all, statistical methods are not necessary if the data
are exact. Using a statistical method means regarding the current feature
position as sampled from a set of its possible positions. But where else could
it be if not in the current position?

14.2.2 Uncertainty of Feature Extraction

Many algorithms have been proposed for extracting feature points, including
the Harris operator [12] and SUSAN [46], and their performance has been
extensively compared [4, 41, 45]. However, if we use, for example, the Har-
ris operator to extract a particular corner of a particular building image, the
output is unique (Fig. 14.1). No matter how many times we repeat the extrac-
tion, we obtain the same point because no external disturbances exist and the
internal parameters (e.g., thresholds for judgment) are unchanged. It follows
that the current position is the sole possibility. How can we find it elsewhere?

If we closely examine the situation, we are compelled to conclude that
other possibilities should exist because the extracted position is not necessarily
correct. But if it is not correct, why did we extract it? Why didn’t we extract
the correct position in the first place? The answer is: we cannot .
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14.2.3 Image Processing for Computer Vision

The reason why there exist so many feature extraction algorithms, none of
them being definitive, is that they are aiming at an intrinsically impossible
task. If we were to extract a point around which, say, the intensity varies to
the largest degree in such and such a measure, the algorithm would be unique;
variations may exist in intermediate steps, but the final output should be the
same.

However, what we want is not “image properties” but “3-D properties” such
as corners of a building, but the way a 3-D property is translated into an image
property is intrinsically heuristic. As a result, as many algorithms can exist as
the number of heuristics for its 2-D interpretation. If we specify a particular
3-D feature to extract, say a corner of a window, its appearance in the image
is not unique. It is affected by many properties of the scene, including the
details of its 3-D shape, the viewing orientation, the illumination condition,
and the light reflectance properties of the material. A slight variation of any
of them can result in a substantial difference in the image.

Theoretically, exact extraction would be possible if all the properties of the
scene were exactly known, but to infer them from images is the very task of
computer vision. It follows that we must make a guess in the image processing
stage. For the current image, some guesses may be correct, but others may
be wrong. The exact feature position could be found only by an (nonexisting)
“ideal” algorithm that could guess everything correctly.

This observation allows us to interpret the “possible feature positions” to
be the positions that would be located by different (nonideal) algorithms based
on different guesses. It follows that the set of hypothetical positions should
be associated with the set of hypothetical algorithms . The current position is
regarded as produced by an algorithm sampled from it. This explains why
one always obtains the same position no matter how many times one repeats
extraction using that algorithm. To obtain a different position, one has to
sample another algorithm.

Remark 1. We may view the statistical ensemble in the following way. If we
repeat the same experiment, the result should always be the same. But if we
declare that the experiment is the “same” if such and such are the same while
other things can vary, then those variable conditions define the ensemble. The
conventional view is to regard the experiment as the same if the 3-D scene we
are viewing is the same while other properties, such as the lighting condition,
can vary. Then, the resulting image would be different for each (hypothetical)
experiment, so one would obtain a different output each time, using the same
image processing algorithm. The expected spread of the outputs measures the
robustness of that algorithm. Here, however, we are viewing the experiment as
the same if the image is the same. Then, we could obtain different results only
by sampling other algorithms. The expected spread of the outputs measures
the uncertainty of feature detection from that image. We take this view be-
cause we are analyzing the reliability of geometric inference from a particular
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image, while the conventional view is suitable for assessing the robustness of
a particular algorithm.

14.2.4 Covariance Matrix of a Feature Point

The performance of feature point extraction depends on the image properties
around that point. If, for example, we want to extract a point in a region with
an almost homogeneous intensity, the resulting position may be ambiguous
whatever algorithm is used. In other words, the positions that potential algo-
rithms would extract should have a large spread. If, on the other hand, the
intensity greatly varies around that point, any algorithm could easily locate it
accurately, meaning that the positions that the hypothetical algorithms would
extract should have a strong peak. It follows that we may introduce for each
feature point its covariance matrix that measures the spread of its potential
positions.

Let V[pα] be the covariance matrix of the αth feature point pα. The above
argument implies that we can estimate the qualitative characteristics of un-
certainty but not its absolute magnitude. So, we write the covariance matrix
V[pα] in the form

V[pα] = ε2V0[pα], (14.1)

where ε is an unknown magnitude of uncertainty, which we call the noise level .
The matrix V0[pα], which we call the (scale) normalized covariance matrix ,
describes the relative magnitude and the dependence on orientations.

Remark 2. The decomposition of V[pα] into ε2 and V0[pα] involves scale am-
biguity. We assume that the decomposition is made unique by an appropriate
scale normalization such as trV0[pα] = 2. However, the subsequent analysis
does not depend on particular normalizations, so we do not explicitly specify
it except that it should be done in such a way that ε is much smaller than the
data themselves. Note that mathematically, modeling the covariance matrix
by a common scale factor ε2 and the individual matrix part V0[pα] is rather
restrictive. However, this model is sufficient for most practical applications,
as we describe in the following.

14.2.5 Covariance Matrix Estimation

If the intensity variations around pα are almost the same in all directions, we
can think of the probability distribution as isotropic, a typical equiprobability
line, known as the uncertainty ellipses , being a circle (Fig. 14.1b). On the
other hand, if pα is on an object boundary, distinguishing it from nearby
points should be difficult whatever algorithm is used, so its covariance matrix
should have an elongated uncertainty ellipse along that boundary.

However, existing feature extraction algorithms are usually designed to
output those points that have large image variations around them, so points
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in a region with an almost homogeneous intensity or on object boundaries
are rarely chosen. As a result, the covariance matrix of a feature point ex-
tracted by such an algorithm can be regarded as nearly isotropic. This has
also been confirmed by experiments [26], justifying the use of the identity as
the normalized covariance matrix V0[pα].

Remark 3. The intensity variations around different feature points are usually
unrelated, so their uncertainty can be regarded as statistically independent.
However, if we track feature points over consecutive video frames, it has been
observed that the uncertainty has strong correlations over the frames [47].

Remark 4. Many interactive applications require humans to extract feature
points by manipulating a mouse. Extraction by a human is also an “algorithm”,
and it has been shown by experiments that humans are likely to choose “easy-
to-see” points such as isolated points and intersections, avoiding points in a
region with an almost homogeneous intensity or on object boundaries [26]. In
this sense, the statistical characteristics of human extraction are very similar
to machine extraction. This is no surprise if we recall that image processing for
computer vision is essentially a heuristic that simulates human perception. It
has also been reported that strong microscopic correlations exist when humans
manually select corresponding feature points over multiple images [34].

14.2.6 Image Quality and Uncertainty

The uncertainty of feature points has often been identified with “image noise”,
giving a misleading impression as if the feature locations were perturbed by
random intensity fluctuations. Of course, we may obtain better results using
higher-quality images whatever algorithm is used. However, the task of com-
puter vision is not to analyze image properties but to study the 3-D properties
of the scene. As long as the image properties and the 3-D properties do not
correspond one to one, any image processing inevitably entails some degree
of uncertainty, however high the image quality may be, and the result must
be interpreted statistically. The underlying ensemble is the set of hypothetical
(inherently imperfect) algorithms of image processing. Yet, the performance of
image processing algorithms has often been evaluated by adding independent
Gaussian noise to individual pixels.

Remark 5. This also applies to edge detection, whose goal is to find the boun-
daries of 3-D objects in the scene. In reality, all existing algorithms seek edges ,
i.e., lines and curves across which the intensity changes discontinuously. Yet,
this is regarded by many as an objective image processing task, and the de-
tection performance is often evaluated by adding independent Gaussian noise
to individual pixels. From the above considerations, we conclude that edge
detection is also a heuristic, and hence no definitive algorithm will ever be
found.
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Fig. 14.2. a For the standard statistical analysis, it is desired that the accuracy
increases rapidly as the number of experiments n → ∞, because admissible accuracy
can be reached with a smaller number of experiments. b For geometric inference,
it is desired that the accuracy increases rapidly as the noise level ε → 0, because
larger data uncertainty can be tolerated for admissible accuracy

14.3 Asymptotic Analysis for Geometric Inference

14.3.1 What Is Asymptotic Analysis?

As stated earlier, statistical estimation refers to estimating the properties of
an ensemble from a finite number of samples, assuming some knowledge, or a
model , about the ensemble. If the uncertainty originates from external condi-
tions, as in experiments in physics, the estimation accuracy can be increased
by controlling the measurement devices and environments. For internal uncer-
tainty, on the other hand, there is no way of increasing the accuracy except by
repeating the experiment and doing statistical inference. However, repeating
experiments usually entails costs, and in practice the number of experiments
is often limited.

Taking account of this, statisticians usually evaluate the performance of
estimation asymptotically, analyzing the growth in accuracy as the number n
of experiments increases. This is justified because a method whose accuracy
increases more rapidly as n → ∞ can reach admissible accuracy with fewer
experiments (Fig. 14.2a).

In contrast, the ensemble for geometric inference is, as we have seen, the
set of potential feature positions that could be located if other (hypotheti-
cal) algorithms were used. As noted earlier, however, we can choose only one
sample from the ensemble as long as we use a particular image processing
algorithm. In other words, the number n of experiments is 1. Then, how can
we evaluate the performance of statistical estimation?

Evidently, we want a method whose accuracy is sufficiently high even for
large data uncertainty. This implies that we need to analyze the growth in
accuracy as the noise level ε decreases, because a method whose accuracy
increases more rapidly as ε → 0 can tolerate larger data uncertainty for ad-
missible accuracy (Fig. 14.2b).
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14.3.2 Geometric Fitting

We now illustrate the above consideration in more specific terms. Let {pα}, α
= 1, ..., N , be the extracted feature points. Suppose each point should satisfy
a parameterized constraint

F (pα,u) = 0 (14.2)

when no uncertainty exists. In the presence of uncertainty, Eq. (14.2) may not
hold exactly. Our task is to estimate the parameter u from observed positions
{pα} in the presence of uncertainty.

A typical problem of this form is to fit a line or a curve to given N points
in the image, but this can be straightforwardly extended to multiple images.
For example, if a point (xα, yα) in one image corresponds to a point (x′

α, y
′
α)

in another, we can regard them as a single point pα in a four-dimensional
joint space with coordinates (xα, yα, x

′
α, y

′
α). If the camera imaging geometry

is modeled as perspective projection, constraint (14.2) corresponds to the
epipolar equation; the parameter u is the fundamental matrix [13]. This is
discussed in more detail in Sect. 14.5.1.

3.2.1 General Geometric Fitting

The above problem can be stated in abstract terms as geometric fitting as
follows. We view a feature point in the image plane or a set of feature points
in the joint space as an m-dimensional vector x; we call it a “datum”. Let
{xα}, α = 1, ..., N , be observed data. Their true values {x̄α} are supposed
to satisfy r constraint equations

F (k)(x̄α,u) = 0, k = 1, ..., r, (14.3)

parameterized by a p-dimensional vector u. We call Eq. (14.3) the (geometric)
model . The domain X of the data {xα} is called the data space; the domain
U of the parameter u is called the parameter space. The number r of the
constraint equations is called the rank of the constraint. The r equations
F (k)(x,u) = 0, k = 1, ..., r, are assumed to be mutually independent, defining
a manifold S of codimension r parameterized by u in the data space X .
Equation (14.3) requires that the true values {x̄α} be all in the manifold S.
Our task is to estimate the parameter u from the noisy data {xα} (Fig. 14.3a).

3.2.2 Maximum Likelihood Estimation

Let

V[xα] = ε2V0[xα] (14.4)

be the covariance matrix of xα, where ε and V0[xα] are the noise level and the
normalized covariance matrix, respectively. If the distribution of uncertainty
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Fig. 14.3. a Fitting a manifold S to the data {xα}. b Estimating {x̄α} and u by
minimizing the sum of squared Mahalanobis distance with respect to the normalized
covariance matrices V0[xα]

is Gaussian, which we assume hereafter, the probability density of the data
{xα} is given by

P ({xα}) = C

N∏
α=1

e−(xα−x̄α,V[xα]−1(xα−x̄α))/2, (14.5)

where C is a normalization constant. Throughout this chapter, we denote the
inner product of vectors a and b by (a,b).

Maximum likelihood estimation (MLE) is finding the values of {x̄α} and
u that maximize the likelihood , i.e., Eq. (14.6) into which the data {xα} are
substituted, or equivalently minimize the sum of the squared Mahalanobis
distances in the form

J =
N∑

α=1

(xα − x̄α,V0[xα]−1(xα − x̄α)) (14.6)

subject to the constraint (14.3) (Fig. 14.3b). The solution is called the maxi-
mum likelihood (ML) estimator . If the uncertainty is small, which we assume
hereafter, constraint (14.3) can be eliminated by introducing Lagrange multi-
pliers and applying first-order approximation. After some manipulations, we
obtain the following form [14]:

J =
N∑

α=1

r∑
k,l=1

W (kl)
α F (k)(xα,u)F (l)(xα,u). (14.7)

Here, W (kl)
α is the (kl) element of the inverse of the r × r matrix whose (kl)

element is (∇xF
(k)
α ,V0[xα]∇xF

(l)
α ). We symbolically write(

W (kl)
α

)
=
(
(∇xF

(k)
α ,V0[xα]∇xF

(l)
α )

)−1

, (14.8)

where ∇xF
(k) is the gradient of the function F (k) with respect to x. The

subscript α means that x = xα is substituted.
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Remark 6. The data {xα} may be subject to some constraints. For example,
each xα may be a unit vector. The above formulation still holds if the in-
verse V0[xα]−1 in Eq. (14.6) is replaced by the Moore–Penrose generalized (or
pseudo) inverse V0[xα]− [14]. Similarly, the r constraints in Eq. (14.3) may be
redundant, say only r′ (< r) of them are independent. The above formulation
still holds if the inverse in Eq. (14.8) is replaced by the generalized inverse of
rank r′ with all but r′ largest eigenvalues replaced by zero [14].

3.2.3 Accuracy of the ML Estimator

It can be shown [14] that the covariance matrix of the ML estimator û has
the form

V[û] = ε2M(û)−1 + O(ε4), (14.9)

where

M(u) =
N∑

α=1

r∑
k,l=1

W (kl)
α ∇uF

(k)
α ∇uF

(k)

α . (14.10)

Here, ∇uF
(k) is the gradient of the function F (k) with respect to u. The

subscript α means that x = xα is substituted.

Remark 7. It can be proved that no other estimators could reduce the cova-
riance matrix further than Eq. (14.9) except for the higher-order term O(ε4)
[14, 17]. The ML estimator is optimal in this sense. Recall that we are focusing
on the asymptotic analysis for ε → 0. Thus, what we call the “ML estimator”
should be understood to be a first approximation to the true ML estimator
for small ε.

Remark 8. The p-dimensional parameter vector u may be constrained. For
example, it may be a unit vector. If it has only p′ (< p) degrees of freedom,
the parameter space U is a p′-dimensional manifold in Rp. In this case, the
matrix M(u) in Eq. (14.9) is replaced by PuM(u)Pu, where Pu is the projection
matrix onto the tangent space to the parameter space U at u [14]. The inverse
M(û)−1 in Eq. (14.9) is replaced by the generalized inverse M(û)−1 of rank p′

[14].

14.3.3 Geometric Model Selection

Geometric fitting is to estimate the parameter u of a given model. If we have
multiple candidate models

F
(k)
1 (x̄α,u1) = 0, F

(k)
2 (x̄α,u2) = 0, (14.11)

F
(k)
3 (x̄α,u3) = 0, ...,
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from which we are to select an appropriate one for the observed data {xα},
the problem is (geometric) model selection [14, 16, 18].

Suppose, for example, we want to fit a curve to given points in two di-
mensions. If they are almost collinear, a straight line may fit fairly well, but
a quadratic curve may fit better, and a cubic curve even better. Which curve
should we fit? A naive idea is to compare the residual (sum of squares), i.e.,
the minimum value Ĵ of J in Eq. (14.6); we select the one that has the small-
est residual Ĵ . This does not work, however, because the ML estimator û is
so determined as to minimize the residual Ĵ , and the residual Ĵ can be made
arbitrarily smaller if the model is equipped with more parameters to adjust.
So, the only conclusion would be to fit a curve of a sufficiently high degree
passing through all the points.

3.3.1 Geometric AIC

The above observation leads to the idea of compensating for the negative
bias of the residual caused by substituting the ML estimator. This is the
principle of the Akaike information criterion (AIC) [1], which is derived from
the asymptotic behavior of the Kullback–Leibler information (or divergence)
as the number n of experiments goes to infinity. Doing a similar analysis to
Akaike’s and examining the asymptotic behavior as the noise level ε goes to
zero, we can obtain the following geometric AIC [14, 15]:

G-AIC = Ĵ + 2(Nd + p)ε2 + O(ε4). (14.12)

Here, d is the dimension of the manifold S defined by the constraint (14.3) in
the data space X , and p is the dimension of u (i.e., the number of unknowns).
The model for which Eq. (14.12) is the smallest is regarded as the best. The
derivation of Eq. (14.12) is based on the following facts [14, 15]:

• The ML estimator û converges to its true value as ε → 0.
• The ML estimator û obeys a Gaussian distribution under linear con-

straints, because the noise is assumed to be Gaussian. For nonlinear con-
straints, linear approximation can be justified in the neighborhood of the
solution if ε is sufficiently small.

• A quadratic form in standardized Gaussian random variables is subject to
a χ2 distribution, whose expectation is equal to its degree of freedom.

3.3.2 Geometric MDL

Another well-known criterion for model selection is Rissanen’s minimum de-
scription length (MDL) [42, 43, 44], which measures the goodness of a model
by the minimum information theoretic code length of the data and the model.
The basic idea is simple, but the following difficulties must be resolved to
apply it in practice:
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• Encoding a problem involving real numbers requires an infinitely long code
length.

• The probability density, from which a minimum length code can be ob-
tained, involves unknown parameters.

• The exact form of the minimum code length is very difficult to compute.

Rissanen [42, 43, 44] avoided these difficulties by quantizing the real num-
bers in a way that does not depend on individual models and substituting the
ML estimators for the parameters. They, too, are real numbers, so they are
also quantized. The quantization width is so chosen as to minimize the total
description length (two-stage encoding). The resulting code length is evalua-
ted asymptotically as the data length n goes to infinity. If we analyze the
asymptotic behavior of encoding the geometric fitting problem as the noise
level ε goes to zero, we obtain the following geometric MDL [20]:

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

+ O(ε2). (14.13)

Here, L is a reference length chosen so that its ratio to the magnitude of data
is O(1), e.g., L can be taken to be the image size for feature point data. Its
exact determination requires an a priori distribution that specifies where the
data are likely to appear (we discuss this more in Sect. 14.4.1), but it has been
observed that the model selection is not very much affected by L as long as
it is within the same order of magnitude [20].

14.4 Standard Statistical Analysis vs. Geometric
Inference

We now point out that a correspondence exists between the standard sta-
tistical analysis and the geometric inference problem. We also compare the
capability of the geometric AIC and the geometric MDL in detecting degen-
eracy.

14.4.1 Standard Statistical Analysis

The asymptotic analysis in Sect. 14.3 bears a strong resemblance to the stan-
dard statistical estimation problem: after observing n data x1, x2, ..., xn, we
want to estimate the parameter θ of the probability density P (x|θ) called the
(stochastic) model , according to which each datum is assumed to be sampled
independently.

Maximum likelihood estimation (MLE) is to find the value θ that
maximizes

∏n
i=1 P (xi|θ), or equivalently minimizes its negative logarithm

−
∑n

i=1 logP (xi|θ). It can be shown that the covariance matrix V[θ̂] of the re-
sulting ML estimator θ̂ converges, under a mild condition, to O as the number
n of experiments goes to infinity (consistency) in the form
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V[θ̂] = I(θ)−1 + O
( 1
n2

)
, (14.14)

where we define the Fisher information matrix I(θ) by

I(θ) = nE[(∇θ logP (x|θ))(∇θ logP (x|θ))
]. (14.15)

The operation E[ · ] denotes expectation with respect to the density P (x|θ).
The first term in the right-hand side of Eq. (14.14) is called the Cramer–
Rao lower bound (CRLB), describing the minimum degree of fluctuations in
all estimators. Thus, the ML estimator is optimal if n is sufficiently large
(asymptotic efficiency).

If we have multiple candidate models

P1(x|θ1), P2(x|θ2), P3(x|θ3), ..., (14.16)

from which we are to select an appropriate one for the observations x1, x1, ...,
xn, the problem is (stochastic) model selection. Akaike’s AIC has the following
form:

AIC = −2
N∑

i=1

logP (xi|θ̂) + 2k + O
( 1
n

)
. (14.17)

The model for which this quantity is the smallest is regarded as the best. The
derivation of Eq. (14.17) is based on the following facts [1]:

• The maximum likelihood estimator θ̂ converges to its true value as n →
∞ (the law of large numbers).

• The maximum likelihood estimator θ̂ asymptotically obeys a Gaussian
distribution as n → ∞ (the central limit theorem).

• A quadratic form in standardized Gaussian random variables is subject to
a χ2 distribution, whose expectation is equal to its degree of freedom.

Rissanen’s MDL has the following form [43, 44]:

MDL = −
n∑

i=1

logP (xi|θ̂) +
k

2
log

n

2π
+ log

∫
T

√
|I(θ)|dθ + O(1).(14.18)

Here, θ̂ is the ML estimator; the symbol O(1) denotes terms of order 0 in
n in the limit n → ∞. In order that the integration in the right-hand side
of Eq. (14.18) exists, the domain T of the parameter θ must be compact. In
other words, we must specify in the k-dimensional space of θ a finite region T
in which the true value of θ is likely to exist. This is nothing but the Bayesian
standpoint that requires a prior distribution for the parameter to estimate. If
it is not known, we must introduce an appropriate expedient to suppress an
explicit dependence on the prior. Such an expedient is also necessary for the
geometric MDL, i.e., the introduction of the reference length L in Eq. (14.18).
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14.4.2 Dual Interpretations of Asymptotic Analysis

Thus, we have seen that the limit n → ∞ for the standard statistical analysis
corresponds to the limit ε → 0 for geometric inference. For example, the co-
variance matrix of the ML estimator agrees with the Cramer–Rao lower bound
up to O(1/n2) for n → ∞ (see Eq. (14.14)), while for geometric inference it
agrees with the lower bound up to O(ε4) for ε → 0 (see Eq. (14.9)). It follows
that 1/

√
n for the standard statistical analysis plays the same role as ε for

geometric inference.
The same correspondence exists for model selection, too. The unknowns

for geometric inference are the p parameters of the constraint plus the N
true positions specified by the d coordinates of the d-dimensional mani-
fold S defined by the constraint. If Eq. (14.12) is divided by ε2, we have
Ĵ/ε2+2(Nd + p)+O(ε2), which is (−2 times the logarithmic likelihood)+2(the
number of unknowns), the same form as Akaike’s AIC given by Eq. (14.17).
The same holds for Eq. (14.13), which corresponds to Rissanen’s MDL given
by Eq. (14.18) if ε is replaced by 1/

√
n [20].

This correspondence can be interpreted as follows. Since the underlying
ensemble is hypothetical, we can actually observe only one sample as long as
a particular algorithm is used. Suppose we hypothetically sample n different
algorithms to find n different positions. The optimal estimate of the true po-
sition under the Gaussian model is their sample mean. The covariance matrix
of the sample mean is 1/n times that of the individual samples. Hence, this
hypothetical estimation is equivalent to dividing the noise level ε in Eq. (14.4)
by
√
n.

In fact, there were attempts to generate a hypothetical ensemble of al-
gorithms by randomly varying the internal parameters (e.g., the thresholds
for judgments), not adding random noise to the image [5, 6]. Then, one can
compute their means and covariance matrix. Such a process as a whole can
be regarded as one operation that effectively achieves higher accuracy.

Thus, the asymptotic analysis for ε → 0 is equivalent to the asymptotic
analysis for n → ∞, where n is the number of hypothetical observations. As
a result, the expression · · · + O(1/

√
nk) in the standard statistical analysis

turns into · · ·+ O(εk) in geometric inference.

14.4.3 Noise Level Estimation

In order to use the geometric AIC or the geometric MDL, we need to know the
noise level ε. If not known, it must be estimated. Here arises a sharp contrast
between the standard statistical analysis and our geometric inference.

For the standard statistical analysis, the noise magnitude is a model pa-
rameter , because “noise” is defined to be the random effects that cannot be
accounted for by the assumed model . Hence, the noise magnitude should be
estimated, if not known, according to the assumed model . For geometric in-
ference, on the other hand, the noise level ε is a constant that reflects the
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uncertainty of feature detection. So, it should be estimated independently of
individual models.

If we know the true model, it can be estimated from the residual Ĵ using
the knowledge that Ĵ/ε2 is subject to a χ2 distribution with rN−p degrees of
freedom in the first-order [14]. Specifically, we obtain an unbiased estimator
of ε2 in the form

ε̂2 =
Ĵ

rN − p
. (14.19)

The validity of this formula has been confirmed by many simulations.
One may wonder if model selection is necessary at all when the true model

is known. In practice, however, a typical situation where model selection is
called for is degeneracy detection. In 3-D analysis from images, for example,
the constraint (14.3) corresponds to our knowledge about the scene such as
rigidity of motion. However, the computation fails if degeneracy occurs (e.g.,
the motion is zero). Even if exact degeneracy does not occur, the computation
may become numerically unstable in near-degeneracy conditions. In such a
case, the computation can be stabilized by switching to a model that describes
the degeneracy [16, 21, 24, 25, 31, 39, 53].

Degeneracy means addition of new constraints, such as some quantity be-
ing zero. It follows that the manifold S degenerates into a submanifold S′ of
it. Since the general model still holds irrespective of the degeneracy, i.e., S′ ⊂
S, we can estimate the noise level ε from the residual Ĵ of the general model
S using Eq. (14.19).

Remark 9. Equation (14.19) can be intuitively understood as follows. Recall
that Ĵ is the sum of the square distances from {xα} to the manifold Ŝ defined
by the constraint F (k)(x,u) = 0, k = 1, ..., r. Since Ŝ has codimension r (the
dimension of the orthogonal directions to it), the residual Ĵ should have ex-
pectation rNε2. However, Ŝ is fitted by adjusting its p-dimensional parameter
u, so the expectation of Ĵ reduces to (rN − p)ε2.

Remark 10. It may appear that the residual Ĵ of the general model cannot be
stably computed in the presence of degeneracy. However, what is unstable is
model specification, not the residual. For example, if we fit a planar surface to
almost collinear points in 3-D, it is difficult to specify the fitted plane stably;
the solution is very susceptible to noise. Yet, the residual is stably computed,
since unique specification of the fit is difficult because all the candidates have
almost the same residual .

Remark 11. Note that the noise level estimation from the general model S by
Eq. (14.19) is still valid even if degeneracy occurs, because degeneracy means
shrinkage of the model manifold S′ within S, which does not affect the data
deviations in the “orthogonal” directions (in the Mahalanobis sense) to S that
account for the residual Ĵ .
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Fig. 14.4. Fitting a space line and a plane to points in space
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Fig. 14.5. The rate (%) of detecting a space line by the geometric AIC (solid lines

with +) and the geometric MDL (dotted lines with ×) with a the true noise level
and b the estimated noise level

14.4.4 Comparing the Geometric AIC and the Geometric MDL

We now illustrate the different characteristics of the geometric AIC and the
geometric MDL in detecting degeneracy. Consider a rectangular region [0, 10]×
[−1, 1] on the x-y plane in the x-y-z space. We randomly take 11 points
in it and magnify the region A times in the y-direction. Adding Gaussian
noise of mean 0 and variance ε2 to the x, y, and z coordinates of each point
independently, we fit a space line and a plane in a statistically optimal manner
(Fig. 14.4). The rectangular region degenerates into a line segment as A → 0.

A space line is a one-dimensional model with four degrees of freedom; a
plane is a two-dimensional model with three degrees of freedom. Their geo-
metric AIC and geometric MDL are

G-AICl = Ĵl+2(N+4)ε2, G-AICp = Ĵp+2(2N+3)ε2,

G-MDLl = Ĵl−(N+4)ε2 log
( ε

L

)2

, G-MDLp = Ĵp−(2N+3)ε2 log
( ε

L

)2

,

(14.20)

where the subscripts l and p refer to lines and planes, respectively. For each A,
we compare the geometric AIC and the geometric MDL of the fitted line and
plane and choose the one that has the smaller value. We used the reference
length L = 1.

Figure 14.5a shows the percentage of choosing a line for ε = 0.01 after
1000 independent trials for each A. If there were no noise, it should be 0% for
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A �= 0 and 100% for A = 0. In the presence of noise, the geometric AIC has a
high capability of distinguishing a line from a plane, but it judges a line to be
a plane with some probability. In contrast, the geometric MDL judges a line
to be a line almost 100%, but it judges a plane to be a line over a wide range
of A.

In Fig. 14.5a, we used the true value of ε2. Figure 14.5b shows the corre-
sponding result using its estimate obtained from the general plane model by
Eq. (14.19). We observe somewhat degraded but similar performance charac-
teristics.

Thus, we can observe that the geometric AIC has a higher capability for
detecting degeneracy than the geometric MDL, but the general model is cho-
sen with some probability when the true model is degenerate. In contrast, the
percentage for the geometric MDL to detect degeneracy when the true model
is really degenerate approaches 100% as the noise decreases. This is exactly
the dual statement to the well-known fact, called the consistency of the MDL,
that the percentage for Rissanen’s MDL to identify the true model converges
to 100% in the limit of an infinite number of observations. Rissanen’s MDL
is regarded by many as superior to Akaike’s AIC because the latter lacks this
property.

At the cost of this consistency, however, the geometric MDL regards a
wide range of nondegenerate models as degenerate. This is no surprise, since
the penalty −(Nd + p)ε2 log(ε/L)2 for the geometric MDL in Eq. (14.13) is
heavier than the penalty 2(Nd + p)ε2 for the geometric AIC in Eq. (14.12).
As a result, the geometric AIC is more faithful to the data than the geometric
MDL, which is more likely to choose a degenerate model. This contrast has
also been observed in many applications [23, 31].

Remark 12. Despite the fundamental difference of geometric model selection
from the standard (stochastic) model selection, many attempts have been
made in the past to apply Akaike’s AIC and their variants to computer vision
problems based on the asymptotic analysis of n→∞, where the interpretation
of n is different from problem to problem [48, 49, 50, 51, 52]. Rissanen’s MDL
is also used in computer vision applications. Its use may be justified if the
problem has the standard form of linear/nonlinear regression [3, 32]. Often,
however, the solution having a shorter description length was chosen with a
rather arbitrary definition of the complexity [11, 27, 33].

Remark 13. Note that one cannot compare different model selection criteria
in general terms, because each is based on its own logic. Not only that, one
cannot prove that a particular criterion works at all. In fact, although Akaike’s
AIC and Rissanen’s MDL are based on rigorous mathematics, there is no
guarantee that they work well in practice. The mathematical rigor is in their
reduction from their starting principles (the Kullback–Leibler information and
the minimum description length principle), which are beyond proof. What one
can tell is which criterion is more suitable for a particular application when
used in a particular manner. The geometric AIC and the geometric MDL
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have shown to be effective in many computer vision applications [19, 22, 23,
24, 25, 31, 39, 53], but other criteria may be better in other applications.
The important thing is, however, to understand the underlying logic of each
criterion.

14.5 Linear Geometric Fitting

Now, we consider a special type of geometric fitting problem that most fre-
quently arises in computer vision applications: the constraint is linear in both
data and unknowns. We systematically review existing methods.

14.5.1 Linear Constraints

In many geometric inference problems of computer vision, the constraint
(14.3) has the form

(ξ(x̄α),u) = 0, (14.21)

where ξ( · ) is generally a nonlinear mapping from an m-dimensional vector
to a p-dimensional vector. Evidently, the magnitude of u is unconstrained, so
we normalize it to a unit vector: ‖u‖ = 1.

Example 1. Suppose we are given N points {(xα, yα)}, α = 1, ..., N , in two
dimensions. Their true positions {(x̄α, ȳα)} are assumed to be on a conic
(a circle, an ellipse, a parabola, a hyperbola, or their degeneracy). Our task
is to estimate the curve from the noisy data {(xα, yα)}. The constraint on
{(x̄α, ȳα)} is

Ax̄2
α + 2Bx̄αȳα + Cȳ2

α + 2(Dx̄α + Eȳα) + F = 0 (14.22)

for some coefficients A, B, ..., D, not all being zero. This constraint reduces
to Eq. (14.21) if we put

ξ(x, y) =
(
x2 2xy y2 2x 2y 1

)

, u =

(
A B C D E F

)

. (14.23)

The data space X is a two-dimensional manifold in the six-dimensional space
R6; the parameter space U is the five-dimensional unit sphere S6 centered on
the origin of R6.

Example 2. Suppose N points in a 3-D scene are projected to (xα, yα) in the
first image and (x′

α, y
′
α) in the second, α = 1, ..., N . If the camera imaging

geometry is perspective projection, there exists a matrix F of determinant 0
such that

(

⎛⎝ x̄α

ȳα

1

⎞⎠ ,F

⎛⎝ x̄′
α

ȳ′α
1

⎞⎠) = 0, (14.24)
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which is called the epipolar equation [13]. The matrix F is known as the funda-
mental matrix . For 3-D reconstruction from the images, we need to estimate
the fundamental matrix F from the noisy data {(xα, yα)} and {(x′

α, y
′
α)}.

Equation (14.24) reduces to Eq. (14.21) if we put

ξ(x, y, x′, y′) =
(
xx′ xy′ x yx′ yy′ y x′ y′ 1

)

,

u =
(
F11 F12 F13 F21 F22 F23 F31 F32 F33

)

. (14.25)

The data space X is a four-dimensional manifold in the nine-dimensional space
R9; the parameter space U is a seven-dimensional manifold defined by detF

= 0 and ‖F‖ = 1, where the matrix norm is define by ‖F‖ =
√∑3

i,j=1 F
2
ij .

For the linear constraint (14.21), the function J in Eq. (14.7) reduces to

J =
N∑

α=1

(ξα,u)2

(u,V0[ξα]u)
, (14.26)

where V0[ξα] is the normalized covariance matrix of ξα; we use the abbrevia-
tion ξα = ξ(xα). The matrix V0[ξα] can be expressed to a first approximation
in the form

V0[ξα] = ∇xξ|
x=xα
V0[xα]∇xξ|x=xα , (14.27)

where ∇xξ is the m× p Jacobian matrix of ξ(x):

∇xξ =

⎛⎜⎝ ∂ξ1/∂x1 · · · ∂ξp/∂x1

...
...

∂ξ1/∂xm · · · ∂ξp/∂xm

⎞⎟⎠ . (14.28)

The covariance matrix V[û] of the ML estimator û given by Eq. (14.9) now
reads

V[û] = ε2
( N∑

α=1

Puξαξ

α Pu

(u,V0[ξα]u)

)−
+ O(ε4), (14.29)

where the superscript − denotes the Moore–Penrose generalized inverse. The
matrix Pu denotes projection onto the tangent space to the parameter space
U at u (cf. Remark 8). Since the leading term is the lower bound on the
covariance matrix of any estimation (Remark 7), the ML estimator is optimal
up to higher-order terms in ε.

Remark 14. Since we are focusing on the asymptotic analysis for ε → 0, what
we call the “ML estimator” is a first approximation to the true ML estimator
for small ε (Remark 7). Note that if the parameter u is not constrained, the
generalized inverse in Eq. (14.29) can be replaced by the usual inverse, and
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the projection matrix Pu is not necessary. However, u is at least constrained
to be a unit vector, and often additional constraints exist, e.g., detF = 0 on
the fundamental matrix F. If no constraints exist other than ‖u‖ = 1, the
covariance matrix V[û] has rank p− 1, and its null space is in the direction of
u. The projection matrix Pn in this case is

Pu = I− uu
. (14.30)

14.5.2 Least-Squares Method

If u is constrained, the minimization of Eq. (14.26) should be carried out
subject to the constraint, but this is very difficult in many cases. A practical
approach to this is to ignore all the constraints except the normalization ‖u‖
= 1 and do minimization over the (p−1)-dimensional sphere Sp−1 in Rp. This
expedient is motivated by the fact that if the data {xα} are exact, the solution
should automatically satisfy the remaining constraints. It follows that if the
data uncertainty is very small, which we always assume, the resulting solution
û should satisfy all the constraints up to higher-order terms in ε.

However, the minimization of Eq. (14.26) is still nonlinear even if all con-
straints other than ‖u‖ = 1 are ignored. The simplest approach is to solve
Eq. (14.21) directly by (total) least squares, minimizing

JLS =
N∑

α=1

(ξα,u)2. (14.31)

If we define the second-order moment matrix

M =
N∑

α=1

ξαξ

α , (14.32)

Eq. (14.31) is rewritten as

JLS = (u,Mu). (14.33)

The unit vector u that minimizes this is the unit eigenvector of M for the
smallest eigenvalue. The resulting least-squares (LS) solution ûLS is a very
crude approximation to the ML estimator û. However, because of the ease of
the computation, it is often used as an initial guess for computing the ML
estimator û by iterations.

14.5.3 Naive Method

If we define

M(u) =
N∑

α=1

ξαξ

α

(u,V0[ξα]u)
, (14.34)
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Eq. (14.26) is written as

J = (u,M(u)u). (14.35)

This inspires the following iterations for computing the ML estimator:

1. Guess an appropriate initial value u0, say the LS solution ûLS.
2. Assuming that ui−1 is obtained (initially i = 1), let ui be the unit eigen-

vector of M(ui−1) for the smallest eigenvalue.
3. Return ui if ui is sufficiently close to ui−1 except for the sign. Otherwise,

let ui−1 ← ui, and go back to step 2.

This scheme does not work, however, because the resulting solution û is the
value u that minimizes (u,M(û)u), not (u,M(u)u). In other words,

(û,M(û)û) < (û + ∆u,M(û)(û + ∆u)) (14.36)

for any nonzero perturbation ∆u, but not

(û,M(û)û) < (û + ∆u,M(û + ∆u)(û + ∆u)). (14.37)

A detailed analysis shows that û is biased by O(ε2) [14]. Namely, if the fluc-
tuations of the data {xα} are centered on their true values {x̄α}, the corre-
sponding fluctuations of û are around a value different from its true value by
O(ε2). This causes inadmissible errors in many practical applications.

14.5.4 FNS Method

If the constraint on u is ignored, the solution that minimizes Eq. (14.26) is
obtained by solving ∇uJ = 0. Since

∇uJ =
N∑

α=1

2(ξα,u)ξα

(u,V0[ξα]u)
−

N∑
α=1

2(ξα,u)2V0[ξα]u
(u,V0[ξα]u)2

, (14.38)

the equation ∇uJ = 0 is written in the form

X(u)u = 0, (14.39)

where

X(u) =
N∑

α=1

ξαξ

α

(u,V0[ξα]u)
−

N∑
α=1

(ξα,u)2V0[ξα]
(u,V0[ξα]u)2

. (14.40)

From this, we have the following scheme for solving Eq. (14.39):

1. Guess an appropriate initial value u0, say the LS solution ûLS.
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2. Assuming that ui−1 is obtained (initially i = 1), solve the eigenvalue
problem

X(ui−1)u = λu. (14.41)

Let ui be the unit eigenvector for the eigenvalue λ closest to 0.
3. Return ui if ui is sufficiently close to ui−1 except for the sign. Otherwise,

let ui−1 ← ui, and go back to step 2.

The resulting solution û satisfies Eq. (14.39). In fact, the value û produced
by the above iterations should satisfy

X(û)û = λû (14.42)

for some λ. Taking the inner product of û and both sides, we have

(û,X(û)û) = λ. (14.43)

Equation (14.40) implies that

(û,X(û)û) =
N∑

α=1

(û, ξα)2

(û,V0[ξα]û)
−

N∑
α=1

(ξα, û)2(û,V0[ξα]û)
(û,V0[ξα]û)2

= 0, (14.44)

meaning that λ = 0. Thus, û is indeed the solution of Eq. (14.39). This method
was proposed by Chojnacki et al. [7] and is called the fundamental numerical
scheme (FNS) method . Usually, the iterations converge very quickly.

Remark 15. Equation (14.44) is a consequence of the fact that the right-hand
side of Eq. (14.26) is a homogeneous function of degree 0 in u. Since multi-
plying u by any nonzero constant does not change the value of J , the gradient
∇uJ is necessarily orthogonal to u. Thus, (u,∇uJ) = 2(u,X(u)u) is identi-
cally 0.

14.5.5 HEIV Method

Equation (14.39) can also be written as

M(u)u = L(u)u, (14.45)

where

M(u) =
N∑

α=1

ξαξ

α

(u,V0[ξα]u)
,

L(u) =
N∑

α=1

(ξα,u)2V0[ξα]
(u,V0[ξα]u)2

. (14.46)

This implies the following scheme:
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1. Guess an appropriate initial value u0, say the LS solution ûLS.
2. Assuming that ui−1 is obtained (initially i = 1), solve the generalized

eigenvalue problem

M(ui−1)u = λL(ui−1)u. (14.47)

Let ui be the generalized eigenvector for the generalized eigenvalue closest
to 1. The norm of ui is normalized to be

(ui, L(ui−1)ui) = 1. (14.48)

3. Return ui if ui is sufficiently close to ui−1 except for the sign. Otherwise,
let ui−1 ← ui, and go back to step 2.

The resulting solution û should satisfy

M(û)û = λL(û)û, (14.49)

for some λ. Taking the inner product of û and both sides, we have

(û,M(û)û) = λ, (14.50)

because of the normalization convention given in Eq. (14.48), which implies
from the second of Eqs. (14.46) that

1 = (û, L(û)û) =
N∑

α=1

(ξα,u)2(û,V0[ξα]û)
(u,V0[ξα]u)2

=
N∑

α=1

(ξα,u)2

(u,V0[ξα]u)
. (14.51)

From the first of Eqs. (14.46), we see that

(û,M(û)û) =
N∑

α=1

(û, ξα)2

(u,V0[ξα]u)
= 1, (14.52)

meaning that λ = 1. Thus, û is indeed the solution of Eq. (14.45). However,
the matrix L(u) is usually singular, because the matrix V0[xα] in the second
of Eqs. (14.46) is likely to degenerate. This is easily seen from Eq. (14.27): the
dimension p of ξα is generally larger than the dimension m of xα. Hence, the
generalized eigenvalue problem in Eq. (14.47) needs to be reduced to subpro-
blems of smaller dimensions. The reduced form (we omit the details, see [9])
was proposed by Leedan and Meer [28] and Matei and Meer [30] and called
the heteroscedastic errors-in-variables (HEIV) method.
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14.5.6 Renormalization Method

The reason why the solution of the naive method of Sect. 14.5.3 is biased is
that the matrix M(u) in Eq. (14.34) is biased. If we decompose the datum ξα

into its true value ξ̄α and the noise term ∆ξα, the expectation of Eq. (14.34)
is

E[ξαξ

α ] = E[(ξ̄α + ∆ξα)(ξ̄α + ∆ξα)
]

= E[ξ̄αξ̄


α ] + E[ξ̄α∆ξ


α ] + E[∆ξαξ̄


α ] + E[∆ξα∆ξ


α ]

= ξ̄αξ̄


α + V0[ξα]. (14.53)

Thus,

E[M(u)] = M̄(u) + ε2N(u) + O(ε4), (14.54)

where M̄(u) is the value of M(u) evaluated using the true values {ξ̄α} and

N(u) =
N∑

β=1

V0[ξβ ]
(u,V0[ξβ ]u)

. (14.55)

Equation (14.54) implies that an unbiased solution can be obtained if the
matrix M(u) in Eq. (14.35) is replaced by

M̂(u) = M(u)− ε2N(u). (14.56)

The square noise level ε2 is unknown, but if we note that the smallest eigen-
value of M̄(u) is 0, we can estimate ε2 so that the smallest eigenvalue of M̂(u)
is 0. Thus, we obtain the following scheme:

1. Guess an appropriate initial value u0, say the LS solution ûLS, and let c0
= 0.

2. Assuming that ui−1 and ci−1 are obtained (initially i = 1), solve the
eigenvalue problem

(M(ui−1)− ci−1N(ui−1))u = λu. (14.57)

Let ui be the unit eigenvector for the smallest eigenvalue λ.
3. Return ui if λ is sufficiently close to 0. Otherwise, let

ci = ci−1 +
λ

(ui−1,N(ui−1)ui−1)
. (14.58)

4. Let ui−1 ← ui, and go back to step 2.

Equations (14.57) and (14.58) imply that if ci is close to 0 we have

(M(ui−1)− ciN(ui−1))ui−1 = 0. (14.59)
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In fact, the inner product of ui−1 and the left-hand side is

(ui−1, (M(ui−1)− ciN(ui−1))ui−1) = (ui−1, (M(ui−1)− ci−1N(ui−1))ui)−
λ(ui−1,N(ui−1)ui−1)
(ui−1,N(ui−1)ui−1)

= λ− λ = 0. (14.60)

If ci is close to 0, the matrix M(ui−1) − ciN(ui−1) is positive semidefinite,
so Eq. (14.60) implies that ui−1 is included in the null space of M(ui−1) −
ciN(ui−1), proving Eq. (14.59). Hence, the solution satisfies

(M(û)− cN(û))û = 0, (14.61)

and c gives an estimate of ε2. This scheme was proposed by Kanatani [14] and
called renormalization.

Remark 16. Historically, this method was proposed first; the HEIV and FNS
methods were proposed as refinements to it. However, the renormalization
solution and the HEIV/FNS solution (FNS and HEIV produce the same value)
are both optimal in the sense that their covariance matrices differ only in the
term O(ε4) in Eq. (14.29) [14]. This is confirmed by numerical simulations
[7, 8, 9].

Remark 17. Renormalization tries to eliminate the bias term in Eq. (14.54) by
“subtraction” in the form of Eq. (14.56). An alternative strategy would be to
remove the bias by “division”. In fact, if we let M̃(u) = N(u)−1/2M(u)N(u)−1/2

(the negative square root is defined by replacing all its eigenvalues λ by 1/
√
λ

in the canonical form), E[M̄(u)] and M̃(u) share the same eigenvectors up to
O(ε4). If ũ is an eigenvector of M̃(u), the corresponding eigenvector of M(u) is
N(u)−1/2ũ. This implies that an unbiased solution is obtained by applying the
naive method of Sect. 14.5.3 to M̃(u). This strategy is known as equilibration
or whitening. However, the matrix N(u) is often singular due to the degeneracy
of V0[ξα] (cf. Sect. 14.5.5), so N(u)−1/2 cannot be computed. Still, it has been
applied to a few problems for which N(u) does not degenerate [29, 35, 36].

14.5.7 Optimal Correction

In deriving the FNS, HEIV, and renormalization methods, we ignored all
constraints on u except ‖u‖ = 1. Let the remaining constraints be

φ(k)(u) = 0, k = 1, ..., r. (14.62)

From Eq. (14.29), the normalized covariance of the ML estimator û is given
by

V0[û] =
(
PûM(û)Pû

)−
, (14.63)
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where M(u) is defined in Eq. (14.34) (or in Eqs. (14.46)). The maximum
likelihood solution of u that satisfies the constraint (14.62) is obtained to a
first approximation by minimizing

J = (û− u,V0[û]−(û− u)) (14.64)

subject to Eq. (14.62). Introducing Lagrange multipliers and first-order ap-
proximation, we obtain the following solution [14]:

u∗ = û− V0[û]
r∑

k,l=1

w(kl)φ̂(k)∇uφ̂
(l). (14.65)

Here, w(kl) is the (kl) element of the inverse of the r × r matrix whose (kl)
element is (∇uφ̂

(k),V0[û]∇uφ̂
(l)), i.e.,(

w(kl)
)

=
(
(∇uφ̂

(k),V0[û]∇uφ̂
(l))
)−1

. (14.66)

The hat means that the ML estimator û is substituted for u. The normalized
covariance matrix of the corrected value u∗ of Eq. (14.65) is

V0[u∗] = V0[û]−
r∑

k,l=1

w(kl)(V0[û]∇uφ̂
(k))(V0[û]∇uφ̂

(k))
 (14.67)

up to O(ε2) [14]. For a single constraint, Eqs. (14.65) and (14.67) reduce to

u∗ = û− φ̂V0[û]∇uφ̂

(∇uφ̂,V0[û]∇uφ̂)
, (14.68)

V0[u∗] = V0[û]− (V0[û]∇uφ̂)(V0[û]∇uφ̂)


(∇uφ̂,V0[û]∇uφ̂)
. (14.69)

Remark 18. If the r constraints in Eq. (14.62) are redundant, say only r′ (<
r) of them are independent, the inverse in Eq. (14.66) is replaced by the
generalized inverse of rank r′ (cf. Remark 6).

Remark 19. If all the r constraints in Eq. (14.62) are independent, the rank of
the matrix V0[u∗] given by Eq. (14.65) is smaller than V0[û] by r. Intuitively,
the ellipsoid that represents the uncertainty of u in Rp “collapses” in the r
directions in which the constraint (14.62) is violated, while it keeps its shape in
the directions orthogonal to them. Hence, the optimality of the ML estimator
is not affected by doing this type of posterior correction [14].

Remark 20. Equation (14.65) enforces all the constraints only to a first ap-
proximation, so φ(k)(u∗), k = 1, ..., r, may not exactly be 0, and u∗ may not
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exactly be a unit vector. Such higher-order discrepancies can be eliminated
by iterating Eqs. (14.68) and (14.69) in the form

u∗ ← N [û− φ̂V0[û]∇uφ̂

(∇uφ̂,V0[û]∇uφ̂)
], (14.70)

V0[u∗]

← Pu∗
(
V0[û]− (V0[û]∇uφ̂)(V0[û]∇uφ̂)


(∇uφ̂,V0[û]∇uφ̂)
,
)
Pu∗ , (14.71)

where N [ · ] denotes normalization to a unit vector (N [v] = v/‖v‖), and Pu∗

is the projection matrix defined by Eq. (14.30). Equation (14.71) makes the
null space of the V0[u∗] exactly compatible with u∗.

14.6 Nuisance Parameters and Semiparametric Model

Finally, we discuss some new topics related to the use of statistical methods
for geometric inference.

14.6.1 Asymptotic Parameters

The number n that appears in the standard statistical analysis is the number of
experiments. It is also called the number of trials, the number of observations,
and the number of samples. Evidently, the properties of the ensemble are
revealed more precisely as more data are sampled from it.

However, the number n is often called the number of data, which has
caused considerable confusion. For example, if we observe a 100-dimensional
vector datum in one experiment, one may think that the “number of data” is
100, but this is wrong: the number n of experiments is 1. We are observing 1
sample from an ensemble of 100-dimensional vectors.

For character recognition, the underlying ensemble is the set of possible
character images, and the learning process concerns the number n of training
steps necessary to establish satisfactory responses. This is independent of
the dimension N of the vector that represents each character. The learning
performance is evaluated asymptotically as n → ∞, not N → ∞.

For geometric inference, however, many researchers have taken the dimen-
sion of the data as the “number of data” perhaps because the ensemble is
hypothetical and one cannot sample more than one datum from it. However,
if we extract, for example, 50 feature points, they constitute a 100-dimensional
vector consisting of their x and y coordinates. If no other information, such
as the image intensity, is used, the image is completely characterized by that
vector. Applying a statistical method means regarding it as a sample from a
hypothetical ensemble of 100-dimensional vectors.
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14.6.2 Neyman–Scott Problem

In the past, many computer vision researchers have analyzed the asymptotic
behavior as N → ∞ without explicitly mentioning what the underlying en-
semble is. This is perhaps motivated by a similar formulation in the statistical
literature. Suppose, for example, a rodlike structure lies on the ground in the
distance. We emit a laser beam toward it and estimate its position and orien-
tation by observing the reflection of the beam, which is contaminated by noise.
We assume that the laser beam can be emitted in any orientation any number
of times, but the emission orientation is measured with noise. The task is to
estimate the position and orientation of the structure as accurately as possible
by emitting as small a number of beams as possible. Naturally, the estimation
performance should be evaluated in the asymptotic limit n→∞ with respect
to the number n of emissions.

The underlying ensemble is the set of all response times for all possible
directions of emission. Usually, we are interested in the position and orienta-
tion of the structure but not the exact orientation of each emission, so the
variables for the former are called the structural parameters, which are fixed
in number, while the latter are called the nuisance parameters, which increase
indefinitely as the number n of experiments increases [2]. Such a formulation
is called the Neyman–Scott problem [37]. Since the constraint is an implicit
function in the form of Eq. (14.3), we are considering an errors-in-variables
model [10]. If we linearize the constraint by changing variables, the noise cha-
racteristics differs for each data component, so the problem is heteroscedastic
[28].

To solve this problem, one can introduce a parametric model for the distri-
bution of possible laser emission orientations, regarding the actual emissions
as random samples from it. This formulation is called a semiparametric model
[2]. An optimal solution can be obtained by finding a good estimating function
[2, 40].

14.6.3 Semiparametric Model for Geometric Inference

Since the semiparametric model has something different from the geometric
inference problem described in Sect. 14.3.2, a detailed analysis is required for
examining if application of a semiparametric model to geometric inference
will yield a desirable result [38, 40]. In any event, one should explicitly state
what kind of ensemble (or ensemble of ensembles) is assumed before doing
statistical analysis.

This is not merely a conceptual issue. It also affects the performance eva-
luation of simulation experiments. In doing a simulation, one can freely change
the number N of feature points and the noise level ε. If the accuracy of method
A is higher than method B for particular values of N and ε, one cannot
conclude that method A is superior to method B, because opposite results
may come out for other values of N and ε. Here, we have two alternatives for
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performance evaluation: fixing ε and varying N to see if admissible accuracy
is attained for a smaller number of feature point; fixing N and varying ε to
see if larger data uncertainty can be tolerated for admissible accuracy. These
two types of evaluation have different meanings. Our conclusion is that the
results of one type of evaluation cannot directly be compared with the results
of the other.

14.7 Conclusions

We have investigated the meaning of “statistical methods” for geometric in-
ference based on image feature points. Tracing back the origin of feature
uncertainty to image processing operations, we discussed the implications of
asymptotic analysis in reference to geometric fitting and geometric model se-
lection. We pointed out that a correspondence exists between the standard
statistical analysis and the geometric inference problem. We also compared
the capability of the geometric AIC and the geometric MDL in detecting de-
generacy. Next, we reviewed recent progress in geometric fitting techniques for
linear constraints, describing the FNS method, the HEIV method, the renor-
malization method, and other related techniques. Finally, we discussed the
Neyman–Scott problem and semiparametric models in relation to geometric
inference.

From these discussions, we conclude that applications of statistical me-
thods require careful consideration about the nature of the problem in ques-
tion and that different statistical theories are necessary for different classes
of problems. In this sense, there is much room for new statistical theories to
emerge as the scope of computer vision research expands. The important thing
is, however, to always make clear the underlying hypotheses and assumptions,
and to not simply use the methods in the statistical literature.
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15.1 Introduction

Uncertainty is present in computer vision in all analysis steps: in image pro-
cessing, in feature extraction, pose estimation, grouping and also in recogni-
tion and interpretation. Problems are, among others, the adequate representa-
tion of uncertainty, propagation of uncertainty, estimation under uncertainty
and decision making under uncertainty. Recently, statistical inference has be-
come a major thread of research at all levels of image analysis. This certainly
is due to the rich arsenal of tools, which allows us to precisely model uncer-
tainty, to check the validity of the assumptions made and to reason under
uncertainty.

This paper is about uncertainty in geometric reasoning, specifically using
projective geometry. Algebraic projective geometry has become the basic tool
for representing geometry of multiple views, cf. the two classical text books
[10, 18]. The two examples in Figs. 15.1 and 15.2 show two applications where
algebraic projective geometry can be used to advantage.

In both cases the geometric relations can be expressed as multi-linear forms
of the entities involved, which would not have been possible when not using
projective geometry.

On the other hand, rigorous estimation techniques, e.g. used in bundle ad-
justment for image orientation to minimize the reprojection errors, have been
accepted as reference for suboptimal techniques and as a final step in order to
obtain statistically optimal results. The need to exploit the full information
about the statistics is demonstrated in the example of Fig. 15.3: all geometric
entities with a certain probability lie within a certain region, whose shape and
size vary individually. Therefore pure geometric measures are not useful for
reasoning under uncertainty.

We only want to mention two prominent representative publications where
projective geometry and statistics have been integrated to a larger extent.
Kanatani [25] apparently was the first to integrate geometry in 2D and 3D
and statistics in a rigorous manner. He aimed at completeness in uncertain



494 Wolfgang Förstner

x

m

n
o

l

l
k

j

i

Fig. 15.1. 2D grouping of points and lines, e.g. resulting from a image preproces-
sing step, consists of two steps: (1) testing of hypothesized mutual relations, taking
uncertainty of image features into account, and (2) joint estimation of geometric
features. All points and lines in the figure may be grouped. The result may be an
optimal estimate, e.g. of the line l using incident points xi, collinear lines mj , or-
thogonal nk and parallel lines ol. In algebraic projective geometry all these relations
are linear, thereby easing statistical testing and estimation

L2

L1

X7

71 73
x’

L

12

24

l’

x’

A
L

l’

73’

12’

71’

A
24’

Z1

Z 2

Z
3

Z 4

L5

11

52

54

X1

X2

23

Z1

Z 2

Z
3

Z 4

x’

l’

x’

l’

L

A
L

A

11’

52’
23’

54’

Fig. 15.2. Triangulation of points and lines: estimation of 3D point X7 (left) and
3D line L5 (right) from image points x′ and image lines l′. The spatial relations
between image and space points and lines can easily be expressed as a function of
the projection matrices and for points and lines, respectively. Also in this case, using
algebraic projective geometry eases statistical testing of these relations and the joint
optimal estimation of the 3D line

geometric reasoning, and discussed motion estimation and optical flow. He
proposed rigorous tests and optimal, i.e. maximum likelihood, estimates. Ho-
wever, though he used homogeneous vectors for representing geometric en-
tities, he required 2D and 3D points to be Euclidian normalized. This was
motivated by the otherwise indefinite scaling of the vectors but does not allow
for handling of points at infinity. The partitioning of the vectors into homo-
geneous and Euclidean parts, which as such is reasonable for interpretation



15 Uncertainty and Projective Geometry 495
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Fig. 15.3. Testing spatial relations, especially the necessity of taking the uncertainty
into account rigorously, e.g. when testing a point-line incidence: in the presence of
uncertainty the geometric distance d of the points xi from the line l is not useful for
testing. The uncertainty of a point in a first approximation can be represented by a
confidence ellipse, while the uncertainty of a line can be represented by a confidence
hyperbola, which is the collection of confidence regions across the line of all points.
Though the situation is much more complex in 3D, it can easily be handled using
the covariance matrices of the entities in concern

[3], leads to cumbersome expressions in the covariance matrices, especially
as Kanatani aimed at giving explicit expressions, including both the error
propagation and the normalization to Euclidean homogenous vectors.

In his thesis, Criminisi [9] integrated uncertainty reasoning into all steps of
single- and multiple-view analysis. For a great number of geometric reasoning
tasks, also including the determination of transformations, he gave explicit
expressions for covariance matrices. He also analyzed the degree of approxi-
mation introduced by linearization. Unfortunately, in both cases the beauty
of projective geometry got lost on the way to the integration of statistical
reasoning.

The ease of handling multilinear, and especially bilinear, forms was ques-
tioned by Haddon and Forsyth [16] They demonstrated that significant bias
and deviations from a Gaussian distribution might occur when partitioning
bilinear forms, i.e. when solving for structure and motion from image observa-
tions. Their examples, however, seem to be caused by a very low signal-to-noise
ratio, resulting from comparably short base lines in image sequences.

Altogether there appears to be a clear agreement to use both statistics
and projective geometry for spatial reasoning under uncertainty. The main
problem left is to find an adequate representation and adequate procedures
for geometric reasoning. The approach described in this paper tries to avoid
the disadvantages mentioned above.

In statistics uncertainty of measurements usually is represented by cova-
riance matrices. Generally speaking, instead of working with the probability
densities one uses the first two moments of the distribution. This appears
to be widely accepted and is adequate as long as the signal-to-noise ratio is
high enough, say much better than 10:1, which nearly always is the case in
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the first steps of image analysis. Moreover, propagation of uncertainty can be
performed within the calculus of linear algebra to a sufficient accuracy.

Therefore, among the many representations, homogeneous vectors and ma-
trices appear to be the right choice for geometric entities and transformations.
An embedding into more fundamental concepts, such as the double algebra
or the Grassman–Cayley algebra [4, 11] or even the geometric algebra [21, 22]
does not seem to be possible, however – and this was the motivation for the
approach presented here, cf. [14, 15, 23] – the beautiful structures of these
algebras should be kept, as far as possible.

Together with the nearly always approximate representation of uncertainty
using covariance matrices, there exists a rich and powerful arsenal of tools for
statistical reasoning. This especially holds for estimation techniques [31]. The
versatility of these tools is the basis for the broad experience in the field of
geodesy, where estimation of geometric quantities is a standard task [20, 27,
29]. The key to an easy to use concept of estimation procedures lies in the
generic representation of the given functional relations between all observed
quantities and all unknowns, not so much in the optimization function or in the
optimization procedures e.g. the trust region method to increase convergence
[19], which appears to be a necessary second step.

Therefore, among the many procedures for estimation, the maximum like-
lihood estimation based on the so-called Gauss–Helmert model appears to
be the right choice. It is generic, as it allows us to represent all estimation
problems with nonlinear constraints. Similarly to all other alternative models,
the estimation processes iteratively improve approximate values for all pa-
rameters. The approximate values have to be reasonably good, which in our
context can be achieved based on the rich work of the past decade.

The paper is organized as follows: Sect. 2 discusses issues of uncertainty:
the representation, especially in the context of homogeneous entities; the pro-
pagation, especially the effect of linearization; the estimation under generic
constraints; and basic elements from testing. Sect. 3 discusses issues of pro-
jective geometry: the representation of geometric entities; their construction
from given ones; and their relations, including homogeneous transformations
as a basis for uncertainty propagation, statistical testing and estimation. Fi-
nally, Sect. 4 discusses when conditioning of the geometric entities and nor-
malization of the covariance matrices is necessary to overcome the proposed
approximations.

The goal of this chapter is to provide simple-to-use tools for uncertain geo-
metric reasoning. We do not discuss the sources of uncertainty (cf. Kanatani’s
valuable discussion in this volume) and do not address refinements concerning
computational efficiency.

Notation: Vectors are boldface letters, such as x or X, matrices are boldface
sans serif letters, such as A = [aij ] or H. Homogeneous vectors and matrices
are upright letters, such as x or H, Euclidean vectors are italic letters, such as
x or X. Vectors representing geometric 2D entities are lowercase letters, such
as x or l, and vectors representing geometric 3D entities are uppercase letters,
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such as A and X. Planes are denoted with letters A, B, and so on from the be-
ginning of the alphabet, lines are denoted with letters l, L, m, and so on from
the middle of the alphabet, and points are denoted with letters X, Y, and so
on from the end of the alphabet. The n×n unit matrix is denoted with I n. The
ith n unit vector is denoted with e

(n)
i . Stochastic variables are underscored,

such as x. The density function of the stochastic variable x, possibly being a
vector x, is denoted with px(·). The expectation, the variance and the cova-
riance operators are E(·), V(·) and Cov(·, ·), respectively. Covariance matrices
are indexed with two indices, e.g. V(x) = Σxx = [σxixj ], allowing us to densely
write the covariance of two different vectors Cov(x,y) = Σxy = [σxiyj ]. The
determinant of a matrix is |A|.

We will use the vec-operator, columnwise stacking the columns of an n×m
matrix A into a nm vector vecA, thus vec(AT) contains the nm elements of
A rowwise. We will use the Kronecker product A ⊗ B = [AijB]. With the
vec-operator we use the two relations vec(ABC ) = (CT ⊗ A)vecB and as
vec(ABc) = vec(cTBTAT) and vec(ABc) = (cT ⊗ A)vecB = (A⊗ cT)vec(BT).
Rowwise concatenation of two matrices A and B leads to the matrix [A|B].

15.2 Uncertainty

15.2.1 Representation and Propagation of Uncertainty

Basics

Probability theory is a classical tool for representing uncertainty. In our con-
text we are concerned with representing the uncertainty of coordinate vectors
x, which is usually done via the probability density function (PDF) px(x),
or the cumulative probability density function (CPDF) Px(x), the function
in contrast to the independent variable in brackets. In many cases one can
reasonably well use the Gaussian or normal distribution with density

gx(x; µx,Σxx) =
1√

(2π)n|Σxx|
e−

1
2 (x−µx)TΣ−1

xx (x−µx) , (15.1)

which depends on two parameters, the n vector µx and the symmetric n× n
matrix Σxx. Observe that the density function of the normal distribution
only is defined for regular Σxx. For practical reasons one uses the short no-
tation x ∼ N(µx,Σxx) to indicate the stochastic variable x to be normally
distributed with the parameters µx and Σxx.

Often reasoning can be restricted to the so-called moments of the dis-
tribution. With the expectation operator E(f(x)) =

∫
f(x)px(x)dx we will

regularly use the mean, which is the first moment of the distribution, the
variance, which is the central second moment, and the kurtosis, which is the
central fourth moment µ4x normalized with 3σ4

x
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µx = E(x) =
∫

xpx(x) dx , σ2
x = V(x) = E((x − µx)2),

κ =
µ4x

3σ4
x

=
E((x − µx)4)

3σ4
x

,

which leads to κ = 1 for Gaussian variables.
For vector-valued stochastic variables we have the covariance matrix de-

fined as Σxx = [σxixj ] = V(x) = E((x−µx)(x−µx)T). In case two stochastic
variables are statistically independent, their joint distribution pxy(x, y) is se-
parable; thus

pxy(x, y) = px(x) py(y), and Pxy(x, y) = Px(x) Py(y) . (15.2)

For normally distributed variables x ∼ N(µx,Σxx) the two parameters µx

and Σxx are the mean and the covariance matrix.
In general, propagating uncertainty through chains of nonlinear functions

is intractable. For very specific distributions and simple functions this can be
done explicitely, using various techniques, depending on the situation, cf. the
discussion and the many examples given by Papoulos [30]. We, however, may
restrict ourselves to the propagation of the first two moments.

If the two first moments of a stochastic vector are used to describe its
distribution x ∼ Mx(µx,Σxx), then the vector valued nonlinear function
y = f(x) has a distribution y ∼My(µy,Σyy) with the first two moments (cf.
[27])

µy = f (µx) , Σyy = JyxΣxxJT
yx , with Jyx =

∂f(x)
∂x

∣∣∣∣
x=µx

. (15.3)

This error propagation law holds rigorously for any distributions with finite
first- and second-order moments in case the relation f(x) is linear. In the
case of nonlinear functions it is an approximation, which we discuss below in
the context of geometric reasoning. The basic idea is to attach a covariance
matrix to each uncertain entity during geometric reasoning.

Representing Uncertain Homogeneous Vectors

Attaching a covariance matrix to homogeneous vectors can be done straight-
forwardly and has been extensively done by Kanatani and Criminisi. For
example, in case the Euclidean coordinates x = (x, y)T ∼ M(µx,Σxx)
is given, the corresponding covariance matrix of the homogeneous 3-vector
x = (x, y, 1)T is given by

Σxx =

⎡⎣ σ2
x σxy 0

σxy σ2
y 0

0 0 0

⎤⎦ . (15.4)
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This approach is correct and circumvents the problem of discussing projec-
tive entities (cf. Fig. 15.4). That is, the transition from uncertain Euclidean
entities, which are primary observations, to uncertain homogeneous entities
is simple and can be done statistically rigorously for points. One goal of this
chapter is to show, that the transition to other uncertain homogeneous en-
tities, e.g. by construction, is simple, and a good approximation. The same
holds for the derivation of Euclidean entities from homogeneous ones. Thus
instead of working with a nonredundant representation in Euclidean space,
e.g. in IR2 for 2D points, one uses a redundant representation in a higher
dimensional Euclidean space, e.g. in IR3 for 2D points.

