

FUNDAMENTALS OF

ROBOTICS
LINKING PERCEPTION TO ACTION

SERIES IN MACHINE PERCEPTION AND ARTIFICIAL INTELLIGENCE*

Editors: H. Bunke (Univ. Bern, Switzerland)
P. S. P. Wang (Northeastern Univ., USA)

Vol. 38: New Approaches to Fuzzy Modeling and Control — Design and Analysis
(M. Margaliot and G. Langholz)

Vol. 39: Artificial Intelligence Techniques in Breast Cancer Diagnosis and Prognosis
(Eds. A. Jain, A. Jain, S. Jain and L. Jain)

Vol. 40: Texture Analysis in Machine Vision
(Ed. M. K. Pietikainen)

Vol. 41: Neuro-Fuzzy Pattern Recognition
(Eds. H. Bunke and A. Kandel)

Vol. 42: Invariants for Pattern Recognition and Classification
(Ed. M. A. Rodrigues)

Vol. 43: Agent Engineering
(Eds. Jiming Liu, NingZhong, Yuan Y. Tang and Patrick S. P. Wang)

Vol. 44: Multispectral Image Processing and Pattern Recognition
(Eds. J. Shen, P. S. P. Wang and T. Zhang)

Vol. 45: Hidden Markov Models: Applications in Computer Vision
(Eds. H. Bunke and T. Caelli)

Vol. 46: Syntactic Pattern Recognition for Seismic Oil Exploration
(K. Y. Huang)

Vol. 47: Hybrid Methods in Pattern Recognition
(Eds. H. Bunke and A. Kandel)

Vol. 48: Multimodal Interface for Human-Machine Communications
(Eds. P. C. Yuen, Y. Y. Tang and P. S. P. Wang)

Vol. 49: Neural Networks and Systolic Array Design
(Eds. D. Zhang and S. K. Pal)

Vol. 50: Empirical Evaluation Methods in Computer Vision
(Eds. H. I. Christensen and P. J. Phillips)

Vol. 51: Automatic Diatom Identification
(Eds. H. duBufandM. M. Bayer)

Vol. 52: Advances in Image Processing and Understanding
A Festschrift for Thomas S. Huwang
(Eds. A. C. Bovik, C. W. Chen and D. Goldgof)

Vol. 53: Soft Computing Approach to Pattern Recognition and Image Processing
(Eds. A. Ghosh and S. K. Pal)

Vol. 54: Fundamentals of Robotics
— Linking Perception to Action
(M. Xie)

"For the complete list of titles in this series, please write to the Publisher.

Series in Machine Perception and Artificial Intelligence - Vol. 5

FUNDAMENTALS OF

ROBOTICS
LINKING PERCEPTION TO ACTION

Ming Xie
Singapore-MIT Alliance &

Nanyang Technological University, Singapore

U S * World Scientific
« • New Jersey • London • Singapore • Hong Kong

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Xie, M. (Min)

Fundamentals of robotics : linking perception to action /Ming Xie.
p. cm. — (Series in machine perception and artificial intelligence ; v. 54)

Includes bibliographical references and index.
ISBN 981-238-313-1 - ISBN 981-238-335-2 (pbk.)
1. Robotics. I. Title. II. Series.

TJ211.X84 2003
629.8'92-dc21 2003043284

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2003 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

Printed by Fulsland Offset Printing (S) Pte Ltd, Singapore

Dedicated in memory of my dear mother.
To David and Sophie.

Preface

Purpose

The word "Robot" comes from the Czech word "Robota" which means
"labor doing compulsory manual works without receiving any remunera-
tion" or "to make things manually". Oxford dictionary defines "Robot"
as "a machine resembling a human being and able to replicate certain hu-
man movements and functions automatically." These days, more and more
robot is living up to its name. Gone is the time when robots are merely
mechanisms attached to controls. Today's robots are a combination of ma-
nipulative, perceptive, communicative, and cognitive abilities. They can be
seen welding heavy machinery or repairing nuclear power plants; they can
be seen crawling through debris underwater or crawling across the craters
on Mars; they can be seen de-mining military zones or cleaning windows
on high buildings. Today's robots are capable of so many tasks. Yet, there
is so much more on the horizon.

Tomorrow's robots, which includes the humanoid robot, will tutor chil-
dren, work as tour guides, drive humans to and from work, do the family
shopping. Tomorrow's robots will enhance lives in ways we never dreamed
possible — Do not have time to attend the decisive meeting on Asian strat-
egy? Let your robot go for you and make the decisions. Are not feeling well
enough to go to the clinic? Let Dr. Robot come to you, make a diagnosis,
and get you the necessary medicines for treatment. Do not have time to
coach the soccer team this week? Let the robot do it for you.

Tomorrow's robots will be the most exciting and revolutionary thing to
happen to the world since the invention of the automobile. It will change
the way we work, play, think, and live. Because of this, nowadays robotics
is one of the most dynamic fields of scientific research. These days, robotics

vii

viii The Fundamentals of Robotics: Linking Perception to Action

is offered in almost every university in the world. Most mechanical engi-
neering departments offer a similar course at both the undergraduate and
graduate levels. And increasingly, many computer and electrical engineer-
ing departments are also offering it.

This book will guide you, the curious beginner, from yesterday to to-
morrow. I will cover practical knowledge in understanding, developing, and
using robots as versatile equipment to automate a variety of industrial pro-
cesses or tasks. But, I will also discuss the possibilities we can look forward
to when we are capable of creating a vision-guided, learning machine.

Contents

I have arranged the book, according to the following concerns:

• Focus:
I focus a great deal on analysis, and control of today's robots. I
also delve into the more recent developments being made with the
humanoid robot.

• Educational:
Whenever possible, I describe the philosophy and physics behind a
certain topic, before discussing the concise mathematical descrip-
tions.

• Systems Approach:
The robot is a tightly-integrated entity of various engineering sys-
tems, ranging from mechanics, control, and information to percep-
tion and decision-making. Therefore, I use the systems approach
to clearly organize and present the multiple facets of robotics.

I follow the motion-centric theme of robotics, because motion is a visible
form of action which is intrinsically linked to perception. On the other hand,
I intend to stick to the original meaning of robotics, namely: the study of
the robot which is shaped like a human. It is my aim that this book provides
a balanced coverage of various topics related to the development of robots.
Whenever possible, I relate our discussion to the humanoid robot.

I have designed the flow of the chapters to be clear and logical, in
order to ease the understanding of the motion-centric topics in robotics.
I embrace both traditional and non-traditional fundamental concepts and
principles of robotics, and the book is organized as follows:

Preface ix

In Chapter 1, I introduce the robot, from a philosophical point of view,
as well as the theme of robotics, from the perspective of manufacturing and
automation. Additionally, I illustrate the motion-centric topics in robotics.
I link the directing concept of task-action-motion to perception in our dis-
cussion on artificial intelligence, and propose a new definition.

In Chapter 2, I review the mathematical description of a rigid body's
motion. Motion is the unifying concept in robotics which links various
topics together, such as generation of motion, modelling and analysis of
motion, control of motion, and visual perception of motion. Here, I unify
the mathematical notations related to geometrical entities under consider-
ation in both kinematic analysis and visual perception of motion.

In Chapter 3, we study the pure mechanical aspect of a robot. We
also cover, in detail, fundamental topics on mechanism and kinematics. I
introduce a simple illustration on D-H parameters, as well as a new term,
called the simple open kinematic-chain. This new term is useful for the
kinematic modelling of the humanoid robot. Finally, I include a new scheme
for solving inverse kinematics, called discrete kinematic mapping, which
complements the classical solutions.

In Chapter 4, we study the electromechanical aspect of a robot. After I
discuss the origin of the rigid body's motion, I introduce actuation elements
at a conceptual level. I also introduce a new concept of the dynamic pair
and discuss the solutions of kineto-dynamic couplings. I propose a new
scheme on one-to-many coupling (i.e. a single actuator for all the degrees of
freedom) in comparison with the traditional scheme of one-to-one coupling
(i.e. one actuator per degree of freedom). In the latter part of the chapter, I
focus on the fundamentals of establishing equations of motion, which relate
force/torque to motion. I also mention the study of robot statics.

In Chapter 5, we study the control system of a robot. First, I introduce
the basics of the control system. Then, I focus on the control and sensing
elements of the system, especially on how to alter the direction of motion,
how to regulate the electrical energy applied to the electric motors, and how
to sense motion and force/torque variables. I discuss at an appropriate level
the aspects of designing robot control algorithms in joint space, task space
and image space.

In Chapter 6, we study the information system of a robot. Traditionally,
this system aspect of the robot has been overlooked in robotics textbooks.
Although an information system is not too important to an industrial robot,
it is an indispensable subsystem of the humanoid robot. Here, we emphasize
the basics of the information system, in terms of data processing, storage

x The Fundamentals of Robotics: Linking Perception to Action

and communication. We study the fundamentals of computing platforms,
micro-controllers and programming together with a conceptual description
of multi-tasking. I also include discussions on various interfacing systems
typically used by a micro-controller (i.e. I/O).

In Chapter 7, we study the visual sensory system of a robot. It is a
common fallacy among novices that it is simple to form a vision system
by putting optical lenses, cameras and computers together. However, the
flow of information from the light rays to the digital images goes through
various signal conversions. Thus, a primary concern of the robot's visual-
sensory system is whether or not the loss of information undermines the
image and vision computing by the robot's visual-perception system. I start
this chapter with a study of the basic properties of light and human vision.
Then, I focus on the detailed working principles underlying optical image-
formation, electronic image-formation, and the mathematical modelling of
the robot's visual sensory system. I also cover the important topics of
CMOS-imaging sensors, CCD-imaging sensors, TV/Video standards, and
image-processing hardware.

In Chapter 8, we study the visual-perception system of a robot. I keep
to the motion-centric theme of robotics while focusing on the fundamentals
underlying the process of inferring three-dimensional geometry (including
posture and motion) from two-dimensional digital images. This process
includes image processing, feature extraction, feature description and ge-
ometry measurement with monocular & binocular vision. When discussing
image processing, I introduce the principle of dynamics resonance. It serves
as the basis for explaining various edge-detection algorithms. I discuss in
detail a probabilistic RCE neural network which addresses the issue of uni-
formity detection in images. In our study of binocular vision, I present two
new solutions which cope with the difficult problem of binocular correspon-
dence. Finally, I provide a theoretical foundation for further study of a
robot's image-space control.

In Chapter 9, we study the decision-making system of a robot. Decision-
making is indispensable in the development of autonomous robots. After
I introduce the basics of decision-making, I discuss the fundamentals of
task and action planning, at a conceptual level. However, I emphasize
motion planning. We first study motion planning in task space, and intro-
duce a new strategy, known as backward-motion planning. Then, we study
image-guided motion planning in task space, discussing in detail, a unified
approach, called qualitative binocular vision. I cover three important ex-
amples of image-guided autonomous behavior: a) hand-eye coordination,

Preface xi

b) head-eye coordination, and c) leg-eye coordination.

Acknowledgement

First of all, my sincere gratitude goes to:

• Professor Dhanjoo Gista (Ph.D, Stanford), one of the founders of
the scientific discipline of bio-engineering, for his encouragement
and initiative in persuading me to consolidate my teaching materi-
als into this textbook. Without his moral support, this book would
not have been possible.

• Professor Horst Bunke, the Series Editor for World Scientific Pub-
lisher, for his kindness in not only reviewing this book, but also
including it in Series in Machine Perception and Artificial Intelli-
gence.

• Mr. Ian Seldrup and Ms Tan Rok Ting, Editors at World Scien-
tific Publisher & Imperial College Press, for providing me friendly
editorial advice, and the final proof-reading of the manuscript.

• Dr. Hui Hui Lin (IBM) and his lovely wife, Jana, who have tire-
lessly helped in improving the readability of the manuscript and
correcting errors.

I would also like to express my gratitude to:

• Nanyang Technological University and the Singapore-MIT Al-
liance, for providing me not only with a conducive environment to
complete this book, but also generous research grants for research
staff and various related projects.

• My research staff and research students for their assistance in
graphic works and experimental results.

Finally, thanks to my wife and children for their love, support, and en-
couragement.

M. Xie
September, 2002

xii The Fundamentals of Robotics: Linking Perception to Action

Note to Instructors

This book can serve as a textbook for a simple, one-semester course on
robotics, provided you do not want to delve into vision, or a two-semester
course which highlights vision as well. I have designed this textbook specif-
ically for undergraduate- and graduate-level students in engineering. It
can also serve as a supplementary text for students having an interest in
robotics, vision, and artificial intelligence.

Contents

Preface vii

1. Introduction to Robotics 1

1.1 Introduction 1
1.2 Manufacturing 1
1.3 Factory Automation 5

1.3.1 Automation and Robots 7
1.4 Impact of Industrial Robots 10
1.5 Impact of Humanoid Robots 14

1.5.1 Industry 14
1.5.2 Society 14
1.5.3 Space Exploration and Military 17
1.5.4 Education 17
1.5.5 Research 18

1.6 Issues in Robotics 21
1.6.1 Mechanism and Kinematics 21
1.6.2 Actuation Elements and Dynamics 22
1.6.3 Sensing Elements 23
1.6.4 Control 23
1.6.5 Information and Decision-Making 23
1.6.6 Visual Perception 24

1.7 Exercises 26
1.8 Bibliography 26

2. Motion of Rigid Bodies 27

2.1 Introduction 27

xiii

xiv The Fundamentals of Robotics: Linking Perception to Action

2.2 Cartesian Coordinate Systems 27
2.3 Projective Coordinate Systems 29
2.4 Translational Motions 30

2.4.1 Linear Displacement 31
2.4.2 Linear Velocity and Acceleration 34

2.5 Rotational Motions 34
2.5.1 Circular Displacement 35
2.5.2 Circular Velocity and Acceleration 38

2.6 Composite Motions 40
2.6.1 Homogenous Transformation 41
2.6.2 Differential Homogenous Transformation 43
2.6.3 Successive Elementary Translations 46
2.6.4 Successive Elementary Rotations 49
2.6.5 Euler Angles 52
2.6.6 Equivalent Axis and Angle of Rotation 53

2.7 Summary 57
2.8 Exercises 57
2.9 Bibliography 58

3. Mechanical System of Robots 59

3.1 Introduction 59
3.2 Robot Mechanism 59

3.2.1 Links 59
3.2.2 Joints 63
3.2.3 Kinematic Chains 64
3.2.4 Multiplicity of an Open Kinematic-Chain 67

3.3 Robot Kinematics 69
3.3.1 Kinematics of a Link 71

3.3.1.1 Assignment of a Link's Frame 71
3.3.1.2 Geometric Parameters of a Link 74
3.3.1.3 Motion Transformation Matrix of a Link . . 76
3.3.1.4 Linear/Circular Velocity of a Link 78
3.3.1.5 Angular Velocity of a Link 80

3.3.2 Forward Kinematics of Open Kinematic-Chains . . . 80
3.3.2.1 Determination of the End-effector's Posture 81
3.3.2.2 Determination of the End-effector's Velocity 82

3.3.3 Inverse Kinematics of Open Kinematic-Chains 86
3.3.3.1 Determination of Joint Displacements 87
3.3.3.2 Determination of Joint Velocities 92

Contents xv

3.3.3.3 Numerical Solution for Joint Displacements 100
3.3.3.4 Effect of Singularity 102

3.3.4 Discrete Kinematic Mapping 104
3.3.4.1 Discrete Forward Kinematic-Mapping 106
3.3.4.2 Discrete Inverse Kinematic-Mapping 107
3.3.4.3 Bidirectional Discrete Kinematic-Mapping . 108
3.3.4.4 Application of Discrete Kinematic-Mapping 109

3.4 Summary 110
3.5 Exercises 112
3.6 Bibliography 113

4. Electromechanical System of Robots 115

4.1 Introduction 115
4.2 Origin of a Rigid Body's Motion 115

4.2.1 Energy Conservation in a System 116
4.2.2 Forces 117
4.2.3 Torques 119
4.2.4 Dynamic Pairs and Chains 120
4.2.5 Incremental Works 122
4.2.6 Potential Energy 123
4.2.7 Kinetic Energy 124
4.2.8 Origin of Motions 124

4.3 Actuation Elements 125
4.3.1 Force and Torque Generators 126

4.3.1.1 Working Principle of Electric Motors 131
4.3.1.2 Electric Stepper Motors 134
4.3.1.3 Brush-type DC Motors 136
4.3.1.4 Brush-less DC Motors 137

4.3.2 Force and Torque Amplifiers 139
4.3.2.1 Gear Mechanisms 141
4.3.2.2 Pulley-and-Timing Belt Assemblies 142
4.3.2.3 Harmonic-Drive Devices 143

4.4 Formation of a Robot's Electromechanical System 144
4.4.1 One-to-One Couplings 145
4.4.2 One-to-Many Couplings 147

4.4.2.1 Motion Distributors 148
4.4.2.2 Parallel Splitter of Motion 150
4.4.2.3 Serial Splitter of Motion 151
4.4.2.4 Torque at Inertial Loads 153

xvi The Fundamentals of Robotics: Linking Perception to Action

4.4.3 Open Kineto-Dynamic Chains 154
4.5 Robot Statics 155

4.5.1 Dynamic System of Particles 156
4.5.2 Generalized Coordinates and Forces 157
4.5.3 Constraints of a Dynamic System 158
4.5.4 Virtual Displacements 160
4.5.5 Virtual Works 161
4.5.6 Principle of Virtual Work for Statics 161
4.5.7 Statics Against Self-Inertial Loads 162
4.5.8 Statics Against Inertial Loads at End-effector 164

4.6 Robot Dynamics 165
4.6.1 Dynamic System of Rigid Bodies 166
4.6.2 Dynamics of a Rigid Body 167

4.6.2.1 Motion Equations of a Rigid Body 168
4.6.2.2 Potential Energy of a Rigid Body 172
4.6.2.3 Kinetic Energy of a Rigid Body 173

4.6.3 Newton-Euler Formula 174
4.6.3.1 Kinematic Parameters of a Link 174
4.6.3.2 Dynamic Parameters of a Link 176
4.6.3.3 Sum of Forces of a Link 176
4.6.3.4 Sum of Torques of a Link 177
4.6.3.5 Equation of Linear Motion of a Link 177
4.6.3.6 Equation of Angular Motion of a Link . . . 178
4.6.3.7 Recursive Algorithm for Forces/Torques . . 179
4.6.3.8 Recursive Algorithm for Velocities and Ac-

celerations 179
4.6.4 Euler-Lagrange Formula 182

4.6.4.1 D'Alembert Principle 182
4.6.4.2 Lagrange Formula 183
4.6.4.3 Equations of Motion 188

4.7 Summary 194
4.8 Exercises 195
4.9 Bibliography 197

5. Control System of Robots 199

5.1 Introduction 199
5.2 Automatic-Feedback Control System 200

5.2.1 System Concept 200
5.2.2 Closed-loop Control Scheme 201

Contents xvii

5.2.3 System Dynamics 204
5.2.4 Transfer Functions 206
5.2.5 System Performance 209
5.2.6 Analysis of Absolute Stability 213

5.2.6.1 Root-Locus Method 213
5.2.6.2 Lyapunov's Method 215

5.2.7 Tuning of PID Control Algorithms 217
5.3 Control Elements 221

5.3.1 Power Switches 223
5.3.1.1 Power Switches for Stepper Motors 224
5.3.1.2 Power Switches for Brush-type DC Motors . 227
5.3.1.3 Power Switches for Brush-less DC Motors . 228

5.3.2 Power Drives 230
5.3.2.1 Linear Power Drives 232
5.3.2.2 PWM Power Drives 235

5.3.3 Digital Motion Controllers 237
5.4 Sensing Elements 239

5.4.1 Generic Sensing Principle 240
5.4.2 Safety Sensors 242

5.4.2.1 Emergency Stop Sensors 243
5.4.2.2 Proximity Sensing Systems 243
5.4.2.3 Detection of a Human's Presence 245

5.4.3 Motion Sensors 246
5.4.3.1 Placement of Motion Sensors 247
5.4.3.2 Potentiometers 248
5.4.3.3 Absolute Optical Encoders 250
5.4.3.4 Incremental Optical Encoders 254

5.4.4 Force/Torque Sensors 258
5.4.4.1 Indirect Measurement 259
5.4.4.2 Direct Measurement 259

5.4.5 Tactile Sensors 264
5.5 Control System Design 266

5.5.1 Issues 266
5.5.2 Planning of Desired Outputs 267
5.5.3 A Robot's System Dynamics 268

5.5.3.1 Dynamics of a Robot's Mechanism 268
5.5.3.2 Dynamics of Speed Reducers 269
5.5.3.3 Dynamics of Electric Motors 271

5.5.4 Sensory Feedback 274

xviii The Fundamentals of Robotics: Linking Perception to Action

5.5.5 Control Algorithms and Performances 276
5.5.5.1 PID Control Laws 277
5.5.5.2 Variable Structure Control 279

5.5.6 Joint-Space Control 283
5.5.6.1 Planning of Desired Outputs 283
5.5.6.2 System Dynamics 285
5.5.6.3 Centralized Joint Control Scheme 286
5.5.6.4 Independent Joint Control Scheme 288

5.5.7 Task-Space Control 290
5.5.7.1 Planning of Desired Outputs 291
5.5.7.2 Posture Control in Task Space 291
5.5.7.3 Force Compliance Control 293
5.5.7.4 Hybrid Force and Trajectory Control 293
5.5.7.5 Impedance Control 295

5.5.8 Image-Space Control 297
5.5.8.1 Scenarios 297
5.5.8.2 Objectives 298
5.5.8.3 Methodologies 298

5.6 Summary 299
5.7 Exercises 301
5.8 Bibliography 302

6. Information System of Robots 303

6.1 Introduction 303
6.2 Imitating the Brain 304
6.3 Imitating the Mind 306

6.3.1 Autonomous Actors or Agents 306
6.3.2 Autonomous Behaviors 307
6.3.3 Computational Tasks 309

6.4 Data-Processing Hardware 310
6.4.1 Digital Computers 311
6.4.2 Microprocessors 312

6.4.2.1 Memory 312
6.4.2.2 Number Representation 314
6.4.2.3 Arithmetic Logic Unit (ALU) 315
6.4.2.4 Bus 315
6.4.2.5 Generic Architecture of Computers 316
6.4.2.6 Cycle-by-Cycle Operations 317
6.4.2.7 Generic Architecture of a Microprocessor . . 319

Contents xix

6.4.3 Micro-controllers 321
6.5 Data-Processing Software 322

6.5.1 Programming 323
6.5.1.1 Programming Language 323
6.5.1.2 Programming Environment 324
6.5.1.3 Program/Data Files 325
6.5.1.4 Programming Procedure 325
6.5.1.5 The Basics of C-Programming Language . . 327

6.5.2 Multi-Tasking 334
6.5.2.1 The Basics of Multi-Tasking 334
6.5.2.2 Cooperative Multi-Tasking 338
6.5.2.3 Preemptive Multi-Tasking 341

6.5.3 Real-Time Operating Systems 342
6.6 Data Storage and Retrieval 343

6.6.1 Storage Devices 344
6.6.2 A File System 344
6.6.3 Data Storage Using Unformatted Files 345
6.6.4 Data Storage Using a File System 346
6.6.5 Data Storage Using Formatted Files 347

6.7 Data Interfacing and Communication 349
6.7.1 Basic Concepts 349

6.7.1.1 I/O Registers 349
6.7.1.2 I/O Ports 350
6.7.1.3 Communication Networks 351
6.7.1.4 Common Issues 352
6.7.1.5 Procedure of Programming I/O Systems . . 353

6.7.2 D/A Converters 354
6.7.3 A/D Converters 355
6.7.4 Parallel I/O 357

6.7.4.1 Device Control with Parallel I/O Systems . 357
6.7.4.2 Interfacing for Data Communication 358
6.7.4.3 Strobed Parallel I/O 359
6.7.4.4 Full Handshake Parallel I/O 360

6.7.5 Serial I/O 361
6.7.5.1 Interfacing for Data Communication 362
6.7.5.2 Bit-oriented Data Framing 364
6.7.5.3 Synchronous Serial I/O 365
6.7.5.4 Asynchronous Serial I/O 367

6.7.6 Programmable Timers 371

xx The Fundamentals of Robotics: Linking Perception to Action

6.7.6.1 Active Signal Output 373
6.7.6.2 Active Signal Capture 373
6.7.6.3 Self-generating Real-time Interrupt 374

6.8 Summary 374
6.9 Exercises 376
6.10 Bibliography 377

7. Visual Sensory System of Robots 379

7.1 Introduction 379
7.2 The Basics of Light 379

7.2.1 Physical Properties 380
7.2.2 Geometrical Properties 386
7.2.3 Refraction of Light Rays by a Thin Lens 389

7.3 The Basics of the Human Eye 392
7.3.1 Eyeballs 392
7.3.2 Photosensitive Cells 394
7.3.3 Central Vision 395
7.3.4 Peripheral Vision 396

7.4 Digital Image Acquisition 396
7.4.1 Formation of Optical Images 397

7.4.1.1 Optical-Image Focusing 398
7.4.1.2 Control of Incoming Light 400
7.4.1.3 Light Splitting & Color Filtering 401

7.4.2 Formation of Electronic Images 404
7.4.2.1 Photoelectric Effect 404
7.4.2.2 CMOS Imaging Sensors 404
7.4.2.3 CCD Imaging Sensors 413

7.4.3 Formation of Digital Images 416
7.4.3.1 Analogue Videos 417
7.4.3.2 Digitization of Analogue Videos 423

7.5 Modelling of Digital Images 426
7.5.1 Chromatic Modelling 426

7.5.1.1 Representation in RGB Color Space 426
7.5.1.2 Representation of Intensity Images 427

7.5.2 Geometric Modelling 428
7.5.2.1 Pin-hole Model and Perspective Projection . 429
7.5.2.2 Assignment of Camera Coordinate Systems 430
7.5.2.3 Assignment of Image Coordinate Systems . 430
7.5.2.4 Determination of Image Coordinates 430

Contents xxi

7.5.2.5 Determination of Index Coordinates 433
7.5.2.6 Intrinsic Parameters of Cameras 434

7.6 Digital Image-Processing Hardware 435
7.6.1 Host Computers 436
7.6.2 DSP Processors 436
7.6.3 Pipelined Computing Modules 438
7.6.4 Parallel Computing Platforms 439

7.7 Summary 441
7.8 Exercises 442
7.9 Bibliography 444

8. Visual Perception System of Robots 445

8.1 Introduction 445
8.2 The Basics of Visual Perception 446

8.2.1 A Process of Visual Perception 446
8.2.2 Attributes of Visual Perception 447
8.2.3 Applications of Visual Perception 448
8.2.4 Information Processing in Visual Perception 450

8.3 Image Processing 453
8.3.1 Image Transformation 453

8.3.1.1 Frequency-domain Transforms 453
8.3.1.2 Time-domain Transforms 454
8.3.1.3 Spatial Transforms 457

8.3.2 Image Filtering 457
8.3.2.1 Convolutions 458
8.3.2.2 Derivative of Convolutions 461
8.3.2.3 Integral of Convolutions 463
8.3.2.4 Spatial Displacement of Convolutions 464

8.4 Image Feature Extraction 465
8.4.1 The Basics of Feature Detection 465

8.4.1.1 Feature Definition 466
8.4.1.2 A Generic Procedure for Feature Detection . 467
8.4.1.3 Criteria for Feature Detection . . ' : 468

8.4.2 Edge Detection ' 471
8.4.2.1 Definition of Edges 472
8.4.2.2 Types of Edges 472
8.4.2.3 A General Scheme for Edge Detection . . . 475
8.4.2.4 Sobel Edge Detector 476

xxii The Fundamentals of Robotics: Linking Perception to Action

8.4.2.5 Gaussian Edge Detector with Tunable Re-
sponse and Localization 479

8.4.2.6 Canny and Deriche Edge Detectors 483
8.4.2.7 Summary of Edge-Detection Algorithm . . . 486

8.4.3 Corner Detection 489
8.4.3.1 Definition of Corners 490
8.4.3.2 Zero-gradient Corner Detector 492
8.4.3.3 Other Corner Detectors 496

8.4.4 Spatial Uniformity Detection 496
8.4.4.1 Definition of Image Regions 497
8.4.4.2 A General Scheme for Uniformity Detection 497
8.4.4.3 Color Detection 500

8.4.5 Temporal Uniformity Detection 508
8.4.5.1 Definition of Image Templates 509
8.4.5.2 Template Matching 510

8.4.6 Temporal Discontinuity Detection 513
8.5 Geometric-Feature Description 513

8.5.1 The Basics of Feature Description 514
8.5.2 Feature Grouping 515

8.5.2.1 Types of Neighborhoods 516
8.5.2.2 Pixel Clustering 518
8.5.2.3 Boundary Tracing 518
8.5.2.4 Edge Linking 520

8.5.3 Contour Splitting 522
8.5.3.1 Successive Linear Curves 523
8.5.3.2 Successive Nonlinear Curves 524

8.5.4 Curve Fitting 525
8.5.4.1 Line-Segment Approximation 526
8.5.4.2 Circular-Arc Approximation 528
8.5.4.3 Elliptic-Arc Approximation 528

8.6 Geometry Measurement 529
8.6.1 Monocular Vision 530

8.6.1.1 Forward Projective-Mapping 530
8.6.1.2 Simulation of Monocular Vision 532
8.6.1.3 Inverse Projective-Mapping 534
8.6.1.4 Camera Calibration 538
8.6.1.5 Determining the Parameters of Cameras . . 540

8.6.2 Binocular Vision 546
8.6.2.1 Forward Projective-Mapping 547

Contents xxiii

8.6.2.2 Inverse Projective-Mapping 549
8.6.2.3 Unresolved Issue: Binocular Correspondence 553
8.6.2.4 Continuous Epipolar-Line Constraint 554
8.6.2.5 Discrete Epipolar-Line Constraint 559
8.6.2.6 Differential Epipolar-Line Constraint 562

8.7 Summary 566
8.8 Exercises 568
8.9 Bibliography 570

9. Decision-Making System of Robots 573

9.1 Introduction 573
9.2 The Basics of Decision Making 574

9.2.1 The Key to Automated Actions 574
9.2.2 The Key to Automated Behaviors 575
9.2.3 Decision-Making Processes 576

9.2.3.1 Inputs of Decision-Making 577
9.2.3.2 Outputs of Decision-Making 579

9.2.4 Difficulties in Decision-Making 580
9.2.4.1 Uncertainty 580
9.2.4.2 Redundancy 581

9.2.5 Methodologies in Decision-Making 582
9.2.5.1 Expert Knowledge 582
9.2.5.2 Statistical Inference 583
9.2.5.3 Fuzzy Inference 585
9.2.5.4 Neural Network 587

9.3 Decision Making for Autonomous Behaviors 588
9.3.1 Task or Scenario Planning 589

9.3.1.1 A Goal Description as Input 589
9.3.1.2 A Task Sequence as Output 591
9.3.1.3 The Task-Planning Process 591

9.3.2 Action or Behavior Planning 592
9.3.2.1 A Task Description as Input 593
9.3.2.2 An Action Sequence as Output 594
9.3.2.3 The Action-Planning Process 594

9.3.3 Motion Planning 596
9.3.3.1 An Action Description as Input 596
9.3.3.2 A Motion Sequence as Output 597
9.3.3.3 The Motion-Planning Process 597

9.3.4 A General Framework for Automated Planning . . . 600

xxiv The Fundamentals of Robotics: Linking Perception to Action

9.4 The Basics of Motion Planning 602
9.4.1 Path and Trajectory 603
9.4.2 Motion-Planning Strategy 604

9.4.2.1 Forward Planning 604
9.4.2.2 Backward Planning 605
9.4.2.3 Formation Planning 608

9.5 Motion Planning in Task Space 610
9.5.1 Planning of Collision-Free Paths 611

9.5.1.1 A Discrete and Normalized Workspace . . . 611
9.5.1.2 A Path Map 613
9.5.1.3 A Collision-Free Path 614
9.5.1.4 Constraints of Robots 616

9.5.2 Motion Description 618
9.5.2.1 Linear Curves 619
9.5.2.2 Circular Curves 619
9.5.2.3 Paths 621
9.5.2.4 Trajectories 622
9.5.2.5 Interpolation of Orientations 624

9.6 Image-Guided Motion Planning and Control 626
9.6.1 Hand-Eye Coordination 629

9.6.1.1 Input 629
9.6.1.2 Output 631
9.6.1.3 A Closed-form Solution 632
9.6.1.4 An Iterative Approach 632

9.6.2 Head-Eye Coordination 644
9.6.2.1 Input 645
9.6.2.2 Output 647
9.6.2.3 A Closed-form Solution 648
9.6.2.4 Iterative Approaches 656

9.6.3 Leg-Eye Coordination 660
9.6.3.1 Image-Guided Road Following 661
9.6.3.2 Image-Guided Target Following 664

9.7 Summary 667
9.8 Exercises 669
9.9 Bibliography 670

10. Prospects 673

Index 677

Chapter 1

Introduction to Robotics

1.1 Introduction

This chapter gives an overview of robotics, the engineering discipline which
focuses on the study of robots. I will introduce relevant topics from the
angle of manufacturing, which serves as a convincing basis to justify the
usefulness and importance of robots in industry. For those who are actively
undertaking research in the area of artificial intelligence, I also describe a
framework from which to understand human intelligence. In the later part
of the chapter, I discuss the major concerns of robotics, for the purpose of
illustrating the simple, unifying theme, motion. An understanding of this
theme would make the rest of the chapters easier to read.

1.2 Manufacturing

The word manufacture comes from the combination of two Latin words,
manus (hand) and factus (to make). Thus, the literal meaning of man-
ufacture is, "to make by hand" either directly, by producing handicrafts,
or indirectly, by making use of re-programmable machine tools. Since an-
cient times, our ancestors exercised their creativity to the fullest, in making
things by hand. This creativity led to the invention of tools, which made
the process of "making things" much easier and more efficient. Most im-
portantly, the discovery of engineering materials, such as metal, ceramics,
and polymers, enlarged the scope of "things" which can be made by hand,
with or without the help of tools. This, in turn, fuelled people's creativity
in inventing various processes for making "things" of different complexity,
property, and scale.

A direct consequence of the activity of "making things by hand" was

l

2 The Fundamentals of Robotics: Linking Perception to Action

(T Initial Material, Part or Component ")

Equipment | N 1 - |

\ Manufacturing Processes / Energy

Labor n / l p ' Y l

(̂ " Final Product of Increased Value J)

Fig. 1.1 Illustration of basic functional modules in manufacturing.

that craftsmen were able to produce a surplus of goods which far exceeded
their needs. As a result, people began to exchange the surplus of one type
of goods for the surplus of another type of goods. This led to the creation
of commerce, which is a platform for stimulating the production of wealth
for people and nations. With the advent and sophistication of finance and
monetary systems, commerce has steadily reached a scale, which goes into
a dimension far beyond geographical, social, and cultural boundaries. It is
not exaggerating to say that today's commerce is the motor which drives
all economic, social, and cultural activities. Regardless of the scale and
dimension of commerce, the basic fundamentals, the exchange of goods or
services, are still the same. Without exchange, there would be no commerce;
without commerce, there would be no manufacturing.

If manufacturing is the art and science of "making things by hand,"
directly or indirectly, a formal definition of manufacturing can be stated,
as follows:

Definition 1.1 Manufacturing is the application of processes which alters
the geometry, property, and appearance of materials for the production of
goods of increased value.

Refer to Fig. 1.1. A material, part or component is transformed from
the initial state to the final state of product through the interaction among
labor, equipment, material, and parts or components. This interaction
results in energy consumption.

Growing commercial activities have undoubtedly pushed up the demand
for product quality and manufacturing capacity, which is measured by the
rate of output products over a fixed period of time. The production of

Introduction to Robotics 3

goods in large volume has propelled manufacturing to evolve into a rigorous
scientific discipline covering the following important aspects:

Products

Final products, produced by Manufacturers, can be classified into two cat-
egories: a) consumer products and b) capital products. The former are
products purchased directly by consumers, such as personal computers, au-
tomobiles, TV, video recorders, household appliances, foods, beverages etc.
The latter are products purchased by companies, such as industrial robots,
mainframe computers, machine tools, construction equipment, processed
materials, parts, devices, components etc. Capital products are used in
manufacturing as facilities for the production of goods.

Materials

In addition to natural materials, such as wood, bamboo, stones, rocks,
petroleum etc., the advent of engineering materials has undoubtedly en-
larged the scope of things which can be manufactured. There are three
basic categories of engineering materials, namely: metals, ceramics, and
polymers. The combination of these three basic engineering materials forms
another category called, composite materials, such as metal-ceramic com-
posites, metal-polymer composites, and ceramic-polymer composites.

Processes

A manufacturing process consists of the interaction among labor, equip-
ment, and input materials, parts, or components. A manufacturing process
will change the geometry, property, or appearance of the input materials,
parts, or components. Thus, the interaction in a manufacturing process will
consume energy in the mechanical, thermal, chemical, or electrical domains.

Depending on the modes of interaction, a process can be either a serial
process or a parallel process. A process is called a serial process if the inter-
action occurs locally on a material, part, or component while a process is
called a parallel process if the interaction occurs globally across a material,
part or component.

However, depending on the outcome of the interaction, a process can
fall into one of the four categories:

4 The Fundamentals of Robotics: Linking Perception to Action

(1) Removal Process:
This refers to the operation of removing certain portions of input ma-
terials. Examples include cutting, grinding, die stamping etc.

(2) Addition Process:
This refers to the operation of adding other materials to input materials,
or joining parts or components together. Examples include painting,
coating, assembly, 3D printing, welding, soldering etc.

(3) Solidification Process:
This refers to the operation of creating objects through the transfor-
mation of thermal states of materials. A typical example of the solidi-
fication process is injection molding.

(4) Deformation Process:
This refers to the operation of altering the shape of a material, part
or component through the application of either mechanical or thermal
energy. Typical examples include die forging, bending, rolling, heating
etc.

Equipment

In order to satisfy the demand for high quality and high volume, it is
necessary to use machine tools or automated equipment to operate manu-
facturing processes. Functionally, the role of manufacturing equipment is
to control the interaction in a manufacturing process which will alter the
geometry, property, or appearance of the initial material, part, or compo-
nent.

Factories

The manufacturing industry consists of factories and organizations which
produce or supply goods and services.

Refer to Fig. 1.2. A factory is typically composed of the following enti-
ties:

• Production and Automation System:
This includes the factory layout, process equipment, metrology equip-
ment, material-handling equipment and labor.

• Manufacturing Support System:
This includes inbound logistics for ordering materials, parts, compo-
nents and facilities. On the other hand, outbound logistics deals with
distribution of the final products.

Introduction to Robotics 5

Management of Resources, Facilities and Business Operation

| Manufacturing Design | j Manufacturing Execution System |

[Enterprise/Supply-Chain j ; !

j Design & Simulation I j Process Equipment Material |

I | 1 I j Control Control Control |

I Manufacturing System : I ' ' ' ' ' ' I

I Design & Simulation I I Equipment Interface | i

) Product/Process j I pr o c e Ss I I Metrology Material
• ^ • • , „ • , • i Handling
| Design & Simulation j Equipment Equipment Equipment

I Manufacturing Processes & Transportation I

I "
Manufacturing Support System ^f j

I Inbound Logistics Outbound Logistics j

! i I 2 k I

..—^-.-^j^L--^.- ----- L— ----—, ,.—--•- y.—---- .-^-zzJg^=z^:-...
\/^"^Materiii N. ̂ ^ComponenT^X ! j f ~~N. f ^\!
|V^Suppliers_^ V ^ ^ u r i l i e j s ^ ^ i l V ^ " ^ ™ ^ ^ ^Consumers^^ j

Fig. 1.2 Outline of a factory in manufacturing.

• Manufacturing Execution System:
This includes process control, material flow control, equipment control
and deployment of labor.

• Manufacturing Design System:
This includes product design & simulation, process design & simulation
and supply-chain design & simulation.

• Enterprise Information and Management System:
This includes the management of resources, facilities and business op-
erations.

1.3 Factory Automation

There are two ways to achieve high yields in manufacturing. The simplest,
yet most expensive way is to increase the number of production lines. An
alternative and more desirable way is to increase the rate of production in
the existing production lines. It is possible to increase the production rate

6 The Fundamentals of Robotics: Linking Perception to Action

/
•°P"" » P r o c e s s / I °^%

^ — - " ^ " ^ Disturbance ^ / ^^~~~~^^^^

Significant inputs Process Optimization ^ 1

I , . FT ; . JL
A Cycle-by-Cycle t/O Equipment Control Inputs Proces/ [Outputs
l O 1 *• Process Control * ' IO?~~»' ~T* Modeling I *"

I 1 f . | \-^TLJ
Feedback /

Statistical Process Control ^ Sampling/Measurement ^ J

Monitoring

Fig. 1.3 Illustration of process optimization, process control, and equipment control in
manufacturing.

by reducing the cycle time needed to produce a single part or product.
There are also two ways to reduce cycle time. The first approach is to

improve the manufacturing process. The second approach is to automate
the manufacturing process by using re-programmable and automatically
controlled equipment.

As shown in Fig. 1.3, process optimization always starts with pro-
cess modelling, which consists of establishing a mathematical descrip-
tion that relates a process's input X = {(X\,X2, ...,Xn)} to its output
Y = {(Yi,Y2,..., Ym)}. We can identify the subset of significant input
variables by using the scientific method, called the design of experiments.
If we regulate or control these significant input variables, the dynamics of
a process can be optimized, in terms of stability, robustness, time respon-
siveness etc.

Therefore, one important aspect of factory automation is to automati-
cally regulate or control the significant input variables of a process.

Refer to Fig. 1.3. Process control involves two cascaded control loops,
which operate at different rates. The outer loop is the statistical process
control, which aims at maximizing product quality. By definition, quality
is inversely proportional to the output variation . Therefore, the quality
control can be achieved by first monitoring the output variation of a process,
and then automatically acting on a process's inputs for the purpose of

Introduction to Robotics 7

minimizing this variation.
The inner loop, in a process control, is equipment control. As I men-

tioned before, the role of manufacturing equipment is to control the in-
teraction in a process, which aims at altering in a controllable manner,
the geometry, property, or appearance of the initial materials, parts, or
components. Equipment control output is the direct input to a process.
Therefore, the rate of equipment control depends on the dynamics of the
process. In general, equipment control must operate in real-time. However,
statistical-process control depends on sampling, measurement, and analysis
of data. Its control cycle will be longer than that of equipment control.

1.3.1 Automation and Robots

As we discussed above, a manufacturing process consists of the interaction
among labor, equipment, and materials, parts, or components. This inter-
action results in energy consumption in mechanical, thermal, chemical or
electrical domains.

The aim of automation is to eliminate the direct involvement of labor in
the process interaction. This is only achievable by setting up automatically-
controlled equipment. In this way, the role of labor in the factory has
shifted, from direct involvement to indirect programming and/or monitor-
ing of automated equipment.

The most typical energy-driven interactions are those which convert
electrical energy to mechanical energy. The manifestation of energy in the
mechanical domain takes the form of motions which can be altered by using
a mechanism. A mechanism is not a machine. An example of a familiar
mechanism is the bicycle. A formal definition of mechanism is as follows:

Definition 1.2 A mechanism is a set of (mechanical) elements arranged
in certain configurations for the purpose of transmitting motions in a pre-
determined fashion.

Motion is the visible form of mechanical energy. An element which
converts electrical energy into motion is called an electric motor or actuator.
If a system includes at least one element intended for energy conversion, this
system is called a machine. A typical example of a machine is a motorcycle
or car. A formal definition of machine can be stated as follows:

Definition 1.3 A machine is a super-set of mechanism(s), and contains
elements which supply energy to drive this mechanism(s).

8 The Fundamentals of Robotics: Linking Perception to Action

In mathematics, motion is fully described by the parameters: position
(p), velocity (v), and acceleration (a). These motion parameters (p,v,a)
are important input variables for many manufacturing processes. A large
family of manufacturing equipment among the variety which exists, is the
one which supplies the motion required by a manufacturing process, such
as: arc-welding, spray painting, assembly, cutting, polishing, deburring,
milling, drilling etc. Of this class of equipment, an increasingly popular
type is the industrial robot.

The English word robot was derived from the Czech word robota, mean-
ing forced workers. The word robot became popular in 1921 because of a
play named "Rossum's Universal Robots" by Czechoslovakian writer, Karel
Kapek. In the play, a scientist called Rossum created human-like machines
that revolted, killed their human masters, and took control of the world.

The American company, Unimation Inc., founded in 1962 by Joseph
Engelberger and George Devol, was the first company to actually produce
industrial robots.

From an engineering point of view, a robot is the embodiment of manip-
ulative, perceptive, communicative, and cognitive abilities in an artificial
body, which may or may not have a human shape. For example, industrial
robots are merely a combination of an arm and a hand. According to the
Robot Institute of America, the formal definition of industrial robot is as
follows:

Definition 1.4 A robot is a programmable, multi-functional manipulator
designed to move material, parts or specialized devices through variable
programmed motions for the performance of a variety of tasks.

However, in view of the evolution of the robot into a sophisticated me-
chanical, electronic, controlling, informative, perceptive, and cognitive sys-
tem, a new definition of robot is necessary:

Definition 1.5 A robot is the embodiment of manipulative, locomo-
tive, perceptive, communicative and cognitive abilities in an artificial body,
which may or may not have a human shape. It can advantageously be
deployed as a tool, to make things in various environments.

Nowadays, the robot is not only gaining more popularity in industry,
but also slowly entering society, in the form of humanoid or animal-like
entertainment robots. Figs 1.4 — 1.7 show some prototypes developed by
Japanese companies. Accordingly, it is necessary to concisely define the
term humanoid robot. A formal definition of humanoid robot is as follows:

Introduction to Robotics 9

Fig. 1.4 PINO: An open development platform for a desktop humanoid robot. Photo
by Author.

Definition 1.6 A humanoid robot is the embodiment of manipulative,
locomotive, perceptive, communicative and cognitive abilities in an artificial
body similar to that of a human, which possesses skills in executing motions
with a certain degree of autonomy, and can be advantageously deployed as
agents to perform tasks in various environments.

In this book, robot refers to both industrial and humanoid robots.
In the manufacturing industry, tasks or processes which can typically

be accomplished by using robots include:

• Welding:
This is the process of joining two work-pieces together by applying
molten weld metal. For spot welding, the important motion parameter
is position; for arc welding, an additional important motion parameter
is the speed of travel.

• Cutting:
This is the process of applying thermal or mechanical energy to cut a

10 The Fundamentals of Robotics: Linking Perception to Action

Fig. 1.5 TMSUK's humanoid robot prototype. Photo by Author.

work piece into a specific shape. In this process, the important motion
parameters are position and velocity.

• Assembly:
This is the process of either adding components to form a single entity,
or affixing components to a base unit (e.g. to place components on a
printed circuit board). In this process, the important motion parameter
is position.

• Material Handling:
This is the process of either packaging parts into a compartment (box)
or loading/unloading parts to/from another station. In this process,
position is an important motion parameter.

1.4 Impact of Industrial Robots

The industrial robot, a combination of arm and hand, can advantageously
be deployed in the manufacturing industry to automate many processes,
which have motion parameters as input. Obviously, automation using
robots shifts the use of human labor from direct interaction with a process
to various indirect interactions. These indirect interactions include process
monitoring, process diagnostics, equipment setting, equipment program-

Introduction to Robotics 11

£9B^HJ$5pN&wB^

Fig. 1.6 FUJITSU'S humanoid robot prototype. Photo by Author.

ming, the development of automation solutions etc.
Despite all these new job opportunities, one major concern in the manu-

facturing industry is that the proliferation of robots will cause displacement
of human labor and eventually, unemployment. This is a real problem, faced
by both developed and developing countries. There is no simple solution
to this issue. However, it can be addressed at various levels:

• Individual Level:
It must be clear that we are living in a changing environment. We are
now witnessing the third wave of the industrial revolution: Information
Technology. The tools for us to make things are constantly evolving
with increased complexity and sophistication. Therefore, individuals
must constantly learn new knowledge and skills in order to make use
of the modern tools being deployed in the industry.

• Industrial Level:
Perhaps, there should be an adjustment in the company goals . The
initial goal of a company is to earn profits for the shareholders through
the manufacturing and supply of goods and/or services. It is clear that
a second dimension should be added to this initial goal. This second di-
mension is the social responsibility of the company to constantly shape

12 The Fundamentals of Robotics: Linking Perception to Action

Fig. 1.7 SHARP'S Animal-like entertainment robot prototype. Photo by Author.

the knowledge and skills of its employees into a pattern, which will keep
them relevant to the current market condition and the evolution of the
industry (or emergence of new industry).

• Education Level:
Perhaps, we should re-emphasize the true nature of education. It should
be a process of developing brain power in mastering knowledge and
acquiring skills, on top of understanding theories in a specific field of
science and technology. The development of brain power should be
considered more important than the memorization of theoretical facts
and data. For an individual to be adaptable to a changing environment
or job market, which is increasingly dominated by knowledge and skill,
it is necessary that he/she adequately develop his/her brain power in
philosophy, physics, mathematics, and computing.

• Social Level:
The deployment of robots in the manufacturing industry will undoubt-
edly increase the productivity and quality of goods. This, in turn,
will generate more wealth for companies and society. We should make
sure that the re-distribution of wealth, generated by the deployment of
robots, is wisely regulated, in order to create more jobs and activities
for human beings in other employment sectors (i.e. service, entertain-

Introduction to Robotics 13

ment, sports, arts, healthcare, education, research etc.)

Despite social concerns about the displacement of human labor, the
wide use of robots in the manufacturing industry will certainly have positive
impact, as well:

• Productivity:
It is impossible to achieve a high production yield using human la-
bor, because the biological system cannot deliver continuous physical
effort without rest. There is no doubt that automation with robots will
increase productivity.

• Flexibility:
The winning characteristics in manufacturing today are volume, price,
quality and service. Automation using robots will add a fifth character-
istic: choice. In other words, the ability to supply customized products
or services in a timely manner. A company which wishes to offer choices
to its customers must have flexibility in configuring and operating its
production line. Therefore, flexible automation or agile manufacturing
is the key to success in today's manufacturing industry. The robot, be-
ing re-programmable equipment capable of executing various motions
within a reasonably large working space, is undoubtedly one of the best
types of equipment for flexible automation.

• Quality of Products:
Humans are not capable of making things with a consistent degree
of accuracy. For example, our vision does not make metric measure-
ments when performing tasks. And, without accurate visual guidance,
we cannot perform motions with any reasonable degree of accuracy or
replication. Robots can not only execute accurate motions repeatedly,
but are immune to the emotional states which affect human's perfor-
mance.

• Quality of Human Life:
The use of robots can free humans from doing dirty, dangerous, and
difficult jobs.

• Scientific Discipline:
The proliferation of robots in industry reveals the importance of
robotics, the study of robots as a scientific discipline for education and
research. Indeed, robotics is an important subject in engineering, and
is being widely taught in any university having an engineering depart-
ment.

14 The Fundamentals of Robotics: Linking Perception to Action

1.5 Impact of Humanoid Robots

The enhanced locomotive ability of humanoid robots will increase the range
of the manipulative function. With the tight integration of perceptive abil-
ity, a humanoid robot will gain a certain level of autonomy by interact-
ing with human masters or executing tasks intelligently. The inclusion of
cognitive ability will make a humanoid robot a physical agent, capable of
self-developing its mental and physical capabilities through real-time inter-
action with the environment and human masters. There is no doubt that
the emergence of humanoid robots will have great impact on many aspects
of our modern society.

1.5.1 Industry

The enhanced and human-like locomotive ability of the humanoid robot
makes it possible to deploy humanoid robots to places where humans are
still working like machines. Within the manufacturing industry itself, it is
foreseeable that the emergence of the humanoid robot will certainly auto-
mate more tasks, such as: maintenance, diagnostics, security etc. We can
even imagine that an un-manned factory may become a reality one day. It
is clear as well, that the humanoid robot will also benefit other industries.
For example, construction of buildings or houses can be considered as an
assembly process, which could automatically be completed by specialized
teams of humanoid robots under the supervision of human masters. In
the healthcare industry, humanoid robots could provide great service in
the rehabilitation of patients. Additionally, humanoid robots could be of
assistance in hospitals for certain tasks (e.g. precision surgery).

1.5.2 Society

Up until today, the greatest consumer product has undoubtedly been the
automobile. It provides us with unprecedented mobility, increases our sense
of social status, and offers us high-quality, in-vehicle entertainment expe-
riences among other things. Without the automobile, there would be no
efficient transportation. Now, the question is: What will be the next great
consumer product? If we look at the evolution of the computer as a con-
sumer product, we may discover the following trends:

• The microprocessor is becoming smaller, while computational power is
increasing.

Introduction to Robotics 15

• The microprocessor is consuming less electrical power, despite the in-
creased computational power.

• The computer has more functions and better performance while the
price is constantly decreasing.

• The computer is constantly improving its cognitive abilities: soft com-
puting (i.e. computation with words rather than digital logic), speech
recognition, auditory communication, visual communication, visual
perception etc.

• The computer has the ability to express inner emotional states through
visible motions (e.g. facial expressions).

The evolution of the computer coincides with the evolution of the robot,
which is characterized by the following clear trends:

• The robot's arm is becoming smaller, yet it has increased manipulative
ability.

• The robot's hand is becoming more compact, yet it has increased dex-
terity and sensing ability.

• The robot has a head, which may influence the design of future com-
puter's monitor, and provide the means for facial expressions and per-
ceptive sensory input and output.

• The robot has legs to perform human-like, biped walking.
• The robot is becoming intelligent. The incorporation of demanding

computational power and cognitive abilities enables the robot to per-
form real-time interaction with its environment and humans.

• The robot is becoming the perfect embodiment of an artificial body
with artificial intelligence.

The parallel development of the computer and robot industries, each of
which has its own group of manufacturers with sound and profitable track
records, will contribute to the emergence of the humanoid robot as the
next great consumer product. Undoubtedly, this will bring new benefits to
consumers, such as:

• Robot-assisted Entertainment:
Computerized games are very popular. These are basically pre-
programmed interactions between users and artificial creatures in a
virtual world. With the humanoid robot, or an animal-like robot, com-
puterized games will take on a new dimension: a pre-programmed in-
teraction with artificial creatures in real space. Moreover, with the
humanoid robot, certain animations or tours could also be automated

16 The Fundamentals of Robotics: Linking Perception to Action

in places, such as museums, hotels, shopping centers, theme parks, film
studios etc.

• Robot-assisted Healthcare at Home:
Healthcare is expensive. One effective way to lower the cost is to in-
crease the accessibility of healthcare services. This would be possible,
if humanoid robot technology advanced to the stage where we could
deploy humanoid robots to homes, both locally and in remote areas.
By simply activating the appropriate pre-coded programs, a humanoid
robot could instantaneously be configured as an "expert" in the nec-
essary medical field, (e.g. dentist). Therefore, some pre-hospital di-
agnostics or treatments could be done at home or in a neighborhood
community center, at a much lower cost.

In addition, the humanoid robot would provide the means for a human
medical expert to diagnose and treat a patient at a remote location,
or even a remote village, through tele-presence. With the humanoid
robot, it is possible for us to envision in the future the concept of a
virtual hospital.

• Robot-assisted Education at Home:
In our modern society, parents are heavily occupied with their profes-
sional activities. There is limited time for parents to contribute to the
educational process of their children. In order to compensate for this
deficiency, more and more parents rely on private tutors to comple-
ment schooling. In the future, an alternative to private tuition may be
the use of humanoid robot-tutors, with pre-programmed and selectable
knowledge and skills. One obvious advantage to using the humanoid
robot as a tutor is the ability for the same humanoid robot to be con-
figured as a tutor in different disciplines, as well as at different skill
and knowledge levels. As a result, robot-assisted education is not only
appropriate for children, but also relevant to the continuing education
of adults. With the humanoid robot, it is possible to envision a virtual
university for life-long learning at home.

• Robot-assisted Tele-existence:
The human body is not only a collection of sub-systems for output
functions, but also a collection of sub-systems for input of sensory infor-
mation. The humanoid robot is also a complex system, having output
and input functions, and is an ideal platform to extend the reach of a
human's output functions, for example, to a remote location. It can
act as a "complex sensor" placed at a remote location, feeding back in-
formation to humans who can then feel, experience, interpret, respond

Introduction to Robotics 17

etc. This is what the commonly called tele-existence. With the hu-
manoid robot, it may be possible one day for humans to travel or shop
in a remote place without going anywhere. This type of tele-existence
will certainly enrich our lives.

• Mechanized Buddy:
More and more researchers in the community of robotics and artifi-
cial intelligence are studying developmental principles, underlying the
self-development of mental and physical abilities through real-time in-
teraction between the environment and humans. This research will
have a direct impact on the manufacturing of smart artificial animals
(e.g. SONY's AIBO, a type of mechanized dog). The animals of the fu-
ture will possess certain degrees of autonomy to self-develop emotional,
affective and cognitive functions through real-time interaction with hu-
mans. It will not be long before we will see the market flourishing with
smart toys or animals.

1.5.3 Space Exploration and Military

The humanoid robot is an ideal platform for tele-presence or tele-existence.
Because of this, it is easy for us to imagine its applications in space explo-
ration and the military. It would be possible to dispatch a space shuttle
commanded by humanoid robots, yet controlled by humans at a ground
station on Earth. It would also be possible to assign humanoid robots to
maneuver military land, air, or underwater vehicles in a battle field without
risk of human casualty. In the battle against terrorism, humanoid robots
could help to prevent, dissuade, and rescue.

1.5.4 Education

Today's engineering education emphasizes the integrative aspect of various
engineering disciplines, or Mechatronics. Mechatronics originated in Japan
in the 1970s and is gaining worldwide attention because of the importance
of integrating different, but inter-related engineering disciplines. A formal
definition of Mechatronics can be stated as follows:

Definition 1.7 Mechatronics is the study of the synergetic integration of
physical systems with information technology and complex decision-making
in the design, analysis and control of smart products and processes.

18 The Fundamentals of Robotics: Linking Perception to Action

• Mental —-j L R e a j — - j - ^
V World / k _ W o r l d J

I LEARNING I I PERCEPTION I

Modeling
_ _ _ _ ^ z 1 Sensory Systems

Optimization ^
Perceptual Filters

Representation

A ,-t IZ~fl
1 [STATE

S | Mental States |

| Physiological States |

, II + ~ ~T V
THINKING ACTION

Belief System | | Physiology |

• Inferring Process \S [Mechanism —

| Menial Syntax | [sensory -motor Control |

Fig. 1.8 A proposed framework for human intelligence which encompasses four con-
stituent elements: perception, learning, thinking and action.

The humanoid robot, being a combination of mechanical, electronic,
control, information, perceptive and cognitive systems, is an ideal platform
to illustrate the essence of Mechatronics.

1.5.5 Research

Besides education, which propels research on the humanoid robot, two ad-
ditional forces which simultaneously stimulate research in this fascinating
field are: a) computational neuroscience and b) intelligent (physical) sys-
tems.

Computational neuroscience is the study of how the human brain plans
and controls behaviors to achieve desired results (i.e. outcome). By def-
inition, a "behavior" is a sequence of actions with a specific syntax (i.e.
ordered arrangement). Human life is an unceasing journey of achieving

Introduction to Robotics 19

desired results through actions which are decided as a result of our inter-
nal representations of the real world, our mental state-of-mind, and our
physiological state. An important goal of computational neuroscience is to
develop computational theories and models from an understanding of the
brain's functions in these important areas. (See Fig. 1.8 for illustration).

• Perception:
Humans have five sensory systems, namely: visual, auditory, kines-
thetic, gustatory, and olfactory. These sensory systems supply input
to the brain to build the personalized internal representations of the
external world. In addition, mental and physical states affect the way
the brain reacts to certain sensory input.

• Learning:
The human brain has the ability to process filtered sensory data to de-
rive structured representations which form our mental world, in terms
of knowledge and skills. Generally speaking, knowledge describes the
relationships between causes (e.g. stimuli, actions, transformations,
conditions, constraints etc) and effects (e.g. results, facts, situations,
conceptual symbols etc). However, skill describes the association of be-
haviors (i.e. the ordered sequence of actions) with results. Language is
undoubtedly an important component in learning visual, auditory, and
kinesthetic representations of the external real world. And, Learning is
a process for us to gain not only knowledge, but also skills which result
in actions. Hence, action is the source of results. We all have simi-
lar bodies and neurological systems. If we undertake the same actions
under the same mental and physiological states, we can achieve simi-
lar results. This form of learning encourages us to effectively imitate
successful people.

• Thinking:
Human beings are capable of not only communicating with the real
world, but also communicating with the internal, mental world. We all
have our own mental syntax (i.e. ordered sequence of mental actions)
which conditions our thinking process. Simply speaking, thinking is a
process of associating causes with, or disassociating them from effects.
The thinking process is dictated by our belief system, because belief
is pre-formed and pre-organized predictions of achievable outcomes.
Our belief system also determines the configuration of our mental and
physiological states. For example, the belief that one is resourceful
places a person in a different state-of-mind than the belief that one is

20 The Fundamentals of Robotics: Linking Perception to Action

miserable.
• Action:

The human body is capable of performing actions, driven by our
sensory-motor systems. The ordered actions are behaviors acting on
the real world for the achievement of desired results. The performance
of our sensory-motor systems obviously depends on the body's mecha-
nisms, as well as physical energy which is affected by our mental state.
For instance, being vital, dynamic and excited certainly releases more
physical energy than being depressed, scared or uninterested etc.

Intelligence and the ability to produce intended results are unique at-
tributes associated with humans. Now, here comes the question of human
intelligence. How do we define intelligence? From an engineering point
of view, it is constructive to form an objective, precise definition of "in-
telligence" to prevent it from being misused. One possible definition of
intelligence is as follows:

Definition 1.8 Intelligence is the ability to link perception to actions for
the purpose of achieving an intended outcome. Intelligence is a measurable
attribute, and is inversely proportional to the effort spent in achieving the
intended goal.

The study of computational neuroscience not only helps us have a better
understanding of the brain's functions, but also helps guide the engineering
approaches in the development of artificial intelligence. However, human-
inspired artificial intelligence must be tested by an artificial body. The
humanoid robot is an ideal testing ground for computational theories or
models derived from the study of the human brain's mechanisms in percep-
tion, learning, thinking, and action.

On the other hand, intelligent (physical) system is the study of com-
putational principles for the development of perception, learning, decision-
making and integration in an artificial body. An artificial body requires
artificial intelligence in order to adapt to a changing environment for the
purpose of better performing the assigned tasks. Undoubtedly, the hu-
manoid robot is a perfect research platform for the study of the embodiment
of artificial intelligence with an artificial body.

Introduction to Robotics 21

(Actuation)

Q Mechanism \ ^ ^ y*0 - ^ ± ^ \ ^ Sensing J

I MOTION)

C Control JT ^^<«_-<^^ ^ - T Perception J

(Decision -making)

Fig. 1.9 A set of related topics in robotics with a motion-centric theme.

1.6 Issues in Robotics

Robotics, or the study of robots, is an engineering discipline. Functionally,
a robot is a physical agent which is capable of executing motion for the
achievement of tasks. A robot's degree of autonomy depends on its ability
to perform the ordered sequence of perception, decision-making and action.

As we know, a robot's dynamics in motion execution is dictated by
mechanical energy consumption in connection with kinematic constraints
imposed by the robot's mechanisms. Literally, the definitions of kinematics
and dynamics are as follows:

Definition 1.9 Kinematics is the study of motion without consideration
of force and torque, while dynamics is the study of motion in relation to
force and torque.

Therefore, the unifying concept in robotics is motion, being a visible
form of action. As illustrated in Fig. 1.9, the major issues in robotics will
logically include:

1.6.1 Mechanism and Kinematics

From a mechanical point of view, a mechanism is a set of linkages without an
actuator. The purpose of a mechanism is to impose kinematic constraints
on the types of motion the mechanism can deliver at a particular point. By
default, this particular point is at the tip of an end-effector.

In general, a mechanism consists of joints and links. In robotics, a link

22 The Fundamentals of Robotics: Linking Perception to Action

is a rigid body inside a mechanism, while a joint is the point of intersection
between any pair of adjacent links. Any changes in the relative geometry
among the links will induce a specific type of motion. Therefore, it is
important to study the relationship between the motion parameters of the
linkages and the motion parameters of a particular point on the mechanism.
This study is the object of robot kinematics. There are two problems with
robot kinematics:

• How do we determine the motion parameters of a particular point on
the mechanism from the knowledge of the motion parameters of the
linkages? This is commonly called the forward kinematics problem.

• How do we determine the motion parameters of the linkages necessary
to produce a desired set of motion parameters at a particular point on
a mechanism? This is known as the inverse kinematics problem.

1.6.2 Actuation Elements and Dynamics

In the mechanical domain, any motion is produced by the conversion of
mechanical energy. The study of the relationship between motion parame-
ters and force/torque is the object of robot dynamics. This discipline aims
at determining the equations of motion imposed by force and torque on a
robot's mechanism.

Mechanical energy can be generated either through gravitational force
or some other form of energy. Today, the most widely available source
of energy is electrical energy. Hence, it is important to study the conver-
sion from electrical energy to mechanical energy. This leads to the study of
electric motors, which use the electro-magnetic principle to induce mechan-
ical movement from the interaction of two independent magnetic fields. A
magnetic field can be generated by either a permanent magnet or electro-
magnet.

Being able to convert electrical energy into mechanical energy is impor-
tant but not sufficient. We must also be able to modulate the mechanical
energy being produced. There are two ways to modulate the final output of
mechanical energy. It is common at the output side to use a transmission
mechanism which is a combination of reducers, tendons, gears and bear-
ings. It is common at the input side to use a power amplifier to regulate
the amount of electrical energy, which is converted into the corresponding
mechanical energy.

Introduction to Robotics 23

1.6.3 Sensing Elements

From an engineering point of view, any system in a real environment is
invariably subject to certain types of noise, uncertainty and disturbance.
Therefore, no mathematical description of the input and output relationship
is ever exact. Sensing is the only way to obtain the actual output values.

In robotics, sensing elements are used to convert physical quantities
such as the motion parameters of actuators into corresponding electrical
signals. Output from a sensing element provides feedback on the motion
parameters regarding the linkages inside a robot's mechanism.

Besides the sensing of motion parameters, there are two other require-
ments for sensing: a) the measurement of the interaction force/torque be-
tween a robot's end-effector and its environment, and b) the motion pa-
rameters of a robot's workpieces and workspace. (This latter will be the
object of study when we discuss the robot's visual-perception system).

1.6.4 Control

The robot's intrinsic dynamics are described by the relationship between
the motion parameters of a robot's end-effector and the forces/torques ap-
plied to the robot's mechanism. Since a robot is designed to perform tasks
through the execution of motions, the dynamics of a robot must closely
(if not exactly) follow the desired dynamics imposed by a task. How to
determine the desired dynamics from a given task will be studied under the
topic of motion planning.

In general, it is impossible to design a robot which has intrinsic dynam-
ics that meets the intended dynamics of any given task. Therefore, it is
desirable to have a mean to alter the robot's intrinsic dynamics externally.
In engineering, the discipline of automatic-feedback control is the study of
methods and tools for the analysis and synthesis of system dynamics. The
beauty of the automatic-control theory is its versatility. You can alter a
system's intrinsic dynamics through the insertion of a control element (con-
troller) in a closed-feedback loop so that the system's actual dynamics meet
a wide range of specifications, in terms of stability, time responsiveness, and
output accuracy.

1.6.5 Information and Decision-Making

Today, it would be inconceivable to attempt to build an automatic ma-
chine without a brain. The hardware aspect of a machine's brain can be

24 The Fundamentals of Robotics: Linking Perception to Action

as simple as a micro-controller, or a microprocessor having a certain level
of computational power. The first function of a robot's brain is to perform
computational tasks, such as sensory-data processing (including visual per-
ception) and the mathematical computations underlying robot kinematics,
robot dynamics, and robot control.

The second function of a robot's brain is to support not only the inter-
action between the robot and human master, but also the communication
between the robot and the outside world. The third and most important
function of a robot's brain is to implant computational algorithms of ar-
tificial intelligence. One important aspect of a robot's intelligence is the
ability to plan tasks, actions and motions without human intervention.

In fact, research on developmental principles for acquiring perceptive,
thinking and acting skills is aimed at developing a skill-based approach
for the autonomous planning of task, action and motion. This is because
associating a sequence of ordered actions/motions with the corresponding
results is a skill which can be learned with the help of linguistic processing
and programming.

1.6.6 Visual Perception

Vision is the most important sensory channel for humans (as well as an-
imals). Without vision, our abilities to act and learn would be tremen-
dously weakened. In a similar manner, vision plays a vital role in any
machine which intends to perform autonomous motions, actions, tasks, or
even behaviors.

In robotics, the performance of a task implies that a robot's actual
dynamics closely follows the dynamics required by the task itself. The ac-
tual dynamics of a robot, manifested in the form of visible motions, can
be measured in two ways. The first approach is to use sensors to mea-
sure the motion parameters of the linkages inside the robot's mechanism.
Subsequently, it is possible to use forward kinematics to derive the motion
parameters at a particular point (e.g. end-effector) on the mechanism. The
second approach is to use artificial vision to measure the motion parame-
ters at a particular point on the robot's mechanism. This ability to provide
accurate visual feedback to the control loop of motion execution constitutes
the first function of a robot's visual-perception system.

The second important function of a robot's visual perception system
is to describe an action in two-dimensional (2-D) image space instead of
expressing it in three-dimensional (3-D) task space. This is a crucial step

Introduction to Robotics 25

Limb-Eye Binocular Vision < - target
Coordination Skill System +- @

\ / \ Hand

i—*—i i 1 rxi te
Inverse ^ y C w Motion V-i L P

Kinematics ^ O ^ Control
• h r1

Motion Sensory j£ v. /
planner Feedback

User ' 1

Fig. 1.10 A Framework for Limb-Eye Coordination Behavior.

towards achieving the autonomous execution of a given action.
The third important function of visual perception is to infer the 2-D

and/or 3-D geometry of a robot's workpieces and workspace as a necessary
step towards the robot's automated planning of an action/task. This is
because the automatic generation of an action/task plan requires knowledge
of the geometric models of the workspace and workpieces.

The fourth important function of visual perception is to provide visual
input to support a robot's learning process.

Finally, if one considers image-based communication/interaction a spe-
cial skill, it can be regarded as the fifth function of visual perception.

As we know, action is the source of results. With well-developed per-
ception capability, the limb-eye coordination behavior, as illustrated in
Fig. 1.10, will be achievable. Of these behaviors, the most impressive ones
will be: a) vision-guided manipulation (i.e. hand-eye coordination), b)
vision-guided positioning (head-eye coordination), and c) vision-guided lo-
comotion (leg-eye coordination). Chapter 9 will not only cover well-known,
pure engineering principles, but also report the latest findings on human-
like, engineering approaches to limb-eye coordination behavior.

26 The Fundamentals of Robotics: Linking Perception to Action

1.7 Exercises

(1) Describe two key factors which pushed manufacturers to adopt automa-
tion.

(2) What is a manufacturing process?
(3) Identify some critical parameters of an arc-welding process.
(4) What is a robot ? What is robotics?
(5) How do you shape the motions exhibited by a machine?
(6) What is kinematics? What is dynamics?
(7) What is behavior? What is intelligence?
(8) How do you address the issue of unemployment caused by increased

automation?
(9) What is the possible impact the humanoid robot will have on industry

and society?
(10) Explain the key topics in robotics.

1.8 Bibliography

(1) Bowyer, K. and L. Stark (2001). Special Issue on Undergraduate Edu-
cation and Computer Vision, International Journal of Pattern Recog-
nition and Artificial Intelligence, 15, 5.

(2) Craig, J. (1986). Introduction to Robotics: Mechanics and Control,
Addison- Wesley.

(3) DeVor, R. E., T. H. Chang and J. W. Sutherland (1992). Statistical
Quality Design and Control, Prentice-Hall.

(4) Fu, K. S., R. C. Gonzalez and C. S. G. Lee (1987). Robotics: Control,
Sensing, Vision and Intelligence, McGraw-Hill.

(5) Groover, M. P. (1996). Fundamentals of Modern Manufacturing,
Prentice-Hall.

(6) Knoll, A., G. Bekey and T. C. Henderson (2001). Special Issue on
Humanoid Robots, robotics and Autonomous Systems, 37, 2-3.

(7) Rehg, J. A. (1997). Introduction to robotics in CIM Systems, Prentice-
Hall.

(8) (2001). Proceedings of International Conference on Humanoid Robots,
Tokyo, Japan.

Chapter 2

Motion of Rigid Bodies

2.1 Introduction

Motion is the unifying theme in robotics. Motion is the visible form of
actions for the achievement of results in a real and physical world. From a
physics point of view, a motion is the result of force or torque applied to a
body. For example, linear acceleration is generated when force is applied to
a body which is free to move in the direction of the force (Newton's Law).
If a body is fixed at a particular point, an applied force will cause the body
to rotate about an axis which goes through the point.

Therefore, it is important to understand the mathematical description
of motion in terms of displacement, velocity and acceleration. This will also
help as a sound basis for the study of some important topics in robotics, such
as: motion generation (i.e. a robot's mechanism and actuation), motion
planning & control (i.e. decision-making and control), and visual perception
of motion. From a mechanical point of view, a robot is an assembly of links
that are normally of a rigid body. (See Chapter 3.) Thus, in this chapter,
we will restrict our discussion to the motion of a rigid body.

2.2 Cartesian Coordinate Systems

In order to describe the motions of a rigid body, we need to define two
references: a) the time reference for velocity and acceleration, and b) the
spatial reference for position and orientation. A time reference is described
by the one-dimensional axis t. The values of time variable t depend on our
common clock system which is unchangeable, and is applicable to all the
real and physical systems on Earth.

A common approach for assigning the spatial reference to our physical

27

28 The Fundamentals of Robotics: Linking Perception to Action

three-dimensional (3-D) world is to define an orthogonal reference system
formed by X, Y and Z axes. These three axes are mutually perpendicular to
one another and intersect at a common point called the origin, and denoted
by O. In a spatial reference system, an axis serves as a reference to measure
the position of an object along it. In order to obtain a measurement with
a physical meaning (in terms of meters, centimeters etc.), we must define a
unit of measurement for each axis in the spatial reference system. This is
normally done by associating a unit vector to each axis. This unit vector
is called a base vector. Therefore, a Cartesian coordinate system can be
defined as follows:

Definition 2.1 Any spatial reference system with base vectors that are
mutually perpendicular to one another is called a Cartesian coordinate sys-
tem (or coordinate system for short). Any space with a Cartesian coordi-
nate system as its spatial reference system is called a Cartesian Space.

In a (Cartesian) coordinate system OQ — XQYQZQ having the assigned
base vectors (i,j,k) where

'•(s) J - (i) *-(i)
the position of point P on a rigid body (see Fig. 2.1) is represented by a
vector r = (x, y, z)1, where

• x is the distance to the origin, measured along the base vector i,
• y is the distance to the origin, measured along the base vector j ,
• z is the distance to the origin, measured along the base vector k.

These (x,y,z) are called the Cartesian coordinates (or coordinates for
short). Accordingly, position vector r of point P can be written as:

r = x * i + y • j + z»k. (2.1)

Interestingly, Eq. 2.1 can also be written in a matrix form, as follows:

r=[i, j , k]»\y\ =R*r (2.2)

Motion of Rigid Bodies 29

Fig. 2.1 A spatial reference system for a rigid body.

where

I1 0 °\
= [t, .?,*]= 0 1 0 .

\ 0 0 1 /

The equation r = R • r means the mapping by matrix R, which is
applied to coordinate system OQ ~~ XQYQZQ. This concept of mapping can
be applied to any pair of coordinate systems in a Cartesian space. It is
an important concept, which is simple and helpful in understanding robot
kinematics.

2.3 Projective Coordinate Systems

We can manipulate a geometric object in a Cartesian space in different
ways, such as translation, rotation, scaling, and projection. The projection
of a geometric object along a set of straight lines has interesting properties
and is useful in practice. One typical application of projection is the dis-
play of three-dimensional objects onto a two-dimensional screen. Another
typical application is visual perception, which aims at inferring the three-
dimensional geometry of an object from its two-dimensional projection onto
an image plane.

Here, let me briefly introduce the concept of projective coordinates for
the purpose of explaining the meaning of homogenous coordinates, which
are useful for concisely describing general motion transformations by 4 x 4
matrices.

30 The Fundamentals of Robotics: Linking Perception to Action

__, -*'Q

Fig. 2.2 Illustration of projective coordinate systems.

Let P = (x, y, zY be a point in a spatial reference system (e.g. a three-
dimensional Cartesian coordinate system). Refer to Fig. 2.2. We draw a
straight line which passes through the origin and point P. It turns out that
the coordinates of any arbitrary point Q on this straight line can be written
as

Q = (k»x,k»y,k» zf

where k is a scaling variable. When k = 1, Q = P. Then we can form a
new reference system represented by (X,Y,Z,k). This new reference sys-
tem is called the projective coordinate system. Accordingly, the coordinates
(X, Y, Z, k)1 are called the projective coordinates. The conversion from pro-
jective coordinates (X, Y, Z, fc)* to Cartesian coordinates (x,y,zY is done
in the following way:

* = £ y = i * = f (2-3)
When A; = 1, the Cartesian coordinates can equivalently be represented

by their projective coordinates. Thus, we call (x,y, £, 1)* the equivalent
projective coordinates with respect to the corresponding Cartesian coordi-
nates (x,y,z)1. In robotics, element k is commonly called the homogenous
coordinate. In the following, we will make use of the equivalent projec-
tive coordinates to uniformly describe translational and rotational motion
transformations in a matrix form.

2.4 Translational Motions

In a Cartesian space, any complex motion of a rigid body can be treated as
a combination of translation and rotation. The physical meaning of trans-

Motion of Rigid Bodies 31

lational motion is motion along a straight line. Therefore, the orientation
of a rigid object will remain unchanged if the motion is translational.

2.4.1 Linear Displacement

A translational motion can be described by a linear displacement vector,
a linear velocity vector (if any), and a linear acceleration vector (if any).
These entities are equal at all points on a rigid body.

It is worth noting that linear acceleration is the result of a force applied
to a rigid body. Since motions at all points on a rigid body are equal, it is
sufficient to choose one point as representative for the study of the motion
caused by a force or torque. However, as one point in a three-dimensional
Cartesian space does not represent any orientational information, it is nec-
essary to assign two directional vectors to a point on a rigid body in order
to represent the variations in orientation caused by a rotational motion.
For the sake of consistency, it is common to assign, to each rigid body, an
orthogonal coordinate system located at a chosen point. In this way, the
study of a rigid body's motion becomes the study of the relative motion be-
tween its coordinate system and a reference coordinate system. In robotics,
the orthogonal coordinate systems are commonly called frames.

Example 2.1 Fig. 2.3 shows the assignment of frame O\ — X\Y\Z\ to
a rigid body. If this body undergoes a translational motion described by
displacement vector T = (txitytt2)t within time interval [£i, £2], the position
vector of the origin O\ at time instant £2 will be

O1(t2) = O1(t1) + T. (2.4)

Thus, the origin of frame O\ — X\Y\Z\ can serve as a representative
point on the rigid body for the study of its motion with respect to any
other frame.

oooooooooooooooooo
With more than one frame in a Cartesian space, a point's position vector

may have different values for its elements, depending on the choice of the
reference frame. For the sake of clarity, when dealing with mathematic
symbols, it is necessary to explicitly indicate the frame which a vector
refers to. In robotics, there is no unique way to do this. One approach
is to use a superscript before each symbol to indicate the reference frame.
Another approach is to use a superscript after the symbol. Here, we adopt

32 The Fundamentals of Robotics: Linking Perception to Action

Y °A Y "A ^H N^ v

I1.--"' I1 .-vffiF1

(a) Before translation (b) After translation

Fig. 2.3 Frame assignment to a rigid body, and an illustration of a translational motion.

the first approach. For example, °P means position vector P referenced to
frame 0.

Example 2.2 Refer to Fig. 2.3. The position vector of origin O\ with
respect to frame 0 is denoted by °Oi, while the same position vector with
respect to its own frame 1 is denoted by XO\. Since lO\ = (0,0,0) and
this position vector with respect to its own frame remains unchanged (i.e.
frame 1 is fixed on the rigid body), we have

° O 1 = 1O1+ 0 O L (2.5)

If we define °T\ = °Oi, the above equation becomes

°O1 = 1O1+ °Ti. (2.6)

••oooooooooooooooo
This example clearly shows that vector °T\ describes the relative dis-

tance (or displacement) between the origin of frame 0 and the origin of
frame 1. In other words, it describes the translational motion of frame 1
with respect to frame 0, if we imagine that frame 1 initially coincides with
frame 0 at time instant to. This vector is called the translation vector.

In general, the translational motion of frame j with respect to frame i
can be denoted by %Tj.

Example 2.3 Refer to Fig. 2.4. We denote °Ti(t) = {tx,ty,tzy the
translational motion transformation from frame 1 to frame 0, at time in-
stant t. If the coordinates of point P on a rigid body with respect to its

Motion of Rigid Bodies 33

own frame (i.e. frame 1) are lP = (x i , ^ ,^)* , the position vector of the
same point P with respect to frame 0 will be

°P(t) = (xo,yo,zo)t = lP+ °Ti(t). (2.7)

In Eq. 2.7, position vector ! P is a constant vector because frame 1 is
fixed on the rigid body.

*p

Fig. 2.4 Translational transformation from frame 1 to frame 0.

000000000000000000

Interestingly enough, if we use the equivalent projective coordinates to
substitute for the Cartesian coordinates in the above example, Eq. 2.7 can
be expressed in a matrix form as follows:

(rro\ / I 0 0 tx\ /iA

yo =ioioty U

1 / \0 0 0 1 / V 1 /

or
°P = {°Mi} . fP} (2.9)

34 The Fundamentals of Robotics: Linking Perception to Action

where

(1 0 0 tx\

0 10ty

o o i tz •
0 0 0 1 /

In fact, matrix °M\ in Eq. 2.9 is called the homogenous motion trans-
formation matrix. It describes the motion transformation from frame 1 to
frame 0. If we ignore the elements of the fourth column, the first three
column vectors of °M% are exactly the base vectors of frame 1 with respect
to frame 0 while the last column vector is exactly the position vector of
frame l's origin, with respect to frame 0. These physical meanings remain
valid for any complex motion between any pair of frames.

2.4.2 Linear Velocity and Acceleration

Displacement only describes the effect of motions at discrete time instants
among the frames under consideration. However, the instantaneous varia-
tions of a rigid body's motion are described by its velocity and acceleration.

Let us consider a rigid body to which frame j is assigned with respect to
frame i. If we denote lTj(t) = (tx, ty, tz)1 the linear displacement vector due
to translational motion, the corresponding linear velocity and acceleration
vectors will be

{ »„ (t\ - d{iTi^)} - (dtx dty auV
vi\t> - d~t - \ d t ' dt ' I t)

(2.10)
in U\ _ dH'TjW} _ (d2tx ^ dHA*

aj(l) — dt2 — \ dt2 ' dt2 ' dt2 J •

2.5 Rotational Motions

The physical meaning of a rotational motion is the rotation of a rigid body
about any straight line called a rotation axis. This occurs when a force, or
torque, is applied to a rigid body constrained by a rotation axis. A typical
example of rotational motion is the rotation about one of the X,Y, and Z
axes.

Motion of Rigid Bodies 35

2.5.1 Circular Displacement

Rotational motion can be described by circular displacement, circular veloc-
ity, and if any, circular acceleration (the sum of tangential and centrifugal
accelerations). And, these entities are equal at all points on a rigid body.

Now, let us examine rotational motion without regard to the force,
or torque, which causes the motion. Fig. 2.5 shows a rigid body's frame
undergoing rotational motion about the Z axis from its initial location at
(d, 0,0) (referenced by frame 0) to a new location.

••''"s';&.., f'm\

(a) Before rotation (b) After rotation

Fig. 2.5 Illustration of a rigid body's rotational motion to which frame 1 is assigned.

Under the rotational motion, not only will the origin of a rigid body's
Frame change (except in the case when d = 0), but the orientation of
its base vectors will be as well (except in the case when one base vector
coincides with the rotation axis). Another important fact is that rotational
motion will not cause the rotation axis to change.

Consider time interval [ti, #2]- The base vectors and the origin's position
vector of frame 1 at time instant t\ will be

'°r1(t1) = (1,0,0)*
< °Ji(ti) = (0,1,0)*

°*i(ti) = (0,0,1)* [ZAi)

Oo1(t1) = (d,o,oy.

If the rotational angle about the Z axis is denoted by 0 at time instant

36 The Fundamentals of Robotics: Linking Perception to Action

t2, these vectors will become

'oi1(t2) = (cos(0), sin(fl), 0)*
°/i(*2) = (-sin(0), 008(6), Of

' ok1(t2) = (o,o,iy [ZAZ)

°01(t2) = (d»cos(6), d»sin(0), 0)*.

If we define matrix R as follows:

/cos{9) -sin(0) 0 \
R=l°ii(t2),ojl(t2),°k1(t2)\= sin(0) cos((9) 0 , (2.13)

V 0 0 1/

Eq. 2.12 can be rewritten in the following matrix form:

' o u(i 2) = JR-{°u(£i)}

0J1(t2) = i2«{°Ji(*i)} f 2 U x
°fc1(t2) = i i .{0*1(t1)} '

_0O1(i2) = JR.{°O1(t1)}.

Now, if we imagine that frame 1 performs a rotational motion which
always starts from its initial configuration, and this initial configuration is
where the frame's base vectors are respectively parallel to the base vectors
of a reference frame (e.g. frame 0) at time instant to, then we have

Ki (* i) = (1,0,0)* = lh
{°Ji(*i) = (0,1,0)'= xh (2.15)
l°Ai(*i) = (0,0,1)*= %.

If we denote °Ri(t) = R and substitute Eq. 2.15 into Eq. 2.14, the
base vectors of frame 1 at time instant t (i.e. substitute t2 with t) can be
expressed as follows:

(°h(t)= °R1(t)m{1i1}
I°j1(t)= ^ i W . f J i } (2.16)
(°h(t)= °R1(t)*{lk1}.

The physical meaning of matrix °i?i(i) is the rotational motion transfor-
mation at time instant t from frame 1 to frame 0. This matrix is commonly
called a rotation matrix. A rotation matrix is a square and invertible ma-
trix. It is interesting and useful to note that this matrix describes the
orientation of frame 1 with respect to frame 0, because the three column
vectors of °Ri (t) are the base vectors of frame 1 with respect to frame 0

Motion of Rigid Bodies 37

at time instant t. Interestingly enough, the inverse of °i?i(t) describes the
orientation of frame 0 with respect to frame 1. So, it is logical to denote
the inverse of °Ri{t) with 1R0(t), that is,

ii?0(i) = {°i?i(t)r1.

