

Getting
Started with
the Internet
of Things
Cuno Pfister

Getting Started with the
Internet of Things
by Cuno Pfister

Copyright © 2011 Cuno Pfister. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.
1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for most
titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Print History: May 2011: First Edition.

Editor: Brian Jepson
Production Editor: Jasmine Perez
Copyeditor: Marlowe Shaeffer
Proofreader: Emily Quill
Compositor: Nancy Wolfe Kotary
Indexer: Angela Howard
Illustrations: Marc de Vinck
Cover Designer: Marc de Vinck

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
The Make: Projects series designations and related trade dress
are trademarks of O’Reilly Media, Inc. The trademarks of third
parties used in this work are the property of their respective
owners.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility
for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 978-1-4493-9357-1

[LSI]

Contents iii

Contents

Preface . v

I/Introduction .1

1/Hello World . 3
Setting Up the Development Environment . 3

HelloWorld . 4

Building the Program in Visual Studio . 5

Deploying to the Device . 6

2/Writing to Actuators .11
BlinkingLed . 11

3/Reading from Sensors . 15
LightSwitch . 15

VoltageReader .20

II/Device as HTTP Client . 27

4/The Internet of Things . 29
HTTP .30

Push Versus Pull .34

5/Pachube . 37

6/Hello Pachube . 43
Setting Up the Network Configuration .43

HelloPachube .48

What Netduino Said to Pachube . 55

What Pachube Said to Netduino . 57

7/Sending HTTP Requests—The Simple Way . 61
SimplePutRequest . 61

Making Web Requests .64

8/Sending HTTP Requests—The Efficient Way . 71
EfficientPutRequest . 71

9/Hello Pachube (Sockets Version) . 77
PachubeClient . 77

iv Contents

III/Device as HTTP Server . 83

10/Hello Web . 85
Relaying Messages to and from the Netduino . 85

HelloWeb . 87

Request Handlers .92

HelloWebHtml . 93

What You Should Know About Ports .94

11/Handling Sensor Requests . 97
From Sensor Readings to HTTP Resources .98

URIs of Measured Variables .98

VoltageMonitor .99

What You Should Know About HTTP GET .103

12/Handling Actuator Requests . 105
From HTTP Resources to Controlling Things .106

URIs of Manipulated Variables .106

LedController . 107

Test Client in C# . 111

Embed a JavaScript Test Client on the Netduino . 114

What You Should Know About HTTP PUT . 118

13/Going Parallel . 121
Multithreading .122

ParallelBlinker .132

What You Should Know About Multithreading .136

14/Where Can I Go from Here? . 137
Recipes for Modifying a Server . 137

Server Versus Client? When to Push, When to Pull? .143

Taking a REST .144

Communities .145

Other Hardware .145

The Sky Is the Limit .148

A/Test Server . 149

B/ .NET Classes Used in the Examples . 153

C/Gsiot .Server Library . 155

Index . 169

Preface

One of the most fascinating trends today is the emergence of low-cost
microcontrollers that are sufficiently powerful to connect to the Internet.
They are the key to the Internet of Things, where all kinds of devices
become the Internet’s interface to the physical world.

Traditionally, programming such tiny embedded devices required
completely different platforms and tools than those most programmers
were used to. Fortunately, some microcontrollers are now capable of
supporting modern software platforms like .NET, or at least useful
subsets of .NET. This allows you to use the same programming language
(C#) and the same development environment (Visual Studio) when
creating programs for small embedded devices, smartphones, PCs,
enterprise servers, and even cloud services.

So what should you know in order to get started? This book gives one
possible answer to this question. It is a Getting Started book, so it is
neither an extensive collection of recipes (or design patterns for that
matter), nor a reference manual, nor a textbook that compares
different approaches, use cases, etc. Instead, its approach is “less is
more,” helping you to start writing Internet of Things applications with
minimal hassle.

The Platforms
The .NET Micro Framework (NETMF) provides Internet connectivity, is
simple and open source (Apache license), has hardware available from
several vendors, and benefits from the huge .NET ecosystem and avail-
able know-how. Also, you can choose between Visual Studio (including
the free Express Edition) on Windows, and the open source Mono tool-
chain on Linux and Mac OS X.

There is an active community for NETMF at http://www.netmf.com/
Home.aspx. The project itself is hosted at http://netmf.codeplex.com/.

http://www.netmf.com/Home.aspx
http://www.netmf.com/Home.aspx
http://netmf.codeplex.com/

vi Preface

Netduino Plus (http://www.netduino.com/netduinoplus) is an inexpensive
NETMF board from Secret Labs (http://www.secretlabs.com). This board
makes Ethernet networking available with a price tag of less than $60.
It has the following characteristics:

 » A 48 MHz Atmel SAM7 microcontroller with 128 KB RAM and 512 KB
Flash memory

 » USB, Ethernet, and 20 digital I/O pins (six of which can be configured
optionally for analog input)

 » Micro SD card support

 » Onboard LED and pushbutton

 » Form factor of the Arduino (http://www.arduino.cc/); many Arduino
shields (add-on boards) can be used

 » .NET Micro Framework preprogrammed into Flash memory

 » All software and hardware is open source

There is an active community for the Netduino Plus (and NETMF) at
http://forums.netduino.com/. All the examples in this book use the
Netduino Plus.

How This Book Is Organized
The book consists of three parts:

 » Part I, Introduction

The first part tells you how to set up the development environment and
write and run a “Hello World” program. It shows how to write to output
ports (for triggering so-called actuators such as LED lights or motors)
and how to read from input ports (for sensors). It then introduces the
most essential concepts of the Internet of Things: HTTP and the division
of labor between clients and servers. In the Internet of Things, devices
are programmed as clients if you want them to push sensor data to
some service; they are programmed as servers if you want to enable
remote control of the device over the Web.

http://www.netduino.com/netduinoplus
http://www.secretlabs.com
http://www.arduino.cc/
http://forums.netduino.com/

Preface vii

 » Part II, Device as HTTP Client

The second part focuses on examples that send HTTP requests to
some services—e.g., to push new sensor measurements to the Pachube
service (http://www.pachube.com) for storage and presentation.

 » Part III, Device as HTTP Server

The third part focuses on examples that handle incoming HTTP
requests. Such a request may return a fresh measurement from
a sensor, or may trigger an actuator. A suitable server-side library
is provided in order to make it easier than ever to program a small
device as a server.

 » Appendix A, Test Server

This contains a simple test server that comes in handy for testing and
debugging client programs.

 » Appendix B, .NET Classes Used in the Examples

This shows the .NET classes that are needed to implement all examples,
and the namespaces and assemblies that contain them.

 » Appendix C, Gsiot.Server Library

This summarizes the interface of the helper library Gsiot.Server that
we use in Part III.

Who This Book Is For
This book is intended for anyone with at least basic programming skills
in an object-oriented language, as well as an interest in sensors, micro-
controllers, and web technologies. The book’s target audience consists
of the following groups:

 » Artists and designers

You need a prototyping platform that supports Internet connectivity,
either to create applications made up of multiple communicating devices,
or to integrate the World Wide Web into a project in some way. You want to

http://www.pachube.com

viii Preface

turn your ideas into reality quickly, and you value tools that help you get
the job done. Perhaps you have experience with the popular 8-bit Arduino
platform (http://www.arduino.cc/), and might even be able to reuse some
of your add-on hardware (such as shields and breakout boards) originally
designed for Arduino.

 » Students and hobbyists

You want your programs to interact with the physical world, using
mainstream tools. You are interested in development boards, such as the
Netduino Plus, that do not cost an arm and a leg.

 » Software developers or their managers

You need to integrate embedded devices with web services and want
to learn the basics quickly. You want to build up an intuition that ranges
from overall system architecture to real code. Depending on your prior
platform investments, you may be able to use the examples in this
book as a starting point for feasibility studies, prototyping, or product
development. If you already know .NET, C#, and Visual Studio, you can
use the same programming language and tools that you are already
familiar with, including the Visual Studio debugger.

To remain flexible, you want to choose between different boards from
different vendors, allowing you to move from inexpensive prototypes
to final products without having to change the software platform. To
further increase vendor independence, you probably want to use open
source platforms, both for hardware and software. To minimize costs,
you are interested in a platform that does not require the payment of
target royalties, i.e., per-device license costs.

If your background is in the programming of PCs or even more powerful
computers, a fair warning: embedded programming for low-cost devices
means working with very limited resources. This is in shocking contrast
with the World Wide Web, where technologies usually seem to be created
with utmost inefficiency as a goal. Embedded programming requires
more careful consideration of how resources are used than what is
needed for PCs or servers. Embedded platforms only provide small sub-
sets of the functionality of their larger cousins, which may require some
inventiveness and work where a desired feature is not available directly.
This can be painful if you feel at home with “the more, the better,” but it
will be fun and rewarding if you see the allure of “small is beautiful.”

http://www.arduino.cc/

Preface ix

What You Need to Get Started
This book focuses on the interaction between embedded devices and other
computers on the Internet, using standard web protocols. Its examples
mostly use basic sensors and actuators, so it is unnecessary to buy much
additional hardware besides an inexpensive computer board. Here is a list
of things you need to run all the examples in this book:

 » A Netduino Plus board (http://www.netduino.com/netduinoplus)

 » A micro USB cable (normal male USB-A plug on PC side, male micro
USB-B plug on Netduino Plus side), to be used during development and
for supplying power

 » An Ethernet router with one Ethernet port available for your Netduino
Plus

 » An Internet connection to your Ethernet router

 » An Ethernet cable for the communication between Netduino Plus and
the Ethernet router

 » A potentiometer with a resistance of about 100 kilohm and through-
hole connectors

 » A Windows XP/Vista/7 PC, 32 bit or 64 bit, for the free Visual Studio
Express 2010 development environment (alternatively, you may use
Windows in a virtual machine on Mac OS X or Linux, or you may use the
Mono toolchain on Linux or Mac OS X)

NOTE:� There are several sources where you can buy the hardware
components mentioned above, assuming you already have a router
with an Internet connection:

 » Maker SHED (http://www.makershed.com/)

 » Netduino Plus, part number MKND02
 » Potentiometer, part number JM2118791

 » SparkFun (http://www.sparkfun.com/)

 » Netduino Plus, part number DEV-10186

http://www.netduino.com/netduinoplus
http://www.makershed.com/
http://www.sparkfun.com/

x Preface

 » Micro USB cable, part number CAB-10215 (included with Netduinos
for a limited time)

 » Ethernet cable, part number CAB-08916
 » Potentiometer, part number COM-09806

For more sources in the U.S. and in other world regions, please see
http://www.netduino.com/buy/?pn=netduinoplus.

It is also possible to add further sensors and actuators.

Conventions Used in This Book
The following typographical conventions are used in this book:

 » Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

 » Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, data types,
statements, and keywords.

 » Constant width bold

Shows commands or other text that should be typed literally by the user.

 » Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

NOTE:� This style signifies a tip, suggestion, or general note.

http://www.netduino.com/buy/?pn=netduinoplus

Preface xi

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example:
“Getting Started with the Internet of Things, by Cuno Pfister.
Copyright 2011 Cuno Pfister, 978-1-4493-9357-1.”

If you feel your use of code examples falls outside fair use or the permis-
sion given here, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://oreilly.com/catalog/0636920013037

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers,
and the O’Reilly Network, see our website at:

http://oreilly.com

mailto:permissions@oreilly.com
http://oreilly.com/catalog/0636920013037
http://oreilly.com/

xii Preface

Safari® Books Online
Safari Books Online is an on-demand digital library
that lets you easily search over 7,500 technology
and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access
new titles before they are available for print, and get exclusive access to
manuscripts in development and post feedback for the authors. Copy
and paste code samples, organize your favorites, download chapters,
bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
My thanks go to Brian Jepson, Mike Loukides, and Jon Udell, who made it
possible to develop this mere idea into an O’Reilly book. It was courageous
of them to take on a book that uses a little-known software platform, bets
on a hardware platform not in existence at that time, and addresses a field
that is only now emerging. Brian not only edited and contributed to the
text, he also tried out all examples and worked hard on making it possible
to use Mac OS X and Linux as development platforms.

I would like to thank my colleagues at Oberon microsystems for their
support during the gestation of this book. Marc Frei and Thomas Amberg
particularly deserve credit for helping me with many discussions, feed-
back, and useful code snippets. Their experience was invaluable, and
I greatly enjoyed learning from them. Marc’s deep understanding of REST
architecture principles and its implementation for small devices was
crucial to me, as was Thomas’s insistence on “keeping it simple” and his
enthusiasm for maker communities like those of Arduino and Netduino.
Both showed amazing patience whenever I misused them as sounding
boards and guinea pigs. I could always rely on Beat Heeb for hardware
and firmware questions, thanks to his incredible engineering know-how,
including his experience porting the .NET Micro Framework to several
different processor architectures.

http://my.safaribooksonline.com

Preface xiii

Corey Kosak’s feedback made me change the book’s structure massively
when most of it was already out as a Rough Cut. This was painful, but the
book’s quality benefited greatly as a result.

I have profited from additional feedback by the following people:
Chris Walker, Ben Pirt, Clemens Szyperski, Colin Miller, and Szymon
Kobalczyk. I am profoundly grateful because their suggestions
definitely improved the book.

The book wouldn’t have been possible without the Netduino Plus, and Chris
Walker’s help in the early days when there were only a handful of prototype
boards. Whenever I had a problem, he responded quickly, competently, and
constructively. I have no idea when he finds time to sleep.

Last but not least, many thanks go to the team at Microsoft—in particular
Lorenzo Tessiore and Colin Miller—for creating the .NET Micro Framework in
the first place. Their sheer tenacity to carry on over the years is admirable,
especially that they succeeded in turning the platform into a true open
source product with no strings attached.

I/Introduction

Thanks to the unrelenting progress of the semiconductor industry, all the
digital parts of a computer can be put onto a single chip, called a micro-
controller. A 32-bit microcontroller chip costing less than $10 may have
more than twice as much memory as the original 8-bit Apple II computer
with its 48 KB of RAM, and may run 100 times faster. A hobbyist board
that incorporates such a chip, along with Ethernet and a Micro SD card
slot, can be purchased for about $60.

Because of such inexpensive hardware and easy-to-use development
platforms, it is now possible for hobbyists to create systems that interact
with the physical world in every conceivable way. For example, a sensor
can measure the humidity in a flowerpot, and a computer-controlled valve
(actuator) lets water pass into the pot when the humidity drops too low.

Moreover, since the hardware allows the use of standard Internet protocols,
monitoring and controlling can be done over the Internet. Various Internet
services can be used for storing data, visualizing it, sharing it with other
people, etc. For example, to learn about seasonal effects on humidity, you
can store measurements of your flowerpot’s humidity over the course of a
year.

While these possibilities are fascinating and promising, there is also
something creepy about the potential for devices to spy on our every
move. This provides another reason why we should try to learn how such
systems work. This understanding is, or at least ought to be, the basis
for thinking about privacy policies that will become necessary sooner or
later.

In Part I, I will show you how to set up the development environment so
that you can start playing with simple sensors and actuators. Then I will
lay the groundwork for Parts II and III, which show how you can program
devices as clients that send requests to various services, or as servers
that handle requests from clients, e.g., from web browsers.

3

1/Hello World

To familiarize you with the development environment, your first program
should be a simple HelloWorld. Because the Netduino Plus board does not
have a display, use the USB connection between board and development PC
to write the string Hello World to the development environment’s Output
window running on the PC, as illustrated in Figure 1-1. The USB connection is
used to deploy and debug your programs, and in the HelloWorld example, it
allows you to send the Hello World string to your development PC.

Figure 1-1. Architecture of HelloWorld example

Setting Up the Development
Environment
Before writing your first program for the .NET Micro Framework, you need
to install a few tools and libraries, including:

 » Microsoft Visual Studio 2010 or later. The free Visual Studio Express
version is sufficient. Full commercial versions can also be used, of

4 Getting Started with the Internet of Things

course. For my descriptions and screenshots, I will use Visual Studio
Express. If you use Visual Studio Express, you must install the
C# edition from http://www.microsoft.com/express/Downloads.

 » Microsoft .NET Micro Framework 4.1 SDK or later, available at
http://www.netduino.com/downloads/MicroFrameworkSDK.msi.
(See http://www.netduino.com/downloads/ for more information on
compatible SDKs.)

 » Your development board’s SDK and drivers. The SDK and drivers for
the Netduino Plus can be downloaded from http://www.netduino.com/
downloads/.

 » The client-side Gsiot.PachubeClient library and the server-side
Gsiot.Server library, which are used in some of this book’s examples.
They can be downloaded from http://www.gsiot.info/download/.

All these software packages are free. The above tools require Windows
XP, Vista, or Windows 7.

NOTE:� Support for Mac and Linux should be available by the time this
book is in print. For the latest updates, see http://forums.netduino.com/.

HelloWorld
The HelloWorld program (Example 1-1) contains a class HelloWorld with a
parameterless static method Main.

The keywords public static void specify the type of the method;
in this case, it’s public (is visible to other classes), static (doesn’t need an
instance of the HelloWorld class to execute the method), and void (doesn’t
return a value). Also, because the parentheses are empty, Main() doesn’t
expect you to pass it any arguments (objects or variables that would be
referred to within the method).

In fact, you won’t call Main() on your own; NETMF does it for you. When
the Netduino Plus reboots or is powered on, it looks for the Main() method

http://www.netduino.com/downloads/MicroFrameworkSDK.msi
http://www.netduino.com/downloads/
http://www.netduino.com/downloads/
http://www.netduino.com/downloads/
http://www.gsiot.info/download/
http://forums.netduino.com/

1/Hello World 5

and runs it as the entry point of your program. This program writes the
string Hello World to a debug console, e.g., the Output window of Visual
Studio.

Example 1-1. HelloWorld program
using Microsoft.SPOT;

public class HelloWorld

{

 public static void Main()

 {

 Debug.Print("Hello World");

 }

}

NETMF provides a Debug class in the Microsoft.SPOT namespace.
Debug’s Print method writes text output directly to the development
environment via the same transport (connection) used for deploying
software to the device and for debugging. On the Netduino Plus board, it
is a USB transport. Other development boards may use a serial transport
(RS-232) or an Ethernet transport.

Building the Program
in Visual Studio
Assuming you have already installed the .NET Micro Framework SDK and
the Netduino SDK, there are a few steps you must follow before you can
type in the HelloWorld program:

1. Start Visual Studio.

2. Click on File➝New Project….

3. Select Micro Framework in the Installed Templates pane, select Netduino
Plus Application in the middle pane, and type HelloWorld in the Name
field at the bottom (see Figure 1-2). Then click OK.

6 Getting Started with the Internet of Things

Figure 1-2. New Project dialog box

4. In the Solution Explorer on the right side, double-click on Program.cs.
A tab with the title Program.cs will open, containing some boilerplate
program text.

5. Replace the text with the HelloWorld program from Example 1-1.

6. Select Debug➝Build Solution to build the solution. At the bottom-left
corner of Visual Studio, it should now say “Build succeeded”.

Deploying to the Device
Once you have built the example, you can deploy it to your hardware.
First, you need to make sure that the deployment properties are set as
shown in Figure 1-3. To do this, perform the following steps:

1. In the Solution Explorer, right-click on the HelloWorld project (just below
the text “Solution ‘HelloWorld’ (1 project)”), then select Properties in the
menu. The tab shown in Figure 1-3 will open.

1/Hello World 7

Figure 1-3. Project properties

2. On the left side, click on the .NET Micro Framework tab, which results in
the dialog box shown in Figure 1-4. Make sure that the properties are set
up as follows:

 » Configuration: Active (Debug)

 » Platform: Active (Any CPU)

 » Transport: USB

 » Device: select your Netduino from the drop-down list.

 » Generate native stubs for internal methods: unchecked

8 Getting Started with the Internet of Things

Figure 1-4. .NET Micro Framework properties

3. If the Device list box says <none>, you need to plug in your Netduino Plus.
The first time you plug it in, the driver should be installed automatically.
Its name should appear when you click on the Device list box.

4. To open the Output window, which will show debug output, use the key-
board shortcut Ctrl-W, followed by O.

5. Next, select Debug➝Start Debugging, and the HelloWorld program will
be sent to your board, loaded by the .NET Micro Framework, after which
the Main method is executed. The program then terminates immediately.

You can see the debug output in Visual Studio. The end of the output
should look something like this:

The thread ‘<No Name>’ (0x2) has exited with code 0 (0x0).

Hello World

The thread ‘<No Name>’ (0x1) has exited with code 0 (0x0).

The program ‘[1] Micro Framework application: Managed’ has exited

 with code 0 (0x0).

Now you have successfully deployed your first program to a real device! It
is certainly not an Internet of Things application yet, as it does not involve
any communication over the Internet. Nor is it an embedded application,
as it doesn’t use any of the typical embedded inputs or outputs (which we
will look at in the following chapters).

1/Hello World 9

NOTE:� If there is a problem during deployment, pull the USB cable out
of your PC. If a dialog box with the text “There were deployment errors.
Continue?” appears, click on the No button. Rebuild the program.
Then plug in the USB cable again and immediately click Debug➝Start
Debugging. In some rare circumstances (usually involving complicated
programs), the device seems to get really stuck, and a power cycle
doesn’t help. In those cases, it may help to erase your program from
the Netduino Plus using the following steps:

1. Start up the MFDeploy tool (described in Chapter 6) and make sure
USB is selected.

2. Unplug your Netduino Plus, then plug it back in while holding down the
onboard button.

3. Release the button and then press the Erase button on the MFDeploy
tool.

11

2/Writing to Actuators

You can now write your first truly embedded program. In a time-honored
tradition, this program, BlinkingLed, which is the embedded equivalent
of HelloWorld, makes an LED blink.

In Figure 2-1, the large box indicates a Netduino Plus, which has a blue
LED—labeled LED on the board—that can be controlled from an application
program. This LED is connected to a general-purpose input/output (GPIO)
pin of the microcontroller. Most microcontrollers have a number of such
GPIO pins, each of which can be configured as digital input or digital output.
A digital output might be connected to an LED, as in our example; a digital
input might be connected to a switch or button.

Figure 2-1. Architecture of BlinkingLed

BlinkingLed
The BlinkingLed program, shown in Example 2-1, contains a simple end-
less loop that switches the LED on, waits for half a second, switches the
LED off again, waits for another half a second, and then starts all over.

12 Getting Started with the Internet of Things

Example 2-1. BlinkingLed
using System.Threading;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class BlinkingLed

{

 public static void Main()

 {

 var ledPort = new OutputPort(Pins.ONBOARD_LED, false);

 while (true)

 {

 ledPort.Write(true); // turn on LED

 Thread.Sleep(500); // wait 500 ms

 ledPort.Write(false); // turn off LED

 Thread.Sleep(500); // wait 500 ms

 }

 }

}

The calls to the Sleep method in the Thread class make the program
pause for (at least) a given number of milliseconds (a millisecond is
1/1000th of a second). In the .NET Micro Framework, using Thread.Sleep
is the best practice for waiting, as it allows the hardware to go into a lower-
power state to conserve energy.

NOTE:� In many .NET programs, you’ll see the developer specify a type
name (such as OutputPort) for variable declarations. To simplify things,
in this book I use the var keyword for all variable declarations where the
type is obvious, such as:

 » If the variable is initialized with a literal value (number, string).

 » For an object created through its constructor (because you’ll always see
its class name on the right side of the expression, as is the case in this
example).

 » When a type cast is used (see the section “C#: Protecting You from
Dangerous Conversions” in Chapter 12).

In all other cases, I use the type name to make the variable’s type
unambiguous and obvious—even if you read this book “on paper.”

2/Writing to Actuators 13

C# Namespaces
In C#, related classes are bundled together into so-called namespaces.
In the BlinkingLed program, the namespace Microsoft.SPOT.Hardware
provides the class OutputPort. Its full name is Microsoft.SPOT.
Hardware.OutputPort. Of course, you could spell out the full name of
the class every time you use it, but for the sake of readability and
convenience, it is often preferable to use a using directive. If you
specify the directive using Microsoft.SPOT.Hardware; (as I did in
BlinkingLed) at the beginning of your program, you can use the short
name OutputPort, rather than the full name. I will use short names in
this book; please see the tables in Appendix B to find the appropriate
namespace for each class used in these examples.

NOTE:� The “SPOT” in several NETMF namespaces stands for Smart
Personal Object Technology, originally developed for programmable
personal devices such as watches. The .NET Micro Framework grew out
of these activities.

Running the Program
To run the program, create a new Netduino Plus Application project in
Visual Studio, and replace the contents of Program.cs with the code
given in Example 2-1. Next, build it and deploy it to your Netduino Plus, as
described in the section “Deploying to the Device” in Chapter 1.

Digital Outputs
In the .NET Micro Framework, using a physical pin as output is represented
by an output port object, which is an instance of the class OutputPort.

An output port provides the method Write that takes the target state of
the output pin as a Boolean (true or false) parameter. Using such an
output port, called ledPort in Example 2-1, the LED can be switched on by
writing the value true, and switched off by writing the value false.

When I defined the output port ledPort, I specified the microcontroller
pin that is connected to the LED. In this case, I want to use the built-in
(onboard) LED.

14 Getting Started with the Internet of Things

Pins are represented by the type Cpu.Pin, but you don’t specify the
number of the pin you want to use. Instead, manufacturers provide
constants for the pins on their boards. On a Netduino Plus, you must
specify Pins.ONBOARD_LED for the onboard LED’s pin. In this book, we
are mainly interested in the constants shown in Table 2-1, where I also
include some input ports to be used in later chapters. These pins are
defined in the namespace SecretLabs.NETMF.Hardware.NetduinoPlus,
which is provided as part of the Netduino SDK. When you type in Pins.,
Visual Studio conveniently pulls up a list of all the available pins on a
Netduino Plus.

Table 2-1. Pin assignment of Netduino board (excerpt)

Connected hardware Pin usage Constant

Onboard LED (blue) Digital output Pins.ONBOARD_LED

Onboard switch Digital input Pins.ONBOARD_SW1

Pins D0 through D13 Digital input or digital output Pins.GPIO_PIN_D0 to

Pins.GPIO_PIN_D13

Pins A0 through A5 Analog input1 Pins.GPIO_PIN_A0 to

Pins.GPIO_PIN_A5
1 Alternatively, these pins can be configured as digital inputs or as digital outputs.

NOTE:� Many super bright blue and white LEDs can tolerate the 3.3V
GPIOs that the Netduino Plus uses. You can connect such an LED to any
of the GPIO pins: the long lead (positive) goes to the GPIO pin, and the
short lead (negative) goes to the board’s ground pin. However, if you
are using an LED of another color, note that it prefers a lower voltage;
therefore, you should put a 220 ohm resistor between one of the LED’s
leads (either one is OK) and your board.

The second parameter of the OutputPort constructor shown in Example 2-1
indicates whether the LED should initially be switched on or off. In our case,
false indicates that it should be off at the beginning.

A pin may be used with at most one output (or input) port at the same
time—i.e., creating a port object reserves this pin. Attempts at reserving
a pin multiple times will lead to an exception, which is a software event
that is triggered by an error condition. Unless you create handlers that
catch and resolve exceptions, they will typically cause your Netduino Plus
program to halt.

15

3/Reading from Sensors

The first example in this chapter, LightSwitch, not only writes to output
ports, it also reads from input ports. The switch input is used to control
the LED output, as shown in Figure 3-1. While the switch (actually a
push button on the Netduino Plus board) is closed, the LED stays lit;
otherwise, it is dark.

Figure 3-1. Architecture of LightSwitch

LightSwitch
The program LightSwitch (Example 3-1) reads the current switch state
periodically and copies it to the LED. This is done frequently enough that a
user does not detect a delay when she opens or closes the switch. Delays
of 1/10th of a second or less are undetectable by humans; therefore, the
loop is executed every 100 milliseconds.