The beauty of algebraic projective geometry for geometric reasoning and
multiple-view analysis shown in the work of Faugeras and Papadopoulo [11]
was the key motivation to use homogeneous coordinates for representing un-
certain geometric entities but to stay as close as possible to the concepts of
the Grassman–Cayley algebra in order to preserve the transparency of the
geometric relations. However, the redundancy k in the representation with
homogeneous entities, which is k = 1 for all entities, except for 3D lines,
where it is k = 2, leads to some difficulties:

homogeneous
coordinates

R

coordinates
homogeneous

R

entity
Euclidean

euclidean
entity

R

R

projective
entity

projective
entity

P

P m

nn

approximate
difficult

n+k

m+l

simple, approximate

simple, approximate

simple, rigorous/approximate

m

Fig. 15.4. Reasoning under uncertainty in projective geometry. Instead of perfor-
ming calculations with Euclidean entities one works with homogeneous entities, only
implicitly using them as representations of projective entities

1. The redundancy in the representation immediately leads to singular co-
variance matrices as e.g. in Eq. (15.4). Thus there is no proper PDF for
homogeneous entities.1

1 This was a criticism of a reviewer of an earlier conference paper using this ap-
proach.
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2. Construction of new entities from given ones, using the classical tools of
statistical error propagation, generally leads to regular covariance matri-
ces. This is in contrast to the singularity of the covariance matrices derived
from Euclidean entities, cf. Eq. (15.4), and prevents a simple comparison of
uncertain stochastic vectors having covariance matrices of different rank.
Kanatani [25] proposed to use the Euclidean normalized homogeneous co-
ordinates for points. This imposes a constraint, e.g. the component w of
x = [u, v, w]T to be normalized to 1, and results in covariance matrices
with the desired rank. Interestingly, he normalizes 2D lines, 3D lines and
planes spherically. This normalization, however, will be shown to be ge-
nerally unnecessary. Therefore also homogeneous vectors with a full rank
covariance matrix will be allowed. The equivalence relation for homoge-
neous vectors needs to be redefined for this reason. Only in case one uses
the proposed test statistics for correctly sorting multiple hypotheses in
search problems does one need to condition and normalize the geometric
entities. However, spherical normalization can always be applied, which
enables the inclusion of points at infinity.

3. The representation and propagation of uncertainty with the second mo-
ments is an approximation. The degree of approximation needs to be
known to safely apply the proposed approach.

On Singular Covariance Matrices

We first discuss the PDF of random vectors containing fixed entities. When
representing fixed values, such as the third component in (x, y, 1)T, we might
track this property through the reasoning chain or just treat the value 1 as
a stochastic variable with mean 1 and variance 0. The second alternative has
implicitly been chosen by Kanatani [25] and Criminisi [9].

One can easily construct a 2-vector with a singular 2×2 covariance matrix.
Assume x ∼ N(µx, 1) and y ∼ N(µy, 0) are independent stochastic variables;
thus [

x
y

]
∼ N

([
µx

µy

]
,

[
1 0
0 0

])
.

The distribution of y can be defined as a limiting process:

py(y) = lim
σy→0

g(y;µy, σ
2
y) = δ(y − µy) .

The resulting δ-function is a so-called generalized function, which is only de-
finable via a limiting process. As x and y are stochasticly independent, their
joint generalized PDF is, cf. Eq. (15.2)

gxy = gx(x;µx, 1) δ(y − µy) .

Obviously, working with a mixture of Gaussians and δ-functions will be cum-
bersome in cases when stochastic variables are not independent.



15 Uncertainty and Projective Geometry 501

Again, in most cases reasoning can done using the moments, therefore the
complicated distribution is not of primary concern. The propagation of uncer-
tainty using the second moments only relies on the covariance matrices, not
on their inverses, and can be derived using the so-called moment generating
function [30], which is also defined for generalized PDFs. Thus uncertainty
propagation can also be performed in mixed cases.

Equivalence Relation for Uncertain Homogeneous Entities

A more critical problem is the equivalence relation of uncertain vectors. The
equivalence of two fixed, i.e. statistically certain, homogeneous n-vectors x
and y usually is represented as

x ∼= y⇐⇒ x = λy (15.5)

for some factor λ ∈ IR \ 0. In case two stochastic n-vectors x and y are given
with their PDF px(x) and py(y), the equivalence relation would transfer to

x ∼= y⇐⇒ px(x) =
1
λn

py

(y
λ

)
(15.6)

for some factor λ ∈ IR \ 0.
This equivalence relation does not allow us to use regular covariances for

homogeneous entities as they may occur. As an example, assume

p =

⎡⎣x1

y1

1

⎤⎦ ∼ N(µp,Σpp) , q =

⎡⎣x2

y2

1

⎤⎦ ∼ N(µq,Σqq) ,

with

Σpp = Σqq = σ2

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦ .

Using Eq. (15.3), the covariance matrix of the joining line l = p×q is (cf. the
discussion before Table 15.1)

Σll = σ2

⎡⎣ 2 0 −(x1 + x2)
0 2 −(y1 + y2)

−(x1 + x2) −(y1 + y2) x2
1 + x2

2 + y2
1 + y2

2

⎤⎦ ,

and has determinant

|Σll| = 2σ6((x2 − x1)2 + (y2 − y1)2) .

Thus the covariance matrix of l always has full rank. This is in contrast to the
fact that, given the two parameters of a line, the resulting covariance matrix
of its homogeneous vector has rank 2.



502 Wolfgang Förstner

This conflict arises because the equivalence relation given by Eq. (15.6)
does not allow the factor λ to be uncertain.

For example, if two 2-vectors x = y ∈ IP1 follow a Gaussian distribution
px(x) = py(y) with covariance matrix Σxx = Σyy, they certainly are equiva-
lent. If now λ is 2 and 3 with probability 1/2, then z = λ y follows a mixture
of two equally probable Gaussians with 4Σyy and 9Σyy; thus

pz(y) =
1
2
·1
4
· py

(y
2

)
+

1
2
·1
9
· py

(y
3

)
=

1
8
py

(y
2

)
+

1
18

py

(y
3

)
,

shown in Fig. 15.5. This density function is not equivalent to px(x) when
using the equivalence relation given by Eq. (15.6). However, any realization
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Fig. 15.5. Two PDF’s of a homogeneous 2-vector. Left: original; right: modified.
The two distributions represent the same 1D point x = u/v with µx = (µu, µv)T =
(1, 1)T. However, the distributions cannot be easily be related; in particular, without
further knowledge, the right distribution cannot be derived from the left one

comes either from 1/4 py(y/2) or from 1/9 py(y/3) and thus is equivalent to
x. Therefore the equivalence relation in Eq. (15.6) is too restrictive.

We therefore propose to use the following equivalence relation for fixed
vectors:

x ∼= y⇐⇒ xs = ys (15.7)

with the spherically normalized vectors
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xs =
x
|x| , ys =

y
|y| .

This equivalence relation can be directly transferred to uncertain vectors
using the PDF of the normalized vectors

x ∼= y⇐⇒ pxs(xs) = pys(ys) (15.8)

In case one wants to be sure to not deal with generalized functions, one also
can use the equivalence relation based on the cumulative distributions

x ∼= y⇐⇒ Pxs(xs) = Pys(ys) . (15.9)

In the case of a normally distributed homogeneous vector x ∼ N(µx,Σxx)
with a covariance matrix of arbitrary rank, one directly can determine the
covariance matrix of the normalized vector from

Σxsxs = JsΣxxJT
s

with the Jacobian

Js =
∂xs

∂x
=

1
|x|

(
I − xxT

xTx

)
.

Obviously, the Jacobian has rank deficiency 1 and null space N (Σxx) = x,
therefore the covariance matrix at least has rank deficiency 1 and x is in its
null space.

Thus the equivalence relations given by Eqs. (15.8) and (15.9) explicitely
state that only the direction of a homogeneous vector is of concern, and if
the PDF or CPDF of the direction is the same for two homogenous vectors,
they are equivalent. This allows us to use covariance matrices of any rank to
represent uncertain homogeneous vectors, cf. Fig. 15.6

Comment: There is a close relation of this equivalence relation to the
equivalence relation for covariance matrices referring to different gauges (cf.
[26]): In both cases only estimable quantities, i.e. quantities that are estimable,
are of concern. The invariance here refers to arbitrary distributions not only to
Gaussians, though the transformations discussed later all refer to the second
moments. The notion of gauge is known as datum in the geodetic literature
(cf. [2] and [12]). Gauge transformations, due to the special application, are
called S-transformations (S from similarity, as in the application in [26]). The
problem was identified 1987 in robotics [34].

Bias in Uncertainty Propagation

From Fig. 15.4 we observe three essential steps where we use an approxi-
mation: (1) generating a homogenous vector from Euclidean coordinates, (2)
generating a homogenous vector from given ones, and (3) deriving Euclidean
parameters for the geometric entity in concern.
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Fig. 15.6. Equivalent uncertain homogeneous vectors. The Euclidean plane IR2

with Euclidean vectors (x, y) is embedded in IR3 with coordinates (u, v, w)T. From
upper-right to center: homogeneous vector ax with general and regular covariance
matrix; homogeneous vector x with equivalent covariance matrices, dashed: regular,
solid: singular, normalized such that null space of Σxx is x; Euclidean normalized
homogeneous vector ex with w = 1 and original covariance matrix from observa-
tions, null space Σ ex ex is (0, 0, 1)T, cf. Eq. (15.4) and [25]; spherically normalized
homogeneous vector sx, null space of Σ sx sx is x. In principle the distribution of
a homogeneous vector may have any form (cf. point xa

1): it still is equivalent to an-
other one, in the case after spherical normalization, they have the same distribution,
as only the direction is of concern

We want to show that in most practical cases the induced bias in mean
and variance is negligible and only in unlikely cases does the distribution of
the resulting entities significantly deviate from a Gaussian. Though this has
been discussed in literature (cf. e.g. [8], [9] or [30]) we present it here for
completeness, adapted to the problem in concern.

Bias in mean and variance

The above-mentioned rule for propagating uncertainty given in Eq. (15.3)
results from a Taylor expansion of the nonlinear function y = f (x). Including
higher-order terms yields bias terms.

For a scalar function in one variable we obtain the following result: if the
PDF of a stochastic variable x is symmetrical, the mean and the variance for
y = f(x) can be shown to be

E(y) = µy = f(µx) +
1
2
f ′′(µx)σ2

x +
1
24

f (4)µ4x + O(f (n),mn), n > 4,(15.10)

for normally distributed variables, with the central fourth moment µ4x = 3σ4
x

V (y) = σ2
y

= f ′2(µx) σ2
x +

(
f ′(µx)f ′′′(µx) +

1
2
f ′′(µx)

)
σ4

x + O(f (n),mn), n > 4.
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Obviously the bias, i.e. the second term, depends on the variance and the
higher-order derivatives: the larger the variance and the higher the curvature
or the third derivative, the higher the bias. Higher-order terms depend on
derivatives and moments of order higher than 4.

If the PDF of a stochastic vector x is symmetrical, the mean of the scalar
function y = f(x) can be shown to be

E(y) = µy = f(µx) +
1
2
trace(H |x=µx ·Σxx) + O(f (n),mn), n ≥ 3, (15.11)

with the Hessian matrix H = (∂f2/∂xi∂xj) of the function f(x). This is a
generalization of Eq. (15.10).

We now want to discuss two cases: first, the product z = xy of two ran-
dom variables, which is the most simple case of a bilinear form, occurring
when constructing new geometric elements with homogeneous coordinates,
and second, normalizing a vector to unity sx = x/|x|.

Bias and distribution of the bilinear form z = xy

The Taylor series at the mean in this case is finite. Therefore we can derive
rigorous expressions for the mean for arbitrary distribution M

µz = E(z) = µxµy + σxy . (15.12)

As fourth moments are involved in the determination of the variance, we
assume M to be normal. Then we obtain the rigorous expression for the
variance of z

σ2
z = V(z) = µ2

yσ
2
x + µ2

xσ
2
y + 2µxµyσxy + σ2

xσ
2
y + σ2

xy . (15.13)

Obviously, the linear approximation of the mean and the variance are

µ(1)
z = µxµy , σ2(1)

z = µ2
xµ

2
y + µ2

yσ
2
x + 2µxµyσxy . (15.14)

The bias in mean is
bµz = µ(1)

z − µz = −σxy . (15.15)

It is zero if the two variables are uncorrelated. The bias in variance is

bσ2
z

= σ2(1)
z − σ2

z = −σ2
xσ

2
y − σ2

xy = −σ2
xσ

2
y(1 + ρ2

xy) . (15.16)

It is not zero for uncorrelated variables. Actually, the variance is underesti-
mated if one relies on classical error propagation, as σ2(1)

z < σ2
z for uncorrelated

variables [16].
In order to get an impression of the size we assume σx = σy = σ and

σxy = 0, and obtain the relative bias in variance

rσ2
z

=
bσ2

z

σ2
z

= − σ2

µ2
x + µ2

y + σ2
. (15.17)
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Thus only in the case µ2
x + µ2

y < σ2 is the relative bias in variance larger
than 50% of the variance. This is very unlikely to occur, as the relative preci-
sion σx/µx of homogeneous vectors in computer vision applications is usually
better than 1/100.

We finally want to show the type distribution of the product for an ex-
treme case, especially for µx = µy = 0. In the case of independent zero-mean
Gaussian variables

x ∼ N(0, σ2) , y ∼ N(0, σ2) ,

we find the probability density function of z from

pz(z) =
∫ ∞

0

2
u
px(u)py

( z
u

)
du ,

yielding

pz(z) =
BesselK

(
0,
|z|
σ2

)
πσ2

,

with the Bessel function BesselK(v, x) of the second kind. It definitely is not
normally distributed (cf. Fig. 15.7), but has the variance

V (z) = 2
∫ ∞

z=0

z2pz(z)dz = σ4 ,

in accordance with Eq. (15.13).

0

0.5

1

1.5

2

–3 –2 –1 1 2 3

x~

Fig. 15.7. Bessel function of the second kind and Gaussian with the same variance.
The PDF of the product of two zero–mean Gaussian random variables is a Bessel
function, thus it significantly deviates from a Gaussian PDF.

Bias of spherical normalization

The findings are confirmed when analyzing the bias of normalization of a vec-
tor. Let the vector w ∼ N(µw, σ

2
wI ) be normally distributed with independent
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components with the same variance σwi = σw. The normalized vector is de-
termined from

z =
w

|w| , or zi =
wi

|w| .

With Eq. (15.11) this leads to the second-order approximation of the mean

E(z) =
µw

|µw|
− 1

2
µw

|µw|3
σ2

w =
µw

|µw|

(
1− 1

2
σ2

w

|µw|2

)
.

Thus the relative bias, i.e. the bias related to the standard deviation is

|bµz |
σµz

= 0.7
σw

|µw|
,

and is approximately identical to the directional error σw/|µw|, which usually
is below 1/100. One can also show that the relative bias in the standard
deviation is approximately identical to the directional error

|bσz |
σσz

∼ σw

|µw|
.

These findings are useful for the constructions, the tests and the estimation
procedures discussed below. The strong bias, found by Haddon and Forsyth
[16], refers to partitioning bilinear forms with mean values close to zero. There
the relative errors are large; thus the bias cannot be neglected.

15.2.2 Estimation

Estimation of unknown parameters is a classical task in statistical inference.
Maximum-likelihood estimation is one of the standard tools.

In our context, many relations are multilinear, but they are linear in the
unknown parameters. Therefore direct solutions minimizing the so-called alge-
braic error are frequently used. Though they usually lead to sufficiently good
approximate values, they are suboptimal. As a result, techniques for improving
these approximations have been proposed, such as renormalization [25] and
[5], total least squares, the heteroscedastic errors in variables (HEIV) method,
meaning variables with errors of different weight [28] and their improvements
[6], [7]. The motivation for these techniques stems from deficiencies in histori-
cally older methods: renormalization compensates for bias, total least squares
takes the stochastic properties of the coefficients in a regression model into
account, and HEIV takes the correct weights in the algebraic minimization
scheme. All of them are iterative.

We propose to directly use the given constraints and minimize the weighted
sum of residuals of the observations, the weights being inversely proportional
to the covariance matrix. The resulting estimates are local maximum likeli-
hood estimates in case the given observations are Gaussian. We will show that
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the HEIV method, in a modified version, is a special case, and furthermore,
the method of minimizing the algebraic error is a further simplification.

The proposed scheme has two definite advantages:

• It can handle any number of constraints at the same time. In our con-
text, this allows us to simultaneously take into account the fixed length
of a homogeneous vector or matrix and additional constraints, such as the
singularity of the fundamental matrix or the Plücker constraint for space
lines. Also, problems such as space curve fitting for observed space points
(x, y, z)l, l = 1, ...L, can easily be handled, e.g. using a space conic, be-
ing the intersection of a vertical conical cylinder with the six parameters
aij , 0 ≤ i + j ≤ 2 and a plane with four parameters bijk, 0 ≤ i + j + k ≤ 1
via ∑

0≤i+j≤2

aijx
i
ly

j
l = 0 ,

∑
0≤i+j+k≤1

bijkx
i
ly

j
l z

k
l = 0 ,

∑
i+j≤2

a2
ij = 1 ,

∑
i+j+k≤1

b2ijk = 1 ,

including two constraints, guaranteeing the space conic to be parame-
terized by eight parameters. The proposed estimation method covers the
technique in [36] as special case.

• It can handle groups of mutually correlated observations. In many cases
this might not be an issue. However, assume space points are derived from
a pair of images by correspondence analysis, including relative orientation
and triangulation: then the coordinates of the space points are mutually
correlated due to the common relative orientation, e.g. represented by an
estimated fundamental matrix F̂. In case these points are used for further
processing, e.g. surface or curve fitting, one may take the mutual correla-
tions of the space coordinates of all points into account.

Gauss–Helmert Model

The used mathematical model for the estimation may be partitioned into a
functional model and a stochastic model. The functional model, the so-called
Gauss–Helmert model, proposed by Helmert in 1872 [20], with constraints
between the unknown parameters, starts from G constraints g = (gg) among
N observations l = (ln) and U unknown parameters x = (xu) with additional
H constraints h = (hh) among the unknowns. The constraints should hold for
the fitted observations l̂ = l + v̂, including the estimated corrections v̂ and
the estimated parameters x̂:

g(l + v̂, x̂) = 0 , or g(̂l, x̂) = 0 , (15.18)
h(x̂) = 0 . (15.19)

Starting from approximate values x̂(0) and l̂
(0)

by Taylor expansion and ne-
glection of terms of order higher than 2, one obtains the linear Gauss–Helmert
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model with constraints between the unknown parameters

A∆̂x + BTv̂ = wg , HT∆̂x = wh , (15.20)

with the residuals of the constraints and the corrections of the unknown pa-
rameters

wg = −g(̂l
(0)

, x̂(0))− BT(l− l̂
(0)

) , wh = −h(x̂(0)) , (15.21)

∆̂x = x− x̂(0) ,

and the Jacobians evaluated at the approximate values

A
G×U

=
∂g(l,x)

∂x

∣∣∣∣
l = l(0)

x = x(0)

, B
N×G

=
(
∂g(l,x)

∂l

)T
∣∣∣∣∣

l = l(0)

x = x(0)

,

H
U×H

=
(
∂h(x)
∂x

)T
∣∣∣∣∣
x=x(0)

.

The matrices B and H are defined as transposed of the Jacobians, to ensure
they have more rows than columns.

The stochastic model is assumed to be simple: we assume an initial cova-
riance matrix Σ

(0)
ll of the observations l to be known. It may be singular. We

assume the true covariance matrix to be

Σll = σ2
0Σ

(0)
ll .

We start the estimation with the initial value σ
2(0)
0 = 1, thus start with

the approximation Σll = Σ
(0)
ll . Generalizing the stochastic model is straight

forward, e.g. by assuming variance components [13, 27]

Σll =
∑

k

σ2
0kΣ

(0)
ll,k .

Then, the variance factors σ2
0k need to be estimated simultaneously with the

unknown parameters x.

Maximum Likelihood Estimation

We now give explicit expressions for the estimated parameters, the covariance
matrices of the parameters, the corrections and the fitted observations and
the estimated variance factor. We derive the locally best linear estimators, i.e.
estimators having the smallest variance in the linearized models. Moreover,
in case the observations are samples from a normal distribution with l ∼
N (̃l,Σll), the estimates are local maximum likelihood estimators, local, as
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they depend on the approximate values, and far-off the global optimum might
exist.

Minimizing the quadratic form

Ω = (̂l− l)TΣ+
ll (̂l− l) , (15.22)

under the constraints A∆̂x + BT(̂l − l) = wg and HT∆̂x = wh, we have to
minimize the form

Φ = (̂l− l)TΣ+
ll (̂l− l) + 2λT(A∆̂x + BT(̂l− l)−wg) + 2µT(HT∆̂x−wh) ,

where λ and µ are Lagrangian multipliers. In case the covariance matrix
Σll of the observations is singular, one needs to take its pseudoinverse. As
Σ+

ll is positive semidefinite and the constraints are linear we obtain a unique
minimum.

Setting the partials of Φ zero, we obtain with v̂ = l̂− l

1
2
∂Φ

∂ l̂
T

= Σ+
ll v̂ + Bλ = 0 , (15.23)

1
2

∂Φ

∂x̂T
= ATλ + Hµ = 0 , (15.24)

1
2

∂Φ

∂λT
= −wg + A∆̂x + BTv̂ = 0 , (15.25)

1
2

∂Φ

∂µT
= −wh + HT∆̂x = 0 . (15.26)

From Eq. (15.25) follows the relation

v̂ = −ΣllBλ . (15.27)

When substituting Eq. (15.27) into Eq. (15.25), solving for λ yields

λ = (BTΣllB)−1(A∆̂x−wg) . (15.28)

Substitution in Eq. (15.26) yields the symmetric normal equation system[
AT(BTΣllB)−1A H

HT 0

] [
∆̂x
µ

]
=
[

AT(BTΣllB)−1wg

wh

]
. (15.29)

The Lagrangian multipliers can be obtained from Eq. (15.28) which then yields
the estimated residuals in Eq. (15.27).

The estimated variance factor is given by

σ̂2
0 =

v̂TΣ+
ll v̂

R
∼ FR,∞ , (15.30)

with the redundancy
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R = G + H − U . (15.31)

The redundancy R is the difference of the number G + H of constraints
and the number U of unknown parameters. In case of normally distributed
observations l and in case the model holds, the estimated variance factor is
Fisher distributed with (R,∞) degrees of freedom. Thus σ̂0

2 may be used to
check the validity of the model.

We finally obtain the estimated covariance matrix

Σ̂
�x�x = σ̂2

0Σ
�x�x (15.32)

of the estimated parameters, where Σ
�x�x results from the inverted reduced

normal equation matrix [
Σ

�x�x S
ST T

]
=
[

N H
HT 0

]−1

(15.33)

using
N = AT(BTΣllB)−1A .

Equation (15.33) can be used even if N is singular. The covariance matrix
Σ

�x�x has null space H.
The estimation needs to be iterated using improved approximate values in

the next, say the (ν + 1)th, iteration

x̂(ν+1) = x(ν) + ∆̂x
(ν)

, l̂
(ν+1)

= l̂
(ν)

+ v̂(ν) ,

from Eqs. (15.21) and (15.27). This requires recompution of the Jacobians A,
B and H .

We now discuss various specializations of these relations leading to well-
known statistical tools.

The Special Case of Implicit Error Propagation

Observe, in case the number G of independent constraints g(l,x) = 0 and
the number U of unknowns is identical, and there are no other constraints,
the redundancy R is zero, the matrices A and B are of size U × U , and the
covariance matrix of the unknown parameters is

Σ
�x�x = A−1BTΣllBA−T ,

which is the implicit error propagation law. Observe the definition of B as the
transpose of the Jacobian of g w.r.t. the observations l.
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Relation to the HEIV Method

Up to this point all given derivations are well known. We now want to assume
the constraints g to be linear in the unknown parameters, and only the con-
straint h on the length of the unknown parameter vector should hold. Thus
we have the model

g(̂l, x̂) = A(̂l)x̂ = 0 , h =
1
2
(x̂Tx̂− 1) .

This leads to H = x̂. In the case of convergence we have ∆̂x = 0 and wg =
A(l)x̂, and therefore the first equation of (15.29) leads to the iteration sequence
[14]

µ·x̂(ν) = AT

(
l̂
(ν−1)

)(
B
(
x̂(ν−1)

)
ΣllBT

(
x̂(ν−1)

))−1

A(l)·x̂(ν) .(15.34)

This shows the unknown parameter vector to be an eigenvector of an asym-
metric matrix. The Jacobian B is to be evaluated at the fitted values x̂(ν−1),
causing the iteration process. This method is equivalent to Matei and Meer’s
HEIV method [28]. In case of additional constraints, such as the singularity
of the fundamental matrix, the authors propose to impose these constraints
in a second step.

Imposing Constraints Onto a Stochastic Vector

Imposing a set of constraints onto a stochastic vector, already tackled by
Helmert in 1872 [20], is a special case of the Gauss–Helmert model mentioned
above and is used for normalizing a vector or imposing additional constraints
onto the vector, such as the Plücker constraint for space lines or the singularity
constraint for the fundamental matrix.

The stochastic vector is treated as observational vector l ∼ M (̃l,Σll).
Then we only have the G constraints

g(̂l) = 0 ,

as no unknowns are involved. The resulting fitted observations l̂ can be derived
iteratively from Eqs. (15.27), (15.28) and (15.21)

l̂
(ν+1)

= l + v̂(ν) = l−ΣllB(BTΣllB)−1(g(̂l
(ν)

) + BT(l− l̂
(ν)

)) ,

or in the case of linear constraints from

l̂ = l + v̂ = l−ΣllB(BTΣllB)−1g(l) .

The covariance matrix of the fitted observations l̂ is
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Σ
�l�l = PT

BΣllPB = Σll −ΣllB(BTΣllB)−1BTΣll = ΣllPB , (15.35)

with the N −G rank projection matrix

PB = I − B(BTΣllB)−1BTΣll

fulfilling PBB = 0, leading to a singular covariance matrix Σ
�l�l with nullspace

B. This is an example – demonstrating the generality of the Gauss–Helmert
model.

Minimizing the Algebraic Error

Minimizing the algebraic error wg = A(l)x̂ under the constraint |x̂| = 1 leads
to the simple eigenvalue problem

µ·x̂ = AT(l)A(l)·x̂ ,

demonstrating the neglection of the weighting matrix (BΣllBT)−1, when com-
pared to the rigorous solution.

15.2.3 Testing

We only need very little from testing theory, namely testing a vector to be
zero. Let the observed n-vector be c. We want to test the null hypothesis
H0 : µc = 0, that the mean µc of the vector c is zero against the alternative
hypothesis Ha : µc �= 0 that the mean is not zero. For the test we need
the distribution of c|H0 of the vector, provided the hypothesis H0 holds. In
case we can assume c|H0 ∼ N(0,Σcc) with a full-rank covariance matrix, we
obtain the test optimal statistic [27]

T = cTΣ−1
cc c ∼ χ2

d .

If rank(Σcc) = r ≤ d then we obtain the test statistic

T = cTΣ+
ccc ∼ χ2

r .

The test compares the test statistic T with a critical value. Specifying a
(smaller) significance number α or a (large) significance level S = 1 − α one
uses the 1 − α percentile of the distribution of the test statistic as critical
value. If

T > χ2
r,1−α ,

then we may reject H0. Thus there is reason to assume that the difference
of c from 0 cannot be explained by random errors, leading to deviations of c
from 0. Otherwise, H0 cannot be rejected, i.e. there is no reason to assume
H0 to be incorrect. This does not say H0 is accepted, as other hypotheses H0i

might be valid, which are not tested for.
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15.3 Geometric Relations

15.3.1 Representations

We represent all geometric entities and transformations with homogeneous
vectors or matrices.

Points x and lines l in 2D are 3-vectors, given respectively by

x =

⎡⎣ u
v
w

⎤⎦ =

⎡⎣x1

x2

x3

⎤⎦ =
[

x0

xh

]
, and l =

⎡⎣a
b
c

⎤⎦ =

⎡⎣ l1
l2
l3

⎤⎦ =
[

lh
l0

]
.

Sometimes it is useful to distinguish the Euclidean part, indexed 0, and the
homogeneous part, indexed h, of a vector or a matrix [3]: in case the ho-
mogeneous part is normalized to 1, the Euclidean part can be interpreted
metrically. In case the homogeneous part of a geometric entity is zero, the
entity is at infinity.

Analogously, in 3D points X and planes A are represented with 4-vectors

X =

⎡⎢⎢⎣
U
V
W
T

⎤⎥⎥⎦ =

⎡⎢⎢⎣
X1

X2

X3

X4

⎤⎥⎥⎦ =
[

X0

Xh

]
, and A =

⎡⎢⎢⎣
A
B
C
D

⎤⎥⎥⎦ =

⎡⎢⎢⎣
A1

A2

A3

A4

⎤⎥⎥⎦ =
[

Ah

A0

]
.

Furthermore, 3D lines L are represented with so-called Plücker coordinates

L = [Li] =
[

Lh

L0

]
,

where the first 3-vector Lh is the direction of the line, and the second 3-
vector L0 is the normal on the plane through the line and the origin, such
that the three vectors Lh, L0 and the normal from the origin onto the 3D line
span a right-handed orthogonal coordinate system. Any 6-vector fulfilling the
so-called Plücker constraint

LT
hL0 = 0

represents a 3D line.
Each geometric element g has a dual, denoted by g. Vice versa, g is the

dual of g; thus g = g.
In 2D the dual x of a point x is the line [u, v, w]T with the same coordinates,

and vice versa, the dual l of a line l is the point [a, b, c]T with the same
coordinates:

x = I 3 x , l = I 3 l .

In 3D the dual X of a point X is the plane [U, V,W, T ]T with the same
coordinates, and vice versa, the dual A of a plane A is the point [A,B,C,D]T

with the same coordinates:
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X = I 4 X , A = I 4 A .

The dual L of a 3D line L = (LT
h ,L0)T is the 3D line (LT

0 ,L
T
h)T with the

homogeneous and the Euclidean parts exchanged:

L = D6 L =
[

L0

Lh

]
,

with the dualizing matrix

D6 =
[

0 I 3

I 3 0

]
.

This representation of 3D entities is consistent with the geometric alge-
bra G4 [22] when using the bases (e1, e2, e3, e4) for 3D points, (e41, e42, e43,
e23, e31, e12) for 3D lines and (e234, e314, e124, e321) for planes, which can be
easily verified with the geometric algebra package of Ashdown [1].

Representation and Visualization of the Uncertainty of Geometric
Entities

All homogenous vectors and matrices involved will get covariance matrices
attached to them. Thus we obtain the pairs

(x,Σxx) , (l,Σll) , (X,ΣXX) , (L,ΣLL) , (A,ΣXX) , (15.36)

for points and lines in 2D and for points, lines and planes in 3D. We will later
also transfer this representation to transformation matrices.

The uncertainty of the geometric entities can be visualized by the con-
fidence regions. Fig. 15.3 shows confidence regions for 2D points, which are
ellipses, and for 2D lines, which are hyperbolae, namely the set of all one-
dimensional confidence regions of points sitting on the line. They directly
transfer to 3D points, being ellipsoids, and planes, being hypeboloids of two
sheets, cf. Fig. 15.8. The situation is more complicated for 3D lines. The set
of confidence ellipses of the 3D points sitting on the 3D line, measured across
the line, yields a shape as in Fig. 15.9 left. It has different minima in different
planes through the line, and thus in general is not a hyperboloid of one sheet,
but is closely related to the ray configuration of an astigmatism.

15.3.2 Constructions

Constructions in 2D

Geometric entities easily can be constructed from given ones.
(1) A 2D line l joining two points x and y is given by

l = x ∧ y = −y ∧ x : l = x× y = S(x)y = −S(y)x . (15.37)
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Fig. 15.8. Confidence regions for a 3D point and a plane. The hyperboloid of two
sheets is the set of the 1D confidence regions of all points in the plane measured
across the plane

object point
optical system paraxial

focal plane

saggital plane

principal ray

tangential plane

tangential image
(focal line) (focal line)

sagittal image

optical axis

Fig. 15.9. Confidence region for a 3D line (left): it is the set of the 2D confidence
regions of all points on the 3D line measured across the line. Compare the structure
of the isosurface with the structure of the bundle of rays for astigmatism (right,
after http://www.mellesgriot.com/): in cases where the 3D line only is uncertain
in direction, in general there are two points, where the elliptic confidence region
degenerates to a straight line segment, corresponding to the two focal lines of an
astigmatism. However, the straight line segments need not be perpendicular, whereas
the two focal lines are

Herein, we used the Jacobians

S(x) =
∂(x× y)

∂y
, and S(y) =

∂(y × x)
∂x

,

and the skew symmetric matrices of a 3-vector, denoted by

S(x) = Sx = [x]× =

⎡⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎦ . (15.38)

This representation of constructions as matrix-vector products is given
explicitely for the most important constructions in 2D and 3D and is very
useful for statistical error propagation.
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(2) The 2D point x being the intersection of two lines l and m is given by

x = l ∩m = −m ∩ l : x = l×m = S(l)m = −S(m)l . (15.39)

Here the Jacobians are

S(l) =
∂(l×m)

∂m
, and S(m) =

∂(m× l)
∂l

.

The constructions are collected in Table 15.1
As the expressions for constructions are bilinear, we easily can find the

covariance matrix of the generated elements. Therefore, we always give the
two expressions

c = U(a)b = V(b)a (15.40)

for the bilinear form, where the matrices

U(a) =
∂c
∂b

, and V(b) =
∂c
∂a

are the Jacobians of c with respect to b and a, resp. They are used to deter-
mine a first-order approximation of the covariance matrix Σcc of c, in case a
and b are given together with their covariance matrices Σaa and Σbb:

Σcc = [V(b) U(a)]
[

Σaa Σab

Σba Σbb

] [
VT(b)
UT(a)

]
, (15.41)

or

Σcc = U(a)ΣbbU(a)T + V(b)ΣaaV(b)T + U(a)ΣbaV(b)T + V(b)ΣabU(a)T ,

allowing the given entities to be statistically dependent.
For example, from column 2 in Table 15.1 one can easily read out the

Jacobians that are the matrices in the bilinear forms, e.g. for the intersection
point x we have ∂x/∂m = S(l) and ∂x/∂l = −S(m), cf. after Eq. (15.39).

Constructions in 3D

Here we mention six different cases, which we give without proof.
(1) A 3D line L joining two 3D points X and Y is given by

L = X ∧Y = −Y ∧X : L =
[
XhY 0 − YhX0

X0 × Y 0

]
= I I (X)Y = − I I (Y)X.

(15.42)

Here the Jacobians are
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Table 15.1. Construction of new 2D geometric entities. The structure of the matrix
S is given in Eq. (15.38). All forms are linear in the coordinates of the given entities,
allowing simple error propagation

y

x l m

x l

New entity Algebraic construction Equation
l = x ∧ y l = S(x)y = −S(y)x (15.37)
x = l ∩ m x = S(l)m = −S(m)l (15.39)

I I (X) =
∂(X ∧Y)

∂Y
, and I I (Y) =

∂(Y ∧X)
∂X

,

or explicitely, e.g.

I I (X)
6×4

=
[

XhI 3 −X0

S(X0) 0

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
X4 0 0 −X1

0 X4 0 −X2

0 0 X4 −X3

0 −X3 X2 0
X3 0 −X1 0
−X2 X1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (15.43)

(2) A 3-line L as the intersection of two planes A and B is given by

L = A ∩B = −B ∩A : L =
[

Ah ×Bh

A0Bh −B0Ah

]
= I I (A)B = − I I (B)A.

(15.44)

Here the Jacobians are

I I (A) =
∂(A ∩B)

∂B
, and I I (B) =

∂(B ∩A)
∂A

,

or explicitely

I I (A) = D6 I I (A) =
[

S(Ah) 0
A0I 3 −Ah

]
. (15.45)

Observe, we might have obtained L = I I (A)B from L = I I (X)Y using
dualing, using A = X and B = Y, namely L = I I (X)Y = D6L = I I (A)B,
and noting D6 = D−1

6 .
Remark: The letter P in the name Pi of the Greek capital letter I I indi-

cates this matrix referring to points and planes.
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(3) 3D point X as intersection of the 3D line L and the plane A from

X = L ∩A = A ∩ L : X =
[

L0 ×Ah + A0Lh

−LT
hAh

]
= I T(L)X = I I T(X)L.

(15.46)

The Jacobians are

I T(L) =
∂(A ∩ L)

∂L
, and I I T(A) =

∂(L ∧A)
∂L

=
[
A0I 3 −S(Ah)
−AT

h 0T

]
.

Explicitely we have the Plücker matrix of the line L

I (L) =
[
−S(L0) −Lh

LT
h 0

]
=

⎡⎢⎢⎣
0 L6 −L5 −L1

−L6 0 L4 −L2

L5 −L4 0 −L3

L1 L2 L3 0

⎤⎥⎥⎦ . (15.47)

One can show that the Plücker matrix of the line L = X ∧ Y is the skew-
symmetric form having rank 2:

I (L) = I (X ∧Y) = XYT −YXT . (15.48)

Remark: The Greek letter I is the mirror of L and indicates it refers to
3D lines.

(4) Dually, we obtain the plane A joining a 3D line L, and a 3D point X
is given by

A = L ∧X = X ∧ L : A =
[

Lh ×X0 + XhL0

−LT
0 X0

]
= I

T
(L)X = I I

T
(X)L,

(15.49)

with the Jacobians

I
T
(L) =

∂(A ∩ L)
∂A

, and I I
T
(A) =

∂(L ∩A)
∂L

=
[
−S(X0) XhI

0T −XT
0

]
,

and the dual Plücker matrix of the 3D line L

I (L) = I (L) =
[
−S(Lh) −L0

LT
0 0

]
. (15.50)

One can show that the dual Plücker matrix of the line L = A ∩ B is the
skew-symmetric form of rank 2:

I (L) = I (A ∩B) = ABT −BAT . (15.51)
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Finally, we obtain the plane A joining three points X, Y and Z from

A = X ∧Y ∧ Z = (X ∧Y) ∧ Z , (15.52)

and the point X as the intersection of three planes A, B and C from

X = A ∩B ∩C = (A ∩B) ∩C (15.53)

with similar expressions by cyclic exchange of the geometric entities.

Table 15.2. Construction of new 3D geometric entities. The matrices I I , I I , I and
I are given in Eqs. (15.43), (15.45), (15.47) and (15.50), resp. All forms are linear
in the coordinates of the given entities, making error propagation easy

A

B

X
C

L

A
B A

X
L

L

X

A

X
Y

Z

A

Y

L
X

New entity Algebraic construction Equation
L = X ∧ Y = −Y ∧ X L = I I (X)Y = − I I (Y)X (15.42)
L = A ∩ B = −B ∩ A L = I I (A)B = − I I (B)A (15.44)
X = L ∩ A = A ∩ L X = I T(L)A = I I T(A)L (15.46)
A = L ∧ X = X ∧ L A = I

T
(L)X = I I

T
(X)L (15.49)

A = X ∧ Y ∧ Z I
T
( I I (X)Y)Z = I

T
( I I (Y)Z)X = I

T
( I I (Z)X)Y (15.52)

X = A ∩ B ∩ C I
T
( I I (A)B)C = I

T
( I I (B)C)A = I

T
( I I (C)A)B (15.53)

Table 15.2 collects these six cases. Observe the similarity in the represen-
tation with the operators of the Grassmann–Cayley algebra and the ease of
reading out the Jacobians for statistical error propagation.

Constructions Containing Mappings

Geometric entities also can be generated by transformations. Table 15.3 col-
lects the most important ones useful in geometric reasoning in computer vi-
sion.
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• 2D homography H for 2D points (row 1) and 2D lines (row 2)
• 3D homography H for 3D points (row 3), planes (row 4) and 3D lines (row

5)
• projection P of 3D points (row 6) and Q of 3D lines (row 7) into an image

yielding 2D points and 2D lines
• back-projection of image points (row 8) and lines (row 9), yielding projec-

tion rays (3D lines) and projection planes
• 2D-2D correlation F (row 10) for mapping a point of one image to a line

in another, knowing the epipolar geometry, or the relative orientation via
the fundamental matrix F, used in the epipolar constraint x′TFx′′ = 0

All mappings are bilinear in the given geometric entity and the transformation
matrix. Therefore again we give two relations, making the individual Jacobians
explicit that are necessary for statistical error propagation.

Table 15.3. Mappings. 2D and 3D homographies H for points, homography HL for
space lines, projection matrices P and Q for points and lines. Projection ray Lx′

and projection plane Al′ . Fundamental matrix F .
= F12 for coplanarity constraint

x′TFx′′ = 0

Number Mapping Relation 1 Relation 2
1 2D homography x′ = Hx x′ = (I 3 ⊗ xT)vec(HT)
2 l′ = H−Tl l′ = (I 3 ⊗ lT)vec(H−1)

3 3D homography X′ = HX X′ = (I 4 ⊗ XT)vec(HT)

4 A′ = H−TA A′ = (I 3 ⊗ AT)vec(H−1)

5 L′ = HLL L′ = (I 6 ⊗ LT)vec(HT
L)

6 2D-3D projection x′ = PX x′ = (I 3 ⊗ XT)vec(PT)

7 l′ = QL l′ = (I 3 ⊗ LT)vec(QT)

8 3D-2D back-projection Al′ = PTl′ Al′ = (l′T ⊗ I 4)vec(PT)

9 Lx′ = Q
T
x′ Lx′ = (x′T ⊗ D6)vec(QT)

10 2D-2D correlation l′′ = FTx′ l′′ = (x′T ⊗ I 3)vec(FT)

Table 15.3 needs some explanation:

1. We use the vec-operator to represent uncertain homogeneous matrices as
uncertain homogeneous vectors, e.g.

h = vec(HT) .

Thus we might want to work with the pairs

(h,Σhh) , (hL,ΣhLhL) , (p,Σpp) , (q,Σqq) , (f ,Σff ) ,

of uncertain transformations collected in Table 15.3.
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2. We use the Kronecker product, the vec-operator to express the result x′

of the 2D-2D homography as a function of the vector h = vec(HT). With
the rule vec(Ab) = (bT⊗ I )vecA = vec(bTAT) = (I ⊗bT)vec(AT) we obtain

x′ = Hx = (I 3 ⊗ xT)h .

This is useful for deriving the covariance matrix of the transformed point
x′ in case the covariance matrices Σxx and Σhh of the point x and of the
elements h of H are known

Σx′x′ = HΣxxHT + (I 3 ⊗ xT)Σhh(I 3 ⊗ x) ,

in this special case, assuming statistical independence of x and H.
3. If we want to derive the covariance matrix of transformed 2D lines, we

need covariance matrix of the transposed inverse M = H−T. This can
easily be derived: from HH−1 = I we have dH H−1 + H dH−1 = 0; thus
MT dH MT + dMT = 0. Therefore with m = vec(MT) = vec(H−1) we
obtain (M⊗MT)dh + dm = 0. The covariance matrix of m is therefore

Σmm = (M⊗MT)Σhh(M⊗MT) .

Finally, we obtain the covariance matrix of the transformed lines

Σl′l′ = H−TΣllH−1 + (I 3 ⊗ lT)Σmm(I ⊗ l) ,

or only in terms of the given values

Σl′l′ = H−TΣllH−1 + (H−T ⊗ l′T)Σhh(H−1 ⊗ l′) .

4. The 3D line transformation is not made explicit in the table. Starting from
the transformation X′ = HX of 3D points X, one obtains an expression
for the transformation matrix HL for 3D lines in terms of their Plücker
coordinates

L′ = HL L = (I 6 ⊗ LT)vec(HT
L) , (15.54)

with the transformation matrix (cf. Appendix)

HL =
1
2
JT

ΓL(H⊗ H)JΓL ,

using the 16× 6 Jacobian

JΓL
16×6

=
∂vec(I (L))

∂L
,

which via L = 1
2JT

ΓL vec(I (L)) maps the columns of the Plücker matrix to
the Plücker coordinates. With the Jacobian of the transformed line with
respect to the elements h of the transformation matrix (cf. Appendix)
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JL′h =
∂L′

∂h
=

1
2
JT

ΓL(I 4 ⊗ (I (L)HT − HI T(L))) ,

we obtain the covariance matrix of the transformed line from statistical
error propagation:

ΣL′L′ = JL′hΣhhJT
L′h + HLΣLLHT

L .

5. Finally, we discuss how to derive the covariance matrix of the projection
matrix for space lines Q from the covariance matrix of the projection
matrix for space points P. The projection matrix P for points and its
elements row-wise are

P
3×4

=

⎡⎣AT

BT

CT

⎤⎦ , p
12×1

= vec(PT) =

⎡⎣A
B
C

⎤⎦ ,

with the coordinate planes A, B and C of the camera coordinate system,
intersecting in the projection center Z, cf. Table 15.10. The corresponding
projection matrix Q for 3D lines and its elements row-wise are given by

Q
3×6

=

⎡⎣ (B ∧C)T

(C ∧A)T

(A ∧B)T

⎤⎦ , q
18×1

= vec(QT) =

⎡⎣B ∧C
C ∧A
A ∧B

⎤⎦ ,

with the dual lines B∩C, C∩A and A∩B of the coordinate axes of the
camera system.

x’

L

Z

X

B C
A

C    A

A    B

B    C

l’

Z
c X

c

Y
c

L
A

x’
l’

Fig. 15.10. Single-image geometry. Rows of P are coordinate planes, rows of Q
are duals of coordinate axes of the camera coordinate system ( cX, cY, cZ). The
projection ray Lx′ = D6QTx′ and the projection plane Al′ = PTl′ can be determined
directly from the image entities using the projection matrices [11, 18].

Therefore
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Jqp
18×12

=

⎡⎣ 0 − I I (C) I I (B)
I I (C) 0 − I I (A)
− I I (B) I I (A) 0

⎤⎦ ,

and thus the covariance matrix of q of the elements of the projection
matrix Q for lines reads as

Σqq = JqpΣppJT
qp . (15.55)

In case the projection center of the image is denoted with Z we have

Lx′ = D6QT x′ = Q
T

x′ = Q
T
P X = I I (Z) X = Z ∧X ,

as the projection line Lx′ is the join of projection center with the 3D point
and is independent of the other parts of the orientation. Thus

Q
T
P = I I (Z) .

15.3.3 Constraints

Constraints Between Geometric Entities in 2D

The incidence of a 2D point and a 2D line can be checked using

c = xTl = lTx != 0 ,

which should vanish. The identity of two points or two lines can be checked
using the 3-vectors

c = S(x)y = −S(y)x != 0 , or c = S(l)m = −S(m)l != 0 ,

which should vanish in the case of identity. The reasoning behind this type of
constraint is: in case two points are identical the generating line x× y is not
defined. Similarly, in case two lines are identical, the intersection point l×m
is not defined.

Observe, there are three constraints, but only two of them are indepen-
dent, as the skew-symmetric matrices have rank 2. One may select those two
constraints (m,n) where the entry Smn in the skew-symmetric matrices is the
largest absolute value. Then the independence of the selected constraints is
guaranteed. This leads to a set of reduced constraints, e.g.:

c[r] =

[
e

(3)T
m

e
(3)T
n

]
S(x)︸ ︷︷ ︸

S[r]
(x)

y

= −
[

e
(3)T
m

e
(3)T
n

]
S(y)x

m=1,n=2
=

[
0 −x3 x2

x3 0 −x1

]⎡⎣ y1

y2

y3

⎤⎦ , (15.56)

which are linearly independent, except for points x at infinity, thus in case
x3 �= 0.
Table 15.4 collects the three cases mentioned.
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Table 15.4. Relationships between points and lines useful for 2D grouping, together
with the degree of freedom (DOF) and the essential part of the test statistic. The
bullet in the last column indicates that a selection may be performed

x y
x

l

l m

No. 2D Entities Relation DOF Test Selection
1 Points x, y x ≡ y 2 c = S(x)y = −S(y)x •
2 Point x, line l x ∈ l 1 c = xTl = lTx –
3 Lines l, m l ≡ m 2 c = S(l)m = −S(m)l •

Constraints Between Geometric Entities in 3D

In a similar manner one may construct constraints for geometric relations
between 3D entities collected in Table 15.5 except for the following cases
(numbers refer to the rows in Table 15.5):

7. The identity of two lines L and M can be checked using the interpretation
of the rows or columns of the Plücker matrix and their dual: the rows and
columns of I (L) are the intersection points of L with the coordinate
planes e

(4)
i , and the rows and columns of I (L) are the planes parallel to

the coordinate axes. As the intersection points of L with the coordinate
planes lie on the planes through M parallel to the coordinate axes, in case
L ≡M the product C = I (L)I (M) must vanish.

8. The incidence of two lines L and M can be checked by assuming L = X∧Y
and M = Z ∧T. Then |X,Y,Z,T| = −L

T
M = 0 only if the four points

are coplanar.

Also here selection of constraints can be performed (numbers refer to rows in
Table 15.5) :

4., 10. From the six constraints only three are independent. One can select those
three constraints where the largest element occurs in the matrices I I (X)
or I I (A).

5., 9. From the four constraints only two are independent. One can select those
two constraints where the largest element occurs in the matrices I (L) or
I (L). The selection transfers to the corresponding matrices I I

T
(·) and

I I T(·).
7. From the 16 constraints only 4 are independent. They can be selected by

taking the largest element of I (L) with index (m,n) and the largest ele-
ment of I (M) with index (k, l) and check the entries {(m, k), (m, l), (n, k),
(n, l)} of C.
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Table 15.5. Relationships between points, lines and planes useful for 3D grouping,
together with the degree of freedom (DOF) and the essential part of the test statistic.
The bullet in the last column indicates the possibility for the selection of independent
constraints

A

L

A

X Y

B

L M

X

L A

X

L M

No. 3D Entities Relation DOF Test Selection
4 Points X, Y X ≡ Y 3 C = I I (X)Y = − I I (Y)X •
5 Point X, line L X ∈ L 2 C = I I

T
(X)L = I

T
(L)X •

6 Point X, plane A X ∈ A 1 c = XTA = ATX –
7 Lines L, M L ≡ M 4 C = I (L)I (M) •
8 L ∩ M �= ∅ 1 c = L

T
M = M

T
L –

9 Line L, plane A L ∈ A 2 C = I I T(A)L = I T(L)A •
10 Planes A, B A ≡ B 3 C = I I (A)B = − I I (B)A •

Constraints Containing Mappings

We now easily can derive arbitrary constraints containing mappings. As an
example, the constraint

c = x′ × Hx = S(x′)Hx = −S(Hx)x′ = (S(x′)⊗ xT)h != 0

would require the mapped point Hx to be identical to x′. The fifth expression
uses h = vec(HT).

Observe, the expression for c is trilinear, here in x, in H and in x′. Therefore
we give three different expressions making the Jacobians of c with respect to
the three generating entities explicit:

∂c
∂x

= S(x′)H ,
∂c
∂x′ = −S(Hx) ,

∂c
∂h

= S(x′)⊗ xT .

Other constraints easily can be found by combining the relations given in
the tables. Observe, the constraints involving the mappings with HL and Q
for 3D lines are not linear in the corresponding mappings H and P for 3D
points. This leads to more involved expressions.

The tests involving mappings from 3D to 2D can be read in two ways:
testing incidence in the image or testing incidence in space. As the constraint
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is the same, both tests lead to the same result. As an example, take the
incidence test of a space point X and image line l′. It reads as c = lTPX. If
we take the predicted point to be x′

p = PX and the projection plane to be
Al′ = PTl′ then the constraint can be written as

c = l′Tx′
p

!= 0 , or c = AT
l′X

!= 0 ,

which explicitely shows the equivalence of testing the relation in image and
3D space. Actually, the relation for the projection plane has been derived from
this identity.

Comments: The essence of the constructions and constraints have been
published in many places, e.g. [33]. They have also been given in [25] and can
be also found in [18]. The tables in the appendix of [35] give all constructions
explicitly, even for elements in IP5. The representation chosen here, initially
given in [15], allows one to easily remember the relations and explicitly have
the corresponding Jacobians available. For space limitations we did not give
the relations for geometric entities to be orthogonal or parallel; instead we
refer to [15, 23].

15.3.4 Testing Uncertain Geometric Relations

We directly use the mentioned constraints for statistical testing. The idea is
to test the c-quantities in Tables 15.4 and 15.5 having different dimensions. In
case the relation holds they should be zero; thus formally, the null hypothesis
H0 : c = 0 is tested versus the alternative Ha : c �= 0.

The generic procedure is the following:

(1) Determine the difference c, using one of the two equations in column 5 in
Table 15.4 or 15.5

(2) If necessary, select independent constraints leading to the reduced vector
of differences c′. The number of independent constraints is the degree of
freedom, cf. column 4. The selection is different for the individual tests
and is indicated in column 6 where necessary.

(3) Determine the covariance matrix of the difference c or the reduced diffe-
rence c′ using error propagation given in Eq. (15.41) and the two Jacobians
from Table 4 or 5 in column 5, possibly taking the selection into account.
The Jacobians can be taken from these equations all having the structure
of Eq. (15.40).

(4) Determine the test statistic T

T =
c′2

σ′2
c

∼ χ2
1 , or T = c′

T
Σ−1

c′c′c
′ ∼ χ2

r , (15.57)

being χ2
1 or χ2

r distributed, the degrees of freedom r given in column 4 of
Tables 15.4 and 15.5.
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(5) Choose a significance number α and compare T with the critical value
χ2

r,1−α. If T > χ2
r,1−α then the hypothesis that the spatial relation holds

can be rejected.

The proposed error propagation in step 15.3.4 using Eq. (15.41) is simple,
but it only holds approximately, in case the tested relation is not fulfilled.
This is because the Jacobians of the bilinear relations are not consistent, as
they depend on the observed entities, not on the true or unbiased estimated
entities as required in Eq. (15.3).

A rigorous procedure would be to first impose the constraints of the re-
lation onto the two observed entities using the estimation procedure of Sect.
15.2.2 and test the estimated variance factor σ̂2

0 . This approach was taken by
Kanatani [25].

In case the test is not rejected, the covariance matrix of the differences,
however, is a very good approximation. Applying this approximation of sta-
tistical testing depends on the rigor needed. As the assumed variances of the
initial geometric entities will not be more precise than 10 or 20%, at best, the
test statistic will also have this uncertainty. In most applications this chapter
is motivated by, the tests will be used for deleting erroneous correspondences
or for controlling search in grouping processes. Especially in the latter appli-
cation, the monotonicity of the test statistic with respect to the rigorous one
is essential. We discuss this problem below.

An Example for Testing

We want to demonstrate the test procedure for the point-line incidence. Let
the 3D line L and the 3D point X be given by

L = [3, 0, 0, 0, 3,−3]T , X = [1, 1, 1,−1]T .

The line is parallel to the X-axis and passes through the point [0, 1, 1]T. The
3D point has the Euclidean coordinates [−1,−1,−1]T. The distance of X and
L therefore is dXL = 2

√
2 ≈ 2.8. For demonstration purposes we assume the

covariance matrices to be a multiple of the unit matrix:

ΣLL = 4I 6 , ΣXX = I 4 .

Thus the standard deviations of the homogeneous point coordinates are 1, and
the standard deviations of the Euclidean coordinates are larger than 1, which
could be verified by applying error propagation to X = U/W , etc. The line
has a similar precision in the vicinity of the origin of the coordinate system,
however, it has a very large uncertainty in direction. This could be verified by
intersecting the line with the planes X = 0 and X = −1, which are parallel
to the Y -Z-plane, and determining the standard deviations of the Y - and Z-
coordinates of the intersection points. Thus we can expect the distance of 2.8
not to be significant.

We now follow the above-mentioned steps:
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(1) The difference c is

c = I
T
(L)X =

⎡⎢⎢⎣
0 0 0 0
0 0 −3 3
0 3 0 −3
0 −3 3 0

⎤⎥⎥⎦
⎡⎢⎢⎣

1
1
1
−1

⎤⎥⎥⎦

= I I
T
(X)L =

⎡⎢⎢⎣
0 1 −1 −1 0 0
−1 0 1 0 −1 0
1 −1 0 0 0 −1
0 0 0 −1 −1 −1

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

3
0
0
0
3
−3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
0
−6
6
0

⎤⎥⎥⎦ .

(2) We select rows 3 and 4, as L6 = −3 does not vanish (we could have taken
rows 2 and 3 or rows 2 and 4 also). Thus we obtain the reduced vector

c′ = RTc =

[
e

(4)T
3

e
(4)T
4

]
c =

[
0 0 1 0
0 0 0 1

]⎡⎢⎢⎣
0
−6
6
0

⎤⎥⎥⎦ =
[

6
0

]
,

with the reduction matrix RT = [e(4)
3 , e

(4)
4 ].

(3) The covariance matrix of c′ is obtained from

Σc′c′ = RT
(
I

T
(L)ΣXX I (L) +T I I

T
(X)ΣLL I I (X)

)
R =

[
30 −5
−5 30

]
.

(4) The test statistic is

T = c′
T
Σ−1

c′c′c
′ =

216
175
≈ 1.23 .

It is χ2
2 distributed.

(5) We choose a significance number α = 0.05. The critical value is χ2,1−α =
5.99. As T is smaller than the critical value, we have no reason to reject
the hypothesis that the point X sits on the line L.

An Example for Setting up the Estimation

We want to demonstrate the use of the mentioned relations for the estimation
task in Fig. 15.2 right. We assume the orientation of the images to be given.
Here we only need the four projection matrices Qk for space lines.

We have N = 12 observations, namely the four homogeneous 3-vectors
of the image points x′ and lines l′ in the four images and U = 6 unknowns
for the Plücker coordinates L5 of the 3D line. Thus, referring to the Gauss–
Helmert model, we have the vector l of the observations and the vector x of
the unknown parameters:
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l
12×1

=

⎡⎢⎢⎣
x′

11

l′52
x′

23

l′54

⎤⎥⎥⎦ , x
6×1

= L5 .

There are two constraints for the measured image points and 2 × 2 = 4 in-
dependent constraints for the observed image lines, using the reduced skew-
symmetric matrices S[r](·) (cf. Eq. (15.56)), altogether yielding six constraints
g between the observations and the unknown parameters. Moreover, we have
two constraints h on the unknown parameters, namely the length constraint
and the Plücker constraint on L5. Thus we obtain the Gauss–Helmert model
for this estimation task, where all relations should hold for the fitted, i.e.
estimated values:

g(l,x)
6×1

=

⎡⎢⎢⎣
x′T

11Q1L5

S[r](l′52)Q2L5

xT
23Q3L5

S[r](l′54)Q4L5

⎤⎥⎥⎦ = 0 , h(x)
2×1

=

[
1
2

(
LT

5 L5 − 1
)

1
2L

T
5L5

]
= 0 .

The three Jacobians A, B and H for solving for the ML estimates using the
Gauss–Helmert model can easily be derived using Tables 15.1 to 15.5 given
above. The initial solution x̂(0) for x = L5 can be obtained from the right
eigenvector of A. Then the Jacobians can be evaluated at approximate values.
In the first iteration one uses l̂

(0)
= l and the initial solution x̂(0). In the fol-

lowing iterations the Jacobians have to be evaluated at the fitted observations
and unknown parameters in order to avoid bias and the necessity to renor-
malize [24]. The redundancy of the system is R = G+H −U = 6+2− 6 = 2.
Obviously the setup can directly be transferred to the other two problems
shown in Figs. 15.1 and 15.2.

15.4 Conditioning and Normalization

There are three reasons why a blind use of the approach described so far
may lead to problems: (1) entries in the homogeneous vectors or matrices
with highly different orders of magnitude lead to numerical instability; (2)
when testing extreme deviations from the null-hypothesis leads to wrong test
statistics; and (3) large deviations from the null hypothesis may lead to test
statistics that do not increase monotonically with the geometric distance of
the involved entities.
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These problems can be cured by conditioning and normalization:

1. Conditioning, as the name indicates, aims at improving the condition num-
bers of the matrices of concern. It is achieved by centering and scaling
the data such that the Euclidean coordinates of points are in the range
[−k,+k]. Hartley [17]2 proposed k = 1. The monotonicity of the test
statistic with the geometric distance is guaranteed when choosing k < 1,
e.g. k = 1/3, cf. [23].

2. Normalization affects at least the covariance matrix of uncertain homo-
geneous entities. It imposes the constraints on the length of the complete
vector or on the Euclidean part of the vector. Thus, for some uncertain ho-
mogeneous vector x = (xh,x0)

T with Euclidean part xh, and homogenous
part x0, we have the constraint [23]

|x| = |x| , or |xh| = |xh| .

In addition, we might have the Plücker constraint L
T
L = 0 for 3D lines or

the singularity constraint |F| = 0 for the fundamental matrix. When im-
posing these constraints the resulting covariance matrix can be determined
from Eq. (15.35). Kanatani [25] applied the Euclidean normalization to-
gether with a scaling of the Euclidean part of points to 1.

15.5 Conclusions

The paper discussed an approach for uncertain geometric reasoning, which
tries to keep as close to algebraic projective geometry as possible, and a generic
estimation scheme for uncertain geometric entities and transformation that
can handle any number of constraints. Though the various ingredients are
well known, building a software system is simplified by using the presented
representations, both in geometry and statistics.

The basic idea behind the approach is to exploit the multilinearity of
all geometric constructions and constraints. As these multilinearities are also
found in all variations of geometric algebra, e.g. conformal geometric algebra
[32], it appears feasible to reformulate the geometric expressions in terms of
coordinate vectors with a covariance matrix attached to them, and thus to
extend the approach to a much wider field than projective geometry.

2 Hartley called this procedure normalization.
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15.6 Appendix: Uncertainty of Tranformed 3D Lines

Starting from the transformation X′ = HX of 3D points X, we observe

I (L′) = HI (L)HT , (15.58)

as H(XYT−YXT)HT = X′Y′T−Y′X′T = I (L′). This shows that the trans-
formation of lines is quadratic in the entries of the transformation matrix H
for points.

We now first derive an expression for the transformation matrix HL for 3D
lines in terms of their Plücker coordinates L′ = HLL, and then derive the Ja-
cobians that are necessary to derive the covariance matrix of the transformed
line L′.

The transformation in Eq. (15.58) may be written in terms of the elements
of I (L)

vec(I (L′)) = (H⊗ H)vec(I (L))

containing the Plücker coordinates of the lines. We now map the 16 values of
vec(I (L)) to the 6-Plücker vector L using the 16× 6 Jacobian

JΓL
16×6

=
∂vec(I (L))

∂L
.

Then we have

L =
1
2
JT

ΓLvec(I (L)) , and vec(I (L)) = JΓLL . (15.59)

We obtain the transformation

L′ = HL L =
1
2
JT

ΓL(H⊗ H)JΓL L = (I 6 ⊗ LT)vec(HT
L) , (15.60)

with the 6× 6 transformation matrix for 3D lines

HL =
1
2
JT

ΓL(H⊗ H)JΓL.

We now want to determine the Jacobian JL′h = ∂L′/∂h. We start from the
differential of I (L′) in Eq. (15.58):

dI (L′) = dHI (L)HT + HI (dL)HT + HI (L)dHT.

With Eq. (15.59) we obtain

dL′ =
1
2
JT

ΓL vec(dI (L′))

=
1
2
JT

ΓL(I 4 ⊗ I (L)HT)dh +
1
2
JT

ΓL(H⊗ H)JΓL dL +
1
2
JT

ΓL(I 4 ⊗ HI (L))dh

=
1
2
JT

ΓL(I 4 ⊗ (I (L)HT − HI T(L)))︸ ︷︷ ︸
JL′h

dh +
1
2
JT

ΓL(H⊗ H)JΓL︸ ︷︷ ︸
JL′L=HL

dL ,
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which can be shortend to

dL′ = JL′hdh + HLdL , with JL′h =
1
2
JT

ΓL(I 4 ⊗ (I (L)HT −HI T(L))) .

We can use this result for statistical error propagation:

ΣL′L′ = JL′hΣhhJT
L′h + HLΣLLHT

L .
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16.1 Introduction

The design and implementation of a complete artificial vision system is a
daunting challenge. The computer vision community has made significant
progress in many areas, but the ultimate goal is still far off. A key component
of a general computer vision system is a computational framework that can
address a wide range of problems in a unified way. We have developed such
a framework for mid-level vision over the past several years. It is based on a
data representation formalism that uses second-order symmetric non-negative
definite tensors and an information propagation mechanism termed tensor
voting.

The term mid-level vision refers to stages of processing that aim at brid-
ging the gap between low-level modules, which produce image primitives, such
as points of interest or edges, and high-level modules, which perform the se-
mantic analysis of what is being viewed. The tensor voting framework provides
the means for organizing oriented and un-oriented primitives, such as points
or curve or surface elements, into perceptual structures, which can serve as
input to high-level processing modules, or be the desired output themselves
in some applications. Most computer vision problems can be posed as the
extraction of scene descriptions and interpretations from 2-D or 3-D (in the
case of medical or range data) images. After the desired primitives have been
generated, we claim that the problem of describing what is being viewed in
terms of structures, such as curves, surfaces, regions, junctions and intersec-
tions, can be addressed within a perceptual organization framework guided
by the gestalt principles [53]. This claim is valid as long as the input scenes
consist of coherent objects that are smooth almost everywhere, according to
the paradigm set by Marr [31].

The tensor voting framework offers many advantages, one of which is the
unified symbolic representation of all possible types of perceptual structures
in the same space, which allows different structures, for instance, curves and
surfaces, to interact with each other. Since processing is not iterative and
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tensor voting is performed locally, the framework is efficient in terms of com-
putational complexity, unlike other perceptual organization methodologies of
exponential complexity. Performance degrades gracefully with noise as shown
by our experiments, where satisfactory results were obtained under severe
noise corruption [15, 50, 32]. Finally, the framework is flexible since it can
operate on oriented or unoriented data, or a combination of both, and can
easily be generalized to spaces of any higher dimensions.

This chapter is organized as follows: in Sect. 16.2 we briefly review re-
lated research in perceptual organization; in Sect. 16.3 we present the second
order tensor voting framework and the representation, voting and structure
extraction mechanisms; in Sect. 16.4 we present a first-order augmentation
to the original framework for boundary inference; and in Sect. 16.5 we show
results on two particular computer vision problems, namely stereo and motion
analysis.

16.2 Related Work on Perceptual Organization

Perceptual organization has been an active research area. Important issues
include noise robustness, detection of discontinuities and computational com-
plexity. This section reviews related work, which can be classified according
to the approach taken in the following categories:

• regularization
• relaxation labeling
• geometric techniques
• robust methods
• level set methods
• symbolic methods
• clustering
• methods based on local interactions
• psychophysiology and neuroscience inspired methods

16.2.1 Regularization

Because of the projective nature of imaging, a single image can correspond
to different scene configurations. Because of the image formation ambiguity,
the inverse problem, the inference of structures from images, is ill-posed. To
address this ambiguity, constraints have to be imposed on the solution space.
Within the regularization theory, this is achieved by selecting the appropriate
objective function and optimizing it according to global constraints. Poggio
et al. [39] present the application of regularization theory to computer vision
problems. Terzopoulos [51] and Robert and Deriche [40] address the issue of
preserving discontinuities while enforcing global smoothness in a regulariza-
tion framework. A Bayesian formulation of the problem based on minimum
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description length is proposed by Leclerc [25]. Variational techniques are used
by Horn and Schunck [20] for the estimation of optical flow, and by Morel
and Solimini [34] for image segmentation. In both cases the goal is to infer
functions that optimize the selected criteria, while preserving discontinuities.