Example 2.4 Refer to Fig. 2.6. We denote °Ri(t) the rotational motion
transformation from frame 1 to frame 0 at time instant t. If the vector
connecting origin O\ to point P on a rigid body is 1 P = (xi,yi,zi)1, the
same position vector P with respect to frame 0 will be

°P(t) = {°R1(t)}.{1P}. (2.17)

And, the inverse of the above equation yields the expression for 1P:

XP = fiM*)}"1 • {°P(t)} = {lRo(t)} • {°P(t)}.

Y \ X

Fig. 2.6 Rotational transformation from frame 1 to frame 0.

OOOOOOOOOOOOO^O^

Now, if we substitute the equivalent projective coordinates for the Carte-
sian coordinates of point P, Eq. 2.17 can be written as follows:

°P= °Ml»{1P) (2.18)

with

(NOTE: 0 = (0,0,0)).

38 The Fundamentals of Robotics: Linking Perception to Action

From Eq. 2.9 and Eq. 2.18, we can see that the translational and ro-
tational motions can uniformly be described by the homogenous motion
transformation matrix M.

2.5.2 Circular Velocity and Acceleration

So far, we have examined the circular displacement of a rotational mo-
tion. It is important to understand the mathematical description of circu-
lar velocity and circular acceleration because these motion parameters are
directly related to the force and torque applied to a rigid body.

Refer to Fig. 2.5. Assume that we choose the Z axis as the rotation
axis. In reference frame 0, the position vector of frame l's origin O\ is

0Oi=d»{°t1}. (2.19)

Then, the circular velocity vector at this origin O\ with respect to ref-
erence frame 0 will be

^ = 4°°±.d.!&. (2.20)
at at

The instantaneous variation of a vector's orientation is due to the in-
stantaneous variation of the rotation angle 6. There will be no change in
the vector's orientation if there is no instantaneous variation in the rota-
tion angle 8. Since a vector's variation caused by rotational motion follows
a circular path, it is in the tangential direction of the circular path and
its magnitude of variation is equal to the instantaneous variation of the
rotation angle. If we denote 9 (i.e. ^) the instantaneous variation of the
rotation angle, then we have

^ r = M0/i}- (2-2i)

Since °ji = °ki x° ix, substituting Eq. 2.21 into Eq.2.20 yields

% = ^ ^ = d.6. ({ % } x {%}) = (0 .{%}) x (d*{°h}). (2.22)

If we define

Motion of Rigid Bodies 39

and recall that °O\ = d» {%}, Eq.2.22 can be rewritten as follows:

V = ^ ^ = V x fd}. (2.23)

Now, it is important to understand the physical meaning of Eq. 2.23. In
fact, vector °u)\ is called the angular velocity vector of a rigid body to which
frame 1 is assigned with respect to reference frame 0. This vector coincides
with the rotation axis. The norm of °u)\ is equal to the instantaneous
variation of the rotation angle, denoted by 9, which is also called the angular
velocity or angular velocity variable of a rigid body.

Eq. 2.23 also means that a rigid body's angular velocity will cause a
circular velocity at any arbitrary point P on the rigid body. This point's
circular velocity vector is equal to the cross product between the rigid
body's angular velocity vector and the point's position vector. That is,

S = ^ f ^ - ^ x fF,}. (2.24)

By further differentiating Eq. 2.23, the expression of the circular accel-
eration vector will be

0 d { V } 0 Q d{0Ox}
ox — ——— x Oi + LOI x ———. (2.25)

at at

By applying the following equalities

i *%* = V x {0Ol}

into Eq. 2.25, we obtain

V = (e »° ifei + 0 • ^-~] x° Oi +° wi x (V x° Oi). (2.26)

Since a rigid body's rotational motion about an axis will not cause any
change to the rotation axis, then we have

< f c i } = Q

dt
By applying this result into Eq.2.26, the expression of the circular ac-

celeration vector becomes

V - (6 »° jfei) x° Ox +° wi x (V x° Ox). (2.27)

40 The Fundamentals of Robotics: Linking Perception to Action

If we define the following terms:

' °ai = 0 .° kx

< at = °ax x° Oi (2.28)

an= V x (V x°Oi)

then Eq. 2.27 can be rewritten as follows:

V = % x° Oi +° Wl x (V x° Ox) =at + an (2.29)

where °ai is the rigid body's angular acceleration vector to which frame 1
is assigned with respect to frame 0. Vector °a\ is parallel to the rotation
axis and its norm is equal to the second-order derivative of the rotation
angle, denoted by 6. This is called a rigid body's angular acceleration or
angular acceleration variable.

From Eq. 2.28, it is possible to prove the following equalities:

(<H = °a1x°O1 = (9.d).{°j1}
{ (2-30)
I an = V x (V x° Ox) = (92 . d) . {-0?!},

where at is in the direction of °ji, and an is in the opposite direction of
°ii. In fact, at is called the tangential acceleration vector and an is called
the centrifugal acceleration vector. From Eq. 2.29, we can see that the
circular acceleration vector is the sum of the tangential acceleration and
the centrifugal acceleration.

In general, a rigid body's angular acceleration lotj will generate circular
acceleration at any point P in the following way:

laj =l OCJ xi Pj +i ujj x Ccoj xi Pj). (2.31)

2.6 Composite Motions

As I mentioned before, any complex motion can be treated as the combi-
nation of translational and rotational motions. With the help of frames, it
is easy to study the composite motions among the frames.

Motion of Rigid Bodies 41

2.6.1 Homogenous Transformation

For simplicity's sake, we commonly use the term configuration or posture
to refer to the relative geometry of a frame with respect to another frame.
The configuration of a frame, with respect to another frame, encapsulates
the relative position and orientation of these two frames.

z Wm ' \ z y%\ X°

(a) Initial configuration (b) Atter rotation

' \ i * p \ y ' v ^ * p N

(c) After translation (d) Final configuration

Fig. 2.7 Illustration of composite motions.

Fig. 2.7 illustrates the fact that it is possible to configure any pair of
frames by applying a rotational motion followed by a translational motion
to the initial configuration where the two frames coincide. In this example,
frame 1 is assigned to a rigid body, and the reference frame is denoted by
frame 0. Here, let us assume that the rotational motion occurs within time
interval [icb î] while the translational motion occurs within time interval

42 The Fundamentals of Robotics: Linking Perception to Action

\t\,t2\. If we denote °R\ as frame l's rotation matrix with respect to frame
0 in time interval [£o,^i], point P's position vector at time-instant ti will
be

°P(t1) = (x1,y1,z1)t = °R1»{1P}, (2.32)

where 1P = (x0, j/o, z0Y is point P's position vector with respect to frame 1.
Since P is a point on the rigid body, its position vector remains unchanged,
with respect to the frame assigned to the rigid body.

Now, let °Ti be the translational vector of frame 1 with respect to
frame 0 within time interval [ii,^]- Then, point P's position vector at
time-instant t2 will be

°P(h) = (x2,2/2, z2y = °P(h) + °TL (2.33)

The combination of Eq. 2.32 and Eq. 2.33 yields

0P(t2)= °R1*{1P}+ °Ti. (2.34)

Since rotation matrix R is formed by a set of orthogonal base vectors,
its inverse exists. From Eq. 2.34, we can derive the expression for lP as
follows:

lP = {°i?i}-1 • {°P(t2)} - f i ? ! } " 1 . {07\}. (2.35)

If we substitute the equivalent projective coordinates of P for the Carte-
sian coordinates of P in Eq. 2.34 and Eq. 2.35, and substitute t2 for time
variable t, these two equations can be written in a compact matrix form as
follows:

r °P(t) = (x0, y0, zo, I)4 = 0M!(£) . {XP}

< (2-36)
I lP = (x1,y1,z1, If = lMQ(t) • {°P(t)}

with

and

({°Ri}-1 - { " i i i } - 1 . " ^^
1M0{t) = . (2.38)

V 0 1 /

(2.37)

Motion of Rigid Bodies 43

Matrix °Mi(t) describes mapping from the equivalent projective coor-
dinates of a point expressed in frame 1 to the equivalent projective coordi-
nates of the same point expressed in frame 0. And, matrix 1Mo(t) describes
inverse mapping by °M\{t).

In general, matrix lMj{t) describes mapping from frame j to frame i.
An alternative interpretation of matrix lMj(t) is that it represents both
position (i.e. the origin) and orientation of frame j with respect to frame
i. Mapping by this type of matrix is commonly called the homogenous
transformation because it describes the homogenous transformation applied
to the equivalent projective coordinates between two frames.

2.6.2 Differential Homogenous Transformation

Refer to Fig. 2.7. Assume that the rigid body, to which frame 1 is as-
signed, undergoes a continuous composite motion. If we denote °R\ (t) the
continuous rotation transformation, and °Ti(t) the continuous translation
transformation of frame 1 with respect to frame 0, point P's instantaneous
coordinates with respect to frame 0 will be

°P(t)= °Ri(t)*1P+ °Ti(t) (2.39)

or in a matrix form:

°P(t)=°M1(t)»{1P}

with

•*<«) = cRf °Tf)
By differentiating Eq. 2.39, we obtain the expression for point P's ve-

locity vector with respect to frame 0, that is,

Vt) = <™ = d?R«» . ip+<T^». (2.40)
dt dt dt

Since a rotation matrix's column vectors are a frame's base vectors, we
have

°R1(t) =({°ri}, {%}, {%}). (2.41)

44 The Fundamentals of Robotics: Linking Perception to Action

Differentiating the above rotation matrix with respect to time gives

d(°iZi(t)) _ /d{°ii> d{°l} d{%}\
dt \ dt ' dt ' dt) ' ['

If the angular velocity vector of the rigid body, with respect to frame 0,
is °LOI = (uix,u}y,u!z)t, we have

(f,f,fi).v»(^mft). <-,
If S(°u>i) denotes the skew symmetric matrix of vector °wi, then we

have

/ 0 -LOZ u!y \
5 (V) =\UJZ 0 -ux . (2.44)

\-UJy UJX 0 /

Accordingly, Eq. 2.43 can also be written, as follows:

(^i,^,^i)-^).(«}.m^)). <-)

By applying Eq. 2.45 and Eq. 2.42, Eq. 2.40 will become

%{t) = 5(V) • ({°hh {°U {°h}) • i'P} + ^ P

= 5(V)-{°JRi(i)}«{1P} + f ^ M (2-46)

= 5(V).{°JP(i)} + ^ p .

If we use the equivalent projective coordinates, the above equation can
be concisely written as follows:

.,(«)_<£*<!».<.„ (2.47,

with

Motion of Rigid Bodies 45

Therefore, matrix dtl describes the differential homogenous trans-
formation from frame 1 to frame 0. In other words, it determines how the
velocity of point P in frame 1 is perceived from frame 0, even though point
P has no motion with respect to frame 1.

Another useful result from the above development is the expression for
the differential of the rotation matrix. That is,

& M = S(°u1).{0R1(t)} (2.48)

where °uii is frame l's angular velocity vector, and °Ri(t) describes frame
l's orientation, with respect to frame 0, at time instant t.

From Eq. 2.48, we can derive one interesting property of the skew-
symmetric matrix S(°u>i). That is,

A»S{°u>1)»A-1 =S{A»°u1) (2.49)

where A is a 3 x 3 matrix which has an inverse. The above expression is
useful in the study of motion kinematics (i.e. to derive a compact expression
of the Jacobian matrix). Proof of the above expression is as follows:

First, we compute the derivative of matrix A »° R\:

^ r h l = i{A'{0h}, A.{*],}, A.{^h})
(2.50)

= (A.«§I,A.^A.<£I).

By applying the following equalities:

'A.*£p-=A*{°w1xoi1) = (A*oUl)x(A*oi1)

< A. *&£ = A* (V x°h) = (A»°ux) x (A*0h)

A • ̂ i = A • (V x° ki) = (A .° Wl) x (A «° ki)

into Eq. 2.50, we have

^ ^ = (A .° Wl) x (A • {%}, A . {«£}, A . i0^})
(2.51)

= 5(^»°w1)«(J4«°/21).

46 The Fundamentals of Robotics: Linking Perception to Action

By applying the following equality

into Eq. 2.51, we obtain

A • 5 (V) »° -Ri = S(A »° u>i) • {A m° i?i). (2.52)

By eliminating °Ri from both sides, and multiplying A~l to both sides,
Eq. 2.52 finally becomes

Am 5 (V) • A'1 = S(A»° coi).

2.6.3 Successive Elementary Translations

The study of successive elementary translations and/or rotations is of a par-
ticular interest in robotics. First of all, it provides a better understanding
of the minimum number of variables necessary to describe a pure transla-
tion or pure rotation. Secondly, it provides a sound basis for describing the
relationship among a set of frames assigned to a set of rigid bodies which
are connected (i.e. constrained) in a series, where each rigid body has only
one degree of freedom (e.g. the links inside an arm manipulator). Elemen-
tary motion denotes the motion of a frame having only one independent
(motion) parameter or degree of freedom (DOF).

Consider the translational motion between reference frame 0 and frame
1 (assigned to a rigid body in a Cartesian space). If we denote °Ti(t) =
(tx,ty,tzy, and the translation vector of frame 1 with respect to frame
0, it is clear that the translation vector °Ti(t) can be decomposed in the
following way:

G)"C)+0+0-
We can see that any arbitrary translation will be the sum of three ele-

mentary translations along the X, Y and Z axes. A graphic illustration of
this fact is shown in Fig. 2.8. Therefore, we can conclude that the minimum
number of variables to fully describe a translational motion in a Cartesian
space is 3.

Fig. 2.8 shows the temporal series of frame 1 in a Cartesian space after
three successive translations. However, we can also treat these as a series
of spatially arranged frames which are consecutively supporting each other.

(2.53)

Motion of Rigid Bodies 47

Yo Y

»Yi AFi

0 X\ 0 X\
/O Y xQir Y

z» /z z<> / z
& 1 X 1
(a) Initial configuration (b) Translation along X axis

Y0. iYi Y ;

(c) Translation along Y axis (d) Translation along Z axis

Fig. 2.8 Illustration of three successive translations.

A typical scenario is the assignment of frames to links which are serially
connected to form an arm manipulator. In fact, we can rename the temporal
series of frame 1 in the following manner:

• Frame 1 after the translation along the X axis is renamed as frame i.
• Frame 1 after the translation along the Y axis is renamed as frame i+1.
• Frame 1 after the translation along the Z axis is renamed as frame i+2.

If we examine the consecutive translational motions among frames 0, i,
i + 1 and i + 2, as shown in Fig. 2.8, the following result is straightforward:

'°Ti = {tx,O,O)t = tx*{°ii}

< iTi+i = (O,ty,oy=ty •{%+!} (2.54)

i+1Ti+2 = (o, o, tzy = t z . {i+1ki+2},

48 The Fundamentals of Robotics: Linking Perception to Action

where we explicitly emphasize the direction of translation °Xi (i.e. the base
vector i of frame i), the direction of translation JTj+i (i.e. the base vector
j of frame i + 1), and the direction of translation l+1Ti+2 (i.e. the base
vector k of frame i + 2).

These expressions are helpful to better understand motion kinematics
which will be studied in Chapter 3. For example, just as translational
motion does not cause any changes in a base vector, it will also not cause
any changes to a directional vector. Thus, differentiating Eq. 2.54 with
respect to time yields

' ^ = ^ - { ^ + 1 } (2-55)

By applying Eq. 2.54 into Eq. 2.53, the translational motion transfor-
mation from frame i + 2 to frame 0 can be expressed as follows:

°Ti+2 =° T% + %+1 + i+1Ti+2. (2.56)

In general, Eq. 2.56 is valid for any set of spatially arranged frames. If
we use the equivalent projective coordinates, Eq. 2.56 can be rewritten as
follows:

°Ml+2 = {°M;} . {<Mi+1} • {i+1Mi+2} (2.57)

with

(1 0 0 J , \ /I 0 0 tx\

0 1 0 ty oM _ 0 1 0 0
0 0 0 1 / \ 0 0 0 1 /

(1 0 0 0 \ / I 0 0 0 \

0 1 0 L i + 1 . . I 0 1 0 0
o o i o + M ' + 2 = o o i t , •
0 0 0 1 / \ 0 0 0 1 /

In robotics, the above equation is the exact expression for the forward
kinematics of a Cartesian or XYZ robot having three links moving in the

X, Y and Z directions respectively.

Motion of Rigid Bodies 49

2.6.4 Successive Elementary Rotations

Fig. 2.9 shows three successive rotations of frame 1 in a Cartesian space
referenced to frame 0. At the initial configuration, frame 1 coincides with
frame 0. The three successive elementary rotations are as follows:

• The first elementary rotation is that of frame 1 (at its initial con-
figuration) about its own X axis. This elementary rotation is fully
determined by rotation angle 0x.

• The second elementary rotation follows the first one, and it is that
of frame 1 (at the current configuration) about its own Y axis. This
elementary rotation is fully determined by rotation angle 9y.

• The third elementary rotation follows the second one, and it is that
of frame 1 (at the current configuration) about its own Z axis. This
elementary rotation is fully determined by rotation angle 6Z.

After the first elementary rotation, frame l's base vectors (j, k) remain
inside frame 0's YZ plane. Clearly, one elementary rotation does not rep-
resent a general rotation. After the second elementary rotation, frame l's
base vector j still remains inside frame 0's YZ plane. Therefore, two consec-
utive elementary rotations are not sufficient to produce a general rotation.
Only after three successive elementary rotations will frame 1 reach an ar-
bitrary orientation with respect to frame 0. Hence, the minimum number
of variables necessary to describe a general rotational motion between two
frames in a Cartesian space is 3.

Similarly, a temporal series of frame 1 can also be treated as a series of
spatially-arranged frames which are consecutively supporting each other.
This can be done by renaming the frames in the following way:

• Frame 1, after the first elementary rotation, is renamed frame i.
• Frame 1, after the second elementary rotation, is renamed frame i + 1.
• Frame 1, after the third elementary rotation, is renamed frame i + 2.

Since each elementary rotation only depends on its corresponding rota-
tion angle about one of the X, Y and Z axes, the orientation of frame 1
with respect to frame 0 after three successive elementary rotations can be
expressed, as follows:

°Rl+2 = {°Ri} . {*Ri+1} . {l+lRi+2} (2.58)

50 The Fundamentals of Robotics: Linking Perception to Action

Y Y

f t

(a) Initial configuration (b) Rotation about X Axis

v Y

- V t1
Z ' / 7 /

oX Z ^ / z

(c) Rotation about Y axis (d) Rotation about Z axis

Fig. 2.9 Illustration of three successive rotations.

with

/ I 0 0 \
°Ri= 0 cos(6':c) -s in^x)

\ 0 sin(^) cosCflx) /

/ cos(6>y) 0 sin(0s)\

\ - s i n (^) 0 cos(9v)J

(cos{9z) -sin(0z) 0\
sin(0z) cos(6»z) 0 .

0 0 1 /

Motion of Rigid Bodies 51

If we consider the equivalent projective coordinates, Eq. 2.58 can equiv-
alently be written as follows:

°Ml+2 = {"Mi} . fM1 +i} • {l+1Ml+2} (2.59)

with

In robotics, Eq. 2.59 describes the forward kinematics of a spherical
joint having three degrees of freedom.

Imagine now that 0x, 9y, and 6Z can undergo instantaneous variations
with respect to time. Differentiating Eq. 2.58 yields

< ! p i = S(V+2)-{oi?i+2}

= fe).{*iW#{*+iiW

(2.60)
+{0Ri}.*CR^l.{l+iRi+2}

By applying the following property of skew-symmetric matrix:

A»S(°u1)»A-1 =S(A*°u>1)

we can derive the following equalities:

' a£M • { ^ + l } . {^R1+2} = 5(V) • {°Ri+2}

< { o ^ } . fei) . {^+1^2} = 5 (0 ^ .* wi+1) . {°i?i+2} (2.61)

{0Ri} . {^i+1} . d{i+1df+2) = 5(°i?i+1 . J +! u,t+2) . { 0 ^ + 2 } .

By applying Eq. 2.61 into Eq. 2.60, we finally obtain the following in-
teresting and useful expression:

S(°cui+2) = S (V) + S(°Ri . ' ul+1) + S(°Ri+1 .i+1 UJ1+2) (2.62)

52 The Fundamentals of Robotics: Linking Perception to Action

or

0wi+2 = V + °Ri • fuf+i} + °i?i+1 • {i+1uJi+2}. (2.63)

The physical meaning of the above expression will become clearer in
Chapter 3. It simply means that frame i + 2's angular velocity vector
with respect to frame 0 is the sum of the angular velocity vectors of the
intermediate frames between frame 0 and frame i + 2, all being expressed
with respect to frame 0.

2.6.5 Euler Angles

Refer to Fig. 2.9, again. The first elementary rotation can choose X, Y or
Z axes as its rotation axis. As for the second elementary rotation, it has
only two axes to choose from, because its rotation axis should not be the
same as the previous one. Similarly, the third elementary rotation also has
two axes to choose from, because its rotation axis should not be the same
as the previous one. As a result, we have a total of 3 x 2 x 2 (or 12) possible
combinations to form a sequence of three successive (elementary) rotations.
Each combination has its own set of three rotation angles as the minimum
number of variables to describe a general rotation. Therefore, we have 12
possible sets of rotation angles. They are:

{9x9y6z) {0x9y0x) (0x8z9y) {9X9Z9X)

(9y9z8x) (9v9z9y) (9y9x9y) (9y6x9z) (2.64)

(9z9x9y) (9Z9X9Z) (9z8y9x) (9z9y9z).

These sets are commonly called Euler Angles.

Example 2.5 Refer to Fig. 2.9. Assume that the actual orientation of
frame 1 is reached through three successive elementary rotations, as follows:

• The first elementary rotation is that of frame 1 about its Z axis at
the current configuration (i.e. the initial configuration). The rotation
angle is a.

• The second elementary rotation is that of frame 1 about its Y axis
at the current configuration (i.e. after the first elementary rotation).
The rotation angle is (3.

Motion of Rigid Bodies 53

• The third elementary rotation is that of frame 1 about its Z axis at
the current configuration (i.e. after the second elementary rotation).
The rotation angle is <p.

If frame 1 is renamed frame i after the first rotation, frame i + 1 after
the second rotation, and frame i + 2 after the third rotation, the rotation
matrix describing the orientation of frame 1 at its actual orientation with
respect to frame 0 will be

i?i = Ri+2 = { Ri} • {lRi+i} • {l Ri+2}

with

(cos (a) — sin (a) 0\
sin(a) cos(a) 0 I

0 0 1 /

/ cos(/3) 0 sin(/3)\
zRt+i = I 0 1 0

V-sin(/?) 0 cos(/3)/

/cos(0) -sin(^) 0 \
i+lRi+2 = sin(0) cos(0) 0 .

V 0 0 1/

In this example, the three angles (a, /?, <j>) are called ZYZ Euler Angles.

•ooooooooooooooooo

2.6.6 Equivalent Axis and Angle of Rotation

Euler angles are the set of minimum angles which fully determine a frame's
rotation matrix with respect to another frame. Each set has three angles
which make three successive elementary rotations. Thus, the orientation
of a frame, with respect to another frame, depends on three independent
motion parameters even though the rotation matrix is a 3 x 3 matrix with
9 elements inside.

In robotics, it is necessary to interpolate the orientation of a frame from
its initial orientation to an actual orientation so that a physical rigid body
(e.g. the end-effector) can smoothly execute the rotational motion in real
space. Since a set of Euler Angles contains three angles, called angular
variables, the interpolation applied to three variables may take a different

54 The Fundamentals of Robotics: Linking Perception to Action

path or trajectory in a space defined by these three variables. Therefore,
it is not easy to manipulate Euler angles for the purpose of determining
smooth, intermediate orientations of a frame between its initial and actual
orientations.

Y Y

V Axis of rotation A x i s °f rotation

(a) Initial configuration (b) Actual configuration

Fig. 2.10 Equivalent axis of rotation: any orientation of a frame, with respect to another
frame, can be treated as a rotation about an equivalent axis from its initial configuration
to its actual configuration.

Interestingly enough, there is an equivalent axis of rotation which brings
a frame from its initial orientation to its actual orientation with a corre-
sponding angle of rotation. The truth of this property can be verified in
the following way:

Assume that such an equivalent axis of rotation exists, and is denoted
by unit vector r = {rx,ry,rz)t. Based on the fact that a rotational motion
will not cause any changes to the rotation axis itself, the following equality
must be valid, if r is the equivalent axis of rotation for the rotational motion
between frame 1 and frame 0:

°R1m{1r} = °r (2.65)

with

V= °r= (rx,ry,rzy.

Now, imagine that there is an intermediate frame i which has the Z
axis that coincides with the equivalent rotation axis r. (See Fig. 2.11.)
And assume that the orientation of frame i with respect to frame 0, is
determined by the YXZ Euler angles.

If °Ri denotes the orientation of frame i, with respect to frame 0, we

Motion of Rigid Bodies 55

Axis of rotation

Fig. 2.11 An intermediate frame i which has the Z axis that coincides with the equiv-
alent rotation axis.

have

°RZ = Ry*Rx*Rz (2.66)

with

(cos(a) 0 sin(a) \
0 1 0

— sin(a) 0 cos(a) /

/ I 0 0 \
Rx = 0 cos(/3) - sin(/3)

\ 0 sin(/3) cos(/3) /

/cos(6>) -sin(6>) 0 \
Rz = sin(0) cos(6») 0 .

V 0 0 1/

In the above expression, angles (a, (3) must take the following values in
order for the Z axis of frame i to coincide with the equivalent rotation axis
after two successive elementary rotations about its Y and then, X axes:

a = arccos (T ^ I)
P = — arccos (-\/r%~+~r%) •

56 The Fundamentals of Robotics: Linking Perception to Action

When the equivalent rotation axis coincides with the Z axis of frame i,
then

lr= °Rl*{ikl} = Ry*Rx»Rz*{iki} (2.67)

and

°r = °Ri.z k = Ry* Rx» Rz* {%} (2.68)

where % = (0, 0,1)*.
Since the angle 9 inside matrix Rz is unconstrained, if 9 = 0 (i.e. Rz =

hx3), Eq. 2.67 becomes

1r = Ry»Rx*{%} (2.69)

Now, by applying Eq. 2.69 and Eq. 2.68 to Eq. 2.65, the following equal-
ity holds:

°R1»Ry»Rx = Ry»Rx*Rz, (2.70)

or more explicitly we have

°R1= Ry»Rx*Rz*R~1 •R-1. (2.71)

The above equation proves the validity of the assumption that an equiv-
alent rotation axis exists for any given orientation of a frame with respect
to another frame. And, the rotation matrix can be formed by five succes-
sive elementary rotations which are fully determined by the rotation axis's
unit vector and the rotation angle 9 (i.e. the Rz matrix).

If °i?i is given as the input:

(rii 712 r13\

T2\ r-22 r 2 3 I ,

7*31 7-32 7"33 /

we can derive the solutions for r and 9. From Eq. 2.71, we can obtain

o (T\\ +r22 + r33 - I N
9 = arccos I I (2.72)

and

1 /r32-r23\

r=2M9)' h ' " ^ ' (2J3)
\r2i -r12j

Motion of Rigid Bodies 57

2.7 Summary

This chapter provides a review of the fundamentals of a rigid body's mo-
tions. The descriptions cater to the need in robotics, to precisely estab-
lish kinematic relationships among a set of kinematically-constrained rigid
bodies. The concept of frame is introduced to summarize a rigid body's
mathematical abstraction in space. This abstraction indicates the need to
adopt frame-centric notations when dealing with the symbols which denote
motion transformations. The frame-centric notations also serve as a sound
basis to unify motion-related notations in robotics and computer vision.

Motion is caused by a force or torque applied to a rigid body which
is free to move in certain way (i.e. straight path/trajectory, circular
path/trajectory, or a combination of both). A motion can be described
in terms of displacement, velocity and acceleration. All these motion pa-
rameters could be studied by working with the frames assigned to the rigid
bodies in space. Interestingly enough, the relationship between any pair of
frames is consistently described by a homogenous-motion transformation,
which uniformly describes translational motion, rotational motion, or the
combination of both.

In this chapter, we also discussed the concept of successive elementary
motions. This helps to understand the minimum number of motion param-
eters necessary to describe any combination of translational and rotational
motions. On the other hand, it also serves as a sound basis to justify the
most advantageous way of assigning frames to kinematically constrained
bodies (i.e. links). This will be discussed in more detail in Chapter 3.

2.8 Exercises

(1) In a Cartesian space referenced by a frame 0 a rigid body, to which
frame 1 is assigned, is free to perform any composite motion. At time
instant t, the rigid body reaches a configuration which is described by
this homogenous motion transformation matrix:

(7-n r12 ri3 tx\
T2i r22 r23 ty

r3i r32 r33 tz I
0 0 0 1 /

58 The Fundamentals of Robotics: Linking Perception to Action

What is the expression of the base vectors of frame 1 with respect to
frame 0 at time instant tl

(2) Explain the meaning of homogenous coordinate.
(3) °Ri(t) describes the actual orientation of frame 1 with respect to frame

0 at time instant t. At this moment, the rigid body associated with
frame 1 undergoes a rotational motion about the Z axis of frame 0.
Assume that the angular rotation angle is 8. Prove the following ex-
pression:

&*)l = e.s(%).{°R1(t)}.

(4) We normally denote S(v) the skew-symmetric matrix of vector v. As-
sume that vector v is a 3 x 1 vector which has an inverse. Prove the
following equality:

R»S(v)»R-1 = S(R*v).

(5) Prove the solutions in Eq. 2.63 and Eq. 2.64.

2.9 Bibliography

(1) Baruh, H. (1999). Analytical Dynamics, McGraw-Hill.
(2) Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimiza-

tion, Addison-Wesley.
(3) Rogers, D. F. and J. A. Adams (1990). Mathematical Elements for

Computer Graphics, McGraw-Hill.

Chapter 3

Mechanical System of Robots

3.1 Introduction

Action is the source of results. Thus, mechanical system is a part of any
physical system, such as a robot. In general, a mechanical system consists
of: a) a structure and b) a mechanism.

A structure is a set of elements with static couplings. There is no
motion between any two adjacent elements in a structure. On the other
hand, a mechanism is a set of elements with flexible couplings. The purpose
of mechanism is to constrain types of motion produced by a mechanical
system. Thus, it is necessary to study a robot's mechanism in order to
better understand the robot's functions during motion execution.

Because it takes a lot of experience and knowledge to create a mecha-
nism, we will study the robot mechanism at the basic level. However, in
this chapter, we will focus on the principles and solutions underlying the
robot mechanism's kinematic analysis.

3.2 Robot Mechanism

Fig. 3.1 shows a conceptual design of a humanoid robot. Fig. 3.2 shows an
actual prototype of a single-motor-driven (SMD) arm manipulator with 20
degrees of freedom. From these two examples, we can see that a robot's
mechanism is an assembly of elementary rigid bodies, called links, which
are connected through entities called joints.

3.2.1 Links

A formal definition of a link can be stated as follows:

59

60 The Fundamentals of Robotics: Linking Perception to Action

Fig. 3.1 A conceptual design of a humanoid robot.

Definition 3.1 A link is a rigid body with at least one particular point,
called a node, which supports the attachment of other link(s).

According to the number of nodes each link possesses, we can divide the
links into these common categories:

• Unary Link:
This refers to a link with a single node. In Fig. 3.2, the big conic entity
is a unary link (the virtual model offers a better view). The tip unit (i.e.
tip link) of a finger assembly is also a typical unary link (see Fig. 3.3).

• Binary Link:
This refers to a link with two nodes. The robot's arm manipula-
tors, legs, and fingers are composed of serially-connected binary links
(Figs. 3.1 and 3.2 show two examples with many binary links).

• Ternary Link:
This refers to a link with three nodes. A typical example is the hip of
the humanoid robot, shown in Fig. 3.2. One of the nodes in the hip
link supports the connection to the upper body of the humanoid robot,
while the other two nodes connect to the assemblies of the two legs in
the humanoid robot.

Mechanical System of Robots 61

(a) Virtual Model (b) Real Prototype

Fig. 3.2 The first prototype of the single-motor-driven robot arm manipulator: a) the
virtual model and b) the actual prototype with 20 degrees of freedom, which are simul-
taneously and independently driven by a single motor located at the base (on top).

• Quaternary Link:
This refers to a link with four nodes. A typical example is the upper
body of the humanoid robot, shown in Fig. 3.2. The node on the top is
connected to the head/neck assembly of the humanoid robot. The node
at the bottom is connected to the hip assembly. The remaining two
nodes, at the left and right, support the attachment of the assemblies
of the left and right arms.

In practice, there are cases when a link needs more than four nodes. A
typical example is the palm link inside a robot's hand. If a robot's hand has
five fingers, then the palm must have 6 nodes: 5 nodes for the connection
of the five fingers and one node for the attachment to the end-point of a
robot's arm.

Example 3.1 Fig. 3.3 shows three examples of links: a) a binary link,
b) a unary link, and c) a ternary link.

•ooooooooooooooooo

62 The Fundamentals of Robotics: Linking Perception to Action

(a) Link with two nodes

(< & • /

(b) Link with single node

L J ^
(c) Link with three nodes

Fig. 3.3 Examples of unary, binary, and ternary links.

Example 3.2 Fig. 3.4 shows a conceptual design of a multiple-fingered
hand. Notice one link with 6 nodes (the palm link), five unary links, and
ten binary links (i.e. two links per finger with the first binary link of the
thumb in the shape of a cross-cylinder).

(a) Front view (b) Back view

Fig. 3.4 A close-up view of the conceptual design of a multiple-fingered hand.

•ooooooooooooooooo

Mechanical System of Robots 63

3.2.2 Joints

A formal definition of joint is as follows:

Definition 3.2 A joint is the connection between two or more links at
their nodes. It constrains the motions of the connected links.

If a joint connects only two links, the entity is also called a kinematic
pair. Depending on the degrees of freedom (DOF) allowed for the kinematic
pair, a joint can be classified as: one-DOF joint, two-DOF joint, three-DOF
joint etc. In robotics, for the simplicity of kinematic and dynamic analysis,
we use one-DOF joints because any joint with a higher order of DOFs can
easily be treated as the combination of multiple one-DOF joints.

In a kinematic pair, one degree of freedom (DOF) needs one indepen-
dent parameter, which uniquely determines the relative geometry (posi-
tion and/or orientation) of the two links in the kinematic pair. Generally
speaking, a mechanical system's degrees of freedom refer to the number of
independent parameters, which uniquely determine its geometry (or con-
figuration) in space and time.

In three-dimensional space, any complex motion with respect to a ref-
erence coordinate system can be treated as the combination of two basic
motions: translation and rotation. Therefore, if a one-DOF joint imposes
a translational motion, it is called a prismatic joint. If the constrained
motion is rotational, it is called a revolute joint

Example 3.3 Fig. 3.5 shows a mechanism with one base, three links, and
a robotic hand. The base has a slotted track so that Link 1 can undergo
linear motion along it. The joint constraining the base and Link 1 is a
prismatic joint. In a similar way, Link 1 also has a slotted track so that
Link 2 can undergo linear motion along it. Thus, the joint constraining
Link 1 and Link 2 is also a prismatic joint. Since Link 3 is a rod which is
fixed inside the inner cylindrical tube of Link 2, Link 3 moves up and down
along the axis of Link 2. Therefore, the joint constraining Link 2 and Link
3 is another prismatic joint.

We can see that the three moving directions of Links 1, 2, and 3 are
mutually perpendicular to each other. A robot with such a mechanism is
called a Cartesian robot or XYZ robot.

oooooooooooooooooo
Example 3.4 Fig. 3.6 shows a mechanism with one base and three links.
Link 1 is fixed inside the inner cylindrical tube of the base, and can only

64 The Fundamentals of Robotics: Linking Perception to Action

7.-- "..v^****?.--: - •':\£S£*

Fig. 3.5 A mechanism with three prismatic joints.

undergo a rotary motion about the axis of that tube. Hence, the joint
constraining the base and Link 1 is a revolute joint. Now, look at the
connection between Link 1 and Link 2. The fork-shaped node (attachment
point) of Link 1 is joined using a pin to the corresponding node (attachment
point) of Link 2. The joint constraining Link 1 and Link 2 is a revolute
joint. In a similar way, the joint constraining Link 2 and Link 3 is also a
revolute joint. A robot with such a mechanism is called an articulated robot
or RRR-type robot (R stands for revolute).

oooooooooooooooooo
The above examples illustrate that robots may structurally be different.

One way to differentiate between the various robots is to identify the first
three joints in a robot's mechanism. Because a joint may be either prismatic
or revolute, there are eight possible combinations. For example, an RRR-
type robot means that the first three joints in the robot's mechanism are
all revolute joints.

3.2.3 Kinematic Chains

As a robot is a physical agent which performs given tasks through the exe-
cution of motions, it should have a sufficient number of degrees of freedom
in order to be flexible in a three-dimensional space where any free-moving
rigid body exhibits six degrees of freedom: three for rotary, motions and

Mechanical System of Robots 6 5

^T ' Link .*

^ ^ ^ ^ H H R ^ ^ ^ I Base

Fig. 3.6 A mechanism with three revolute joints.

three for translation^ motions. In general, a robot should have at least
six degrees of freedom in order to be able to position a tool at a certain
location. However, robots dedicated to specialized tasks may require more
or less than six degrees of freedom. And, it is a challenge to figure this out
at the design stage.

The common approach to arranging degrees of freedom is to form an
ordered sequence of links connected in a series through the joints. This type
of mechanism is called a kinematic chain. A formal definition of kinematic
chain can be stated as follows:

Definition 3.3 A kinematic chain is an assembly of links connected in a
series through joints, the output motion of which at any chosen point, only
depends on the motion parameters of the joints.

A kinematic chain is said to be open if there is no joint connecting
the first and last links inside the chain. Otherwise, it is called a dosed
kinematic- chain.

Example 3.5 Fig. 3.7 shows an example of a mechanism with one base
link and six other links. These elements are all connected in a series to
form an open kinematic-chain. In robotics, this mechanism is called an
articulated arm manipulator in robotics. Refer to Fig. 3.4. It is easy to see
that each finger in a robotic hand is also an open kinematic-chain.

•ooooooooooooooooo

66 The Fundamentals of Robotics: Linking Perception to Action

Link 3 A

Fig. 3.7 An open kinematic-chain with one base and six links, connected in a series.

Example 3.6 Fig. 3.8 shows a conceptual design of a parallel robot mech-
anism. In this example, the circular disk at the top is a ternary link which
is supported by three open kinematic-chains. The base links of these open
kinematic-chains are fixed on a common ground plane, and are treated as
a single ternary link. It is clear that this mechanism contains three closed
kinematic-chains.

ft ^Kf^w n

Fig. 3.8 An example of a parallel robot with three closed kinematic-chains.

oooooooooooooooooo

Mechanical System of Robots 67

3.2.4 Multiplicity of an Open Kinematic-Chain

When we deal with an arm manipulator, we can treat the underlying
mechanism as a simple open kinematic-chain. This is because the base
link (i.e. the first link) and the end-effector link (i.e. the last link) are
clearly indicated, and will remain unchanged. However, it is more compli-
cated when dealing with a humanoid robot. Here, we use the term simple
open kinematic-chain to differentiate it from the more general term open
kinematic-chain. A definition of a simple open kinematic-chain can be
stated as follows:

Definition 3.4 Any open kinematic-chain with designated base and end-
effector links is called a simple open kinematic-chain.

Clearly, an open kinematic-chain can form different simple open
kinematic-chains. As a result, it is necessary to emphasize the multiplicity
of an open kinematic-chain in a humanoid robot's mechanism for at least
two reasons:

(1) An open kinematic-chain inside a humanoid robot should not be treated
as a simple open kinematic-chain. This is because the designations of
the base and end-effector links depend on the types of activities the
humanoid robot is performing.

(2) If we divide a humanoid robot's activity into a sequence of phases,
an open kinematic-chain in a humanoid robot can advantageously be
treated as different simple open kinematic-chains corresponding to dif-
ferent phases.

Example 3.7 Fig. 3.9 illustrates a simulated humanoid robot in a seated
position. The right arm can be treated as a manipulator with its base link
attached to the upper body. Similarly, the right leg can also be treated as
a manipulator with its base link attached to the hip. In this example, the
right hand and the right foot are both the end-effector links.

oooooooooooooooooo
Example 3.8 Fig. 3.10 illustrates a simulated humanoid robot in a stand-
ing position. For the activities performed by a humanoid robot in such a
standing position, it is easy to study the motions if the right leg, the body,
and the right arm/hand form a simple open kinematic-chain, like an arm
manipulator. In this case, the right foot serves as the base link, and the
right hand is the end-effector link.

68 The Fundamentals of Robotics: Linking Perception to Action

2D Humanoid Robot in Posture of Seating

_, |Mpha(Arm) ' "n imMjUjLUJJ I I I I I ITTm I I I I I I I I I I II I I I I I I I I I I -J lA^ra (Legl _

j Beja jam) ">:::::: flWBBBBB '•'•'•'•'•'•-----'-'-'-'-'-::::::::::: Bete (Leg) •

_j 179.9089 "-°20 ° 20 40 6 ° 80 -> H36216

d 1 w » e I I E * I Li

Fig. 3.9 A simulated humanoid robot in a seated position, where the right arm and the
right leg can be treated as two independent manipulators.

oooooooooooooooooo

Example 3.9 A robot's human-like biped walking can be treated as a
combination of two sequences of successive cycles: a) the sequence of the
left leg's walking cycles and b) the sequence of the right leg's walking cycles.
Each cycle has three successive phases. Fig. 3.11 shows the first two phases
of the left leg's walking cycle (the third phase overlaps with the first phase
of the right leg's walking cycle).

A cycle begins with the first phase. The first phase starts when the
left heel elevates off the ground, and ends when the left toe elevates off the
ground. The second phase starts at the end time-instant of the first phase,
and ends when the left heel touches the ground again. Within the left leg's
walking cycle, it is clear that we can consider the right foot to be the base
link of the simple open kinematic-chain formed by the two legs.

OOOOOOOOOOOOOOOOOO

Mechanical System of Robots 69

^j 20 Humanoid Robot in Posture of Standing

NphaG*rm) ; 1OO| 1111111111 jTTiwnTjTn 111111111 |TTTnnTffl i s ^ i 8 0 *)

Beta(Arm) 70 : : : : : : : : : : : : : - J M H B B ' I 1 "•'"•'-'-'-'-• " jAlpho(Ug)

(3amraa(Afml « : : : : : : i B ^ M I | : jesfefLeg)

_J 147 t j g ^ -20 0 20 40 60 80

J | Home | [Exit |

Fig. 3.10 A simulated humanoid robot in a standing position, where the right leg, the
body, and the right arm/hand can advantageously be treated as a simple open kinematic-
chain.

Phase 1 Phase 2 Phase 3

Fig. 3.11 Illustration of a simple open kinematic-chain for the study of the left leg's
walking cycle when the right foot is treated as the base link.

3.3 Robot Kinematics

From a mechanical point of view, a robot is an assembly of a set of links
where any pair of two adjacent links is connected by a one-DOF (Degree
Of Freedom) joint. Every joint inside a robot's mechanism can be either a
prismatic or revolute joint which imposes one degree of freedom and can be

70 The Fundamentals of Robotics: Linking Perception to Action

described by one input motion parameter. Since the purpose of a robot's
mechanism is to shape the output motion at a particular point on the
mechanism itself, it is important to understand the relationship between
the robot mechanism's input motion parameters and its output motion
parameters.

It is worth noting at this point, that the robot mechanism's output
motion is specified and described with respect to a Cartesian space which is
commonly called task space in robotics. And a three-dimensional Cartesian
space can be represented by the orthogonal coordinate system O — XYZ,
where a general motion involves six parameters: a) three for translation
and b) three for rotation.

As for the robot mechanism's input motions of a robot's mechanism,
a joint imposes one kinematic constraint on the corresponding kinematic-
pair. The motion parameter of a one-DOF joint is normally represented
by a variable which describes the relative position between the two links
in the kinematic pair. The motion parameter of joint i is commonly called
a joint variable and is denoted by cfo. The joint variable q^ refers to an
angle if joint i is a revolute joint. Otherwise, it refers to a linear or circular
displacement. All the joint variables in a mechanism form a vector of joint
coordinates which define a space commonly called a joint space.

Therefore, the robot mechanism's kinematic analysis is simply the study
of the mapping between task space and joint space. (See Fig. 3.12). Map-
ping from joint space to task space is called forward kinematics, while the
reverse mapping (from task space to joint space) is called inverse kinemat-
ics.

I \^^~ F°rward Kinematics ^f / \

Task Space Joint Space

\ / ^"""^ Inverse Kinematics - ^ \ /

Fig. 3.12 An illustration of kinematic mapping.

Mechanical System of Robots 71

3.3.1 Kinematics of a Link

It is a common practice in science and engineering to develop a systematic
approach to describe any complex system. As for kinematic analysis, it is
desirable to have a systematic method.

Since a robot's mechanism can be treated as the combination of a set
of open kinematic-chains, it is important to develop a theoretical frame-
work for the modelling and analysis of an open kinematic-chain. An open
kinematic-chain consists of a set of serially connected links. Thus, the
starting point for kinematic analysis is to study the kinematics of a link.

3.3.1.1 Assignment of a Link's Frame

As we discussed in Chapter 2, the study of motions among rigid bodies
is equivalent to the study of motions among frames assigned to the rigid
bodies under consideration. In general, motion transformation between any
pair of frames involves six motion parameters: three for the elementary
translations and three for the elementary rotations. In robotics, there is
a simple method which only requires four motion parameters to represent
the relative posture between two consecutive links. This method is called
Devanit-Hartenberg (or DH) representation. The basic idea behind DH
representation can be explained as follows:

At a time instant, an open kinematic-chain can be treated as a simple
open kinematic-chain with a clear designation of its base and end-effector
links. For the example shown in Fig.3.7, the open kinematic-chain has one
base link and three binary links. We treat a unary link as a degenerated
binary link, the two nodes of which are merged into one. For clarity's sake,
the node of a binary link which is closer to the base link (when measured
along the open kinematic-chain) is called the proximal node, while the other
node is called the distal node. With reference to a link, the joint at the
proximal node is called the proximal joint and the one at the distal node is
called the distal joint.

For link i inside a simple open kinematic-chain, the question is: Where
do we place frame i assigned to it? If we want to reduce the number of
motion parameters, it is imperative to constrain a frame's orientation and
origin as much as possible. Since two consecutive links form a kinematic
pair (the corresponding joint has one degree of freedom), a simple solution
is to constrain one of the X, Y, or Z axes of frame i by aligning it with the
motion axis of the joint.

In robotics, a common way is to align the Z axis of a link's frame with

72 The Fundamentals of Robotics: Linking Perception to Action

the motion axis of one of its two joints. Now, the question is: Should we
align the Z axis of frame i with the motion axis of the proximal joint or
the distal joint? The obvious answer is to align it with the motion axis of
the distal joint, as illustrated in Fig. 3.13, because the robot mechanism's
output motion is usually at the distal joint of the end-effector link.

It is important to note that the end-effector link in a simple open
kinematic-chain is physically driven by its proximal joint when an actu-
ator applies force/torque to it. This fact is also true for the rest of the
links inside a simple open kinematic-chain. For easy notation, the proximal
joint of link i is called joint i. The designation of link i and joint i is also
illustrated in Fig. 3.13.

Proximal Joint Distal Joint

Fig. 3.13 Designation of link i and joint i, including frame assignment to link i.

Once we have imposed a constraint on the Z axis of a link's frame, it is
also easy to impose a constraint on the link frame's origin along the Z axis.
This can be done by placing the origin at the intersection point between
the Zi axis (its direction is represented by °ki with respect to frame 0) and
the common normal vector from the Zj_i axis to the Zi axis. And, this
common normal vector defines the X axis of frame i. If °fc, and °fcj_i (i.e.
the direction vector of the Zj_i axis with respect to frame 0) are parallel
to each other (as shown in Fig. 3.13), the origin of frame i is chosen to be
at the center of the distal joint.

Finally, the Y axis of frame i is determined by the right-hand Rule, so
that a Cartesian coordinate system is formed for frame i.

Example 3.10 Fig. 3.14 shows a link which has non-parallel motion axes

Mechanical System of Robots 73

at the proximal and distal joints. In this case, it is easy to determine the
origin of the frame assigned to the link. It is at the center of the distal
joint.

A. z,

Fig. 3.14 A link which has non-parallel motion axes at the proximal and distal joints
are not parallel.

oooooooooooooooooo
Example 3.11 Fig. 3.15 shows a link which has motion axes at the
proximal and distal joints that are co-planar and intersect at a point. In
this case, the origin of the frame assigned to the link is at this intersection
point, and the X axis is determined by the cross-product of the Zi and
Zi-i axes' base vectors:

ti = Ki X Ki — \ •

2,,

Fig. 3.15 A link which has motion axes at the proximal and distal joints that are
co-planar and intersect at a point.

7 4 The Fundamentals of Robotics: Linking Perception to Action

••OOOOOOOOOOOOOOOO

Example 3.12 Fig. 3.16 shows a link which has motion axes at the
proximal and distal joints that are in a general configuration. In this case,
the common normal vector from the Z^x axis to the Zt axis is

% = {%} x {%_•,}.

This normal vector indicates the X axis of the frame assigned to the link.

Z,.
» _

i

Fig. 3.16 A link which has motion axes at the proximal and distal joints that are in a
general configuration.

oooooooooooooooooo

3.3.1.2 Geometric Parameters of a Link

In Fig. 3.17, we make use of two parallel planes to better illustrate the frame
assignment to link i. It also shows in a clearer way that the minimum set of
four parameters is necessary to fully describe the relative posture between
the two consecutive links. Let us assume that the Zi-i and Zt axes are
not collinear (i.e. not on the same line). In practice, there is no reason to
design two consecutive links in such an arrangement.

If we know the common normal vector °ij (i.e. the Xi axis), we can
define two parallel planes pi and pi-i, both using this vector as their normal
vector. And, plane pi contains the Zi axis while plane pi-i contains the

Mechanical System of Robots 75

z,., ^ I

Z-lj- 7T" f™>
Pi-i / S / /

Fig. 3.17 Illustration of DH parameters, using two parallel planes.

Zi-i axis. Refer to Fig. 3.17. Frame z — 1 is placed in a general orientation
which depends on link i — 1.

Refer to Fig. 3.17 again. It is clear that the first DH parameter is the
rotation angle ft about the Xi axis which makes the Zi axis parallel to the
Zi-i axis. This angle ft indicates an elementary rotation of frame i about
the Xi axis if we want to bring frame i back to frame i — 1.

Obviously, the second DH parameter is the distance bi between these two
parallel planes. In fact, this distance 6* indicates the linear displacement of
an elementary translation by frame i along the X, axis if we want to bring
frame i back to frame i — 1.

By applying two successive elementary motions: the elementary rotation
about the Xi axis followed by the elementary translation along the Xi axis,
frame i will reach an intermediate configuration which is denoted by frame
k in Fig. 3.17.

Now, it becomes clear that the third DH parameter is rotation angle 0j
about the Zk axis which is aligned with the Zj_i axis. This rotation aligns
frame k parallel to frame i — 1. If joint i of the simple open kinematic-chain
is a revolute joint, then 6i is the joint variable corresponding to link i (i.e.
Qi = 8i).

76 The Fundamentals of Robotics: Linking Perception to Action

Finally, it is necessary to make a final elementary translation along the
Zi-\ axis in order to move the origin of frame k to coincide with the origin
of frame i — 1. The linear displacement di of this elementary translation is
the fourth DH parameter. It is clear that this fourth parameter di will be
the joint variable if joint i is a prismatic joint (i.e. & = di).

In summary, DH representation only requires a set of four parameters to
fully determine the relative posture between two consecutive frames. These
four parameters are:

(1) fa: rotation angle about the Xi axis;
(2) &,: linear displacement along the Xi axis;
(3) 9i'. rotation angle about the Zi—\ axis, which is the joint variable if

joint i is a revolute joint;
(4) di'. linear displacement along the Z^-\ axis, which is the joint variable

if joint i is a prismatic joint.

Example 3.13 In Fig. 3.9, the right arm and right leg are simple open
kinematic-chains with four planar links (including the common base link).
The frame assignments and the geometrical parameters of the right arm
and right leg, shown in Fig. 3.9, are generically illustrated by Fig. 3.18.
Based on the frame assignments, the DH parameters of the simple open
kinematic-chain shown in Fig. 3.18 are:

Link fii bi di di
1 0~~^ 0[0~
2 0 l2 02 0
3 I 0 \ h | 6>3 1 0

oooooooooooooooooo
From the above discussions, we can see that the DH parameters are not

the same if we alter the designation of the base link and end-effector link
for the same open kinematic-chain. As a result, an open kinematic-chain
requires two sets of DH parameters to fully describe its kinematic property,
especially in the case of the humanoid robot.

3.3.1.3 Motion Transformation Matrix of a Link

If we know the DH parameters of link i, we can quickly and systematically
establish the motion transformation matrix which describes the position
and orientation of frame i with respect to frame i — 1. Let us denote l~1M$

Mechanical System of Robots 77

i k w

• * „

Fig. 3.18 Simple open kinematic-chain with four planar links (including the base link).
Frame w is a world coordinate system.

the motion transformation matrix from frame i to frame i — 1. Based on
this notation, we have to pay attention to the signs of the values of the
DH parameters. Refer to Fig. 3.17. An angle takes a positive value if the
rotation is clockwise about the axis of rotation, and a linear displacement
takes a positive value if the translation is towards the negative axis of
translation. For the example shown in Fig. 3.17, where 9i is the joint
variable, (/3i,di) take negative values and bi has a positive value.

Refer to Fig. 3.17 again. It is easy to write the homogeneous motion-
transformation matrix kMi, which describes the position and orientation of
frame i with respect to frame k as follows:

(1 0 0 bi\

0 cos(A) -sin(A) 0 I ,
0 sin(A) cos(ft) 0 • [6A)

0 0 0 1 /Similarly, the position and orientation of frame k, with respect toframe i — 1, is fully determined by the following homogeneous motion-

transformation matrix:
/cos(<9;) -sin(6i) 0 0 *-•«. = T cofJ:: M
\ 0 0 0 1 /

(3.1)

78 The Fundamentals of Robotics: Linking Perception to Action

The combination of Eq. 3.1 and Eq. 3.2 yields

/COi -Cpi.SOl Spt.Set bi»C0i\
i-iA/r _ sei Cf3z.C0i -Spi.C6ih.SoA

l~ o spi cpt di {6-6)

V o o o i /
where

Spi = sin(/3i), CPi = cos(Pi),

50i = sin(fii), C0i = sin(0i).

Eq. 3.3 is called the /mA; matrix in robotics, and summarizes both the
position and orientation of frame i with respect to frame i — 1. The position
of frame i, with respect to frame i — 1, is

(k.COA
i~1O1 =\bi*Sei\. (3.4)

V di)

And the orientation of frame i, with respect to frame i — 1, is

i-1Ri=\sei cfc^cOi -spt.ceA. (3.5)
\ 0 5/3< CA /

From Eq. 3.4, we can see that the position of frame i depends on (#*, di).
This means that the position of frame i always undergoes changes, regard-
less of whether it is a revolute joint (meaning 0j is the joint variable) or
prismatic joint (meaning di is the joint variable). However, this is not the
case for the orientation of frame i which will only undergo changes if the
joint is revolute (i.e. 9i is the joint variable).

3.3.1.4 Linear/Circular Velocity of a Link

Eq. 3.3 describes the configuration (or posture) of frame i with respect
to frame i — 1. Another important property of robot kinematics is the
differential relationship between the joint variable and the configuration of
frame i. This is called motion kinematics or differential kinematics.

If joint i is a prismatic joint, we have

qz = di.

Mechanical System of Robots 79

By differentiating Eq. 3.4 with respect to time, we can obtain the linear
velocity vector at the origin of frame i with respect to frame i — 1. That is,

" A - * ^ - (;) • (•) • * • <"'

This linear velocity vector is in the direction of the ^ _ i axis (i.e.
i~1ki-i = (0,0,1)*). The above equation can be rewritten, as follows:

i~1Oi= i~1h-1*qi. (3.7)

Obviously, a prismatic joint will not cause any changes in the orientation
of frame i. If we denote l~1u>i the angular velocity vector of frame i with
respect to frame i — 1, we have l~xu>i = 0 if joint i is a prismatic joint.

On the other hand, the joint variable for a revolute joint i is

ql = 9i.

Let l~1u>i be the angular velocity vector of frame i. Due to the instanta-
neous change of joint variable </$ about the Zi-\ axis, the circular velocity
vector of any point P in frame i with respect to frame i — 1 will be

i-ip = dV^P} = (i _ l w i) x (i _ l p) (3 g)

at

where

i~l^i = *-%-! • ft. (3.9)

If we choose point P to be the origin of frame i, we have

i"1O, = C"1^) x ̂ -lOi) (3.10)

or

^di = {r%-i) x riOi)}. qi. (3.H)

In summary, the velocity vector at the origin of frame i, with respect to
frame i — 1, is

{ I-1fcj_i • <ji if prismatic joint

(3-12)
{(i~1fcj) x i^Oi)} • qt if revolute joint.

(3.8)

(3.12)

80 The Fundamentals of Robotics: Linking Perception to Action

3.3.1.5 Angular Velocity of a Link

From the above discussions, it is clear that there is no angular velocity if
joint i is prismatic. That is,

i~1uji = 0. (3.13)

If joint i is revolute, the angular velocity of frame i with respect to
frame i — 1 will be (see Eq. 3.9)

i~1wi= ' " 1 fc l _ 1 .g i . (3.14)

In summary, the angular velocity vector of frame i with respect to frame
z — 1 is

{ 0 if prismatic joint

(3.15)

l~1ki-i • <ji if revolute joint.3.3.2 Forward Kinematics of Open Kinematic-Chains

Let us consider a simple open kinematic-chain having n + 1 links as shown
in Fig 3.19. Link 0 is the base link and link n is the end-effector link. If
we denote qt the joint variable corresponding to link i, then joint variable
vector q of the simple open kinematic-chain will be

<7 = (?i,92, ...,«„)*. (3.16)

Joint n

Joint 4 «^~~W^^^ / / S

\ /^t^— End-effector Link n a

Joint 2 Js^l

Joint 1
v M Base Link

Fig. 3.19 A simple open kinematic-chain with n + 1 links.

Mechanical System of Robots 81

Here, the objective of the study of forward kinematics is to determine
the configuration (i.e. position and orientation) and velocity of the end-
effector's frame (i.e. frame n) if the joint variable vector and its velocity
are known.

3.3.2.1 Determination of the End-effector's Posture

If we denote l~1Mi(qi) the homogeneous motion-transformation of frame i
with respect to frame i — 1, then the homogeneous motion-transformation
of frame n (the end-effector link's frame) with respect to frame 0 (the base
link's frame) will be as follows:

°Mn(q) = f M ^ i) } • {lM2(q2)} {""^(f t ,)} (3.17)

or

°Mn(q) = CRfQ) °T;(9)) = f{rlMM,)} (3.18)

(NOTE: 0 = (0,0,0)).
The physical meaning of the above equation is that frame n will coincide

with frame 0 after a series of successive motions, which pass through frames
n — 1, n — 2, ..., and 1. The orientation of frame n, with respect to frame
0, is represented by rotation matrix °Rn(q), which is a function of the
joint variable vector q. And, the position of frame n's origin, with respect
to frame 0, is represented by translation vector °Tn(q), which is also a
function of the joint variable vector q.

We have joint variable vector q, the position and orientation of frame n,
with respect to frame 0, can be directly computed from Eq. 3.18. There-
fore, °Mn(q) describes forward kinematics mapping from joint space to task
space.

Example 3.14 Refer to Fig. 3.9. The right arm is treated as a simple
open kinematic-chain with the upper body as its base link. The lengths
of the upper link (Link 1), lower link (Link 2), and hand link (Link 3) of
the right arm are 20c?n, 20cm and 8cm respectively. The origin of the base
link's frame (frame 0) is at (0, 80cm) in the world frame. If the input of
the joint angles are as follows:

C qi = 37.5°
< q2 = 98.5°
{ q3 = -36.0°,

82 The Fundamentals of Robotics: Linking Perception to Action

then the origin of the hand link's frame, with respect to the world frame,
will be at

f x = 33.9469cm
\y = 79.9089cm.

•••OOOOOOOOOOOOOOO

Example 3.15 Refer to Fig. 3.9 again. The right leg is also treated as
a simple open kinematic-chain with the upper body as its base link. The
lengths of the upper link (Link 1), lower link (Link 2), and foot link (Link
3) of the right leg are 20cm, 20cm and 15cm respectively. The origin of the
base link's frame (frame 0) is at (0,40cm) in the world frame. If the input
of the joint angles are as follows:

r qi = 72.0°
) q2 = -90.0°
[q3 = 103.5°,

then the origin of the foot link's frame, with respect to the world frame, is
at

(x = 27.7946cm
\y = 13.6216cm.

OOOOOOOOOOOOOOOOOO

3.3.2.2 Determination of the End-effector's Velocity

In a simple open kinematic-chain, the constraints imposed by the joints
are independent of each other. In other words, joint 1 will independently
move the assembly consisting of links 1, 2, ..., until n; and joint 2 will
independently move the sub-assembly consisting of links 2, 3, until n etc.
Now, the question is: What will the linear and angular velocities of frame
n be, with respect to frame 0, when the velocities q of the joint variables q
are given?

For simplicity's sake, we use the term linear to mean the combined effect
of linear and circular velocities which act at the origin of a frame. Refer
to Fig. 3.19. As the joints independently act on their corresponding sub-
assemblies of links, the linear velocity vector (the combined effect of linear
and circular velocities) at the origin of frame n will be the sum of results
obtained from all the joints.

Mechanical System of Robots 83

Now, let us examine the contribution of joint i to the linear and angular
velocities of frame n:

We consider that the sub-assembly from links i until n forms a single
link supporting frame n. By applying Eq. 3.12, the linear velocity vector
caused by joint i at the origin of frame n, with respect to frame i — 1, will
be

H A , - x _ [t~1ki-i • Qi if prismatic joint ,
n[qt) \ {('-%-!) x C'-^n)} • qt if revolute joint l " '

where l~10n is the position vector from the origin of frame n to the origin
of frame i — 1.

By multiplying rotation matrix °iJj_i to both sides of Eq. 3.19, we
obtain the linear velocity vector at the origin of frame n, with respect to
frame 0. That is,

°h C \ - i °^i~1 * ̂ if P r i s m a t i c J° i n t (o 9 n \
n[qi> [{ (l i l x ^ . - ^ J } . ^ if revolute joint. l '

As i~1On is the position vector from the origin of frame n to the origin
of frame i — 1, we have

°Ri-1 . ' - 1 On = °On - 0Oi_i (3.21)

with

/0\ /0\

°On = ° M n . °Q OO;-! = "Mi-! * o • (3-22)

W \ i /

If we substitute Eq. 3.21 into Eq. 3.20, and define

f ofc2_i if prismatic joint

\ {(°fci-i) x (°On - °O,_!)} if revolute joint, l J

we have

°6n(q,) = Joi»9i. (3.24)

Now, let us compute the sum of the results obtained from all the joints.
The final result of the linear velocity at the origin of frame n, with respect

(3.23)

84 The Fundamentals of Robotics: Linking Perception to Action

to frame 0, will be

°On(q) = £{°Onfe)} = itVoi • %} (3.25)
»=i j=i

or in matrix form

°On(q) = Jo*q (3.26)

with

I Jo = {Joli Jo2j •••> J o r a J /„ o 7 \
1 • I • • • \t lo.Zl)
l<7= (9l,92,-,?n) •

Eq. 3.26 describes the mapping of the joint variables' velocities to the
linear velocity at the origin of frame n.

Similarly, by applying Eq. 3.15, the angular velocity vector of frame n
caused by joint i, with respect to frame i — 1, will be

i-i (•-, (0 if prismatic joint
^>n(Qi) = S i _ i ^ . . r , . • • . (O.ZOJ

I Kj_i • % if revolute joint.

If we multiply rotation matrix °Ri-i to both sides of Eq. 3.28, and
define

_ / 0 if prismatic joint

I Kj_i it revoiute joint,

then Eq. 3.28 can be rewritten as follows:

°Lon{qi) = J^i . qt. (3.30)

Now, if we compute the sum of results obtained from all the joints, the
final result of the angular velocity vector of frame n, with respect to frame
0, will be

n n

<W<7) = £{V>fe)} = £ iJ« i • Qi} (3.31)
i=l i=l

or in matrix form

°un{q) = Ju*q (3.32)

with

I "^OJ = = (. ^ w l) ^o)2> •••> Jujn) / o o o \

1 • / • • • \t (o.oo)

(3.29)

Mechanical System of Robots 85

Eq. 3.32 describes the mapping of the joint variables' velocities to the
angular velocity vector of frame n.

If we denote

P=(°o£) (3.34)

the velocity vector of frame n, with respect to frame 0, and further define

Aq)=(t)' (3'35)
the combination of Eq. 3.26 and Eq. 3.32 will yield

P = J(q) • q. (3.36)

Eq. 3.36 describes the mapping from the joint variables' velocities to
the velocity of frame n. This mapping is fully conditioned by matrix J(q),
commonly called the Jacobian matrix. If the dimension of P is m (m < 6),
J(q) is a TO x n matrix. It is clear that the inverse mapping is many-to-one
if n > m. It is worth noting that the Jacobian matrix is not a constant
matrix and it depends on the actual values of the joint variables.

Example 3.16 Refer to Fig. 3.9. We name the upper link, the lower link
and the hand link of the right arm as Links 1, 2 and 3 respectively. The
velocity of frame 3, with respect to frame 0 (the upper body), will be

P = J(q) . \e2 = J(q) . q

W
with

/ (%) x (°O3 -° O0) {°k) x (°O3 -° Oi) (%) x (°O3 -° O2) \
J(q) = { % % °k)
and

(0\ /0\. /0\

°\ °O2= °M2. ° °O1= "Mf I .
•ooooooooooooooooo

86 The Fundamentals of Robotics: Linking Perception to Action

3.3.3 Inverse Kinematics of Open Kinematic-Chains

The robot mechanism's output motion is usually at the end-effector link
of a simple open kinematic-chain. If we know the joint variables and their
velocities, it is simple to compute the robot mechanism's output motion
because of the simple formulation of forward kinematics. Then, the question
is: Why is there a need to study inverse kinematics?

(Tasks J

Motion Planning
& Programming

/< ^^V->T Inverse Kinematics ~~~-~W^^ ^ ^ X
/ Motion - y I 1 Y Desired Motion A

V in Task Space ; | 1 V̂ in Joint s J
\ ^ ^ ^^y ^~— Forward Kinematics A \ ^ "^/

I i r

Robot Mechanism Robot Control

^ "~-~̂^ r̂

(Executed Motion \^
V • T • c J~ Robot Dynamics
\ m Joint Space/ |

Fig. 3.20 The motion-related data flow inside a robot.

Let us examine the motion-related data flow inside a robot. From the
illustration shown in Fig. 3.20, it is clear that the desired motion is specified
in task space. The motion specification in task space needs to be mapped
into joint space, as the direct input to robot control is the desired motion
in joint space.

The purpose of robot control is to apply energy into the robot's mech-
anism which will alter the dynamic behavior of the robot. The direct out-
come of robot control is the executed motion in joint space, which is the
robot mechanism's input motion. Through the robot's mechanism, the
executed motion in joint space is physically manifested by the robot mech-
anism's output motion in task space. Therefore, the robot mechanism's

Mechanical System of Robots 87

inverse kinematics is crucial, it determines the ability of a robot to fulfill
a task through the execution of motion in joint space. Accordingly, the
objective of inverse kinematics is to compute the desired motions of the
joint variables for a given motion specification of the end-effector's frame
in task space.

3.3.3.1 Determination of Joint Displacements

Refer to Fig. 3.19. The input for the determination of joint displacements is
the posture or configuration (position and orientation) of the end-effector's
frame with respect to the base frame. That is,

(ax sx nx tx\

ay sy ny ty

az sz nz tz I
0 0 0 1 /

where a = {aX)ay,az)1, s = (sx^y^z)* and n = {nx,ny,nzY are called
the approaching vector, the sliding vector and the normal vector of the
end-effector's frame, as shown in Fig. 3.19. For consistency of notation
with the planar open kinematic-chain, we consider that a, s and ft coincide
respectively with the X, Y and Z axes of frame n.

Now, what we want to determine is the set of joint angles q, which
satisfies the following equation:

°Mn = f M i f o) } • {lM2(q2)} {"-1Mn(gn)}. (3.38)
Eq. 3.38 describes the equality of two matrices. It implies that their cor-

responding elements must be equal to each other. In general, it is unlikely
for us to derive a closed form solution from Eq. 3.38.
Example 3.17 Refer to Fig. 3.9 and Fig. 3.18. Frame 3 is the hand's
frame for the right arm (or the foot's frame, in the case of the right leg).
Assume that, for a given task at a time-instant, the configuration of frame
3 needs to be

(CP ~S/3 0 x3\

o M = (% ° J3 °fc3 ° O 3 ^ I SP CP 0 2/3
3 ^ o o o i y I o o i o

\ 0 0 0 1 /

where CP = cos(/3), SP = sin(/3) and (23,1/3,0)' is the origin of frame 3
with respect to frame 0. Now, the question is: What should the joint angles

(3.37)

88 The Fundamentals of Robotics: Linking Perception to Action

(01,02,03) be?
Refer to Example 3.14 and Eq. 3.3. The three link matrices of the right

arm are as follows:

(C6i -SOi 0 JxC0i\

50! ce1 o i1sel

0 0 1 0 '
0 0 0 1 /

(C02 - 5 0 2 0 Z2C02\

502 C02 0 12S02

0 0 1 0 '
0 0 0 1 /

/C03 -50 3 o i3ce3\
2 j l . 503 C03 0 13S03

Ms~ o o i o -
V 0 0 0 1 /

(NOTE: CO = cos(0) and 50 = sin{6)).

Substituting °M\ and xMi into the equation

°M2 = {°M1}.{1M2}

yields

(C{e1 + e2) -5(0i + 02) o i2c(e1 + e2) + i1ce1\
On. 5(0x+ 02) C(0i+02) 0 Z25(0! + 02)+Zi50i

M 2 = o o i o
\ 0 0 0 1 /

According to the frame assignment shown in Fig. 3.18, frame 2's origin,
with respect to frame 0, can be expressed in terms of frame 3's origin with
an offset of l3 along the X axis. That is,

°O2 = °O3 - l3 • {%}•
If we denote 0O2 = (a;2,y2,0)*, we can easily establish the following

equation:

f i2c(e1 + 02) + i1cel = x2

\i2s{el + e2) + hS6l = y2 (6-6y)

Mechanical System of Robots 89

with

/ x2 = x3 - l3Cf3

12/2 = 2/3 - kS/3.

From Eq. 3.39, the computation of x\ + y\ yields

2lxl2C82=x\+yl-l\-l\.

Hence, the solution for the unknown 62 is

^ = ± a r C C O S (2 ^ 2 J -
Two possible solutions for 62 mean that the mapping from task space to

joint space is usually a one-to-many mapping (or conversely, the mapping
from joint space to task space is usually a many-to-one mapping). Knowing
82, we can now rewrite Eq. 3.39 in a matrix form in terms of the unknown
8\ as follows:

fh+hCOi -hS02\ [C0i\ = fx2\

{ i2se2 il + i2ce2)*{sej \y2)
or

\sej~ k \ -i2se2 h + i2ce2)\y2)

with

k = {h + i2ce2f + {i2se2)2 = i\ + i22 + 2hhce2.

If we know CQ\ and S#i, the solution for the unknown Q\ will be

&i = arctan (—^-) .
\CViJ

Analytically, from the equality of the corresponding elements at location
(1, 1) of the matrices in the following equation:

0M3 = {°M1}»{lM2}»{2M3},

we can easily obtain the solution for the unknown 63 as follows:

t/3 — p — U\ — u2.

oooooooooooooooooo

90 The Fundamentals of Robotics: Linking Perception to Action

If we examine the solution for #2 and define

7 — IT ± #2

we have
72 , / 2 2 _ 2

COS(7) = COs(7T ± 02) = / l + \ . X 2 ^

The above expression is precisely the proof of the cosine theorem applied
to the triangle formed by the origins of frames 0, 1 and 2. And angle 7 is
the inner angle between the two edges corresponding to link 1 and link 2.

Example 3.18 Refer to Fig. 3.21. The posture of the world frame, with
respect to the base frame (frame 0) of the right arm, is described by

(0 - 1 0 80 \
1 0 0 0
o o i o -
0 0 0 1 /

Now, we want to move frame 3's origin to

J xw =29cm
\ y-w = 86cm

where the coordinates (xw,yw) are expressed in the world frame. The
coordinates of this point, expressed in frame 0, will be

(33,03,0,1)*= °Mw»(xw,yw,O,l)t

or

f £3 = 80 - yw = -6cm
\y3 — xw = 29cm.

By applying the inverse-kinematic solution discussed in the previous
example, and choosing

j 13 = aictan (g)

the computed joint angles of the right arm (as shown in Fig. 3.21) are

r <9i = 44.3972°
I 62 = 114.5844°
[03 = -57.2922°.

Mechanical System of Robots 91

•I tf
2D Humanoid Robot in Posture of Seating

_j iAipNa(Arm} 100pi 111111 | ^ ^ S J T T T I T n T | 111111] 111111 IITTI11111 F| ^ WphaM^

—J iBeta (Arm) 70 ::::: fl|S|i^fflfBR:::::::::::::::::::::::::::: |8ete_C-fS)

Gamma(Arm).. 40 ffHH|||^MHij||tt : | iGatwna(Leg)

"* o c " -°20 0 20 40 60 80 L-J
Bo , \C£

j [Home | |- EM! | [»J

Fig. 3.21 Examples of an inverse-kinematic solution for the right arm and right leg.

Similarly, the posture of the world frame, with respect to the base frame
(frame 0) of the right leg, is described by

/0 - 1 0 40\
o M _ 1 0 0 0

Mw~ o o i o •
\0 0 0 1 /

For the posture of the right leg shown in Fig. 3.21, the origin of frame
3 of the right leg is

{ xw = 30cm
yw — 22cm

expressed in the world frame. Its coordinates, with respect to the base
frame (frame 0) are

f x3 = 40 - yw = 18cm
\ 2/3 = xw = 30cm.

If we choose

J f3 = arctan 0&) + 60

92 The Fundamentals of Robotics: Linking Perception to Action

the computed joint angles of the right leg, as shown in Fig. 3.21, will be

{ 0i = 74.2736°
62 = -81.0677°
03 = 125.8303°.

000000000000000000

For a simple open kinematic-chain with n+1 links, it is clearly difficult in
practice to obtain a closed-form solution for determining the joint variables.
But, it is possible to derive a general numerical solution from knowledge of
the velocities of the joint variables.

Let us denote q(t) the joint velocity vector. If q(t) follows a trajectory
from an initial configuration (i.e. in joint space) to a desired final configu-
ration within time interval [£»,£/], then the joint variables at time instant
tf will be

q{tf) = q{U) + f ' q(t)dt. (3.40)
Ju

If we perform the integration in a discrete time domain with the sam-
pling step of At, Eq. 3.40 can numerically be computed as follows:

J V - 1

q(tf) = q{U) + J2 4(U + * • At) • At (3.41)
fe=0

with N = tf^i • If we denote tk = U + k» At, Eq. 3.41 can also be written
in the following recursive form:

q{tk+l) = q{tk) + q{tk) • At, Mk £ [0, N - 1]. (3.42)

In the next section, we will discuss in detail the numerical solution for
the computation of inverse kinematics.

3.3.3.2 Determination of Joint Velocities

The dynamics of task execution is more appropriately illustrated by the
behavior of a trajectory following, as shown in Fig. 3.22. In general, all
motions intrinsically involve velocity. For a given task, the desired motion
for the fulfillment of the task is normally described in the form of a trajec-
tory which is a spatial curve with a time constraint. Thus, it is crucial to
know how to determine the joint variables' velocities q if the end-effector

Mechanical System of Robots 93

frame's velocity vector P is given as input (NOTE: P is a vector which de-
notes the posture or configuration of a frame). We will study how to plan
the corresponding trajectory or spatial path for a given task in Chapter 9.

e ^
Fig. 3.22 Trajectory following by the end-effector's frame in task space.

A given task's planned spatial curve describes both the position and
orientation of the tool's frame denoted by frame e, as shown in Fig. 3.22.
Let us assume that frame n has already been taken into account the offset
between the frame of the last link in a simple open kinematic-chain and the
frame assigned to a tool. In this way, the end-effector's frame is considered
to coincide with the tool's frame. Thus, robotic task execution is accom-
plished by the end-effector's frame which follows the planned trajectory
represented by the time evolution of frame e.

Recall Eq. 3.36. The relationship between joint velocity vector q and
velocity vector P of the end-effector's frame is as follows:

P = J(q) • q (3.43)

with

P=C°:). (3.44)

94 The Fundamentals of Robotics: Linking Perception to Action

If P is a TO x 1 vector in a three-dimensional Cartesian space, the maxi-
mum dimension of P will be six (i.e. TO = 6). The first three elements of P
are the end-effector frame's linear velocity vector. The last three elements
of P are the end-effector frame's angular velocity vector. If a simple open
kinematic-chain has n+1 links (inclusive of the base link), the dimension
of the Jacobian matrix J will be TO x n.

From Eq. 3.43, it is easy to see that the unknown q is over-constrained
if 77i > n. In this case, there may not be any feasible solution. But there is
one approximate solution exists based on an optimal estimation. In general,
if TO > n, we can derive the solution for joint velocity vector q as follows:

• Step 1: Multiplication of the transpose of J to both sides of Eq. 3.44
yields

Jt*P = (JtJ)»q. (3.45)

• Step 2: By multiplying the inverse of (./*</) to both sides of Eq. 3.45,
we obtain

q = ji»P (3.46)

with

jt = (jtjy1 • j \

Matrix j t is commonly called the pseudo-inverse of the Jacobian matrix
J. It is clear that the pseudo-inverse does not exist if matrix J*J is not of
full rank. In this case, the simple open kinematic-chain is said to be in a
singular posture. Therefore, when determining the joint velocity vector, it
is necessary to pay attention to whether or not the simple open kinematic-
chain is in a singular posture.

Refer to Eq. 3.43 again. Joint velocity vector q is under-constrained
if TO < n. In other words, the simple open kinematic-chain has more de-
grees of freedom than necessary to configure the end-effector's frame to a
desired posture. In this situation, the simple open kinematic-chain is said
to be kinematically redundant. From a mathematical point of view, there
is no unique solution for q if there is a kinematic redundancy (i.e. m < n).
In fact, the number of feasible solutions is infinite. This is a very advan-
tageous situation in robotics because the redundancy allows us to impose
constraints. In this way, optical solutions can be obtained by optimization.

For a given posture of the end-effector's frame, it is useful to find a
solution among the infinite number of possible solutions that requires the

Mechanical System of Robots 95

least amount of energy. The minimum-energy solution is the one which
guarantees the shortest path in joint space. In other words, it is the solution
which minimizes the following cost function:

f(q) = \tf»4)- (3.47)

The minimum-energy solution for q can be derived by using Lagrangian
multipliers as follows:

• Step 1: Considering the primary constraint expressed by Eq. 3.43, a new
cost function using Lagrangian Multipliers is constructed as follows:

/(<?, A) = ~ (q* . q) + A* • (P - J . q) (3.48)

where A is an m x 1 vector whose elements are called Lagrangian Mul-
tipliers.

• Step 2: The solution for q that we are interested in must satisfy the
following necessary conditions:

dq - u

(3.49)

• Step 3: Substituting Eq. 3.48 into Eq. 3.49 yields

{r / ; . \ A : 0 ° <»•»)
• Step 4: From the first equation in Eq. 3.50, we have

q = Jt»X. (3.51)

Substituting it into the second equation in Eq. 3.50 yields

P=(JmJt)mX

or

A= {J*Jt)-1*P.

• Step 5: Finally, substituting A into Eq. 3.51 provides the solution for q
as follows:

q = J^P (3.52)

96 The Fundamentals of Robotics: Linking Perception to Action

with

Jt = J * . (J . J*)-l

where Jt is also called the pseudo-inverse of J.

Another useful constraint in robotics is called the internal-motion of a
kinematically-redundant open kinematic-chain. The physical meaning of
internal motion can mathematically be described as the difference between
any two feasible solutions of q for a given input of P. If we denote q1 as
feasible solution 1 and q2 as feasible solution 2, the corresponding internal
motion vector will be

? = ?-?•

If qn is the minimum-energy solution of q, the sum of

«n+<r
is also a feasible solution of q which satisfies Eq. 3.43.

Since there are an infinite number of feasible solutions to q for a re-
dundant open kinematic-chain, we have full freedom to impose an internal
motion. However, it has to be clear that not any given velocity vector of
q can be treated as an internal motion vector. Fortunately, there is an
analytical method for us to map any given velocity vector of q to its corre-
sponding internal motion vector. This powerful method can be described
as follows:

For any given velocity vector qa in joint (velocity) space, it is obvious
that the sum of qn + qa is generally not a solution for q satisfying Eq. 3.43.
What we can hope to obtain is a feasible solution which is as close to qa as
possible. This requirement can easily be translated into a cost function as
follows:

f{q) = \{{i-qa)t*(q-qa)}- (3-53)

By applying Lagrangian multipliers, the solution satisfying Eq. 3.43 and
Eq. 3.53 can be derived as follows:

• Step 1: Considering the primary constraint expressed by Eq. 3.43, a new
cost function using Lagrangian Multipliers is constructed as follows:

M A) = \{{q - QaY • (q - qa)} + * • (P - J • q) (3.54)

Mechanical System of Robots 97

where A is an m x 1 vector, the elements of which are called Lagrangian
Multipliers.

• Step 2: The solution for q that we're interested in must satisfy the
following conditions:

(91-0
\ dq ~ U

I (3.55)
9/ - n

• Step 3: Substituting Eq. 3.54 into Eq. 3.55 yields

H-*a- J t 'A = 0 (3.56)
\P-J*q = 0. V '

• Step 4: Prom the first equation in Eq. 3.56, we have

q = qa + Jl • A. (3.57)

Substituting it into the second equation in Eq. 3.56 yields

P = J*qa + {J* J*).A

or

A = (J . Jt)-1»{P- J*qa).

• Step 5: Finally, substituting A into Eq. 3.57 gives the solution for q, as
follows:

q=ji»P+[I-ji»J]»qa (3.58)

with

Jt = J * , (J . J ') " 1

where j t is again the pseudo-inverse of J, and / is an identity matrix.

Now, assume that the end-effector frame stands still. Since P = 0,
Eq. 3.58 becomes

q=[I- J t , J]mqa. (3.59)

Eq. 3.59 physically means that the mapping of any given velocity vector
in joint (velocity) space into its corresponding internal motion vector will

98 The Fundamentals of Robotics: Linking Perception to Action

not cause any change to the end-effector's frame (i.e. J • q = 0). If we
denote ql the internal motion vector corresponding to qa, we have

qi = [I - J t . J] . q°-_ (3.60)

For a posture of a simple open kinematic chain:

/ Joint Space \ J ^ ^ f Task Space \

Fig. 3.23 Mapping from joint space to task space using the Jacobian J.

As illustrated in Fig. 3.23, all feasible velocity vectors P obtained from
q by Eq. 3.43 are called the range of J, and denoted by R(J). The range of
J is the reachable subspace of task (velocity) space from the mapping using
Jacobian Matrix J. On the other hand, all the internal motion vectors in
joint (velocity) space form a subspace which is called the Null space of J.
It is denoted by N(J). In terms of the null space of J, Eq. 3.60 means
the mapping from any given velocity vector qa into the null space. And,
Jacobian Matrix J maps the null space into the zero-velocity vector in task
(velocity) space.

How to advantageously explore kinematic redundancy depends on the
applications. The general guideline for choosing an internal motion con-
straint is simple. One common method is to align the internal motion
vector in the direction that makes a simple open kinematic-chain either
approach or move away from a particular configuration, such as: collision
with obstacles, singularities, or joint limits. If we construct an objective
function g(q) which measures the extent to which a simple open kinematic-
chain is reaching a particular configuration, the internal motion vector can

Mechanical System of Robots 99

be chosen as

dq

where c is a coefficient which determines the magnitude of the internal mo-
tion vector. If we choose the "+" sign in the above equation, this means that
the simple open kinematic-chain should approach a desired configuration;
Otherwise, it means it should move away from a particular configuration.

Example 3.19 Fig. 3.24 shows the results of internal motions applied to
a simple open kinematic-chain with 20 degrees of freedom. Notice the end-
effector frame stands still after successive applications of internal motions
on one, two, and four joint variables.

(a) (b)

(c) (d)

Fig. 3.24 Illustration of the effects of internal motion on a simple open kinematic-chain
with 20 degrees of freedom: a) the initial posture, b) effect due to the internal motion
of one joint variable, c) effect due to the internal motion of two joint variables, and d)
effect due to the internal motion of four joint variables.

•••••••ooooooooooo

100 The Fundamentals of Robotics: Linking Perception to Action

In summary, the joint velocity vector can be computed analytically from
Eq. 3.46 or Eq. 3.52 for any given velocity vector of the end-effector's frame.
These solutions are crucial for velocity control in joint space. These solu-
tions also serve as the computational basis for determining the joint dis-
placements if the end-effector frame's posture or configuration is given as
input.

3.3.3.3 Numerical Solution for Joint Displacements

Refer to Fig. 3.22. Assume that the initial posture or configuration of the
end-effector's frame is at time instant £$, denoted by °Mn(ti). In order
to determine joint displacements, the input will be the final posture or
configuration of the end-effector's frame at time instant tf, which is denoted
by °Mn(tf). What we want to compute are the joint angles at time instant
tf (i.e. q(tf)).

The basic idea underlying the numerical solution for determining q(tf) is
to compute the series of incremental joint displacements q(tk) (see Eq. 3.42).
These displacements correspond to a series of incremental motion transfor-
mations eMe(tk,tk+i) of the end-effector's frame within a series of equal
time intervals [tk,tk+i\. The origin of the end-effector's frame will travel
along a spatial curve which connects the initial posture to the final posture.

Refer to Fig. 3.22 again. eMe(tk,tk+i) indicates the posture or config-
uration of the end-effector's frame at t^+i with respect to itself at tk. The
symbol "e" highlights the fact that the incremental motion transformations
are obtained from any chosen spatial curve regardless of the geometrical
property of the simple open kinematic-chain under consideration. If we
know a desired series of incremental motion transformations along a chosen
spatial curve, the desired final posture of the end-effector's frame will be

J V - l

°Me(tf)= 0Me(ti).{l[leMe(tk,tk+1)}} (3.61)
fc=0

with

eMe(tk,tk+1) = {°Me(tk)}-1 • {°Me(tk+1)} (3.62)

and

At '

(NOTE: At is the sampling step in time. In practice, we can choose (U,tf)

Mechanical System of Robots 101

to be (0,1). Then At is automatically computed once we decide the number
N of iterations).