NOTE:� A value read from a sensor—in this case, the switch or button—is
called a measurement or sample. The time span between two subsequent
measurements is called the sampling period.

16 Getting Started with the Internet of Things

Example 3-1. LightSwitch
using System.Threading;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class LightSwitch

{

 public static void Main()

 {

 var switchPort = new InputPort(Pins.ONBOARD_SW1, false,

 Port.ResistorMode.Disabled);

 var ledPort = new OutputPort(Pins.ONBOARD_LED, false);

 while (true)

 {

 bool isClosed = switchPort.Read();

 if (isClosed)

 {

 ledPort.Write(true);

 }

 else

 {

 ledPort.Write(false);

 }

 Thread.Sleep(100); // 100 milliseconds

 }

 }

}

NOTE:� Since the first branch of the if (isClosed) statement is executed if
isClosed is true, and the other branch is executed if isClosed is false, the
entire if statement can be completely replaced by the following statement:

ledPort.Write(isClosed);

To build the program, create a new Netduino Plus project, name it
LightSwitch, and replace the contents of Program.cs with the code in
Example 3-1. Next, build the project and deploy it to your Netduino Plus,
as described in the section “Deploying to the Device” in Chapter 1.

3/Reading from Sensors 17

Digital Inputs
For reading the switch state, create object switchPort of type InputPort
for the pin to which your board’s switch is connected (in this case, I use
the ONBOARD_SW1 constant to refer to the pin that’s wired to the Netduino’s
built-in switch). When an input port is created, you have to pass two
parameters in addition to the pin number: bool glitchFilter and Port.
ResistorMode resistor.

Parameter glitchFilter determines whether button presses are
debounced—i.e., whether intermittent mechanical contacts are
suppressed. In LightSwitch, it doesn’t really matter whether a value is
read that is “wrong” temporarily; therefore, I pass false. This would be
different if the application did something critical whenever the button
was pressed, like launching rockets. In such a situation, you wouldn’t
want one keypress to launch an entire salvo of rockets, simply because
the button jumps up and down a bit before it settles down.

To understand the resistor parameter, we need to look at the hardware
of the board. The microcontroller’s input pin ONBOARD_SW1 is connected to
power (PWR)—i.e., to the supply voltage on the one hand—and via switch
SW1 to ground (GND), or to zero voltage. Without resistance between
power and ground, it would be unclear what the input pin would see when
the switch is closed (Figure 3-2). Power? Ground? Something in between?

Figure 3-2. Why a resistor is needed

18 Getting Started with the Internet of Things

Moreover, the current would become infinite when the switch is closed—
in other words, you would get a short circuit that might destroy the
board. These are the reasons why a resistor R must be supplied. It limits
the current, prevents a short circuit, and defines whether ONBOARD_SW1
detects a high or a low voltage. On the Netduino Plus board, this pull-up
resistor is placed between ONBOARD_SW1 and power. Figure 3-3 shows an
excerpt of board schematics that illustrates the situations with switch
SW1 open (left) and closed (right).

Figure 3-3. Switch open (left) and switch closed (right)

NOTE:� The simple rectangular shape of a resistor, as shown in Figure 3-3, is
used in many countries. In the U.S., it is more common to use the following
symbol:

3/Reading from Sensors 19

Because the Netduino Plus board already provides a pull-up resistor for
ONBOARD_SW1, the microcontroller pin doesn’t need to provide additional
resistance of its own. Therefore, the value Port.ResistorMode.Disabled
is passed as a parameter to the input port constructor.

NOTE:� If there were no external pull-up resistor on the board, you would
have to pass Port.ResistorMode.PullUp to enable the microcontroller’s
internal pull-up resistor. This is relevant if you use one of the digital inputs
on the Netduino Plus connectors to connect an external switch.

If the switch is open—i.e., the button is released—the supply voltage
causes the pin to “see” a high voltage (Figure 3-3, left). If the switch is
closed—i.e., the button is pressed—the voltage below the resistor is
sucked down to ground, causing the pin to “see” a zero voltage (Figure
3-3, right).

Positive and Negative Logic

It would be nonintuitive if an input port with switch semantics
returned true for an open switch, so the Netduino GPIO driver
makes sure that switchPort.Read returns false for an open
switch (high voltage), and true for a closed switch (low voltage).
However, be aware that if you use other GPIO ports with switches
and pull-up resistors attached, they will return true for open
switches. This is because the framework cannot know the desired
semantics in advance, and therefore it cannot adjust other ports
than ONBOARD_SW1 for this negative logic!

The board schematics in Figure 3-3 are simplified because on the
Netduino, the same switch is used as a reset button if it’s not used as a
GPIO port, which requires additional logic not shown here. Without this
logic, SW1 and R could have been swapped, turning R into a pull-down
resistor. This would have avoided the use of negative logic.

The reason why hardware is often designed with pull-up resistors
instead of pull-down resistors is historical: earlier circuit technologies
had built-in pull-up resistors. With today’s CMOS circuits, there is no
technical reason anymore, but the tradition of using a mix of positive
and negative logic unfortunately remains.

20 Getting Started with the Internet of Things

VoltageReader
Reading digital inputs for buttons, switches, and the like is fine, but some-
times you may want to read analog inputs as well. The VoltageReader in
Figure 3-4 shows how this can be done.

Figure 3-4. Architecture of VoltageReader

The complete code is given in Example 3-2. It polls a potentiometer every
three seconds and prints the raw value and the corresponding voltage
value to the debug output.

NOTE:� If you develop on Mac OS X or Linux, the debug output can be sent
over a serial line instead of USB. For more information, please see the
Mono forum at http://forums.netduino.com/.

Example 3-2. VoltageReader
using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class VoltageReader

{

 public static void Main()

 {

http://forums.netduino.com/

3/Reading from Sensors 21

 const double maxVoltage = 3.3;

 const int maxAdcValue = 1023;

 var voltagePort = new AnalogInput(Pins.GPIO_PIN_A1);

 var lowPort = new OutputPort(Pins.GPIO_PIN_A0, false);

 var highPort = new OutputPort(Pins.GPIO_PIN_A2, true);

 while (true)

 {

 int rawValue = voltagePort.Read();

 double value = (rawValue * maxVoltage) / maxAdcValue;

 Debug.Print(rawValue + " " + value.ToString("f"));

 Thread.Sleep(3000); // 3 seconds

 }

 }

}

NOTE:� Note the string conversion value.ToString("f"). The optional
format string parameter "f" indicates a fixed-point number representation
with two digits after the decimal point.

To run the program, first connect a potentiometer to your Netduino Plus,
as shown in Figure 3-5.

NOTE:� Revision A boards require that you first connect Aref and 3V3
before you can use analog inputs. On Revision B boards or later, this is no
longer necessary (but is allowed).

The potentiometer should have a resistance of about 100 kilohm, and it
should have through-hole connectors arranged in a row so that it can be
stuck directly into the Netduino Plus connector.

Next, create a new Netduino Plus project, name it VoltageReader, and
replace the contents of Program.cs with the code in Example 3-2. Then,
build the project and deploy it to your Netduino Plus, as described in the
section “Deploying to the Device” in Chapter 1.

To view the output, choose Debug➝Windows➝Output. Every three seconds
you’ll see a new value displayed in the window.

22 Getting Started with the Internet of Things

Analog Inputs
A typical analog sensor translates some physical phenomenon, such as
temperature, into a voltage level. The analog/digital converter (ADC) built
into the microcontroller of the Netduino Plus can measure this voltage
and turn it into an integer number. For an ADC with 10-bit resolution, like
the one in the Netduino Plus, the numbers range from 0 (for 0.0 Volt) to
1023 (for 3.3 Volt). These are the 1,024 values that can be represented
with 10 bits (210 values). An ADC supporting only 8 bits would yield the
256 numbers between 0 and 255 (28 values); an ADC supporting 12 bits
would yield the 4,096 numbers between 0 and 4095 (212 values).

A Netduino Plus provides six analog inputs on one of the blue connectors.
They are labeled Analog In, 0 to 5. If you have a suitable potentiometer, you
can stick it into the Netduino Plus connector such that one of the outer most
leads (no matter which one) connects to A0, the other outermost lead
connects to A2, and the middle lead connects to A1. See Figure 3-5 for an
image of this scenario.

Figure 3-5. Netduino Plus with potentiometer

3/Reading from Sensors 23

Because the pins on our potentiometer lie so closely together, it is
convenient to plug them directly into the row of analog pins on the
Netduino. However, we will not be configuring all the connected pins to
be analog inputs. Recall that the analog pins on the Netduino can be used
either for general-purpose digital I/O or for analog input. In our case, we
will configure the pins at the two ends (A0 and A2) to be digital outputs
supplying 3.3V on one pin and 0.0V on the other. Only the middle pin (A1)
will be configured to be an analog input.

Figure 3-6 shows a schematic diagram for this arrangement of components.

Figure 3-6. Potentiometer connected to three microcontroller pins

The symbol for a potentiometer looks similar to a resistor because it
is indeed a kind of variable resistor. Depending on how you turn the
potentiometer’s knob, the resistances between pins A0 and A1 on the
one hand, and between pins A1 and A2 on the other hand, will change.
As a result, the voltage seen by A1 will change, all the way from 0.0 Volt
to 3.3 Volt. A potentiometer can therefore be regarded as a variable
voltage divider, as shown in Figure 3-7.

24 Getting Started with the Internet of Things

Figure 3-7. Potentiometer as a variable voltage divider

With your potentiometer attached to the Netduino Plus, you have
hands-on experience with an analog sensor. This is a good basis for
learning about more advanced sensors later on. After all, most analog
sensors produce varying voltages that the Netduino measures at one of
the analog inputs, representing them as an unsigned integer value.

Let’s take another look at part of Example 3-2:

const double maxVoltage = 3.3;

const int maxAdcValue = 1023;

var voltagePort = new AnalogInput(Pins.GPIO_PIN_A1);

var lowPort = new OutputPort(Pins.GPIO_PIN_A0, false);

var highPort = new OutputPort(Pins.GPIO_PIN_A2, true);

From the microcontroller’s ADC resolution (adcResolution), which is 10
bit, the maximum value of the input port is 1023. The analog input port for
pin A1 is an instance of class AnalogInput.

3/Reading from Sensors 25

Pins A0 and A2 are used as digital outputs here, forcing one of them to low
(false) and the other to high (true). The Netduino Plus allows the use of
pins A0 to A5 as either analog inputs, or as digital inputs or outputs (i.e., as
GPIOs). This trick lets you use one pin as voltage (high corresponds to 3.3
Volt) and one as ground (0.0 Volt).

Reading an analog input port is accomplished with this line:

int rawValue = voltagePort.Read();

This yields a value between 0 and 1023. Scaling it to between 0.0 and 3.3
Volt is done in the following way:

double value = (rawValue * maxVoltage) / maxAdcValue;

We multiply the value we read (rawValue) by the maximum voltage (3.3)
and divide it by the maximum value possible (1023).

Voltage Divider

A voltage divider produces an output voltage that is a fraction of its
input voltage. In Figure 3-7, the output voltage seen at GPIO_PIN_A1
is 3.3V * (R2 / (R1 + R2)). A potentiometer allows you to change R2
by turning its knob.

Other sensors have their resistances changed through other
physical effects. For example, brightness affects the resistance of
a photo resistor.

II/Device as HTTP
Client

In this part, we will see how devices can be programmed as HTTP clients,
accessing services on the Internet. The main focus will be on Pachube,
a service created specifically for Internet of Things applications. Your
device(s) can send measurements to Pachube for storage and for later
access via web browsers or other programs.

The .NET Micro Framework provides mainly two application programming
interfaces (APIs) for implementing HTTP clients: the high-level HttpWeb
Request API (in namespace System.Net) and the low-level Socket API (in
namespace System). You will learn how to work with either one, depending
on your application needs and available hardware resources.

29

4/The Internet of Things

Now that you have seen how to work with simple sensors and actuators,
it is time to take the next step toward an Internet of Things application.
In this chapter, I will briefly introduce the Internet of Things, and the
related Web of Things.

The Internet of Things is a global network of computers, sensors, and
actuators connected through Internet protocols.

A most basic example is a PC that communicates over the Internet with a
small device, where the device has a sensor attached (e.g., a temperature
sensor), as shown in Figure 4-1.

Figure 4-1. A PC and a device connected through the Internet

The TCP/IP protocol is the key Internet protocol for such communication
scenarios. It enables the transfer of byte streams between two computers
in either direction. For example, using the TCP/IP protocol, the device in
Figure 4-1 may periodically deliver temperature measurements to a
program running on the PC.

30 Getting Started with the Internet of Things

HTTP
While it is possible to run any kind of proprietary protocol on top of TCP/
IP, there are a few popular and widely supported standard protocols. If
you use a standard protocol to deliver your sensor data, you’ll be able to
work with many more devices and applications than if you developed your
own proprietary protocol.

The most important standard protocol by far is the Hypertext Transfer
Protocol (HTTP), the protocol of the World Wide Web. HTTP describes
how a client interacts with a server, by sending request messages and
receiving response messages over TCP/IP, as diagrammed in Figure 4-2.

Figure 4-2. Client sends request message, server answers with response
message

Web browsers are the most popular HTTP clients, but you can easily
write your own clients—and your own servers. If you use a web browser to
access a device, the device has the role of a web server, providing a web
service over the Internet.

A server contains resources, which can be anything of interest, e.g., a
document (typically an HTML web page), the most current measure-
ment of a sensor, or the configuration of a device. When you design a
web service, you need to decide which resources it should expose to
the world.

4/The Internet of Things 31

HTTP uses Uniform Resource Identifiers (URIs) to tell the server which
resource the client wants to read, write, create, or delete. You know URIs
from web browsing; they look something like these:1

http://www.example.com/index.html

http://www.example.com/temperatures

http://www.example.com/temperatures/actual

http://www.example.com:50000/temperatures/actual

http://www.example.com/temperatures?alarm=none

http://www.example.com/temperatures?alarm=high

http://www.example.com/temperatures?alarm=low

http://www.example.com/valve/target

A URI indicates the scheme (e.g., http), the host (e.g., www.example.com),
optionally the port (e.g., 50000), and the path (e.g., /temperatures/actual)
to the resource owned and managed by this host, as shown in Figure 4-3.
Optionally, a URI may also contain a query (e.g., alarm=high) after a ?
character that follows the path.

For the HTTP protocol, port 80 is used by default unless another port is
chosen explicitly, perhaps for testing purposes. The path is called request
URI in HTTP; it denotes the target resource of an HTTP request.

NOTE:� URIs that start with a scheme are absolute URIs. URIs without a
scheme are relative URIs. A request URI is a relative URI that starts with /.
Sometimes you will have to work with absolute URIs and other times with
relative URIs, as you will see in the examples.

Figure 4-3. URI that addresses a resource managed by a host

1 These URIs are URLs (Uniform Resource Locators) as well. A URL is a URI that also indicates a specific loca-
tion of a resource, in addition to its identity. I will use the more general term URI throughout this book.

http://www.example.com/index.html
http://www.example.com/temperatures
http://www.example.com/temperatures/actual
http://www.example.com:50000/temperatures/actual
http://www.example.com/temperatures?alarm=none'
http://www.example.com/temperatures?alarm=high
http://www.example.com/temperatures?alarm=low
http://www.example.com/valve/target
http://www.example.com

32 Getting Started with the Internet of Things

There are several kinds of HTTP requests that a client can send, but the
most popular are GET for reading a resource, PUT for writing to a resource,
POST for creating a resource, and DELETE for deleting a resource. Web
browsers mostly issue GET requests, which make up the vast majority of
HTTP requests. In a Web of Things application, a GET request to a URI,
such as:

http://www.example.com/temperatures/actual

may return the most recent measurement of a temperature sensor, while
a PUT to a URI, such as:

http://www.example.com/valve/target

may change the setting of an actuator—in this case, a valve. POST requests
add sub-resources to a resource, which is similar to putting a file into a
directory. For example, a POST of a measurement to the following resource:

http://www.example.com/temperatures

may create a new resource:

http://www.example.com/temperatures(42135)

A DELETE request removes a resource—e.g., it may remove the
/temperatures resource:

http://www.example.com/temperatures

from the server. (Of course, this would not physically remove the
temperature sensor from the hardware.)

PUT requests, POST requests, and GET responses carry representations
of the addressed resource. The best-known representation is the Hyper-
text Markup Language, better known as HTML. A web browser is an HTTP
client that knows how to render HTML pages on the screen. There are other
popular representations: PDF, JPEG, XML-based data formats, etc. A web
service may support one or several representations for a single resource.
For example, a temperature measurement may be represented in a plain-
text representation, like this:

23.5 deg

or in an XML representation, like this:

<sample>

 <value>23.5</value>

 <unit>deg</unit>

</sample>

http://www.example.com/temperatures/actual
http://www.example.com/valve/target
http://www.example.com/temperatures
http://www.example.com/temperatures(42135)
http://www.example.com/temperatures

4/The Internet of Things 33

Some representations are standardized, like HTML, but you may also
define your own representations, like those above. Some representations
are self-contained documents; others support links to other resources.
You know the hypertext links from HTML, which use URIs to address
other resources. By clicking on a link, you cause the browser to send a
GET request to obtain a representation of that resource. This request is
sent to the host contained in the link’s URI.

Let’s look at a complete example of an HTTP request/response interaction
(Figure 4-4):

1. This diagram shows a GET request, as it may be sent by a web browser
or your own client program. The client requests a representation of the
resource’s “actual temperature as measured by the temperature sensor,”
whose URI consists of the host www.example.com and the request URI
/temperatures/actual.

2. The service at host www.example.com receives the request, measures
the temperature, and returns a response message. In this example, the
response indicates success (200 OK) and a plain-text representation that
is 8 bytes long. The representation is 23.5 deg.

Figure 4-4. HTTP request and response

http://www.example.com
http://www.example.com

34 Getting Started with the Internet of Things

Even the most complex web interactions consist of such message
exchanges. The Web includes several hundred million clients and several
hundred thousand servers with their resources, and it produces a torrent
of messages that carry resource representations. The technical term
for this architecture is representational state transfer, or REST. For more
information on REST, see RESTful Web Services by Leonard Richardson
and Sam Ruby (O’Reilly).

The focus of Getting Started with the Internet of Things is to show how
REST and common web standards can be used as the preferred way of
creating Internet of Things applications. Such applications are sometimes
called Web of Things applications, to emphasize the use of web standards
on top of the basic Internet protocols.

The Web of Things consists of RESTful web services that measure or
manipulate physical properties.

Thus, the term Web of Things focuses on the application layer and the
real-world “things” that are measured or manipulated. The term Internet
of Things focuses on the underlying network layers and the technical
means for measuring and manipulating the physical environment—i.e.,
sensors and actuators.

Push Versus Pull
There are four basic ways in which your device may communicate with
another computer on the Web:

1. Device is the client, pushing data to a server

2. Device is the client, pulling data from a server

3. Device is the server, providing data to clients

4. Device is the server, accepting data from clients

These patterns can be visualized as shown in Figure 4-5. A black arrow
indicates the direction of a request message and a dotted arrow indicates
the direction in which data flows, i.e., in which direction a resource
representation is sent.

4/The Internet of Things 35

Figure 4-5. Four basic web interaction patterns

In monitoring applications, a device produces data, i.e., measurements
from its attached sensors. For such applications, the interaction patterns
1 and 3 are suitable: data flows from the device to another computer; the
device is either client (1) or server (3).

In control applications, a device consumes data, i.e., commands from
a web browser or other client. For such applications, the interaction
patterns 2 and 4 are suitable: data flows to the device from another
computer; the device is either client (2) or server (4).

NOTE:� A web browser is a client that mainly pulls data from web servers
by sending GET requests to them. So you are probably most familiar with
interaction pattern 2 because this is the way web browsers work.

In Part II, I will focus on the device as client (i.e., on scenarios 1 and 2).
Since in general, a device cannot know in advance when you want to send
it a command (e.g., to set up an actuator or to reconfigure a sensor), it
makes sense to support devices as servers as well. Therefore, I will discuss
scenarios 3 and 4 in Part III. I believe that the potential of the Internet of
Things will only be realized if devices can become clients, servers, or both.

37

5/Pachube

Imagine that your Netduino Plus uses a sensor to take measurements
periodically. After each measurement, the Netduino Plus immediately
sends the sample to a server for storage and later retrieval. This server
effectively provides a feed resource to which you publish your data
samples. You may already know the concept of feeds from RSS feed
readers. A feed entry can be anything of interest, from political news to
blog entries to measurements, as in the case of your Netduino Plus. In
a way, a feed that contains measurements can be thought of as a news
source about the physical world.

For such an example, you need a suitable web service to which your
device can send its measurements. Conveniently, there’s a free service,
Pachube, which does exactly this. It provides web-based interfaces for
storing and for accessing feeds, as shown in Figure 5-1.

Figure 5-1. Example of a Pachube feed

38 Getting Started with the Internet of Things

NOTE:� The example in Figure 5-1 is a NASA feed. It is atypical insofar as
the source of its data is a multimillion dollar space probe—not exactly a
low-cost device. Nevertheless, you can use Pachube just as well with your
$60 Netduino Plus.

To use Pachube, you need a free account and a feed to which you can
send your own data. Follow these steps to create both the account and a
first feed:

1. Sign up for a free account at http://www.pachube.com/signup.

2. On the “my settings” page (http://www.pachube.com/users/
<your account name>/settings), you will find the private master
API key that you will need later on in your Pachube client programs.

NOTE:� Your Netduino Plus programs will send the API key along with
every HTTP request to Pachube. The API key tells Pachube that your
client program is authorized to add new measurements to your feeds.
You’ll see how to use this in Chapter 6.

Pachube also supports more advanced secure sharing keys as a more
secure and fine-grained mechanism where you can, for example, use
keys specifically for particular applications, limit the actions possible with
these keys, control how long they remain valid, etc.

3. Set up your first feed at http://www.pachube.com/feeds/new.

4. For the Feed type, click on “manual”.

5. For the Feed title, type in a suitable name, such as “My first feed”.

6. For the Feed tags, you could type in “gsiot” so that other readers of this
book can find it.

7. For the Exposure, click on “indoor”.

8. For the Disposition, click on “fixed”.

http://www.pachube.com/signup
http://www.pachube.com/feeds/new

5/Pachube 39

9. For the Domain, click on “physical”.

10. You may enter other information if you want, such as a location name and
the location itself (click on the Google map to define the location). If you
choose to provide a location, I suggest you pick a well-known public point
of interest near you rather than your actual home address.

11. Note the ID of this feed. It is part of the web page URI (circled in
Figure 5-2).

Figure 5-2. Editing the properties of a Pachube feed

NOTE:� A Pachube feed contains one or several data streams; for example,
a feed may contain one data stream for every sensor in a building. In the
simplest case, a feed has only one data stream—for the measurements of
one sensor. In our examples, we will use two data streams: one for voltage
values, the other for simple integer numbers.

40 Getting Started with the Internet of Things

12. Click on “+ Add a new datastream”. Enter “voltage” as the ID, enter
“Volt” in the Units field, and enter V in the Symbol field. In Type, select
“derived SI”, which means that this is a unit derived from some other
physical units that are considered more basic.

13. Click on “+ Add a new datastream” again. Enter “number” as the ID and
leave all other properties as they are.

14. Click on Save Feed.

15. Given your Pachube feed ID, look at the feed’s home page by typing in its
URI. For example, for the feed 256, use the URI http://www.pachube.com/
feeds/256.

Pachube supports a number of URIs for accessing a given feed or data
stream. Table 5-1 shows the most important URIs, using the feed ID 256
and the data stream ID 0 as examples.

Table 5-1. Most important URIs for accessing Pachube feeds

Pachube URI Description

http://www.pachube.com/feeds/256 HTML home page of feed 256.

http://api.pachube.com/v2/feeds/256.

json

JSON (http://www.json.org)

representation of feed 256,

providing maximum, minimum, and

current measurement values, plus

some metadata that describes the

feed.

It is also possible to request the data in

XML or CSV formats by using the .xml

or .csv suffixes respectively, instead

of .json.

http://api.pachube.com/v2/feeds/256/

datastreams/0.csv?duration=24hours&

interval=900

History of measurements in data

stream 0 of feed 256, represented

as comma-separated values. Can be

imported directly into a spreadsheet.

All measurements of the last 24 hours

are given, in 15-minute intervals. You

can vary the arguments to adjust the

time period and the minimum interval

between the points.

http://api.pachube.com/v2/feeds/256/

datastreams/0.png?duration=24hours&

interval=900

Same data as in the above example,

but represented as a diagram.

http://www.pachube.com/feeds/256
http://www.pachube.com/feeds/256
http://www.pachube.com/feeds/256
http://api.pachube.com/v2/feeds/256.json
http://api.pachube.com/v2/feeds/256.json
http://api.pachube.com/v2/feeds/256/datastreams/0.csv?duration=24hours&interval=900
http://api.pachube.com/v2/feeds/256/datastreams/0.csv?duration=24hours&interval=900
http://api.pachube.com/v2/feeds/256/datastreams/0.csv?duration=24hours&interval=900
http://api.pachube.com/v2/feeds/256/datastreams/0.png?duration=24hours&interval=900
http://api.pachube.com/v2/feeds/256/datastreams/0.png?duration=24hours&interval=900
http://api.pachube.com/v2/feeds/256/datastreams/0.png?duration=24hours&interval=900

5/Pachube 41

In Chapter 6, you will learn how to send data to your Pachube feed from a
program that runs on your Netduino Plus.

JSON

JSON, which stands for JavaScript Object Notation, is a textual
format for representing arbitrary data. In this respect, it is similar
to the often-used XML representation. JSON is popular for web
applications since its text is simpler and usually less verbose
than equivalent XML text. While JSON is part of the JavaScript
language, it is supported by libraries for practically all program-
ming languages today, and has thereby gained “a life of its own.”
Here is an example of JSON text:
{
 "recorded_at" : "20110323T13:29:37Z",
 "max_value" : 25.5,
 "min_value" : 0.0,
 "value" : 1.6
}

43

6/Hello Pachube

In this chapter, I will show a basic HTTP client, HelloPachube, that pushes
samples to Pachube, as shown in Figure 6-1.

Figure 6-1. Architecture of HelloPachube

HelloPachube runs on the Netduino Plus and sends measurements to the
Pachube web service by issuing HTTP PUT requests. The user, through
his web browser, sends HTTP GET requests to Pachube to retrieve feed
entries. The data flow originates in the device, goes up to Pachube, and
continues from there to the user.

Setting Up the Network
Configuration
Before you can run such a client, you need to make sure that your
Netduino Plus board has access to the Internet—i.e., it can send request
messages to any server visible on the Internet. I assume that your

44 Getting Started with the Internet of Things

Netduino Plus is connected to the Internet via a router and a cable or DSL
modem (Figure 6-2).1 This means that you have a local area network to
which both the board and your development PC are connected. During
development and debugging, the PC and Netduino Plus are directly
connected via a USB cable as well.

Figure 6-2. Connection of board to the Internet

Internet Addresses
A router typically implements the Dynamic Host Configuration
Protocol (DHCP). This protocol allows your development PC, your
Netduino Plus, and other devices to automatically obtain Internet
addresses (e.g., 192.168.0.3 for the PC, and 192.168.0.4 for the

1 Sometimes a cable modem already includes a router in the same box.

6/Hello Pachube 45

Netduino Plus). The Internet protocols rely on Internet addresses for
routing messages between clients and servers.