16.2.2 Relaxation Labeling

A different approach to vision problems is relaxation labeling. The problems
are cast as the assignment of labels, from a set of possible labels, to the
elements of the scene. Haralick and Shapiro define the consistent labeling
problem in [16] and [17]. Faugeras and Berthod [7] describe a gradient op-
timization approach to relaxation labeling. A global criterion is defined that
combines the concepts of ambiguity and consistency of the labeling process.
Geman and Geman discuss how stochastic relaxation can be applied to the
task of image restoration in [10]. MAP estimates are obtained by a Gibbs
sampler and simulated annealing. Hummel and Zucker [21] attempt to de-
velop an underlying theory for the continuous relaxation process. One result
is the development of an explicit function to maximize the relaxation process,
leading to a new relaxation operator. The second result is that finding a con-
sistent labeling is equivalent to solving a variational inequality. This work was
continued by Parent and Zucker [38] for the inference of trace points in 2-D,
and by Sander and Zucker [42] in 3-D.

16.2.3 Geometric Techniques

Techniques for inferring surfaces from 3-D point clouds have been reported in
the computer graphics literature. Boissonnat [2] proposes a technique based
on computational geometry for object representation by triangulating point
clouds in 3-D. Hoppe et al. [19] infer surfaces from unorganized point clouds
as the zero levels of a signed distance function from the unknown surface. The
strength of their approach lies in the fact that the surface model, topology and
boundaries need not be known a priori. Later, Edelsbrunner and Mücke [6] in-
troduce the three-dimensional alpha shapes that are based on a 3-D Delaunay
triangulation of the data. Szeliski et al. [49] describe a method for modeling
surfaces of arbitrary or changing topology using a set of oriented dynamic
particles that interact according to distance, coplanarity, conormality and co-
circularity. The drawbacks of computational geometry based methods are their
sensitivity to even a very small number of outliers and their computational
complexity.

16.2.4 Robust Methods

In the presence of noise, robust techniques inspired by random sample consen-
sus (RANSAC) [8] can be applied. Small random samples are selected from
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the noisy data and are used to derive model hypotheses, which are tested
using the remainder of the dataset. Hypotheses that are consistent with a
large number of the data points are considered valid. Variants of RANSAC
include the residual consensus(RESC) [57] and the mutual inlier ratio (MIR)
[24], which are mainly used for segmentation of surfaces from noisy 3-D point
clouds. The extracted surfaces are limited to planar or quadratic, except for
the approach in [26] which can extract high-order polynomial surfaces. In
all cases an a priori parametric representation of the unknown structure is
necessary, thus limiting the applicability of these methods.

16.2.5 Level Set Methods

The antipode of the explicit representation of surfaces by a set of points is the
implicit representation in terms of some function. In [46], Sethian proposes a
level set approach under which surfaces can be inferred as the zero-level isosur-
face of a multivariate implicit function. The technique allows for topological
changes; thus it can reconstruct surfaces of any genus as well as nonmanifolds.
Osher et al. [58] and Osher and Fedkiw [37] propose efficient ways of handling
implicit surfaces as level sets of a function. A combination of points and e-
lementary surfaces and curves can be provided as input to their technique,
which can handle local changes locally, as well as global deformations and
topological changes. All the implicit surface-based approaches are iterative
and require careful selection of the implicit function and initialization. The
surface in explicit form, as a set of polygons, can be extracted by a technique
such as the classic Marching Cubes algorithm [29]. The simultaneous represen-
tation of surfaces, curves and junctions is impossible, and all the approaches
are limited to closed surfaces.

16.2.6 Symbolic Methods

Following the paradigm set by Marr [31], many researchers developed me-
thods for hierarchical grouping of symbolic data. Lowe [30] developed a sys-
tem for 3-D object recognition based on perceptual organization of image
edgels. Groupings are selected among the numerous possibilities according to
the gestalt principles, viewpoint invariance and low likelihood of being acci-
dental formations. Later, Mohan and Nevatia [33] and Dolan and Riseman [5]
also proposed perceptual organization approaches based on the gestalt princi-
ples [53]. Both are symbolic and operate in a hierarchical bottom-up fashion
starting from edgels and increasing the level of abstraction at each iteration.
The latter approach aims at extracting curvilinear structures, while the for-
mer aims at segmentation and the extraction of 3-D scene descriptions from
collations of features that have high likelihood of being projections of scene
objects. Along the same lines is Jacobs’ [22] technique for inferring salient con-
vex groups among clutter since they most likely correspond to world objects.
The criteria to determine the non-“accidentalness” of the potential structures
are convexity, proximity and contrast of the edgels.
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16.2.7 Clustering

A significant current trend in perceptual organization is clustering [23]. Data
are represented as nodes of a graph, and the edges between them encode the
likelihood that two nodes belong in the same partition of the graph. Clustering
is achieved by cutting some of these edges in a way that optimizes global
criteria. A landmark approach in the field was the introduction of normalized
cuts by Shi and Malik [48]. They aim at maximizing the degree of dissimilarity
between the partitions normalized by essentially the size of each partition, in
order to remove the bias for small clusters. Boykov et al. [3] use graph cut-
based algorithms to approximately optimize energy functions whose explicit
optimization is NP-hard. They demonstrate the validity of their approach on
a number of computer vision problems. Stochastic clustering algorithms have
been developed by Cho and Meer [4] and Gdalyahu et al. [9]. A consensus of
various clusterings of the data is used as a basis of the solution. Finally, Robles-
Kelly and Hancock [41] present a perceptual grouping algorithm based on
graph cuts and an iterative expectation maximization scheme, which improves
the quality of results at the expense of increased computational complexity.

16.2.8 Methods Based on Local Interactions

We now turn our attention to perceptual organization techniques that are
based on local interaction between primitives. Shashua and Ullman [47] first
addressed the issue of structural saliency and how prominent curves are formed
from tokens that are not salient in isolation. They define a locally connected
network that assigns a saliency value to every image location according to the
length and smoothness of curvature of curves going through that location. In
[38], Parent and Zucker infer trace points and their curvature based on spa-
tial integration of local information. An important aspect of this method is
its robustness to noise. This work was extended to surface inference in three
dimensions by Sander and Zucker [42]. Sarkar and Boyer [43] employ a vo-
ting scheme to detect a hierarchy of tokens. Voting in parameter space has
to be performed separately for each type of feature, thus making the com-
putational complexity prohibitive for generalization to 3-D. The inability of
previous techniques to simultaneously handle surfaces, curves and junctions
was addressed in the precursor of our research in [15]. A unified framework
where all types of perceptual structures can be represented is proposed along
with a preliminary version of the voting scheme presented here. The major
advantages of the work of Guy and Medioni were noise robustness and com-
putational efficiency, since it is not iterative. How this methodology evolved
is presented in the remaining sections of this chapter.

16.2.9 Psychophysiology- and Neuroscience-Inspired Methods

Finally, there is an important class of perceptual organization methods that
are inspired by human perception and research in psychophysiology and neu-
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roscience. Grossberg and Mingolla [12] and Grossberg and Todorovic [13] de-
veloped the boundary contour system and the feature contour system that can
group fragmented and even illusory edges to form closed boundaries and re-
gions by feature cooperation in a neural network. Heitger and von der Heydt
[18], in a classic paper on neural contour processing, claim that elementary
curves are grouped into contours via convolution with a set of orientation-
selective kernels, whose responses decay with distance and difference in orien-
tation. Williams and Jacobs [55] introduce the stochastic completion fields for
contour grouping. Their theory is probabilistic and models the contour from a
source to a sink as the motion of a particle performing a random walk. Parti-
cles decay after every step, thus minimizing the likelihood of completions that
are not supported by the data or between distant points. Li [28] presents a
contour integration model based on excitatory and inhibitory cells and a top-
down feedback loop. What is more relevant to our research, which focuses on
the preattentive bottom-up process of perceptual grouping, is that connection
strength decreases with distance, and that zero- or low-curvature alternatives
are preferred to high-curvature ones. The model for contour extraction of Yen
and Finkel [56] is based on psychophysical and physiological evidence that
has many similarities to ours. It employs a voting mechanism where votes,
whose strength decays as a Gaussian function of distance, are cast along the
tangent of the osculating circle. Even though we do not attempt to present a
biologically plausible system, the similarities between our framework and the
ones presented in this paragraph are nevertheless encouraging.

16.2.10 Our Approach

Some important aspects of our approach in the context of the work presented
in this section are discussed here. In case of dense, noise-free, uniformly dis-
tributed data, we are able to match the performance of surface extraction
methods such as [2, 6, 52, 46, 29]. Furthermore, our results degrade much
more gracefully in the presence of noise (see, for example, [14] and [32]) and
the multiscale implementation allows us to overcome uneven data densities.
The input can be oriented, unoriented tokens or a combination of both, while
many of the techniques mentioned above require oriented inputs to proceed. In
addition to the advantages this brings, we are able to extract open and closed
surfaces and curves and junctions in 3-D simultaneously. Our model-free ap-
proach allows us to handle arbitrary perceptual structures that adhere to the
“matter is cohesive” [31] principle. Model-based approaches cannot easily dis-
tinguish between model misfit and noise. To our knowledge, the tensor voting
framework is the only methodology that can represent and infer all possible
types of structures in any dimension in the same space. Our voting function
has many similarities with other voting-based methods, such as the decay with
distance and curvature [18, 56, 28], and the use of constant-curvature paths
[38, 44, 43, 56] that result in an eight-shaped voting field (in 2-D) [18, 56].
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The major difference is that in our case the votes cast are tensors and not
scalars, therefore they can express much richer information.

16.3 The Original Second-Order Tensor Voting
Framework

In this section we review the original second-order tensor voting framework
as it was presented in [32]. The purpose of the framework is to serve as a
computational mechanism for perceptual grouping of oriented and unoriented
primitives. It has mainly been applied to mid-level vision problems, but it is
suitable for any problem (of any dimensionality) that can be formulated as a
perceptual organization problem. The novelty of our approach is that there
is no objective function that is explicitly defined and optimized according to
global criteria. Instead, tensor voting is performed locally, and the saliency
of perceptual structures is estimated as a function of the support tokens re-
ceive from their neighbors. Tokens with compatible orientations that can form
salient structures reinforce each other. The support of a token for its neigh-
bors is expressed by votes that are cast according to the gestalt principles of
proximity, colinearity and cocurvilinearity.

We begin by describing the representation, then illustrate the voting me-
chanism and introduce the concept of voting fields and how they are derived
from the 2-D second-order fundamental stick voting field. Even though the
illustration is for the 3-D case for visualization reasons, all aspects of the
framework can easily be generalized to any dimensions. Finally, we briefly
review the way dense structures such as surfaces and curves can be extracted
from sparse data.

16.3.1 Representation

The representation of a token consists of a symmetric second-order tensor
that encodes perceptual saliency. The tensor essentially indicates the saliency
of each type of perceptual structure (surface, curve or region in 3-D) the
token belongs to, and its preferred normal and tangent orientations. Tensors
were first used as a signal processing tool for computer vision applications by
Granlund and Knutsson [11] and Westin [54]. Our use of tensors differs in that
our representation is not signal based, but rather symbolic, where hypotheses
for the presence of a perceptual structure at a given location are represented
as tokens with associated second-order tensors that encode the likelihood for
the presence of a perceptual structure at the location, the most likely type
of structure and its preferred tangent or normal orientations. The power of
this representation lies in that all types of saliency are encoded by the same
tensor.

A representation scheme sufficient for our purposes must be able to encode
both smooth perceptual structures as well as discontinuities. These occur at



542 G. Medioni, P. Mordohai and M. Nicolescu

locations where multiple salient structures such as curves, surfaces or region
boundaries meet. Curve orientation discontinuities occur at locations where
multiple curve segments intersect, while surface orientation discontinuities oc-
cur where multiple surface patches intersect. In other words, whereas there
is only one orientation associated with a location within a smooth curve seg-
ment, or a surface patch or a region boundary, there are multiple orientations
associated with locations where a discontinuity occurs. Hence, the desirable
data representation is one that can encode more than one orientation at a
given location. It turns out that a second-order symmetric tensor possesses
precisely this property.

An N -D, symmetric, non-negative definite, second-order tensor can be
viewed as a N ×N matrix or equivalently an N -D hyperellipsoid. Intuitively,
its shape indicates the type of structure represented and its size the saliency
of this information. In 3-D, the tensor can be decomposed as in the following
equation:

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 + λ3ê3ê

T
3

= (λ1 − λ2)ê1ê
T
1 + (λ1 − λ2)(ê1ê

T
1 + ê2ê

T
2 ) + λ3(ê1ê

T
1 + ê2ê

T
2 + ê3ê

T
3 ),
(16.1)

where λi are the eigenvalues in decreasing order and êi are the corresponding
eigenvectors (see also Fig. 16.1). Note that the eigenvalues are non-negative
since the tensor is non-negative definite and the eigenvectors are orthogonal.
The first term in Eq. (16.1) corresponds to a degenerate elongated ellipsoid,
termed hereafter the stick tensor , that indicates an elementary surface token
with ê1 as its surface normal. The second term corresponds to a degenerate
disk-shaped ellipsoid, termed hereafter the plate tensor , that indicates a curve
or a surface intersection with ê3 as its tangent, or, equivalently normal to the
subspace spanned by with ê1 and ê2. Finally, the third term corresponds to
a sphere, termed the ball tensor , that corresponds to a junction that has no
preference of orientation. The ball tensor can also be viewed as a measure of
uncertainty.

The size of the tensor indicates the certainty of the information represented
by the tensor. Therefore, the size of the stick component (λ1 − λ2) indicates
surface saliency, the size of the plate component (λ2 − λ3) indicates curve
saliency and that of the ball component (λ3) junction saliency. Note that
the representation is in terms of normals. Therefore, a surface patch in 3-D is
represented by a stick tensor parallel to the patch’s normal. A curve, which can
also be viewed as a surface intersection, is represented by two salient normals,
the plate tensor. Adopting this representation, as opposed to a representation
by tangents, allows a structure with N−1 degrees of freedom in N -D (a curve
in 2-D, a surface in 3-D) to be represented by a single vector, while a tangent
representation would require the definition of N − 1 vectors that form a basis
for an (N−1)-D subspace. Our choice for the normal representation is justified
since, typically, the most frequent structures in an N -D space are (N − 1)-D
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Fig. 16.1. second-order generic tensor and its decomposition into the stick, plate

and ball components in 3-D

manifolds, which are represented by the stick tensor. The stick voting field is
the basis from which all other voting fields are derived.

The tensors can be initialized as balls with no preference of orientation,
or, if prior knowledge is available, with some preferred orientation. But in
general, after voting, a generic tensor comprising all three components will be
the representation for each token. The benefit of having this representation
is that the likelihood of the token belonging to each type of structure can be
encoded simultaneously and carried throughout the processing stages without
having to make premature, hard decisions, or maintain separate maps for
every token type.

16.3.2 Tensor Voting

The core of our framework is the way information is propagated from token
to token. The question we want to answer is: assuming that a token at O
with normal N and a token at P belong to the same smooth perceptual
structure, what information should the token at O cast at P? We first answer
the question for the 2-D case of a voter with a pure stick tensor and show how
all other cases can be derived from it. We claim that, in the absence of other
information, the arc of the osculating circle (the circle that shares the same
normal as a curve at the given point) at O that goes through P is the most
likely smooth path, since it maintains constant curvature. In case of straight
continuation from O to P , the osculating circle degenerates to a straight line.
Similar use of primitive circular arcs can also be found in [38, 44, 43].

As shown in Fig. 16.2, the second-order vote at P is also a stick tensor and
has a normal lying along the radius of the osculating circle. What remains to
be defined is the magnitude of the vote. According to the gestalt principles
it should be a function of proximity and smooth continuation. The saliency
decay function we have selected at [14, 32] has the following form:

DF (s, κ, σ) = e−( s2+cκ2

σ2 ), (16.2)
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Fig. 16.2. Second-order vote cast by a stick tensor located at the origin

where s is the arc length OP , κ is the curvature, c is a constant that controls
the decay with high curvature, and σ is the scale of analysis, which determines
the effective neighborhood size. Since we use a Gaussian decay function for
DF (·), the effective neighborhood size is about 3σ. The derivation is as follows:

let k be the effective neighborhood size. Then, we can set e−
k2

σ2 = ε, a small
number, which is the lower bound of significant magnitude. We can then
derive the effective neighborhood size k given σ. Note that σ is the only free
parameter in the system.

The voting process is identical whether the receiver contains a token or
not, but we use the term sparse vote to describe a pass of voting where votes
are cast to locations that contain tokens only. We use the term dense vote
for a pass of voting from the tokens to all locations within the neighborhood
regardless of the presence of tokens.

16.3.3 Voting Fields

In this section we show how all the necessary votes can be cast in the same
way as described in the previous section for the 2-D stick tensor case, and
how any second-order field in any dimension can be derived. Finally, we show
how the votes cast by an arbitrary tensor can be computed, given the voting
fields.

The second-order stick voting field is a second-order tensor field, which at
every position contains a tensor that is the vote cast there by a unitary stick
tensor located at the origin and aligned with the y-axis. The shape of the
field in 2-D can be seen in Fig. 16.3a. Note that it is identical to a cut of the
3-D field containing the origin, since the voting stick tensor and the receiver
define a plane in 3-D where the voting takes place. Depicted at every position
is the eigenvector corresponding to the largest eigenvalue of the second-order
tensor contained there. Its size is proportional to the magnitude of the vote.
To compute a vote cast by an arbitrary stick tensor, we need to align the field
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(a) 2-D stick voting field (b) 2-D ball voting field

(c) The stick field is aligned with the voter A and a vote is cast at B

Fig. 16.3. a-c Voting field illustration in 2-D

with the orientation of the voter and multiply the saliency of the vote that
coincides with the receiver by the saliency of the arbitrary stick tensor, as in
Fig. 16.3c. Since the locations O and P and the unitary stick tensor define a
plane in 3-D, the generation of stick votes is identical in 2-D, 3-D and N -D,
as can be easily shown. The stick voting fields in higher dimensions, therefore,
can be derived by a simple rotation of the 2-D stick field.

At the other end of the spectrum is the ball voting field , a cut of which
can be seen in Fig. 16.3b. The ball tensor has no preference of orientation,
but still it can cast meaningful information to other locations. The presence
of two proximate unoriented tokens, the voter and the receiver, indicates a
potential perceptual structure. In the 3-D case, this can either be a curve
segment, or a pencil of planes intersecting on that segment. Even though the
voters are unoriented, surfaces can be inferred, since the accumulation of votes
from point to point with one degree of freedom in terms of surface orientation,
from neighbors in the same surface, results in a high certainty for the correct
surface normal and eliminates the degree of freedom. The case for curves is
similar. The ball voting fields allow us to infer preferred orientations from
unoriented tokens, thus minimizing initialization requirements.

To show the derivation of the ball voting field from the stick voting field,
we can visualize the vote at P from a unitary ball tensor at the origin O as
the integration of the votes of stick tensors that span the space of all possible
orientations. In 2-D, this is equivalent to a rotating stick tensor that spans
the unit circle at O, while in 3-D the stick tensor spans the unit sphere. The
3-D ball field can be derived from the stick field S(P ), as follows:

B(P ) =
∫ π

0

∫ π

0

RθφγS(R−1
θφγP )RT

θφγdφdγ|θ=0, (16.3)
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where Rθφγ is the rotation matrix to align S with ê1, the eigenvector corre-
sponding to the maximum eigenvalue (the stick component), of the rotating
tensor at P , and θ, φ, γ are rotation angles about the x-, y−, z-axes respec-
tively.

In practice, the integration is approximated by a summation (tensor ad-
dition):

V =
π∑

i=0

π∑
j=0

vijvT
ij , (16.4)

where V is the accumulated vote, and vij are the votes from O to P cast by the
stick tensor as i, j span the unit sphere. Normalization has to be performed
in order to make the energy emitted by a unitary ball equal to that of a
unitary stick. As a result of the integration, the second-order ball field does
not contain purely stick or purely ball tensors, but arbitrary second-order
symmetric tensors. The field is radially symmetric, as expected, since the
voter has no preferred orientation.

The plate voting field completes the set of voting fields for the 3-D case. Its
description illustrates how any voting field in any dimension can be generated.
Since the plate tensor encodes uncertainty of orientation around one axis, it
can be derived by integrating the votes of a rotating stick tensor that spans the
unit circle, in other words the plate tensor. The formal derivation is analogous
to that of the ball voting fields and can be written as follows:

P(P ) =
∫ π

0

RθφγS(R−1
θφγP )RT

θφγdγ|θ=φ=0, (16.5)

where θ, φ, γ, and Rθφγ have the same meaning as in the previous equation.
The generalization to N dimensions is straightforward. Starting from the

N -D stick field, which is a rotated version of the 2-D second-order fundamental
stick field, the remaining N − 1 fields can be derived by integration as shown
here for the 3-D case.

All voting fields are functions of the position of the receiver relative to the
voter and a single parameter, the scale of the saliency decay function. After
these fields have been precomputed at the desired resolution, computing the
votes cast by any second-order tensor is reduced to a few look-up operations
and linear interpolation. Voting takes place in a finite neighborhood within
which the magnitude of the votes cast remains significant. The size of this
neighborhood is obviously a function of the scale σ. As described in Sect.
16.3.1, any tensor can be decomposed into the basis components (stick, plate
and ball in 3-D) according to its eigensystem. Then, the corresponding fields
can be aligned with each component. Votes are retrieved by simple look-up
operations, and their magnitude is multiplied by the corresponding saliency.
For instance, in 3-D the saliency of the stick component is λ1 − λ2, of the
plate component λ2 − λ3, and of the ball component λ3.
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The complexity of tensor voting is O(kn). Each voter casts on average
k votes to its neighbors, where k depends on data density and the scale of
voting. In the worst case, this can lead to O(n) votes per token, but that
is a clear indication of incorrect setting of the size of the neighborhood. For
most practical cases, k is a small fraction of the data set. Since votes are
precomputed, each vote requires a fixed number of linear operations (matrix
multiplication and linear interpolation) to be cast. The overhead before voting
can begin comes form two sources: the computation of the voting fields, and
the generation of the data structure that holds the data.

16.3.4 Vote Collection and Interpretation

Votes are cast from token to token (sparse vote), as described in the previous
section, and they are accumulated by tensor addition. The resulting tensor
at each token is in general an arbitrary tensor. Analysis of the second-order
votes can be performed once the eigensystem of the accumulated second-order
N ×N tensor has been computed. In 3-D, the tensor can be decomposed into
the stick, plate and ball components:

T = (λ1−λ2)ê1ê
T
1 +(λ2−λ3)(ê1ê

T
1 + ê2ê

T
2 )+λ3(ê1ê

T
1 + ê2ê

T
2 + ê3ê

T
3 ), (16.6)

where ê1ê
T
1 is a stick tensor, ê1ê

T
1 + ê2ê

T
2 is a plate tensor, ê1ê

T
1 + ê2ê

T
2 + ê3ê

T
3

is a ball tensor. The following cases have to be considered. If λ1 # λ2, λ3, this
indicates certainty of one normal orientation, therefore the token most likely
belongs on a surface. In case of a token that belongs on a curve, or surface
intersection, the uncertainty in normal orientation spans a plane perpendicular
to the tangent. Hence, the inferred tensor is platelike, that is, λ1 ≈ λ2 # λ3.
If the token is a point junction, λ1 ≈ λ2 ≈ λ3, and the dominant component
is the ball. An outlier receives few, inconsistent votes, so all eigenvalues are
small and no preference of orientations emerges.

16.3.5 Extraction of Dense Structures

Now that the most likely type of feature at each token has been estimated,
we want to compute the dense structures (curves and surfaces in 3-D) that
can be inferred from the tokens. This can be achieved by casting votes to all
locations, whether they contain a token or not (dense vote). Then, each site
contains a 2-tuple (s, v̂), indicating feature saliency and direction. Given this
dense information, a modified marching algorithm [50] (based on the marching
cubes algorithm [29]) is used to extract surfaces and curves that correspond
to zero crossings in s along v̂’s. Junctions are isolated and, therefore, are
extracted as maxima of junction saliency. Generalization of dense structure
extraction to higher dimensions is not impossible, but is definitely not an easy
task, simply because of space storage complexity.

In order to reduce computational cost, the calculation of saliency tensors
at locations with no prior information and structure extraction are integrated
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Fig. 16.4. Dense surface extraction in 3-D: (Left) Elementary surface patch with
normal n. (Center) 3-D surface saliency along normal direction (Right) First deriva-
tive of surface saliency along normal direction

Fig. 16.5. Dense curve extraction in 3-D: (Left) 3-D curve with tangent t
and the normal plane. (Center) Curve saliency isocontours on the normal plane.
(Right) First derivatives of surface saliency on the normal plane

and performed as a marching process. Beginning from seeds, locations with
highest saliency, we perform a dense vote only toward the directions dictated
by the orientation of the features. Surfaces are extracted with subvoxel accu-
racy, as the zero-crossings of the first derivative of surface saliency (Fig. 16.4).
Locations with high surface saliency are selected as seeds for surface extrac-
tion, while locations with high curve saliency are selected as seeds for curve
extraction. The marching direction in the former case is perpendicular to the
surface normal, while, in the latter case, the marching direction is along the
curve’s tangent (Fig. 16.5). Curve junction saliency gives rise to isolated local
extrema, and therefore is not propagated in the extraction process.

16.4 First-Order Voting

In this section, we describe how the original, strictly second-order framework
is augmented by including first-order properties, in order to infer discontinui-
ties. The addition of polarity vectors (first-order tensors) to the representation
complements the strictly second-order representation that was insufficient for
encoding first-order properties, such as boundaries of perceptual structures.
The new representation exploits the essential property of boundaries to have
all their neighbors, at least locally, on the same side of a half-space. As de-
scribed in the remainder of this section, the voting scheme is identical to that
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Fig. 16.6. Curve orientation still varies smoothly at endpoints of open contours.
Therefore, they cannot be distinguished from interior points based on the second-
order representation

of the second-order case, and the first-order vector voting fields can be easily
derived from the second-order fundamental tensor voting field.

16.4.1 Motivation

To illustrate the significance of this contribution, consider the contour de-
picted in Fig. 16.6, keeping in mind that we represent curve elements by their
normals. Consider points A and D, which are smooth inliers of the contours.
The second-order tensors associated with these points are identical in terms of
both saliency and orientation. The problem appears when comparing points
B and C with E and F . The former are inliers of the closed contour, while
the latter are the endpoints of the open contour. The second-order tensor at
B has almost identical orientation as the one at E. Even though there is a
difference in curve saliency since E receives less support from its neighbor-
hood than B, the inferred description is very similar for two points that are
qualitatively very different. This occurs because the second-order represen-
tation is inadequate to capture the key property of endpoints: that all their
neighbors in the contour are on the same side. The first-order augmentation to
the framework addresses this shortcoming by being sensitive to the direction
from which votes are received.

16.4.2 Representation and Voting

The representation is augmented by the addition of the polarity vector , which
can be viewed as a vector pointing toward the direction of maximum saliency,
or, in other words, the direction from which the token receives the most salient
votes. The polarity vector is used to collect the information that cannot be
captured by the second-order tensor, which is insensitive to the direction from
which votes are received. In the augmented framework, tokens cast second-
order votes as described in the previous section and first-order votes as de-
scribed here.

As shown in Fig. 16.7, the first-order vote cast by a unitary stick tensor at
the origin is tangent to the osculating circle, the smoothest path between the
voter and receiver. Its magnitude, since nothing suggests otherwise, is equal
to that of the second-order vote according to Eq. (16.2). What should be
noted is that polarity vectors are initialized to zero since no prior information
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Fig. 16.7. Second- and first-order votes cast by a stick tensor located at the origin

is available on whether the token is on a boundary or not. Therefore, first-
order votes are cast based on the second-order part of the representation. The
fundamental 2-D first-order stick voting field is a vector field, which at every
position holds a vector that is equal in magnitude to the stick vote that exists
in the same position in the fundamental second-order stick voting field, but is
tangent to the smooth path between the voter and receiver instead of normal
to it. First-order stick fields in higher dimensions can be derived by rotation
of the 2-D field around the unitary stick. The other fields can be derived as in
the second-order case by substituting the first-order vote generation function
in Eqs. (16.3) and (16.5), keeping in mind that the votes are not tensors but
vectors in this case, and accumulation has to be performed by vector addition.
Before voting, the second-order tensors of the voters are decomposed into the
basis tensors (stick, plate and ball in 3-D) and cast both first- and second-
order votes after being aligned with the appropriate fields.

Vote collection for the first-order case is performed by vector, instead
of tensor, addition. The accumulated result is a vector that points to the
weighted center of mass from which votes are cast, and whose magnitude en-
codes polarity. Since the first-order votes are weighted by the saliency of the
voters and attenuate with distance and curvature, their vector sum points to
the direction from which the most salient contributions were received. Low
polarity indicates a token that is in the interior of a curve, surface or region,
therefore surrounded by neighbors whose votes cancel each other out. On the
other hand, high polarity indicates a token that is on or close to a boundary,
thus receiving votes from only one side with respect to the boundary. The in-
terpretation of polarity vectors for boundary inference is done in conjunction
with second-order tensors and is described in Table 16.1.

16.4.3 Boundary Inference

In this section, we describe how the theory developed in the previous section
can be used to infer boundaries of perceptual structures. We illustrate in 3-D
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Table 16.1. Summary of first- and second-order tensor structure for each feature
type in 3-D

3-D Feature Saliency Second-order tensor Polarity Polarity vector
Surface interior High λ1 − λ2 Normal: ê1 Low –

Surface end-curve High λ1 − λ2 Normal: ê1 High Orthogonal to ê1

and end-curve
Curve interior High λ2 − λ3 Tangent: ê3 Low –
Curve endpoint High λ2 − λ3 Tangent: ê3 High Parallel to ê3

Region interior High λ3 – Low –
Region boundary High λ3 – High Normal to

bounding surface
Junction Locally max λ3 – Low –
Outlier Low – Low –

for visualization purposes. In this space, boundaries that can be inferred are
surface boundaries, curve endpoints and region boundaries.

Surface Boundary Inference

We are interested in extracting surface end-curves, which in some applications
may indicate depth discontinuities or occlusion boundaries. In the case of
surfaces, both interior points and points on boundaries are characterized by
a dominant stick component. The factor that differentiates between them is
that the interior points have low polarity values after first-order voting, while
points on the boundaries have high polarity values.

Assume we are given an open smooth surface patch in 3-D, encoded as a
sparse set of tokens, possibly contained within a larger data set. The tokens
are initially encoded as ball tensors since their preference of orientation is
unknown. After a pass of second-order voting, the tokens that lie on the
surface, both in the interior and on the boundaries, have accumulated second-
order tensors with dominant stick components consistent with the normal of
the surface at each location.

Then, tokens propagate first-order votes to their neighbors. As seen in Sect.
16.3.2, these votes will be along the tangent of the circular arc connecting the
voter and the receiver. Therefore, the resulting polarity vector at the receiver
after vote accumulation lies on a plane perpendicular to the estimated local
surface normal. In case of a token in the interior of the region, the first-order
votes come from all directions and cancel each other out. On the other hand,
close to the surface boundaries, a large vector sum is accumulated, pointing
toward the average direction (weighted by vote saliencies) from which the
votes came. This direction is locally orthogonal to the boundary, at least as
long as the “continuity of discontinuities” principle of Marr [31] holds. If the
polarity vector is not exactly orthogonal to the estimated surface normal,
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(a) Noisy 3-D input (b) Extracted surfaces and boundaries

Fig. 16.8. a, b Surface boundary inference from a synthetic dataset with additive
noise

which is an indication of interference by noise, we use its projection on the
plane orthogonal to the normal. The tensor is robust against this kind of
interference, since it contributes to the ball component and does not affect
the estimated normal, which is reliably estimated. After polarity has been
inferred at all locations, we extract the curves corresponding to maxima in
polarity along the tangent direction, using a modified curve marching process
[50]. Results for a synthetic example that consists of three intersecting surfaces
with added uniform noise can be seen in Fig. 16.8.

Curve Endpoint Inference

As in the case of surface boundaries, the second-order representation alone
cannot convey whether a point is in the interior of a curve or an endpoint,
since they are both characterized by a dominant plate component with curve
saliency λ2 − λ3 and preferred tangent parallel to ê3, the eigenvector corres-
ponding to the minimum eigenvalue.

After second-order voting, the eigenvector corresponding to the smallest
eigenvalue (ê3), of the tensor inferred at each location gives the tangent orien-
tation. We extract curve endpoints by casting first-order votes and inferring
polarity. Polarity vectors are parallel to the curve tangent. This can be proven
in a way analogous to the case of surface boundaries. The second-order votes
collected at a curve boundary result in a dominant plate component, there-
fore span a plane in 3-D. Since, according to the definition of the voting fields,
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(a) Noisy data set (b) The extracted curves with
the inferred endpoints colored darker

Fig. 16.9. a, b Curve endpoint inference from noisy data

the first-order votes are orthogonal to the second-order ones, they span the
remainder of the space, which has ê3 as its basis.

At tokens that lie in the interior of the curve, first-order votes come from
both directions and cancel each other out. At the endpoints, all first-order
votes are cast from the same direction, thus combining into a large vector sum
pointing toward the interior of the curve. Since curve endpoints are isolated in
space, no marching process is needed for their extraction. The exterior tokens,
with respect to the curve tangent, that have accumulated high polarity are
selected as the endpoints. Figure 16.9 contains results from a noisy dataset.

Region Boundary Inference

Given a noisy set of points that belong to a 3-D region, we infer region boun-
daries in a similar way. Note that in this case, the normal refers to the vector
inferred by first-order voting, since the characteristic second-order tensor of a
region is a ball that has no orientation preference.

In terms of second-order tensors, regions are characterized by a dominant
ball component, since they collect second-order votes from all directions in
3-D. The same holds for tokens close to the region boundaries since second-
order votes are function of orientation but not direction. Once second-order
information is available at each token, first-order votes are cast. The boun-
ding surface of a 3-D region can be extracted by the modified surface marching
algorithm [50] as the maximal isosurface of polarity along the normal direc-
tion, indicated by the polarity vectors. Figure 16.10 contains results on region
boundary extraction for a synthetic example that consists of a peanut shape
that consists of a uniform distribution of unoriented points contaminated by
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(a) Noisy 3-D input (d) Extracted bounding surface

Fig. 16.10. a, b Surface boundary inference from a synthetic dataset with additive
noise

uniform noise with smaller density. The detected region boundaries are used
as inputs for dense surface extraction. The extracted surfaces can be seen in
Fig. 16.10b.

16.5 Applications

In this section we describe the application of the tensor voting framework
to two core computer vision problems: stereo and motion analysis. Stereo
vision is the process of establishing the 3-D positions of points based on their
projections on two or more 2-D images. Motion analysis, on the other hand, is
the process of determining the velocity of points on the image plane (optical
flow) between two time instances. We treat both stereo and motion in a unified
way as perceptual organization problems within the framework. We claim
that tokens, generated by matching corresponding pixels in the two images,
form coherent perceptual structures in the appropriate space, while erroneous
matches generate outlier tokens. The tensor voting framework is suitable for
these problems because it can detect perceptual structures based solely on the
smoothness constraint, without using any models. This property allows us to
handle arbitrary surfaces, which are unavoidable in nontrivial scenes.

A fundamental similarity between stereo and motion is that processing
in both cases begins with pixel matching. It is evident from the literature
and from our own experiments that there is no optimal matching method and
that different methods perform better in different parts of the same image. We
propose a matching scheme that combines the results of multiple methods in
an attempt to the correct matches for as many pixels as possible. The novelty
of the proposed method is that we do not make decisions on the correctness of
matches based on their matching score, but on their perceptual saliency after
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tensor voting. This allows us to use a number of potential matches for every
pixel through the next processing stages and make hard decisions when more
information is available.

The difference between stereo and motion is the dimensionality of the
space in which processing is performed. In the case of stereo with known
epipolar geometry, the images can be transformed so that the epipolar lines
are parallel to the horizontal axis, thus making the search space for corres-
pondences 1-D. Therefore, since each pixel’s motion is restricted on a line, the
appropriate space in this case is 3-D, where each match is represented in a
coordinate system that consists of the image axes and the disparity axis. In
the case of motion, the search space for potential matches for each pixel is
2-D since objects can freely move anywhere within the scene. Therefore, the
appropriate space for each match here is 4-D, with the axes being the two
image axes and the two velocity axes. One can view stereo as a case of motion
with zero vertical velocity, but that means not using the epipolar constraint,
which contributes greatly to the performance of any stereo algorithm since
it drastically reduces ambiguities in matching. We process stereo in 3-D to
take advantage of the epipolar constraint. In both cases, potential matches are
encoded as tensors and propagate their preferred orientation via tensor voting
to their neighbors in 3-D and 4-D, respectively. We consider the use of 3-D
and 4-D neighborhoods a critical aspect of our framework since it overcomes
difficulties associated with propagating information in image neighborhoods
between adjacent image pixels that are not necessarily neighboring in the
scene depicted on the images. After voting, the tokens are grouped in salient
perceptual structures, while the outliers of these structures correspond to false
matches and are rejected.

16.5.1 Stereo

Interested readers are referred to [45] for a comprehensive review of state of
the art stereo algorithms. In this section we present our approach to stereo
within the tensor voting framework (an earlier version of which was published
in [27]), which has the following steps:

• matching
• tensor encoding and tensor voting
• uniqueness enforcement and outlier rejection
• boundary inference
• dense surface and curve extraction

Matching

A common dilemma in the establishment of initial pixel correspondences is the
need to choose a matching window large enough to contain enough intensity
variations for reliable matching and small enough not to extend over pixels
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from different surfaces. Besides some trivial cases, there is no unique window
size that is optimal for every image location. Small windows are preferable
where image details exist and are necessary close to discontinuities, but they
are very unreliable in textureless uniform areas. The opposite holds for large
windows. Since we use the tensor voting-based stereo algorithm, which is
robust to a large number of false matches, we are more interested in obtaining
as many correct matches as possible, even if these are accompanied by a large
number of false matches.

Given this goal, we employ a matching scheme where a number of candi-
date matches for every pixel are identified, in an attempt to have the correct
one also included in the set, while disambiguation occurs after the tensor
voting stage when uniqueness is enforced. For the results of this and the fol-
lowing section, we used normalized cross-correlation in rectangular windows
of different sizes, starting from 3×3, and kept all peaks of cross-correlation as
potential matches. The quantitative matching scores were disregarded in the
subsequent stages, and all matches were initialized as ball tensors with saliency
1 in the 3-D (x, y, d) space. If two or more matches fall within the same voxel,
their initial saliencies are added. This allows us to combine matches pro-
duced by totally different techniques without having to heuristically adjust
different confidence measures. So far, we have experimented with normalized
cross-correlation and interval matching [45], but the strategy of ignoring the
matching scores and focusing on the presence or not of a likely match is a
powerful tool that enables us to integrate more matching techniques into the
framework without making any changes in the following processing stages.

Tensor Encoding and Tensor Voting

As mentioned in the previous paragraph, the tokens generated at the matching
stage are encoded as unitary ball tensors, unless their saliency is increased,
if they are confirmed by multiple matchers. First- and second-order votes
are cast among neighboring tokens as described in Sects. 16.3 and 16.4. The
selection of scale is not critical, in the sense that the framework’s sensitivity
to small variations in scale is low. Smaller values of scale are appropriate when
noise levels are low and fine details exist in the data. In the presence of noise
or when a considerable amount of data is missing, a larger scale would be
more suitable.

Uniqueness Enforcement and Outlier Rejection

After a first pass of voting, tokens with very low saliency (surface, curve or
junction) are rejected since they are not consistent with their neighbors. In
addition, only the most salient among the tokens on the same line of sight is
retained. The lines of sight are either defined as sets of tokens with the same
(x, y) image position, in disparity space, or on the actual ray if calibration
information for a metric reconstruction is available. The results after these
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Table 16.2. Error rates for unoccluded pixels as a function of scale for the “saw-
tooth” example

Scale of voting Error Rate (%)
10 1.32
20 1.27
50 1.09
100 0.97
200 0.92
500 0.93
1000 1.06
2000 1.10

operations for the “sawtooth” stereo pair [45] can be seen in Fig. 16.11. The
displayed results are with the value of σ set at 200. Table 16.2 summarizes how
the error rate for unoccluded pixels for the “sawtooth” varies with scale. Note
that, even though there are differences in the results according to the desired
level of smoothness expressed in the scale parameter, the overall performance
of the algorithm is stable with respect to changes in scale.

Boundary Inference

A final pass of sparse first- and second-order voting is performed among the
tokens that were not rejected in the previous stage. The result is a set of tokens
with refined orientations. Surface boundary and curve endpoint inference are
performed as described in Sect. 16.4.3. Inferred boundaries for the “sawtooth”
example can be seen in Fig. 16.11e.

Dense Surface and Curve Extraction

If the goal of the stereo algorithm is the computation of depth for every pixel
of the reference frame, this can be accomplished by a simple pass of voting.
Disparity hypotheses are generated for pixels that have no disparity, either
due to failure of the matching stage, or because all the matches for them
have been rejected. Votes are collected, from the neighborhood, as before, at
potential (x, y, di) points, where the disparities di range from a few disparity
levels below to a few disparity levels above the range of the neighbors. The
most salient point among these candidates for each optical ray is selected.
Results for the “sawtooth” example can be seen in Fig. 16.11f.

Otherwise, dense surfaces and curves can be extracted as in Sect. 16.3.5.
The inferred boundaries are critical in this stage since they indicate where
the marching process should be terminated. Experimental results can be seen
in Fig. 16.12, where we show texture-mapped surfaces obtained for an aerial
stereo pair to demonstrate that our approach is not limited to planar surfaces.
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(a) Left image (b) Right image

(c) Ground truth (d) Results after sparse voting,
uniqueness and outlier rejection

(f) Inferred boundaries after sparse (f) Dense depth map
voting (dark colored)

Fig. 16.11. a-f Results for the “sawtooth” stereo pair

16.5.2 Motion

Given two or more image frames, the goal of the problem of grouping from mo-
tion is to determine three types of information – a dense velocity field, motion
boundaries, and regions. Our approach to motion analysis has also been pu-
blished in [36] and [35]. From a computational point of view, the analysis can
be decomposed in three processes – matching, densification and segmentation.
The matching process identifies the elements (tokens) in successive views that
represent the same physical entity, thus producing a possibly sparse velocity
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(a) Left image (b) Right image

(c) Rotated views of the texture-mapped extracted surfaces

Fig. 16.12. a-c Results for the “arena” stereo pair where the texture has been
mapped on the extracted dense surfaces

field. The densification process infers velocity vectors at every image location,
and the segmentation process groups tokens into regions separated by motion
boundaries.

From a computational point of view, one of the most powerful and most
often used constraints is the smoothness of motion. Most approaches rely on
parametric models that restrict the types of motion that can be analyzed, and
also involve iterative methods that depend heavily on initial conditions and
are subject to instability. Moreover, previous techniques usually encounter
difficulties in image regions where motion is not smooth (i.e., around motion
boundaries). This problem has led to numerous inconsistent methods, with
ad hoc criteria introduced to account for motion discontinuities.

In order to address these difficulties, we developed a novel approach for
motion analysis, by formulating it as a motion layers inference from a noisy
and possibly sparse point set in a 4-D space within the tensor voting frame-
work. From a possibly sparse input consisting of identical point tokens in two
frames, the image position (x, y) and potential velocity (vx, vy) of each token
are encoded into a 4-D tensor. Within this 4-D space, moving regions are
conceptually represented as smooth surface layers, and are extracted through
a voting process that enforces the smoothness constraint.

Here we focus on the problem of motion analysis from sparse sets of point
tokens in two frames. Two examples of such input are shown in Fig. 16.13.
If the frames in each pair are presented in a properly timed succession, a
certain motion of image regions is perceived from one frame to the other.
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Fig. 16.13. Input frames for a rotating circle and a translating disk

However, while in one case the regions can be detected even without motion,
only from monocular cues (here, different densities of points), in the other
case no monocular information is available. This example shows that analysis
is possible even from motion cues only. Another interesting aspect is the fact
that the human vision system not only establishes point correspondences, but
also perceives regions in motion, although the input consists of sparse points
only.

Each token is characterized by four attributes – its image coordinates (x, y)
and its velocity with the components (vx, vy). We encapsulate them into a
(x, y, vx, vy)-tuple in the 4-D space, this being a natural way of expressing the
spatial separation of tokens according to both velocities and image coordinates.
In general, there may be several candidate velocities for each point (x, y), so
each tuple (x, y, vx, vy) represents a potential match.

Both matching and densification are based on a process of communicating
the affinity between tokens. In our representation, this affinity is expressed as
the token preference for being incorporated into a smooth surface layer in the
4-D space. A necessary condition is to enforce strong support between tokens
in the same layer, and weak support across layers, or at isolated tokens. In
the tensor voting framework, the affinities between tokens are embedded in
the concept of surface saliency exhibited by the data. By letting the tokens
propagate their information through voting, wrong matches are eliminated as
they receive little support, and distinct moving regions are extracted as salient
smooth layers.

Voting in 4-D

The tensor voting framework is general enough to be extended to any dimen-
sion readily, except for some implementation changes, mainly for efficiency
purposes. The issues to be addressed here are the tensorial representation of
the features in the 4-D space, the generation of voting fields and the data
structures used for vote collection. Table 16.3 shows all the geometric features
that appear in a 4-D space and their representation as elementary 4-D ten-
sors, where n and t represent normal and tangent vectors, respectively. Note
that a surface in the 4-D space can be characterized by two normal vectors, or
by two tangent vectors. From a generic 4-D tensor that results after voting,
the geometric features are extracted as shown in Table 16.4. The 4-D voting
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fields are obtained as follows. First the 4-D stick field is generated in a similar
manner to the 2-D stick field. Then the other three voting fields are built by
integrating all the contributions obtained by rotating a 4-D stick field around
appropriate axes.

Table 16.3. Elementary tensors in 4-D

Feature λ1 λ2 λ3 λ4 e1 e2 e3 e4 Tensor
Point 1 1 1 1 Any basis Ball
Curve 1 1 1 0 n1 n2 n3 t C-Plate
Surface 1 1 0 0 n1 n2 t1 t2 S-Plate
Volume 1 0 0 0 n1 t1 t2 t3 Stick

Table 16.4. A generic tensor in 4-D

Feature Saliency Normals Tangents
Point λ4 None None
Curve λ3 − λ4 e1 e2 e3 e4

Surface λ2 − λ3 e1 e2 e3 e4

Volume λ1 − λ2 e1 e2 e3 e4

Matching

We take as input two frames containing identical point tokens in a sparse
configuration. For illustration purposes, we give a description of our approach
by using a specific example: the point tokens represent an opaque translating
disk (Fig. 16.13) against a static background. Candidate matches are gene-
rated as follows: in a preprocessing step, for each token in the first frame we
simply create a potential match with every point in the second frame that is
located within a neighborhood (whose size is given by the scale factor) of the
first token. The resulting candidates appear as a cloud of (x, y, vx, vy) points
in the 4-D space. Figure 16.14a shows a 3-D view of the candidate matches–
the three dimensions shown are x and y (in the horizontal plane), and vx

(the height). The motion layers can be already perceived as their tokens are
grouped in smooth surfaces surrounded by noisy matches.

Since no information is initially known, each potential match is encoded as
a 4-D ball tensor. Then each token casts votes by using the ball voting field.
During voting there is strong support between tokens that lie on a smooth
surface (layer), while isolated tokens receive little or no support. For each
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(a) Candidate matches (b) Sparse velocity field (c) Recovered vx velocities

(d) Dense velocity field (e) Regions (f) Boundaries

Fig. 16.14. a-f Translating disk

pixel we retain the candidate match with the highest surface saliency, and we
reject the others as outliers. Figure 16.14b shows the recovered sparse velocity
field, while Fig. 16.14c shows a 3-D view of the recovered matches (the height
represents the vx velocity component).

Densification

In order to recover boundaries and regions as continuous curves and surfaces,
we need to first infer velocities and layer orientations at every image location.
This is performed through an additional dense voting step, by generating dis-
crete velocity candidates, collecting votes at each such location and retaining
the candidate with maximal surface saliency. By following this procedure at
every image location we generate a dense velocity field. Note that in this
process, along with velocities we simultaneously infer layer orientations. Fi-
gure 16.14d shows a 3-D view of the dense set of tokens and their associated
layer orientations (only one normal shown).

Segmentation

The next step is to group tokens into regions (Fig. 16.14e), by using again
the smoothness constraint. We start from an arbitrary point in the image,
assign a region label to it, and try to propagate this label to all its image
neighbors. In order to decide whether the label must be propagated, we use
the smoothness of both velocity and layer orientation as a grouping criterion.
Finally, we have implemented a method to extract the motion boundary for
each region (Fig. 16.14f), as a “partially convex hull”. The process is controlled
by the scale factor only, which determines the perceived level of detail (the
departure from the actual convex hull).
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Fig. 16.15. Rotating disk – translating background

Results

1) Using motion cues only. Rotating disk – translating background
(Fig. 16.15). The input consists of two sets of 400 points each, representing
an opaque rotating disk against a translating background. After processing,
only 2 matches among 400 are wrong. This is a very difficult case even for
human vision, due to the fact that around the left extremity of the disk the
two motions are almost identical. In that part of the image there are points
on different moving objects that are not separated, even in the 4-D space. In
spite of this inherent ambiguity, our method is still able to accurately recover
velocities, regions and boundaries. The key fact is that we rely not only on the
4-D positions, but also on the local layer orientations that are still different
and therefore provide a good affinity measure.
2) Incorporating intensity information. To further validate our approach we
have also analyzed several real image sequences, where both monocular and
motion cues are available. In order to incorporate monocular information into
our framework, we only need to change the preprocessing step where candi-
date matches are generated. We run a simple intensity-based cross-correlation
procedure and retain all peaks of correlation as candidate matches. The rest
of our framework remains unchanged.

Yosemite sequence (Fig. 16.16). We analyzed the motion from two
frames of the Yosemite sequence (without the sky) to quantitatively esti-
mate the performance of our approach. The average angular error obtained is
3.74±4.3◦ for 100% field coverage. A result which is comparable with those in
the literature [1]. Also note that our method successfully recovers nonplanar
motion layers.

Barrier sequence (Fig. 16.17). For a qualitative estimation, we analyzed
the motion from two frames of a sequence showing two cars moving away from
the camera. The analysis is difficult due to the large ground area with very
low texture, and the large amount of noise present in the set of candidates.
Also note that the image motion is not translational – the front of each car
has a lower velocity than its back. This is visible in the 3-D view of the motion
layers, which appear as tilted surfaces.
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(a) An input frame (b) Motion layer (c) x velocities (d) y velocities

Fig. 16.16. a-d Yosemite

(a) An input frame (b) Candidates (c)Dense layers

(d) Layer velocities (e) Layer boundaries

Fig. 16.17. a-e The Barrier sequence

16.6 Conclusion

We have presented the current state of the tensor voting framework, which
is a product of a number of years of research, mostly at the University of
Southern California. It provides a general methodology that can be applied
to a large range of problems as long as they can be posed as the inference of
salient structures in an N -dimensional space. The benefits from our represen-
tation and voting schemes are that no models need to be known a priori, nor
do the data have to fit a parametric model. In addition, all types of percep-
tual structures can be represented and inferred at the same time. Processing
can begin with unoriented inputs, is noniterative and there is only one free
parameter, the scale of the voting field. Tensor voting facilitates the propaga-
tion of information locally and enforces smoothness while explicitly detecting
and preserving discontinuities with very little initialization requirements. The
local nature of the operations makes the framework efficient and applicable
to very large datasets. Robustness to noise is an important asset due to the
large amounts of noise that are inevitable in computer vision problems. Re-
sults, besides the organization of generic tokens, were shown in real computer
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vision problems such as stereo and motion analysis. Performance equivalent
or superior to state-of-the-art algorithms has been achieved without the use of
algorithms that are specific to each problem, but rather with general, simple
and reusable modules.
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17.1 Introduction

Nonrigid image registration is the process that determines the geometric trans-
formation of one image space with respect to another that brings into corre-
spondence two images of the same scene, typically by optimizing some match
metric. Nonrigid methods are required when the two images are not related by
a simple rigid or similarity transform. Correspondence may either be known
a priori, determined implicitly by the transformation or determined explici-
tly during the optimization process. Detailed nonrigid registration requires
the determination of correspondence throughout the image. In some sense,
the correspondence and the transformation are duals of each other in that a
complete correspondence determines the transformation and vice versa. There
are many applications that involve multiple images of an object or scene that
require registration. Note, the images may be 2D, 3D or higher.

There has been tremendous growth in interest in nonrigid registration in
recent years due to the increase in computing power which makes it feasi-
ble and in the emergence of high-resolution 3D images from medical imaging
modalities such as magnetic resonance imaging (MRI) and associated func-
tional images, primarily from nuclear medicine and functional magnetic reso-
nance imaging (fMRI). Nonrigid registration of such structural images is an
essential task for analysis when there is a need for detailed comparison be-
tween different individuals or when there is deformation within an individual.

Early work in image registration, initially rigid, arose from work in remote
sensing [1]. One of the first methods for nonrigid image registration, by Burr
[2], was applied to face images. He determined correspondences of feature
points within a neighborhood and used a smoothed composite of the displace-
ments as the transformation. The neighborhood was iteratively decreased to
remove local distortions.

Most work on nonrigid registration has used medical images, and in parti-
cular brain images. Bajcsy and her collaborators [3] did some of the first work
in nonrigid registration using an elastic model to warp magnetic resonance
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(MR) and computed tomography (CT) brain images to an atlas. The brain
is of tremendous interest because of many applications in neuroscience and
neurosurgery, which present many unique challenges. Nonrigid registration of
the brain is a difficult task, but it has many important applications, including
comparison of shape and function between individuals or groups, development
of probabilistic models and atlases, measurement of change within an indivi-
dual, and determination of location with respect to a preacquired image during
stereotactic surgery.

There have been some excellent reviews of image registration, including
those on primarily rigid techniques (e.g. [4, 5, 6]). Others cover nonrigid tech-
niques. Toga [7] presents a collection of methods for brain warping. Fitzpatrick
et al. [8] present a tutorial of the current state of the art of image registration
in general, and Bankman [9] includes a set of chapters on methods for image
registration. Wolberg [10] introduces and presents the basic definitions of non-
rigid transformations. Hajnal [11] is an excellent reference for medical image
methods. Zitová [12] presents a more recent review of image registration over
all application areas. In addition, there have been conferences [13, 14] and
recent special issues of journals devoted to the topic [15, 16].

17.2 Categorization

There are four categorizations that can be made regarding nonrigid regis-
tration methods based on the type of transformation, geometric structure to
be matched, match metric and optimization method. These choices are often
interrelated, as will be seen below.

17.2.1 Transformation Constraints

The transformation may be parametrized in many ways. The simplest useful
transformation is a rigid transformation typically defined by an orthonor-
mal matrix using homogeneous coordinates [17] or quaternions [18]. The rigid
transformation is defined by six parameters: three rotations and three transla-
tions. As the number of parameters increases, the flexibility increases, allowing
nonrigid deformations. For a similarity transformation, a single scaling fac-
tor is added. Affine transformations are defined by 12 parameters and allow
shearing and scaling in all three axes. If the above transformations are ap-
plied locally, the ability to deform is increased accordingly [19]. A regular
tessellation [20] of the image volume can be used to divide a 3D image into
tetrahedral volume elements [19]. Each element is defined by the locations
of the four vertices of each tetrahedron. Linear [19] or higher-order models
[21] can be used to interpolate. The location of the vertices determines the
transformation, and these can be adjusted according to any match measure.

Spline models (e.g. cubic, b, thin plate) or other polynomials [22] can also
be used to formulate flexible transformations. The flexibility of the transfor-
mation is determined by the number of control points. Such models can be
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formulated as free-form deformations [23], which are quite useful for com-
puter graphics as well as image registration. The tensor b-spline formulation
has been effectively applied to medical nonrigid image registration [24]. Basis
function representations (Fourier, cosine, statistically based) can also be used
to model the transformation [25, 26]. The most flexible representation is to
define a displacement at each voxel. With no additional constraints, however,
this could yield transformations that are discontinuous or folded over.

Usually, the transformation is constrained in some way in order to result
in a good solution. In general, the registration problem is ill-posed (i.e. in this
case, many possible solutions exist). Constraints are necessary to determine a
unique solution from the enormous solution space. Constraints may be needed
to ensure that the solution is, for example, smooth and one-to-one. Some
transformations are constrained explicitly due to the parametrization (affine,
polynomial, etc.) while others are implicitly constrained by the model used
in the match metric. A penalty term in the match metric can enforce, for
example, smoothness. If the constraints are too restrictive, such as from a
low-order polynomial, the match will likely not be sufficiently detailed. Model
constraints typically enforce continuity and smoothness properties. Physical
models, including linear elastic and viscous fluid models, have been used to
enforce topological properties on the deformation and constrain the solution
space [27, 28, 29, 30, 31, 32, 33].

Statistical models, instead of physical models, can be powerful tools to
directly capture the character of the variability of the individuals being mo-
deled. While originally used for segmentation [34, 35, 36, 37, 38], statistical
models are now being applied to registration [39, 40]. Probabilistic brain atla-
ses can be constructed to facilitate this type of model [39, 41, 42]. Statistical
models can both constrain the deformations to the most likely but also can
define a parameter space in which the optimal registration can be found.

It is desirable in medical image registration that nonlinear transforma-
tions be diffeomorphisms based on the assumption that the two images are
related in a smooth way such that all structures have homologous counter-
parts in the other image. A transformation is a homeomorphism if it is a
bijection (one-to-one and onto) that is continuous and its inverse is conti-
nuous. A transformation is diffeomorphic if it is a bijection and differentiable.
The Jacobian determinant needs to be greater than zero at all points to en-
sure that the transformation is one-to-one. In cases of abnormalities where
homologous structures do not exist, such as because of surgery or congenital
abnormality, more general techniques are needed. It is also desirable that the
transformations form a group. While the affine transformations and diffeo-
morphisms form groups, some parametrizations, such as splines, do not. In
principle, these transformations can be made to be subgroups of the diffeo-
morphisms by appropriately extending them.
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17.2.2 Geometric Structure

The choice of geometric structure to be matched is very important to the
performance of the nonrigid registration technique. At the lowest level, tech-
niques can match densely at every voxel [27, 30, 33, 43, 44]. These techniques
are potentially highly accurate but can be susceptible to local minima in the
optimization process. The most straightforward way is to directly use the gray-
level intensity at each voxel in the match metric. There may be advantages
to using filtered images (such as gray-level gradients) derived from the gray
levels [45]. Local geometric moment invariants can also be used for nonrigid
registration [46].

Alternatively, instead of dense features, sparse point locations marking
distinct features or landmarks [47, 48, 49] can be valuable and can yield strong
matches at these locations, greatly constraining the warp [50, 51]. In order to
take advantage of point landmarks in a match metric, knowledge of corres-
pondence is required. Some methods explicitly determine correspondence, and
this can be done in a robust way, allowing for outliers, that is, points with no
match [52, 53].

Matching based on curves (in 2D) and surfaces (in 3D) can be powerful
since the structures provide a strong constraint. Often structural information
is needed anyway for other analysis or measurement purposes. Determining
the correspondence of points between pairs of surfaces has important applica-
tions in addition to nonrigid registration, such as for comparing shape between
deformable objects and developing probabilistic models and atlases.

Iterative closest point (ICP) and related methods [54, 55, 43, 56] match
surfaces based on distance by minimizing the distance from points in one sur-
face to the closest point in another surface. ICP has also been augmented
with shape information for model building [57]. Other methods also match
surfaces [31, 58, 59, 60, 61] using geometric or physical models. Similar me-
thods have been developed in 2D for the related problem of nonrigid motion
tracking [62, 63]. Combinations of the geometric structure can also be em-
ployed in order to take advantage of the complementary information that
they provide, as will be described below [50, 64]. Fleute et al. [65] developed a
surface correspondence algorithm to build a statistical shape model. Random
point sets sampled from the surface are registered and matched to establish
correspondence using a multiresolution octree spline approach. Minimum de-
scription length (MDL) methods have also been developed to align point sets
for building statistical models [66]. Here, multiple boundaries are considered
at once, and a parametrization of the boundary is optimized by minimizing
the description length, yielding a compact representation.

17.2.3 Match Metric

The match metric ultimately determines the registration and should be de-
signed in order to bring corresponding points together based on the features
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used. In addition, it should be formulated, if possible, so that the optimum is
deep, distinct and smooth in order to help avoid local minima. The simplest
metric matches image gray level using, for example, gray-level squared dif-
ference or gray-level correlation. Metrics using gray-level properties attempt
to use all available information, unlike feature metrics, which attempt to be
selective. Such measures are, of course, sensitive to gray level differences due
to shading, inhomogeneities, calibration and individual variations that affect
gray level. Features derived from the gray levels, as described above, are an
alternative that can remove sensitivity to shifts in gray level and can pro-
vide strong features useful for matching. gray-level gradients and curvature
features have been used for registration [45, 67, 68, 69].

In the cortex of the brain, the high anatomic variability can often result in
intensity-based methods yielding inaccurate results, as was recently demon-
strated [70]. In addition, with functional imaging, there is the additional pro-
blem that structure and function are not completely linked: structurally homo-
logous regions can be registered while areas of corresponding function are not
[71]. Feature-based methods have been developed to overcome such problems
[58, 72, 73]. However, none of these methods is able to handle large variations
in sulcal anatomy, as well as irregular sulcal branching and discontinuity.

If structure is extracted, the simplest metric to use is Euclidean distance,
as was used early on for the rigid matching of surfaces [74]. Of course, a corres-
pondence of some kind must be established in order to compute, for example,
the sum of distances between corresponding points. The correspondences need
to be determined efficiently when evaluating the metric, as opposed to resul-
ting from the final registration. Closest distance (i.e. the closest distance from
one structure to the nearest point on the corresponding structure) can be
used as is done in ICP [54, 55]. Distance transforms are one way to efficiently
compute closest distances [75, 76]. Robust distance metrics can be used to
account for distances obviously too large to indicate correspondence [53, 77].

Distance, however, ignores other qualities that may be more specific to a
particular match than simple proximity. Using distance in combination with
more specific features, such as surface normal or curvature [62, 78, 79] or
simply gray level [43] can lead to more realistic correspondences, as we will
discuss below. By matching properties that are expected to be consistent, the
correspondence and the resulting match are likely to be better.

Mutual Information

A more general approach using gray levels, originally applied to rigid regis-
tration, is based on the mutual information [80] of the gray-level densities
[81, 82, 83, 84, 85]. These techniques are very successful for registration in
many applications. Instead of directly matching gray levels between two i-
mages, the mutual information is calculated. This measure allows for a more
general relationship and is insensitive to gray-level changes, such as scaling
and level and even more general variation such as occurs between modalities.
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A number of groups have used mutual information for nonrigid registration
[86, 87, 88, 89, 90]. Estimates of correspondence are adjusted to optimize a
mutual information metric using various nonrigid transformations, such as 3D
thin plate splines [87, 88]. Gaens et al. [86] use a mutual information metric
computing the optimal displacements of overlapping neighborhoods and in-
terpolating between them. Rueckert et al. [90] use a global affine model with
local deformations governed by spline-based free-form deformations. Mutual
information metrics can also be combined with other measures, such as gray-
level features [91]. A recent review covers mutual information registration of
medical images [92].

The mutual information I of an image i with an atlas a transformed by
T , is defined by:

I(i, T (a)) = H(i) + H(T (a))−H(i, T (a)), (17.1)

where H(x) is entropy of the probability density of the gray levels in the
image, and H(x, y) is joint entropy, as defined below:

H(x) = −
∫

Pr(x) ln(Pr(x)) dx, (17.2)

H(x, y) = −
∫ ∫

Pr(x, y) ln(Pr(x, y)) dxdy. (17.3)

The probabilities can be estimated from the image histograms [81] or using
Parzen window estimation [84]. Entropy is a measure of complexity or uncer-
tainty. Here, mutual information is a measure of how well the transformed
atlas explains the image. It measures how well clustered corresponding pixels
are in their joint histogram, and this suits the purposes of accommodating
variations in the gray levels between the atlas and the image.

A variant, normalized mutual information [93]

NMI(i, T (a)) =
H(i) + H(T (a))

H(i, T (a))
(17.4)

performs better especially when there is incomplete overlap between the struc-
tures in the image.

17.2.4 Optimization

The nonrigid registration problem is typically multidimensional and multi-
modal. The number of dimensions is the number of degrees of freedom in the
transformation, which may be large in order to accommodate detailed varia-
tion. In a 3D image for a dense displacement field, the number of degrees of
freedom of the transformation are three times the number of pixels. For spline
formulations, the dimensionality can be much smaller, as it is three times the
number of control points.
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Local optimization methods, such as conjugate gradient or Powell’s method
[94], are often used and rely on a starting point that is close to the optimal
solution. In nonrigid registration, starting points for the parameters can be
generated from the output of a prior, more constrained registration step, such
as rigid or affine. Local optima are still a concern when the deformation is
large.

More global methods, such as multiresolution techniques [27, 95], genetic
optimization [96], simulated annealing [97] and stochastic methods [85] have
all been used to help improve optimization to find a better match by avoiding
local minima.

17.3 Types of Deformation

There are three types of deformation that need to be accounted for in nonrigid
image registration: change within an individual due to growth, surgery, or
disease, differences between individuals and warping due to image distortion,
such as in echo-planar magnetic resonance imaging.

17.3.1 Within-Subject Deformation

In some applications, it is important to account for change within an indivi-
dual. Some deformation is incremental.

Soft tissue structures, such as in the abdomen, constantly move and de-
form. The brain, however, is relatively fixed within the skull. An indivi-
dual’s brain may change because of growth, degenerative processes such as
Alzheimer’s or multiple sclerosis or malignant disease. In cases such as these,
the deformation is incremental and, depending on the timing, likely to be
representable in terms of a relatively small magnitude and smooth transfor-
mation. Often, the transformation is rigid over most of the space, deviating
only at the area of deformation. This problem is similar to the problem of
nonrigid motion tracking (e.g. [98]).