In a recursive form, Eq. 3.61 can equivalently be rewritten as follows:

°Me(tk+1) = {°Me(tk)}*{eMe(tk},tk+1), Vfce[0,JV-l]. (3.63)

In fact, Eq. 3.63 is a discrete representation of a given spatial curve
because one can choose eMe(tk, tfc+i) to be a constant matrix if the spatial
curve is linearly interpolated with a series of piecewise segments.

Now, let Pe{tk) be the velocity vector of the end-effector's frame which
executes the incremental motion transformation eMe(tk,tk+x) within time
interval [tk,tk+i]. Substituting Eq. 3.58 into Eq. 3.42 yields

q(tk+l)=q(tk) + {ji.Pe(tk) + [I-J1»J]*qa}^t, Vfc e [O.JV-1]. (3.64)

If eMe(tk,tk+i) is expressed as follows:

and we denote (A9, efe) the equivalent rotation angle and equivalent ro-
tation axis of eRe(tk,tk-\-i), the velocity vector Pe{tk) of the end-effector's
frame at tk will be

Pe(tk) = (°o0n) (3-66)

with

(°dn = ±* {°Rn(tk)} • {eTe(tk,tk+1)}

\ V = If . {°Rn(tk)} . {«fe}

where °Rn(tk) is the rotation matrix which represents the orientation of
the end-effector's frame at tk with respect to frame 0 (base frame).

Eq. 3.64 is the recursive algorithm for the computation of the joint
variables if the end-effector frame's final posture is given as input. The
accuracy of the computation depends on the scale of the time interval At.
In order to avoid an accumulation of numerical errors, a good strategy is to
replace °Me(tk) in Eq. 3.62 with the computed °Mn(tk) from the solution
of forward kinematics. That is,

°Mn(ifc)= °Mn(q(tk)) (3.67)

(3.65)

102 The Fundamentals of Robotics: Linking Perception to Action

where q(tk) is the actually computed joint angle vector from Eq. 3.64. This
leads to the use of

eMe(tk,tk+1) = fM^fc)}"1 •{°Me(tk+1)} (3.68)

to replace Eq. 3.65 for the computation of Pe(tk).

Example 3.20 Fig. 3.25 is an example of the use of a numerical solution
to solve inverse kinematics. The arm manipulator has 12 degrees of freedom.
At time U, the robot is at its initial posture and the end-effector frame's
final posture at time tf is given as input. When applying the numerical
solution to iteratively solve the inverse kinematics, the end-effector's frame
reaches its desired final posture after 50 iterations (i.e. N = 50).

(a) Initial posture (b) Final posture

Fig. 3.25 Example of the use of a numerical solution to solve inverse kinematics: a)
robot at its initial posture and b) the final posture reached upon application of the
numerical solution.

<X>0<X>0<X>000<X>00<X>0

3.3.3.4 Effect of Singularity

The determination of joint velocities and the numerical solution for esti-
mating joint displacements all depend on the computation of the inverse of
(J • J1). When one or more eigenvalues of (J • J*) approach zero, there is
no inverse in the strict mathematical sense. In fact, when one eigenvalue
is zero, it also means that (J • J*) loses one rank. When (J • J*) loses one
rank, the physical meaning is that the end-effector's frame of a simple open
kinematic-chain loses one degree of freedom or one mobility. When there is

Mechanical System of Robots 103

a loss of any mobility or degree of freedom, the simple open kinematic-chain
is said to be in a singular posture. Therefore, it is important to know the
effect of singularity on inverse kinematics.

Example 3.21 Fig. 3.26 shows a simulation of a humanoid robot in
a standing position. In this position, it is clear that the end-effector's
frame does not have any degree of freedom or mobility in the Y direction
(i.e. vertical axis). Normally, a frame in a 2-D plane has three degrees of
freedom: two for translation and one for rotation. The rank of (J • J*) is 3
if the simple open kinematic-chain is not in a singular posture. As for the
initial posture at tit as shown in Fig. 3.26, the rank of (J»Jl) is 2. Now, we
choose three different final postures for the end-effector's frame to reach:

• It is easy for the robot to quit the singular posture when approaching
final posture 1 because it does not require too much effort of movement
in the vertical direction. The end-effector's frame can closely follow the
chosen spatial path which connects the initial posture to final posture 1.

• It is a bit difficult for the robot to quit the singular posture when
approaching final posture 2 because more effort is needed to move in
the vertical direction. As a result, the singularity causes error to the
end-effector frame's posture.

• It is even more difficult for the robot to quit the singular posture when
approaching final posture 3 because a larger amount of motion in the
vertical direction is required. As a result, the end-effector frame's pos-
ture is subject to a large amount of error due to the same singularity.

oooooooooooooooooo
Example 3.22 Due to disturbance, numerical error and singularity, it is
necessary to compensate for the accumulated error in the numerical solu-
tion with the help of Eq. 3.68. Fig. 3.27 shows the benefit of using error
compensation in the numerical solution for joint displacements. We can
see that the end-effector's frame reaches precisely the desired final posture,
despite the length of the path and the singularity of the initial posture of
the simple open kinematic-chain.

If we imagine that the desired path is a real trajectory, this example is
equivalent to the case when the end-effector's frame follows a pre-defined
trajectory. The robot has been shifted away from its initial posture in order
to have a better view of the first three iterations. We can see that the end-
effector's frame deviates a lot from the desired trajectory at iterations 2

104 The Fundamentals of Robotics: Linking Perception to Action

d Id
2D Humanoid Robot in Posture of Standing

an :::::" X^^B^fr 111 z:::: z ' l i i i i : z'' z 0
yu -H^^^^ffl^ ---- —

d so - — - - flBHHB-p — - — ---- j
111111 fll̂ ^B|§tt I I I I I I I I I I I I I iiiiiiiiziiiiii- Ĵ

beta(Arm) . 70 : : : : : : | | M ^ : : : : : : : : = = = = = = = : ; ; ; - - = - - - - - - - - - - = = = = Ujpho(Leq)

*l ^ Bl^BSlE — ~-ll "-** z~~ii0'~ ~~: — z *|

i3amma (Arm) 40 : : : : : : J F j I J i i S ! { f ! i : _j |Beta(Leg).._

j ^~^ ------4j|H|Hr ------- --
—1 Initial posture _Li|||UHUI = n 3 t l r J 3 ^ I I LH

11111 iî ^̂ BitJ+P iiiiiiiiiiiiii-iiiiiiiiiiziiiiii
21 Q 11111i^^^Bfii-iiiiiiini IIIIIII::::IIIII

_ ! ^.(-20 0 20 40 60 80

ll Home | Exit |

Fig. 3.26 Effect of singularity on the numerical solution of inverse kinematics without
error compensation: "+" indicates the desired path of the end-effector's frame, and "o"
indicates the actually computed path of the end-effector's frame.

and 3. This implies that the combined effect of error compensation and
singularity will be disastrous for the scenario of the trajectory following.

Based on the above two examples, we can make the following two state-
ments:

• Error due to singularity can effectively be compensated by Eq. 3.68 in
the numerical solution for computing joint displacements.

• Error compensation should be turned off when a simple open kinematic-
chain is approaching singularity.

3.3.4 Discrete Kinematic Mapping

From the above discussions, we can highlight the following points regarding
the conventional solutions of inverse kinematics:

Mechanical System of Robots 105

d d
2D Humanoid Robot in Posture of Standing

_ , A lpha (Arm) 1 0 0 | I I I I 11 I 11 I I I I I I I I I 11 I I I I I I I I I I " J JAIpha(Boefy)

'«n __ 9 0 ; ; i : : : : : i ; : ; ; : : : : : : : : : ; ; ; : ; : : : : : : : : ; ; : ; : : : :::;;; io
Zl i:::: : : ! : : : : : : : : : : : : : : : : : : :::::: Ll

d 80:::MHHMMMWM^ijpiHHEH! ::: *

Gamma (Arm) 40 _,- ^ - p a i TTTT B H l B B P n " T T : : : : : [Beta (Leg)

g1 ? 2 1 6 -20 0 20 40 60 80

.4 i Home [Exit |

Fig. 3.27 The effect of singularity on error compensation used in the numerical solution
of inverse kinematics: "+" indicates the desired path of the end-effector's frame, and
"o" indicates the computed path of the end-effector's frame. The robot has been shifted
away from its initial posture in order to give a better view of the first three iterations.

(1) In general, it is difficult to obtain a closed form solution for inverse
kinematics.

(2) In general, mapping from task space to joint space is a one-to-many
mapping. In practice, it is advantageous to explore this kind of kine-
matic redundancy.

(3) The range of joint variable qi is specified by the joint limits, denoted
by {qi,min, <li,max)- The solutions of inverse kinematics usually do not
explicitly take into account the limits of the joint variables. In practice,
one must pay attention to the joint limits when programming a real or
virtual robot.

(4) If we apply the solution for joint velocities to obtain a general numerical
solution for recursively computing joint variables, it is necessary to be
careful about singularity due to the inverse of (J • J1).

(5) The numerical solution for computing joint displacements will not work
properly if the initial configuration of the simple open kinematic-chain

106 The Fundamentals of Robotics: Linking Perception to Action

is in singularity (i.e. the rank of (J'J1) at U is less than the admissible
number of degrees of freedom at the end-effector's frame).

(6) The numerical solution is computationally expensive as N is usually
not a small number.

Clearly, there is room to improve the efficiency of the inverse-kinematic
solutions. One interesting idea is to employ discrete kinematic-mapping.

3.3.4.1 Discrete Forward Kinematic-Mapping

For a simple open kinematic-chain with n + 1 links (inclusive of the base
link), the corresponding joint space can be divided into a set of regular
partitions which form a discrete joint space. If the range of joint variable qi
is {qi,min, qi,max), the discrete representation of this variable in joint space
will be

qt{kl) = qi,min + ki*Aqi, A* e [0, ty - 1] (3.69)

with

~j Qi,max Qi,min

Aft

We denote K = (ki, &2,..., kn) the index vector. When we have an
index vector K, the corresponding posture of the end-effector's frame can
be pre-calculated using the solution of forward kinematics (see Eq. 3.17),
and stored if needed. All the pre-stored postures of the end-effector's frame
can be arranged in the form of a reference table which is indexed by index
vector K. This table describes discrete mapping from joint space to task
space.

Since the granularity, in terms of {Aqi, i = 1,2, ...,n}, of the subdivi-
sion of joint space can incrementally be adjusted and fine-tuned during the
developmental process of a robot, the idea of discrete kinematic-mapping
naturally serves as a sound basis for the study of a developmental princi-
ple for a robot to acquire motion skills and kinematic modelling through
experience, learning and real-time interaction with its environment.

The study of a developmental principle in robotics is emerging as a new
research topic which directs the way towards the realization of an intelligent
and autonomous robot, such as a humanoid robot. Most importantly, this
principle appears to be an interesting approach to the study of a time-
varying robot mechanism, the kinematic modelling of which is not available
in advance.

Mechanical System of Robots 107

3.3.4.2 Discrete Inverse Kinematic-Mapping

Similarly, we can divide task space into a set of regular partitions which are
commonly called voxels in computer graphics. If the end-effector's effective
workspace is within the volume of

{{-X-mim -X-rnax)) {'mini *max)i \^mim ^rnax)j

task space, in the form of voxels, can be represented by

• X{ix) = Xmm + ix»AX, ixe[0,Nx-l]

< Y(iy) = Ymin + iy • Ay, iy e [0, Ny - 1] (3.70)

. Z{iz) = Zmin + iz • AZ, iz e [0, Nx - 1]

with

• 1\J — Xmax-Xmin
JVa: "" AX

Kf — Ymax-Ymin

Iyy ~ AY

M _ Zmax-Zmm

I 1Sz - AZ

Again, the granularity, in terms of (AX,AY,AZ), of the subdivision
of task space can also be incrementally adjusted and fine-tuned during the
developmental process of robot.

Let / = {ix,iy,iz) be the index vector. Given an index vector / , the
corresponding joint variable vector q can be pre-calculated by a conven-
tional inverse-kinematics solution. For example, one can use the numerical
solution. All the pre-calculated joint variables can be arranged in a refer-
ence table indexed by index vector / . Clearly, this table describes discrete
mapping from task space to joint space.

Example 3.23 Fig. 3.28 shows the process of constructing discrete in-
verse kinematic-mapping by using the numerical solution. The discrete
locations in task space, having the corresponding set of joint angles, are
marked by the diamond symbol. In this example, we have set: Ax = 10cm
and Ay = 10cm.

••oooooooooooooooo

108 The Fundamentals of Robotics: Linking Perception to Action

J id
2D Humanoid Robot in Posture of Standing a{

WphafArm) 100| 11 [j j M M I I I I I 11 I I I I I I I I I I I 11 I I I I ITJj I 11 I I I I I I I 111 t*fata®«*d _

Ge-nrrifl(Arm) 40 - - - - - - - - = p S | j ^ S i : : : : : : : - _ : : : ^ _ : : : ^ : : : : : : : : : : : : : : iBetadea)

- J bg ""-20 0 20 40 60 80

J Home ' I Exit |

Fig. 3.28 Construction of the discrete inverse kinematic-mapping by using the numerical
solution. The diamond symbol indicates the discrete locations in task space.

In the spirit of the developmental principle, if the precise kinematic
modelling of a robot is not available, the discrete inverse kinematic-mapping
can be established through a learning process based on real-time interaction
between the robot and its environment,

3.3.4.3 Bidirectional Discrete Kinematic-Mapping

If there is no concern about the size of memory, it is theoretically possible
to pre-calculate the mapping between index vectors I and K from the
forward kinematic solution in Eq. 3.17. The results are not exact, but at
a certain level of accuracy, depending on the levels of granularity. This
mapping can be pre-stored into a database. If there is any change in the
level of granularity of discrete task space or joint space, it is sufficient to
recalculate the mapping and update the database.

With the mapping between index vectors / and if at a certain level of
granularity, inverse kinematics solutions are known in advance and a basic
computer can effortlessly retrieve a solution from the database. This is

Mechanical System of Robots 109

similar to the effortless way that human beings solve inverse kinematics.
In addition, discrete kinematic-mapping automatically eliminates concern
about joint limit and singularity because all these have been implicitly taken
into account by the computation.

3.3.4.4 Application of Discrete Kinematic-Mapping

The numerical solution for determining joint displacements is very powerful
but computationally demanding. In addition, it is necessary to pay atten-
tion to the effect of singularity. Therefore, it is useful to attempt to further
improve the performance of the numerical solution.

In fact, the performance of the numerical solution can greatly be en-
hanced with the inclusion of discrete inverse kinematic-mapping. The idea
is very simple. Instead of using a numerical solution to interpolate a cho-
sen spatial curve which connects the end-effector frame's initial posture
°Mn(ti) to its final posture °Mn(tf), we apply discrete inverse kinematic-
mapping first to instantly obtain the joint angles which bring the end-
effector's frame to an intermediate posture °Mn(tj), which is close to the
final posture °Mn(tf). The difference depends on the granularity of discrete
task space. Subsequently, we apply the numerical solution to compute the
joint displacements which bring the end-effector's frame from the interme-
diate posture °Mn(tj) to the final posture °Mn(tf).

Example 3.24 Fig. 3.29 shows an example of the use of the numerical so-
lution to determine joint displacements without any performance enhance-
ment. The initial posture of the end-effector's frame is singular. Its final
posture is at (46cm, 54cm). After 26 iterations, the end-effector's frame
reaches its final posture.

oooooooooooooooooo
Example 3.25 For the same example as shown in Fig. 3.29, we now
explore the knowledge of discrete inverse kinematic-mapping. Instead of
starting from the singular initial posture, the end-effector's frame is in-
stantly moved over to an intermediate posture at (50cm, 60cm), as shown in
Fig. 3.30. From this intermediate posture, the end-effector's frame reaches
its final posture within 5 iterations. In other words, the computational load
with performance enhancement is three times less than the computational
load required by the numerical method alone.

oooooooooooooooooo

110 The Fundamentals of Robotics: Linking Perception to Action

2D Humanoid Robot in Posture of Standing «J

- 1 |Alpha(Armj . 1°°| I I I I 1111 I I MUM I 11111 ITTTTTTTTTTTTI I I I I I I I I 11 i m ^halBocM

SetaJAim) ._ 7 0 : : : : : : : : | B H B | j ^ ^ ^ f f l : Alpha (Leg)

Gamma (Arm) 40 : : : : : : : : : : : ^ ^ ^ ^ K : iBetaiteq)

_ l ;54 ~ -20 0 20 40 60 80

J Home ; Exit |

Fig. 3.29 Numerical solution for determining joint displacements without any enhance-
ment.

3.4 Summary

A robot is able to perform motions because of its underlying mechanism. In
this chapter, we started with the study of a robot's mechanism. We learned
the concepts of link, joint, and open kinematic-chain. In order to facilitate
the kinematic analysis of a humanoid robot, we discussed the concept of
simple open kinematics-chain.

Subsequently, we studied a systematic way of representing a mechanism
with a set of kinematic parameters, known as the DH representation. These
parameters are sufficient to describe the relationship between the input and
output motions governing the behavior of a robot's mechanism. For the
sake of clarity, we discussed a new illustration of the DH representation.
It makes use of two parallel planes to clearly explain the four kinematic
parameters which uniquely describe the motion transformation between
two consecutive links' frames.

Then, after the study of the kinematics of a single link, we covered in
greater detail, the kinematic formulation of a simple open kinematic-chain.

Mechanical System of Robots 111

2D Humanoid Robot in Posture of Standing j

• J N p h n | A r m) 1 0 0 n T m T T T | I I L L U J l I I I I I I I I I I 11 I I I 111 I I I I I I I I 1 1 I I I I I |A Ipho (Body)

I2Z2.TO81 90::::::::±:^^S:::::::;::::::::::::::::::::::; IH56B6

Na(Arm) .. 70 : : : : : : : : : ^ ^ B ^ ^ f f i j ; : : : ^ : : : : : : : : : : : : : : |Alphs (Ug}_. _

^amma(ArmL.. 4° : : : : : : : : i J h M i J : : : " - - - : : ^ : : : <_:: : : : : : : : : : : : : |Beta(Leg)_

—I t i -20 0 20 40 60 80

J , Home ; Exit j

Fig. 3.30 Numerical solution for determining joint displacement with performance en-
hancement by discrete inverse kinematic-mapping.

We learned that there are two related problems under the topic of robot
kinematics: a) forward kinematics and b) inverse kinematics.

We know that the objective of forward kinematics is to determine the
output motion (in task space) of a robot's mechanism from the knowledge
of its input motion (in joint space). As input to a robot system is a task,
the most critical issue is how to determine the robot mechanism's input
motions in joint space if the desired motion in task space is given. This
is known as the inverse-kinematics problem. Subsequently, we studied dif-
ferent methods for solving inverse kinematics including discrete kinematic
mapping. This method effectively complements the conventional numerical
inverse-kinematics solution.

Now that we know the relationship between the input and output mo-
tions of a robot's mechanism, the next questions are: How do we physically
produce the input motions to a robot's mechanism? And, how do we relate
the input motions to the forces and torques applied to the joints? We will
study the answers to these questions in the next chapter.

112 The Fundamentals of Robotics: Linking Perception to Action

3.5 Exercises

(1) What is the purpose of studying a robot's mechanism?
(2) What is a simple open kinematic-chain?
(3) Illustrate the possible number of simple open kinematic-chains inside a

humanoid robot's mechanism.
(4) What is the acceleration vector of a single link?
(5) Under what situation will Jacobian Matrix J(q) be independent of joint

variables ql
(6) Find the Jacobian matrix for the simple open kinematic-chain shown

in Fig. 3.10.
(7) Comment on the applicability of the following algorithm to compute

the joint angles of the planar open kinematic-chain shown in Fig. 3.9:

• Step 1: Multiply 1M0{qi) to both sides of Eq. 3.38 to obtain:

lM0{qi) . {°Mn} = fMM} • ... • {"^Mnte,,)}-

• Step 2: The above equation describes 12 equalities between the
corresponding elements of the two matrices of both sides. Among
them, choose the simple one(s) to solve for q\.

• Step 3: Multiply 2Mi(<?2) to both sides of the above equation to
obtain:

2Mi(g2) . ^Motei)} • {°Mn} = {2M3(q3)} {n-lMn{qn)}

and solve for q^-
• Step 4: Repeat until qn is solved.

(8) Verify the results of the inverse-kinematic solution applied to the right
arm and right leg, as shown in Fig. 3.21.

(9) Explain why an arbitrary velocity vector, in joint space, cannot be
treated as an internal-motion vector to a kinematically-redundant open
kinematic-chain, the end-effector of which stands still in task space.

(10) How do you determine internal-motion vector qa for a kinematically-
redundant open kinematic-chain which is required to avoid the joint
limits?

(11) How do you determine internal-motion vector qa for a kinematically-
redundant open kinematic-chain which is required to avoid the singu-
larity caused by the inverse of (J • J*)?

(12) Look at Fig. 3.27. Discuss the reason for the large deviation of the
end-effector's frame at iteration 2 from its desired trajectory.

Mechanical System of Robots 113

3.6 Bibliography

(1) Asada, H. and J. J. E. Slotline (1986). Robot Analysis and Control,
John Wiley and Sons.

(2) Denavit, J. and R. S. Hartenberg (1955). A Kinematic Notation for
Lower-Pair Mechanisms Based on Matrices, Journal of Applied Me-
chanics, 22, 215.

(3) Liegeois, A. (1977). Automatic supervisory control of the configura-
tion and behavior of multi-body mechanisms, IEEE Transaction on
Systems, Man and Cybernetics, 7, 12.

(4) McKerrow, P. J. (1991). Introduction to Robotics, Addison-Wesley.
(5) Murray, R. M., Z. X. Li and S. S. Sastry (1994). A Mathematical

Introduction to Robotic Manipulator, CRC Press.
(6) Norton, R. L. (1999). Design of Machinery, McGraw-Hill.
(7) Schilling, R. J. (1990). Fundamentals of Robotics: Analysis and Con-

trol, Prentice-Hall.
(8) Whitney, D. E. (1969). Resolved Motion Rate Control of Manipulators

and Human Prostheses, IEEE Transaction on Man-Machine Systems,
10, 2.

(9) (2002). Proceedings of the IEEE Second International Conference on
Development and Learning, MIT, June 12 - 15.

Chapter 4

Electromechanical System of Robots

4.1 Introduction

The pure mechanical aspect of a robot is its underlying mechanism and
structure. The study of the relationship between the input and output
motions of a robot's mechanism is fully covered by kinematic analysis. Prom
a systems point of view, it is logical to study the robot mechanism together
with its kinematic analysis.

On the other hand, a robot is a machine which executes motion, as the
result of energy consumption. Thus, it is indispensable to study the rela-
tionship between motion and the force/torque applied to a robot's mecha-
nism. Naturally, it is also logical to study the actuation elements together
with a robot's dynamic and static analysis.

In this chapter, we consider the case in which a robot's mechanical
energy is obtained from electrical energy, because of the use of electric
actuators. Accordingly, we will first study the concept of energy and the
fundamentals underlying energy conversion from the electrical domain to
the mechanical domain (i.e. electric actuators). Then, we will present, in
detail, the mathematical principles for the establishment of equations of
motion. A discussion about robot statics will come first before we move on
to studying robot dynamics.

4.2 Origin of a Rigid Body's Motion

We all know that energy cannot be created nor destroyed. It can only be
transformed from one form into another. For example, the internal com-
bustion engine converts chemical energy into mechanical energy, in order
to drive a car, while a portion of the chemical energy is wasted in the form

115

116 The Fundamentals of Robotics: Linking Perception to Action

of thermal energy. Another example is the rechargeable battery, which
converts energy from the electrical domain to the electrochemical domain
and vice-versa. In fact, any substance is an embodiment of energy. This is
concisely described by the Einstein's famous equation E = me2.

Fig. 4.1 A prototype of a human-like robot (HARO).

Now, the question is whether a robot's mechanism can move on its own
without any extra element added to it. Obviously, the answer is negative.
Fig. 4.1 shows a prototype of a human-like robot (called HARO-1). We
can see that there are many components and devices in addition to the
robot mechanism. Clearly, a robot's mechanism must be complemented
with the extra actuation elements. In order to better understand this issue
in robotics, it is important to study the origin of a rigid body's motion.

4.2.1 Energy Conservation in a System

Energy cannot be created nor destroyed. It can only be converted from
one domain into another. This principle of energy conservation is also
applicable to a system. As any substance is an embodiment of energy, a
system can be treated as an energy storage device. Thus, at a time instant, a
system has its own energy state, which corresponds to the amount of energy
contained in the system. For convenience, we call the energy stored inside
a system the internal energy. Then, the principle of energy conservation
can be stated as: The change of internal energy (denoted by A£jrej) inside

Electromechanical System of Robots 117

a system is equal to the sum of the energy added to the system (denoted
by Ein), the energy removed from the system (denoted by Eout) and the
energy dissipated from the system (denoted by Edis). In other words, the
following equality holds:

^Eint = Ein — Eout — Edis- (4-1)

4.2.2 Forces

In robotics, an important concern is mechanical energy, and how to relate
mechanical energy to motions. Mechanical energy is normally manifested
in the form of force or torque. The nature of force is well described by
Newton's second law. Before we briefly introduce this law, it is useful to
examine the particle and its linear momentum. Formally, a particle can be
denned as follows:

Definition 4.1 A particle is a body without a physical dimension. The
entire mass of the body is concentrated at a single point.

If we denote m the mass of a particle and v(t) its linear velocity vector
with respect to a reference frame, then the linear momentum of the particle
is defined as follows:

Definition 4.2 The linear momentum of a particle is the product of its
mass and its linear velocity, that is,

p(t)=m»v(t). (4.2)

In fact, the linear momentum p(t) of a particle characterizes the ability
of the particle to maintain its body at a constant linear velocity. And,
the mass of a particle describes the resistance to the change in its linear
velocity. In other words, the mass measures the capacity of a body to store
kinetic energy.

Now, Newton's first law simply states that a particle retains its linear
momentum if no (external) forces act on the particle. Alternatively, the
linear momentum p(t) will change if there is an external force acting on
it. The way in which this change is related to the acting forces is precisely
described by Newton's second law. Newton's second law states that the rate
of change of a particle's linear momentum is equal to the sum of all the
(external) forces acting on it. If we denote fi(t) the individual force i acting
on a particle and assume that there are n external forces (see Fig. 4.2), then

118 The Fundamentals of Robotics: Linking Perception to Action

we have

F{t) = ±Mt)=*&. (4.3)

/ . . F

-I
J n

Fig. 4.2 External forces acting on a particle and the total sum of forces.

If a particle conserves its mass (i.e. m is a constant), substituting Eq. 4.2
into Eq. 4.3 yields

where a(t) = -^-^ is the acceleration vector of a particle.
As a rigid body (i.e. a body without any internal deformation) can be

mathematically treated as a particle, Eq. 4.4 indicates that the motion of
a rigid body originates from the forces acting on it. The formal definition
of force is as follows:

Definition 4.3 A force is the effect of one body acting upon another
body.

In the universe, there are two types of forces: a) contact force and b)
field force. In the mechanical domain, a typical example of contact force is
the elastic force generated by a spring. And a typical example of field force
is gravitational force. When body A exerts a force upon body B, body A
will receive a reaction force from body B. This phenomenon is precisely
described by Newton's third law. This law states that when two particles
mutually exert acting and reacting forces upon each other, these two forces
are equal in magnitude and opposite in direction. If we denote fij the force
exerted by particle i upon particle j , the reaction force exerted by particle

(4.4)

Electromechanical System of Robots 119

j upon particle i will be denoted by fjfi. According to Newton's third law,
we have

fij = ~fi,i- (4-5)

4.2.3 Torques

If a force acts on a particle which is constrained to follow a circular path, as
shown in Fig. 4.3, the energy state of the particle is conveniently described
by angular momentum. Its definition is as follows:

Definition 4.4 The angular momentum of a particle moving along a
circular path is equal to its mass times its angular velocity, that is,

H = m»uj — m •[f x v(t)} = f x [m • v(t)] (4-6)

where r'is the position vector of the particle, v(t) its linear velocity vector,
and w its angular velocity vector.

Y

^ \ > X

F T m «

Fig. 4.3 A particle moving along a circular path.

Now, let us examine the variation of angular momentum. Differentiating
Eq. 4.6 with respect to time gives

l[= ftX[m' V{t)] + "X(jt[m' Vit)]) • ^

120 The Fundamentals of Robotics: Linking Perception to Action

Since the derivative of position vector ^ is in the direction of linear
velocity vector v(t), we have

df
— x[m*v(t)] = 0. (4.8)

Substituting Eq. 4.4 and Eq. 4.8 into Eq. 4.7 yields

~=rxF(t) (4.9)

where F(t) is a force vector expressed with respect to a reference frame.
If we define T = rx F(t), Eq. 4.9 becomes

^L=T = rxF(t). (4.10)
(XV

By definition, vector r is called the moment of force, or torque for short.
In fact, Eq. 4.10 indicates that the angular momentum of a particle will
remain unchanged if there is no external torque acting on particle (i.e.
r = 0). In other words, the rate of change of a particle's angular momentum
is equal to the torque acting on the particle. Physically, quantity r depends
on force F because the torque is equal to, by definition, the cross-product
of a particle's position vector and the force vector acting on it.

We know that any acting force will have a corresponding reacting force.
Similarly, any acting torque exerted by body A upon body B will also
have a corresponding reacting torque exerted by body B on body A. For
simplicity's sake, we use Tij to denote the torque exerted by body i on body
j . For convenience of description, the coupling between an acting force (or
torque) and a reacting force (or torque) leads us to define two new terms,
called a dynamic pair and a dynamic chain.

4.2.4 Dynamic Pairs and Chains

We use the term dynamic pair to define any pair of rigid bodies which exerts
force or torque upon each other. Inside a dynamic pair, the body delivering
the force, or torque, is called the acting body, while the one receiving the
force or torque is logically called the reacting body. In practice, the acting
body of a dynamic pair can exert multiple forces upon the reacting body.
In robotics, we only consider the case where there is just one force or torque
delivered by the acting body. Since a force can be a contact force or a field
force, the dynamic pair's acting body will deliver either a contact force or
a field force on the reacting body, as illustrated in Fig. 4.4.

Electromechanical System of Robots 121

ou o o
Bodyi i Bodyj Body i , Bodyj

'^Tjj ' fj.i

(a) With contact force (a) With field force

Fig. 4.4 Illustration of a dynamic pair: a) the acting body delivering a contact force,
and b) the acting body delivering a field force.

The definition of a dynamic chain is similar to that of a kinematic chain.
A dynamic chain is a set of rigid bodies which are arranged in a series, and
mutually exert forces .or torques on each other within a consecutive pair.
Thus, a formal definition of dynamic chain can be stated as follows:

Definition 4.5 A dynamic chain is a set of rigid bodies arranged in
a series which mutually exert forces, or torques, on each other within a
consecutive pair.

A dynamic chain is said to be open if there is no direct coupling of force
or torque between the first and last bodies in the chain. Otherwise, it is
called a closed dynamic chain.

When dealing with robot dynamics, all forces in a dynamic chain are
expressed by default with respect to the same reference frame (e.g. frame
0 of the base link in an open kinematic-chain). When we are not using the
superscript, that implicitly indicates the reference frame.

Example 4.1 Fig. 4.5 shows an example of an open kinematic-chain with
three links at rest. Due to gravitational force, these three links mutually
exert acting and reacting forces and torques on each other. To study the
effect of the forces and torques, we can break down the open kinematic-
chain into a set of independent rigid bodies (i.e. links), which form an
open dynamic chain as well. The interactions among the rigid bodies are
governed by the acting and reacting forces/torques. In this example, we
have

f /o,i = —fifi
I /i,2 = —/2,i

122 The Fundamentals of Robotics: Linking Perception to Action

and

f ro,i = —71,0
I ^1,2 = —T2,i.

Body 2
A. ,

i a——
Link 2 fj ' I

CT^^-~~^ Bodyl / / J,.2 \ g

Link 1 / / I / / ''

I I | " I Body 0

Base Link

(a) (b)

Fig. 4.5 Example of an open dynamic chain: a) an open kinematic-chain, and b) the
corresponding open dynamic chain formed by the three rigid bodies with mutually acting
and reacting forces/torques.

oooooooooooooooooo

4.2.5 Incremental Works

Motion originates from the force or torque of a body acting on another body.
The rate of change of motion (i.e. linear or angular velocity) is proportional
to the applied force or torque if the masses of the bodies inside a dynamic
pair remain constant. Now, the question is: How is force, or torque, related
to the physical quantity: energy?

Refer to Fig. 4.4. Assume that force fij acts on body j within time
interval [ii,^]; a n d body j undergoes a displacement along a linear or
circular path. If we denote dfj the differential displacement of body j
caused by force faj (or its corresponding torque if the path is circular), by
definition, the differential work done by body i exerting a force (or torque)
on body j will be

dW = fitj • drj (4.11)

Electromechanical System of Robots 123

where dW denotes the differential work done by force fij on body j .
The integration of Eq. 4.11 over time interval [ti, £2] gives the expression

of the incremental work done within the time interval, that is,

AW = (2 dW= (2 fa • dfj. (4.12)
Jti Jti

Since dtj — -^~ • dt and - ^ = Vj(t) (i.e. the linear velocity vector of
body j), Eq. 4.12 can also be written as follows:

AW= [^[f^.vjW.dt. (4.13)
Jtt

By definition, the expression fij • Vj(t) is called power, which charac-
terizes the ability of body i to do work on body j .

4.2.6 Potential Energy

In Eq. 4.12, if force fij only depends on the position vector of body j and
is independent of the time variable, Eq. 4.12 can be reformulated as follows:

AW = -AQ (4.14)

with

AQ = - / fu{rj)*drj. (4.15)
Jfj(.ti)

In physics, work done by a force which only depends on a position vector
is called potential energy. Eq. 4.15 expresses incremental potential energy
done by force fij on body j during time interval [ii,^]-

A typical example of potential energy is the work done by gravitational
force. Assume that body i is the Earth. Then fij is the gravitational force
acting on body j and is a constant force. In this case, Eq. 4.15 becomes

AQ = -Q(t2) + Q(h) (4.16)

with

Q(t) = -fiAri(t))*rj(t). (4.17)

Eq. 4.17 expresses potential energy done by gravitational force fij. The
negative sign inside the expression of potential energy indicates that the
work done by the force is negative. And, energy is removed from body
j if the displacement is in the direction of the force. For example, when

124 The Fundamentals of Robotics: Linking Perception to Action

an apple falls from a tree to the ground due to gravitational force, it loses
potential energy. This lost potential energy is converted into kinetic energy.

4.2.7 Kinetic Energy

Refer to Eq. 4.12. Assume that the mass of body j is rrij and its linear
velocity vector is Vj(t). Force fij acting on body j will cause variation in
the linear momentum. Then, we have

dvAt)

f ^ = m > ' d t - (4 1 8)

Substituting Eq. 4.18 into Eq. 4.12 yields

/"*2

AW = rrij* Vj(t) • dVj (4.19)
Jti

or

AW = ^mj[v](t2) • VJ(t2)} - ^mj[v](ti) • Vj(<!)]. (4.20)

If we define

K(t) = \rnj[vtj(t)*vj(t)], (4.21)

Eq. 4.20 becomes

AW = K(t2) - K(h).

By definition, Eq. 4.21 is an expression of kinetic energy. It describes
the capacity to produce motion. When the displacement vector or motion
of body j is in the direction of force / , j , its kinetic energy increases. For
example, when we accelerate a car, its kinetic energy increases.

4.2.8 Origin of Motions

Now, we are able to precisely answer the question of what the origin of mo-
tion is. In the discussions above, we mentioned that a rigid body's motion
originates from force or its corresponding torque applied to the body. At
this point, it is clear that this answer is not completely correct. A simple
example to prove this point is to look at the case when a person applies
force to a building. Obviously, under normal circumstances, a person push-
ing a building will not cause any displacement. In other words, there will
be no motion even if there is an applied force.

Electromechanical System of Robots 125

From the expression describing work done by an applied force or its
corresponding torque, it becomes clear that the origin of motions is energy
or work added to or removed from a body. In other words, the motion of
any mechanical system is created by the addition or removal of mechanical
energy to or from the system. Since a robot is a mechanical system, one
may ask these questions:

• How do we add energy to or remove it from a robot's mechanism in
order to produce the desired motions?

• How do we describe the relationship between the motions of a robot's
mechanism and the forces/torques applied to it?

4.3 Actuation Elements

The purpose of a robot's mechanism is to shape the output motion, which
is a function of the input motions of the robot's mechanism. In general, a
robot's mechanism may include many kinematic chains.

As the motion originates from the addition or removal of energy, a
robot's mechanism cannot produce any motion on its own. It is necessary
to add extra elements to a robot's mechanism so that the motion can be
generated in a controllable manner.

We know that a robot's mechanism can be treated as a set of kinematic
pairs. Each kinematic pair determines the type of motion (prismatic or
revolute) between its two links. A simple way to create controllable motion
for a kinematic pair is to couple a dynamic pair to it, as the two bodies in
a dynamic pair can exert force or torque upon each other.

This philosophy is concisely illustrated in Fig. 4.6. Conceptually, the
mechanical system of a robot (or any machine) can be formally defined as a
combination of kinematic pairs coupled with their corresponding dynamic
pairs. This definition is helpful for those lacking a mechanical engineering
background. It is also helpful in better understanding the design principle of
the device called actuator or simply force/torque generator. Conceptually,
an actuator or force/torque generator is the realization of a dynamic pair
which consists of two bodies and their acting/reacting forces, or torques.

Example 4.2 For a land vehicle powered by an internal combustion en-
gine, the kinematic pair is formed by the body of the vehicle and the wheels
(treated as part of the ground). The corresponding dynamic pair is formed
by the pistons and the engine block of the internal combustion engine. It

126 The Fundamentals of Robotics: Linking Perception to Action

Force Field

i 'n r* I

Bod> i ; ; Body j
I « J i » I

• ^ - _ - ' f
Dynamic Pair

•\r v

Coupling Coupling

A A

(oV'" 'ink'
Kinematic Pair

Fig. 4.6 The coupling of a dynamic pair with a kinematic pair in a robot's mechanical
system.

goes without saying that a vehicle will stand still if there is no coupling
between the kinematic pair and the dynamic pair.

oooooooooooooooooo

4.3.1 Force and Torque Generators

As mentioned earlier, there are two types of force: a) contact force and b)
field force. In order to power a robot or any machine, a force (or torque)
generator must satisfy the following two conditions:

(1) The generated force or torque must be controllable (i.e. its magnitude
and direction are functions of certain controllable variables).

(2) The generated force or torque must be repeatable (i.e. one can produce
a periodic and/or continuous force or torque as output).

A common method for the realization of a dynamic pair governed by a
contact force or torque is illustrated in Fig. 4.7. As we can see, if pressure p\
in the left chamber is not equal to pressure p2 in the right chamber of body

Electromechanical System of Robots 127

Body i

• • • • • • • • M P 8 * — 1 Bodyj

Pi

Fig. 4.7 A principle for the realization of a dynamic pair governed by a contact force.

i, body i will exert a force on body j through the medium of compressed
gas (e.g. air), or liquid (e.g. oil). The generated force is both controllable
and repeatable because it depends on quantity (pi — P2) • The design of the
pneumatic actuators, as well as hydraulic actuators, follows this layout of
the dynamic pair.

Body i Body i

I) U" ' \~V|
\ - 1 +

m • * I + . '

Bodyj [2J Bodyj (*O

(a) Gravitational force (b) Electrical force

Bodyi (magnet) B °dy ' (magnet)

^ •) (• • ' • '

Bodyj A Bodyj $0P*^
(Material with iion)J|B cT^B

(c) Electromagnetic force (d) Electromagnetic force

Fig. 4.8 Possible principles for the realization of a dynamic pair governed by a field
force.

128 The Fundamentals of Robotics: Linking Perception to Action

As for the realization of a dynamic pair governed by a field force, we
have the following choices to consider (see Fig. 4.8):

Gravitational Field Forces

According to Newton's Law of Gravity, two bodies in space (i and j) will
attract each other. The magnitude of the attraction is proportional to the
product of the two bodies' masses and inversely proportional to the squared
distance between them. When we have two bodies i and j separated by
distance r, if their masses are rrii and rrij respectively, the gravitational
force fij acting on body j by body i will be

hj~G—y2— yA-22>

where G = 6.673 x 10~n m3 / (kg • s2) (m stands for meter, kg for kilogram,
and s for second).

Now, assume that body i is the Earth, rrii will be about 5.976 x 1024 kg.
If we consider the gravitational force field on the surface of the Earth, r
will be about 6.378 x 106 m. The substitution of values of rrii and r into
Eq. 4.22 yields

fij =mJ*g (4.23)

where g = 9.803 m/s2. g can be interpreted as the gravitational force per
unit mass on the surface of the Earth. It characterizes the density of the
gravitational force of the Earth at its surface.

From Eq. 4.23, it is clear that the density of the gravitational force on
the surface of the Earth is almost constant, and not controllable. As a
result, we cannot make use of this type of field force to realize a dynamic
pair. Another way to explain this conclusion is the fact that a gravitational
force is a conservative force. In other words, the conversion between force
and potential energy is reversible. If we treat the pairing of the Earth
and the moon as a dynamic pair, their interaction, or relative motion, is
governed by a gravitational field force.

Electric Field Forces

Similarly, according to Coulomb's law, two electrically charged bodies, i
and j , will exert electric force upon each other. This force is proportional
to their electric charges (measured by C and called Coulomb) and inversely
proportional to the distance between them. At an atomic level, an atom

Electromechanical System of Robots 129

is composed of electron(s), proton(s) and neutron(s). The protons and
neutrons of an atom form the nucleus.

For an electrically neutral atom, the number of electrons is equal to the
number of protons. If some electrons are removed from an atom, the atom
is said to be positively charged. Conversely, if more electrons are added to
an atom, it is said to be negatively charged.

When we have two electrically charged bodies i and j , if their charges
are qt and qj respectively, the electric force fcj acting upon body j by body
i will be

/ , , = fei^i (4.24)

where k = 8.988 x 109 N • m2/C2 (N stands for Newton, m for meter and
C for Coulomb). If we define

E{r) = fcM, (4.25)

Eq. 4.24 can be rewritten as

fiJ = \qj*E(r).

In fact, E{r) describes the density of an electric field at distance r,
created by body i having electric charge <?j. The electric force is controllable
as it is possible to manipulate the electric charge qj and the density E(r)
of the electric field. In theory, it is possible to design a device which forms
a dynamic pair based on the principle of electric field force. However,
this is not a practical solution because the high density of an electric field
poses a safety challenge. Any incidental discharge may be dangerous and
undesirable.

Electromagnetic Field Forces

We are all familiar with the phenomenon that two magnetic bars in prox-
imity will attract or repel each other. A magnetic field will always exert
an attractive force upon an object containing ferrous materials. And the
direction of the force will point towards the source of the magnetic field.
Strictly speaking, the interaction between a magnet and a body containing
ferrous materials is not controllable because one cannot alter the direction
of the interacting force between them. But, if we can design the two bodies
in a cylindrical shape and choose an electromagnet to be the acting body,
it is possible to alter the direction of the force acting on a body containing

130 The Fundamentals of Robotics: Linking Perception to Action

ferrous materials. This is precisely the working principle underlying electric
motors.

There are three types of magnets: a) permanent magnets found in na-
ture, b) cylindrical coils and c) electromagnets (i.e. coils wound around
a ferrous core). A magnet will always produce a magnetic field B around
it. If an electric charge travels inside a current conductor, this charge will
receive a force proportional to the density of the magnetic field and propor-
tional to the travelling speed of the charge. Moreover, the direction of the
force acting upon an electric charge is perpendicular to both the velocity
vector of the charge and the direction of the magnetic field.

Assume that body j is placed inside body i's magnetic field. If body j
contains an electric charge q travelling inside it with velocity vector v, force
fij acting on body j by body i will be

fitj=q*(€xB). (4.26)

The net flow per unit time of electric charges at a conductor's cross-
section area is called (electric) current, which is measured in Amperes (or
A for short). If body j is a straight current conductor with a constant
current / which flows inside it, the electric charges contained inside an
infinitesimal length dl will be

dq = I • dl.

By applying Eq. 4.26, force dfoj acting on the infinitesimal length by
body i will be

dfii:j = I»(vx B)»dl

where v is a unit vector indicating the direction of current inside body j .
The integration of the above equation over the entire length of body j

yields the total force acting upon body j by body i due to the magnetic
field, that is,

/ y = J.I.(ifxB). (4.27)

From Eq. 4.27, we can see that the electromagnetic force between two
bodies is controllable and repeatable. Most importantly, it can be easily
manipulated by varying quantity / and/or B. Because of these desirable
features, the working principle of all the electric motors is based on the
use of electromagnetic force. Nowadays, electric motors are widely used in
robotics for the realization of dynamic pairs in a robot's mechanical system.

Electromechanical System of Robots 131

4.3.1.1 Working Principle of Electric Motors

It is easy to control an interacting force caused by an electromagnetic field.
As a result, devices which physically implement this principle of interac-
tion are very popular in industry and are commonly called electric motors.
Depending on the types of motion, motors are classified in different ways.
It is called a rotary motor if the relative motion between the two bodies in
a dynamic pair is rotational about a fixed axis. And, it is called a linear
motor if the relative motion is along a straight line (i.e. linear trajectory).
Here, we will discuss the basic working principle underlying electric rotary
motors.

A AB k

/* f||Wiiii)|P||l|||||||M||g* Body j

Body i fb /) < \ ' " ^ Z 4 ^ ^

\

'^~/l/, 1 , ~T~f—•? - - "Axis of rotation
/ * . — L — ! _ _ • / / id

^—•x : : :

Fig. 4.9 Illustration of the basic working principle underlying electric rotary motors.

Refer to Fig. 4.9. Body i in the dynamic pair is an electromagnet. The
density B of the generated magnetic field is a function of current Io, which
is a controllable variable. Body j in the dynamic pair is a rectangular
closed-loop ABCD which is constrained by an axis of rotation. In this
example, body j is a rectangular coil having a single loop. However, a coil
normally has multiple loops.

Assume that current / flows inside the coil. From Eq. 4.27, we know
that the four edges of the coil will receive an electromagnetic force. Let us
denote

132 The Fundamentals of Robotics: Linking Perception to Action

• (fa,fb,fc,fd)- the electromagnetic forces induced on edges AB, BC,
CD and DA of the coil respectively;

• (la, lb): the lengths of edges AB and BC of the coil respectively;
• (va,Vb,vc,Vd): the unit vectors indicating the directions of current I

along edges AB, BC, CD and DA of the coil respectively.

By applying Eq. 4.27 to edges AB, BC, CD and DA, we will obtain

' fa = I • la • (va X B)

fb = I»lbm(vbX B)

(4.28)
fc = I • la « («c X B)

Jd = l*lb*{vd.y. B).

Then, the total forces received by body j in the X and Y directions will
be

<fx = fb + fa (4 2 9)

L Jy — Ja T Jc-

Since va = —vc and vb — —Vd, we have fa — —fc and fb = —fd- This

leads to the conclusion that fx = 0, and fy = 0. This means that the net
force exerted on body j by body i is zero. Thus, body j will not undergo
any linear displacement.

Now, assume that the plane containing the single-loop coil is not parallel
to the XY plane. If the angle between the plane containing the coil and
the XY plane is 9, from Fig. 4.9, it is clear that the net torque exerted on
body j by bodyi is

T = I/a| • i; • sin{6) + |/c| • ^ • sin(6) = \fa\ . lb • sin{6). (4.30)
ZJ Zi

By substituting the value of /„ in Eq. 4.28 into Eq. 4.30, we obtain the
final expression for the torque exerted upon body j by body i. That is,

T = A • I • \B\ • sin(9) (4.31)

with A = la*lb (i.e. the rectangular area of the coil).
From Eq. 4.31, we can make the following observations:

• If the electromagnetic field is constant, the net torque exerted upon
body j is a function of current I and angle 6.

Electromechanical System of Robots 133

• If body j is composed of a large number of rectangular loops, which
are uniformly and symmetrically arranged about the common axis of
rotation, the total net torque received by body j in a constant magnetic
field is almost a function of the single variable /, and is expressed as

r = kt • / (4.32)

where kt is called the electric motor's torque constant.
• If body j is an object containing ferrous materials, the torque exerted

upon body j is solely a function of the magnetic density B, which is
controllable by current IQ.

Stator (Body i)

S m i z z z z z - . - . - z z z z z z ; : ! S h a f t

! • " (axis of rotation)

If ̂ T * -
I \ Coils or Magnets
> Rotor (Body j)

Motion Sensor
Fig. 4.10 A sectional view of the conceptual design for an electric rotary motor.

Eq. 4.31 and Eq. 4.32 mathematically describe the basic working prin-
ciple underlying all electric rotary motors. All design solutions for electric
motors invariably follow this principle. If we use terminology from electrical
engineering, body i is called the stator and body j is called the rotor.

Fig 4.10 shows a sectional view of the conceptual design of an electric
rotary motor. The controllable element inside an electric motor is the
electromagnetic field which is produced by a set of coils wound on either
the stator or rotor. In addition, a motion sensor is an indispensable element
required by motion control, which we will discuss in more detail in the next
chapter. Externally, all electric motors look similar. Fig. 4.11 shows one
image of an electric motor.

In the following sections, we will discuss conceptual design solutions for
electric stepper motors, DC brush-type motors, and DC brush-less motors.

134 The Fundamentals of Robotics: Linking Perception to Action

Fig. 4.11 An external view of an electric motor.

4.3.1.2 Electric Stepper Motors

Conceptually, an electric stepper motor is a torque generator which can
produce step-wise motions between the two bodies in a dynamic pair (i.e.
stator and rotor).

Fig. 4.12 A cross-sectional view of a stepper motor.

Fig. 4.12 shows a cross-sectional view of a conceptual design solution for
a stepper motor. In this example, the rotor (body j) is a toothed cylinder
which can be either a permanent magnet or an object containing ferrous
materials. And, the stator (body i) is a toothed cylindrical tube. The coils

Electromechanical System of Robots 135

wound around the teeth of the stator are grouped into four phases: AA',
BB', CC and DD'. If we sequentially energize these phases one at a time,
we will create a rotating magnetic field around the shaft of the motor. The
angle between two consecutive teeth is called the pitch. If the pitch of the
rotor is different from the pitch of the stator, the rotating magnetic field
will attract the rotor to rotate at the same speed as the magnetic field but
in an opposite direction. This is clearly illustrated by Fig. 4.13.

(a) Phase AA1 is energized (b) Phase BB1 is energized

(c) Phase CC is energized (d) Phase DD1 is energized

Fig. 4.13 Illustration of the working principle of a stepper motor.

When phase AA' is energized at a time instant, teeth 1 and 4 of the rotor
will align with the magnetic flux generated by phase AA"s coils. At the
next time instant, we switch off the electrical power of phase A A' and turn
on the electrical power of phase BB', this will make teeth 6 and 3 of the
rotor align with the magnetic flux of phase BB'. When the magnetic field
of the stator rotates in a counterclockwise direction and a stepwise manner,
the rotor will rotate in a clockwise direction and a stepwise manner as well.

136 The Fundamentals of Robotics: Linking Perception to Action

If the numbers of teeth on the stator and rotor are Ns and Nr respectively,
the step angle AO for each move will be the difference of their pitches, that
is,

How to control the direction of a stepper motor's rotation will be dis-
cussed in the next chapter, as this issue is closely related to a robot's control
system.

4.3.1.3 Brush-type DC Motors

An electric stepper motor rotates in a stepwise manner. Obviously, it can-
not run at a high speed. As we know, the product of the torque and angular
velocity describes the mechanical power, which an electric motor can de-
liver. Thus, slow velocity means low mechanical power output. One way to
overcome this drawback is to have the stator hold a pair of permanent mag-
nets and the rotor carry a large number of rectangular coils. This design
results in an electric motor known as a brush-type DC motor.

^^^^^ Stator
^djHSB^^^A—" Carbon brushes

MBr P " '•HI ̂ ^ ^ Rotor / \

.JJHHHHB^^ Commutator plate

(a) Section view of DC motor (b) Front view of commutator

Fig. 4.14 Illustration of the working principle behind the brush-type DC motors.

Fig 4.14 shows the conceptual design solution for a brush-type DC mo-
tor. A single, long wire is wound around the surface of the rotor according
to a special winding diagram so that multiple rectangular coils are formed.
In this example, there are four rectangular coils: aa', bb', cc', and dd!. Each
coil has two terminals which are connected to an electrical power supply.

In fact, a special mechanical device called commutator groups all the

(4.23)

Electromechanical System of Robots 137

terminals of the coils into a disk known as a commutator plate, as shown
in Fig 4.14b. Two carbon brushes are placed symmetrically against the
commutator plate for the purpose of supplying electrical power to the coils.
The commutator plate rotates together with the rotor, but the two brushes
remain stationary. Thus, there is friction between the carbon brushes and
the commutator plate when the rotor is rotating.

In this example, at any time-instant, the terminals on the lower half of
the commutator plate (below the dotted line in Fig 4.14) are electrically
connected to the electric power supply's terminal A and the terminals on the
upper half of the commutator plate (above the dotted line in Fig 4.14) are
electrically connected to the electric power supply's terminal B. If terminal
A has a higher voltage than terminal B (as shown in this example), edges a,
b, c, and d will receive the current which goes inward (i.e. into the paper, as
marked by the crosses), and edges a', b', c', and d! will receive the current
which goes outward (i.e. out of the paper, as marked by the dots).

Since the direction of the magnetic field generated by permanent mag-
nets is towards the upper side of the stator, according to Eq. 4.27, the
direction of force induced on edges a, b, c and d is towards the right-hand
side of the rotor, and the direction of force induced on edges a', b', c' and
d! is towards the left-hand side of the rotor. As a result, the net torque
induced on the rotor will make it rotate in a clockwise direction. If we make
the voltage at terminal B higher than the voltage at terminal A, the rotor
will rotate in a counterclockwise direction. And, it is obvious that the rotor
will continuously rotate as long as the voltage at terminal A is not equal
to the voltage at terminal B.

How to control the direction and velocity of a brush-type DC motor's
rotation will be discussed in the next chapter as these issues are closely
related to a robot's control system.

4.3.1.4 Brush-less DC Motors

There are several drawbacks to the design solution of a brush-type DC
motor. The most notable one is the risk of generating electric sparks due
to the friction between the commutator plate and the carbon brushes when
the rotor is rotating at high speeds. Certain environments or workplaces
may not tolerate this type of risk. A second drawback is the high inertia
of the rotor if a large amount of coils have to be wound on the rotor in
order to deliver high torque. A common solution to these drawbacks is to
adopt a design, which places the coils on the stator and uses a cylindrical

138 The Fundamentals of Robotics: Linking Perception to Action

permanent magnet as the rotor. The result of this design is the brush-less
DC motor.

Stator
U / U

(a) At time t (b) At time t + 1

Fig. 4.15 Illustration of the working principle of brush-less DC motors.

Fig. 4.15 shows a cross-sectional view of a conceptual design solution
for the brush-less DC motor. The rotor inside a brush-less DC motor is a
permanent magnet in a cylindrical shape. The magnetic polarity is shown
in Fig. 4.15 (the axis of the north and south poles is perpendicular to
the axis of the rotation of the rotor). There are three independent coils,
each having multiple loops, which are symmetrically wound around the
cylindrical inner surface of the stator. We call these coils UU', W and
WW. The directions of the currents, which go inside these coils, can be
independently controlled in order to form a certain type of sequence.

At a time instant, only two coils are energized. Assume that the direc-
tions of the currents going inside the two energized coils, at time instant
t, are as shown in Fig. 4.15a. At this time instant, the magnetic force in-
duced on edge U points towards the right-hand side. This force will have
a corresponding reacting force on the north pole of the rotor. Since the
stator is stationary, the rotor will rotate in a counterclockwise direction
as a result of the torque produced by the reacting force. Similarly, there
will be a reacting force at the south pole of the rotor due to the induced
magnetic force at edge U'. This reacting force will make the rotor rotate
in a counterclockwise direction as well.

In order to keep the rotor continuously rotating, it is necessary to turn
"on" the current which goes inside coil VV at an appropriate next time-

Electromechanical System of Robots 139

instant. For maximum efficiency, the current in coil VV' should be turned
"on" at time-instant t + 1 when the north pole reaches a position under-
neath edge V. In this way, the electromagnetic field will keep the rotor
continuously rotating with an induced torque at its maximum value. The
closer a current conductor is to a magnetic pole, the larger the induced
force will be.

In order to gain maximum efficiency, it is clear that the sequence of
energizing the coils must be synchronized with the angular velocity of the
rotor. Because of this, it is easy to understand that the electronic drive
circuit for the control of a brush-less DC motor will be quite complicated.

We will discuss methods of controlling the magnitude of electrical power
and the directions of the currents supplied to a brush-less DC motor in the
next chapter, as these topics are closely related to a robot's control system.

4.3.2 Force and Torque Amplifiers

Conceptually, an electric motor is a force or torque generator which forms
a dynamic pair for the purpose of creating motion. Since force and velocity
are closely related to each other, we need to examine their relationship.

Refer to Eq. 4.13. Force acting on a body times the linear velocity of the
body describes power in the mechanical domain. In the electrical domain,
power is the voltage times the current supplied to an electrical load (e.g.
a resistor). An electric motor is an electromechanical device which takes
electrical power as input and produces mechanical power as output. If there
is no dissipation of power, the output power must be equal to the input
power.

Voltage I 1 Torque
• K Stator •

Electromagnet — ' \ ,
Current ^ (co i l s) _Power_^> ^ Velocity

Fig. 4.16 Power conversion in an electric motor.

Fig .4.16 illustrates how an electric motor converts power from the elec-
trical domain to the mechanical domain. If the input power in the electrical
domain applied to an electric motor is a constant p, torque r times angular

140 The Fundamentals of Robotics: Linking Perception to Action

velocity u is a constant as well, that is,

T»UJ =p. (4.34)

It is easy to see that the higher the velocity is, the lower the effective
torque will be. If an electric motor does not have any inertial load, its ten-
dency will be to output a very high angular velocity (thousands of rotations
per minute). As a result, the torque which an electric motor can deliver is
very low. This is an undesirable feature because the static frictional force
between two bodies at rest is usually very large.

In order to trigger the relative motion between two bodies at rest, one
needs to apply strong force or torque to overcome the static frictional force.
Therefore, it is necessary to alter the characteristic of an electric motor so
that it can deliver the torque at a reasonable range of magnitude. Prom
Eq. 4.34, we can see that the only way to increase torque is to reduce
velocity if the power is to remain a constant. A device which allows us to
reduce velocity without loss of power is commonly known as a speed reducer.
With reference to force or torque, a speed reducer can also be called a force
or torque amplifier. That is an indispensable element inside an actuation
system.

tmmmmmmmmmmmmmmm Body 2

* • ^ - "

... _ : Speed
Input shall . Reducer

or . Output shaft
I Torque r

/ i Amplifier ' •

Body 1 L . J I
Fig. 4.17 Illustration of the input-output relationship in a speed reducer or torque
amplifier for rotary motion.

Fig. 4.17 shows the relationship between the input and output in a
speed reducer, or torque amplifier. To reduce speed or amplify torque
related to a rotary motion, we connect this rotational motion to the input
shaft of a speed reducer, or torque amplifier. The output motion from a
speed reducer, or torque amplifier, will also be a rotational motion which
is transmitted through the output shaft. If the velocity of the input motion
is LUQ and the velocity of the output motion is w, the important parameter

Electromechanical System of Robots 141

of the speed reducer is the reduction ratio kr, that is,

kr = ^ . (4.35)
IV

If the torque of the input motion is T0, then the amplified torque of the
output motion will be

T = kr»r0. (4.36)

In fact, a speed reducer or torque amplifier is a coupling device because it
is composed of two independent bodies, as shown in Fig. 4.17. By coupling
device, we mean a device which can be physically connected to another
pair of bodies without losing any degree of freedom. For example, we can
interface a dynamic pair (e.g. a motor) with a kinematic pair (e.g. a pair of
links) through a coupling device such as a speed reducer or torque amplifier.
In this way, the degree of freedom of the kinematic pair is preserved.

In the following sections, we will discuss conceptually some examples of
speed reducers or torque amplifiers.

4.3.2.1 Gear Mechanisms

A simple solution for speed reduction, or torque amplification, is to use a
gear mechanism as shown in Fig. 4.18.

— Input shaft _ _ _ _ _ _ ^ _ ^

' ••;• ' •• ' ^ • E E L J I

Output shaft

(a) Gear mechanism (b) Real example

Fig. 4.18 A gear mechanism for speed reduction or torque amplification.

The input motion is supplied to the shaft of the gear having a smaller
diameter, and the output motion is transmitted from the shaft of the gear
having a larger diameter. If the numbers of teeth of the larger and smaller

142 The Fundamentals of Robotics: Linking Perception to Action

gears are No and Ni respectively, the ratio of speed reduction will be

kr is also the ratio of amplification for the output torque.
However, there are three notable drawbacks with regard to the gear

mechanism:

• First of all, the teeth of the two gears are in direct contact. After
long-term use, there will be the problem of wear-and-tear. In addition
to imprecision of machining and assembly, the undesirable problem of
backslash (i.e. hysteresis) becomes inevitable.

• Secondly, the distance between the input shaft and the output shaft
depends on the diameters of the two gears. More gears must be added
if one wants to alter this distance.

• Thirdly, the ratio of reduction is not very high (normally less than 100).

4.3.2.2 Pulley-and-Timing Belt Assemblies

In order to overcome the first two drawbacks of a gear mechanism, a com-
mon solution is to use the pulley-and-timing belt assembly as shown in
Fig. 4.19.

Timing belt

Y Input shaft ^^^^^m^^mi

^ ^ i** •* r >HBH

Output shaft M B S H E . -'If
(a) Pulley and timing-belt (b) A real example

Fig. 4.19 Pulley-and-timing belt assembly for speed reduction or torque amplification.

In a pulley-and-timing belt assembly, the timing belt is a flex spline
with teeth. The whole timing belt is normally made of soft material (e.g.
rubber). The direct contact of the two pulleys is therefore replaced by the
soft contact between the timing belt and the two pulleys. As a result, the
effect of wear and backslash is not as serious as that of a gear mechanism.

Electromechanical System of Robots 143

Since the length of the timing belt is selectable, it is easy to alter the
distance between the input shaft and the output shaft. Just as with a gear
mechanism, the speed reduction is equal to the ratio between the numbers
of teeth of the two pulleys. If the number of teeth on the larger pulley is
No and the number of teeth on the smaller pulley is Nt, the ratio of speed
reduction (or the ratio of torque amplification) will be

k - ^

Again, this ratio is not very high (typically less than 100).

4.3.2.3 Harmonic-Drive Devices

The best device for speed reduction, or torque amplification, is the har-
monic drive, as shown in Fig. 4.20.

Wave generator * ^.pl-I" H r V ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H t - 'f*
Input motion \ ~̂"~"̂ -.. ^^£ j^BBS^^^^^^^^^BIBf r ' . ' a f a : -

earner \ ™ "j^^HSaP^^KM^^^^^r^flBi^k ^i 1

Output motion • • . Rig i (J c i r c u l a r ' s p , i n e

carrier
(a) Cross - section view (b) Real example

Fig. 4.20 Harmonic drive for speed reduction or torque amplification.

Refer to Fig. 4.20. A harmonic drive is composed of: a) an elliptical
wave generator, b) a flex spline with teeth, and c) a rigid circular spline
with teeth, and d) the supporting body. The elliptical wave generator is the
input motion carrier. Its axis of rotation is the input shaft. And, the rigid
circular spline with teeth is the output motion carrier, if the flex spline is
fixed onto the supporting body. Alternatively, the flex spline is the output
motion carrier, if the circular spline is fixed onto the supporting body. The
axis of rotational motion is the output shaft.

Assume that the output motion carrier is the flex spline. The role of
the wave generator is to keep the flex spline in contact with the circular
spline at the two ends along the major axis of the elliptical wave generator.
It is easy to see that there will be zero displacement between the flex spline

144 The Fundamentals of Robotics: Linking Perception to Action

and the circular spline if they have the same numbers of teeth. Let Nf be
the number of teeth on the flex spline and Nc the number of teeth on the
circular spline. If Nf = Nc + 1, it is easy to see that the circular spline will
shift one tooth after one full rotation of the wave generator. Similarly, if
Nf = Nc + 2, the circular spline will shift two teeth after one full rotation
of the wave generator. In order to make the flex spline shift Nf teeth, the
wave generator has to make Nf/2 rounds of full rotation. If Nf = Nc + 2,
the ratio of speed reduction or torque amplification will be

kr = Nf/2.

Interestingly, kr is linearly proportional to Nf. This explains why the
ratio of speed reduction of a harmonic drive can be very high (easily over
several hundred). Since the contact forces between the flex spline and the
circular spline are along the major axis of the wave generator (perpendicular
to the tangential direction of each pair of teeth in contact), there is no
backslash effect, as long as there is no slippage between a pair of teeth in
contact.

The only problem with a harmonic drive is that the input and output
shafts are coaxial. If this is not desirable, a good solution is to combine
the use of the harmonic drive (for achieving better ratio and no backslash)
with the pulley-and-timing belt assembly (for achieving the offset between
input and output shafts).

4.4 Formation of a Robot's Electromechanical System

We now know that a robot's mechanism cannot move on its own without
the addition of actuation elements, such as motors and torque amplifiers.
In other words, the kinematic pairs of a robot's mechanism must be coupled
with a set of dynamic pairs in order to produce controllable motions. This
is because all motions must originate from a source of energy. The role
of a dynamic pair (e.g. motor) is to convert energy from one domain (i.e.
electrical) into the mechanical domain.

As it is necessary to couple kinematic pairs of a robot's mechanism
with a set of dynamic pairs, the design of a robot not only embraces mech-
anism design but also deals with machine design (or mechatronic design of
a machine).

Electromechanical System of Robots 145

4.4.1 One-to-One Couplings

A robot's mechanism can be treated as the combination of a set of kinematic
pairs. A common way to form the coupling between the dynamic and
kinematic pairs is to independently connect a dynamic pair to a kinematic
pair. In this way, an entity called kineto-dynamic pair is formed. Thus,
a robot can also be treated as the combination of a set of kineto-dynamic
pairs.

1 Dynamic Pair >
i Pulley and timing belt ,

1 Torque BB» us» P * " ™ * '
I genei.,i..i * J f 1 I § « I ""me amplifier ;

L - • • - • - J !
. i J i " d,. dl-.iii,. _ _ _ i

: , ^S^BQI :

i i

I Joint i Kinematic Pair !

Fig. 4.21 Kineto-dynamic pair inside a robot.

Fig. 4.21 illustrates the coupling of a dynamic pair with a kinematic
pair. Assume that the kinematic pair contains link i — 1 and link i. The
output shaft of the torque amplifier coincides with the axis of rotation of
joint i. And the output motion of the motor (i.e. torque generator) is
coupled with the input motion of the torque amplifier through a pulley and
timing-belt assembly. On the other hand, both the stator of the motor and
the supporting body of the torque amplifier are fixed onto link i — 1.

In this illustration, the motion of link i comes from the torque applied to
joint i. If we denote TJ the torque received by joint i, Tmi the output torque
of the motor and kri the total ratio of torque amplification (including the
one due to the pulley-and-timing belt assembly), we have

Ti = kri»Tmi. (4.37)

146 The Fundamentals of Robotics: Linking Perception to Action

Similarly, if we denote u>i the angular velocity vector of link i and u>mi
the angular velocity vector of the motor, we will have

u>i = — »Lomi. (4.38)

As shown in Fig. 4.21, each kinematic pair is coupled to its correspond-
ing dynamic pair. We call this type of kineto-dynamic coupling the one-to-
one coupling.

Example 4.3 Fig. 4.22 shows an experimental set-up for research on
robotic hand-eye coordination. An educational robot is used to serve as
the arm manipulator. The kineto-dynamic pairs of this robot are designed
by applying the one-to-one coupling scheme. In this example, the robot has
five degrees of freedom and five kineto-dynamic pairs. All the commercially
available industrial or educational arm manipulators make use of the one-
to-one coupling scheme to form the kineto-dynamic pairs.

\ i l TUB I i-"s'SBhi j H ~ - ^** ~* T .̂ - • » "*"

Fig. 4.22 An educational arm manipulator in an experimental set-up for research on
robotic hand-eye coordination. The robot has five kineto-dynamic pairs, each of which
is formed by applying the one-to-one coupling scheme.

000000000000000000

One notable advantage of the one-to-one coupling scheme is the fast
motion response at each joint. As a result, it is easy to implement velocity
feedback control which is necessary for applications involving the behavior
of a trajectory following.

However, there are several drawbacks associated with this one-to-one
coupling scheme. One serious drawback is the weight of the overall robot

Electromechanical System of Robots 147

system because an electric motor is a heavy device compared with other ma-
terials and components. As a consequence, the effective payload of a robot
is largely compromised due to the heavy weights of the electric motors,
which must move together with the kinematic pairs. A second drawback is
the cost. In general, an electric motor, together with its torque amplifier
and power amplifier, is an expensive device. In fact, a major portion of the
hardware cost of a robot is spent on electric motors, torque amplifiers, and
power amplifiers.

4.4.2 One-to-Many Couplings

In order to overcome the drawbacks of the one-to-one coupling scheme, an
alternative solution is the one-to-many coupling scheme. The philosophy of
a one-to-many coupling scheme is to make use of a single dynamic pair (i.e.
one motor) and to couple it with all, or a subset of independent kinematic
pairs inside a robot's mechanism. In this way, the number of motors inside
a robot is largely reduced. Moreover, the total cost and weight of a robot is
greatly reduced as well. When there is no motor inside an open kinematic
chain, it is possible to miniaturize a robot to suit medical needs such as a
robotic arm for minimally-invasive surgery.

Refer to Fig. 4.21. The output torque, after the coupling between the
motor and torque amplifier, is applied to joint i of the kinematic pair con-
sisting of link i — 1 and link i. In the mechanical domain, link i is called
an inertial load of the motor. If we attempt to use a single motor to in-
dependently drive multiple inertial loads, it is easy to consider how the
motion from the motor is split and distributed to multiple inertial loads.
A common scheme to achieve this objective is illustrated in Fig. 4.23. The
additional new elements are: a) the motion splitters and b) the motion
distributors.

Single S i n g l e Multiple Multiple Multiple
Motor -$ M o t i o n =) Motion z) Motion =) Inertia]

Splitter Distributors Reducers Loads

Fig. 4.23 Illustration of one-to-many coupling scheme.

148 The Fundamentals of Robotics: Linking Perception to Action

4.4.2.1 Motion Distributors

In order to implement the one-to-many coupling scheme, we must address
the following issues:

• How do we split the motion of the motor into multiple motions, visible
at the multiple shafts supporting the multiple inertial loads?

• How do we handle the conflicting requirement on the directions of mo-
tions at these multiple shafts?

Let us examine the second issue first. Since we are using a single mo-
tor, the direction of the motion delivered by this motor is unique at one
time instant (i.e. either clockwise or counterclockwise). However, the re-
quirement on the motion directions at the multiple shafts is not fixed and
is time-varying. This poses a problem. A simple solution is to build a
new device called a bi-directional clutch. All the available clutches on the
market are omnidirectional, meaning the direction of the output motion is
exactly the same as the direction of the input motion. For a bi-directional
clutch, the direction of the output motion is independent of the direction
of the input motion and can be switched to any one of the two possible
directions: clockwise or counterclockwise.

Contact
Solenoid 2 D i s k Solenoid 1

Shaft of ^ ^ ^ — ^ ^ — ^ — /

Input Motion , — "~^^|^^^|^^f

^"/'"^^•^H^H^K' Shaft of
jf. -" -^^H ^ ^ H ^ H ^ H ' i Output Motion

mechanism A'
Pulley /

Timing-belt
assembly

Fig. 4.24 Working principle of a bi-directional clutch.

Electromechanical System of Robots 149

The working principle of a bi-directional clutch is shown in Fig. 4.24.
The contact disk rotates with the input shaft. When solenoid 1 is switched
on, the contact disk, made of ferrous materials, is in contact with the
pulley-and-timing belt assembly on the output shaft. In this way, the input
motion is transmitted to the output shaft, while the direction of the output
motion is the same as the direction of the input motion. Alternatively,
when solenoid 2 is switched on, the contact disk is in contact with the
gear mechanism on the output shaft and the input motion is inverted and
transmitted to the output shaft. The inversion of the input motion is due
to the effect of the gear mechanism (i.e. a pair of gears will invert the
direction of the input motion).

^ ^ ^ ^ ^ H i l t ' One lii-iliiivlion.il Cliikh

diMi \k-<. nanism ^ ^ • S H P U W M K ^ V J

Pulley and Timing Hell Assemhh WHB^BE^m^^^SA

Fig. 4.25 Single-motor-driven multiple-fingered hand which makes use of bi-directional
clutches for motion distribution.

Fig. 4.25 shows a prototype of single-motor-driven multiple-fingered
hand. Due to the use of bi-directional clutches, the whole hand (including
the motor coaxially located at the middle of the wrist) is very compact.
In this example, the total number of independent degrees of freedom for
the three fingers is seven, and the multiple speed reducers are composed of
worm gears and cables.

150 The Fundamentals of Robotics: Linking Perception to Action

The drawback of the clutch-based motion distribution is that the mode
of motion transmission is binary (i.e. either "on" or "off"). It does not
produce smooth motion. Therefore, it is not suitable for velocity control,
which requires the ability to smoothly vary the transmitted motion (i.e.
to regulate the amount of energy released to the corresponding inertial
load). One way to overcome this drawback is to introduce a device called
a continuous variable transmission (or CVT), found in some automobiles.
How to miniaturize a CVT device is still a research issue.

4.4.2.2 Parallel Splitter of Motion

The purpose of a motion splitter is to duplicate the input motion into
multiple output motions. The input rotary-motion to a motion splitter
comes from the output motion of a single motor. There are two ways
to duplicate the input rotary motion. The first method consists of using
a planar-gear mechanism to split the input motion into multiple output
motions at multiple output shafts which are positioned in parallel (i.e. their
axes of rotation are parallel). A device implementing this method is called
a parallel splitter of motion.

/'"

/ / " Input Shaft \ *>

- ' ' \ . \ •

v - - y : Output Shafts
Output Shai

/ " A

Fig. 4.26 Parallel splitter of input motion using a planar gear mechanism.

Fig. 4.26 shows an example of a planar-gear mechanism which splits
the input rotary-motion into a set of four output rotary-motions at four
output shafts. Each output motion of the splitter is coupled to a motion
distributor, as was discussed above. Subsequently, the motion is further
coupled to the inertial load through a speed reducer and a cable (or a
pulley-and-timing belt mechanism).

Fig. 4.27 shows the application of the parallel splitter of motion to

Electromechanical System of Robots 151

implement the single-motor-driven multiple-fingered hand. In this example,
the motion of the single motor is duplicated into seven output motions at
the output shafts of the planar-gear mechanism.

Fig. 4.27 Parallel splitter of motion inside a single-motor-driven multiple-fingered hand.

The advantage of a parallel motion splitter is its simplicity. However,
a notable drawback is that a long cable or timing belt has to be used if
the inertial load is located far away from the motion splitter. Therefore,
the parallel splitter of motion is suitable for the implementation of a single-
motor-driven multiple-fingered hand. However, it is not advantageous for
the implementation of an open kinematic-chain, like an arm manipulator.

4.4.2.3 Serial Splitter of Motion

A humanoid robot normally has four limbs (two legs and two arms) which
are open kinematic-chains. If one adopts the scheme of one-to-many cou-
pling for the kineto-dynamic pairs in a limb, it is better to employ a device
called a serial splitter of motion. A serial splitter of motion is a mechanism
which duplicates the input rotary motion into multiple output motions at
multiple output shafts aligned in a series.

In practice, there are many different methods of implementing a serial
splitter of motion. However, the simplest solution is the one which makes
use of the bevel-gear mechanism.

Fig 4.28 conceptually illustrates a serial splitter of motion having n
consecutive units. Each unit has two output shafts aligned in a series. The
first one is the shaft for twist rotation, and the second one is the shaft for
pivotal rotation. The twist and pivotal axes of a unit are perpendicular to

152 The Fundamentals of Robotics: Linking Perception to Action

Twist Twist Twist
Input | \ | jAxisl | | \ | !Axis2 |K | lAxisn

':\J \ ; M \ \ 11/ \ '

Pivotal Pivotal Pivotal
Axis 1 Axis 2 Axis n

Fig. 4.28 Serial splitter of input motion using a series of bevel-gear mechanisms.

each other. Therefore, an open kinematic-chain can be easily formed by
putting together a set of these units in a series.

Example 4.4 An example is shown in Fig. 4.29. In this example, we
display two units. Each unit has two degrees of freedom: a) a twist rotation
and b) a pivotal rotation.

iSlfr* ..'•< i •(,-/.• :..•-•• •• . • .. : - • • - n - . . .1 ' . jS -7 j j i i a i . l f l | ggEMMi

i:^1 :?"'.:'->. v*; ""• : ' •" ' ••''L'?*saiJ^^Bi

T̂ T̂ -̂ ^ ^ M I B ^ I ! 'i 1 ̂ —MjHr^lr^^iBi^BB

(a) Real example

(b) Pivotal rotation (c) Twist rotation

Fig. 4.29 Real example of an open kinematic-chain having a serial splitter of motion.

•ooooooooooooooooo
It is advantageous to employ the scheme of one-to-many coupling to

design the mechanisms of a humanoid robot, because the number of motors

Electromechanical System of Robots 153

will largely be reduced. For example, a single motor may be sufficient to
supply the necessary amount of energy to all the degrees of freedom inside
one limb, including the multiple-fingered hand or foot. Fig. 4.30 shows a
prototype of a humanoid robot. In this prototype, each of the two arm
systems has six independent degrees of freedom. Each arm is driven by a
single motor located inside the shoulder.

^ ^ ^ ^ ^ ^ ^ ^ H ' A*M Laboratory
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H . ; IWQlMttontei Laboratory

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | 'P'SS1 "•=?-' Oisrr "•'"»•

H I S * AIM> ^t\

Fig. 4.30 A prototype of humanoid robot where each of the two arm systems is driven
by a single motor.

4.4.2.4 Torque at Inertial Loads

Under the one-to-many coupling scheme, the output torque TO and the
angular velocity LOQ of the motor are the same for all the inertial loads.
Refer to Fig. 4.22. Let us denote ks the ratio of speed reduction from the
motion splitter, kdi the ratio of speed reduction from the motion distributor
connected to inertial load i (link i in an open kinematic chain), and kr% the
ratio of speed reduction from the speed reducer coupled to inertial load i.

154 The Fundamentals of Robotics: Linking Perception to Action

Then, the torque T; received by inertial load i will be

_ (ks • kdi • kri • r0 if the clutch is "on";
\ 0 otherwise. '

It is clear that the torque applied to an inertial load is not linear. The
only way to obtain a linearly-variable output torque to an inertial load is
to introduce a CVT device which has a ratio of speed reduction that is a
real number and is controllable.

4.4.3 Open Kineto-Dynamic Chains

A robot's mechanism is used to shape the output motion as a result of
the input motions. In Chapter 3, we learned that the relationship between
the input and output motions of a robot's mechanism is fully described by
kinematics. We also know that a robot's mechanism cannot move on its
own because all the mechanical motions must originate from the work done
by the forces and/or torques acting at the joints of a robot's mechanism.

In order to apply forces or torques to a robot's mechanism, there must
be a coupling between the kinematic pairs of a robot's mechanism and a
set of dynamic pairs (or one dynamic pair if adopting the one-to-many
coupling scheme). Accordingly, the kineto-dynamic pairs of a robot form
the electromechanical system.

For kinematic analysis of a robot's mechanism, we employ the concept
of an open kinematic-chain to make the description clear. In a similar way,
it is helpful to define the concept of open kineto-dynamic chain to ease the
study of robot statics and dynamics. A formal definition of open kineto-
dynamic chain can be stated as follows:

Definition 4.6 An open kineto-dynamic chain is the entity formed by
the coupling of a simple open kinematic-chain with a single or a set of
dynamic pair(s).

Based on the concept of kineto-dynamic chain, the definition of robot
statics can be easily defined as follows:

Definition 4.7 Robot statics is the study of forces or torques acting on
a kineto-dynamic chain which keep the kineto-dynamic chain at rest.

Similarly, the definition of robot dynamics can be defined as follows:

Definition 4.8 Robot dynamics is the study of forces or torques acting on
a kineto-dynamic chain which drive the kineto-dynamic pairs to produce the

(4.39)

Electromechanical System of Robots 155

Table 4.1 Parameters of links.

Link 1 Weight I Length I Center of Gravity (CG) I Offset of CG

1 mi h rcl lci

2 m2 h r_c2 | lC2

desired input motions to a robot's mechanism, so as to obtain the desired
output motion of the robot's mechanism.

In other words, robot dynamics is the study of the relationship between
the forces (or torques) applied to a set of kineto-dynamic pairs, and the
motions of the corresponding simple open kinematic-chain.

For the study of robot statics and dynamics, all physical quantities must
be expressed in a common reference frame. By default, we consider that all
the parameters and variables are expressed in the base frame of the simple
open kinematic-chain. We do not explicitly indicate the common reference
frame with any superscript, whenever it is not necessary to do so.

4.5 Robot Statics

Fig. 4.31 illustrates the problem of robot statics. The humanoid robot is
standing still, and its task is to hold the wheel which has a rotation axis
that is fixed at point A. If the robot releases its hold, the wheel will rotate
in a clockwise direction due to the inertial load hanging onto the wheel. By
holding the wheel, the robot receives a force and torque at the end-effector
of the arm. Let us consider the case in which the robot's arm consists of
two rigid links in the XY plane of the base frame. We assume that the
parameters of the two links are as shown in Table 4.1, where the offset of
the center of gravity (CG) of a link is measured from the link's proximal
node.

In this example, the robot's body and link 1 of the arm forms the first
kineto-dynamic pair, and links 1 and 2 of the arm form the second kineto-
dynamic pair. Assume that the two joints are revolute joints. And, we
denote re the acting point of the end-effector of the robot arm upon the
wheel. Now, the question is: What should torques T\ and T^ applied to the
two revolute joints be in order to keep the wheel at rest, if the end-effector
receives force fe from the wheel ?

In general, fe = {fxjyjzf), and Te = (Tx,Ty,TzY). In the following
sections, we will discover the answer.

156 The Fundamentals of Robotics: Linking Perception to Action

I Torque

r mii V ^ ^^

Fig. 4.31 Illustration of the problem of robot statics.

4.5.1 Dynamic System of Particles

The inertial load of the wheel can be treated as a force or torque generator.
When the end-effector holds the wheel, it forms a dynamic pair and also,
a special kinematic pair. The kinematic pair is special because the end-
effector has more than one degree of freedom. In general, it has six degrees
of freedom. For simplicity's sake, we can conceptually treat this coupling
as another kineto-dynamic pair.

Therefore, for the example shown in Fig. 4.31, there are three kineto-
dynamic pairs which form an open kineto-dynamic chain. Since all the
bodies under consideration are rigid bodies, we can mathematically treat
these kineto-dynamic pairs as a dynamic system of particles (three particles,
in this example) with their masses concentrated at their centers of gravity.
For the third kineto-dynamic pair, the weight of the wheel is supported
by its rotation axis. It has no effect on the static relationship between
the robot's arm and the wheel. As a result, the mass of the third kineto-
dynamic pair is treated as zero, and its center of gravity is considered at
re-

Fig. 4.32 illustrates the mathematical abstraction of the open kineto-

Electromechanical System of Robots 157

^ ^ ^ ^ System of Particles ^ ^ ^ \ ^

/A *"Y Torque \
/* ^ - \
Z rcl © \

I © Force^S1^

\ . Force y/

^~~~-^^_^^ Force ^

Fig. 4.32 Mathematical abstraction of an open kineto-dynamic chain by a dynamic
system of particles.

dynamic chain by a dynamic system of particles. Since in this example,
there are three kineto-dynamic pairs inside the open kineto-dynamic chain,
the corresponding dynamic system has three particles.

In the dynamic system of particles, each particle has a mass and receives
an externally exerted force (i.e. gravitational force). However, for the
particle corresponding to the end-effector, it does not have any mass but
may receive both externally-exerted force and torque.

Here, we only consider externally-exerted forces (or torques) to a system
because all the internal forces (or torques) will not do any work to the
system itself. Hence, we can ignore the effect of internal forces if all the
bodies are rigid bodies (i.e. having no deformation).

4.5.2 Generalized Coordinates and Forces

In a three-dimensional space, the position of a particle is normally described
by the X, Y and Z coordinates which are called the physical coordinates
with respect to a Cartesian frame. For the study of certain problems (e.g.
statics and dynamics), it is not helpful to directly use these coordinates.
One idea, which is helpful, is to see whether there is an alternative set of co-
ordinates which are easy to manipulate for mathematical formulation, and
also permit the unique recovery of the physical coordinates (X, Y, Z). If a
set of n new variables qt (i — 1, 2, ...n) is related to the physical coordinates

158 The Fundamentals of Robotics: Linking Perception to Action

(X, Y, Z) in the following manner:

{ X = fx(qi,q2,-,qn)
Y = fv{qi,q3,...,qn) (4.40)

z = fz{qi,q2,-,qn),
and these new variables completely determine the positions of the particles
in a dynamic system, these new coordinates are called generalized coor-
dinates. The space defined by the generalized coordinates is called the
Configuration Space.

In general, there are many sets of variables which satisfy the above
requirement. This is an advantage because we have the freedom to choose
whichever variable is easiest to manipulate. For example, in robotics, we
choose the joint variables to be the generalized coordinates of a robot's
dynamic system. However, one must be cautious and makes sure that the
generalized coordinates can recover the physical coordinates without any
ambiguity.
Example 4.5 Refer to Fig. 4.31 and Fig. 4.32. We choose the two joint
variables 9\ and #2 to be the generalized coordinates. For the position of
particle 2 in Fig. 4.32, its physical coordinates will be

= fXc2 \ = (ll * cos(0i) + l& • cos(6i + 02) \
Tc2 ~~ Uc2) \k • sin(0!) + lc2 • sin(0i + 82) J '

oooooooooooooooooo
For a generalized coordinate, we can imagine that there is a force associ-

ated to it. This force is called the generalized force. In robotics, if we choose
joint variables to be the generalized coordinates, the generalized forces will
be the forces or torques applied to the joints by the motors. The purpose
of introducing the concept of generalized forces is to be able to compute
the power which is equal to the generalized force times the displacement of
the corresponding generalized coordinate.