If your Netduino Plus obtains its Internet address automatically via DHCP,
it typically gets an Internet address in one of these reserved address
ranges:

192.168.xxx.xxx

172.16.xxx.xxx

10.xxx.xxx.xxx

where xxx lies between 0 and 255. Public Internet servers never use
these reserved addresses. They are unique only within a given local area
network, not worldwide like other Internet addresses. For example, there
are thousands of computers with the private address 192.168.1.100. This
is not a problem as long as your device is only a client, but it can be a
problem for devices used as servers, as we will see in Part III.

To implement such a multiplexing of Internet addresses, a router has
to perform network address translation (NAT). This hides the private
Internet addresses from the Internet by making it appear as though all
Internet traffic from the board or from the development PC originated
from the router. This provides a certain degree of security because a
program on the Internet cannot directly address—and therefore try to
connect to—a device hidden behind the router. In addition, it reduces
the number of Internet addresses that must be visible globally, which is
important because the common four-byte IPv4 Internet addresses will
basically be used up by the time this book comes out.

A client program can directly use an Internet address to connect to a
server on the Internet—e.g., the address 173.203.98.29 to connect to a
Pachube server. Since such Internet addresses are not very convenient,
you can alternatively use a domain name for addressing a host. In the
above example, the domain name is pachube.com. Domain names are
registered with the Internet’s domain name system (DNS). The domain
name system allows for looking up domain names, much in the same way
as a phone book is used for looking up names (except instead of finding
phone numbers, the domain name system returns Internet addresses). A
domain name lookup is simply another request over the Internet, e.g., to a
DNS server of your Internet service provider.

46 Getting Started with the Internet of Things

The MFDeploy Tool
Before you can use your Netduino Plus on the network, you need to check
its network settings and configure it if necessary. In particular, you should
make sure that DHCP is switched on and that the correct MAC address of
the board is set. The MAC address is a unique six-byte identifier, typically
written like this:2

3c8a4a000007

To check or modify the network configuration, use the tool MFDeploy,
which is provided as part of the Microsoft .NET Micro Framework SDK.
To find it, click Start➝All Programs➝Microsoft .Net Micro Framework
4.1➝Tools and run MFDeploy.exe. Another way to find it is to look in the
directory:

C:\Program Files\Microsoft .NET Micro Framework\v4.1\Tools\

MFDeploy.exe

(On a 64-bit operating system, the first folder will be Program Files (x86).)

Now, perform the following steps:

1. Start MFDeploy.exe. The dialog box .NET Micro Framework Deployment
Tool opens.

2. In the leftmost Device list box, change the selection from Serial to USB.

3. Plug your Netduino Plus USB cable into your development PC. In the
rightmost Device list box, the name NetduinoPlus_NetduinoPlus should
appear.

4. Click on the Ping button to make sure the device responds. As result, the
large text box should now show “Pinging… TinyCLR”.

5. In the Target menu, select Configuration➝Network. The Network
Configuration dialog box opens.

6. If it isn't checked already, click on the DHCP checkbox to enable auto-
matic configuration of most network parameters.

2 You will find the MAC address of your Netduino Plus on the sticker at the bottom of the board.

6/Hello Pachube 47

7. If it isn’t configured yet, enter your board’s MAC address. This is the only
parameter you need to provide. You can leave the DNS Primary Address
and the DNS Secondary Address at 0.0.0.0, as shown in Figure 6-3.

8. Click the Update button.

9. Reboot your Netduino Plus. It should now automatically obtain the miss-
ing network parameters from your router. To make sure that the Netduino
Plus reboots, I usually perform a complete power-off/power-on cycle by
briefly unplugging and reinserting the USB cable from the PC. After such
a power cycle, you have five seconds to deploy a new program; otherwise,
the most recently deployed program is restarted automatically.

Figure 6-3. Network Configuration in MFDeploy

To check whether the configuration works correctly, run the Hello Pachube
client program described next.

48 Getting Started with the Internet of Things

HelloPachube
Now that your Netduino Plus is ready to access the Internet, we can look at
a first version of a Pachube client. Its source code is given in Example 6-1.

Example 6-1. HelloPachube
using System;

using System.Threading;

using Gsiot.PachubeClient;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class HelloPachube

{

 public static void Main()

 {

 const string apiKey = "your Pachube API key";

 const string feedId = "your Pachube feed id";

 const int samplingPeriod = 20000; // 20 seconds

 const double maxVoltage = 3.3;

 const int maxAdcValue = 1023;

 var voltagePort = new AnalogInput(Pins.GPIO_PIN_A1);

 var lowPort = new OutputPort(Pins.GPIO_PIN_A0, false);

 var highPort = new OutputPort(Pins.GPIO_PIN_A2, true);

 while (true)

 {

 WaitUntilNextPeriod(samplingPeriod);

 int rawValue = voltagePort.Read();

 double value = (rawValue * maxVoltage) / maxAdcValue;

 string sample = "voltage," + value.ToString("f");

 Debug.Print("new message: " + sample);

 PachubeClient.Send(apiKey, feedId, sample);

 }

 }

6/Hello Pachube 49

 static void WaitUntilNextPeriod(int period)

 {

 long now = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond;

 var offset = (int)(now % period);

 int delay = period offset;

 Debug.Print("sleep for " + delay + " ms\r\n");

 Thread.Sleep(delay);

 }

}

To run the program, follow these steps:

1. Make sure that your Netduino Plus is connected to your Ethernet
router and that it is correctly configured for network access (see the
previous section).

2. If you haven’t done so already, download the Visual Studio project Gsiot.
PachubeClient from http://www.gsiot.info/download/, unzip it, and put
it into the Visual Studio 2010\Projects\ directory.

3. Create a new Visual Studio project (using the Netduino Plus template)
and name it HelloPachube. Replace the contents of Program.cs with the
code from Example 6-1.

4. You must replace the strings for apiKey and feedId so they match your
Pachube API key and feed ID.

5. Right-click on References in the Solution Explorer. Select Add➝
New Reference. In the Add Reference dialog box, click on the Browse tab.
In the directory hierarchy, go up two steps to directory Project. In the
directory Gsiot.PachubeClient, open the subdirectory Gsiot.Pachube-
Client (yes, the same name again). In this directory, open the bin sub-
directory. From there, open the Release subdirectory. In this subdirectory,
select the Gsiot.PachubeClient.dll file. Click the OK button. You have now
added the assembly Projects\Gsiot.PachubeClient\Gsiot.PachubeClient\
bin\Release\Gsiot.PachubeClient.dll.

Now you’re ready to test it: build the project and deploy it to your Netduino
Plus, as described in the section “Deploying to the Device” in Chapter 1.

http://www.gsiot.info/download/

50 Getting Started with the Internet of Things

NOTE:� In the simplest case, one C# namespace is translated into exactly
one .NET assembly (stored in a DLL), which is the binary form of .NET code.
For the .NET Micro Framework, a built-in postprocessor tool translates .dll
assembly files into .pe files, which are a more compact representation of
the same code. These are the files that get deployed to the Netduino Plus.

Viewing the Results
After HelloPachube has started, you’ll see something like the following in
Visual Studio’s Output window:

sleep for 19069 ms

The thread ‘<No Name>’ (0x3) has exited with code 0 (0x0).

new message: voltage,0.06

time: 01/01/2009 02:16:40

memory available: 20136

Status code: 200

sleep for 19371 ms

The thread ‘<No Name>’ (0x4) has exited with code 0 (0x0).

new message: voltage,0.06

time: 01/01/2009 02:17:00

memory available: 20136

Status code: 200

sleep for 19210 ms

The thread ‘<No Name>’ (0x5) has exited with code 0 (0x0).

new message: voltage,1.52

time: 01/01/2009 02:17:20

memory available: 20136

Status code: 200

sleep for 19369 ms

The thread ‘<No Name>’ (0x6) has exited with code 0 (0x0).…

Because a Netduino Plus has no battery-backed real-time clock, its clock
is started anew whenever you reboot the device. Upon rebooting, the
initial time is the start of January 1, 2009.

Twenty seconds pass between two consecutive samples; roughly 19 of
them are spent sleeping. You can see that the samples were successfully

6/Hello Pachube 51

sent to Pachube because the returned status code is 200, which is the
OK status code of HTTP.

To verify that the samples have indeed arrived at Pachube, type the fol-
lowing URI into your web browser, replacing your Pachube feed id with
your feed ID:

http://www.pachube.com/feeds/your Pachube feed id

You should now see that the status of your feed is marked as currently:
live. This means that the most recent sample is not older than 15 minutes;
otherwise, the status currently: frozen would be shown.

NOTE:� If you don’t see this output, make sure that the Netduino Plus
is connected via Ethernet cable to a router, and via USB cable to your
development PC. Use MFDeploy to check whether DHCP is enabled and
the MAC address is set. Check whether the example correctly builds and
whether its properties are set up to deploy to the device via USB.

To see a graphical representation of the most recent samples, view the
feed’s web page, look at the graph there, and click the label “last hour”.

How It Works
The initialization of the HelloPachube Main method starts with two
Pachube-related constants: your Pachube API key (apiKey) and the ID of
the feed to which you want to publish your samples (feedId). After that,
there are a few other constants and variables that are set:

 » Specifying how often to send updates

First comes the timing-related constant samplingPeriod. The goal for
the example is to sample and publish a new observation at regular inter-
vals, namely once every samplingPeriod, which is given in milliseconds
(20,000 milliseconds is 20 seconds).

To publish a sample, send a web request and wait for its response. The
time for such a complete round-trip consists of the time it takes for the
request to travel to the server, for the server to create a response, and
for the response to travel back to the client.

52 Getting Started with the Internet of Things

NOTE:� The speed of the round-trip depends mainly on five factors: the
distance between client and server, the current traffic on the Internet,
the performance of the server, the current load of the server, and the
amount of data transferred. Typical numbers range from about 50 milli-
seconds for round-trips to servers close to the client, to well over 1,000
milliseconds for round-trips across continents or to overtaxed servers
(even for short messages). Since they depend on the Internet’s current
traffic, the times for subsequent round-trips from the same client to the
same server can vary.

If you use a slower connection than Ethernet, this can also affect round-
trip times. For example, if you dropped a Netduino out in the woods with a
cheap 2G GSM module, it would probably spend most of the 20 seconds
doing the round-trip.

 » Setting up the voltage reader

The voltagePort object and related variables and constants are set up,
as you saw in Chapter 3. They are used for reading voltage values from
an attached potentiometer.

After the variables and constants are initialized, a while loop controls
what happens from then on. This main loop will run until you turn off the
Netduino Plus.

The main loop does basically three things:

 » Sleeps until the next sample is due, using the helper method WaitUntil
NextPeriod, which I will discuss in the next section.

 » Creates the sample by reading the voltage port.

 » Sends the value to Pachube using PachubeClient.Send. This method
takes the Pachube API key, your feed ID, plus the sample data, and
sends them to Pachube in a suitable PUT request message. It then
receives the response message and prints the response’s status code
to the debug console.

6/Hello Pachube 53

To use the Gsiot.PachubeClient for sending requests to Pachube in a
“fire and forget” manner, you don’t need to know more than this. However,
if you want to know how the library actually works, how you could modify
it, or how you could create a similar library, you need to understand more
about how to send HTTP request messages and receive HTTP response
messages. This is the topic of Chapter 7.

The WaitUntilNextPeriod Method
In this example, samples should be taken at highly regular intervals. To do
this, you can use the WaitUntilNextPeriod helper method, which you can
reuse in similar programs later on. The following text explains the method
in some detail. You can skip the explanation if you just want to go ahead
and use the method.

After each sample is sent, the program needs to sleep until the next
period starts. How can this delay be calculated with precision when we
don’t know in advance exactly how long it will take to send a request and
receive its response?

This example starts a new period every 20 seconds. (Free Pachube
accounts don’t allow updates more often than every 12 seconds.)
Assume the following:

 » You last took a reading at 09:32:40.

 » After the time it took you to send a message and receive the response,
it is now 09:32:46.

 » You want to send the next message (and start a new period) at
09:33:00.

The delay then can be calculated as the difference between the length of
the period (20 seconds) and the offset, where the offset indicates how
far you are into the current period. The offset is calculated as the current
time (i.e., now) modulo the period. In the example shown in Figure 6-4,
the offset is six seconds; therefore, the delay is 14 seconds.

54 Getting Started with the Internet of Things

Figure 6-4. Calculating the delay until the start of the next period

The property DateTime.Now.Ticks gives the current time3 in ticks, which in
.NET is a time at a resolution of 100 nanoseconds. Dividing ticks by 10,000
(TimeSpan.TicksPerMillisecond) yields the same time in milliseconds,
albeit less precisely. This requires a 64-bit long integer type. To calculate
the modulus, use the % operator of C#. Because the result of a modulus
operation is always smaller than the operand, in this case period, it can be
safely cast to a 32-bit integer using the (int) cast.

NOTE:� The modulo operator, %, computes the remainder of a division.
For example, the division of 7 by 2 yields 3. Computing “backwards” by
multiplying the result 3 by the divisor 2, we get 6. The difference between
6 and the dividend (7) is the remainder—in this case, 1.

WaitUntilNextPeriod ensures that sampling starts at highly regular
intervals. It is robust even in cases where an iteration takes longer than
its period allows for. This might occur if something unexpected happens,
such as an exception that takes an inordinately long time to be sent to the
debugger. This may result in one or several periods being skipped—but
the next one starts at a correct period boundary anyway.

3 On a Netduino, this is the time since the device has booted. It has no battery-backed real-time clock that
keeps track of time when it isn’t powered.

6/Hello Pachube 55

Casting Values

C# provides several integer types, which differ in the number ranges
that they encompass and in the bits used for storing them. The larger
the number range, the more bits are needed. The int type supports
numbers in the range from –2,147,483,648 to 2,147,483,647 and
requires 32 bits (four bytes). The long type supports numbers in the
range from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
and requires 64 bits (eight bytes). Any int variable i fits in a long
variable l, so the assignment l = i always works. However, the other
direction does not always work: most long numbers do not fit in an int
variable. Therefore, C# requires using a type cast, i = (int)l, to make it
obvious that this danger exists here. If l is too large when it is assigned
to i, i will be assigned garbage. So when the compiler requires such a
type cast, it is a good idea to think about whether you can really be sure
that the current value of l fits into i.

What Netduino Said to Pachube
To see that there is no magic involved in HTTP requests, let’s look at the
data actually transferred to the Pachube server during a request:

PUT /v2/feeds/fid.csv HTTP/1.1\r\n

Host: api.pachube.com\r\n

XPachubeApiKey: your Pachube API key is here\r\n

ContentType: text/csv\r\n

ContentLength: 12\r\n

\r\n

voltage,1.52

This is the text sent over the Internet to Pachube! At least that’s what is
sent if the measured voltage is 1.52.

An HTTP request consists of one request line, followed by a number
of header lines, followed by an empty line, and optionally followed by a
message body (i.e., the message’s content).

The request line starts with the HTTP method: PUT, GET, etc. After a
blank, the request URI indicates the resource to be accessed. After
another blank, the HTTP version is given, which is usually version 1.1
these days. The request line is terminated by a carriage-return byte
followed by a newline byte.

56 Getting Started with the Internet of Things

NOTE:� \r\n stands for the two bytes CR and LF (carriage return and line
feed, respectively). If you were to look at the actual text of the request,
they would not be visible.

HTTP defines a number of headers, both for requests and responses. For
requests, the Host header is particularly important because it defines to
which computer the request is sent—in this case, to api.pachube.com. If you
take this host and the request URI in the request line (here, it’s /v2/feeds/
fid.csv), you can construct the absolute URI of the resource accessed by this
PUT request:

http://api.pachube.com/v2/feeds/fid.csv

Unlike the URIs that we have seen in Chapter 5, which have been URIs
for consumers of Pachube feeds, this is a URI for producers that send
measurements to Pachube.

Different applications may use very different sets of headers. For our
purposes, the most important headers are Host (for requests only) and
ContentLength and ContentType (for both requests and responses).
Applications may define their own headers, like the XPachubeApiKey
above. The order of HTTP headers is not significant, as every possible
ordering is correct.

The message body consists of exactly the 12 bytes voltage,1.52 here,
has no terminating characters, and is separated from the last header by
an empty line.

NOTE:� To find out what exactly your client is sending, you may use a
simple test server (such a server is given in Appendix A). To make Hello
Pachube send its requests to a test server running on your PC, change the
constant baseUri in Gsiot.PachubeClient so that it points to your server.

http://api.pachube.com/v2/feeds/fid.csv

6/Hello Pachube 57

What Pachube Said to Netduino
An HTTP response from Pachube may look like this:

HTTP/1.1 200 OK\r\n

Server: nginx/0.7.65\r\n

Date: Mon, 07 Feb 2011 13:36:55 GMT\r\n

ContentType: text/plain; charset=utf8\r\n

Connection: keepalive\r\n

SetCookie: _pachube_app_session=BAh7BjoPc2Vzc2lvbl9…;\r\n

CacheControl: maxage=0\r\n

ContentLength: 1\r\n

Age: 0\r\n

Vary: AcceptEncoding\r\n

In this response, the first line, known as the status line, is the most
important. HTTP defines a number of status codes; status code 200
means that the request was handled successfully. (The most important
status codes are given in Chapter 10.) The status code is located
between the HTTP version and a plain-text version of the status code.
The text version of the status code is optional—you neither need to
generate nor interpret it. It is merely a convenience for human readers
of HTTP interactions.

Responses may contain many headers, as you can see from this example.
Fortunately, you can usually ignore almost all of them. Nevertheless, let’s
take a look at the headers in the response:

 » Server

Indicates the web server software that Pachube uses.

 » Date

Indicates the time when Pachube has sent the response.

 » ContentType: text/plain; charset=utf8

Indicates the format of the Pachube response. In this case, it is plain text
encoded in UTF8 (the most common encoding of Unicode characters).

58 Getting Started with the Internet of Things

NOTE:� Actually, with many web services, the response to a successful
PUT request has an empty message body. The server is allowed to return
a response body, though.

 » Connection: keepalive

Is a relic from HTTP 1.0 (an early version of the HTTP specification).
Originally, a new TCP/IP connection was opened for every request and
then closed after the request. Because opening a connection incurs a
considerable overhead, it is better to keep a connection open if requests
are sent to the same server every couple of seconds. The keepalive
value was added to indicate this desire. It is not relevant anymore be-
cause most servers and clients today support HTTP 1.1, where
connections are kept alive by default. However, if for any reason a client
or a server wants to close a connection after a message exchange, it can
signal this to the other party by including the Connection: close header.

NOTE:� A connection may also be closed even while request or response
messages are being exchanged—e.g., if someone tripped over your
Ethernet cable and it was yanked out. This means that closed
connections must be reopened if necessary, lost messages may have
to be re-sent, and clients and servers must be programmed in a way
that they do not misbehave—even if a connection is closed.

 » SetCookie

Indicates a cookie (some text that the server sends a client to store, and
which the client will send to the server in future requests) with a session
identifier. You can ignore cookies because they are not needed for our
examples.

 » CacheControl: maxage=0

Is intended for managing caches between client and server. It indicates
that this response must not be cached.

6/Hello Pachube 59

 » ContentLength: 1

Indicates that the response message body consists of one byte.

 » Age: 0

Is an estimate (in seconds) of the time it has taken to produce and
transmit the response. It is a header produced by some intermediary
cache between server and client. You can ignore it.

 » Vary: AcceptEncoding

Tells the client that it may send an AcceptEncoding header along
with GET requests, in order to ask for different representations of the
resource. As we have seen in Chapter 5, Pachube supports several
formats for samples: csv, json, png, etc. However, you won’t need the
AcceptEncoding header in the examples of this book. Instead, you can
pass the desired format as part of the URI, e.g., http://api.pachube.
com/v2/feeds/256.csv.

The message body, after the last CR LF (empty line), consists of exactly
one blank character. It seems a bit strange that it is not completely empty
in the case of Pachube, but you can usually ignore the message body of a
PUT response anyway.

HTTP requests and responses are not complicated. Any device capable of
supporting TCP/IP is able to send data to Pachube or to similar services.

http://api.pachube.com/v2/feeds/256.csv
http://api.pachube.com/v2/feeds/256.csv

61

7/Sending HTTP
Requests—The Simple
Way

HelloPachube in Chapter 6 is so simple because the Gsiot.Pachube Client
library is built for the single purpose of pushing samples to Pachube. It
completely hides the .NET classes needed to implement an HTTP client. If
you want to use Pachube in a different way, or if you want to write clients for
other services, you can use the more general HttpWebRequest and Http
WebResponse classes, which are located in the System.Net namespace.

SimplePutRequest
Example 7-1 shows how these classes can be used to send a single sample
to Pachube.

Example 7-1. SimplePutRequest
using System.IO;

using System.Net;

using System.Text;

using Microsoft.SPOT;

public class SimplePutRequest

{

 public static void Main()

 {

 const string apiKey = "your Pachube API key";

 const string feedId = "your Pachube feed id";

 // this is the "sample" we want to send to Pachube

 var sample = "number,42";

 // convert sample to byte array

62 Getting Started with the Internet of Things

 byte[] buffer = Encoding.UTF8.GetBytes(sample);

 // produce request

 var requestUri =

 "http://api.pachube.com/v2/feeds/" + feedId + ".csv";

 using (var request = (HttpWebRequest)WebRequest.

 Create(requestUri))

 {

 request.Method = "PUT";

 // headers

 request.ContentType = "text/csv";

 request.ContentLength = buffer.Length;

 request.Headers.Add("XPachubeApiKey", apiKey);

 // content

 Stream s = request.GetRequestStream();

 s.Write(buffer, 0, buffer.Length);

 // send request and receive response

 using (var response = (HttpWebResponse)request.

 GetResponse())

 {

 // consume response

 Debug.Print("Status code: " + response.StatusCode);

 }

 }

 }

}

To run this example:

1. Make sure your Netduino Plus is connected to your Ethernet router, and
that it is correctly configured for network access (see Chapter 6).

2. Create a new Visual Studio project (using the Netduino Plus template)
and name it SimplePutRequest. Replace the contents of Program.cs with
the code from Example 7-1.

7/Sending HTTP Requests—The Simple Way 63

3. You must replace the strings for apiKey and feedId so that they match
your Pachube API key and feed ID.

4. Right-click on References in the Solution Explorer. Select Add➝New Ref-
erence. In the Add Reference dialog box, click on the .NET tab (if it is not
already selected). Locate System.Http in the list and click OK to add this
assembly to your project.

C# “using” Statements

Both HttpWebRequest and HttpWebResponse implement the
IDisposable interface, which means that they provide Dispose
methods. Instances of such types should be disposed after they
have been created and used by calling their Dispose methods.
(If you fail to create the object for some reason, Dispose cannot
and need not be called.)

To prevent you from having to deal with this on your own, C# provides
the using statement, which automatically calls Dispose at the end of
the code block, even if an exception occurred:

using (var request = (HttpWebRequest)WebRequest.

 Create(requestUri))
{
 // set up request line parameters, headers, and content
 using (var response =
 (HttpWebResponse)request.GetResponse())
 {
 // consume response
 }
}

Now, you’re ready to test it: build the project and deploy it to your Netduino
Plus, as described in the section “Deploying to the Device” in Chapter 1.

A dummy “sample” is then defined and converted from a string to a byte
array with a call to Encoding.UTF8.GetBytes. (When you need to convert
in the other direction, use Encoding.UTF8.GetChars to obtain a character
array, and then call new string(charArray).)

When you look at your Pachube feed web page, you will notice that at the
bottom of the page, data stream number has now appeared below data
stream voltage.

64 Getting Started with the Internet of Things

Making Web Requests
SimplePutRequest uses three classes from Microsoft’s System.Net
namespace: WebRequest, HttpWebRequest, and HttpWebResponse:

 » WebRequest

A factory class (a class that generates other classes) whose method
WebRequest.Create(requestUriString) creates an object that
represents a request for the protocol indicated by the argument
requestUriString. It issues a DNS lookup to find out the Internet
address of the domain name given in the requestUriString.
Alternatively, it accepts URIs that directly contain Internet addresses
instead of domain names.

 » HttpWebRequest

A complete HTTP request with its headers and body.

 » HttpWebResponse

A complete HTTP response with its headers and body.

These classes are implemented in the System.Http assembly, providing
support for clients of web services. When used, you need to reference
them in your Visual Studio project.

NOTE:� System.Http is a large assembly, taking up about two-thirds of the
Flash memory available for your application code (on a Netduino Plus
with the standard firmware), or roughly 46 KB.

The HttpWebRequest Class
The method WebRequest.Create takes a URI string as an argument and
creates a new object of type WebRequest. If the URI starts with http, the
object it returns is a subclass of WebRequest, namely an HttpWebRequest.
This means that a type cast can be used:

var request = (HttpWebRequest)WebRequest.Create(requestUri);

7/Sending HTTP Requests—The Simple Way 65

An HttpWebRequest object has several properties that correspond to
elements of an HTTP request line or to some important HTTP headers.
You need to set the following ones before you make the request:

 » The Method property (in the example above, request.Method) represents
the HTTP method; typically, this is GET, PUT (as in Example 7-1), POST, or
DELETE. This value will be sent as part of the HTTP request line, which is
the first line of an HTTP request.

 » You must initialize the ContentLength property with the length of the
request message body in bytes (not counting the request line and the
request headers). This value will be sent as the ContentLength header
of the request message.

 » You must initialize the ContentType property with a string indicating
the type of content you’ll be sending. In Example 7-1, this was text/csv,
which indicates you’ll be sending comma-separated values. This value
will be sent as the ContentType header of the request message.

 » Pachube requires that you authorize new samples by providing the
XPachubeApiKey header with your API key. Without a valid API key,
Pachube does not accept new samples from a client. Because this is a
nonstandard HTTP header, the method Headers.Add is used for adding
it to the request object.

You also need to write the HTTP body to a byte stream, which has been
created along with the request object. You’ll obtain it by calling the
request’s GetRequestStream method. After writing the entire contents of
the byte buffer that contains your sample into this stream, you need to close
the stream. Fortunately, the using statement does this automatically.

NOTE:� As for the connection management, it happens behind the
scenes—i.e., HttpWebRequest.GetResponse automatically reuses an
open connection to the host if one is available; otherwise, it creates
a new connection. It keeps this connection open unless you have set
request.KeepAlive to false, which sets the Connection header to close
instead of the (redundant) keepalive. If the response message contains
a Connection: close header, the connection is closed as well.

66 Getting Started with the Internet of Things

Sending a request and receiving its response is combined in the request’s
GetResponse method:

var response = (HttpWebResponse)request.GetResponse();

The HttpWebResponse Class
An object of type HttpWebResponse has several properties that correspond
to elements of an HTTP status line or to some important HTTP headers,
which are represented as properties of the object:

 » StatusCode

A numerical representation of the result.

 » StatusDescription

A textual representation of the result. It can be ignored; programs
should rely on the StatusCode.

 » ContentLength

The length of the response message body in bytes.

 » ContentType

The type of the response message body.

 » Headers

A collection with the response headers.

To get access to the response message body itself, you must call the
method GetResponseStream, which returns a stream object that is used
to read the contents of the response message body.

One Read operation on the byte stream may or may not yield all of the
HTTP content, depending on how the network protocol stack is imple-
mented, as well as the timing of data packets on the Internet. To make
sure the complete body is received, Read must be called in a loop as often
as necessary until there is nothing left to read (see Example 7-2).