Another type of deformation within a subject is due to surgery. During
surgery, the brain deforms or shifts because of changes in pressure, fluid loss
and other factors [99, 100]. This shifting is also smooth and incremental.
For image-guided stereotactic surgery, where the correspondence between the
images and the patient must be known with high accuracy, the correction for
this deformation must be done in realtime. Physical modeling of tissue has
been used extensively for this purpose. In addition, there is a more severe
deformation due to the removal of tissue (and subsequent remodeling). When
there is a discrete change in the tissue, such as with the resection of a tumor,
the deformation is much more complex, and the transformation would likely
require singularities.
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17.3.2 Between-Subject Deformation

Anatomic variation between individuals is usually great, especially in the
brain. A detailed nonrigid transformation that brings brain images from dif-
ferent individuals into correspondence to account for differences is required in
order to compare their anatomy. The outer portion, or cortex, of the brain
is a thin folded layer. While the major folds (gyri) are fairly consistent bet-
ween normal individuals, the minor folds vary greatly. There are differences in
folding patterns (extra and missing folds, different branching patterns, etc.),
which change the shape significantly, typically requiring transformations of
high flexibility, allowing large-scale deformation and making registration quite
difficult. Subcortical structures, beneath this layer, vary in shape and size bet-
ween individuals in a relatively smooth manner. In order to compare a group
of individuals, structural variation should be accounted for by registering an
atlas image to each individual’s image, in order to have a common coordi-
nate system for comparison. In addition, this nonrigid registration facilitates
atlas-based segmentation [101, 102]. By registering an individual’s image to a
presegmented atlas image, the segmentation can be applied to the individual.
The deformations themselves can be used to characterize anatomical shape,
as described below. Functional differences, as seen in corresponding functional
images, can also be compared in this coordinate system. In fMRI or positron
emission tomography (PET) analysis, a key step is the formation of multisub-
ject composite activation maps where each subject is mapped to a common
coordinate space.

17.3.3 Imaging Distortions

While most imaging systems yield an undistorted view of the underlying scene,
in some modalities there are distortions due to the imaging process that are
large enough in magnitude that they require correction. Echo planar magnetic
resonance imaging (EPI) is a fast imaging technique used for fMRI that
can exhibit severe geometric distortions. It is necessary to accurately map
fMRI activations to corresponding structural images in order to anatomically
localize them. The displacements in EPI are dependent on the configuration of
tissue in the subject, the orientation of the subject within the scanner and the
acquisition parameters. Such distortion is particularly bad in regions of the
brain close to tissues with significantly different magnetic susceptibility such
as bone or air sinuses [103]. Such spatial distortion can lead to misplacement of
functional signals by many millimeters, large enough to displace a functional
response into a neighboring gyrus [104]. Distortions in one part of the brain
can also corrupt the global transformation estimate. The transformation can
be modeled using knowledge of the physics of the image acquisition process.
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17.4 Characterization of Deformation

While the primary goal of nonrigid registration is the alignment of images, the
transformation that is determined can be used to characterize the deforma-
tion in terms of local structural differences. Groups can be characterized by
the transformations that bring the individual images into a common space.
The deformation gradient tensor allows the direct measurement of geome-
tric properties of the deformation and can be computed at all locations from
the transformation. While this representation can be used for simple mea-
sures of local expansion or contraction, it also allows a full characterization
of the deformation by measures such as dilatation, principal direction of ex-
pansion/contraction and anisotropy of expansion/contraction.

In a Lagrangian representation, we describe the current configuration in
terms of the initial or reference configuration: x = x(X, t), where x is the
position at time t (current configuration), and X is the position at time t = 0
(reference configuration of the atlas). The deformation gradient tensor F is
useful in the characterization of deformation and has components FiR = ∂xi

∂Xr

[105]. The determinant of F at each point, D(p) = detF(p), indicates whether
there is local shrinking (D(p) < 1) or local expansion (D(p) > 1). For small
deformations, D = 1 + ∆ where ∆ is the change of volume per unit initial
volume or the dilatation. The tensor F can be decomposed into a rotation R
and a deformation U, or F = RU, where R and U can be determined from
the eigendecomposition of FTF [105].

Local expansion and contraction from an atlas (based on the determinant)
gives a good simple scalar measure of deformation [106, 107]. To more fully
characterize the deformation, compute the eigendecomposition of U to give
the three magnitudes (λ1,λ2,λ3) and directions (ε1,ε2,ε3) of principal stret-
ching [105]. We can also measure local anisotropy of expansion/contraction,

for example, using
√

3
2

�
(λi−λ̄)2�

λ2
i

, which ranges from 0 for isotropic, to 1 for
extremely anisotropic. Measures such as these derived from the tensor provide
a rich descriptive tool for deformation.

Measurement of deformation from the transformation is much preferred
to the technique known as voxel-based morphometry [108], which looks for
differences in intensity between blurred segmented images after nonrigid re-
gistration. This approach is flawed, as has been noted by Bookstein [109], in
part because it relies on partial misregistration in order to reveal differences.

17.5 Specific Approaches

In this section we discuss a few selected approaches that fit into the above
categories and make different choices for the components of the registration.
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17.5.1 Physical Models

There is no true physical model for intersubject deformation because, for
example, one individual’s anatomical structure does not literally result from
the deformation of another individual’s. Analogous physical models are used
because their properties enforce smooth and plausible deformations. Chris-
tensen et al. [30] present two physical models for nonrigid registration of the
brain: elastic [33] and fluid [29].

Here we use an Eulerian reference (where a particle is tracked with respect
to its final coordinates) defining the nonrigid registration by the homeomor-
phic mapping:

w = (x, y, z)→ (x− ux(w), y − uy(w), z − uz(w)), (17.5)

where u(w) = [ux(w), uy(w), uz(w)]T is the displacement at each pixel w
with coordinate (x, y, z).

The elastic model penalizes deformation in proportion to the deformed
distance, thus constraining the deformation to be small. The spatial transfor-
mation satisfies the partial differential equation (PDE):

µ∇2u + (µ + β)∇(∇ · u) = F(u), (17.6)

with boundary conditions such as that u(w) = 0 for w on the image boundary.
In this equation, µ and β are the Lamé constants, related to the rigidity and
incompressibility of the material. A typical choice would be µ = 1.0 and
β = 0.0. However, in order to guarantee a homeomorphic transformation for
large deformations, a larger value of µ is needed. The body force F(u) drives
the deformation of the atlas into the subject.

For viscous fluids, the force is proportional to the time rate of change in
displacement. The fluid model is much less constrained than the elastic model
and allows long-distance, nonlinear deformations.

The PDE describing the fluid transformation of the atlas is given by:

µ∇2v + (µ + β)∇(∇ · v) = F(u), (17.7)

where v = [vx(w, t), vy(w, t)]T is the instantaneous velocity of the deformation
field u. Velocity is related to displacement u by:

v(w, t) =
∂u(w, t)

∂t
+ v(w, t)T∇u(w, t). (17.8)

The ∇2v term is the viscous term of the PDE. This term constrains the
velocity of neighboring particles of the displacement field to vary smoothly.
The term ∇(∇ · v) is the mass source term, and it allows structures in the
atlas to change in mass. The coefficients µ and β are the viscosity coefficients
(typically µ = 1.0, β = 0.0). The boundary conditions are typically v(w) = 0
for w on the image boundary. The term v(w, t)T∇u(w, t) accounts for the
kinematic nonlinearities of the displacement field u [29, 110].



17 Methods for Nonrigid Image Registration 581

The fluid PDE in Eq. (17.7) is similar in form to the elastic PDE given by
Eq. (17.6) except that the displacement field u is replaced by the velocity field
v. The resulting behavior of the fluid is very different due to the nonlinear
relationship between v and u (Eq. (17.8)) and allows long-distance, nonlinear
deformations.

The linear elastic model is derived assuming small angles of rotation and
small linear deformations. Large deformations cannot be accommodated with
this linear PDE. However, even though linear elasticity does not guarantee
a homeomorphic transformation, in practice a homeomorphic transformation
can be generated using strong elasticity (large µ). The trade-off is that only
small deformations can be generated [29]. This limitation of linear elasticity
is removed by using the viscous model because the restoring forces relax over
time and then account for the large-distance kinematic nonlinearities, while
ensuring a homeomorphic transformation (globally positive Jacobian).

Fluid models are less constraining than elastic models and allow long-
distance, nonlinear deformations of small subregions. They require more com-
putation compared to elastic models. In both of these formulations, the driving
force is determined using local pixel intensity differences [30]. Lower-contrast
objects deform slower than high-contrast objects, independent of their impor-
tance. Sometimes objects do not deform correctly because their gradient is
relatively low and the smoothness ensured by the physical models dominates
the deformation. Additional constraints can help this method bring corres-
ponding structure together. Gee et al. [32] use a similar linear elastic strain
model in conjunction with a Markov random field to model a displacement
field for nonrigid registration.

17.5.2 Woods AIR

Woods et al. [111, 112] register by reducing the variance of the gray-level ratio
at corresponding sites in the two images. This technique uses gray-level infor-
mation, but tries to avoid dependence on the actual gray level. Reducing the
variance of the pixel ratio is intended to match tissue types, because what-
ever their actual pixel values, the ratio is expected to be relatively constant
throughout the image. The use of the variance makes the optimal point of
matching less pronounced, because the variance changes gradually as the pi-
xels become more matched. In addition, in functional images, different tissue
types are usually not distinguished by their gray level, other than in a very
general way. For within-modality matching, pixels can be grouped by inten-
sity value and the sum of group variances is minimized; the method becomes
dependent on these threshold values. The transformation types include rigid,
affine, quadratic and cubic up to quintic polynomial (168 parameters).

17.5.3 Friston (SPM) Spatial Normalization

The methods of Friston [25, 113] are used for nonrigid registration where the
sum of squares between gray levels is minimized. The relationship is modeled
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by:
fx(a(x)) = i(T (x)) + e(x), (17.9)

where a is the atlas, i is the individual, fx is the gray-level transformation
(necessary primarily for intermodality matching), T is the warping transfor-
mation and e is the residual error. The relationship can be approximated by
describing the spatial transformation using Fourier basis functions. The inten-
sity transformation is also described by basis functions. Both transformations
are further approximated with a first-order Taylor expansion. A least squares
solution is determined. Because of the approximations involved, this method
cannot account for detailed warping. The images, deformation and intensity
transformation must all be smooth.

17.5.4 Cortical Features

Thompson and Toga [114, 115, 116] formulate warping using Chen surfaces
(hybrid superquadrics and spherical harmonics) to extract surface models of
cortical structure, including sulci. A volumetric warp defined by an octree
spline grid is then computed based on the surface correspondence.

Collins et al. [101, 117] segment the brain using an elastic registration to
an average brain, based on a hierarchical local correlation. The average brain
provides strong prior information about the expected image data and can
be used to form probabilistic brain atlases [41, 42]. They incorporate sulcal
curves [118] and sulcal ribbons [72] as constraints into the intensity matching
approach.

Sandor et al. [119] use nonrigid warping to elastically match a prelabeled
brain atlas to a brain surface extracted using morphological operations and 3D
bicubic spline surfaces. The model is attracted to the brain surface while points
along major sulci (sylvian fissure, interhemispheric fissure, central sulcus) are
attracted to fissure features (also extracted with morphological operations).

17.5.5 RPM

In robust point matching (RPM) [120, 121, 53] nonrigid registration is formu-
lated in terms of point features and a corresponding match matrix:

Mij =
1√
2πt2

exp
[
−|T k(Xi)− Yj |

2t2

]
(17.10)

where t is the temperature corresponding to the distance range of matches,
and T is the transformation. The fuzziness of the match reduces as the tempe-
rature is reduced via deterministic annealing. The match matrix converges to a
specification of correspondence and a corresponding nonrigid transformation,
with outlier rejection, where C and R store the degree of “outlierness”:

∀i,
∑

j

Mij + Ci = 1; ∀j,
∑

i

Mij + Rj = 1. (17.11)
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Extended RPM [121] determines the transformation (spline-based), as a com-
promise between the fit to the determined correspondences (weighted by out-
lierness) and the smoothness (bending energy) of the transformation. The
process converges as the match matrix and the transformation are alterna-
tively updated.

17.6 Surface Warping

In this section we describe an automatic method using shape-based matching
and geodesic interpolation to directly identify corresponding points on pairs
of surfaces [79] for nonrigid registration. While shape can provide the basis
for such a correspondence, this problem remains a difficult one because of
ambiguity when the surfaces are complex and variable, such as with the hu-
man cerebral cortex. In addition, the lack of ground truth for correspondence
remains a problem for evaluating such methods.

An individual surface is matched to a reference (or atlas) surface. This
method simultaneously triangulates the individual surface based on the ge-
nerated points. An initial sparse set of points on the individual surface is
determined based on proximity and shape. The interpolated points in 3D are
generated by finding the shortest surface paths between the initial points and
then labeling the interpolated points equally spaced along these paths.

17.6.1 Initial Point Matching and Triangulation

Triangulated surfaces (at the voxel level) are extracted from segmented (ma-
nually or automatically) images using the marching cubes algorithm [122]. A
small set of points on the atlas surface is labeled manually. These points are
normally either sulcal or gyral points, which would be visually identifiable
from a 3D rendering. An initial triangulation of these points is constructed
manually. This manual step only needs to be done once for the atlas image. For
each individual brain, we use the following automatic method to determine
the corresponding points of the atlas. The initial triangle connections are then
inherited from the atlas. We align the individual image to the atlas image by
scaling, translation and rotation. The procrustes shape distance method [123]
is used to calculate the scaling parameter by using several thousand points
evenly sampled on the two surfaces. Rigid registration is then performed using
distance transform methods [77].

The procedure for determining the initial corresponding points of the atlas
is based on matching the local surface geometry. For each initial point i on
the atlas surface, the objective function to be minimized within a region for
point j on the individual surface is:

Oij = dij · nij · fij , (17.12)
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where dij , nij and fij are, respectively, a Euclidean distance measure, a surface
normal match measure and a feature (curvedness) match measure, formulated
as follows. The Euclidean distance measure is

dij = 1 +
√

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2, (17.13)

where (x, y, z) is the 3D coordinate for each surface point. Note that 1 ≤
dij ≤ Rw, where Rw is the radius of the search window with center point i.
The surface normal match measure is nij = 2 − ni · nj , where n is the unit
normal vector for each surface point. Note that 1 ≤ nij ≤ 3.

We use a function of curvature as our feature match measure. We would
like the feature match to bring together corresponding cortical surface geo-
metry (sulci and gyri). Given the segmented brain image L, the Gaussian
curvature K and the mean surface curvature H can be calculated from the
partial derivatives of the image [124, 125]:

K =

∑
(i,j,k)∈Ω

[
L2

i (LjjLkk − L2
jk) + 2LiLj(LikLjk − LijLkk)

]
(L2

i + L2
j + L2

k)2
,

H =

∑
(i,j,k)∈Ω

[
(Lii + Ljj)L2

k − 2LiLjLij

]
2(L2

i + L2
j + L2

k)3/2
, (17.14)

where Ω = {(x, y, z), (y, z, x), (z, x, y)} is the set of circular shifts of (x, y, z).
The two principal curvatures k1 and k2 are related to the Gaussian and
mean curvatures [126]: k1 = H +

√
H2 −K, and k2 = H −

√
H2 −K.

Shape can be characterized by two values: one describing the type of cur-
vature and one describing the degree [127]. A shape index function, S =
2
π arctan [(k2 + k1)/(k2 − k1)], can be used to classify surfaces into nine types
[127]. Shape index distinguishes between sulci and gyri [125]. Curvedness mea-
sures the degree of curvature [127]: C =

√
(k2

1 + k2
2)/2.

For our feature match measure, we use a thresholded curvedness, signed
according to convexity. In order to locate sulcal and gyral points t, we thres-
hold curvedness based on the shape index (Fig. 17.1). Then,

t =

⎧⎨⎩gyrus, if Cs > Kg and S ≥ 0;
sulcus, if Cs > Ks and S < 0;
no feature, otherwise.

(17.15)

The threshold values Kg and Ks are chosen dynamically so that the selected
sulcal or gyral points are approximately a specified percentage of the total
surface points. Then fij can be set to a low value when the surface points
match (e.g. 1), and a high value when they do not (e.g. 3). Thus, for each
labeled point on the atlas, the point on the individual surface that minimizes
Eq. (17.12) within a radius Rw (normally chosen to be 15 pixels) is selected
as the corresponding point.
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Fig. 17.1. Sulcal (red) and gyral (green) points of the individual brain computed
by thresholding the curvedness

Fig. 17.2. Schematic diagram for corresponding surface points identification and
surface triangulation in our hierarchical approach showing brain sulci being followed

17.6.2 Triangulation

Given the set of corresponding points and their connections, the next step
is to determine the shortest paths between each pair of connected surface
points (Fig. 17.2). Geodesic distance is a useful measure for understanding
complex shape. One of the first uses in brain analysis was by Griffin [128], who
used mean geodesic distance to characterize cortical shape. Geodesic distance
and curvature have, for example, been used to follow sulci [129, 130]. The
cortical surface is composed of folds (gyri) separated by sulci. The geodesic
path connecting points in a sulcus will tend to follow the sulcus. Minimal
paths constructed across the surface have also been used for surface patch
parameterization [131].

There are many methods to determine the shortest path between points
on a surface. We use an algorithm based on Kimmel’s extended fast marching
method [132]. The fast marching method [133] is an extremely fast numerical
algorithm for solving the Eikonal equation:

| ∇T |= F(x, y) (17.16)

on a rectangular or triangulated mesh in O(M logM) steps, where M is the
total number of grid points. This technique has been extended to triangulated
domains with the same computational complexity [132].

For each edge in the initial triangulation, we calculate the shortest path
between the surface points by the above method. Then, the midpoint on each
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shortest path is determined in order to decompose each triangle into four
smaller ones (Fig. 17.3). In this way, a more dense geodesic triangulation
is derived. Now, we simply repeat the previous two steps until we have a
sufficiently dense triangulation.

Fig. 17.3. 3D synthetic surface reconstruction. Left: initial points and triangulation
of synthetic surface (38 points and 72 triangles); middle: first iteration of surface
triangulation; right: final (third) iteration of surface triangulation

The assumption of this approach is that the relative deformation of the
two surfaces is approximately a uniform stretching between the initial points.
Locally uniform stretching, or homothetic deformation [134], is a reasonable
assumption and can be satisfied, at least approximately, by the appropriate
selection of the initial points. The general requirement for the initial points
is an even distribution. In areas of greater complexity, it may be necessary
to include a denser distribution of initial points so that more accurate re-
sults can be derived. Deep sulcal areas have longer surface paths given the
same Euclidean distance between the points. The initial point matching uses
surface curvature, and the interpolation is based on geodesics. Therefore, our
approach captures global and local surface shape, unlike other point matching
algorithms.

17.6.3 Real Brain Pair Experiment

Figure 17.4 shows the automatic point matching results on a pair of brain
surfaces (Sect. 17.6.1). Anatomic surface features are identified consistently
due to the combined effect of the distance, normal and feature measures. The
surface correspondence and reconstruction process for the atlas is shown in
Fig. 17.5. In order to evaluate our approach, we also implemented a simple
closest point method for correspondence finding. This method identifies the
closest point on the individual as the corresponding point for the atlas. A
comparison of these two approaches can be seen in Fig. 17.6, where the five
points in the atlas correspond well by our geodesic method. The simple closest
point method fails because it cannot compensate sufficiently for the relative
deformation.
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Fig. 17.4. Automatically matched initial points on the brain surface. Left: atlas
surface with hand-labeled points (69); right: individual surface with corresponding
points identified by our automatic point matching procedure (Sect. 17.6.1)

Fig. 17.5. Atlas surface correspondence and reconstruction by our hierarchical
approach. Left: initial points and triangulation; middle: reconstructed surface after
fourth iteration with normals extracted from the original surface; right: original atlas
surface

17.6.4 Synthetic Warping Experiment

In order to further evaluate the methods, we define a known sinusoidal warp
and apply it to the atlas brain image, generating a warped individual image
to which both our algorithm and the simple closest point algorithm can be
applied. The atlas initial points and triangulation are shown in Fig. 17.5.
The initial points of the individual are derived from our matching procedure
discussed above. We can calculate the distance between each pair of points
and visualize the distance color map on the individual surface. We also have
the known distance map (Fig. 17.7a) for comparison. Fig. 17.7 shows that
the displacement pattern and mean square distance error for our method are
much better than the simple closest point method. The simple closest point
method tends to underestimate distances, while our approach results in more
accurate distances.
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Fig. 17.6. Corresponding points comparison. Left: five points on the atlas posterior
surface; middle: five corresponding points on the individual surface using shape-
based method; right: five poorly corresponding points on the individual surface using
the simple closest point method

17.7 Volumetric Warping

In this section, our goal is to incorporate statistical shape information into
physical model registration and to develop a more accurate and robust algo-
rithm. Without such information, such models tend to be underconstrained,
yielding implausible matches. Our work here is most closely related to the
work of Davatzikos [58, 59] and Christensen [30] described above. The algo-
rithm we use is based on a physical model (linear elastic or viscous fluid)
[50], a gray-level similarity measure and a consistency measure between corre-
sponding boundary points. The statistical shape information is embedded in a
separate boundary-finding process [38] applied to the individual. This method
uses statistical point models with shape, and shape variation, generated from
sets of examples by principal component analysis of the coordinate covariance
matrix. The power of physical and statistical shape models are combined in
our approach. For small deformations, our elastic model is appropriate and
more efficient. For large deformations, we use our fluid model algorithm, which
can track long-distance, nonlinear deformations.

17.7.1 Statistical Shape Information

The statistical shape information we use comes from corresponding bounda-
ry points. We have developed a boundary-finding method using a statistical
shape model that also establishes correspondence, which has been described
in detail [38]. Global shape parameters derived from the statistical variation of
object boundary points in a training set are used to model the object [135]. A
Bayesian formulation, based on this prior knowledge and the edge information
of the input image, is used to find the object boundary with its subset points
in correspondence with the point sets of boundaries in the training set. These
points are then used in our nonrigid volumetric registration using a physical
model.
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Fig. 17.7. Evaluation of different methods for the known warp. a True absolute
distance map and direction of differences (left and right are two different views). b
Results by our shape-based method (initial points from point-matching procedure)
with absolute distance mean-square error 8.68 pixels. c Results by the simple closest
point method with absolute distance mean-square error 16.03 pixels

17.7.2 Physical Model Integration

The physical models discussed previously (Sect. 17.5.1) are useful in nonrigid
registration, but they are limited by themselves because they are too generic.
Instead, boundary information can be used to guide the deformation in a way
governed by structure in the image. In order to constrain solutions to more
anatomically consistent deformations, we will start with the elastic and fluid
physical models for intersubject deformation and then incorporate structural
information from point models of boundary information.
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We pose the registration problem as displacement estimation in a ma-
ximum a posteriori framework and derive corresponding forces [29, 50, 64].
As input to the problem, we have both the intensity image of the individual
Is(w) and the boundary points corresponding to structure in the individual
bs(n) = (xs(n), ys(n)), for n = 1, 2 · · ·N . The boundary points are derived
from a separate boundary-finding process that uses statistical shape [38, 136].
We want to maximize:

Pr(u|Is,bs) =
Pr(u, Is,bs)
Pr(Is,bs)

. (17.17)

Ignoring the denominator, which does not change with u, and using Bayes’
rule, our aim is to find:

arg max
u

Pr(u|Is,bs)

= arg max
u

Pr(bs|u, Is) Pr(Is|u) Pr(u),

= arg max
u

[ln Pr(u) + ln Pr(Is|u) + ln Pr(bs|u)] , (17.18)

where we ignore the dependence of bs on Is (because bs is obtained as a prior
here and is not modified in this formulation), and take the logarithm.

The Bayesian posterior can be directly related to the PDE in Eq. (17.6)
or Eqs. (17.7) and (17.8) based on the variational principle from which the
PDE can be derived [29]. The first term in Eq. (17.18) corresponds to the
transformation prior term, which gives high probability to transformations
consistent with a physical model (elastic or fluid) and low probability to all
other transformations.

The second term in Eq. (17.18) represents the likelihood that depends on
the individual image. Let Ia(w) be the intensity image of the atlas. We model
the individual image as a Gaussian with mean given by the deformed atlas
image, Ia(w − u(w)) [29] (since an Eulerian reference frame is used here, a
mass particle instantaneously located at w originated from point w− u(w)).
That is,

ln Pr(Is|u) = − 1
2σ2

1

∫
Ω

[Is(w)− Ia(w − u(w))]2 dw,

where σ1 is the standard deviation of the Gaussian process.
The first body force F1 is the gradient of this likelihood term with respect

to u at each w [29]:

F1(u) = −k1 [Is(w)− Ia(w − u(w))]∇Ia(w − u(w)). (17.19)

This force is the product of the difference in intensity between the individual
(Ii) and the deformed atlas (Ia), and the gradient of the deformed atlas. The
gradient term determines the directions of the local deformation forces applied
to the atlas.
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The last term of Eq. (17.18) incorporates structural information into the
nonrigid registration framework. The extra constraint of corresponding boun-
dary points is used as an additional matching criterion. The boundary point
positions are the result of the deformation of the model to fit the data in
ways consistent with the statistical shape models derived from the training
set [38, 136]. Let ba(n) = (xa(n), ya(n)), for n = 1, 2 · · ·N , denote the atlas
boundary points positions, which are known since we have full information
about the atlas. We now model bs as a Gaussian with mean given by the
deformed atlas boundary positions, expressed as ba(n) + u(w), for pixels w
at the deformed atlas boundary points. Then,

ln Pr(bs|u) = − 1
2σ2

2

N∑
n=1

||bs(n)− [ba(n) + u(w)] ||2,

where σ2 is again the standard deviation of the Gaussian process.
The second body force F2 is then the gradient of the above equation with

respect to u for pixels w at the deformed atlas boundary points:

F2(u) = k2||bs(n)− [ba(n) + u(w)] ||, (17.20)

where ba denotes the atlas boundary point positions, and bs the individual
boundary positions. The force is zero for pixels that are not on the deformed
atlas boundary. From Eq. (17.20), we can see that the calculated displacements
at the boundary points are constrained to match the vector difference of the
corresponding atlas and individual boundary point positions. Using a weighted
sum of these two forces will result in a match between shape features of
the atlas and the individual, such as high-curvature points and important
anatomical landmarks, as well as the intensity measure given by F1(u).

We discretize these equations and employ Euler integration in time (Eq.
17.8) combined with successive overrelaxation (SOR) in the spatial domain
(Eqs. 17.6 and 17.7).

17.7.3 Experimental Results

To evaluate the methodology, we quantify errors in the displacement field over
the objects of interest and compare to either purely elastic [30] or purely fluid
registration [29] based on our own implementation. Given a known warp, we
can measure detailed displacement errors throughout the object. As before,
we define a sinusoidally warped individual image. For a known nonrigid warp,
the average (Eoa) and maximum (Eom) errors in the displacement vectors over
the objects are used to measure accuracy. We also use the average error on
the sparse boundary points, Eqba.

17.7.4 Real Image with Known Warping

In this experiment (Fig. 17.8), we apply a known sinusoidal warp to an MR
sagittal brain image showing the corpus callosum. We compare our fluid
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(a) (b)

(c) (d)

(e) (f)

Fig. 17.8. MR sagittal corpus callosum image (100 × 64) example. a Atlas image
with control points. b Individual image with control points. c True displacement
vectors by sinusoidal warp. d Estimated vectors from our elastic method. e Deformed
atlas by our elastic method. f Error vectors shown on individual image (cropped)

method, the purely fluid method and our elastic method, choosing the elasti-
city (µ) just large enough so that a homeomorphic map is ensured. The results
(Fig. 17.8 and Table 17.1) show that our fluid method leads to a much better
registration in the object of interest than the other methods, where the large
deformation of the images cannot be tracked.

17.7.5 Real Atlas and Individual Images

Results of the method applied to an MR brain pair are shown in Fig. 17.9.
These are 2D slices that roughly correspond from different brains for demon-
stration purposes. The control points of the individual image are derived from
the shape model boundary finding algorithm [38]. We have found that the fi-
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Table 17.1. Error measure for MR sagittal corpus callosum image with known
warping (Fig. 17.8) showing the improvement of our fluid method. Eoa: average
displacement error over corpus callosum; Eom: maximum displacement error over
corpus callosum; Eba: average displacement error on sparse boundary points. Note:
The errors are in pixels; the percentages are with respect to the true average dis-
placement

Method Eoa (%) Eom Eba (%)

Purely fluid 5.82 (63.2%) 13.82 5.91 (65.0%)
Our fluid 0.99 (11.4%) 2.29 0.89 ( 9.8%)

Our elastic 3.46 (37.6%) 10.54 3.32 (36.5%)

nal error of our methods is still much better than that of purely elastic or
fluid methods. Note in particular the errors in the detailed matching by the
purely elastic method shown in Fig. 17.9 compared with our approach.

17.8 Conclusion

Much work remains in the development of robust methods for nonrigid image
registration, and much of this work will be tailored to the requirements of
particular applications. We described two different approaches to the problem
that take advantage of different available information. In the surface warping
approach, we use local and global surface properties, while in the volumetric
deformation method we use a combination of shape and intensity informa-
tion. In general, the choice of the formulation in terms of the transformation,
geometric structure, match metric and optimization method will depend on
the requirements of the task, including the flexibility needed, the features
available and the difficulty of the matching. A key aspect is, of course, the
determination of correspondence, whether implicitly or explicitly. Ultimately,
it is desirable to design a match metric that includes as much useful infor-
mation as possible, a transformation tailored to the deformability needed and
an efficient and reliable optimization. These requirements vary depending on
the imaging source and problem domain. For particular applications, these
elements need to be carefully chosen, and the best choice remains an open
question in most areas.
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18.1 Introduction

What we mean by an implicit function is a function f : S ⊆ �n → � for a
subset S ⊆ �n. Often, n = 3 in the graphics context. The zero set, f−1(0), is
called the implicit model. An important characteristic of implicit functions is
that they characterize the space about the implicit model, that is f(a) > 0 can
be seen as a quasi metric, giving proximity to the model. Implicit functions
also conveniently partition space into regions outside, inside and on the surface
corresponding to f > 0, f < 0 and f = 0. Finally, for a differentiable f , the
surface normal of the implicit model is given simply by ∇f . This is needed
in graphics for computing the lighting [2, 5]. Figure 18.1 shows a complex
implicit model lighted using the gradient as a surface normal.

Parametric forms are the alternative way for modeling objects in graphics
[3]. In three dimensions a parametric surface is given by p : �2 → �3. The
two domain variables parameterize the surface, yielding a useful local coordi-
nate system for the surface that is utilized in tessellations and painting the
surface with textures, among other applications. This typically makes the sur-
face easier to render (polygonalize) and is a reason for the early popularity of
parametric surfaces. As CPUs and graphics hardware become more powerful,
the status is yielding to implicit techniques in many areas where the advan-
tages of implicits can be used. We give a number of examples below, see also
[2]. Initially, implicit models were used to represent canonical shapes that are
common in engineering such as spheres, cylinders, cones and other quadrics,
as well as torii. The unit sphere, for an obvious example, is given implicitly
by

f(x) = x2 + y2 + z2 − 1. (18.1)

Superquadrics and blended surfaces were then added to this group. These
are discusssed in Sect. 3. Bloomenthal [2] lists more interesting implicit models
such as convolution surfaces, metaballs, alpha patches and others that are used
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Fig. 18.1. A complex implicit model

in computer graphics. Two recent implicit methods are worth mentioning with
some specifics. Level set methods introduced by Sethian [9] take a curve (on
the left in Fig. 18.2), and build it into a surface. The cone-shaped surface
shown on the right embeds the xy plane exactly where the curve sits. It is
called the level set function and is an implicit function. The set is a zero set
of the function.

Fig. 18.2. The red curve is embedded into an implicit function
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Quoting from http://math.berkeley.edu/∼sethian/Flow_chart/chart.html:
“ The Osher-Sethian level set method tracks the motion of an object by em-
bedding the object as the zero level set of the signed distance function. The
motion of the interface is matched with the zero level set of the level set func-
tion, and the resulting initial value partial differential equation for the evo-
lution of the level set function resembles a Hamilton-Jacobi equation. In this
setting, curvatures and normals may be easily evaluated, topological changes
occur in a natural manner, and the technique extends trivially to three di-
mensions. This equation is solved using entropy-satisfying schemes borrowed
from the numerical solution of hyperbolic conservation laws, which produce
the correct viscosity solution.” As such it is a special case of implicit function
in which the non-zero portion is constructed from entropy satisfying fluid flow
schemes. Impressive results from these approaches have been obtained in fluid,
fire and optical flow modeling, among others. We shall see other ways to con-
struct implicit functions in Sects. 18.3 and 18.4. The second method, called
distance fields, is closely related. Recent interest in distance fields is attested
by several papers (see [4] and its references). They have shown wide versati-
lity in computer graphics and related fields to the extent that they have even
been suggested as a fundamental primitive for computer graphics, rivaling the
polygon when appropriately organized as a sparse hierarchical data structure,
called ADF for adaptively sampled distance field [4]. A distance field is often
described with the popular notion that every point in space is associated with
a “minimum” distance to the object. The notion derives both from natural
experience and the classic definition of Hausdorf in which a distance from a
point y in a metric space to a set A is given by

D(y,A) = inf
x∈A

D(x, y), (18.2)

where D(x, y) is a standard metric satisfying

1. reflexivity, D(x, y) = D(x, y),
2. positivity, D(x, y) = 0 if x = y, and
3. the triangle inequality rule, D(x, z) ≥ D(x, y) + D(y, z); see [1], p. 62.

For examples, the metric D may be (1) the Manhattan distance, i.e. the sum of
absolute differences of components; (2) the Euclidean distance, i.e. the square
root of the sum of squares of components; or (3) the infinity norm, i.e. the
maximum of the absolute differences of components; known respectively as
the l1, l2 and l∞ norms. Figure 18.3 shows views of the Utah teapot, a set
of 32 parametric Bezier patches, represented and rendered as a distance field
from [4]. The field is computed by an intensive method that finds a nearest
point on the teapot to any given point in space.

It is an example of how one can “implicitize” a parametric surface. One
should notice the lack of polygonal artifacts, e.g. angular silhouettes and Mach
banding in the highlights. Distances tend to yield much cleaner results. Un-
fortunately, the notion of minimum distance excludes many useful implicit
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Fig. 18.3. Minimum distance teapot

models, for example, many zero sets of functions do not reference a minimum,
nor do they need to designate a closest point on the object to define the field.
Consider a simple ellipsoid defined by

f(x) = 20x2 + y2 + z2 − 1. (18.3)

For any point x in 3-space f(x) represents a very usable distance to the
flattened ellipsoid defined by f(x) = 0. It is an algebraic (non-Euclidean)
distance that has no minimum or closest point in the calculation. Distance
fields conveniently accommodate various operations such as Booleans, offset-
ting, collision detection, morphing, filleting or a number of rendering methods.
But these can easily be carried over to other implicits. In Sect. 18.2 we clas-
sify some of the conspicuous types of implicit functions, and then in Sect.
18.3 we illustrate a few implicits that could also be embedded into a discrete
distancelike field as in [4].

18.2 Types of Implicit Functions

The characterizations offered in this section will be useful in later develop-
ments of tools. We do not offer a comprehensive list of implicit function types,
but concentrate on those that differentiate primarily on how they handle ope-
rations.

1. Cn. The function f is Cn continuous, where the most likely occurrences
will be C1, i.e. differentiable. Be aware, however, that differentiability of
the function f alone does not guarantee a smooth zero set. The zero set
may kink, or be non-manifold if the derivative is 0, which is a direct result
of the implicit function theorem. Think of a zero set through a saddle
point, for instance.

2. Orientable. We define a zero set to be orientable if its domain has an
arbitrarily small neighborhood about any point of the zero set that con-
tains points of both negative and positive distance. The set of negative
points constitutes the false side, and the positive points constitute the
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true side. For compact manifolds this corresponds to inside and outside,
but in general this definition is quite different from the classical one. Our
definition of orientability is far more forgiving than the traditional one.

3. Attractor station. If f is differentiable then ∇f induces a vector field,
the gradient field of f . The streamline through a non-singular point x0 is
the set of points generated by

xi+1 = ±∇f(xi)∆t + xi, ∆t→ 0, i = 0, 1, ... (18.4)

A zero set A is an attractor station of a region R if every streamline
through a nonsingular point in R contains a point of A. Functionally it
means that one can usually start at any nonsingular point in R and use
Euler’s method to generate a gradient descent (ascent) to arrive at A.

4. Sloped. There exists an arbitrarily small neighborhood around each point
x of the function such that within the neighborhood there is a point x′
with f(x) > f(x′). With other words, there is a path “down hill”.

The different categories have no necessary dependencies with each other.
The examples in the rest of the chapter demonstrate many independent com-
binations. The Weierstrass distance field (5) of Figure 18.2, for example, is
sloped along the z-axes only, i.e. ∂d/∂z exists and is a constant, but none of
the other partials exist in any other direction. Surprisingly too, it is orientable,
despite the discontinuity.

18.3 Implicit Models

18.3.1 The Weierstrass function

The Weierstrass function given by

W (t) =
∑

k

αk cos(βkt), (18.5)

for k = 1, ...,∞, α real, β odd and αβ > 1+3π/2 is continuous everywhere, but
differentiable nowhere. We must choose α less than 1 so the series converges.
It is perhaps the first fractal described in the literature. We adapt Eq. (18.5)
to define the Weierstrass implicit function

Wf (x) = z −
∑

k

αkcos(βkx)kcos(βky), (18.6)

which is continuous and nondifferentiable in 3 dimensions. It’s zero set, the
Weierstrass egg carton is shown in Figure 18.4.

We call it an egg carton because of its shape that would hold eggs, but in
its case, it would hold eggs of infinitely many sizes. We have combined it with
an offset Wf (x) − K for y > 0 to create a discontinuity in the field, which
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Fig. 18.4. The split Weierstrass egg carton field

both illustrates that an implicit function need not be continuous, as well as
showing its fractal like crosssection. As mentioned, the Weierstrass function
18.6 of Figure 18.4 is sloped along the z-axes only, i.e. ∂d/∂z exists and is a
constant, but none of the other partials exist. The egg carton is not amenable
to either analytic ray intersections, or triangulation, and it has no surface
normals. Iterative ray intersections are costly and fallible to oversights.

Booleans and fillets

If f and g are two implicit functions with zero sets A and B, then the Boolean
union, intersection and difference are given respectively by

A ∪B ≡ {x|min(f(x), g(x)) = 0} , (18.7)

A ∩B ≡ {x|max(f(x), g(x)) = 0} , (18.8)

A\B ≡ {x|max(f(x),−g(x)) = 0} . (18.9)

The min/max functions typically create discontinuities of derivatives
where f(x) = g(x), i.e. nondifferentiable surfaces in the domain of the im-
plicit function. Multiple Booleans are obtained by composition of the Boolean
functions given by Eqs. (18.7)-(18.9) [8]. Figure 18.5 shows the union of three
spheres configured to model the water molecule and displayed by ray tracing
the zero set. The spheres are defined with the square root of the components
squared; thus it is one of the rare cases in which the algebraic distance is
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equivalent to the Euclidean distance. The Boolean operators change that, of
course. Let the spheres be given implicitly by functions f(x), g(x) and h(x),
where f and g are the smaller spheres and h the larger sphere. The new
implicit function of the union is min(min(f(x), g(x)), h(x)), for example.

Fig. 18.5. H2O Boolean spheres model

In this case a nondifferentiability exhibits itself as creases where the spheres
join, emanating into space as cones. To blend away the creases, we use an
implicit blending form from CAD/CAM [8], which yields an implicit function

b(x) = 1−max
(

1− f(x)
R

, 0
)2

− 1−max
(

1− g(x)
R

, 0
)2

−1−max
(

1− g(x)
R

, 0
)2

, (18.10)

where R is the blending range chosen to determine the size of the fillet.
Figure 18.6 shows the blended version of Fig. 18.5. It also has surfaces of
nondifferentiability because of the max functions in Eq. (18.10). The function
no longer exhibits creases in the zero set, however, which is shown to have
continuous normals given by ∇b(x) wherever b(x) = 0.

Both distance fields for Figures 18.5 and 18.6 are orientable, sloped at-
tractor stations. Even with the nondifferentiabilities, it is straightforward to
march down viewing rays seeking sign differences to find intersections for “one
bounce” ray tracing, which was done.

Thick surfaces

The blended union of Fig. 18.6 is extended in Fig. 18.7, first by adding more
spheres of appropriate size and position, and second, by making it a thick
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Fig. 18.6. The H2O molecule with blended creases

surface. The new function m(x) can be used to define not just a zero set, but
also a region about the zero set, given, for instance, by an offset m(x) −K,
for K a constant. The so-called thick or soft surface is

BK ≡ {y|m(x)−K ≥ y ≥ b(x)} . (18.11)

The nicotine model is the same type as the water molecule, that is, it is
sloped and orientable. Therefore, the same ray tracing algorithm that was
used in Figs. 18.5 and 18.6 is employed, except that when the ray intersects
the offset b(x)−K, a ray marching algorithm performs small incremental steps
down the ray, while evaluating color transfer functions and accumulating the
result with opacity; that is to say, a classic volume rendering routine is engaged
at this point [5]. It continues until the ray emerges at the zero set. The ray is
then traced again until it again intersects the soft surface and the marching
method once again employed; and so forth until the ray exits the viewing
window. In the figure, a 3D noise function governs the color transfer. Opacity
is chosen so that the molecule is mostly translucent, except at silhouettes,
where the larger traversal distance of the ray inside the offset region creates
greater accumulation. The constant K is limited so that the offset does not
contain any points of nondifferentiability.

18.3.2 The Color Gamut

The previous examples were based on implicit definitions directly or as com-
positions. Color gamuts are used in printing and photography to show the
limits of the color devices. The color gamut is a case of a parametrically de-
fined volume, in which the implicit function is defined as a function of the
parameter space. Assume a mapping p : (u, v, w) → (x, y, z) that deforms
space. Fix values of one of the u, v or w to define deformed surfaces in the
range, i.e. images of the axial planes in parameter space. For the color gamut,
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Fig. 18.7. Thick surface of blended unions - the nicotine molecule

p is the tri-linear blend of eight given points xi, yi, zi, i = 1, .., 8, that is, it
maps the eight points of the unit cube in parameter space onto the eight given
points in object space:

p(u, v, w) = (1−w)[(1− v)v]M [(1− u)u]T + v[(1− v)v]N [(1− u)u]T, (18.12)

where M and N are, respectively, matrices of the first and last four given
points of the cube. The associated implicit function is formed by defining a
function q in parameter space so that it is zero on the surface of the unit cube,
negative inside and positive outside. Such a function is

q(u, v, w) = 2 max
[
u− 1

2
, v − 1

2
, w − 1

2

]
− 1. (18.13)

The implicit function for the color gamut is then obtained as

f(x, y, z) = q(p−1(x, y, z)). (18.14)

Figure 18.8.a shows the surface of the gamut, and Figure 18.8.b shows an
interior section of the gamut achieved as an offset value f(x, y, z)−K. That
is, the color gamut is a legitimate volume, whose interior points are obtained as
offsets of the implicit model. Notice that the interior points are less saturated
than the pure color at the zero offset. What happens if we extrapolate beyond
the hull of the gamut? Since the eight corner points are typically chosen as
maximum values, it has little meaning in color theory to consider this, but
visually the overflow values that result create an engaging image in Fig. 8c.

The form of Eq. (18.12) is a parametric tensor product, which can be gene-
ralized, for instance, to higher order Bezier or B-spline volumes [3] Rather than
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a b c

Fig. 18.8. a The (R,G,B) gamut. b Interior offset. c Extrapolate and overflow

actually performing the inverse of Eq. (18.14) in rendering, which is tanta-
mount to solving a cubic equation, a forward scanning technique is employed.
Parameters (u, v, w) are incremented through small step sizes, and substituted
simultaneously into 18.12 and 18.13 to produce a cloud of points with their
related distance values. As the points are produced the distance is eliminated
if it is not within an epsilon tolerance of zero. The remaining points constitute
a soft surface of the gamut. They are sorted into a z-buffer based on view.
The color of each point is determined by using eight given (R,G,B) values in
the matrices M and N in Formula Eq. (18.12), i.e. a color for each corner of
the gamut. Clearly other color spaces could be used, e.g. CMY, CMYK, HSV
and so forth [5]. The color gamut is another sloped, orientable model.

18.3.3 Equipotential fields

Potential fields can be formulated as distance fields by subtracting them from
a constant threshold value. Hence the pervasive “r2” fall-off in many physical
fields is couched implicitly by

f(x) = T −
∑

i

Ai

‖x− xi‖2
, (18.15)

where T is a threshold value, and the Ai determine the individual strength
(charge) for each point xi. This form can be used for depicting electrical,
magnetic, light intensity and gravitational fields. Their implicit models repre-
sent surfaces of equipotential. Figures 18.9a,b show the equipotential surfaces
of six arbitrary point sources with different values of T . As T increases in
Fig. 18.9b the surface pulls in tighter. Different values for Ai account for the
varying sizes of each blob.

In Fig. 18.9c variations of Eq. (18.15) generate potential versions of the
cylinder, ellipsoid and superquadric by replacement in the denominator in Eq.
(18.15 with) (respectively)
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a b c

Fig. 18.9. a Equipotential. b Higher threshold. c Other potentials

(z − zi)2 + (y − yi)2 (18.16)

0.1 ∗ (x− xi)2 + (y − yi)2 + (z − zi)2 (18.17)

(x− xi)4 + (y − yi)4 + (z − zi)2 (18.18)

General cases are simple to extrapolate from the examples in Eqs. (18.16)-
(18.18). These models are rendered in the same manner as the blends and
fillets, previously described.

18.3.4 Skeletons

Any implicit function can generate a nonorientable model by changing the sign
of either the inside or outside (negative or positive) part to match the other
side. Squaring the implicit function is one way to accomplish this. Taking the
absolute value is another. In both these cases, it can be shown that Boolean
union (min) produces the union of the boundaries, for example, and without
loss of generality

∂A ∪ ∂B ≡ x|min
(
f(x)2, g(x)2

)
= 0, (18.19)

where ∂A is the boundary of the set A. This is seen in Fig. 18.10a for two
equipotential surfaces. Curiously, the max of the squares of the functions yields
the same set

∂A ∪ ∂B ≡ x|max
(
f(x)2, g(x)2

)
= 0. (18.20)

In both cases we unite the zero sets of the squares. However if we take the
sum of the sets, this time wlog using the absolute value to get the nonorien-
table version,

f(x) = |f(x)| + |g(x)|, (18.21)

then we obtain ∂A∩ ∂B as the implicit model displayed as a thick set in Fig.
18.10b.
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a b

Fig. 18.10. a Union of boundaries of equipotential and b intersection of boundaries

18.3.5 Summary

The foregoing examples are intended not only as exhibits of implicit model ver-
satility, but also as samples of a style of thinking with implicits that promotes
and exploits its possibilities. It is also profitable background for understan-
ding fundamental methods of dealing with implicits, including: texturing, field
malleability, surface parameterizations and deformations. Even in the case of
the parametric Bezier patches, the resulting set of voxels containing distances
is a discrete distance field that implicitizes the object; any value of the dis-
tance field may be obtained through interpolation of the discrete points, and
thus the implicit function, defined.

18.4 Re-tooling Implicit Models

Several points should be gleaned from the previous case studies. First, im-
plicit functions can be generated in numerous ways, including algebraically,
procedurally, as compositions and Booleans, and by interpolation of discrete
data. Second, implicit models can be separated from the nonzero portion of
the implicit functions such as by squaring; that is to say, there are many im-
plicit functions that share the same zero set. The level set function where the
domain is n = 2 provides a good visual device for thinking about implicits.
The value f(x) of the function at a point x may be thought of as a terrain
height above or below the water level f(x) = 0, i.e. the zero set. The actual
surface of the implicit model, the part displayed, is the shoreline of the water.
If the water rises or recedes it creates a new shoreline, the offset. If the terrain
contains sheer cliffs, it is not C0; if it contains sharp ridges, peaks or valleys,
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it is not C1. Any basins or bowls entirely above water level, or peaks entirely
below water level disqualify it as an attractor station. These are traps that
capture streamlines and keep them from passing through the shoreline. If it is
nonorientable, then the shoreline is an infinitely thin moat with rising terrain
on both sides. If one drops a ball onto a sloped terrain at any point, it will
eventually find its way to water. We now carry some of these ideas over to
operations on implicit models that widen our design and rendering facilities.

18.4.1 Three Dimensional Texturing

There are two ways of thinking about 3D texturing in this context. The first is
the traditional graphics idea of embedding the object within a scalar “paint”
field and coloring the object based on where it intersects the field [5], i.e. there
exists a function T : Rn → C, a color space, which determines the color for any
point x in Rn. In our metaphor, T colors the terrain; in particular, the visible
shoreline absorbs its color from the terrain it touches. Fig. 18.11 depicts the
water molecule texture-mapped by decimating the Lambertian shaded model
in Figure 18.4 according to whether

(x + y + z) mod η < ε (18.22)

for some η > ε. The simple “beat” pattern in each variable in 18.22 creates
the characteristically observable Moiré texture on the surface of the implicit
model.

Fig. 18.11. A 3D texture on zero set

A second way to add detail to an existing implicit model is to define a
so-called “shape texture” function T (x) to add to the original shape:

fnew(x) = fold(x) + T (x), (18.23)



616 Alyn Rockwood

which is usually has higher frequency components than the original implicit
model. As an example, let

T (x) =
{

cos(a‖x‖) cos(A‖x‖) if ‖x‖ < π
2a

0 otherwise (18.24)

In Eq. (18.24) the texture has local support for ‖x‖ < π/(2a). By adding
a 3D translation the effect can be placed arbitrarily on the implicit model. In
Fig. 18.12a the constant A is zero, which results in a simple cosine “bump”
texture, i.e. the ball peen hammer strike is placed randomly on the zero set
of cubic implicit model. The red line indicates a point at which the texture
is added several times, creating a larger bump. In Fig. 18.12b the constant A
is nonzero and yields the ripple effect. The line indicates an area where the
ripples overlap, i.e. there are areas of support intersect. The result is a natural
looking region where waves cross.

a b

Fig. 18.12. Adding local texture effects a Ball peen hammer and b ripples

In Fig. 18.13 a globally supported, trivariate trigonometric combination is
added as a texture to the base function (see Faberge egg code, Sect. 18.6.). The
coefficients can be modified to increase the frequency of the texture function.
It will serve as test functions for the next section. Notice that at the chosen
frequency parts of the zero set detach, i.e. they are simply connected.

18.5 Regularizing Nonzero Space

Operations on implicit models such as Booleans, blending, shape texturing,
equipotential surfaces, skeletons or local parameterization (described in the
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Fig. 18.13. A trigonometrically textured test function

next section) rely on smoothly varying space in the nonzero region in order to
produce reasonably expected results. Many of the operations tend to degrade
the space: thus Booleans and blending create nondifferentiabilities, shape tex-
turing creates massive numbers of attractor basins off the zero surface. Some
implicit functions like the Weierstrass function begin with undesirable cha-
racteristics. We seek a method that can redefine the nonzero space without
affecting the implicit model itself. Generally, we want to create a new implicit
function that possesses the desirable properties from Sect. 18.2. This will al-
low a wider range of operations on difficult functions, and more importantly,
it will increase the reusability of implicit objects in subsequent operations. To
understand what might happen, we visualize nonzero space by looking at the
streamlines of the gradient field surrounding an implicit model. This is done
by choosing a point x such that f(x) �= 0, and then integrating along the
steepest descent until the zero surface is reached. Using Euler integration, for
instance, the streamline is generated by

xi+1 = h∇f(xi), (18.25)

for given step size h. In Fig. 18.14 the streamlines begin at the corners and edge
midpoints of a square that can be moved in space. The path of the streamlines
indicates the shape of space. In Fig. 18.14a note that the streamlines contract,
while in Fig. 18.14b there is an expansion, both depending on the starting
position of the streamlines. Seen from a vector field perspective, it indicates
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that the gradient field has respectively: divergence less than, or greater than
1 in the regions tested. Also in Fig. 18.14b one can see the curl of the field as
the streamlines on the top edge of the square twist as they converge to the
zero surface.

a b

Fig. 18.14. Visualizing the gradient field showing a contraction, b expansion

To demonstrate what can occur after operations, we calculate the stream-
lines for a textured function like Fig. 18.13, but with somewhat lower fre-
quencies. Fig. 18.15 shows the tortuous path that results. The result for the
original function in Fig. 18.13 was so tortured that it failed completely to
compute and is not shown.

To resolve the problem of undesirable nonzero regions we propose a me-
thod that modifies this region by finding the minimal energy (regularization)
function off the zero set, one that leaves the zero set unchanged. It is easiest
to illustrate in one dimension lower. Consider the bivariate function shown in
Fig. 18.16a.

The two peaks are defined as the zero set. The nonzero region is defined
randomly by piecewise bilinear “twisted flats”. This is as bad a nonzero region
as could be imagined, or produced through any sequences of implicit opera-
tions. It is full of attractor basins and nondifferentiabilities. Our goal is to fix
the two zero set points and the boundary, and then find the minimal energy
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Fig. 18.15. Tortured streamline for textured surface

a b

Fig. 18.16. a bivariate function with two zero-set points b the soap film surface
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(soap film) surface that connects the fixed parts. Minimal energy surfaces are
equivalent to minimal surface area, so our minimization algorithm uses the
sum of the areas of the rectangles that tessellate the surface as a cost func-
tion. By varying a function value on an arbitrary rectangle vertex a new cost
is computed, which can be entered to any of a number of optimization al-
gorithms. We applied simulated annealing, but found that the energy-raising
step was unnecessary; the process converged rapidly and robustly in a greedy
fashion. The result is seen in Fig. 18.16b.

This is applied to 3D by minimizing the energy of the volume, i.e. changing
the value of the function on a vertex of the cuboids that tessellate space and
measuring the volume of the 4D cuboid (tesseract) given by the domain cuboid
plus the function value. Using a simple greedy algorithm that accepted lower
energy states and ignored others, the convergence was rapid and robust. To
test the validity of our new nonzero regions we took the implicit models in
Figs. 18.13 and 18.15, fixed their zero sets and a sufficient boundary, and then
applied the energy minimization. We obtained results as seen in Fig. 18.17.
Figure 18.17a shows streamlines for the implicit model of Fig. 18.15. It exhibits
fewer variations and also contracts less than Fig. 18.14a. As a streamline it is
always perpendicular to any contour f(x) = K, a constant, which includes the
zero set. This is especially noteworthy in Fig. 18.17b where the streamlines
are now possible to compute, unlike before, and are generally well behaved,
making the twists into the zero set to maintain perpendicularity, only close
to the surface.

There are other regularizations besides minimum energy that can be ap-
plied, such as minimization of divergence, curl or angles (conformality). The
minimal energy predicate has sufficed for our needs, however. The first and
immediate result of the method is the enhanced ability to parameterize the
implicit model in a local area. We can imprint a parameterized object onto
the surface of the implicit model by positioning it appropriately in space and
for any point of the parameterized surface, follow its streamline to the zero
surface, which inherits the parameter value. Figure 18.18 shows a radial sine
function, the petal, parameterized by angle and length as it is mapped to the
surface of two test functions.

18.6 Putting it together

We now use the previous tools to design some recognizable models. For those
familiar with typical models in graphics it will be apparent that implicit mo-
dels can readily attain complexity without large databases as with the more
common parametric forms, e.g. Bezier, B-spline or polygon models. The first
model illustrates.
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Fig. 18.17. Well-mannered streamlines on test objects

Fig. 18.18. Radial sine function parameterizing the implicit model
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18.6.1 The Faberge Egg

Let T (x, y, z) be a Fourier trigonometric combination like the “Berber weave”
in Fig. 18.13. The actual form is seen in the code below. Next, create base
shape with an implicit function E(x, y, z), e.g. the ellipsoid E(x, y, z) =
x2 + 4y2 + 4z2 − r of radius r. Then create an outward textured shape with
fo(x, y, z, r) = E(x, y, z, r)+T (x, y, z). Create an inward textured shape with
fi(x, y, z) = E(x, y, z)−T (x, y, z). Create the “filigree” version of the implicit
function by taking the skeleton of the inwards and outward textured shapes:

g(x, y, z) = |fo(x, y, z)|+ |fi(x, y, z)|. (18.26)

This is an interesting shape itself as seen in “gilding” of Fig. 18.19. Finally,
create the “Faberge egg” as the zero set of the union of the filigree and the
ellipsoid, viz. with the function

h(x, y, z, r) = min[g(x, y, z), f(x, y, z)]. (18.27)

The color of the skeleton is chosen to be gold while the color of the ellipsoid
is eggshell white, see Fig. 18.19. To emphasize its compact nature, the C++
code that defines the implicit model is given below:

{
float Tex= 0.15*sin(x/0.1)*sin(y/0.1)*sin(z/0.1) +

0.3*sin(x/0.05)*sin(y/0.05)*sin(z/0.05);
ITag = 1; // Set color gold
E = pow(x,2)+2.0*pow(y,2)+2.0*pow(z,2)-1.0; // Ellipsoid
float Fo = E+Tex; // Add texture
float Fi = E-Tex; // Subtract Texture
F = fabs(Fo)+fabs(Fi); //Make skeleton
float TempF; // Offset ellipsoid
TempF = pow(x,2)+2.0*pow(y,2)+2.0*pow(z,2)-0.8;
if (F > TempF) //Create union
{ F = TempF;

ITag = 0; // Set color eggshell
}

}

We did not need the regularization algorithm to clean up nonzero space in
modeling the egg. Any further operations, such as blending it to a base object,
would require a regularization step, however, as the nonzero region is certainly
as undesirable as Fig. 18.13. In the next models, this step is indispensable.

18.6.2 Two Broaches

We apply the same technique as in the Faberge egg to create a brooch, except
that the ellipsoid of the egg is replaced by the superellipsoid of Eq. (18.18),
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Fig. 18.19. The gilded Faberge egg

which gives it a flatter crosssection. The coefficients of the superellipsoid are
adjusted so that the filigree skeleton disappears into the body at the border
after the union. Because the next stages of design require a local parameteri-
zation via streamlines, the nonzero region of the implicit model is regularized
by the soap film method. It is now possible to emboss and stencil some 2D
patterns onto the brooch. In the first case (Fig. 18.20a), the petal of Fig.
18.18 is positioned in front of the brooch. By stepping at given parameter va-
lues around the petal, beginning points for the streamlines are generated. The
streamlines are integrated with Eq. (18.25) until they reach the zero set. At
the point where they reach the zero set a “ball peen” bump is added, as in Fig.
18.12. The difference between the three petals is the density of bumps, that
is, the parameter step size at which the petal is evaluated. Figure 18.20b is
simpler. A bitmap of a rose is positioned in front of the brooch. For each pixel
in the bitmap, the associated streamline is followed to the surface, where that
color is stenciled on the brooch. This, of course, brings up interesting questions
about resampling as the samples of the bitmap expand or contract through
the streamline mapping. That is beyond the scope of this exposition.
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a b

Fig. 18.20. A brooch with a embossed petals, and b stenciled bitmap of a rose

18.6.3 The Cocaine Molecule

Carefully sizing and placing spheres according to the chemical bonding of
cocaine is shown in Fig. 18.21. It is then blended in exactly the same man-
ner as H20 and nicotine in Figures 18.5 and 18.6. Because of its complexity,
however, it required a number of regularization steps so the blends could be
sequenced without running over nondifferentiabilities in space and generating
their attendant artifacts.

18.7 Summary and Future Development

Implicit functions can be defined in a variety of ways, depending on the object
to be modeled. The different methods for defining implicit models often affect
subsequent design options because they impinge on the nonzero regions of the
implicit functions thus created. The regularization of this space by minimal
energy methods enables a wider range of operations to be performed on a
repeatable basis. One of the important and demonstrated characteristics of
implicit function modeling is that it is capable of describing complex objects
with a minimal database. Clearly, there are more investigations to be made
into different impilict forms for shape, and into other tools for operating on
them. The regularization methods mentioned that control divergence, curl
and so on are yet to be implemented. We have, throughout the paper, used
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Fig. 18.21. The cocaine molecule, using blended spheres and a thick set

the classical definition of an implicit function as a real-valued mapping �n →
�, the critical part of this behavior being the “real valued” portion, which
allows the zero set assignment. With increasing attention being turned to
non-Euclidean spaces in engineering and science, e.g. Clifford algebras, there
is an interesting question of how general implicit functions could be used to
model shape. In Hestenes geometric algebra [6, 7], for instance, one can easily
image real valued functions of k-blades. What is the zero set of a mapping
of bivectors to scalars? This occurs regularly through use of the pseudoscalar
multiplication that creates dual forms for vectors, for example.
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Grassmann–Cayley Algebra and Robotics
Applications
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19.1 Introduction

Grassmann–Cayley algebra is a means of writing expressions for geometric
incidences in Euclidean or projective geometry, which gives a useful way to
represent instantaneous kinematics and statics of robots. It is closely related
to Grassmann algebra [9], and can be viewed as a special case of Clifford
algebra [10]. It can also be described as exterior algebra with duality. However,
all of these descriptions miss a crucial point, namely, that the formula for the
meet operation provides a translation of geometric conditions into coordinate-
free algebraic expressions. It even makes possible in some cases the reverse
translation, called Cayley factorization. This can be very useful for analyzing
critical positions of robots and several other applications, which we describe.

However, we begin with a more concrete version of this algebra, which
involves Plücker coordinates.

19.2 Plücker Coordinates

Although we are primarily interested in three-dimensional space for our ap-
plications, our three-dimensional applications will also involve calculations in
higher-dimensional space, so we start by considering d-dimensional space Rd.
If x = (x1, x2, . . . , xd) is a point in Rd, given in terms of the usual Cartesian
coordinate system, then the homogeneous coordinates of x are obtained by
adding a (d+ 1)st coordinate that is equal to 1. If λ is a nonzero scalar, then
we also regard

λ(x1, x2, . . . , xd, 1) = (λx1, λx2, . . . , λxd, λ)

as representing the same geometric point x. Furthermore, given any vector
of d + 1 real numbers, with last coordinate λ nonzero, we can divide by the
scalar λ to recover the Cartesian coordinates of x.
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If we also allow vectors of length d + 1 whose last coordinate equals zero,
which we regard as representing points at infinity, then we have the stan-
dard construction of real d-dimensional projective space. This construction is
already very useful for robotics; for example, a revolute joint becomes a pris-
matic joint when its axis consists entirely of points at infinity. However, it is
also very useful for a second reason. Let V denote the (d + 1)-dimensional
vector space in which all of these homogeneous coordinate vectors exist. Then
subspaces of V correspond to points, lines, planes, and so on in Rd, together
with some points, lines, planes, and so on, which are composed entirely of
points at infinity. A point, line, plane, and so on, in Rd, which need not in-
clude the origin of R

d, is referred to as an affine subspace, whereas the term
projective subspace allows the subspaces at infinity, as well as the affine ones.
This correspondence between projective (or affine) subspaces and vector sub-
spaces of V is shown in Table 19.1. The crucial point here is that all affine

Table 19.1. Correspondence between projective subspaces and subspaces of V

points ↔ 1-dimensional subspaces of V
lines ↔ 2-dimensional subspaces of V

planes ↔ 3-dimensional subspaces of V
k − 1 dimensional
projective subspaces↔ k-dimensional subspaces of V

or projective subspaces are represented by subspaces of V , whereas if we use
subspaces of the vector space Rd, we get only lines, planes, and so on, through
the origin.

Now let U be a (k − 1)-dimensional affine subspace of Rd, and U ′ the
corresponding k-dimensional subspace of V . Let u1, u2, . . . , uk be a basis of
U ′. It does not hurt to assume that each of these vectors has been chosen with
d + 1-st component equal to 1. We now form a matrix whose rows are these
basis vectors:

MU =

⎡⎢⎢⎣
u1,1 u1,2 . . . u1,d 1
u2,1 u2,2 . . . u2,d 1

. . .
uk,1 uk,2 . . . uk,d 1

⎤⎥⎥⎦ . (19.1)

Notice that the row space of MU , which is just U ′, is uniquely determined by
U .

Now choose any k columns of MU , say the columns indexed by j1, j2, . . . , jk,
with 1 ≤ j1 < j2 < . . . < jk ≤ d+1. We then define the j1, j2, . . . , jkth Plücker
coordinate of U , denoted by Pj1,j2,...,jk

, to be the k× k determinant obtained
from those k columns. Since there is one such Plücker coordinate for each
choice of k of the columns, there are a total of
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d + 1
k

)
=

(d + 1)!
k!(d + 1− k)!

Plücker coordinates. We now define the Plücker coordinate vector PU of U to
be the vector we get by writing down all of these Plücker coordinates in some
predetermined order.

Theorem 1. An affine subspace U uniquely determines PU up to scalar mul-
tiple. If P is a

(
d+1

k

)
-tuple of real numbers, and if P = PU for some affine (or

projective) subspace U , then P uniquely determines U .

For a proof, see Hodge and Pedoe [11], where Plücker coordinates are called
Grassmann coordinates. If P = PU for some projective subspace U , we say
that P is decomposable; there also exist indecomposable

(
d+1

k

)
-tuples, as will

be seen in Section 6.

Example 1: Lines in R3.

We will adopt the mechanical engineer’s convention of indexing the added
fourth component by 0 instead of 4. Engineers also may write this added
component first rather than last, though this really does not matter. We now
write our Plücker coordinates in the order

PL = (P0,1, P0,2, P0,3, P2,3, P3,1, P1,2),

where Pi,j = −Pj,i, and L is a line determined by points a and b (Fig. 19.1).
Our two points a and b give the 2× 4 matrix[

a1 a2 a3 1
b1 b2 b3 1

]
,

and

PL = (b1 − a1, b2, a2, b3 − a3, a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

= (S, r× S),

where S is the first three components, the free vector from a to b, r is the
coordinate vector of a (or any point on L), and the cross product r × S, the
last three coordinates of PL, gives the moment of L about the origin.

Since PL is determined only up to scalar multiple (indeed, a and b could
be chosen to be any two points on L), mechanical engineers usually prefer to
normalize PL by choosing S · S = 1, i.e., choosing a and b to have distance 1.
Furthermore, we must have S · (r×S) = 0, or P0,1P2,3 +P0,2P3,1 +P0,3P1,2 =
0, and this condition, known as the Grassmann-Plücker relation, is the one
equation that an arbitrary 6-tuple of real numbers must satisfy to be de-
composable. These two conditions give us one way to see that there are four
degrees of freedom in picking a line in 3-space.
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z
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x

L

s
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(a1,a2,a3)

(b1,b2,b3)

Fig. 19.1. A line in 3-space

The point at infinity on L corresponds to the homogeneous coordinate
vector (b1 − a1, b2 − a2, b3 − a3, 0), and its scalar multiples. The Plücker co-
ordinate vector PL can be computed from any two points on L, including the
point at infinity. The same point at infinity lies on every line parallel to L,
but nonparallel lines have distinct points at infinity (Fig. 19.2). Any 4-tuple
(x1, x2, x3, 0) �= (0, 0, 0, 0) represents a point at infinity, and any two such 4-
tuples which are (nonzero) scalar multiples of each other represent the same
point at infinity.

A line at infinity is the span in V of any two distinct points at infinity[
x1 x2 x3 0
y1 y2 y3 0

]
,

where these two rows are not scalar multiples of each other. Obviously, all
points on such a line are points at infinity. If Π is an affine plane then all of
the points at infinity on lines in Π comprise one line at infinity (Fig. 19.3).
Now three-dimensional real projective space is R3 together with all of these
points at infinity, with the latter regarded as constituting a single plane at
infinity, which must therefore also contain all of the lines at infinity. Similar
considerations apply to higher-dimensional projective spaces, though we will
not provide details.
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infinity
Plane at

Fig. 19.2. Points at infinity

infinity
Plane at

Fig. 19.3. A line at infinity

Example 2: Planes in R3.

Let Π be an affine plane determined by three affine points a, b, and c. The
Plücker coordinates of Π are the 3× 3 minors of⎡⎣a1 a2 a3 1

b1 b2 b3 1
c1 c2 c3 1

⎤⎦ ,

and an affine point (x, y, z) is on Π if and only if
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a1 a2 a3 1
b1 b2 b3 1
c1 c2 c3 1
x y z 1

⎤⎥⎥⎦ = 0.