4.5.3 Constraints of a Dynamic System

The mathematical abstraction of an open kineto-dynamic chain by a dy-
namic system of particles is valid if and only if the particles satisfy the
constraints imposed upon the corresponding open kineto-dynamic chain. A
constraint refers to the restriction imposed upon a pair of bodies which in-
teracts with each other. For every constraint, there is a constraint equation

Electromechanical System of Robots 159

and a constraint force or torque. Thus, a kineto-dynamic pair is a perfect
constraint imposed upon a pair of bodies. And the constraint equation sim-
ply indicates the kinematic relationship among the generalized coordinates.

Example 4.6 Refer to Fig. 4.31 and Fig. 4.32. We choose the two joint
variables B\ and 92 to be the generalized coordinates. Assume that the end-
effector's position is re. Then, the generalized coordinates of the dynamic
system of particles must satisfy the following constraint:

_ (xe\ _ fh •cos(6»1)-M2«cos(6>i + 92)\
re~\Ve)~ {h»sin(91) + l2»sm(01+02)) •

OOOOOOOOOOOOOOOOOO

For a system with n generalized coordinates qt (i = 1,2, ...,n), the
constraints can be described in the following form:

/(gi,g2,.. . ,gn,t) = o. (4.41)

One can omit the time variable if the constraint is independent of time.
If Eq. 4.41 is differentiable, we have

f = 7T * + ̂ + - + 7T4» + % = °- <4-42)
dqi dq2 dqn dt

A constraint expressed in the form of Eq. 4.41 is called a configuration
constraint. A constraint expressed in the form of Eq. 4.42 is called a velocity
constraint. If a constraint can be expressed in both the forms of Eq. 4.41
and Eq. 4.42, it is called a holonomic constraint. Otherwise, it is called
a non-holonomic constraint. In robotics, all open kineto-dynamic chains
impose holonomic constraints.
Example 4.7 Refer to Fig. 4.31 and Fig. 4.32. We choose the two joint
variables 6\ and 02 to be the generalized coordinates. Let us consider the
position vectors of all the particles in the system. Then, the generalized
coordinates of this dynamic system must satisfy the following constraints:

(1) For position vector rc\ of particle 1, we have

= (Xcl\ = /^ci«cos((9i)\

or

r c i=r c l (0 i ,02) .

160 The Fundamentals of Robotics: Linking Perception to Action

(2) For position vector rc2 of particle 2, we have

_ fxc2 \ _ fh» cos(0i) + lc2 • cos(0i + 62) \
^ ~ \Vc2) ~ \h • 8111(0!) + lc2 • Sin(0! + 02))

or

rC2 = rc2(61,62).

(3) For position vector re of particle 3, we have

= (XA = (h • cos(0i) + l2 • COB^! + 02)\
Te \Ve) \h»sm(61)+l2»sm(01+d2))

or

re = re(91,62).

oooooooooooooooooo

4.5.4 Virtual Displacements

In the above example, we can see that a position vector of a particle in a
dynamic system can be expressed as a function of the generalized coordi-
nates. Assume that a dynamic system of particles is fully described with a
set of n generalized coordinates % (i = 1, 2,..., n). Then, position vector r
of a particle can be written as

r = r(q1,q2,...,qn). (4.43)

Differentiating Eq. 4.43 with respect to time gives

dr , Or , dr v—> f dr , 1
dr = ~^-dq1 + ^—dq2 + ... + -^—dqn = } < ̂ -dqi } . (4.44)

dqi dq2 dqn ~ 1% J
dr is the infinitesimal displacement within time interval dt. This dis-

placement satisfies the velocity constraint in the form of Eq. 4.42. For the
study of robot statics, the system is at rest and there is no real displace-
ment. If we examine the tendency of particles' displacements, time interval
dt can be ignored. In this way, the infinitesimal displacement dr is called
the virtual displacement. In other words, it is not a real displacement. In
dynamics, the virtual displacement corresponding to the differential dr is

Electromechanical System of Robots 161

denoted by 5r. If we denote 5qi the virtual displacement of the generalized
coordinate &, Eq. 4.44 becomes

*r = §{!;•**}• (4'45)
Based on the above discussions, it is clear that a virtual displacement

is an infinitesimal displacement. These virtual displacements are obtained
by differentiation. As a result, all virtual displacements satisfy the velocity
constraint of a dynamic system in the form of Eq. 4.42.

4.5.5 Virtual Works

Refer to Fig. 4.32. Assume that all the particles receive an externally-
exerted force, and the particle corresponding to the end-effector may also
receive an externally-exerted torque. Here, we assume that the end-effector
receives an externally-exerted force only.

We denote (fci,fc2) the external (e.g. gravitational) forces exerted on
particles 1 and 2 respectively, and fe the external force exerted on particle
3. By definition, the work done by these forces to the system will be

SW = fcl • Srcl + fc2 • 5rc2 + fem 5re. (4.46)

Since the work done is not real because the displacements are not real,
we call it virtual work.

4.5.6 Principle of Virtual Work for Statics

It is easy to understand at this point that a static system (i.e. a system at
rest) will remain at rest if the virtual work done by the externally-exerted
forces is zero. This is because the motion can only originate from work
done to a system.

Refer to Fig. 4.32. Forces (/ci,/c2,/e) are physically real. If there are
no other external forces, the virtual work expressed in Eq. 4.46 will not be
zero. In this case, real work will be done to the system and it will make
the robot's arm and the wheel undertake motion.

If we want the robot to hold the wheel at rest, there must be some other
external forces applied to the robot's arm in order to make the total virtual
work be zero. (NOTE: A work can be negative if energy is removed from
a system). In this example, the generalized coordinates of the system are
(0i)#2)- If we denote (TI,T2) as the generalized forces associated with these

162 The Fundamentals of Robotics: Linking Perception to Action

two generalized coordinates, the virtual work done by the generalized forces
will be

6WT = n • 661 + T2 • 662. (4.47)

Now, we can state the principle of virtual work for statics as follows:

Principle of Virtual Work: For a static system to remain at
rest, the total virtual work done by all external forces to the system
must be equal to zero, i.e. SW — 6WT = 0.

4.5.7 Statics Against Self-Inertial Loads

If the goal is to keep the system at rest (i.e. statics), the purpose of the
generalized forces will be to cancel out virtual work done by external forces
acting upon the system. Refer to the example shown in Fig. 4.31 and
Fig. 4.32. We first examine the generalized forces required to cancel out
virtual work done by gravitational forces acting upon links 1 and 2.

In Example 4.7, the centers of gravity of links 1 and 2 can be expressed
as functions of the generalized coordinates. That is,

(rcl=rcl(91,02)
\rc2=rc2(Oi,02). ['

Differentiating Eq. 4.48 yields

(5rcl = ^ . 5 0 1 + ^.502

{ (4-49)
{Src2 = ^.6e1 + ^.602.

These are expressions for the virtual displacements of the two centers of
gravity.

By applying the principle of virtual work for statics, we have

n • 661 + T2 • S02 = fci • Srcl + fc2 • Src2. (4.50)

Substituting Eq. 4.49 into Eq. 4.50 yields the following two equalities:

{ (4-51)
T2 = / c l . f ^ + / c 2 . | -

(4.48)

Electromechanical System of Robots 163

In general, in order to keep an open kineto-dynamic chain with n links
at rest, the generalized force at joint i will be

*-£{'«•£}• <«2>
where <?; = 8i if joint i is a revolute joint, and fcj is the external (gravita-
tional) force acting on link j at its center of gravity rCj. Some textbooks
treat Eq. 4.52 as the definition of generalized forces. Here, we treat it as
the solution for determining generalized forces.

The work done by a gravitational force is called potential energy. An
alternative way of deriving the expression in Eq. 4.52 is to make use of
the concept of potential energy. For the example shown in Fig. 4.31, the
potential energy of the robot's arm is

V=~fclTcl-fc2*rc2. (4.53)

Since the centers of gravity of the arm's two links are the functions of the
generalized coordinates, the potential energy can be implicitly expressed as
follows:

V = V(61,62).

This means that the potential energy only depends on the positions which
are the functions of the generalized coordinates.

The differentiation of the above equation yields virtual work done by
gravitational forces fcl and /C2- That is,

dV dV
5WV = -5V = -—*591- — .562. (4.54)

Ou\ Ou2

(NOTE: The negative sign at expression 5W = —SV means that potential
energy is removed from a body if the displacement of the body is in the
direction of the gravitational force).

By applying the principle of virtual work (i.e. 8WT = SWV), we obtain

(4.55)

*> = - & •

Eq. 4.55 is equivalent to Eq. 4.51. In general, in order to maintain an
open kineto-dynamic chain with n links at rest, the generalized force at

164 The Fundamentals of Robotics: Linking Perception to Action

joint i will be

n = - — . (4.56)
dqi

In fact, Eq. 4.56 is equivalent to Eq. 4.52.

4.5.8 Statics Against Inertial Loads at End-effector

Refer to the example shown in Fig. 4.31 and Fig. 4.32 again. We will now
examine what should be the generalized forces required to cancel out virtual
work done by external force and torque acting upon the end-effector's frame
in order to keep the robot's arm at rest.

From the study of robot kinematics, we know that velocity vector Pe

of the end-effector's frame in a simple open kinematic-chain is composed of
two vectors: a) the linear velocity vector Oe of the end-effector's frame and
b) its angular velocity vector we. That is,

(NOTE: Symbol Pe stands for the posture of the end-effector's frame).
If the Jacobian matrix of the robot's arm is J, we have

P e = J » q (4.57)

where q = (0i,02)*.
From Eq. 4.57 and by definition, the virtual displacement of the end-

effector's frame will be

5Pe = J» 5q. (4.58)

If we denote £e = (/e,Te)* the vector of the external force and torque
exerted upon the end-effector's frame, the virtual work done to the system
(i.e. robot) at rest is as follows:

5W = £*5Pe. (4.59)

(NOTE: In general, & = (fx, fyJz,Tx,Ty,TzY).
In order to cancel out virtual work done to the system at rest, we must

apply generalized forces (T\, T2) to the system at rest. We know that virtual
work done by generalized forces is

5WT = n • 0i + r2 • 02 = r* • 5q (4.60)

Electromechanical System of Robots 165

where r = (71^2)*.

By applying the principle of virtual work (i.e. 5WT = SW), we obtain

r* = ee • J- (4.61)

If we compute the transpose at both sides of Eq. 4.61, this equation will
become

T = Jt»£e. (4.62)

Eq. 4.62 describes the static relationship between external force/torque
exerted upon the end-effector's frame, and generalized forces required on the
open kineto-dynamic chain in order to keep the whole system at rest. This
static relationship is very useful for the study of compliance or interactive
control because £e encapsulates the interacting force and/or torque between
the robot's hand and its environment.

In general, Eq. 4.62 is also valid for any open kineto-dynamic chain
with n rigid links. Here, we consider the case of revolute joints. If joint i
is a prismatic joint, the corresponding generalized coordinate will be linear
displacement di and the associated generalized force will be force ft itself.

4.6 Robot Dynamics

The purpose of robot dynamics is to determine the generalized forces re-
quired to not only overcome the self-inertial loads (due to the weights of
the links inside the robot) but also to produce the desired input motions
to the robot's mechanism.

Fig 4.33 illustrates the problem of robot dynamics. In this example, we
assume that the robot's body stands still. The robot's arm is holding a
tool, which can be a laser welding gun or any other industrial tool. For the
robot to fulfill a task (e.g. arc welding), the robot needs to move the tool
to follow a predefined trajectory. It is clear that the robot's arm has to
execute motions in order to carry the tool along that trajectory. Therefore,
a certain amount of work (i.e. energy) must be done to the robot system.
The work done to the robot will not only overcome the self-inertial load of
the arm but also generate the desired motions to the joints of the arm so
that the tool will follow the trajectory.

Now, the question is: What should the generalized forces applied to
the joints of the robot arm be in order to produce the desired velocity and

166 The Fundamentals of Robotics: Linking Perception to Action

n
m\g - • v s^ y

J U mz8 (^^^^

Trajectory

Z_H
Fig. 4.33 Illustration of the problem of robot dynamics.

acceleration at the generalized coordinates (joint variables), which will sub-
sequently produce the desired velocity and acceleration at the end-effector's
frame (forward kinematics of the robot's mechanism)?

4.6.1 Dynamic System of Rigid Bodies

Refer to Fig 4.33. The robot's arm is an open kineto-dynamic chain con-
sisting of two rigid links. For the study of robot dynamics, an open kineto-
dynamic chain can be conveniently treated as a dynamic system of rigid
bodies. These bodies satisfy the constraints imposed by the kinematics of
the robot's mechanism, and also the constraints imposed by Newton's third
law (the relationship between a pair of acting and reacting forces).

Fig. 4.34 shows the mathematical abstraction of an open kineto-dynamic
chain by a dynamic system of rigid bodies. Link 0 is the supporting body of
link 1, while link 1 is the supporting body of link 2. In this example, links
1 and 2 are represented respectively by a mass, a center of gravity, a sum
of all externally-exerted forces upon the body and a sum of all externally-

Electromechanical System of Robots 167

^^"^ System of Rigid Bodies ^ ^ \ ^

/ LinkO ^ \

\ \ r l - ' - --'•illU V - O -•* I

\ • cv- t -—™r' /

Fig. 4.34 Mathematical abstraction of an open kineto-dynamic chain by a dynamic
system of rigid bodies.

Table 4.2 Parameters of links.

Link Mass Center of gravity Summed force Summed torque

1 mi r c l Fi Mi

2 m2 rc2 F2 M2

exerted torques upon the body. Table 4.2 summarizes the parameters of

links 1 and 2 in Fig. 4.34.

4.6.2 Dynamics of a Rigid Body

Before we develop the solution for robot dynamics, let us examine the

solution of dynamics for a single rigid body.

Angular motion

Z
M — A- -1

. f r " " ~'T ' '- Linear motion

Fig. 4.35 Dynamics of a single rigid body.

168 The Fundamentals of Robotics: Linking Perception to Action

Fig. 4.35 shows a single rigid body in a reference frame. rc is the position
vector indicating the center of gravity of the body; r is the position vector
of differential mass element dm on the body; rd is the displacement vector
from the center of gravity to differential mass element dm. By default, all
these vectors, rc, r and rd, are expressed in the common reference frame
(i.e. frame 0). Assume that the body is subject to some external forces and
torques. The sum of the external forces is denoted by F and the sum of
the external torques is denoted by M. Now, the questions are: What will
the relationship be between the motion parameters of a rigid body and the
sum of (external) forces/torques exerted upon the body? And, how is the
motion of a rigid body related to its energy state (i.e. potential and kinetic
energy)?

4.6.2.1 Motion Equations of a Rigid Body

By definition, the mass of the body is

m = / dm (4.63)
J body

where dm is a differential mass element. If the mass density of rigid body
is p(r), then dm is expressed as

dm = p(r) • dx dy dz.

If we know the mass of the rigid body, then the position vector indicating
the center of gravity of the body is

1 f
rc = — / r • dm. (4.64)

m Jbody

Since r = rc + rd, Eq. 4.64 becomes

1 f 1 f , l f
rc = — / rc • dm H / rd • dm = rc-\ / rd • dm.

m Jbody rn Jbody m Jbody

Therefore, the following result is proven:

/ rd • dm = 0. (4.65)
J body

This equation illustrates that the sum of displacement vector rd weighted
by differential mass element dm is equal to zero.

Electromechanical System of Robots 169

Assume that the motion parameters of the body at the center of gravity
are as follows:

vc : linear velocity vector;
to : angular velocity vector;
ac : acceleration vector;
a : angular acceleration vector.

From the relationship r = rc + rd, the linear velocity vector at position
r of differential mass element dm will be

dr drc drd
dt dt dt

Since ^ = vc and ^ = u x r<j, we have

v — vc + to x rd. (4.66)

Similarly, the differentiation of Eq. 4.66 yields the expression for the
acceleration vector at position r, that is,

dv dvc d

dt dt dt

or

a = ac + LO x {UJ x rd). (4-67)

By definition, the linear momentum at differential mass element dm, is
v • dm. Then, the linear momentum of the rigid body will be

p = v • dm = I (vc + to x rc) • dm
Jbody Jbody

or

P = / Vc* dm + I (to x r<i) • dm.
Jbody Jbody

S i n c e Ibody (u x rd) * dm = u) x (Jbody rd • dm) and Jbody rd*dm = 0 (i.e.
Eq 4.65), the linear momentum of the rigid body becomes

p = vc» dm = vc • m.
J body

By definition, the variation rate of the linear momentum of a body is
equal to the sum of external forces exerted upon the body. As a result, the

170 The Fundamentals of Robotics: Linking Perception to Action

equation of motion governing linear motion will be

dp dvc
F = — = m» —-

dt dt
or

F = m»ac. (4.68)

Now, we consider the general case in which the motion of the rigid
body is composed of linear motion at its center of gravity, and angular
motion about an axis at its center of gravity. If the linear momentum at
differential mass element dm is vdm, by definition, the angular momentum
of differential mass element dm, with respect to the center of gravity of the
body, is rj, x (v • dm). Then, the angular momentum of the rigid body,
with respect to its center of gravity, will be

H = / (rd x v) • dm.
Jbody

Substituting Eq. 4.66 into the above equation yields

H = / (rd x rc) • dm + (r^ x (u x r^)) • dm. (4.69)
J body J body

If S(-) denotes the skew-symmetric matrix of a vector, the cross-product
of any two vectors a and b can be expressed as

a x b = S(a) • b

or

a x b= (-b) x o — 5*(6) • a.

By using the property of the skew-symmetric matrix, we have

/ (rd x rc) • dm = Sl(rc) • rd* dm — 0
Jbody Jbody

(i.e. Eq. 4.65), and

rd x (to x rd) = S(rd) • S*(rd) • w.

As a result, Eq. 4.69 can be simplified to:

H= I S(rd)»St(rd)»uj*dm.
J body

Electromechanical System of Robots 171

By applying the following property of a skew-symmetric matrix:

S(-).St(-) = St(-).S(-),

the angular moment H can also be written as

H= f St(rd)»S(rd)*LO*dm.
Jbody

If we define

1= f St(rd)»S(rd)»dm, (4.70)
J body

the final expression for the angular momentum of the rigid body becomes

H = I»u. (4.71)

In fact, matrix / is the inertial tensor or mass moments of inertia (or
simply inertial matrix). From Eq. 4.70, it is clear that the inertial matrix
depends on the choice of reference frame because vector rd is expressed
with respect to the reference frame chosen.

By definition, the variation rate of the angular momentum of a body is
equal to the sum of external torques exerted upon the body. Finally, the
equation of motion, governing the angular motion, will be

, , dH T dw dl

or

M = I»a+^-mu. (4.72)
dt

(NOTE: / is not a constant matrix).
In Eq. 4.72, inertial matrix I is computed with respect to frame 0.

When the rigid body changes its position or orientation, this matrix has to
be recalculated. Computationally, it is not desirable to keep calculating an
inertial matrix based on Eq. 4.70. An alternative way is to compute the
inertial matrix of a rigid body with respect to a fixed frame assigned to
the rigid body itself, and then to calculate inertial matrix I with respect
to frame 0.

In practice, it is convenient to choose a frame assigned to the center of
gravity of a rigid body. Refer to Fig. 4.35. Frame c is attached to the rigid
body at the center of gravity. Let crd denote the displacement vector of

172 The Fundamentals of Robotics: Linking Perception to Action

rd, expressed in frame c. By definition, inertial matrix CI of the rigid body,
with respect to frame c, is

CI= f St{crd)»S(crd).dm. (4.73)
Jbody

If rotation matrix Rc (or more precisely °RC) describes the orientation
of frame c with respect to frame 0, then vector rd expressed in frame 0 is
related to the same vector crd expressed in frame c as follows:

rd = Rc »c rd. (4.74)

Substituting Eq. 4.74 into Eq. 4.70 yields

1=1 Sl {Rc »c rd) • S(Rc •crd)»dm. (4.75)
•Jbody

Since S{RC «c rd) = Rc • S(crd) • i?* (see Chapter 2), Eq. 4.75 can be
simplified as

I = Rc*{f St(crd)»S(crd),dm\»Rtc

I Jbody)
or

/ = Rc • {CI} . Rl (4.76)

Eq. 4.76 is a computationally efficient solution to calculate the inertial
matrix of a rigid body with respect to a reference frame because inertial
matrix CI of the same body, with respect to frame c assigned to the body,
is a constant (and symmetric) matrix. Eq. 4.76 also allows us to evaluate
the derivative ^ in Eq. 4.72.

4.6.2.2 Potential Energy of a Rigid Body

Now, let us examine the relationship between the position of a rigid body
and its potential energy.

Assume that the density vector of gravitational force on the surface of
the Earth is g. g is a vector pointing towards the center of the Earth,
and is expressed in the common reference frame. If the Z axis of the
reference frame is pointing upward and perpendicular to the ground, g =
(0, 0, —9.803)*. If we consider differential mass element dm, its differential
potential energy dVm will be

dVm = -g* • r •dm= -gl • (rc + rd) • dm.

Electromechanical System of Robots 173

As a result, the total potential energy of the body is

V = f dVm = -gt» I (rc + rd) • dm.
Jbody Jbody

Since Jbod rd • dm = 0 and Jbod rc • dm = rc»m, the potential energy
of a rigid body will be

V = -TO • gl • rc. (4.77)

4.6.2.3 Kinetic Energy of a Rigid Body

When a rigid body is in motion, it stores kinetic energy. In other words,
if we want to move a rigid body which is initially at rest, we must apply
energy to it. In robotics, the kinetic energy of a rigid body is very important
in the understanding of robot dynamics.

Consider differential mass element dm at position r on the rigid body. If
v is the velocity vector of this differential mass element, the kinetic energy
of this differential mass element will be

dKm = -v1 »v» dm.

Since v = vc + UJ x rd (i.e. Eq. 4.66), we have

dKm = -(vc + to x rdf • (vc + to x rd) • dm.

The integration over the entire body of the above equation yields the
total kinetic energy of the body, that is,

K = I dKm = ~ / {VC + UJ x rdy • (vc + u> x rd) • dm
Jbody ^ Jbody

or

K = o / ivcvc + v*(w x rd) + {OJX rafvc + (w x rd)*(w x rd)} • dm.
1 Jbody

(4.78)
By applying the property Jbod rddm = 0, one can easily prove

/&«*,,K(w x rd) + (w x rdyVc} •dm = Jbody{vlS(uj)rd + ^ ^ (w j w j • dm

= 0

where S(UJ) is the skew-symmetric matrix of u>.

174 The Fundamentals of Robotics: Linking Perception to Action

If we use the property of the skew-symmetric matrix, we have

(w x rd)*(o, x rd) = [S*(rd)w]t[Srt(rd)w] = ^[5(r d)^ (r d)] W .

Therefore, Eq. 4.78 can be simplified as

K = \ f Hvc + w*[5(rd)5*(rd)]u;} . dm. (4.79)
1 Jbody

Substituting Eq. 4.63, Eq. 4.70 and Eq. 4.76 into Eq. 4.79 yields

K= -m»vtc»vc+ -LUt»I»w (4.80)

or

K = \m • v\ • vc + Jo/ • [Rc . c / • Rlc\ • u. (4.81)
Zi Zi

Eq. 4.81 describes the kinetic energy stored inside a rigid body in mo-
tion. The first term in the equation refers to kinetic energy from the linear
motion, and the second term refers to kinetic energy from the angular mo-
tion. From this equation, it is clear that the motion of a rigid body is
directly related to its kinetic energy. A simple way to produce the desired
motion on a rigid body is to control the amount of energy added to, or
removed from, the kinetic energy of the rigid body.

4.6.3 Newton-Euler Formula

If we know the solutions to a single rigid body's dynamics, it is easy to
derive the equations of motion for an open kineto-dynamic chain. The first
method is the Newton-Euler formula. The basic idea behind the Newton-
Euler formula is to treat an open kineto-dynamic chain as a dynamic system
of rigid bodies which satisfy: a) the kinematic constraint imposed upon
the robot's mechanism, and b) the dynamic constraint imposed upon the
kineto-dynamic couplings.

For the purpose of better illustrating kinematic and dynamic con-
straints, we redraw Fig. 4.34. The result is illustrated in Fig. 4.36. Now,
let us consider an open kineto-dynamic chain with n + 1 links. For the
example shown in Fig. 4.36, the robot's arm has three links (n = 2).

4.6.3.1 Kinematic Parameters of a Link

An open kineto-dynamic chain is the superset of the corresponding simple
open kinematic-chain. Obviously, we must know the kinematic parameters

Electromechanical System of Robots 175

^ Acting torque
Acting force '

Acting torque / 2 1
, , Cb / 7,
1 /->. x~J ' / y i 2
! U U \cting force ' • ' ^ ^ j l t i " I , if

#.jP- *v!ml 1 ^ Joint 2

* • • ; ,

Link 0

Fig. 4.36 Illustration for Newton-Euler formula.

of an open kineto-dynamic chain even if the purpose here is only to study
the dynamics.

As shown in Fig. 4.36, each link is assigned a frame according to the
DH representation (see Chapter 3). The frame assigned to a link is located
at its distal node. For the study of dynamics, the center of gravity of a
rigid body plays a useful role. Therefore, we must know where the center
of a link's gravity is. In general, link i inside an open kineto-dynamic chain
should have the following kinematic parameters:

• Of. the origin of link i's frame;
• Rf. the rotation matrix describing the orientation of link i's frame;
• rci: the center of gravity of link i;
• Vim. the linear velocity vector of link i's frame;
• a*: the linear acceleration vector of link i's frame;
• LOi\ the angular velocity vector of link i's frame which has Z\—\ as its

axis of rotation;
• on: the angular acceleration of link i.

By default, all the kinematic parameters of a link are expressed with
respect to a common reference frame. Usually, the base link's frame (i.e.
frame 0) is chosen as the common reference frame.

176 The Fundamentals of Robotics: Linking Perception to Action

4.6.3.2 Dynamic Parameters of a Link

Similarly, we must also know what the dynamic parameters related to each
rigid body inside an open kineto-dynamic chain are. In general, the dy-
namic parameters of a rigid body include mass and inertial matrix. Due
to the dynamic constraint imposed by kineto-dynamic couplings, the act-
ing and reacting forces/torques are very important dynamic parameters as
well.

Now, consider an open kineto-dynamic chain with n + 1 links where
link i is supported by link z — 1 through joint i. The externally-exerted
force or torque (except gravitational force) is applied to a link through the
supporting joint. Therefore, it is logical to call the force or torque applied
to a joint the acting force or torque. When joint i applies an acting force
or torque to link i, joint i will also exert a reacting force or torque to link
i — 1 according to Newton's third law. As a result, the dynamic parameters
of link i inside an open kineto-dynamic chain will include

• mf. the mass of link i;
• cIi. the inertial matrix of link i, calculated with respect to the center

of the link's gravity;
• Ii. the inertial matrix of link i, calculated with respect to the common

reference frame (frame 0);
• fc the acting force exerted by joint i on link i;
• —fi+i\ the reacting force exerted by joint i + 1 on link i;
• Tii the acting torque exerted by joint i on link i;
• — Tj+i: the reacting torque exerted by joint i + l o n link i.
• g: the density vector of gravitational force on the surface of the Earth,

expressed in the common reference frame (frame 0).

By default, all dynamic parameters are expressed with respect to the
common reference frame (frame 0).

4.6.3.3 Sum of Forces of a Link

Before we derive equations of motion for each link, we need to know the
sum of forces/torques exerted upon a link.

We denote Fi the sum of all exerted forces on link i. If we know the
dynamic parameters of link i, the sum of forces F, will be

Fi = fi + {-fl+1)+mi.g. (4.82)

g is a vector expressed in the common reference frame (frame 0). When

Electromechanical System of Robots 177

studying a humanoid robot, this vector may not be a constant vector be-

cause the reference frame will have relative motion with respect to the Earth

when a humanoid robot is in motion.

4.6.3.4 Sum of Torques of a Link

If joint i is a prismatic joint, it will not apply any torque to link i. Here, we

consider the case of revolute joints and assume that all links can undergo

angular motion.

When force is applied to a body, which can make rotation, this force will

also induce torque on the body with respect to a reference point. Here, we

consider the center of gravity of a body as a reference point. If we denote

• 7"ci,i-i: the vector connecting the center of gravity rCi of link i to origin

Oi-i of frame i - 1 (rci)i_i = Ot-i — rci), and

• rciti\ the vector connecting the center of gravity rci of link i to origin

Oi of frame i (rCi,i — Oi - rci),

the induced torques corresponding to acting force /» and reacting -fi+i

will be rciti^i x /* and rciyi x (- / i + 1) respectively.

We further denote Mi the sum of all torques exerted on a link i. If we

know the kinematic and dynamic parameters of link i, the sum of torques

Mi will be

Mi=Ti + (-Ti+1) + rd i i_ i x fi + (-rc M x fi+1). (4.83)

4.6.3.5 Equation of Linear Motion of a Link

By direct application of the result in Eq. 4.68, the equation of linear motion

of link i is

h + (-fi+i) + ^i • 9 = rrn • aci (4.84)

where aCi is the acceleration vector at the center of gravity of link i.

By differentiating the equation rci = Oi — rCiti, we obtain

drCi dOi d
Vd = ~JT — ~HT - ^rci,i = Vi-UJiX rciti.

dt dt dt

Further differentiation of the above equation yields the expression for

the computation of the linear acceleration vector at the center of gravity.

178 The Fundamentals of Robotics: Linking Perception to Action

That is,

dvci dvi du>i f d \
dt dt dt \dt)

or

aci = a% - Q-i x rci,i - w , x (u>i x r c i > i) . (4.85)

Finally, the expression of the equation of linear motion becomes

fi + (-/j+i) +mi»g = mi»{ai-ai x rcM - w , x (^ x rci<i)}. (4.86)

4.6.3.6 Equation of Angular Motion of a Link

Similarly, the direct application of the result in Eq. 4.72 yields the equation
of angular motion for link i, that is,

Ti + (-TJ+I) + rciti-i x fi + (-rci)i x fi+1) = Ii»ai + -j±»ui. (4.87)

Since U = Rt • {C/J • i?* (i.e. Eq. 4.76), we have

By applying the property ^ = S(u>) • R where R is a rotation matrix
describing the orientation of a frame, and u> is the angular velocity acting
on the frame (see Chapter 2 for detail), the derivative of inertial matrix Ii
becomes

^ = S(ui) • Ri • {ch} • ^ + i2i • f / J • i?* • 5*(o;0

or

As a result, the term ^ • u>i in Eq. 4.87 can be expressed as

—^•ujt = S{uJi) • (Ii • u>i) + /j • (S^oJi) • iOi)

or

—- • LOi = LUi X (Ii • UJi) +Ii» (S*(Wi) • Ui).
dt

Electromechanical System of Robots 179

Since St(cJi) • w, = u>i x Wj = 0, the derivative of inertial matrix Ii can
be simplified as

^ • u ^ W i X (£•<*). (4.88)

Substituting Eq. 4.88 into Eq. 4.87 yields

Tj + (-Ti + 1)+rc M_i x / j + (- r c i] i x / 1 + 1) = / I » a 1 + w I x (/i»Wj). (4.89)

Eq. 4.89 is the final expression of the equation of angular motion.

4.6.3.7 Recursive Algorithm for Forces/Torques

A robot is used to perform actions and tasks through the execution of
motions. The desired motions of the links inside a robot's mechanism are
normally planned based on the input task or action that a robot must
undertake. Therefore, given the kinematic parameters, and the planned
motions of a robot, the required forces and torques can be computed by
using the equations of linear and angular motion in a recursive manner.

In order to make this statement clear, let us write Eq. 4.86 and Eq. 4.89
in the following recursive form

[fi = fi+i + mi • {at - a , x rcM - w , x (w, x rciii)) - m* • g ,^ gQ,
\n= ri+1 - rciii_i x ft + rci>i x fi+1 +Ii» on +WjX (I, • Ui),

(Vi = n , n - l , . . . l) .
It is obvious that Eq. 4.90 describes a backward recursive algorithm for

the computation of the required forces and torques at the joints in order to
produce the desired motions to the links inside the robot's mechanism. It
is a tedious process if we have to do the computation by hand. In practice,
we will make use of a computer to do the complex computations.

4.6.3.8 Recursive Algorithm for Velocities and Accelerations

Strictly speaking, Eq. 4.90 does not explicitly relate the generalized forces
(the forces or torques produced at the joints) to the generalized coordi-
nates (the joint variables and their derivatives). This is because the motion
parameters (vi,a,i,uii,ai) are related to the frame assigned to link i and
they are not the derivatives of the generalized coordinate qi of joint i. As
a result, we need to know how these motion parameters are related to the
generalized coordinates and their derivatives.

180 The Fundamentals of Robotics: Linking Perception to Action

Assume that 5, is the joint variable of joint i. According to DH repre-
sentation, we have

_ (0i if revolute joint;
\di if prismatic joint.

And, the axis (or direction) of motion at joint i is the Zi-i axis (i.e. A?i-i).
A joint can be either a revolute joint or a prismatic joint. Here, we

imagine that each joint has two joint variables: 6 and d. If joint i is a
revolute joint, its two joint variables will be: 9i and dt = 0 (0 means that
this variable is not in use). If joint i is a prismatic joint, its two joint
variables are: ^ = 0 and di.

Let us first derive the recursive solution for the computation of the
angular velocity vectors {u;,, i = 1,2, ...,n} and acceleration vectors
{ati, i = 1,2, ...,ra} of link frames. For joint i, we set qt = Qi. Obvi-
ously, qi = 0 if joint i is a prismatic joint. Refer to Fig. 4.36 or Chapter 3.
The relative angular velocity vector of frame i with respect to frame i — 1
will be

Qi» i~1ki-i.

If Ri-i is the rotation matrix describing the orientation of frame i — 1 with
respect to the common reference frame (frame 0), the relationship between
the angular velocity vector of frame i and the angular velocity of frame i — 1
will be

u>i = cui-i + Ri-i • {qi • l~1ki-i}

or

LJi=cui-i+qi»ki-i. (4.92)

Differentiating Eq. 4.92 with respect to time gives

(*i = tti-i +q\» fcj-i + qi • (uJi-i X ki-i). (4.93)

(NOTE: £(&_!) =wi_ix£_1) .
Eq. 4.92 and Eq. 4.93 are the forward recursive solutions for the compu-

tation of angular velocity vectors and angular acceleration vectors of link
frames (i.e i = 1, 2,..., n if there are n+1 links in the open kineto-dynamic
chain).

Now, we derive the recursive solutions for the computation of linear
velocity vectors {vi, i = 1,2, ...,n} and acceleration vectors {m, i =

(4.91)

Electromechanical System of Robots 181

1, 2,..., n} of link frames. In this case, we set qi = di for joint i. qi = 0, if

joint i is a revolute joint. Let Oi-iti denote the displacement vector from

origin Oj_i of frame i — 1 to origin O* of frame i. By default, all vectors

are expressed with respect to the common reference frame. From a simple

geometry, we know

Oz = Oi-1+Ol-hl.

If rotation matrix Ri describes the orientation of frame i with respect

to the common reference frame (frame 0), displacement vector Oj-i^ can

be expressed as

Oi-ij = Ri • lOi-iti-

Therefore, origin Oi can be rewritten as

Ox = Oi_i + Ri • 'Oi-Li.

Differentiating the above equation with respect to time yields

Vi = v ^ + ̂ • 'Oi-Li + Ri • JtVOt-i,i}- (4-94)

Since link i is a rigid body, we have

(NOTE: it will be zero if joint i is a revolute joint). Then, Eq. 4.94 becomes

Vi = Vi_i + S{u)i) • Ri • 'Oj-i.i + Ri»qi» %-i

or

Vi = Vi-x +UjX Oj_i,j + 9i • fc,_i. (4.95)

Because Uj = i>i_i + Jj{O»-i,i}, Eq. 4.95 also proves the following equal-
ity

^{Oi-i , i} = ^ x O^!,, + qt • ki-x. (4.96)
at

By differentiating Eq. 4.95, we obtain

at = ai-.1+aixOi-lti+uiiX~{Oi-iti}+qi»ki^i+qi»(uJi-ixki-i). (4.97)

(NOTE: ^ki_1)=cji-1 xfc^j).

182 The Fundamentals of Robotics: Linking Perception to Action

Eq. 4.95 and Eq. 4.97 are the forward recursive solutions for the com-
putation of linear velocity vectors and acceleration vectors of link frames
(i.e i = 1,2,..., n if there are n +1 links in the open kineto-dynamic chain).

4.6.4 Euler-Lagrange Formula

The equations of motion derived from the Newton-Euler formula is recursive
in nature. It is computationally efficient and is fundamentally based on
Newton's Third Law governing the relationship among acting and reacting
forces in a dynamic system. In some cases, it may be desirable to have a
closed form solution of robot dynamics. In fact, we can apply the Euler-
Lagrange Formula to derive a compact description of motion equations in
a matrix form.

4.6.4.1 D'Alembert Principle

The Euler-Lagrange Formula is derived from the D'Alembert Principle.
The D'Alembert Principle governs the balance of forces acting on a system
of particles in motion.

The basic idea behind the D'Alembert Principle is simple. For a particle
having mass m and moving at velocity v, its linear momentum is p = m»v.
If F denotes the sum of external forces acting on the particle, we have
F = p (i.e. Newton's second law). If we define — p the inertial force of
a particle, then F + (—p) = 0. Conceptually, this means that the sum of
external forces acting upon a particle, plus its inertial force, is equal to
zero.

Now, let us consider a system of n particles. Assume that particle i is
represented by the following physical quantities:

• m,i\ mass;
• rf. position vector;
• Vim. linear velocity vector;
• Ff. sum of external forces acting upon the particle;
• F[: sum of internal forces acting upon the particle;
• pi: rate of change in its linear momentum.

According to Newton's Third Law, every acting force will have a corre-
sponding reacting force. The sum of the acting and reacting forces is equal

Electromechanical System of Robots 183

to zero. Therefore, we have

i = l

Since Fi + F[+ (—pi) = 0 for particle i, then we have

n

X > , + F[+ (-pi)) = 0. (4.98)

Eq. 4.98 describes the D'Alembert Principle for the force balance gov-
erning a system of particles. It states that the sum of all forces inside a
dynamic system of particles is equal to zero. In other words, a dynamic
system is always dynamically in balance.

As the sum of internal forces is equal to zero, Eq. 4.98 can be rewritten
as

n n

$>< = $>. (4-99)
t= l i = l

If Srt denotes the virtual displacement of particle i at a time-instant,
the multiplication of to to both sides of Eq. 4.99 yields

n n

£(*<•<&•<) = £ & • to). (4.100)
i= l i = l

If we denote 6WF = T,7=i(Fi*Sn) and 5Wk = ^=1{Pi»Sri), Eq. 4.100
becomes

5WF = SWk. (4.101)

Eq. 4.101 illustrates the balance of virtual work done to a system in
dynamic equilibrium. In other words, the D'Alembert Principle also states
that virtual work done by external forces to a system is equal to virtual
work done by inertial forces. (NOTE: A work can be negative if energy
is removed from a system). The principle of virtual work for statics is a
special exception to the D'Alembert Principle (i.e. 5Wk — 0 for a system
at rest).

4.6.4.2 Lagrange Formula

If the particles in a system undergo linear motion, we can derive the well-
known Lagrange Formula from the D'Alembert Principle.

184 The Fundamentals of Robotics: Linking Perception to Action

Virtual Displacements

Assume that a system of n particles is presented by n generalized coordi-
nates {qi,i = 1,2, ...n}. Then, position vector r̂ of particle i is a function
of the generalized coordinates as follows:

n =ri(qi,q2,...,qn)-

And, the virtual displacement Sri will be

^ = E(|J:*%)- (4-102)
As position vector r̂ is a function of the generalized coordinates, its

corresponding velocity vector Vi will be a function of the generalized coor-
dinates and their velocities, that is:

* = * = E(^-*)- (4-103)
From Eq. 4.103, it is easy to see that the computation of the partial

derivative ^ yields

P = P. (4.104)
% dqi

As a result, the virtual displacement Sri can also be expressed as

* • < = E (l | • * *) • (4-105)

Kinetic Energy

Given particle i, its kinetic energy is

1 t

-mi»Vi »Vi.

Hence, the total kinetic energy stored by the system of n particles will be

From Eq. 4.103, we know that velocity vector Vi is a function of the
generalized coordinates and their velocities. Then, Eq. 4.106 allows us to

(4.106)

Electromechanical System of Robots 185

compute the following partial derivatives

fg 'EM^^-g, Vje[l,n]
I (4.107)

[Ht = E T = i " * ^ - ^ . Vje[l ,n] .

Potential Energy

For particle z, its potential energy is

And, the total potential energy stored by the system of n particles will be

n

V = 53(-mi . 5*«r i) . (4.108)
z = l

(NOTE: g is a vector expressed in the common reference frame).
Since position vector r̂ is a function of the generalized coordinates, the

potential energy will also be a function of the generalized coordinates as
follows:

V = V(qi,q2, ...,qn)-

And, virtual work done to the system by gravitational force will be

6WV = -5V = J2(-d^' 51*) • (4-109)

The potential energy is independent to the velocities (i.e. motions) of
the generalized coordinates. It is obvious that the following equation holds:

dV
— = 0 , VtG[l ,n] . (4.110)
(JQi

Virtual Work done by External Forces

We denote TJ the generalized force associated to the generalized coordinate
Qj. Virtual work done by generalized forces to the system of n particles will
be

n

6WT = Yd{ji*5q^. (4.111)
i=l

186 The Fundamentals of Robotics: Linking Perception to Action

In general, the external forces exerted upon the system of n particles
include: a) gravitational forces and b) generalized forces. As a result,
virtual work done to the system by external forces is

5WF = 5WV + 6WT

or

5WF = y2(~+Tl).5qi. (4.112)
i = 1 V aQi J

Virtual Work done by Inertial Forces

The linear momentum of particle i is m, • Vi, and its corresponding inertial
force is (—m,i • vi). Therefore, virtual work done by inertial forces will be

n

5Wk = J2(mi*i)i»Sri). (4.113)

(NOTE: There is no negative sign. This means that the system absorbs
energy).

From

~{vi • Sri} = Vi» Sri + vt • 5rt,
at

we have

Vi • Sri = -T,{vi* 5ri\ ~vi* Sfi.

at

Then, Eq. 4.113 can be rewritten as
SWk =A-B (4.114)

where

B — YH=l(mi*vi*Sri).

By applying Eq. 4.105, the first term in Eq. 4.114 can be expressed as

n I A \ n f)' l \

Electromechanical System of Robots 187

The sequence of summations is permutable. So, the above equation can
be rewritten as

By applying the second equality in Eq. 4.107, we have

. ^ d (dK\

or

(NOTE: f | = fg because v% = h).
Now, we examine the second term in Eq. 4.114. As velocity vector Vj

is a function of the generalized coordinates, virtual displacements of the
generalized coordinates will cause virtual displacement of Vi. Therefore,
Svi can be expressed as follows:

As a result, the second term in Eq. 4.114 becomes

n I n / a \ I

or

By applying the first equality in Eq. 4.107, we obtain

or

(4.115)

(4.116)

188 The Fundamentals of Robotics: Linking Perception to Action

Finally, virtual work done by inertial forces can be compactly expressed
as a function of kinetic energy, that is,

Expression of Lagrange Formula

Now, it is easy to obtain the expression for the well-known Lagrange For-
mula. In fact, substitution of Eq. 4.112 and Eq. 4.117 into Eq. 4.101 yields

£{(-£H-H^(f)-a-4 ^
It can also be equivalently written as

- £ — l (f) - £ -w- <«»>
Gravitational force is a conservative force. This means that potential

energy does not depend on any velocity variable. Thus, we have

d_ /dV\

dt \dq~) ~ '

If we define L = K — V, Eq. 4.119 can be compactly expressed as

dt \dqij dqt

Eq. 4.120 is the famous Lagrange Formula. This expression is also valid
for a system of n rigid bodies, which satisfy a holonomic constraint such as
the kinematic constraint imposed upon a robot's mechanism. This exten-
sion is called the Euler-Lagrange Formula. It is a very useful formula for
the derivation of a closed-form solution to the motion equations in robotics.

4.6.4.3 Equations of Motion

Refer to Fig. 4.36. An open kineto-dynamic chain can be treated as a
dynamic system of rigid bodies which satisfy: a) the kinematic constraint
imposed by the robot's mechanism and b) the dynamic constraint imposed
by the kineto-dynamic couplings (i.e. Newton's Third Law on the rela-
tionship between acting and reacting forces). If a robot's mechanism is
in the form of a simple open kinematic-chain, the kinematic constraint
will be a holonomic constraint. In this case, we can directly apply the

(4.117)

(4.120)

Electromechanical System of Robots 189

Euler-Lagrange Formula to derive the closed-form solution to the motion
equations. These motion equations relate torques (or forces) to the input
motions of the robot's mechanism.

Let us consider an open kineto-dynamic chain with n + 1 links which are
connected in a series by revolute joints. For the example shown in Fig. 4.36,
the robot's arm has three links (i.e. n = 2). Given joint i, we represent
it with two variables: a) the joint variable qi (generalized coordinate), and
b) the torque Tj (generalized force). And, we denote q = (qi,q2, •••,qn)t the
joint variable vector, and r = {T\,T2, ••-,Tn)t the joint torque vector. In
addition, given link i, we first assign a new frame ci at its center of gravity,
and define the following parameters for it:

• m;: mass;
• rCi: its center of gravity;
• vci: linear velocity vector at rci;
• u)i. angular velocity vector;
• aIci'- inertial matrix calculated with respect to the center of gravity, in

frame ci;
• RCi: rotation matrix describing the orientation of frame ci with respect

to the common reference frame (frame 0);
• Jci~. the Jacobian matrix of frame ci with respect to the common ref-

erence frame.

Frame at the Center of Gravity of a Link

In order to apply Eq. 4.81 to determine the kinetic energy of a link, we
need to assign frame ci at the center of gravity rCj of link i. One simple
way to do this is to duplicate the link's frame i and translate it to location
rci. If we treat frame ci as an end-effector frame, the Jacobian matrix
Jci describes the motion kinematics of frame ci with respect to frame 0
(the common reference frame), and can be computed from the kinematic
solutions discussed in Chapter 3.

Now, if Pci denotes the velocity vector of frame ci with respect to frame
0, we have

Pcl=(VA=Jci.q. (4.121)

Normally, Jacobian matrix J is a 6 x n matrix and is composed of two
sub-matrices: a) a 3 x n matrix Jo governing linear velocity, and b) a 3 x n

190 The Fundamentals of Robotics: Linking Perception to Action

matrix Jw governing angular velocity. If we denote

Ja=[),
Eq. 4.121 can be rewritten as

f vci = J°ci • q
I (4.122)

Kinetic Energy of an Open Kineto-Dynamic Chain

The direct application of Eq. 4.81 yields the expression for kinetic energy
stored in link i, that is,

Ki = -mi • vfci • vci + -w\ • RCi • {clId} • Ki • Ui.

Substituting Eq. 4.122 into the above equation gives

Ki = Jm, • (JS • QY « {J°a « 9) + \(-% • <?)* • Ra • {"/«} • i& • (^ • <i)

or

^ = ^ ' • {mi • (J°)* • J° + (J^)* • i?ci • {clIn} • i?*e • Jci) • 9- (4-123)

Then, the kinetic energy stored in an open kineto-dynamic chain will
be

K = ±Kt
i=i

or

K = *̂ • I E[m» • (Jri)* • j s + (^ • ̂ • r ^ } • ̂ • ^] | • «•

If we define

J3(«) = E ^ • (J -) ' # JS + ra* • *» • {ci/c0 • Ki • JSJ. (4-124)
i=l

the expression for the total kinetic energy /i" can be compactly written as

K=±qt*B(q)*q (4.125)

Electromechanical System of Robots 191

where B(q) is a n x n matrix, which depends on the generalized coordinates
q. In robotics, B(q) is commonly called inertial matrix of a kineto-dynamic
chain. In fact, we can represent B(q) as follows:

{biiiq), Vie[l,n],Vje[l,n]}.

Accordingly, Eq. 4.125 can also be expressed as

.. n n

^=2EEM?)«ft»?)-- (4-126)
i=l j = l

Potential Energy of an Open Kineto-Dynamic Chain

Let g be the density vector (or acceleration vector) of the gravitational force
field on the surface of the Earth. It is expressed with respect to the common
reference frame (frame 0). It is not a constant vector if the reference frame
changes during the action or motion undertaken by a robot.

By definition, the potential energy stored in link i is

Vi = - m ; • g* • rci.

As a result, the potential energy stored in an open kineto-dynamic chain
will be

n n

i=l i=l

Motion Equations of an Open Kineto-Dynamic Chain

If we know the expressions of potential and kinetic energies stored in an
open kineto-dynamic chain, we are ready to apply Eq. 4.119 (or Eq. 4.120)
to derive the motion equations. For easy reference, let us rewrite Eq. 4.119
as follows:

!(£)_«C + £_n,v,e,lin|. (4.128)
dt \dqij dqi dqi

Now, we need to evaluate the expressions of the three terms on the left
side of Eq. 4.128.

From Eq. 4.126, we have

dK yhu (\ •^7 = Z.M«)-*-

(4.127)

192 The Fundamentals of Robotics: Linking Perception to Action

The computation of the first-order derivative of the above equation
yields

Jt (f f) = T)f>iM) • <& + M<?) • %•]• (4-129)

The derivative bij(q) in Eq. 4.129 can be computed as follows:

or

Accordingly, Eq. 4.129 becomes

5(f)-i:M«).ft+x:t^.fc.*. (4.130)
3 — 1 3 — 1 rC—1

Now, let us examine the second term in Eq. 4.128. For convenience, we
change the indices of summation in Eq. 4.126 and express it as:

^ = ^ E E M 9) •«*•*•• (4-131)
j=lk=l

Since the partial derivative of bjkiq) • <7fc • q-j with respect to variable qi
is - T ^ • 5fc • gj, the partial derivative of Eq. 4.131 with respect to variable
qt yields

OK l^^dbjk . . , . . „ , ,

^ = 2 2 , L F ' ? * » 4 - (4-132)

This is the expression of the second term in Eq. 4.128.
Finally, we have to determine the expression of the third term in

Eq. 4.128. For convenience, we also change the index of summation in
Eq. 4.127 and express it as

n

V = -^2mj»gtTcj.

Electromechanical System of Robots 193

The partial derivative of the above equation, with respect to variable
qu yields

f^-g-W-tf. (-33)
From Eq. 4.104, we have

drcj _ drcj _ dvcj

dqt dqt den '

We know vcj = J°cj • q (i.e. Eq. 4.122). If we define

J°cj = (J°CJ(1) J°,(2) ... J c ° ») 3 x n

where J°j (i) denotes the ith column of matrix J°j, we have

Accordingly, Eq. 4.133 becomes

^ = -X>W-W- (4-134)

Now, substituting Eq. 4.130, Eq. 4.132 and Eq. 4.134 into Eq. 4.128
yields

3 = 1 3 = 1 U = l L Hk Hl J J j = l

(4.135)

Vie [l,n].

If we define

(4.136)

9i(Q) = -T."=imj»gt»J^(i),

Eq. 4.135 can be rewritten as
n n

3=1 3=1

or in a compact matrix form as:

B(q)»q + C(q,q)mq + G(q)=T (4.137)

194 The Fundamentals of Robotics: Linking Perception to Action

where

T = {n,T2,...,Tny

< B(q) = {btJ(q)yi e [l,n], VjG[l,n]} (4.138)

C(q,q) = {cvfaq), Vi 6 [l,n],Vj G [l,n]}

.G(g) = {ffi(g), ViG[l,n]}.

Eq. 4.137 describes the dynamic model of an open kineto-dynamic chain
with n + 1 links. Matrix B(q) is the inertial matrix. Matrix C(q, q) ac-
counts for centrifugal and Coriolis effects. It is a function of the generalized
coordinates and their velocities. And, vector G{q) accounts for the effect
caused by gravitational force.

In practice, it is difficult to obtain an exact expression for the dynamic
model of a robot's electromechanical system because the computation of
inertial matrices poses a challenge. Nevertheless, knowledge of robot dy-
namics is important and useful for dynamic simulation and control system
design.

4.7 Summary

In this chapter, we started with the study of the origin of a rigid body's
motion. Then, after a presentation of the important concepts on force, work
and energy, we discussed a new concept on dynamic pairs and dynamic
chains. This motivated the study of various schemes of generating the
force field underlying the design of force and torque generator. We learned
the working principles behind electric motors, as well as the associated
actuation elements, such as force or torque amplifier.

We studied, in detail, two ways of forming a robot's electromechanical
system through the coupling of kinematic and dynamic pairs. The first
scheme consisted of one-to-one coupling for each kinematic pair and its
corresponding dynamic pair. Under this scheme, each degree of freedom
in a robot's mechanism has one actuator and a set of associated actuation
elements. The advantages of this scheme are the fast response of force or
torque output and the efficiency in performing velocity and force/torque

Electromechanical System of Robots 195

control. The notable drawbacks include the weight of the robot system
and the cost of the robot's hardware. An alternative scheme is the one-to-
many coupling. The notable advantages of this new scheme are the robot's
compact size, light weight, and low cost.

From a kinematic point of view, a robot is a mechanism or pure me-
chanical system. But, from a dynamic point of view, a robot is also an
electromechanical system. Mathematically, it is important to know: a)
how to apply forces and torques in order to keep the robot at rest, and
b) how to apply forces and torques to produce the desired motions from a
robot's mechanism. We have discussed the issue and solution of robot stat-
ics. Subsequently, we have learned two methods for formulating equations
of motion. The first method is the Newton-Euler Formula. This method
is based on Newton's Second and Third Laws, and allows us to develop a
recursive solution for the computation of required forces and torques which
will produce required motions from a robot's mechanism. A second method
is the Euler-Lagrange Formula which allows us to derive a compact expres-
sion for the equations of motion.

4.8 Exercises

(1) Explain the origin of motion.
(2) Give a conceptual definition of what the mechanical system underlying

a robot (or any machine) is.
(3) Explain the physical meaning of potential energy and kinetic energy.
(4) What is a dynamic pair ? Apply the concept of a dynamic pair to

propose a design solution for an electric linear motor.
(5) From Eq. 4.13, prove that the mechanical power of a rotary motor is

equal to the product of its torque and angular velocity.
(6) Comment on the difference, advantages and drawbacks between the

one-to-one coupling and the one-to-many coupling schemes of kineto-
dynamic pairs.

(7) Prove the expression in Eq. 4.52.
(8) Search the website of US Patent Databases (it is a free service) to

survey the various design solutions for CVT devices (CVT stands for
Continuous Variable Transmission). Propose a new solution for one-to-
many coupling between kinematic pairs and one dynamic pair which
incorporates CVT devices for motion distribution.

(9) If S(b) is a skew-symmetric matrix of three-dimensional vector b, prove

196 The Fundamentals of Robotics: Linking Perception to Action

the following equality:

(y2 + z2 -xy -xz \
S(b)*St(b) = St(b).S(b)= -xy x2 + z2 -yz .

\ -xz -yz x2 +y2 J

(10) In the study of differential kinematics of an open kinematic-chain, we
have the relationship

ve = Pe = J • q

where ve is the end-effector frame's velocity vector and q is a robot's
joint velocity vector. At configuration q(t), assume that the robot
moves with a unit joint velocity vector (i.e. qt • q = 1). In other words,
the joint velocity vector is on a spherical surface of unit radius. Explain
what the spatial distribution of the end-effector frame's velocity ve will
be, and, also, its meaning.

(11) In the study of robot statics of an open kineto-dynamic chain, we have
the relationship

where r is the joint torque vector required to balance the externally-
exerted force/torque £e acting upon the end-effector frame in order to
keep a robot at rest. Now, assume that a robot is at rest and starts
to exert a unit torque vector, i.e. r* • r = 1. Geometrically, the unit
torque vector is located on a spherical surface of unit radius. Explain
what will be the spatial distribution of the external force/torque exerted
upon the end-effector's frame in order to keep the robot at rest. Also,
explain the meaning of this distribution.

(12) Write the equations of motion of the robot arm shown in Fig. 4.36
according to the Newton-Euler formula.

(13) Write the equations of motion of the robot arm shown in Fig. 4.36,
according to the Euler-Lagrange formula.

(14) Refer to Eq. 4.137. If we define a new matrix N(q, q) as follows:

N(q,q) = B(q)-C(q,q),

prove that matrix N(q, q) is a skew-symmetrical matrix (i.e. riij =
—riji, if N(q,q) is represented by {n^, Vi £ [l,n],Vj 6 [1,«]).

Electromechanical System of Robots 197

(15) If N is a n x n skew-symmetrical matrix and q is a n x 1 vector, prove
the following result:

ql • N • q = 0.

4.9 Bibliography

(1) Armstrong, M. W. (1979). Recursive Solution to the Equations of
Motion of an n-Link Manipulator, Proceedings of 5th World Congress
on Theory of Machines and Mechanisms, Montreal, Canada.

(2) Ryff, P. F., D. Platnick and J. A. Karnas (1987). Electrical Machines
and Transformers, Prentice-Hall.

(3) Spong, M. W. and M. Vidyasagar (1989). Robot Dynamics and Con-
trol, John Willey & Sons.

(4) Stadler, W. (1995). Analytical Robotics and Mechatronics, McGraw-
Hill.

(5) Uicker, J. J. (1967). Dynamic Force Analysis of Spatial Linkages,
ASME Journal of Applied Mechanics, 34.

(6) Vukobratovic, M. (1978). Dynamics of Active Articulated Mechanisms
and Synthesis of Artificial Motion, Mechanism and Machine Theory,
13.

(7) Young, H. D and R. A. Freedman (1996). University Physics,
Addison-Wesley.

Chapter 5

Control System of Robots

5.1 Introduction

Control is a buzz-word employed almost everywhere. At the macroscopic
level, the duty of a government is to control the social stability, economic
growth, financial order, national security etc. On a large scale, traffic con-
trol of air, land and on-water vehicles are indispensable for the proper
functioning of our modern industry and society. On the scale of enterprise,
control is exerted at various levels from process control, equipment con-
trol, production control, and all the way up to supply-chain control and
human-resource management.

The magic of control arises from the scheme of an automatic-feedback
control loop which responds to a cost function of errors (and state-feedback
if working in a state space). The ultimate goal of control is to minimize
the cost function in an efficient and robust manner (i.e. resistance to noise,
disturbance, and parameter variation). In this way, a desired output can
be easily achieved even if the intrinsic dynamic model of a system under
control is not accurately known.

A robot is a dynamic system, the primary job of which is to accomplish
tasks or actions through the execution of motion. In the study of electrome-
chanical aspect of the robot system, we know that it is quite difficult to
obtain an exact dynamic model of a robot because it is almost impossible
to theoretically compute the inertial matrices for all the links inside the
robot. Consequently, it is useless to attempt to run a robot for motion
execution without invoking the automatic-feedback control scheme.

In this chapter, we will discuss how to apply the automatic-feedback
control scheme to control a robot's motion execution even if the dynamic
model of the robot is not accurately known.

199

200 The Fundamentals of Robotics: Linking Perception to Action

It is well-known that the core of a feedback control system consists of
three basic building blocks: a) the system under control (the plant), b)
the control elements (a set of elements which transform error signals into
corresponding power signal to be applied to the system under control), and
c) the sensing elements (a set of elements which measure actual output as
feedback to enable the computation of error signals). Therefore, it is helpful
to study all these related topics together. The emphasis of this chapter is
on the application of the automatic-feedback control scheme for efficient
motion execution by a robot. In-depth coverage on the theoretical aspects
of an automatic control system is beyond the scope of a robotics textbook
as there are many textbooks dealing with this vast body of knowledge in
control engineering.

5.2 Automatic-Feedback Control System

So far, we have treated the robot as the combination of a mechanical sys-
tem and an electromechanical system. The output motion from a robot's
mechanical system is at the end-effector, and its input motions are at the
joints of the underlying mechanism. As for a robot's electromechanical sys-
tem, we know that input is the forces or torques applied to the joints of
the robot's mechanism and output is the joints' motions. The relationship
between input and output is known as the dynamic model of a robot, or
more precisely, the dynamic model of a robot's electromechanical system.

5.2.1 System Concept

Using the robot as an example, it is easy to formally introduce the concept
of system. In general, a system can be defined as follows:

Definition 5.1 A system is a combination of elements which act together
and perform a certain task.

Normally, a system has input and produces output according to the
characteristics of the system's dynamics. In the real world, however, a
system is often subject to noise or disturbance. The internal parameters
of a system may also undergo change as a function of time. If a system
exhibits certain dynamic behaviors, (i.e. the system's output varies with
time when being stimulated by the system's input or a disturbance), the
internal state of the system can be described by a set of variables. These

Control System of Robots 201

variables are called the state variables. Fig. 5.1 illustrates the concept of a
system.

Disturbance ^

I /
T T I T—I Output
Input ^(^X_^ Systen/ v

™$y H (internal/ates) |
Parameter /
variation /

Fig. 5.1 Illustration of a system concept.

When a system at rest is stimulated by input or noise, its output starts
to vary. After a certain period of time, it is expected that the system will
reach a new state and be at rest again. If not, the system is considered
to be unstable (i.e. the output oscillates or converges to infinity). For a
stable system, the output when a system is at rest is called the steady-state
response. And the output when a system is making the transition from its
initial state into a new state is called the transient response. Formally, the
steady-state and transient responses of a system can be defined as follows:

Definition 5.2 The steady-state response of a system is the input-output
relationship when the system is at rest.

Definition 5.3 The transient response of a system is the input-output
relationship when the system is evolving from an initial state into a new
state.

To a great extent, the study of the design, analysis and control of a
system aims at achieving the desired steady-state and transient responses.
In fact, the steady-state response directly indicates a system's absolute sta-
bility (i.e. whether a system is stable or not). And the transient response
describes a system's relative stability (i.e. how smooth a system is evolving
to a new state).

5.2.2 Closed-loop Control Scheme

If there is no feedback verification or checking, a system then operates in an
open-loop manner. In this mode, a system directly responds to the system's
input, as shown in Fig. 5.1. Under the open-loop control scheme, the control

202 The Fundamentals of Robotics: Linking Perception to Action

action is the system's input itself. If we denote y(t) the system's output, u(t)
the system's input, d(t) the system's disturbance or noise, c the system's
internal parameter vector and x(t) the system's internal state vector (i.e.
a vector of state variables), the steady-state response of a system can be
analytically expressed as a function /(.) of input, state vector, parameter
vector and noise as follows:

y(t) = f(x(t),u(t),c,d(t)). (5.1)

(NOTE: These notations are consistent with those used in control engineer-
ing textbooks).

From Eq. 5.1, we can express the variation of output as a function of
the variations of input, state vector, parameter vector and disturbance as
follows:

A y (f) = % ' A x (i) + %. ' A W (<) + %'Ac+%* Ad{t)- (5 ' 2)

Now, it becomes clear that an open-loop system does not have the abil-
ity to compensate for the variations due to disturbance d(t) and parameter
variations Ac. On the other hand, the variation of output depends on the
term ^ • Au(t). This means that the control action by input u(t) requires
knowledge about the system's description in terms of function /(.). In
other words, the system's dynamic modelling must be known in advance.
Any uncertainty about a system's dynamic modelling will result in an un-
predictable system output. These two notable drawbacks to an open-loop
system clearly demonstrate the inappropriateness of adopting an open-loop
control scheme to operate a complex engineering system.

An alternative scheme is the closed-loop control. The basic philosophy
behind the closed-loop control scheme is to build a system which responds
to an error signal instead of an input signal. Under the closed-loop control
scheme, the control objective is to minimize the error signal. And the
control action to a system under control is determined by a function of the
error signal.

Fig. 5.2 illustrates the closed-loop control scheme. The working principle
behind a closed-loop control system is very simple. As long as the error
signal is not equal to zero, the control signal will continuously act on the
system to alter its output so that the error signal will converge to zero
(assuming that the system is stable). When the error signal is defined to
be the difference between desired output and the measurement of actual
output, the actual output will be equal to the desired output if the error

Control System of Robots 203

Disturbance ~

1 /
Desired 1 / Output
o,,t™,t ^~^E r r o r l InPut/<+> Systen/
g H S % g ^ Controller | - ^ g) - » > | (i n t e m a l / t e s) |—[—»

Parameter /
variation /

Measurement or ^
Feedback

Fig. 5.2 Illustration of closed-loop control scheme.

signal vanishes. For a stable closed-loop control system, the control action
of minimizing the error signal does not require any precise knowledge about
the system's dynamics. Thus, a closed-loop control system is robust in the
presence of model uncertainty, disturbance, and parameter variation.

In order to construct a closed-loop control system, one must consider
the following issues:

• Specification of the Desired Output:
A system is normally dedicated to achieving an outcome based on a
predefined specification. Therefore, one must know how to specify the
desired output that a system has to produce.

• Sensory Feedback:
Before a control action can be determined, one must be clear about
what error signal the system is to minimize. Normally, an error signal
is simply the difference between desired output and actual output.
Hence, one must know how to measure actual output by using a set
of sensing elements.

• Design of Control Algorithms or Laws:
The ultimate goal in studying the feedback control system is to de-
sign a control algorithm or law which will make the steady-state and
transient responses of the system meet certain performance specifica-
tions (e.g. stable, fast, accurate etc). For example, the PID control
law and its variations are the most popular control methods employed
in industry. In general, the purpose of designing a control law is to
find out a suitable control function which determines the appropriate
control action (or state-feedback if working in state space) in order to
meet the predefined control performance.

• Conversion of Control Signals to Power Signals:

204 The Fundamentals of Robotics: Linking Perception to Action

A system under control is usually known as a plant. For example, a
robot's electromechanical system is a plant which is controlled for the
purpose of achieving desired motion output. The input to a plant is
normally related to a certain form of energy. And the control signal is
usually calculated by a computer and is in the form of electrical signal
without any associated electrical power. As a result, it is necessary
to convert a control signal to a corresponding power signal which is
the actual input to a plant under control. This conversion is normally
done by a set of control elements.

• Analysis of a Control System's Performance:
Given a closed-loop control system, it is desirable to analyze its perfor-
mance with respect to its steady-state and transient responses. Nor-
mally, we look at three important performance indicators: a) the ab-
solute stability of the system (is the system stable or not?), b) the
relative stability of the system in terms of response time (how fast
does the system's output converge to the desired output?), and c) the
relative stability of the system, in terms of accuracy (how small is the
error between the desired output and the steady-state output?).

5.2.3 System Dynamics

By definition, all systems will exhibit certain types of dynamic behaviors
caused by the interaction among the elements inside the systems. And a
system's dynamics means the relationship between its input and output
during the period of its transient response.

A system is said to be a continuous-time system if all variables inside the
system are continuous-time variables. In the time domain, the dynamics
of a continuous-time system can be conveniently described by a differential
equation.

Example 5.1 Let us consider a motion controller implementing a PID
control algorithm. The input to the controller is error signal e(t) and the
output from the controller is control signal c(t). Thus, the dynamics un-
derlying the PID control algorithm is described by

c{t) = kp . \e(t) + 1 . / e(t) .dt + Td. ^ 1 (5.3)
L J-i Jo at j

where kp is proportional control gain, kp/Ti integral control gain and kp»Td
derivative control gain.

Control System of Robots 205

••oooooooooooooooo
As a result of the wide use of digital computers, almost all closed-loop

control systems have both continuous-time variables and discrete-time vari-
ables. Thus, it is necessary to study discrete-time systems. A second reason
for studying discrete-time systems is because a control system may involve
the sampling process in the sensory-feedback channel. A typical example
is the statistical process control in which output is sampled and measured
in regular discrete time intervals. As a result, a statistical process control
system is intrinsically a discrete-time system.

By definition, any system having discrete-time variables is called a
discrete-time system. Therefore, it is important to study discrete-time sys-
tems. In the time domain, the dynamics of a discrete-time system is usually
described by a difference equation.

Example 5.2 Assume that a PID control algorithm is implemented on a
digital computer. We treat this digital computer as a discrete-time system.
Input to the system is error signal e(k) at discrete time-instant k, and
output from the system is control signal c(k) at discrete time-instant k.
The difference equation relating output to input can be derived in the
following way:

Differentiating Eq. 5.3 with respect to time gives

dc(t) , \de{t) 1 . , m d2e(t)] . A.

By definition, derivative ^^- at time-instant t = kT is computed as
follows:

dc(kT) ,. c(kT) - c((k - 1)T)
; = lim

dt T^o T
or

dc(k) _ c(k) - c(k - 1)

where T is the time interval between two consecutive time-instants.
Now, at time-instant t = kT, we substitute derivative ^jp- with

c(k)-c{k-i)^ d e r i v a t i v e M*) w i t h e(fc)-e(fc-i) ^ a n d s e c o n d . o r d e r derivative
1^1 w i th e(fc)-2e(fc-l)+e(fc-2)j A g ft ^ ^ Eq_ ^ b e c o m e g

c(k) = c(k - 1) + a0 • e(k) + a± • e(k - 1) + a2 • e(k - 2) (5.5)

206 The Fundamentals of Robotics: Linking Perception to Action

with

' a0 = fcp«(l + | l + Ik)

- ax = -kp . (1 + ^)

a2 = kp» ^ .

Eq. 5.5 is the difference equation describing the dynamics of a discrete-
time system which is also called a digital PID controller.

•••••••••••••••ooo

5.2.4 Transfer Functions

It is not an easy task to solve a linear differential equation in the time
domain. It becomes even more difficult if the equation in the time domain
includes trigonometric and exponential functions. Fortunately, a practical
and powerful mathematical tool exists to deal with the issue of solving linear
differential equations. This tool is the well-known Laplace Transform. A
formal definition of Laplace Transform can be stated as follows:

Definition 5.4 For continuous-time function f(t) in the time domain
such that f{t) = 0 if t < 0, Laplace Transform F{s) of function f(t) is

/•OO

F(s) = / f(t) • e~st • dt
Jo

where s is a complex variable.

There are many notable advantages to using the Laplace Transform:

• A linear differential equation in the time domain becomes an algebraic
equation in the complex s domain (or s-plane).

• The differentiation and integration operations in the time domain be-
come algebraic operations in the complex s domain.

• The trigonometric and exponential functions in the time domain be-
come algebraic functions in the complex s domain.

• The inverse of the Laplace Transform contains both transient and
steady-state responses to the system.

• System performance, in terms of absolute and relative stabilities, can
be graphically predicted in the s-plane.

Control System of Robots 207

V(O I I Y(s)^ • G(s) •

Fig. 5.3 Illustration of transfer functions.

For a linear continuous-time system, the ratio between the output's
Laplace Transform and the input's Laplace Transform is called the transfer
function. As shown in Fig. 5.3, if Y(s) is the Laplace Transform of output
y(t) and U(s) is the Laplace Transform of input u(t), the system's transfer
function will be

If the input to a system is unit-impulse function S(t), its Laplace Trans-
form U{s) is 1. When U{s) = 1, G(s) = Y(s). This means that the
transfer function of a linear continuous-time system is equal to the Laplace
Transform of output in response to the unit-impulse as input.

Example 5.3 The differential equation describing a PID control algo-
rithm (or law) is expressed in Eq. 5.3. If we apply the Laplace Transform,
the transfer function of a PID control algorithm is

where C(s) is the Laplace Transform of control signal c(i), and E(s) is the
Laplace Transform of error signal e(t).

000000000000000000

For a discrete-time system, signals are in the form of a series of discrete
values. These discrete values are normally obtained by a sampling process
over a continuous-time function. If f(t) is a continuous-time function and
is sampled at a series of time-instants tk (i.e. tk = k • T where T is the
sampling period or interval), the corresponding discrete-time function fk (t)
will be

oo

fk(t) = ^2f(tk)m5(t-tk) (5.8)
fc=0

(5.6)

(5.7)

208 The Fundamentals of Robotics: Linking Perception to Action

where 5(.) is the unit impulse function and is expressed as follows:

6(t-tk) = l
[liniAT-o (s^J if t = tk.

(NOTE:Ift<0, /fc(t)=0).
The extension of the Laplace Transform to the discrete-time domain

is known as Z- Transform. By definition, the Z-Transform of discrete-time
function /&(£) is

oo

F{z) = YJf(tk)*z-k (5.9)
fc=0

where z is a complex variable and is related to the complex variable s in
the following way:

z = eTs. (5.10)

Eq. 5.9 can also be expressed as

oo

F(s) = £ / (*) •* -* (5.11)
fc=0

where k is the discrete-time index.
Since Z-Transform is an extension of the Laplace Transform and the

complex variable z is analytically related to the complex variable s (i.e.
Eq. 5.10), all properties of the Laplace Transform can be extended to the
Z-Transform through the application of Eq. 5.10.

Similarly, for a discrete-time system, the ratio between the output's
Z-Transform and the input's Z-Transform is called the Transfer Function.

Example 5.4 The difference equation describing a discrete PID control
algorithm (or law) is expressed in Eq. 5.5. Multiplying term z~k to both
sides of Eq. 5.5 gives

c(k)»z~k = c(k-l)»z~k+a0»e(k)»z~k+ai»e(k-l)»z~k+a2»e(k~2)»z~k.
(5.12)

Control System of Robots 209

By applying the following relations

n°=o c(k - 1) • z-Vt-U • z~l = C(z) • z-1

< E(z)=T,Zo<k)*z-k (5.13)

Er=o e(k - 1) • z~{k~1] # ̂ = E(z) • 2"1

. Er=o e(fc - 2) • z~{k~2) • z"2 = £ W * z~2'
Eq. 5.12 becomes

C(z) = C(z) • ^ - 1 + a0 • E(z) + ai • E(z) • z~x + a2 • £"(z) • z~2.

As a result, the transfer function of the discrete PID control algorithm
(or law) is

g ^ = | | i | = fl0+Oll-"I-+iaa""a- (5-14)

oooooooooooooooooo

5.2.5 System Performance

Based on the transfer function, it is easy to analyze the performance of
a closed-loop control system. Fig. 5.4 shows a simple closed-loop control
system with a proportional control law. We denote Gp(s) the transfer
function of the plant, K the control gain of the proportional control law,
and H(s) the transfer function of the feedback sensor.

Tracking of the Desired Output

Assume that the Laplace Transform of the desired output is R(s). If there
is no disturbance (i.e. D(s) = 0) and no sensor noise (i.e. N(s) = 0), the
transfer function of Y(s) to R(s) will be

Y(s) = K.Gp(s)

R{s) l + K»Gp(8)mH(8)' { '(5.15)

210 The Fundamentals of Robotics: Linking Perception to Action

D(s)

R(s) ^ - . E (s) | |U(s) A^ I 1 Y<S)

I 1 /<^>s N(S)
H(s) < Qjy*

Fig. 5.4 Block diagram of a closed-loop control system with a proportional control law.

When K —• oo, Eq. 5.15 becomes

Y{s) 1
i?(s) ~ H(sY

Normally, the Laplace Transform of a feedback sensor is 1. It is clear
that a large control gain K will result in a system which closely follows
desired output R(s) if the plant itself (i.e. Gp(s)) is intrinsically stable.

Example 5.5 Refer to Fig. 5.4. The plant's transfer function is

Assume that the feedback sensor's transfer function is 1 (i.e. H(s) = 1),
and input to the closed-loop control system is a unit step function (i.e.

R(s) = i) .
Now, we use the Simulink of MATLAB software to simulate this closed-

loop control system and choose two values for the proportional control gain:
1 and 100. The two corresponding responses are shown in Fig. 5.5. When
K = 1 (see the left sub-plot), the steady-state response of the closed-loop
control system is 0.5. When the proportional control gain is increased to
100, the steady-state response is almost 1 (i.e. almost no error).

••oooooooooooooooo

Disturbance Cancellation

Assume that the system under control is at rest and there is no sensor noise.
In this case, we only examine the output caused by disturbance D(s). From

Control System of Robots 211

0.7, , . 1 2r , , - r — j

M 1.8,

1.6

0.2

J . . , I J , , •
0 5 10 15 20 0 5 10 15 20

Fig. 5.5 Example of tracking the desired output with different proportional control
gains: The left sub-plot is the result when K = 1 and the right sub-plot is the result
when K = 100. The horizontal axis is the time axis with the unit in seconds.
Fig. 5.4, the transfer function of Y(s) to D(s) is

r(*) = Gp(s)
D(s) l + K*Gp{s)*H(s)' { ' ;

When K —> oo, Eq. 5.16 becomes

y (s) ~ o
D(s) ~ °-

This means that a large proportional control gain will reduce distur-
bance.

Example 5.6 Refer to Fig. 5.4. The plant's transfer function is

Gpi8) = *+ 2.8 + 3

and the feedback sensor's transfer function is 1 (i.e. H(s) = 1). Assume
that there is no input (i.e. R(s) — 0) and the system is subject to a periodic
disturbance described by a sinusoidal function as follows:

d(t) = sin(t)

or

sz + 1

(5.16)

212 The Fundamentals of Robotics: Linking Perception to Action

Now, we use the Simulink of MATLAB software to simulate this closed-
loop control system and choose two values for the proportional control
gain: 1 and 100. The two corresponding responses are shown in Fig. 5.6.
When K = 1 (see the left sub-plot), the amplitude of output is about 0.28.
When the proportional gain is increased to 100, the output's amplitude is
diminished to about 0.01.

0.31 i 1 1 1 0.011—r 1 1 i

\ \ \ o.oosM I / / [l

I I II II 0.006^1 I Ij I I [

II -0.002 •

1/ 1/ V '0.006 I '

-0.0081 II II I I -

- 0 4 ' ' ' ' ' -O.01' ' > '
• 0 5 10 15 20 0 5 10 15 20

Fig. 5.6 Example of disturbance cancellation with different proportional control gains:
The left sub-plot is the result when K = 1 and the right sub-plot is the result when
K = 100. The horizontal axis is the time axis with the unit in seconds.

oooooooooooooooooo
Effect of Feedback-Sensor's Noise

Assume that the system under control is at rest and there is no disturbance.
Now, let us examine what happens if the feedback sensor introduces noise
(i.e. N{s) ^ 0).

From Fig. 5.4, the transfer function of Y(s) to N(s) is

Y(s) = -K.Gp(s).H(s)
D(s) l + K.Gp(s)*H(sY { '

When K —> oo, Eq. 5.17 becomes

N(s) - •

This means that 100% of feedback sensor's noise adds to the system's

(5.17)

Control System of Robots 213

output if a large proportional control gain is chosen. In other words, the
performance of a closed-loop control system depends on the quality of the
feedback sensor.

5.2.6 Analysis of Absolute Stability

Refer to Fig. 5.5. The system is stable but the transient response is os-
cillatory. Ideally, the design of a control law should make a system not
only stable but also have a timely and smooth transient-response. Since a
closed-loop control system is a system that determines control action based
on the error signal, the dynamics of error signal e(t) not only influences the
system's transient response but also its absolute stability.

Intuitively, if e(t) —> oo when t —> oo, a closed-loop control system is
definitely unstable. Thus, the primary concern in the analysis of a closed-
loop control system is absolute stability. Without a guarantee of absolute
stability, all discussions about timely and smooth transient response are
useless.

In control engineering, there are many powerful mathematical tools for
studying a system's stability. If the dynamic model of a system under con-
trol is known, it is easy to analyze the stability of the closed-loop control
system. However, the big challenge is how to design a closed-loop con-
trol system when the dynamic model of a plant is not exactly known. In
robotics, we normally face this situation. The exact dynamic model of a
robot's electromechanical system is rarely known in advance.

5.2.6.1 Root-Locus Method

Let us consider a linear continuous-time system. If G(s) is the transfer func-
tion of a closed-loop control system, the Laplace Transform of the output,
in response to the unit impulse as input, will be

Y(s) = G{s). (5.18)

Normally, G(s) is in the form of the ratio of two polynomial functions
in terms of the complex variable s. Assume that G(s) can be expressed as

C(\ = •A(s) -̂ ^ ' (s + a i X s + fl2)-(s + Qm) , , iqx
^ U B{s) (a+Pi)(*+P2)...(s+Pn) ['

where m < n and KQ is a gain coefficient. By definition, the roots of the
numerator in Eq. 5.19 are called the zeros of a closed-loop control system,
and the roots of the denominator in Eq. 5.19 are known as the poles of

214 The Fundamentals of Robotics: Linking Perception to Action

a closed-loop control system. The partial-fraction expansion of Eq. 5.19
yields

G(s) = -b- + - * 3 _ + ... + - A _ (5.20)
S+pi S +p2 S+pn

where

6* = {(«+?*) • ! ^ y } »=-*. ViG[l,n]. (5.21)

If we compute the inverse Laplace Transform of Eq. 5.20, the output of
a closed-loop control system responding to the unit impulse input will be

y(t) = h . e~Plt + b2* e~P2t + ... + bn • e"^*. (5.22)

It becomes clear that e~Pit —> 0 when t —* oo if pi is positive. Otherwise,
if pi is negative, e~Pit —• oo when t —» oo. When the impulse response of a
system goes to infinity, it simply means that the system is not stable.

When pi is positive, the root s» = — pi is located at the left half-plane
of the complex s domain. In other words, a closed-loop control system
will be stable if and only if all the poles of the closed-loop control system's
transfer function are located in the left half-plane of the complex s domain.
This method of analyzing a system's stability is known as the Root-Locus
method.

Example 5.7 The transfer function of a closed-loop control system is

_ 6 . (S + 1)
U[S)~ (S + 2)(s + 3)-

The two poles of the transfer functions are: s\ = - 2 and S2 — —3. There-
fore, the system is stable because the two poles are in the left half-plane of
the complex s domain.

Fig. 5.7 shows the unit-step response (i.e. R(s) = j) of this system.

••oooooooooooooooo
Example 5.8 Refer to the above example. Assume that the transfer
function of the closed-loop control system becomes

G(s) - 6 ' (* + D
G () ~ (* - 2) (S + 3)-

Control System of Robots 215

0.2

Oi i 1 i 1 [< 1 1 '

Fig. 5.7 Unit step response of a stable system. The horizontal axis is the time axis,
with the unit in seconds.

Pole si = 2 is now located at the right half-plane of the complex s do-
main. The system becomes unstable. Fig. 5.8 shows the unit step response
(i.e. R(s) = i) of this system.

«p^ , , , , , , , , 1
4 - -J

3 - I

2.5 -

2 -

1.5 - I -

0.5 - / -

°0 2 4 6 8 10 12 14 16 18 20

Fig. 5.8 Unit step response of an unstable system. The horizontal axis is the time axis,
with the unit in seconds.

oooooooooooooooooo
5.2.6.2 Lyapunov's Method

In practice, we frequently face the situation in which the transfer function
of a closed-loop control system is not exactly known for various reasons (e.g.

216 The Fundamentals of Robotics: Linking Perception to Action

non-linearity, difficulty in obtaining an exact dynamic model, un-modelled
dynamics etc). In this case, we can apply the Lyapunov's method to test
the asymptotical stability of a closed-loop control system. The basic idea
behind Lyapunov's method(s) can be explained as follows:

Lyapunov Function

When we have scalar function V(x) which is a function of vector x, this
function is called a Lyapunov Function if and only if the following conditions
hold:

(V(x) > 0 if x =fi 0 and for alii > 0
\V(a;) = 0 if x = 0 and for alii > 0 l '

and V(x) has a continuous-time derivative (i.e. V(x) exists for all t > 0).
In practice, there are many scalar functions which are qualified to be

Lyapunov Functions. This is an advantage. For example, if x(t) is a
continuous-time vector, V(x) = \xt(t) • x(t) is a Lyapunov Function.

In fact, a Lyapunov Function is also known as a control objective func-
tion because the objective of control action is to make this function converge
to zero.

Lyaponuv's Stability Theorem

Let x(t) be the state vector of a system. If we are able to specify Lyapunov
Function V(x) and if its first-order derivative V(x) satisfies the following
condition:

V{x) < 0 V* > 0, (5.24)

the system is said to be asymptotical stable at the state when x(t) = 0 for
all t>0.

In fact, when V(x) < 0, scalar function V(x) is converging to zero. As
V(x) is a Lyapunov Function, vector x will also be converging to zero if
V(x) goes to zero. As a result, the system will reach a state of equilibrium,
when x(t) = 0 for all t > 0.

Control System Design Using Lyapunov's Stability Theorem

Lyapunov's Stability Theorem does not help much with the stability anal-
ysis of an existing closed-loop control system but is useful in the design of
an asymptotically stable system. In other words, we can make use of the

Control System of Robots 217

Lyapunov Stability Theorem to design a control law which will make the
system under control asymptotically stable.

Refer to Fig. 5.2. A closed-loop control system is a system that responds
to the error signal denoted by e(t). The control law has a great influence
over the dynamic response of a closed-loop control system. By definition,
output from a control law is called the control signal (or action) denoted
by u(t). Because of the sensor feedback, error signal e{t) is indirectly a
function of control signal u(t) as well. When designing a control algorithm
or law, the objective becomes to find a Lyapunov Function V(e(t)) and a
control law in which control signal u(t) guarantees the following conditions:

(V(e(t)) > 0 for all u(t) and t > 0
\ V"(e(t)) < 0 for all u{t) and t > 0. ^ ' '

If such a control law exists, V(e(t)) will shrink to zero with time. When
V(e(t)) shrinks to zero, e(t) will also converge to zero. Consequently, the
system is asymptotically stable and will remain at rest, when e(t) = 0 for
all t > 0. This is an expected and desirable behavior for a closed-loop
control system.

Note that the conditions expressed in Eq. 5.25 are sufficient conditions,
but not necessary for a system to be stable.

5.2.7 Tuning of PID Control Algorithms

In real life, there are many systems, the dynamics of which is not exactly
known. However, many practical control systems (including robots) rely
on the popular PID control law (or its variations) to achieve satisfactory
control performance. Therefore, it is important to know how to empirically
tune a PID control law.

Refer to Eq. 5.3. The tuning of a PID control law is to empirically find
suitable values for proportional control gain kp, integral time constant Ti
and derivative time constant Td so that the overall dynamic response of
a closed-loop control system is empirically judged to be satisfactory. The
process of adjusting the parameters of a control law is called controller
tuning.

There are many empirical methods for tuning a PID control law. For
example, Ziegler-Nichols methods are popular in control engineering. The
first Ziegler-Nichols method requires recording the output of a plant (i.e.
system under control) in response to a unit-step function. If the response
looks like an S-shape curve, then this method is applicable. The second

218 The Fundamentals of Robotics: Linking Perception to Action

Ziegler-Nichols method requires the closed-loop control system to exhibit
a continuous oscillatory behavior when a large proportional control gain is
chosen for a pure proportional control law. In practice, these two methods
are not convenient for tuning the PID control laws inside a robot's control
system.

An alternative method is to manually tune a PID control law in three
simple steps. For the purpose of illustration, we choose a plant which the
transfer function is

G ' - (. + a) ' (. + ») - (5 ' 2 6)

0.8 - /

0.6 • /

0.5 /

0.4 - /

0.3 • /

0.2 - /

°0 1 2 3 4 5 6 7 8 9 10

Fig. 5.9 Response of an open-loop system to a unit-step function with a proportional
gain of 6 added to Gv.