7/Sending HTTP Requests—The Simple Way 67

Example 7-2. Reading from a stream
var buffer = new byte[response.ContentLength];

Stream stream = response.GetResponseStream();

int toRead = buffer.Length;

while (toRead > 0)

{

 // already read: buffer.Length toRead

 int read = stream.Read(buffer, buffer.Length toRead, toRead);

 toRead = toRead read;

}

Before the loop, create a byte buffer with the exact length of the message
body. So when the loop is entered, the entire buffer length still remains to
be read (toRead). In every iteration of the loop, one or more bytes are read
(read), and therefore the number of bytes left to read is reduced accord-
ingly, until it reaches zero.

To demonstrate how more information from a response object could be
accessed, Example 7-3 shows how to reconstruct the HTTP message and
print it out to the debug console.

Example 7-3. SimpleGetRequest
using System.IO;

using System.Net;

using System.Text;

using Microsoft.SPOT;

public class SimpleGetRequest

{

 public static void Main()

 {

 const string apiKey = "your Pachube API key";

 const string feedId = "your Pachube feed id";

 // produce request

 var requestUri =

 "http://api.pachube.com/v2/feeds/" + feedId + ".csv";

 using (var request = (HttpWebRequest)WebRequest.

 Create(requestUri))

 {

 request.Method = "GET";

68 Getting Started with the Internet of Things

 // headers

 request.Headers.Add("XPachubeApiKey", apiKey);

 // send request and receive response

 using (var response = (HttpWebResponse)request.

 GetResponse())

 {

 // consume response

 HandleResponse(response);

 }

 }

 }

 public static void HandleResponse(HttpWebResponse response)

 {

 // response status line

 Debug.Print("HTTP/" + response.ProtocolVersion + " " +

 response.StatusCode + " " +

 response.StatusDescription);

 // response headers

 string[] headers = response.Headers.AllKeys;

 foreach (string name in headers)

 {

 Debug.Print(name + ": " + response.Headers[name]);

 }

 // response body

 var buffer = new byte[response.ContentLength];

 Stream stream = response.GetResponseStream();

 int toRead = buffer.Length;

 while (toRead > 0)

 {

 // already read: buffer.Length toRead

 int read = stream.Read(buffer, buffer.Length toRead,

 toRead);

 toRead = toRead read;

 }

 char[] chars = Encoding.UTF8.GetChars(buffer);

 Debug.Print(new string(chars));

 }

}

7/Sending HTTP Requests—The Simple Way 69

This example sends a GET request that fetches the most recent samples of
all data streams of the given feed. The output written to the debug console—
which is a reconstruction of the received HTTP response—may look like this:

HTTP/1.1 200 OK

Date: Thu, 24 Mar 2011 14:28:07 GMT

ContentType: text/plain; charset=utf8

Connection: keepalive

LastModified: Thu, 24 Mar 2011 12:56:58 GMT

ContentLength: 67

Age: 0

Vary: AcceptEncoding

voltage,20110324T12:56:58.990932Z,0.00

number,20110323T16:03:03.461085Z,42

Note that a timestamp was added between the data stream ID and the
sample’s value. This is the time when the Pachube service received the
sample.

71

8/Sending HTTP
Requests—The
Efficient Way

While the HttpWebRequest and HttpWebResponse classes are relatively
convenient to use, they gobble up a large part of the available Flash and
RAM on a Netduino Plus. Because they are built on top of the so-called
Socket API, it can make sense to use the Socket API directly instead. This
is more work, but it can reduce the memory footprint of an application
considerably.

Moreover, the main message of this book is that HTTP is not black magic
and requires neither high-powered computers nor huge, complex web
frameworks. Using the Socket API makes that obvious, because you see
much more of what really goes on than if you use only higher-level APIs.
For this reason, I will show an alternative to SimplePutRequest called
EfficientPutRequest—which is efficient mainly in the sense that it has a
small memory footprint.

EfficientPutRequest
To send a sample to Pachube, you can use the code in Example 8-1.

Example 8-1. EfficientPutRequest
using System.Net;

using System.Net.Sockets;

using System.Text;

using Microsoft.SPOT;

public class EfficientPutRequest

72 Getting Started with the Internet of Things

{

 public static void Main()

 {

 const string apiKey = "your Pachube API key";

 const string feedId = "your Pachube feed id";

 // this is the "sample" we want to send to Pachube

 var sample = "number,43";

 // convert sample to byte array

 byte[] contentBuffer = Encoding.UTF8.GetBytes(sample);

 // produce request

 using (Socket connection = Connect("api.pachube.com", 5000))

 {

 SendRequest(connection, apiKey, feedId, sample);

 }

 }

 static Socket Connect(string host, int timeout)

 {

 // look up host’s domain name to find IP address(es)

 IPHostEntry hostEntry = Dns.GetHostEntry(host);

 // extract a returned address

 IPAddress hostAddress = hostEntry.AddressList[0];

 IPEndPoint remoteEndPoint = new IPEndPoint(hostAddress, 80);

 // connect!

 Debug.Print("connect...");

 var connection = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

 connection.Connect(remoteEndPoint);

 connection.SetSocketOption(SocketOptionLevel.Tcp,

 SocketOptionName.NoDelay, true);

 connection.SendTimeout = timeout;

 return connection;

 }

 static void SendRequest(Socket s, string apiKey, string feedId,

 string content)

 {

 byte[] contentBuffer = Encoding.UTF8.GetBytes(content);

 const string CRLF = "\r\n";

8/Sending HTTP Requests—The Efficient Way 73

 var requestLine =

 "PUT /v2/feeds/" + feedId + ".csv HTTP/1.1" + CRLF;

 byte[] requestLineBuffer = Encoding.UTF8.

 GetBytes(requestLine);

 var headers =

 "Host: api.pachube.com" + CRLF +

 "XPachubeApiKey: " + apiKey + CRLF +

 "ContentType: text/csv" + CRLF +

 "ContentLength: " + contentBuffer.Length + CRLF +

 CRLF;

 byte[] headersBuffer = Encoding.UTF8.GetBytes(headers);

 s.Send(requestLineBuffer);

 s.Send(headersBuffer);

 s.Send(contentBuffer);

 }

}

This example starts in the same way as SimplePutRequest (Example 7-1)
from Chapter 7—with the two constants apiKey and feedId, which you must
set to your API key and feed ID. Next, it opens a connection using the helper
method Connect, and then it uses the helper method SendRequest to create
the HTTP message and send it over the connection.

The Connect Method
In the Socket API, a connection is represented as an instance of class
Socket. When you create a socket with new Socket(), you pass several
arguments required for the TCP/IP protocol. Then, you call the socket’s
Connect method with an IPEndPoint as an argument. This endpoint
indicates the Internet address of Pachube and the port (80, which is the
default port used by web servers) to which you want to send the request.

To get Pachube’s Internet address, you first need to perform a DNS
lookup, which is done in the Dns.GetHostEntry method. A timeout is set to
make sure that the program does not get stuck waiting (blocking) forever,
even if the network connection to Pachube, or Pachube itself, goes down
for some reason.

Either the response arrives before this timeout elapses (great!), or the
program continues without waiting any longer for the response (not great,
but it’s better than waiting forever).

74 Getting Started with the Internet of Things

The SendRequest Method
A socket represents a two-way connection between client and server. The
server waits until it receives a request message from the client. An HTTP
request message consists of a request line, one or more header lines, an
empty line, and then the optional message body (i.e., the actual content).
Each line is terminated by a carriage return, followed by a line feed. For
an example request, see the section “What Netduino Said to Pachube” in
Chapter 6.

The request line contains the HTTP method, in this case a PUT, plus
the request URI and the HTTP version (HTTP/1.1). For Pachube, new
measurements are sent to the URI http://api.pachube.com/v2/feeds/
feedId.csv. Only the relative path /v2/feeds/feedId.csv is used in the
request line. It is spliced together out of its individual parts, of which the
feedId is specific to your application.

NOTE:� If your program constructs URIs in this fashion, make sure that
it is easy to find all places in the program where you do this. Otherwise,
maintenance can become very cumbersome—e.g., if the server’s resource
design changes, or if the client should be modified for an entirely different
server.

The host part of the URI is given in the Host header. The content type
and length (in bytes) are given in the ContentType and ContentLength
headers, respectively. You must also provide the Pachube-specific X
PachubeApiKey header, since the API key is used to make sure that you
are authorized to send new samples to Pachube.

NOTE:� Well, relatively sure, since the API key is sent in plain text over the
network, making it available to snoopers. If you think your API key has
been compromised, you can regenerate it by visiting the Pachube web-
site, going to “my settings”, and clicking Regenerate API Key. But if you do
this, you’ll have to modify all your existing programs to use the new API
key.

Next, SendRequest converts the three parts of the request into byte ar-
rays and sends them to Pachube over the socket.

http://api.pachube.com/v2/feeds/feedId.csv
http://api.pachube.com/v2/feeds/feedId.csv

8/Sending HTTP Requests—The Efficient Way 75

Note that you now have a very good idea about what exactly goes over
the wire. There is no longer a “magic” API that somehow produces or
consumes the raw bytes. This is good to know, even if you choose to use
a higher-level API in most cases. And more important, you’ve saved some
precious memory on your Netduino Plus.

How Can I Get the Response from Pachube?
Unlike SimplePutRequest, EfficientPutRequest ignores the response
message coming back from Pachube; it operates purely in “fire and
forget” mode. It is quite cumbersome to interpret an HTTP response
message when using the Socket API. The reason is that when you start
reading the bytes of the response message, it is not immediately clear
where the message body starts, how long the message body is, or where
exactly the information about the message body’s length can be found.

It is clear, however, where the three bytes of the status code can be found:

HTTP/1.1 200 OK\r\n

Given this information, you could add a method ReceiveResponse, as
given in Example 8-2.

Example 8-2. ReceiveResponse
 static void ReceiveResponse(Socket s)

 {

 // status code is at positions 9 to 11, e.g.,

 // "HTTP/1.1 200..."

 var buffer = new byte[12];

 var i = 0;

 while (i != 12)

 {

 int read = s.Receive(buffer, i, 1, SocketFlags.None);

 i = i + 1;

 }

 const int zero = (int)’0’;

 int statusCode =

 100 * (buffer[9] zero) +

 10 * (buffer[10] zero) +

 (buffer[11] zero);

 Debug.Print("Response status code = " + statusCode);

 }

76 Getting Started with the Internet of Things

This method reads exactly 12 bytes from the Pachube connection and
then converts the last three bytes to an integer value. This is the status
code value.

After sending the request, the response can now be received in this way
within the Main method (the added line is shown in bold):

using (Socket connection = Connect("api.pachube.com", 5000))

{

 SendRequest(connection, apiKey, feedId, sample);

 ReceiveResponse(connection);

}

Unfortunately, it isn’t that simple. When you try out this version of the
client, you will get status code 200 (OK) for the first request. But the
status codes for later requests will be nonsense. Try this out using the
following modification:

// produce request

using (Socket connection = Connect("api.pachube.com", 5000))

{

 Debug.Print("sending first request");

 SendRequest(connection, apiKey, feedId, sample);

 ReceiveResponse(connection);

 Debug.Print("sending second request");

 SendRequest(connection, apiKey, feedId, sample);

 ReceiveResponse(connection);

}

The reason why the second response appears as garbage is that you have
read (i.e., consumed) only the first 12 bytes of the first response. Remaining
bytes of the status line, the headers, and the body will wait patiently until
the client sends the second request and then calls ReceiveResponse again.
Instead of receiving the status code for the second request, the client reads
some garbage from the response to the first request.

To get rid of the old response, you would need to know precisely how long
the response is and consume (receive) all remaining bytes—even if you are
not interested in them. But since you don’t know how long the response
is, you’ll have to resort to a brute force solution: close the connection after
every request instead of keeping it open. In some cases, this approach will
be sufficient; in others, you might prefer the simpler HttpWebRequest API
as shown in Chapter 7.

77

9/Hello Pachube
(Sockets Version)

In this chapter, I will present a version of a complete Pachube client that
uses the Socket API. It demonstrates that this low-level API is a viable
alternative, especially for “fire and forget” requests.

PachubeClient
HelloPachubeSockets (Example 9-1) performs some initializations in its
Main method, enters an endless loop in which it waits until it is time for
the next measurement, performs the measurement, and then sends the
result to Pachube. This is repeated every 20 seconds like in the original
HelloPachube program.

Example 9-1. HelloPachubeSockets
using System;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class HelloPachubeSockets

{

 public static void Main()

 {

 const string apiKey = "your Pachube API key";

 const string feedId = "your Pachube feed id";

 const int samplingPeriod = 20000; // 20 seconds

 const double maxVoltage = 3.3;

78 Getting Started with the Internet of Things

 const int maxAdcValue = 1023;

 var voltagePort = new AnalogInput(Pins.GPIO_PIN_A1);

 var lowPort = new OutputPort(Pins.GPIO_PIN_A0, false);

 var highPort = new OutputPort(Pins.GPIO_PIN_A2, true);

 Socket connection = null;

 while (true) // main loop

 {

 WaitUntilNextPeriod(samplingPeriod);

 Debug.Print("time: " + DateTime.Now);

 Debug.Print("memory available: " + Debug.GC(true));

 if (connection == null) // create connection

 {

 try

 {

 connection = Connect("api.pachube.com",

 samplingPeriod / 2);

 }

 catch

 {

 Debug.Print("connection error");

 }

 }

 if (connection != null)

 {

 try

 {

 int rawValue = voltagePort.Read();

 double value = (rawValue * maxVoltage) /

 maxAdcValue;

 string sample = "voltage," + value.ToString("f");

 Debug.Print("new message: " + sample);

 SendRequest(connection, apiKey, feedId, sample);

 }

 catch (SocketException)

9/Hello Pachube (Sockets Version) 79

 {

 connection.Close();

 connection = null;

 }

 }

 }

 }

 static Socket Connect(string host, int timeout)

 {

 // look up host’s domain name to find IP address(es)

 IPHostEntry hostEntry = Dns.GetHostEntry(host);

 // extract a returned address

 IPAddress hostAddress = hostEntry.AddressList[0];

 IPEndPoint remoteEndPoint = new IPEndPoint(hostAddress, 80);

 // connect!

 Debug.Print("connect...");

 var connection = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

 connection.Connect(remoteEndPoint);

 connection.SetSocketOption(SocketOptionLevel.Tcp,

 SocketOptionName.NoDelay, true);

 connection.SendTimeout = timeout;

 return connection;

 }

 static void SendRequest(Socket s, string apiKey, string feedId,

 string content)

 {

 byte[] contentBuffer = Encoding.UTF8.GetBytes(content);

 const string CRLF = "\r\n";

 var requestLine =

 "PUT /v2/feeds/" + feedId + ".csv HTTP/1.1" + CRLF;

 byte[] requestLineBuffer = Encoding.UTF8.

 GetBytes(requestLine);

 var headers =

 "Host: api.pachube.com" + CRLF +

 "XPachubeApiKey: " + apiKey + CRLF +

 "ContentType: text/csv" + CRLF +

80 Getting Started with the Internet of Things

 "ContentLength: " + contentBuffer.Length + CRLF +

 CRLF;

 byte[] headersBuffer = Encoding.UTF8.GetBytes(headers);

 s.Send(requestLineBuffer);

 s.Send(headersBuffer);

 s.Send(contentBuffer);

 }

 static void WaitUntilNextPeriod(int period)

 {

 long now = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond;

 var offset = (int)(now % period);

 int delay = period offset;

 Debug.Print("sleep for " + delay + " ms\r\n");

 Thread.Sleep(delay);

 }

}

To run the program:

1. Create a new Visual Studio project (using the Netduino Plus template)
and name it HelloPachubeSockets. Replace the contents of Program.cs
with the code from Example 9-1.

2. Replace the strings for apiKey and feedId so they match your Pachube API
key and feed ID.

3. Next, build the project and deploy it to your Netduino Plus, as described
in the section “Deploying to the Device” in Chapter 1.

Viewing the Results
When the Pachube client is started, something like the following output
will be shown:

sleep for 6520 ms

time: 01/01/2009 00:00:20

memory available: 34656

connect...

new message: voltage,3.27

sleep for 9700 ms

9/Hello Pachube (Sockets Version) 81

time: 01/01/2009 01:10:20

memory available: 33120

new message: voltage,2.32

sleep for 9854 ms

time: 01/01/2009 01:10:30

memory available: 33120

new message: voltage,0.98

sleep for 9854 ms

…

Note the connect… message in the first iteration of the loop, and how the
available memory decreases and then stabilizes after a few iterations.

How It Works
The initializations in Main start with the same constants as in Hello
Pachube: apiKey, feedId, and samplingPeriod. This is followed by the same
constants and variables as in HelloPachube.

What is new is the variable connection, which is initialized to null. It
represents a TCP/IP connection to Pachube.

The main loop does basically three things:

1. It sleeps until the next sample is due, takes the sample, and then sends it
to Pachube.

2. It uses the helper method WaitUntilNextPeriod, which we already know
from Chapter 6.

3. It also uses the helper methods Connect and SendRequest, which we
already know from Chapter 6.

Two Debug.Print statements give you information about when a sample
is taken and how much memory is currently available for new objects.

To send an HTTP request to Pachube, a TCP/IP connection to Pachube
must first be opened. Through the main loop, the example tries to establish
such a connection if it doesn’t already exist. When calling the helper method
Connect to open a connection, a timeout, given in milliseconds, is passed as
an argument. This is the time span after which the client stops waiting for a
response—e.g., when the server is unavailable or there is a network problem

82 Getting Started with the Internet of Things

between client and server. Here, I simply pass the sampling period divided
by two, which gives this program a reasonable timeout period.

Creating a connection may fail, which the Socket API will report by
throwing an exception. To make sure that the program continues even if
such a (hopefully temporary) problem occurs, a try/catch statement is
used to handle the exceptions. If an exception occurs, it is caught, and
the message “connection error” is printed to the Output window.

NOTE:� You should only try to handle exceptions for expected errors—i.e.,
for situations that may occur under normal operating conditions, such as
errors in opening or using an Internet connection due to some network or
server problems.

By contrast, exceptions that indicate program errors should not be
handled. On the contrary, they should become apparent—and be
corrected—as early as possible. For example, if you call:

Socket c = Connect(null, timeout)

instead of:

Socket c = Connect("api.pachube.com", timeout)

you will get an exception. It wouldn’t make sense to catch such an excep-
tion and hope that an exception handler provides the correct host ad-
dress in some magical way. Instead, an unhandled exception produces an
error message that can give you a good idea of where there is a bug that
needs to be corrected.

If a connection already existed or a new one was opened successfully,
the example sends a request to Pachube containing the new sample.
If an exception occurs when trying to send the request, the connection
is closed. Otherwise, it is kept open, since opening a connection is an
expensive operation (it takes up CPU time, which is in short supply on a
small microcontroller).

III/Device as HTTP
Server

When you hear the term “server,” you may think of an expensive high-
performance machine somewhere in a data center. By contrast, you may
think of a client as a modest PC, or even a lowly embedded device like the
Netduino Plus. In fact, Figure III-1 is pretty representative of most Internet
servers and clients today.

Figure III-1. Super servers versus puny clients

It’s not only the processing power and storage that separates Internet
clients and servers. There is another difference: an Internet server has
a unique static Internet address that makes it “visible” from anywhere. A
client has only a nonunique private Internet address and is “visible” only
within a local network, e.g., your home network. A client can “dial out” to an
Internet server, as you did with the Pachube clients, but no one can “dial in”

84 Getting Started with the Internet of Things

to the device. Why not? Because your home router and the routers of your
Internet provider have firewalls and perform network address translation in
order to save Internet addresses. In some cases, you can circumvent this
using a port forwarding mechanism in your router. Therefore, devices as
servers seem to be reserved for corporations that can afford static Internet
addresses, or for the lucky few with the right know-how, equipment, and
Internet service providers. (Or perhaps for a time in the future when the
entire Internet is able to handle IPv6 addresses and no network address
translation is performed anymore.) However, as I will show in Chapter 10,
there is now a simple way to turn even a Netduino Plus into a true Internet
server, and thereby into a first-class citizen of the Internet.

A device as client is often an appropriate choice; we have seen examples
where a Netduino Plus sends samples to Pachube for further processing,
storage, visualization, etc. However, you may not only want to observe the
physical world, but also to influence it. For example, you may want to turn
on the heat in your mountain cabin before you visit it. Or you may want to
allow your friends to register an HTTP message at your device that will be
sent to them when the mountain cabin has become invitingly warm. Or
perhaps you want Pachube to monitor the warmth of the cabin and switch
off the heat when it reaches a particular temperature. And so on. Such
scenarios would greatly benefit if devices can be programmed as servers.

If devices remained limited to clients, they would create a rather nar-
row and uninspiring form of the Internet of Things. This part of the book
shows how you can venture beyond that.

85

10/Hello Web

On the Web, the equivalent to HelloWorld is a server program that handles
GET requests from web browsers and returns a message to them, as
shown in Figure 10-1.

Figure 10-1. Architecture of HelloWeb

Relaying Messages to
and from the Netduino
Isn’t there supposed to be a problem with making a device a web server,
as mentioned in Part III? How can we sidestep the problems caused by
firewalls, network address translations, and the shortage of IPv4 Internet
addresses?

The HelloWeb program works thanks to a relay between the Netduino
Plus and the client who wants to connect to it over the Internet. The client
sends its request not directly to the device, but instead to this relay; from
there, the request is forwarded to the device. The response comes back
the same way, indirectly, via the relay (see Figure 10-2).

86 Getting Started with the Internet of Things

Figure 10-2. Relay between client and device (application view)

You may wonder how that setup solves any problem. After all, the device
(your Netduino Plus) is still buried behind a NAT and firewall, and it there-
fore has no unique public Internet address to which requests could be sent.
A client can obviously send requests to the relay, but how can the relay
forward it to the device if the device cannot even be addressed?

The relay solves this problem because it allows us to cheat: from the
application’s point of view, the device indeed receives requests that
come from somewhere on the Web. Under the hood, however, the device
is actually an HTTP client that registers itself at the relay and keeps an
open TCP/IP connection to the relay. When the relay receives a request
from a client, it forwards it to the device over the open connection,
receives the device’s response, and sends it back to the client. The client
therefore never needs to “see” the device directly; it uses a URI pointing
to the relay instead.

Since requests and responses travel “the wrong way” between device and
relay, this approach is sometimes called reverse HTTP. There are several
ways in which a reverse HTTP protocol can be defined—the important
point is that it is possible to create a relay without running afoul of the
rules of the HTTP protocol.

10/Hello Web 87

Yaler
My company, Oberon microsystems, developed a reverse HTTP relay
called Yaler (relay spelled backwards) because several of our customers
needed a robust and scalable relay for their devices. The source code
for Yaler is available at http://yaler.org/. If you have a Windows or Linux
server with a public Internet address, you can set up your own relay by
downloading and running Yaler.

For the time being, a hosted Yaler instance is set up specifically for read-
ers of Getting Started with the Internet of Things at http://try.yaler.net/. It
is free for personal and educational use, and is without service or uptime
guarantees. In the future, yaler.net might become a commercial, hosted
service. It requires an authorization key similar to a Pachube API key.
Please see http://www.gsiot.info/yaler for up-to-date information on how
to get your secret key, as well as a relay domain for your device (this is a
unique identifier for your device, similar to a Pachube feed ID).

HelloWeb
Example 10-1 shows HelloWeb, our first web server program using a relay.
Note that the relay domain and secret key used below are just examples that
won’t work for you, so you need to provide your own values. Alternatively, if
you only want to try out the server within your home network, you can just
omit the RelayDomain and RelaySecretKey lines completely (or comment
out by prefixing them with //), thereby switching off the relay mechanism.

Example 10-1. HelloWeb
using Gsiot.Server;

public class HelloWeb

{

 public static void Main()

 {

 var webServer = new HttpServer

 {

 RelayDomain = "gsiot-FFMQ-TTD5",

 RelaySecretKey =

 "o5fIIZS5tpD2A4Zp87CoKNUsSpIEJZrV5rNjpg89",

 RequestRouting =

http://yaler.org/
http://try.yaler.net/
http://www.gsiot.info/yaler

88 Getting Started with the Internet of Things

 {

 {

 "GET /hello",

 context =>

 { context.SetResponse("Hello Web",

 "text/plain"); }

 }

 }

 };

 webServer.Run();

 }

}

To build and run the program, perform the following steps:

1. Make sure that your Netduino Plus is connected to your Ethernet router
and that it is correctly configured for network access. If the Pachube
client examples from Part II work, you are all set.

2. If you haven’t done so yet, download the Visual Studio project Gsiot.Server
from http://www.gsiot.info/download/, unzip it, and put it into the
Visual Studio 2010\Projects\ directory.

3. Create a new Visual Studio project (using the Netduino Plus template)
and name it HelloWeb. Replace the contents of Program.cs with the code
from Example 10-1.

4. Obtain your own relay domain and secret relay key by following the
instructions on http://www.gsiot.info/yaler.

5. Assign your device’s relay domain to variable RelayDomain.

6. Assign your secret relay key to variable RelaySecretKey.

7. Right-click on References in the Solution Explorer. Select Add➝
New Reference…. In the Add Reference dialog box, click on the
Browse tab. In the directory hierarchy, go up two levels to the
Project directory. In the Gsiot.Server directory, open the Gsiot.Server
subdirectory (yes, the same name again). In this directory, open the

http://www.gsiot.info/download

10/Hello Web 89

bin subdirectory. From there, open the Release subdirectory. In this
directory, select the Gsiot.Server.dll file. Click the OK button. You have
now added the assembly Projects\Gsiot.Server\Gsiot.Server\bin\
Release\Gsiot.Server.dll.

8. Next, build the project and deploy it to your Netduino Plus, as described
in the section “Deploying to the Device” in Chapter 1.

Viewing the Results
On the debug console, a typical output of HelloWeb may look like this:

DHCP enabled: True

MAC address: 3C8A4A000007

Device address: 192.168.5.100

Gateway address: 192.168.5.11

Primary DNS address: 192.168.5.11

Base URI: http://try.yaler.net/gsiot-FFMQ-TTD5/

Open your favorite web browser and enter the above base URI for access-
ing your Netduino Plus. When you send a request with a URI that starts
with this base URI, it will be sent via the relay to your device.

When you enter the URI in your program, be sure to change gsiot-FFMQ-
TTD5 to your relay domain.

Something like the following output should be printed to the debug console:

memory available: 11424

GET /gsiot-FFMQ-TTD5/hello > 200

When you look at your browser window, it should show a web page with
the string:

Hello Web

Congratulations! Your first server program is up and running, accessible
from any corner of the earth!

90 Getting Started with the Internet of Things

Using C# Initializers to Create the HttpServer
The HelloWeb program from Example 10-1 executes two statements in
its Main method. The first statement creates an HttpServer object and
stores it in the variable webServer. The second statement starts this
server by calling its Run method.

We can use the C# initializer syntax to create an HttpServer object and
initialize all its key values in one go:

var webServer = new HttpServer

{

 RelayDomain = …,

 RelaySecretKey = …,

 RequestRouting = …

};

An initializer is a sequence of property or field initializations enclosed in
curly braces after new SomeClassName. Individual initializations are sepa-
rated by commas. Such initializers are a convenience feature that can
make code more readable, particularly if a large number of properties are
involved. The above example is equivalent to:

var webServer = new HttpServer();

webServer.RelayDomain = …;

webServer.RelaySecretKey = …;

webServer.RequestRouting = …;

The individual initializations have the form:

Field = Expression

Initializers can also be used to initialize the elements of a collection, as in
this example:

RequestRouting =

{

 { "GET /hello", HandleGetHello },

 { "GET /about.html", HandleGetAboutHtml }

}

10/Hello Web 91

The C# compiler translates this into the following:

RequestRouting.Add("GET /hello", HandleGetHello);

RequestRouting.Add("GET /about.html", HandleGetAboutHtml);

C#’s Lambda Expression Shorthand
You may have wondered about the following expression in Example 10-1:

context => { context.SetResponse("Hello Web", "text/plain"); }

This is an example of a C# lambda expression. A lambda expression uses
the lambda operator => (i.e., “goes to”):

 » On its left side, there are zero, one, or more input parameters; in this
example, there is one parameter: context.