By expanding this determinant by its last row, we see that this is true if and
only if

P0,2,3x− P0,1,3y + P0,1,2z − P1,2,3 = 0,

so we see that the Plücker coordinate vector may be written as

PΠ = (P0,2,3, P0,3,1, P0,1,2, P1,2,3) = (N, r ·N),

where N is a normal to Π , and r is the coordinate vector of any point in
Π . If we now normalize PΠ by dividing by the scalar length(N), so that N
now has length 1, then the last component r ·N becomes the perpendicular
distance from the origin to Π . Notice that the minus sign is absorbed in P0,1,3

by writing P0,3,1.

19.3 Dual Plücker Coordinates

Let U be a k-dimensional subspace of V , our (d+1)-dimensional vector space
of homogeneous coordinates, and let w1, w2, . . . , wd+1−k be d+ 1− k linearly
independent hyperplanes of V containing U . Each wi is the solution set to a
single homogeneous linear equation,

Σd+1
j=1wi,jxj = 0,

where, for a given i, the wi,j are defined only up to scalar multiple. However,
if M̃U is the (d + 1 − k) × (d + 1) matrix with entries wi,j , then the row
space of M̃U is uniquely determined by U . A dual Plücker coordinate of U is
a (d + 1− k)× (d + 1− k) determinantal minor of M̃U , and the dual Plücker
coordinate vector of U is the vector P̃U of the dual Plücker coordinates in
some predetermined order. Since(

d + 1
d + 1− k

)
=
(
d + 1
k

)
,

we see that the dual Plücker coordinate vector of U is the same length as the
Plücker coordinate vector of U .

Theorem 2. For U a subspace of dimension k of the (d + 1)-dimensional
vector space V , let PU and P̃U be a Plücker coordinate vector and dual Plücker
coordinate vector, as above (recall that each is well defined only up to scalar
multiple). Then there is a nonzero scalar ρ such that for every permutation
(j1, j2, . . . , jd+1) of (0, 1, 2, . . . , d),
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sgn(j1, j2, . . . , jd+1)P̃jk+1,jk+2,...,jd+1 = ρPj1,j2,...,jk
,

where sgn denotes sign of a permutation.

The proof is again in Hodge and Pedoe [11]. For lines in R3, this becomes

(P̃2,3, P̃3,1, P̃1,2, P̃0,1, P̃0,2, P̃0,3) = ρ(P0,1, P0,2, P0,3, P2,3, P3,1, P1,2),

where the signs are accomplished by the reversal of the indices 1, 3. Thus we
see that dual Plücker coordinates are essentially the same thing as Plücker
coordinates, except for the order of the coordinates and perhaps some sign
changes.

19.4 Basis Change

Suppose we wish to change the basis of V . The coordinates of a vector x
in the new basis are found by taking a nonsingular (d + 1) × (d + 1) basis-
change matrix S and computing Sxt, that is, we are just effecting the linear
transformation xt → Sxt, where t denotes transpose. Now we wish to see how
the Plücker coordinates of PU change as a result. Let V (k) denote the

(
d+1

k

)
-

dimensional vector space that is spanned by the Plücker coordinate vectors.
Let Sl1,l2,...,lk

j1,j2,...,jk
denote the k × k determinantal minor of S consisting of rows

j1, j2, . . . , jk and columns l1, l2, . . . , lk, and let Sk×k denote the(
d + 1
k

)
×
(
d + 1
k

)
matrix of all these determinantal minors, with both rows and columns indexed
in the same order we have indexed our Plücker coordinate vectors. The matrix
Sk×k is called the k−th compound matrix of S.

Theorem 3. (Hodge and Pedoe [11]). The linear transformation on V (k)

given by P t
U → Sk×kP

t
U provides the Plücker coordinates of U in terms of

the new basis. If S is nonsingular, then Sk×k is nonsingular.

Thus the new Plücker coordinates are just Sk×k times the old Plücker
coordinates, effectively, so a basis change in V effects nothing more than a
basis change in V (k). In the next section, we will prefer to consider V as an
abstract vector space, without a particular choice of basis. This theorem tells
us that it does not hurt to do this, because we can then also think of PU as a
well-defined vector in another abstract vector space V (k). Then, any time we
wish to work in terms of a specific basis of V , we just have to introduce the
corresponding basis of V (k) according to the theorem.
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Example 3: A rotation in R3.

Suppose we rotate the x, y, z-axes in R3 first by an angle Θ1 in the y–z-
plane, and then by an angle Θ2 in the transformed xy-plane. Letting c1 =
cosΘ1, s1 = sinΘ1, c2 = cosΘ2, s2 = sinΘ2, we get the following Euclidian
basis change matrix:⎡⎣ c2 s2 0

−s2 c2 0
0 0 1

⎤⎦⎡⎣ 1 0 0
0 c1 s1

0 −s1 c1

⎤⎦ =

⎡⎣ c2 s2c1 s2s1

−s2 c2c1 c2s1

0 −s1 c1

⎤⎦ .

Now, to do the same thing in homogeneous coordinates, we simply need to
extend our basis change matrix to

T =

⎡⎢⎢⎣
c2 s2c1 s2s1 0
−s2 c2c1 c2s1 0
0 −s1 c1 0
0 0 0 1

⎤⎥⎥⎦ .

We should recall that if a vector represents the coordinates of a point in terms
of the new axes, multiplying it by this basis change matrix would transform
that vector to the coordinates of the point in terms of the old basis. We could,
of course, use the inverse matrix to go the other way; in fact, as described
above, we need to take S = T−1.

We can now compute the second compound matrix, using the same order
on our indices as in Example 1, namely, 01, 02, 03, 23, 31, 12, for both rows and
columns:

T2×2 =

⎡⎢⎢⎢⎢⎢⎢⎣
c2 s2c1 s2s1 0 0 0
−s2 c2c1 c2s1 0 0 0
0 −s1 c1 0 0 0
0 0 0 c2 s2c1 s2s1

0 0 0 −s2 c2c1 c2s1

0 0 0 0 −s1 c1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Notice that in multiplying P t
L on the left by T2×2, the upper left 3 × 3 sub-

matrix is multiplying the free vector S of L by our original Euclidean basis
change matrix, and also the lower right 3×3 submatrix is multiplying r×s by
the same Euclidian basis change matrix. We could have predicted this, since a
rotation is an orientation-preserving Euclidian isometry, and hence preserves
the cross product.

19.5 Grassmann–Cayley Algebra; The Join Operation

Let V be an n-dimensional vector space over R (or any other field). We can
let n = d + 1 if we are using homogeneous coordinate vectors for points in
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Rd, or for the d-dimensional projective space containing Rd. Notice that we
do not choose a basis of V , but rather think of V as an abstract vector space.
Now let U be a k-dimensional subspace of V . Choose a basis { u1, u2, . . . , uk }
of U . Let A be the Plücker coordinate vector of U , but since we have not
specified a basis in V , we also think of A as a vector in an abstract vector
space V (k), of dimension

(
n
k

)
, with no particular basis specified. This is a

symbolic approach to Plücker coordinates, although we can always return to
using specific coordinates in applications, if we wish. The symbolic approach
has several advantages: it is much easier to work with and easier to write down,
and it is really much closer to the way we humans think about geometry than
is any type of calculation using specific coordinates.

We denote the symbolic Plücker coordinate vector as

A = u1 ∨ u2 ∨ . . . ∨ uk = u1u2 · · ·uk,

and refer to it as a k-extensor or decomposable (antisymmetric) k-tensor. There
are also elements of V (k) that are not k-extensors; they are referred to as
indecomposable (antisymmetric) k-tensors, and they can always be written as
a linear combination of k-extensors. The general term antisymmetric k-tensor
refers to either a decomposable or indecomposable antisymmetric k-tensor.
The number k is called the step of the k-tensor, provided the k-tensor is not
equal to 0. A sum of k-tensors of different steps is called simply a tensor (this
sum can be realized in a bigger space Λ(V ), see below).

We can also write A = u1u2 · · ·uk when u1, u2, . . . , uk are linearly depen-
dent; in that case A = 0 (independently of k). However, if u1, u2, . . . , uk are
linearly independent and a basis of U , we write U = A, and say the U is the
support of A. Two nonzero k-extensors are equal up to nonzero scalar multiple
if and only if their supports are equal. We do not define the support of an
indecomposable k-tensor, or of a tensor in general.

For example, a plane in affine or projective d-space corresponds to a three-
dimensional subspace U of V . Let u1, u2, u3 be a basis of U . Then U is the
support of the 3-tensor u1u2u3. In this way every subspace is represented by
an extensor of the appropriate step.

The particular case of k = n is of interest. If A = u1u2 · · ·un is an n-
extensor, and if we expand each ui in terms of fixed basis B of V , then
for some fixed scalar µ depending only on B, A = µ det(u1, u2, . . . , un). We
usually write A = [u1, u2, . . . , un] and refer to it as a bracket. The brackets
form a subalgebra of the Grassmann–Cayley algebra, called the bracket ring
or bracket algebra.

Next, we combine all of the vector spaces V (k) for various k into one big
vector space:

Λ(V ) = V (0) ⊕ V (1) ⊕ V (2) ⊕ . . .⊕ V (n).

Here V (1) is just V , V (0) is just the real scalar field, and V (n) may also be
thought of as another copy of the scalar field, though it is important for
technical reasons to distinguish between scalars of step 0 and scalars of step
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n. The brackets we think of as scalars of step n, although when we work with
them on a symbolic level, they form a very complicated algebra. In particular,
it is not easy to decide if two bracket expressions are equal, as this requires
a straightening algorithm to put both expressions in normal form; see, for
example, [22]. Since we also have another copy of the scalars in V (0), it is
convenient to think of the brackets as scalars of step 0 at times. Tensors are
now just arbitrary elements of Λ(V ). Notice that

dimΛ(V ) =
n∑

k=0

(
n

k

)
= 2n.

Now we wish to define the join operation on Λ(V ). Initially, we define
only the join of two extensors. Let A = a1 ∨ a2 ∨ . . . aj = a1a2 · · · aj and
B = b1b2 · · · bk be two extensors. Then their join, A ∨B, is defined by

A ∨B = a1 ∨ a2 ∨ . . . aj ∨ b1 ∨ b2 ∨ . . . ∨ bk = a1a2 · · · ajb1b2 · · · bk.

Thus A ∨B is an extensor of step k + l, provided it is nonzero. It is nonzero
precisely when { a1, a2, . . . , aj , b1, b2, . . . , bk } is linearly independent. This can
never be the case, for example, when j + k > n.

Theorem 4. If A = a1a2 · · · aj and B = b1b2 · · · bk are nonzero extensors,
then

A ∨B �= 0⇔ A ∩B = { 0 }
⇔ { a1, a2, . . . , aj , b1, b2, . . . , bk } is linearly independent.

If this is the case, then A ∨B = A + B = span(A ∪B). Furthermore,

A ∨B = (−1)jkB ∨A.

This defines the join of two extensors. The above theorem shows that the
join operation applied to two extensors results in an extensor whose support is
the sum of the two supporting subspaces, A+B = {x+y : x ∈ A, y ∈ B}. This
sum of two subspaces is the smallest subspace containing the two subspaces,
and is sometimes called the geometric join of the two subspaces, written with
the symbol ∨. We will avoid that notation here to prevent confusion between
the geometric join of two subspaces and the algebraic join of two extensors.

Joins of tensors in general are defined by distributivity. Since a tensor may
be written as a sum of extensors in more than one way, it is not completely
trivial to assert that join is a well-defined operation on Λ(V ), but nevertheless,
that is the case.

The vector space Λ(V ) together with the operation ∨ is an algebra, com-
monly known in mathematics as the exterior algebra , though mathematicians
usually prefer to use the symbol ∧ instead of ∨; here we prefer the latter be-
cause, as we have just seen, it corresponds to geometric join (or span(A∪B)).
Instead, we will use ∧ for a second operation, called meet, which corresponds
to geometric meet, and which we will introduce later, after looking at some
applications of the join operation.
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19.6 Application to Instantaneous Kinematics

We consider an instantaneous rotation of Euclidian 3-space about a line, so
d = 3 and n = d + 1 = 4. Rotation about the line ab is represented by the
2-extensor A = ab = a∨ b, which lies in the six-dimensional vector space V (2)

(as we have seen, the Plücker coordinate vector of a line is a 6-tuple of the
form (S, r × S), where S is the vector from a to b and r is the coordinate
vector of any point on the line). Let p be a point that is off the line ab.
Then A ∨ p = a ∨ b ∨ p is a 3-extensor whose support is the plane abp. We
saw in Example 2 that in the concrete form of Plücker coordinates, the first
three components of A ∨ p give a normal vector to the plane (Fig. 19.4).
Furthermore, it can be seen that the length of this (unnormalized) normal
vector is proportional to the distance that p is from the line A. However, the
length of the instantaneous velocity vector of p is also proportional to the
distance from p to the line A. Thus there exists a constant ω such that the
first three components of ωA∨ p are equal to the velocity vector at p. In fact,
we can always adjust the distance between a and b to make ω = 1. Assuming
that A has been so normalized, we call A the center or axis of the revolution.
Another way to look at this is that we may adjust the distance between a
and b, including reversing the positions of a and b if we wish to reverse the
direction of rotation, so that the resulting rotation has angular velocity equal
to any vector we choose that lies along our axis.

p

L

(a1,a2,a3)

(b1,b2,b3)

Fig. 19.4. Instantaneous rotation about an axis

If A is a line at infinity (thus both a and b are points at infinity), then A
represents a translation in terms of Euclidean geometry. Indeed, using Plücker
coordinates, A ∨ p is represented by the 3× 3 minors of
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b1 b2 b3 0
p1 p2 p3 1

⎤⎦ .

Now we see that the first three components of A ∨ p, namely

P2,3,0 = a2b3 − a3b2, P3,1,0 = a3b1 − a1b3, P1,2,0 = a1b2 − a2b1,

are independent of p1, p2, p3; thus every point p has the same velocity vector,
and the result is a translation. As a result, in a very real sense, a translation is
a rotation with an axis at infinity. This is fairly easy to visualize intuitively, as
shown in Fig. 19.5. Imagine a point being rotated a fixed arc length l about an
axis. Now keep the point’s position fixed, but move the axis farther away. The
point’s trajectory is still a circular arc of length l, but with a larger radius.
In the limit, as the axis moves away infinitely far, the trajectory becomes a
straight line segment of length l. Since the axis is now infinitely far from all
points in Euclidian space, all have the same direction of motion, and the result
is a translation of Euclidian space.

infinity
plane at 

axis 3axis 2axis 1

z

x

y

Fig. 19.5. Instantaneous translation as rotation about an axis at infinity

Consider now a robot arm with k revolute joints serially connected, which
we consider to be in a certain position at time 0. Assume that all joints are acti-
vated simultaneously, each with a certain angular velocity. Let A1, A2, . . . , Ak

be the centers of instantaneous rotation, each normalized as above to give
the correct angular velocity. Then the net instantaneous motion of the end
effector has center

t = A1 + A2 + . . . + Ak,

see [15], which we call the twist. The actual instantaneous velocity vector of
the end effector at time 0 is represented by t ∨ p, where p is the position of
the end effector. Notice that if A1 and A2 are skew lines, then A1 + A2 is
indecomposable, and the motion represented by A1 + A2 is a screw motion.
Implicit in this is that both rotations have nonzero angular velocities, for if
Ai = 0, then Ai would not be a line, but would be undefined.

Any twist may be written as
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t = (ω,v),

where ω and v are the angular and linear velocity, respectively, of the point
of the end effector that instantaneously coincides with the origin (where we
consider the end effector extended to include that origin, if necessary). See [21]
for more details. We should also recall Chasles’s Theorem [3], which states that
any twist in V (2) can be expressed as a linear combination of two 2-extensors,
one supported by a finite line L1 and the other by a line at infinity L2 that
is uniquely determined as the intersection of the plane at infinity P2 with a
plane P1 perpendicular to L1 (Fig. 19.6). In other words, the corresponding
instantaneous motion consists of a rotation about L1 plus a translation in a
direction parallel to L1.

P2

P1

L1

L2

Fig. 19.6. Chasles’s Theorem

More generally, if we wish to consider all possible instantaneous motions
from the given starting position, we should consider all linear combinations of
A1, A2, . . . , Ak. This is the twist space of the robot arm in its initial position.
Since each of A1, A2, . . . , Ak is a vector in V (2), we can think of the span
of these k vectors as the support of an extensor in Λ(V (2)), which we shall
write as A1

∨
A2

∨
. . .

∨
Ak, where we use

∨
, called a superjoin, to denote

join in Λ(V (2)) as opposed to join ∨ in Λ(V ). Notice that since V (2) is six-
dimensional, A1

∨
A2 is the join of two vectors in that six-dimensional space.

Since
(
6
2

)
= 6!

4!2! = 15, A1

∨
A2 is a vector in a 15-dimensional vector space,

(V (2))(2).
As we have seen, a single revolute joint may be represented by a 2-extensor

as its center, and a prismatic joint, which allows a unique translation (in its
initial position), may be represented by a 2-extensor at infinity. Likewise, a
screw joint, which allows a unique screw motion, would be represented by
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an indecomposable 2-tensor. Spherical, cylindrical, and planar joints, which
have more than one degree of freedom, may be represented by combinations of
the simple joints above; for example, a spherical joint is represented by three
revolute joints with axes all intersecting in one point but not all three axes
coplanar. See Hunt [12], Table 1.1, for details and figures.

Suppose a three-dimensional robot arm has six simple joints (after re-
placing joints of more than one degree of freedom by combinations of simple
joints), say A1, A2, . . . , A6. Some of the Ai are allowed to be indecomposable.
Then the robot arm has full mobility if

A1

∨
A2 ∨ . . .

∨
A6 = V (2),

in other words, A1, A2, . . . , A6 span all of V (2). A critical configuration is any
configuration in which A1

∨
A2

∨
. . .

∨
A6 = 0. Figure 19.7 shows a robot arm

with full mobility in the illustrated position. Since it has six simple joints, full
mobility means the six joints have Plücker coordinate vectors that are linearly
independent, and hence are NOT in a critical configuration.

a1

=b1
a2

b2

c2=d1

c1

d2

f2
e2=f1

e1

Fig. 19.7. A robot arm of six joints

Much of the theory of screw systems and of line geometry (see Hunt [12])
can be expressed in terms of the Grassmann–Cayley Algebra of V (2). For
example, a cylindroid may be defined by a 2-system of screws, which may be
represented as an general two-dimensional subspace of V (2), and thus as the
support of A1

∨
A2 for some 2-tensors A1 and A2. Here we must exclude the

degenerate case where A1 and A2 are extensors supporting two intersecting
lines, as well as excluding any case where A1 and A2 are linearly dependent.

A fundamental concept of line geometry is the line complex. A line complex
may be defined as the set of all lines whose six Plücker coordinates satisfy a
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given homogeneous linear equation. Thus a line complex is represented by
a five-dimensional subspace of V (2), but one is primarily interested in the
lines represented by extensors in that subspace, rather than the screws re-
presented by indecomposable 2-tensors. Thus a line complex represented by
A1

∨
A2

∨
. . .
∨

A5 would be the collection of all 2-extensors A = a1 ∨ a2

such that A
∨

A1

∨
. . .
∨

A5 = 0. However, A1, A2, . . . , A5 themselves could
be either decomposable or indecomposable. A line congruence is similar,
except that it is based on a four-dimensional subspace of V (2). For more on
these concepts and their application to robotics, see [18].

19.7 The Meet Operation

Now we define the meet operation on Λ(V ). Let A = a1a2 · · ·aj and B =
b1b2 · · · bk be two extensors with j + k ≥ n. Then

A ∧B =
1

(n− k)!(j + k − n)!
× (19.2)

∑
σ

sgn(σ)[aσ(1), aσ(2), . . . , aσ(n−k), b1, b2, . . . , bk]aσ(n−k+1) · · · aσ(j), (19.3)

where the sum is over all permutations σ of { 1, 2, . . . , j }. Notice that this
formula can be thought of as a linear combination of extensors of step j+k−n
(the a’s outside the bracket), with brackets as scalar coefficients. In fact, this
(j + k − n)-tensor turns out always to be a (j + k − n)-extensor when A and
B are extensors. However, we may also extend the meet operation to take the
meet of any two tensors by assuming distributivity.

Actually, this formula is correct when we are working over the field R of
real numbers, or any field of characteristic 0 (besides R, this includes the
field of rational numbers and the field of complex numbers). If a permutation
is applied just to the a’s inside the bracket, because of the antisymmetry
of the bracket and of the sign in front of the bracket, terms are reinforced,
and the same happens for permutations just of the a’s outside the bracket.
Thus an equivalent formula eliminates the numerical coefficient in front of the
summation, and sums only over permutations with

σ(1) < σ(2) < . . . < σ(n− k) and σ(n− k + 1) < σ(n− k + 2) < . . . σ(j).

These permutations are called shuffles of the (n− k, j+ k−n)-split of A. The
shuffle formula as opposed to the formula summing over all permutations is
essential when working over fields of finite characteristic, but is not necessary
when working over R.

Theorem 5. [5] If A and B are a j-tensor and a k-tensor (resp.), then

A ∧B = (−1)(n−j)(n−k)B ∧A.
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Theorem 6. If A and B are nonzero extensors, then

A ∧B �= 0⇔ A ∪B spans V.

If this is the case, then A ∧B is a (j + k − n)-extensor, and A ∧B = A ∩B.

Example 5.

In Euclidian 3-space (n = 4), let us take extensors a1a2a3 and b1b2, where
we assume that a1a2a3 and b1b2 are a plane and a line not contained in the
plane. Thus a1a2a3 ∩ b1b2 is a point, which is a point at infinity in the case
that b1b2 is parallel to a1a2a3. Indeed,

a1a2a3 ∧ b1b2 =
1
2

∑
σ

sgn(σ)[aσ(1), aσ(2), b1, b2]aσ(3)

= [a1, a2, b1, b2]a3 − [a1, a3, b1, b2]a2 + [a2, a3, b1, b2]a1,

using Eq. (19.2). Thus a1a2a3∧b1b2 is a linear combination of the three vectors
a1, a2, and a3, and hence is supported by some point on the plane a1a2a3.
But we also see by Theorem 5 that

a1a2a3 ∧ b1b2 = b1b2 ∧ a1a2a3 = [b1, a2, a3, a4]b2 − [b2, a1, a2, a3]b1.

Thus a1a2a3 ∧ b1b2 is also supported by a point on the line b1b2 hence its
support must be precisely the point of intersection a1a2a3 ∩ b1b2.

The Grassmann–Cayley algebra is the vector space Λ(V ) together with
the operations ∨ and ∧. These two operations are both associative, distribu-
tive over addition, distributive over scalar multiplication (i.e., α(A ∨ B) =
(αA)∨B = A∨ (αB), and similarly for ∧), and anticommutative in the sense
described in the theorems above. The Grassmann algebra is the same alge-
bra plus the usual dot product on V . However, Grassmann did not know our
formulas for the ∧ involving shuffles or all permutations, which considerably
restricted the usefulness of his algebra. These formulae for ∧ were discovered
(in their full generality) by Rota (see [2, 5, 20], where the Grassmann–Cayley
algebra is called the Cayley algebra or double algebra). We should also men-
tion that Grassmann–Cayley algebra can also be realized as a subalgebra of
a certain kind of Clifford algebra, see [10].

Grassmann thought of ∨ and ∧ as dual operations. If V is an n-dimensional
vector space over R, then the dual vector space V ∗ is the collection of linear
transformations from V to R (or to any one-dimensional vector space over
R). Each vector in V ∗ corresponds to a hyperplane (or (n − 1)-dimensional
subspace), and likewise each vector in V can be associated with a hyperplane
in V ∗, or better yet, with a covector, or (n− 1)-extensor in (V ∗)(n−1), whose
support is that hyperplane. This association can be extended to an invertible
linear transformation from V to (V ∗)(n−1) and from V (n−1) to V ∗, and indeed
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from all of Λ(V ) to Λ(V ∗), which maps V (k) to (V ∗)(n−k) for each k. This map
interchanges ∨ on Λ(V ) with ∧ on Λ(V ∗). Since V and V ∗ are both vector
spaces of dimension n over R, they are effectively interchangeable, so we have
the following theorem.

Theorem 7. The operations ∨ and ∧ on Λ(V ) are dual operations. That is,
if we prove any theorem about the Grassmann–Cayley algebra, we immediately
get another equivalent theorem by duality: interchange ∨ with ∧, vectors with
covectors, step k with step n − k, while at the same time interchanging the
geometric content: affine subspaces of dimension j are interchanged with affine
subspaces of dimension n− 1− j, and containment is reversed.

There are some issues with global signs that we are glossing over, although
we have already seen them in the more concrete case of Plücker coordinates.
By global signs, we mean signs in front of the entire Grassmann–Cayley ex-
pression. However, the geometric validity of any theorem is normally inde-
pendent of global signs or other scalar multiples, so this is not a big deal. On
the contrary, relative signs between individual terms in a Grassmann–Cayley
algebraic expression or a bracket expression are crucial.

19.8 Application to Statics

The next two sections follow Staffetti [21]. The result of a force f = (f1, f2, f3)
applied at the point p of a rigid body M may be represented by the join

F = p ∨ f = (f , p× f)

of the projective points (or homogeneous 4-tuples) p = (p1, p2, p3, 1) and
f = (f1, f2, f3, 0). A force is a free vector and is represented by the point at
infinity common to all of the lines parallel to the vector. However, the effect
of the force on a point of a rigid body is a line-bound vector, represented by
the 2-extensor of that line. Notice that the magnitude of the force may be
adjusted by taking scalar multiples of f , although that does not change the
point at infinity f . If two forces F1 = p ∨ f and F2 = q ∨ g with f = −g are
applied at two distinct points p and q of M , the resultant

G = F1 + F2 = p ∨ f + q ∨ (−f) = (p− q) ∨ f

is called a couple. Note that the couple is nonzero only if the line pq is not
parallel to the force vector f . Since p−q = (p1−q1, p2−q2, p3−q3, 0) represents
a point at infinity, this shows that we can conceptualize a couple as resulting
from the force f acting at a point at infinity on the body M . The couple is
said to act in the plane determined by p, q, and f .

In general, if two or more forces or couples are applied to a rigid body,
the resultant is typically neither a force nor a couple, but a wrench, which
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is represented by a 2-tensor, rather than a 2-extensor. This representing 2-
tensor is gotten by summing the 2-extensors representing the individual forces
or couples. We may always write a wrench as

w = (f ,m),

where f and m are the force and the moment, respectively, that must be
applied at the origin to equal w. Poinsot’s Theorem says that every wrench
can be rewritten as a sum of a single force acting along a certain line, plus a
single couple, with the couple acting in a plane orthogonal to the line of the
force (Fig. 19.8).

force

couple

Fig. 19.8. Poinsot’s Theorem

By now, the reader will no doubt have noticed that the representation
of wrenches by 2-tensors is very analogous to the representation of twists by
2-tensors, with the special case of rotation corresponding to force, translation
to couple, etc. In fact, for reasons that will become clear shortly, it is best to
think of twists as 2-tensors in V (2) and wrenches as 2-tensors in (V ∗)(2), where
V ∗ is the dual vector space of V , that is, the vector space of all linear trans-
formations from V to R. Since each such linear transformation has a kernel
that is a hyperplane, this really means that in the concrete interpretation of
Plücker coordinates, we are really representing the wrenches by dual Plücker
coordinates. Furthermore, in our case of n = 4, this really just means that we
are interchanging the first three Plücker coordinates with the last three, so
we now write

w = (m, f).

With this convention, the idea of reciprocity of a twist and a wrench has
a very simple presentation. Let t ∈ V (2)and w ∈ (V ∗)(2) be a twist and a
wrench, respectively. Then
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t · w = ttw = ω ·m + v · f

is the instantaneous power generated by t against w (see [16] or [21] for de-
tails). We say that t and w are reciprocal when ttw = 0. This formula really
expresses the duality between V and V ∗, in the following sense. If T ⊆ V (2)

is the twist space of a partially constrained rigid body M , and W ⊆ (V ∗)(2)

is the vector space of all wrenches that are reciprocal to every twist in T ,
then T and W are dual spaces in a sense that directly reflects the duality of
the Grassmann–Cayley algebra. This will become more apparent in the next
section.

19.9 Application to Series–Parallel Mechanisms

Let C and D be robot arms, each attached to the ground at one end and having
an end effector at the other end. The series connection of C and D is obtained
by attaching the ground link of D rigidly to the end effector of C, where we
assume that D was already in position to make this attachment, so that the
twist and wrench spaces of D do not change in making this connection. The
parallel connection of C and D is obtained by attaching the ungrounded end of
each to a common end effector. Common robot arms have six joints connected
in series, but other structures, such as a Stewart platform, have their joints
connected in parallel. A series–parallel robot is any robot created by a sequence
of such series and parallel connections. Let us consider the twist and wrench
spaces of a series–parallel robot.

Let TC and TD be the twist spaces of C and D, both of which spaces
are subspaces of V (2), and let AC and AD be the extensors in Λ(V (2)) that
are supported by those twist spaces. Then the twist space of their series con-
nection is just the sum of the two subspaces, and hence is the support of
AC

∨
AD, provided this superjoin is nonzero. If that superjoin is zero, this

means that the two twist spaces have nonzero intersection, that is, there is
some particular twist that can be realized by both C and D. Usually one can
eliminate this intersection; for example, if both C and D are arms with simple
joints connected in series, then at least one of the simple joints is dependent
on the others, and should be eliminated for purposes of the calculation. Of
course, in this case, the combined arm was in a critical configuration.

Similarly, if WC and WD are the wrench spaces of C and D, and BC and
BD are the corresponding extensors in Λ((V ∗)(2)), then the wrench space of
their series connection is the intersection of the two wrench spaces, and hence
is the support of BC

∧
BD if this supermeet is not zero. Again, if the supermeet

is zero, there are ways to get around this by adding artificial wrenches to cause
WC ∪WD to span (V ∗)(2). We are using

∧
for the meet in Λ((V ∗)(2)), as well

as in Λ(V (2)), to distinguish it from the meet in Λ(V ) or in Λ(V ∗).
Furthermore, the above two paragraphs remain true if we replace series

connection by parallel connection, provided we also interchange
∨

and
∧

.
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Thus the twist space of the parallel connection of C and D is the support of
AC

∧
AD if the super meet is not zero, and the wrench space of the parallel

connection of C and D is the support of BC

∨
BD if the superjoin is not zero.

Similar considerations apply to series–parallel robots, by applying the
above ideas to one step of the construction at a time. There is also the possi-
bility of computing the twist and wrench spaces of complicated robots which
are not constructable by successive series and parallel constructions. This is
done by Delta–Wye transformations; see [8] or [21].

19.10 An Example of a Robot Arm

Consider the example of a robot arm with six revolute joints, as shown
in Fig. 19.7. This is modified from a robot considered for the US space
shuttle. The large cylinders represent revolute joints, and the thin cylin-
ders represent links. We wish to find the critical configurations of the arm.
We choose two points on each joint axis, and consider the six joint centers
a1a2, b1b2, c1c2, d1d2, e1e2, f1f2. Notice that where possible we have chosen the
points determining the axes to coincide, namely a2 = b1, e2 = f1, and c2 = d1,
where the last of these is a point at infinity. Since the robot arm consists of the
six joints in series, the twist space is a1a2

∨
a2b2

∨
c1c2

∨
c2d2

∨
e1e2

∨
e2f2.

Since these six centers are in V (2), a six-dimensional space, the twist space
is all of V (2) precisely when the superjoin of these six centers is nonzero, in
other words, when the Plücker coordinate vectors of the six axes are linearly
independent. Then the arm has full mobility and is not in a critical configu-
ration.

So far, none of this is surprising or new. It is well known that the criticality
of a six-joint arm depends just on the linear dependence of the six Plücker co-
ordinate vectors. What is surprising and fairly new, however, is that we can use
ideas from the Grassmann–Cayley algebra to learn the geometry of the critical
configurations. The superjoin of the six vectors in V (2) amounts to computing
the determinant of the six Plücker coordinate vectors (up to some constant
scalar). This calculation is just the bracket in the Grassmann–Cayley algebra
Λ(V (2)), which we call the superbracket [[a1a2, b1b2, c1c2, d1d2, e1e2, f1f2]], to
distinguish it from the ordinary bracket of four points in V .

The superbracket of 6 general 2-extensors can also be considered as de-
termined by the 12 points selected on the axes. Then it is possible to prove
using the theory of projective invariants that the superbracket can be written
in terms of ordinary brackets involving those 12 points. This has been worked
out in [17], where the expression for our robot arm reduces to

[[a1a2, a2b2, c1c2, c2d1, e1e2, e2f2]]

= −
∑

σ

[a1, a2, b2, σ(c1)][a2, c2, d2, e2][σ(c2), e1, e2, f2]
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+
∑

τ

[a1, a2, b2, τ(c2)][a2, c1, c2, e2][τ(d2), e1, e2, f2]

=
∑

ρ

[ρ(c1), a1, a2, b2][ρ(d2), a2, c2, e2][ρ(c2), e1, e2, f2],

where each summation is over all permutations of the points involved (the
sums over σ and τ each involve two terms, and the same four terms are in
the sum over ρ, since two of the six terms in that sum are zero by virtue of
repeated elements).

Now we can recognize the last line as the expansion into brackets of the
Grassmann–Cayley expression

c1d2c2 ∧ a1a2b2 ∧ a2c2e2 ∧ e1e2f2.

Thus we can recognize that the geometric conditions corresponding to criti-
cality are precisely those that make this Grassmann–Cayley expression equal
to 0, namely:

1. one or more of the planes c1c2d2, a1a2b2, a2c2e2, e1e2f2 is degenerate, or
2. the four planes have nonempty intersection.

Notice that in the robot arm under consideration, none of the degeneracies
of type 1 can occur. To the author’s knowledge, condition 2 was not known
for such robot arms previous to the Grassmann–Cayley analysis.

19.11 Cayley Factorization

Consider the following diagram. We have seen that we can translate pro-
jective or affine geometric incidence conditions into the Grassmann–Cayley
algebra, and, furthermore, it is easy to translate backwards if we have a sim-
ple Grassmann–Cayley expression, that is, one involving only joins, meets,
and scalar multiplication. However, the backwards translation is much more
difficult if addition (or subtraction) in Λ(V ) is involved.

(1) Projective geometry
0

(2) Grassmann–Cayley algebra
↓ ↑ Cayley factorization

(3) Bracket algebra
↓

(4) Coordinate algebra

The translation from Grassmann–Cayley algebra to bracket algebra is
straightforward using our formula for expanding the meet, provided the
Grassmann–Cayley expression involved is of step 0 or n. Fortunately, this
is the case in most applications of interest.
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The translation from bracket algebra to ordinary coordinate algebra is
trivial: just introduce a fixed basis of V so that each bracket becomes a de-
terminant, and write out the usual formula for each determinant in terms of
the coordinates of the vectors involved. The backwards translation from coor-
dinate algebra to bracket algebra is possible, though computationally expen-
sive, provided the given coordinate expression has some expression in terms
of determinants (such expressions are known as projective invariants). See
Sturmfels [22] for an algorithm.

A very interesting problem is the translation from the bracket algebra
to the Grassmann–Cayley algebra. In other words, given an expression Q in
brackets, does there exist, and if so, can we find, a simple Grassmann–Cayley
expression that expands to Q? We call this process Cayley factorization.
By the way, if we allowed the Grassmann–Cayley expression to use addition,
the process becomes both very easy and useless. We saw an example of Cayley
factorization in the previous section, and it immediately gave us the desired
geometric interpretation of criticality. No practical algorithm is known for this
problem in the general case.

The importance of Cayley factorization arises from the following “philo-
sophical” point of view. It is best for many purposes to avoid level 4, and to
work instead on levels 2 and 3. This is because the expressions in those two le-
vels are symbolic and coordinate-free, and are therefore much closer to the way
we humans really think about the problems. A practical algorithm for Cayley
factorization would greatly facilitate this approach. The final section shows
two more applications closely related to robotics that use this coordinate-free
approach, and that illustrate the use of Cayley factorization.

19.12 Rigidity of Frameworks

Consider a d-dimensional bar framework, by which we mean a collection of
rigid bars connected to each other only at their endpoints, by spherical joints.
An instantaneous motion of such a framework is an assignment of velocity
vectors to each joint such that the lengths of the bars are instantaneously
preserved. A framework is rigid if the only instantaneous motions are the
rigid-body Euclidian motions in Rd. We represent the framework by a graph,
with vertices of the graph representing the joints, and edges of the graph re-
presenting the bars. Given such a graph, we can also represent the graph by
a framework, by choosing a point in Rd for each vertex, and then joining the
appropriate points by bars of length exactly equal to the distance between the
points involved. A graph G is called generically isostatic (for bar frame-
works) in Rd if there exists a realization of it in Rd that is rigid, but it is
minimally rigid in the sense that the removal of any one bar would make it
nonrigid. An example in R2 is shown in Fig. 19.9, which has six vertices and
nine edges. It is not difficult to show that a generically isostatic graph in R2
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with v vertices always has exactly 2v − 3 edges; if it is in R3 it must have
3v − 6 edges.

b3

a2
b1

a3

b2

a1

Fig. 19.9. A bar framework in the plane

A key question is whether we can describe geometrically the realizations
of a generically isostatic graph G that are not rigid. It can be proved that
such geometric conditions must be projectively invariant, and therefore de-
scribable by a bracket condition; that is, there must be a bracket expression
CG involving the vertices of the graph that is zero precisely for the nonrigid
(i.e., critical) realizations of G. In fact, [26] not only proves these facts, but
gives an algorithm to construct this bracket condition CG, called the pure
condition of G. Then it becomes a question of Cayley factorization of CG to
discover the desired geometric condition. In the example of Fig. 19.9, we find
(using the algorithm and the bracket algebra straightening algorithm) that

CG = [a1, a2, a3][a1, b2, b3][b1, a2, b3][b1, b2, a3]

−[b1, b2, b3][b1, a2, a3][a1, b2, a3][a1, a2, b3].

For a more complete description of how to compute the pure condition, and
an accessible summary of how it is done for this example, see [24] or [25].

This bracket expression is not easy to Cayley factor. However, it was recog-
nized as the bracket condition obtained by expanding the Grassmann–Cayley
expression

CG = (a1b2 ∧ a2b1) ∨ (a1b3 ∧ a3b1) ∨ (a2b3 ∧ a3b2).

Now we can see geometrically that CG = 0 precisely when each pair of opposite
sides of the hexagon in Fig. 19.9 is intersected to give a point (in the projective
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plane) and these three points are collinear. By Pascal’s Theorem, this is in
turn equivalent to the six joints lying on a common conic (a circle, ellipse,
parabola, hyperbola, or possibly a degenerate conic, which is just two lines).
Thus by Cayley factorization, we have the result that a realization of G is
rigid in the plane if and only if the six joints do not lie on a common conic
(possibly degenerate). Incidentally, further degenerate cases, such as two of
the joints being coincident or two of the bars lying on the same line, all fall
under the case of all six joints lying on a degenerate conic of two lines.

A second kind of framework we will consider is a bar-and-body frame-
work. This consists of a number of rigid bodies in Rd, connected by some
rigid bars, with each bar connected at its endpoints to two of the bodies,
using spherical joints. The bodies themselves may be either d-dimensional or
(d−1)-dimensional. Now an instantaneous motion is an assignment of a twist
to each body, in such a way as to preserve instantaneously the length of each
bar. Again, the framework is rigid if the only instantaneous motions are those
obtained from a single rigid-body motion, which is then applied to all of the
bodies (i.e., a Euclidian motion of the entire framework). Again, we can re-
present the framework by a graph, using vertices for the bodies and edges for
the bars. A graph is again called generically isostatic if some realization of
it as a bar-and-body framework in Rd is minimally rigid. Incidentally, the size
and shape of the bodies is essentially irrelevant— it is really just the geome-
try of the bars that controls the rigidity here. Such a graph with v vertices
must have exactly 6(v − 1) edges to be generically isostatic for bar-and-body
frameworks in R3, and 3(v − 1) in R2.

As in the case of bar frameworks, there is a pure condition for bar-and-body
frameworks, and an algorithm to compute it, in [27]. One major difference,
however, is that the brackets contain bars, not just joints of the framework. In
fact, each bracket is really a superbracket (see Sect. 19.10). As a simple exam-
ple, consider Fig. 19.10. There are three rigid bodies in the plane, connected
by six bars. The pure condition is

CG = [[a, b, c]][[d, e, f ]]− [[a, b, d]][[c, e, f ]], (19.4)

which can be easily Cayley factored as

CG = ab
∧

cd
∧

ef.

How is this super-Grassmann–Cayley expression to be interpreted geometri-
cally? First, let us note that since we are working in R2, V is three-dimensional,
as is V (2). In fact, it is very natural to think of V (2) as V ∗, the dual vector
space of V , because each vector in V (2) is supported by a line, which is a
hyperplane in V . Thus the join ab (or really a

∨
b in Λ(V (2))) corresponds to

a ∧ b in Λ(V ), where we are now thinking of a and b as 2-extensors in Λ(V ).
Thus the support of a

∨
b is the point of intersection of the (lines determined

by) the bars a and b. Thus the critical configurations are all those in which the
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three points of intersection are collinear. This result has the following kine-
matic interpretation. The intersection of the lines of the bars a and b is the
center of relative motion of the two bodies connected by a and b, and similarly
for the other pairs of bars connecting a given pair of bodies. A theorem of
Aronhold [1] states that if three rigid bodies are in relative motion, then the
three centers of relative motion must be collinear, a result we have just verified
(even for instantaneous motions) using our techniques of pure condition and
Cayley factorization.

c

b

d
e

f

a

Fig. 19.10. A bar-and-body framework in the plane

An interesting feature of the pure condition of a bar-and-body framework
is that every bar appears only once in each term of the pure condition. For
example, in the framework of Fig. 19.10, we saw that the pure condition in
Eq. 19.4 is a difference of two terms, each of which is a product of two brackets,
with each bar occuring exactly once in the brackets of a term. This situation
is described by saying that the pure condition of a bar-and-body framework
is multilinear, and in the multilinear case, Cayley factorization is much easier
than in the general case. In fact, [23] gives an algorithm to Cayley factor a mul-
tilinear bracket expression (or announce its impossibility if that is the case),
although the algorithm is effective in practice only up to about 20 bars. No
algorithm is known for the nonmultilinear case of Cayley factorization, short
of literally expanding all possible Grassmann–Cayley expressions (although
even then, comparing the resulting expansion to the given bracket expression
is nontrivial, requiring the straightening algorithm to reduce both expressions
to a standard form). Nevertheless, attempts at providing such an algorithm
in certain situations has met with some success, see [13] and [14].

Let us briefly see how the multilinear Cayley factorization algorithm works.
Suppose we wish to Cayley factor the bracket polynomial
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P = [a, b, c][d, e, f ] + [a, b, d][c, e, f ].

We see that P is indeed a multilinear bracket polynomial on six points in the
plane. The algorithm first checks to see which pairs of points have the property
that P is antisymmetric in that pair. For example, to see if P is antisymmetric
in a, b, we take P and subtract from it the result of interchanging a and b in
P . We now use the straightening algorithm to check whether this difference
is 0 (although in this case, this should be obvious, because each of the two
terms in P is antisymmetric in a and b). It turns out that the only such pairs
are the two obvious ones, a, b and also e, f . This already is enough to see that
P cannot be Cayley factored. If there were a Cayley factorization, c would
have to appear in some join with at least one other point, and then P would
be antisymmetric in c and that other point. If all points had been involved
in antisymmetric pairs, then the algorithm would compute all maximal sets
of points that are pairwise antisymmetric. These are candidates for joins of
points that are involved in meets in a Cayley factorization of P . The algorithm
then checks for antisymmetry in the sense of Theorem 5. If even one such
antisymmetry is found, it is then possible to reduce the number of points
involved in P and continue inductively. For complete details, see [23].

Another nice example of the use of the pure condition and Cayley factori-
zation to determine the critical configurations of a framework is given in [6].
They consider an octahedral manipulator, which is just a Stewart platform,
with both the platform and base considered as rigid bodies in R3, with six
bars connecting them. It is easy to see that the critical configurations of the
Stewart platform as a robotic structure are the same as those of the bar-and-
body framework, since in both cases it is precisely the configurations where
the superbracket of the six bars is zero, that is, the six bars have dependent
Plücker coordinates.

Thinking of the last example as a Stewart platform raises the following
question: if a single bar in a generically isostatic bar-and-body framework is
replaced by a linear actuator and then actuated, can the resulting instanta-
neous motion be computed? The answer is yes, and it is easily gotten from
the pure condition, as shown in [27]. Let us see how this works in the example
in Fig. 19.10. Let us actuate the bar a by a unit velocity (instantaneously),
and ask for the relative motion between the two bodies connected by a. If we
think of the first body as fixed to the ground, then this gives the instantaneous
motion of the other body. We just have to take the pure condition in Eq. 19.4
and factor out a. Recalling that the superbrackets in that equation are really
superjoins of step 3, we get

m = [[d, e, f ]]b
∨

c− [[c, e, f ]]b
∨

d.

Recalling the duality explained above, b
∨

c is a point on the line b, as is
b
∨

d. Thus the center of relative motion m is a particular linear combination
of those two points.
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The analogous problem for a bar framework is also of interest, and is
currently being studied by the author.

19.13 Other Applications

Other applications of the Grassmann–Cayley algebra include computer vision
[7], proving geometry theorems [20], and even automatic geometry theorem-
proving [4, 19].

19.14 Conclusion

The Grassmann–Cayley algebra is a symbolic approach to Plücker coordi-
nates, which is very useful for analyzing the instantaneous kinematics and
statics of robots, as well as determining the geometry of the critical configu-
rations. The latter involves the process of Cayley factorization, which has met
with some success, but is not well understood in general.
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20.1 Introduction

In this chapter the classical mechanics of rigid bodies will be investigated
using a novel Clifford algebra representation. A key point is that this algebra
contains elements representing the velocities, momenta and inertias of rigid
bodies. Modern approaches to classical mechanics treat velocities and mo-
menta as dual objects. That is, the velocities are vectors and the momenta
are linear functionals on the vectors. Hence velocities and momenta are fun-
damentally different types of object. There is a pairing, or evaluation map
that produces a scalar energy given a velocity and a momenta. The mapping
which turns a velocity into a momenta is provided by the inertia. The inertia is
also represented by a element in the Clifford algebra. The approach taken has
some similarities to recent attempts to represent linear algebra using Clifford
algebra [11].

The other key ingredient here is the action of the group of rigid body
motions or proper Euclidian group SE(3). The position and orientation of
a rigid body is given by setting a ‘home’ position for the body and then
specifying the rigid motion which transforms the home configuration into the
current one. The elements of this group can also be found as elements of
the Clifford algebra. The action of this group on the velocities, momenta
and inertias is extremely important and turns out to be quite simple in this
representation.

This allows a very succinct formulation of the equations of motion for a
rigid body. This material is reviewed in Sect. 20.2. In Sect. 20.3 the methods
are extended to look at the dynamics of serial robots. These can be considered
as mechanisms composed of several rigid bodies connected by simple joints.
First, a fairly simple derivation of the equations of motion is given. Then,
the Lagrangian and Hamiltonian mechanics of these robots are introduced.
These are used to find the equations of motion again, but this time in terms
of the joint variables and their derivatives. In particular, simple formulas are
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given for the elements of the generalised mass matrix, and the centrifugal and
Coriolis terms.

In Sect. 20.4 parallel machines are considered. Here the robot is considered
as a star-structured mechanism with constraints on the leaf links. Hence, the
representation of constraints by a linear system of constraint wrenches which
are dual to a system of screws of freedom is introduced. Finally, a method to
find the equations of motion for a Stewart platform is sketched.

The Clifford algebra used here was introduced in [7], where more details
on the application to a single rigid body can be found. More detail on the
dynamics of serial robots can be found in [5, Chap. 12] and on parallel robots
in [9]. To begin with the Clifford algebra will be introduced.

20.2 The Clifford algebra C	(0, 6, 2)

20.2.1 Rigid Transformations

The group of proper rigid body motions in three dimensions is usually de-
noted SE(3). Its elements are sometimes called finite screws. This is because
all elements of the group, except the pure translations, are helical motions
consisting of a rotation about an axis followed by a translation along that
axis. In the kinematics literature the Lie algebra of the group (denoted se(3))
are usually called twists or infinitesimal screws. The term screw will also be
used here to denote a Lie algebra element.

It has been known for a long time that both finite and infinitesimal screws
can be represented using the Clifford algebra C�(0, 3, 1). This is the basis for
Study’s dual quaternions, see [12] and also [4]. Here, we have three generators
which square to −1 and one which squares to 0. Say, e2

1 = e2
2 = e2

3 = −1, and
e2 = 0.

In this algebra we can represent rotations by elements of the form

r = cos
θ

2
+ sin

θ

2
(uxe2e3 + uye3e1 + uze1e2). (20.1)

The angle of rotation is θ, and (ux, uy, uz)T is a unit vector in the direction of
the rotation axis. This is simply the representation of rotations by quaternions,
in a slightly different guise; just replace e2e3 �→ i, e3e1 �→ j and e1e2 �→ k.
So, this is a double-valued representation, or rather a representation of the
covering group Spin(3).

Translations can be represented in this algebra by elements of the form,

t = 1 +
1
2
(txe1e + tye2e + tze3e). (20.2)

Since rigid motions are combinations of rotations and translations g = tr,
they will have the general form
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g = α0 + α1e2e3 + α2e3e1 + α3e1e2 + β0e1e2e3e

+β1e1e + β2e2e + β3e2e + β3e3e (20.3)

where the αs and βs are real coefficients. The coefficients are not completely
arbitrary, for such an element to be a rigid body motion it must satisfy the
condition

gg∗ = 1 (20.4)

where ∗ denotes the Clifford conjugate. In terms of the coefficients this gives
just two relations

α2
0 + α2

1 + α2
2 + α2

3 = 1, and α0β0 + α1β1 + α2β2 + α3β3 = 0. (20.5)

The Lie algebra of the group, the twists or screws, are represented by
arbitrary elements of grade 2,

s = ωxe2e3 + ωye3e1 + ωze1e2 + vxe1e + vye2e + vze3e. (20.6)

As usual, (ωx, ωy, ωz)T is the angular velocity vector of the body and
(vx, vy, vz)T is the linear velocity vector of the body. The Lie bracket of
a pair of screws s1 and s2 is simply their commutator,

[s1 , s2] =
1
2
(
s1s2 − s2s1

)
. (20.7)

The adjoint representation of the group on its Lie algebra is given in the
Clifford algebra by the conjugation

Ad(g)s = gsg∗. (20.8)

Next, the exponential map from the Lie algebra to the group is consistent
with the Clifford algebra, given a Lie algebra element z we have

g = e
1
2 z. (20.9)

The factor 1
2 here is due to the fact that we are working in the double cover

of SE(3).
Now the adjoint representation of the Lie algebra on itself can be found.

This is done by differentiating the adjoint action of the group at the identity.

ad(s1)s2 =
d
dt

e
t
2 s1s2e−

t
2 s1
∣∣∣
t=0

=
1
2
(
s1s2 − s2s1

)
. (20.10)

That is, the adjoint action of the Lie algebra is simply the Lie bracket,
ad(s1)s2 = [s1 , s2].

The velocity screw comes from the time derivative of the exponential. This
is simple if the motion of the body is a uniform motion about a constant screw,
g = e

t
2 s0 . As above, the derivative of this is,
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d
dt

g =
1
2
s0g. (20.11)

When the motion is more general, g = e
1
2z(t), then it is harder to show but

nevertheless true that
d
dt

g =
1
2
sg, (20.12)

where s is the velocity screw of the rigid body. The relationship between s
and z is given by

s =
∞∑

i=0

1
(i + 1)!

adi(z)
d
dt

z, (20.13)

where adi(z)y = [z, adi−1(z)y], and ad1(z)y = ad(z)y = [z,y], see [1].

20.2.2 Momenta and Inertia

In order to include momenta and inertias the algebra can be ‘doubled’, that
is, the Clifford algebra C�(0, 6, 2) can be used. The generators can be labelled,
e1, e2, e3, e and a1, a2, a3, a, and assume that a2

i = e2
j = −1 and a2 = e2 = 0.

In this algebra the coscrews, that is elements of the dual to the Lie algebra,
are represented by grade-2 elements of the form

P = pxa2a3 + pya3a1 + pza1a2 + lxa1a + lya2a + lza3a (20.14)

A combination of a force and a torque applied to a rigid body is also a coscrew.
A three-dimensional force F and torque τ would be represented as

W = Fxa2a3 + Fya3a1 + Fza1a2 + τxa1a + τya2a + τza3a. (20.15)

The action of the group of rigid body motions on these coscrews is exactly
the same as the action on the screws but using as instead of es. So, let us
introduce a new operation, an involution, which exchanges as for es. If we
write this with an overbar then āi = ei and ēi = ai.

Now the group action on momenta can be written

P −→ ḡP ḡ∗, (20.16)

where g would be the corresponding group element that acts on the screws.
This is the coadjoint representation of the group.

Notice that in fact the same transformation law could be used for the
screws and coscrew, s → (gḡ)s(gḡ)∗; since ḡ commutes with s and P →
(gḡ)P(gḡ)∗, since g commutes with P .

We will need the coadjoint action of the Lie algebra on its dual space.
This can be found from the group action on the coscrews given above. Let
us suppose that a coscrew is subject to a uniform motion about a screw. The
relevant group elements can be written as exponentials, g = ets/2, where t is
time. Hence, as a function of time the coscrews is given by,
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P(t) = e
t
2 s̄Pe−

t
2 s̄. (20.17)

Now if we differentiate this with respect to t and then set t = 0, we get the
coadjoint action of the screw s on the coscrew P ,

{s ,P} =
1
2
(
s̄P − P s̄

)
. (20.18)

Note that the standard notation for this action is given by curly brackets as
above.

Next we look at the inertia operator. The inertia operator here will be a
combination of the usual 3× 3 inertia matrix, the mass and centre of gravity
of the body. In screw theory, this can be represented using a 6× 6 symmetric
matrix. A diagonal inertia matrix can be represented as

N = dxa1ae1e + dya2ae2e + dza3ae3e + ma2a3e2e3

+ma3a1e3e1 + ma1a2e1e2. (20.19)

Under a rigid body motion this transforms according to

N −→ (gḡ)N(gḡ)∗. (20.20)

It is well known that any inertia matrix can be diagonalised using a rigid
motion, hence we can find the Clifford algebra element representing any inertia
matrix.

As an example, consider how the diagonal inertia above transforms under
a translation of tx in the x-direction. For this transformation we have

g = 1 +
1
2
txe1e (20.21)

and hence,

gḡ =
(
1 +

1
2
txe1e

)(
1 +

1
2
txa1a

)
= 1 +

1
2
txa1a+

1
2
txe1e+

1
4
t2xa1ae1e (20.22)

For hand calculation it is probably better to perform the multiplications by g
and ḡ separately. The result is

gḡNḡ∗g∗ = dxa1ae1e + (dy + mt2x)a2ae2e + (dz + mt2x)a3ae3e

+mtxa3ae3e1 −mtxa2ae1e2

+mtxa3a1e3e−mtxa1a2e2e

+ma2a3e2e3 + ma3a1e3e1 + ma1a2e1e2. (20.23)

Compare this with the corresponding 6× 6 inertia matrix,



662 J. M. Selig⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
dx 0 0 0 0 0
0 dy + mt2x 0 0 0 −mtx
0 0 dz + mt2x 0 mtx 0
0 0 0 m 0 0
0 0 mtx 0 m 0
0 −mtx 0 0 0 m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20.24)

The inertia matrix is always a symmetric matrix; in the Clifford algebra
this corresponds to the property N̄ = N .

Finally in this section we look at some invariants under this group action.
The pseudoscalar in the algebra C�(0, 3, 1) is simply E = e1e2e3e, which is
clearly invariant under the action E = gEg∗. As an element of C�(0, 6, 2) it
commutes with ḡ and hence

E = (gḡ)E(gḡ)∗. (20.25)

By a similar argument, the element A = Ē = a1a2a3a is also invariant.

A = (gḡ)A(gḡ)∗. (20.26)

The third invariant we will need is the following grade-4 element:

Q0 = a2a3e1e + a3a1e2e + a1a2e3e + a1ae2e3 + a2ae3e1 + a3ae1e2. (20.27)

It is straightforward to verify that this does indeed satisfy the relation

Q0 = (gḡ)Q0(gḡ)∗. (20.28)

Notice also that Q̄0 = Q0.
Finally, there are a couple of neat equations which tie some of these ideas

together,
Q0 ∧ s = s̄E, and s̄ ∧Q0 = As. (20.29)

These relations are simple to verify by direct computation.

20.2.3 Operation and Products

Here we look at how to combine the objects that were introduced above.
The theory of exterior or Grassmann products (∧) in Clifford algebras is well
established, see [3], for example. However, we will also need the dual of this
operation. In a nondegenerate Clifford algebra this could be done simply using
the unit pseudoscalar, that is the element e1e2 · · · en with maximum grade.
The algebra used here is degenerate since some of the generators square to
zero, so this operation has to be introduced explicitly.

The construction is borrowed directly from the theory of Grassmann–
Cayley algebras, see [13]. The operation we need is called the shuffle product
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∨ and is defined as follows. Let b = b1∧b2∧· · ·∧bj and c = c1∧c2∧· · ·∧ck in
a general Clifford algebra, with j+ k ≥ n the dimension of the algebra. Then,

b ∨ c =
∑

σ

sign(σ) det(bσ(1), . . . , bσ(n−k), c1, . . . , ck)bσ(n−k+1) ∧ · · · ∧ bσ(j).

(20.30)
The sum is taken over all permutations σ of 1, 2, . . . , j such that σ(1) < σ(2) <
· · · < σ(n− k), and σ(n− k + 1) < σ(n− k + 2) < · · · < σ(j).

Each bi can be written as a sum of basis elements

bi = bi1e1 + bi2e2 + · · ·+ binen. (20.31)

So the determinant in the above definition is the determinant of the matrix
whose columns are the coefficients aσ(1)i, aσ(2)i, . . . , bσ(k)i. The shuffle product
is then extended to the entire Clifford algebra by demanding that it distributes
over addition. It is also possible to show that it is associative.

As an example, consider the Clifford algebra C�(0, 6, 2). Before doing any
calculations an order for the generators must be fixed. So assume that the
standard order of the generators is given by

a1, a2, a3, a, e1, e2, e3, e. (20.32)

Now consider A ∨ E = (a1 ∧ a2 ∧ a3 ∧ a) ∨ (e1 ∧ e2 ∧ e3 ∧ e), for ortho-
gonal generators we can confuse the Clifford and exterior products. From the
definition above we have that

A ∨ E = det(a1, a2, a3, a, e1, e2, e3, e) = 1. (20.33)

As another example, suppose we need to compute (a1a2a3a) ∨ (a3a1e1e2e3e):

(a1a2a3a) ∨ (a3a1e1e2e3e) = det(a1, a2, a3, a1, e1, e2, e3, e)a3a + · · ·
− det(a2, a, a3, a1, e1, e2, e3, e)a1a3 + · · ·

+ det(a3, a, a3, a1, e1, e2, e3, e)a1a2.(20.34)

Clearly only the middle term on the right-hand side is nonzero so we have the
result

(a1a2a3a) ∨ (a3a1e1e2e3e) = a3a1. (20.35)

Now it is possible to write the evaluation map of a coscrew on a screw.
Recall that the coscrews are dual to the screws and hence can be thought
of as linear functionals on the screws. The evaluation map can be written in
several possible forms,

P(s) = P ∨ (Q0 ∧ s) = (P ∧Q0) ∨ s, (20.36)

using the invariant element Q0 described above. Notice that this is very similar
to traditional screw theory. There, velocities and momenta would both be



664 J. M. Selig

represented by screws and the evaluation map would be given by the reciprocal
product.

Using Eq. (20.29), the evaluation map can also be written in the following
forms:

P(s) = P ∨ s̄E = AP̄ ∨ s. (20.37)

The elements P and s̄ have grade 2 and contain only as; likewise the elements
P̄ and s have grade 2 and contain only es. From these facts and the definition
of the shuffle product, given by (20.30), it is easy to see that we can rearrange
the previous equations to get yet another couple of versions of the evaluation
map,

P(s) = s̄ ∨ PE = As ∨ P̄ . (20.38)

Next, the inertia operator operates on velocities and turns them into mo-
menta. This operation can be written using the A invariant defined above,

P = A ∨ (N ∧ s). (20.39)

Finally, the kinetic energy of a rigid body is given by evaluating its mo-
mentum on its velocity, and dividing by 2. In the Clifford algebra this can be
written

Ek =
1
2
P ∨ (Q0 ∧ s) =

1
2
A ∨ (Q0 ∧ s) ∨ (N ∧ s). (20.40)

From Eq. (20.29) we have

A ∨ (Q0 ∧ s) = A ∨ s̄E = s̄. (20.41)

So the kinetic energy can be written neatly as

Ek =
1
2
s̄ ∨ (N ∧ s). (20.42)

Notice that, because N is symmetric, this combination is symmetric. That is,
for a pair of screws s1, s2 we have that

s̄1 ∨ (N ∧ s2) = s̄2 ∨ (N ∧ s1). (20.43)

20.2.4 Equations of Motion for a Single Body

The equations of motion can be derived very simply now. According to New-
ton’s second law, the force applied to the body is equal to the rate of change
of momentum, which in our notation becomes

d
dt
P =W , (20.44)

where W is the applied wrench. The momentum is given by P = A∨ (N ∧ s),
as we saw above. The derivatives of the factors here are simple to find, A is
an invariant so its derivative is zero, and the screw s is the unknown here so
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we simply write d
dts = ṡ. The derivative of the inertia matrix can be found by

differentiating the group action

d
dt

N =
1
2
(sN −Ns) +

1
2
(s̄N −N s̄). (20.45)

A straightforward computation reveals that (sN −Ns) ∧ s = 0. So when we
combine these results to form the derivative of the momenta we get

d
dt
P = A ∨ (N ∧ ṡ) +

1
2
A ∨

(
(s̄N −N s̄) ∧ s

)
. (20.46)

The second term on the right-hand side here is

1
2
(
s̄(A ∨ (N ∧ s))− (A ∨ (N ∧ s))s̄

)
= {s , A ∨ (N ∧ s)} = {s ,P}. (20.47)

So the equation of motion can be written as

A ∨ (N ∧ ṡ) + {s , A ∨ (N ∧ s)} =W . (20.48)

We can tidy our Clifford equation of motion a little by introducing the
invariant element E = e1e2e3e (Sect. 20.2.2). Suppose that c = xaE, where
xa is an element of the algebra that contains ais but no eis, then it is not hard
to see that A ∨ c = A ∨ xaE = xa. Hence, E(A ∨ c) = Exa = c; remember
that E is a product of an even number of eis and so commutes with any xa.
Taking the Clifford product of Eq. (20.48) with E results in

N ∧ ṡ +
1
2
(
s̄(N ∧ s)− (N ∧ s)s̄

)
=WE. (20.49)

Finally, since s and s̄ commute, we may write the equation of motion as

N ∧ ṡ +
1
2
(s̄N −N s̄) ∧ s =WE. (20.50)

Notice that this is a relation among elements of the algebra with degree six.
However, all the terms will have the general form aiajE.

20.3 Serial Robots

A serial robot consists of several rigid links joined in series by one-degree-of-
freedom joints, (Fig. 20.1). For industrial applications it is most common to
use six links, this is so that the robot’s end effector, or gripper, will have six
degrees of freedom. However, several commercial robots have only four or five
joints, for example, most spray-painting robots have only five joints because
the final rotation about the axis of the spray nozzle is not important. Usually
the joints are rotary joints, called revolute joints by mechanical engineers.
These can be driven easily by electric motors. More rarely, prismatic or sliding
joints are used.



666 J. M. Selig

z1

z2

z3

z4

z5

z6

Fig. 20.1. A six-joint industrial robot arm

20.3.1 Equations of Motion

The simplest way to derive the equations of motion is to copy the methods of
elementary mechanics. That is to say, we can write an equation of motion for
each rigid link and then manipulate these equations to remove the unknown
reaction forces and torques at the joints. The equations of motion for each
link are simply

Ni ∧ ṡi +
1
2
(
s̄i(Ni ∧ si)− (Ni ∧ si)s̄i

)
=WiE, i = 1, 2, . . . , 6. (20.51)

The subscript i here refers to the ith link. It will be assumed that the robot
has six links.

The wrench acting on each link can be written as a sum of five terms

Wi = Ti − Ti+1 +Ri −Ri+1 + Gi, (20.52)

here Ti is the torque due to the ith motor, Ri is the reaction wrench at the ith
joint and Gi is the wrench due to gravity (Fig. 20.2). At the last link, however,
there are only three wrenches:

W6 = T6 +R6 + G6. (20.53)

So if we add the equations of motion cumulatively from the ith to the last,
we get

6∑
j=i

(
Nj ∧ ṡj +

1
2
(
s̄j(Nj ∧ sj)− (Nj ∧ sj)s̄j

)
− GjE

)
= TjE +RjE, (20.54)

where i = 1, 2, . . . , 6. To get rid of the reaction wrenches we pair the equations
with the joint screws; that is, we can use the evaluation map. Recall from
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Fig. 20.2. Force/torque diagram for a single link

Sect. 20.2.3 that evaluating a momentum coscrew on a velocity screw gives
the kinetic energy, up to a constant factor, see Eq. (20.42). Here we evaluate
a wrench on a velocity screw, and this gives the power or rate of work. By
the principle of virtual work the reaction wrenches can do no work on the
joint screw, so Ri(zi) = 0, where zi is the ith joint screw. On the other hand,
pairing the wrench due to the motor with this screw gives the amplitude of the
torque provided by the motor, Ti(zi) = τi. The amplitude τi here is a scalar.
We can use the expression P(s) = s̄ ∨ PE, from Eq. (20.38) to substitute for
the evaluation map. So the equations of motion for our robot become

6∑
j=i

(
z̄i∨(Nj∧ ṡj)+

1
2
z̄i∨

(
s̄j(Nj∧sj)−(Nj∧sj)s̄j

)
− z̄i∨GjE

)
= τi, (20.55)

where again i = 1, 2, . . . , 6.
There are a couple of ways in which this can be tidied. First, the middle

terms on the left can be simplified to

1
2
z̄i ∨

(
s̄j(Nj ∧ sj)− (Nj ∧ sj)s̄j

)
=

1
2
(z̄is̄j − s̄j z̄i) ∨ (Nj ∧ sj). (20.56)

This follows from the symmetry properties of triple products. The second
simplification involves the introduction of the ‘gravity screw’. Assuming that
gravity acts in the minus z-direction, we set g = −ge3e with g the acceleration
due to gravity (9.81 m/s2). The wrench due to gravity on the ith link is now
given by

GiE = Nj ∧ g. (20.57)

This is easily verified using a diagonal inertia matrix; in such a case the origin
of the coordinate system would correspond to the centre of mass of the link.
And in these coordinates the gravity wrench would be a pure force with no
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moment. The action of the group of rigid motions can then be used to show
that the relation is true in general.