Fig. 5.9 shows the response of the system, described by Eq. 5.26, to a
unit-step function. For the sake of comparison with the closed-loop control
system, a proportional gain of 6 is added to Gp in order to bring the steady-
state response to the final value 1.

Now, let us use a PID control law to improve the dynamic response of
plant Gp in Eq. 5.26. Fig. 5.10 shows a block diagram of the closed-loop
control system with a PID control law. Tuning the parameters of the PID
control law can be accomplished in the following steps:

Tuning of Proportional Gain kp

The proportional control gain has an overall influence on the performance of
a closed-loop control system. The first objective in tuning is to determine
a proportional control gain which makes the closed-loop control system
stable, reasonably smooth and accurate.

Control System of Robots 219

R(s) /r~\ E(s) I i I I I Y(s)
-p(^)—• kp(U^ + TdS) • GP(S) p ^ >

H(s) = l 4

Fig. 5.10 Block diagram of the closed-loop control system with a PID control law.

At this step, we set kp = 0, Tj — oo and Td = 0. We gradually increase
the proportional control gain until the unit-step response of the closed-loop
control system reaches value 1 at a certain time-instant. This time-instant
is known as the rising time of a closed-loop control system.

1.2 -

J / K P - 2 0 - - — '

0-6 - II / Kp=10

0.2 j /

0 1 2 3 4 5 6 7 8 9 10

Fig. 5.11 Effect of proportional gain. The horizontal axis is the time axis with the unit
in seconds.

Fig. 5.11 shows the results of tuning kp for the example in Fig. 5.10. We
can see that the proportional control gain at kp = 30 permits the unit-step
response to slightly overshoot value 1.

Tuning of Integral Time-Constant Ti

When the proportional gain is set as kp = 30, the closed-loop control system
is stable, but the steady-state error is quite large. It is natural to turn "on"
the control action from the integral part of the PID control law. A control
action proportional to the integral of the error signal in a PID control law
allows to reduce accumulated errors over time. As a result, it will make
the steady-state response converge to the desired output (i.e. 1). Thus,

220 The Fundamentals of Robotics: Linking Perception to Action

the second step of tuning is to adjust the integral time-constant Tt while
turning "off" the derivative time-constant (i.e Td = 0).

0 6 -

0.21

0 2 4 6 8 10 12 14 16 18 20

Fig. 5.12 Effect of the integral time-constant. The horizontal axis is the time axis with
the unit in seconds.

Fig. 5.12 shows the results of tuning T» for the example in Fig. 5.10.
When the integral time-constant is set as T* = 1.0, the unit-step response
will quickly converge to its steady-state value. The time-instant when the
actual output converges to the desired output is known as the settling time.

Tuning of Derivative Time-Constant T̂

As we can see in Fig. 5.12, the accuracy of the closed-loop control system
is achieved with a large integral time-constant. However, the system lacks
a good transient response (i.e. the transient response is oscillatory). In
other words, the stiffness of the closed-loop control system will be reduced
with a large integral time-constant. In order to compensate for the loss of
stiffness, it is natural to turn "on" the derivative part of the PID control
law. Thus, the last step in tuning is to adjust the derivative time-constant.

Fig. 5.13 shows the results of tuning Ta for the example in Fig. 5.10.
When the derivative time-constant is set as Td = 0.1, the unit-step response
quickly converges to its steady-state value while the overshoot is reasonable
and quite small.

Comparing Fig. 5.9 and Fig. 5.13, we can see that the settling time of the
closed-loop control system is less than two seconds while for the open-loop
system it is more than three seconds.

Control System of Robots 221

"I ' ' ' ' ' ' ' ' '

, 2 rij=o.os

h / Td-O,

0.2W

°0 2 4 6 8 10 12 14 16 18 20

Fig. 5.13 Effect of the derivative time-constant. The horizontal axis is the time axis
with the unit in seconds.

5.3 Control Elements

Our ultimate goal is for a robot to perform tasks by executing motions.
A robot is a system in which the input is the tasks and the output is the
executed motions. On the other hand, we understand that a closed-loop
control system is superior to an open-loop system. As a result, the control
of a robot's motion execution must rely on a closed-loop control scheme,
in order to achieve a desired performance. However, the formation of a
closed-loop control system must address the following issues:

• How do we appropriately define the error signal?
• How do we efficiently determine the control signal based on the error

signal?
• How do we act, in a timely and energetic manner, in response to the

control signal?

These issues are closely related to sensing, decision-making, and action-
taking devices, all of which a closed-loop control system should have. These
devices are also known as the control elements.

Since robot control implies a closed-loop control of constrained or un-
constrained motions required for the performance of tasks or actions, the
error signal of a robot's control system should be the difference between
the desired motions and the actual motions. And, the purpose of the con-
trol algorithm(s) inside a robot's control system is to determine the control
signal which will make the error signal converge to zero in order to produce
the desired output.

222 The Fundamentals of Robotics: Linking Perception to Action

Nowadays, almost all control algorithms are executed inside digital com-
puters, also known as the digital motion controllers. Therefore, at this
point, we can say that a robot is a combination of mechanical, electrome-
chanical, and control systems, as shown in Fig. 5.14.

Robot System s—\ \
/ Desired \
Vmotions\)

\

I • Control System

w Electrical power .
T . . v . I 1 • f_̂ Motions
l a s k s ^ Sensing I I ^

P Electromechanical System ^

'k ^ Mechanical power

Mechanical System

I
f Actual \
V motions1/

Fig. 5.14 A hierarchical view of a robot system, which includes the closed-loop control
system for motion execution.

In Chapter 4, we studied the working principles of electric motors. The
rotor and stator inside an electric motor constitute a dynamic pair in which
the interaction is governed by electromagnetic force. From a control point
of view, there are two concerns regarding the appropriate operation of an
electric motor:

• How do we alter the direction of motion of an electric motor?
• How do we regulate the input of electrical energy to an electric motor?

Thus, a robot's control system is not simply a digital motion-controller
and its electromechanical system. There must be other control elements
handling the alteration of motion direction and regulating the input of
electrical energy to the electric actuators inside a robot. For a motion
control system, the device which alters motion direction is called the power

Control System of Robots 223

switch. And the device which regulates the input of electrical power to an
electric actuator is called the power drive. A product which incorporates
both power switch and power drive is commonly referred to as the power
amplifier.

Accordingly, a robot's control elements will necessarily include at least
one digital motion controller, a power switch, and a power drive. Fig. 5.15
illustrates one set of control elements for the motion control loop governing
one degree of freedom (one actuator) inside a robot.

We will study sensing elements in a separate section. However, here
we simply highlight three basic units necessary for the construction of a
power switch and power drive. These units are the wave generator, power
generator and switch circuit, as shown in Fig. 5.15. The wave generator is
responsible for producing control-logic signals or pulse waveforms (pulse-
width modulated waveforms or PWM waveforms for short). Depending on
the type of electric motor under control, a wave generator may include two
sub-units: a) a logic wave generator and b) a PWM wave generator. On
the other hand, the power generator can be as simple as a power source
or supplier. We will study this in further detail in the later part of this
section.

(Electrical power

, Control signal Wave ' /

| \ Generator 1 i /
i Command i A I * 1 ' J i 1 <

1 *• Motion 5 D/A I Switch \ ^ Electric ^ Inertial
! » Controller 1—, 1 Circuit ' | Motor | f Load
, Feedback I - 1 I , A ' /
' I ^ Power J] /
' Generator ' /
! „ , „ ' Mechanical power

Control Elements i

Fig. 5.15 Control elements necessary in a motion-control loop.

5.3.1 Power Switches

Here, we consider the case of rotary electric motors. According to the work-
ing principles behind the electric motor, interaction between the rotor and
stator is caused by electromagnetic force. In order to change the direction
of motion, we can alter the polarity or direction of the electromagnetic field.
This is usually done in two ways:

224 The Fundamentals of Robotics: Linking Perception to Action

• Change the direction of currents which flow into the coils inside an
electric motor.

• Change the order of currents applied to the coils (alter the order in
which we energize the coils).

A simple way to change the direction (or order) of currents is to use a
switch circuit, also known as an inverter. The input to a switch circuit is a
set of control-logic signals which determine the sequence of commutation of
the logic states for switching ("on" or "off"). These control-logic signals are
necessary for a switch circuit to function properly. A unit which generates
a set of control-logic signals (i.e. rectangular electrical pulses) is called a
logic-wave generator.

Thus, a power switch will consist of two units: a) a logic-wave generator
and b) a switch circuit.

5.3.1.1 Power Switches for Stepper Motors

Refer to Fig. 4.13. The coils wound around the teeth of the stator are
grouped into four phases: AA', BB', CC and DD'. In order to make a
stepwise motion, these phases are sequentially energized. This can be done
with an appropriate power switch.

Switch Transistors

In electronics, there are two types of devices: a) passive devices (e.g. resis-
tors, capacitors, transformers etc) and b) active devices (e.g. transistors,
operational amplifiers etc). A typical active device is a transistor because it
can amplify the power of an input electrical signal. (NOTE: The product of
a signal's current and voltage is its electrical power). As shown in Fig. 5.16,
a transistor has three terminals, namely: a) the base, b) the collector, and
c) the emitter. The key characteristics of a npn transistor include:

(1) From the base to the emitter, it is similar to a diode. The voltage drop
is about 0.6 (volts) or 0.6V (i.e. VB -VE = 0.6V).

(2) From the collector to the base, it is similar to an inverted diode. As a
result, no current will flow from the collector to the base.

(3) If IB is the current which flows to the base (from the base to the
emitter), and IQ is the current which flows to the collector (from the
collector to the emitter), then Ic = P • IB when an input signal is
applied to the base. The coefficient /? is between 50 to 250.

(4) When no input signal is applied to the base, IB — 0 and Ic = 0.

Control System of Robots 225

*c I Collector *c I Collector

Base l^J Base K J

y I Emitter y I Emitter
£ E

(a) npn transistor (b) pnp transistor

Fig. 5.16 Symbolic representations of transistors.

As a result of the third and fourth characteristics, a transistor is a
perfect electronic switch. When an input signal is applied to the base, we
electronically connect the collector to the emitter because a large current
can flow from the collector to the emitter (very low impedance between
the collector and the emitter). Conversely, we electronically disconnect the
collector from the emitter (i.e. Ic = 0) when there is no input signal at the
base.

Switch Circuit

For the stepper motor, as illustrated in Fig. 4.12, the coils are divided into
four phases. Thus, it is necessary for a switch circuit to handle the order of
energizing these four phases. A conceptual solution is shown in Fig. 5.17.

Qo ij

1
+va I 1 1 1 ,

AA' < J BB'<; CC'^> DD'^J

QA V) QB V) QC \) QD I)

Fig. 5.17 Conceptual illustration of a switch circuit for a four-phase stepper motor.

Signal Qo serves as an enabling signal. When switch QA is "on" and

226 The Fundamentals of Robotics: Linking Perception to Action

the other switches are "off" (assuming that QQ is always "on"), phase A A'
is energized. In order to control the direction of motion, it is necessary to
supply a set of control-logic signals to QA, QB, QC and QD.

Logic Wave Generator

Refer to Fig. 5.15. The logic wave generator is responsible for generating
the control-logic signals that control the order in which the coil phases are
energized. In a digital system, the logic signal is in the form of rectangu-
lar pulse waveform. Usually, high voltage (+5V) corresponds to the logic
"high" or " 1 " , and low voltage (OV) corresponds to the logic "low" or "0".

For the example shown in Fig. 4.12, the coils are divided into four
phases. Each phase needs one control-logic signal (i.e. one bit or one
digital signal-line) to turn the current from a power supply, "on" or "off".
If we combine all the bits of the control-logic signals together, we obtain
a variable which is called the state of the logic wave generator. If we use
"1" to represent the logic "high" and "0" the logic "low", logic state 1000
means that phase AA' is energized, logic state 0100 means that phase BB'
is energized, logic state 0010 means that phase CC is energized, and logic
state 0001 means that phase DD' is energized.

liooo !oioo !ooio |oooi iiooo \ \vm 'oooi looio 'pioo |iooo I

A A ' I , , 1 I I , , 1

B B ' i i i i B B ' i i i i

cc' : : I I : : cc : : I I : :
i i i i i i i i i i i i

DD> i i i i DD' ' ' ' '

' (a) ' ' ' ' ' (b)

Fig. 5.18 Pulse waveforms of the control-logic signals from a wave generator for a
four-phase stepper motor: a) spinning in a clockwise direction and b) spinning in a
counterclockwise direction.

As shown in Fig. 5.18, the following sequential order of logic state com-
mutation

1000 -> 0100 -> 0010 -> 0001 -> 1000 -> ...

Control System of Robots 227

will produce a clockwise rotation of the stepper motor shown in Fig. 4.12.
And the following sequential order of logic state commutation

1000 -> 0001 -> 0010 -• 0100 -* 1000 -> ...

will produce a counterclockwise rotation of the stepper motor.
Since a stepper motor makes stepwise rotation, its speed obviously de-

pends on the frequency (or speed) of commutating the logic states. There-
fore, the speed control in a stepper motor is simply achieved by regulating
the frequency of commutating the logic states of its wave generator.

5.3.1.2 Power Switches for Brush-type DC Motors

Refer to Fig. 4.14. Because of the mechanical commutator inside a brush-
type DC motor, the direction of rotation depends only on the polarity of
the direct voltage applied to the coils wound around the rotor of the motor.
As a result, the power switch for a brush-type DC motor is very simple.

Switch Circuit

The switch circuit, which is commonly used to alter the polarity of the
direct voltage applied to the coils of a brush-type DC motor, is the H-
bridge circuit. Refer to Fig. 5.19. The purpose of the diode attached to
each transistor is to allow the back electro-motive force (i.e. emf current)
to die off quickly when the switch is turned "off".

^ J Rotor's coils] I

Fig. 5.19 Conceptual illustration of a switch circuit for a brush-type DC motor.

It is easy to see that when only switches A+ and A- are "on", the motor
will rotate in one direction. Alternatively, if only switches B+ and B_ are
"on", the motor will change its direction of motion.

228 The Fundamentals of Robotics: Linking Perception to Action

Logic-Wave Generator

Refer to Fig. 5.15. The purpose of the logic-wave generator (a sub-unit in
the wave generator) is to produce the control-logic signals applied to the
four electronic switches. Similarly, if we form a logic state variable by com-
bining all the bits of the control-logic signals together (i.e. A+A-B+B~),
the logic state of 1100 will make the brush-type DC motor rotate in one
direction, and the commutation of this logic state to 0011 will alter the
direction of motion. The pulse waveforms of the control-logic signals are
shown in Fig. 5.20.

i i i

,'noo loon j
i i i

A + I I ;
i i i

A. I I I
i i i

B+\ I
I I I

B. I I
i i i

i i i

i i i

Fig. 5.20 Pulse waveforms of the control-logic signals from a wave generator for a brush-
type DC motor.

5.3.1.3 Power Switches for Brush-less DC Motors

Refer to Fig. 4.15. A brush-less DC motor's coils are wound around the
toothed structure of the stator. These coils are divided into three phases:
UU', W and WW. The direction of rotation can only be altered through
the electronic commutation, both order and direction of the currents which
flow independently into these three phases.

Power Switch

According to the working principle of a brush-less DC motor, at any time-
instant, only two phases are energized. If we examine the power switch for
a brush-type DC motor, we know that the electronic commutation of the

Control System of Robots 229

current's direction inside a single coil requires four switches. If we indepen-
dently control the commutation of the current for each of the three phases
in a brush-less DC motor, it is necessary to have 12 switches. However,
if we connect one end of each phase's coil to a common point, any pair of
two energized coils will form a single circuit. In this way, the number of
switches is reduced to 6, as shown in Fig. 5.21. (NOTE: This switch circuit
needs both positive and negative voltage supplies).

F Fi h
H 3 . "» >/ . . w, Y JZ

^4 i ^ L_ u

.- ^ v ~V
Fig. 5.21 Conceptual illustration of a switch circuit for a brush-less DC motor.

Refer to Fig. 5.21. At any time-instant, only one switch on the upper
row and one switch on the lower row are turned "on". For example, if
switches U+ and V_ are turned "on", phases UU' and W are energized
with Iu > 0 and Iv < 0. Alternatively, if switches V+ and U- are turned
"on", phases UU' and VV' are also energized but /„ < 0 and Iv > 0.

Logic-Wave Generator

Similarly, the role of the logic-wave generator here is also to produce a set
of control-logic signals. We can form a logic state variable by combining all
the bits of the control-logic signals applied to switches U+, V+, W+, f/_,
V- and W-. Refer to Fig. 4.15 and Fig. 5.21. The following sequential
order of the logic-state commutation

100001 -»• 100010 -> 001010 -> 001100 -̂ 010100 -̂ 010001 -> 100001 -»• ...

will produce a counterclockwise rotation. The corresponding pulse wave-
forms of the 6 control-logic signals are shown in Fig. 5.22.

Alternatively, the following sequential order of the logic-state commu-

230 The Fundamentals of Robotics: Linking Perception to Action

i i i i i i i i

! 100001 1100010 ', 001010 | 001100 | 010100 | 010001 | 100001 |
i i i i i i i i

U+ I ' 1 ' ' ' I
I I I I I I I I

v + \ ! ; ! ; | I
i i i i i i i i

w+; ;' 1 ; I I I !
i i i] 1 1 i i

U. i i i i i .

V _ i i i i i i
I 1 I I 1 1 1 1

I I I I I I I I

w. ! ,' ! I
• i i i i i i i

Fig. 5.22 Pulse waveforms from the wave generator for a brush-less DC motor spinning
in a counterclockwise direction.

tation

100010 -> 100001 -> 010001 -> 010100 -> 001100 -> 001010 -> 100010 -> ...

will produce a clockwise rotation. And the corresponding pulse waveforms
of the 6 control-logic signals are shown in Fig. 5.23.

It is important to note that for the proper operation of a brush-less
DC motor, the frequency (or speed) of the logic state commutation must
be synchronized with the speed of the rotor. This explains why the power
amplifier for a brush-less DC motor requires velocity feedback from the
rotor.

5.3.2 Power Drives

The primary concern of a control system is to design a control law for sat-
isfactory control performance. However, almost all control laws are imple-
mented on digital computers. And the control signals calculated by digital
computers do not carry any energy after the digital-to-analog (D/A) signal
conversion. These signals must be directly, or indirectly, amplified into the
corresponding power signals in order to drive the motors inside a robot or
any machine. As we mentioned before, a device which performs this direct

Control System of Robots 231

i i i i i i i i

,'100010 ,'100001 ,010001 ,010100 ,001100 ,001010 ! 100010 ,'
I I I I I I I I

1 1 I I I I

u+ ! I I I I 1
v+ ; ; | ; | ; ; I

i i i i i i i i

w+ : ; [; | ;

u. [; : I ; 1 : :
i i i i i i i i

[i i i | (

V. | J | |
i i i i i i i i

i | 1 1 i i i i

w_ i I i I I I I I
i i i i i i i i

Fig. 5.23 Pulse waveforms from the wave generator for a brush-less DC motor spinning
in a clockwise direction.

or indirect signal amplification is called a power drive.
In physics, we know that electrical power is equal to the product of

voltage and current exerted on an electrical load (e.g. resistor, capacitor,
inductor etc). If we denote Va the voltage and Ia the current exerted on
the coils inside an electric motor, the electrical energy applied to the motor
within time interval [ts,t/] will be

We = / (Vam Ia) • dt. (5.27)

Clearly, we can manipulate either time interval [ts, £/] or voltage Va (or
current Ia) to alter the amount of electrical energy applied to an electric
motor.

Accordingly, there are two basic working principles for amplifying a
control signal into a corresponding power signal:

• Direct Power Amplification:
This method directly amplifies a control signal into a corresponding
voltage signal, which is capable of supplying a sufficient amount of
current, as well. Due to the low efficiency caused by heat dissipation,
this method is suitable for low power output (low power motors).

232 The Fundamentals of Robotics: Linking Perception to Action

• Indirect Power Amplification:
For an electric stepper motor, the voltage applied to the coils directly
comes from a power supply. As for DC motors, the widely-employed
method of amplifying control signals is the pulse-width modulation or
pulse-width modulated (PWM) method. This method is easy to operate
(it is easy to generate a regular pulse waveform) and efficient (there's
less heat dissipation). Therefore, it is commonly used to produce high
power output (for high power motors).

5.3.2.1 Linear Power Drives

Linear power drive directly amplifies a control signal (input), and produces
a voltage (output), which is linearly proportional to the control signal.
Subsequently, the voltage is applied to a motor through a switch circuit.
Fig. 5.24 shows a schematic illustration of a linear power drive together
with power switch. A linear power drive is basically built on top of an
active device called the operational amplifier or op-amp for short. Its role
is to regulate the velocity of an electric motor.

Control Signal I L W a v e I I Switch M j I I Inertlal I j
Generator Circuit : Load i

j k i i

Linear Voltage
• Power '

Drive

Fig. 5.24 Schematic illustration of a linear power drive together with a power switch.

As shown in Fig. 5.25, an op-amp is a device with two input terminals
and one output terminal. The key characteristics of an op-amp include

• An op-amp's input impedance is very high while its output impedance
is very low. As a result, no current flows into the two input terminals
of an op-amp (i.e. the"+" terminal and the "-" terminal) .

• The output voltage is proportional to the difference between the two
input voltages at the input terminals. The gain of an op-amp is very
high (in the order of 105 to 106). As a result, an op-amp has to be
operated with a negative feedback. In this way, the input voltages
at the two input terminals can be treated as equal (the difference is
practically zero).

Control System of Robots 233

Control Signal ^ \ ..
vc + ^ ^ vi r > x v h.

J , 2̂

Fig. 5.25 Conceptual illustration of a noninverting linear power amplifier .

With unity negative feedback, an op-amp can serve as a perfect voltage
follower. In other words, the output voltage is equal to the input voltage.
This is useful to isolate electrical signals. Fig. 5.25 shows a conceptual
solution for the design of a noninverting linear power amplifier. Since the
current that flows through the resistor i?i is

the voltage V2 will be

V2 = IRl» (R1+R2)

or

V2 = ^-*(R1 + R2).

(NOTE: The current at resistor R2 is equal to the current at resistor i?i).
By applying the equalities: V\ = Vc and Va = V2, the relationship

between input and output voltages will be

Va = i1 + §) # V°- (5-28)
If Ia is the current from voltage Va applied to the coils of a motor, the

electrical energy released to the motor within time interval [ts,tf] will be

We = J*' (l + | ^ . Vc • Ia • dt (5.29)

234 The Fundamentals of Robotics: Linking Perception to Action

It becomes clear that control signal Vc, computed from a control algo-
rithm or law, directly regulates the electrical energy applied to an electric
motor.

From Eq. 5.28, we can see that the signs of the input and output voltages
of the power drive are the same. This is why the circuit, shown in Fig. 5.25,
is called the noninverting linear power drive.

R2

Control Signal ^ v _ p \

vc + \ > n£_. |_L_>\ V I\

Fig. 5.26 Conceptual illustration of an inverting linear power-amplifier.

If an electric motor requires negative voltage to be applied to its coils,
we can easily design an inverting linear power drive. Fig. 5.26 shows a
conceptual solution for the design of an inverting linear power drive. The
current that flows into resistor R\ is

Since the current at R2 is equal to the current at Ri, voltage V2 will be

V2 = -R2 • IRl

or

V2 = -Rv£.
Hi

As Vi = Vc and Va = V2, the relationship between the input and output
voltages becomes

Va = -^-*Vc. (5.30)
til

Similarly, electrical energy applied to the electric motor within time

Control System of Robots 235

interval [£«,£/] will be

We= ff (^•VcmIaS\mdt. (5.31)

(NOTE: We can ignore the negative voltage sign).

5.3.2.2 PWM Power Drives

Refer to Eq. 5.27. Electrical energy applied to an electric motor depends
on time interval [ts,tf], voltage Va, and current Ia. We know that all
electronic components suffer from heat deterioration, which in turn, affects
performance. As a result, the longer time interval [ts,tf] is, the more severe
the heat deterioration effect. Due to thermal inertia, an electronic compo-
nent will not heat up if it operates for short periods of time. Therefore, it
is good to control the electrical energy by regulating time interval [ts,tf]
while keeping term Va • Ia at its maximum value.

Tci-Lincai PiwrrDuve

0

• 1

e J a

/„ I ; ^ hur PWM I'Dwcr Dim

K l ^ Coils

• J ^ 'i
(a) Power Switch (b) Logic waveforms

Fig. 5.27 Illustration of the difference between a linear power drive and a PWM power
drive.

Here, we use a single phase to illustrate the difference between a linear
power drive and a PWM power drive. As shown in Fig. 5.27, in a linear
power drive, control-logic signals Q+ and Q_ will be at the logic "high"
for the whole period of time interval [tB,tf]. This means that when the two
switches are turned "on" within time interval [£s,£/], continuous current Ia

236 The Fundamentals of Robotics: Linking Perception to Action

flows through these two switches. The control of the electrical energy is
based on the control of input voltage Va (or current Ia).

On the other hand, if we superimpose a periodic pulse waveform on
control-logic signal Q-, something which is easily done with an "AND"
Boolean logic circuit, input voltage Va (or current Ia) will only be applied
to the coils when the combined logic signal, applied to switch Q_, is at the
logic "high". The duration of the logic high state at Q- depends on width
ton of the positive pulse.

It is clear that we can fix input voltage Va. Normally, we choose it to be
equal to the voltage of the power supply. And we can regulate pulse-width
ton. Assume that the periodic pulse waveform has a fixed time period
(cycle). If time interval [ts,i/] contains n cycles of periodic pulses, the
electrical energy applied to a motor will be

We = Y,\r °Va •/„)•*}• (5.32)

From Fig. 5.27 and Eq. 5.32, we can see that switches Q+ and Q_ will
carry current Ia only when the control-logic signal applied to Q- is at the
logic "high". Clearly, the PWM method has much less power dissipation
caused by the heat deterioration of electronic components. Thus, a PWM
power drive is more energy efficient than a linear power drive.

PWM Wave _ ^ AND
Generator Logic

1 r i i

^ Logic Wave Switch j ^ n r Motor • Inertial i
Control Signal Generator Circuit i Load I

n {]

~ I VoltagePower s

Supply

Fig. 5.28 Schematic illustration of a PWM power drive together with power switch.

Fig. 5.28 shows a schematic illustration of a PWM power drive together
with a power switch. Since the control signal is not directly converted into
any voltage or current signal, the PWM method falls into the category of
indirect power amplification.

Control System of Robots 237

5.3.3 Digital Motion Controllers

Refer to Fig. 5.15. The most important control element inside a robot's
motion control system is the digital motion controller. A digital motion-
controller is a decision-making device and should be treated as part of a
robot's information system.

In fact, a robot's information system, the details of which will be studied
in the next chapter, is like a human brain. It primarily plays five important
roles:

• Computation:
A typical computational load is the execution of a control algorithm
in order to determine the control signal from the error signal inside a
robot's closed-loop control system.

• Decision-making:
A typical example is the determination of a control action exerted by
an actuator (i.e. an action device) upon a joint. A control action can be
determined by a simple computation or a complicated decision-making
process.

• Coordination:
Since a robot has multiple degrees of freedom, one obvious coordination
requirement is how to synchronize the executed motions at a robot's
multiple joints.

• Communication:
At the lowest level, a digital computer can interface with the outside
world through its input/output subsystems (I/O, for short). For ex-
ample, the interface between a digital motion controller and a sensing
device requires either a serial or a parallel communication channel.

• Cognition:
For high-level control or decision-making, it is necessary for a humanoid
robot to have the ability to incrementally build its own internal rep-
resentations of the real world. In this way, a humanoid robot will be
able to interact with humans through the conceptual symbols of a nat-
ural language. The cognitive ability of an artificial life or system is,
intrinsically, computation-dependent.

The neural system of a human brain is a highly parallel neural archi-
tecture with about a 100 billion neurons. Obviously, the computing system
of a humanoid robot must also be a parallel or distributed system with
multiple central-processing units (CPUs). Due to the complexity of a hu-

238 The Fundamentals of Robotics: Linking Perception to Action

CPU -4 Logic Clock Memory

^ IT T ^
(Bus (Address lines. Data lines and Control signal lines))

U

I/O Sub -systems

Motion Controller >"•«.

\ / Power Amplifier

Master Controller I
(Robot's Brain) ^ F

T I ' | Inertia!
I Sfii .- . Mowr L o a d

(^)

Fig. 5.29 Schematic illustration of a digital motion controller together with a robot's
master controller and a motor.

manoid robot (a large number of degrees of freedom), it is impossible to
use a single super-computer to handle all the computation, decision-making,
coordination, communication, and cognition required. A cheap and afford-
able solution is to deploy an embedded and distributed computing system
inside a humanoid robot. Fig. 5.29 illustrates a distributed computing sys-
tem which includes a robot's master controller (at least one) and a digital
motion controller.

The basic building blocks of a digital computer include: a) CPU (Cen-
tral Processing Unit), b) memory (e.g. registers, RAM, ROM, EPROM),
c) I/O subsystems and d) bus (address lines, data lines, and control sig-
nals/strobe lines). All computation-related tasks are executed by the CPU.
All these tasks must be coded in the form of programs and stored inside
the memory.

It is important to note that the digital nature of a computer is dictated
by the cycle-by-cycle operation of the CPU. In fact, all the operations of
the CPU are synchronized by the regular pulse waveform of a logic clock.
The frequency of the logic clock primarily determines a digital computer's
speed or computational power.

Consider the case of motion control of a single actuator shown in

Control System of Robots 239

Fig. 5.29. The digital motion controller will read the sensor's data through
a I/O subsystem at discrete time-instants. Based on the error signal, which
is normally the difference between the desired motion and the actual motion
measured by the sensing device, a control signal is calculated by a control
program executed on the digital motion controller. The control signal is
then sent to the power amplifier through an I/O subsystem at discrete time-
instants as well. The output of the power amplifier subsequently drives the
actuator to accomplish the control action. If the closed-loop motion control
system is stable, then the control action will make the actual motion of the
actuator converge to the desired motion.

Refer to Eq. 5.5. If a PID control law is used to determine control signal
Vc, the control program inside a digital motion controller simply implements
the following recursive algorithm:

Vc(k) = Vc(k - 1) + a0 • e{k) + ax* e(k - 1) + a2 • e(k - 2) (5.33)

with

' o0 = kp • (1 + ^ + ^)

< O l = -kp • (1 + 2£t)

a-2 = kp • ^

where kp is the proportional control gain of the PID control law, Ti the
integral time-constant, and Td the derivative time-constant. These param-
eters can be experimentally tuned if the system dynamics are not exactly
known. Parameter T, in the above equations, refers to the sampling inter-
val between two consecutive readings of the sensor's data. Alternatively, T
also refers to the control action interval between two consecutive outputs
of control signal Vc to the actuator.

5.4 Sensing Elements

A human sensory system can be divided into five distinct subsystems,
namely: visual, auditory, kinesthetic, gustatory and olfactory. These sen-
sory subsystems provide input to the brain, so it can not only make de-
cisions but also build personalized internal representations of the external
real world. In order to make a humanoid robot demonstrate human-like
behaviors, its sensory system should be as complete and efficient as a hu-

240 The Fundamentals of Robotics: Linking Perception to Action

man's. At the present, however, the robot's sensory system is far from
comparable.

We hope, however, that the emergence of the humanoid robot and
MEMS (i.e. Micro-Electro-Mechanical System) will inspire the develop-
ment of smart sensors. One area for improvement is the optical encoder.

It is a well-known fact that almost all industrial robots use the incremen-
tal optical-encoders for position and velocity sensing. The primary reason
behind this choice is that incremental optical encoders cost 1/10 the price
of absolute optical-encoders. As a consequence, the robots using incremen-
tal optical-encoders must find the reference positions of the encoders before
they can function properly. This is done by a process called homing.

The homing procedure involves unpredictable movement done by a
robot. Thus, it is not at all desirable for a humanoid robot to do homing
because this presents a potential danger outside the industrial environment.
Society will not accept this potentially-dangerous behavior.

On the positive side, as the result of research on human computer in-
teraction (HCI), speech recognition is a relatively mature technology. In
addition, continuous efforts to develop a robust speech-recognition system
will certainly benefit the auditory-sensory subsystem of future humanoid
robots.

In this book, we will study the visual-sensory system of robots in a
separate chapter. Here, we limit the discussion to the sensors which are
closely related to a robot's motion execution. These sensors fall under the
category of the kinesthetic sensory subsystem.

5.4.1 Generic Sensing Principle

For a general sensing instrument, the requirement of a sensor is that it
somehow converts the variables of a system into corresponding signals suit-
able for display. But for a robot with automatic-feedback control using
a digital computer, the requirement of a sensor is slightly different. The
purpose of sensors is to convert the variables of a physical system under
control into corresponding digital signals.

P i g i t a 7 W | A/D L 4 - SiSnal 4 - 1 Transducer U _ / T V a r i a b l e s of)
\Signaly ^ I 1 I ~ Converter ~ \Physical System J

Fig. 5.30 Generic sensing procedure in an automatic feedback control system.

Control System of Robots 241

Fig. 5.30 shows the generic sensing procedure. In robotics, the variables
under consideration may include: position, velocity, acceleration, force,
torque, sonar, and lighting. These physical variables can be converted
into electrical signals such as voltage, current, resistance, capacitance and
inductance by using a device called a transducer. An ideal transducer is
a device which converts a signal from one domain into another without
removing any energy from the system under measurement. For example,
the speed sensor of a motor should not consume any mechanical energy
from the motor itself.

In physics, for the purpose of sensing, many working principles can be
applied to the development of transducers. Depending on working princi-
ples, the sensors can be classified into the following typical categories:

• Electric Sensor:
This refers to a sensor which converts a physical variable directly into a
corresponding electrical signal. A typical example is the potentiometer,
which converts a position variable into a corresponding resistance value.
A strain gauge sensor for the measurement of force and torque also falls
under this category.

• Electro-magnetic Sensor:
This refers to a sensor which makes use of the magnetic field to do
the signal conversion. A typical example is the tacho-meter. A tacho-
meter makes use of a rotational conducting loop to pick up the cur-
rent/voltage, which is proportional to the rotational velocity of the
conducting loop in a magnetic field.

• Optical Sensor:
This refers to a sensor which makes use of light as a medium to do the
signal conversion. Optical encoders fall under this category.

As shown in Fig. 5.30, it is necessary to use a signal converter if the
output from a transducer is not in the form of voltage. Therefore, the role of
a signal converter is to convert the output of a transducer into corresponding
voltage which will then be sent to an analog-to-digital (A/D) converter.

If we denote y(t) the input to a sensor and s(t) its output, the key
features of a sensor typically include:

• Accuracy:
This refers to the accurate relationship between the sensor's input and
output. Ideally, we would like to have s(t) = ks • y(t) with ks = 1.

242 The Fundamentals of Robotics: Linking Perception to Action

• Precision:
This refers to the statistical distribution of output s(t) when input y(t)
is set at a fixed value. The smaller the statistical distribution, the more
precise it will be.

• Resolution or Sensitivity:
This refers to the smallest amount of variation in input which will
trigger variation in output from the sensor. If s(t) = ks • y(t), we have
AyV2 = ks. The higher the value ks, the better the resolution.

• Operating Range:
This refers to the range within which input y(t) is allowed to vary.

• Response Time:
This refers to the dynamics of output s(t) in response to input y(t).
Ideally, we would like to have a sensor which does nt exhibit any tran-
sient response. In other words, s(t) = ks*y{t) with ks being a constant
gain.

• Reliability:
Reliability is equal to the inverse of the failure rate of a sensor. Obvi-
ously, the smaller the failure rate, the higher the reliability.

5.4.2 Safety Sensors

In the future, humanoid robots will not only operate in industry but also
co-exist with humans in society. Consequently, safety is a crucial issue
as society will never accept a mechanized creature that is unpredictably
dangerous. Ideally, a humanoid robot should not only obey humans but
also be friendly towards them.

Here, it is worthy to cite Asimov's laws published in 1950:

• Law 1: A robot should not injure a human being.
• Law 2: A robot should obey human commands as long as these com-

mands are not in conflict with Law 1.
• Law 3: A robot should protect itself as long as such protection is not

in conflict with Law 1.

In order to ensure people's safety, all of a robot's actions should only be
enabled if they are judged to be safe to human beings and their environment.
Thus, a humanoid robot should have an emergency stop-sensor, a proximity
sensor, and visual perception system. These sensors are necessary to ensure
the protection of human beings, the environment, and the robot.

Control System of Robots 243

5.4.2.1 Emergency Stop Sensors

In the event of an emergency, humans should be able to interrupt the actions
of a humanoid robot. This can be easily achieved by providing one or
more emergency stop-buttons which serve as simple "on-off" sensors. The
output signal (the "on" signal) from an emergency stop sensor should have
the highest priority to halt all the power drives inside a humanoid robot.
Fig. 5.31 shows a prototype of a humanoid robot with two emergency stop-
sensors: one on the front part of the body and one at the back.

^ ^ ^ ^ ^ ^ ^ ^ ^ I H ^ ^ H Emergency Stop Sensor I ^^^^^HHVMVMVMVMVMVA19jjj^H|^^^^^H

••i ' ^b '* * •H^wPHIHIH
B» . «W . fl ^ ^ ^ ^ M i ^ l Emergency Stop Sensor | H

(a) Emergency stop sensor in the froni i i-''1 i i >• I v ^ n y stop sensor at the back of robot.

Fig. 5.31 Example of two emergency stop-sensors on a prototype of a humanoid robot.

5.4.2.2 Proximity Sensing Systems

An emergency-stop sensor is considered a passive safety sensor because it
is manually activated by a human or other equipment. Alternatively, one
may propose an active sensing system for safety. A typical example of an
active safety sensor is the proximity system such as ultrasonic or infra-red
sensors.

An ultrasonic sensor is a low-cost device which is able to measure the
distance to an object within a typical range of 0.3m to 10m. Fig. 5.32a
shows an example of ultrasonic sensor (i.e. the model Polaroid 6500) which
is composed of two parts: a) the buzzer and b) the drive circuit.

An ultrasonic sensor is an active-sensing device because its buzzer not
only transmits sonar waves but also receives the echoes. The working prin-
ciple behind an ultrasonic sensor is based on the measurement of the flight
time of the sonar wave because the speed of a sonar wave is constant (about
344m/s).

244 The Fundamentals of Robotics: Linking Perception to Action

(a) Buzzer and the ' • >) Single sensor with a miao -coimoller.

(c) A ring of sensors with a micro -controller.

Fig. 5.32 Example of proximity systems based on ultrasonic sensor(s): a) the sensor's
buzzer and drive circuit, b) a proximity system with a single sensor and c) a proximity
system with a ring of sensors.

INIT 1 ^ _ - 1 6 PULSES AT 49.4 kHz

TRANSMIT I I I |

(INTERNAL) , ,

BLNK/BINH L 0 W 1 1

INTERNAL 2.38 ms '
BLANKING ^ P{ j

ECHO I |

[; •
ts if Time

Fig. 5.33 Signal diagrams for the operation of an ultrasonic sensor.

For an ultrasonic sensor, there are two basic modes of operation: a) the
single-echo mode and b) the multiple-echo mode. Fig. 5.33 shows the signal
diagrams corresponding to the single-echo mode.

When an ultrasonic sensor (e.g. the model Polaroid 6500) is turned "on"
by applying voltage to line Vcc, a minimum of 5ms must elapse before the

Control System of Robots 245

INIT signal is driven to the logic "high" in order to trigger the transmission
of a sonar wave at time-instant ts. When the INIT signal is driven to the
logic "high", a series of 16 pulses at a frequency of 49.4kHz will excite
the buzzer (the transducer), which generates and transmits a sonar wave.
Since any mechanical device has a ringing effect due to vibration, an internal
blanking signal must be driven to the logic "high" for about 2.38ms in order
to avoid the detection of the buzzer's ringing.

After the blanking period, the buzzer is ready to serve as a receiver
and detect an echo. Once an echo is detected at time-instant tf, the echo
signal will be instantly amplified by the drive circuit and the logic "high"
signal will be issued to the ECHO signal line, which is an output line of
the ultrasonic sensor's drive circuit. By driving the INIT signal line to the
logic "low" again, this will reset the ultrasonic sensor's drive circuit and the
ECHO line will be driven to the logic "low". Then, the ultrasonic sensor is
ready to start a new sensing cycle.

Since the sonar wave travels at a constant speed in air, the distance
to a detected object is linearly proportional to the time of flight tf — ts.
This time of flight can be easily measured by the programmable timer I/O
system of a micro-controller (e.g. M68HC11).

Depending on the intended application, one can easily configure a prox-
imity system with one ultrasonic sensor or a ring of ultrasonic sensors as
shown in Fig. 5.32b and Fig. 5.32c.

5.4.2.3 Detection of a Human's Presence

There are two problems with the active-sensing technique. First of all,
a sonar wave can be reflected in different directions. This will result in
multiple echoes, which in turn, will cause false detection of the presence of
objects. Secondly, the response time is proportional to the spatial coverage
and range of the active sensor. The larger the spatial coverage and range,
the slower the response time will be.

A human being primarily relies on the visual sensory system to gather
information about his/her surroundings. Some notable advantages to a
visual-sensory system include the rich information, high resolution, fast
response (parallel and spontaneous), and lack of interference with envi-
ronment (passive sensing). Just as a visual sensory/perception system is
important for a human being, a visual sensory/perception system is crucial
in order for a humanoid robot to accomplish activities autonomously. We
will study the visual perception system of a humanoid robot in Chapter 8.

246 The Fundamentals of Robotics: Linking Perception to Action

Here, we show an example of detecting a human's presence. The algorithm
is based on a probabilistic RCE neural network. As shown in Fig. 5.34,
the identification of pixels having the appearance of skin color is a simple
process. It allows the robot to make a quick assessment of whether or not
a human being is present. Obviously, a more elaborate approach is for the
robot to be able to detect the face and hand gestures.

(a) Original (color) image. (b) Blacked pixels of skin color.

Fig. 5.34 Detection of the presence of a human being through the identification of pixels
having the appearance of skin color. (NOTE: The original image is in color).

5.4.3 Motion Sensors

A humanoid robot's mechanism is highly complex with many degrees of
freedom. As each degree of freedom requires at least one motion sensor to
provide sensory feedback, a humanoid robot will need a large number of
motion sensors. And the performance of these motion sensors is crucial to
the proper control of motions executed by a humanoid robot.

As we mentioned before, motion sensors inside an industrial robot are
typically the incremental-encoder type. Consequently, an industrial robot
must perform a homing procedure before it is ready to work. For a hu-
manoid robot, however, this homing procedure is not desirable because it
involves unpredictable movements. Obviously, the absolute-motion sensor
is the most appropriate choice for a humanoid robot. With the absolute-
motion senor, the homing procedure is unnecessary. However, for the pur-
pose of comparison, let us study the working principles behind both abso-
lute and incremental motion sensors.

Regardless of the type of motion sensor, one must be clear that the

Control System of Robots 247

purpose of a motion sensor is to provide motion feedback by measuring the
motion parameters at a joint inside a robot's mechanism. As a result, there
are two concerns:

• Where do we place a motion sensor?
• How do we measure the motion parameters?

5.4.3.1 Placement of Motion Sensors

For the sake of clarity, let us consider the motion sensor for rotary motors.
In Chapter 4, we studied the coupling of a dynamic pair with a kinematic
pair. We know that a dynamic pair is normally coupled with a kinematic
pair through a device called a speed reducer or torque amplifier. This means
that the motion of a motor is not exactly equal to the motion of the corre-
sponding joint driven by the motor. Now, the question is: Should a motion
sensor be placed before the speed reducer or after the speed reducer?

Fig. 5.35 Sectional view showing the placement of a motion sensor before the speed
reducer.

The answer depends on the type of sensor and the application require-
ment. Ideally, we would prefer to place the motion sensor before the speed
reducer, as shown in Fig. 5.35. In this way, we can simply measure the
motion parameters of a motor. The output from a motion sensor is then
divided by the reduction ratio of the speed reducer in order to obtain the
motion parameters at the corresponding joint. Let us denote qt the angular
position of joint i, qmi the angular position of corresponding motor i, and
kri the reduction ratio of corresponding speed reducer i. If a motion sensor
is placed before speed reducer i, the output from the sensor is qmi. But, the
required output for motion feedback is qu which can be easily determined

248 The Fundamentals of Robotics: Linking Perception to Action

as follows:

9i = -j—- (5-34)
n-ri

The differentiation of Eq. 5.34 yields

dqi = -j— •dqmi.

This simply means that the error caused by the sensor's output is re-
duced by a factor of kri. Clearly, the advantage of placing a motion sensor
before a speed reducer is to obtain accurate motion feedback even if the mo-
tion sensor itself is not absolutely precise. If the working principle behind a
motion sensor requires the physical contact between one fixed element and
one moving element, the placement of a motion sensor before the speed re-
ducer is not suitable because angular velocity qmi is kri times higher than
angular velocity q\. The higher the velocity, the more severe the wear-and-
tear due to contact friction.

Motor ^ ^ ^ ^ ^ H H ^ ^ ^ ^ ^ ^ ^ ^ _

I^^^^^^^^B^^^^^^^^^^^I Joint

Fig. 5.36 Sectional view showing the placement of a motion sensor after the speed
reducer.

Alternatively, one may choose to place a motion sensor after the speed
reducer, as shown in Fig. 5.36. In this way, we can directly measure the
motion parameters at a joint. In other words, the output from a motion
sensor directly corresponds to the motion parameter(s) of a joint.

5.4.3.2 Potentiometers

All of us should be familiar with the potentiometer. When we adjust the
frequency of a radio, we rotate a rotary disk. And this rotary disk drives
a potentiometer to alter its output resistance value inside the internal cir-
cuitry of the radio. Physically, the potentiometer of a radio is a motion

Control System of Robots 249

sensor because the input is the angular position of a rotary disk and the
output is its resistance value.

1 ^^S^^^ Shaft of a joint

1 ®

Fig. 5.37 Illustration of the sensing elements built on top of a rotary potentiometer.

Fig. 5.37 shows an example of a rotary potentiometer and its associated
sensing elements (i.e. resistance-to-voltage signal converter and A/D con-
verter). A potentiometer is composed of two elements: one fixed circular
resistor and one movable wiper. As we discussed above, a potentiometer
should be placed after a speed reducer because it is a contact-based sensing
device. Therefore, the axis of a potentiometer should be coupled with the
shaft of a joint. Assume that point B is the reference position of poten-
tiometer i coupled with joint i. Let us denote R the resistance value of
arc AB, r the resistance value of arc CB, and qi the angular position of
the wiper with respect to reference position B. If the circular resistor is
uniform and the gap between points A and B is negligible, we have

r_ __ AB _ j^_

R~CB~360°- [b-6b)

Assume that input voltage V is applied to the potentiometer. If the
output voltage is picked up at the wiper, we have

Vout _ r_ _ qi
V ~ R ~ 360°

or

Vmt = ^ 5 . q i . (5.36)

Clearly, the measurement of output voltage Vout allows us to exactly
determine angular position q^.

250 The Fundamentals of Robotics: Linking Perception to Action

5.4.3.3 Absolute Optical Encoders

A contact-based motion sensor has some obvious drawbacks: It has short
lifetime due to the wear-and-tear. And, it has low accuracy of feedback
output. As we mentioned above, the ideal place to put a motion sensor is
somewhere before the speed reducer. However, this is only possible for non-
contact motion sensors. Accordingly, it is desirable to develop non-contact
motion sensors. Nowadays, one of the most widely-used non-contact motion
sensors is called the optical encoder.

Working Principle Behind Optical Encoders

The basic working principle behind an optical encoder is the conversion of
a motion into a series of light pulses, which are subsequently converted into
a corresponding series of electrical pulses (digital logic signals).

In order to generate light pulses, it is necessary to have a light emitting
device. One good light emitting device is the light-emitting diode, or LED,
for short. A diode is a nonlinear electric component. It has two terminals:
a) the anode and b) the cathode. The current can effortlessly flow from the
anode to the cathode of a diode when the forward voltage drop is within
the range of 0.5V to 0.8V. No current can flow in reverse from the cathode
to the anode of a diode. A light-emitting diode continuously emits the light
rays as long as there is a forward current which flows from the anode to
the cathode. Under normal working conditions, current flowing through an
LED is within the range of 5mA to 20mA. Therefore, it is necessary to have
a current-limit resistor in order to protect an LED.

After generating a series of light pulses, it is necessary to convert the
light pulses into electrical pulses. This is usually done with a photo-
detection device such as a photo-transistor (or photo-diode). A photo-
transistor is a special transistor which will produce a current from the col-
lector to the emitter when the base is exposed to a light source (or excited
by a light pulse). When combined with an op-amp circuit, an electrical
pulse can be easily produced when there is a light pulse present at the base
of a photo-transistor.

Fig. 5.38 illustrates the working principle behind an optical encoder.
An optical encoder consists of: a) a light-emitting device with an optical
lens to produce focused parallel light rays, b) a light-detecting device with
a logic-signal converter and c) a moving slotted (metal) sheet which can
be interfaced with a rotary motor. From Fig. 5.38, it is easy to see that
the logic-signal output will be high (i.e. "1") if light from the LED can

Control System of Robots 251

' Light Emitting Device i _ i + 5 Y i

' +5V, ! '
, ' ' • Phototransistor \

'• LE\ §*> ':' \ I V '•
' \ i ' i TLZ———r~\ output i

; ^ X v R ^ ' :K^ + >^^V^-cSlgna i ;
.Logic Signal r s ^ 4 ^ . ±£ 1 V~\x '

I ¥XtW \
, Optical lens , / ' Light Detecting Device |

Movable slotted sheet

Fig. 5.38 Illustration of the working principle behind an optical encoder.

pass through a slot which is aligned with the photo-transistor. Otherwise,
if light is blocked by the opaque (metal) sheet, the logic-signal output will
below ("0").

Working Principle Behind Absolute Optical Encoders

By definition, an absolute optical encoder is a device which is able to pin-
point the absolute angular positions of a rotary motor. As output from an
optical encoder are logic signals, an optical encoder is intrinsically a digital
device.

For a digital system, one logic-signal line corresponds to one digital bit.
And a digital bit only carries one piece of information (i.e. either "on" or
"off"). If we put all the bits of an absolute optical encoder together to form
a logic state variable, the number of logic states that an absolute optical
encoder has will determine the number of absolute angular positions which
can be measured.

For example, if we would like to measure a full rotation of 360° at an
accuracy of 0.1°, an absolute optical encoder has to have at least 3600
logic states as output. In other words, an absolute optical encoder should
have at least 3600 commutating logic states. As one bit only allows the
commutation between two logic states (i.e. "on" or "off"), 3600 logic states
require at least 12 bits (NOTE: 11 bits correspond to 2048 logic states, and
12 bits will have 4096 logic states).

Therefore, one important design parameter for an absolute optical en-

2 5 2 The Fundamentals of Robotics: Linking Perception to Action

coder is the number of commutating logic states. The specification of this
parameter depends on where the absolute encoder is placed on the motor,
for example:

• If the absolute optical encoder is placed before the speed reducer of a
motor, the accuracy of an absolute optical encoder will be increased by
kr times, where kr is the reduction ratio of the speed reducer.

• If the absolute optical encoder is placed after the speed reducer of a
motor (i.e. to measure the angular position of a joint), the number of
commutating logic states has to be specified directly according to the
desired accuracy of the measured angle at a joint.

Once the number of commutating logic states has been determined,
the next issue is how to engrave these commutating logic states onto the
movable slotted (metal) sheet, which can be in the shape of either a disk
(the default option) or a cylindrical tube. With the advent and maturity
of MEMS technology, the option of engraving the commutating logic states
onto a cylindrical tube sounds promising.

Light emitting devices Light detecting devices

|H|"""'"'1" HI / j Motor SSSHSBB

™ I •' ', ' i f l l lBff l l Joint
• ^ - Kuiot •) " 1 B H H S &

Slotted (met^) sheet I v ., SfiflBfiS

Absolute Optical feeder

Slotted (metal) Sheet of Disk -shape

* 0000 i 0001 ' Section

jni^^^^jooio s

jnnA(H)iix

noi i Q H H L ^ T r a c k

_ y^^^^^^H^^Poioo

IOIO T' ' • " " ,0111*

' 1001 1000 ,

Fig. 5.39 Illustration of a conceptual design of an absolute optical encoder with 16 logic
states being engraved on a slotted, disk-shape sheet of metal.

Control System of Robots 253

For the sake of clarity, we illustrate the case of designing an absolute
optical encoder with 16 logic states (4 bits). Fig. 5.39 shows a conceptual
design of an absolute optical encoder with 16 logic states being engraving
on a slotted, disk-shape sheet of metal. The engraved disk of an absolute
optical encoder is normally fixed on the shaft of a motor. Since there are
four logic bits, it is necessary to have four pairs of light-emitting and light-
detecting devices in order to read out the logic states.

From Fig. 5.39, we can see that the slotted, disk-shape sheet is divided
into four tracks (corresponding to the number of logic bits in an absolute
optical encoder) and 16 sections (corresponding to the number of logic
states in an absolute encoder). When the disk rotates with the motor, the
logic states will commutate either from 0000 to 1111, or from 1111 to 0000.
As a result, an absolute optical encoder allows us to obtain not only the
absolute angular positions but also the direction of motion.

1 t^ Light deteciing devices

ijyBiTi'iiii''B Motor i l l S B

Light emi • f ' '• S M B H S H '"""

Slotted (n • '[i llsiHnfiB

Absolute Opttcal Encoder vv

\ Slotted (metal) Sheet of Tube -shape

Tr.ck Section

' 0(100 0010 olOO oilO 10O0 1010 1I0O 1110

v oooi (ion oioi oin luoi ion noi n i l

Fig. 5.40 Illustration of a conceptual design of an absolute optical encoder with 16 logic
states being engraved on a slotted, tube-shape sheet of metal.

When tracks are engraved on a disk, their dimensions are not uniform.
The inner track will have the smallest circumference. Therefore, the density

254 The Fundamentals of Robotics: Linking Perception to Action

of the sections (the number of sections per track) is limited by the inner
track. The nonuniformity of the dimensions of the tracks also implies that
the process of manufacturing slotted, disk-shape sheets of metal may be
costly. However, this drawback can easily be overcome by engraving the
logic states on a tube-shape sheet of metal, as shown in Fig. 5.40.

When a tube is extended onto a planar surface, it becomes a rectangular
sheet. All the tracks and sections engraved on it will have a uniform dimen-
sion and shape. Hence, it poses no challenge to manufacture the slotted,
tube-shape sheets of metal. Furthermore, it is easy to increase the number
of tracks engraved on a tube-shape sheet for better accuracy.

In summary, an absolute optical encoder can either be placed before
the speed reducer or after the speed reducer of a motor. The output from
an absolute optical encoder is the value of a logic state which indicates the
absolute angular position. If the rotated angle exceeds 360°, it can be easily
detected by counting the number of commutations from the smallest logic
state value to the highest logic state value, or vice-versa.

5.4.3.4 Incremental Optical Encoders

Due to the concern about cost, one of the most widely-used optical encoders
for industrial robots and other equipment like printers is the incremental
optical encoder. A notable advantage to an incremental optical encoder is
its compact size and low cost. Fig. 5.41 illustrates a dismantled incremental
optical encoder. It has three parts: a) the slotted, disk-shape sheet of metal,
b) the integrated portion of light-emitting and light-detecting devices, and
c) the compact casing.

Working Principle Behind Incremental Optical Encoders

The idea behind the design solution of an incremental optical encoder is to
reduce the number of tracks on the disk-shape metal sheet to one. Instead of
engraving the logic states onto a disk-shape (metal) sheet, as in the case of
an absolute optical encoder, one simply engraves a periodic slotted pattern
on a single track, as shown in Fig. 5.42. Refer to Fig. 5.42. The slotted
metal disk has the periodic slotted pattern with eight cycles engraved on a
single track.

In principle, a single track of periodic slots only requires one pair of
light-emitting and light-detecting devices. In this way, a series of electrical
pulses will be generated when the slotted disk of an incremental optical
encoder rotates with a motor. In order to measure angular displacements,

Control System of Robots 255

ijght emitting anil

1 ^ ^ ^ | B H | Caung

Slotttsd inrtdl *Mt ^ ^ ^ H P s & L '
of disk shape ^ ^ ^ ^ P | r

Fig. 5.41 Picture of a dismantled incremental optical encoder.

one simply counts the number of pulses which is linearly proportional to
angular displacements.

For the example shown in Fig. 5.42, eight (8) pulses indicate an angular
displacement of 360° with an accuracy of ±45° (i.e. ^p-)- Obviously,
the larger the number of cycles of the slotted pattern, the more accurate
an incremental optical encoder. If nc denotes the number of cycles of the
slotted pattern on the disk, the accuracy of an incremental optical encoder,
denoted by A6, will be

A*=^!. (5.37)
nc

A larger value of nc indicates an increase in difficulty or cost for the man-
ufacturing of the slotted disks. In practice, the accuracy of an incremental
optical encoder is in the range of 1° to 0.1°. Consequently, an incremental
optical encoder must be placed before the speed reducer of a motor.

Because of its simple structure, the incremental optical encoder with a
single track is only able to measure angular displacements without knowing
the direction of motion. But, what we need for the motion feedback in a
closed-loop control system is the measurement of an angular position or
velocity in the absolute sense.

In order to determine the absolute angular position from the measure-
ment of angular displacements, one must address these two issues:

• How do we register a reference position or home position?
• How do we determine the direction of motion?

256 The Fundamentals of Robotics: Linking Perception to Action

Light emitting devices Light detecting devices

Hra& ? HI
^K^^^Bi I Motor ^ ^ ^ ^ ^ ^ B

^B UH I , I^^^^^B Joint

' Slotted (metal) s W | HHHBHi

/ Incremental Optical Encoder ~ «.

Slotted f metal) Sheet of Disk -shape I '.
, ^ ^ O n e cycle j

Light detector A • " v ^ ^ ^ T ^ " ' - ^ ^ , • I—-—' ' ' '—•—' '—

" ^ j B B L g J a k j - * — Li phi detector B —'—' ' ' ' ' ' ' '—

~ -^•^^^H\ - ' ' | fA' 'efl Clockwise Toiaiion

L J H H ^ ^ ^ ^ ^ B ^ H B r Light detector H .

' i > lB *A Counterclockwise rotation

Fig. 5.42 Illustration of a conceptual design of an incremental optical encoder.

Determining the Home Position

The first question is easy to answer. A common solution is to create a
reference slot on the disk. This reference slot indicates a reference, or home
position, as shown in Fig. 5.42.

With an added reference slot, there must be a pair of light-emitting and
light-detecting devices to locate this home position. In Fig. 5.42, detector
H is to identify the home position. As it is necessary to identify a home
position, a robot or any machine which uses the incremental optical en-
coders must undertake a homing procedure before it is ready for actions or
operations.

A homing procedure for one motor normally involves two rotations at
most. A motor will first rotate in one direction (either clockwise or coun-
terclockwise) and its range of movement will be no more than 180°. If no
home position is detected in the first rotation, the motor will rotate in the
opposite direction until a home position is found. As we mentioned earlier,
this homing procedure is not desirable for a humanoid robot to perform

Control System of Robots 257

because the movement of a robot during the homing is unpredictable.

Determining the Direction of Motion

The second issue is how to determine the direction of motion. This issue
is slightly more complicated. A single light-detector (detector A) normally
produces one series of pulses when the slotted disk of an incremental optical
encoder rotates with a motor. Obviously, it is impossible to determine the
direction of motion from a single source of pulses. In order to solve this
issue, a common solution is to introduce a second light-detector (detector
B).

Since the slotted pattern on a disk is composed of periodic cycles, the
output from a light-detector will be a series of periodic pulses when the
disk is rotating. If we use the term phase in signal processing, a cycle will
correspond to a full phase of 360°. If the position of detector B has no
phase-shift with respect to the position of detector A, the logic signal from
detector B will be identical to the logic signal from detector A. Similarly, if
the position of detector B has a phase-shift of 180° with respect to the posi-
tion of detector A, the logic signal from detector B will be the complement
of the logic signal from detector A. In other words, the logic signals from
these two detectors carry the same information (they are logically equal).
However, if the phase-shift between the two detectors is not equal to 0° (or
the multiple of 360°) nor 180° (or the multiple of 180°), the logic signals
from these two detectors will not be logically equal. In practice, a common
design solution is to choose a phase-shift of 90° between the two detectors,
as shown in Fig. 5.42.

For the example shown in Fig. 5.42, detector B has a phase-shift (phase-
lag) of 90° behind detector A in a clockwise direction. When the slotted
disk rotates in a clockwise direction, the cycle of the waveform from detector
A will have the phase-lead of 90° with respect to the cycle of the waveform
from detector B. By default, a new cycle of a periodic logic signal starts
with the rising edge which marks the transition from the logic "low" to
the logic "high". For any given cycle of the slotted pattern on a rotating
disk, let tA denote the starting time of a generated electrical pulse from
detector A, and i s the starting time of a generated electrical pulse from
detector B. A phase-lead of the waveform from detector A with respect to
the waveform from detector B simply means

tA < tB. (5.38)

258 The Fundamentals of Robotics: Linking Perception to Action

Alternatively, if we choose detector B as a reference, detector A has a
phase-lag of 90° behind detector B in a counterclockwise direction. Ac-
cordingly, if the disk rotates in a counterclockwise direction, the cycle of
the waveform from detector B will have a phase-lead of 90° with respect to
the cycle of the waveform from detector A. In other words, we have

tB < tA. (5.39)

Clearly, the direction of motion is easily determined by measuring t&
and ts-

In summary, an incremental optical encoder is normally placed before
the speed reducer of a motor. This is because the accuracy of an incremental
optical encoder itself is not very high due to the limitation on the number
of cycles of the slotted pattern. The output from an incremental optical
encoder normally includes four signal lines: one for the pulse waveform
from detector A, one for the pulse waveform from detector B, one for the
pulse waveform from detector H, and one for the common ground. A digital
motion controller must interpret the received logic signals from these four
signal lines in order to determine rotated angle or velocity, and direction of
motion etc. Finally, an incremental optical encoder will impose a homing
procedure on all robots or other equipment like printers which use it for
motion feedback.

5.4.4 Force/Torque Sensors

So far, we studied ways to alter the direction of motion, to regulate the
electrical energy applied to a motor for the purpose of varying its velocity,
and to measure the output motion of a motor either before the speed reducer
or after the speed reducer for the purpose of motion feedback. Practically,
we are ready to close the feedback-control loop and concentrate on the
design of control algorithms. However, in order for the robot to perform
certain tasks, the motion executed by a limb (e.g. arm-hand or leg-foot)
may involve direct contact between its end-effector and the environment or
workpiece.

For example, when a humanoid robot writes on paper with a pen, its
hand will experience contact force between the paper and the pen. In other
words, for motion control, it may be necessary to consider the force or
torque feedback as well in order to produce the desired interaction force or
torque between a robot and its environment.

Control System of Robots 259

5.4.4.1 Indirect Measurement

In Chapter 4, we studied robot statics. When a robot's limb is at rest,
external force/torque £e exerted on its end-effector's frame is related to
torque vector r applied to the actuators of the robot's limb in the following
way:

where J is the Jacobian matrix of the robot's limb.
Jacobian matrix J is easy to evaluate if the angular positions of the

joints are known. Now, one may question whether it is possible to deter-
mine external force/torque £e exerted on the end-effector's frame of a limb
from measured torque vector r at the limb's actuators. The answer to this
question depends on the following cases:

• If the robot is operating in outer space where there is no gravitational
force, it is possible to directly determine £e from measured torque vec-
tor r.

• However, if the robot is operating on Earth, it is not easy to determine
£e based on the measurement of r because a portion of r is spent to
balance gravitational forces acting on the links of a limb.

5.4.4.2 Direct Measurement

As most robots operate on Earth where there is gravitational force, it is
necessary to develop a sensor which is able to measure the force/torque
externally exerted on the end-effector (hand or foot) of a robot's limb.

Metallic (silicon) ™
' Elastic beams

gnd elements

/ j ||L ^ ^ ^ ^ ^ I ^ ^ ^ ^ ^ E ^ r Electronic circuitry

Plastic sheet Wirings ^^*8HB^^^

(a) Enlarged view of strain gauge. (b) Open - up view of force/torque sensor.

Fig. 5.43 Example of a force/torque sensor: a) the enlarged view of a strain gauge and
b) the internal view of a force/torque sensor.

260 The Fundamentals of Robotics: Linking Perception to Action

In robotics, a widely-used method of measuring forces and/or torques is
with a strain gauge. Fig. 5.43 shows an example of a force/torque sensor.
It is also known as a wrist sensor because a force/torque sensor is normally
mounted between the end-effector of a robot's arm and its hand (or a tool).

As shown in Fig. 5.43, a strain gauge is a metallic (e.g. silicon) grid
element of foil which can come in different shapes and sizes. A strain gauge
is normally attached to a plastic sheet. In order to measure an applied force
or torque, an element called an elastic beam is used. When an applied force
or torque is coupled with an elastic beam, the beam deforms in response
to the stress caused by the applied force or torque. This deformation can
be detected by placing one or two strain gauges onto one or two surfaces of
the beam.

When a beam deforms in response to the stress caused by an applied
force or torque, the strain gauges placed on it will also deform. Thus,
the electrical resistances of the metallic grid elements in the strain gauges
will change in a specific way, either increasing or decreasing. As a result,
a strain gauge behaves like a variable resistor, the electrical resistance of
which changes as a function of its deformation. Accordingly, in order to
design a force/torque sensor based on strain gauges, one must address these
issues:

• How do we couple the applied forces and/or torques to a structure of
elastic beams?

• How do we convert (very small) variations in electrical resistances of
the strain gauges to variations in corresponding voltage signals?

• How do we map the voltage signals to the measurement of the applied
forces and/or torques?

Structure of Elastic Beams for Force/Torque Sensors

A sensor should not interfere with the proper operation of a system under
measurement. This rule implies that a force/torque sensor should not cause
any extra motion to a robot system. In other words, a force/torque sensor
should structurally behave like a rigid body as long as the applied force &
torque is within its working range.

In robotics, the structure of a force/torque sensor is commonly based
on an elastic beam assembly. As shown in Fig. 5.44, a force/torque sensor's
structure consists of three parts: a) rigid body 1 (e.g. a tube), b) rigid
body 2 (e.g. a tube) and c) a set of coupling elastic beams. Rigid body
1 is coupled to rigid body 2 through the supporting beams. When body

Control System of Robots 261

(a) Three beam structure (b) Elementary forces/torques

Fig. 5.44 Example of a three-beam structure for strain-gauge based force & torque
sensors.

2 is subject to the external forces and torques, the built-up stress between
bodies 1 and 2 will cause the beams to deform. By placing some strain
gauges on the surfaces of the beams, these deformations will be converted
into the variations in electrical resistances of the strain gauges.

In a three-dimensional space, force/torque vector £e acting on the end-
effector of a robot's limb will have six elements: a) three for the elementary
forces in X, Y, and Z directions, and b) three for the elementary torques
about the X, Y and Z axes. If a beam is in a shape of a cube, it is able to
capture the deformations in two directions if its two ends are fixed onto two
rigid bodies respectively. As a result, it is necessary to have a minimum
number of three beams to produce six values of output, which can almost be
linearly mapped into a corresponding measurement of external force/torque
vector £e with six elements.

Fig. 5.44 illustrates an example of a three-beam structure for a
force/torque sensor. Each beam has two strain gauges placed on its two
adjacent surfaces. In total, there will be six strain gauges. Since a strain
gauge behaves like a variable resistor, we will have six variable resistors
denoted as R\, R2, R3, R4, R5 and RQ.

In practice, body 1 (the outer ring or tube) of a force/torque sensor
is attached to the end-effector's link of a robot's limb while body 2 (the
inner ring or tube) is attached to a robot's hand, foot or tool. For the
sake of convenience, we can have the end-effector's frame at the center
of a force/torque sensor's beam structure. In general, when an external
force & torque acts on body 2, force/torque vector £e experienced by the

262 The Fundamentals of Robotics: Linking Perception to Action

end-effector's frame will be

Ze = (fXJyJz,Tx,Ty,Tz)t (5.40)

where {fxifyifzY is the force vector and [jx-,Ty,'Tz)t the torque vector.
This force/torque vector £e will cause variations in electrical resistances of
the strain gauges. That is: ARi, AR2, AR3, AR4, AR5 and AR6.

Resistance to Voltage Conversion

In electronics, a common way to convert the variation of electrical resistance
to the corresponding variation of voltage is to use the Wheatstone bridge
circuit, as shown in Fig. 5.45a.

K

(a) Wheatstone bridge circuit (b) Signal amplifier

Fig. 5.45 a) Wheatstone bridge circuit for measuring resistance variation and b) voltage
signal amplifier.

The input voltage to the Wheatstone bridge circuit is Vin and the output
voltage is Vout- And, the output voltage is equal to V\ — V2. A Wheatstone
bridge circuit has two branches. Each branch has two resistors. Assume
that we convert the variation of resistor Ri (i = 1,2,..., 6) to a correspond-
ing variation of the voltage signal. By adding another three high-quality
resistors Riti, Rit2 and i?i,3, we will form a Wheatstone bridge circuit, as
shown in Fig. 5.45a. Ideally, these four resistors should have similar thermal
characteristics in order to balance out noise caused by thermal effect.

From Fig. 5.45a, voltage V\ is

-Ki,l + -Ki,2
(5.41)

Control System of Robots 263

Similarly, voltage V2 will be

V2 = WJ^r*Vm. (5.42)

As Vout = Vi — V2, we have

vout = I R-2 - ir—jr) # v- <5-43)

Assume that the electrical resistances of resistors Ri,i, -Ri,2 and i ? ^ are
constant. Differentiating Eq. 5.43 with respect to time yields

dVout = . p ' p , 2 • ^ i - (5-44)

Consequently, the relationship between the variation of the electrical
resistance of strain gauge % and the corresponding variation of the voltage
signal is

A beam's deformation is very small, so the corresponding variation ARi
is very small as well. As a result, voltage signal AVout needs to be amplified
to an appropriate level before it can be further converted into a correspond-
ing digital signal. (NOTE: Vin is usually within +5V).

A typical circuit for voltage amplification is shown in Fig. 5.45b. The
input voltages are V\ and Vi- And the output voltage (i.e. Vi) is

Vi = ^*(V2-V1) = -^*Vmt. (5.46)

By differentiating Eq. 5.46 with respect to time, we can obtain

AVi = ~*AVout. (5.47)

Finally, substituting Eq. 5.45 into Eq. 5.47 yields

Eq. 5.48 indicates that electrical resistance's variation ARi is linearly
converted to the corresponding voltage signal AVi (i.e. in digital form
after the A/D converter). And, AVi is the output from strain gauge i
(i = l,2,...,6).

(5.45)

(5.48)

264 The Fundamentals of Robotics: Linking Perception to Action

Voltage to Force/Torque Mapping

For the force/torque sensor, shown in Fig. 5.43 and Fig. 5.44, the input to
the sensor is the actual force/toruqe vector

And, the direct output from the sensor is voltage vector

AV = (AVi, AV2, AV3, AV4, AV5, AV6)(.

What we would like to obtain is an estimation of the actual force/torque
vector. Let £* denote the estimated force/toruqe vector. Now, the question
is how to compute £* based on the knowledge of AV.

In theory, it is difficult to establish an exact analytical relationship be-
tween £e and AV. In practice, however, we know that AV has an approx-
imate linear relationship with £e. This explains why the practical solution
is to use a constant mapping matrix to convert measurement AV to an
estimated force/torque vector £*.

Let W = {u>ij,Vi & [1,6], Vj e [1,6]} be the constant mapping matrix.
Then, we have

C = W • AV. (5.49)

W is a 6 x 6 matrix with 36 elements. When we have a pair of known £e

and its corresponding AV, Eq. 5.49 provides six equations for the 36 ele-
ments in matrix W. If there are six pairs of known £e and its corresponding
AV, we will have 36 equations which allow us to uniquely determine the
36 elements. If more than six pairs of known £e and corresponding AV
are available, matrix W can be estimated by a least square method. This
procedure is known as the calibration. The purpose of this calibration is to
determine matrix W which describes the voltage to force/torque mapping.

5.4.5 Tactile Sensors

When a humanoid robot operates, it is inevitable that it will touch objects
in the vicinity. For example, when standing, its two feet are in contact with
the floor/ground. When manipulating objects with its hands, the robot's
fingers are in contact with the objects. Therefore, tactile sensors are also
the important feedback sensors.

By definition, a tactile sensor is a device which measures the physical
quantities related to touch. A touch normally involves force and/or torque

Control System of Robots 265

when one object (e.g. a robot's hand) holds another object (e.g. a tool).
But it may also contain other information such as the rolling and slippage
effects between two objects in contact. As a result, a tactile sensor is a
kind of force/torque sensor. However, a tactile sensor does not require an
accurate measurement of the force and/or torque caused by the contact.

Refer to Fig. 5.30. A tactile sensor is also built on top of a transducer
and a signal converter. In robotics, there are many ways to design trans-
ducers for tactile sensors. Basically, a tactile sensor's transducer has three
elements: a) a deformable substrate, b) an array of touch detectors and
c) a soft-cover tissue (like skin). Depending on the intended application, a
touch detector can be as simple as an "on-off" switch which indicates the
logic state of in-touch or not-in-touch. Other common touch detectors are
the capacitive transducer which converts contact into corresponding capac-
itive impedance, and the LVDT (Linear Variable Differential Transformer)
which measures the linear displacement caused by contact.

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ v: '••l|- • * >*i " '""̂ s! inStil^^^^^^^^^^^B"

^^^^^^^^^^^^^|0Bm»Vi^^|F*^^^Pv 'jr. j'. I

Soft cover tissue Stitcl ^ H C . ^fS'k'^^^^HKdf ••• \

Substrate Detectoran-ayj^B^^^^^^^J^^H^^^^^^J

Fig. 5.46 Illustration of the composition of a tactile sensor.

In fact, an ideal transducer for a tactile sensor is a device consisting of
an array of micro-force/torque sensors as shown in Fig. 5.46. Each micro-
force/torque sensor is similar to the one illustrated in Fig. 5.44. And, it is
able to measure external force/torque exerted on its stitch. In this way, we
can obtain a complete measurement of contact. Of course, the challenge
here is how to fabricate the tactile sensor based on the micro- or nano-
detector.

266 The Fundamentals of Robotics: Linking Perception to Action

5.5 Control System Design

If we know the sensor feedback, it is easy to close the loop of a motion
control system. Then, the next important issue becomes how to design the
control algorithms.

5.5.1 Issues

As the robot has multiple degrees of freedom, its motion controller must be
able to handle multiple closed-loops of motion control. Despite the presence
of multiple closed-loops inside a robot's controller, the basic structure of a
closed-loop control system is still similar to the one shown in Fig. 5.47. In
fact, a robot's system under control is its kineto-dynamic chain. Strictly
speaking, the inertia! load of a robot is the robot mechanism itself including
the tool or payload, if any, attached to its end-effector.

' Kineto-dynamic chain ,

Desired output ' ,
— • Motion Power ' Electric Speed Robot ,

Feedback ^ Controllers) ^ Amplifiers . * Motors Reducers Mechanism '

Sensor ^
Feedback ^

Fig. 5.47 Illustration of the closed-loop control system for a robot's motion execution.

As we discussed earlier, a closed-loop control system is a system which
responds to an error signal. Let q denote the actual output of a closed-loop
motion control system, and qd its desired output. The error signal will be

e(t) = <f(t)-q(t).

The minimization of the above equation is a typical example of the control
objective in a closed-loop control system.

Now, the immediate challenge is how to design a control algorithm which
will make e(t) converge to zero after a certain period of time. In general,
the design of a control algorithm is not a simple matter.

Although vast body of knowledge about control has been developed in
control engineering, almost 90% of today's industrial control applications
are still based on the popular PID control law. Accordingly, we will study

Control System of Robots 267

some control schemes based on PID control law which are applicable to a
robot's control system.

As the robot is a complex system, it is important to properly address
the following issues relevant to the design of a robot's control system:

• How do we specify the desired output of a closed-loop control system
in a robot?

• How do we obtain the exact dynamic model of a robot's system under
control?

• What is the available sensory feedback information? And, how good is
the sensory feedback?

• What is the control law which guarantees a satisfactory control perfor-
mance in terms of transient and steady-state responses ?

5.5.2 Planning of Desired Outputs

In robotics, the specification of the desired output of a robot's control
system is not easy. As we mentioned earlier, a task to be performed
by a robot is normally specified in Cartesian space, also known as the
task/configuration space. Thus, it is logical to specify the desired output
of a robot's control system in task space. However, the output motion from
a robot's mechanism depends on its input motion. And, a robot's motion
control simply means the control of input motions at the joints of a robot's
mechanism. Thus, there is strong reason to believe that the desired output
of a robot's control system should be the desired values of some variables
in joint space.

In fact, the desired output of a robot's control system can be specified
in three spaces:

• Planning of the Desired Output in Joint Space:
In Chapter 4, we studied the statics and dynamics of an open kineto-
dynamic chain underlying a robot's mechanism. We know that the
motion of a robot's mechanism originates from the energy which drives
the dynamic pairs. Thus, the motion control inside a robot means
the control of the input motions at the joints of a robot's mechanism.
As a result, the desired output of a robot's control system should be
the desired values of the motion variables at the joints. On the other
hand, a robot is designed to perform tasks which are usually specified
in Cartesian space (task space). Thus, it is inevitable to encounter the
situation in which the specification in task space has to be translated

268 The Fundamentals of Robotics: Linking Perception to Action

into the corresponding desired output in joint space.
• Planning of the Desired Output in Task Space:

Since a task is normally specified in Cartesian space (task space), it
appears logical to directly specify the desired output of a robot's control
system in task space. For some motion-related variables (force/torque
acting on an environment), it is easy to adopt the control scheme in task
space. But for motion variables, like position, velocity and acceleration,
it is not such a simple matter to do this. A hybrid-control scheme in
both joint and task spaces may be a good solution.

• Planning of the Desired Output in Image Space:
An image is a projection of a three-dimensional (3-D) space onto a
two-dimensional (2-D) plane (image space). A control scheme in image
space may be considered a special case of task space control. We can
say that the majority of our daily activities rely on our visual percep-
tion system. We will study visual sensory and perception systems in
Chapters 7 and 8. Here, we simply point out the fact that a human vi-
sion system is qualitative (not metric). Despite this, humans are skillful
in performing visually-guided activities. Therefore, it is meaningful to
develop engineering approaches to imitate human-like visually-guided
motion execution.

5.5.3 A Robot's System Dynamics

Refer to Fig. 5.47. The plant of a robot's closed-loop control system is the
kineto-dynamic chain. Strictly speaking, the dynamic model of a robot's
system under control (the plant) should include the dynamics of a robot's
mechanism, the dynamics of speed reducers and the dynamics of electric
motors.

5.5.3.1 Dynamics of a Robot's Mechanism

In Chapter 4, we studied the dynamic model governing a robot's mecha-
nism. This model is commonly called robot dynamics. More appropriately,
it should be called the dynamics of a robot's mechanism. Let us consider
an open kineto-dynamic chain having n kineto-dynamic pairs.

Refer to Eq. 4.137. The general form of the dynamic model of an open
kinemto-dynamic chain with n kineto-dynamic pairs is

B(q).q + C(q,q)»q + G(q) = T (5.50)

Control System of Robots 269

where:

• 1 = (<7i)<72> •••,<}n)t is the vector of generalized coordinates and <& is
the angular displacement if joint i is a revolute joint. Otherwise, qi
is the linear displacement variable. A displacement with respect to a
reference indicates the absolute position of a joint.

• T = (ri, T2,..., rra)* is the vector of generalized forces and r, is the torque
exerted at joint i if it is a revolute joint. Otherwise, it refers to the
force exerted at joint i.

• B(q) is the inertial matrix of the open kineto-dynamic chain.
• C(q, q) is the Coriolis matrix which accounts for the Coriolis and Cen-

trifugal effects.
• G(q) is equal to a derivative vector of the potential energy of the open

kineto-dynamic chain. It accounts for the effect caused by gravitational
force.

This dynamic model relates joint variables q to the joint torques (or
forces for prismatic joints). In other words, it only describes the dynam-
ics of the open kineto-dynamic chain underlying a mechanism. From our
study of a robot's control elements, we know that the controllable variables
for altering a robot's motions are the variables, either voltage or current,
directly related to the electrical energy applied to the electric motors. As
a result, Eq. 5.50 is not a complete dynamic model of a robot's system un-
der control. We need to further understand: a) the dynamics of the speed
reducers and b) the dynamics of the electric motors.

5.5.3.2 Dynamics of Speed Reducers

In Chapter 4, we studied the couplings between dynamic and kinematic
pairs. The coupling devices are commonly called the speed reducers or
torque amplifiers. (NOTE: The bearings involved in a coupling can be
treated as part of a speed reducer).

For the sake of simplicity, let us consider the case where the motion sen-
sors are placed before the speed reducers coupled with the electric motors
inside a robot. With regard to an electric motor coupled to a kinematic
pair, the joint variables will include angular (or linear) displacement and
torque (or force) at the joint. Similarly, the variables at the motor's shaft
will also include angular displacement and torque. Thus, let us denote

• Q = (<7i, qi-, •••, QnY the vector of displacement variables at the joints,
• T — (TI,T2, ...,Tn)* the vector of torques (or forces) at the joints,

270 The Fundamentals of Robotics: Linking Perception to Action

• 1m = (<7mi,<7m2; •••! Imnf the vector of angular displacements at the
motor shafts,

• Tm = (Tmi,rm 2, •••,Tmn)t the vector of torques at the motor shafts.

If the reduction ratio of speed reducer i coupled with electric motor i is

kri, then

(5.51)

*T~i — Kri * 1~mi ^vi * Qi

where kVi is the viscous damping coefficient of speed reducer i (i.e. the
viscous friction coefficient). Here, we have omitted the static frictional
force of a speed reducer.

Accordingly, the relationship between (q,r) and (qm,Tm) is

f q = (fc^ • 9mi, ^ • qm2, - , j ^ • qmny-

[T = (kri • rml - kvl • q~i,kr2 • Tm2 - kv2 • q2, •••, krn • Tmn - kvn • <?„)*.
(5.52)

If we define

(krl 0 .. . 0 \
0 kr2 ... 0

Kr = diag(krl,kr2,...,krn) = .

V o o . . . f c r n y

and

/fc.,1 0 . . . 0 \

0 ^ 2 • • • 0

K v = d i a g (k v l , k v 2 , . . . , k v n) = ,

V 0 0 ... kvn I

Eq. 5.52 can be compactly written as

{ <? = K'1 • qm

(5.53)
r = Kr • rTO - Kv • q

where -ft'"1 is the inverse of Kr. Kr can be called the reduction ratio matrix.
This equation describes the dynamics of speed reducers.

Control System of Robots 271

Finally, substituting Eq. 5.53 into Eq. 5.50 yields

Bm (?) •qm + Cm (q, q)9Qm + Gm (q) = Tm- Kmv • qm (5.54)

with

' Bm(q) = K-1 • B(q) • K-1

Cm{q,q) = K-l.C{q)q)»K^
(5.55)

Gm(q) = K-l.G(q).K-1

Kmv = K~l.Kv.K-\

Eq. 5.54 describes the dynamic model of an open kineto-dynamic chain
in terms of the variables at the output shafts (before the speed reducers)
of the electric motors.

5.5.3.3 Dynamics of Electric Motors

For an electric motor coupled with a kinematic pair, the relationship be-
tween the torque at its shaft and the voltage (or current) applied to the
coils of its rotor or stator is not simple. Theoretically, if the motor does
not dissipate any energy, electrical energy We applied to an electric motor
should be equal to its mechanical energy Wm delivered at the output shaft.

v- I I v * Rai

hi 5=^ Roto r

4 " « 5 ^ B B ^ ^ M o t o r Shaft
Power ^> «M[i|j|§f|j|/'

Amplifier | |H||||MUH1

vtmf 1 0 Torque

Fig. 5.48 Illustration of the equivalent electronic circuit of an electric motor.

In general, the equivalent electronic circuit describing an electric motor
i looks like the one shown in Fig. 5.48. The parameters relevant to an
electric motor i include

• Vai: input voltage applied to its coil(s),

272 The Fundamentals of Robotics: Linking Perception to Action

• Iai: input current applied to its coil(s),
• Rai\ resistance of its coil(s),
• Lai: inductance of its coil(s),
• vemj: back electro-motive force (i.e. the induced voltage when a coil

rotates inside a magnetic field),
• Tmi'- output torque at the motor's shaft,
• qmi\ angular position or displacement at the motor's shaft.

By definition, electrical energy applied to motor i within time interval
[ts,tf] is

we= [fvai* iai. dt.
Jt,

And, the corresponding mechanical energy output from motor i will be

rtf
Wm = Tmi • qmi • dt.

Jt3

By applying the principle of energy conservation, we have

/

' * / / • ' /

Vai • Iai dt= Tmi • q'mi • dt. (5.56)

Jts

Clearly, it is not easy to predict the exact relationship between the
voltage (or current) applied to an electric motor and the torque at its
shaft. However, if we consider brush-type DC motor i driven by a linear
power amplifier, we can establish the following equation with regard to the
equivalent electronic circuit as shown in Fig. 5.48:

Vai = Rai • Iai + Lai —^ + vemf (5.57)

with

Vemf = nai • Qmi

where kai is a constant.
In Chapter 4, we studied the relationship between current and torque

in a brush-type DC motor (i.e. Eq. 4.32). If ku is the torque constant of
brush-type DC motor i, we have

7mi = "'ti • lai-

Control System of Robots 273

By applying the above equation to Eq. 5.57 and omitting back electro-
motive force vemf, we will obtain

Vai = — • rmi + —- • ——. (5.58)

Now, let us assume that the linear power amplifier for motor i is mod-
elled by Eq. 5.28. Then, we have

Hi

where Vd is the control voltage signal applied to electric motor i. This con-
trol voltage signal comes from a digital motion controller. The application
of the above equation to Eq. 5.58 yields

Vci = ̂ -Jrmi + Tmi.^) (5.59)
kmi \ dt)

with

{ , _ feti»(fli+fl2)

K"ii - Ra..Rl

J ™ "" Rai-

In fact, Tmi is the time-constant of electric motor i and kmi is its voltage-
to-torque gain.

Eq. 5.59 is a simplified model which describes the dynamics of an elec-
tric motor. The combination of Eq. 5.54 and Eq. 5.59 fully describes the
dynamics of a robot's system under control.