 » On its right side, between curly braces, there is a statement that can
use the input parameter.

In this case, context is of type RequestHandlerContext. This type has
a method SetResponse; the lambda expression sets the HTTP response
message body to Hello Web, and the response message header Content
Type to text/plain (and, implicitly, the response message’s status code
to 200, i.e., OK).

Lambda expressions are a shorthand way of writing down what would
otherwise be a complete method.1 For example, the compiler performs
the necessary calculations to determine the type of context. Written in
traditional form, the above example would look like this:

static void HandleGetHello(RequestHandlerContext context)

{

 context.SetResponse("Hello Web", "text/plain");

}

1 I use lambda expressions for single statements, but I usually prefer complete methods for longer blocks of
code.

92 Getting Started with the Internet of Things

Request Handlers
The web server’s RequestRouting property is used to specify which
request handler will handle which request pattern (request methods such
as GET, request URIs such as /hello).

For example, the pair:

{ "GET /hello", HandleGetHello }

declares that when a GET request with the request URI /hello has been
received, the method HandleGetHello should be called for handling this
request.

The request pattern string, e.g., "GET /hello", first gives the HTTP method
that is accepted—in this case, GET. This is followed by a blank, which is
followed by the request URI: a relative URI that starts with a / character.
If your request handler can support several HTTP methods, you can pass
the * character instead of an HTTP method name, e.g., "* /led/target".
If your request handler is able to support several resources with the same
URI prefix, you can pass a * character at the end, e.g., "GET /sensors/*".

A request handler has a context object of type RequestHandlerContext
as a parameter. This object contains the necessary information about
the HTTP request, an empty representation of the HTTP response to be
sent (which you’ll fill in with a content type and response text before the
response is sent back), and some information related to the server—e.g.,
the base URI of the server. It has the following interface:

public class RequestHandlerContext

{

 public RequestHandlerContext(string serviceRoot,

 string relayDomain);

 public bool ConnectionClose { get; set; }

 // request interface

 public string RequestMethod { get; }

 public string RequestUri { get; }

 public string RequestContentType { get; }

 public string RequestContent { get; }

10/Hello Web 93

 // server interface

 public string BuildRequestUri(string path);

 public string BuildAbsoluteRequestUri(string path);

 // response interface

 public int ResponseStatusCode { get; set; }

 public string ResponseContentType { get; set; }

 public string ResponseContent { get; set; }

 public void SetResponse(string content, string textType);

}

This interface is described in more detail in Appendix C. Here, the most
important thing you should know is that a RequestHandlerContext
object provides the property ResponseStatusCode that you can set to
return a response message without a message body, and a method
SetResponse that you can call to set the response status code to 200
(OK), to set the ContentType HTTP header, and to set the message
body to some string (content). (The ContentLength property is always
calculated automatically.)

HelloWebHtml
Let’s now look at a slightly more interesting version of HelloWeb.
HelloWebHtml (Example 10-2) returns an HTML representation. The
word Web is printed in bold using HTML’s strong element. In addition,
HelloWebHtml adds the time that has passed since the Netduino Plus
was last booted, so you can check more easily whether the server is
running. If you refresh the web page and the time display changes, the
server still runs fine.

Example 10-2. HelloWebHtml
using System;

using Gsiot.Server;

public class HelloWebHtml

{

 public static void Main()

 {

 var webServer = new HttpServer

94 Getting Started with the Internet of Things

 {

 RelayDomain = "gsiot-FFMQ-TTD5",

 RelaySecretKey =

 "o5fIIZS5tpD2A4Zp87CoKNUsSpIEJZrV5rNjpg89",

 RequestRouting =

 {

 { "GET /hello.html", HandleGetHelloHtml }

 }

 };

 webServer.Run();

 }

 static void HandleGetHelloHtml(RequestHandlerContext context)

 {

 string s =

 "<html>\r\n" +

 "\t<body>\r\n" +

 "\t\tHello Web at " +

 DateTime.Now + "\r\n" +

 "\t</body>\r\n" +

 "</html>";

 context.SetResponse(s, "text/html");

 }

}

A web page created by HelloWebHtml might look like this:

Hello Web at 01/01/2009 00:01:11

As you can see, an HTTP server doesn’t need to be a complicated beast!

What You Should
Know About Ports
An HTTP server indicates its readiness to receive HTTP requests by
“listening” on a port. By convention, port 80 is used for the HTTP protocol.
Other Internet protocols use different ports; the port numbers between 1
and 49151 are reserved for use by standard protocols. On many operating
systems, ports up to 1000 require special privileges. On your Netduino
Plus, there are no such restrictions.

10/Hello Web 95

NOTE:� The use of ports in this way is merely a convention. Nothing
prevents you from using one of the reserved ports for your own server
programs, as long as no other program is already listening on that port. I
often use port 8080 during development, which also works on a PC.

If you have used http://192.168.5.100/some-resource as a URI in your web
browser, the browser sends a GET request to the program that listens on
port 80 of device 192.168.5.100. If no device with this Internet address is
found, or no program on this device is currently listening on port 80, your
web browser will show an error message—e.g., “Internet Explorer cannot
display the webpage” in Internet Explorer, or “Address Not Found” in Firefox.

Because we use a relay in our server examples, the Netduino Plus is not
really an HTTP server, and it therefore needs no port to listen for requests.
If you only want to use your device as a server within your local area
network, or if you use port forwarding instead of a relay, you can disable the
relay mechanism by deleting these two property initializations:

RelayDomain = …,

RelaySecretKey = …,

Then, the Netduino Plus acts as a normal HTTP server. By default, it
listens on port 80. If you want to use another port, set up the optional
Port property, like this:

var webServer = new HttpServer

{

 Port = 8080,

 RequestRouting =

 {

 {

 "GET /hello",

 context =>

 { context.SetResponse("Hello Web", "text/plain"); }

 }

 }

};

This possibility can come in handy for testing purposes because it
functions even if the Internet connection or the relay doesn’t work
for some reason. You can then test whether the server at least works
within your home network.

96 Getting Started with the Internet of Things

Port Forwarding
Port forwarding is a mechanism in your router that makes the service
running on your Netduino Plus look to the Internet at large to imple-
ment the router itself. Therefore, the router’s Internet address will be
the Internet address of the services—not the private Internet address
of your board. One problem with this setting is that the router’s Internet
address is dynamically assigned by your Internet provider, so it may
change at any time. Usually it does not change often, but you cannot
assume that it never changes. If a client program uses such a dynamic
Internet address, the client must be updated after an address change—
of which both your server program and the client(s) are unaware. You
can alleviate this problem by using a dynamic DNS service to give your
computer a host name that remains stable, even if the IP address of
your router changes. One example is the free service of DynDNS.com
(http://www.dyndns.com/services/dns/dyndns/).

As you can see, port forwarding requires a fair amount of network know-
how. It works differently on different brands of routers that support it,
may require firewall configuration changes, and only works with some
Internet providers.

http://www.dyndns.com/services/dns/dyndns/

97

11/Handling Sensor
Requests

HelloWeb (see Chapter 10) is an example of an HTTP server, but it
doesn’t use any sensors or actuators. In this chapter, I'll show how you
can add sensor access to your server programs (Figure 11-1).

Figure 11-1. Architecture of VoltageMonitor

VoltageMonitor, which you’ll see later in Example 11-1, shows how to
handle GET requests to a sensor resource, more specifically one that
represents some voltage—e.g., a voltage produced by an attached
potentiometer, photo resistor, or similar sensor. You can use any web
browser as a client to inspect the current voltage. After all, a web
browser is basically an engine for initiating GET requests—and for
displaying the responses, of course.

98 Getting Started with the Internet of Things

From Sensor Readings
to HTTP Resources
An HTTP server manages resources. In this example, a resource is
provided that has the meaning, “actual voltage value, as measured by a
sensor attached to the board.” A resource that contains an actual value
is called a measured variable. A measured variable changes its value
over time, depending on a physical process: when the user physically
turns the potentiometer’s knob, the measured variable changes its value
accordingly. This means that subsequent GET requests to the same
resource may yield different responses.

A resource for a measured variable should reflect a physical phenomenon
as it currently is. The resource is updated with new sensor values from
time to time. Only GET requests are supported for measured variable
resources.

When your server starts up, you’ll typically create objects in your code
that represent the value of these measured variables.

NOTE:� “Measured variable,” like “manipulated variable” (see Chapter 12),
is a process control term (http://www.wisc-online.com/objects/ViewOb-
ject.aspx?ID=IAU3306). Process control is a discipline that deals with how
to keep a physical process under control, e.g., keeping a boat on track
even if there are currents and side winds.

URIs of Measured Variables
How a request URI for a measured variable looks is entirely up to you.
By convention, I will call measured variables /name/actual—in this case,
/voltage/actual. However, you can use any URI as long as you use only
ASCII letters, digits, and the characters /, ?, #, [,], @, !, $, &, ‘, (,), *, +,
,, ;, and =. For example, the relative URI /root/sensors/analog/1 would
be a perfectly legitimate alternative and would look like this:

http://192.168.5.100/root/sensors/analog/1

http://www.wisc-online.com/objects/ViewObject.aspx?ID=IAU3306
http://www.wisc-online.com/objects/ViewObject.aspx?ID=IAU3306

11/Handling Sensor Requests 99

NOTE:� Just because you set up your server to reply to a request with a
long request URI doesn’t mean you have to support resources for such
URIs as the following, which exist all along the path:

http://192.168.5.100/root/sensors/analog

http://192.168.5.100/root/sensors

http://192.168.5.100/root

http://192.168.5.100/

VoltageMonitor
VoltageMonitor, shown in Example 11-1, supports GET requests for a
measured variable resource. One resource is supported: an ASCII rep-
resentation of the current value of the voltage produced by the attached
potentiometer.

Example 11-1. VoltageMonitor
using Gsiot.Server;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class VoltageMonitor

{

 public static void Main()

 {

 // ground and power for the potentiometer

 var lowPort = new OutputPort(Pins.GPIO_PIN_A0, false);

 var highPort = new OutputPort(Pins.GPIO_PIN_A2, true);

 var voltageSensor = new AnalogSensor

 {

 InputPin = Pins.GPIO_PIN_A1,

 MinValue = 0.0,

 MaxValue = 3.3

 };

 var webServer = new HttpServer

 {

 RelayDomain = "gsiot-FFMQ-TTD5",

100 Getting Started with the Internet of Things

 RelaySecretKey =

 "o5fIIZS5tpD2A4Zp87CoKNUsSpIEJZrV5rNjpg89",

 RequestRouting =

 {

 {

 "GET /voltage/actual",

 new MeasuredVariable

 {

 FromSensor = voltageSensor.HandleGet

 }.HandleRequest

 }

 }

 };

 webServer.Run();

 }

}

NOTE:� To build and run this example, follow the steps in the section
“HelloWeb” in Chapter 10, but name the project VoltageMonitor instead
of HelloWeb.

To provide power and ground to the attached potentiometer, I use the
same pins as in Chapter 3, configured as digital outputs, i.e., A0 and A2.

For reading the current voltage, I use a library class AnalogSensor that
wraps an analog input port (see Chapter 3) in an object that provides the
method HandleGet. This method reads the input port and returns the
result. Variable voltageSensor is an instance of AnalogSensor, initialized
with pin A1. Moreover, properties MinValue and MaxValue make it possible
for the analog sensor object to convert the integer input of the analog
input port to a value in the given range—in this case, between 0.0 and 3.3.

In the webServer initialization, I use the request handler HandleRequest
provided by an object of type MeasuredVariable. A MeasuredVariable
object has a property FromSensor.

When a client makes a GET request for /voltage/actual, the request is
passed to MeasuredVariable’s HandleRequest method. When this hap-
pens, the MeasuredVariable object first calls FromSensor in order to ob-

11/Handling Sensor Requests 101

tain a new sample. It then converts this sample to a string; after, it sends
this string to the client as its response message body.

Treating Variables Like Methods with C# Delegates
FromSensor is a property to which you can assign a method—i.e., a C#
delegate property. Delegate properties must be compatible with the del-
egate types they represent.

For example, FromSensor must be compatible with the delegate type
GetHandler, which was declared inside of Gsiot.Server:

delegate object GetHandler();

This is the case for AnalogSensor.HandleGet, so we can set the property
FromSensor to voltageSensor.HandleGet. This allows webServer to inter-
act with the voltageSensor’s HandleGet method.

NOTE:� Where is voltageSensor’s HandleGet method? All you’ve seen so
far is its declaration and initialization:

var voltageSensor = new AnalogSensor

{

 InputPin = Pins.GPIO_PIN_A1,

 MinValue = 0.0,

 MaxValue = 3.3

};

The voltageSensor’s HandleGet method resides in the class definition of
AnalogSensor, which you’ll see in the next section.

If you think of normal methods as “method constants,” then delegates are
“method variables.” In other words, you can assign methods to delegate
variables and pass them around before calling them.

This indirect approach to calling a method allows the MeasureVariable
object to be completely oblivious of the exact method that it calls. It
simply assumes that a delegate property has been initialized with some
suitable method. The compiler makes sure that at least the parameters
and return type are correct.

102 Getting Started with the Internet of Things

NOTE:� For a method to be compatible with a delegate property, the name
of the method and the parameter names are not relevant, nor is whether
the method is declared as static or not.

Inside Gsiot.Server’s AnalogSensor Class
The library class AnalogSensor is implemented in namespace Gsiot.Server,
as shown in Example 11-2. You don’t need to include this code in your project
since it’s already inside of Gsiot.Server.

Example 11-2. AnalogSensor
public class AnalogSensor

{

 const int maxAdcValue = 1023; // for 10bit resolution

 public Cpu.Pin InputPin { get; set; }

 AnalogInput port;

 public double MinValue { get; set; }

 public double MaxValue { get; set; }

 double Delta;

 public void Open()

 {

 port = new AnalogInput(InputPin);

 Delta = MaxValue MinValue;

 }

 public object HandleGet()

 {

 if (port == null) { Open(); }

 int rawValue = port.Read();

 return MinValue + ((rawValue * Delta) / maxAdcValue);

 }

}

11/Handling Sensor Requests 103

The purpose of this class is to provide a common interface for sensors—
namely, a method that produces new samples and is compatible with the
delegate type GetHandler, and with a “declarative” initialization mechanism
like the one of HttpServer.

Inside Gsiot.Server’s MeasuredVariable Class
The library class MeasuredVariable is implemented in namespace
Gsiot.Server in the following way (see Example 11-3).

Example 11-3. MeasuredVariable
public class MeasuredVariable

{

 public GetHandler FromSensor { get; set; }

 public void HandleRequest(RequestHandlerContext context)

 {

 object sample = FromSensor();

 // sample may be null

 CSharpRepresentation.Serialize(context, sample);

 }

}

The purpose of this request handler for measured variables is to
separate the request processing from the way new samples are
produced (FromSensor).

What You Should Know
About HTTP GET
To query the state of a device’s sensor, send it HTTP GET messages.
GET is defined as harmless in that it leaves no trace on the resources it
accesses. Therefore, your server must not change any of its resources
as a side effect of responding to a GET request. The only state changes
due to a GET request should be for monitoring purposes—e.g., to keep
track of how many GET requests have been handled since the server
was started.

104 Getting Started with the Internet of Things

As a consequence, you should never use GET for changing a resource,
starting an activity, or producing another side effect. So you shouldn’t put
links into your web pages that, when clicked, cause the formatting of a
hard disk, the firing of a rocket, the closing of a valve, etc. If you want to do
that from a web page, include buttons and JavaScript scripts to send the
appropriate requests (e.g., PUT requests). This will be shown in Chapter
12.

HTTP GET is sometimes called idempotent, which in computer science
is a term that refers to an operation that produces the same result even
if you apply it more than once. In this context, it means that issuing the
same GET request successively multiple times has the same effect on
the server’s resources as issuing it only once. This is trivially established,
since a GET request should have no effect on the server’s resources.

The term is misleading, however, in that the same GET request sent
multiple times to the same host does not necessarily return the same
response every time. This is obvious for measured variables: a GET
request provides the most recent measurement of a physical process
that is changing continuously.

105

12/Handling Actuator
Requests

To change the state of a resource, a web client can send PUT requests.
A PUT request contains a representation of the desired new state of the
resource. In this chapter’s example, an LED’s state (on/off) is controlled
through a web service, as illustrated in Figure 12-1.

Figure 12-1. Architecture of LedController

LedController shows how to handle PUT requests; thus, it is a server
program. Unfortunately, you cannot directly use a web browser as a
client for sending PUT requests because web browsers are focused on
GET requests. Later in this chapter you will see how you can write your
own client program (in both C# and JavaScript versions) for testing the
server.

NOTE:� If you don’t mind learning your way around tools like cURL
(http://curl.haxx.se/docs/) or the Poster add-on for Firefox
(https://addons.mozilla.org/en-US/firefox/addon/poster/),
you can initiate PUT requests with these as well.

http://curl.haxx.se/docs/

106 Getting Started with the Internet of Things

For example, with the cURL command-line utility—which is usually
installed by default on Mac OS X and Linux—you could use a command
like this to turn the LED on (be sure to change the URI to match your
configuration):

curl X PUT d true \

 http://try.yaler.net/gsiot-FFMQ-TTD5/led/target

From HTTP Resources
to Controlling Things
The resource managed in this example has the meaning “desired state
of the LED on the board.” Such a resource that accepts target values (or
setpoints) is called a manipulated variable. When a server receives a PUT
request for a manipulated variable resource, it takes the setpoint value
contained in the request message body and feeds it to an actuator. In this
example, the actuator is simply an LED.

A server that supports a manipulated variable may or may not support
GET requests, in addition to PUT requests, for this resource. A GET
request may simply return the most recent PUT value.

URIs of Manipulated Variables
By convention, manipulated variables in this book are called /name/target;
in this case /led/target:

http://192.168.5.100/led/target

In more complicated applications than this example here, it may not be
certain that putting a target value will really have the desired physical
effect. For example, if you send a PUT request to a manipulated variable
for a valve, with “closed” as the desired state, there may be mechanical
reasons why this desired state is not achieved (e.g., the valve may have
become mechanically blocked). In such situations, it might make sense
to additionally provide a measured variable (sensor) for the valve. This

12/Handling Actuator Requests 107

would result in two separate resources: one for the actuator and one for
the sensor:

http://192.168.5.100/valve/target

http://192.168.5.100/valve/actual

The distinction between these two resources reflects the physical reality of
a device that has both a sensor (producing the actual value) and an actuator
(changing state based on the target value). You may also provide a more
abstract combined resource. For example, “state of the fountain in my
garden” returns the actual value of the fountain’s valve in response to a GET
request, and accepts a target value for the valve as part of a PUT request:

http://192.168.5.100/fountainstate

You can play with the resources until you find the most suitable design
for your application. People like different ways to “see” into a system. For
example, your parents may only be interested in a temperature given in
degrees Celsius, whereas you may be interested in the raw values returned
by the sensor—especially if your parents complain that the temperature
values cannot be correct. Maybe the sensor is defective, or the algorithm
that translates raw sensor values to human-readable engineering units is
buggy. Then, it helps to provide both the raw value and the processed value
as resources.

LedController
The structure of LedController (Example 12-1) is very similar to that of
Example 11-1, VoltageMonitor.

Example 12-1. LedController
using Gsiot.Server;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class LedController

{

 public static void Main()

 {

 var ledActuator = new DigitalActuator

108 Getting Started with the Internet of Things

 {

 OutputPin = Pins.ONBOARD_LED

 };

 var webServer = new HttpServer

 {

 RelayDomain = "gsiot-FFMQ-TTD5",

 RelaySecretKey =

 "o5fIIZS5tpD2A4Zp87CoKNUsSpIEJZrV5rNjpg89",

 RequestRouting =

 {

 {

 "PUT /led/target",

 new ManipulatedVariable

 {

 FromHttpRequest =

 CSharpRepresentation.TryDeserializeBool,

 ToActuator = ledActuator.HandlePut

 }.HandleRequest

 }

 }

 };

 webServer.Run();

 }

}

The main differences between the two examples are that Example 12-1
uses an instance of DigitalActuator (ledActuator) instead of Analog
Sensor, and an instance of ManipulatedVariable (created using C#’s
initializer syntax that was explained in Chapter 10) instead of Measured
Variable.

A ManipulatedVariable instance has a delegate property FromHttpRequest
for the conversion from an HTTP message body to a setpoint object, and a
ToActuator delegate property for applying the setpoint to an actuator.

FromHttpRequest must be compatible with this delegate type:

delegate bool Deserializer(RequestHandlerContext context,

 out object content);

12/Handling Actuator Requests 109

and ToActuator must be compatible with this delegate type:

delegate void PutHandler(object o);

Library method CSharpRepresentation.TryDeserializeBool is compatible
with Deserializer, so it can be assigned to ToHttpResponse. The method
ledActuator.HandlePut is compatible with PutHandler, so it can be
assigned to ToActuator.

Inside Gsiot.Server’s DigitalActuator Class
The library class DigitalActuator is implemented in namespace Gsiot.
Server, as shown in Example 12-2.

Example 12-2. DigitalActuator
public class DigitalActuator

{

 public Cpu.Pin OutputPin { get; set; }

 OutputPort port;

 public void Open()

 {

 port = new OutputPort(OutputPin, false);

 }

 public void HandlePut(object setpoint)

 {

 if (port == null) { Open(); }

 port.Write((bool)setpoint);

 }

}

The purpose of this class is to provide a common interface for actua-
tors—namely, a method that consumes new setpoints and is compatible
with the delegate type PutHandler, and with a “declarative” initialization
mechanism like the one of HttpServer.

110 Getting Started with the Internet of Things

C#: Protecting You from Dangerous Conversions
A variable declared with type object accepts anything assigned to it. It is
often used in libraries, which should be independent of the exact types that
will occur in the various applications that use those libraries. In our case, it
is the Gsiot.Server library and the setpoint parameter of HandlePut.

If you know that at some point in your program, a variable of type object
must contain a value of a particular type, you can cast it safely in the
following way:

object setpoint = false; // setpoint now contains a bool value

 // bool ledSetpoint = (bool)setpoint;

 // setpoint interpreted as bool value

Unlike some other languages, C# will never allow you to proceed with
an erroneous type cast on objects. Such type casts will either generate
error messages at compile time or exceptions at runtime. In the above
example, the check is performed at runtime because the compiler has no
way of knowing what you might assign to ledSetpoint. By contrast, the
following code results in an error at compile time:

object setpoint = false; // setpoint now contains a bool value

int boilerSetpoint = setpoint; // illegal, flagged by compiler

The following code results in an exception at runtime:

object setpoint = false; // setpoint now contains a bool value

int boilerSetpoint = (int)setpoint; // throws an exception!

As a friend likes to say: every beer bottle is a bottle, but not every bottle
is a beer bottle. Similarly, every boiler setpoint is a setpoint (which is an
object in turn), but not every setpoint is a boiler setpoint. The C# type
system helps to catch many programming mistakes either at compile
time or at runtime—and the earlier, the better.

Inside Gsiot.Server’s ManipulatedVariable Class
The library class ManipulatedVariable is implemented in namespace
Gsiot.Server, as shown in Example 12-3.

12/Handling Actuator Requests 111

Example 12-3. ManipulatedVariable
public class ManipulatedVariable

{

 public Deserializer FromHttpRequest { get; set; }

 public PutHandler ToActuator { get; set; }

 public void HandleRequest(RequestHandlerContext context)

 {

 object setpoint;

 if (FromHttpRequest(context, out setpoint))

 {

 // setpoint may be null

 ToActuator(setpoint);

 context.ResponseStatusCode = 200; // OK

 }

 else

 {

 context.ResponseStatusCode = 400; // Bad Request

 }

 }

}

The purpose of this request handler for manipulated variables is to
separate the request processing from the representation used in the
request (FromHttpRequest) and from the way new setpoints are
consumed (ToActuator).

Test Client in C#
To test your LedController server with a client that runs on a computer,
use the test client given in Example 12-4, which sends a PUT request to the
server. You need to adapt the constant uri to the address of your device.

The representation sent to the server is contained in constant message.
See what happens if you send the value as given below, or if you change it
to false or some unsupported value.

NOTE:� This code won’t run on a Netduino Plus. You’ll have to run it on
Windows using .NET, or on Mac OS X or Linux using Mono. Mono is an
open source implementation of .NET that runs on several platforms.

112 Getting Started with the Internet of Things

Example 12-4. LedControllerClient test client in C#
using System;

using System.IO;

using System.Net;

using System.Text;

using System.Threading;

public class LedControllerClient

{

 public static void Main()

 {

 const string method = "PUT";

 const string uri =

 "http://try.yaler.net/gsiot-FFMQ-TTD5/led/target";

 const string type = "text/plain";

 const string message = "true"; // ignored for GET requests

 HttpWebRequest request = CreateRequest(method, uri, type,

 message);

 try

 {

 using (var response = (HttpWebResponse)request.

 GetResponse())

 {

 LogResponse(response);

 }

 }

 catch (Exception e)

 {

 Console.Write(e.ToString());

 Thread.Sleep(Timeout.Infinite);

 }

 }

 static HttpWebRequest CreateRequest(string method,

 string uri, string type, string body)

 {

 var request = (HttpWebRequest)WebRequest.Create(uri);

 // request line

 request.Method = method;

12/Handling Actuator Requests 113

 if ((body != null) && (method != "GET"))

 {

 byte[] buffer = Encoding.UTF8.GetBytes(body);

 // request headers

 request.ContentType = type;

 request.ContentLength = buffer.Length;

 // request body

 using (Stream stream = request.GetRequestStream())

 {

 stream.Write(buffer, 0, buffer.Length);

 }

 }

 return request;

 }

 static void LogResponse(HttpWebResponse response)

 {

 // response status line

 Console.WriteLine("HTTP/" + response.ProtocolVersion + " " +

 response.StatusDescription);

 // response headers

 string[] headers = response.Headers.AllKeys;

 foreach (string name in headers)

 {

 Console.WriteLine(name + ": " + response.Headers[name]);

 }

 // response body

 var buffer = new byte[response.ContentLength];

 Stream stream = response.GetResponseStream();

 int toRead = buffer.Length;

 while (toRead > 0)

 {

 // already read: buffer.Length toRead

 int read = stream.Read(buffer, buffer.Length toRead,

 toRead);

 toRead = toRead read;

 }

114 Getting Started with the Internet of Things

 char[] chars = Encoding.UTF8.GetChars(buffer);

 Console.WriteLine(new string(chars));

 Thread.Sleep(Timeout.Infinite);

 }

}

The test client writes the server’s response to a console window and then
waits for you to press Ctrl-C to quit it.

Embed a JavaScript Test Client
on the Netduino
Web browsers are convenient HTTP clients because they are available
on practically any platform, and also because they can download new
programs (scripts) without extra installation hassles. The trick is that
script code can be embedded in HTML pages, so ordinary HTTP GET
requests are sufficient as download mechanisms for JavaScript
programs. Since JavaScript can issue PUT requests, you can click
buttons on a web page to turn your LEDs on and off!

And since the Netduino Plus is functioning as a web server, you can serve
this JavaScript directly from your .NET Micro Framework code!

To include some JavaScript in an HTML document, add a <script> XML
element with the code shown in Example 12-5. (Example 12-6 shows the
complete example.)