The equations of motion for the robot can now be written in the simple
form

6∑
j=i

(
z̄i ∨ (Nj ∧ (ṡj − g)) +

1
2
(z̄is̄j − s̄j z̄i) ∨ (Nj ∧ sj)

)
= τi, (20.58)

and as usual by now, i = 1, 2, . . . , 6.
Although this is rather neat, it is not that useful as it stands. The equations

involve the velocity screws si of the links. In most robot applications it is more
useful to have the equations in terms of the joint variables. For a revolute joint
this would be the angle turned by the joint. Rather than develop the above
equations another approach will be illustrated in the next section.

20.3.2 Lagrangian and Hamiltonian Methods

In the interests of brevity the weight of the links will be ignored in this section.
Hence the Lagrangian of the robot is simply its total kinetic energy

L =
1
2

6∑
i=1

s̄i ∨ (Ni ∧ si). (20.59)

In order to develop the Euler–Lagrange equations we need to know about the
kinematics of the robot. Suppose that the joint screws of the robot in the
home position are given by z0

1, z0
2, . . . z

0
6. The position of the i-link is given by

the rigid transformation gi, which moves the link from its home position to
its current one. This can be written as a product of exponentials

gi = e
1
2 θ1z

0
1e

1
2 θ2z

0
2 · · · e 1

2 θiz
0
i . (20.60)

Here θi represents the joint variable for the ith joint. If the the joint is revolute
then this will be an angle, while for prismatic joints it is a length. In either case
the variable will be zero in the home configuration of the robot. To understand
this formula, imagine moving the robot from its home position to the current
position by moving each joint in turn, beginning with the one nearest the last
link and then working towards the ground link.

The velocity screw of the ith link is given by differentiating with respect
to time and then translating back to the identity si = ġig

−1
i . Here the inverse

of a group element is given by the Clifford conjugate; hence we have,

si = ġig
∗
i =

1
2
θ̇1z0

1 +
1
2
θ̇2g1z0

2g
∗
1 + · · ·+ 1

2
θ̇igi−1z0

i g
∗
i−1, i = 1, 2, . . . 6.

(20.61)
Now the current position of the ith joint screw, relative to its home position,
is given by the adjoint action:
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zi = gi−1z0
i g

∗
i−1, i = 1, 2, . . .6. (20.62)

So, the velocity screw of the the ith joint can be written as

si =
1
2
(θ̇1z1 + θ̇2z2 + · · ·+ θ̇izi), i = 1, 2, . . .6. (20.63)

In terms of the joint screws the Lagrangian can be written as

L =
1
2
Aij θ̇iθ̇j (20.64)

here, and in the following, the summation convention is adopted; it is assumed
that repeated indices are to be summed over, unless otherwise stated. In ro-
botics the object Aij is known as the ‘generalised mass matrix’ of the robot.
From the above we can write the elements of this matrix as

Aij =
6∑

l=max(i,j)

z̄i ∨ (Nl ∧ zj), i, j = 1, 2, . . . 6. (20.65)

The Euler–Lagrange equations are

d
dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= τi, i = 1, 2, . . . 6. (20.66)

This is often written as

Aij θ̈j + Bijk θ̇j θ̇k = τi, i = 1, 2, . . . 6. (20.67)

The Bijk terms are the Christoffel symbols of the metric determined by the
kinetic energy; in robotics they are usually called the centrifugal and Coriolis
terms, see [10, Chap.6], for example. It is not hard to see that

Bijk θ̇j θ̇k =
∂Aij

∂θk
θ̇j θ̇k −

1
2
∂Ajk

∂θi
θ̇j θ̇k, i = 1, 2, . . .6, (20.68)

using the chain rule to differentiate with respect to t. This is usually written
as the more symmetrical formula

Bijk θ̇j θ̇k =
1
2

(∂Aij

∂θk
+

∂Aki

∂θj
− ∂Ajk

∂θi

)
θ̇j θ̇k, i = 1, 2, . . .6. (20.69)

This follows because Aij is symmetric, so we can exchange i and j, then since
we are summing over j and k these index variables may be relabelled. Now
we can set

Bijk =
1
2

(∂Aij

∂θk
+

∂Aki

∂θj
− ∂Ajk

∂θi

)
, i, j, k = 1, 2, . . .6. (20.70)

This is not the only solution for Bijk since we only know Eq. (20.69) above,
but it is a reasonable choice.
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To proceed we need the derivatives of the joint screws and link inertias with
respect to the joint angles. Recall that in Eq. (20.62) the forward kinematics
of the joint screws were given as zi = gi−1z0

i g
∗
i−1. So, differentiating with

respect to a joint angle above this joint in the serial chain gives nothing

∂

∂θi
zj = 0, 1 ≤ j ≤ i ≤ 6. (20.71)

On the other hand, if the joint angle we are moving is below the joint in the
chain, using Eq. (20.62) we have,

∂

∂θi
zj =

∂

∂θi
(gj−1z0

jg
∗
j−1), 1 ≤ i < j ≤ 6

=
1
2
gi−1z0g∗i−1gj−1z0

jg
∗
j−1 −

1
2
gj−1z0

jg
∗
j−1gi−1z0

i g
∗
i−1

=
1
2
(zizj − zjzi). (20.72)

The derivative of z̄i can be found by ‘barring’ the above result. For the inertias
we have that Ni = giḡiN

0
i ḡ

∗
i g

∗
i , where N0

i is the inertia of the ith link in the
home position of the robot. So, by a similar argument to the one for the joint
screws we have that

∂

∂θi
Nj =

{ 1
2 (ziNj −Njzi) + 1

2 (z̄iNj −Nj z̄i), if1 ≤ i ≤ j ≤ 6
0, otherwise.

(20.73)

A relation can be derived here which will help simplify the derivatives in a
moment. Consider the scalar s̄1∨(N ∧s2). There are many ways to verify that
this is indeed a scalar, perhaps the simplest is to observe that it is invariant
under an arbitrary rigid body transformation. See Sect. 20.2.2 for the relations
specifying how s̄1, s2 and N transform under rigid body motions.

Now using those transformation properties we have

s̄1 ∨ (N ∧ s2) = ḡs̄1ḡ
∗ ∨ (gḡNḡ∗g∗ ∧ gs2g

∗). (20.74)

Now suppose that g = e
1
2 ts3 and differentiate the above with respect to t

0 =
1
2
(s̄3s̄1 − s̄1s̄3) ∨ (N ∧ s2)

+
1
2
s̄1 ∨

(
(s3N −Ns3) ∧ s2 + (s̄3N −N s̄3) ∧ s2

)
+

1
2
s̄1 ∨

(
N ∧ (s3s2 − s2s3)

)
. (20.75)

Rearranging this and using the symmetry of the pairing as given in Eq. (20.43),
we get the relation
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1
2
s̄1 ∨

(
(s3N −Ns3) ∧ s2 + (s̄3N −N s̄3) ∧ s2

)
=

1
2
(s̄1s̄3 − s̄3s̄1) ∨ (N ∧ s2) +

1
2
(s̄2s̄3 − s̄3s̄2) ∨ (N ∧ s1). (20.76)

Now returning to the problem of differentiating Aij (see Eq. (20.65)), since
the mass matrix is symmetric, we have only three cases to consider. That is,
we will assume that i ≤ j. The simplest case to consider is when i ≤ j < k:

∂Aij

∂θk
=

1
2

6∑
l=k

(
(z̄iz̄k − z̄kz̄i)∨ (Nl ∧ zj) + (z̄j z̄k − z̄k z̄j)∨ (Nl ∧ zi)

)
. (20.77)

When i < k ≤ j we get some cancellation of terms using Eq. (20.76),

∂Aij

∂θk
=

1
2

6∑
l=j

(z̄iz̄k − z̄k z̄i) ∨ (Nl ∧ zj). (20.78)

Finally, if k ≤ i ≤ j using Eq. (20.76) all the terms cancel

∂Aij

∂θk
= 0. (20.79)

At last we can substitute these results into Eq. (20.70). Analysing the
results it is clear that there are only two different formulas depending on
whether j < k or not. These results can be combined into the single formula:

Bijk =
1
4

6∑
l=max(i,j,k)

(
(z̄iz̄j − z̄j z̄i) ∨ (Nl ∧ zk)

±(z̄iz̄k − z̄kz̄i) ∨ (Nl ∧ zj) + (z̄iz̄k − z̄kz̄i) ∨ (Nl ∧ zj)
)
.(20.80)

The plus sign should be taken for the second term here when j < k and
the minus sign otherwise. Notice that this ensures that Bijk is invariant with
respect to the interchange of the last two indices j, k.

Finally, in this section a little can be said about the Hamiltonian mechanics
of these machines. First, we compute the momentum conjugate to the joint
variables, that is

πi =
∂L

∂θ̇i

, i = 1, 2, . . . 6. (20.81)

Differentiating Eq. (20.63), it is easy to see that

∂

∂θ̇i

sj =
{ 1

2zi, if i ≥ j
0, if i < j

(20.82)

So the momentum is obtained by differentiating Eq. (20.59)
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πi =
1
4

6∑
j=i

(z̄i ∨ (Nj ∧ sj) + s̄j ∨ (Nj ∧ zi)) , i = 1, 2, . . .6. (20.83)

Using the symmetry of the pairing in Eq. (20.43) this becomes

πi =
1
2

6∑
j=i

z̄i ∨ (Nj ∧ sj), i = 1, 2, . . .6. (20.84)

Notice that this is equivalent to,

πi =
1
2
Aij θ̇j . (20.85)

The Hamiltonian function h is equal to the Lagrangian here as we are
ignoring the weight of the links, hence

h = L =
1
2
Aij θ̇iθ̇j = θ̇iπi = 2

(
A−1

)
ij
πiπj , (20.86)

where summation is assumed on repeated indices. Rather than attempt to
differentiate this expression we can rearrange the Euler–Lagrange equations
above to yield Hamilton’s equations

θ̇i = 2
(
A−1

)
ij
πj , (20.87)

π̇i =
∂Ajk

∂θi
θ̇j θ̇k + τi. (20.88)

Here the partial derivatives are as in the case of Lagrangian mechanics, that
is, with θ̇is held constant, rather than the Hamiltonian case were πi would be
constant. So the terms ∂Ajk/∂θi are as we have calculated in Eqns. (20.77),
(20.78) and (20.79). Hence if we want to investigate whether or not θi is an
ignorable coordinate it is these terms that must compare with zero.

20.4 Parallel Robots

Parallel robots are usually complex mechanisms with many links and joints.
Hence a description of the dynamics of these devices is necessarily compli-
cated and contains a large number of equations of motion. Rather than give
a complete account here we simply look at a single important example, the
Stewart platform. This device consists of a platform connected to the ground
by six legs (Fig. 20.3). Each of these legs consists of a hydraulic ram, providing
the actuation, and two spherical joints at either end. The spherical joints are
passive, that is, they are not driven. They connect the base to the leg at the
top end, and join the leg to ground at the bottom. This robot was originally
designed as an aircraft simulator but more recently has found application as
a machine tool.
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Fig. 20.3. The Stewart platform

20.4.1 Constrained Dynamics

We begin here with some generalities on the dynamics of constrained rigid
bodies. Consider a single rigid body moving subject to some constraint; here
we are usually thinking of some constraint on the position of the body. Con-
straints on the velocity of the body could presumably be handled in a similar
fashion. Suppose, for example, that a point on the body is constrained to be
fixed. For example, this might happen if the body is connected to a spherical
joint, the centre of the joint will be the fixed point. For the moment we can
take the fixed point as the origin of our coordinates. Now the possible velocities
that the body can have are just rotation about the fixed point. Another way
to say this is that the allowed velocities for the body are linear combinations
of the three screws

sx = e2e3, sy = e3e1, sz = e1e2. (20.89)

These will sometimes be called ‘screws of freedom’. Dual to these are ‘con-
straint wrenches’, which are wrenches that annihilate the freedom screws. In
our case,

Wx = a2a3, Wy = a3a1, Wz = a1a2. (20.90)

Clearly the pairing between any screw of freedom and wrench of constraint
vanishes,

Wα ∨ (Q0 ∧ sβ) = 0, α, β = x, y, z. (20.91)

This is usually referred to as the principle of virtual work; the constraint
wrenches cannot do work on the freedom screws. This leads to the inter-
pretation of the constraint wrenches as the forces and torques acting on the
body to maintain the constraints. Hence, using Eq. (20.50), we may write the
equations of motion of the body as
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N ∧ ṡ +
1
2
(s̄N −N s̄) ∧ s =WaE + λxWxE + λyWyE + λzWzE. (20.92)

HereWa is the external wrench applied to the rigid body, and the λαs are the
amplitudes of the constraint wrenches. This approach is clearly equivalent to
the standard method of using Lagrange multipliers. The λαs are three new
variables, and hence we need three more equations to make the system fully
determinate. These extra equations are provided by the principle of virtual
work

Wx ∨ (Q0 ∧ s) = 0, Wy ∨ (Q0 ∧ s) = 0, Wz ∨ (Q0 ∧ s) = 0. (20.93)

More detail on this approach to the dynamics of constrained robots can be
found in [8].

20.4.2 The Stewart Platform

The Stewart platform contains 13 rigid bodies and 18 joints (see Fig. 20.3),
so we are only going to be able to sketch a method for finding its equations
of motion here. The rigid links consist of a platform which will be labelled P ,
and six legs each consisting of an upper part Ui and a lower part Li connected
by a prismatic joint. The prismatic joints correspond to the hydraulic rams.
We will label the force delivered to the ith leg by Fi. As mentioned above,
the other two joints on each leg are passive spherical joints. The joints at
the bottom of each leg, the ones that connect the legs to the ground, will be
considered as constraints here. At each joint we will have constraint wrenches
of the form

Wix = a2a3 + ciza2a− ciya3a,

Wiy = a3a1 − ciza1a + cixa3a, (20.94)

Wiz = a1a2 + ciya1a− cixa2a,

where ci is the position vector of the ith joint centre.
The upper spherical joint on each leg is nominally a 3-degree-of-freedom

joint. However, it is clear that the leg can rotate about a line joining its two
spherical joints without affecting the position of the platform. Such motion is
usually called a passive or internal freedom. These motions are undesirable,
and in practice steps are taken to stop such motions. For instance, sometimes
the spherical ‘ball-and-socket’ joint is replaced by a pair of revolute joints
whose axes meet at right angles. This is a universal or Hooke’s joint (see
Fig. 20.4). Alternatively, the spherical joint can be ‘keyed’ to prevent rotation
about the leg axis. In either case we may represent the two possible motions of
the joint by a pair of joint screws ui and vi with corresponding joint variables
θi and φi, respectively, (see Fig. 20.4). The joint variable for the prismatic
joints will be labelled di, and the corresponding joint screws will be
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Fig. 20.4. Detail of an upper passive joint shown as a Hooke’s joint

li =
1
M

(
(bix − cix)e1e + (biy − ciy)e2e + (biz − ciz)e3e

)
, (20.95)

where M =
√

(bix − cix)2 + (biy − ciy)2 + (biz − ciz)2. Notice that if the joint
centres are given in the algebra by the grade-3 elements

bi = e1e2e3 + bixe2e3e + biye3e1e + bize1e2e, (20.96)

and
ci = e1e2e3 + cixe2e3e + ciye3e1e + cize1e2e, (20.97)

as in [6], then we can write

li =
1

2M
(bici − cibi). (20.98)

This can be verified by direct computation.
For each rigid body we can write an equation of motion. For the lower leg

links we can eliminate the reaction wrenches at the prismatic joint by pairing
with the joint screw to get

l̄i ∨ (NLi ∧ ṡLi) +
1
2
(̄lis̄Li − s̄Lil̄i) ∨ (NLi ∧ sLi) =

Fi + l̄i ∨ (λixWix + λiyWiy + λizWiz)E. (20.99)

The velocity screw of a lower leg can be written

sLi = sP + θ̇iui + φ̇ivi + ḋili, (20.100)

with sP the velocity of the platform.
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For each upper leg we get a pair of equations by pairing with the two joint
screws. First, however, we add the equations for the lower leg to get rid of the
reactions at the prismatic joint. The two equations are

ūi ∨ (NUi ∧ ṡUi) +
1
2
(ūis̄Ui − s̄Uiūi) ∨ (NUi ∧ sUi)

+ūi ∨ (NLi ∧ ṡLi) +
1
2
(ūis̄Li − s̄Liūi) ∨ (NLi ∧ sLi) =

ūi ∨ (λixWix + λiyWiy + λizWiz)E, (20.101)

and

v̄i ∨ (NUi ∧ ṡUi) +
1
2
(v̄is̄Ui − s̄Uiv̄i) ∨ (NUi ∧ sUi)

+v̄i ∨ (NLi ∧ ṡLi) +
1
2
(v̄is̄Li − s̄Liv̄i) ∨ (NLi ∧ sLi) =

v̄i ∨ (λixWix + λiyWiy + λizWiz)E, (20.102)

where the velocity of an upper leg link is

sUi = sP + θ̇iui + φ̇ivi. (20.103)

So far we have 3 × 6 = 18 scalar equations. The final equation is for the
platform itself. Apart from the reactions at the upper joints there are no forces
of torques acting on the platform, so we do not need to pair the equation with
any screw. However, we do need to add all the equations for all the links to
remove all the reaction wrenches. The result is a single wrench equation

NP ∧ ṡP +
1
2
(s̄PNP −NP s̄P ) ∧ sP

+
6∑

i=1

NUi ∧ ṡUi +
1
2
(s̄UiNUi −NUis̄Ui) ∧ sUi

+l

6∑
i=1

NLi ∧ ṡLi +
1
2
(s̄LiNLi −NLis̄Li) ∧ sLi =

6∑
i=1

(λixWix + λiyWiy + λizWiz)E. (20.104)

So we now have effectively 18 + 6 = 24 equations. The unknows are the 6
components of sp, the 18 joint variables θi, φi and di, and the 18 Lagrange
multipliers, λix, λiy , λiz . The remaining equations are given by the principle
of virtual work,



20 Clifford Algebra and Robot Dynamics 677

Wix ∨ (Q0 ∧ sLi) = 0, Wiy ∨ (Q0 ∧ sLi) = 0, Wiz ∨ (Q0 ∧ sLi) = 0, (20.105)

where i = 1, 2, . . . , 6.
Finally, here we note that by choosing suitable combinations of the equa-

tions it is possible to eliminate the Lagrange multipliers. Further, the kine-
matics of the machine can be used to write the joint variables and their deriva-
tives in terms of the velocity screw of the platform and its derivative. So it
is possible to find equations relating the forces at the prismatic joints to the
platform’s velocity and acceleration. See [9] for further details.

20.5 Conclusions

In an earlier paper [7], the Clifford algebra C�(0, 6, 2) we introduced as a
vehicle for rigid body dynamics computations with the hope that it would be
possible to extend its applicability to robots. This aim has been fully realised
here.

There are several different formalisms for robot dynamics. Of course they
are all equivalent to Newton’s laws, but they have been investigated mainly
for their computational efficiency. This is because a major use for the equa-
tions of motion is in the control of robot manipulators. The Clifford algebra
formalism is not presented here for its computational efficiency, rather for its
symbolic power. Notice that the inertia of a rigid body, velocities, wrenches,
the positions of points and many other geometric and dynamical entities are
all represented in the same algebra by elements of different grades. This means
that there is a uniformity to the way that these objects are treated.

So although, in terms of robot dynamics, the results presented here are
not particularly new the methods used are very different from traditional
approaches to the subject. There have been other attempts to formulate rigid
body dynamics using Clifford algebra, notably Hestenes. In [2], Hestenes uses
C�(4, 1). This algebra contains a pair of distinguished grade one elements
which square to 0. This allows him to define screws and wrenches but it is not
clear, at least not to this author, how the mass and inertia terms are handled.
In this work the inertia of the rigid body is represented by an honest element
of the algebra. Essentially a representation of the group SE(3) has been found
in the algebra C�(0, 6, 2). This representation is isomorphic to the symmetric
square of the adjoint representation. The algebra also contains copies of the
adjoint and coadjoint representations as well as many others. It has been
suggested that C�(7, 1) and/or C�(4, 4) could also be used to represent rigid
body dynamics. This seems unlikely since these algebras will suffer from the
same problems as C�(4, 1); the two distinguished grade-one elements which
square to 0 neither commute nor anticommute in these algebras. This makes
it difficult to see how we can combine a screw and a wrench to produce an
invariant scalar.



678 J. M. Selig

The Lagrangian and Hamiltonian mechanics of parallel mechanisms has
not been investigated here. There would not appear to be any fundamental
difficulties in applying these theories using the Clifford algebra. The simple
methods used here seem to be adequate for the examples presented. There
may, however, be more complex mechanisms where there is advantage in using
more advanced methods.

It is perhaps a little surprising that although the Clifford, exterior and
shuffle products have all been used, the contraction does not seem to appear
[3]. The contraction seems to be related quite closely to the distance and angle
in the underlying Euclidian space. Perhaps some of the formulas derived here
can be simplified using the contraction.
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21.1 Introduction

As a result of technological advances in control techniques for single vehicles
and the explosion in computation and communication capabilities, the inte-
rest in cooperative robotics has dramatically increased in the last few years.
The research in the field of control and coordination for multiple robots is
currently progressing in areas like automated highway systems [34], formation
flight control [2], unmanned underwater vehicles [29], satellite clustering [22],
exploration [7], surveillance [15], search and rescue, mapping of unknown or
partially known environments, distributed manipulation [21], and transporta-
tion of large objects [31].

There are roughly three approaches to multivehicle coordination reported
in literature: leader following, behavioral methods, and virtual structure tech-
niques. In leader following, some robots are designated as leaders, while others
are followers [10]. In behavior-based control [1] several desired behaviors are
prescribed for each agent, the final control being derived by weighting the
relative importance of each behavior. In the virtual structure approach, the
entire formation is treated as a rigid body [13, 19, 24]. Desired motion is as-
signed to the virtual structure that traces out trajectories for each member of
the formation to follow.

Virtual structures, as rigid bodies, evolve on the Lie group of all trans-
lations and orientations in 3D, SE(3). The problem of finding a smooth in-
terpolating curve is well understood in Euclidean spaces [14], but it is not
clear how these techniques can be generalized to curved spaces. There are two
main issues that need to be addressed. First, it is desired that the compu-
tational scheme be independent of the description of the space and invariant
with respect to the choice of the coordinate systems used to describe the mo-
tion. Second, the smoothness properties and the optimality of the trajectories
need to be considered. Shoemake [28] proposed a scheme for interpolating ro-
tations with Bezier curves based on the spherical analog of the de Casteljau
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algorithm. This idea was extended by Park and Ravani [25] to spatial motions.
Another class of methods is based on the representation of Bezier curves with
Bernstein polynomials. Ge and Ravani [16] used the dual unit quaternion rep-
resentation of SE(3) and subsequently applied Euclidean methods to inter-
polate in this space. Srinivasan [30] and Jütler [18] propose the use of spatial
rational B-splines for interpolation. Marthinsen [20] suggests the use of Her-
mite interpolation and the use of truncated inverse of the differential of the
exponential mapping and the truncated Baker–Campbell–Hausdorff formula
to simplify the construction of interpolation polynomials. The advantage of
these methods is that they produce rational curves. It is worth noting that
all these works (with the exception of [25]) use a particular parameterization
of the group and do not discuss the invariance of their methods. In contrast,
Noakes et al. [23] derived the necessary conditions for cubic splines on general
manifolds without using a coordinate chart. These results are extended in [9]
to the dynamic interpolation problem. Necessary conditions for higher-order
splines are derived in Camarinha et al. [8]. A coordinate-free formulation of the
variational approach was used to generate shortest paths and minimum accel-
eration and jerk trajectories on SO(3) and SE(3) in [36]. However, analytical
solutions are available only in the simplest of cases, and the procedure for sol-
ving optimal motions, in general, is computationally intensive. If optimality is
sacrificed, it is possible to generate bi-invariant trajectories for interpolation
and approximation using the exponential map on the Lie algebra [35]. While
the solutions are of closed form, the resulting trajectories have no optimality
properties.

Most of the existing works on motion planning and control of virtual struc-
tures use formation graphs, whose nodes capture the individual agent kine-
matics or dynamics, and edges represent interagent constraints that must be
satisfied [10, 32, 33]. The notions of graph rigidity, minimally rigid graphs, and
node augmentation are studied and applied to formations by Olfati-Saber and
Murray [24] and Eren and Morse [13]. Stabilization of a formation at a given
rigid configuration is formulated in terms of a structural potential function
[24] or a formation function [12]. An alternative to constructing structural
potential functions induced by formation graphs and a relaxation to the rigi-
dity constraint is to use biologically inspired artificial potential functions, as
Leonard and Fiorelli suggest in [19]. Along different lines, a geometric formu-
lation of feasibility on formation graphs is given by Tabuada et al. [32].

We first describe a method to generate smooth trajectories for a rigid body
with specified boundary conditions. The method involves two key steps: (1)
the generation of optimal trajectories in GA+(n), a subgroup of the affine
group in IRn; (2) the projection of the trajectories onto SE(3), the Lie group
of rigid body displacements. The overall procedure is invariant with respect
to both the local coordinates on the manifold and the choice of the inertial
frame. The benefits of the method are threefold. First, it is possible to ap-
ply any of the variety of well-known, efficient techniques to generate optimal
curves on GA+(n). Second, the method yields approximations to optimal so-
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lutions for general choices of Riemannian metrics on SE(3). Third, from a
computational point of view, the method we propose is less expensive than
traditional methods.

These results are then extended to generate motion plans for fully actuated
robots required to maintain a rigid structure. The fundamental idea is based
on the definition of a kinetic energy metric in the configuration space of the
team. We decompose the kinetic energy into two terms: the first corresponds
to the motion of a rigid structure, and the second to motions that violate the
rigidity constraint. The first set of motions can be associated to orbits of the
Euclidean group, SE(3) or SE(2). The second corresponds to velocity vectors
that are orthogonal to the first. The kinetic energy metric is “shaped” by
assigning different weights to each contribution. This idea of a “decomposition”
and a subsequent “modification” is related to the methodology of controlled
Lagrangians described in [6]. The geodesic flow for this modified metric is
derived, and trajectories of the individual robots are generated. When the
weights are biased toward the rigid body motion, the obtained trajectories
correspond to optimal rigid body motions in 3D space (SE(3)) or in the
plane (SE(2)). Other choices of weights lead to the special cases of the robots
moving toward each other or each individual robot traversing its own optimal
path.

The remainder of this chapter is organized as follows. Section 21.2 is a short
overview of the differential geometry tools that are used in this work. Section
21.3 describes a computationally efficient, left-invariant method for generating
smooth trajectories for a moving rigid body with specified boundary condi-
tions. Smooth trajectories for a set of mobile robots satisfying constraints on
relative positions are generated in Sect. 21.4. The paper concludes with final
remarks and directions of future work in Sect. 21.5.

21.2 The Geometry of Rigid Body Motion

This section is a short review of the mathematical tools that are used in this
chapter. The reader interested in a more detailed description is referred to
[11].

21.2.1 Matrix Lie Groups and Rigid Motion

Let GL+(n) denote the set of all n×n real matrices with positive determinant:

GL+(n) =
{
M |M ∈ R

n×n, detM > 0
}
. (21.1)

SO(n) is a subset of GL+, defined as

SO(n) =
{
R |R ∈ GL+(n), RRT = I

}
. (21.2)
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Let

GA+(n) =
{
B |B =

[
M d
0 1

]
, M ∈ GL+(n), d ∈ IRn

}
, (21.3)

and
SE(n) =

{
A |A =

[
R d
0 1

]
, R ∈ SO(n), d ∈ IRn

}
. (21.4)

GL+(n), SO(n), GA+(n), and SE(n) have the structure of a group under
matrix multiplication. Moreover, matrix multiplication and inversion are both
smooth operations, which make all GL+(n), SO(n), GA+(n), and SE(n) Lie
groups [11].

GL+(n) and GA+(n) are subgroups of the general linear group GL(n)
(the set of all nonsingular n × n matrices) and of the affine group GA(n) =
GL(n)× IRn, respectively. SO(n) is referred to as the special orthogonal group
or the rotation group on IRn. The special Euclidean group SE(n) is the set of
all rigid displacements in IRn.

Special consideration will be given to SO(3) and SE(3). Consider a rigid
body moving in free space. Assume any inertial reference frame {F} fixed in
space and a frame {M} fixed to the body at point O′ ( Fig. 21.1). At each
instance the configuration (position and orientation) of the rigid body can be
described by a homogeneous transformation matrix, A ∈ SE(3), correspon-
ding to the displacement from frame {F} to frame {M}.

{F}

x

y

z

O

x’

y’

z’

{M}

x’

x’

y’

y’

z’

z’

{M}

{M}

O’

O’

O’

Fig. 21.1. The inertial (fixed) frame and the moving frame attached to the rigid
body

On any Lie group the tangent space at the group identity has the structure
of a Lie algebra. The Lie algebras of SO(3) and SE(3), denoted by so(3) and
se(3), respectively, are given by:
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so(3) =
{
ω̂ | ω̂ ∈ IR3×3, ω̂T = −ω̂

}
, (21.5)

se(3) =
{
S =

[
ω̂ v
0 0

]
| ω̂ ∈ so(3), v ∈ IR3

}
, (21.6)

whereˆis the skew-symmetric operator.
Given a curve

A(t) : [−a, a]→ SE(3), A(t) =
[
R(t) d(t)

0 1

]
,

an element S(t) of the Lie algebra se(3) can be identified with the tangent
vector Ȧ(t) at an arbitrary point t by:

S(t) = A−1(t)Ȧ(t) =
[
ω̂(t) RTḋ
0 0

]
, (21.7)

where ω̂(t) = R(t)TṘ(t) is the corresponding element from so(3).
A curve on SE(3) physically represents a motion of the rigid body. If

{ω(t), v(t)} is the vector pair corresponding to S(t), then ω physically corres-
ponds to the angular velocity of the rigid body, while v is the linear velocity
of the origin O′ of the frame {M}, both expressed in the frame {M}. In
kinematics, elements of this form are called twists, and se(3) thus corresponds
to the space of twists. The twist S(t) computed from Eq. (21.7) does not
depend on the choice of the inertial frame {F} and is therefore called left
invariant.

The standard basis for the vector space so(3) is:

Lo
1 = ê1, L

o
2 = ê2, L

o
3 = ê3, (21.8)

where
e1 =

[
1 0 0

]T
, e2 =

[
0 1 0

]T
, e3 =

[
0 0 1

]T
.

Lo
1, Lo

2, and Lo
3 represent instantaneous rotations about the Cartesian axes

x, y, and z, respectively. The components of a ω̂ ∈ so(3) in this basis are given
precisely by the angular velocity vector ω.

The standard basis for se(3) is:

L1 =
[
Lo

1 0
0 0

]
L2 =

[
Lo

2 0
0 0

]
L3 =

[
Lo

3 0
0 0

]

L4 =
[

0 e1

0 0

]
L5 =

[
0 e2

0 0

]
L6 =

[
0 e3

0 0

] (21.9)

The twists L4, L5, and L6 represent instantaneous translations along the
Cartesian axes x, y, and z, respectively. The components of a twist S ∈ se(3)
in this basis are given precisely by the velocity vector pair s := {ω, v} ∈ IR6.
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21.2.2 Riemannian Metrics on Lie Groups

If a smoothly varying, positive definite, bilinear, symmetric form < ., . > is
defined on the tangent space at each point on the manifold, such a form is
called a Riemannian metric and the manifold is Riemannian [11]. On an n-
dimensional manifold, the metric is locally characterized by a n×n matrix of
C∞ functions g̃ij =< Xi, Xj >, where Xi are basis vector fields. If the basis
vector fields can be defined globally, then the matrix [g̃ij ] completely defines
the metric.

On SE(3) (on any Lie group), an inner product on the Lie algebra can
be extended to a Riemannian metric over the manifold using left (or right)
translation. To see this, consider the inner product of two elements S1, S2 ∈
se(3) defined by

< S1, S2 >I= sT1G̃s2, (21.10)

where s1 and s2 are the 6 × 1 vectors of components of S1 and S2 with
respect to some basis, and G is a positive definite matrix. If V1 and V2 are
tangent vectors at an arbitrary group element A ∈ SE(3), the inner product
< V1, V2 >A in the tangent space TASE(3) can be defined by:

< V1, V2 >A=< A−1V1, A
−1V2 >I . (21.11)

The metric satisfying the above equation is said to be left invariant [11]. Right
invariance is defined similarly. A metric is bi-invariant if it is both left and
right invariant.

21.2.3 Geodesics and Minimum Acceleration Curves

Any motion of a rigid body is described by a smooth curve A(t) ∈ SE(3).
The velocity is the tangent vector to the curve V (t) = dA

dt (t).
An affine connection on SE(3) is a map that assigns to each pair of C∞

vector fields X and Y on SE(3) another C∞ vector field ∇XY , which is
bilinear in X and Y and, for any smooth real function f on SE(3) satisfies
∇fXY = f∇XY and ∇XfY = f∇XY + X(f)Y .

The Christoffel symbols Γ i
jk of the connection at a point A ∈ SE(3) are

defined by ∇L̄j
L̄k = Γ i

jkL̄i, where L̄1, . . . , L̄6 is the basis in TASE(3) and the
summation is understood.

If A(t) is a curve and X is a vector field, the covariant derivative of X along
A is defined by DX/dt = ∇Ȧ(t)X . Vector field X is said to be autoparallel
along A if DX/dt = 0. A curve A is a geodesic if Ȧ is autoparallel along A.
An equivalent characterization of a geodesic is the following set of equations:

äi + Γ i
jk ȧ

j ȧk = 0, (21.12)

where ai, i = 1, . . . , 6 is an arbitrary set of local coordinates on SE(3).
Geodesics are also minimum length curves. The length of a curve A(t) between
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the points A(a) and A(b) is defined to be L(A) =
∫ b

a < V, V >
1
2 dt, where

V = dA(t)
dt . It can be shown [11] that if there exists a curve that minimizes

the functional L, this curve also minimizes the so-called energy functional:

E(A) =
∫ b

a

< V, V > dt. (21.13)

For a manifold with a Riemannian (or pseudo-Riemannian) metric, there
exists a unique symmetric connection that is compatible with the metric [11].
Given a connection, the acceleration and higher derivatives of the velocity
can be defined. The acceleration A(t) is the covariant derivative of the veloc-
ity along the curve A = D

dt

(
dA
dt

)
= ∇V V . Minimum acceleration curves are

defined as curves minimizing the square of the L2 norm of the acceleration:

A(A) =
∫ b

a

< ∇V V,∇V V > dt, (21.14)

where V (t) = dA(t)
dt , A(t) is a curve on the manifold, and ∇ is the unique

symmetric connection compatible with the given metric. The initial and final
point as well as the initial and final velocity for the motion are prescribed.

21.2.4 The Kinetic Energy Metric

A metric that is attractive for trajectory planning can be obtained by consi-
dering the dynamic properties of the rigid body. The kinetic energy of a rigid
body is a scalar that does not depend on the choice of the inertial reference
frame. It thus defines a left-invariant metric . If the body-fixed reference frame
is attached at the centroid the matrix G̃ as in Eq. (21.10)

G̃ =
1
2

[
G 0
0 mI

]
, (21.15)

where m is the mass of the rigid body, and G is the inertia matrix of the body
about the body frame {M}. If {ω, v} ∈ se(3) is the vector pair associated
with some velocity vector V , the norm of the vector V assumes the familiar
expression of the kinetic energy:

< V, V >=
1
2
ωTGω +

1
2
mvTv. (21.16)

In [36] it was proved that a geodesic A(t) on SE(3) equipped with metric
(21.15) is described by

dω
dt

= −G−1(ω × (Gω)), (21.17)

d̈ = 0. (21.18)
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If G = αI, an analytical expression for the geodesic passing through

A(0) = (R(0), d(0)), A(1) = (R(1), d(1)) (21.19)

at t = 0 and t = 1, respectively, is given by [36]

A(t) = (R(t), d(t)) ∈ SE(3), (21.20)

where

R(t) = R(0) exp(ω̂0t), (21.21)
ω̂0 = log(R(0)TR(1)), (21.22)

and
d(t) = (d(1)− d(0))t + d(0) (21.23)

In the case when G �= αI, there is no closed-form expression for the corres-
ponding geodesic, and numerical methods should be employed.

If G = αI, the differential equations to be satisfied by a minimum accel-
eration curve are [36]:

ω(3) + ω × ω̈ = 0 (21.24)
d(4) = 0, (21.25)

As observed in [23], Eq. (21.24) can be integrated to obtain ω(2) + ω × ω̇ =
constant. However, this equation cannot be further integrated analytically for
arbitrary boundary conditions. In [36] it is shown that for special choice of the
initial and final velocities, minimum acceleration curves are reparameterized
geodesics. If G �= αI in metric (21.15), the differential equations to be satisfied
by the minimum acceleration curves are difficult to derive and are not suited
for numerical integration.

21.3 An SVD-Based Method for Interpolation on SE(3)

In this section it is shown that there is a simple way of defining a left- or right-
invariant metric on SO(n) (SE(n)) by introducing an appropriate constant
metric in GL+(n) (GA+(n)). Defining a metric (i.e., the kinetic energy) at the
Lie algebra so(n) (or se(n)) and extending it through left (right) translations is
equivalent to inheriting the appropriate metric at each point from the ambient
manifold.

21.3.1 Riemannian Metrics on SO(n) and SE(n)

3.1.1 A Metric in GL+(n)

Let W be a symmetric positive definite n× n matrix. For any M ∈ GL+(n)
and any X,Y ∈ TMGL+(n), define
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< X, Y >GL+= Tr(XTYW ) = Tr(WXTY ) = Tr(YWXT). (21.26)

By definition, form (21.26) is the same at all points in GL+(n). It is easy to
see that Eq. (21.26) is a Riemmanian metric on GL+(n) when W is symmetric
and positive definite. The following interesting result is proved in [4]:

Proposition 1. The metric given by Eq. (21.26) defined on GL+(n) is left
invariant when restricted to SO(n). The restriction on SO(n) is bi-invariant
if W = αI, α > 0, where I is the n× n identity matrix.

Remark 1. If right invariance on SO(n) is desired (and left invariance is not
needed), we can define

<< X, Y >>GL+= Tr(XY TW ) = Tr(Y TWX) = Tr(WXY T).

Similarly, metric <<,>>GL+ will be right invariant on SO(n) for W sym-
metric and positive definite and bi-invariant if W = αI.

3.1.2 The Induced Metric on SO(3)

Let R ∈ SO(3), X,Y ∈ TRSO(3), and Rx(t), Ry(t) the corresponding local
flows so that

X = Ṙx(t), Y = Ṙy(t), Rx(t) = Ry(t) = R.

The metric inherited from GL+(3) can be written as:

< X, Y >SO=< X, Y >GL+= Tr(ṘT
x (t)Ṙy(t)W ) =

= Tr(ṘT
x(t)RRTṘy(t)W ) = Tr(ω̂T

xω̂yW ),

where ω̂x = Rx(t)TṘx(t) and ω̂y = Ry(t)TṘy(t) are the corresponding twists
from the Lie algebra so(3). If we write the above relation using the vector
form of the twists, some elementary algebra leads to:

< X, Y >SO= ωT
xGωy, (21.27)

where
G = Tr(W )I3 −W (21.28)

is the matrix of the metric on SO(3) as defined by Eq. (21.10). A different
but equivalent way of arriving at the expression of G as in Eq. (21.28) would
be defining the metric in so(3) i.e., at identity of SO(3)) as being the one
inherited from TIGL+(3): gij = Tr(Lo

i
TLo

jW ), i, j = 1, 2, 3 (Lo
1, L

o
2, L

o
3 is

the basis in so(3)). Left-translating this metric throughout the manifold is
equivalent to inheriting the metric at each three-dimensional tangent space of
SO(3) from the corresponding nine-dimensional tangent space of GL+(3).

Using Eq. (21.28), it is easy to verify that the metric W on GL+(3) and
the induced metric G on SO(3) share the following properties:
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• G is symmetric if and only if W is symmetric.
• If W is positive definite, then G is positive definite.
• If G is positive definite, then W is positive definite if and only if the

eigenvalues of G satisfy the triangle inequality.

In the particular case when W = αI, α > 0, from Eq. (21.28), we have G =
2αI, which is the standard bi-invariant metric on SO(3). This is consistent
with the second assertion in Proposition 1. For α = 1, metric (21.26) induces
the well-known Frobenius matrix norm on GL+(3) [17].

The quadratic form ωTGω associated with metric (21.27) can be inter-
preted as the (rotational) kinetic energy. Consequently, 2G can be thought of
as the inertia matrix of a rigid body with respect to a certain choice of the
body frame {M}. The triangle inequality restriction on the eigenvalues of G
therefore simply states that the principal moments of inertia of a rigid body
satisfy the triangle inequality, which, by definition, is true for any rigid body.
Therefore, for an arbitrarily shaped rigid body with inertia matrix 2G, we can
formulate a (positive definite) metric (21.26) in the ambient manifold GL+(3)
with matrix

W =
1
2
Tr(G)I3 −G. (21.29)

Thus Eq. (21.29) gives us a formula for constructing an ambient metric space
that is compatible with the given metric structure of SO(3).

3.1.3 A Metric in GA+(n)

Let
W̃ =

[
W a
aT w

]
(21.30)

be a symmetric positive definite (n+1)×(n+1) matrix, where W is the matrix
of metric (21.26), a ∈ IRn, and w ∈ IR. Let X and Y be two vectors from the
tangent space at an arbitrary point of GA+(n) (X and Y are (n+1)× (n+1)
matrices with all entries of the last row equal to zero). A quadratic form

< X, Y >GA+= Tr(XTY W̃ ) (21.31)

is symmetric and positive definite if and only if W̃ is symmetric and positive
definite.

3.1.4 The Induced Metric in SE(3)

We can get a left-invariant metric on SE(n) by letting SE(n) inherit the
metric < . >GA+ given by Eq. (21.31) from GA+(n).

Let A be an arbitrary element from SE(3). Let X,Y be two vectors from
TASE(3), and Ax(t), Ay(t) the corresponding local flows so that

X = Ȧx(t), Y = Ȧy(t), Ax(t) = Ay(t) = A.
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Let
Ai(t) =

[
Ri(t) di(t)

0 1

]
, i ∈ {x, y}

and the corresponding twists at time t:

Si = A−1
i (t)Ȧi(t) =

[
ω̂i vi

0 0

]
, i ∈ {x, y}.

The metric inherited from GA+(3) can be written as:

< X, Y >SE=< X, Y >GA+= Tr(ȦT
x (t)Ȧy(t)W̃ ) = Tr(ST

xA
TASyW̃ ).

Now using the orthogonality of the rotational part of A and the special form
of the twist matrices, a straightforward calculation leads to the result:

< X, Y >SE= Tr(ST
xSyW̃ ) = Tr(ω̂T

xω̂yW ) + Tr(ω̂T
xvya

T) + vT
x ω̂ya + vTxvyw

If G is the matrix of the metric in SO(3) induced by GL+(3), then

< X, Y >SE=
[
ωT

x vTx
]
G̃

[
ωy

vy

]
, G̃ =

[
G â
−â wI3

]
, (21.32)

and G is given by Eq. (21.28).
The metric given by Eq. (21.32) is left invariant since the matrix G̃ of

this metric in the left invariant basis vector field is constant. Also, if W̃ is
symmetric and positive definite, then G̃ given by Eq. (21.32) is symmetric
and positive definite.

The quadratic form sTG̃s associated with metric (21.32) can be interpreted
as being the kinetic energy of a moving (rotating and translating) rigid body,
where w is twice the mass m of the rigid body. If the body fixed frame {M}
is placed at the centroid of the body, then a = 0. Moreover, if {M} is aligned
with the principal axes of the body, then G = 1

2H , where H is the diagonal
inertia matrix of the body. In the most general case, when the frame {M} is
displaced by some (R0, d0) from the centroid and the orientation parallel with
the principal axes, we have [36]:

G = RT
0HR0 −mRT

0d̂0R0, a = −mR0d0.

21.3.2 Projection on SO(n)

We can use the norm induced by metric (21.26) to define the distance between
elements in GL+(3). Using this distance, for a given M ∈ GL+(3), we define
the projection of M on SO(3) as being the closest R ∈ SO(3) with respect to
the metric from Eq. (21.26). The solution of the projection problem is derived
for the general case of GL+(n) [4]:
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Proposition 2. Let M ∈ GL+(n) and U,Σ, V the singular value decomposi-
tion of MW (i.e., MW = UΣV T). Then the projection of M on SO(n) with
respect to metric (21.26) is given by R = UV T.

It is easy to see that the distance between M and R in metric (21.26) is
given by Tr(W−1V Σ2V T) + Tr(W ) − 2Tr(Σ). For the particular case when
W = I3, the distance becomes

∑n
i=1(σi − 1)2, which is the standard way of

describing how far a matrix is from being orthogonal.
The question we ask is what happens with the solution to the projection

problem when the manifold GL+(n) is acted upon by the group SO(n). The
answer is given below and the proof in [4].

Proposition 3. The solution to the projection problem on SO(n) is left in-
variant under actions of elements from SO(n). If W = αI3, the solution is
bi-invariant.

For the case W = I, it is worthwhile to note that other projection methods
do not exhibit bi-invariance. For instance, it is customary to find the projection
R ∈ SO(n) by applying a Gram–Schmidt procedure (QR decomposition). In
this case it is easy to see that the solution is left invariant, but in general it
is not right invariant.

21.3.3 Projection on SE(n)

Similar to the previous section, if a metric of the form given in Eq. (21.31)
is defined on GA+(n) with the matrix of the metric given by Eq. (21.30), we
can find the corresponding projection on SE(n). We consider the case a = 0,
which corresponds to a body frame {M} fixed at the centroid of the body.

Proposition 4. Let B ∈ GA+(n) with the following block partition:

B =
[
B1 B2

0 1

]
, B1 ∈ GL+(n), B2 ∈ IRn,

and U,Σ, V be the singular value decomposition of B1W . Then the projection
of B on SE(n) is given by

A =
[
UV T B2

0 1

]
∈ SE(n).

The proof is given in [4]. Similar to the SO(n) case, the projection on SE(n)
exhibits interesting invariance properties.

Proposition 5. The solution to the projection problem on SE(n) is left in-
variant under actions of elements from SE(n). In the special case when
W = αI, the projection is bi-invariant under rotations.
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21.3.4 The Projection Method

Based on the results we presented so far, we can outline a method to generate
an interpolating curve A(t) ∈ SE(3), t ∈ [0, 1] while satisfying the boundary
conditions:

A(0), A(1), Ȧ(0), Ȧ(1), . . . , A(m)(0), A(m)(1),

where the superscript (·)(m) denotes the mth derivative. The projection pro-
cedure consists of two steps:

• Step 1: Generating the optimal curve B(t) in the ambient manifold
GA+(3) that satisfies the boundary conditions, and

• Step 2: Projecting B(t) from step 1 onto A(t) ∈ SE(3).

Because the metric we defined on GA+(3) is the same at all points, the
corresponding Christoffel symbols are all zero. Consequently, the optimal
curves in the ambient manifold assume simple analytical forms. For example,
geodesics are straight lines, minimum acceleration curves are cubic polyno-
mial curves, and minimum jerk curves are fifth-order polynomial curves in
GA+(3), all parameterized by time. Therefore, in step 1 the following curve
is constructed in GA+(3):

B(t) = B0 + B1t + . . . + B2m−1t
2m−1,

where the coefficients Bi i = 1, . . . , 2m−1 are linear functions Γi of the input
data:

Bi = Γi

(
A(0), A(1), Ȧ(0), Ȧ(1), . . . , A(m)(0), A(m)(1)

)
.

Step 2 consists of a singular value decomposition (SVD) decomposition
weighted by the matrix W as described in Proposition 4 to produce the curve
A(t). Using the linearity of Γi and Proposition 5, we can prove:

Proposition 6. The projection method on SE(3) is left invariant, i.e., the
generated trajectories are independent of the choice of the inertial frame {F}.

Because of the linearity on the boundary conditions of the curve in the
ambient manifold, the first step is always bi-invariant, i.e., invariant to ar-
bitrary displacements in both the inertial frame {F} and the body frame
{M}. The invariance properties of the overall method are, therefore, dictated
by the second step. According to Proposition 5, the procedure is bi-invariant
with respect only to rotations of {F} in the particular case of W = αI. In the
most general case, i.e., for arbitrary choices of W , the method is left invariant
to arbitrary displacements of the inertial frame.

21.3.5 Geodesics and Minimum Acceleration Curves

Consider a rigid body with inertial properties described by inertia matrix G
(in a frame placed at the centroid) and mass m. As shown in Sect. 21.2.4, the
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kinetic energy of the body can be written in terms of a product metric given in
Eq. (21.15). Given two boundary conditions for the pose A(0) = (R(0), d(0))
at t = 0 and A(1) = (R(1), d(1)) at t = 1, the translational part of the geodesic
interpolant is simply the linear interpolant. The rotational part is constructed
by numerically solving a boundary value problem consisting of end values R(0)
and R(1) and the system of differential equations (21.17) augmented by the
expressions of the time derivatives of some chosen coordinates on SO(3) (ex-
ponential coordinates, Euler angles, quaternions) [3]. The relaxation or the
shooting method are among the most popular [26]. For G = αI, the interpo-
lating minimum acceleration curve for the same position end conditions and
velocity boundary conditions Ṙ(0), ḋ(0), Ṙ(1), ḋ(1) has a cubic translational
part. The interpolating rotation can be found by solving a boundary value
problem consisting of R(0), Ṙ(0), R(1), Ṙ(1) and 12 differential equations:
Eq. (21.24) and the derivatives of the parameterization.

If the projection method described above is used, an approximate geodesic
for the metric given in Eq. (21.15) and the same boundary conditions is given
by

d(t) = d(0) + (d(1)− d(0))t, R(t) = U(t)V T(t),

with U and V determined from the weighted SVD

M(t)W = U(t)Σ(t)V T(t),

where
M(t) = R(0) + (R(1)−R(0))t, W =

1
2
Tr(G)I3 −G.

Similarly, an approximate minimum acceleration curve can be constructed as

d(t) = d0 + d1t + d2t
2 + d3t

3, R(t) = U(t)V T(t),

where

d0 = d(0), d1 = ḋ(0), d2 = −3d(0) + 3d(1)− 2ḋ(0)− ḋ(1),

d3 = 2d(0)− 2d(1) + ḋ(0) + ḋ(1),

M(t) = M0 + M1t + M2t
2 + M3t

3,

M0 = R(0), M1 = Ṙ(0), M2 = −3R(0) + 3R(1)− 2Ṙ(0)− Ṙ(1),

M3 = 2R(0)− 2R(1) + Ṙ(0) + Ṙ(1)

For geodesics on SO(3) with Euclidean metric, we prove [4] that the pro-
jection of the geodesic from GL+(3) and the true geodesic on SO(3) follow
the same path but with different parameterizations. However, one can repa-
rameterize the geodesic from GL+(3) so that it projects to the exact geodesic
on SO(3). We also show that uniqueness of projected geodesics and mini-
mum acceleration curves is guaranteed under reasonable assumptions on the
amount of rotation and the magnitude of the end velocities. In [3], we show
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that, from a computational point of view, it is much less expensive to ge-
nerate interpolating motion using the projection method as opposed to the
relaxation method. Specifically, if M is the number of uniformly distributed
time points in [0, 1], then the number of flops required by the projection
method in GL+(n) is of order O(n3M). On the other hand, the number of
flops required by the relaxation method for generating solution at M mesh
points of a system of N differential equations with boundary conditions is of
order O(M3N3). For example, generating geodesics on SO(3) at M = 100
time points involves millions of flops by the relaxation method, while only
thousands by the projection method.

21.3.6 Simulation Results

In this section, we generate motion for a homogeneous parallelepipedic rigid
body We assume that the body frame {M} is placed at the center of mass
and aligned with the principal axes of the body. Let a, b, and c be the lengths
of the body along its x, y, and z axes respectively, and m the mass of the
body. For visualization, a small square is drawn on one of its faces and the
center of the parallelepiped is shown starred.

The matrix G of metric <,>SO is given by

G =

⎡⎣ m
24 (b2 + c2) 0 0

0 m
24 (a2 + c2) 0

0 0 m
24 (a2 + b2)

⎤⎦ . (21.33)

True and projected minimum acceleration motions for a cubic rigid body
with a = b = c = 2 and m = 12 are given in Fig. 21.2 for comparison. Note
that for this case G = αI with α = 4. Geodesics for the same boundary
conditions and a parallelepipedic body with a = c = 2, b = 10 and m = 12
are given in Fig. 21.3.

As seen in Figs. 21.2 and 21.3, even though the total displacement between
the initial and final positions on SO(3) is large (rotation angle of π

√
14/6),

there is no noticeable difference between the true and the projected motions.

21.4 Optimal Motion Generation for Groups of Robots

This section presents a method for generating smooth trajectories for a set
of mobile robots satisfying constraints on relative positions. It is shown that,
given two end configurations of the set of robots, by tuning one parameter,
the user can choose an interpolating trajectory from a continuum of curves
varying from the trajectory corresponding to maintaining a rigid formation to
trajectories that allow the formation to change and the robots to reconfigure
while moving.
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Fig. 21.2. a,b. Minimum acceleration motion for a cube in free space: a relaxation
method, b projection method

−2
0

2
4

6
8

10
12 −5

0

5

10

15

−5

0

5

10

15

20

y

x

z

−2
0

2
4

6
8

10
12 −5

0

5

10

15

−5

0

5

10

15

20

y

x

z

(a) (b)

Fig. 21.3. a,b. Geodesics for a parallelepipedic body: a relaxation method, b pro-
jection method

21.4.1 Problem Statement and Notation

Consider N robots moving (rotating and translating) in 3D space with respect
to an inertial frame {F}. We choose a reference point on each robot at its
center of mass Oi. A moving frame {Mi} is attached to each robot at Oi (see
Fig. 21.4).

Robot i has mass mi and matrix of inertia Hi with respect to frame {Mi}.
Let Ri ∈ SO(3) denote the rotation of {Mi} in {F} and qi ∈ IR3 the position
vector of Oi in {F}. Let ωi denote the expression in {Mi} of the angular
velocity of {Mi} with respect to {F}. The formation is defined by the reference
points Oi. The moving formation is called rigid if the relative distance between
any of the points Oi is maintained constant. Sometimes it is also useful to
define a formation frame {M}, attached at some virtual point O′ and with
pose (R, d) ∈ SE(3) in {F}. Let q0

i denote the position vectors of Oi in {M}.
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Fig. 21.4. A set of N = 3 robots

The configuration space is the 6N -dimensional manifold, SE(3)×, . . . ,
×SE(3), given by the poses of each robot. Given two configurations at times
t = 0 and t = 1 respectively, the goal is to generate smooth interpolating
motion for each robot so that the total kinetic energy is minimized.

The kinetic energy T of the system of robots is the sum of the individual
energies. Since the frames {Mi} were placed at the centroids Oi of the robots,
T can be written as the sum of the total rotational energy Tr and the total
translational energy Tt in the form:

T = Tr + Tt, Tr =
1
2

N∑
i=1

(ωT
i Hiωi), Tt =

1
2

N∑
i=1

(miq̇
T
i q̇i). (21.34)

Since our definition of a formation only involves the reference points Oi, a
formation requirement will only constrain the qi’s from the above equation.
Therefore, as a result of the decomposition in Eq. (21.34), minimizing the total
energy is equivalent to solving N + 1 independent optimization subproblems:

min
σi

∫ 1

0

ωT
iHiωidt, i = 1, . . . , N, (21.35)

min
qi=1,...,N

∫ 1

0

Ttdt (21.36)

where σi is some parameterization of the rotation of {Mi} in {F}, i.e., some
local coordinates on SO(3). The solutions to Eq. (21.35) are given by N
geodesics on SO(3) with left-invariant metrics with matrices Hi. A relaxation
method [26] or the projection method described in Section 21.3 can be used
to generate the solution. An example is given in Sect. 21.4.4.

The main focus in this section is solving the problem given by Eq. (21.36)
while satisfying constraints on the positions of the reference points Oi that
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may be imposed by the requirements on the task. Thus the configuration space
we are interested in is just the 3N -dimensional Q = {q|q = (q1, . . . , qN )} that
collects all the position vectors of the chosen reference points. Maintaining a
rigid formation (a virtual structure) imposes constraints on the configuration
space, Q, and these constraints may be relaxed as necessary.

21.4.2 The Rigidity Constraint: Virtual Structures

The group of N robots is said to form a virtual structure if the relative dis-
tance between any of the reference points Oi is maintained constant. Let
q = [qT1, . . . , q

T
N ]T denote an arbitrary point in Q. For an arbitrary pair of

reference points with position vectors qi and qj , i, j = 1, . . . , N , i < j, the
constraints can be written as:

(qi − qj)T(qi − qj) = constant, (21.37)

or, by differentiation:

(qi − qj)Tq̇i − (qi − qj)Tq̇j = 0.

By lifting this constraint to the configuration manifold Q, the coordinates of
the corresponding differential one form can be written as a 1×3N row vector:

ωij =
[
0 . . . 0 (qi − qj)T 0 . . . 0 −(qi − qj)T 0 . . . 0

]
.

The nonzero 1× 3 blocks in the above matrix are in positions i and j, respec-
tively. If we consider all (N − 1)N/2 possible constraints, we can construct
the codistribution ωR as the span of all the corresponding covectors:

ωR = span {ωij , i, j = 1, . . . , N, i < n} .

It is obvious that not all the (N − 1)N/2 covectors (constraints) are in-
dependent. To insure rigidity, it is necessary and sufficient to impose 2N − 3
constraints of the type (21.37) in plane, while in 3D the number is 3N − 6.
By simple inspection, it is easy to prove that the annihilating distribution of
ωR (ωR(∆R) = 0) is:

∆R = Range(A(q)), A(q) =

⎡⎣ −q̂1 I3
. . . . . .
−q̂N I3

⎤⎦ . (21.38)

Therefore, by lifting each constraint to the configuration manifold Q, the
virtual structure (rigidity) constraint can be written as

q̇ ∈ ∆R(q). (21.39)

If qi are not all contained in any proper hyperplane of IRd (d = 2, 3), it can
be proved [27] that the distribution ∆R is regular, and, therefore integrable,
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since involutivity is always guaranteed. The distribution ∆R(q) determines a
foliation of Q with leaves given by orbits of SE(3). Indeed, assume q(0) = q0

and q̇(0) ∈ ∆R(q0). Then, the rigidity constraint in Eq. (21.39) is satisfied for
all t ≥ 0 if and only if

qi(t) = d(t) + R(t)q0
i , i = 1, . . . , N, (21.40)

where (R(t), d(t)) is a trajectory of the left-invariant control system

ġ(t) = gS (21.41)

starting from R(0) = I3, d(0) = 0.
Note that, under the rigidity assumption in Eq. (21.39), the coordinates

r of the expansion of q̇ ∈ ∆R(q) along the columns of A(q), i.e., q̇ = A(q)r,
are exactly the components of the left-invariant twist of a virtual structure
formed by (q1, . . . , qN ) and {F} at that instant.

Also, if Eq. (21.39) is satisfied, then s from Eq. (21.41) is the left-invariant
twist of a moving rigid structure formed by (q0

1 , . . . , q
0
N ) and {M} and for

which the mobile frame {M} was coincident with {F} at t = 0. The pose of
the moving frame {M} in {F} is g = (R, d). Moreover, we have

q̇i = R[−q̂0
i I]s. (21.42)

It follows that motion planning (control) problems for a set of N robots in
3D required to maintain a rigid formation can be reduced to motion planning
(control) problems for a left-invariant control system on SE(3).

21.4.3 Motion Decomposition: Rigid vs. Nonrigid

We first define a metric <,> in the position configuration space, which is the
same at all points q ∈ Q:

< V 1
q , V 2

q >= V 1
q
T
MV 2

q , (21.43)

Vq = q̇ ∈ TqQ, M =
1
2
diag{m1I3, . . . ,mNI3}.

Metric (21.43) is called the kinetic energy metric because its induced norm
(V 1

q = V 2
q = q̇) assumes the familiar expression of the kinetic energy of the

system 1/2
∑N

i=1 miq̇
T
i q̇i. If no restrictions are imposed on Q, the geodesic

between q(0) = q0 and q(1) = q1 for metric (21.43) is obviously a straight line
uniformly parameterized in time interpolating between q0 and q1 in Q.

At each point q in the configuration space Q, ∆R(q) locally describes the
set of all rigid body motion directions. The orthogonal complement to ∆R(q),
∆NR(q), will be the set of all directions violating the rigid body constraints. 3

3 In [6], the tangent space at q to the orbit of SE(3) is called the vertical space at
q, Verq , and its orthogonal complement is the horizontal space at q ∈ Q, Horq.
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For an arbitrary tangent vector Vq ∈ TqQ, let RVq denote the projection onto
∆R and NRVq denote the projection onto ∆NR.

Using the metric in Eq. (21.43), the orthogonal complement of the “rigid”
distribution ∆R(q) is the “nonrigid” distribution

∆NR(q) = Null(A(q)TM). (21.44)

Let B(q) denote a matrix whose columns are a basis of ∆NR(q).
Let ψ denote the components of the projection in this basis: NRVq =

B(q)ψ. Therefore, the velocity at point q can be written as:

Vq = RVq + NRVq = A(q)r + B(q)ψ. (21.45)

Then, for any V 1
q , V 2

q ∈ TqQ, we have:

< V 1
q , V 2

q >= V 1
q
T
MV 2

q =< NRV 1
q ,NRV 2

q > + < RV 1
q ,RV 2

q >

because both ATMB and BTMA are zero from Eq. (21.44). Also, note that

r = (ATMA)−1ATMV, ψ = (BTMB)−1BTMV, (21.46)

where the explicit dependence of A and B on q was omitted for simplicity.
Therefore, the translational kinetic energy (which is the square of the norm
induced by metric (21.43)) becomes:

Tt(q, q̇) = q̇TMq̇ = rTATMAr + ψTBTMBψ. (21.47)

In (21.47), rTATMAr captures the energy of the motion of the system of
particles as a rigid body, while the remaining part ψTBTMBψ is the energy
of the motion that violates the rigid body restrictions. For example, in the
obvious case of a system of N = 2 particles, the first part corresponds to the
motion of the two particles connected by a rigid massless rod, while the second
part would correspond to motion along the line connecting the two bodies.

21.4.4 Motion Generation for Rigid Formations

In this section, we will assume that the robots are required to move in rigid
formation, i.e., the distances between any two reference points Oi are pre-
served, or, equivalently, the reference points form a rigid polyhedron.

In our geometric framework, the rigid body requirement means restricting
the trajectory q(t) ∈ Q to be a SE(3)-orbit, or equivalently, NRq̇ = 0 or
q̇ ∈ ∆R(q), for all q.

In this case, one can imagine a body frame {M} moving with the virtual
structure determined by the Oi’s. Initially (t = 0), the frame {M} is coincident
with {F} and q(0) = q0. The position vector of Oi in {M} is constant during
this motion and equal to q0

i .
Using Eq. (21.42), the kinetic energy Tt becomes:
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Tt = sTMs, M = A(q0)TMA(q0), (21.48)

where s ∈ se(3) is the instantaneous twist of the virtual structure.
Therefore, if the set of robots is required to move while maintaining a

constant shape q0, the optimization problem is reduced from dimension 6N
to dimension 3N + 6, and consists of solving for N geodesics on SO(3) with
metrics Hi (individual rotations) and one geodesic on the SE(3) of the virtual
structure with left invariant metricM as in Eq. (21.48).

4.4.1 Example: Five Identical Robots in 3D Space

For illustration, we consider five identical parallelepipedic robots with dimen-
sions a, b, c and masses mi = m, i = 1, . . . , 5 required to move in formation
while minimizing energy. The virtual structure is a pyramid with a square base
of side l and height h. The body frames and the formation frame are placed
at the center of mass and aligned with the principal axis. As outlined in the
previous section, generating optimal motion for this group of robots reduces
to generating five geodesics on the SO(3) of each robot with left-invariant
metric Hi = G as in Eq. (21.33), i = 1, . . . , 5 and one geodesic on the SE(3)
of the virtual structure endowed with a left-invariant metric with matrix

G̃ =
m

2

⎡⎢⎢⎣
2l2 0 0 0
0 l2 + 4h2

3 0 0
0 0 l2 + 4h2

3 0
0 0 0 3I3

⎤⎥⎥⎦
The resulting motion is presented in Fig. 21.5 for numerical values a = c = 2,
b = 10, m = 12, h = 20, and l = 10. The projection method presented in Sect.
21.3 was used to generate the interpolating motions.

21.4.5 Motion Generation by Kinetic Energy Shaping

By shaping the kinetic energy , we mean smoothly changing the corresponding
metric (21.43) at TqQ so that motion along some specific directions is allowed
while motion along some other directions is penalized. The new metric will no
longer be constant: the Christoffel symbols of the corresponding symmetric
connection will be nonzero. The associated geodesic flow gives optimal motion.

In this work, the original metric (21.43) is shaped by putting different
weights on the terms corresponding to the rigid and nonrigid motions:

< V 1
q , V 2

q >α= α < NRV 1
q ,NRV 2

q > +(1− α) < RV 1
q ,RV 2

q > . (21.49)

Using Eq. (21.46) to go back to the original coordinates, we get the modified
metric in the form:

< V 1
q , V 2

q >α= V 1
q
T
Mα(q)V 2

q , (21.50)
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Fig. 21.5. Optimal motion for five identical robots required to maintain a rigid
formation

where the new matrix of the metric is now dependent on the artificially intro-
duced parameter α and the point on the manifold q ∈ Q:

Mα(q) = αMA(ATMA)−TATM + (1− α)MB(BTMB)−TBTM. (21.51)

The influence of the parameter α can be best seen by examining the signi-
ficance of α taking on the values of 0, 0.5, and 1. As α tends to 0, the preferred
motions will be ones where robots cluster together through much of the dura-
tion of the trajectory, thus minimizing the rigid body energy consumption. As
α approaches 0.5, the motions degenerate toward uncoordinated, independent
motions. As α tends to 1, the preferred motions are ones where the robots
stay in rigid formation through most of the trajectory, thus minimizing the
energy associated with deforming the formation.

We use the geodesic flow of metric (21.50) to produce smooth interpolating
motion between two given configurations:

q0 = q(0), q1 = q(1) ∈ IR3N . (21.52)

To simplify the notation, let xi, i = 1, . . . , 3N denote the coordinates qi ∈ IR3,
i = 1, . . . , N on the configuration manifold Q. In this coordinates, the geodesic
flow is described by the following differential equations [11]:

ẍi +
∑
j,k

Γ i
jkẋj ẋk = 0, i = 1, . . . , 3N, (21.53)

where Γ k
ij are the Christoffel symbols of the unique symmetric connection

associated to metric (21.50):
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Γ k
ij =

1
2

∑
h

(
∂mhj

∂xi
+

∂mih

∂xj
− ∂mij

∂xh

)
mhk, (21.54)

for mij and mij elements of Mα and M−1
α , respectively.

Because α = 0 and α = 1 make the metric singular, Eq. (21.54) can only
be used for 0 < α < 1.

4.5.1 Example: Two Bodies in Plane

Consider two bodies of masses m1 and m2 moving in the x-y plane. The
configuration space is Q = R4 with coordinates q = [x1, y1, x2, y2]T. The A
and B matrices describing ∆R(q) and ∆NR(q) as in Eqns. (21.38) and (21.44)
are:

A =

⎡⎢⎢⎣
−y1 1 0
x1 0 1
−y2 1 0
x2 0 1

⎤⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
m2(x2−x1)
m1(y1−y2)

−m2
m1

x1−x2
y1−y2

1

⎤⎥⎥⎥⎦ .