Example 5.9 Refer to Eq. 5.59. Let kmi = 1.2 (N-m/volt) and Tmi = 5
(Ohms/Henrys). The (voltage-to-torque) transfer function of the motor
will be

Tmijs) 1.2
Vci(s) l + 5s'

Fig. 5.49 shows the response of a motor (without inertial load) to a unit-
step voltage signal. And, Fig. 5.50 shows the response of motor (without
inertial load) to the input voltage signal of a unit-sine function (i.e. sin(t)).
We can see that the motor responds to the input voltage signal in a timely
manner.

oooooooooooooooooo

274 The Fundamentals of Robotics: Linking Perception to Action

1 I 1 1 1 r ——i 1 1 1 1 — 1

JN : .: : ;
Input voltage signal

0.8 - : -

0.7 -

0 . 6 - • •:

0.5 -

°-4 " Output
torque

0.3 - ' / - ^

0.2 - / :• • • :

0.1 | :

g ! I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20

Fig. 5.49 Transient response to the input voltage signal of a unit step function. The
horizontal axis is the time axis with the unit in seconds.

5.5.4 Sensory Feedback

Refer to Fig. 5.47. Sensory feedback is indispensable in a closed-loop con-
trol system. For motion control, the feedback measurements may include
position, velocity, acceleration and force/torque. As we discussed earlier, a
motion sensor can be placed either before or after a speed reducer. As for
the force/toque sensor, it is always attached to the end-effector link.

The nature of the measured variables inside a closed-loop control system
determines the nature of the desired output. For example, if the position
variable is the only variable which is measurable, we can only specify the
desired value for position. On the other hand, if the velocity variable is
also measurable, both the desired values for position and velocity can be
specified.

Since position, velocity, and acceleration are mathematically related
to each other, one measurement may be sufficient, if the sensor's noise is
negligible. For example, if a sensor's output s(t) is the angular position at

Control System of Robots 275

f\ Input voltage signal AA /A '.

_0.2. Output: \ - \ ^ / / \ _ / . l_/1 -
torque I / 1 • I t I

-0.6 - I • • • • / . • • • : \ \

_ 1 I I I V / I I I k Z I I I V - / I
0 2 4 6 8 10 12 14 16 18 20

Fig. 5.50 Transient response to the input voltage signal of a unit sine function (i.e.
Vci(t) = sia(t). The horizontal axis is the time axis with the unit in seconds.

a motor's shaft, the corresponding angular velocity and acceleration will be

f «(«) = ^

Refer to Eq. 5.15. The transfer function of a feedback sensor will appear
at the denominator of the closed-loop transfer function. This means that
the dynamics of a feedback sensor will slow down the response of the closed-
loop control system. Ideally, a feedback sensor should not exhibit any
dynamic behavior (i.e. no transient response) and should behave like a
unity gain channel.

Refer to Eq. 5.17. If the control gain is very large, almost 100% of
the noise caused by a feedback sensor will appear in the output. This
means that the output of a closed-loop control is very sensitive to the noise
of feedback sensor. In order to achieve better control performance, the
feedback sensors should not have any noise.

276 The Fundamentals of Robotics: Linking Perception to Action

5.5.5 Control Algorithms and Performances

A closed-loop control system consists of three parts: a) the system under
control (i.e. the plant), b) the controller (i.e. control law or algorithm),
and c) the feedback sensor(s). Sometimes, a control system may just have
a single input and a single output (SISO). In this case, it is called an
SISO system. If a control system has multiple input and multiple output
(MIMO), it is called a MIMO system.

As shown in Fig. 5.51, the transfer function of a robot's closed-loop
control system can be generically written as

where Gp(s) is the transfer function of the system under control, Gc(s)
the transfer function of the control law or algorithm and H(s) the transfer
function of the sensing device.

VcW i System under Control :Gp(s) ' ,' '
d I TV I 1 ' Position

q Q) j£>\ ^ ^ M°'i°"c°"tt°»<!r * J Dynamics of K Dy-rfcsof , Vel̂ citj
rtfy\} r *-. , •. p . — p Robot s Electromechanical 1 —W

^—^ " c W ' I Electric Motors | L System ' Forfe/tdrque

. -̂ I h "TT
1 Torque vector ,

q(t) I 1

1 H(s) * <

Fig. 5.51 Generic block diagram of a robot's closed-loop control system.

Clearly, the dynamics of a closed-loop control system not only depends
on the dynamics of the system under control but also the dynamics of the
control law or algorithm. By properly designing control law Gc(s), we will
be able to build a closed-loop control system with satisfactory performance
in terms of transient and steady-state responses.

In control engineering, there are many available control laws. Some
require knowledge about the exact dynamic model of a system under control
and some do not. When a control objective is given, a good control law is
judged by its achievable absolute and relative stabilities:

• Absolute Stability:
The presence of the control law's dynamics Gc(s) in Eq. 5.60 should not
render the final system unstable. A convenient way to test a control

(5.60)

Control System of Robots 277

system's absolute stability is by the Lyapunov stability criterion. For
example, we can define a Lyapunov Function as follows:

V{e{t)) = \et{t).e{t). (5.61)

(NOTE: Assume that the error signal e(t) is a vector).
A system under control with a given control law will be asymptotically
stable as long as the following condition holds:

V(e(t)) = fi'(t) . e(t) < 0, Vi > 0. (5.62)

(NOTE: For a stable system, this is a sufficient, but not necessary
condition).

• Relative Stability:
Relative stability refers to a control system's transient response. How-
ever, the transient response depends on the dynamics of error signal
e{t). A good control law should minimize the following cost function:

L{t)= {et{t)*P»e(t)}»dt (5.63)
Jo

where P is a constant positive-definite matrix.
If the control effort is directly measured by control signal Vc from a
digital controller, a good control law should be able to achieve a desired
outcome with minimum effort. In this case, the cost function to be
minimized will be

L(t)= f {et(t)*P*e(t) + V*(t)»Q*Vc(t)}»dt (5.64)
Jo

where Q is another constant positive-definite matrix.

5.5.5.1 PID Control Laws

Despite the large number of available control laws studied in control engi-
neering, the most popular control law in industry is still the PID control
law or algorithm. The main reasons for this include:

(1) It has a clearly-defined control objective as a PID control law's transfer
function can be simply expressed as

Gc(s) =kp.(l + —L- +Td»s). (5.65)

278 The Fundamentals of Robotics: Linking Perception to Action

(2) It is able to respond quickly (i.e. due to the proportional law acting on
the present signal).

(3) It is able to respond accurately and with a better steady-state (i.e. due
to the integral law acting on past signals).

(4) It is able to respond stably to the predictive signal (i.e. the derivative
law).

(5) It does not require knowledge of the dynamic model of a system under
control.

(6) There are many methods of manually or automatically tuning propor-
tional control gain kp, integral time-constant Tj, and derivative time-
constant Td.

(7) It is easy to implement a PID control law on a micro-processor or
micro-controller (see Eq. 5.5).

Even though the PID control law is widely-used in industry, there is no
theoretical proof to guarantee the stability of a system under its control.
However, this is not a critical drawback as a PID control law is usually
implemented on a digital computer. It is not difficult to define a Lyapunov
Function similar to Eq. 5.61 and automatically tune the parameters of a
PID control law in order to guarantee the following conditions:

\V (e (*))—0 (5-66)

when t > ts. Thus, ts can be specified as the expected settling time of the
system under control.

Based on experience, one may also come up with some empirical rules
to support the automatic tuning of PID control laws. Table 5.1 shows one
set of empirical rules.

Table 5.1 Empirical rules for the tuning of a PID control law

Parameters L(t) in Eq. 5.63 Stability
kp increases decreases decreases
Ti decreases decreases decreases
Td increases increases increases

Example 5.10 Refer to Fig. 5.51. The plant's transfer function is

Control System of Robots 279

and a PID control law (i.e. Eq. 5.65) is used.
Fig. 5.52 shows the responses of the closed-loop control system and the

L function in Eq. 5.63 when kp increases. We can see that the value of L
decreases along with the stability (i.e. more oscillation).

1.4, , . . 1 1.4| . . .

1.2 Kp=30 1.2 I Kp=6O

1 A 1 A Output

0.8 IV^W 0.8 f .
0.6 ^ ^ ^ ^ ^ 0 .6

0.4 ^ _ ^ - - ~ ~ ~ ~ " ^ 0 .4

o 2 _ _ ^ - ^ Lvalue 0 .2___-J^ *e —

o l . . . 1 o l , , ,
0 5 10 15 20 0 5 10 15 20

1.41 • • • 1 1.51 • , ,

1.2 Kp=90 I Kp=120

i I
0.6

„ 2 L value _ _ L value

QL . . . 1 0 L , , .
0 5 10 15 20 0 5 10 15 20

Fig. 5.52 Transient response when fep=30, 60, 90 and 120 while T; = oo and Td = 0.
The horizontal axis is the time axis with the unit in seconds.

Fig. 5.53 shows the responses of the closed-loop control system and the
L function in Eq. 5.63 when Ti decreases. We can see that the value of L
decreases along with the stability (i.e. more oscillation).

Fig. 5.54 shows the responses of the closed-loop control system and the
L function in Eq. 5.63 when Td increases. We can see that the value of L
increases along with the stability (i.e. oscillation disappears).

•••••••ooooooooooo

5.5.5.2 Variable Structure Control

Refer to Eq. 5.50. A robot is intrinsically a MIMO, nonlinear and time-
varying system. The dynamics of a robot's mechanism is configuration
dependent (i.e. depending on q and Jacobian matrix J). Thus, a robot is a
typical example of the variable-configuration system. Clearly, a monolithic
control law will not efficiently control a variable-configuration system- An
alternative approach is the variable-structure control methodology. This

280 The Fundamentals of Robotics: Linking Perception to Action

1.4. • • • 1 1.4i . . .

1.2 T i = 1 5 1.2 ™°

1 h ^ 1 ft Outeut

0.8 V 0.8 " '

0.6 0.6

0.4 Lvalue 0 4 L v a | u e

0.2 -^ 0.2

o l , . . 1 o l . . .
0 5 10 15 20 0 5 10 15 20

1 . 4 r ' ' • 1 1 . 4 (> • •

1.2 Ti=5 1.2 I T i = 1

1 k ^ , I Output

0.8 0.8

0.6 0.6

0 4 0.4

o, _ - — o , ,

0 5 10 15 20 0 5 10 15 20

Fig. 5.53 Transient response when 7i=15, 10, 5 and 1 while kp = 30 and Td = 0. The
horizontal axis is the time axis with the unit in seconds.

idea originated in Russia, and was proposed by Emelyanov and Barbashin
in the early 1960s.

The philosophy behind the variable-structure control scheme is to use
a set of feedback control laws to command a variable configuration system
having unmodelled dynamics and uncertainty. The choice of a feedback
control law for a specific type of system configurations is decided by a
switching function s(t). The switching function monitors the system's be-
haviors based on measurements related to the system's state variables. The
well-known sliding mode control is a typical example of variable structure
control. In a sliding mode control scheme, switching function s(t) typically
looks like

s{t) = S • x{t) (5.67)

where S is a m x n matrix (called a switching function matrix), and x(t) is
a n x 1 state variable vector of the system under control.

We can extend the philosophy of variable-structure control to the case
of multiple PID control scheme. Let e(t) be the error vector of a closed-loop
control system, the dynamics of which is unknown or unmodelled. We can
construct the following switching function:

ft
s{t)= {a [et(t)*e(t)] + {l-a) [el(t) • e{t)]} • dt (5.68)

Jo

Control System of Robots 281

1 f ' ' • 1 1 I ' ' ' 1
» Td=0.05 O u t p u t Td=0.1

0.8 0.8 r

0.6 ^ - ^ ^ 0.6 -^"^
L v a l u g ^ ^ Lvalue . ^

0.4 ^ ^ 0.4 -^"^

0.2 - ^ ^ 0.2 ^ ^

gl . . . 1 o l , . .
0 5 10 15 20 0 5 10 15 20

1 | • • ' 1 1 1 • ' ' 1
Td=0.15 Td=0.2

0.8 I : calf ~

0.6 ^ ^ ^ ^ 0.61 ^ ^ ^ ^
^ ^ Lvalue ^ ^

Lvalue , ^ ^ ^ ^
0.4 - - ^ 0 4 u ^ ^ ^

0.2 0.2 ^

0 5 10 15 20 0 5 10 15 20

Fig. 5.54 Transient response when Td=0.05, 0.1, 0.15 and 0.2 while kv = 30 and Tt =
oo. The horizontal axis is the time axis with the unit in seconds.

where 0 < a < l . a is a weighting coefficient which conditions the selection
of a control law. We call Eq. 5.68 a generalized switching function.

By adjusting the coefficient a, we can balance the convergence to zero
by both error signal e(t) and its derivative. When choosing a = 1, a
control law which tends to quickly converge the error signal to zero will be
selected. But this will be at the expense of causing unacceptable oscillation
and overshoot. On the other hand, when choosing a = 0, a control law
which tends to minimize the derivative of the error signal will be selected.
This will produce a very smooth output, but the response time may be
unacceptably long.

Given a set of possible PID control laws predefined for a variable-
configuration system, like a robot, a decision rule can be established based
on the output of the generalized switching function s(t). The decision rule
will determine the appropriate control law when a variable-configuration
system enters a new type of configurations. For example, a predefined PID
control law which minimizes s(t) is selected as the current control law.

The PID control laws, the generalized switching function s(t) and the
decision rules can be evaluated and fine-tuned through real-time interaction
between a robot and its environment. Because of the nature of a robot
which is programmed to perform repetitive tasks/actions, this interaction is
intrinsically repetitive. Therefore, the idea of variable-structure control for

282 The Fundamentals of Robotics: Linking Perception to Action

a humanoid robot matches the spirit of developmental principles underlying
the mental and physical development (e.g. decision-making and action-
taking capabilities) of artificial systems or machines.

Example 5.11 Refer to Fig. 5.51. The plant's transfer function is

G ^ s) = f + a.s + b

and a set of four PID control laws are predefined as follows:

Control Law kp Tj Td

PID1 4 3~~ 0.25
PID2 8 3 0.25
PID3 12 3 0.25
PID4 | 16 I 3 | 0.25

In the generalized switching function (i.e. Eq. 5.68), we set a = 0.7.
Now, let us have the plant's transfer function be as follows:

G P ^ = S2 + 2 . S + 1

and choose a unit-step function as input.
Fig. 5.55 shows the responses of the closed-loop control system and the

outputs of function s(t) (i.e. Eq. 5.68) corresponding to the four predefined
PID control laws. From Fig. 5.55, we can see that the selected control law,
based on generalized switching function s(t), will be PID1.

Then, let us modify the coefficients of the plant's transfer function to
simulate the variation in the plant's dynamics. We set a = 4 and 6 = 1 .
The plant's transfer function becomes

G P (S) = ,2 + 4 . s + 1 -

And the responses of the closed-loop control system and the outputs of the
s(t) function in Eq. 5.68 corresponding to the four predefined PID control
laws are shown in Fig. 5.56. We can see that the selected control law, based
on the output of the generalized switching function, will be PID2.

Let us further change the plant's transfer function to

G P ^ = s2 + 4 . s + 4-

The responses of the closed-loop control system, and the outputs of the s(t)
function in Eq. 5.68 corresponding to the four predefined PID control laws,

Control System of Robots 283

1 .4 i • . • 1 1 .4j • • • 1
Control law: PID1 Control law PID2

1.2 1.2

ir-—i ir^
0 . 8 / 0 . 8 • . • . .

4 : • •» • " f "'
0.2 W 0.21

0 [. ; ; 1 o ' • • ;

0 5 10 15 20 0 5 10 15 20

1.4 i . : • 1 1.41 • • • 1

Control law: PID3 » Control law: PID4

0.21 : 0.21
o l . . , 1 0 > • : •

0 5 10 15 20 0 5 10 15 20

Fig. 5.55 Transient responses and the outputs of generalized switching function s(t)
corresponding to the four PID control laws when a = 2 and 6 = 1 . The horizontal axis
is the time axis with the unit in seconds.

are shown in Fig. 5.57. We can see that the selected control law, based on
the output of the generalized switching function, will be PID3.

oooooooooooooooooo

5.5.6 Joint-Space Control

A robot is a machine which is skilled at executing motions. The motion
performed by a robot is the output motion of its mechanism. And the
output motion of a robot's mechanism depends on its input motion (i.e.
the motions at the joints). Therefore, the control of the output motion of
a robot's mechanism is equivalent to the control of its input motion. This
explains why a robot's motion control often takes place at the joint level.
Thus, the control scheme at the lowest level of a robot's motion control
system is called joint-space control.

5.5.6.1 Planning of Desired Outputs

In a joint-space control scheme, the desired output should be desired joint
variable vector qd and its derivative qd. Sometimes, we can also specify

284 The Fundamentals of Robotics: Linking Perception to Action

1-4, • : • 1 1.4, . . . 1
Control law: PID1 Control law: PID2

1.2 : . . . 1.2

1 r~~~~—'••— 1 r~~~
0.8 / 0.8 /

0.6 I • S (1) - 0.6 <-- : • •»(')

0.4/ : o,r~~
0.2 tf . , : 0 . 2 1 • • : • • • - . • • •

0E . i . 1 0 ' . . .
0 5 10 15 20 0 5 10 15 20

1.4j . . . 1 1.4| , , . 1
Control law: PID3 Control law: PID4

1.2 : . . . -1.2

ip——:— ^

0.21 : 0.2 :

0 ! . ; ; 1 0 ' • • •
0 5 10 15 20 0 5 10 15 20

Fig. 5.56 Transient responses and the outputs of generalized switching function s(t)
corresponding to the four PID control laws when a = 4 and 6 = 1 . The horizontal axis
is the time axis with the unit in seconds.

desired acceleration vector qd at the joints.
Refer to Fig. 5.14. A robot's input is the tasks/actions and the output

is the executed motions by the robot. Normally, a task/action is specified
in Cartesian space (task space). As a result, in planning the desired output
for a robot's control scheme in joint space, one must address two issues:

• How do we plan motion in terms of path and trajectory in task space?
• How do we transform planned motions in task space into the corre-

sponding ones in joint space?

We will address the first issue in Chapter 9. The solution to the second
issue is the robot's motion kinematics, studied in Chapter 3. Let J denote
the Jacobian matrix of an open kineto-dynamic chain and j t the pseudo-
inverse of J. Then, the desired velocity vector (i.e. qd) of the joints is
related to desired velocity vector Pf of the end-effector's frame as follows:

qd = J^.Pi. (5.69)

Control System of Robots 285

1 | 1 1 ; I 1 , ^ _ _ _ _ _ _ J .

0-8- /*:^~~lm o.8- /<; ;

0.6 • / • ; : 0.6 / - _ '•• S ("

0.4 I 0.4 I :••
I Control law: PID1 I ! Control law: PID2

0.2 tf 0.2 H :

o l ; . 1 0! , , .
0 5 10 15 20 0 5 10 15 20

1i —. = . j 1 i ^_j^__ =— .

O.Shf ...-. 0.8

sm L__J s'"
o . 6 V r - o . e {• • • • :

0.41| : 0.4 :-
Control law: PID3 Control law: PID4

0.2J .- •• • : 0.2 :

0' ; • ' 1 o' • • ;

0 5 10 15 20 0 5 10 15 20

Fig. 5.57 Transient responses and the outputs of generalized switching function s(t)
corresponding to the four PID control laws when a = 4 and 6 = 4. The horizontal axis
is the time axis with the unit in seconds.

5.5.6.2 System Dynamics

Refer to Eq. 5.54 and Eq. 5.59. The dynamics of a robot's system under
control is

{ Bm{q) • Qm + [Cm(q, q) + Kmv\ • qm + Gm(q) = r m

(5.70)
Vc = K-1*(Tm+Tm.tm)

with Km = diag{kmi,km2,..., kmn} and Tm = diag{Tmi,Tm2,..., Tmn}.
For the sake of simplicity, let us consider that electric motors inside a

robot can be operated in the torque-controlled mode instead of the voltage-
controlled mode. Thus, we can ignore the dynamics of electric motors and
simply treat Vc = rm. Then, Eq. 5.70 becomes

Bm(q)»gm + \Cm(q,q) + Kmv] »gm + Gm(g) = rm. (5.71)

In practice, this means that there is an unmodelled dynamics with regard
to a robot's system under control.

286 The Fundamentals of Robotics: Linking Perception to Action

5.5.6.3 Centralized Joint Control Scheme

The purpose of a control law is to determine control signal rm which will
act on the system under control in order to achieve the desired control
objective and performance.

Let the desired output be specified as the desired joint angular-position
vector, denoted by gm. Then, the error vector of the robot's closed-loop
control system will be

em(t) =qdm- qm(t) (5.72)

or, simply

Cm = Qm 9m

where qm(t) is the measurement of the actual joint angle vector.
Subsequently, we define the following control objective function (Lya-

punov Function):

V = V(qm, em) = \<L* Bm(q) . qm + 1 elm . Kx • em. (5.73)

Here, the control objective is to find a suitable control law which makes V
converge to zero. The first term in Eq. 5.73 describes the kinetic energy
of the robot. So, it is always a positive term. If we choose K\ to be a
positive-definite matrix, then we have

V(qm, em) > 0 Vgm ^ 0 and em ± 0.

And, V(qm,em) = 0 if and only if qm = 0 and em = 0. Differentiating
Eq. 5.73 with respect to time yields

V = qln • Bm(q) •qm + -qtm» Bm(q) • qm + elm • Kx • em. (5.74)

From Eq. 5.72, we have em(t) = — q(t)m. By applying this result and
substituting Eq.5.71 into Eq.5.74, we obtain

V =- q^»{Bm-2 Cm)*qm-(im*Kmv*qm+(im»{Tm-Gm-Kl*em) (5.75)

where Bm = Bm(q), Cm = Cm{q, q) and Gm = Gm(q).
From the dynamic model of a robot's electromechanical system studied

in Chapter 4, we can prove that matrix Bm — 2 Cm is a skew-symmetric
matrix. For skew-symmetric matrix N, we can also prove that

vt • N • v — 0

Control System of Robots 287

for any vector v. This result implies that the first term in Eq. 5.75 is equal
to zero. Then, Eq. 5.75 becomes

V = -q^ • Kmv •qm + qim* (rm ~Gm~Kx» em). (5.76)

Kmv is a diagonal matrix with the elements being the coefficients of the
viscous frictions. Hence, Kmv is a positive-definite matrix. Consequently,
the first term in Eq. 5.76 is negative for all qm ̂ 0.

If we choose the control law to be

Tm = Gm + K1»em, (5.77)

then we can guarantee the following conditions

(V<0 V q m ^ 0
< (5-78)
[V = 0 Vgm = 0.

And Eq. 5.76 will become

V = -qtm.Kmv*qm. (5.79)

According to Lyapunov's stability criterion, the control law in Eq. 5.77 will
make the closed-loop control system asymptotically stable because of the
conditions guaranteed by Eq. 5.78.

If a robot's mechanical system is energy efficient, then the coefficients
of the viscous frictions are quite small. This implies that the convergence
to zero by the system under control is quite slow because the norm of V in
Eq. 5.79 is small. A good way to improve response time is to increase the
norm of V. This can be achieved by introducing term q^ • K2 • qm — tfm •
K2 • 5m, which is equal to zero, into Eq. 5.76. In this way, we obtain

V=-qtm*(Kmv+K2).qm (5.80)

if we choose the control law to be

rm = Gm + Kx • em + K2 • em (5.81)

where K2 is a positive-definite matrix and em = —qm (see Eq. 5.72).
From Eq. 5.81, we can see that the second term is the proportional

control law of a PID control scheme and the third term is the derivative
control law. Moreover, the first term in Eq. 5.77 is to compensate for
the gravitational force acting on the robot. The control law expressed in
Eq. 5.81 is known as the PD control with gravity compensation. If a robot

288 The Fundamentals of Robotics: Linking Perception to Action

is operating in outer space where there is no gravity, the control law in
Eq. 5.81 is simply a PD control because Gm = 0.

5.5.6.4 Independent Joint Control Scheme

We know that matrix B(q) in Eq. 5.50 is an n x n inertial matrix. It can
be represented as follows:

B{q) = {hj(q), Vi e [l,n] and Vj e [l,n]}.

Now, we purposely split matrix B(q) into the sum of two matrices, as
shown below:

B(q) = B^q) + B2{q) (5.82)

with

fBite) = {6«te), Vte[l,n]}

1 B2{q) = {bijiq), Vi / j , Vi 6 [1, n] and Vj G [1, n}}.

From Eq. 5.55, we know that Bm(q) = K~x • B(q) • K~x. As a result,
Bm(q) can be expressed as

Bm(q) = Bml(q) + Bm2{q) (5.83)

with

[Smite) = { ^ > VtG[l,n]}

[B m 2 (?) = { ̂ , Vi?j,Vi£ [1, n] and Vj G [1, n]}

where {fcri, i = 1,2,..., n} are the diagonal elements of reduction-ratio ma-
trix Kr.

Then, substituting Eq. 5.83 into Eq. 5.71 yields

Bmi •q'm + Nm(q, q) = Tm (5.84)

with

Nm(q, q) = Bm2 • q'm + [Cm(q, q) + Kmv] • qm + Gm(q).

As we can see from Eq. 5.55, the elements of matrices B(q), C(q,q),
G{q) and Kv are divided by the square of the corresponding elements in
reduction-ratio matrix Kr. When the elements (i.e. the reduction ratios)

Control System of Robots 289

in Kr are big (> 100), elements inside matrices Bm(q), Cm(q,q), Gm(q)
and Kmv will be negligible. Based on this, we can omit matrix Nm(q, q) in
Eq. 5.84. As a result, a robot's system dynamics is simplified to

Bml»q'm-Tm. (5.85)

Since Bmi(q) is a diagonal matrix, Eq. 5.85 can be equivalently written
as

^Mqmi = rmi Vie[l ,n] . (5.86)

Eq. 5.86 indicates that the links of an open kineto-dynamic chain are
decoupled. Thus, we can independently design a control law for the motion-
control loop of each joint variable qmi (i = 1, 2,..., n). By default, we can use
the PID control law for each control loop. Here, we propose an alternative
solution.

Let us consider the motion-control loop for joint variable qmi (i =
1,2, ...,n). Assume that the desired output is q^. Then, the error sig-
nal will be

emi{t) = qL - qmi(t) (5.87)

or simply

emi = Imi ~ Qmi

where qmi(t) is the measurement of the actual angular position of motor i.
Now, let us define the following Lyapunov Function

V = V(qml,eml) = i (<&• + e2mi). (5.88)

Differentiating Eq. 5.88 with respect to time gives

V = Qmi • Qmi + emi • emi. (5.89)

From Eq. 5.87, we have emi = —qmi. By applying this result and
substituting Eq. 5.86 into Eq. 5.89, we obtain

Ik2 \
V = qmi [-—•Tmi~ emA . (5.90)

Now, we choose a proportional control law as follows:

Tmi = kpi • emi. (5.91)

290 The Fundamentals of Robotics: Linking Perception to Action

Then the question is: What should proportional gain kpi be in order to
make the closed-loop control system asymptotically stable?

Substituting Eq. 5.91 into Eq. 5.90 yields

I' k2 \
V = qmi»eml l-^.kpi-lj. (5.92)

Let us define the switching function s(.) as follows

s\Qmiy^mi) = Qmi • ^mi (5.9o)

And we schedule the proportional control gain according to the following
decision rules:

{ a»|f- if s{qmi,emt) < 0

(5.94)

(1-/?)•££ iis{qmi,eml)>Q
where a > 1 and j3 > 0.As we can see from Eq. 5.92 and Eq. 5.94, for any set of admissible values
of (a,/3), the control law in Eq. 5.91 satisfies the following conditions:

(V <0 Vqmi ^ 0 and Vemi ^ 0
I (5.95)
[V = 0 Veml = 0.

Clearly, Eq. 5.91, Eq. 5.93 and Eq. 5.94 describe a variable-structure
control (similar to the sliding mode control) which guarantees the asymp-
totical stability of the closed-loop control system for joint variable qmi
(t = l,2,...,n).

One interesting advantage of this control scheme is that parameters
{a, (3) can be learned during a robot's real-time interaction with its envi-
ronment. Therefore, this method is in line with the spirit of the develop-
mental principles for the physical development of an artificial system, like
a humanoid robot.

5.5.7 Task-Space Control

As we mentioned earlier, tasks or actions are specified in task space. Thus,
it is natural to consider whether the motion control loop can be formed
from the sensory feedback in task space.

Control System of Robots 291

5.5.7.1 Planning of Desired Outputs

Refer to Fig. 5.14. A robot's input is a task or action which is normally ac-
complished by a sequence of ordered motions. Let Pe — {x, y, z, uix^uiy^ujz)1

denote the angular velocity vector of the end-effector's frame in an open
kineto-dynamic chain. By default, all vectors are referenced to the base
frame (frame 0) of an open kineto-dynamic chain. The first three elements
of Pe form the linear velocity vector of the end-effector's frame while the
last three elements of Pe form its angular velocity vector. The linear and
angular velocity vectors can be determined if the trajectory of motion in
task space can be planned according to the specification of a task or action.
If only path is planned, Pe is replaced by its differential variation APe.
More detail on motion planning will be studied in Chapter 9.

When a robot is not in direct contact with its environment while per-
forming a task or action, its motion is called unconstrained motion. Oth-
erwise, it is called constrained motion. When a robot performs an uncon-
strained motion, the desired motion in task space can be denned by position
and/or velocity vectors: (P^, Pf).

If a robot's motion is constrained by direct contact with its environment,
it is necessary to define one extra desired output which will be desired
force/torque vector £f. In general, £* consists of two vectors: a) desired
force vector f£ and b) desired torque vector r^.

5.5.7.2 Posture Control in Task Space

Let P£ denote the desired posture of the end-effector's frame in an open
kineto-dynamic chain. Then the error vector will be

e(t) = Pf - PS) (5-96)

or simply

e = Pf - P.

where Pe{t) is the measurement of the actual posture of the end-effector's
frame. This can be obtained by the robot's vision system or from forward
kinematics if joint angle vector qm is measured as feedback.

Now, let us define a Lyaponuv function as follows:

V = V{qm,em)=l- [qtm*Bm(q)*qm + et*K1,e] (5.97)

where K\ is a positive definite matrix.

292 The Fundamentals of Robotics: Linking Perception to Action

Differentiating Eq. 5.97 with respect to time gives

V = qtm» Bm{q) •qm + ^tin* Bm{q) •qm + et»Kl.e. (5.98)

By applying the result e = —Pe (see Eq. 5.96) and substituting Eq. 5.71
into Eq. 5.98, we obtain

y= g <itm9(Bm-2Cm-2Kmv)*qm + qtm[Tm-Grn}-pt*K1*e (5.99)

where Bm = Bm(q, q),Cm = Cm(q, q) and Gm(q) = Gm.
Next, let J denote the Jacobian matrix of the open kineto-dynamic

chain. From our study of robot kinematics, we know that

Pe = J*q=J*K-l,qm.

The transpose of the above equation is

P^ = qU*Jt*K-1. (5.100)

(NOTE: Kr is a reduction-ratio matrix which is a diagonal matrix).
By applying the result

<4 • (Bm - 2 Cm) • qm = 0

and substituting Eq. 5.100 into Eq. 5.99, we obtain

V = -$n* Kmv ^qm + qln [rm - Gm - J* • K~x • K x . e] . (5.101)

Accordingly, we choose the control law to be

Tm = Gm + Jt*K-1»K1»e-K2*qm (5.102)

where K2 is a positive-definite matrix.
Then Eq. 5.101 becomes

V = -qtm» [Kmv + K2] • qm. (5.103)

Clearly, the control law in Eq. 5.102 guarantees the following conditions:

(V<0 Vqm^0
\ (5.104)
[V = O Vgm = 0.

This simply means that the system under control is asymptotically stable.
However, if the robot is operating in outer space, then Gm = 0 and the

Control System of Robots 293

control law in Eq. 5.102 is a PD control (i.e. having position and velocity
feedback).

5.5.7.3 Force Compliance Control

Assume that the end-effector of an open kineto-dynamic chain has a
force/torque sensor to measure the actual contact force/torque between
the end-effector's frame and its environment. If desired force/torque vector
£f can be specified, the error signal will be

e(*) = Ce - Ut)

where £e is the measurement of the actual contact force/torque vector.
From our study of robot statics, we know that torque vector r of the

joints required to compensate for or maintain the contact force/torque at
the end-effector is

T = Jt»£e (5.105)

or

rm = K-1 • J* . £e

where J is the Jacobian matrix of the open kineto-dynamic chain and Kr

is the reduction-ratio matrix (a diagonal matrix). (NOTE: r = Kr • rm) .
If the control objective is purely to maintain desired contact force and

torque (£, from Eq. 5.105, the control law for force-compliance control can
simply be

Tm = K^1*Jt*& + K1»e{t) (5.106)

where K\ is a proportional control gain matrix which is a positive-definite
matrix. This is a proportional control law. Alternatively, one can also
choose a PI or PID control scheme.

5.5.7.4 Hybrid Force and Trajectory Control

For tasks to be performed by a robot, we may expect the end-effector's
frame in an open kineto-dynamic chain to follow a predefined trajectory and
also to maintain a predefined contact force and torque with its environment.
In this case, the torques of the actuators will not only contribute to the
dynamic behaviors for trajectory tracking but also to the desired contact

294 The Fundamentals of Robotics: Linking Perception to Action

force and torque. Accordingly, the dynamic model of the robot's system
under control will become

Bm • qm + [Cm + Kmv] •qm + Gm + Jtrn»£e = Tm (5.107)

where Bm = Bm{q), Cm = Cm(q, q), Gm = Gm{q) and Jm = J • K~l.
Assume that the desired output for hybrid force and trajectory control

are: £f, qm, q^ and q'm. Now, we make use of the inverse dynamics control
scheme to derive a suitable control law.

Let us denote

Nm = [Cm + Kmv) »qm + Gm,

Then Eq. 5.107 becomes

Bm*qm + Nm + Jm*Ze = Tm. (5.108)

Since Bm is the inertial-matrix which has the inverse, Eq. 5.108 can be
equivalently written as

Tm = Bm*y + Nm (5.109)

with

y = qm + B-1.Jtm.Ze. (5.110)

Under the inverse-dynamics control scheme, we assume that the matri-
ces in the dynamic model are known. In this case, one can simply suggest
the following control law:

Tm = Bm»yd + Nm + K.(yd-y) (5.111)

with

yd = qdm + B^.Jm.£,de

and K is a proportional control gain matrix.
However, this control law does not consider desired output qm and

qm. The idea underlying inverse-dynamics control is to linearize Eq. 5.110
around the desired output with

y = yd + Kx . {qdm - qm) + K2 . {qdm - qm) + K3 • (£ - &) (5.112)

Control System of Robots 295

where yd = g^ - f S ^ 1 •,/*•£? (the desired output of y) and (Ki,K2,K3) are
the proportional control gain matrices. These matrices should be positive-
definite matrices. In this way, the control law under inverse-dynamics con-
trol scheme is

{ Tm = Bm • y + Nm

(5.113)
y = Vd + K1.(qi- qm) + K2 . {qdm - qm) + K3 . (£ - £e).

Clearly, the system under control will reach dynamic equilibrium when

Qm = qL qm = qm and £e = £?.

5.5.7.5 Impedance Control

Let us examine, in the previous example, the dynamics of error due to lin-
earizing with Eq. 5.112. In fact, error caused by linearizing is the difference
between Eq. 5.112 and Eq. 5.110. That is:

(qd ~ qm) + K1*(qdm-qm)+K2. (qdm -qm) + (B " 1 . Jlm + K3). (£ed - &) = 0
(5.114)

or simply

eq + K2»eq + K1»eq + (S" 1 • J^ + K3) • e(= 0

where eq = q^ — qm and e^ = (£ ~ £e • The system under control will be at
the dynamic equilibrium when errors eq and ê vanish.

For some applications, we may want the error dynamics of a control law
applied to an open kineto-dynamic chain, such as a robot's limb, to behave
like a mass-spring-damper system. In other words, the error dynamics of a
control law is expected to be governed by

Md*ep + Dd»ep + Sd»ep=£e (5.115)

where:

• (Md, Dd, Sd) are the desired mass, damping and stiffness matrices
• ep — Pd — Pe (i.e. the error or deviation of the actual posture of the

end-effector's frame from its nominal or desired posture)
• £e is the contact force/torque between the end-effector's frame and the

environment. £e is measured by the force/torque sensor mounted onto
the end-effector

296 The Fundamentals of Robotics: Linking Perception to Action

A control scheme which can achieve this objective is called an impedance
control. By choosing Md = {0} and Dd = {0}, the impedance control
becomes a stiffness control.

Refer to Eq. 5.108. We can express torque vector r m as

Tm = Bm*y + Nm + Jtm*£e (5.116)

with

y = qm- (5.117)

Refer to Eq. 5.100. We have

Pe = Jm»qm (5.118)

where Jm = J • K~x.
Differentiating Eq. 5.118 with respect to time gives

qm = J-1 • (Pe ~Jm* qm). (5.H9)

As a result, Eq. 5.117 becomes

y = J^l*{Pe-Jm*qm). (5.120)

And the desired output of y when the end-effector's frame is following a
desired trajectory is

yd = J^'{Pi-Jm*qdm)- (5.121)

Now, we linearize Eq. 5.120 around desired output yd in the following
way:

V = Vd + tf • { (M t 1 • [Dd *ep + Sd.ep + £e] + j m . (qdm - qm)) .
(5.122)

The difference between Eq. 5.122 and Eq. 5.120 will result in the ex-
pression of Eq. 5.115. In other words, the control law

{ Tm = Bm • y + Nm + J^ • £e

y = yd + J-1 • { (M ^ 1 • [Dd .ep + Sd.ep + £e] + j m • {qdm - qm))

(5.123)
will make the open kineto-dynamic chain, such as a robot's limb, behave like
a mass-spring-damper system while executing its own task (i.e. following a
trajectory).

Control System of Robots 297

5.5.8 Image-Space Control

It is easy to see that the majority of our daily activities are visually guided.
Without a visual-sensory system, we would have tremendous difficulty in
adapting ourselves to the real-world for any physical activity. Therefore, it
is interesting to study how a robot's vision system interacts with its motion
control system. However, it is necessary to have a solid understanding of
how a robot's vision system works in order to understand the image-space
control scheme. As a result, it makes sense to save the study of image-space
control until the end of this book.

In Chapter 1, we stated that the intelligence is a measurable characteris-
tic of both human and artificial system. Intelligence is quantitatively mea-
surable and is inversely proportional to the effort spent on the achievement
of a predefined goal/target. Naturally, one way to measure the intelligence
level of an artificial system is to test its ability to perform visually-guided
activities. In Chapter 9, we will study various schemes of limb-eye coordi-
nation for a humanoid robot.

For the purpose of cultivating interest in the study of image-space con-
trol scheme, let us briefly highlight some important issues related to it.

5.5.8.1 Scenarios

A humanoid robot may look like a human being. Accordingly, the com-
bination of the binocular vision and the head-neck-body mechanism will
form a typical head-eye system. The behaviors from a head-eye system are
called head-eye coordination

If we model the mechanism underlying the head-neck-body as an open
kineto-dynamic chain, a robotic head-eye coordination system can be
formed by putting one or two cameras at the end-effector of an arm ma-
nipulator. This is known as the eye-in-hand configuration.

On the other hand, a humanoid robot has two arms with hands, and
two legs with feet. The motion of these limbs can be guided by visual
information in image space of a humanoid robot's binocular vision system.
Consequently, another important configuration is the eye-to-hand, or eye-
to-feet) configuration which describes the typical set-up of a robotic hand-
eye coordination.

298 The Fundamentals of Robotics: Linking Perception to Action

5.5.8.2 Objectives

For a task-space control scheme, we know that the desired output is the
motion at the end-effector's frame in an open kineto-dynamic chain. In
order words, the desired output is specified in terms of the posture Pe, its
velocity Pe and its acceleration Pe. (NOTE: By default, all vectors are
expressed in a common reference frame).

After we study the robot's visual sensory system in Chapter 8, we will
understand that an image is the projection of a three-dimensional space
onto a two-dimensional image plane. Conceptually, we can consider that
these projections of an end-effector frame's posture, velocity and accelera-
tion onto an image plane are measurable. If we denote pe, pe and pe the
projections of an end-effector frame's posture, velocity, and acceleration
onto an image plane, the objective of the image-space control scheme is to
specify the desired output

in image space, and design a control law which will command the motion
of an open kineto-dynamic chain so that the actual projections

(Pe,Pe,Pe)

converge to the desired ones.
Obviously, the first benefit of the image-space control scheme is the

ability to automate the planning of desired output based on visual sensory
information. It is a crucial step towards autonomy of a humanoid robot.
The second notable benefit is that the image-space control scheme is also
applicable to the case in which desired output (pf ,pf ,pf) can be the projec-
tions of any object's posture, velocity and acceleration in a scene. This ex-
tension will result in interesting solutions to the problem of visually-guided
trajectory or target followed by a vehicle or humanoid robot.

5.5.8.3 Methodologies

It is not surprising that human vision is qualitative (i.e. not metric) with re-
gard to geometric quantities such as shapes and dimensions. Nonetheless,
human beings are skilled at performing visually-guided activities. Natu-
rally, one way of developing an image-space control scheme is to imitate
human vision. In this way, we can develop solutions which do not require
any metric 3-D reconstruction of the three-dimensional objects or scene.

Control System of Robots 299

Alternatively, we can also explore the quantitative aspect of a robot's
visual-perception system. Accordingly, we will be able to develop solutions
which can outperform human beings in visually-guided activities. We will
study these methodologies further, in Chapter 9.

5.6 Summary

A robot is intrinsically a non-linear, multiple variable system with a
variable-configuration. It is almost impossible to precisely and completely
model the dynamics of a robot system. As a result, a robot's motion control
must be operated in a closed-loop feedback manner. And a robot should
be treated as a combination of mechanical, electromechanical, and control
systems at this point.

An automatic-feedback control system has many advantages over an
open-loop control system. We learned that the notable advantages include:
a) the ability to achieve the desired output, regardless of unmodelled dy-
namics of a system under control, b) the resistance to noise and disturbance,
c) the ability to achieve fast responses, and d) the ability to withstand all
kinds of uncertainty and variations.

There are many mathematical tools for the design and analysis of a
closed-loop control system. We leaned that the most important concerns
regarding a closed-loop control system are: a) absolute stability (i.e. the
steady-state response) and b) relative stability (i.e. the transient response).
Although a vast body of knowledge about control has been developed, the
most popular control scheme in industry is still the PID control law. And
there are many techniques for the manual or automatic tuning of a PID
control law. However, there is no proof about a PID control law's abso-
lute stability. Nevertheless, a powerful mathematical tool is the Lyapunov
method which is useful for the design of asymptotically stable control sys-
tems.

By definition, a system is a set of coherent elements which act together
to achieve common objectives and outcomes. Therefore, it is easy to believe
that a closed-loop control system is not simply a control law or algorithm.
It must have a set of elements which act together. From a systems point
of view, we learned that a closed-loop control system must have two sets
of elements, namely: a) the control elements (in the forward channel of
a closed loop) and b) the sensing elements (in the feedback channel of a
closed loop).

300 The Fundamentals of Robotics: Linking Perception to Action

A robot is able to execute motion because of the energy applied to the
joints of its underlying mechanism. If we use electric motors, energy ap-
plied to a robot will come from the electrical domain. There are naturally
concerns about: a) how we regulate the amount of electrical energy re-
leased by an electric motor to its corresponding joint, and b) how we alter
the direction of motion of an electric motor (or its corresponding joint).
Thus, we studied the working principles behind the power switch and logic
sequence generator for the purpose of altering the electric motor's direction
of motions. Subsequently, we also studied the working principles behind
the power drive which regulates an electric motor's velocity.

As for sensing elements, we studied the generic sensing principle. While
we briefly discussed safety sensors, force/torque sensors, and tactile sensors,
we emphasized the study of the popular optical encoders. Almost all the
motion sensors found in industrial robots are incremental optical encoders.
These require the robot to perform a homing procedure before it is ready to
operate. This is not desirable for a humanoid robot because it is dangerous
to perform a homing procedure in a nonindustrial environment. As a result,
we advocate the use of absolute optical encoders in the design of a humanoid
robot's control system.

The most important control element is clearly the digital motion-
controller and the control algorithm(s) running on it. A digital motion-
controller is part of a robot's information system. Its primary role is to
run the control algorithm(s) and interface with the sensors and actuators
which are inside the closed-loop control system.

Regarding the design of a robot's control system, we studied the issues
of: a) how to plan the desired output, b) how to possibly establish a dy-
namic model of a robot's system under control, c) how to obtain a timely
sensor feedback, and d) how to design suitable control algorithms. The
design of suitable control algorithms is not a simple matter. As a result of
the complexity of a robot system, there are various control methodologies.
Nevertheless, we learned that the PID control and variable-structure con-
trol are two popular control methodologies. And, typical control schemes
in robotics include joint-space control, task-space control and image-space
control.

Control System of Robots 301

5.7 Exercises

(1) Explain why a closed-loop control system is better than an open-loop
control system.

(2) What is the transient response of a system? And, what is the steady-
state response of a system?

(3) Explain the physical meaning of the absolute stability of a closed-loop
control system.

(4) Explain the advantages of using Laplace Transform in the study of a
closed-loop control system.

(5) The transfer function of a closed-loop control system is

Y(s) = K
R(s) (s-l)(s + lY

Is this a stable system?
(6) Let us use a PID control law to control a system with a transfer function

of

G p (s) = (s + l)(s + 2)(s + 3)-

Use Simulink of MATLAB to tune the parameters of the PID control
law.

(7) What are the control elements inside a robot's control system?
(8) What are the sensing elements inside a robot's control system?
(9) Explain the difference between linear power drive and PWM power

drive.
(10) How do you alter an electric motor's direction of motion?
(11) How do you regulate an electric motor's velocity?
(12) Explain why safety is an important issue in the development of a hu-

manoid robot?
(13) What are the considerations for the appropriate placement of a motion

sensor?
(14) If an absolute optical encoder has to measure 360° with an accuracy of

0.01°, how many logic states should it have?
(15) Explain why an incremental optical encoder allows us to measure the

absolute angular position.
(16) Why should a force/torque sensor's mechanism be stiff?

302 The Fundamentals of Robotics: Linking Perception to Action

(17) Refer to Fig. 5.45b. Prove that the input and output relationship is

(18) Explain the difference between a force/torque sensor and a tactile sen-
sor. Why are they important to a robot's motion execution?

(19) Explain the reasons behind the popularity of the PID control law used
in the majority of automated equipment in industry.

(20) What is the variable-structure control?
(21) Explain the differences between the joint space control scheme and the

task space control scheme?
(22) Draw a block diagram of the closed-loop control system which makes

use of the control law in Eq. 5.81.
(23) Draw a block diagram of the closed-loop control system which makes

use of the control law in Eq.5.91.
(24) Draw a block diagram of the closed-loop control system which makes

use of the control law in Eq. 5.102.
(25) Draw a block diagram of the closed-loop control system which makes

use of the control law in Eq. 5.113.
(26) Draw a block diagram of the closed-loop control system which makes

use of the control law in Eq. 5.123.

5.8 Bibliography

(1) Astrom, K. J. and T. Hagglund (1995). PID Controllers: Theory,
Design and Tuning, Instrument Society of America, Research Triangle
Park, North Carolina.

(2) Edwards, C. and S. K. Spurgeon (1998). Sliding Mode Control: The-
ory and Applications, Taylor and Francis Ltd.

(3) Horowitz, P. and W. Hill (1989). The Art of Electronics, Cambridge
University Press.

(4) Koivo, A. J. (1989) Fundamentals for Control of Robotic Manipulators,
John Wiley and Sons.

(5) Ogata, K. (1997). Modern Control Engineering, Prentice-Hall.
(6) Sciavicco, L. and B. Siciliano (1996). Modelling and Control of Robot

Manipulator, McGraw-Hill.

Chapter 6

Information System of Robots

6.1 Introduction

Without a body, intelligence will not develop. Without intelligence, a body
will have limited usage. Although it is an artificial system, a humanoid
robot's intelligence should develop. Artificial intelligence is synonymous
with computational intelligence because all the mental and physical activ-
ities of a humanoid robot rely on data-processing carried out on digital
computer(s). As a result, we can compare a humanoid robot's information
system with the human brain.

The human brain is undeniably powerful enough to control and coor-
dinate our physical and mental activities in real-time. This ability is an
important function of a humanoid robot as well. By definition, real-time
means that an action is performed by a system within a specific time in-
terval. Thus, an action performed by a system must meet a stipulated
deadline. When a system performs multiple actions, real-time also means
the simultaneity of actions undertaken by the system.

When a system is capable of performing real-time actions, this means
its actions are predictable. The predictability of a system's actions is very
important as it is the only way to ensure the system's deterministic behav-
iors. Therefore, a humanoid robot's information system must be a real-time
system.

Today's computer has not yet reached the ability level of the human
brain. Consequently, it is not realistic to rely on a single computer to handle
the multiple functions of a humanoid robot. It is best to use a cluster
of computers to form a distributed system. Thus, a humanoid robot's
information system should be a distributed system supported by a real-
time network in order to ensure predictable behaviors.

303

304 The Fundamentals of Robotics: Linking Perception to Action

In this Chapter, we will study the basics of the information system
underlying a humanoid robot's control, sensing, perception, and decision-
making functions. In general, an information system consists of four parts:
a) data processing, b) data storage, c) data interfacing and d) data commu-
nication. Therefore, in this chapter, we will emphasize the fundamentals
of these topics. We will reserve discussion of the computational principles
(or algorithms) underlying the data-processing related to control, sensing,
perception, and decision-making for other chapters.

6.2 Imitating the Brain

Humans represent the perfect embodiment of mind and body. The mind,
which consists of consciousness and intelligence, is undoubtedly a compli-
cated process which physically resides in the brain. From an engineering
point of view, we can consider the embodiment of mind and body as elabo-
rate mapping among: a) the body's kineto-dynamic systems, b) the brain,
including the decision-making system (see Chapter 9), and c) the body's
sensory systems. Fig. 6.1 is a simple illustration of the relationship between
the human brain and human body.

The human brain is an extremely complex system, and not a great deal
about it is understood. What is certain, however, is that the cerebral struc-
ture is highly parallel with the pre-defined divisions of the brain's neural
system. Throughout the mental and physical development of the body and
mind, the divisions of the brain's neural system are mapped in a highly
sophisticated manner to the sensory systems and motor systems along pre-
defined pathways (i.e. nerve fibers). From an engineering point of view,
this is very similar to the formation of the cluster of basic feedback control
loops: sensor-controller-actuator. Because of the complex structure of the
brain and body, we are able to perform all kinds of mental and physical
activities, such as thought, analysis, knowledge, language, perception, emo-
tion, memorization, sensory-motor coordination, and sensory-integration.

An infant is born with: a) an innate bio-mechanical system, b) an innate
bio-kineto-dynamical system (the muscles and body's bio-mechanism), c)
innate sensory systems, and d) an innate neural system. A person's mind
and intelligence are developed through the whole period of his/her growth.
And, the growth of a person's mental and physical capabilities is primarily
influenced by interaction with the environment and society.

Now, the question is: What type of innate information system should a

Information System of Robots 305

Hi Body _ E
• [k • Hr.iin _ | H

• T '" i b--1̂ "'-- i : B
^ ^ H > — Consciousness j BG£
HI ! '_' s ' i ' 9N
| ^ H j (^Representation"^) ! S K B

I^^B ~~ d Language ~~^ B K

^ H I i I J Division 1 of Neural System "* n e s Upg

fl^B . ^ ^ H Division 2 of Neural System ^ ^ v ! Bs t
| H I! I I IJ | ^ _ .ustator) _ J53

^ ^ B I Division 2 of Neural System 1 ' 9^<

^ H I , ; ' ' Kg
wU — ' • L ' "factor> _ BB
^ B ' "i • ^ s
^^M * ' ' Sense ^ m

H | _ i i i , -- i.r. i | , ^

Fig. 6.1 A simple illustration of the relationship between the human brain and human
body.

humanoid robot have if we want its intelligence to grow through real-time
interaction with the environment and society? It is not easy to give a clear
answer to this question because today's information and sensory systems
are not yet comparable to those of humans. If we want future humanoid
robots to have human-like mental and physical capabilities, we need to
improve the available information and sensory systems.

Today, it is easy to form a cluster of networked computers to imitate
the parallel structure of the human brain's neural system. However, in
order to support the multiple behaviors performed by an artificial body,
it is necessary to have the "executive process" (or "operating system")
which would harmoniously coordinate the multiple computational tasks
running on a cluster of networked microprocessors. However, the challenge
in robotics is whether it is possible to develop an innate "operating system"
and "software architecture" that can automatically map sensory outputs to
actuators' inputs in order to autonomously form sensor-controller-actuator
loops for specific behaviors. These loops are called actors or agents.

306 The Fundamentals of Robotics: Linking Perception to Action

6.3 Imitating the Mind

A humanoid robot is not simply a combination of mechanics and control.
It is the embodiment of an artificial mind (a complex process for behavior
development and learning), and an artificial body, as shown in Fig. 6.2. This
embodiment enables a humanoid robot to interact with its environment in
a timely manner. The real-time interaction between a humanoid robot and
its environment is crucial to the proper development of its physical and
mental abilities.

Mind and Body &^k

0 \-*\ i ii i-in.' • * - | • j |

1 , \UII.M..|S, , 'vriMif ^

_£• 'VOulpul / ' v - L'Ml'J'^'
cw I

Fig. 6.2 A proposed actor-based framework for the embodiment of artificial mind and
artificial body.

6.3.1 Autonomous Actors or Agents

As we mentioned already, the human brain is a complex neural system
consisting of about 100 billion neurons. The architecture of the human
brain's neural system is highly parallel with well-organized partitions ded-

Information System of Robots 307

icated to various physical and mental functions. By physical functions (or
abilities), we mean all actions carried out by the sensory-motor systems em-
bedded in the body's mechanism (e.g. limbs, body, neck/head etc). For a
sensor-guided action-taking system, there is no doubt that the best control
structure is the closed-feedback loop. Naturally, we can consider a sensing-
control loop as a physical actor or agent, as shown in Fig. 6.2. In this way,
we can treat a stand-alone sensor as a degenerated physical actor. Inside
an information system, an actor or agent is an autonomous computational
process or task. It does not require reprogramming.

Similarly, a mental function refers to a specific type of mental activity
which affects the internal representations of the real, external world. A
mental activity is intrinsically conditioned by one or multiple sensory in-
put(s). Hence, the basic mechanism that drives a mental activity is the
well-known perception-decision-action loop. Accordingly, we can consider
a perception-decision-action loop as a mental actor or agent, as shown in
Fig. 6.2. And, we can treat a stand-alone perception as a degenerated
mental actor.

The outcome from a mental actor may serve three purposes:

• To enrich language, knowledge, and skills.
• To enrich internal representation.
• To update belief system, a distinct and indispensable component of

an autonomous system.

6.3.2 Autonomous Behaviors

An actor or agent inside an information system is an autonomous, com-
putational process/task because it requires no reprogramming. Basically,
a mental actor responds to input from the sensory systems, acts upon the
belief system, and enriches the language and internal representations. On
the other hand, a physical actor will mainly be guided by output from the
belief system. Note the following belief-guided behaviors:

• Value-driven behavior. (Is it rewarding to undertake certain actions?)
• Curiosity-driven behavior. (Is it interesting and exciting to do, ex-

plore, or understand certain new things?)
• State-driven behavior. (Is it different to perform the same tasks under

different mental and physiological states?)
• Expectation-driven behavior. (How do we achieve a goal or new ac-

tivities?)

308 The Fundamentals of Robotics: Linking Perception to Action

A physical actor's output will act on the artificial body. For example,
if a mental actor's output is to escape a dangerous situation, it will update
the belief system to make "safety" the highest priority. This in turn, will
trigger a set of physical actors which work together on the artificial body,
so that the robot will quickly run away.

Based on the concept of mental and physical actors, we can treat the
complex interaction inside a humanoid robot's information system as an
artificial mind system. We can attempt to define artificial mind as follows:

Definition 6.1 An artificial mind is a complex process of behavior devel-
opment as the result of interaction among the mental and physical actors
in a body's information system.

Just as the human mind describes the dynamic characteristics of the
human brain, an artificial mind characterizes the dynamics of an informa-
tion system. The mechanism underlying this complex process is behavior
development and learning.

By definition, a behavior is a sequence of ordered actions performed by
a group of interacting mental and/or physical actors. Therefore, the acti-
vation of a behavior depends on the configuration of the interacting mental
and/or physical actors. Obviously, the creation of a new mental or physi-
cal actor will increase the number of possible configurations of interacting
mental and physical actors. Thus, one way to change a humanoid robot's
behavior is to form new mental and physical actors to enhance existing
mental and physical actors, or to suppress undesirable mental and physical
actors. (NOTE: Whether or not a mental or physical actor is undesirable
is determined by the belief system).

Accordingly, we can attempt to define behavior development and learn-
ing in the following way:

Definition 6.2 Behavior development and learning refer to activities
dedicated to the formation, enhancement, and suppression of mental and
physical actors.

The formation, enhancement and suppression of mental and physical
actors cannot occur without input from the society and environment. In-
teraction in the society, where knowledge is gained from the environment,
experience, and others, serves as a catalyst to stimulate the birth, enhance-
ment and suppression of mental and physical actors.

Information System of Robots 309

6.3.3 Computational Tasks

Refer to Fig. 6.2. The mental and physical actors of a robot's information
system are intrinsically computation-dependent because they process sen-
sory feedback and act accordingly. From a data-processing point of view, a
humanoid robot's information system must support the following compu-
tational tasks:

• Distributed Motion Control:
The majority of a robot's activities are centered on motion as an action
is a sequence of ordered motions. Therefore, motion control is critical
to the usefulness of a humanoid robot. As we studied in Chapter 5,
a robot's motion control involves sensing elements for feedback, con-
trol elements for action-taking, and control algorithm(s) for decision-
making. All the sensory feedback and control algorithms run on the
digital motion controllers which are part of a robot's information sys-
tem.

• Motion Planning:
As we studied in Chapter 5, one critical issue in the design of a robot's
control system is how to plan the desired motions. There are many
computational principles and algorithms for motion planning, all of
which must run on a digital computing platform.

• Motion Perception:
One important control scheme for a robot's motion execution is image-
space control. There are two paradigms of image-space control: a)
visual-servo control and b) visually-guided planning & control. As a
result, visual perception is indispensable. Obviously, all principles and
algorithms underlying visual perception are computation-dependent.

• Communication:
A humanoid robot's body includes a complex mechanical system with
many degrees of freedom. Intrinsically, a robot is a multiple-input
system with a variable configuration. The large number of degrees
of freedom implies the necessity to adopt a distributed sensing and
control scheme for motion execution and coordination. As we dis-
cussed earlier, a robot must be a real-time system with predictable
behaviors. Therefore, it is critical for a robot's information system to
support real-time communication among its internal motion-control
subsystems. And, this communication must rely on a network (e.g.
field-bus), which is in proximity to the sensors, actuators, and con-
trollers.

310 The Fundamentals of Robotics: Linking Perception to Action

• Inter-robot Communication:
Obviously, it is desirable to develop humanoid robots which can not
only perform tasks as individuals, but also work as a group. Hence, a
robot's information system must be able to communicate with other
equipment as well as with other robots.

• Man-robot Interaction:
A humanoid robot's activities should not be confined to a factory. In
fact, the humanoid robot has a wider range of applications outside the
factory. It is not inconceivable for humanoid robots to co-exist with
humans (like an automobile does). Therefore, a humanoid robot must
not only be safe, but also friendly. Ideally, a humanoid robot should
adapt itself to the ways in which we communicate and interact. And,
a humanoid robot's information system should be able to support the
computations required for real-time man-robot interaction based on
auditory and visual sensory data.

• Behavior Development and Learning:
A distinct feature of the humanoid robot, as opposed to the indus-
trial robot, is its physical and mental self-development. Just as a hu-
man experiences incremental development from infancy to adulthood,
a humanoid robot should also be equipped with a self-development
mechanism (yet to be discovered) so that it is able to physically and
mentally grow through real-time interaction with its environment. Ob-
viously, the principles and algorithms of behavior development and
learning for a humanoid robot's physical and mental development are
computation-dependent.

Now, we know that the information system is crucial to the development
of a humanoid robot. Without an information system, there can be no
embodiment of artificial mind and human-like mechanism (body).

6.4 Data-Processing Hardware

Nowadays, we widely use digital computers for data-processing and commu-
nication. It is interesting to note that the computer was first built during
the Second World War in the 1940s. A computer is a machine which can
perform computations (data-processing) and can also handle data storage
and communication.

Information System of Robots 311

6.4.1 Digital Computers

The first generation of computers were based on analog circuits. Digital
computer emerged in the early 1950s with the advent of digital circuits
(circuits that manipulate pulses). In the early days, digital computers used
vacuum tubes to construct the inner logic circuits. This explains why the
old digital computers were bulky, expensive, and fragile.

With the rapid development of solid-state circuit technology (especially
with the invention of transistors at Bell Laboratory in 1948), microproces-
sors became a reality in the early 1970s.

Formally, a digital computer can be defined as follows:

Definition 6.3 A digital computer is a machine that undertakes pulse-
synchronized calculations through a sequence of ordered instructions called
a program.

Here, the term digital simply means "discrete state". The simplest form
of discrete state is the binary state which only has two values: 0 or 1. In
electronics, the "0" state can be represented by a low voltage (e.g. 0V),
while the "1" state can be represented by a high voltage (e.g. +5V). We
also call a binary state a logic signal because we can associate the binary
values "0" and "1" with the logic values "true" and "false". Often, we call
"1" the logic high and "0" the logic low.

If we plot the logic signal versus the time, we obtain a pulse waveform
which is similar to the one shown in Fig. 6.3.

^ — One cycle —•> ' '

/! KJ LJ LJ
— A H - V = ; ;—•

Rising Edge Falling Edge T i m e

Fig. 6.3 Pulse waveform.

Now, it is easy to understand why a circuit is called a logic circuit if it
takes a pulse waveform as input and produces a different (or similar) pulse
waveform as output. This also explains why the advent of a pulse circuit
marked the birth of the digital computer.

As shown in Fig. 6.3, a pulse signal includes two transitions: a) the
transition from logic low to logic high, and b) the transition from logic high

312 The Fundamentals of Robotics: Linking Perception to Action

to logic low. The former is called the rising edge and the latter is called
the falling edge. Because of these transitions, a computer is capable of
performing all kinds of calculations. Therefore, a computer can be treated
as a machine that controls logic transitions for the performance of intended
calculations.

In order to make the results of a computation predictable, all the logic
transitions inside a digital computer must be synchronized along the time
axis. To do this, it is necessary to use a reference pulse waveform. A device
that generates a regular pulse waveform of reference is called the system
clock. In general, a reference pulse waveform looks like the one shown in
Fig. 6.3. For one cycle, there are three events (logic transitions):

• The first rising edge: This indicates the start of the current cycle.
• The falling edge: This indicates the half-cycle.
• The second rising edge: This indicates the end of the current cycle

and the start of a new cycle.

In fact, all operations inside a digital computer are synchronized by
these three events (logic transitions). As a result, all operations inside a
digital computer are called cycle-by-cycle operations.

6.4.2 Microprocessors

With the advent of solid-state circuits and the invention of the transistor,
a digital computer can be made of micro-circuits with transistors which is
also called integrated circuit. Thus, a new active device, called a micropro-
cessor, has become a dominant product in the computer industry. A formal
definition of a microprocessor can be stated as follows:

Definition 6.4 A microprocessor is a digital computer which consists of
a single integrated circuit (IC, for short).

Like a digital computer, a microprocessor is a data-processing device
that manipulates pulse waveforms (i.e. the digital signals) in order to per-
form calculations.

6.4.2.1 Memory

If we look at the following simple expression:

a = b + c

Information System of Robots 313

we easily understand that a is the result of the addition of the two operands
b and c. Before this arithmetic operation can take place, we must know
where the values of b and c are stored. After this arithmetic operation, we
must also know where to store the resulting value a.

Clearly, a data-processing device must have a circuit unit to store data.
In a digital computer, this circuit unit is called memory, and the data is
simply a number.

Memory is a special type of logic circuit. A memory's key features
include:

• Its logic output is equal to its logic input.
• The input and output of a memory circuit do not need to be synchro-

nized.
• Input to a memory circuit is called write, while output from a memory

circuit is called read.
• If it is possible to perform both read and write operations while the

memory circuit is "on", the memory circuit is called a random-access
memory, or RAM.

• If it is possible to perform the write operation only once while there is
no limit for the read operation, the memory circuit is called a read-only
memory, or ROM.

• If it is possible to perform the write operation repeatedly only with
special equipment or procedures which normally undertake erasing
and programming operations, the memory circuit is called an erasable
and programmable read-only memory or EPROM.

A logic variable that can hold the logic value of either "1" or "0" is
called a bit. Hence, the basic component in a memory circuit is a logic
unit which only stores a bit. A bit is the basic unit in a memory and is
also called a memory cell. By putting eight such units together, we form a
memory location which can store a byte (8 bits).

Memory is organized in the form of a list of bytes or memory locations.
Each memory location must have an index that indicates its address on
the list. If a memory is not divided into a set of sub-lists, the index of
a memory location inside the (global) list is called a memory address. In
summary, a memory is composed of a list of (memory) locations and each
location has a unique address.

314 The Fundamentals of Robotics: Linking Perception to Action

6.4.2.2 Number Representation

A byte is a string of 8 bits that are normally labelled as 67, b§, 65, 64, 63,
b2, 61 and b0. For any string of n bits, the last bit (60) is called the least-
significant bit, or LSB, while the first bit (67) is called the most-significant
bit, or MSB. A byte can represent an integer number from 0 to 255. (NOTE:
255 = 28 — 1, the maximum value represented by a string of 8 bits). If we
use MSB to represent the sign (0 for positive and 1 for negative), a string
of n bits can represent an integer number within the interval:

In real life, many physical quantities are represented with real num-
bers. A common way to represent a real number with a decimal is to use a
floating-point number because any real number can be written as the prod-
uct of a mantissa and the exponent of a base number (e.g. the number
2). In other words, any real number with a decimal can be written as the
ratio between two integer numbers. For a string of n bits, a floating-point
number is represented as follows:

• The MSB for representing the sign.
• The subsequent n\ bits for representing the exponent of base number

2.
• The rest of n2 (ri2 = n — ni — 1) bits for representing the mantissa.

If we denote F a floating-point number, represented by a string of n
bits, we have:

F=(-l)MSB*M*2E'Eo (6.1)

where M is an integer representing the mantissa by 712 bits, E is an integer
representing the exponent by n\ bits, and Eo = 2™1~1 — 1.

Example 6.1 We represent a floating-point number with a string of 32
bits. Assume that an exponent is represented by 8 bits (m = 8) after the
MSB, and the mantissa is represented by the last 23 bits (n2 = 23). Then,
Eo = 127 (27 — 1). The maximum value for mantissa M will be 223 and its
minimum value will be 0.

As for exponent E, the maximum value will be 255 (i.e. 28 — 1) and its
minimum value will be 0.

Accordingly, the maximum floating-point number will be:

771 _ / 1^0.923.9255-127

Information System of Robots 315

And the minimum floating-point number will be:

P —(Ti1 . O23 . O255-127

oooooooooooooooooo
6.4.2.3 Arithmetic Logic Unit (ALU)

In mathematics, we know that any real and differentiable function can be
expanded into a corresponding Taylor series at certain precision. This fact
explains why all calculations can be realized with a sequence of ordered
arithmetic operations (addition, subtraction, division and multiplication)
at certain precision. In theory, all the arithmetic operations of subtraction,
division, and multiplication can also be fulfilled with a sequence of ordered
additions at certain precision.

Example 6.2 For a sine function y(x) = sin(x), its corresponding Taylor
series is:

x3 x5 (-l)n*x2n+1

oooooooooooooooooo
As a result, the simplest way to design a data-processing unit is to

construct a circuit that can perform addition on top of some Boolean logic
operations. This explains why the heart of a computer is made of the
Arithmetic & Logic Unit or ALU, for short. The ALU is a logic circuitry
which is capable of performing the arithmetic and logic operations (e.g.
addition, multiplication, and Boolean logic). In general, an ALU can be
treated as a logic device which has at least two input (the operands) and
one output (the result).

6.4.2.4 Bus

So far, we know that the memory is a place to store data (i.e. the numbers)
and the ALU is an engine that manipulates data to produce results. The
memory and the ALU are two distinct logic circuits in a digital computer.
There is an obvious need to connect these two devices. Since these are elec-
tronic logic devices, the only way to connect them is to use wires that can
conduct pulsed-electrical signals. (NOTE: For long distances, it is advan-
tageous using optic fiber to carry pulsed-signals). In computer engineering,
a set of wires that connects electronic logic devices is called a 6MS. In other

316 The Fundamentals of Robotics: Linking Perception to Action

words, a bus is a vehicle for the transportation of logic signals (or numbers)
across electronic logic devices.

As we studied earlier, memory is a list of memory locations, each of
which has an unique address. In order to communicate or interface with a
memory device, we need to transport the contents (data) as well as their
addresses. A common way to do this is to have a bus dedicated to data
(contents) and a bus dedicated to addresses. The former is called a data
bus and the latter is called an address bus.

In order to work properly, a digital computer requires other logic signals
such as "read", "write", etc. The wires that carry logic signals for control-
ling operations inside a digital computer are grouped into a bus called a
control bus. In practice, we seldom refer to this bus because it is more
convenient to directly refer to the control-signal lines themselves.

6.4.2.5 Generic Architecture of Computers

Now, we know that a digital computer should have ALU, memory, and bus.
The next question is: What does a digital computer look like? Nowadays,
all digital computers are based on the famous architecture invented by the
American mathematician, Von Neumann. The Von Neumann computer ar-
chitecture, as shown in Fig. 6.4a, is composed of a processor and a memory
which are connected by data and address buses. Of course, it is necessary to
have control-signal lines. However, for the sake of clarity, these are omitted
in the illustration.

As we mentioned earlier, a digital computer performs calculations by ex-
ecuting a sequence of ordered-instructions called a program. Since a compu-
tation involves at least a program and some data for processing, computers
based on the Von Neumann architecture must store the program and data
on the same memory unit. And, it is easy to understand that the procedure
for an ALU to execute a program should look like the following:

• Step 1: Fetch an instruction.
• Step 2: Fetch the operand(s).
• Step 3: Perform arithmetic and logic operations.
• Step 4: Store the result.
• Repeat Steps 1 to 4 until all the instructions of a program have been

completed.

Clearly, it is not possible for the Von Neumann-style computer to per-
form the operations of Step 1 and Step 2 in parallel. One way to improve

Information System of Robots 317

Address

Processor Memory

< •
| Data |

(a) Von Neumann Architecture

Address Address

Program • p r o c e s s o r • Data
Memory Memory

Data Data

(b) Harvard or DSP Architecture

Fig. 6.4 The Von Neumann and Harvard computer architecture.

the speed of computation is to use the Harvard architecture, developed at
Harvard University, USA, as shown in Fig. 6.4b. The Harvard architec-
ture is also known as the DSP architecture as all the DSPs are based on
the Harvard architecture. (NOTE: DSP stands for Digital Signal Proces-
sor). As we can see from Fig. 6.4b, the Harvard-style computer separates
program storage from data storage. Thus, a Harvard-style computer will
have at least two memories: one for programs and one for data. And, the
execution of a program will be performed in the following way:

• Step 1: Fetch an instruction and its operand(s).
• Step 2: Perform arithmetic and logic operations.
• Step 3: Store the result.
• Repeat Steps 1 to 3 until all the instructions of a program have been

completed.

6.4.2.6 Cycle-by-Cycle Operations

As we discussed above, the three basic actions of a processor are: a) read,
b) perform arithmetic computation, and c) write. Since all operations in
a digital computer must be synchronized in order to produce deterministic
results, these three basic actions must also be synchronized.

In fact, a processor's system clock is responsible for producing a regular

318 The Fundamentals of Robotics: Linking Perception to Action

pulse waveform that serves as a reference for synchronization. Refer to
Fig. 6.3 and Fig. 6.4a. A common way to synchronize the read operation
is as follows:

• Step 1: When the first rising edge occurs, the processor sends the
address to the address bus.

• Step 2: When the falling edge occurs, the memory sends the data
stored in the location indicated by the address to the data bus.

• Step 3: When the second rising edge occurs, the processor reads in
the data from the data bus.

Similarly, a common way to synchronize the write operation is as follows:

• Step 1: When the first rising edge occurs, the processor sends the
address to the address bus.

• Step 2: When the falling edge occurs, the processor writes the data
to the data bus.

• Step 3: When the second rising edge occurs, the memory latches in
data and stores it in the memory location indicated by the address.

However, a common way to perform arithmetic operations is to allocate
a number of cycles of the reference pulse waveform to an instruction. This
number depends on the complexity of the instruction. For example, if an
instruction requires three cycles of the system clock, then three cycles will
be allocated to this instruction. During this period of time, the processor
only undertakes the computation of the instruction. In practice, special
circuitry called a control logic unit automatically handles the allocation of
cycles required by the execution of instructions supported by a processor.

Now, let us examine the timing involved in executing one instruction
by a processor. Let T be the cycle time of a processor's system clock. We
denote:

• nr the number of cycles required to read in one instruction and its
operand(s) from the processor's memory;

• m the number of cycles for the processor's ALU to execute the in-
struction;

• nw the number of cycles required to write the result in the memory.

It becomes clear that the total execution time for the completion of one
instruction will be

te = (nr+rii + nw)»T. (6.2)

Information System of Robots 319

For any given instruction, its corresponding execution time is a fixed
number (i.e. te is predictable). Therefore, a digital computer can be treated
as a real-time system and can play the role of a robot's artificial brain.
When a processor is executing an instruction, it cannot be interrupted or
halted. Hence, a processor's responsiveness depends on the execution time
te of an instruction. In order to improve time responsiveness, it is desirable
to shorten the execution time of an instruction. This can be done in the
following ways:

(1) Shorten the cycle time of a processor's system clock (i.e. increase the
frequency of a processor's system clock).

(2) Reduce nr and nw by increasing the number of bits that a data bus
can carry at one time. (For example, a data bus with 32 lines can carry
four bytes at a time instant).

(3) Reduce rii by incorporating more ALUs into a processor.

6.4.2.7 Generic Architecture of a Microprocessor

A processor is, basically, a device that can repeatedly perform cycle-by-
cycle operations. As a result, a processor should have the following basic
elements, as shown in Fig. 6.5:

Register

A register is simply a memory location having 8-bits, 16-bits, or a multi-
ple of 8-bits. For a read or write operation, the processor must have one
register, called the address register, to hold the address and one or more
registers to hold the data. When the ALU is performing computation, it is
very likely that the processor will require registers to store the intermedi-
ate results. In fact, for proper operation, a processor requires the following
registers:

(1) Address register to hold the address,
(2) Data registers (including accumulators),
(3) One, or more, status registers to report the working conditions of the

ALU,
(4) A program-counter register to indicate the address of a program's in-

struction to be subsequently executed,
(5) Index registers to hold the relative location of the sub-lists inside a

memory if it is divided into different segments for the separate storage
of the operation system, programs, data and stacks etc,

320 The Fundamentals of Robotics: Linking Perception to Action

i Processor I Memory >

' < I Address Bus ' I > !

j : ^ - T F - - . - ; i IX ;
j : I A ^ e s s Register (AR^J , | SyslemClock | j I R 0 M I |

i ! r SPRe^sler 1 I ^ j EPROM I
i ! P PC Register | | I I |
! , L _ _ ^ ^ _ _ = ^ _ _ J , , Control Logic Unit Operating System

i i Index Registers i i | i

1 ' | I i i Instruction Decoder i
I | Data Registers ' ' '
; i ' ' i i Program j

1 Instruction Registers j II I ,

i<^ I Data Bus | V> Data |

; ALU Registers I '

i \ \ / / i Stack !

; \ ALU / I ;
! 1 j I/O registers |

(NOTE: SP stands for stack pointer; PC stands for program counte r)

Fig. 6.5 The generic model of a microprocessor.

(6) ALU registers to hold the operands as the input to the ALU,
(7) Instruction register(s) to hold the code of an instruction itself.

Instruction Decoder

Usually, a processor will support a set of pre-defined instructions which is
also called an instruction set. All the instructions are compactly encoded in
order to minimize storage space. When an instruction code is received by a
processor after a read operation, it is necessary to have circuitry to decode
it, in order to know the arithmetic or logic operation to be performed by
the ALU. This circuitry is called instruction decoder.

Control Logic Unit

As we discussed earlier, for the proper operation of a processor, it must have
a control bus to carry control signals. A typical control signal is a read or
write signal which communicates between the processor and its memory.

Information System of Robots 321

On the other hand, a processor is a device which performs computations
dictated by a program of ordered instructions. It is clear that a processor
must handle the sequence logic of a program execution which is, in turn,
synchronized by the processor's system clock.

In fact, the circuitry inside a processor which generates the required
control-logic signals is called a control-logic unit.

Based on the above discussion, we can easily depict a generic model of
a processor. Fig. 6.5 shows an example.

6.4.3 Micro-controllers

In robotics, we are interested in an information system which can serve as a
robot's artificial brain. In order to do this, it is necessary for the information
system to be able to interface with various other systems on a robot, or
elsewhere. Consequently, a processor with a memory is not sufficient to
construct a robot's artificial brain. A set of interfacing systems, commonly
called I/O systems, must be incorporated into the microprocessor. For the
sake of simplicity, let us consider the design solution of memory-mapped
I/O systems such as the processor families made by Motorola, Inc., as shown
in Fig. 6.6.

I Address Bus I

•
Processor Memory

^ Data Bus w

^ = = v "

I/O Subsystems

A/D D/A Serial I/O Parallel I/O Programmable Timer

1 T T T T 11 T 1 '
Fig. 6.6 The generic model of a micro-controller.

In general, a microprocessor combined with a set of dedicated I/O sys-
tems is called a micro-controller. From Fig. 6.6, a micro-controller can be
formally defined as follows:

Definition 6.5 A micro-controller is a microprocessor with a set of I/O
systems built on a single integrated-circuit or chip.

322 The Fundamentals of Robotics: Linking Perception to Action

The I/O systems commonly found on a micro-controller include:
a) analog-to-digital conversion system, b) digital-to-analog system, c)
serial-communication system, d) parallel-communication system, and e)
programmable-timer system. We will study these, in further detail in the
later part of this chapter.

There are many types of micro-controllers on the market. Since a micro-
controller is built on a single chip, products made from them are normally
very cheap (less than C/S'$1OO). As micro-controllers are inexpensive, and
DC motors for toys are also inexpensive, toy-type robots are used more and
more in places like high schools.

BBfetagyX C - 4 ''••-Mii'U.V.-l

Fig. 6.7 A toy-type mobile manipulator developed with a micro-controller and a low-
cost DC motor .

Fig. 6.7 shows an example of a mobile manipulator. This robot has an
arm manipulator with four degrees of freedom (DOF). Its hand is a simple
gripper with one DOF. Its mobile base has three wheels: two passive wheels
and one steering/driving wheel (having two DOFs). All the motions of the
joints are controlled by a micro-controller.

6.5 Data-Processing Software

Now, we know that a microprocessor is capable of executing instructions
in a cycle-by-cycle manner. In order to make full use of the computational
power of a microprocessor, it is necessary to know how to develop software
which can effectively process data on a microprocessor.

Information System of Robots 323

6.5.1 Programming

The development of software requires both programming skill and knowl-
edge of an application's domain. Here, we will study the basic concepts
useful in cultivating good programming skills.

6.5.1.1 Programming Language

Usually, instructions to be executed by a microprocessor are grouped to-
gether to form an entity called a program. Different microprocessors from
the same or different manufacturers like Intel, Motorola, Texas Instruments
etc. usually have their own instruction sets with their own associated syn-
taxes. A set of instructions with an associated syntax is called the assembly
language. A program written in an assembly language is known as an as-
sembly program.

Since a microprocessor is a digital system, it can only recognize binary
numbers. Therefore, each instruction must be encoded with a binary num-
ber in order for a microprocessor to interpret and execute it. As a result,
an assembly program has to be translated into a series of binary numbers.
This results in a series of binary numbers (codes) called a machine pro-
gram. And, the set of binary codes corresponding to the instructions of an
assembly language is called a machine language.

It is not easy to use an assembly language because it is very differ-
ent from natural language and is thus difficult to read and understand.
Moreover, an assembly program written for one microprocessor cannot be
recognized by another microprocessor if their instruction sets are different.
This represents a serious drawback for assembly languages.

Since all engineering concepts, principles and mathematical formulas
can be expressed in a common natural language (English), one would ex-
pect that a microprocessor would be able to undertake and execute a pro-
gram written in a natural language. However, until today, we have not yet
reached that stage. One way to attempt to bridge the gap between the as-
sembly language of a microprocessor and natural language is to use a special
programming language. The obvious advantage to introducing such a spe-
cial programming language is that it enables programs to operate despite
different microprocessors.

In engineering, the most popular and high-level programming language
is the C or C++ programming language. There are many good textbooks
which describe the C-programming language in detail. Here, we will focus
on some of the important aspects of the C-programming language from a

324 The Fundamentals of Robotics: Linking Perception to Action

programmer's viewpoint.

6.5.1.2 Programming Environment

Today's computers are all equipped with a special program which runs con-
tinuously when the power is "on". This special program primarily manages:
a) the workload of the processor, b) the usage of memory, c) the data inter-
facing and communication with peripheral devices (including I/O systems),
and d) the execution of application programs. This special program is com-
monly known as an operating system (or OS for short). Refer to Fig. 6.5.
The OS of a microprocessor is normally loaded into the RAM after the
power is switched on. With this addition to the computing hardware, the
development of an application program becomes easy and productive.

Fig. 6.8 illustrates an integrated-computing platform for software de-
velopment. With the support of an OS on a computing platform, many
existing programs can be shared among users and programmers. There is
no need to "re-invent the wheel" if a program exists already.

Application Programs or Tools

^ r

Peripheral Device « ^ Operating System
Drivers

j j

Computing Hardware
(Processor, I/O Systems, Storage System, etc)

Fig. 6.8 Integrated-computing platform for software development.

For a programmer, the commonly-shared programming tools (i.e. exist-
ing proven programs) include:

• An editor for writing and editing a program file,
• A compiler for translating programs in high-level programming lan-

guages into assembly programs specific to microprocessors,
• A linker for incorporating shared resources (i.e. libraries) into the as-

sembly program in order to produce an executable file,
• A debugger for examining the execution of a developed program (e.g.

Information System of Robots 325

to check for errors and analyze the causes).

6.5.1.3 Program/Data Files

In computer engineering, a file is a record which stores a string of bits or
bytes that may belong to a program or data. A formal definition can be
stated as follows:

Definition 6.6 A file is a physical entity which encapsulates the grouping
of bits or bytes into a single record.

The content (i.e. bits or bytes) of a file is usually encoded in a specific
way to ease file exchange and content display. Since a file's contents is in
the form of bits or bytes, it can be directly stored into a memory or any
storage device. Inside a memory, the two basic parameters concerning a
file are: a) its address (i.e. the address of the location storing the first byte
of its content) and b) its length (i.e. the number of bytes it contains). It
is much more difficult to implement a file system on a computer. However,
the usage of a file is a simple matter. This is because the basic functions
for file manipulation are normally provided by a high-level programming
language.

6.5.1.4 Programming Procedure

A microprocessor is capable of performing computation through the execu-
tion of programs. However, a microprocessor or computing system that is
capable of directly translating human intention into a corresponding pro-
gram does not exist. In order to use a microprocessor to perform data
processing, a user or programmer must manually do the programming.

A formal definition of programming can be stated as follows:

Definition 6.7 Programming is the process of translating a computa-
tional task or behavior from the mind of a user (or programmer) into a
program.

Programming is a highly creative activity. Fig. 6.9 shows a generic
process of programming. Generally speaking, programming with a pro-
gramming language involves the following steps:

• Step 1:
Translate a computational task from the mind of a programmer into
a corresponding program written in a (high-level) programming Ian-

326 The Fundamentals of Robotics: Linking Perception to Action

Programmer
i

„ ,. I / Program \
Editor • ()

1 1 V^_j<iles^/

Compiler I •(Object)
1 1—r- ' V ^ F i l e s ^ y

(Library > J T . . I f Executable^
V <-i) * Linker w)
V_ files y V T-i /1̂ I 1 ___Files_^/

Fig. 6.9 A generic programming procedure.

guage. The outcome of this step is a developed program. For ease in
maintenance and editing, it is wise to store a large program into a set
of files. This is because it is easier to read and edit a file having a
hundred lines than to read and edit a file having several hundred or
thousand lines.

• Step 2:
Compile the program written in a (high-level) programming language
into a corresponding machine program encoded in the machine language
supported by the microprocessor in use. The outcome of this step is
the machine program stored in the object file. Usually, each program
file will be compiled into a corresponding object file.

• Step 3:
Put the shareable computational functions into a file called a library.
The outcome of this step is some library files.

• Step 4:
Produce the executable program by linking the machine program with
the shared computational functions from the libraries. The outcome of
this step is the final executable program encoded in machine language
and stored in a file called the executable file.

The use and sharing of libraries make programming a highly productive
activity. A library is a record of the shareable computational functions
encoded in a machine language. A formal definition of a library can be
stated as follows:

Definition 6.8 A library is a collection of shared program modules or

Information System of Robots 327

computational functions compiled in a machine language and stored in a
file.

While programming is a highly creative and productive activity, a good
programmer must observe certain guidelines:

• Readability of Developed Programs:
As we mentioned earlier, a programming language is not as comprehen-
sive as a natural language. Still, as much as possible, it is important to
make a program readable by a human. For example, instead of naming
"x" the variable of a motion sensor, one can name it "velocity" directly.

• Reusability of Developed Programs:
Programming is usually a team effort. Many generic computational
functions, like the trigonometric functions, are shared among program-
mers. Therefore, one should always design a program by making it as
modular as possible. In this way, generic modules can be shared with
other programmers.

• Inter-operability of Developed Programs:
Normally, a program written in a high-level programming language
can be operated across different computing platforms. However, if a
program makes intense usage of shared libraries, one must take special
care as the shared libraries may be different across different computing
platforms.

6.5.1.5 The Basics of C-Programming Language

A good programming language must fulfill two objectives:

• For the sake of simplicity and efficiency, it should be similar to the
machine language. In other words, it should allow programmers to
explore the characteristics of the microprocessor as directly as possible.

• For ease in readability and programming, it should be similar to a
natural language. In this way, a programmer will have less difficulty in
translating computational tasks into corresponding programs.

A programming language that satisfies the above two objectives does
not exist. So far, the best programming language for engineering simula-
tion and computation is the C-programming language. The C-programming
language was invented in the late 1970s. In the early 1980s, this language
incorporated classes, which implement the concept of object-oriented pro-
gramming. This has resulted in the C++ programming language. The

328 The Fundamentals of Robotics: Linking Perception to Action

C-programming language is efficient because it is similar to the machine
language. The popular operating system UNIX is written in the C-
programming language.