Example 12-5. LedController test client in JavaScript,
embedded in HTML

<html>

 <head>

 <script type="text/javascript">

 var r;

 try {

 r = new XMLHttpRequest();

 } catch (e) {

 r = new ActiveXObject(‘Microsoft.XMLHTTP’);

 }

12/Handling Actuator Requests 115

 function put (content) {

 r.open(‘PUT’, ‘/gsiot-FFMQ-TTD5/led/target’);

 r.setRequestHeader("ContentType", "text/plain");

 r.send(content);

 }

 </script>

 </head>

 <body>

 <p>

 <input type="button" value="Switch LED on"

 onclick="put(‘true’)"/>

 <input type="button" value="Switch LED off"

 onclick="put(‘false’)"/>

 <input type="button" value="Bah" onclick="put(‘bah’)"/>

 </p>

 </body>

</html>

This script creates a new XMLHttpRequest object r (short for “request”)
or an equivalent ActiveX object for Internet Explorer 6 or newer. This
object has a method open that takes the HTTP method and the request
URI as parameters, and a method setRequestHeader for adding request
headers. It also has a method send, which sends the HTTP request back
to your server (your Netduino Plus).

NOTE:� XMLHttpRequest can send any kind of representation, not just XML
as its name suggests.

The object r is used in the function put, which takes the request message
content as a parameter and sends it back in an HTTP PUT message to the
same server from which the JavaScript came.

The body of the HTML page produces three buttons: Switch LED on,
Switch LED off, and Bah. When you click on them, they call the put
function with the arguments "true", "false", or "bah". In the first case,
the request is meant to switch on the Netduino Plus’s onboard LED. In
the second case, the request is meant to switch off the Netduino Plus’s
onboard LED. In the third case, the request is meant to provoke an error
situation (see the debug console for what happens when you click on it).

The resulting web page looks like Figure 12-2.

116 Getting Started with the Internet of Things

Figure 12-2. Simple web page for controlling an LED

The entire program is given in Example 12-6, which encodes the script
from Example 12-5 in one large string. Instead of loading the HTML from a
file, the Netduino Plus will serve it up out of its memory in the body of the
HandleLedTargetHtml handler.

Example 12-6. LedControllerHtml with embedded
JavaScript

using Gsiot.Server;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class LedControllerHtml

{

 public static void Main()

 {

 var ledActuator = new DigitalActuator

 {

 OutputPin = Pins.ONBOARD_LED

 };

 var webServer = new HttpServer

 {

 RelayDomain = "gsiot-FFMQ-TTD5",

 RelaySecretKey =

 "o5fIIZS5tpD2A4Zp87CoKNUsSpIEJZrV5rNjpg89",

 RequestRouting =

 {

 {

 "PUT /led/target",

 new ManipulatedVariable

 {

 FromHttpRequest =

 CSharpRepresentation.TryDeserializeBool,

 ToActuator = ledActuator.HandlePut

 }.HandleRequest

 },

 {

 "GET /led/target.html",

12/Handling Actuator Requests 117

 HandleLedTargetHtml

 }

 }

 };

 webServer.Run();

 }

 static void HandleLedTargetHtml(RequestHandlerContext context)

 {

 string requestUri = context.BuildRequestUri("/led/target");

 var script =

 @"<html>

 <head>

 <script type=""text/javascript"">

 var r;

 try {

 r = new XMLHttpRequest();

 } catch (e) {

 r = new ActiveXObject(‘Microsoft.XMLHTTP’);

 }

 function put (content) {

 r.open(‘PUT’, ‘" + requestUri + @"’);

 r.setRequestHeader(""ContentType"",

 ""text/plain"");

 r.send(content);

 }

 </script>

 </head>

 <body>

 <p>

 <input type=""button"" value=""Switch LED on""

 onclick=""put(‘true’)""/>

 <input type=""button"" value=""Switch LED off""

 onclick=""put(‘false’)""/>

 <input type=""button"" value=""Bah""

 onclick=""put(‘bah’)""/>

 </p>

 </body>

 </html>";

 context.SetResponse(script, "text/html");

 }

}

118 Getting Started with the Internet of Things

In this example, note that two resources are supported:

{

 "PUT /led/target",

 … request handler …

},

{

 "GET /led/target.html",

 … request handler …

}

Another noteworthy aspect of the example is the use of verbatim strings.
A verbatim string starts with an @ sign and is followed by a " character.
It ends at the first " character that isn’t doubled. To allow " characters
in a verbatim string, two subsequent " characters are interpreted as a
single " character. In a verbatim string there may be carriage returns, line
feeds, tabulator characters, etc., that don’t need an escape sequence like
normal strings. This can make verbatim strings more readable in some
cases. Here is an example of a verbatim string:

string s = @"Hello ""World"" again";

It is equivalent to this regular string:

string s = "Hello \"World\" again";

What You Should Know
About HTTP PUT
To change the state of a device’s actuator, you send it HTTP PUT
messages. Like GET, PUT is defined as being idempotent, meaning that
issuing the same PUT request multiple times has the same effect on
the server’s resources as issuing it only once—assuming no one else
changes the same resource. This is particularly relevant in one situation:
suppose your client program has sent a PUT request, but it does not
get back a response. After a while, the client will time out. What should
happen then? If the request had been lost on its way to the server, your
client could simply try again and send the PUT request a second time.

12/Handling Actuator Requests 119

But what if the request had been received by the server, was processed
correctly, and only the response message got lost somewhere on the
way back to your client? Sending the PUT request again would cause
the resource to be manipulated a second time. What could be a huge
problem is no problem at all if you design your PUT request handlers
to be idempotent, in which case simply sending the same PUT request
again is harmless. This is the beauty of RESTful web services with HTTP.
Distributed systems, where clients and servers operate on different
machines and are connected through sometimes-unreliable
connections, are notoriously difficult to program correctly. The reason
is that unlike single programs on single computers, distributed systems
suffer from partial failures: one component dies, but the other
components continue without knowing what exactly happened. This
makes it nearly impossible to recover from failures in such a way that all
components are guaranteed to have consistent states again.

The idempotent way in which HTTP GET and PUT (and DELETE) are
defined reduces this problem enormously: if a client suspects a problem
with a request, it simply repeats it. It doesn’t need to find out the current
resource state of the server, and it doesn’t need to correct it. On the other
hand, a server simply responds to a request it receives from a client, and
then forgets about this client. It doesn’t need to keep track of the client’s
application state. Whether a client really receives a response message or
has died, or whether the message was lost somewhere on the network,
need not concern the server. This decoupling of the clients’ application
states and the servers’ resource states is sometimes called statelessness.

In practice, this means that almost anything can be a resource—except
commands. For example, if you control a loudspeaker’s volume with an
HTTP server, you can send it a PUT request with a representation of the
desired state, e.g., "70%". This is idempotent. You can send it as often
as you want; seventy percent remains seventy percent. By contrast,
commands are not always idempotent; e.g., "increase volume by one
notch" would not be idempotent. Often, a URI name that contains a verb
betrays such a mistake, e.g., /loudspeaker/increaseVolume.

121

13/Going Parallel

Imagine that you have written a program that controls some physical
process, like rapidly blinking an LED at a fixed frequency. You want to control
the parameters of this process through a web service interface, perhaps to
adjust the blinking period. This simple scenario raises a far-reaching
question. Consider our previous server examples that repeatedly wait for
new incoming HTTP requests. Whenever a request arrives, the server wakes
up, does something, sends back a response, and then waits again. While
it waits, the server blocks all other activity until the next request comes in,
which may easily take hours. This means that even if you wrote some code
to blink the LED, it’s not going to blink if the server is sitting around waiting.
This is not what you want, of course.

To solve this problem, the .NET Micro Framework provides a very
powerful mechanism called multithreading. Multithreading is a
mechanism for splitting up a program into several parallel activities
called threads. Each thread provides a single stream of execution, yet
they all share the same resources (i.e., they can access the same C#
objects). Each of the examples so far used only one thread, which is
started implicitly along with the application. Additional threads can be
started explicitly, as I will show soon. The point is that while a thread
may be waiting due to some blocking call, the others are free to
continue (unless they have run into blocking calls themselves).

Multithreading on a single processor is possible thanks to a system
service called a scheduler, which briefly stops the currently executing
thread of an application after each time slice (which is 20 milliseconds
on the .NET Micro Framework). The scheduler then decides which
thread to execute next. It switches among threads in a round-robin fash-
ion so that every thread gets its fair share of processing time. Switching
among threads occurs so frequently—50 times per second—that all
threads appear to run in parallel.

The scheduler knows which threads are blocked—waiting for some
condition to be satisfied—and it only schedules them once the condition
is established, e.g., the time for waiting has passed or an HTTP request
has arrived. If all threads are waiting, the scheduler built into the .NET
Micro Framework may put the hardware into a power-saving sleep mode.

122 Getting Started with the Internet of Things

Things get interesting when two threads need to work together, because
many problems can arise. In the next section, “Multithreading,” I will discuss
thread creation and communication among threads in more detail, including
the major causes of problems and a possible way to address them. After-
wards, in the section “ParallelBlinker,” I will provide a complete example.

Multithreading
Multithreading makes it possible for two or more activities to execute
in parallel on a single processor. In .NET, an object of type Thread in the
namespace System.Threading represents and controls one thread. Its
constructor takes a parameterless method as a parameter (a delegate—
see Chapter 11 for more details). This method will be executed later, once
the thread’s Start method is called.

In Example 13-1, thread1 will execute EvenActivity, and thread2 will
execute OddActivity. The main thread of the application is blocked forever
by calling Thread.Sleep(Timeout.Infinite) after the two new threads are
started.

Example 13-1. TwoThreads
using System.Threading;

using Microsoft.SPOT;

public class TwoThreads

{

 public static void Main()

 {

 var thread1 = new Thread(EvenActivity);

 var thread2 = new Thread(OddActivity);

 thread1.Start();

 thread2.Start();

 Thread.Sleep(Timeout.Infinite);

 }

 static void EvenActivity()

 {

 var x = 0; // even number

 while (true)

13/Going Parallel 123

 {

 Debug.Print(x.ToString());

 x = x + 2;

 Thread.Sleep(200);

 }

 }

 static void OddActivity()

 {

 var x = 1; // odd number

 while (true)

 {

 Debug.Print(" " + x);

 x = x + 2;

 Thread.Sleep(300);

 }

 }

}

EvenActivity contains an endless loop that prints out a sequence of
even numbers; OddActivity prints a sequence of odd numbers. The first
outputs of a run may look like this:

0

 1

2

4

 3

6

 5

8

10

 7

12

 9

14

16

 11

18

 13

20

22

 15

124 Getting Started with the Internet of Things

Even if one of the threads is sleeping (i.e., blocked), the other can execute.
This is the reason why I will use multiple threads later in ParallelBlinker
(Example 13-5).

Multithreading is so powerful that it gives you a lot of rope to hang yourself.
In the following two sections, I sketch the two most important pitfalls of
multithreading: race conditions and deadlocks. Just as Odysseus had to
find his way between Scylla and Charybdis, you’ll have to navigate between
these monsters. Without the right guidelines, you’ll run into one or both;
with the tricks I will show you later in this chapter, you can sail peacefully
between them. See Figure 13-1 for inspiration.

Figure 13-1. Beware of Scylla and Charybdis

Beware of Scylla: Race Conditions
If the result of a program depends on the timing of its parts, it can suffer
from race conditions. Consider the following statements:

int x = 1;

if (x != 1) { throw new Exception(); }

This code assigns the value 1 to variable x, and then checks whether x
has indeed become 1; otherwise, it throws an exception. Of course, there
should never be an exception because one of the most basic assumptions
in programming is that after an assignment x = value, the condition x ==
value is true.

13/Going Parallel 125

This solid ground turns into quicksand as soon as you use more than one
thread. Consider Example 13-2. It has a static variable x and two threads
that repeatedly modify x. One of them sets x to 0; the other sets it to 1.
Immediately after setting x, a thread checks whether x indeed has the
assigned value.

Example 13-2. TwoThreadsAtTheRaces
using System;

using System.Threading;

public class TwoThreadsAtTheRaces

{

 static int x;

 public static void Main()

 {

 var thread1 = new Thread(Activity1);

 var thread2 = new Thread(Activity2);

 thread1.Start();

 thread2.Start();

 Thread.Sleep(Timeout.Infinite);

 }

 static void Activity1()

 {

 while (true)

 {

 x = 0;

 if (x != 0) { throw new Exception(); }

 }

 }

 static void Activity2()

 {

 while (true)

 {

 x = 1;

126 Getting Started with the Internet of Things

 if (x != 1) { throw new Exception(); }

 }

 }

}

When you run this program, it will soon stop with an exception, either in
Activity1 or Activity2. Let’s assume it was Activity1. The explanation
is simple: the scheduler must have switched from Activity1 to Activity2
right after the statement x = 0. Activity2 then executed its loop a zillion
times, always setting x to 1 and verifying that it has indeed become 1,
until 20 milliseconds have passed. Then Activity1 resumes, by checking
whether x is 0, which it isn’t, so an exception is thrown. After the program
is started, it is only a matter of time until this exact scenario plays out.

Thus, the art lies in writing multithreaded programs that do not depend
on the vagaries of timing, and will therefore never produce random-
looking effects due to race conditions.

Shared variables like x in Example 13-2 are the source of the problem, but
you cannot always avoid using shared variables. Fortunately, there are
mechanisms to protect shared variables from uncoordinated accesses by
different threads.

In C#, the lock statement can be used to temporarily reserve some
variables for one thread, as shown in Example 13-3. The lock’s statement
sequence is called a critical section. If used correctly, locks make sure
that there is never more than one thread executing until the completion of
a critical section. For example, if thread X is in this critical section:

lock (monitor) { critical section }

and thread Y tries to enter the same critical section by calling lock
(monitor), then thread Y is blocked until X has left the critical section.
From then on, Y is free to continue, locking the critical section for itself.

The lock statement requires an object reference as an argument. I create a
monitor object solely for this purpose. It is not marked as public; this is to
ensure that no other class is able to provoke a deadlock (see the following
section).

13/Going Parallel 127

Example 13-3. TwoThreadsInTheLocks
using System;

using System.Threading;

public class TwoThreadsInTheLocks

{

 static int x = 0;

 static object monitor = new object();

 public static void Main()

 {

 var thread1 = new Thread(Activity1);

 var thread2 = new Thread(Activity2);

 thread1.Start();

 thread2.Start();

 Thread.Sleep(Timeout.Infinite);

 }

 static void Activity1()

 {

 while (true)

 {

 lock (monitor)

 {

 x = 0;

 if (x != 0) { throw new Exception(); }

 }

 }

 }

 static void Activity2()

 {

 while (true)

 {

 lock (monitor)

128 Getting Started with the Internet of Things

 {

 x = 1;

 if (x != 1) { throw new Exception(); }

 }

 }

 }

}

If you run this program, it will not end up in an exception. Reconsider our
scenario from earlier: Activity1 has just executed x = 0 right before the
current time slice has elapsed. The scheduler switches to Activity2.
Activity2 calls lock(monitor). Since Activity1 has already locked the
critical section guarded by monitor, the scheduler backs off and gives
control to another thread. Since Activity1 is the only other thread ready
to be executed, Activity1 regains control and continues. The test x != 0
yields false, since Activity2 never had the chance to change x to 1.
No exception is thrown. And so on.

Thus the rules for avoiding race conditions are:

1. Protect all shared variables by using locks.

2. Minimize the danger of overlooking such variables by minimizing the
number of variables visible to multiple threads.

3. Keep critical sections as short as possible.

4. Perform as few method calls as possible in critical sections. In particular,
don't call any method that may block. Which leads us to Charybdis…

Beware of Charybdis: Deadlocks
Locking keeps you away from the Scylla called race conditions. Beware
that it doesn’t drive you into the arms of the Charybdis: deadlock.

Consider two threads X and Y that both need access to the same two
variables, variableA and variableB. One set is protected by monitorA, the
other by monitorB. Thread X contains the following code:

lock (monitorA)

{

 lock (monitorB)

13/Going Parallel 129

 {

 // now use variableA and variableB

 }

}

Thread Y, on the other hand, contains this code:

lock (monitorB)

{

 lock (monitorA)

 {

 // now use variableA and variableB

 }

}

If it now happens—and eventually it probably will—that thread X has locked
monitorA but the scheduler passes control to thread Y right afterwards, Y
locks monitorB and proceeds to lock monitorA. Because X already locked
monitorA, Y is blocked, and the scheduler tries to find another thread ready
to be executed. X is ready, and it proceeds by trying to lock monitorB.
Because Y already locked monitorB, X is blocked, and the scheduler needs
to find yet another thread ready to be executed—only there isn’t one left. X
and Y have ended up in a deadlock, where each one can proceed only if the
other proceeds.

If both threads had tried to lock monitorA first and monitorB second (or
the other way around), the problem wouldn’t occur. However, in large
applications, it becomes very difficult to guarantee the same sequence
of locking in all places, particularly if the thread crisscrosses different
methods—of your own code and library code—or calls delegates where
you don’t know beforehand what code they will be bound to, etc. Any
blocking call may internally use some lock that is invisible to you.

The solution: if possible, avoid using multiple locks; instead, use one “big”
global lock. If there exists only one lock, there cannot be deadlocks.

Stay in Calmer Waters: Actors
Too little locking provokes race conditions; too much locking provokes
deadlocks. One discipline for staying in the calm(er) waters between
Scylla and Charybdis is to limit interaction among threads to a mecha-
nism that hides all the locking. Such a thread may access only its own

130 Getting Started with the Internet of Things

variables. Where it needs to cooperate with other threads, it puts mes-
sages into buffers or gets messages from buffers. These buffers are
implemented in library classes that perform all necessary locking. Here
are the golden rules of this programming style:

 » “My state is my castle”

The objects of an application are assigned to actors so that every
object belongs to exactly one actor. An actor is itself an object that
has its own thread. This thread must access only objects of its own
actor, thereby avoiding any interference among threads. Ideally, the
objects of an actor are encapsulated within the actor object, making
them invisible to other actors and their threads. With this scheme, no
race conditions or deadlocks can occur. A “castle” is a good analogy
because the subjects of a castle live within the castle walls—or at least
on grounds that clearly belong to the castle.

 » “I stay in my castle”

An actor and its objects must not have references to anything that does
not belong to this actor exclusively. If you cannot avoid calling system
libraries, make sure that they cannot cause you to stray outside of your
castle inadvertently.

 » “I communicate through letters”

As an exception to the “I stay in my castle” rule, buffers implemented
by a trusted system library may be used by several actors. An actor
may contain references to such buffers, and it may put messages to or
get messages from them. Unlike actors, buffers don’t have their own
threads, but they internally perform locking such that parallel access by
several actors is safe. Buffers are the glue between actors, channeling
the flow of data between them.

 » “I fire and forget”

An actor must not keep any references to data that it has put into a
buffer. If it needs to keep the data, it puts an independent copy of all
the data in the buffer. Otherwise, there would suddenly be two actors
that—directly or indirectly—refer to the same object, thereby violat-

13/Going Parallel 131

ing the “I stay in my castle” rule (and thus are bound to produce race
conditions). Think of putting a message into a buffer as a
complete handover of the message and all its contents.

The program structure of such an actor program looks as shown in
Example 13-4.

Example 13-4. Common actor program outline
// using directives

public class MyApplication

{

 public static void Main()

 {

 // buffers for the communication between actors

 // create and set up threadsafe buffers

 // actor 1, e.g., an actor that samples sensor S1

 // create and set up actor and its helper objects

 // actor 2, e.g., an actor that samples sensors S2 and S3

 // create and set up actor and its helper objects

…

 // actor n, e.g., an actor that controls actuator A3

 // create and set up actor and its helper objects

 // web interface

 // create and set up actor that implements a web interface

 // start threads for actors 1 to n

 // use main thread for web actor

 }

}

The main challenge here is to make sure that it always remains clear
which objects belong to which actor. This is necessary to guarantee that
an actor always touches only its own objects, or the threadsafe buffers.

132 Getting Started with the Internet of Things

ParallelBlinker
ParallelBlinker is a complete example with one actor called blinker that
periodically blinks the onboard LED, and another called webServer that
handles HTTP requests. Once running, both actors, shown in Figure 13-2,
communicate only through the buffer variable. It is the boundary between
the two actors.

Figure 13-2. Architecture of ParallelBlinker

The complete program is given in Example 13-5.

Example 13-5. ParallelBlinker
using System.Threading;

using Gsiot.Server;

using Microsoft.SPOT.Hardware;

using SecretLabs.NETMF.Hardware.NetduinoPlus;

public class ParallelBlinker

{

 public static void Main()

13/Going Parallel 133

 {

 var buffer = new Buffer { };

 var blinker = new Blinker { SourceBuffer = buffer };

 var webServer = new HttpServer

 {

 RelayDomain = "gsiot-FFMQ-TTD5",

 RelaySecretKey =

 "o5fIIZS5tpD2A4Zp87CoKNUsSpIEJZrV5rNjpg89",

 RequestRouting =

 {

 {

 "PUT /blinkingPeriod/target",

 new ManipulatedVariable

 {

 FromHttpRequest =

 CSharpRepresentation.TryDeserializeInt,

 ToActuator = buffer.HandlePut

 }.HandleRequest

 },

 {

 "GET /blinkingPeriod/target.html",

 HandleBlinkTargetHtml

 }

 }

 };

 var blinkerThread = new Thread(blinker.Run);

 blinkerThread.Start();

 webServer.Run();

 }

 static void HandleBlinkTargetHtml(RequestHandlerContext context)

 {

 string requestUri =

 context.BuildRequestUri("/blinkingPeriod/target");

 var script =

 @"<html>

 <head>

 <script type=""text/javascript"">

 var r;

 try {

134 Getting Started with the Internet of Things

 r = new XMLHttpRequest();

 } catch (e) {

 r = new ActiveXObject(‘Microsoft.XMLHTTP’);

 }

 function put (content) {

 r.open(‘PUT’, ‘" + requestUri + @"’);

 r.setRequestHeader(""ContentType"",

 ""text/plain"");

 r.send(document.getElementById(""period"").

 value);

 }

 </script>

 </head>

 <body>

 <p>

 <input type=""text"" value=""500"" id=""period"">

 <input

 type=""button"" value=""Set""

 onclick=""put()""/>

 </p>

 </body>

 </html>";

 context.SetResponse(script, "text/html");

 }

}

public class Blinker

{

 public Buffer SourceBuffer { get; set; }

 public void Run()

 {

 var ledPort = new OutputPort(Pins.ONBOARD_LED, false);

 var period = 500;

 var on = true;

 while (true)

 {

 Thread.Sleep(period / 2);

 object setpoint = SourceBuffer.HandleGet();

 if (setpoint != null)

13/Going Parallel 135

 {

 period = (int)setpoint;

 period = period > 10000 ? 10000 : period;

 period = period < 20 ? 20 : period;

 }

 on = !on;

 ledPort.Write(on);

 }

 }

}

We only need one buffer, which is used to communicate a new setpoint (see
Chapter 12) for the blinking period to the blinker actor. The Buffer type
(from namespace Gsiot.Server) is a simple buffer where one actor calls
HandlePut to put a new setpoint in it, and another actor calls HandleGet to
retrieve it from there. When a new setpoint is put in the buffer, it overwrites
any old value that was put there earlier.

Since a new blinking period is a setpoint for the blinker object, we
use a ManipulatedVariable for representing the blinking period, with
the URI /blinkingPeriod/target. We assume that this is an integer
value represented as plain text, so we can use CSharpRepresentation.
TryDeserializeInt for the conversion from an HTTP message body
to a C# object. Once such a conversion has happened, the resulting
object is put in the buffer by calling buffer.HandlePut.

The Blinker class has one property, SourceBuffer, which is its reference
to the buffer. It treats it as a source, since this is where the new setpoints
come from. Whenever the blinker thread awakens, it tries to get a new
setpoint from this buffer. If there is one, it converts it to an integer value
and makes sure that the value is not larger than 10,000 and not smaller
than 20 (these are completely arbitrary values; you would probably use
different ones). Then the state of the LED is toggled.

As a user interface for the program, ParallelBlinker supports a resource
/blinkingPeriod/target.html, which returns a web page where you can
type in a target value for the blinking period.

136 Getting Started with the Internet of Things

What You Should Know
About Multithreading
Using multithreading is simple. Using it correctly isn’t. It's like a sword
that consists of only a sharp, double-edged blade and no handle: it cuts
anything, and usually starts by cutting the one who carries it. I have
briefly explained race conditions and deadlocks, but there are even more
subtle issues with strange names such as livelock, fairness, starvation,
and—worst of all—memory models.

Your program may reliably work on the current version of a .NET
implementation even if it contains multithreading errors. But those
errors might break things on another .NET implementation, on the next
release of the same implementation, or even on the same .NET
implementation executed on another processor architecture. So you
can sometimes get away with code that contains minor errors at first,
but you’ll run into trouble eventually.

There seem to exist hardly any multithreaded programs that are fully
correct. Even experts often make mistakes. Debugging is almost
impossible, since problems often cannot be reproduced. This highly
annoying nondeterminism of parallel programs has its roots in the
modification of shared state by multiple threads. To reduce the
likelihood for trouble, you must minimize the number of different
threads and the number of shared variables.

The simple actor programming style I have used in this chapter should
keep you away from trouble. It isolates shared state by keeping it in buffers,
which are provided by my (hopefully correct) Gsiot.Server.Buffer class.
Using a thread for every actor is not the most efficient implementation of
an actor model, but it can be reasonable for a small number of actors.

If you want to use threads in more aggressive ways, I recommend that
you first study the .NET-related parts of Joe Duffy’s book, Concurrent
Programming on Windows (Addison-Wesley).

137

14/Where Can I Go
from Here?

The title of this book is Getting Started with the Internet of Things, and I
hope that it did help you take the first steps. You may now be wondering
where to go next. In this chapter, I compiled some things that might be of
interest to you.

Recipes for Modifying a Server
Now that you have seen several example servers for monitoring sensors
and for controlling actuators, it's possible to make various changes to
such a server (illustrated in Figure 14-1). I mainly discuss sensors and
measured variables, but actuators and manipulated variables can be
handled in the same way (if not stated otherwise).

Figure 14-1. Various ways to change a server

138 Getting Started with the Internet of Things

Changing the Pin Assignment of a Sensor
If you have moved a physical sensor from one pin to another, go to the
corresponding sensor object and change the pin. For example, if you want
to move the potentiometer of Example 11-1, VoltageMonitor, one pin
position to the right, change the InputPin property of voltageSensor from
Pins.GPIO_PIN_A1 to Pins.GPIO_PIN_A2. (And for this example, don’t
forget to move highPort and lowPort as well, or use other ways to provide
power and ground to the potentiometer.) The pins of the Netduino Plus that
are accessible through connectors are listed in Table 2-1 in Chapter 2.

Changing the URI of a Measured Variable
If you want to change the particular URI of a measured variable, go to the
webServer object in the Main method and change the request pattern for
the variable, e.g., from "GET /voltage/actual" to "GET /potentiometer/
actual".

Adding a New Measured Variable
If you want to add a new measured variable, go to the Main method, add
a new sensor variable, and then add a corresponding MeasuredVariable
object to the server object.