The 64 Christoffel symbols Γ k = (Γ k
ij)ij of the connection associated with the

modified metric at q ∈ Q become:

Γ 1 =
2(1− 2α)

α

m2

m1 + m2

dx

(d2
x + d2

y)2
Γ,

Γ 2 =
2(1− 2α)

α

m2

m1 + m2

dy

(d2
x + d2

y)2
Γ,

Γ 3 = −2(1− 2α)
α

m1

m1 + m2

dx

(d2
x + d2

y)2
Γ,

Γ 4 = −2(1− 2α)
α

m1

m1 + m2

dy

(d2
x + d2

y)2
Γ,

where

Γ =

⎡⎢⎢⎣
−d2

y dxdy d2
y −dxdy

dxdy −d2
x −dxdy d2

x

d2
y −dxdy −d2

y dxdy

−dxdy d2
x dxdy −d2

x

⎤⎥⎥⎦ ,

and dx = x1 − x2, dy = y1 − y2. It can be easily seen that, as expected, all
Christoffel symbols are zero if α = 0.5. Also, the actual masses of the robots
are not relevant, only the ratio m1/m2 is important.

In this example, we assume m2 = 2m1 and the boundary conditions:

q0 =

⎡⎢⎢⎣
1
0
−0.5

0

⎤⎥⎥⎦ , q1 =

⎡⎢⎢⎢⎣
3−

√
2

2

−
√

2
2

3 +
√

2
4√

2
4

⎤⎥⎥⎥⎦ ,
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which correspond to a rigid body displacement so that we can compare our
results to the optimal motion corresponding to a rigid body.
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Fig. 21.6. Three interpolating motions for a set of two planar robots as geodesics
of a modified metric defined in the configuration space

If the structure was assumed rigid, then the optimal motion is described by
uniform rectilinear translation of the center of mass between (0, 0) and (3, 0)
and uniform rotation between 0 and 3π/4 around −z placed at the center of
mass. The corresponding trajectories of the robots are drawn in solid line in
all the pictures in Fig. 21.6. It can be easily seen that there is no difference
between the optimal motion of the virtual structure solved on SE(2) and
the geodesic flow of the modified metric with α = 0.99 (Fig. 21.6, right). If
α = 0.5, all bodies move in straight line as expected (Fig. 21.6, middle). For
α = 0.2, the bodies go toward each other first, and then split apart to attain
the final positions (Fig. 21.6, left).

4.5.2 Example: Three Bodies in Plane
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Fig. 21.7. Three interpolating motions for a set of three planar robots as geodesics
of a modified metric defined in the configuration space

The calculation of the trajectories for three bodies moving in the plane
is simplified by assuming that the robots are identical, and, without loss of
generality, we assume m1 = m2 = m3 = 1. The rigid and the nonrigid spaces
at a generic configuration
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q = [x1, y1, x2, y2, x3, y3]T ∈ Q = IR6

are given by

∆R = Range(A), A =

⎡⎢⎢⎢⎢⎢⎢⎣
−y1 1 0
x1 0 1
−y2 1 0
x2 0 1
−y3 1 0
x3 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

∆NR = Range(B), B =

⎡⎢⎢⎢⎢⎢⎢⎣

x3−x1
y1−y2

y2−y3
y1−y2

x2−x1
y1−y2

−1 0 −1
x1−x3
y1−y2

y3−y1
y1−y2

x1−x2
y1−y2

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

For simplicity, we omit the expressions of the modified metric and of the
Christoffel symbols. The simulation scenario resembles the one in Sect. 21.4.5:
the end poses correspond to a rigid structure consisting of an equilateral tri-
angle with sides equal to 1. The optimal trajectory solved on SE(2) corre-
sponds to rectilinear uniform motion of the center of mass (line between (0,0)
and (3,0) in Fig. 21.7) and uniform rotation from angle 0 to 3π/4 around
axis −z. The resulting motion of each robot is shown solid, while the actual
trajectory for the corresponding value of α is shown dashed. First note for
α = 0.99 the trajectories are basically identical with the optimal traces pro-
duced by the virtual structure, as expected. In the case α = 0.5 the bodies
move in straight line (corresponding to the unmodified metric). The tendency
to cluster as α decreases is seen for α = 0.2. Note also that because of our
choice m1 = m2 = m3, the geometry of the equilateral triangle is preserved
for all values of α, it only scales down when α decreases from 1.

21.5 Conclusion

In this chapter, we survey the problem of generating interpolating motion for
groups of robots required to maintain a rigid formation, or virtual structure.
Since energy consumption is an important issue, especially for deep space
formations, motion planning for virtual structures is often accomplished by
posing the problem as an optimization problem. For example, satellite for-
mation reconfiguration demands a fuel-optimal trajectory to preserve mission
life and is constrained by the limited thrust available. Also, it is desired that
the generated trajectories be independent of a chosen reference frame.

Virtual structures, as rigid bodies, evolve on the Lie group of all transla-
tions and orientations in 3D, SE(3). The first part of this chapter is concerned
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with optimally interpolating trajectories on SE(3). The second part investi-
gates the rigidity constraint for a team of robots and shows how individual
motion plans can be constructed so that the overall energy of the formation is
minimized. The methodology and results are organized around two main is-
sues: optimality and invariance of the generated trajectories. The price one has
to pay to achieve these is, of course, a large amount of computation. We expect
that these methods will only find applications in areas where the number of
agents is small and fuel consumption is critical, as in satellite reconfiguration.

When a large number of agents is required to be coordinated and con-
trolled, some level of abstraction is necessary, dependent on the imposed task.
The virtual structure approach, which can be seen as an abstraction, is not
appropriate in many applications, including passing of a tunnel and obsta-
cle avoidance. Preliminary results on developing a general control method for
large groups of inexpensive agents based on abstractions are presented in [5].

References

1. T. Balch, R. Arkin (1998) Behavior-based formation control for multi-robotic
teams. IEEE Transactions on Robotics and Automation 14:926–934

2. R. W. Beard, F. Y. Hadaegh (1998) Constellation templates: an approach to
autonomous formation flying. In: World Automation Congress, pp. 177.1–177.6,
Anchorage, Alaska

3. C. Belta, V. Kumar (2002) Euclidean metrics for motion generation on SE(3).
Journal of Mechanical Engineering Science Part C 216:47–61

4. C. Belta, V. Kumar (2002) An SVD-based projection method for interpolation
on se(3). IEEE Trans. on Robotics and Automation, 18:334–345

5. C. Belta, V. Kumar (2002). Towards abstraction and control for large groups
of robots. In: Control Problems in Robotics, Springer, Berlin Heidelberg New

York, pp. 169–182
6. A.M. Bloch, N.E. Leonard, J.E. Marsden (2000). Controlled lagrangians and

the stabilization of mechanical systems 1: the first matching theorem. IEEE

Transactions on Automatic Control, 45:2253–2270
7. W. Burgard, M. Moors, D. Fox, R. Simmons, S. Thrun (2000) Collaborative

multi-robot exploration. In: Proc. IEEE Int. Conf. Robot. Automat., pp. 476–
481, San Francisco, CA

8. M. Camarinha, F. Silva Leite, P. Crouch (1995) Splines of class Ck on non-
Euclidean spaces. IMA J. Math. Control Inform., 12:399–410

9. P. Crouch, F. Silva Leite (1995) The dynamic interpolation problem: on Rieman-
nian manifolds, Lie groups, and symmetric spaces. J. Dynam. Control Systems,
1:177–202

10. J. Desai, J. P. Ostrowski, V. Kumar (1998) Controlling formations of multiple
mobile robots. In: Proc. IEEE Int. Conf. Robot. Automat., pp. 2864–2869,
Leuven, Belgium

11. M. P. do Carmo (1992) Riemannian geometry. Birkhauser, Boston
12. M. Egerstedt, X. Hu (2001) Formation constrained multi-agent control. IEEE

Trans. Robotics and Automation, 17:947–951



21 Multirobot Motion Planning 705

13. T. Eren, P. N. Belhumeur, B. D. O. Anderson, A. S. Morse (2002) A framework
for maintaining formations based on rigidity. In: IFAC World Congress, pp.
2752–2757, Barcelona, Spain

14. G. E. Farin (1992) Curves and surfaces for computer aided geometric design :

a practical guide, 3rd edn, Academic Press, Boston
15. J. Feddema, D. Schoenwald (2001) Decentralized control of cooperative robotic

vehicles. In: Proc. SPIE Vol. 4364, Aerosense, Orlando, Florida
16. Q. J. Ge, B. Ravani (1994) Computer aided geometric design of motion inter-

polants. ASME Journal of Mechanical Design, 116:756–762
17. G. H. Golub, C. F. van Loan (1989) Matrix computations. The Johns Hopkins

University Press, Baltimore
18. B. Juttler, M. Wagner (1996) Computer aided design with rational b-spline

motions. ASME J. of Mechanical Design, 118:193–201
19. N. E. Leonard, E. Fiorelli (2001) Virtual leaders, artificial potentials, and coor-

dinated control of groups. In: 40th IEEE Conference on Decision and Control,
pp. 2968 – 2973, Orlando, FL

20. A. Marthinsen (1999) Interpolation in Lie groups and homogeneous spaces.
SIAM J. Numer. Anal., 37:269–285

21. M. Mataric, M. Nilsson, K. Simsarian (1995) Cooperative multi-robot box pu-
shing. In IEEE/RSJ International Conf. on Intelligent Robots and Systems, pp.
556–561, Pittsburgh, PA

22. C. R. McInnes (1995) Autonomous ring formation for a planar constellation of
satellites. AIAA Journal of Guidance Control and Dynamics, 18:1215–1217

23. L. Noakes, G. Heinzinger, B. Paden (1989) Cubic splines on curved spaces. IMA

J. of Math. Control & Information, 6:465–473
24. R. Olfati-Saber, R. M. Murray (2002) Distributed cooperative control of mul-

tiple vehicle formations using structural potential functions. In: IFAC World

Congress, pp. 346–352, Barcelona, Spain
25. F. C. Park, B. Ravani (1994) Bezier curves on Riemannian manifolds and Lie

groups with kinematics applications. ASME Journal of Mechanical Design,
117:36–40

26. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery (1998) Numerical

Recipes in C. Cambridge University Press, Cambridge, UK
27. B. Roth (1981) Rigid and flexible frameworks. American Mathematical Monthly,

88:6–21
28. K. Shoemake (1985) Animating rotation with quaternion curves. ACM Siggraph,

19:245–254
29. T. R. Smith, H. Hanssmann, N. E. Leonard (2001) Orientation control of mul-

tiple underwater vehicles. In: 40th IEEE Conference on Decision and Control,
pp. 4598–4603, Orlando, FL

30. L. Srinivasan, Q. J. Ge (1998) Fine tuning of rational b-spline motions. ASME

Journal of Mechanical Design, 120:46–51
31. T. Sugar, V. Kumar (2000) Control and coordination of multiple mobile robots

in manipulation and material handling tasks. In: P. Corke and J. Trevelyan
(eds.), Experimental Robotics VI: Lecture Notes in Control and Information

Sciences, vol. 250, Springer, Berlin Heidelberg New York, pp. 15–24
32. P. Tabuada, G. J. Pappas, P. Lima (2001) Feasible formations of multi-agent

systems. In: American Control Conference, Arlington, VA



706 Calin Belta and Vijay Kumar

33. Herbert G. Tanner, George J. Pappas, Vijay Kumar (2002) Input-to-state stabi-
lity on formation graphs. In: Proceedings of the IEEE International Conference

on Decision and Control, pp. 2439–2444, Las Vegas, NV
34. P. Varaiya (1993) Smart cars on smart roads: problems of control. IEEE Tran-

sactions on Automatic Control, 38:195–207
35. M. Žefran, V. Kumar (1998) Interpolation schemes for rigid body motions.

Computer-Aided Design, 30:179–189
36. M. Žefran, V. Kumar, C. Croke (1995) On the generation of smooth three-

dimensional rigid body motions. IEEE Transactions on Robotics and Automa-

tion, 14:579–589



Part IX

Reaching and Motion Planning



22

The Computation of Reachable Surfaces for a
Specified Set of Spatial Displacements

J. Michael McCarthy1 and Hai-Jun Su2

1 Department of Mechanical and Aerospace Engineering, University of California,
Irvine, jmmccart@uci.edu

2 Robotics and Automation Laboratory, University of California, Irvine,
suh@eng.uci.edu

22.1 Overview

In this chapter, we consider the geometry of configurations of points generated
by arbitrary sets of positions of a rigid body. The goal is to find the points
in a moving body that lie on specific algebraic surfaces. This means we seek
the solutions to sets of algebraic equations that become more complex as the
number of parameters that define each surface increases.

The problem originates with Schoenflies [1], who sought points that remain
in a specific configuration for a given set of spatial displacements. Burmester
[2] applied this idea to planar mechanism design by seeking the points in a
planar moving body that remain on a circle. These Burmester points form
the joints of planar articulated chain that guides the body through the spe-
cified positions. His result was a graphical solution to a set of five quadratic
equations in five unknown parameters. See Hartenberg and Denavit [3] and
Sandor and Erdman [4] for analytical solutions to these design equations.

Chen and Roth [5] generalized Burmester’s approach by seeking points
and lines in a moving body that take positions on surfaces associated with
the articulated chains used to build robot manipulators–also see Suh and
Radcliffe [6] or McCarthy [7]. A discussion of general serial chain robots can
be found in Craig [8] or Tsai [9]. Our focus is on two-jointed chains that
support a spherical wrist. The center of this wrist traces a surface which is
said to be “reachable” by the chain. Considering the various ways of assembling
these articulated chains, we obtain seven reachable algebraic surfaces, and the
problem reduces to computing the dimensions of these chains from a set of
polynomial equations.

The complexity of this problem increases with the number of dimensional
parameters and the degree of the surface. The total degree of the polynomial
systems that we consider range from 32 for the simplest case to over 4 × 106

for the most complex. The equations have significant internal structure, so it
is possible to use a linear product decomposition (Bernshtein[10]; Morgan et
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al. [11]) to provide a better bound on the number of solutions, which range
from 10 to over 800,000. Where possible we have used polynomial elimination
to verify the number of roots (Nielsen and Roth [12]; Husty [13]), but in the
more complex examples we use polynomial homotopy algorithms (Tsai and
Morgan [14], Verschelde and Haegemans [15]) to determine the number of
roots by numerical experiments. The more difficult cases required adapting the
software POLSYS_PLP (Wise et al. [16]) for parallel computation, renamed
POLSYS_GLP (Su et al. [17]).

Our results are summarized in Table 22.3, which compares the total de-
gree of each polynomial system, the bound obtained using the linear product
structure of these polynomials, and the number of solutions obtained either
analytically or using the homotopy algorithms.

22.2 Introduction

An important problem in geometry is determining an algebraic surface that
passes through a given set of points. If the surface is defined by a single
polynomial equation, then we can evaluate it on each of the given points to
obtain a linear set of equations in the unknown coefficients of the surface.

For example, a sphere of radius R with center B = (u, v, w) is defined so
a general point P = (X,Y, Z) satisfies the equation

S : (X − u)2 + (Y − v)2 + (Z − w)2 −R2 = 0. (22.1)

Given four points Pi, i = 1, . . . , 4, we can evaluate this equation on each
point to obtain four equations S(Pi) = 0, i = 1, . . . , 4, which are linear in
the coefficients of S. These equations are easily solved to determine the four
parameters B = (u, v, w) and R. This is described by saying that four points
define a sphere.

We generalize this problem by considering the points Pi to be images of
a single point p = (x, y, z) in a moving body transformed by a specified set
of spatial displacements Ti. If we include the coordinates of p as part of the
problem, we find that seven spatial displacements completely define the sphere
and point, such that the sphere passes through all seven positions of the point
(Chen and Roth [5]).

This generalized problem finds a practical application in the design of
articulated serial chains. In particular, the TS chain shown in Fig. 22.1 has
a gimbal joint (T-joint) at its shoulder, a ball joint (S-joint) at the wrist
of its gripper, and no elbow joint (McCarthy [7]). Thus, the wrist center P
moves on a sphere about the center B of the gimbal joint and traces the
reachable surface of the chain. Given seven arbitrarily specified positions, we
can compute the points P and B that define a sphere and obtain a TS chain
that can reach each position. In what follows, we introduce homogeneous
transforms that define the spatial positions of a moving body and form the
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Gimbal joint

Spherical joint

Fig. 22.1. The TS serial constraints the wrist center to the surface of a sphere

data for our generalized problem. We then enumerate the reachable surfaces
and associated serial chains and, finally, focus on characterizing and solving
the polynomial systems that define these surfaces.

22.3 Spatial Displacements

The position of a body in space is defined by attaching a frame M and de-
termining the 3× 1 translation vector d that locates the origin of M relative
to a ground frame F , and by determining the 3 × 3 rotation matrix [A] that
defines the orientation of M relative F . This matrix and vector combine to
transform the coordinates p = (x, y, z) of a point in the moving frame M to
P = (X,Y, Z) in the fixed frame F , by the formula

P = T (p) = [A]p + d. (22.2)

This transformation has the property that distances between points measured
in M are preserved in F , and is called a spatial displacement . For a more
detailed presentation, see Suh and Radcliffe [6], Bottema and Roth [18], or
McCarthy [19].

Spatial displacements as in Eq. (22.2) are not linear operators, because
T (x + y) �= T (x) + T (y), due to the translation term. It is easy to adjust for
this inhomogeneity by adding a fourth component to our position vectors that
always equals 1. The result is the rotation matrix [A] and translation vector
d combine to form the 4× 4 homogeneous transform [T ] = [A,d], so we have[

X
1

]
=
[

A d
000 1

] [
x
1

]
. (22.3)

which we write as
X = [T ]x. (22.4)

For convenience we do not distinguish homogeneous point coordinates. There-
fore, our vectors have three components, and we add a fourth component of
1 when appropriate for the use of 4× 4 transforms.
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22.3.1 Dual Quaternions

For every homogeneous transform [T ] = [A,d], we can determine an invariant
line L(t) = C + tS, which we also write as the Plücker vector S = (S,C×S).
The direction S of this line is the rotation axis of the matrix [A], which means
it satisfies the relation [I − A]S = 0. The point C is obtained by solving the
equation

[I −A]C = d− (d · S)S, (22.5)

where we assume |S| = 1. See McCarthy [19, 7] for an explicit formula for C.
The displacement [T ] defines the position of M relative to F as the result of
a rotation around S by the angle φ given by the complex eigenvalues of [A],
followed by a slide k along S where k = S·d. This is the well-known result that
every spatial displacement is equivalent to a rotation around and translation
along a fixed line called the screw axis of the displacement (Bottema and Roth
[18]).

The parameters φ, k and S = (S,C× S) that define [T ] can be assembled
into an eight dimensional vector known as a dual quaternion. To define a dual
quaternion,we introduce the dual number â = a+εa◦, where ε2 = 0. Two dual
numbers add componentwise and multiply by the rule

âb̂ = (a + εa◦)(b + εb◦) = ab + ε(a◦b + ab◦). (22.6)

This formalism allows us to define the dual angle φ̂ = φ + εk, such that

sin
φ̂

2
= sin

φ

2
+ ε

k

2
cos

φ

2
, and cos

φ̂

2
= cos

φ

2
− ε

k

2
sin

φ

2
. (22.7)

A rotation of φ and slide k around and along the line S defines the dual
quaternion

Q̂ = sin
φ̂

2
S + cos

φ̂

2
, (22.8)

where S = S + εC × S is the dual vector form of the Plücker coordinates
of the line. The set of dual quaternions forms a vector space known as a
Clifford algebra (McCarthy [19]). The components of a dual quaternion Q̂=
(q1, q2, q3, q4) + ε(q◦1 , q

◦
2 , q

◦
3 , q

◦
4) = q + εq◦ can be assembled into an eight-

dimensional vector Q̂ = (q,q◦), and it is easy to verify that these component
satisfy the constraints,

q · q = 1, and q · q◦ = 0. (22.9)

Thus, dual quaternions provide a coordinate representation of the set of spatial
displacements as an algebraic submanifold in R8 that is called its image space
by Ravani [20]; also see Ravani and Roth [21]. A slight variation of this was
called soma space by Study (Bottema and Roth [18]). The elements of the
rotation matrix and translation vector in a homogeneous transform can be
defined in terms of the components of the associated dual quaternion, so we
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have [T (Q̂)] = [A(q),d(q,q◦)]. The result is a mapping of the constraint
equation of the reachable surface to an algebraic manifold in the space of dual
quaternions, called a constraint manifold . Our problem now becomes that of
fitting this constraint manifold to the dual quaternion points that represent
the specified displacements.

22.4 Articulated Serial Chains

A serial chain is a sequence of rigid links connected by joints that forms
the skeleton of a mechanical system. One end is connected to ground while
the other end forms the workpiece, or end effector. In general, each joint of
the chain allows either pure rotation about, or a linear slide along, the joint
axis,termed a revolute or prismatic joint, respectively. The number of these
joints defines the degree of freedom of the chain.

Table 22.1. The five basic joints

Joint Diagram Symbol DOF

Revolute
θ

R 1

Prismatic
d

P 1

Cylindric
θ

d
C 2

Universal
θ1

θ2

T 2

Spherical
θ1

θ2 θ3

S 3

Revolute and prismatic joints combine to form three additional joints. A
gimbal, or universal, joint, is formed by two revolute joints with axes that
intersect at right angles–we denote this joint by T. The combination of a re-
volute and a prismatic joint such that their axes are parallel forms a cylindric
joint, denoted by a C. Finally, a three revolute chain constructed so the joint
axes are concurrent is called a spherical, or ball, joint, denoted by S. See Ta-
ble 22.1 for descriptions of these five basic joints. In order to define reachable
surfaces, we consider only articulated chains for which the end effector is sup-
ported by a spherical wrist that allows full orientation of the gripper about its
center, P. This means the reachable surface is traced by P with the movement
of two remaining joints. The possibilities are simply the combinations of R
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and P for the first two joints, that is, RRS, RPS, PRS, and PPS. The surfaces
reachable by the wrist centers of these chains are, respectively, the general
torus, the circular hyperboloid, the elliptic cylinder, and the plane.

Fixed Axis

Moving Axis

End Effector

G

W i

Pi
B

Fig. 22.2. The RR serial chain formed by a sequence of two revolute joints

We obtain additional reachable surfaces by specializing the dimensional
parameters that characterize the first two joints. In particular, the RR chain
Fig. 22.2, has two defining parameters: the distance ρ between the joint axes
along their common normal line, and the angle α between them measured
around this common normal. For α = π

2 we have the “right RRS” chain that
traces a circular torus. The case α = 0 yields the “parallel RRS” chain, which
constrains its wrist center to a plane, and is therefore equivalent to the PPS
chain. If the parameter ρ = 0, then the surface is part of a sphere, and fills the
sphere for α = π

2 , which characterizes the TS chain. For RP and PR chains,
only the angle α is important because the P joint ensures that all points travel
on lines parallel to its direction. We can identify the special cases of the RPS
and PRS chains for which this angle is α = 0. Both cases become the CS chain
that traces a circular cylinder. If this angle is α = π

2 , called a “right RPS”
or “right PRS” chain, then the surface is again a plane equivalent to that
traced by the PPS chain. Finally, all PP chains are essentially the same as
long the directions of the two joints are not parallel, so that some component
of movement perpendicular to the first prismatic joint is available by sliding
along the second joint.

The result is seven articulated chains and the associated algebraic surfaces
that are reachable by their wrist centers (Table 22.2). These surfaces define
seven constraint manifolds in the Clifford algebra of dual quaternions. In what
follows, we determine the number of solutions to the polynomial equations that
define these reachable surfaces. This is equivalent to determining the number
of constraint manifolds for a particular chain that pass through a given set of
displacements.
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Table 22.2. The basic serial chains and their associated reachable surfaces

Case Chain Angle Length Surface
1 PPS – – Plane
2 TS π

2
0 Sphere

3 CS 0 – Circular cylinder
4 RPS α – Circular hyperboloid
5 PRS α – Elliptic cylinder
6 Right RRS π

2
ρ Circular torus

7 RRS α ρ General torus

22.5 Linear Product Decomposition

The fundamental theorem of algebra states that the number of roots of a
polynomial is equal to or less than its degree, which is the integer value of its
highest power–equality is obtained if roots are counted with the appropriate
multiplicity. This has been generalized to Bezout’s theorem, which states that
the number of roots of a system of polynomials is less than or equal to the
product of the degrees of the individual polynomials, called the total degree
of the system.

In the problems that we consider in this paper, the total degree over-
estimates the number of roots in the polynomial system P(z) by a significant
amount. Morgan et al. [11] show that a “generic” system of polynomials that
includes every monomial of a particular system of polynomials will have as
many or more solutions as any polynomial system obtained by specifying
values for the coefficients. This provides the foundation for the construction
of the linear product decomposition of a system of polynomials.

The linear product decomposition of a system of polynomials is a polyno-
mial system that includes all of the monomials of the original system, but in
which each polynomial is formed by the product of linear combinations of the
variables.

Let 〈x, y, 1〉 represent the set of linear combinations of parameters x, y,
and 1, which means a typical term is αx + βy + γ ∈ 〈x, y, 1〉, where α, β,
and γ are arbitrary constants. Using this notation, we define the product of
〈x, y, 1〉〈u, v, 1〉 as the set of linear combinations of the product of the elements
of the two sets, that is

〈x, y, 1〉〈u, v, 1〉 = 〈xu, xv, yu, yv, x, y, u, v, 1〉. (22.10)

This product commutes, which means 〈x〉〈y〉 = 〈y〉〈x〉, and it distributes over
unions, such that 〈x〉〈y〉∪〈x〉〈z〉 = 〈x〉(〈y〉∪〈z〉) = 〈x〉〈y, z〉. Furthermore, we
represent repeated factors using exponents, so 〈x, y, 1〉〈x, y, 1〉 = 〈x, y, 1〉2.

In order to illustrate a linear product decomposition, we consider our
example in Eq. (22.1) in more detail. Write these polynomials in vector form
to obtain
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(Pi −B) · (Pi −B) = R2, i = 1, . . . , 7, (22.11)

where the dot denotes the vector dot product. Now subtract the first equa-
tion from the rest in order to eliminate R2. This reduces the problem to six
equations in the unknowns z = (x, y, z, u, v, w), given by

Sj(z) = (Pj+1 ·Pj+1−P1 ·P1)−2B·(Pj+1−P1) = 0, j = 1, . . . , 6. (22.12)

We now focus attention on the monomials formed by the unknown parameters.
Recall that Pi = [Ai]p + di, where [Ai] and di are known, so it is easy to

see that
2B · (Pj+1 −P1) ∈ 〈u, v, w〉〈x, y, z, 1〉. (22.13)

It is also possible to compute

Pj+1 ·Pj+1−P1 ·P1 = 2dj+1 · [Aj+1]p−2d1 · [A1]p+d2
j+1−d2

1 ∈ 〈x, y, z, 1〉.
(22.14)

Each of the equations in (22.12) has the same monomial structure given by

〈x, y, z, 1〉 ∪ 〈u, v, w〉〈x, y, z, 1〉 ⊂ 〈x, y, z, 1〉〈u, v, w, 1〉. (22.15)

From this we see that a generic set of polynomials, which contains our system
as a special case, can be formed as products of linear factors, that is

Q(z) =

⎡⎢⎣ (a1x + b1y + c1z + d1)(e1u + f1v + g1w + h1)
...

(a6x + b6y + c6z + d6)(e6u + f6v + g6w + h6)

⎤⎥⎦ = 0, (22.16)

where the coefficients are known constants. This structure is called the linear
product decomposition (LPD) of the polynomial system.

Solutions to the LPD of a set of polynomials are easily determined by
assembling all combinations of factors, one from each equation, that can be
set to zero and solved for the unknown parameters (Wampler[22]). In our
example, select the factors aix + biy + ciz + di = 0 from three of the six
equations, and combine with the three factors eiu + fiv + giw + hi = 0 from
the remaining equations. A solution of this set of six linear equations is a root
of Eq. (22.16). Thus, we find that this system has

(
6
3

)
= 20 solutions, which

matches the known result for Eq. (22.12). For the problems we consider, the
LPD provides a bound on the number of solutions that is significantly less
than the total degree.

In the following sections, we consider each reachable surface in turn. We
derive a defining polynomial system, evaluate its total degree, compute its
LPD bound, and then determine the roots of a generic problem to find the
number of articulated chains that reach a specified set of displacements.
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22.6 The Plane

The PPS serial chain has the property that the wrist center P is constrained
to lie on a plane (Fig. 22.3). A point P = (X,Y, Z) lies on a plane with the
surface normal G = (a, b, c) if it satisfies the equation

aX + bY + cZ − d = G ·P− d = 0. (22.17)

The parameter d is the product of the magnitude |G| and the signed normal
distance to the plane.

G

P

Fig. 22.3. A plane as traced by a point at the wrist center of a PPS serial chain

Given a set of spatial displacements, Q̂i, i = 1, . . . , n, we have the images
Pi = [T (Q̂i)]p of a single point p in the moving frame M . We seek both the
plane P : (G, d) and the point p = (x, y, z), so each Pi lies on this plane. There
are seven parameters in this problem, however, the components of G are not
independent because only its direction is important to defining the plane, not
its magnitude. A convenient way to constrain this magnitude is to choose an
vector m and a scalar e, and require that m ·G = e. Add to this six equations
obtained by evaluating Eq. (22.17) on six arbitrary displacements,given by

G ·Pi − d = 0, i = 1, . . . , 6. (22.18)

Subtract the first of these equations from the remaining to eliminate d, and
the result is the polynomial system

Pj : G · (Pj+1 −P1) = 0, j = 1, . . . , 5,
C : m ·G− 1 = 0. (22.19)

This is a set of five quadratic equations and one linear equation in the six
unknowns z = (a, b, c, x, y, z). The total degree of this system of polynomials
is 25 = 32, which means that for six arbitrary displacements there are most
32 points in the moving body that have six positions on a plane.
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The linear combinations of monomials that contain the plane equations
(22.19) are given by

Pj ∈ 〈a, b, c〉〈x, y, z, 1〉|j = 0, j = 1, . . . , 5,
C ∈ 〈a, b, c, 1〉 = 0. (22.20)

This is the LPD of the polynomial system. The root count for this LPD is
given by the combinations of linear factors that can be set to zero and solved
for the unknown parameters. In this case, we have

(
5
2

)
= 10 roots, which means

that there are at most 10 points in the moving body that have 6 positions on
a plane.

In this case, direct elimination of the parameters (Raghavan 1995[23])
yields a univariate polynomial of degree 10, which shows that this LPD bound
is exact. So far, our study of example problems has not yielded more than four
real solutions.

Once the plane P and point p are defined, then it is possible to determine a
PPS chain, a parallel RRS, or right RPS chain that guides this point through
the specified positions.

22.7 The Sphere

We now return to our opening example of a point P = (X,Y, Z) constrained
to lie on a sphere of radius R around the point B = (u, v, w) (Fig. 22.4). This
means its coordinates satisfy the equation

(X − u)2 + (Y − v)2 + (Z − w)2 −R2 = (P−B)2 −R2 = 0. (22.21)

We now consider Pi to be the image of a point p = (x, y, z) in a moving frame
M that takes positions in space defined by the displacements Q̂i, i = 1, . . . , n.
See Innocenti [24], Liao and McCarthy [25] and Raghavan [26].

P

B

R

Fig. 22.4. A sphere traced by a point at the wrist center of a TS serial chain



22 Computation of Reachable Surfaces 719

This problem has seven parameters, therefore we can evaluate Eq. (22.21)
on n = 7 displacements. We reduced these equations to the set of six quadratic
polynomials,

Sj : (Pj+12 −P12
)− 2B · (Pj+1 −P1) = 0, j = 1, . . . , 6. (22.22)

This system has total degree of 26 = 64.
We have already seen that the system Eq. (22.22) has the LPD

Sj ∈ 〈x, y, z, 1〉〈u, v, w, 1〉|j = 0, j = 1, . . . , 6. (22.23)

From this we can compute the LPD bound
(
6
3

)
= 20. Parameter elimination

yields an univariate polynomial of degree 20, so we see that this bound is
exact. Innocenti [24] presents an example that results in 20 real roots; also
see Wampler et al. [27].

The conclusion is that given seven arbitrary spatial positions there can
be as many as 20 points in the moving body that have positions lying on a
sphere. For each real point, it is possible to determine an associated TS chain.

22.8 The Circular Cylinder

In order to define the equation of a circular cylinder, let the line L(t) = B+tG
be its axis. A general point P on the cylinder lies on a circle about the point
Q closest to it on the axis L(t) (Fig. 22.5). Introduce the unit vectors u and
v along G and the radius R of the cylinder, respectively, so we have

P−B = du + Rv, (22.24)

where d is the distance from B to Q. Compute the cross product of this
equation with G, in order to cancel d before squaring both sides. The result
is

((P−B)×G)2 = R2G2. (22.25)

In this calculation we use the fact that (v ×G)2 = G2.
Another version of the equation of the cylinder is obtained by substituting

d = (P−B) · u into Eq. (22.24) and squaring both sides to obtain

(P−B)2 − ((P−B) ·G)2
1

G ·G −R2 = 0. (22.26)

Notice that we allow G to have an arbitrary magnitude. This form of the cylin-
der is related to the equation of the circular hyperboloid, which is discussed
in Sect. 22.9.

Equation (22.25) has ten parameters, the radius R and three each in the
vectors P = (X,Y, Z), B = (u, v, w), and G = (a, b, c). However, because
only the direction of G is important to the definition of the cylinder, its three
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Fig. 22.5. The circular cylinder reachable by a CS serial chain

components are not independent. We set the magnitude of G as we did above
for the equation of the plane. Choose an arbitrary vector m and scalar e and
require the components of G to satisfy the constraint,

C1 : G ·m− e = 0. (22.27)

The components of the point B are also not independent, but for a different
reason. It is because any point on the line L(t) can be selected as the reference
point B. We identify this point by requiring B to lie on a specific plane
U : (n, f), that is

C2 : B · n− f = 0, (22.28)

where n and f are chosen arbitrarily to avoid the possibility that the line L(t)
may lie on U . Eight more polynomials are obtained by evaluating Eq. (22.26)
with P specified as the image of p = (x, y, z) for eight spatial displacements,
that is, Pi = [T (Q̂i)]p, i = 1, . . . , 8. The result is

((Pi −B)×G)2 −R2G2 = 0, i = 1, . . . , 8. (22.29)

Subtract the first equation from the remaining to eliminate R

((Pj+1 −B)×G)2 − ((P1 −B)×G)2 = 0, j = 1, . . . , 7. (22.30)

Expand the terms in this equation to obtain the system of polynomials

Pi : (Pj+1 ×G)2 − (P1 ×G)2 − 2((Pj+1 −P1)×G) · (B×G) = 0,
j = 1, . . . , 7,

C1 : G ·m− e = 0, and C2 : B · n− f = 0. (22.31)
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This is a set of seven polynomials of degree four and two linear equations.
The total degree is 47 = 16,384. See Nielsen and Roth [12] and Su et al.
[28] for additional details about this problem. We now consider the monomial
structure of the polynomial system given by Eq. (22.31). The polynomials Pi

are linear combinations of monomials in the set generated by

(〈x, y, z, 1〉〈a, b, c〉)2 ∪ 〈x, y, z, 1〉〈a, b, c〉〈u, v, w〉〈a, b, c〉. (22.32)

The products commute, 〈a〉〈b〉 = 〈b〉〈a〉, and they distribute over unions,
〈a〉〈b〉 ∪ 〈a〉〈c〉 = 〈a〉(〈b〉 ∪ 〈c〉) = 〈a〉〈b, c〉, therefore Eq. (22.32) becomes

〈a, b, c〉2(〈x, y, z, 1〉2 ∪ 〈x, y, z, 1〉〈u, v, w〉), (22.33)

which can be written as

〈a, b, c〉2〈x, y, z, 1〉〈x, y, z, u, v, w, 1〉. (22.34)

This shows that the polynomial system Eq. (22.31) has the monomial struc-
ture,

Pj ∈〈a, b, c〉2〈x, y, z, 1〉〈x, y, z, u, v, w, 1〉|j = 0, j = 1, . . . , 7,
C1 ∈〈u, v, w, 1〉 = 0, and
C2 ∈〈a, b, c, 1〉 = 0. (22.35)

In order to estimate the number of roots we see that to specify G = (a, b, c)
we must combine C2 with two terms 〈a, b, c〉 from the seven polynomials Pi.
Because this term is squared, the number of choices is increased by a factor
of22 = 4. For the remainder of the parameters, we can choose from zero to
three of the terms 〈x, y, z, 1〉 from the remaining five polynomials to define
p = (x, y, z). The third terms in what is left and C1 define the remaining
parameters. This yields the LPD bound of

22

(
7
2

) 3∑
i=0

(
5
i

)
= 2, 184, (22.36)

which is much reduced from the total degree of 16,384. For polynomial sys-
tems with a large number of roots, elimination is notattractive, but we may
find all solutions using polynomial continuation. We used the software PHC
(Verschelde[29]) and POLSYS_PLP (Watson et al.[30]) to compute the roots
for random test cases and determined the exact root count for this problem
to be 804. Clearly, there is more structure in this system of polynomials than
what is shown in the linear product decomposition.

Thus, we find that for eight arbitrary spatial positions we can find as many
as 804 points in the moving body, each of which has all eight positions on a
circular cylinder. For each of these points, we can determine an associated CS
chain.
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22.9 The Circular Hyperboloid

A circular hyperboloid is generated by rotating one line around another so
that every point on the moving line traces a circle around the fixed line,
which is the axis of the hyperboloid (Fig. 22.6). Of all of these circles there is
one with the smallest radius, R, and its center B = (u, v, w) is the center of
the hyperboloid. Let G = (a, b, c) be the direction of the axis, and denote its
Plücker coordinates as G = (G,B×G). A unit vector N perpendicular to G
though B is the common normal between the axis G and one of the generated
lines H. The generator is located at the distance R along N, and lies at an
angle α around N relative to the axis G.

R

B

P

N
( b ) top view along -G

H

B α

P
H

G

d

R

( c ) front view along -N

GxN

HG
P

( a )

N

GxN

Fig. 22.6. The circular hyperboloid traced by the wrist center of an RPS serial
chain

If point P is a point on the generator H, then its d measured along the
axis G from G is given by

d =
(P−B) ·G√

G ·G
. (22.37)

Notice that we are not assuming that G is a unit vector. The magnitude of
P−B is now computed to be

(P−B)2 = R2 + d2 + (d tanα)2. (22.38)

Substitute d into this equation to obtain the equation of a circular hyperboloid

(P−B)2 − ((P −B) ·G)2
(

1 + tan2 α

G ·G

)
−R2 = 0. (22.39)
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When α = 0, this equation becomes the equation of a cylinder presented in
Sect. 22.8.

Figure 22.6a shows the RPS chain associated with the circular hyperboloid.
The R-joint axis is G, and its P-joint axis is in the direction α measured around
the common normal. The point P is the center of the S-joint, and lies at the
distance R in the direction N of the common normal. Expand Eq. (22.39) and
collect terms to obtain

k0P ·P + 2K ·P− (P ·G)2 − ζ = 0, (22.40)

where we have introduce the parameters k0, K = (k1, k2, k3), and ζ defined
by

k0 =
G ·G

1 + tan2 α
, K = (B·G)G−k0B, ζ = (B·G)2−k0B·B+k0R

2. (22.41)

Given values for ζ, k0, K, and G, we can compute B by solving the linear
equations ⎡⎣k1

k2

k3

⎤⎦ =

⎡⎣a2 − k0 ab ac
ab b2 − k0 ac
ac bc c2 − k0

⎤⎦⎡⎣ u
v
w

⎤⎦ . (22.42)

Then the length and twist parameters, R and α, are obtained from the for-
mulas

α = arccos

(√
k0

G ·G

)
, R =

√
ζ − (B ·G)2 + k0B ·B

k0
. (22.43)

Thus, the 11 dimensional parameters ζ, k0, K, G, and P define a circular
hyperboloid.

As we have done previously, we set the length of G by choosing an arbitrary
vector m and scalar e to define the constraint

C : G ·m− e = 0. (22.44)

This means given ten arbitrary displacements Q̂i, we can map a point
p = (x, y, z) to its displaced positions Pi = [T (Q̂i)]p, i = 1, . . . , 10. Evaluating
the equation of the hyperboloid on these ten points, we obtain

k0Pi ·Pi + 2K ·Pi − (Pi ·G)2 − ζ = 0, i = 1, . . . , 10. (22.45)

Subtract the first of these equation from the remaining in order to eliminate
ζ and define the system of polynomials

Hj : k0(Pj+12 −P12
) + 2K · (Pj+1 −P1)− (Pj+1 ·G)2 + (P1 ·G)2 = 0,

j = 1, . . . , 9,
C : G ·m− e = 0. (22.46)
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This is a system of nine fourth-degree polynomials Hj and one linear equation
C, which has a total degree of 49 = 262,144. See Nielsen and Roth [12] and
Kim and Tsai [31] for other formulations of this problem.

A better bound on the number of solutions can be obtained by considering
the monomial structure of the these equations. Recall that the term Pj+12 −
P12

is linear in x,y, and z, because the quadratic terms cancel, see Eq. (22.14).
This means the polynomials Hj have the monomial structure

Hj ∈ 〈k0〉〈x, y, z, 1〉 ∪ 〈k1, k2, k3〉〈x, y, z, 1〉 ∪ (〈x, y, z, 1〉〈a, b, c〉)2. (22.47)

This simplifies to yield the linear product decomposition for the system (22.46)
as

Hj ∈ 〈a, b, c〉2〈x, y, z, 1〉〈x, y, z, k0, k1, k2, k3, 1〉|j, j = 1, . . . , 9,
C ∈ 〈a, b, c, 1〉. (22.48)

This structure allows us to count the number of roots from the number of
admissible sets of linear equations that yield solutions for the unknown pa-
rameters. In this case we obtain

LPD = 22

(
9
2

) 3∑
j=0

(
7
j

)
= 9, 216. (22.49)

The POLSYS_PLP algorithm yielded a generic root count of 1024 in a
calculation that took approximately 24h on a single 2.4-GHz PC (384 paths
per processor-hour). The parallel version POLSYS_GLP was run on eight
64-bit processors of UCI’s Beowulf cluster, and required 30min (2304 paths
per processor-hour).

This particular problem has a structure that is convenient for polyhedral
homotopy algorithms. Using this setting for PHC, we obtained the same so-
lutions in 24min on a single processor by tracking only 1024 paths. See Gao
et al. [32, 33] for a discussion of polyhedral homotopy methods. Thus, we see
that there are as many as 1024 points, each of which lies on a circular hyper-
boloid when displaced through ten arbitrarily specified spatial displacements.
For each real root we can find an associated RPS chain.

22.10 The Elliptic Cylinder

An elliptic cylinder is generated by a circle that has its center swept along a
line L(t) = B + tS1 such that the vector through the center normal to the
plane of the circle maintains a constant direction S2 at an angle α relative
to the direction S1 of L(t) (Fig. 22.7). The major axis of the elliptic cross-
section is the radius R of the circle and the minor axis is R cosα. This surface
is generated by the wrist center of a PRS chain that has its P-joint aligned
with the axis L(t) and its R-joint positions so its axis is along S2.
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Fig. 22.7. The elliptic cylinder reachable by a PRS serial chain

Consider a general point on the cylinder P, and let Q be the center of
the circle. The point Q moves along the axis L(t), which has the Plücker
coordinates S1 = (S1,B× S1). The distance from the reference point B to Q
is denoted d. These definitions allow us to express the location of P relative
to B as

P−B = dS1 + Ru, (22.50)

where u is a unit vector in the direction S1 × S2. Compute the cross product
with S1 to eliminate d, and the cross product with S2 to obtain

S2 × ((P−B)× S1) = R(S2 · S1)u. (22.51)

The magnitude of this vector identity yields our equation of the elliptic cylin-
der (

S2 ×
(
(P−B)× S1

))2 = R2(S1 · S2)2. (22.52)

This equation has 13 dimensional parameters: the radius R, three each for the
directions S1, S2, and the points P and B. Notice that if S1 = S2 = G this
simplifies to the equation of a circular cylinder.

There are actually only ten independent parameters in Eq. (22.52) and
we can determine three additional linear constraints. First, note that it is the
directions of S1 and S2 that matter, not their magnitude. We specify these
magnitudes by introducing two arbitrary planes Vk : (mk, ek), k = 1, 2. In
general, the lines through the origin parallel to Si must intersect these planes,
respectively. We select these points of intersection to be Si; that is, we require

Ck : mk · Sk − ek = 0, k = 1, 2. (22.53)

Next, we note that any point along the line S1 can serve as the reference point
B for the axis of the cylinder. We determine B by specifying an arbitrary plane
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U : (n, f). In general,the line G must intersect this plane, and we select this
point at B. Thus, B satisfies the linear equation

C3 : n ·B− f = 0. (22.54)

Notice that n is the unit normal to the plane and f the directed distance from
the origin to the plane.

We now consider the images of a point p = (x, y, z) generated by ten spatial
displacements, that is Pi = [T (Q̂i)]p, i = 1, . . . , 10. Evaluate the equation of
the elliptic cylinder on these ten points to obtain(

S2 ×
(
(Pi −B)× S1

))2 −R2(S1 · S2)2 = 0, i = 1, . . . , 10. (22.55)

Subtract the first of these equations from the remaining to obtain the system
of polynomials

Ej : (S2 × ((Pj+1 −B)× S1))2 − (S2 × ((P1 −B)× S1))2 = 0, j = 1, . . . , 9,
Ck : mk · Sk − ek = 0, k = 1, 2,
C3 : n ·B− f = 0. (22.56)

The result is nine polynomials of degree six and three linear equations. The
total degree of this polynomial system is 69 = 10,077,696.

The total degree of this system can be reduced as follows. Expand the
triple product

S2 × ((P−B)× S1) =(S1 · S2)(P−B)− ((P−B) · S2)S1

=(S1 · S2)(P− (P ·K)S1 + Q), (22.57)

where
K =

S2

S1 · S2
, and Q = (B ·K)S1 −B. (22.58)

Add to this the constraints

S1 · S1 = 1, K · S1 = 1, and Q ·K = 0. (22.59)

This combines with the other constraints to reduce the degree of these poly-
nomials to four, so we have

(P− (P ·K)S1 + Q)2 =

P2 + (P ·K)2 + Q2 − 2(P · S1)(P ·K) + 2P ·Q− 2(P ·K)(Q · S1).
(22.60)

The result is a new version of the polynomial system

E ′j : (Pj+1 − (Pj+1 ·K)S1 + Q)2 − (P1 − (P1 ·K)S1 + Q)2 = 0,

j = 1, . . . , 9,
C′1 : S1 · S1 − 1 = 0,
C′2 : K · S1 − 1 = 0,
C′3 : Q ·K = 0, (22.61)
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which has the total degree (23)(49) = 2,097,152.
As we have done previously, we examine the monomial structure of the

equations E ′j. Let S1 = (a, b, c), K = (k1, k2, k3), and Q = (q1, q2, q3), and

recall that the quadratic terms in Pj+12 −P12
cancel, as does the term Q2.

Thus, the polynomials E ′j have the monomial structure

〈x, y,z, 1〉 ∪ 〈x, y, z, 1〉2〈k1, k2, k3〉2 ∪ 〈x, y, z, 1〉2〈k1, k2, k3〉〈a, b, c〉
∪ 〈x, y, z, 1〉〈q1, q2, q3〉 ∪ 〈x, y, z, 1〉〈k1, k2, k3〉〈a, b, c〉〈q1, q2, q3〉. (22.62)

This leads to the linear product decomposition for this polynomial system

E ′j ∈〈x, y, z, 1〉〈x, y, z, q1, q2, q3, 1〉〈k1, k2, k3, 1〉〈k1, k2, k3, a, b, c, 1〉|j = 0,

j = 1, . . . , 9,

C′1 ∈〈a, b, c, 1〉2 = 0,
C′2 ∈〈k1, k2, k3, 1〉〈a, b, c, 1〉 = 0,
C′3 ∈〈k1, k2, k3, 1〉〈q1, q2, q3, 1〉 = 0. (22.63)

The LPD bound for this system is 247,968 which is large.
This system was solved using our parallelized POLSYS_GLP on 128 nodes

of the Blue Horizon supercomputer at the San Diego Supercomputer Center.
The result was 18,120 solutions in almost 33min. Each node of Blue Horizon
has eight processors, so this corresponds to 563 cpu hours, or approximately
440 paths per processor-hour. These 18,120 real and complex solutions require
further study to evaluate the associated PRS chains.

22.11 The Circular Torus

A circular torus is generated by sweeping a circle around an axis so its center
traces a second circle. Let the axis be L(t) = B+tG, with Plücker coordinates
G = (G,B×G) (Fig. 22.8). Introduce a unit vector v perpendicular to this
axis so the center of the generating circle is given by Q−B = ρv. Now define
u to be the unit vector in the direction G, then a point P on the torus is
defined by the vector equation

P−B = ρv + R(cosφv + sinφu), (22.64)

where φ is the angle measured from v to the radius vector of the generating
circle.

An algebraic equation of the torus is obtained from Eq. (22.64) by first
computing the magnitude

(P−B)2 = ρ2 + R2 + 2ρR cosφ. (22.65)

Next compute the dot product with u, to obtain
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Fig. 22.8. The circular torus traced by the wrist center of a right RRS serial chain

(P−B) · u = R sinφ. (22.66)

Finally, eliminate cosφ and sinφ from these equations, and the result is

G2((P−B)2 − ρ2 −R2)2 + 4ρ2((P−B) ·G)2 = 4ρ2G2R2. (22.67)

This is the equation of a circular torus. It has 11 parameters, the scalars ρ
and R, and the three vectors G, P, and B.

In contrast to what we have done previously, here we set the magnitude
of G to a constant, in order to simplify the polynomial (22.67),

G : G ·G = 1. (22.68)

Unfortunately, this doubles the number of solutions since −G and G define
the same torus, however, it reduces this polynomial from degree sixth to degree
four.

Let Q̂i, i = 1, . . . , 10 be a specified set of displacements, so we have the ten
positions Pi = [T (Q̂i)]p of a point p = (x, y, z) that is fixed in the moving
frame M . Evaluating Eq. (22.67) on these points, we obtain the polynomial
system

Ti : ((Pi −B)2 − ρ2 −R2)2 + 4ρ2((Pi −B) ·G)2

− 4ρ2R2 = 0, i = 1, . . . , 10,
G : G ·G− 1 = 0. (22.69)

The total degree of this system is 2(410) = 2,097,152.
In order to simplify the polynomials Ti we introduce the parameters

H = 2ρG and k1 = B2 − ρ2 −R2, (22.70)

which yields the identity

4ρ2R2 = H2

(
B2 − H2

4
− k1

)
. (22.71)
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Substitute these relations into Ti to obtain

T ′
i : ((Pi)2 − 2Pi ·B + k1)2 + ((Pi −B) ·H)2 −H2

(
B2 − H2

4
− k1

)
= 0,

i = 1, . . . , 10, (22.72)

It is difficult to find a simplified formulation for these equations, even if we
subtract the first equation from the remaining in order to cancel terms.

Expanding the polynomial T ′
i and examining each of the terms, we can

identify the linear product decomposition

T ′
i ∈ 〈x, y, z, h1, h2, h3, 1〉2〈x, y, z, h1, h2, h3, u, v, w, k1, 1〉2. (22.73)

This allows us to compute the LPD bound on the number of roots as

LPD = 210
6∑

j=0

(
10
j

)
= 868, 352. (22.74)

Our POLSYS_GLP algorithm tracked these homotopy paths in 72 min on
128 nodes of the Blue Horizon supercomputer. This means the over 800,000
paths were tracked on 1024 processors at a rate of approximately 707 paths per
processor-hour. We obtained 94,622 real and complex solutions for a random
set of specified displacements. However, this problem needs further study to
provide an efficient way to evaluate and sort the large number of right RRS
chains.

22.12 The General Torus

A general torus is defined by sweeping a circle that has a general orientation in
space about an arbitrary axis (Fig. 22.9). Let S1 = (S1,B×S1) be the Plücker
coordinates of the line that forms the axis of the torus, and S2 = (S2,Q×S2)
define the line through the center of the circle that is perpendicular to the
plane of the circle. These two lines define a common normal N, and we choose
its intersection with S1 and S2 to be the reference points B and Q, respectively.
The normal angle and distance between these lines around and along their
common normal are denoted α and ρ. Finally, we identify the center of the
circle as lying a distance d along S2 measured from Q.

In this derivation, we constrain S1 and S2 to be unit vectors, in order to
reduce the degree of the resulting equation. This allows us to define the unit
vector in the common normal direction as n = (S1 × S2)/ sinα, so we obtain
a general point P on the torus from the vector equation,

P−B = ρn + dS2 + R(cosφn + sinφ(S2 × n)). (22.75)

The algebraic equation for the torus is obtained by first computing
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Fig. 22.9. The general torus reachable by the wrist center of an RRS serial chain

(P−B)2 = ρ2 + d2 + R2 + 2ρR cosφ, (22.76)

and
(P−B) · (v × n) = R sinφ. (22.77)

Notice that S2 × n is

S2 ×
S1 × S2

sinα
=

1
sinα

(S1 − cosαS2). (22.78)

Now, eliminate φ between these two equations to obtain

((P−B)2−ρ2−d2−R2)2+
4ρ2

sin2 α
((P−B)·S1−d cosα)2−4ρ2R2 = 0. (22.79)

This equation has the four scalar parameters ρ, α, d, and R, and the three
vector parameters P, B, and S1. These 13 parameters combine with the con-
straint that |S1| = 1, to yield 12 independent parameters.

In order to simplify the use of Eq. (22.79), we introduce the parameters

k1 =B ·B− ρ2 −R2 − d2,

k2 =(B · S1 + d cosα)
2ρ

sinα
,

k3 =4ρ2R2,

H =
2ρ

sinα
S1. (22.80)

These parameters allow us to write Eq. (22.79) in the form

(P2 − 2P ·B + k1)2 + (P ·H− k2)2 − k3 = 0. (22.81)

This is a quartic polynomial in the three scalars ki, i = 1, 2, 3, and three
vectors P, B, and H.

Given a set of displacements Q̂i, i = 1, . . . , 12, we evaluate Eq. (22.81) on
the points Pi = [T (Q̂i)]p, i = 1, . . . , 12. Subtract the first of these equations
from the remaining to cancel k3 and obtain
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GT j : (Pj+12 − 2Pj+1 ·B + k1)2 − (P12 − 2P1 ·B + k1)2

+(Pj+1 ·H− k2)2 + (P1 ·H− k2)2 = 0, j = 1, . . . , 11. (22.82)

The total degree of this system of polynomials is 411 = 4, 194, 304.
We can refine the estimate of the number of roots of this polynomial system

by using the linear product decomposition. Expanding the polynomial GT j ,
we obtain the terms

Pj+14 −P14 ∈〈x, y, z, 1〉3,
(2Pj+1 ·B)2 − (2P1 ·B)2 ∈〈x, y, z, 1〉2〈u, v, w〉2,

−4Pj+12
(Pj+1 ·B) + 4P12

(P1 ·B) ∈〈x, y, z, 1〉3〈u, v, w〉,

2k1(Pj+12 −P12 − 2Pj+1 ·B + 2P1 ·B) ∈〈x, y, z, 1〉〈u, v, w, 1〉〈k1〉,
(Pj+1 ·H)2 − (P1 ·H)2 ∈〈x, y, z, 1〉2〈h1, h2, h3〉2

−2k2(Pj+1 ·H−P1 ·H) ∈〈x, y, z, 1〉〈h1, h2, h3〉〈k2〉 (22.83)

Notice that the quartic terms in the first expression cancel. We combine these
monomials into the LPD

GT j : 〈x, y, z, 1〉2〈u, v, w, h1, h2, h3, 1〉〈x, y, z, u, v, w, h1, h2, h3, k1, k2, 1〉|j,
j = 1, . . . , 11.

(22.84)

This allows us to compute the LPD bound of 448,702.
Our parallel POLSYS_GLP algorithm computed 42,786 solutions in 42min

using 128 nodes of Blue Horizon. This is approximately 626 paths per
processor-hour. Each real solution can be used to design an RRS chain to
reach the specified displacements. The distribution and utility of these solu-
tions requires further study.

22.13 Generalization of the Problem

Each of the polynomial systems that we have studied is an algebraic mani-
fold in the Clifford algebra of dual quaternion coordinates. These constraint
manifolds (McCarthy[19]) lie in what Ravani and Roth [21] call the image
space of spatial displacements, or what Study [34] called soma space; also see
Blaschke [35]. Thus, our results can be viewed as determining the parameters
of a constraint manifold such that it passes through given set of points Q̂i in
the image space of spatial displacements. Ravani introduced this approach to
the synthesis of articulated chains.

While our focus has been limited to chains that have algebraic constraint
equations, it is possible to extend these ideas to manifolds parameterized by
the joint variables of an articulated chain by means of its kinematics equations.
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The physical dimensions of the chain appear in these equations as parameters
that define the manifold reachable by its end effector in the image space of
spatial displacements. The joint variables introduce extra parameters that
must be eliminated as part of the solution process, but it does allow us to
consider articulated chains that do not have a spherical wrist.

Tsai and Roth [36] used the geometry of the screw triangle, which is a geo-
metric representation of the kinematics equations, to formulate design equa-
tions for serial chains with two and three joints; also see [37]. In Tsai and Roth
[38], they solved these equations to obtain a complete solution for the design
of a spatial RR chain, (also see Perez and McCarthy [39] and Mavroidis et al.
[40]).

Lee and Mavroidis [41, 42] and Lee et al. [43] formulated and solved the
kinematics equations for the spatial RRR and PRR chains that reach a spe-
cified set of spatial displacements. Perez and McCarthy [44] formulated this
problem directly in dual quaternion coordinates, and obtained explicit pa-
rameterized manifolds in the image space. Their “dual quaternion synthesis”
technique has been applied to the four degree of freedom RPRP serial chain
(Perez and McCarthy [45]).

As we have seen the complexity of these problems increases with the num-
ber of dimensional variables that define the manifold, or articulated chain.
The general 5R spatial chain, which has at least 20 variables, 4 for each of
the 5 joint axes, appears to be the most challenging case. More research is
needed to determine the number of solutions to many of these parameterized
constraint manifold fitting problems.

Table 22.3. Summary of the total degree, LPD bound, and number of solutions of
the polynomial equations that define each reachable surface

Case Surface Total degree LPD bound Number of roots
1 Plane 32 10 10
2 Sphere 64 20 20
3 Circular cylinder 16,384 2,184 804
4 Circular hyperboloid 262,144 9,216 1,024
5 Elliptic cylinder 2,097,152 247,968 18,120
6 Circular torus 2,097,152 868,352 94,622
7 General torus 4,194,304 448,702 42,786

22.14 Conclusion

In this chapter we have examined the geometric problem of fitting an algebraic
surface to points generated by a set of spatial displacements. We focus on seven
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surfaces that are associated with articulated chains that have spherical wrists.
Table 22.3 lists the number of solutions for the polynomial systems for each
of these reachable surfaces.

The complexity of this problem increases with the number of dimensional
parameters that define the surface. In particular, the elliptic cylinder, circular
torus, and general torus have 10, 11, and 12 parameters, respectively, and
have solutions that number in the tens of thousands. This large number of
solutions is remarkable and requires further study to identify those that are
useful for practical applications.

This problem can be generalized to fitting the parameterized manifold
defined by the kinematics equations of an articulated chain to a set of spa-
tial displacements. Furthermore, rather than focus on finding a finite set of
solutions to our design equations, we can specify fewer task positions and ob-
tain a curve, surface, or submanifold of chains. These results have practical
application in the design of devices that provide controlled spatial movement.
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Planning collision-free paths is one of the central research problems that con-
fronts intelligent robotics. In its simplest form, the path planning problem is
to determine a path in the configuration space that moves the robot from an
initial configuration to a goal configuration, such that the robot never contacts
any object in its environment. Even this most basic problem is computatio-
nally intractable, and at present, the best known algorithms for its solution
require time that grows exponentially with the dimension of the robot’s con-
figuration space [14, 36].

Because of the inherent complexity of the planning problem, in recent years
a number of probabilistic approaches have been developed [5, 19, 27, 50, 54].
These algorithms work by constructing a set of randomly generated sample
configurations, and connecting these samples using local planning algorithms
that require only moderate computation. The result is a graph in the con-
figuration space that is referred to as a probabilistic roadmap (PRM). These
approaches sacrifice completeness for computational efficiency, but one can
often derive limiting properties of the algorithms, such as probabilistic com-
pleteness (i.e., a guarantee that with probability one the algorithm will find
an existing solution as the number of samples approaches infinity).

Most of the PRM planners require significant preprocessing to construct
the roadmap. The idea that the cost of planning will be amortized over many
planning episodes provides a justification for spending extensive amounts of
time during this preprocessing stage, provided the resulting representation
can be used to generate plans very quickly during a query stage. Thus, these
planners use a two-stage approach. During the preprocessing stage, the plan-
ner generates a set of vertices that correspond to random configurations in the
configuration space, connects these vertices using a simple, local path planner
to form a roadmap, and, if necessary, uses a subsequent sampling stage to
enhance the roadmap. During the second, on-line stage, planning is reduced
to query processing, in which the initial and final configurations are connected
to the roadmap, and the augmented roadmap is searched for a feasible path.
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These planners tend to be easy to implement, but there are many design
choices that affect overall performance, both in terms of the required computa-
tion and in terms of the success of the planner in finding paths in complicated
environments. In this chapter, we investigate a number of these design choices.
We begin with a brief review of the lineage of these planners, followed by a brief
overview of how they function. Following this, we investigate several specific
aspects of the planning process, including sample generation, rejection-based
importance sampling techniques, transforming samples to improve coverage of
the configuration space, connecting samples to form a graph, and enhancing
the roadmap to improve connectivity.

23.1 The Evolution of Sampling-Based Methods

The earliest work in path planning produced exact algorithms (for example,
[14, 52]) and methods that build an approximate representation of the full
volume of configuration space (for example, [13, 23, 45]). In the former case,
the best known algorithms have exponential complexity and require exact
descriptions of both the robot and its environment, whereas in the latter case,
the size of the representation of configuration space grows exponentially in
the dimension of the configuration space.

The fact that real robots rarely have an exact description of the environ-
ment, coupled with a desire for real-time planning, led to the development of
potential field approaches [22, 32, 34]. The idea of potential field approaches
is to construct a scalar function over the configuration space that represents
the goal region as the global minimum in the field and the obstacles as lo-
cal maxima. Path planning is then reduced to following the gradient of the
potential function until the goal is reached. The advantage of this approach
is that the potential functions are easy to compute, making the planner fast.
Unfortunately, it is difficult to create potential functions with a single global
minimum at the goal; therefore, these planners are easily trapped by local
minima.

The problems of local minima in potential field planners led to the develop-
ment of randomized planning [8]. In this approach, when a local minimum is
detected, a random motion is performed to try to escape the local minimum.
Planning then can be considered a graph search, where the vertices of the
graph are the sequence of local minima encountered when searching for the
goal.

The randomized motion planners proved effective for a large range of pro-
blems, but required extensive computation time for some robots in certain
environments [21, 31]. This limitation, together with the idea that a robot will
operate in the same environment for a long period of time, led to the deve-
lopment of the probabilistic roadmap (PRM) planners [27, 50]. As mentioned
above, these planners use a preprocessing stage to create the PRM, and plans
are generated at run time in the query stage.
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The two stages of the probabilistic roadmap planners can be described
as follows. In the preprocessing stage, a roadmap is constructed in the free
configuration space. The vertices of the roadmap are created by some random
sampling scheme, and pairs of vertices are connected using a simple local plan-
ner. After construction, this roadmap may contain more than one connected
component, in which case an enhancement operation may be performed to try
to connect the different components together. In the second stage, planning
queries are performed. For each planning query, the initial and goal configu-
rations are connected to the roadmap and the resulting augmented roadmap
is searched for a path.

The PRM planners that use this two-stage processing mechanism are tar-
geted toward environments in which the obstacles are stationary and their
positions are known in advance. For environments for which this assumption
does not hold, single-query variants were developed that build the roadmap as
they search for a path [21, 35, 53]. PRM type approaches have also been used
for sensor-based exploration of unknown environments. For example, [48] de-
scribes a robot equipped with a skin sensor to explore the environment using
a lazy-PRM approach.

There have also been a number of sampling-based approaches to path
planning in changing environments. In some cases, planners have execution
times that make it feasible to directly use them in some kinds of changing
environments with no modifications. This is the case, for example, for the
Ariadne’s Clew algorithm reported in [9, 46]. The Ariadne’s Clew algorithm
operates by generating landmarks (during an exploration phase) and then
connecting them to the existing roadmap (the search phase). Variations of
this algorithm can be obtained by varying the search phase and by using
different optimization criteria to select candidate landmarks [2, 47]. The idea
of incrementally expanding a roadmap for single-query planning has also been
used in [21] and [35]. In both of these, roadmaps are grown from both the initial
and goal configurations until they can be connected, though the details for
expanding the roadmap differ. The incremental expansion method in [21] has
also been used in a dynamic environment [33]. In [53] an adaptable approach
that uses multiple local planners is described. At run time, characteristics of
the problem are used to determine which (combination of) local planners will
be most effective.

23.2 An Overview of the Approach

Sampling-based approaches construct a roadmap that represents a set of paths
in the free configuration space of the robot. This roadmap itself is represented
as a graph G = (V,E) in which the vertices correspond to free configurations
of the robot and edges correspond to free paths between these configurations.
Constructing the roadmap consists of generating the vertices and edges in G.
The typical procedure is illustrated in Fig. 23.1.
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1. V ← ∅, E ← ∅
2. while |V | < N
3. v ← GenerateSample()
4. if Reject(v)
5. goto 3
6. endif
7. v ← Transform(v)
8. forall v′ ∈ Neighborhood(v)
9. if e ← Connect(v, v′)
10. E ← E ∪ {e}
11. endif
12. V ← V ∪ {v}
13. endfor
14. end while

Fig. 23.1. Algorithm to generate a sample-based roadmap in the configuration
space

The set of candidate configurations generated by step 3 can be created
using a random number generator (perhaps the most common approach),
or using a deterministic algorithm that generates a sequence of configura-
tions that satisfy user-specified criteria. The earliest of the sampling-based
approaches used the former approach [27, 50]. Using this approach, a number
of interesting properties can be proven using the randomized aspect of the
underlying algorithm (see, e.g., [25, 29, 30, 51]). In the latter case, samples
are typically generated so that they satisfy some sort of uniformity criteria.
The simplest approach is to use a uniform grid to generate the samples, but
more-sophisticated approaches have recently been introduced into the motion
planning literature (see, e.g., [12, 38]). Each of these approaches is described
below in Sect. 23.3.

Generating samples (step 3) is nearly always done using a simple algorithm
that does not take into account any features that are specific to the current
motion planning problem. For example, random number generators generate
independent samples, distributed uniformly on some transformed version of
configuration space (typically the unit cube in n dimensions), and do not con-
sider the geometry of the obstacles or even the topology of the configuration
space. The advantage is that samples can be generated rapidly. However, the
quality of the resulting set of samples may be low. For example, samples may
lie in collision configurations, or they may fail to cover the “interesting” parts
of the configuration space. In order to obtain a good set of samples, most all
approaches generate a very large number of samples using step 3, large enough
that some subset of those samples will have the desired properties. Since this
set will often contain samples that have little value for motion planning, step
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4 is used to reject samples, thus producing a roadmap of reasonable size that
possesses the desired properties.