Data Types in C

The C-programming language supports basic, primitive data types such as:

• char: an 8-bit integer,
• int: a 16-bit integer,
• long: a 32-bit integer,
• float: a 32-bit floating-point number (i.e. a real number),
• double: a 64-bit floating-point number (i.e. a real number).

If a variable always takes positive integer numbers, the keyword
unsigned can be placed in front of a data type for integers. For exam-
ple, unsigned char indicates an unsigned 8-bit integer. An unsigned 8-bit
integer varies from 0 to 255.

With the various data types, one can easily declare the variables in
C. The following example shows the declaration of variables for the DH
parameters of a link inside an open-kinematic chain:

float offset_along_x_axis;
float offset_along_z_axis;
float angle_about_x_axis;
float angle_about_z_axis;

In engineering, it is inevitable to encounter many constants. In order to
enhance the readability of a program in C-programming language, we can
associate a constant with a name (i.e. a string of characters) by using the
directive #def ine. For example, constant n can be defined as follows:

#define PI 3.14;

Data Structures in C

To further enhance the readability of a program written in C-programming
language, we can group the parameters, or variables, related to a same
physical entity to form a data unit called a data structure. The directive
typedef struct allows a programmer to define a data structure.

For example, we can define a data structure, called LinkData, to house
all the parameters or variables related to a link in an open-kinematic chain:

Information System of Robots 329

typedef struct {

float offset_along_x_axis;

float offset_along_z_axis;

float angle_about_x_axis;

float angle_about_z_axis;

float linkjnatrix[4][4];
float link-inertia[3] [3];
float link_mass;

} LinkData;

A data structure is treated as a new data type defined by a programmer.
We can easily declare a variable of a data structure in the same manner
as we declare a variable of an existing data type in C. For example, the
following code declares variable linkl of the type LinkData:

LinkData linkl;

Data-Processing Loops in C

Engineering computing may frequently involve repetitive processing of data
with a block of instructions. The C-programming language provides two
basic mechanisms to repeatedly loop over a block of instructions. This pro-
cess is called looping. The following example shows the use of the directive
for(expl; exp2; exp3) to implement a data-processing loop in C:

LinkData left_arm_link[6] , right_arm_link[6];

void InitializeAllLinksO

{
int i;

for (i=0; i < 6; i++)

{
left_arm_link[i] .offset_along_x_axis = 0;
left_arm_link[i] .offset_along_z_axis = 0;
left_arm_link[i] . angle_about_x_axis = 0;
left_arm_link[i] . angle_about_z_axis = 0;

right_arm_link[i] . off set_along_x_axis = 0;
right_arm_link[i] .offset_along_z_axis = 0;
right_arm_link[i] . angle_about_x_axis = 0;

330 The Fundamentals of Robotics: Linking Perception to Action

right_arm_link[i] .angle_about_z_axis = 0;
} ;

}

In the above example, expl sets the initial condition of the loop and
exp2 sets the repetitive condition of the loop. If the condition is true, the
loop continues until the condition becomes false. In addition, exp3 sets the
default instructions to be executed at the end of each loop (i.e. iteration).

The above example can also be implemented with the directive while
inC:

LinkData left_arm_link [6] , right_arm_link[6] ;

void InitializeAllLinksO
{

int i;

i = 0;

while (i < 6)

{
left_arm_link[i] . offset_along_x_axis = 0;
left_arm_link[i] .offset_along_z_axis = 0;
left_arm_link[i] .angle_about_x_axis = 0;
left_arm_link[i] . angle_about_z_axis = 0;

right_arm_link[i] . offset_along_x_axis = 0;
right_arm_link[i] .offset_along_z_axis = 0;
right_arm_link[i] . angle_about_x_axis = 0;
right_arm_link[i] .angle_about_z_axis = 0;
i++ ;

} ;
}

As we can see, the expression inside the while directive is a condition
to test whether or not the loop should be continued. If the condition is
true, the loop will be repeated until the condition becomes false.

In C, a programmer can prematurely quit the looping by using the
instruction break. This is a very useful and efficient way to quickly exit a

Information System of Robots 331

loop for whatever reason.

Data-Processing Branches in C

Besides looping, engineering computing may also frequently involve selec-

tively choosing a block of instructions to execute based on the current

condition. The process of directing data-processing into different blocks of

instructions is called branching.

In C, the directive i f -e lse provides a simple mechanism to branch

between the two blocks of instructions. Obviously, we can nest the i f -e lse

directive to branch among multiple blocks of instructions. But, this will

make a program less comprehensive. An elegant mechanism for branching

among multiple blocks of instructions is supported by the directive switch

inC.

The following example shows how to use the switch directive to, se-

lectively, initialize the data structures of the links belonging to a specified

open-kinematic chain:

LinkData left_arm_link[6] , right_arm_link[6] ;

void Ini t ial izeLinks(int KinematicChainldentifier)

{
int i ;

switch(KinematicChainldentifier)

{
case LeftArm:

for (i=0; i < 6; i++)

{
left_arm_link[i] .offset_along_x_axis = 0;

left_arm_link[i] .offset_along_z_axis = 0;

left_arm_link[i] . angle_about_x_axis = 0;

left_arm_link[i] .angle_about_z_axis = 0;
}
break;

case RightArm:

for (i=0; i < 6; i++)

{
right_arm_link[i] .offset_along_x_axis = 0;

332 The Fundamentals of Robotics: Linking Perception to Action

right_arm_link[i] .offset_along_z_axis = 0;
right_arm_link[i] . angle_about_x_axis = 0;
right_arm_link[i] . angle_about_z_axis = 0;

}
break;

default:
break;

}
}

As we can see, the expression inside the directive switch must be an
integer. This expression represents the current condition and is often com-
pared to the predefined cases marked by the keyword case. If there is a
match, the corresponding block of instructions is executed. Each block of
instructions must ended with the break instruction. If there is no match
for the current condition, the program will enter default, marked by the
keyword default, and default instructions (if any) will be executed.

Visibility of Data and Functions in C

As we mentioned earlier, for the sake of easy maintenance and editing,
it is wise to split a large program into multiple program files. It is now
common for a single application program to have multiple program/header
files. However, when a single application program is divided into a set of
coherent functional modules and each module is stored in its own program
file, it raises the issue of how to handle the visibility of data and functions
across multiple program files in C.

Fig. 6.10 illustrates an example of a simplified skeleton of a robot-control
application. Functionally, we can create one module to handle the for-
ward kinematics and another module to take care of the inverse kinematics.
Each module is stored in its own program file (InverseKinematics.c and
ForwardKinematics. c). And, the main body of the application is stored in
another file called RobotControl.c. As a result, the visibility of data and
functions across these files is a concern. In C-programming language, there
are some well-defined rules governing the visibility of data and functions.

Rule 1: All the variables declared inside a function are only ac-
cessible or visible by the instructions inside this function. These

Information System of Robots 333

Multiple Program Files of a Single Application

RobotControl.c RobotControl.h

tffndef ROBOTCONTROL
PostureData EndEffectorFrame ; #define ROBOTCONTROL
float JointAngle[100];

extern PostureData EndEffectorFrame ;
void mainO extern float JointAngle[100];
{

extern void ForwardKinematics (int);
i extern void InverseKinematics (int);

tendif

InverseKinematics.c ForwardKinematics.c

include " RobotControl.h " include " RobotControl.h "

static PostureData input; static PostureData output;
static float output[100] ; static float input[100] ;

void InverseKinematics (int Chainld) void ForwardKinematics (int Chainld)
{ (

int linkjd; int link_id;

) • • }

Fig. 6.10 Multiple program/header files of a single application, and the visibility of
data (and functions) across the program files.

variables are called local variables.

For example, the InverseKinematics () function has the variable name
link_id. It is a local variable and only visible inside this function. If
the ForwardKinematics () function also requires a local variable with the
same name of link.id, it has to be declared independently inside the
ForwardKinematics () function. In fact, these two variables share the same
name but will be physically stored in different memory locations.

Rule 2: By default, all the variables declared inside a program file
(but not inside any function of the program file) are accessible or
visible by all the instructions or functions across all the program
files belonging to the same application. These variables are called
global variables.

For example, the EndEffectorFrame and JointAngle variables declared
inside program file RobotControl. c are global variables and visible across
all the program files.

334 The Fundamentals of Robotics: Linking Perception to Action

Rule 3: The directive s ta t ic placed in front of a global variable
will make this variable visible inside its program file only.

For example, the input and output variables inside program file
InverseKinematics.c are only accessible by the instructions or functions
inside this file.

Rules 2 and 3 are equally applicable to functions. For example,
there is no s ta t ic directive in front of the InversekinematicsO and
ForwardKinematicsQ functions. These two functions are global functions
which are visible everywhere across the program files of the application.

To enhance the readability of the developed programs, it is a common
practice to notify the global variables and functions in some separate files
called header files. A global variable or function is notified with the directive
extern. Refer to Fig. 6.10. The RobotControl.h file is a header file. The
insertion of the directives:

#ifndef R0B0TC0NTR0L
#define R0B0TC0NTR0L

#endif

is for the purpose of avoiding duplicate notification of a same group of
global variables and functions. In this example, the string of characters
R0B0TC0NTR0L is user-defined, meaning it can be a string of any characters.
And, this string of characters along with the directive #includeserves as a
tag to skip any repetitive notification (e.g. #include "RobotControl.h").

6.5.2 Multi- Tasking

In the past, multi-tasking primarily involved: a) time management and b)
memory management. Nowadays, however, memory is very cheap. As a
result, memory management is no longer a critical issue in multi-tasking.
Thus, time management is THE critical issue.

6.5.2.1 The Basics of Multi- Tasking

Refer to Fig. 6.4. A digital computer is composed of a processor and mem-
ory which are interconnected by buses. Functionally, it can be treated as a
system which is capable of undertaking data-processing and storage.

Information System of Robots 335

Since the operations inside a processor are all synchronized by the sys-
tem clock, each instruction of a program is executed by a processor's ALU
within a fixed number of clock cycles. In other words, a processor's com-
puting power can be measured in terms of the number of clock cycles per
program. But, this measure is not so intuitive because different programs
may have different numbers of instructions. Two ways to measure com-
puting power are by MIPS (million instructions per second) or MFLOPS
(million of floating-point instructions per second).

A digital computer has a certain memory capability to store programs
and processed data. This memory-storage capacity is commonly measured
in terms of bytes. For example, MB stands for "mega-bytes" and GB stands
for "giga-bytes".

Now, it is clear that a digital computer can be treated as a system
having two important resources: a) computing power and b) storage ca-
pacity. If a digital computer is further considered to be an SISO system
(single input/single output), there is no issue of resource-sharing. And,
there will be no issue of multi-tasking. However, today's computer is be-
coming more and more powerful in terms of computing power and storage
capacity. It is, thus, very common to treat a digital computer as an MIMO
system (multiple input/multiple output). In this case, there is concern
over resource-sharing. And, it is important to understand how a digital
computer handles multiple input and shares the limited resources.

Computational Tasks

The input to a digital computer is known as tasks. These tasks are different
from the motion-centric ones performed by a robot. Under the context of
an information system or computing system, a task means a computational
task related to data-processing. Formally, a computational task can be
denned as follows:

Definition 6.9 A computational task, in a real-time system, is a data-
processing job with a deadline. It consumes not only the computing power
of a digital computer but also memory storage.

As shown in Fig. 6.11, a computational task can be repetitive or non-
repetitive. A repetitive task is a task which can be executed within a set
of discrete time intervals. In contrast, a nonrepetitive task must be run
within a single time interval.

336 The Fundamentals of Robotics: Linking Perception to Action

S l a l e S | Kuiinin;j I *- I'iiusdl

KL\UI\ \hmloil ('oiiipk-U-il

= l.isk =

Categories |

NlllUqVllllM.1 I Kl-piMHlM'

I ' ^
IVIIDIIIL Spor.nlic

Fig. 6.11 The states and categories related to computational tasks.

Clearly, a nonrepetitive task does not share a digital computer's re-
sources with other tasks because it can neither be interrupted nor pre-
empted. In other words, a nonrepetitive task can only be in one of three
states: a) ready (i.e. ready for execution by the processor), b) running (i.e.
consuming the processor's resources alone), and c) completed or aborted.
Whenever possible, we should avoid nonrepetitive tasks, or transform non-
repetitive tasks into repetitive tasks that satisfy the deadline constraint.

There are two types of repetitive tasks: a) periodic tasks and b) sporadic
tasks. Since a repetitive task can be run within a set of discrete time
intervals, it can participate in cooperative multi-tasking or preemptive multi-
tasking. This is because a repetitive task can be in one of these states: a)
ready, b) running, c) pause (either voluntarily or caused by preemption),
and d) completed or aborted. Most importantly, a repetitive task can be
periodically switched from "running" to "pause". This provides the basic
mechanism for the sharing of a processor's resources.

Time Management in Multi-Tasking

For a complex computing platform with multiple processors (e.g. a parallel
computer), there will be no issue of multi-tasking if the number of tasks
is equal to or less than the number of processors. The issue of multi-
tasking arises only when the number of tasks is greater than the number

Information System of Robots 337

of processors. For the sake of simplicity, let us consider the scenario of a
single processor with multiple computational tasks. In this case, there is
an obvious need to manage the processor's time and memory so that the
processor's resources can be shared.

Inter-Task
Communication

Task Queue I T 1 Completed and
New task \ " f I 1 ' aborted tasks

p. Task Task . •
• Scheduling Dispatching l'mcessnr(s)

Paused task

Fig. 6.12 Illustration of multi-tasking process when there is a single processor and
multiple computational tasks.

Fig. 6.12 illustrates the process of multi-tasking with a single processor.
Since a processor can only execute one task at a time-instant, all other
tasks must wait in a place called a task queue. A task queue needs to be
managed so that the waiting tasks are ordered according to certain rules
and priorities. A special program which manages a task queue is called a
task scheduler.

When a running task has to be stopped for whatever reason, another
special program will automatically release the processor's resources from
the running task and launch a new task selected by task scheduler. This
special program is called a task dispatcher.

Memory Management in Multi-Tasking

By definition, a computational task will not only consume a processor's
time but also its memory. Thus, we should also manage the sharing of a
processor's memory if a large number of tasks are concurrently active, as
shown in Fig. 6.13.

A computational task is a computer program for data-processing. Both
the program and data require space in the processor's memory. A common
way to manage the sharing of this memory is to explicitly divide the memory
space into distinct zones which are respectively assigned to the operating
system (if any), programs, data and stacks, as shown in Fig. 6.5.

When a task is running, the execution of its instructions requires an

338 The Fundamentals of Robotics: Linking Perception to Action

D i S P ' a y jfard-Disk^ System_lJ ^ ^ 1

Memory i ^ Memory

(Taskj) | I/O Systems | [°5D

(^2) "r cm
* A • (^ALU(J)^ • *
* I ' ""̂ "n *

^-—-^ i n̂
(Task n) registers rjata m

V3-^ | | ' ' I | LJ-U
Programs Data/Stack

Fig. 6.13 Illustration of memory management required in multi-tasking with a single
processor.

intense usage of the processor's registers, such as the program counter,
index registers and accumulators. When a running task is voluntarily or
preemptively stopped, the contents (also called the execution context) of
these registers must be saved so that they can be recovered once the task
is resumed. A stack is a memory block which holds such contents.

Inter-task Communication

Another requirement of memory management is posed by inter-task com-
munication. If task A wants to exchange information with task B, there
should be a mechanism to support this type of inter-task communication.
This is commonly achieved by a shared memory if the tasks are active inside
the same processor.

A shared memory is a reserved memory block in the data zone of a
processor's memory. Access is granted to all the tasks that use it for data-
exchange.

6.5.2.2 Cooperative Multi-Tasking

In practice, there are two strategies of sharing a processor's time among
multiple tasks: a) cooperative multi-tasking and b) preemptive multi-
tasking.

Information System of Robots 339

The basic idea behind cooperative multi-tasking is to treat a set of active
tasks as a state transition network or state machine. Any uncompleted task
is an active task as long as it is not aborted. An active task can either be in
the running mode or the sleeping mode. Under cooperative multi-tasking,
each task voluntarily commutes its running state to a paused (sleeping)
state. When one task voluntarily exits the running state, a subsequent task
is activated. All the active tasks must be cooperative. The multi-tasking
will not function properly if one task selfishly consumes all the resources
(time and memory) of a processor.

Physical Actor

State 2

(Task 2 N.
<(ComputeControlSignal \

If sleeping y ' i ^ > w «sleeping

/ / If aborted \ \

C ^ , If aborted If aborted ^ 3 i - - ~ - ~ ^

(Taskl ^ If done J Task 3 \

\ ReadMotionSensor L V DriveActuator 1
N. y^ " sleeping \ ^ /

State 1 State 3

Fig. 6.14 An example of cooperative multi-tasking for a physical actor.

Fig. 6.14 shows an example of cooperative multi-tasking for a physi-
cal actor which controls an actuator with an inertial load. The motion
controller of the physical actor first reads the sensor feedback. Then, it cal-
culates the control signal according to a control algorithm. Subsequently,
it outputs the control signal to the power amplifier which drives the mo-
tor. As long as the motor is running, these three operations are repeatedly
performed by the physical actor. If we treat the physical actor as a state
machine, it will include these three tasks:

• Task 1: Read the motion parameters from the motion sensor,
• Task 2: Compute the control signal,
• Task 3: Output the control signal to the power amplifier.

Since each task is treated as a state, the corresponding state machine

340 The Fundamentals of Robotics: Linking Perception to Action

will have four states, and the fourth state will describe the situation of exit
(e.g. completed motion, sensor failure, actuator failure, etc).

This example can be implemented with a real-time programming lan-
guage. For example, Dynamic C from Z-World (www.zworld.com) is a C-
programming language with multi-tasking. It supports cooperative multi-
tasking with a built-in directive costate. By using the directive costate,
we can easily implement multiple tasks, (called co-statements, in Dynamic
C), which run concurrently on the micro-controller supported by Dynamic
C (e.g. Rabbit 2000 micro-controller).

r~^ '. ^
, j CooperativePhysicalActor.c I

int flag_abort ;
void main()
{

flag_abort = false;
costate Taskl

{
if (ReadMotionSensor ()== false) flag_abort =true;
waitfor(DelayTicks(20));

}
if (flag_abort == true) exit;
costate Task2
{

if (ComputeControlSignal ()== false) flag_abort =true;

waitfor(DelayTicks(20));

}
if (flag_abort == true) exit;

costate Task3
{

if (DriveActuator ()== false) flag_abort =true;
waitfor(DelayTicks(20));

G if (flag_abort == true) exit;

_ J . /

Fig. 6.15 Sample program of cooperative multi-tasking in Dynamic C.

Fig. 6.15 shows a sample program in Dynamic C, which implements
the state machine described in Fig. 6.14. The function DelayTicksO is a
built-in function of Dynamic C. For example, a time tick in Dynamic C is
equal to 1/2048 second. With the built-in function waitforO in Dynamic
C, a task can voluntarily commutate into the sleeping state. As shown in
the sample program, these three tasks of the physical actor will voluntarily
and periodically sleep for 20 time-ticks.

Information System of Robots 341

6.5.2.3 Preemptive Multi-Tasking

Cooperative multitasking does not impose a rigid time constraint on con-
currently active tasks. Moreover, it is not able to dynamically change the
priority or order of task execution. For applications which require stricter
time management, it is necessary to use preemptive multi-tasking.

Under preemptive multi-tasking, task scheduling is based on priority
and order. If the level of priority is the same for all tasks, the order of task
execution is determined by a queue which is also known as a task queue. A
queue is a First-In-First-Out (FIFO) buffer in the memory. A simple way
to schedule the execution of tasks having the same level of priority is to
assign an equal, predefined time interval to each task. This time interval is
called a quantum or time slice.

Refer to Fig. 6.12. The running task will consume one quantum of the
processor's time. If this task is still active after one quantum, it will be
preempted and put back in the queue as a paused task. Subsequently, a
new task from the queue will be selected as the running task. This process
will be repeated until all the tasks are completed or aborted. This process
is known as the round-robin or time-slicing scheduling method.

In order to prioritize task execution, we simply assign a priority level to
each task. In this way, active task i will have two important parameters:

• tStii the assigned quantum or time slice which is dynamically change-
able.

• LPti'. the assigned priority level which is also dynamically changeable.

Under preemptive multi-tasking, when task i becomes the running task,
the amount of the processor's time consumed by this task will be:

te,i = £P,i •*,,!• (6.3)

If task i is completed before or within this amount of time, it exits. Oth-
erwise, it is preempted after the elapse of time te^, and re-enters the task
queue to wait until it becomes the running task again.

Assume that a humanoid robot has a built-in distributed information
system, as shown in Fig. 6.16, in order to properly coordinate its behaviors
in various scenarios of task execution. For example, for dancing or playing
a sport, the behaviors of the humanoid robot should include:

• Mental Actor 1: Coordinate visually-guided biped walking,
• Mental Actor 2: Coordinate visually-guided hand gestures or manipu-

lations,

342 The Fundamentals of Robotics: Linking Perception to Action

Computer 1

Mtflldl A i t o r I

II .1 I > . . . I

Mi-nrjJ Aclur 2 |~

1 1 ' ' - 1 I • ' ••• •••• •• ii J C o m p u t e r 2

MemniAc.^3 k-'ysiWAJ*it,4Yy}:'.

| Leg-Eye Coordination | Visual Perception
• — ^ ^

Computer 3 <^Jr <~ I J -r r n - J V,
. Htysica) Actor 1 ' Physical Aclnr 2 Phyiicd Aulor 3

Motion Control Motion of Dual Hand -Arm Motion Control of Active
of Biped Walking Manipulation Stereovision Head

\V it it
Actuators Sensors Actuators Sensors Actuators Sensors

Fig. 6.16 Example of a distributed information system for a humanoid robot.

• Mental Actor 3: Coordinate visually-guided head movements.

If these mental actors run on a single computer, it is necessary to adopt
preemptive multi-tasking in order to guarantee the apparent simultaneity
of these actors.

Dynamic C from Z-World supports preemptive multi-tasking with the
language construct sl ice (buffer, time.interval). The first argument
buffer is a parameter which specifies the size of the stack to save the
execution context when actor i is preempted. The second argument is time
interval te^, which will be consumed by actori when it becomes the running
actor.

Fig. 6.17 shows a sample program in Dynamic C that implements these
behavior coordinations in preemptive multi-tasking.

6.5.3 Real-Time Operating Systems

To efficiently handle multi-tasking, it is best to use a real-time operating
system. A real-time operating system is usually small, and provides effi-
cient time- and memory-management services such as task scheduling, task
dispatching, inter-task communication and real-time interruptions.

Information System of Robots 343

x j PreemptiveBehaviorCoordination.c I

int time_slice;
int priority_actorl, priority_actor2; priority _actor3;

void main()

{
time_slice= 10;
slice(500, priority_actorl*time_slice) MentalActorl

{
LegEyeCoordination ();

)

slice(300, priority_actor2*time_slice) MentalActor2

{

HandEyeCoordination (};

>

slice(300, priority_actor3*time_slice) MentaIActor3
{

-—^— HeadEyeCoordination ();

G)>>)
Fig. 6.17 Sample program of preemptive multi-tasking in Dynamic C.

Nowadays, there are many real-time operating systems on the market,
such as VxWorks, QNX, RT-Linux. And, many good textbooks provide
a comprehensive description of the fundamentals of a real-time operating
system.

6.6 Data Storage and Retrieval

Data storage and retrieval is an important part of any information system.
This is because the data-processing results must be useful and therefore,
reusable. Generally speaking, in robotics, there lacks a standard regarding
the storage and retrieval of reusable data (if any). Since a robot incorpo-
rates an information system, the issue of how to store useful data-processing
results which can be retrieved later for reuse is something that inevitably
needs to be dealt with.

If a humanoid robot have to develop its physical and mental abilities
through real-time interaction with its environment, it is obvious that a hu-
manoid robot needs a memory to store all of the acquired internal represen-
tations of perception and knowledge. Therefore, data storage and retrieval
are an indispensable part of a humanoid robot's information system.

344 The Fundamentals of Robotics: Linking Perception to Action

6.6.1 Storage Devices

As we mentioned earlier, any advanced computing platform will have an
operating system. An operating system serves as an interface between
the application programs and the computing platform's hardware compo-
nents/devices. Usually, a general-purpose operating system consists of three
major modules: a) the process-management module which manages the al-
location of the processor's time for various computing processes or tasks, b)
the memory-management module which manages the processor's memory
and the storage device, and c) the peripheral-device management module
which handles input/output interfacing, and communication between the
processor and external devices such as the mouse, keyboard and printer,
etc.

The memory-management of an operating system includes management
of both the processor's memory (e.g. RAM) and the external storage device
(e.g. hard-disk, as shown in Fig. 6.13). The processor's memory, except for
ROM and ERPROM, is not a place to store reusable results or data. The
common place to store useful and reusable data (including program files) is
in an external storage device, such as a hard-disk or a rewritable CD-ROM.
But due to the slow access speed, a CD-ROM is more appropriate for data
backup than storage.

From the user's point of view, a storage device is a system which takes
data as input and produces data as output. Some basic requirements for
an external-storage device are:

• It must be able to store a large amount of data.
• It must maintain the integrity of the stored data.
• It must support access (both read and write) to the data by multiple

computing processes or tasks.

6.6.2 A File System

At the lowest level of a memory, data is a list of ordered bytes. But, at a
higher level, data is treated as a record. For example, the DH parameters
of an open kinematic chain can form one record. By definition, the entity
that stores a record in a storage device is called a file. Therefore, from the
viewpoint of information, a memory or data storage device is a specifically
organized file system.

It is true to say that all computing platforms, having an external stor-
age device, have a corresponding file system which is an integral part of

Information System of Robots 345

an operating system. A file normally has a name and an extension. For
example, InverseKinematic. c is a file with the name "InverseKinematics"
and the extension ".c". The purpose of a file name's extension is to indicate
the file's type. For example, the extension ".c" means a file which contains
a C program.

6.6.3 Data Storage Using Unformatted Files

A computing platform having an external storage device is usually sup-
ported by an operating system and/or a real-time kernel. A real-kernel
is a mini-operating system which supports, in real-time, the task schedul-
ing, task dispatching, interruption services and inter-task communication.
For example, Windows NT (a general-purpose operating system), with the
extension of the real-time kernel INTime, becomes a real-time operating
system for all personal computers (PCs). Other examples include QNX,
VxWorks, RT Linux and Linux with Embedix.

With the support of a real-time operating system, a high-level pro-
gramming language, like C, normally provides a set of functions for the
manipulation of a file. Typical functions include:

• open: to open a file for read or write operations,
• close: to close a file, so that it is ready to be accessed by other pro-

grams or users,
• read: to retrieve data from an opened file,
• write: to store data to an opened file.

With the help of these functions, a simple way to store and retrieve
data is to make use of a file. For example, for a given application, a robot
can define a data structure called RobotData to organize all the relevant
information, parameters and values of the variables related to this appli-
cation. This data is stored into the RobotData structure, referenced by
variable robotdatabase. During the execution of the application, all data
referenced by variable robotdatabase is stored in the memory of the pro-
cessor (RAM). Since the processor's RAM is not a place for the storage
and retrieval of any reusable data, at a certain point in time before the ap-
plication terminates, the data referenced by variable robotdatabase must
be stored into a file. This can be done with the sample codes, as shown in
Fig. 6.18.

In this example, all the bytes inside the record RobotData, referenced
by variable robotdatabase, are stored in an opened file in a single shot

346 The Fundamentals of Robotics: Linking Perception to Action

(-J Store Data to a File jfcj Retrieve Data from a File ")

external RobotData robotdalabase ; external RobotData robotdatabase ;

int StoreRobolDatabase(char 'filename) i n t RetrieveRobotDatabase(char •filename)

((
FILE «pf; FILE'pf;

if((pf = fopen(filename , "w")) == null) if((pf= fopen(filename , "r")) == NULL)
I {

printff \n> Can not open file for write"); printf(.. ta> C a n n0 [o p e n flIe for r e a (r)

" " • " " M M ; return false;
) }
fwnte(robotdatabase , s.zeof (RobotData), 1, pf); fread(robotdatabase , sizeof (RobotData). 1, pf);
fclose(pf); fclose(pf);

(X_ return true; / - ^ return true;

Kill A 7 ')

Fig- 6.18 Data storage to an unformatted file.

(with the function fwrite). Conversely, all the bytes of the data struc-
ture RobotData can be retrieved and placed back into the data structure
RobotData, referenced by variable robotdatabase, in a single shot as well
(with the function f read).

It is clear from this example, that data stored in a file does not require
any formatting of the file. Thus, we call this procedure data storage using
an unformatted file. This method is also applicable for the storage of a list
of identical data structures. For example, if there are n units of the data
structure RobotData (e.g. if we have n robots), we can simply set the third
argument of function f read or f write to be n (In Fig. 6.18, it is set to 1).

However, this method has several drawbacks:

(1) If a file is corrupted for whatever reason, all the data stored in the file
will be lost.

(2) If a list of data structures is stored, all the data structures in the list
must be identical. In other words, the data must be homogeneous.

6.6.4 Data Storage Using a File System

Under the file system of an operating system, a set of related files can be
grouped together and placed in the same folder, also known as a directory.
The two basic elements of a file system are: a) the files and b) the directories
(or folders).

At the operating system level, a file is a nondivisive entity. But, a
directory can be divided into a set of subdirectories. This division of a
directory can go into any depth. As a result, a directory can easily be
configured into a hierarchical tree-structure of subdirectories and files.

Information System of Robots 347

Naturally, one can make use of this type of hierarchy in a file system to
create a base for data storage. There are many advantages to this solution:

• It is easy to develop, as a high-level programming language usually
provides a set of functions to manipulate the files (e.g. open, close,
read, write etc).

• It is easily accessible by any user, as an operating system normally
provides a powerful tool (e.g. Windows Explorer) for a user to navigate
through the hierarchy of the file system.

• It is safe to store large amounts of data, as a corrupted file will not
affect other files.

6.6.5 Data Storage Using Formatted Files

If we view a file system to be a hierarchical organization of files in a tree-like
structure of directories or folders, a file can also be viewed as a hierarchical
organization of records. (NOTE: A record is a sequence of bytes grouped
together). Similarly, the records inside a file can be arranged in a tree-
like structure of directories or folders. In the C-programming language,
the function f seek allows a program to store or retrieve a record at any
location inside the memory space of a file. With the use of this function, it
is a simple matter to create a formatted file. When using a formatted file
to store and retrieve data, it is important to consider several issues:

• Should the naming of the records (i.e. the labels assigned to the records
inside a formatted file) be standardized so that any user, who follows
the standard, can read and write on the formatted file?

• Should library functions be provided for reading and writing records if
a new file format is proposed and accepted by a community of users or
programmers?

Fig 6.19 shows a generic structure of a formatted file. It is very similar
to a file system itself. A formatted file usually has three types of entry:

• Header Entry:
This is a record that stores some generic and/or historic information
about the file. For example, what is the name of the file format (e.g.
Postscript, PDF, TIFF etc)? Who invented the file format? Which
version is the file format ? Is the data compressed? etc. A header entry
will have at least one pointer to a directory entry. Here, a pointer means
an address within the memory space of a file. In general programming,

348 The Fundamentals of Robotics: Linking Perception to Action

Generic Structure of Formatted File

Header

ZD
1 r

Directory ^ Directory ^ Directory
Entry 1 Entry 2 H Entry n |

^^— ^ Y — ^ ^

~ ^ ~ ~T~ T"
Data ^ _r . Data fc, . , , D a t a —fc> v<.i..o

Entry 2 ^ 1 V a l u e I Entry 2 H Va'Ue I | Btty 2 H Va'Ue I
^ ^ ^ _ ^ ^ ^

Fig. 6.19 A generic structure of a formatted file.

a pointer means an address within a specific memory space.
• Directory Entries:

A directory entry is a record which indicates the grouping of related
data entries under the same directory or folder. If the directory entries
are organized as a chained list, a directory entry can simply contain
information about the name of the directory, the number of data entries
under this directory, at least one pointer to the first data entry, and a
pointer to the next directory entry.

• Data Entries:
A data entry is a record which stores the associated information to a
piece of data. For example, what is the standardized name of the data?
What is the size of the data (in terms of bytes)? What is the pointer
to the first byte of data? The value record, as shown in Fig. 6.19, is
the memory block where data is stored in a file. If the data entries in a
directory are organized as a chained list, a data entry will also contain
a pointer to the next data entry in that list.

It is easy to share a formatted file among a team of users or program-
mers. However, information written into a formatted file cannot easily be
modified by an ordinary user. This helps to maintain the authenticity of
the stored data. In addition, some confidential or proprietary information

Information System of Robots 349

can be encoded into a formatted file. To a certain extent, it is possible to
set up an access control using a password with a formatted file.

6.7 Data Interfacing and Communication

A computing system without a data interfacing or communication module
can hardly be useful for the control of any machine, especially a robot.
Obviously, a robot's information system must have a comprehensive set
of data interfacing and communication subsystems. These subsystems are
also called the I/O communication systems, or devices.

The primary role of an I/O system, or device, is to receive, send and
communicate data. For example, a motion controller is a computing system
equipped with some specific I/O systems. In this way, a motion controller
can receive data from sensors and send data to actuators through its I/O
systems.

A robot is a real-time system, the performance of which depends on the
real-time performance of its I/O systems. Hence, an understanding of the
working principles of the common I/O systems is important for the design,
analysis and control of a robot.

6.7.1 Basic Concepts

For the sake of simplicity, let us consider memory-mapped I/O systems.

6.7.1.1 I/O Registers

A common way to operate an I/O system is to make use of the I/O registers,
as shown in Fig. 6.5. By default, an I/O register is a memory location
consisting of 8 bits. A register with 8 bits is comparable to a set of eight
electronic switches. You can switch each bit "on" or "off". And, each bit
carries one piece of information related to the configuration or status of the
I/O system.

One of the advantages of using I/O registers is the ease of programming
(this will become clearer later). I/O registers are divided into three groups:

(1) Control registers:
These registers are for programs to configure an I/O. For example, an
I/O system can be configured for input, output, or both.

350 The Fundamentals of Robotics: Linking Perception to Action

(2) Status registers:
These registers allow programs to know the status of an I/O system.
For example, when a program examines the status register, it will know
whether the data communication has been completed successfully or
not.

(3) Data registers:
These registers serve as a buffer to hold data which is yet to be trans-
mitted or received.

Sometimes, depending on the complexity of an I/O system, a single
register will serve as both the control and status register. However, most
of the time, there will be a separate register for the data register, capable
of holding one byte at one time-instant.

6.7.1.2 I/O Ports

M e m o r y
I/O Port

I/O Data Register '"•' '" '" * LLLt

Fig. 6.20 Conceptual illustration of the mapping between an I/O port and its corre-
sponding I/O data register.

We know that an I/O system serves as an interface between two devices
or information systems for data exchange. Therefore, there must be some
connection pins or lines to physically link these two devices or systems
together. Usually, the pins or lines of an I/O system are grouped into units
called I/O ports. An I/O port has 8 pins which correspond to eight logic
bits (or one byte).

For a memory-mapped I/O system, an I/O port is directly mapped to
its corresponding I/O data register, as shown in Fig. 6.20.

Information System of Robots 351

6.7.1.3 Communication Networks

Except in special cases such as sensory data input and data output to actu-
ation devices, an I /O system generally acts as a communication controller
for data communication between two devices. The wires which physically
connect these two devices together are called the network. In a complex
system, a network may involve the connection of more than two devices or
information systems, which are commonly called nodes. When this hap-
pens, it is necessary to consider the most appropriate topology.

System 1 \i •] System2 | 1 System » 1 1 S y s t e m 2

System4 4 • System3 | j System4 [| System3

(a) Point -to-point topology (b) Token -ring topology

System 1 System 2 i 1 i

r -r System 1 System 2

_——-1 V V r _______̂ ^y- ^Jf

"^~~~~~~1 * * L - " " " ^ (Router)

System 4 System 3 System 4 System 3

(c) bus topology (d) Star topology

Fig. 6.21 Typical network topologies.

For a distributed real-time controller (i.e. a controller with many com-
putational units connected together by a network), the time responsiveness
of the network is as crucial as the time responsiveness of each computational
unit inside. A network with a predictable time responsiveness is called a
deterministic network. Fig. 6.21 shows some typical network topologies,
which include:

• Point-to-point Topology:
In this case, any pair of devices or systems has a dedicated connection
line. It is easy to meet the real-time requirement for data communica-
tion. However, the network will become complicated if more devices or
systems are hooked onto it.

352 The Fundamentals of Robotics: Linking Perception to Action

• Token-ring Topology:
This is a simplified version of point-to-point topology. But, instead of
having one connection between any pair of devices, a token-ring topol-
ogy has a direct connection between two adjacent devices or systems.
For this type of network, the data must carry address information so
that it is relayed to the proper destination. Depending on the pro-
tocol of communication, a network of token-ring topology is usually
deterministic.

• Bus Topology:
A further simplification of point-to-point topology yields the bus topol-
ogy. From an electrical point of view, bus topology means that all the
devices or systems in a network are electrically connected to a common
point if we ignore the impedance of the network's wiring. Depending
on the protocol of communication, a network of bus topology may be
deterministic (e.g. field-bus).

• Star Topology:
An improvement on bus topology is the star topology with a router to
serve as the common connection point. The router allows the commu-
nication system to intelligently dispatch data to the proper destination
while masking out malfunctioning devices in the network.

6.7.1.4 Common Issues

Data communication over a network of a given topology simply means
the exchange of a string of bits (serial communication) or bytes (parallel
communication) between two devices or systems. Obviously, the first issue
of data communication is how to pack data in the form of a string of bits
or bytes. The process of packing data for communication is known as data
framing. The framing process may involve the addition of extra information
such as the destination's address and error checking.

Once the data has been framed, the next issue is how to initiate and
synchronize data communication. To do this, two common techniques are
available:

• Polling Technique (also known as Polled I/O):
When using this technique, there is one master device on a network and
the rest are slave devices. If a slave device wants to communicate data,
it must set a flag bit in the status register of its I/O system. In this
way, the slave device signals its intention to communicate data. The
role of a master device is to periodically check whether a slave device

Information System of Robots 353

wants to undertake data communication by detecting the flag bit in
the status register of the slave device's I/O system. If the detection is
positive, data communication occurs immediately.

• Interrupt-driven Technique (also known as Interrupt-driven I/O):
When using this technique, any device on the network can signal its
intention to communicate data with another device by sending out an
interrupt signal and taking control of the communication line (if it is
free).

After data communication, a third issue is error checking and acknowl-
edgement of data reception. The purpose of error checking is to ensure that
the received data is equal to the transmitted data. And, the purpose of ac-
knowledgement of data reception is for the transmitting device to check
whether the data was successfully received by the receiving device.

We will examine the details of the above issues when studying serial and
parallel I/O systems.

6.7.1.5 Procedure of Programming I/O Systems

Although there are many technical issues related to successful data commu-
nication, a programmer usually does not need to directly solve these issues
because the I/O system's hardware will do it.

The job of a programmer is to know how to operate the I/O system
by programming the associated registers. In general, programming an I/O
system involves the following steps:

• Step 1:
Configure a chosen I/O system by properly setting up the bits inside
the control and/or status registers. For example, a device must indicate
whether to transmit or receive data, how to initiate and synchronize
data communication, and how to perform data framing (if any) and
error checking (if any).

• Step 2:
For a transmitting device, it transmits a data unit (e.g. a byte). For a
receiving device, it detects a flag bit on the I/O system's status register
in order to know whether a data unit (e.g. a byte) has been received.

• Step 3:
For a transmitting device, it detects a flag bit of the I/O system's status
register in order to know whether a data unit has been automatically
transmitted by the I/O system's hardware. For a receiving device, it

354 The Fundamentals of Robotics: Linking Perception to Action

reads in the data unit and clear the flag bit on the I/O system's status
register.

• Repeat Steps 2 and 3 until data communication is completed.

6.7.2 D/A Converters

By definition, if a variable, parameter or signal only takes discrete values
encoded in binary numbers, it is called a digital variable, parameter or
signal. However, if it takes any value encoded in a real decimal number, it
is called an analog variable, parameter or signal.

Similarly, a system or device which manipulates digital values is called a
digital system or device. Otherwise, it is called an analog system or device.

In nature, most of the values for physical quantities (e.g. temperature,
speed, pressure, dimension etc.) are intrinsically analog. However, with the
advent of the digital computer, and the use of it for sensing, control, per-
ception and decision-making, it is often necessary to exchange data between
an analog system and a digital system. This raises two issues:

• Digital to Analog Conversion (D/A Converter):
How do we feed the output of a digital system to the input of an
analog system (e.g. a digital controller sends control signals to the
power amplifier of an actuator)?

• Analog to Digital Conversion (A/D Converter):
How does a digital system read the output of an analog system (e.g. a
digital controller gets motion feedback from a potentiometer)?

In electronics, there are many solutions for D/A conversion. Fig. 6.22
shows one example of a D/A conversion circuit. The input to this circuit is
a digital number, for example, a byte: Din — 6766656463626160 with 6^=0
or 1 (i = 0,1,..., 7). Electronically, bit 6j of the input digital number Din

can be treated as a logic switch with the resistance value of

Rbi = l - h Vie [0,7]. (6.4)

It is easy to see that Rbi = 00 when 6j = 0. This means that the
corresponding logic switch is "off". On the other hand, when 6, = 1,
Rbi = 0, this means that the corresponding logic switch is "on".

For the example shown in Fig. 6.22, the output of the D/A converter is
a voltage signal Vout- Depending on the circuit, the following relationship

Information System of Robots 355

y. Q , Logic switch

Fig. 6.22 Example of a D/A conversion circuit.

holds:

This relationship appears to be nonlinear. However, it will become
linear with a specifically selected set of resistor values i?, (i = 0,1,2,..., 7).
In fact, two important criteria for evaluating a D/A or A/D converter are:

• Linearity:
Can the input and output relationship of a D/A or A/D converter be
mathematically described by a straight line?

• Sensitivity:
What is the relationship between variation ADin and variation AVout,
or vice versa?

From the circuit as shown in Fig. 6.22, we can see that D/A conversion
occurs simultaneously. As a result, the time response of a D/A converter
is normally deterministic.

6.7.3 A/D Converters

In many real applications, it is necessary for a controller to read in the
sensory data from an analog device such as a potentiometer, strain gauge,
CCD (Coupled-Charge Device) imaging sensor, and microphone etc.

(6.5)

356 The Fundamentals of Robotics: Linking Perception to Action

For an A/D converter, the input is an analog signal. In many circum-
stances, the analog input signal can be represented in the form of a voltage
signal, denoted by Vin. If the original signal is not in voltage, we can easily
convert it to a corresponding voltage signal. And, the output from an A/D
converter is a binary number, denoted by Dout.

I .. ' ' \ « 1 !).«., RL-LMSK-, I • D i « i t a l

11""""1-11 r i I output

A

DILMLII (ounk-r

M \ , * r
pi Mb I X ^

..•M ip u iM^> ('miUiil I uiik

n, *\sS "
A/I) Converter

Fig. 6.23 Example of an A/D conversion circuit.

There are many solutions for the design of an A/D conversion circuit.
Fig. 6.23 shows a popular one, known as the progressive-approximation
method. Its working principle is very similar to that of a closed-feedback
loop. The basic procedure is as follows:

• Prediction:
A counter automatically predicts possible output Dout from the small-
est to the largest number. If the counter has eight bits (one byte), the
smallest value is 0 and the largest value is 255.

• Verification:
For each predicted value of output Dout, a D/A converter generates
a corresponding predicted voltage Vprecnct. As long as the predicted
voltage is smaller than the input voltage V%n, the cycle of prediction
and verification will continue until Vpre(uct — Vin-

• Result Output:
When Vpredict — Vin, the control logic stops the counter, and the actual
number of the counter is the output of the A/D converter.

The advantage of this A/D conversion method is its low cost because
it is relatively easy to design. The drawback of this method is the variable

Information System of Robots 357

response time which depends on the length of the counter (e.g. 8 bits,
10 bits 12 bits etc). However, the time response of an A/D converter is
still predictable because the conversion time for the largest input value is
deterministic.

6.7.4 Parallel I/O

An input and output system that has at least eight signal lines is called a
parallel I/O system because it can input or output at least one byte at a
time. Since a parallel I/O system can simultaneously hold at least eight
logic signals (bits), it can be used not only for data communication, but
also for the control of external devices such as buttons or switches etc.

6.7.4.1 Device Control with Parallel I/O Systems

In robotics, there are many buttons, switches and displays which require
the attention of a robot's controller. For example, each joint has at least
two limit-switches due to the mechanical constraint of a kinematic pair.
In other words, if a joint angle varies within the range of [—45°, 135°], a
limit-switch for the position —45° and another limit-switch for the position
135° have to be incorporated into a robot's body. On the other hand, if
we want to dialogue with a robot equipped with a dedicated keyboard (e.g.
the teach pendant), it is necessary for a robot's controller to periodically
check the status of the keyboard's push-buttons

In short, all devices which have input and output depending on a set of
simultaneous logic signals (i.e. 0 or 1, 0V or +5V, "on" or "off' etc.) can
be easily controlled by a parallel I/O system.

Fig. 6.24 shows the use of a parallel I/O system to control a seven-
segment LED (Light Emitting Diode) display. This display device has
seven segments, labelled as a, b, c, d, e, f, and g. It also has two extra
segments for decimal points: LDP (Left Decimal Point) and RDP (Right
Decimal Point). A seven-segment display device can show numeric digits
from 0 to 9, as well as some simple characters (e.g. A, C, E, F, etc.).
An alpha-numerical display is the simplest way for a robot to express its
internal states. In this example, assume that the connection between the
pins of the I/O port and the segments of the LED display is indicated by
Table 6.1. For example, bit 67 controls the "on" or "off" switch for the
LDP while the complement of bit 67 controls the "on" or "off" switch for
the RDP. When b7 = 1, the LDP is "on" while the RDP is "off".

358 The Fundamentals of Robotics: Linking Perception to Action

Micro -controller External Device

I I I/O Port
Processor ^ B LED Display

^j yf H *• b5 f b

Memory % W ^M * ^3 e c

A H — • • b, m •
• _ _ ^ l I ldp rdp I

Parallel I/O ^ *

Fig. 6.24 Example of a seven-segment LED-display control by a parallel I/O system.

Table 6.1 Pin Connection.

Pins: br b7 b6 b5 b4 b3 b2 h b0

Segments: LDP RDP a b c d e f g~

Example 6.3 For the display control as shown in Fig. 6.24, if we want to
display digit "5" and the RDP, the output binary number from the parallel
I/O port should be 01001011. In hexadecimal, this number is 0x9B. In
order to light up digit "5" and the RDP, the processor simply writes byte
0x9B to the data register of the parallel I/O system.

oooooooooooooooooo
6.7.4.2 Interfacing for Data Communication

By definition, a parallel I /O system is capable of reading in or writing out
at least one byte at a time. Obviously, we can use it for data communication
because a stream of bytes of any length can be communicated through a
parallel I/O system.

Normally, data communication involves two devices: a transmitting de-
vice and a receiving device. For the example shown in Fig. 6.16, computer
1 will receive visual sensory information from computer 2. Therefore, com-
puter 1 is a receiving device while computer 2 is a transmitting device.
In parallel, for hand-eye coordination behavior, computer 1 will send com-
mands and data to computer 4. In this case, computer 1 is a transmitting

Information System of Robots 359

device while computer 4 is a receiving device.

Micro -controller 1 Micro -controller 2

', | 1 I/O Port , Parallel | I/O Port i 1 '

1 Processor ' , j _ / „ > < _ / J Processor ,

: L _ l [^ r rr^LJ I I :

'• i i •' : i i '•
' Strobe A i i Strobe A ,

: 1 Mem°^ 1 * y > — . , - - - v - i 1 Memwy 1 :
1 T Strobe B i , "* „ i Strobe B ,

| • M*f—r-'' * - - T - - 7 ^ | T !
i Parallel I/O ' ', ', l Parallel I/O '
! _ i ! . . _ _ -

Fig. 6.25 Interfacing for data-communication with a parallel I/O system.

The process of connecting two devices for data communication is called
interfacing. When two devices communicate with each other using their
parallel I/O systems, the general connection looks like the one, as shown
in Fig. 6.25.

The slash with a digit placed on a data line, which represents a physical
cable, is a graphic representation of the wiring in a computing and commu-
nication system. The digit indicates the number of wires inside the cable.
For example, the number "8" means that the cable, connecting the pins of
the two I/O ports, has eight wires or signal lines inside.

In general, data communication, using a parallel I/O system, requires
at least 10 signal lines to form a parallel link a) eight lines for the data
bits and b) two lines for the control signals. Obviously, for long-distance
communication, this is a costly solution. As a result, data communication
using a parallel I/O system is only appropriate for short-distance data com-
munication (e.g. between a computer and a printer; between two devices
inside a computing system etc).

6.7.4.3 Strobed Parallel I/O

As we studied earlier, the three important issues of data communication
are data framing, communication initiation & synchronization, and error
checking. An integrated method which handles these issues is generally
called a protocol of communication. Many standards exist in literature.

360 The Fundamentals of Robotics: Linking Perception to Action

However, here we will only cover the working principles at the physical
level behind how data communication is initiated and then synchronized
for both parallel and serial I/O systems.

By default, it is reasonable to assume that the initiator of data com-
munication is the device or system which outputs a stream of data first.
Therefore, a parallel I/O system must have a signal line to output a con-
trol signal that initiates a first session of data communication. Here, let us
assume that this output signal line is called strobe A. On the other hand, a
parallel I/O system must have a signal line to input the control signal from
an initiating device or system. Let us call this input signal line strobe B.

Refer to Fig. 6.25. Assume that micro-controller 1 initiates data com-
munication. In this case, micro-controller 1 undertakes output operation,
and micro-controller 2 is in the input operation mode. If data synchroniza-
tion only relies on the initiating device (micro-controller 1), it is called a
strobed I/O.

Under the concept of a strobed I/O, the output operation works as
follows:

• Step 1: Micro-controller 1 writes a byte to the data register which will
put one byte onto the data bus connecting the I/O ports of the two
communicating devices or systems.

• Step 2: Micro-controller 1 sends a signal to the strobe A line to tell
the receiving device or system that a byte is ready on the data bus.
This can be done by driving the strobe A line to logic high or logic low.
Another way is to send a positive or negative pulse onto the strobe A
line.

• Repeat Steps 1 and 2 until the session of data communication is com-
pleted (i.e. a stream of bytes has been exchanged).

Accordingly, the input operation at micro-controller 2 works as follows:

• Step 1: Micro-controller 2 continuously monitors the strobe B line.
• Step 2: If an incoming signal is detected at the strobe B line, it latches

in a byte from the data bus to the data register.
• Repeat Steps 1 and 2.

6.7.4.4 Full Handshake Parallel I/O

The strobed I/O is the simplest way to undertake data communication. It
will work properly under two conditions:

Information System of Robots 361

(1) The two devices operate at the same speed for each cycle of input and
output.

(2) No noise exists on the data and signal lines.

The first condition is relatively easy to meet while the second condition
depends on the working environment. In practice, it is not realistic to
assume that transmitted data will be error-free regardless of the level of
noise. An alternative solution to using the strobed I/O, which does not
have this drawback, is the full handshake I/O. The basic idea behind this is
to notify the proper reception of each byte. This mechanism provides the
opportunity to do all kinds of error checking. It also permits the difference
in the speeds at which the transmitting and receiving devices or systems
are handling the input and output data.

Refer to Fig. 6.25. The output operation under the full handshake I/O
mode works as follows:

• Step 1: Micro-controller 1 writes a byte to the data register which will
put one byte onto the data bus connecting the I/O ports of the two
communicating devices or systems.

• Step 2: Micro-controller 1 sends a signal to the strobe A line to tell the
receiving device or system that a byte is ready on the data bus.

• Step 3: Micro-controller 1 waits for an acknowledgement signal on the
strobe B line.

• Repeat Steps 1, 2 and 3 until the session of data communication is
completed (i.e. a stream of bytes has been exchanged).

Accordingly, the input operation under the full handshake I/O mode
works as follows:

• Step 1: Micro-controller 2 monitors the strobe B line continuously.
• Step 2: If an incoming signal is detected at the strobe B line, it latches

in a byte from the data bus and store it in the data register.
• Step 3: Micro-controller 1 sends an acknowledgement signal to the

strobe A line if no error is detected.
• Repeat Steps 1, 2 and 3.

6.7.5 Serial I/O

We know that the number of wires in the parallel link will be at least 10.
If we use a parallel link to form a network, each system or device will have
10 wires. If there are n systems or devices attached to a network, the

362 The Fundamentals of Robotics: Linking Perception to Action

number of wires (excluding the wires of the network itself) will be 10 • n.
So, obviously, a parallel link is not a good solution to form a network.
Nowadays, the serial I/O system and the corresponding serial link have
become the standard approach to networked data-communication.

In robotics, the number of wires inside a robot's body is a big concern
as a robot is a complex system with many interconnected computational
modules. Certainly, in this case, networked data-communication is a good
solution.

In this section, we will study the basic working principles behind syn-
chronous and asynchronous serial I/O systems. In fact, all advanced com-
munication protocols, such as the Ethernet, TCP/IP, Field-bus (e.g. CAN
bus or DeviceNet) and MODEM, are built on top of these basic working
principles.

6.7.5.1 Interfacing for Data Communication

Refer to Fig. 6.25. The parallel link has eight signal lines for data exchange
and two signal lines for control signals. If we reduce the number of data
signal lines to one or two, and the number of control signal lines to zero or
one, the parallel link becomes a serial link because it can only carry one
bit of data at a time. In order to exchange data, the bits of the data have
to be sequentially transmitted in series.

The evolution from a parallel link to a serial link sounds simple. But the
actual operation of a serial I/O is more complicated than that of a parallel
I/O. The control signal line classifies a serial I/O into two categories: a)
asynchronous serial I/O, and b) synchronous serial I/O. If a serial link
does not have any signal line for synchronization purposes, it is called an
asynchronous serial I/O. The electronic circuitry which implements the
asynchronous I/O mode is known as the Serial Communication Interface
(SCI). Obviously, the asynchronous serial I/O is a cost-effective solution for
long-distance networked data communication (e.g. Internet and MODEM).

On the other hand, if a serial link requires one signal line for synchro-
nization purposes, it is called a synchronous serial I/O. And, the electronic
circuitry which implements the synchronous serial I/O mode is known as the
Serial Peripheral Interface (SPI). The keyword "peripheral" implies that
the synchronous serial I/O is more appropriate for data exchange within a
short distance.

Similarly, the data signal line(s) will classify the serial link into one of
these three types, as shown in Fig. 6.26:

Information System of Robots 363

. - 1 Transmit Transmit j

I ^ i II I ^ , ' s - '••'" '

1 1 -V .
1 X ^ Receive , ' ^ _ _ Receive I

u I | _ T
V i i i i i o (a) Full-Duplex Serial Link I v rial I/O j

1 Transmit Transmit [

v - ' - i • Receive Receive j s '-M1 '

• s

I—*—, I 1 i —^—I
s-ii llci ' (b) Half-duplex Serial Link i v m l l u ;

Transmit •

S'. •••i.i* Receive , "^-u-n '•

J r _ _ I I •
S.MIMI) (c) Simplex Serial Link M M I I I I

Fig. 6.26 Serial Link Types.

(1) Full-duplex Serial Link:
For this type of serial Link, the two devices or systems engaged in
data exchange can simultaneously transmit and receive data. This is
because the serial link has two bi-directional data signal lines, as shown
in Fig. 6.26a.

(2) Half-duplex Serial Link:
Now, if we reduce the number of data signal lines to one, and if this data
signal line is bi-directional, the full-duplex serial link becomes a half-
duplex serial I/O. For this type of serial link, data can be alternately
exchanged between two devices, or systems. During each session of data
communication, one device or system is a transmitter and the other is
a receiver, or vice versa.

(3) Simplex Serial Link:
For the half-duplex serial link, if we restrict the direction of data com-

364 The Fundamentals of Robotics: Linking Perception to Action

munication to one way, then it becomes a simplex serial link. For this
type of serial link, the transmitter and receiver are pre-specified. They
cannot alter their roles. In other words, the data signal line sequentially
carries the bits in one direction only.

6.7.5.2 Bit-oriented Data Framing

A serial I/O can only communicate one bit at a time. In order to com-
municate a set of bytes, one must arrange them into a series of bits. The
process of packing a set of bytes (i.e. data) into a series of bits is called
data framing. The result of a data framing process is called a data frame.

End Error Type B e S i n

Flag Checksum Data Field (MSB to LSB) Control Address Flag

ITTTF--1111 1 11 11 [— j | II | - - 1 111 j~4>ansmit

(a) Data frame's Bits in Spatial Order

Begin Type Error E n d

Flag Address Control Data Field (LSB to MSB) Checksum f a g

nil 1 1111 h—H 1111-—-11 i i [—H 1111 l l l i l ! . : Time

— : ^
(b) Data frame's Bits in Transmission Order

Fig. 6.27 Illustration of the concept of a data frame.

Fig. 6.27 illustrates the concept of a data frame. In the spatial order
from left to right, a data frame is composed of:

• Begin Flag:
This usually takes one byte and is used to indicate the start of a data
frame.

• Address:
A serial link is a common solution for networked data-communication.
This means that more than two systems or devices can be attached to
the same network. Since a network is a bus, there will be only one
transmitter at a time. The rest of the systems or devices hooked onto
the network are the potential receivers. A simple way to identify the
specific receiver is to encode the address (i.e. the identification number)
of the receiver into the data frame. This implies that each system or

Information System of Robots 365

device involved in a networked data-communication will have its own
address. (For example, each computer hooked onto an Internet will
have an IP address).

• Type Control:
This usually takes one byte and is used to indicate the type of data to
be transmitted. The types may include: ASCII, Binary, Compressed,
Uncompressed, Compression Format, etc.

• Data Field:
This refers to the set of bytes belonging to the data.

• Error Checksum:
This may take a few bytes. It contains the results of an error-checking
algorithm. Before transmission, this result (error checksum) is calcu-
lated and packed into the data frame. At the reception side, the error
checksum is recalculated again by the receiver. The calculated result
is compared with the received one. If the two error checksums are the
same, then there is no error in communication. Otherwise, the receiver
may request the transmitter to resend the data.

• End Flag:
This simply indicates the end of a data frame.

In a serial I/O, the data frame is transmitted by a shift register bit-
by-bit. By default, the shift register always moves the bits towards the
right-hand side. As a result, the transmission order of a data frame (see
Fig. 6.27b) is different from its spatial order (see Fig. 6.27a).

6.7.5.3 Synchronous Serial I/O

A serial I/O can only transmit a set of bytes in the bit-by-bit manner.
Hence, synchronization is an important issue. In a simple case, this can
be done with a dedicated signal line. A serial I/O, with a signal line for
synchronization purposes, is called a synchronous serial I/O. Fig. 6.28 il-
lustrates data exchange between two micro-controllers using a synchronous
serial I/O. Consider the case of a full-duplex serial link. As we can see,
the network will have at least three wires: two for data bits and one for a
synchronization signal.

Data is a set of bytes. In order to integrally communicate a set of
bytes between two systems or devices, a serial I/O's hardware operates two
cascaded loops: a) the outer loop on the set of bytes and b) the inner loop
on the bits of a byte.

366 The Fundamentals of Robotics: Linking Perception to Action

Micro-controller 2

i Processor !
Micro-controller 1 , I I

\ Processor [' T • '
1 A A i i M e m o r y J

i ,% %, i i i ^ •
! Memory ' ' _, , . , • i
1 I J I i i Clock signal I I 1 ,
' A ' < 1 • Synchronous Serial I/O ,

: | ; : A :
. I 1 Clock signal k j ' ^ L i
I | Synchroaous Serial I/O | ^) • t 3 | ^ ^ ^ ^ ^ ^ \

' T D a t a R eg ' s t e r | cu ' A i

i feao^^am^BM«M^^^'^mm^aatara^g.:m^iM^ , (Receive srj n n n t l Tj Ti f i f l i

; 4 • — ' ' ibJ!ibJ iL^M^oJ~i •
1 y Shift Register i ^ i I J

; r H B K ^ E E l Transn,., j " ^ ̂ "^ '•
i Receive :

Svnchmnoiis Scnal f'O

Fig. 6.28 Illustration of data communication with a synchronous serial I/O.

Operational Procedure of Transmitters

Refer to Fig. 6.28. Assume that microcontroller 1 is the transmitter and
micro-controller 2 is the receiver. The outer loop of the transmitter's syn-
chronous serial I/O may work as follows:

• Step 1: Configure the synchronous serial I/O for transmission.
• Step 2: When the status register's "transmission complete" flag is set,

write a byte to the serial I/O's data register .
• Step 3: Activate the inner loop.
• Repeat Steps 2 and 3 until all bytes have been transmitted.

And, the inner loop of the transmitter's synchronous serial I/O may
include the following steps:

• Step 1: Copy the byte from the data register to the shift register.
• Step 2: Send out a synchronization pulse to the synchronization signal

line. At the same time, shift out one bit.
• Repeat Step 2 until all bits have been shifted out.

Information System of Robots 367

• Step 4: Set the "transmission complete" flag in the serial I/O's sta-
tus register to inform the outer loop that the transmitter is ready for
transmitting another byte.

Operational Procedure of Receivers

The outer loop of the receiver's synchronous serial I/O will work as follows:

• Step 1: Configure the synchronous serial I/O for reception.
• Step 2: Activate the inner loop.
• Step 3: When the status register's "transmission complete" flag is set,

read in a byte from the serial I/O's data register.
• Repeat Steps 2 and 3 until all the bytes have been received.

Similarly, the inner loop of the receiver's synchronous serial I/O will
include the following steps:

• Step 1: Detect the incoming synchronization pulse.
• Step 2: Shift in one bit for each incoming synchronization pulse.
• Repeat Steps 1 and 2 until all bits have been shifted in.
• Step 4: Copy the byte from the shift register to the data register, and

set the "transmission complete" flag in the status register of the serial
I/O. This informs the outer loop that one byte has been received.

6.7.5.4 Asynchronous Serial I/O

A synchronization signal line in the synchronous serial I/O increases the
cost (i.e. one additional signal line) and the complexity (i.e. logic circuitry
to generate and detect synchronization pulses). An alternative solution is
to remove this line. A serial I/O without a synchronization signal line is
known as an asynchronous serial I/O. Fig. 6.29 shows data communication
between two micro-controllers using an asynchronous serial I/O.

Bit-oriented Byte Framing

When there is a synchronization signal line, it is easy for a device, or system,
to take control of a network and transmit data. (Remember, in networked
data-communication, there is only one transmitter at a time). So, if we
remove the synchronization signal line, we need to find a way to resolve two
issues: a) notification of taking control of a network and b) synchronization
of the bit-by-bit transmission of a byte by the inner loop of a serial I/O.

368 The Fundamentals of Robotics: Linking Perception to Action

Micro-controller 2

M,cro-cont r o , ,er l | 1 ^ ^ I !

: : f t I
' Processor | j | ^ ^ T i
1 A J_ i i Memory

, Memory ' ' X '

1 JL ' i Asynchronous Serial 1̂ 0 i

: * : : ± :
: | Asynchronous Serial I/O | | ^ | ^ jL;£Sigfr '

: 2 • § • IN^kN^hKH :
, T ' - * - > ' (fk^ftB,m,ttiit-^aiaaiii|ii^^ I

, IT Data Register | Q_> * A '

' Pj\bMbMb2\bM I ! j^^^ftRegster |

: 4 : —:Receive l lEJlWfeEK5n :
i V Shift Rcgiscer i ^ ! I ,

: ^bMbMb^\b3 M : • ;ira_ns.mt ;
i I • ~~ ;
i Receive (

A.N>riLh^:Hius.Stt[iil H I

Fig. 6.29 Illustration of data communication using an asynchronous serial I/O.

A common way of solving the first issue for an asynchronous serial I/O
is to play with the logic-signal level of the data lines. (There will be two
data lines for a full-duplex serial link). For example, when there is no
transmission over a network (i.e. no activity), a data line is always at logic
high (+5V). This state is called the idle state. When a device or system
has data to communicate, it first identifies the status of a data line. If the
data line is in the idle state for a certain unit of time, the device, or system,
drives the data line to logic low (OV) for one unit of time to indicate that
it is about to take control of the network. Once a device, or system, has
taken control of the data line, the line becomes busy. No other device or
system can become a transmitter as long as the data line is in the busy
state.

Refer to Fig. 6.27. One unit of time along the transmission time axis
corresponds to one bit. The solution of driving a data line from the idle
state to the busy state for one unit of time is viewed as the insertion of a
bit (a bit of logic low, or 0) to the bits of a byte. This bit is called the start
bit.

Information System of Robots 369

A common method for solving the second issue is to predefine a set of
transmission speeds. (The RS232 or MODEM have a set of fixed trans-
mission speeds). In other words, the transmitter and the receiver will ne-
gotiate one predefined transmission speed during the initialization stage of
data communication. In fact, the commonly known baud rate of a com-
munication device refers to the transmission speed measured in terms of
kilo-bit-per-second, or kbps for short. In a binary number system, one
kilo-bit is equal to 1024 bits.

Due to the fact that the transmitter and receiver are two different de-
vices, or systems, of different performance, or quality, it is necessary to
consider the discrepancy in the predefined transmission speed of a same
value (e.g. 56 kbps). An easy way to accommodate this discrepancy is to
introduce some extra units of time after the bit series corresponding to a
byte. Since each unit of time, along the transmission time axis, corresponds
to a bit, the addition of the extra units of time simply mean the addition of
extra bits at the end of the bit series of a byte. These extra bits are known
as stop bits. Here, we assume that one stop bit is added to the bit series of
a byte.

The process of adding a start bit and some stop bits to the bit series of
a byte can be called byte framing. With the use of byte framing, there is
no need to have a physical synchronization signal line. Another advantage
is the possibility of simple error checking for each byte. A typical way to
perform error checking at the byte level is to introduce a parity bit p. With
the extra parity bit p, we can make the number of Is inside a byte be an
odd or even number. For example, if we choose the "odd parity", and if the
data byte is 0x88 (i.e. 10001000), then the parity bit p is set to "1" because
the number of Is in the byte itself is an even number. If the data byte
becomes 0x89 (i.e. 10001001), the parity bit p will be set to "0" because
the number of Is in the byte itself is already an odd number.

The parity of a bit series must be preserved during transmission. If not,
this means that there has been an error in communication. Parity checking
is a simple way to detect error in data communication. And, Fig. 6.30
summarizes the process of bit-oriented byte framing with the insertion of
start, parity and stop bits to the bit series {bi, i = 0,1,2,..., 7} of a byte.

Operational Procedure of Transmitters

Similar to the operation of synchronous serial I/O, the hardware underlying
an asynchronous I/O will also operate with two nested loops: a) the outer

370 The Fundamentals of Robotics: Linking Perception to Action

Start Bit Stop Bit(s)
Idle / \ Idle

0 b0 bx b2 &3 b4 b5 b6 b-, P 1

/
P^31' Time

•

Fig. 6.30 Byte framing for an asynchronous serial I/O.

loop for byte-by-byte transmission of data bytes, and b) the inner loop for
bit-by-bit transmission of the bit series of a byte.

Refer to Fig. 6.29. Assume that micro-controller 1 is the transmitter
and micro-controller 2 is the receiver. The outer loop of the asynchronous
serial I/O at the transmitter side may work as follows:

• Step 1: Configure the asynchronous serial I/O for transmission.
• Step 2: Set the transmission speed (i.e. baud rate) and byte-framing

configuration (i.e. type of parity checking, number of stop bits).
• Step 3: When the status register's "transmission complete" flag is set,

write a byte to the serial I/O's data register.
• Step 4: Activate the inner loop.
• Repeat Steps 3 and 4 until all bytes have been transmitted.

The inner loop of the transmitter's asynchronous serial I/O may include
the following steps:

• Step 1: Do byte framing.
• Step 2: Copy the framed byte from the data register and status register

where extra bits are stored to the shift register. (NOTE: In practice,
the shift register will have more than 8 bits).

• Step 3: Detect the data line's status.
• Step 4: If the data line is idle, shift out bits from the shift register

according to the chosen baud rate.
• Step 5: Set the "transmission complete" flag in the status register of

the serial I/O. This informs the outer loop that the transmitter is ready
for transmitting another byte.

Information System of Robots 371

Operational Procedure of Receivers

On the receiver's side, the outer loop of the asynchronous serial I/O will
work in the following way:

• Step 1: Configure the asynchronous serial I/O for reception.
• Step 2: Set the baud rate and byte-framing configuration to be exactly

the same as those used for the transmitter.
• Step 3: Activate the inner loop.
• Step 4: When the status register's "transmission complete" flag is set,

read in a byte from the data register of the serial I/O.
• Repeat Steps 3 and 4 until all bytes have been received.

The inner loop of the receiver's asynchronous serial I/O will work as
follows :

• Step 1: Detect the start bit.
• Step 2: If the receiver is awakened up by the start bit, shift in bits from

the data line and perform error checking if any.
• Step 3: Copy the byte from the shift register to the data register.
• Step 4: Set the "transmission complete" flag in the status register of the

serial I/O. This informs the outer loop that one byte has been received.

6.7.6 Programmable Timers

As we mentioned earlier, a robot's information system must be a real-time
system in order to ensure the predictability of its actions or behaviors. With
a real-time programming language or operating system, it is possible to
perform the data processing and data storage in real-time. This is because
all operations inside a computing system are synchronized by a common
clock. In addition, we know that data communication between two devices,
or systems, must be synchronized in one way or another. Consequently, the
time required for the exchange of a set of bytes is also predictable once the
two devices or systems have been engaged in data communication. Thus,
we can say that all internal operations inside a complex and distributed
information system can be achieved in real-time.

Today, robots are used in industry. Tomorrow, they will very likely
become part of society as well. As a result, a robot must be able to respond
to unpredictable external real-time events in a timely manner.

In society, all social activities are synchronized by a common clock
(Greenwich Mean Time). Naturally, a robot should also have a standard

372 The Fundamentals of Robotics: Linking Perception to Action

sense of time. From our study of the computing system's hardware, we
know that a microprocessor has a system clock to synchronize its internal
operations. In principle, this system clock is a free-running clock which
is not re-programmable by any user or programmer. One way to over-
come this restriction is to incorporate an additional clock system which
is programmable. (This clock system can simply be derived from the mi-
croprocessor's system clock itself). The resulting circuitry is called a pro-
grammable timer. A programmable timer is an I/O system because it can
provide the following generic functions, as shown in Fig. 6.31:

• Active Signal Output,
• Active Signal Capture (input),
• Self-Generating Real-time Interrupt.

Micro -controller

i Processor i

^P^ tm ft I
i M e m o r y . 1 I , External System
i [~^ Real -time Interrupt ,

• _w . . o. , ^ _,_i ^. Actuation Device
^ Active Signal Output t W '

| Programmable Timer •< I » Active Signal Capture ^ H Sensing Device |

Fig. 6.31 Generic functions of a programmable timer I/O.

A programmable timer has its own free-running timer in the form of a
counter. A counter is a register whose value increases at the rate of a clock
signal. When the maximum value of the counter is reached, it automatically
resets to zero and starts over again at the rate of the clock signal. This free-
running timer provides a reference time number tc to support time-critical
actions, sensing or decision-making.

Information System of Robots 373

6.7.6.1 Active Signal Output

Refer to Fig. 6.31. The function of the active-signal output of a pro-
grammable timer is to output an active signal at a programmed time num-
ber or instant tc\. If the actual time number of the free-running timer is
tc, an active signal will be sent out when tc = tc\.

An active signal may be in one of these types: a) the transition from
logic high to logic low (falling edge), b) the transition from logic low to
logic high (rising edge), c) always logic high and d) always logic low. An
output active signal's type is also programmable.

The active signal from a programmable timer is useful for many time-
critical actions such as turning on a machine, triggering a sensor, stopping
an action, etc.

6.7.6.2 Active Signal Capture

The second generic function of a programmable timer is the active signal
capture. When there is an active signal detected by the programmable
time, its job is to record time number tc into an input capture data register.
Again, an active signal's type is programmed by the user or programmer.

If we denote tC2 the time number held by the input capture data register,
tC2 indicates the time-instant when an external event occurs.

Example 6.4 Consider the application of a micro-controller controlling
an ultra-sonic sensor for range sensing. Fig. 6.32 shows a micro-controller
board and three sets of ultra-sonic sensors.

Assume that an ultra-sonic sensor's enabling signal line is driven by the
signal from the programmable timer's active signal output. And, the echo
signal line from the ultra-sonic sensor is connected to the programmable
timer's active signal capture.

At time-instant tci, the programmable timer generates an active signal
output to enable the ultra-sonic sensor. This triggers the sensor to transmit
sonar waves towards the environment. If these waves hit an obstacle, they
will bounce back as echo. If the ultra-sonic sensor detects an echo at time-
instant tC2, it instantly outputs an echo signal to the programmable timer.
The active signal capture function of the programmable timer stores the
time number corresponding to time-instant tC2-

From the time difference tc2 — tc\ and the speed of sound in the air, we
can derive the distance between the ultra-sonic sensor and the obstacle in
the environment.

374 The Fundamentals of Robotics: Linking Perception to Action

Fig. 6.32 Example of the use of a micro-controller to control ultra-sonic sensors for
range sensing.

oooooooooooooooooo
6.7.6.3 Self-generating Real-time Interrupt

A third useful generic function of a programmable timer is the generation
of real-time interrupts at periodic, programmable time intervals.

In a digital computer, an interrupt signal will automatically halt the
execution of the current computational task, and trigger the microprocessor
to execute a service routine associated with this signal. An interrupt's
service routine is programmable by any user or programmer.

Some diagnostic tasks may be more appropriately programmed as in-
terrupt service routines so that they can be activated at a regular time
interval. Some typical diagnostic tasks for a robot include: a) check the
level of power supply, b) check the working conditions or alarms of the
actuators, c) check the working conditions or alarms of the sensors and d)
check the working conditions or alarms of the computing modules, etc.

Due to the low cost of a micro-controller, it may be wise to dedicate
one or more micro-controllers to perform diagnostic tasks.

6.8 Summary

It is not particularly important for industrial robots (i.e. arm manipulators)
to have advanced information systems for data-processing, storage, and

Information System of Robots 375

communication. This is because industrial robots depend on manual, off-
line programming to schedule their motions. There is no pressing need for
industrial robots to be equipped with artificial intelligence.

However, this is not the case with humanoid robots. A humanoid robot
has a human-like mechanism, or body. The ultimate purpose of this robot is
to have it perform human-like behaviors so that it can be deployed in both
industry and society. The research and development of humanoid robots
will certainly be considered as marking a new era in the history of robotics.

In this chapter, we first studied the philosophy which stresses the im-
portance of developing a humanoid robot's information system. It is easy
to assume that a robot's information system will also be the foundation for
an artificial brain. However, it is not that straightforward. And the issue
of how to develop the process underlying an artificial mind is still unre-
solved. Here, we highlighted a possible pathway towards the development
of an artificial mind, that is: from autonomous mental and physical actors
to autonomous behaviors.

Upon understanding the importance of a humanoid robot's informa-
tion system, we studied the basic working principles of today's computing
hardware and software.

For data-processing hardware, we learned the basic architecture of dig-
ital computers. The cycle-by-cycle operations inside the arithmetic and
logic unit(ALU) reveal the fact that the program execution of a micro-
processor is, for the most part, predictable. This supports the claim that
an information system based on microprocessors is intrinsically a real-time
system with simultaneous and predictable behaviors.

As for data-processing software, we studied the basic concept of a real-
time programming language and real-time operating system. Cooperative
multi-tasking and preemptive multi-tasking are two basic solutions for han-
dling the issue of running a pool of multiple, concurrent, computational
tasks on one, or a few, microprocessors. However, a humanoid robot's in-
formation system will most likely be formed by a cluster of microprocessors
or micro-controllers. Thus, it would be desirable to have a programming
language, or operating system, which supports multiple behaviors (or multi-
behaving) exhibited by a single body. Moreover, one of the challenging
questions is: When will it become possible to program a digital computer
with a natural language (linguistic programming)?

Finally, we studied the working principles behind data-interfacing and
communication. With the help of A/D conversion and D/A conversion,
an information system can easily interface with all kinds of analog sensors

376 The Fundamentals of Robotics: Linking Perception to Action

and actuators. With the support of parallel I/O and serial I/O systems,
it is easy to build an information system on top of a cluster of networked
microprocessors. For the control of external devices, the presence of a
programmable timer will certainly ease the programming of the time-critical
sensing and actuation tasks.

6.9 Exercises

(1) Explain why the information system is important to the development
of a humanoid robot.

(2) How can you imitate the artificial mind with an information system?
(3) What is a behavior?
(4) What is a mental actor? What is a physical actor?
(5) Rodney Brooks had published an article called, "Intelligence without

Representation." To what extent is the statement in the title true?
(6) What is a digital computer?
(7) What is a microprocessor?
(8) What is a micro-controller?
(9) Explain the difference between Von Neumann and Harvard architec-

tures?
(10) Write the Taylor series of the cosine function y(x) = cos(a:), and explain

why a microprocessor can calculate such a function.
(11) How is the read or write operation carried out between a processor and

its memory?
(12) Explain why the execution time of a program on a microprocessor is

predictable.
(13) What is a machine language? What is an assembly language? And,

what is a high-level programming language?
(14) Explain the difference between cooperative multi-tasking and preemp-

tive multi-tasking.
(15) Explain the working principle which allows a processor to concurrently

handle the execution of multiple tasks.
(16) Explain the importance of data storage and retrieval in robotics.
(17) What are the advantages of using a formatted file for data storage and

retrieval?
(18) Search the internet for the TIFF file format specification. Explain why

a TIFF-like file format allows for the storage and retrieval of heteroge-
neous data with a single file.

Information System of Robots 377

(19) What are the typical topologies of a data communication network?
(20) Explain the difference between the Polled I/O and the Interrupt-driven

I/O.
(21) Prove Eq. 6.5.
(22) Prove that the relationship of Eq. 6.5 is linear if we choose,

Ri = j v i = 0,l,2,...,7

where R is any positive resistance value.
(23) Are the conversion times of the D/A and A/D converters predictable?
(24) Refer to Fig. 6.24. Explain how to display character "F.".
(25) Explain the difference between the synchronous serial I/O and the asyn-

chronous serial I/O.
(26) For networked data communication, how do you identify the receiver?
(27) Why does a network only allow one transmitter at a time?
(28) Search the internet to learn how a pair of MODEM devices work.
(29) Search the internet to learn how a pair of RS232 devices work.
(30) Search the internet to know how the CAN bus works, and explain why it

is dedicated to networked industrial equipment control and networked
in-vehicle device control.

(31) Search the internet to learn about the human brain's structure and
neural system.

6.10 Bibliography

(1) Fuller, J. L. (1991). Robotics: Introduction, Programming and
Projects, Maxwell Macmillan.

(2) Gilmore, C. M. (1995). Microprocessor: Principles and Applications,
McGraw-Hill.

(3) Groover, M. P., M. Weiss, R. N. Nagel and N. G. Odrey (1986). Indus-
trial robotics: Technology, Programming, and Applications, McGraw-
Hill.

(4) Halang, W. A. and K. M. Sacha (1992). Real-time Systems, World
Scientific.

(5) Krishna, C. M. and K. G. Shin (1997). Real-time Systems, McGraw-
Hill.

(6) Ray, A. K. and K. M. Bhurchandi (2001). Intel Microprocessors,
McGraw-Hill.

378 The Fundamentals of Robotics: Linking Perception to Action

(7) Skroder, J. C. (1997). Using the M68HC11 Micro-controllers,
Prentice-Hall.

(8) Tabak, D. (1995). Advanced Microprocessors, McGraw-Hill.
(9) (2002). Proceedings of IEEE International Conference on Develop-

ment and Learning, MIT, USA.

378 The Fundamentals of Robotics: Linking Perception to Action

(7) Skroder, J. C. (1997). Using the M68HC11 Micro-controllers,
Prentice-Hall.

(8) Tabak, D. (1995). Advanced Microprocessors, McGraw-Hill.
(9) (2002). Proceedings of IEEE International Conference on Develop-

ment and Learning, MIT, USA.

Chapter 7

Visual Sensory System of Robots

7.1 Introduction

They say that, "Seeing is believing." And, among the various sensory
systems, the visual sensory system is the one that is able to produce the
most accurate description of a scene that is able to "see". They also say
that, "A picture is worth a thousand words." This is true in robotics,
as while all sensory systems are complementary, the visual sensory system
contains the richest information about a scene.

Many physical activities, such as an task execution and social interac-
tion, undoubtedly depend on information-rich and accurate visual percep-
tion. A human being's visual sensory system can effortlessly measure the
radiation of light rays from a scene, and instantaneously derive the coher-
ent representation of a scene from images (projections of light rays). In
robotics, the perception of motion (or action) in a dynamically changing
environment is a necessary step towards the development of autonomous
behaviors. Therefore, it is important to understand the critical issues un-
derlying a robot's visual sensory and perception systems.

In this chapter, we will study the basic principles and concepts of digital-
image acquisition, digital-image modelling and digital-image processing
hardware. We will cover the fundamentals of a robot's visual perception
system including image processing, feature extraction and perception of
geometry in the next chapter.

7.2 The Basics of Light

We live in a colorful world. This sensation of colors is our physiological
and psychological interpretation of light. Light is an electromagnetic wave

379

380 The Fundamentals of Robotics: Linking Perception to Action

that propagates in space and time. Light carries radiant energy and exhibits
both wave-like and (mass-less) particle-like behaviors in space. Accordingly,
light has the properties of both physics and optics.

7.2.1 Physical Properties

Without light, the world would be invisible to us, and to our robots. Look
at the example shown in Fig. 7.1; a robot has a pair of stereo cameras as
part of its visual sensory system. Because of the illumination of the scene,
the robot is able to visually perceive the stereo images of the scene.

k S»fiS!^ l̂ \

! / • • • • • • • ^^^5 P o / • • • • • •
HHf I I H 4 V • ^""^^^T^H E^^^fcJL—••* A • tt • tf ™̂

• * • " • - • I- ;.•£ £*.,_ ,. • « • • • . •

Fig. 7.1 An example of a robot's visual sensory system, and a pair of stereo images.

Light Emission

According to physics, all matters are composed of molecules arranged in
specific structures, known as molecular structures. A molecule, in turn, is
composed of atoms, also arranged in specific structures (atomic structures).
The atom, however, is not the smallest physical entity of matter. In fact,
the atom is made up of a nucleus and a cluster of electrons orbiting around

Visual Sensory System of Robots 381

the nucleus, as shown in Fig. 7.2a. A nucleus itself is composed of protons
and neutrons.

ElecaronV ^ ^ ^ ^ s~J J

\ ^ ^ Elegjrtta

(a) Atom's structure

' Energy Level * Energy Level

n j Energy release n

r~ Excited levels T*

—__—i —__JL_i

J
' 1 Energy absorption ' , „ , }
Ground State Level Ground State Level

(b) Internal energy levels of atom (c) Emission of light

Fig. 7.2 Illustration of light emitt ing process.

An atom is an actively-vibrating entity because of the energy contained
in it. Basically, the total energy contained in an atom comes from: a) the
thermal energy (thermal vibration) of the atom and b) the kinetic energy
of its orbiting electrons. The latter mainly constitutes an atom's internal
energy. (NOTE: Electrons and protons have mass and electric charges.
They should also contain gravitational and electric potential energies).

According to Danish physicist Bohr's theory (1913), an atom's internal
energy is confined to a set of discrete levels. In other words, an atom's
internal energy will not make a continuous transition. Instead, it will only
transit from one permissible energy level to another permissible energy level,
as shown in Fig. 7.2b and Fig. 7.2c. This discrete transition of internal-
energy levels can be explained by the stable orbits of the electrons moving
around the nucleus. When an atom absorbs or radiates energy, the electrons
make the transition across the stable orbits. A stable orbit is a trajectory
along which an electron's energy is conserved. When the electrons make

382 The Fundamentals of Robotics: Linking Perception to Action

the transition, the variation of an atom's internal energy is not continuous
but a definite amount.

Additionally, an atom's internal energy tends to stay at the lowest level,
also known as the ground state level, or level 1. All levels higher than the
ground state level are called excited levels (see Fig. 7.2b).

When a certain amount of energy is applied to an atom, and absorbed,
its internal energy will jump to a higher level, denoted by j . Since an atom's
internal energy tends to remain at ground level, this will cause the atom to
instantaneously transit its internal energy to a lower level, denoted by i, as
shown in Fig. 7.2c. When this transition occurs within a time interval in
the order of 10~8s, a definite amount of energy is released in the form of
electromagnetic waves that is the origin of light emission. This process is
known as the spontaneous emission of light.

The transition of an atom's internal energy, from a higher excited level
to a lower excited level (or ground state level), can also be triggered by an
external cause such as an electric field. This process is called the stimulated
emission of light. The laser (i.e. coherent light of the same wavelength) is
produced by a process of stimulated emission.

If we denote

• Eabsori> the energy applied to an atom,
• AEthermai the variation in the atom's thermal energy,
• AEinternai the variation in the atom's internal energy,
• AEemiSSiOn the energy radiating from the atom,

the application of the principle of energy conservation yields

Eabsorb — AEthermal + AEinternai + AEemission. (7.1)

Refer to Fig. 7.2c. If Ei and Ej denote the internal energies of the atom
at levels i and j , we have

AEemission = Ej - Ei. (7.2)

Electromagnetic Waves

The energy radiated from an atom, described by Eq. 7.2, is manifested in
the form of an electromagnetic wave. An electromagnetic wave is a periodic
wave, as illustrated by Fig. 7.3.

Inside a homogeneous medium, the electromagnetic wave travels along
a straight line. A wave's spatial period is called a wavelength. A wave's
wavelength is usually denoted by A. If there are n periods within a unit

Visual Sensory System of Robots 383

i Wavelength ,

• ' i ' '„

, Number of periods per unit of time i
, 4 • •
i (frequency) '

Fig. 7.3 An illustration of a periodic wave in space and time.

of time (one second), this number n is known as the (temporal) frequency,
denoted by / .