For example, add a variable:

var garageDoorSensor = new DigitalSensor

{

 InputPin = Pins.GPIO_PIN_D0

};

and then the measured variable:

var webServer = new HttpServer

{

 RelayDomain = "gsiot-FFMQ-TTD5",

 RelaySecretKey = "o5fIIZS5tpD2A4Zp87CoKNUsSpIEJZrV5rNjpg89",

 RequestRouting =

 {

 {

 "GET /voltage/actual",

 new MeasuredVariable

14/Where Can I Go from Here? 139

 {

 FromSensor = voltageSensor.HandleGet

 }.HandleRequest

 },

 {

 "/garageDoor/actual",

 new MeasuredVariable

 {

 FromSensor = garageDoorSensor.HandleGet

 }.HandleRequest

 }

 }

};

Adding a New Type of Sensor
If you want to add a measured variable for an entirely new type of sensor
that is not already provided by Gsiot.Server, you need to develop your
own sensor class. For example, an analog sensor for voltage values that
uses the same trick for providing power and ground, as shown in Chapter 3,
could look like this:

public class MySpecialPotentiometerSensor

{

 public Cpu.Pin InputPin { get; set; }

 public Cpu.Pin LowOutputPin { get; set; }

 public Cpu.Pin HighOutputPin { get; set; }

 AnalogInput voltagePort;

 OutputPort lowPort;

 OutputPort highPort;

 const double maxVoltage = 3.3;

 const int maxAdcValue = 1023;

 public void Open()

 {

 voltagePort = new AnalogInput(InputPin);

 lowPort = new OutputPort(LowOutputPin, false);

 highPort = new OutputPort(HighOutputPin, true);

 }

140 Getting Started with the Internet of Things

 public object HandleGet()

 {

 if (voltagePort == null) { Open(); }

 int rawValue = voltagePort.Read();

 double value = (rawValue * maxVoltage) / maxAdcValue;

 return value;

 }

}

You could pack your sensor and actuator classes in a separate driver
library or simply add them after the application program:

// using directives

public class MyApplication

{

 public static void Main()

 {

 // create and initialize buffer, sensor, actuator objects

 var webServer = new HttpServer

 {

 …

 };

 // create and start threads

 webServer.Run();

 }

}

public class MySpecialPotentiometerSensor

{

 …

}

// other sensor or actuator classes

When designing a sensor class, the only requirement is that it provides
some public method that has no parameters and returns a sample of type
object. As a convention, it is called HandleGet. As a further convention,
configuration parameters are provided as properties and, if necessary, a
parameterless method Open is provided for initialization.

14/Where Can I Go from Here? 141

NOTE:� Actuators provide a method HandlePut.

You still face a tough design challenge: which properties should your
driver objects expose for configuration purposes? The temptation is to
provide properties for all conceivable circumstances, thereby committing
design overkill.

My recommendation is to start with only those properties that you
definitely need. If you keep the class small, it will be easy to extend if and
when necessary. Once it has gotten too large, it tends to become difficult
to strip down to something smaller again. So, keep your driver classes as
simple and small as possible. The limited code space of a Netduino Plus is
of course another incentive to keep things small.

Adding a New Kind of Resource
If you want to add a resource that is neither a measured variable nor a ma-
nipulated variable, you have to provide a request handler for it. This can be a
class with arbitrary configuration properties and a HandleRequest method,
more or less similar to MeasuredVariable and Manipulated Variable. An
instance of such a class can handle more than one resource—e.g., a hypo-
thetical Feed class might support a resource for the actual value, several
resources for the feed history, a resource that describes the feed, etc.
Because these resources all have different URIs, a request handler can also
be regarded as an interpreter for a special-purpose URI language.

If you do not need any configuration state for a request handler, you
don’t have to provide a class. A simple method is sufficient, as shown in
the following example that assumes the request pattern "* /*", which
matches any request:

static void HandleGetAbout(RequestHandlerContext context)

{

 if (context.RequestUri == "/about")

 {

 if (context.RequestMethod == "GET")

 {

 var s = "This is a device programmed in C#";

 context.SetResponse(s, "text/plain");

 }

 else

142 Getting Started with the Internet of Things

 {

 context.ResponseStatusCode = 405; // MethodNotAllowed

 }

 }

 else if (context.RequestUri == "/about.html")

 {

 if (context.RequestMethod == "GET")

 {

 var s =

 @"<html>

 This is a device programmed in

 C#

 </html>";

 context.SetResponse(s, "text/html");

 }

 else

 {

 context.ResponseStatusCode = 405; // MethodNotAllowed

 }

 }

}

Supporting a New Representation
for a Measured Variable
So far, I have only used the default CSharpRepresentation class for
converting between HTTP message bodies and C# objects. Obviously,
there is a need to support other representations. My simple server library
supports text representations such as plain text (text/plain), comma-
separated value lists (text/csv), HTML (text/html), XML (application/
xml), JSON (application/json), and similar formats.

For example, you might use the following (optional) initializer to provide a
more browser-friendly representation, assuming you have written a suit-
able class HtmlRepresentation:

{

 "GET /voltage/actual",

 new MeasuredVariable

 {

 FromSensor = voltageSensor.HandleGet,

 ToHttpRequest = HtmlRepresentation.Serialize

14/Where Can I Go from Here? 143

 }.HandleRequest

}

If you studied the section “Inside Gsiot.Server’s MeasuredVariable
Class” in Chapter 11, you may have noticed that I presented a somewhat
simplified version, without a ToHttpRequest property. Likewise, some
other classes in Gsiot.Server also have a few additional features not
used in the examples, though they’re explained in Appendix C.

Replacing the Server Implementation
The server in my Gsiot.Server library is very simple and still quite flexible.
If its flexibility is not sufficient, another server can replace it, as long as the
new one also supports RequestHandler delegates in some way.

Server Versus Client?
When to Push, When to Pull?
You may have asked yourself, “When should I program a device as a
server, and when as a client?” Should you push samples to a server, as
with the Pachube clients in Part II, or should you have clients pull samples
from your device as a server, as in Part III? There is no hard and fast rule
for this decision. There are good arguments for both approaches, and
your particular situation usually determines which way the scales tip.

Making the device a client is an obvious choice if someone must be noti-
fied without any delay whenever the device detects some alarm condition.
Making the device a server is an obvious choice if a user must be able to
control an actuator, or the device’s configuration, without any delay. If
both of these things are required simultaneously, the device should be
both client and server at the same time.

Making a device both client and server is perfectly possible. However,
this can be a rather heavy burden for a small device. Fortunately, the
requirements are usually less stringent. After all, the Internet does not
guarantee that it delivers every message, let alone the maximum time
that a delivery takes. So a hard real-time maximum duration for the
delivery of measurements, alarms, commands, or new configurations
cannot be expected anyway. This means that you often have the choice
to make a device either client or server. In many cases, a closer look at
the specific circumstances will lead to a clear preference for one or the

144 Getting Started with the Internet of Things

other solution. For example, the costs for data communication over a
mobile phone connection could make the push approach so expensive
that it becomes unattractive. On the other hand, a battery-powered
device may drain the battery too quickly if it runs a server that is
always “on.”

If there is still no clear winner, you can comfortably decide based on
which approach is simpler to implement and takes fewer resources on
the device. Maybe surprisingly, the “device as HTTP client” approach is
often more cumbersome and bulky than the “device as HTTP server”
approach. This has to do with the fact that an HTTP server is king over
its resources. To exaggerate somewhat: a client can only plea by sending
a request; the server decides whether it likes the request and how it will
respond. The client has to be prepared for a whole set of possible server
responses. For example, the server’s response to a GET request may
be “go look somewhere else for this resource” by setting the response
status code to 301 Moved Permanently or a related status code (HTTP
redirection). Then, the client has to repeat the request with a different
URI. It can be quite tricky to implement a client that correctly responds
to all possible server responses.

Taking a REST
When you start designing your own Internet of Things application, in
particular your own on-device web service, there will come a time when
you wonder, “But is this a good design?” As the Web has shown, its
underlying REST principles are a solid basis for good Internet
applications. The core idea of REST is simple:

Access resources by sending HTTP messages that contain appro-
priate representations.

When you design a RESTful web service interface, the meat of your
design work should not be in designing the URIs of the resources, but in
designing the representations of the resources (see Chapter 4). Ideally,
you can use an already existing, standardized representation such as
HTML or the ATOM format that is used for many RSS feeds. Sometimes
you will have to design your own representation. Then, it helps to base
your representation on existing conventions, e.g., by using a comma-
separated value format, or JSON for more complicated data. Someone
who knows HTTP, plus the resource URIs of your service, should only
have to learn about the representations to be used in HTTP requests
and responses. While this sounds simple, for most people it takes some
getting used to. It certainly did for me, but it was worthwhile.

14/Where Can I Go from Here? 145

Communities
Reading books is one way to learn about things—participating in
communities is another. For the Netduino Plus, there is a very active
online community at http://forums.netduino.com/. It is friendly toward
newbies and a great place to learn by reading about other people’s
projects. You can also allow others to learn from your experiences by
writing about your own projects.

A NETMF online community that is not dedicated to a particular hardware
platform is Microsoft’s site, http://www.netmf.com. The Microsoft engineers
who created NETMF are involved in this site, along with many other users.

Another NETMF community, for the users of hardware from GHI Electronics
(see the next section), is at http://www.tinyclr.com/.

Other Hardware
For the examples in this book, I have used little more than the onboard
hardware of a Netduino Plus, plus a tacked-on potentiometer, so that we
could concentrate on the core topic: namely, the interaction of devices over
the Internet. But after taking the first steps, there are additional things you
may want to do—for example, to attach other sensors and actuators to
your Netduino Plus, to use other communication channels such as serial
connections, or to use more powerful processors than what the Netduino
Plus provides. In this section, I give an overview of the various possibilities
that you have.

Sensors, Actuators, and Other Hardware Extensions
Most interfaces for simple sensors boil down to measuring electrical volt-
ages or electrical currents. Interfaces for more complex sensors typically
provide some kind of serial connections, using a variety of protocols.
For example, you can obtain location data from most GPS modules in
the text-based NMEA protocol (http://www.gpsinformation.org/dale/
nmea.htm). In any case, it may be possible to attach a sensor (or actua-
tor) to your Netduino Plus by directly inserting wires into the connectors
on the board, by plugging a shield into these connectors, or by leading
wires from these connectors to a breakout board into which you can
stick all kinds of electrical circuits (no soldering needed!). For example,
I stuck the potentiometer of Chapter 3 directly into the Netduino Plus
connectors. If it hadn’t fit those connectors, I would have used a bread-

http://forums.netduino.com/
http://www.netmf.com
http://www.tinyclr.com/
http://www.gpsinformation.org/dale/nmea.htm
http://www.gpsinformation.org/dale/nmea.htm

146 Getting Started with the Internet of Things

board or the MakerShield (http://www.makershed.com/ProductDetails.
asp?ProductCode=MSMS01).

The Netduino Plus connectors are compatible, mechanically and
electrically, with those of the popular Arduino. This means that many
Arduino-compatible shields are hardware-compatible with the Netduino
Plus. For software compatibility, some kind of driver is often needed.
One of the great advantages of NETMF is that it provides simple object-
oriented hardware abstractions, like the InputPort and OutputPort
classes for GPIOs, which can be used for writing your own driver in C#.
Various drivers for Arduino shields have been written by the Netduino
community. You can view the list of compatible shields at http://forums.
netduino.com/index.php?/forum/4-netduino/.

Different Processor Boards
The Netduino board family is a great platform for applications where
low cost per device is important and where the available memory is
sufficient. However, Netduinos are by no means the only game in town.
Even assuming that you want to stay with the .NET Micro Framework,
there are various other boards available.

An example of a medium-performance board is the EMX Development
System (http://www.ghielectronics.com/catalog/product/129) from GHI
Electronics. This board features 16 MB of RAM, a 72 MHz ARM 7 micro-
controller, Ethernet, 320 x 240 pixel LCD screen, a battery-backed real-
time clock, plus various extension ports. GHI Electronics also sells several
lower-cost boards, called FEZ products (http://www.ghielectronics.com/
catalog/category/37/).

An example of a high-performance board is the Topaz i.MX25
(http://devicesolutions.net/Products/TopaziMX25DevelopmentKit.aspx)
from Device Solutions. This board features 64 MB of RAM, a 400 MHz
ARM 9 processor, Ethernet, and much more.

Other NETMF-compatible products can be found in the hardware show-
case at http://www.netmf.com. This broad spectrum of capabilities at
different price points makes NETMF very attractive from the perspective
of hardware choices.

http://www.makershed.com/ProductDetails.asp?ProductCode=MSMS01
http://www.makershed.com/ProductDetails.asp?ProductCode=MSMS01
http://forums.netduino.com/index.php?/forum/4-netduino/
http://forums.netduino.com/index.php?/forum/4-netduino/
http://www.ghielectronics.com/catalog/product/129
http://www.ghielectronics.com/catalog/category/37/
http://www.ghielectronics.com/catalog/category/37/
http://www.netmf.com

14/Where Can I Go from Here? 147

Porting the .NET Micro Framework
One question that inevitably comes up during discussions of NETMF
hardware is, “Can I port NETMF to hardware X myself?” If you have
the necessary expertise, you could indeed do this, because everything
needed is open source. But beware: this is nontrivial, and requires both
hardware and firmware experience.

Nevertheless, to give you at least an idea of what is involved, I’ve provided
a short summary. To do a complete port for a new core, three steps are
required:

 » New core

Let’s assume that you want to support a processor core for which
there is no NETMF port available. For example, at the time of this
writing, there is no NETMF port available for the increasingly popular
ARM Cortex-M3 core. First, you need to start with Microsoft’s sources,
choose a suitable C/C++ compiler for this core, and select a develop-
ment board with debugging support. The main challenges here are
the core initializations: interrupts, reset and error handling, caches,
memory management units, etc.

 » Same core, new chip

You cannot buy a core by itself—you always buy a complete chip. For
example, you can buy the STMicroelectronics STM32F217VG micro-
controller, which contains a Cortex-M3 core. Then, you take the existing
core software described above and develop drivers for the peripherals
of the microcontroller: digital inputs and outputs (GPIO); analog inputs
and outputs; various serial communication interfaces and buses, from
UARTs to USB and maybe even Ethernet; internal Flash; external RAM;
power management; real-time clock; timers; LCD with or without touch
screen support; camera interfaces; and so on. These drivers form the
hardware-abstraction layer of NETMF.

 » Same chip, new board

If you buy a board with a chip for which you already have the necessary
drivers and core software, all you need to do is to configure it for this
particular board. Basically, this means specifying how much memory
is available at which addresses, and which peripherals are attached to

148 Getting Started with the Internet of Things

which pins. Programming is only required if you have to write high-level
drivers for interfacing with other components on the board, e.g., with a
serial Flash chip, or with a WiFi or GPS module.

If you already have experience with embedded programming and know
NETMF well, a few weeks or even days might be sufficient for the “same
chip, new board” step. However, if you have to go through all three steps,
it will take you about half a year of full-time work (assuming you are an
experienced embedded developer).

You might even develop your own board, ideally using the “same chip,
new board” approach. For example, you may start with the open source
Netduino Plus schematics, board layout, and NETMF port
(http://www.netduino.com/downloads/).

The Sky Is the Limit
Today, the Internet of Things is in an embryonic state. No one knows
how it will evolve, what applications will become successful, and which
ideas will collapse. This is the time for makers, for trying out projects that
nobody else has thought of yet. As Figure 14-2 illustrates, you can boldly
go where no developer has gone before!

Figure 14-2. The sky is the limit!

http://www.netduino.com/downloads/

149

A/Test Server

For testing applications that send or receive HTTP messages, i.e., HTTP
clients, you can use suitable tools for logging HTTP traffic, such as Wire-
shark (http://www.wireshark.org/) or Fiddler (http://www.fiddler2.com/).
However, before issuing HTTP requests to a real web service out in the
wild, you may want to know beforehand exactly what you would send. A
simple test server is often all that you need. You run your client program
(e.g., SimplePutRequest, Example 7-1), on your Netduino Plus, and you
run a .NET test server that logs an incoming request on your development
PC.

In your client program for the Netduino Plus, change the request URI to
something like this:

http://192.168.5.100:8080/testHello

but replace 192.168.5.100 with the Internet address of your PC. You can
find this address by following these steps on Windows:

1. Start the command prompt application at Start➝All
Programs➝Accessories➝Command Prompt.

2. Type in the string ipconfig, and then press Enter.

In the resulting output, your PC’s Internet address is called IP Address.

To view the IP address on the Mac, open System Preferences, click
Network, and select an active (green) network adapter. On Linux, you can
open a Terminal and use the ipconfig command to view IP addresses for
your network adapters.

A simple test server (Example A-1) receives HTTP requests and writes
them to a console window. The response that it sends back to the client
has status code 200 (OK).

NOTE:� This code won’t run on a Netduino Plus. You’ll have to run it on
Windows using .NET, or on Mac OS X or Linux using Mono. Mono is an
open source implementation of .NET that runs on several platforms.

http://www.wireshark.org/
http://www.fiddler2.com/

150 Getting Started with the Internet of Things

Example A-1. TestServer
using System;

using System.IO;

using System.Net;

class TestServer

{

 static void Main()

 {

 var httpPort = new HttpListener();

 // handle every request that has a request URI starting

 // with "http://" and ending with ":8080/", i.e., anything

 // addressed to port 8080

 httpPort.Prefixes.Add("http://+:8080/");

 httpPort.Start();

 while (true)

 {

 try

 {

 HttpListenerContext context = httpPort.GetContext();

 LogRequest(context.Request);

 HandleRequest(context);

 context.Response.Close();

 }

 catch (Exception e)

 {

 Console.WriteLine(e.ToString());

 }

 }

 }

 static void HandleRequest(HttpListenerContext context)

 {

 context.Response.StatusCode = (int)HttpStatusCode.OK;

 // set up an appropriate content if necessary

 }

A/Test Server 151

 static void LogRequest(HttpListenerRequest request)

 {

 // request line

 Console.WriteLine(request.HttpMethod + " " +

 request.RawUrl + " " +

 "HTTP/" + request.ProtocolVersion);

 // request headers

 foreach (String name in request.Headers)

 {

 Console.WriteLine(name + ": " + request.Headers[name]);

 }

 // request body

 Console.WriteLine();

 var buffer = new byte[request.ContentLength64];

 Stream stream = request.InputStream;

 int toRead = buffer.Length;

 while (toRead > 0)

 {

 // already read: buffer.Length toRead

 int read = stream.Read(buffer, buffer.Length toRead,

 toRead);

 toRead = toRead read;

 }

 Console.WriteLine(request.ContentEncoding.GetString(buffer));

 }

}

This TestServer utility program is actually a true web server, using the
server-side classes of the System.Net namespace, in particular
HttpListener, HttpListenerRequest, and HttpListenerResponse.

NOTE:� When you build TestServer, make sure that it is compiled as a
Console application for the full .NET Framework, not for NETMF!

152 Getting Started with the Internet of Things

Open port 8080 in your PC’s firewall. To do this on Windows:

1. Select Start➝Control Panel.

2. In the Control Panel, click on Windows Firewall (on Windows 7, you’ll find
this under “System and Security”).

3. In the Windows Firewall dialog box, click on the Exceptions tab
(on Windows 7, click Advanced Settings).

4. In the Exceptions tab, click on the button Add Port (on Windows 7, first
left-click and then right-click Inbound Rules, choose New Rule, then
select Port and click Next).

5. In the “Add a Port” dialog box, enter a name in the Name field, and enter
8080 in the Port number field. Make sure that TCP is selected. Then click
the OK button. (On Windows 7, the Name field doesn’t appear until the
last step; choose TCP and type the port number, click Next, select “Allow
the Connection”, and click Next again.)

6. By clicking on the Change Scope button, you can limit incoming requests
to your home network by selecting “My network (subnet) only”. (On
Windows 7, you can choose to activate it on any combination of Domain,
Private, and Public networks.)

7. Start TestServer before the client sends an HTTP message.

If you don’t open port 8080 as described above, the client program will
run into an exception with the 10053 socket error code. This is because
the firewall prevents it from opening a connection to TestServer.

If everything works, you should see the request sent by your Netduino
Plus on your PC, in a console or Terminal window.

153

B/ .NET Classes Used
in the Examples

The following tables list the classes used in the NETMF examples, with
their respective namespaces and assemblies.

Table B-1 gives the classes Microsoft created for .NET or the .NET Micro
Framework.

Table B-1. .NET Micro Framework classes

Class Namespace Assembly

AddressFamily System.Net.Sockets System.dll

Cpu Microsoft.SPOT.Hardware Microsoft.SPOT.Hardware.dll

DateTime System mscorlib.dll

Debug Microsoft.SPOT Microsoft.SPOT.Native.dll

Dns System.Net System.dll

Encoding System.Text System.dll

HttpWebRequest System.Net System.Http.dll

HttpWebResponse System.Net System.Http.dll

InputPort Microsoft.SPOT.Hardware Microsoft.SPOT.Hardware.dll

IPAddress System.Net System.dll

IPEndPoint System.Net System.dll

IPHostEntry System.Net System.dll

OutputPort Microsoft.SPOT.Hardware Microsoft.SPOT.Hardware.dll

Port Microsoft.SPOT.Hardware Microsoft.SPOT.Hardware.dll

ProtocolType System.Net.Sockets System.dll

Socket System.Net.Sockets System.dll

SocketException System.Net.Sockets System.dll

SocketOptionLevel System.Net.Sockets System.dll

SocketOptionName System.Net.Sockets System.dll

SocketType System.Net.Sockets System.dll

Stream System.IO mscorlib.dll

Thread System.Threading mscorlib.dll

TimeSpan System mscorlib.dll

WebRequest System.Net System.Http.dll

154 Getting Started with the Internet of Things

Secret Labs has created the following classes for their hardware, listed in
Table B-2.

Table B-2. Classes specific to the Netduino Plus

Class Namespace Assembly

AnalogInput SecretLabs.NETMF.
Hardware

SecretLabs.NETMF.
Hardware.dll

Pins SecretLabs.NETMF.
Hardware.Netduino-
Plus

SecretLabs.NETMF.
Hardware.Netduino-
Plus.dll

Table B-3 lists the classes I created for this book.

Table B-3. Classes specific to this book

Class Namespace Assembly

Buffer Gsiot.Server Gsiot.Server.dll

CSharpRepresentation Gsiot.Server Gsiot.Server.dll

DigitalActuator Gsiot.Server Gsiot.Server.dll

DigitalSensor Gsiot.Server Gsiot.Server.dll

HttpServer Gsiot.Server Gsiot.Server.dll

ManipulatedVariable Gsiot.Server Gsiot.Server.dll

MeasuredVariable Gsiot.Server Gsiot.Server.dll

PachubeClient Gsiot.PachubeClient Gsiot.PachubeClient.dll

RequestHandler
Context

Gsiot.Server Gsiot.Server.dll

155

C/Gsiot .Server Library

Here is a summary of the Gsiot.Server library interface. All items
described below can be found in namespace Gsiot.Server, which is
implemented in Gsiot.Server.dll.

HTTP Server

Class HttpServer
An instance of class HttpServer represents a web service that handles
HTTP requests at a particular port, or uses a relay server to make the
service accessible even without a public Internet address:

public class HttpServer

{

 public int Port { get; set; }

 public string RelayHost { get; set; }

 public string RelayDomain { get; set; }

 public string RelaySecretKey { get; set; }

 public RequestRouting RequestRouting { get; set; }

 public void Open();

 public void Run();

}

 » int Port

Optional property that is set to 80 by default. If the server does not use
a relay (see RelayDomain), this property indicates the port for which the
server handles incoming HTTP requests.

156 Getting Started with the Internet of Things

 » string RelayHost

Optional property, which is set to try.yaler.net by default. If the server
uses a relay, this property indicates the address of the relay. If the server
does not use a relay (see RelayDomain below), this property is ignored.

 » string RelayDomain

Optional property, which determines whether a relay is used, and if one is
used, what domain name is registered at the relay. By default, it is null,
i.e., no relay is used.

 » string RelaySecretKey

Mandatory property if a relay is used. The key is used for authenticating
the device at the relay. The secret key is never sent over the network. If
the server does not use a relay (see RelayDomain above), this property
is ignored.

 » RequestRouting RequestRouting

Mandatory property. At least one request routing element should be
added to this property to support at least one request URI.

 » void Open()

This method completes the initialization of the server. If a relay is used,
it performs the first registration of the device at the relay. Before it is
called, the server properties must have been set up. Normally, you don’t
need to call this method, since it is called by Run if necessary.

 » void Run()

This method calls Open if it was not called already by the application,
and then enters an endless loop where it repeatedly waits for incoming
requests, accepts them, and performs the necessary processing for
handling the request.

C/Gsiot.Server Library 157

Class RequestRouting
An instance of class RequestRouting is automatically created as a
property when a new HttpServer object is created. Because it
implements the IEnumerable interface and provides an Add method, it
supports C# collection initializers. This means that instead of explicitly
calling the Add method with the parameters pattern and handler, an
initializer with pattern and handler as elements can be used (see
Chapter 10):

public class RequestRouting : IEnumerable

{

 public IEnumerator GetEnumerator();

 public void Add(string pattern, RequestHandler handler);

}

 » void Add(string pattern, RequestHandler handler)

This method adds a new request routing element to the collection,
consisting of a request pattern and a request handler.

Delegate RequestHandler
The delegate type RequestHandler determines the parameter (context)
and result (void) that a method must have so that it can be added to a
request routing collection:

public delegate void RequestHandler(RequestHandlerContext context);

Class RequestHandlerContext
An instance of class RequestHandlerContext provides information about
the received HTTP request to a request handler. The request handler
uses it to set up the HTTP response to this request, and if necessary, to
construct URIs to the same service:

public class RequestHandlerContext

{

 public RequestHandlerContext(string serviceRoot,

 string relayDomain);

 public bool ConnectionClose { get; set; }

158 Getting Started with the Internet of Things

 // request interface

 public string RequestMethod { get; }

 public string RequestUri { get; }

 public string RequestContentType { get; }

 public string RequestContent { get; }

 // server interface

 public string BuildRequestUri(string path);

 public string BuildAbsoluteRequestUri(string path);

 // response interface

 public int ResponseStatusCode { get; set; }

 public string ResponseContentType { get; set; }

 public string ResponseContent { get; set; }

 public void SetResponse(string content, string textType);

}

 » RequestHandlerContext(string serviceRoot, string relayDomain)

The constructor of the class takes a parameter serviceRoot, which
is the URI relative to which the request URIs are processed, e.g.,
http://192.168.5.100:8080. Parameter relayDomain indicates
whether a relay is used; otherwise, it is null.

 » bool ConnectionClose

Before a request handler is called, this property is set to true if (and only
if) the received request contained a Connection: close header. If the
request handler wants to indicate that it wants to close the connection,
it can set the property to true, which will add the Connection: close
header to its response.

 » string RequestMethod

This property tells you which kind of request has been received (an HTTP
method such as GET or PUT). You only need to check this property if you
want to support several HTTP methods in the same request handler, i.e.,
request patterns with a * wildcard at the beginning.

C/Gsiot.Server Library 159

 » string RequestUri

This property contains the URI of the incoming request. You only need
this property if you want to support several resources in the same request
handler, i.e., request patterns with a * wildcard at the end.

 » string RequestContentType

This property contains the content of the request’s ContentLength
header if one was present; otherwise, it is null.

 » string RequestContent

This property contains the request message body converted into a
string of text, assuming that the message body was encoded in UTF8.
You only need this property for PUT and POST requests, since GET and
DELETE have no message bodies.

 » string BuildRequestUri(string path)

This method takes a path and constructs a relative URI out of it. If
the request was relayed, this is taken into account. For example,
BuildRequest Uri("hello.html") may return /gsiot-FFMQ-TTD5/hello.
html if the request pattern was "GET /hello*". You should use this
method if your response contains relative hyperlinks to your server.

 » string BuildAbsoluteRequestUri(string path)

This method takes a path and constructs an absolute URI out of it.
If the request was relayed, this is taken into account. For example,
BuildAbsoluteRequestUri("hello.html") may return http://try.
yaler.net/gsiot-FFMQ-TTD5/hello.html if the request pattern was
"GET /hello*". You should use this method if your response contains
absolute hyperlinks to your server.