Many criteria have been proposed for the rejection in step 4. Indeed, this
has been one of the major research thrusts in recent years by PRM researchers.
The most conspicuous reason to reject a sample is that it lies in the config-
uration space obstacle region (however, some methods retain these samples
and transform them into free configurations in step 7). Other reasons to re-
ject samples include redundancy (e.g., if the existing samples already cover a
particular region of the configuration space), location (e.g., some algorithms
reject most samples that do not lie near the boundary of the configuration
space obstacle region), or properties of the local geometry of the configura-
tion space (e.g., rejecting samples for which manipulability of the robot arm
is low). We describe a number of these approaches in Sect. 23.4.

An alternative to rejecting samples is to transform them so that they ob-
tain more desirable properties (step 7). For example, if a sample lies within the
configuration space obstacle region, it can be moved until it lies just beyond an
obstacle boundary. The resulting transformed sample will lie near the obstacle
boundary, which can be beneficial in certain applications. Other examples of
this approach include pushing samples toward the medial axis of the free con-
figuration space, and the method used to construct rapidly-exploring random
trees (RRTs). These and other methods to transform samples are described
in Sect. 23.5.

Once a set of vertices has been generated, pairs of vertices are connected
by edges that represent free paths in the configuration space (steps 8-11). This
is done by identifying candidate pairs of vertices, and then using a local path
planner to find the free path between the corresponding configurations. Candi-
date pairs are typically chosen using a k-nearest neighbor scheme, sometimes
enforcing the restriction that the resulting graph be acyclic. Determining the
nearest neighbors for a vertex relies on a distance function, and a number of
these have been explored in the literature. For the local planning algorithm, a
simple straight-line planner is often used. We discuss these and related issues
in Sect. 23.6.

The algorithm shown in Fig. 23.1 constructs a roadmap; however, the
roadmaps constructed using this algorithm often contain multiple compo-
nents, even when the free configuration space consists of a single connected
component. For this reason, many planners use a final enhancement step to
add vertices to the roadmap in an effort to add edges that connect distinct con-
nected components. This is often done by generating new vertices by densely
sampling “difficult” regions of the configuration space. We describe enhance-
ment strategies in Sect. 23.7.

After enhancement, a planner can use the roadmap to generate plans very
quickly. This is done by using a local planner to connect the initial and final
configuration to the roadmap, then searching the augmented roadmap for
a path that connects these two new vertices. In some cases, an additional
step is used to smooth the resulting path. In Fig. 23.2 the entire process is
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S

G

Fig. 23.2. Planning using sample-based roadmaps

illustrated. In the figure, the lightly shaded vertices are added by the algorithm
of Fig. 23.1, and darkly shaded vertices are added during enhancement. The
vertices labeled S and G are the initial and goal configurations. The dashed
line is the resulting path in the roadmap, and the dark line is a smoothed
version of the path.

23.3 Generating Sample Configurations

The easiest way to generate sample configurations is to invoke a random num-
ber generator. Since most readily available random number generators return
a scalar sample from the uniform distribution on the unit interval, we will here
define our sample space X to be the unit d-cube, i.e., X = [0, 1]d. A sample p
from X can be generated by merely invoking the random number generator
d times, once for each coordinate of p. Once a sample has been generated in
this way, it can be transformed to the appropriate space, since the configura-
tion space for most robots is not the unit d-cube. Since this transformation is
straightforward, we restrict our attention here to sampling X = [0, 1]d.

Recently, a number of deterministic alternatives to random sampling were
introduced [12, 38]. These alternatives aim to optimize various properties of
the distribution of the samples on X . Before introducing some of these al-
ternatives, we will briefly describe two ways to evaluate the quality of a set
of samples on X . A more comprehensive introduction to these ideas can be
found in [37].

Let P be a set of point samples, and N be the number of points in P . One
way to evaluate the quality of the samples in P is to assess how “uniformly” the
points in P cover the space. This is done with respect to a specific collection
of subsets of X , called a range space, denoted by R. Let R be the set of all
axis-aligned rectangular subsets of X . Since P contains N points, the fraction
of samples contained in R ∈ R is given by the ratio
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| P ∩R |
N

.

If we define µ to be the measure (or volume) of a set, we can compare the
relative volume of R to the relative portion of samples that lie in R,∣∣∣∣ µ(R)− | P ∩R |

N

∣∣∣∣ ,
since X is the unit cube and thus µ(X) = 1. If we take the supremum of this
difference over all R ∈ R we obtain the concept of discrepancy.

Definition. The discrepancy of point set P with respect to range space R over
some space X is defined as

D(P,R) = sup
R∈R

∣∣∣∣ µ(R)− | P ∩R |
N

∣∣∣∣ .
It is not necessary to take R as the subset of axis-aligned rectangles, but

this choice gives an intuitive understanding of discrepancy. Another common
choice is to take R as the set of d-balls, i.e., for each R ∈ R we have R =
{x′ | ‖x− x′‖ < ε}, for some point x and radius ε > 0.

While discrepancy provides a measure of how uniformly points are dis-
tributed over the space X , dispersion provides a measure of the largest portion
of X that contains no points in P . For a given metric ρ, the distance between
a point x ∈ X and a point p ∈ P is given by ρ(x, p). Thus,

min
p∈P

ρ(x, p)

gives the distance from x to the nearest point in P . If we take ρ to be the
Euclidean metric, this gives the largest empty ball centered on x. If we then
take the minimization over all points in X , we obtain the size of the largest
empty ball in X . This is exactly the concept of dispersion.

Definition. The dispersion δ of point set P with respect to the metric ρ is
given by

δ(P, ρ) = sup
x∈X

min
p∈P

ρ(x, p).

If we instead use the L∞ norm, ρ(x, p) = maxi |xi − pi|, the dispersion
gives the size of the largest empty axis-aligned rectangular subset of X . In
this case, we obtain a relationship between discrepancy and dispersion:

δ(P, ρ) ≤ D(P,R)
1
d

in which d is the dimension of X . Thus, in this case, if P has low discrepancy,
it will also have low dispersion, since the latter is bounded from above by the
former.
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An important result found by Sukharev gives a bound on the number of
samples required to achieve a given dispersion. In particular, the Sukharev
sampling criterion states that when ρ is taken as the L∞ norm, a set P of N
samples on the d-dimensional unit cube will have

δ(P, ρ) ≥ 1
2(N 1

d )
.

So, to achieve a given dispersion value, say δ∗, since N must be an integer,
we have

δ∗ ≥ 1
2(N 1

d )
→ N ≥

(
1

2δ∗

)d

,

i.e., the number of samples required to achieve a desired dispersion grows ex-
ponentially with the dimension of the space. In some sense, this result implies
that to minimize dispersion, sampling on a regular grid will yield results that
are as good as possible.

Now that we have quantitative measures for the quality of a set of samples,
we describe some common ways to generate samples. For the case of X =
[0, 1] the van der Corput sequence gives a set of samples that minimizes both
dispersion and discrepancy. The nth sample in the sequence is generated as
follows. Let ai ∈ {0, 1} be the coefficients that define the binary representation
of n,

n =
∑

i

ai2i = a0 + a12 + a222 · · · .

The nth element of the van der Corput sequence Φ(n) is defined as

Φ(n) =
∑

i

ai2−(i+1) = a02−1 + a12−2 · · · .

Fig. 23.3a shows the first 16 elements of a van der Corput sequence. Figure
23.4 shows how the values of discrepancy and dispersion vary as samples are
added to the van der Corput sequence.

The van der Corput sequence can only be used to sample the real line. The
Halton sequence generalizes the van der Corput sequence to d dimensions. Let
{bi} define a set of d relatively prime integers, e.g., b1 = 2, b2 = 3, b3 = 5,
b4 = 7 · · · . The integer n has a representation in base bj given by

n =
∑

i

aijb
i
j , aij ∈ {0, 1 · · · bj},

and we define Φbj (n) as

Φbj (n) =
∑

aijb
−(i+1)
j .
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n n binary Φ(n) binary Φ(n)

0 0 0.0 0
1 1 0.1 1/2
2 10 0.01 1/4
3 11 0.11 3/4
4 100 0.001 1/8
5 101 0.101 5/8
6 110 0.011 3/8
7 111 0.111 7/8
8 1000 0.0001 1/16
9 1001 0.1001 9/16

10 1010 0.0101 5/16
11 1011 0.1101 13/16
12 1100 0.0011 3/16
13 1101 0.1011 11/16
14 1110 0.0111 7/16
15 1111 0.1111 15/16

n Φ2(n) Φ1(n)

0 0 0
1 1/3 1/2
2 2/3 1/4
3 1/9 3/4
4 4/9 1/8
5 7/9 5/8
6 2/9 3/8
7 5/9 7/8
8 8/9 1/16
9 1/27 9/16
10 10/27 5/16
11 19/27 13/16
12 4/27 3/16
13 13/27 11/16
14 22/27 7/16
15 7/27 15/16

(a) (b)

Fig. 23.3. a van der Corput sequence. b Halton sequence for d = 2

N 2 4 8 16
Discrepancy 1/2 1/4 1/8 1/16
Dispersion 1/2 1/4 1/8 1/16

Fig. 23.4. Discrepancy and dispersion for increasing values on N for the van der
Corput sequence

The nth sample is then defined by the coordinates pn = (Φb1(n), Φb2 (n) · · ·
Φbd

(n)). Fig. 23.3b shows the first 16 elements of a Halton sequence for b1 =
2, b2 = 3.

When the range space R is the set of axis-aligned rectangular subsets of
X , the discrepancy for the Halton sequence is bounded by

D(P,R) ≤ O

(
logd N

N

)
.

When the range space R is the set of d-balls, the discrepancy is bounded by

D(P,R) ≤ O
(
N− (d+1)

2

)
.

One difficulty in generating sequences with low discrepancy is that the
number of samples N is not specified a priori. Thus, samples are generated
incrementally, and this must be done in a manner that maintains (or im-
proves) discrepancy. The van der Corput sequence achieves this by sampling
progressively smaller subintervals of the unit interval. The best asymptotic dis-
crepancy that can be attained by such a sequence (i.e., a sequence for which
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(a) (b) (c)

Fig. 23.5. These figures shows 1024 samples generated in the plane using (a) a
random number generator, (b) a Halton sequence, (c) a Hammersley sequence

N is not specified a priori) is O(N−1 logd N). When N is known in advance,
we can do better. In this case, the best asymptotic discrepancy that can be
attained is O(N−1 logd−1 N). In either case, the best asymptotic dispersion
that can be attained is O(N−1/d).

When N is specified, a Hammersley sequence (sometimes called a Ham-
mersley point set, since the number of points is known and finite) achieves
the best possible asymptotic discrepancy. The nth point in a Hammersley se-
quence is obtained by using the first d−1 coordinates of a point in the Halton
sequence, with the ratio n/N as the first coordinate,

pn = (n/N,Φb1(n), Φb2 (n) · · ·Φbd−1(n)), n = 0, . . . , N − 1.

Figure 23.5 shows point sets generated using random number generator
(Fig. 23.5a), a Halton sequence (Fig. 23.5b), and a Hammersley sequence
(Fig. 23.5c). Each point set contains 1024 points.

23.4 Sample Rejection

As described in section 23.2, many sample-based methods for path planning
use a rejection step, in which samples that do not have desired properties
are discarded. This essentially amounts to importance sampling, an idea that
is well known in the statistics and numerical integration literature, since the
idea is to concentrate samples in the more important regions of the configu-
ration space. Samples can be rejected using either a deterministic or prob-
abilistic algorithm. The simplest deterministic case is to reject sample con-
figurations that lie in the configuration space obstacle region (i.e., sample
configurations for which the robot contacts some obstacle). Probabilistic re-
jection schemes are more popular, owing in part to asymptotic properties that
can be proven for such methods. Below we describe a number of probabilis-
tic rejection schemes. We describe in some detail an approach that rejects
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1l

l2

θ

θ

1

2

Fig. 23.6. A two-link planar robot arm

samples based on manipulability. Following this, we give brief descriptions of
several other schemes.

23.4.1 Manipulability-based sampling

In [44], we introduced a method for biasing the sampling during the vertex-
generation stage used to build a PRM. Our method is based on manipulability
[55], an intrinsic property of robot arms, which measures an arm’s freedom to
move in all directions. Our rationale for this approach is that in regions of the
configuration space where manipulability is high, the robot has great dexte-
rity, and therefore relatively fewer samples should be required in these areas.
Conversely, regions in which the manipulability is low tend to be near (or to
include) singular configurations of the arm, where the range of possible mo-
tions is reduced; therefore such regions should be sampled more densely. An-
other interpretation of this is that for regions of the configuration space where
manipulability is low, large joint motions correspond to small workspace mo-
tions. Thus, in these regions, traversing small paths in the workspace requires
traversing relatively longer paths in the configuration space, consequently in-
creasing the chance that such a path would intersect the configuration space
obstacle region.

Let J(q) denote the manipulator Jacobian matrix (i.e., the matrix that
relates velocities of the end effector to joint velocities). For a redundant arm
(e.g., an arm with more than six joints for a 3D workspace) the manipulability
in configuration q is given by

ω(q) =
√

det J(q)JT (q).

Consider the robot shown in Fig. 23.6 as an example. The manipulability
for this robot is ω = l1l2| sin θ2|, where l1 and l2 are the lengths of the two
links. The configuration shown in Fig. 23.6 corresponds to one of the configu-
rations at which the manipulability is highest for this robot. For this robot,
the manipulability does not depend on the position of the first joint.
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Fig. 23.7. a-c. Sample distributions for a two-joint planar robot: (a) uniform,
(b) higher density in regions of low manipulability, (c) higher density in regions of
high manipulability. d-f. Histograms for the sample distributions shown in a–c: (d)
uniform, (e) higher density in regions of low manipulability, (f) higher density in
regions of high manipulability

Three different sample distributions for this robot are shown in Fig. 23.7.
As shown in the figure, concentrating the sampling in regions of low manipu-
lability results in more samples near θ2 = −π, 0, and π at the bottom, middle,
and top of the views of configuration space, respectively (Fig. 23.7b); sampling
in regions of high manipulability results in more samples near θ2 = −π/2 and
π/2 (Fig. 23.7c).

In order to bias sampling based on manipulability, we can use an appro-
ximation of the cumulative density function (CDF) for manipulability. If we
treat manipulability as a random quantity, denoted by the random variable
Ω, with probability density function pΩ, the CDF is given by

PΩ(ω) =
∫ ω

0

pΩ(t)dt.

We compute a discrete representation of PΩ as follows. First, we create a
discrete approximation to pΩ. This is done by sampling the configuration space
of the robot uniformly at random and computing the manipulability for each
sample configuration. We exclude from this computation any configuration
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in which the robot collides with itself. We then create a histogram of the
manipulability values that have been computed. We normalize the number in
each bucket of the histogram and create the approximation to PΩ from these
normalized values.

The CDF for manipulability PΩ can be used to drive a a rejection-based
approach to bias the sampling of the configuration space. For each sample,
we use the following procedure. First, a candidate sample qc is generated
using uniform random sampling of the configuration space. If qc is a self-
collision configuration, it is rejected. If qc is not rejected, we compute the
manipulability ω(qc). We reject qc with probability PΩ(ω(qc)). This approach
was used to generate the sample distribution in Fig. 23.7b. In Fig. 23.7c, we use
PΩ(ω(qc)) as the probability of acceptance. Many rejection-based approaches
to importance sampling use a CDF in this way to reject samples with finite
probability (rather than deterministically deciding whether or not to reject a
sample).

One shortcoming of the manipulability measure for our purposes is that it
does not reflect joint limits. When the robot is near a joint limit, its movement
is restricted. In an effort to include samples near joint limits we can adopt the
following convention: at configurations in which some joint is near a limit, the
manipulability is defined to be zero. The nearness of a joint to its limit is a
parameter of the sampling algorithm.

Example manipulability histograms are shown in Fig. 23.8a, c, and e. As
can be seen in the figure, the manipulability histograms tend to be unimodal,
and quite smooth. Figures 23.8b, d, and f show the histogram of manipula-
bility of vertices that are selected using biased sampling. Note that sampling
biased toward low manipulability has a tendency to shift the histogram to the
left, while sampling biased toward high manipulability has a tendency to shift
the histogram to the right. In these figures, the plots labeled “Not filtered”
correspond to sampling the manipulability of the robot without filtering out
samples in which the robot is in self-collision; the plots labeled “Filtered”
exclude such samples. In all cases, 10 million samples were evaluated for ma-
nipulability. In addition, the gnuplot “csplines” function was used to smooth
the plots.

To evaluate sampling biased by manipulability, we used a modified form of
the original PRM planner for planar fixed-based articulated robots described
in [24]. In particular, we added a function to the preprocessing phase to com-
pute whether to reject a configuration based on its manipulability. We further
modified the planner to adjust the order in which tests are applied to a random
sample of the configuration space to determine whether to accept a sample.
For each random sample, we test first whether the robot is in self-collision,
then we apply the manipulability bias criterion, and last test the sample for
collision between the robot and the obstacles. If the sample passes all tests, it
is added to the roadmap. The remainder of the preprocessing phase continues
as described in [24].
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Fig. 23.8. (a) The histogram for the manipulability of a planar robot with six joints.
(b) The histogram for the manipulability of the roadmap vertices for this robot. (c)
The histogram for the manipulability of a robot with six joints in a 3D workspace.
(d) The histogram for the manipulability of the roadmap vertices for this robot.
(e) The histogram for the manipulability of a planar robot with 20 joints. (f) The
histogram for the manipulability of the roadmap vertices for this robot

To evaluate the planner, we performed a similar set of experiments to those
described in [24]: for each set of parameters, we generate 40 roadmaps and
then test whether 8 test configurations (Fig. 23.9), can be connected to the
roadmap. As a baseline, we include the results using unbiased sampling.
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C1 C2 C3 C4

C5 C6 C7 C8

Fig. 23.9. Eight configurations of a 7-revolute-joint fixed-base robot

An explanation for the labels on the tables in Fig. 23.10 is as follows:
The columns marked “Nodes” represents the target number of vertices for the
roadmap after preprocessing, with “N” vertices generated during random sam-
pling and “M” vertices generated during enhancement. The columns labeled
“Rejected” list the number of vertices that failed a test: manipulability bias
(“Manip.”), or robot collision with an obstacle (“Obstacle”). The next three
columns show three more statistics for the preprocessing phase. The column
labeled “Avg. size” lists the average size of the largest connected component
in the roadmap after preprocessing. The column labeled “Avg. comps.” lists
the average number of components in the roadmap after preprocessing, and
the column labeled “Avg. time” lists the average processing time required by
the preprocessing phase. The last columns show the success rate over the 40
roadmaps of connecting the configurations shown in Fig. 23.9.

We begin by noting that some of our results in Fig. 23.10a are slightly
better than those originally reported in [24]. This can be attributed to im-
provements in computing power since those early results were published. It
can be seen in Figs. 23.10b and c that the importance sampling scheme is sig-
nificantly more selective than unbiased approaches. The manipulability-based
rejection criterion rejects 2 to 3 times the number of vertices as are rejected due
to collision with obstacles. Thus, one can see from these tables the trade-off
between efficacy in vertex selection and the amount of computation required
to construct the PRM.

By comparing Tables 23.10a and c, it can be seen that using manipulability-
biased sampling without enhancement produces PRMs that are nearly as ef-
fective as those that are produced by unbiased sampling with enhancement
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Nodes Rejected Avg. Avg. Avg. Connection success rate (%)
N M obstacle size comps. time C1 C2 C3 C4 C5 C6 C7 C8

800 400 43799 911 59 9.604 100 63 60 60 60 100 65 58
1000 500 54253 1253 52 12.978 100 78 78 78 78 100 78 78
1200 600 65137 1584 48 16.559 100 88 88 88 90 100 88 88
1400 700 75763 1916 43 20.338 100 98 90 98 93 100 98 90
1600 800 86218 2240 42 24.157 100 98 100 98 100 100 98 100
1800 900 97039 2534 40 28.108 100 100 98 100 98 100 100 98
2000 1000 108022 2862 37 32.126 100 100 100 100 100 100 100 100
2200 1100 118841 3144 35 36.323 100 100 100 100 100 100 100 100
2400 1200 129942 3456 34 40.626 100 100 100 100 100 100 100 100
2600 1300 140305 3747 32 44.903 100 100 100 100 100 100 100 100
3000 1500 161483 4359 31 53.779 100 100 100 100 100 100 100 100

(a) Results for unbiased sampling with enhancement

Nodes Rejected Avg. Avg. Avg. Connection success rate (%)
N M manip. size comps. time C1 C2 C3 C4 C5 C6 C7 C8

800 400 96440 970 43 10.793 98 75 85 75 85 100 75 85
1000 500 74035 1366 37 14.509 100 95 98 95 98 100 95 98
1200 600 88094 1651 36 18.473 100 95 98 95 98 100 95 98
1400 700 103999 1955 36 22.697 100 95 100 95 100 100 95 100
1600 800 118832 2275 33 26.885 100 100 100 100 100 100 100 100
1800 900 134298 2567 31 31.233 100 100 100 100 100 100 100 100
2000 1000 148752 2868 28 35.729 100 100 100 100 100 100 100 100
2200 1100 163294 3156 28 40.162 100 100 100 100 100 100 100 100
2400 1200 177390 3463 27 44.795 100 100 100 100 100 100 100 100
2600 1300 192478 3758 25 49.453 100 100 100 100 100 100 100 100
3000 1500 222769 4348 25 59.231 100 100 100 100 100 100 100 100

(b) Sampling biased toward low manipulability with enhancement

Nodes Rejected Avg. Avg. Avg. Connection success rate (%)
N M manip. size comps. time C1 C2 C3 C4 C5 C6 C7 C8

1200 0 144614 605 136 10.558 80 48 50 48 50 60 48 50
1500 0 181626 913 135 14.482 93 48 63 48 63 80 48 63
1800 0 217943 1367 142 18.474 98 65 83 65 83 98 65 83
2100 0 253770 1647 148 22.638 100 68 85 68 85 98 68 85
2400 0 290852 2085 150 26.852 100 85 95 85 95 100 85 95
2700 0 326285 2472 152 31.224 100 98 98 98 98 100 98 98
3000 0 364893 2709 156 35.763 100 90 100 90 100 100 90 100
3300 0 399917 3092 157 40.265 100 100 100 100 100 100 100 100
3600 0 436321 3385 159 44.754 100 100 100 100 100 100 100 100
3900 0 473301 3678 163 49.450 100 100 100 100 100 100 100 100
4500 0 546276 4258 170 59.148 100 100 100 100 100 100 100 100

(c) Sampling bias toward lower manipulability without enhancement

Fig. 23.10. Comparison of results using unbiased sampling and sampling biased by
manipulability

(we describe enhancement in section 23.7). This indicates that it may be pos-
sible to drive PRM enhancement using primarily intrinsic properties of the
robot arm, as opposed to properties that are specific to the obstacles in a
given workspace. This opens the door for new representations that can be
constructed for arbitrary workspaces, as in some of our related work [42, 43].

From this single set of experiments, one should not draw the conclusion
that biasing samples toward regions of low manipulability will always lead to
improved performance. Indeed, in the experiments presented here, we have
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chosen an environment with many small passages, and we use planning pro-
blems that often require the robot to operate near singularities (e.g., when the
robot must “stretch” to reach a goal). While we believe that for these kinds of
environments our approach will lead to performance improvements, it seems
equally clear that little would be gained by applying our approach in sparsely
populated environments.

Furthermore, even though the results shown here for biasing toward low
manipulability are quite good, it should be noted that the results for biasing
toward high manipulability are also reasonably good. For results presented
in [44], biasing toward higher manipulability gave roadmaps that were as
good or better than the traditional PRM for about half of the problems,
performing more than 10% worse than the traditional approach only 18% of
the time. From this, we surmise that there may be environments for which
biasing toward higher manipulability would be more appropriate. This can
be justified intuitively by noting that vertices in regions of the configuration
space in which manipulability is high have the potential to be connected to
many configurations, possibly generating roadmaps with higher connectivity.

23.4.2 The Visibility Roadmap

The rejection scheme discussed above rejects a configuration based on intrinsic
properties of the robot evaluated at that configuration. In some sense, this is a
first-order rejection scheme, since relationships between sample configurations
are not considered. The approach introduced in [49] rejects sample configu-
rations based on their relationship to the current roadmap. The end result,
called the visibility roadmap, is typically much smaller than the traditional
PRM, requires much less computation to build, and effectively covers the free
configuration space.

Let V (q), called the visibility domain of q, be the set of all configurations
that can be reached from configuration q by the local planner. When the local
planner is a straight-line planner in the configuration space, V (q) is exactly the
set of configurations that are visible from q, which we refer to as the guard for
V (q), since a guard located at this configuration would see all of V (q). Thus,
we say that the configurations in V (q) are visible from q. A configuration is
referred to as a connection if it lies in the visibility domains of more than one
guard, i.e., q is a connection if q ∈ V (qi) ∩ V (qj), i �= j.

The visibility PRM consists of vertices that are either guards or connec-
tions, and edges that represent local paths between the vertices. Let s be the
number of guards. The set of guards q1 . . . qs is such that ∪V (qi) covers the
free configuration space and qj /∈ V (qi) for i �= j, i.e., every free configuration
is visible to at least one of the guards, and no two guards are visible to one
another. For any two guards qi, qj whose visibility domains intersect, a con-
nection q′ is added, and the local planner is used to construct paths from qi

to q′ and from q′ to qj .
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It is easy to see that a roadmap constructed in this way has connectivity
consistent with the connectivity of the free configuration space relative to the
local planner. More specifically, for configurations qinit and qgoal if there exists
a sequence of local paths in the free configuration space that connect these
two configurations, then there exist guards qi and qj in the visibility roadmap
such that qinit ∈ V (qi) and qgoal ∈ V (qj), and with qi and qj in the same
connected component of the roadmap.

The algorithm to construct the visibility roadmap is a straightforward im-
plementation of the definition given above. A free configuration q is generated,
and this vertex is added to the roadmap if (a) it is not visible from any exist-
ing configuration in the roadmap (it becomes a new guard), or (b) it is visible
from a pair of configurations qi and qj such that qi and qj do not lie in a
single connected component of the existing roadmap (it becomes a new con-
nection). If q is visible only from configurations in a single existing connected
component of the roadmap, it is rejected.

Although the visibility PRM described above has connectivity consistent
with that of the free configuration space, it is not necessarily the case that
a planner will be able to successfully construct such a visibility PRM. For
example, if V (qi)∩V (qj) is very small, there is a likelihood that no randomly
generated q will lie in this intersection, and therefore there will be no con-
nection for guards qi and qj . However, as noted in [49], since the size of the
intersection will typically be small only for well-chosen qi and qj , the proba-
bility of failing to generate connections for this reason is small. The narrow
passage problem also poses difficulties for this planner, since, if a free corridor
in the configuration space is narrow, it is unlikely that randomly generated
samples will fall in the corridor, or that samples at opposite ends of the cor-
ridor will be visible to one another.

In spite of these limitations, the visibility PRM has proven effective for a
wide range of difficult path planning problems. The visibility PRM is typi-
cally much smaller than a traditional PRM. Further, since it rejects a large
fraction of candidate vertices, the amount of computation required for lo-
cal path planning (which requires collision checking along the local path) is
greatly reduced. Experimental results given in [49] show examples for which
the visibility PRM requires less than 10% of the computation time required
to construct the traditional PRM.

23.4.3 Gaussian Sampling

The two approaches described above (manipulability and visibility) do not
explicitly take into account the geometry of the obstacle region in the con-
figuration space (although this geometry is, of course, implicitly taken into
account in the notion of visibility). Since difficult motion planning problems
tend to require the robot to move in close proximity to obstacles, it would seem
reasonable to concentrate the sample configurations in the roadmap near the
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boundary of the configuration space obstacle region. This is the motivation
for the Gaussian sampling strategy introduced in [11].

One way to find samples that lie near the obstacle boundary is to generate
pairs of samples, discarding any pair that lies completely in the free configura-
tion space or completely in the configuration space obstacle region. Any pair
that is not discarded will be such that one sample lies in the free configuration
space and the other lies in the configuration space obstacle region. The former
is a sample that lies near the obstacle boundary, provided the samples are not
too far apart.

In [11], the method is implemented via a Gaussian sampling strategy. Let
D be a zero-mean Gaussian random variable that denotes distance, with prob-
ability density function given by

φD(d) =
1√
2πσ

e−
d2

2σ2 .

A pair of samples is generated as follows. First, generate q1 using any of the
sampling methods described in Sect. 23.3. Second, generate a sample d from
φD. Next, generate a second sample q2 at a distance d from q1. If either of q1
or q2 is in the free configuration space while the other lies in the configuration
space obstacle regions, add it to the roadmap. This is illustrated in Fig. 23.11.
The value of σ2 determines how close to the obstacle boundary the samples
will lie.

For the experiments reported in [11], it was observed that σ2 should be
chosen so that most configurations lie closer to the obstacle than the maximum
length of the robot. It is also noted in [11] that special care must be taken
when dealing with the dimensions of the configuration space that correspond
to rotational degrees of freedom. This method has been shown to be effective
for a number of difficult motion planning problems.

d

Fig. 23.11. Gaussian sampling

23.5 Sample Transformation

The methods described above reject samples that do not satisfy certain cri-
teria. An alternative to rejecting such a sample is to transform it so that
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the transformed sample does satisfy those criteria. A number of methods
to achieve this have been proposed in the literature. Here we describe four
approaches: pushing samples toward the boundary of the obstacle region, pu-
shing samples toward the medial axis of the free space, bouncing samples off
of obstacle boundaries using random walks, and pulling samples from the exis-
ting roadmap toward randomly drawn samples to construct rapidly-exploring
random trees (RRTs).

23.5.1 Pushing Samples to the Obstacle Boundary

The planners described in [5, 7] attempt to place samples near the boundaries
of obstacles. The motivation, like that for the Gaussian sampling method
described above, is that difficult planning problems often require the robot to
move in close proximity to obstacles, and therefore regions of the configuration
space that lie near obstacle boundaries should be sampled more densely.

The approach described in [5, 7] is to first identify samples that lie in-
side the configuration space obstacle, and to then “push” these samples to
the obstacle boundary. The method is conceptually straightforward. Generate
samples until a sample q is found to lie within the configuration space obsta-
cle. This can be determined by existing collision-checking algorithms. Choose
a set of directions {v1, v2 · · · vm}, and for each direction vi a binary search can
be used to find the boundary of the configuration space obstacle along vi from
q. This obstacle-based PRM (OBPRM) method is illustrated in Fig. 23.12.

1

2
4

3

Fig. 23.12. OBPRM approach to finding samples near the boundary of the confi-
guration space obstacle

This sampling strategy has been investigated in conjunction with a number
of local planners. It has been shown to be effective for planning problems
in cluttered environments, and for configuration spaces that contain narrow
passages.
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23.5.2 Pushing Samples to the Medial Axis

An alternative to placing samples near the obstacle boundaries is to sample
near the medial axis of free configuration space or free workspace [16, 18,
54]. This approach is inspired, to some extent, by retraction approaches to
path planning, in which the free configuration space is retracted onto a one-
dimensional subset. If this can be done successfully, samples will be found in
narrow corridors in the free configuration space, as well as in large regions of
the free configuration space.

The medial axis of the free configuration space is the set of points that
are equidistant from multiple distinct boundary points in the obstacle region
of the free configuration space. For the 2D case, in a polygonal environment
the medial axis is just the generalized Voronoi diagram. An example is shown
in Fig. 23.13. It is generally not feasible to compute explicitly the medial axis
of the free configuration space, but it can be possible to transform randomly
drawn sample configurations so that the transformed samples lie on the medial
axis.

The case of a polyhedral robot moving in a 3D workspace populated by
polyhedral obstacles is considered in [54]. For a given sample configuration
q, a sample on the medial axis q′ can be generated as follows. For the case
when q lies in the free configuration space, apply a pure translation to the
configuration until the robot in the workspace is equidistant from two distinct
obstacle points in the workspace. This translation is along the line segment
that defines the minimum distance between the robot and the nearest obstacle.
Note that this does not require any distance computations in the configuration
space, since only workspace distances to obstacles are used in the computation.
For the case when q is a collision configuration, first apply the shortest pure
translation to q that will free the robot from collision, then proceed as above.
In some cases, the shortest translation to free a collision configuration will
cause the robot to contact workspace obstacles at more than a single unique
point. These configurations are discarded by the sampling algorithm of [54].

This method has also been applied to narrow corridor problems and has
proven effective in a number of experiments. However, it is not clear that the
method will scale well to problems in highly cluttered environments, since the
calculations for determining nearest contact configurations will become the
dominant factor in the computation.

23.5.3 Random Walks

A popular way to transform an existing sample in the configuration space
is to execute a random walk from that sample. This method has its roots
in the randomized potential field planner (RPP) describe in [8]. The goal
of this original planner was to use random walks to escape local minima in
a potential field. The approach has subsequently been adapted to generate
vertices in a graph embedded in the free configuration space. A number of
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Fig. 23.13. The medial axis of a polygonal region

these approaches are referred to as landmark-based approaches (the sample
configurations being the landmarks), but they are very similar in spirit to the
PRM method.

The Ariadne’s Clew algorithm employs this approach (see, e.g., [2, 3, 4,
56]). Some versions of the algorithm use an exploration stage that generates
Manhattan paths in the configuration space (Fig. 23.14). A Manhattan path
consists of straight line segments that meet at orthogonal junctions. In prac-
tice, these Manhattan paths are typically generated by genetic algorithms,
which are amenable to problem of generating Manhattan paths, since there is
a small set of discrete choices (the Manhattan directions) at each junction.

Fig. 23.14. Manhattan paths

The samples found at termination of the Manhattan paths can be improved
by “bouncing” the path off of obstacle boundaries when collisions occur. In
particular, at a collision point, the path is retraced to a previous point on
the path and a new direction is chosen. Figure 23.15 illustrates the process.
The first figure on the left shows an initial path. From the collision point
(indicated by the dark bar), the path is retraced, and a new segment is added
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going downward in the figure. This new segment collides with an obstacle,
as shown in the second figure, so it is retraced and new segments are added,
leading to the collision shown in the third figure. The third figure shows the
same path after two bounces. The final figure shows a valid path obtained
after a final bounce.

Fig. 23.15. Using Manhattan paths to bounce off of obstacles

23.5.4 Rapidly-Exploring Random Trees (RRTs)

Like the Ariadne’s clew algorithms, rapidly-exploring random trees (RRTs)
[35] use an existing tree in the configuration space to bias sample generation.
The basic algorithm is defined recursively. At the ith iteration, generate a
sample q using any of the methods described in section 23.3. Let qnear be the
vertex in the existing tree that is nearest to q. The sample qi to be added to
the tree is generated by taking a small step from qnear toward q.

Construction of RRTs requires a distance metric on the configuration space
to determine the vertex qnear and a local planner to construct a path from
qnear to qi. Since the destination configuration, qi is not explicitly specified (it
is merely the configuration that terminates the short path from qnear toward
q), there is considerable flexibility in the implementation of the local plan-
ner. This, in turn, allows the application of RRT algorithms to more difficult
planing problems, such as the kinodynamic planning problem.

For the problem of kinodynamic planning (which considers constraints on
robot velocity as well as configuration) samples can be generated by sampling
from the space of control inputs, and applying the sample control at the
vertex qnear in the existing roadmap [39, 40]. In this case, the local planner is
implemented by applying the chosen control input to the dynamical model of
the robot system. A similar idea is described in [33].

A number of important theoretical results have been derived for the perfor-
mance of RRTs [40]. For holonomic planning, the distribution of RRT vertices
converges to the sampling distribution (typically uniform). This result leads
to the probabilistic completeness of the RRT algorithm. For qinit and qgoal in
a single connected component of the configuration space, the probability that
an RRT constructed from qinit will find a path to qgoal approaches one as the
number of RRT vertices approaches infinity.
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RRTs have been applied to a wide variety of motion planning problems,
including holonomic and nonholonomic mobile robots and autonomous space
craft. These problems include cases for which robot motion is governed by
a complex system of dynamics equations. They have also been adapted to
perform bidirectional search (RRTs are grown simultaneously from both qinit

and qgoal).

23.6 Connecting the Vertices

Once a sample configuration has been generated, it must be connected to the
existing roadmap. For some of the methods described above (e.g., Ariadne’s
clew and RRTs), this connection is taken care of in the process of genera-
ting the sample. In most cases, however, sample configurations are generated
without consideration of the existing roadmap, and connection to the roadmap
must be handled explicitly.

Connecting a new vertex to the existing roadmap involves two operations:
determining a set of candidate neighbors for the new vertex and generating
local plans to connect the new vertex to those neighbors. For the latter issue,
any local planning method may be used, and a simple straight-line planner
in the configuration space is a typical choice. For the former issue, a distance
function (not always a metric) is used to define the set of k nearest neighbors
to the new configuration. In the remainder of this section, we discuss a few
distance functions that have been used for this purpose.

The distance function provides a measure of the difficulty the local planner
is likely to have when attempting to connect two configurations. An ideal dis-
tance function would be the swept volume in the workspace of the trajectory
connecting the two configurations, since intuitively trajectories with larger
swept volumes are more likely to be blocked by obstacles in the environment.
Unfortunately, as noted by others [6, 31], this distance function is very ex-
pensive to compute; therefore, most PRM methods use approximations based
solely on the two configurations that are to be connected.

Several distance functions have been defined on the configuration space of
the robot. These distance functions typically treat the configuration space as
a Cartesian space and define the distance function accordingly. For example,
the Euclidean distance is used in a few planners [9, 7, 17]. The l1 norm has
also been used [41]. A problem with these distance functions is that they
weight the configuration parameters equally, when some parameters may have
a larger effect than others. A solution to that problem is to add weights to
the different configuration parameters, and this has been used in a number of
planners [5, 40, 51, 10].

Workspace distance functions attempt to measure the motion of the robot
in the workspace. One method that has been used for articulated robots is
to take the 2-norm of the Euclidean distances between the joint positions
in the workspace [27]. Two distance functions for rigid objects in 3D that
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Fig. 23.16. Illustration of dx, dy , and dz

were tested in [6] are the distance between the center of mass of the object
at two configurations and the maximum distance between any vertex of the
bounding box at one configuration and its corresponding vertex at the other
configuration. For objects with flexible surfaces, a workspace-defined distance
function is the sum of the translation distance, scaled rotation, and maximum
displacement of a control point [26]. Another distance function is defined as
the sum of the distances between unit vectors of the coordinate frame of the
end-effector of the robot. This distance function, illustrated in Fig. 23.16,
has been used for manipulation planning [2] and for inverse kinematics of
redundant robots [1]. Another variant on a workspace distance function is
defined for nonholonomic robots in 2D workspaces in [51].

Table 23.1. Four distance functions from the literature that we have investigated

2-norm in C-space: DC
2 (q, q′) = ‖q′ − q‖ =

��n
i=1(q

′
i − qi)

2

� 1
2

∞-norm in C-space: DC
∞(q, q′) = maxn |q′i − qi|

2-norm in workspace: DW
2 (q, q′) =

��
p∈A

��p(q′) − p(q)
��2

� 1
2

∞-norm in workspace: DW
∞(q, q′) = maxp∈A

��p(q′) − p(q)
��

Table 23.1 shows four distance functions. For the equations in this table,
the robot has n joints, q and q′ are the two configurations corresponding to
different vertices in the roadmap, qi refers to the configuration of the ith joint,
and p(q) refers to the workspace reference point p of the set of reference points
A at configuration q. Versions of DW

∞ and DW
2 were also used in [31].

Figure 23.17 shows the roadmaps that result from using these four distance
functions with a collection of 50 vertices. As can be seen in the figure, each
of the roadmaps is somewhat different from the others, particularly as the
distance between vertices increases. The advantage of the roadmaps gene-
rated using the workspace distance function is that the links of the robot are
relatively closer together in the workspace; therefore, the volume swept by the
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Fig. 23.17. The roadmaps that result from using the four distance functions

robot as it traverses a path is, on average, smaller than the volume swept by
paths defined by the configuration space distance functions.

For some methods of constructing the roadmap, there is no explicit dis-
tance function. Some of these methods involve incremental expansion of the
roadmap, and the distance function is implicit in how new samples are genera-
ted around a vertex. Connections are then attempted between all new samples
and the chosen vertex. The tree expansion method described in [21] uses this
approach. In addition, tree expansion methods that derive new vertices by
integrating the motion equations with an input automatically connect the
new vertices with the old, and no distance function is needed in this case
[33]. Other methods that do not use a distance function when constructing
the roadmap are those that attempt to connect every pair of vertices [20].
This approach is particularly useful when analyzing the performance of the
roadmap [25].

23.7 Enhancement

As mentioned above, the initial roadmap often contains multiple connected
components, even when the free configuration space contains a single con-
nected component. Because of this, it is typical to use an enhancement phase
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of roadmap construction, during which vertices and edges are added to the
roadmap in an attempt to connect disjoint components. The basic idea is to
identify vertices in the existing roadmap that are near problem areas (e.g.,
narrow corridors in the free configuration space), and to expand the roadmap
from these vertices.

In the original work on PRM planners, a vertex was determined to be good
candidate for expansion when the local planner required many attempts to
connect it to the existing roadmap. More precisely, for vertex q, let n(q) be
the number of times that the planner attempted to connect q to the roadmap,
and let f(q) be the number of failures to connect q to the existing roadmap.
To make this more precise, define the failure ratio rf(q) as

rf(q) =
f(q)

n(q) + 1
.

By normalizing this ratio, we obtain a measure that can be used as a proba-
bility,

w(q) =
rf(q)∑
rf(q)

.

It is now possible to use w(q) in an importance sampling scheme to select
vertices for expansion. In particular, we expand vertex q with probability w(q).
To do this, a random number generator can be used to generate a sample x
from the uniform density on the unit interval. If x < w(q), expand q.

Once a vertex has been selected for expansion, most any planning algo-
rithm can be used to generate paths from that vertex, in an attempt to find
connections to vertices in the existing roadmap. As an example, in [28] a ran-
domized potential field planner [8] is used to generate paths from candidate
vertices. In [19] paths are created by using a random walk that bounces off of
obstacle boundaries (Fig. 23.18).

Fig. 23.18. A random walk that bounces off of obstacle boundaries
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23.8 Conclusions

In the early 1990s, probabilistic roadmap approaches were introduced in the
robot motion planning literature. Since that time, there has been an explosion
in their use and development. PRM planners tend to be easy to implement, but
there are many design choices, and these choices have considerable impact on
the overall performance of the planner (see, e.g., [15] for a comparative study
of approaches). In this chapter we have attempted to describe the general
algorithm and to present a discussion of these design choices.

At the present time, PRM planners are able to solve a large range of motion
planning problems; however, many problems remain. In particular, problems
associated with narrow corridors in the free configuration space continue to
be difficult for these planners. Further, the relationship between the geometry
of the workspace (both obstacles and robots) and the geometry of the free
configuration space is not yet well understood, making a thorough analysis
of these methods difficult. At present, the asymptotic performance of these
algorithms has been fairly well characterized, but it remains an open problem
to determine how well a given PRM algorithm will perform for a specific
workspace.
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absolute conic, 312
additive equation, 26
adjoint representation, 659, 668, 677
affine

camera, 319
piece, 311
tensor, 326

affine connection, 684
affine plane, 428

3D, 430
for incidence relations, 432

affine subspace, 630
affine transformation, 312, 572, 573,

576, 577, 581
Akaike information criterion (AIC), 470
Akaike, H., 470
algebra

Grassmann, 644
Grassmann–Cayley, 644
lattice algebra, 97, 108–110, 113, 122
linear algebra, 100, 110
linear algebraic operations, 110
minimax algebra, 100

algebraic error, 513
algebras of

Clifford, 406
Gibbs, 406
Grassmann, 406

amacrine cell, 5
ambiguity, 270, 278, 279, 282, 293, 297

intersection, 297
resection, 297
structure and motion, 297, 298, 300

angle meter, 270
Ariadne’s clew algorithm, 758
articulated chain, 709, 731
artificial potential fields, 738
aspect ratio, 315
associative memory, 101, 123

autoassociative, 101, 102, 105, 123
correlation, 101, 102
Hopfield, 101, 123
linear, 101
matrix, 100, 109
morphological, 97, 100–102, 105–110,

122, 123
astigmatism, 515
asymptotic analysis, 466
asymptotic efficiency, 472
attack, 233
autocalibration, 341

back-projection, 521
backpropagation, 77
ball tensor, 542
ball voting field, 545
bar framework, 650
batch learning, 76
Bayesian, 472

predictive distribution, 85, 90
beacon, 270
Beltrami flow, 211
Bezout’s theorem, 715
bias, 480

bilinear form, 505
mean, 504
spherical normalization, 506
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variance, 504
bifocal constraint, 328
bifocal tensor, 328
bilinear constraint, 328
bilinear form, 505
bilocal operator, 180
bin widths, 175
biochemical reaction, 26
bipolar cell, 4
bivector, 407
blade, 407
blur

discrimination, 13
perception, 13

blurring, 178
blurry isophotes, 182
blurry region, 181
body-eye calibration, 435
Boolean operations, 606, 608, 613
boundary conditions, 701
boundary encoding, 7
boundary value problem, 692
bracket, 637
bracket ring, 637
bundle adjustment, 338
Burmester points, 709

calibrated trilinear tensor, 275
camera

calibrated, 315
calibration, 320
centre, 314
constant, 314
equation, 315
matrix, 315
one-dimensional, 271
state, 271
uncalibrated, 315

canonical correlation analysis
(CCA), 142
regularized (RCCA), 146

cardinal depth conflict, 388
Carlsson

duality, 281, 289
Casorati curvature, 196
Cayley factorizatioin, 650
Cayley–Klein geometries, 183, 184
cell

K, 5

M, 5
P, 5

center of revolution, 639
central limit theorem, 472
chaos-based block cipher, 243
chaos-based image encryption scheme,

242
chaos-based method, 236
chaos-based stream cipher, 253
chaos (definition), 239
chaotic pseudorandom number

generators (CPRNG), 254
Christoffel symbol, 684, 691, 699–701,

703
cipher, 232
cipherkey, 232
ciphertext, 232
circles of the first kind, 187
circles of the second kind, 187
Clifford

conjugate, 668
conjugation, 412
planes, 173, 190
product, 407

Clifford algebra, 657–678, 712
dual quaternions, 714, 731

coadjoint representation, 660, 661, 677
codimension, 467, 474
codistribution, 696
coin-flipping model, 71, 79
collineation, 350
color images, 210
color space, 211, 217
common dividend of lowest grade, 409
compositionality, 384
compound matrix, 635
conditioning, 530
cone-type singular structure, 74
configuration space distance functions,

760
conformal geometry, 417
conformal mappings, 187
conformal split, 414, 416
conformal transformation, 424
confusion, 243
conic, 311, 477
consistency, 471, 476
constraint

bilinear, 355
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trilinear, 274, 275, 301
constraint manifold, 713, 731
constraint manifold, algebraic, 714
constraint manifold, parameterized, 732
contraction product, 678
contrast, 12

constancy, 12
contravariant index, 326
contravariant tensor, 349
coordinate homogeneous, 629
correlation, 575, 582
correspondence, 571, 574–578, 582, 583,

586–588, 593
couple, 645
covariance matrix, 464

estimated, 511
singular, 499, 500

covariant derivative, 684
covariant index, 326
covector, 644
Cramer–Rao lower bound (CRLB), 472
critical configuration, 642
cross entropy error, 79
cryptosystem, 231
curse of dimensionality, 136
curvature, 575, 584–586, 591
curvature flow, 205
curve evolution, 205
curve saliency, 542
curvedness, 196

Data Encryption Standard (DES), 231
data space, 467
decomposition

eigenvalue, 133
singular value, 134
spectral, 133

deep structure, 175
degeneracy, 474
degeneracy detection, 474
degree of freedom, 713
dendritic computing, 109–112, 122
dendritic structure, 110–120
dense vote, 544, 547, 557
densification, 557, 562
depth, 315

, cardinal, 388
, ordinal, 388, 393

differential invariants of images, 194

differential operators, 180
differentiation of images, 181, 193
diffusion, 203, 243

anisotropic diffusion, 207
anisotropic nonlinear diffusion, 208
inverse diffusion, 219
isotropic nonlinear diffusion, 207
linear diffusion, 205, 221
nonlinear diffusion, 222
orientation diffusion, 218

diffusion equation, 178
diffusivity, 207
dilation, 427
dilator, 427
dimensionality reduction, 140
direct linear transformation (DLT), 320
directed distance, 431
discrepancy, 743
dispersion, 743
distance fields, 605–607, 609, 612, 614
distance in image space, 185
distribution, 696–698

bilinear form, 505
divergence, 470
divisors of zero, 186
dual, 514

number, 712
dual number

plane, 186, 187
dual projective space, 352
dual quaternion, 658, 712, 714
dual variables, 135
dual vector space, 644
dual vectors, 131
duality, 134, 135, 280, 300, 302, 310, 408

Carlsson, 281, 289
dynamic

alignment problem, 351
viewing, 21

edge, 5, 465
blur, 7
blur discrimination, 13
blur perception, 13
sharpening, 13
sharpness, 7

edge detection, 465
edge operators, 174
edges, 174
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edginess, 174
efficiency, 472
egomotion, 384–386, 393
eigenvalue, 132
eigenvalue decomposition, 133
eigenvector, 132
eight-point algorithm, 332
Eikonal equation, 226, 585
elastic, 571, 573, 580–582, 588–594
ensemble, 461
epipolar constraint, 324
epipolar equation, 467, 478
epipolar line, 324
epipole, 322
equilibration, 484
equipotential surface, 612, 613, 616
equivalence

homogeneous entities, 501
uncertain homogeneous entities, 503

equivalence relation, 74
ergodicity, 239, 241
error propagation, 498
error propagation, 533

implicit, 511
errors-in-variables model, 487
estimating function, 487
Euclidian differential invariants, 172
Euler–Lagrange equations, 668, 669,

672
evaluation map, 657, 663, 664, 666, 667
excitation, 12

center, 12
one-to-one, 12

exponential map, 659, 660, 668
extensor, 637
exterior algebra, 638
exterior product, 662, 678
extrinsic parameters, 316

factorization, 336, 337
feature, 36, 38, 39, 47, 48, 57
feature detectors, 174
feature space, 211, 217
features, 181
feedback, 12
fillet, 606, 608
filtering, 33, 39
first-order voting, 549
first-order voting fields, 550

Fisher discriminant analysis (FDA), 156
Fisher information matrix, 72, 472
Fisher metric, 72
fixed point, 100, 103–105
fluid, 573, 580, 581, 588–593
focal length, 314, 315
focal point, 313–316
focus of expansion, 393
foliation, 697
framework plane and parallax, 350
Fubini–Study, 38, 54
functional magnetic resonance imaging,

571, 578
fundamental matrix, 324, 467, 478, 521
fundamental numerical scheme (FNS),

480, 481
fundamental second-order stick voting

field, 544

Galilean group, 184
gamma transformations, 172
Gauss–Helmert model, 508, 512, 529
Gaussian curvature, 48
Gaussian kernel, 178
Gaussian noise model, 71, 78
Gaussian sampling, 754
generalization, 178
generalization error, 75

expected, 85
generalized function, 500
generalized homogeneous coordinates,

415
generalized inverse, 469
generalized 3D baker map, 246
generically isostatic, 650, 652
geodesic, 583, 585, 586, 684–686, 692,

693, 695, 697
geometric

algebra, 515
conformal, 531

constraints, 524
constructions, 515
entities, representation of uncertainty,

515
mappings, 520
relations, 514
testing uncertain relations, 527

geometric AIC (G-AIC), 470
geometric algebra, 406
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geometric fitting, 467
geometric inference, 461
geometric MDL (G-MDL), 471
geometric model, 467
geometric model selection, 470
geometric product, 407

of two multivectors, 410
geometrical loci, 181
germ, 284–289, 292
Gold sequence, 255
grade involution, 412
gradient descent learning

standard, 76
stochastic, 77

Gram matrix, 135, 136
Grassmann–Cayley algebra, 499, 662
Grassmann–Plücker relation, 631
group of motions, 183, 184
group of movements in image space, 189

Halton sequence, 744
Hamilton relations, 412
Hamiltonian mechanics, 657, 671–672,

678
heat equation, 204

affine heat equation, 206
geometric heat equation, 205, 206

HEIV, 481, 507, 512
heteroscedastic errors-in-variables,

482
Hesse distance, 432
heteroscedastic, 487
hierarchical structures, 73
hills and dales, 196
histogram, 175
histogram valued images, 175
Hodgkin–Huxley equation, 25
homogeneous

vectors, equivalence, 501
homogeneous coordinates, 308, 414
homogeneous spaces, 183
homogeneous transform, 711
homogenous vectors, uncertain, 498
homography, 311, 521
homography tensor, 349, 355, 361
homotopy algorithm, 710, 724
horizontal cell, 5
horosphere, 415
hyperplane, 415, 422

hypersphere, 417
hypothesis testing, 513

ideal point, 306
image deep structure, 173
image denoising, 217
image noise, 465
image processing, 171, 172, 183, 199
image space, 172, 173, 177, 183
image space, spatial displacements, 731,

732
images, 171
image encryption algorithm, 236
implicit function, 603
implicit model, 603
implicit texturing, 615, 616
importance sampling, 746
incidence operators, 409
inertia, 657, 661–662, 664, 665, 677
inertia matrix, 689, 691
infinite homography, 324
information

dynamics, 38
Fisher, 39, 50, 51
maximal, 54
sparse, 36

information geometry, 69
inhibition, 12

many-to-one, 12
shunting, 12
surround, 12

inner product, 407
inner scale, 173, 174
intensity domain, 177, 183
intensity gradients, 173
international data encryption algorithm

(IDEA), 231
interpolation, 691, 692
intersection, 274, 277, 282, 283, 285,

297, 332
ambiguity, 298

intrinsic parameters, 315
invariant elements, 662, 664, 665
inverse kinematics, 440

of a pan-tilt unit, 440
inverse optics, 3
inversion, 424, 425
involution, 427, 660
isogonal conjugate point, 279
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iterative factorization, 337

join, 409, 429, 638
joint, 713

ball joint (S), 710
cylindric (C), 713
gimbal (T), 710
prismatic (P), 713
revolute (R), 713
spherical (S), 713
universal (T), 713
variables, 731

joint space, 467
junction saliency, 542

Kerckhoff’s principle, 232
kernel, 106–109, 136, 223

Gaussian kernel, 223
one-dimensional kernel, 224
short time kernel, 225
function, 136
matrix, 135, 136
matrix, centered, 139
methods, 135
methods (KM), 135
trick, 138

kernelizing, 136
kinetic energy, 657, 664, 667–669
Kullback–Leibler

divergence, 72, 75
information, 470

Lagrange multipliers, 674, 676, 677
Lagrangian mechanics, 657, 668–671,

678
Laplacian, 178
laser scanner, 270
laser-guided vehicle (LGV), 270
lateral geniculate nucleus (LGN), 5
lattice, 97, 98

bounded lattice-ordered group (blog),
97, 99, 110

complete, 98
computation, 113
dependency, 103, 105
distributive, 98, 99
dual of, 98
independence, 105, 108
independent pattern, 109

lattice-ordered group (�-group),
97–100

lattice-ordered semigroup (�-semi-
group), 99

semilattice, 98
semilattice-ordered group (s�-group),

98, 100
semilattice-ordered semigroup

(s�-semigroup), 99, 110
sublattice, 98
theory, 98, 100, 105

law of large numbers, 472
leaky-integrator model, 26
least squares, 479
least-squares regression, 137
least-squares solution, 479

LS solution, 479
lens formula, 313
level set, 205, 604
level set function, 604
Lie algebra, 659, 660, 682, 687
Lie bracket, 659
Lie group, 682
likelihood, 468
likelihood function, 50
line at infinity, 306, 632
line complex, 642
line geometry, 642
linear functional, 657
linear geometric fitting, 477
linear product decomposition, 709, 715,

716
circular cylinder, 721
circular hyperboloid, 724
circular torus, 729
elliptic cylinder, 727
general torus, 731
plane, 718
sphere, 719

local disorder, 175
local jet, 181
local operators, 174
log-polar coordinates, 390
Lorentz–Cauchy, 37, 40

LC, 40, 44
Lyapunov exponent, 241

magnetic resonance imaging, 571, 572,
578, 591–594
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Mahalanobis distance, 468
manipulability-based sampling, 747
maps, 5

color, 5
direction of motion, 5
orientation, 5
retinotopic, 5
spatial frequency, 5, 9

match metric, 571–574, 593
matching, 555, 561
mathematical morphology, 97
maximum likelihood estimation, 468,

471
maximum likelihood estimator, 468
maximum-likelihood estimation, 509
maximum-likelihood estimator, 84
MDA multiple discriminant analysis,

159
MDL, 470
mean curvature flow, 209
medial axis, 757
meet, 410, 643
membrane equation, 25
meter, 270
metric, 217, 684

bi-invariant, 684, 688
kinetic energy, 685, 689, 692, 697
left invariant, 684, 685, 687, 688, 695,

699
metric duality in image space, 191
metric shaping, 699
minimal cases, 336
minimal energy surface, 620
minimal representation, 107–109
minimum acceleration curve, 685, 686,

691–693
minimum description length, 470
Minkowski plane, 414
missing data, 338
mixing, 241
ML estimator, 468
MLE, 84, 87, 468, 471
MLP, 69
model, 466, 467, 471
model selection, 470, 472
modulus constraint, 343
moment, 431, 497
monofocal tensor, 328
Moore–Penrose generalized inverse, 469

Moore–Penrose pseudo inverse, 469
motion

clustering, 385
motion clustering, 387, 392
motion deblurring, 19
motion estimation, 433

ambiguity, 386
line-based, 434
point-based, 433

motion segmentation, 383
motion valley, 387
motor, 430
movements in image space, 183
multilayer perceptron, 69, 70

stochastic, 70
multilinear constraint, 349
multilocal geometry, 175
multiple discriminant analysis, 159
multiplicative equation, 25
multivector, 407

dual of a, 408
homogeneous, 407

multiview analysis, 350
mutual information, 575, 576

natural gradient learning, 77
adaptive, 78

navigation, 438, 455
Nernst potential, 25
neural network

adaptive logic, 97
architecture of, 114
artificial, 97, 100, 109, 110, 112, 113,

123
biological, 110
feedforward, 97, 109, 122, 123
fuzzy lattice, 97
fuzzy min-max, 119
hybrid morphological-rank-linear, 97
min-max, 97
morphological, 97, 100, 109, 110, 122
morphological perceptron, 97, 110,

112–114, 121
perceptron, 110, 111, 113, 114, 121
radial basis function, 117
recurrent, 101
regularization, 97
shared-weight, 97

neuromanifold, 69, 72



776 Index

Newton’s formula, 314
Neyman–Scott problem, 487
noise, 100, 106, 109, 123

dilative, 105–107
erosive, 105–107
noisy pattern, 105, 107–109, 123
random, 106–109

noise level, 464
nonrigid transformation, 571–574,

576–583, 588, 589, 591, 593
normalization, 530

spherical, bias, 506
normalized covariance matrix, 464
nuisance parameter, 487
null basis, 413
null cone, 416
null space, 134
null vectors, 416, 428
numerical schemes, 203, 219

explicit, 221
finite difference, 220
implicit, 221
additive operator splitting (AOS),

222
alternating direction implicit (ADI),

222
locally one dimensional (LOD), 223

object manipulation, 440
occlusion, 384, 388
occlusion filling, 393, 394
occlusion-motion conflict, 388
occlusions, 392
occlusions and ordinal depth, 393, 394
omnidirectional vision, 448

conformal unified model, 449
for robot navigation, 455
using conformal geometric algebra,

448
online learning, 77
operator

bounded, 42
Harris, 462
intertwining, 42
momentum, 45
position, 45
rotation, 46
scaling, 46
SUSAN, 462

translation, 46
optical axis, 313
optical flow, 384, 386, 392
optical ray, 317
ordinal depth conflict, 388, 393
origin, 414
orthographic camera, 318
outer product, 407
outer scale, 173, 174
over-realizable scenario, 83

parallel connection, 647
parallel points, 185
parameter space, 467
partial differential equations, 203
partial least squares, 147
path planning, 737
pathways, 5

action, 5
dorsal, 5
magnocellular, 5
parvocellular, 5
perception, 5
ventral, 5
what, 5
where, 5

pencil, 310
phase, 17

feed-forward dominant, 18
feedback dominant, 18
reset, 17

phase correlation, 389
photoreceptor, 4
pinhole camera, 314
pinhole camera model, 352
pixels, 172
Plücker

constraint, 514, 530, 531
coordinates, 514, 522, 529, 532
matrix, 519, 525
matrix, dual, 519, 525

Plücker coodinate
vector, 631

Plücker coordinate
dual, 634

plaintext, 232
plane at infinity, 632
plate tensor, 542
plate voting field, 546
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plateau, 81, 92
PLS

EZ-, 150
Partial Least Squares, 147
Regression-, 152

point at infinity, 414, 428, 630, 632
ideal point, 306

point isogonal conjugate, 279
point operator, 179, 193
polarity vector, 549
polynomial systems, 709, 711, 721, 731,

733
primal variables, 135
prime, 270, 283, 285, 286, 288–290,

292–295
principal component analysis (PCA),

140
principal point, 315
prior

Jeffreys’, 91
uniform, 91

PRM, 737
probabilistic roadmap, 737
product

inner, 408
inner general definition, 410
outer, 408

progressive coding, 257
projection, 414, 689, 690, 692, 695
projection matrix, 469, 479, 521
projective geometry, 306

uncertain reasoning, 499
projective invariant, 650
projective line, 306
projective plane, 306, 352
projective space, 38, 54, 57, 306, 352,

630
projective subspace, 630
projective transformation, 297, 311
pseudo inverse, 469
pseudoscalar, 408
pure isotropic rotations, 193
pure isotropic shifts, 193

quadrifocal constraint, 330
quadrifocal tensor, 331
quadrilinear constraint, 330
quadrilinear tensor, 280
quaternion, 413

quaternions, 658

rank, 467
ransac, 341
rapidly-exploring random trees (RRTs),

759
RCCA, 146
re-entrant, 12
reachable surface, 709, 710, 713–716,

732
reachable surface, circular cylinder, 719
reachable surface, circular hyperboloid,

714, 722
reachable surface, circular torus, 727
reachable surface, elliptic cylinder, 714,

724
reachable surface, general torus, 714,

729
reachable surface, plane, 714, 717
reachable surface, sphere, 718
reasoning under uncertainty, 499
reciprocity, 646
reconstruction, 438
reflection, 424, 425
reflector, 270
region of interest, 174
registration, 571–583, 588, 591
regularization, 618, 620, 622, 624
rejection, 414
relation sphere and hyperplane, 422
relations

geometric, 514
renormalization, 507

method, 483
representation

geometric elements, 514
uncertainty, 497

representation theory, 369
resection, 282, 283, 285, 297, 331

ambiguity, 298
residual, 470
residual sum of squares, 470
resolution, 33, 38, 48, 173
retinal ganglion cell, 4
retino-cortical dynamics (RECOD)

model, 8
retinotopic map, 5
reversion, 412
ridge regression, 137
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ridges and ruts, 198
Riemannian, 72

manifold, 72
metric, 51, 57, 72

rigid, 650
rigid body motion, 657–660, 670
rigid transformation, 571, 572, 575, 577,

581, 583
rigidity constraint, 696, 697
robot dynamics, 657–678
robot kinematics, 668
robot manipulator, 709

following a spherical path, 445
grasping an object, 446
touching a point, 442

robot navigation, 455
rotation, 426
rotor, 412, 427, 430

saliency decay function, 543
scale ambiguity, 316
scale space, 175, 178, 204
scaled orthographic camera, 319
screw axis, 712
screw system, 642
second-order tensor, 541
security analysis, 260
segmented stationary points, 375
semiparametric model, 487
sensitivity to initial condition, 239
serial chain, 713

CS, 714, 720, 721
parallel RRS, 714, 718
PPS, 714, 717, 718
PRR, 732
PRS, 714, 727
right RRS, 714
RPRP, 732
RPS, 714, 718, 722
RR, 714, 732
RRR, 732
RRS, 728–731
RRS , 714
TS, 710, 714, 718, 719

series connection, 647
series–parallel robot, 647
set of equivalent points, 74
set partitioning in hierarchical trees

(SPIHT), 256

seven-point algorithm, 333
shape index, 196
shuffle, 643
shuffle product, 662–664, 678
shunting equation, 25
similarities of the first kind, 193
similarities of the second kind, 193
similarity

transformation, 273, 284, 312
singular structure, 74
singular value, 134
singular value decomposition, 350, 690,

691
singular vector, 134
singularity, 74
singularity problem, 83
six-point algorithm, 333
skew, 315
soma space, 712, 731
space conic, 508
sparse vote, 544
spatial displacement, 711
spatial frequency, 5
spatial relations, 514

testing, 513
special Euclidean group, 682
special orthogonal group, 682
spectral

algorithms, 139
clustering, 160
decomposition, 133

spheres, 418
spherical normalization

bias, 506
spherical wrist, 709, 733
standard 2D baker map, 245
statistical estimation, 466
step, 637
stereo, 385, 388, 397
stereographic projection, 417
Stewart platform, 654, 658, 672, 674,

677
stick tensor, 542, 543
stick voting field, 544
stochastic model, 471
stochastic model selection, 472
straightening algorithm, 638
structural parameter, 487
structure and motion, 270
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problem, 321, 331
structure from motion, 369, 386, 388
structure of a point, 174
superbracket, 648
superjoin, 641
support, 637
support vector machines, 164
surface saliency, 542
surveying, 270
synapse, 5
synaptic development, 7
synaptic pattern, 7

tangent space, 469
tensor

antisymmetric, 637
calculus, 326
constraint, 357
homography, 361
of the dynamic 3D-to-3D alignment

problem, 363
symmetric, 358, 366
to distinguish dynamic and stationary

points, 363
decomposable antisymmetric, 637
indecomposable antisymmetric, 637
quadrilinear, 280
trilinear, 276, 277, 297, 298, 300, 302

tensor voting 4D, 560
tensorial transfer, 330
testing

spatial relations, 495, 513
uncertain geometric relations, 527

test standard, 255
texture, 214
top-down, 35, 36, 38
topological group, 42
topological transitivity, 239
total least squares, 479, 507
total variation, 207
training error, 76

expected, 85
transformation

projective, 297
similarity, 273, 284

transient regime, 21
translation, 424, 426
translator, 426, 430
transversion, 426

transversor, 426
triangulation, 494, 508
trifocal constraint, 329
trifocal tensor, 329
trilinear

constraint, 329
constraint, 274, 275, 301
tensor, 276, 277, 297, 298, 300, 302

trivector, 407, 412
twist, 640, 683, 689

left invariant, 683, 697
space, 641

two-stage encoding, 471

uncalibrated image sequence, 321
uncertain

equivalence, 503
homogeneous vectors, 498, 503

uncertainty
3D line transformation, 532
geometric entities, 515
propagation, 498
representation, 497

uncertainty ellipse, 464
unitary

E(2), 44
operators, 41
representation, 41

van der Corput sequence, 744
variance components, 509
versor, 424

for
dilation, 427
inversion, 425
reflection, 426
rotation, 427
translation, 426
transversion, 426

representation, 424
video, 216
video stabilization, 389
visibility roadmap, 753
visual system, 3
volumetric data, 216
voting fields, 544, 546

wavelet, 39, 42, 43
Weierstrass function, 608, 617



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