 » int ResponseStatusCode

This property can be set to indicate the status code of the response.
The most important status codes for our purposes are:

200 (OK)

400 (Bad Request)

404 (Not Found)

405 (Method Not Allowed)

160 Getting Started with the Internet of Things

 » string ResponseContentType

This property can be set to indicate the content type of the response.
This so-called MIME type will become the value of the HTTP Content
Type header. The most important content types for our purposes are:

• text/plain

Used for a plain-text response such as a single numeric or text value.

• text/csv

Used to send a series of values.

• text/html

Used to send a response with formatted HTML.

 » string ResponseContent

This property can be set with the content of the response message
(message body). It will be encoded in UTF8.

 » void SetResponse(string content, string textType)

This method takes a string and sets up the response message body
accordingly. Parameter textType indicates the content type, e.g., text/
plain, text/html, etc. This method sets the response status code to
200 (OK).

This method is provided for convenience so that status code, content,
and content type need not be set separately.

Resources

Delegate GetHandler
The delegate type GetHandler determines the parameter (none) and the
result (object) that a method must have so that it can be used for getting
samples from a sensor:

C/Gsiot.Server Library 161

public delegate object GetHandler();

Delegate PutHandler
The delegate type PutHandler determines the parameter (object) and
result (void) that a method must have so that it can be used for setting
setpoints for an actuator:

public delegate void PutHandler(object o);

Class MeasuredVariable
An instance of class MeasuredVariable represents a physical variable
(temperature, door state, car speed, etc.) that can be measured by a sensor:

public class MeasuredVariable

{

 public GetHandler FromSensor { get; set; }

 public Serializer ToHttpResponse { get; set; }

 public void Open();

 public void HandleRequest(RequestHandlerContext context);

}

 » GetHandler FromSensor

Mandatory property that must be set to a method that can be called for
getting new samples.

 » Serializer ToHttpResponse

Optional property that is set to CSharpRepresentation.Serialize by
default. It converts a sample from an object to a string that can be sent
as an HTTP message body.

 » void Open()

This method completes the initialization of the measured variable.
Normally, you don’t need to call this method because HandleRequest
calls it if necessary.

162 Getting Started with the Internet of Things

 » void HandleRequest(RequestHandlerContext context)

When an HTTP request for a measured variable has been received, the
server sets up the context object with the request information and then
calls this handler. After the handler has completed, the server uses the
response information in the context object to send its HTTP response
message.

Class ManipulatedVariable
An instance of class ManipulatedVariable represents a physical variable
(temperature, door state, car speed, etc.) that can be manipulated by an
actuator.

public class ManipulatedVariable

{

 public Deserializer FromHttpRequest { get; set; }

 public PutHandler ToActuator { get; set; }

 public Serializer ToHttpResponse { get; set; }

 public void Open();

 public void HandleRequest(RequestHandlerContext context);

}

 » Deserializer FromHttpRequest

Mandatory property that converts a setpoint from a string that was
received as an HTTP message body to an object.

 » PutHandler ToActuator

Mandatory property that must be set to a method that can be called for
setting new setpoints.

 » Serializer ToHttpResponse

Optional property that is set to CSharpRepresentation.Serialize by
default. It converts the most recent setpoint from an object to a string
that can be sent as an HTTP message body.

C/Gsiot.Server Library 163

 » void Open()

This method completes the initialization of the manipulated variable.
Normally, you don’t need to call this method because HandleRequest
calls it if necessary.

 » void HandleRequest(RequestHandlerContext context)

When an HTTP request for a measured variable has been received, the
server sets up the context object with the request information and then
calls this handler. After the handler has completed, the server uses the
response information in the context object to send its HTTP response
message.

Representations

Delegate Serializer
The delegate type Serializer determines the parameters (context and
content) and result (void) a method must have so that it can be used
for converting a C# object (content) to the response message body in a
context object (context):

public delegate void Serializer(RequestHandlerContext context,

 object content);

Delegate Deserializer
The delegate type Deserializer determines the parameters (context
and content) and result (bool) a method must have so that it can be used
for converting a request message body in a context object (context) to a
C# object (content). The Boolean result indicates whether the conversion
was successful:

public delegate bool Deserializer(RequestHandlerContext context,

 out object content);

164 Getting Started with the Internet of Things

Class CSharpRepresentation
An instance of class CSharpRepresentation provides support for
converting any object to a string, and for converting strings containing
Boolean or integer values to objects:

public static class CSharpRepresentation

{

 public static void Serialize(RequestHandlerContext context,

 object content)

 public static bool TryDeserializeBool(

 RequestHandlerContext context, out object content)

 public static bool TryDeserializeInt(RequestHandlerContext

 context,

 out object content)

}

 » static void Serialize(RequestHandlerContext context, object
content)

This method converts any C# object to an HTTP response message,
basically by calling its ToString method. The special value null is
converted to the string “null”.

 » static bool TryDeserializeBool(RequestHandlerContext context,
out object content)

This method converts the strings true and false to C# objects. Other
strings cannot be converted; in this case, the method returns false
(true otherwise).

 » static bool TryDeserializeInt(RequestHandlerContext context,

out object content)

This method converts strings that contain integers to C# objects. Other
strings cannot be converted; in this case, the method returns false
(true otherwise).

C/Gsiot.Server Library 165

Drivers for Sensors
and Actuators

Class DigitalSensor
An instance of class DigitalSensor provides access to a pin that can be
configured as a digital input:

public class DigitalSensor

{

 public Cpu.Pin InputPin { get; set; }

 public void Open();

 public object HandleGet();

}

 » Cpu.Pin InputPin

Mandatory property that indicates which pin should be configured as a
digital input.

 » void Open()

Method that reserves the input pin, which must have been specified
during initialization of the sensor object. It can be called explicitly, or
automatically when HandleGet is executed for the first time.

 » object HandleGet()

Method that returns the current state of the digital input pin as a Bool-
ean object.

Class DigitalActuator
An instance of class DigitalActuator provides access to a pin that can be
configured as a digital output:

public class DigitalActuator

{

 public Cpu.Pin OutputPin { get; set; }

166 Getting Started with the Internet of Things

 public bool InitialState { get; set; }

 public void Open();

 public void HandlePut(object setpoint);

 public object HandleGet();

}

 » Cpu.Pin OutputPin

Mandatory property that indicates which pin should be configured as a
digital output.

 » void Open()

Method that reserves the output pin, which must have been specified
during initialization of the actuator object. It can be called explicitly, or
automatically when HandlePut (or HandleGet) is executed for the first
time.

 » void HandlePut(object setpoint)

Method that sets the state of the digital output pin. It must be a Bool-
ean object and cannot be null.

 » object HandleGet()

Method that returns the setpoint that has been set by calling HandlePut
most recently. It is a Boolean object or null.

Class AnalogSensor
An instance of class AnalogSensor provides access to the current voltage
value at a pin that can be configured with an analog-to-digital converter.
By default, its HandleGet method returns the raw value, which is always
between 0 and 1023 (10-bit resolution). If both MinValue and MaxValue
are set up during initialization of the sensor object, a linearly scaled value
between these two extremes is returned instead of the raw value: i.e.,
MinValue is returned for the raw value 0, MaxValue is returned for the raw
value 1023, and values between MinValue and MaxValue are returned for
raw values between 0 and 1023:

C/Gsiot.Server Library 167

public class AnalogSensor

{

 public Cpu.Pin InputPin { get; set; }

 public double MinValue { get; set; }

 public double MaxValue { get; set; }

 public void Open();

 public object HandleGet();

}

 » Cpu.Pin InputPin

Mandatory property that indicates which pin should be configured as
an analog input.

 » double MinValue

Optional property. If both MinValue and MaxValue are set up, this
property determines the value returned by HandleGet when the analog
sensor produces 0 as the value.

 » double MaxValue

Optional property. If both MinValue and MaxValue are set up, this
property determines the value returned by HandleGet when the analog
sensor produces 1023 as the value.

 » void Open()

Method that reserves the input pin, which must have been specified
during initialization of the sensor object. It can be called explicitly, or
automatically when HandleGet is executed for the first time.

 » object HandleGet()

Method that returns the current state of the digital input pin as a double
(64-bit floating point) object.

168 Getting Started with the Internet of Things

Multithreading

Buffer
An instance of class Buffer provides a threadsafe way of communication
between actors (see Chapter 13). A buffer instance basically acts as a
variable whose current value can be read and written:

public sealed class Buffer

{

 public void HandlePut(object o);

 public object HandleGet();

}

 » void HandlePut(object o)

This method puts o into the buffer. The new value in the buffer replaces
the old one. At most one value is buffered; there is no queuing of mul-
tiple values. The method performs the necessary locking to enable safe
use of the buffer from multiple threads. Object o may be null.

 » void HandleGet()

This method gets the current buffer state, without changing it. The
method performs the necessary locking to enable safe use of the buffer
from multiple threads. The result may be null.

Index 169

Index

Symbols
@ (at sign), preceding verbatim strings,

118
{} (curly braces). See initializers; lambda

expressions
=> (lambda operator), 91
% (modulo operator), 54

A
absolute URI, 31
actors, with multithreading, 129–131, 136
actuators, 1

drivers for, 165–167
hardware for, 145–146
server updating state of, 105–111,

118–119, 132–135
writing to, 11–14

AddressFamily class, 153
AnalogInput class, 154
analog input ports, reading from, 22–26
AnalogSensor class, 100, 102, 166–167
API key, for Pachube

obtaining, 38
security of, 74
using, 49, 51, 65

Arduino-compatible shields, 146
assemblies (.dll files). See also specific

assemblies
list of, 153
.pe files translated from, 50

at sign (@), preceding verbatim strings,
118

B
BlinkingLed program example, 11–14
boards, 146. See also Netduino Plus board

braces ({}). See initializers; lambda
expressions

browser, as HTTP client, 30, 32, 35
Buffer class, 154, 168
buffer, for multithreading, 168

C
cable modem, 44
cables

Ethernet cable, ix, x
micro USB cable, ix, x

casting, 55, 110
C# language

delegates, 101–102
initializers, 90–91
lambda expressions, 91–93
lock statement, 126–128
methods, defining, 4
modulo operator (%), 54
test client in, 111–114
type casts, 55, 110
using directive, 13, 63
while loop, 52

client. See HTTP client
code examples. See program examples
Concurrent Programming on Windows

(Addison-Wesley), 136
Connect method, Socket class, 73, 82
contact information for this book, xi
ContentLength property, HttpWeb-

Request class, 65
ContentType property, HttpWebRequest

class, 65
control applications, 35
Cpu class, 153
Cpu.Pin type, 14
Create method, WebRequest class, 64

170 Index

critical section, for locks, 126
CSharpRepresentation class, 154, 164
CSV representation

for feed data, 40
for measured variables, 142

curly braces ({}). See initializers; lambda
expressions

D
data streams, in feeds, 39–40
DateTime class, 153
deadlocks, in multithreading, 128–129
Debug class, 5, 153
debug output, 5–6, 8
delegates, 101–102
DELETE requests, 32
Deserializer delegate, 163
devices. See also hardware

as HTTP clients. See HTTP client,
device as

as HTTP servers. See HTTP server,
device as

Device Solutions, 146
DHCP (Dynamic Host Configuration

Protocol), 44, 44–45
DigitalActuator class, 108, 109, 154,

165–166
digital input ports, reading from, 17–19
DigitalSensor class, 154, 165, 165–166
Dispose methods, IDisposable interface,

63
DLL files. See assemblies (.dll files)
Dns class, 73, 153

GetHostEntry() method, 73
DNS (domain name system), 45
DNS lookup, 73
domain name, Internet, 45
domain name system (DNS), 45
drivers

for actuators and sensors, 165–167
for Netduino Plus board, 4

DSL modem, 44
Duffy, Joe (author)

Concurrent Programming on Windows
(Addison-Wesley), 136

E
EfficientPutRequest program example,

71–75
embedded programming, v

examples of. See program examples
limited resources for, viii

EMX Development System, 146
Encoding class, 153
errors. See exceptions; troubleshooting
Ethernet cable, ix, x
Ethernet router, ix
examples. See program examples
exceptions. See also troubleshooting

Dispose methods still called after, 63
handling, 82
race conditions and, 124, 126
type casting errors causing, 110

F
feeds. See also Pachube service

accessing, 40–41
data format for, 40
data streams in, 39–40
ID for, 39, 49, 51
sending samples to, 51, 52, 55–56
setting up, 38–40
status of, 51

G
general-purpose input/output (GPIO)

pin, 11
GetBytes method, 63
GetChars method, 63
GetHandler delegate, 160–161
GET requests, 32, 67–69

for measured variable resources, 98,
99–103

resources not changed by, 103–104
GetRequestStream method, HttpWeb-

Request class, 65
GetResponse method, HttpWebRequest

class, 65–66
GetResponseStream method, HttpWeb-

Response class, 66–67
GHI Electronics, 146

Index 171

GPIO (general-purpose input/output)
pin, 11

GPIO_PIN_A0 to _A5 constants, 14
GPIO_PIN_D0 to _D13 constants, 14
GPS devices, data from, 145
Gsiot.PachubeClient.dll file, 4, 49, 154
Gsiot.PachubeClient project, 49
Gsiot.Server.dll file, 4, 89, 154, 155–168

H
HandleGet method, AnalogSensor class,

100
HandleRequest method, Measured-

Variable class, 100
hardware. See also specific components

deploying projects to, 6–9
list of, ix–x, 145–148

HelloPachube program example, 43,
47–55, 48–55

HelloPachubeSockets program
example, 77–82

HelloWebHtml program example, 93–94
HelloWeb program example, 85, 87–91
HelloWorld program example, 3, 4–5
host, in URI, 31
HTML (Hypertext Markup Language), 32

embedding JavaScript in, 114
HTTP responses formatted as, 93–94
measured variables formatted as, 142

HTTP client
device as, 27, 34–35

examples using, 48–55, 77–82
when to use, 143–144

test client
in C#, 111–114
in JavaScript, 114–118

web browser as, 30, 32, 35
HTTP headers, 56–57, 57–58
HTTP (Hypertext Transfer Protocol), 30

default port used by, 31, 95
reverse HTTP, 86–87
status code 200, 51, 57

HTTP requests, 32–34
classes and delegates for, 155–160
DELETE requests, 32
GET requests, 32, 67–69

for measured variable resources, 98,
99–103

resources not changed by, 103–104
handlers for, 92–93
POST requests, 32
PUT requests, 32–33, 55–56, 61–67

for manipulated variable resources,
106–107

resources changed by, 105, 118–120
with efficient use of memory, 71–75,

77–82
HTTP responses, 33, 66–69

in HTML, 93–94
lambda expression for, 91
from Pachube, 57–60
in ReceiveResponse example, 75–76
request handlers and, 92

HTTP server
device as, 30

example of, 87–91
example of, with sensor, 97–104
examples of, with actuator, 105–111,

132
obstacles to, 83–84
relays for, 85–87
when to use, 143–144

Netduino Plus board as, 94–95
new implementation of, 143
test server, 149–152

HttpServer class, 154, 155–156
HttpWebRequest class, 64–66, 67–69,

153
HttpWebResponse class, 66, 67–69, 153
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
idempotent, 104, 118–119
IDisposable interface, 63
if statement, 16
initializers, 90–91
InputPort class, 146, 153
input ports

analog, reading from, 22–26
digital, reading from, 17–19
positive and negative logic for, 19

Internet addresses, 44–45, 73
reserved, 45
static, 83

172 Index

Internet, connecting Netduino Plus
board to, 43–47

Internet domain name, 45
Internet of Things, 29, 34
Internet resources. See websites
int type, 55
IPAddress class, 153
IPEndPoint class, 153
IPHostEntry class, 153

J
JavaScript

embedding in HTML, 114
test client in, 114–118
verbatim strings, 118

JSON (JavaScript Object Notation)
for feed data, 40, 41
for measured variables, 142

L
lambda expressions, 91–93
LED

as output port, 13–14
examples using, 11–14, 107–111,

132–135
LedController program example,

105–111
LightSwitch program example, 15–19
locks, in multithreading, 126–128
lock statement, 126–128
long type, 55

M
MAC address, 46
Main() method, 4–5
Maker SHED website, ix
MakerShield, 146
ManipulatedVariable class, 108, 110–111,

154, 162–163
manipulated variables, 106–107
MeasuredVariable class, 103–104, 154,

161–162
measured variables, 98–99

adding, 138–139
new representations for, 142–143
URI of, 138

measurements (samples) from sensors,
15

Method property, HttpWebRequest
class, 65

methods. See also specific methods
assigning to properties. See delegates
defining, 4

MFDeploy tool
network, configuring, 46–55
programs, erasing from Netduino

Plus, 9
microcontrollers, 1
Microsoft.SPOT.Hardware.dll file, 153
Microsoft.SPOT.Native.dll file, 153
micro USB cable, ix, x
modulo operator (%), 54
monitoring applications, 35
mscorlib.dll file, 153
multithreading, 121–131, 136

actors with, 129–131, 136
buffer for, 168
deadlocks in, 128–129
example using, 132–135
locks in, 126–128
race conditions in, 124–128
scheduler for, 121
shared variables in, 126, 136

N
namespaces, 13, 153–154
NAT (network address translation), 45
Netduino Plus board, vi, ix

analog inputs on, 22
connecting to Internet, 43–45
deploying programs to, 6–9
erasing programs from, 9
as HTTP server, 94–95
LED on, 11
MAC address for, 46
pins on, 13–14
resistor on, 18–19
SDK and drivers for, 4
test client for, in JavaScript, 114–118

NETMF 4.1 SDK, 4
NETMF board. See Netduino Plus board
NETMF (.NET Micro Framework), v

classes for, list of, 153–154

Index 173

porting to different hardware, 147–148
properties for deployment, 7
setting up environment for, 3–4

.NET Micro Framework. See NETMF
(.NET Micro Framework)

network address translation (NAT), 45
NMEA protocol, 145

O
ONBOARD_LED constant, 13, 14
ONBOARD_SW1 constant, 14, 17
online resources. See websites
OutputPort class, 13, 146, 153
output ports, 13–14
Output window, 3, 8

P
PachubeClient class, 154
Pachube service, 27, 37–41. See

also feeds
account for, setting up, 38
Internet address for, 45
secure sharing keys in, 38

ParallelBlinker program example,
132–135

parallel processing. See multithreading
path, in URI, 31
.pe files, 50
pins

assignments for, 13–14
changing assignments for a sensor, 138

Pins class, 154
Pins.GPIO_PIN_A0 to _A5 constants, 14
Pins.GPIO_PIN_D0 to _D13 constants, 14
Pins.ONBOARD_LED constant, 14
Pins.ONBOARD_SW1 constant, 14, 17
Port class, 153
port forwarding, 84, 95–96
ports, 94–96

reserved, 94
in URI, 31

POST requests, 31, 32
potentiometer, ix, 20, 21

examples using, 20–26, 48–55,
77–82, 99–103

reading from, 22–26
symbol for, in schematics, 23
as voltage divider, 25

Print method, Debug class, 5
process control, 98
processor boards, 146. See also Netduino

Plus board
program examples

BlinkingLed, 11–14
EfficientPutRequest, 71–75
HelloPachube, 48–55
HelloPachubeSockets, 77–82
HelloWeb, 85
HelloWorld, 3, 4–5
LedController, 105–111
LightSwitch, 15–19
ParallelBlinker, 132–135
permission to use, xi
ReceiveResponse, 75–76
requirements for, ix–x
SimpleGetRequest, 67–69
SimplePutRequest, 61–63
TestServer, 149–152
VoltageMonitor, 97–104
VoltageReader, 20–26

programs
building as solutions in Visual Studio, 5
creating as projects in Visual Studio,

5–6
deploying to device, 6–9
embedded, v, viii
erasing from Netduino Plus, 9
running in debug mode, 8

projects. See programs
ProtocolType class, 153
public keyword, for methods, 4
pull-down resistors, 19
pull-up resistors, 18, 19
PutHandler delegate, 161
PUT requests, 32–33, 55–56, 61–67

for manipulated variable resources,
106–107

resources changed by, 105, 118–120
with efficient use of memory, 71–75,

77–82

174 Index

Q
query, in URI, 31

R
race conditions, in multithreading,

124–128
ReceiveResponse program example,

75–76
relative URI, 31
relays, 85–87, 95
representational state transfer.

See REST
representations

classes and delegates for, 163–164
for feed data, 40, 41
for measured variables, 142

RequestHandler class, 157
RequestHandlerContext class, 154,

157–160
RequestRouting class, 156–157, 157
reserved addresses, 45
resistors, 17–19

potentiometer as type of, 23
symbol for, in schematics, 18

resources. See also manipulated
variables; measured variables

adding new type of, 141–142
classes and delegates for, 160–163

RESTful web services, 34, 119, 144
RESTful Web Services (O’Reilly), 34
REST (representational state transfer), 34
reverse HTTP, 86–87
Richardson, Leonard (author)

RESTful Web Services (O’Reilly), 34
router, ix, 44

NAT performed by, 45
port forwarding on, 84, 96

Ruby, Sam (author)
RESTful Web Services (O’Reilly), 34

S
samples (measurements) from sensors,

15
sampling period, 15, 52–55, 53–55
scheduler, for multithreading, 121
scheme, in URI, 31

Secret Labs, Netduino Plus board.
See Netduino Plus board

SecretLabs.NETMF.Hardware.dll file, 154
SecretLabs.NETMF.Hardware.Netduino.

dll file, 154
secure sharing keys, Pachube, 38
SendRequest method, 74–75
sensors, 1. See also monitoring applica-

tions
adding new type of, 139–141
checking result of actuator request,

106–107
client accessing, 48–55, 77–82
drivers for, 165–167
hardware for, 145–146
measured variables from, 98–99
measurements (samples) from, 15, 51,

52, 55–56
pin assignment for, changing, 138
sampling period from, 15, 52–55,

53–55
server accessing, 97–104
switches as. See switches

Serializer delegate, 163
server. See HTTP server
shared variables, in multithreading, 126,

136
sharing keys, Pachube, 38
shields, 145–146
SimpleGetRequest program example,

67–69
SimplePutRequest program example,

61–63
Sleep method, Thread class, 12, 122
Smart Personal Object Technology

(SPOT), 13
Socket API, 71, 77
Socket class, 73, 153
SocketException class, 153
SocketOptionLevel class, 153
SocketOptionName class, 153
SocketType class, 153
software requirements, 3–4
Solution Explorer

adding references, 49
deployment properties, setting, 6–8
programs, creating, 6

solutions. See programs

Index 175

SparkFun website, ix
SPOT (Smart Personal Object Tech-

nology), 13
static Internet address, 83
static keyword, for methods, 4
Stream class, 153
string conversion, 21
strings, verbatim, 118
switches

positive and negative logic for, 19
state of, reading, 17–19

System.dll file, 153
System.Http assembly, 63, 64
System.Http.dll file, 153
System.IO namespace, 153
System namespace, 153
System.Net namespace, 153
System.Net.Sockets namespace, 153

T
TCP/IP protocol, 81
test client

in C#, 111–114
in JavaScript, 114–118

test server, 149–152
Thread class, 12, 122, 153
threads. See multithreading
TimeSpan class, 153
Topaz i.MX25 board, 146
ToString method, 21
troubleshooting. See also exceptions

deployment problems, 9
failed connection, 82
HelloPachube program, 51
test server failing, 152

type casts, 55, 110

U
Uniform Resource Locator. See URI

(Uniform Resource Identifier)
URI (Uniform Resource Identifier), 31–32

for accessing Pachube feeds, 40–41
constructing for HTTP request, 74
of manipulated variable, 106
of measured variable, 98–99, 138

using directive, 13, 63

V
variable declarations, 12
variables, manipulated, 106–107
variables, measured, 98–99

adding, 138–139
new representations for, 142–143
URI of, 138

variables, shared, 126, 136
var keyword, 12
verbatim strings, 118
Visual Studio Express 2010, ix, 3

projects, creating, 5–6
solutions, building, 6

void keyword, for methods, 4
voltage divider, 25
VoltageMonitor program example, 97–104
VoltageReader program example, 20–26
voltage sensor. See potentiometer

W
WaitUntilNextPeriod method, 53–55
web browser, as HTTP client, 30, 32, 35
web interaction patterns, 34–35
Web of Things, 34
WebRequest class, 64, 65, 153
web server. See HTTP server
websites

for this book, xi
GHI Electronics online community, 145
Gsiot libraries, 4
Gsiot.PachubeClient project, 49
hardware components, ix–x
Netduino Plus board, vi
Netduino Plus online community, 145
Netduino Plus schematics and layout,

148
Netduino Plus SDK and drivers for, 4
NETMF, v, 145
NETMF 4.1 SDK, 4
Pachube service, 38
processor boards, 146
shields, 145, 146
Visual Studio Express 2010, 4

while loop, 52
Windows operating system, ix, 4
Write method, OutputPort class, 13

176 Index

X
XMLHttpRequest class, 115
XML representation, 32

for feed data, 40
for measured variables, 142

Y
Yaler, reverse HTTP relay, 87

About the Author
Dr. Cuno Pfister studied computer science at the Swiss Federal Institute
of Technology in Zürich (ETH Zürich). His PhD thesis supervisor was
Prof. Niklaus Wirth, the designer of the Pascal, Modula-2, and Oberon
programming languages. Dr. Pfister is the Managing Director of Oberon
microsystems, Inc., which has worked on various projects related to the
Internet of Things, from mobile solutions to a large hydropower-plant
monitoring system with 10,000 sensors.

Colophon
The cover, heading, and body font is BentonSans, and the code font is
Bitstreams Vera Sans Mono.

	Copyright
	Contents
	Preface
	I/Introduction
	1/Hello World
	Setting Up the Development
Environment
	HelloWorld
	Building the Program
in Visual Studio
	Deploying to the Device

	2/Writing to Actuators
	BlinkingLed

	3/Reading from Sensors
	LightSwitch
	VoltageReader

	II/Device as HTTP Client
	4/The Internet of Things
	HTTP
	Push Versus Pull

	5/Pachube
	6/Hello Pachube
	Setting Up the Network
Configuration
	HelloPachube
	What Netduino Said to Pachube
	What Pachube Said to Netduino

	7/Sending HTTP Requests—The Simple Way
	SimplePutRequest
	Making Web Requests

	8/Sending HTTP Requests—The Efficient Way
	EfficientPutRequest

	9/Hello Pachube (Sockets Version)
	PachubeClient

	III/Device as HTTP Server
	10/Hello Web
	Relaying Messages to
and from the Netduino
	HelloWeb
	Request Handlers
	HelloWebHtml
	What You Should
Know About Ports

	11/Handling Sensor Requests
	From Sensor Readings
to HTTP Resources
	URIs of Measured Variables
	VoltageMonitor
	What You Should Know
About HTTP GET

	12/Handling Actuator Requests
	From HTTP Resources
to Controlling Things
	URIs of Manipulated Variables
	LedController
	Test Client in C#
	Embed a JavaScript Test Client on the Netduino
	What You Should Know
About HTTP PUT

	13/Going Parallel
	Multithreading
	ParallelBlinker
	What You Should Know
About Multithreading

	14/Where Can I Go from Here?
	Recipes for Modifying a Server
	Server Versus Client?
When to Push, When to Pull?
	Taking a REST
	Communities
	Other Hardware
	The Sky Is the Limit

	A/Test Server
	B/.NET Classes Used in the Examples
	C/Gsiot.Server Library
	HTTP Server
	Resources
	Representations
	Drivers for Sensors and Actuators
	Multithreading

	Index
	About the Author
	Colophon