Refer to Fig. 7.3. A wave's spatial velocity is the travelled distance by
the wave within a unit of time. As a result, a wave's spatial velocity (or
speed), denoted by v, is

v = A • / . (7.3)

In a homogenous medium, the speed of an electromagnetic wave is a
constant. For example, the speed of an electromagnetic wave in a vacuum
is approximately 3 x 108m/s. Usually, we denote c = 3 x 108m/s as the
speed of light in a vacuum. Therefore, if we know the wavelength, the
frequency of an electromagnetic wave in a vacuum is determined by

H - (74)
Photons

An electromagnetic wave is a carrier of energy. It is not a continuous stream
of undulations but is formed by a train of undulating elements called quanta
or photons. A photon is an energy carrier with zero mass. The amount of
energy carried by a photon along an electromagnetic wave with frequency
/ and wavelength A is

Ep = h.f (7.5)

where h is Planck's Constant and is equal to 6.626 x 10~34 Newton-meter-
second (N-m-s) or Joule-second (J-s). This equation shows that a photon's
energy only depends on its frequency. By applying Eq. 7.3, Eq. 7.5 can also

384 The Fundamentals of Robotics: Linking Perception to Action

Table 7.1 Colors and their corresponding wavelength ranges

| Color Wavelength Range (nm)

Red 622-780
Orange 597-622
Yellow 577-597
Green 492-577
Blue 455-492

Violet 390-455

be expressed as

EP = hj. (7.6)

Refer to Eq. 7.2. Eq. 7.6 shows that the wavelength of an electromag-
netic wave, emitted by an atom, will be determined by

X = hAE1 • (7 -7)

*—^I-J emission

Since Ai?emjSSiOn depends on the characteristics of the atom, the wave-
length of an electromagnetic wave, radiated from an atom, will also depend
on the characteristics of the atom. Because of the difference in wavelengths
(or frequencies), different materials will appear in different colors.

Visible Light

According to Eq. 7.1 and Eq. 7.7, all materials excited by external energy
will radiate electromagnetic wave(s). The wavelength of an electromagnetic
wave depends on the property of the atoms in a material.

Interestingly enough, our eyes are sensitive to electromagnetic waves
having wavelengths which fall between 390 nanometers (nm) (or 10~9m)
and 780nm. The physiological and psychological responses of our eyes to
these wavelengths produce the sensation of colors. And, we commonly call
these electromagnetic waves light or visible light. Table 7.1 lists typical
colors and their corresponding wavelength ranges.

Interference

When two electromagnetic waves overlap while travelling in space, this
causes the superimposition of the two waves. This process is called inter-
ference. The interference process can enhance the amplitude of the electro-

Visual Sensory System of Robots 385

magnetic waves if the phases of the two interfering waves are the same (i.e.
in-phase). This phenomenon is called constructive interference. But, it can
also attenuate the amplitude of the electromagnetic waves if the phases of
the two interfering waves are different by 180°. This phenomenon is called
destructive interference.

Light Sources

Any object that irradiates a scene is called a light source. For example,
the Sun is a natural light source that irradiates the Earth. For an object
to continuously radiates electromagnetic waves, there must be a balance
between energy absorption and energy emission.

Radiation Radiation

Illumination Reflection \ \ / / *

'Mllllcr VI V I K v) 1
' I 1 V^ungsten/

I Mailer
Heat Y

' 1 I '
(a) Thermal energy (b) Electromagnetic energy (c) Electrical energy

Fig. 7.4 Common effects of radiation.

As shown in Fig. 7.4, there are three common ways to make an object
radiate:

• The Use of Thermal Energy (see Fig. 7.4a):
When heating an object, the internal energy of the atoms inside the
matter will actively transit between the ground state level and excited
levels. Consequently, more radiations will be emanated. For example,
when a material is in flames, our eyes can perceive visible light.

• The Use of Electromagnetic Energy (Fig. 7.4b):
When the surface of an object is irradiated by a primary source of
electromagnetic waves, the atoms on the surface will absorb and re-
lease electromagnetic energy. A typical example of this is the light
from the Moon at night. Thus, the surface of an object under illu-
mination radiates electromagnetic waves which have wavelengths that
primarily depend on the property of the atoms on the object's surface.

386 The Fundamentals of Robotics: Linking Perception to Action

This explains why we can perceive the colors of surfaces illuminated
by a light source of white color, which is a mixture of all the colors.

• The Use of Electrical Energy (see Fig. 7.4c):
Certain materials will radiate when a current is applied to them. For
example, a tungsten lamp will emit light when current flows through
it. Another typical example is the semiconductor device, LED (Light-
Emitting-Diode).

7.2.2 Geometrical Properties

The physical properties of light demonstrate its particle-like behaviors.
These are important in the understanding of a visual sensory system, be-
cause they explain the origin of chromatic information. In addition to chro-
matic information, a robot's visual sensory and perception systems can also
infer geometric information about a scene with the help of light. This is
because light also has inherent geometric properties.

Light Rays

As we studied earlier, light carries energy (photons) through space and
time. At the macroscopic level, a trajectory of light in a homogeneous
medium, such as air, glass, or a vacuum, looks like a straight line. That is
why we often use the term light ray. However, a light's trajectory is actu-
ally an undulating wave centered around a straight line in a homogeneous
medium. Still, for the sake of studying the geometric properties of light, it
is convenient to consider it as a ray (i.e. a straight line in a homogeneous
medium).

Reflection

When a light ray strikes a surface between two different homogeneous media
such as air and glass, its direction is altered. If this direction-altered light
ray bounces back to the same medium, the phenomenon is called reflection,
as shown in Fig. 7.5. If the light ray passes through the surface and enters
another medium, this phenomenon is called refraction.

Depending on the smoothness of the surface separating the two media,
the reflection may behave in either of the following ways:

• Diffuse Reflection:
If a surface is not polished properly, and is not smooth enough, the

Visual Sensory System of Robots 387

Incident Light Rays \ Reflected Light Rays

I \ Refracted I.iglil Ra>s
Glass V I

Air ^4

Fig. 7.5 Illustration of reflection and refraction of light rays.

parallel light rays that strike it will be reflected back in all possible
directions. This type of reflection is called a diffuse reflection.

• Specular Reflection:
If a surface is smoothly polished and is like a mirror, the parallel light
rays that strike it will be perfectly mirrored back as a bundle of parallel
light rays. This type of reflection is called a specular reflection.

For a specular reflection, the following properties hold:

• The incident light rays, the reflected light rays, and the normal vector
of the surface are co-planar.

• The angle of incidence, which is the angle between the incident light
rays and the surface's normal vector, is equal to the angle of reflection,
which is the angle between the reflected light rays and the surface's
normal vector. If we denote 9i the angle of incidence and 9r the angle
of reflection, then 6r = 8i.

Refraction

Refraction is the phenomenon where light rays pass from one medium into
another.

In a homogeneous medium, light travels at a constant speed. In a vac-
uum, the speed of light is about 3 x 108m/s and is denoted by symbol c.
In any other medium, the speed v of light is smaller than c. The ratio
between c and v is called the index of refraction. If we denote n the index

388 The Fundamentals of Robotics: Linking Perception to Action

Table 7.2 Index of refraction for yellow light

| Medium Index of refraction |

Vacuum 1.0
Air ~ 1.0

Water 1.3
Glass 1.5

Quartz 1.5
Diamond 2.4

of refraction, we have

n=C-. (7.8)

Clearly, the index of refraction is always greater than or equal to 1. This
refraction parameter measures the speed change of a light ray when it passes
from one medium into another. Table 7.2 lists the indexes of refraction for
some medium with respect to yellow light, which has a wavelength in a
vacuum that is about 589nm.

When light can continuously travel in the same medium, there is no loss
of energy. Alternatively, if the photons are absorbed by the medium, there
will be no light. According to Eq. 7.5, a light's frequency / will remain the
same if a photon continues travelling in the same medium. Since v = A • /
(i.e. Eq. 7.3), this means that a light's wavelength will change when it
passes from one medium into another. If we denote Ao the wavelength of
light in a vacuum and A the wavelength of light in any other medium, we
have

X = f (7'9)
A Ao

or
A = ^ ° . (7.10)

n
Eq. 7.10 indicates that a wavelength will be shortened when light goes

from a vacuum into any other medium. However, for a robot's visual sen-
sory and perception systems, an important property of light is the direction
change when a light passes through the surface separating two media, as
shown in Fig. 7.5.

Let us denote 6r the angle between the refracted light rays and the
surface's normal vector. This angle is also called the angle of refraction.

Visual Sensory System of Robots 389

Then, the following geometric properties governing the refraction will hold:

• The incident light rays, the refracted light rays, and the normal vector
of the surface separating two media are co-planar.

• The ratio between the sine functions of the angles of incidence and
refraction is equal to the ratio between the index of refraction n2 of
the second medium (e.g. glass) and the index of refraction n\ of the
first medium (e.g. air). In other words, we have

sin(flj) _ n2 (? ,

sin(0r) ~ m l ' '
or

ni • sin(6i) — n2 • sin(9r). (7-12)

Eq. 7.11 is useful to guide the design and fabrication of optical lenses
widely found in cameras, microscopes, CD-ROM Readers/Writers, CD
players, and other optical devices or equipment.

7.2.3 Refraction of Light Rays by a Thin Lens

Refer to Fig. 7.5. After the light rays enter the glass, they will continue
to travel along a straight line. When they reach the bottom surface of the
glass, a new refraction will occur. After the second refraction, the light
rays will enter the air again. If the top and bottom surfaces of the glass
are parallel, the light rays, exiting from the glass's bottom surface, will be
parallel to the incident light rays. This property can easily be verified by
Eq. 7.11.

This observation indicates that if the top and bottom surfaces of a
transparent material are parallel to each other, it is not possible to converge
or diverge the light rays. In other words, it is not possible to create images
with scalable dimensions.

However, if the top and bottom surfaces of a transparent material are
not parallel to each other, the light rays will converge or diverge. Thus is
born the optical lens system.

Geometrically, an optical lens system can be best explained using a
convex thin lens. A convex thin lens is made of transparent material (e.g.
glass), which is shaped into two spherical surfaces, as shown in Fig. 7.6.
The thickness of a thin lens is negligible.

For optical imaging, a convex thin lens has the following useful proper-
ties:

390 The Fundamentals of Robotics: Linking Perception to Action

Sphere 1 Sphere 2

\ / Optical Center
,' Ray 1 k , '

•*^_ E^\& R a y 0 ' Optical Axis
' ->»;- y - ^ - •- 1 -

, s Ray 2 /

Fig. 7.6 Sectional view of a convex thin lens.

• The center of the lens is called the optical center.
• The axis that passes through the optical center and perpendicular to

the two spherical surfaces is called the optical axis.
• The ray (ray 0 in Fig. 7.6) which coincides with the optical axis, will

not be refracted by the lens. In other words, it will go through the
lens without altering its direction.

• The ray parallel to the optical axis (ray 1 or ray 2 in Fig. 7.6) which
strikes the lens at one side will be refracted and exit from the other
side. The refracted ray will intersect the optical axis at a point known
as focal point (i.e. / 2 or / i) .

• The distance between a focal point and the optical center is called the
focal length.

• Interestingly, the focal lengths at both sides of a convex thin lens are
equal to each other regardless of the radii of the two spherical surfaces.

Lens
A ;i

*• Object \

| , p ^ .5
^, V / -* ^&|l-ge

i ! J A , ~
:< do y ^ - d . — * " " • • - , . »•

" • • • • - *

Fig. 7.7 Formation of an optical image with a convex thin lens.

Visual Sensory System of Robots 391

The refractive property of a convex thin lens is useful in the formation
of optical images, as shown in Fig. 7.7. When an object is placed in front
of a convex thin lens, an optical image will appear at the other side of the
lens. As shown in Fig. 7.7, point A will have a corresponding image A'.
Similarly, point B will have a corresponding image B'. Let us denote / the
focal length (i.e. the distance between the optical center and the focal point
at either side of the lens), do the distance along the optical axis between
an object and the optical center, and di the distance along the optical axis
between the image and the optical center. From the two similar triangles
OAB and OA'B', it is easy to prove the following well-known formula:

i + i-i. (MS)
do di J

Example 7.1 Let us place an object at a distance of 1 meter (m) from
a convex thin lens with a focal length of 35 millimeters (mm). By applying
Eq. 7.13, the distance of the optical image relative to the thin lens will be

Now, let us move the object back another meter (i.e. do — 2m). The
distance of the optical image relative to the thin lens is now

The above results indicate that the image shifts toward the focal point
(e.g. at 35mm) when the object moves away from the convex thin lens.

000000000000000000

Now, let us denote h0 the height of the object in the direction per-
pendicular to the optical axis, and hi the height of the image. From the
similarity between the two triangles OAB and OA'B', as shown in Fig. 7.7,
we have

% - di <"<>
or

hi = h0*^. (7.15)
do

Eq. 7.15 indicates that a convex thin lens is able to form an image of
scalable size. The scaling factor depends on the distance of the optical lens

392 The Fundamentals of Robotics: Linking Perception to Action

from the object and image (i.e. do and di). In fact, Eq. 7.15 is useful for
inferring geometry from images. It forms an important mathematical basis
for a robot's visual perception system.

Example 7.2 Assume that an object with a height of 0.5 m is placed
at a distance of lm from a convex thin lens with a focal length of 35mm.
From the previous example, we know that the image is formed at

di = 0.03627 (m).

By applying Eq.7.15, the height of the image can be calculated as fol-
lows:

hi = 0.5 • °"03627 = 0.018135 (m).

Now, let us move the object back another meter (i.e. do = 2m). The
height of the image is now

di = 0.5 • = 0.008905 (m).

The above results illustrate that an image becomes smaller when the
object is moved further away from the convex thin lens.

oooooooooooooooooo

7.3 The Basics of the Human Eye

Human eyes (including most animal eyes) magically explore the refractive
property of a convex thin lens as the basis for forming optical images. In
addition, human vision is intrinsically color vision. Here, we will study
some basic facts about image-sensing by human eyes.

7.3.1 Eyeballs

In order to form a color image of a reduced scale, the eye or camera must
have the following three elements:

• Optical-Lens System:
The dimension of a scene can be infinite. However, a sensing device
has a definite, small size. Therefore, it is necessary to scale down the
projection of this infinite scene into a definite, small area. This is only
achievable with an optical-lens system.

Visual Sensory System of Robots 393

• Photon-Detector Array:
A light ray is the locus of a photon moving at a high speed (in the
order of 3 x 108m/s). In order to capture photons and convert their
energies into the corresponding electrical signals, an array of photon-
detectors must be placed at a focusing plane behind the optical-lens
system. This focusing plane is also called image plane.

• Iris:
All sensing elements have a working range. Beyond the limit where
a signal starts to saturate, a sensing element will no more respond
to any input. Therefore, there must have a mechanism to regulate
the amount of photons entering an eye or camera. The device that
controls the amount of incident photons is called an iris or diaphragm.

Comea /^*=====:a^:V Macula

Optics \fkfm I AZj.ovea

f V \ \ / / n Optic nerve fibers

/ ^^==^^ Blind Spot ^ " ^ Brain's Neural U
/ ' Computing Network s

Vitreous Chamber " H

Fig. 7.8 Simple illustration of a human eyeball, sectional view.

Of course, the human eye has the three above-mentioned elements, as
shown in Fig. 7.8. More specifically, it is mainly composed of: a cornea, iris,
crystalline lens, inner vitreous chamber, retina, macula (including fovea)
and optic-nerve fibers. However, the human lens system consists of the
cornea, the vitreous substance inside the eyeball's chamber and the crys-
talline lens. This system's primary function is to refract incoming light rays
to sharply focus them onto the macula, and to loosely focus them onto the
large inner spherical area, called the retina.

The retina and macula are made of photon-sensitive cells. They convert
the energy, carried by the captured photons, into electrical signals which are
then transmitted to the brain's neural computing network through optic-
nerve fibers. The area where the optic-nerve fibers are connected to the
inner spherical surface of the eyeball is known as the blind spot. This area

394 The Fundamentals of Robotics: Linking Perception to Action

is insensitive to incoming light rays.
Refer to Fig. 7.8. The line connecting the center of the crystalline lens

and the center of the macula is called the visual axis. As we know, any
spherical lens has its own optical axis. Interestingly enough, the eye's visual
axis does not coincide with the optical axis of the lens. This means that the
center of the image at the macula is not the projection of the optical axis
of the lens. This phenomenon is also true for a man-made camera as any
error in assembling a camera will make it impossible to project the optical
axis exactly onto the image center.

7.3.2 Photosensitive Cells

The human eye has two sets of photosensitive cells: a) cone cells and b)
rod cells. The distribution of the cone cells inside a human eye looks like
a very sharp Gaussian distribution which is centered at the macula. But,
the rod cells are scattered across the retina and macula. However, at the
narrow center of the macula, there is no rod cells.

George Wald, and his team at Harvard University, pioneered the under-
standing of the functional and molecular properties of rod and cone cells.
In 1967, he won the Nobel Prize in Medicine and Physiology for his work on
human vision. According to Wald's work, cone and rod cells are sensitive to
visible light because of the presence of a protein called rhodopsin, or visual
pigment.

Structurally, a cone cell is much smaller than a rod cell. So, the amount
of rhodopsin inside a cone cell is much less than the amount of rhodopsin
inside a rod cell. As a result, a rod cell is almost a thousand times more
sensitive to light than a cone cell. This high sensitivity of rod cells explains
why rod cells will only respond to the variation of energy carried by the
captured photons. To a certain extent, a single photon is sufficient to trigger
a response from a rod cell. Because of the high sensitivity, rod cells are not
able to differentiate among various wavelengths of incoming light, and thus,
insensitive to colors. Since the amount of energy passing through a unit
area is called light intensity, we can say that rod cells are only sensitive to
light intensity.

On the other hand, a cone cell can only moderately respond to light
intensity. Because of the low sensitivity, a cone cell is able to respond
differently to the wavelengths of incoming light. This explains why a cone
cell is able to selectively respond to colors. This selectivity, in response to
colors, forms the basis for human color vision. Artificial color vision works

Visual Sensory System of Robots 395

on a similar principle. According to the selective response to colors, the
cone cells of the human eye are magically divided into three types:

• Red-sensitive cone cells, which are only sensitive to red,
• Green-sensitive cone cells, which are only sensitive to green,
• Blue-sensitive cone cells, which are only sensitive to blue.

7.3.3 Central Vision

Together, the cornea, the crystalline lens and the vitreous substance are
responsible to refract and focus the incoming light rays to an eye. However,
a focused optical image will fall into a large inner spherical area inside an
eye. As shown in Fig. 7.8, the inner spherical surface of the eye is composed
of: a) the retina, b) the macula and c) the blind spot. By definition, the
sensing and processing of images from the macula area is called the central
vision, while the sensing and processing of images from the retinal area is
called the peripheral vision.

Human central vision makes use of both cone cells and rod cells to
convert light into the corresponding electrical signals. The following are
key characteristics of human central vision:

• Color Vision:
As cone cells are sensitive to colors, the central vision is intrinsically
color vision.

• Daylight Vision:
Cone cells can only moderately respond to light intensity. Thus, the
light intensity has to be above a certain level in order to trigger any
response from a cone cell. As a result, it is necessary to illuminate a
scene so that the central vision can perform properly.

• High-resolution Vision:
The human eye has around 6-7 million cone cells. However, the spher-
ical angle of the macula is about ±20° while the spherical angle cor-
responding to the fovea is about ±2°. Since the distribution of cone
cells follows a very sharp Gaussian distribution centered at the fovea,
the center of the macula has the highest density of cone cells. On
the other hand, there are about 120 million rod cells scattered across
the retina and macula (except for the fovea). Relatively speaking, the
combined density of both cone and rod cells at the macula is higher
than at other areas of the inner spherical surface of the eye.

396 The Fundamentals of Robotics: Linking Perception to Action

Functionally, our eyes always focus the sharp optical image onto the
macula. In other words, central vision is very sharp as well. Thus, all
important visual information will come from the central vision of our eyes.

7.3.4 Peripheral Vision

The visual attention of our eyes is mainly on the macula. This is why
visual-sensing and processing for signals from the zone outside the macula
is called peripheral vision. The photosensitive cells of peripheral vision are
mainly composed of rod cells. Only a very small percentage of cone cells
is present in peripheral vision. Therefore, the key characteristics of human
peripheral vision are:

• Dim-light VisionDim-light vision:
Since a rod cell is able to respond to a single photon, peripheral vision
works even in a poorly-illuminated environment.

• Motion Detection:
Signals from peripheral vision mainly contribute to motion detection.
From an engineering point of view, this can be explained by the fact
that the brain's neural computing network performs very simple pro-
cessing on signals from these cells because the main attention is de-
voted to signals from the macula's cone cells. One of the simplest
image-processing operations, called image substraction, is a good, sim-
ple, and fast motion-detector in image space. We will study some basic
image-processing techniques in the next chapter.

7.4 Digital Image Acquisition

Refer to Fig. 7.8. The human eye is composed of a lens system, an iris,
and an image-sensing area. The output from the eye is a series of electri-
cal signals which are transmitted to our brain's neural-computing network
through optic-nerve fibers. In the image-sensing area, there are two arrays
of photosensitive cells: a) an array of cone cells and b) an array of rod
cells. In addition, the eye can perceive the three primary colors (red, green
and blue) because the array of cone cells can further be divided into three
sub-arrays which are sensitive to these colors. It goes without saying that
human vision is a very sophisticated system.

In order for a robot to see a colorful world, it is necessary to develop an
artificial eye, commonly called an electronic camera (or camera for short).

Visual Sensory System of Robots 397

* jMAgfa **)
2t\ • - '

Fig. 7.9 The minimum set of hardware components necessary for a robot's visual sen-
sory system.

Functionally, a camera is similar to a human eye. Due to advances in
semiconductor technology, it is easy to construct a visual sensory system
composed of an optical lens, artificial iris, light splitter & color filter, image-
sensing array(s), signal-conversion circuit, image digitizer, and computing
unit. Fig. 7.9 shows the minimum set of hardware components necessary
for a robot's visual sensory system.

Certainly, the most important item in a robot's visual sensory system is
the electronic camera. Without a camera, there is no vision. Just as in the
human eye, a camera consists of a lens, an iris, light splitter & color filter,
an image-sensing array, and a signal-conversion circuit. In this section, we
will study these items in detail.

7.4.1 Formation of Optical Images

As we already mentioned, while a scene can be infinitely large, the human
eyes have a definite, small size. In order to perceive a large scene with a
small sensing device, it is necessary to first focus the incoming light rays
into a small area, similar to the macula in an eye. This process is known
as the formation of optical images. For an electronic camera designed for
color-image sensing, the process of forming optical images will involve these
steps:

398 The Fundamentals of Robotics: Linking Perception to Action

• Optical-image focusing,
• Control of incoming light,
• Light splitting & color filtering.

7.4.1.1 Optical-Image Focusing

The first step in forming an optical image is to focus incoming light rays
into a small area. This can be done with an optical lens system. For the
sake of simplicity, let us consider an optical lens system to be a convex thin
lens. According to Example 7.1, an object placed at different distances,
relative to one side of a convex thin lens, will have corresponding images
at different distances relative to another side of the convex thin lens. If an
object has an arbitrary shape which is not planar, the focused image will
not be planar. However, in practice, we can consider that a focused image
falls approximately into a planar surface. In this way, an image-sensing
device can be a planar device. As shown in Fig. 7.10, the planar surface of
an image-sensing device is called an image plane.

Camera casing Image Sensing Array
~ ^ ^ (Image Plane)

/ W s

/ / Optical Lens Object

W 1_|/ \ \
/ N Optical Axis

/ [Light Splitter and
/ Color Filters

Signal Conversion Circuit

Fig. 7.10 Generic structure of an electronic camera.

Since a scene has a certain depth which is the permissible variation range
in the direction parallel to the optical axis, we should not fix the distance
between an image plane and an optical lens. In fact, all optical lenses have
a mechanism which allows us to manually (or automatically) adjust the
position of the optical center along the optical axis. The process of adjusting
the position of the optical center is called image focusing. Adjusting the
position of the optical center is equivalent to adjusting distance di between
an image plane and an optical lens. For the sake of convenience, di is
commonly called a focal length, di does not refer to the focal length / of
an optical lens. To avoid any confusion, we explicitly state the definition

Visual Sensory System of Robots 399

of focal length as follows:

Definition 7.1 Focal length in a robot's visual sensory system refers to
the distance between the image plane and the optical lens. For the sake of
clarity, we call it the focal length of a camera and denote it with fc.

Given a value for fc, the sharpness of the images formed on an image
plane depends on distance do between an object and the optical lens. Refer
to Eq. 7.15. Differentiating this equation with respect to time allows us to
obtain the following relationship between the variation of hi in the image
plane and the variation of the object's distance do relative to the optical
lens:

\\Ahz\\ = ho»^r,\\/\do\\. (7.16)

Eq. 7.16 clearly illustrates the out-of-focus phenomenon as well as the
concept of the circle of confusion. When a point on an object is in focus,
its image will be a point image. This is illustrated by Fig. 7.11, where the
image at point B is in focus. However, any change in the object's distance
relative to the optical lens will cause the image to become a spot. Eq. 7.16
determines the dimension of an image spot. If point B is on the optical
axis, the image spot will be a circle. In general, when a point on an object
is out of focus, the circle enveloping the image spot is called a circle of
confusion.

- i r i s image plane

M l j circle of

^_^^»— * ^ J • confusion

T ' ' — > - ' i - " " ® » '^."t, £ > - ^ v
A B C Focus Point '• *--^~^v

I I "
Lens /

Color filter

Fig. 7.11 Illustration of an optical image focused onto a planar surface.

Since an image-sensing array is composed of discrete sensing elements
(or cells) which are arranged in a regular pattern, the image of a point will
appear to be in focus as long as the circle of confusion is not bigger than

400 The Fundamentals of Robotics: Linking Perception to Action

the size of the sensing element (or cell). Otherwise, the image spot of a
point will appear to be blurry (out of focus).

Since the size of the image-sensing cells is fixed, the largest permissible
circle of confusion, described by ||A/ij||max, is fixed as well. Therefore,
Eq. 7.16 allows us to determine the largest permissible variation of Ad0 as
follows:

||Ado||maa; = -^— . \\/\hz\\max. (7.17)
no • di

The value of Ado is called the depth of field of a visual sensory system.
Interestingly, when do increases, the depth of field increases as well. This
clearly explains how we can perceive a large scene as well-focused images.

7.4.1.2 Control of Incoming Light

A passive sensing element always has a limited working range. When input
to a passive sensing element goes beyond that working range, the output
saturates. Therefore, it is necessary to have a control mechanism, such
as a photosensitive cell, which can regulate the amplitude of input. As
shown in Fig. 7.11, all cameras have an iris device which can be manually
or automatically controlled in order to regulate the amount of incoming
light.

If a scene's lighting is dynamically changing, it is necessary to auto-
matically adjust the iris device. However, this can be avoided if we are
able to adaptively adjust the working range of the sensing elements. With
CMOS (Complementary Metal Oxide Semiconductor) technology, it is easy
to develop active image-sensing cells which have working ranges that can be
dynamically reprogrammed. We will study CMOS-based imaging sensors
in further detail later in this chapter.

When an iris device is present in a camera, the amount of incoming light
is controlled by adjusting the diameter of the circular hole of that iris. This
hole is called an aperture. Interestingly enough, an iris device will allow
us not only to control the amount of incoming light but also to adjust the
permissible dimension of the circle of confusion. This second advantage can
be explained as follows:

If we have a point at a fixed location in front of an optical lens, its image
spot on the image plane has a fixed size. However, when the diameter of the
iris decreases to a value less than the diameter of the optical lens, the image
spot on the image plane decreases. Since the size of the sensing elements is
fixed, the circle of confusion has a fixed permissible size as well. When an

Visual Sensory System of Robots 401

iris reduces the size of a point's image spot, this means that the permissible
variations of an image spot can be increased. With a simple drawing, we
can easily verify this fact.

Now, let us define ki as an iris effect factor. When the aperture of the
iris is bigger than or equal to the dimension of the optical lens, fc$ = 1.
When it becomes smaller than the diameter of the optical lens, ki > 1. If
we denote Ahi the variation of an image spot without an iris, and Ah* the
variation of an image spot with an iris, then we have

Ahi = ki»Ah*. (7.18)

Eq. 7.18 simply illustrates that Ah* is not bigger than Ahi.
Substituting Eq. 7.18 into Eq. 7.17 yields

\\Ado\\max = -^—*ki.\\Ah*\\max. (7.19)

Eq. 7.19 indicates that a smaller aperture permits a larger depth of field
because ki > 1.

7.4.1.3 Light Splitting & Color Filtering

Human vision is intrinsically color vision. Human eyes can perceive colors
because of the presence of three types of cone cells:

• Cone cells which are sensitive to red light,
• Cone cells which are sensitive to green light,
• Cone cells which are sensitive to blue light.

A simple way to perceive colors with an electronic camera is to use a
light splitter and color filter.

A color filter is a transparent material which permits lights having a
wavelength within a very narrow range to pass through. With color filters,
we can selectively channel lights of a specific wavelength into an image-
sensing area. There are two common ways of performing light splitting and
color filtering.

Independent Light Splitting and Color Filtering

We normally place color filters behind an optical lens. In this way, we can
split incoming light into three separate light beams, as shown in Fig. 7.12.
Each beam is then channelled into a specific color filter (red, green or blue),
which filters the separated light beams. This is shown in Fig. 7.12.

402 The Fundamentals of Robotics: Linking Perception to Action

Red Filter ^Sp l i t t e r
; Beam 1 X Incoming Light Rays

Red Beam -^ ; ^ y ^

Green Filter »
I Beam 2 ytf

Green Beam A '. 4 ~Y Splitter

Blue Filter „ M
T Beam 3 , , /

Blue Beam ^ • ^ — Jr

; f Mirror

Fig. 7.12 Illustration of independent light splitting and color filtering.

Since each beam after light splitting can be sensed by a dedicated image-
sensing array (chip), it is necessary to use a set of three Charge-Coupled
Device (CCD) chips to independently convert the three separated light
beams into the red, green and blue component color images. A color camera
which does this is called a 3CCD camera. One advantage of this method of
light splitting and color filtering is that it preserves the spatial resolution
of incoming light.

However, an obvious drawback is the cost and complexity, because
3CCD camera consists of a light splitter, mirror, color niters and three
CCD chips (including associated electronic circuits). Under the scheme of
independent light splitting and color filtering, the camera output will be a
set of three RGB component color images.

Correlated Light Splitting and Color Filtering

An alternative solution instead of splitting the incoming light into three
separate beams is to design a special color filter which is composed of
an array of filtering patterns, as shown in Fig. 7.13. This idea was first
proposed by Bryce Bayer from Kodak Inc. and is called the Bayer Pattern.
He proposed a filtering pattern formed by a 2 x 2 block of GR/BG filtering
elements. He included two filtering elements for the green color because
human eyes are more responsive to this color. However, for a robot's visual
sensory system, we have the freedom to choose any combination of R, G,
and B filtering elements to form a filtering pattern.

As it is sufficient to use a single image-sensing array (chip) to convert
incoming light into corresponding electrical signals, the notable advantage
of a filtering pattern is its simplicity and low-cost. Unfortunately, this

Visual Sensory System of Robots 403

^ Mosaic Color Filter

Color F i l t e r , ^ — G R G R G R G R G

| B G B G B G B G B

3 ^ ! '̂ " G R G R G R G R G
•§ ^ I ^ | B G B G B G B G B

I, j I "1 £ G R G R G R G R G

</) ^ I ^ _ B _ J ^ B G B G B G B

I / i G R ' G R G R G R G
Filter Pattern / , '

" ^ — ' * - ' i I ' I B J G I ' B 1 ° I B J G B I G B

*sj4̂ -|';:' /
>) BJ G |.'" /

Fig. 7.13 Illustration of correlated light splitting and color filtering.

advantage is achieved to the detriment of the spatial acuity of colors. In
addition, it is necessary to perform a color-correction procedure, or de-
correlation, in order to retrieve the three RGB component color images from
the output of a single image-sensing chip. The process of color correction
can be explained as follows:

Assume that V^, V'g and Vfc' are the direct output of R, G, and B values
from the sensing elements placed behind a filtering pattern. The actual
output of R, G, and B values will be the weighted sum of the direct output.
A simple way to compute weighted sums if there are four elements in a
filtering pattern is as follows:

r vr = crl • v; + cr2. vg + cr3. vi
I Vg - Cgl • V; + Cg2 . V'g + Cgi . VI (7.20)
{vb = cbi • v; + cb2. vg + cb3. vb'

where correction matrix C is

(Crl Cr2 Cr3 \
Cgl Cg2 Cg3 I .
Cbl Cb2 Cb3)

Correction matrix C can be determined by a color-calibration process. Af-
ter color correction, a color camera's output is still a set of three RGB
component color images.

404 The Fundamentals of Robotics: Linking Perception to Action

7.4.2 Formation of Electronic Images

Refer to Fig. 7.10. After the formation of an optical image on a planar
surface (image plane), the critical issue is how to develop an image-sensing
device which will convert optical images into corresponding electronic im-
ages. A common way to do this is to use photosensitive cells made of semi-
conductors. A camera which uses photosensitive cells is called an electronic
camera or film-less camera.

7.4.2.1 Photoelectric Effect

In 1887, Heinrich Hertz accidentally discovered that the surface of certain
materials will emit electrons when exposed to a bombardment of light rays.
This phenomenon is called the photoelectric effect and can be explained with
Bohr's theory, as illustrated in Fig. 7.2. The photoelectric effect works as
follows:

When light rays strike the surface of a material, the internal energies of
the atoms at the surface will jump to higher levels. The electrons orbiting
the atoms will transit to outer stable orbits. For some specific materials,
the orbiting electrons of the atoms will even jump out of the largest stable
orbit. These electrons become free moving electrons in a material. As a
result, the incoming light striking the surface will trigger the release of
electrons.

With the advent of semiconductors, the photoelectric effect has become
a practical way of developing image-sensing chips for electronic cameras.
Let us take a look at two examples: the CMOS and CCD imaging sensors.

7.4.2.2 CMOS Imaging Sensors

As a result of the invention of active image-sensing cells at NASA's Jet
Propulsion Laboratory in the mid-1990s, the CMOS imaging sensor has
become increasingly popular. CMOS is the basic element behind all mi-
croprocessors, memory chips and other digital devices. When the CMOS
is produced in large quantities, its manufacturing cost goes down. As a
result, the CMOS imaging sensor is a commercially viable and attractive
solution for electronic imaging applications, such as video entertainment,
visual inspection and visual guidance.

Visual Sensory System, of Robots 405

P-type and N-type Semiconductors

The term semiconductor is composed of two words: a) semi, meaning "par-
tial" and b) conductor, meaning "something that conducts electricity". A
semiconductor's (electric) current conductivity is between a perfect con-
ductor and a perfect isolator. By adding an impurity, or doping material,
to pure semiconductor material, the conductivity can be controlled exter-
nally. Two typical external causes are: a) an electric field, and b) exposure
to lights.

The process of adding a different material to pure semiconductor ma-
terial is called doping. The material used for doping purposes is known as
an impurity, or doping material.

A special method of doping is to add a material which has an atom
with one electron more or less than the semiconductor material's atom. For
example, we can choose Germanium as the pure semiconductor material.
Germanium's atom has 32 orbiting electrons. If pure Germanium material
is mixed with a small percentage of doping material, one of these two things
may happen:

• Case 1:
An atom of doping material has one electron less than that orbiting
the atom of pure semiconductor material. When the doping material
is evenly diffused inside the pure semiconductor material, the atoms
of doping material will be surrounded by the atoms of pure semicon-
ductor material. The addition of one external electron to an atom of
doping material will make that atom behave like an atom of pure semi-
conductor material. In other words, the pure semiconductor doped
with an impurity material will readily act as a receptor of external
electrons. This type of man-made semiconductor is called a P-type
semiconductor.

• Case 2:
An atom of doping material has one electron more than that orbiting
the atom of pure semiconductor material. In this case, the release of
one electron from an atom of doping material will make that atom
behave like an atom of pure semiconductor material. In other words,
the pure semiconductor doped with an impurity material will readily
act as a donor of electrons. This type of man-made semiconductor is
called an N-type semiconductor.

Example 7.3 In a material made of Germanium, an atom has 32 orbiting

406 The Fundamentals of Robotics: Linking Perception to Action

electrons. If the Germanium material is doped with a small percentage
of material made of Arsenic, the result will be an N-type semiconductor
because an atom of Arsenic material has 33 orbiting electrons.

oooooooooooooooooo
Example 7.4 Now, if we mix a pure semiconductor material, made of
Germanium, with a small percentage of material made of Gallium, we will
obtain a P-type semiconductor. This is because an atom of Gallium mate-
rial has 31 orbiting electrons.

••OOOOOOOOOOOOOOOO

Photodiodes and Phototransistors

The invention of P-type and N-type semiconductors in the late 1940s ac-
celerated development of important electronic devices such as diodes and
transistors. In fact, today's microprocessors and solid-state digital devices
are all made of diodes and transistors.

If we specifically arrange P-type and N-type semiconductors together,
we can develop an element called a photosensitive cell. Fig. 7.14a shows
one design solution for photosensitive cells.

Light Rays

WWUWWI
/ Light Rays P

Light Rays 'p B J. »

Anti-reflection coating Anode (t) X^V^-— ~~T «^~~Jx

N-Iype Silicon \ j / \ [v^ /

/ L—^-' n^_ ^ - f
Base Cathode (-)

(a) A photosensitive eel] (b) Symbol of photodiode (c) Symbol of phototransistor

Fig. 7.14 Illustrations including a sectional view and symbolic representation of a pho-
todiode and phototransistor.

For the example shown in Fig. 7.14a, we can see that the main body of
a photosensitive cell is made of an N-type semiconductor. The main body
sits on a base which can be either metallic or a layer of isolator. On the top
surface of the main body, a thin layer of P-type semiconductor is created
through a diffusion process. After the P-type semiconductor is in place,

Visual Sensory System of Robots 407

the surface is coated with a layer of anti-reflection (i.e. light absorption)
material. The device, as shown in Fig. 7.14a, is a photosensitive cell (or
element). It works as follows:

When light strikes the top surface of this device, the P-type semicon-
ductor releases electrons as a result of the photoelectric effect. After this,
the electric charges (the accumulation of electrons) build up. As the layer
of P-type semiconductor is very thin, electric charges will flow into the re-
type semiconductor. If a pair of anode/cathode is placed on the device, as
shown in Fig. 7.14a, an external closed-circuit will permit current to flow
from the anode to the cathode. The direction of the current is opposite
to the direction of the moving electrons. Clearly, a photosensitive cell acts
more like a current generator than a voltage generator.

In electronics, if a main body made of an N-type semiconductor is de-
posited with a layer of P-type semiconductor, it is called a P-N junction.
The P-N junction was invented in 1949 and is the basic element in diodes
and transistors. Because of the P-N junction, a photosensitive cell is also re-
ferred to as a photodiode (see Fig. 7.14b) or phototransistor (see Fig. 7.14c).
Here, we call a photosensitive cell a photodiode.

The Equivalent Circuit to a Photodiode

In order to better understand the electrical properties of a photodiode, we
can draw an equivalent electronic circuit, as shown in Fig. 7.15. The basic
elements inside this circuit include:

• Ip: A current generator with an output proportional to the amount
of photons striking the surface of the photodiode. Depending on light
intensity, Ip falls in the range of milli-Amperes or micro-Amperes.

• Cj: A capacitor of the P-N junction. Depending on design and in-
tended application, Cj can be big or small. For a Charge-Coupled
Device (CCD) sensing element, Cj should be big.

• Rj: Shunt resistor of the P-N junction. In general, the value of Rj
falls in the range of mega-Ohms.

• Rs'- Series resistor of the P-N junction. In general, the value of Rs is
usually small.

Active-Sensing Cells

Refer to the circuit equivalent to a photodiode, as shown in Fig. 7.15. A
photodiode may behave like a current generator, a voltage generator or a

408 The Fundamentals of Robotics: Linking Perception to Action

I 1 1 O

Fig. 7.15 Circuit equivalent to a photodiode.

capacitor. By adjusting the design parameters of the photodiode, we can
make it behave more like a current generator or more like a capacitor. The
former is the design objective for CMOS image-sensing cells while the latter
is the design objective for CCD image-sensing cells.

In order to convert an optical image into its corresponding electronic
image, it is necessary to have an array of image-sensing cells. These cells
are also called image elements or pixels, for short. Obviously, a photodiode
can serve as a pixel.

However, the current (or voltage) produced by a photodiode is usually
small, falling in the range of milli-Amperes or micro-Amperes. Thus, it
is necessary to enhance the electrical signal of photodiode in one way or
another. Since the photodiode is made of the semiconductor, one possible
method is to increase the number of transistors in the photosensitive cell.
This possibility led to the invention of active pixels in the mid-1990s at the
Jet-Propulsion Laboratory in California.

As shown in Fig. 7.16a, an active pixel is composed of the following
elements:

(1) A Photodiode:
This transistor is responsible for converting light intensity into a cor-
responding current.

(2) A Current-to-Voltage Conversion Transistor:
This transistor takes current from the photodiode as input. Output
voltage Vp from the transistor is proportional to Ip. If R is the electrical
resistance across the collector and emitter of the transistor, and K is
the amplifying gain, then we have

Vp = (l + K)*R*Ip. (7.21)

(NOTE: A transistor has three terminals: Base, Collector and Emitter).

Visual Sensory System of Robots 409

R

Active Pixel - \ ••----,- i

™y^- .> i . f « - > -

• v — ' - 2 , " " . . " "

Ciirrcnr-iu-Voluge '
Conversion IRUKISIUI a ' ' s d i r "

Ml 'oh

(a) Active Pixel
Column Line

Fig. 7.16 Illustration of a conceptual design of an active-sensing cell, or active pixel.

(3) A Reset Switch:
This is a transistor which serves as an electronic switch. Its purpose is
to discharge the photodiode after the output has been read. In other
words, this switch resets the photodiode so that it can start a new
sensing cycle. From Fig. 7.16a, we can see that the power supply (+V)
is connected to the ground when the reset switch is "on".

(4) A Logic Circuit for Cell Selection (optional):
In order to individually select a cell from an array of sensing cells, a
logic circuit of cell selection can be added to an active pixel. This logic
circuit consists of a logic "AND" device as well as a transistor which
serves as an electronic switch. The logic "AND" device has two input
lines: a) row select and b) column select.

The above elements make an active pixel look like a controllable volt-
age generator. Although the output voltage signal from an active pixel is
still weak, this is not a drawback because the voltage signal can be easily
amplified by a circuit, as shown in Fig. 7.16b. Assume that the active pixel
in Fig. 7.16a is located at the (i,j) position (ith row and jth column) of
an image-sensing array. If the voltage signal is amplified by the circuit, as

410 The Fundamentals of Robotics: Linking Perception to Action

shown in Fig. 7.16b, the amplified output will be

V • = Rj2 * R j i »V (7 22)
Rji • (Rj3 + Rji)

CMOS Image-Sensing Array

At any time instant, there is only one voltage output from an active pixel.
Hence, a single, active pixel can only serve as an imaging sensor for a
single point. In order to convert a two-dimensional optical image into a
corresponding electronic image, it is necessary to make use of an array of
active pixels.

If we place active pixels together to form an array, the critical issue is
how to simultaneously read the electrical signals from these active pixels.
In other words, is it necessary to read the electrical signals from an array
at one time instant, or can it be done within a short time interval?

If it is necessary to simultaneously read the electrical signals from an
array of active pixels at one time instant, this will be costly and impractical.
This is because the size of an array may be prohibitive. For example, the
number of active pixels in an image-sensing array may be on the order of
106 pixels. A more practical solution, therefore, is to read the electrical
signals from an array of active pixels within a short period of time. For
example, if one image is read within a time interval of 40 milliseconds (ms),
an imaging sensor will be able to output 25 images per second.

Refer to Fig. 7.16. If an active pixel has a cell-selection circuit, it is
similar to a memory cell which is an integrated-circuit for holding the logic
value "0" or "1" . In this case, it is easy to form an image-sensing array
with a set of active pixels. Fig. 7.17 shows a possible design solution for
constructing a CMOS imaging sensor based on an array oinxm active pix-
els. Each active pixel can be treated as a memory location with a dedicated
address (i,j) (zth row and jth column). In this way, we can individually
read the voltage signal from an active pixel at location (i,j). If the electri-
cal signals are read out pixel-by-pixel, it will be too slow. A better solution
is to read out the voltage signals row-by-row, as shown in Fig. 7.17. The
procedure of reading voltage signals and converting them into a continuous
video format is as follows:

• Step 1: Reset all active pixels.
• Step 2: Expose active pixels to incoming light rays for a certain period

of time. The time of exposure can automatically be determined, based

Visual Sensory System of Robots 411

Video Output 1
• C ^ — Analogue or Digital Video Conversion

| wiP | wn-j |~\MI-1 [\ \ i r l j

1 AP |- I AP h 1 AP |- I AP h

Addresses £ *

|g Row i

] AP \~] AP \- 1 AP |- | AP f

_ _ _ _ ^

— I I AP H I AP H I AP H I AP H

AMP ^Amplifier Addrew Decoctar I
AP = Active Pixel ™ j

^Addresses

Fig. 7.17 Illustration of the generic architecture of a CMOS imaging-array having nxm
active pixels.

on light intensity and the characteristics of the active pixels.
• Step 3: Select columns, and set row index i to be 0.
• Step 4: Select row i, and amplify the voltage signals from it. Each col-

umn will have its own dedicated voltage amplifier, as shown in Fig. 7.17.
• Step 5a: Pack the amplified voltage signals from row i into the cur-

rent image, which is an image inside a video. An image can be either
analogue or digital.

• Step 5b: At the same time, increase row index i {i = i + 1), and repeat
Steps 4 and 5 until an image has been read.

• Repeat Steps 1, 2, 3, 4, and 5 to continuously generate a video.

Fig. 7.18 shows an example of a CMOS color camera. A CMOS imaging
sensor's notable advantages include:

412 The Fundamentals of Robotics: Linking Perception to Action

CMOS Image Sensing _ t pr»»-" * * * i i M P ^
Array Coated with a nlmn' ^m'"1

Mosaic Color Filter Optical Lens

Fig. 7.18 Example of a CMOS Color Camera.

• Low Cost:
The elements inside a CMOS imaging sensor are transistors or
transistor-like devices. CMOS imaging sensors are manufactured in
the same facilities as microprocessors and memory chips. Due to the
mass production, the unit cost of a CMOS imaging sensor is very low.

• Low Power Consumption:
The voltage signal in a CMOS device is not higher than +5V. As a
result, a CMOS imaging sensor is energy efficient. This is a very im-
portant feature for embedded and/or mobile applications where power
consumption is a major concern.

• Random Pixel Access:
Refer to Fig. 7.17. A CMOS imaging sensor is similar to a memory chip.
As a result, one can directly access an individual pixel if a full-address
decoding circuit is present.

• Wide Dynamic Range of Active Pixels:
A passive sensing cell has a limited dynamic range (working range).
Because of the reset switch inside an active pixel, it is easy to increase
this working range. In fact, we can treat a reset action as an overflow,
similar to the overflow of a numerical counter. Let n^ denote the
number of overflows which occur at the active pixel located at (i,j).
If V/j is the actual output of the voltage signal without considering

Visual Sensory System of Robots 413

overflows, then the true output of the voltage signal will be

V- • — V' 4- n •• • Vmax

where V^ax is the maximum voltage signal which triggers a reset ac-
tion.

• Automatic Compensation of Light Intensity:
We can also make use of the reset switch to automatically adjust the
response of an active pixel to lighting conditions in a scene. For exam-
ple, the frequency of reset can be high if light intensity is strong, and
low if the lighting is dim. Because of this, it is not necessary to have
an automatic iris (or auto-iris). The camera shown in Fig. 7.18 has an
optical lens with an iris that is not automatic.

• On-chip Processing:
Since CMOS imaging sensors use the same manufacturing process as
microprocessors and memory chips, it is easy to incorporate signal-
processing hardware into an imaging sensor. Because of this, it is simple
to develop smart cameras with built-in programmable functions.

7.4.2.3 CCD Imaging Sensors

An important milestone for electronic imaging was the invention of the
Charge-Coupled Device (CCD)) by Boyle and Smith from Bell Labs in
1970. After this, the first black-and-white CCD camera was announced in
1971. And, the first color CCD camera was announced in 1972. Both were
from Bell Labs.

Most electronic cameras are based on CCD imaging sensors (or chips).
However, since the late 1990s, the market share of electronic-imaging prod-
ucts was made up of CMOS cameras. Today, however, CCD cameras
still dominate the high-end (high resolution and quality) electronic-imaging
products.

Charge-Coupled Devices (CCD)

A CCD can be treated as a pair of coupled capacitors: one for light sensing
and the other for charge storage. The first capacitor is a photodiode that
can serve as a photosensitive cell which will convert incoming light into
corresponding electrical signals. Thus, a CCD can also be called a CCD
imaging element or CCD pixel.

Fig. 7.19 shows a conceptual design solution for a CCD pixel. The pho-
todiode in Fig. 7.19 behaves more like a capacitor than a current generator,

414 The Fundamentals of Robotics: Linking Perception to Action

Light Rays Vg

UUUIUU -r+T-
Rj : : ; ; RS

Ami -reflection I h . . . I | _ _ To serial shift
coating ' i ' i along a column

N-type Silicon I j ' ' '

/ ^ ^ ^ Gate| y • • • T • Electric Field

(a) Charge -Coupled Device (b) Equivalent Circuit

Fig. 7.19 Illustration of a CCD pixel.

as shown in Fig. 7.14. When incoming light strikes the surface of a CCD
pixel, the P-type semiconductor will release electrons. Since the layer of
P-type semiconductor is very thin, the free-moving electrons will flow into
the main body (N-type semiconductor). This will result in an accumulation
of electric charges. In order to enhance this accumulation, we can apply
bias voltage Vb which will in turn increase the signal-to-noise ratio.

Next to a CCD-pixel's photodiode, there is a capacitor. This capacitor
serves as a reservoir to store electric charges from the photodiode. When
the photodiode is exposed to incoming light for a certain period of time, a
charge transfer occurs. Then, the gate voltage Vg is turned "on" to generate
an electric field. This electric field induces electric charges to flow from the
photodiode into the capacitor.

A CCD-pixel's function can better be described by its equivalent circuit,
as shown in Fig. 7.19b. The basic elements inside a CCD pixel include:

• Cj: Junction capacitor of the photodiode,
• Cs- Capacitor for storage of electric charges from Cj,
• Rj : Electrical resistance along the path connecting Cj to Cs,
• Rs'- Electrical resistance when transferring electric charges out of Cs-

Refer to Fig. 7.19b. A charge transfer from Cj to Cs will have no
signal loss as the thermal effect caused by Rj is negligible. This is not the
case, however, if the photodiode behaves like a current generator (e.g. an
active pixel made of CMOS). This explains why a CCD imaging sensor can
produce high-quality electronic images.

Visual Sensory System of Robots 415

CCD Imaging Arrays

Just as with a CMOS imaging sensor, we can place a set of CCD pixels
into the shape of an array. With an array of CCD pixels, we face the same
issue of how to read the electric charges.

As we discussed earlier, a CCD pixel consists of a pair of coupled capac-
itors: one for sensing light rays, and the other for storing electric charges.
Since a CCD pixel is more complicated than a transistor, manufacturing
of CCD imaging sensors is not the same as it is for microprocessors and
memory chips. Thus, CCD imaging sensors are more expensive than CMOS
imaging sensors. In addition, the manufacturing is even more expensive if
we attempt to build an "active pixel" based on a CCD. As a result, an
existing CCD imaging sensor is not similar to a memory chip, and we can-
not access individual CCD pixels. A common solution to read the electric
charges is to treat the charge-storage capacitors within a column of a CCD
imaging array as a shift register. In this way, the electric charges of CCD
pixels in a column can be sequentially shifted out to a signal-amplification
circuit for post-processing.

Fig. 7.20 shows a conceptual design solution for a CCD imaging sensor
made of an array of n x m CCD pixels. The CCD image sensing array
works as follows:

• Step 1: Discharge all CCD pixels. This can be done either by trans-
ferring the CCD pixels' electric charges out or by discharging the CCD
pixels using a reset circuit.

• Step 2: Expose the CCD pixels to incoming light for a certain time
interval.

• Step 3: Transfer electric charges from the photodiodes to the charge-
storage capacitors. This transfer is done horizontally (for all columns)
at the same time, and is called parallel shifts.

• Step 4: Transfer the electric charges vertically (row-by-row). This op-
eration treats the charge-storage capacitors in each column as a single
vertical shift register, and is called serial shifts. The serial shift in each
column must be synchronized by a serial shift clock. Refer to Fig. 7.20.
Each cycle of serial shifts will transfer a row of electric charges from
row 1.

• Step 5. Amplify the electric charges which are vertically shifted from
row 1. This is done by a series of charge-to-voltage amplifiers.

• Step 6: Pack the amplified electrical signals into the current image
which is either analogue or digital.

416 The Fundamentals of Robotics: Linking Perception to Action

Video Output
<~^ Analogue or Digital Video Conversion

TT
- • • • — . , . , ,
| \MPJAMP AMP' AMP AMP AMP

n M t k ii. ti i i

ii a JL tk i t J k

^ | P | S | [p | S | | P | s | | p | S | | P | s | |~P~ s | Row 1

* ^ P S P S P S P S P S P S Row2

i ZTZTZV ^ ^ V ^ V
. ~ ^ f p s i I p | s i I p | S I p | S I F P T SJ [P S Row 3

£ ' : • ' : : ': : : :
J : . . . : : . .

: - 1 *• P S P S P S P S P S P S Rown-2

^ I ^ I p j S 11 P I S I I P I S I I p[s] | P | s | I p | s | Rown-1

• P S II P S | | P | S P S | | P | s | | p | s | Rown

. Column 1 Column 2 Column 3 Column m -2 Column m -1 Column m

AMP = Amplifier "

p - Photodiode Drive Circuit for Serial Shifts
S = Storage

Fig. 7.20 Illustration of the generic architecture of a CCD-image sensing array having
n x m pixels.

• Step 7: Repeat Steps 4, 5, and 6 until one image has been read.
• Repeat Steps 1, 2, 3, 4, 5, 6, and 7 for a continuous video.

To perform parallel and serial shifts of electric charges, it is necessary
to make use of clock signals and high voltages. Thus, the drive circuits
for CCD imaging sensors are complicated, and the cameras using CCD
imaging sensors are bulky. The two cameras on top of the robot, as shown
in Fig. 7.1, are CCD-color cameras. Additionally, because it is necessary
to have high voltage to transfer charges, the CCD imaging sensor is not as
energy-efficient as the CMOS imaging sensor.

7.4.3 Formation of Digital Images

Refer to Fig. 7.17 and Fig. 7.20. The output from a camera (either CMOS
or CCD) is a continuous stream of images (video). In the case of a color

Visual Sensory System of Robots 417

camera, however, the direct output from an imaging sensor consists of three
streams of images: red component color images, blue component color im-
ages and green component color images.

If a camera's output has an analogue signal, the camera is called an ana-
logue video camera. Output from an analogue video camera will be a con-
tinuous one-dimensional signal, representing a stream of two-dimensional
analogue images. This analogue signal is also called an analogue video.

Digital cameras have been on the market since the late 1990s. Output
from a digital camera can be a stream of two-dimensional digital images,
called a digital video. If a digital camera outputs digital video, then it is
called a digital video camera.

A
Digital

I Images T Video(s) .*

Image Processmg < « = ^ < Video Camera < j
Hardware ' ^ = g • — 1

I 1 pq

Digital Images ,—I

^ Digital Camera <^

V
Fig. 7.21 Visual sensory system, composed of a camera, image digitizer and computing
hardware.

As shown in Fig. 7.21, the computing hardware in a robot's visual sen-
sory system is digital. Thus, if a camera outputs analogue video, it is
necessary to convert this into a stream of digital images. Since analogue
video cameras are still popular, a robot's visual sensory system needs an
image digitizer which converts analogue video into the corresponding digital
video. (See Fig. 7.21).

7.4.3.1 Analogue Videos

Everyday, we receive a large amount of information, images and news from
a variety of TV programs, broadcasting through air or over cable. A TV
program consists of a continuous stream of images encoded with the asso-
ciated audio signals. Another popular and important source of images are

418 The Fundamentals of Robotics: Linking Perception to Action

videos. Because of the huge consumer market for videos, it is important
that video production equipment ensures a certain standard, guarantee-
ing its compatibility with display equipment such as TV receivers, video
monitors, VCR etc.

A video is a continuous stream of images. Hence, it is dynamic data
which can be specified (or described) by a set of parameters related to the
color, intensity and timing of images. So, while it is possible to specify the
parameters, there is concern over how to standardize them.

Video Standards

A standard is a set of specifications for a product or process. When man-
ufacturers follow a common standard, products or processes for a similar
application (or function) can be interchanged. In fact, a standard creates
a platform for product and service providers (manufacturers of a similar
product) to compete against one another in order to better serve the end-
users (consumers).

In the TV industry, there are two dominant standards: a) the National
Television Standards Committee (NTSC) from the U.S., and b) Phase-
Alternating Line (PAL) from Western Europe.

The technical name for NTSC video is RS-170A or Electronic Industry
Association (EIA). The following are specifications of NTSC:

• Image Rate:
The image rate is 30 images per second, allowing an image to last for
33.33 milliseconds (ms). This time interval is also known as an image
period. In electronic imaging, an image is commonly called a frame. In
robotics, a frame usually refers to a coordinate system. So, in order to
avoid confusion, let us stick to the term image.

• Number of Lines per Image:
The number of lines per image is 525. Only 484 of these lines are used
to carry the signals of a video image. These lines are called signal
lines. Since the image period lasts 33.33ms, one signal line will last
63.5 microseconds (/is). This time interval is called a line period.

• Interlaced Image:
As we mentioned earlier, an analogue video is a one-dimensional signal.
When an image is read row-by-row, as shown in Fig. 7.17 and Fig. 7.20,
it is packed into a video in the form of continuous lines (rows). If we
pack the lines by following line index i which varies from 1 to n, these
lines will appear in the same order when displayed on the TV screen.

Visual Sensory System of Robots 419

Our eyes' latency to the image change-rate is 25 images per second.
Therefore, the image-by-image display mode, at a rate of 30 images
per second, is acceptable. However, for a long video, a higher display-
rate is desirable in order to ease the stress on our eyes. A common way
to double the display rate is to split an image into two fields: a) the
odd-line field and b) the even-line field. The odd-line field is composed
of the odd lines of an image while the even-line field is composed of the
even lines of an image. This split image is called an interlaced image.
The field rate of NTSC video is 60 fields per second.

• Black and White Signal Levels:
The black signal level is 0.0 volts while the white signal level is 1.0 volt.

• Horizontal-Synchronization Pulse:
When packing a series of lines together, it is necessary to have a
"marker" to indicate the beginning or end of a line. One way to do this
is to use a negative pulse. This negative pulse is known as a horizontal-
synchronization signal or, H-Sync for short. For NTSC videos, H-sync
is a negative pulse of 0.4 volts.

• Vertical-Synchronization Pulse:
A video is a series of interlaced odd and even fields. Thus, it is necessary
to have a "marker" to indicate the beginning or end of each field. In
order to do this, we can use a negative pulse which is different from
H-Sync, or we can use a series of negative pulses which are the same
as H-Sync. The NTSC adopts this latter solution to mark the end
of a field. As a result, the vertical-synchronization pulse, or V-Sync,
consists of a series of negative 0.4-volt pulses which may last for a
certain number of line periods. If n\ is the number of signal lines in a
field, and n<z is the corresponding number of line periods taken up by
V-Sync, the following condition must hold:

2 • (nx + n2) = 525.

NTSC is not the most popular video standard in the world but Phase-
Alternating Line (PAL) is. The technical name for PAL is the Consultative
Committee for International Radio (CCIR). The following are the specifi-
cations of PAL:

• Image Rate:
The image rate is 25 images per second. The corresponding image
period is 40ms.

420 The Fundamentals of Robotics: Linking Perception to Action

• Number of Lines per Image:
The number of lines per image is 625. The corresponding line period
is 64/xs.

• Interlaced Image:
A PAL video is also composed of a series of interlaced images. However,
the field rate of a PAL video is 50 fields per second.

• Black and White Signal Levels:
The black signal level is 0.0 volts while the white signal level is 0.7
volts.

• Horizontal-Synchronization Pulse:
The H-Sync is a negative pulse of 0.3 volts.

• Vertical-Synchronization Pulse:
The vertical-synchronization pulse also consists of a series of negative
0.3-volt pulses. If n\ is the number of signal lines in a field, and ri2
is the corresponding number of line periods taken up by V-Sync, the
following condition must hold:

2 • (m + n2) = 625.

In NTSC or PAL , the H-Sync and V-Sync are also known as timing
signals (or sync signals). These signals are encoded into an analogue video
so that there is only a single, one-dimensional pulse waveform which rep-
resents the video. For the sake of simplicity, the following discussions use
PAL as a reference.

Component Videos

A color-imaging sensor's direct output consists of three streams of video:
a) the video of red component images, b) the video of green component
images and c) the video of blue component images. Each of these video
streams is called a component video.

For a color camera's three component videos, the timing signals are
the same. Therefore, it is sufficient to pack the timing signals into one
component video. It is common to use the green component video, as shown
in Fig. 7.22. Alternatively, we can carry the time signals in a separate signal
line, known as a sync signal line.

A one-dimensional signal wave can be transmitted through a cable with
two wires: a) one wire for signal, and b) one wire for ground. If a color
camera directly outputs a set of RGB component videos with the timing
signals packed into the green channel, it is necessary to use three cables,

Visual Sensory System of Robots 421

0.7V:

: _ _ ^ : Red component video : ,—^^ :

o.ovi 4* >••••- - -••- - - - r N---i

- o . 3 v ' -••• \ ••••; r

0 . 7 V , i - - ^ : - i - :---
• ; / \ : Green component video ; ^ ~ ^ ^ \ : '•

nmr\ /Las t row V | V-Sync | j First row \ :

° ^ d a[mLr::;-----:inr:---;;;:inn m
V H-Sync ! ; ;

0.7V .- — { :•--- - ------ •---.
: ; : Blue component video : A : ;

o.ov; : ^ — - " ^ - - ^ — - ^ L - - ;

- 0 . 3 V ; ; ; !••••'

Time

'• - - . Composite

| \ i,,,'.,,,n'.''• " " ; «»'"••«••'••' "• ^ i d e ^ -

] / < : " " " • • • • • •• RI1I I . .S V.A-.. T7.^
v . .. • . . S-Video

Electronic Camera

Fig. 7.22 Illustration of an electronic camera, including a set of RGB component videos.

such as BNC cables, to interface the camera with an image digitizer. If the
timing signals are in a separate signal line, then it is necessary to have four
cables.

Composite Videos

As it is necessary to have at least three cables in order to transmit a set of
RGB component videos, it is very costly to broadcast them over the air by
modulating them into a band of radio frequencies (RF). It would also be
costly for a TV receiver to directly receive RGB component videos. Thus,
in order to reduce the cost, the TV industry commonly uses a composite
video for broadcasting and reception.

A composite video is obtained by encoding the RGB component videos
in a specific procedure which involves two steps:

• Step 1: RGB to Luminance/Chrominance Conversion:
The values of R, G and B define a three-dimensional color space. This
color space can be projected onto any other three-dimensional space.

422 The Fundamentals of Robotics: Linking Perception to Action

An interesting way of projecting the color space is to separate the lu-
minance (intensity-related information) from the chrominance (color-
related information). For PAL videos, this adopted conversion is called
an RGB-to- YUVconversion. The following equation describes an RGB-
to-YUV conversion:

{ Y = 0.3 • R + 0.59 • G + 0.11 • B
U = 0.493 • {B - Y) (7.23)

V = 0.877 • [R - Y)
where R, G, and B are the values of red, green and blue component
colors at a pixel. In Eq. 7.23, Y represents the luminance value, U rep-
resents the difference between blue component color B and luminance
Y, and V represents the difference between red component color R and
luminance Y. In fact, variables U and V represent the chromaticity of a
color. The plot U — V is also called a chromaticity diagram. We can see
that luminance Y is the weighted average of R, G, and B because the
sum of the weighting coefficients is equal to 1 (0.3 + 0.59 + 0.11 = 1.0).
As for NTSC videos, the adopted conversion is called an RGB-to-YIQ
conversion. / and Q describe both the hue and saturation of a color. If
U and V are known, then I and Q are determined as follows:

r /= -<7 . S in (33°) + F.cos(33°)
\<2 = f7«cos(330) + V»sin(33°). l '

• Step 2: Generation of a Composite Video:
For PAL, a composite video is obtained by combining Y, U and V as
follows:

C = Y + U • sm(2nfit) + V* cos(27r/ii) (7.25)

where / i = 4.43MHz. For NTSC, a composite video is obtained by
combining Y, I and Q as follows:

C = Y + / • sm(2nf2t) + Q* cos(2nf2t) (7.26)

where f2 = 3.58MHz.

In theory, it is not possible to recover the original values of R, G and B if
the values of a one-dimensional composite video C are known. In practice,
however, we can estimate the R, G and B values from a set of at least three
consecutive C values. While this estimation results in some loss of color
information, our eyes can easily tolerate it, so it is not a concern for the

(7.24)

Visual Sensory System of Robots 423

TV industry. However, it is a serious drawback for a robot's visual sensory
system because exact color information is very important in image-feature
detection and object identification.

S- Videos

One way to minimize the loss of color information is to remove luminance
Y from Eq. 7.26. As a result, R, G, and B will be projected onto Y and C
as follows:

(Y = 0.3 • R + 0.59 • G + 0.11 • B
\ C = U • sin(27r/i«) + V» cos(2?r/ii) *" '

or

(Y - 0 . 3 • R + 0.59»G + 0.11 *B
\ C = I • sin(27r/2£) + Q • COS(2TTf2t). [}

Now, Y and C become two separate one-dimensional signal waves. A
video's timing signals can be packed into either signal Y or signal C. To-
gether, Y and C signals are called an S- Video. For the wired transmission
of an S-video, a cable must have two wires for signals Y and C. An S-
video can reconstruct R, G, and B better than a composite video. So far,
however, the S-video format is not intended for broadcasting TV programs.
Rather, it is widely-used in video products, such as camcorders.

7.4.3.2 Digitization of Analogue Videos

Most electronic cameras are used for news or video-entertainment indus-
tries. As a result, an electronic camera's output is generally not in a digital
video format. As shown in Fig. 7.21, an image digitizer is still a necessary
part of a robot's visual sensory system. The purpose of an image digitizer
is to convert analogue videos into corresponding digital videos which can
be directly stored in the memory, or communicated to a microprocessor.

Fig. 7.23 shows the generic architecture of an image digitizer. If the
input is not a set of RGB component videos, there will be a color decoder
which will decode an S-video or composite video into such a set. Subse-
quently, the sync signals will be separated from the RGB component videos
(or the green channel). And then, three component video streams will be
sent to three A/D converters respectively. Each A/D converter will turn a
component video into a series of digital images.

(7.28)

424 The Fundamentals of Robotics: Linking Perception to Action

S- Video I I - 1 - j - f- .

,"«2L . •—n
R G B j i • :;- I

• = p H V r,11.; = § - 3 <•'' — i -••'• i K
o j n r . 11 M i, itiis >

Composite " | ' ' | ! " j | '

v i d » L- ' " 1 • i I

t̂:: •_!_ j ^N
i

! l I. - (I I . II | | I i : |..li I

Fig. 7.23 Illustration of the generic architecture of an image digitizer.

The process of image digitization involves two cascaded loops. The
outer loop works as follows:

• Step 1: Configure the image digitizer. We must set the resolution of
the digital image. The image resolution indicates the number of rows
and columns that a digital image will have. Here, we denote (rx, ry)
as the number of columns and the number of rows.

• Step 2: Detect V-Sync pulse and log onto the odd-field.
• Step 3: For line index io which varies from 1 to ry/2 in the odd field,

perform an A/D conversion with the inner loop. (See below).
• Step 4: Log onto the even field.
• Step 5: For line index ie which varies from 1 to ry/2 in the even field,

perform the A/D conversion with the inner loop. (See below).

The inner loop works as follows:

• Step 1: Set the pixel clock.

For PAL, the period of H-Sync is 10/xs. Therefore, the period of an
effective signal line will be 54/zs (= 64 - 10). And, the period of a pixel
clock can be calculated as follows:

54
tp = — iis. (7.29)

rx v '
In fact, the frequency (l/ip) of a pixel clock is the sampling rate when
an effective signal line is digitized.

Visual Sensory System of Robots 425

• Step 2: For pixel clock number j which varies from 1 to rx, perform an
A/D conversion and save the results (pixel value) in the memory which
stores digitized images. The pixel value will be stored at location (i,j)
where index i is determined by

. _ j 2 • io — 1 if digitizing the odd field,
\ 2 • ie if digitizing the even field.

From studying the process of image digitization, it is clear that reso-
lution (rx, ry) of a digital image is not equal to resolution (n, m) of an
imaging sensor, shown in Fig. 7.17 or Fig. 7.20. In a robot's visual sensory
system, the typical values for (rx,ry) are (256, 256), (512, 512), or (1024,
1024), etc.

Example 7.5 An image digitizer's output is a set of digitized red, green
and blue component color images. Fig. 7.24 shows one such set. From the
highlighted areas, we can see that the input color image contains red, blue
and orange.

Image of red component color
BF: .gm

Red Color _____̂^ Wn ; "••MMHMMHt ><ril

Hl^^M^^Si^^^^M i B l u e Color

I m a g e of g r e e n c o m p o n e n t c o l o r Ima j ••! I In • "ii | " - itfii ••!•••

Orange

Fig. 7.24 Example of a set of digitized red, green and blue component color images.

oooooooooooooooooo

426 The Fundamentals of Robotics: Linking Perception to Action

7.5 Modelling of Digital Images

So far, we have studied the physical properties and working principles be-
hind the optical lens, the imaging sensor, and the image digitizer. An image
is a two-dimensional array and each of its elements is called a pixel. Within
this array, a pixel has a location and three integer values corresponding to
the component colors: red, green and blue. Therefore, an image contains
both chromatic and geometric information about a scene. In order to infer
the geometry of a scene from images, it is necessary to know how the color
and geometry in the images are related to the color and geometry in the
scene.

7.5.1 Chromatic Modelling

Perceptually and numerically, color is a combination of chrominance and
luminance. Any color can be reproduced by a combination of three primary
colors: red, green, and blue. Therefore, any color can be represented by a
point in a three-dimensional color space. Interestingly enough, one color
space can be projected onto another color space. Because of this, colors
will have different representations in different color spaces.

7.5.1.1 Representation in RGB Color Space

We know that a color-imaging sensor's direct output is a set of three RGB
component color images. Therefore, a color image can be represented in an
RGB color space.

After digitizing an analogue color image, the output will be a set of
three matrices of pixels: one for the red component color, one for the green
component color and one for the blue color. Let IR, IQ and IB denote these
three matrices respectively. Then, we can represent a color image by

{ IR = {r{i,j), l<i<ry and 1 < j < rx}
IG = {g(i,j), l<i<ry and 1 < j < rx} (7.30)

IB = {b(i, j), 1 < i < ry and 1 < j < rx}
where (rx, ry) is the image resolution.

The three component color images, as shown in Fig. 7.24, are an example
of the display of (In, IG, IB). Given a pixel at location (i, j), the component
colors at this location will be [r(i, j),g(i,j),b(i,j)], which define the color
coordinates of a point in RGB color space. If a color coordinate is encoded

Visual Sensory System of Robots 427

with 8 bits (one byte), a pixel's color coordinates [r(i,j),g(i,j),b(i,j)] at
location (i,j) will require 24 bits (three bytes) to store the RGB values.

Eq. 7.30 indicates that we are only able to describe component color
images in the form of two-dimensional matrices. In other words, by default,
there is no generic parametric representation of color distribution in an
image.

RGB color space does not explicitly represent a color's chrominance and
luminance. If it is necessary to explicitly represent a color's chrominance
and luminance, the only solution is to project the RGB color space onto
another appropriate color space. We will discuss this further in the next
chapter.

It is worth noting that RGB color space is not perceptually uniform.
This means that the same numerical differences in RGB values do not pro-
duce the same physiological sensation of color difference. For example, the
difference (AR = 100 - 80, AG = 50 - 20, AB = 150 - 100) is numerically
equal to the difference {AR = 120 - 100, AG = 70 - 40, AB = 170 - 120).
However, the perceived difference in colors by the brain is not the same.
This phenomenon is called perceptual non-uniformity.

7.5.1.2 Representation of Intensity Images

The processing and computation of three two-dimensional matrices will be
expensive. However, a lot of useful visual information, such as uniformity
and discontinuity, is encoded into luminance value Y. Thus, it is sufficient
to process intensity images in order to derive geometric information about
a scene. If we know the value of a set of RGB component color images, and
compute the weighted average, we can obtain the corresponding intensity
image as follows:

Ij = {I{i,j), l<i<ry and 1 < j < rx} (7.31)

where

I(i, j) = 0.3 • r{i, j) + 0.59 • g{i,j) + 0.11 • b(i, j). (7.32)

As human brain interprets the three primary colors (red, green and blue)
differently, the weighting coefficients are chosen to be different. When the
numerical values of the three primary colors are the same, the perception
of green is the strongest. Moreover, the sensation of red is stronger than
that of blue. Thus, the coefficient for green is larger than the coefficient for
red, which in turn, is larger than the coefficient for blue.

428 The Fundamentals of Robotics: Linking Perception to Action

Example 7.6 For the color image in Example 7.5, the application of
Eq. 7.32 yields the intensity image, as shown in Fig. 7.25. We can see
that there is almost no loss of visual information such as continuity and
discontinuity.

•^B' • - - C ^ B ^ M B ^ B H

Fig. 7.25 Example of an intensity image.

oooooooooooooooooo
From this example, we can see that an intensity image largely, if not

totally, preserves the uniformity and discontinuity of the chrominance dis-
tribution across an image plane.

7.5.2 Geometric Modelling

The geometry of a scene, in the form of posture, motion, shape and curved
surface, is not explicitly measured by a visual-sensory system. The ultimate
goal of a robot's visual perception system is to infer the geometry of a scene
from digital images. We will study this topic further in the next chapter.

However, let us consider the simplest case: a single point. There is a
deterministic relationship between the image coordinates of a point and its
coordinates in a three-dimensional space. In fact, Eq. 7.15 indicates that
the position of a point in a camera's image plane depends on the position of
this point in a three-dimensional space. Therefore, it is important to know
how the coordinates (X, Y, Z) in a three-dimensional space are related to
the coordinates (u, v) in a camera's image plane.

Visual Sensory System of Robots 429

7.5.2.1 Pin-hole Model and Perspective Projection

Refer to Fig. 7.10. The area in focus on the image plane can be treated as
a planar surface. In addition, the aperture of the iris is usually very small
compared to the physical dimension of the objects in a scene. Thus, we
can treat an optical lens as a small hole. Accordingly, the optical lens of a
camera is described by a pin-hole. In this way, the formation of an optical
image follows a perspective projection, as shown in Fig. 7.26a.

Actual Image Plane

/

/ y

(a) Pin -hole camera model

Actual Image Plane Equivalent Image Plane

/ 7 _--—
(b) Equivalence of perspective projection

Fig. 7.26 Illustrations of pin-hole camera model and perspective projection, including
the assignment of coordinate systems.

Mathematically, perspective projection is a projection under which all
points are projected onto a common plane by following straight lines which
intersect at a common point known as the center of projection. When a
camera is described by a pin-hole model, the center of projection is the
center of the optical lens.

430 The Fundamentals of Robotics: Linking Perception to Action

7.5.2.2 Assignment of Camera Coordinate Systems

For the study of robot kinematics, we adopted the strategy of assigning a
coordinate system (frame) to a rigid body. A camera is a physical entity
(rigid body) as well. Thus, a coordinate system (or frame) can be assigned
to it. In this way, the camera's posture is described by the posture of its
frame.

When we assign a frame to a camera, it is common to define the Z axis
along the optical axis and the origin of the camera frame at the center of
projection, as shown in Fig. 7.26a. By default, a frame is a right-handed
coordinate system. However, we can choose the X axis to be in the direction
parallel to the imaging sensor's rows, and the Y axis to be in the direction
parallel to the imaging sensor's columns.

7.5.2.3 Assignment of Image Coordinate Systems

Physically, a camera's image plane is behind the center of projection, as
shown in Fig. 7.26a. Distance fc between the image plane and the center
of projection is known as the focal length of a camera. In a camera frame,
the value of this focal length is negative because the image plane is on the
negative Z axis.

For the sake of convenience, we can make use of the equivalent image
plane on the positive Z axis, as shown in Fig. 7.26b. The equivalent image
plane and the actual image plane are symmetric about the XY plane of a
camera frame. Under a perspective projection, the geometric properties of
the objects on these two planes are strictly equivalent except for the signs
of the values.

By default, the equivalent image plane is also called an image plane.
Since an image plane can be treated as a physical object, it is necessary
to assign a coordinate system to it. A common way to do this is to define
the origin of the image frame at the intersection point between the image
plane and the optical axis (the Z axis). The x axis is parallel to the X axis
of the camera frame, and the y axis is parallel to the Y axis of the camera
frame. Fig. 7.26b illustrates the assignment of an image frame.

7.5.2.4 Determination of Image Coordinates

As we discussed above, a camera will contain two frames: one frame for the
camera, and the other for its image plane. If P is a point in the camera
frame, and p is the projection of P onto the image plane, the question is:

Visual Sensory System of Robots 431

What is the relationship between the coordinates of P and the coordinates
of p?

[jj | I | j I |"JJ'|-|-[| E^-^;;~f] j | | j • «
""i"E::::::i2^:i: -"- =:::
: -I — - : - : — -}:- -

v : I : : : : : : : : :±: : :J- '"»«:: : :

i *y ; :

OJZSCJLL I i

/ ""* > Q

Image Plane

Fig. 7.27 Illustrations, including the projection of coordinates from camera space onto
an image plane, and an image array.

Refer to Fig. 7.27. Assume that P is located on the YZ plane of the
camera frame. In this case, P = (0, CY, cZ)t. According to the perspective
projection, p will fall onto the y axis of the image frame. Let us denote
p = (0, j/). From the fact that triangle PPiOc is similar to triangle poOc,
we have

cv c 7-=4- (7-33)
y Jc

or

y = fc»~- (7-34)

Similarly, let us assume that point Q is located on the XY plane of
the camera frame. Under a perspective projection, image q of point Q will

432 The Fundamentals of Robotics: Linking Perception to Action

fall onto the x axis of the image frame. Since triangle QQ\OC is similar to
triangle qoOc, we have

cv cv

or

* = / C . T | . (7.36)

In general, if the coordinates of point P in the camera frame are
(CX, CY, cZy, and the coordinates of its image p are (x,y), the follow-
ing relation will hold:

(x = fc-c4
{ (7.37)

Eq. 7.37 is the mathematical description of a perspective projection
from a three-dimensional space into a two-dimensional plane. Eq. 7.37 can
also be rewritten in matrix form as follows:

/x\ //cooo\ r * \
* • \y = 0 / c0 0 • (7.38)

\ i) V o 0 1 0 / [f j

where s is a scaling factor, (x, y, 1)* the equivalent projective coordinates
of a point in the image frame (see Chapter 2), and (CX, CY, CZ, 1)* the
equivalent projective coordinates of a point in the camera frame.

From Eq. 7.38, we can see that the coordinates (x,y, s) will be uniquely
determined if a set of (CX, CY, CZ, 1)* is given as input. However, the
coordinates (CX, CY, cZ)t in the camera frame cannot be determined if
the coordinates (x, y) in the image frame are known. This is because the
scaling factor s is unknown.

If we define Eq. 7.38 as the forward projective-mapping of a robot's visual
sensory system, the recovery of (CX, CY, cZ)t from (x, y) can be defined
as the inverse projective-mapping. With a single camera and no a priori
knowledge about an object or scene under consideration, there will be no
unique solution to inverse projective-mapping. We will study this problem
as well as some solutions in the next chapter.

(7.35)

Visual Sensory System of Robots 433

7.5.2.5 Determination of Index Coordinates

For the sake of programming, it is convenient to use the indexes to indicate
a pixel's location in a two-dimensional array. These indexes are called the
index coordinates of a pixel.

Refer to Fig. 7.27. The row and column indexes indicate that there is
an index coordinate system associated with an image array. In the memory
which stores digital images, the row index of a two-dimensional matrix is
counted from top to bottom while the column index is counted from left to
right. If we denote u the axis for the column index, and v the axis for the
row index, the index coordinate system uv is assigned to an image array, as
shown in Fig. 7.27. For example, the index coordinates for the upper-left
pixel will be either (0, 0) (u = 0 and v = 0 in C-programming language) or
(1,1) (u = 1 and v = 1 in the MATLAB programming environment).

Now, the question is: What is the relationship between image coordi-
nates (x, y) and index coordinates (u, v)7

From our study of digital-image formation, we know that a digital image
can be obtained in two ways:

• Direct Output from an Imaging Sensor:
It is best to directly perform A/D conversion with the output from an
imaging sensor as there will be no loss of chromatic information caused
by the back-and-forth conversion from analogue images to video, and
from video back to digital images. If a digital image is directly obtained
from the A/D conversion of an imaging-sensor's output, a pixel will
correspond to an image-sensing cell. And, an image-sensing cell can be
treated as a rectangular surface. If (Cx,Cy) defines the dimension of
an image-sensing cell in the x and y directions of the image plane, the
size of a pixel, represented by (Dx,Dy), will be

\n'=r' (7-39)
I uy = °y

• Direct Output from Image Digitizer:
Today, it is still common to use an image digitizer to convert an ana-
logue video into a stream of digital images. When a digital image is
obtained from digitizing an analogue video, a pixel's size depends on
the sampling steps along the columns and rows of an imaging sensor.
If (Sx, Sy) are the sampling steps for digitizing an analogue video, then

434 The Fundamentals of Robotics: Linking Perception to Action

we have

(DX=SX

I uv — av

As we studied earlier, the resolution of a digital image is different from
the resolution of an imaging sensor. In general, (Sx, Sy) is not equal to
(CX,Cy).

Now, let us assume that the origin of an image frame is at (UQ, I>O), with
respect to the index coordinate system assigned to the imaging sensor. Let
(Dx, Dy) be the physical dimension of the pixels in the image array. If the
index coordinates corresponding to image coordinates (x,y) is (u,v), then
we have

{ -§- = u - u0

(7.41)

or

\ (7-42)

where -^- and -^- are the number of digitizations which occurred along a
row and column respectively.

Eq. 7.42 can also be rewritten in matrix form as follows:

(u\ / £ 0 uo\ /x\

7.5.2.6 Intrinsic Parameters of Cameras

Consider a camera represented by the pin-hole model. Eq. 7.38 describes the
relationship between the coordinates in the image frame and the coordinates
in the camera frame. And, Eq. 7.43 describes the relationship between the
image coordinates and the corresponding index coordinates. If we eliminate

(7.40)

(7.43)

Visual Sensory System of Robots 435

image coordinates (x, y, 1)*, the combination of Eq. 7.38 and Eq. 7.43 yields

s.lv\= ' P c . cz (7.44)

with

ffx 0 uo0\
lPc = O / ^ o O (7.45)

V 0 0 1 0 /

and

Jx ~ Dx

(7.46)

A - A -
Matrix /PC describes the perspective projection of coordinates from the

camera frame to the corresponding index coordinate system. We call such
a matrix a projection matrix.

In Eq. 7.45, fx and fy are two new variables. They can be interpreted
as the focal lengths of the camera in the directions parallel to the x and
y axes respectively. The four parameters fx, fy, u0 and v0 are commonly
called the intrinsic parameters of a camera.

In general, it is difficult, if not impossible, to know a camera's intrinsic
parameters. This is because the parameter specifications of the camera and
lens are not accurate. Interestingly enough, a camera's intrinsic parameters
can be estimated by a process known as camera calibration. We will study
camera calibration further in the next chapter.

If we know a camera's intrinsic parameters, the index coordinates (w, v)1

can be uniquely determined if (CX, CY, cZ)t is given as input. However,
(CX, CY, cZy cannot be determined for any given (u, v)* because the scaling
factor s is unknown.

7.6 Digital Image-Processing Hardware

"An image is worth a thousand words" implies that a large amount of
information can be extracted from images. However, human brain's neural
computing network is highly parallel and is able to process, in real-time, a

436 The Fundamentals of Robotics: Linking Perception to Action

large amount of information captured by all the five sensory systems of the
body.

Now, if a robot's visual perception system must respond in real-time to
streams of video images captured by a visual sensory system, it is necessary
to have an appropriate image-processing hardware to support this need.

7.6.1 Host Computers

Today's popular computing platform is the personal computer (PC), which
is made from Intel's microprocessors (e.g. the Pentium). Due to the prolif-
eration of web-based applications, such as the video-phone and net-meeting,
today's PC's are capable of interfacing with all kinds of digital cameras and
web-cams through the Universal Serial Bus (USB), or Fire Wire. Because
of the speed limitations, USB and Fire Wire are suitable for producing low-
resolution digital videos. If an application requires high-resolution digital
video, it is necessary to form a visual-sensory system which consists of an
electronic camera, image digitizer and host computer, as shown in Fig. 7.28.

Refer to Fig. 7.28. A host computer normally includes:

• A microprocessor for all computational tasks,
• An external bus, such as Peripheral Component Interconnect (PCI), for

interfacing with external devices or systems, such as an image digitizer,
• A hard-disk for nonvolatile storage of images and results,
• A graphic card, which packs digital data (including images) into a video

of a specific graphic format, such as VGA, SVGA or XGA,
• A monitor which displays analogue videos in a graphic format which is

different from PAL or NTSC,
• Mouse and keyboard for interfacing with the user or programmer.

In general, a robot's host computer can also serve as an interface be-
tween the robot and the human master. Through the host computer, a
human master can develop application programs for the robot to execute.

7.6.2 DSP Processors

Normally, a pixel's component color is encoded with one byte. For a color
image of the size of 512 x 512, the data size, in terms of the number of
bytes, will be 3 x 512 x 512 or 768 kilobytes (KB). (NOTE: 1KB is equal
to 1024 or 210 bytes). Therefore, it is quite a heavy computational load for
a robot to process a sequence of color images in real-time.

Visual Sensory System of Robots 437

[pH [Kl H H MpFPU
1UJ_T

Crossbar Network

|On-boardRAM"[

DSP Processor

r^1^J^ C r , ° P r °" S S O r 1<—»l I KimagePigitizer]^-|camera Q
" U ^ * (Pentium) , , I , =H I l \ |

1 • I | | R A M | ~ s p - ' Pipeline'

PCI < HvRAM|hM°duH 1~[

"* * H D ' ' ' . I

1—J Bus / ' (v^Tl
PVGA , \< H I ' ' ' fMonitor
I IVRAMI -r1 y / 1 vT.;

r PC — — —
CM CM CM

LMonitorJ A I A I A I

| ^ -4 U T | t 1
/ - | Cross Port Switch

< | > ^ >< j '

I Multiple-Port RAM I

CM: Computing Module

Fig. 7.28 Illustration of the generic image-processing hardware, including the host com-
puter, image digitizer, DSP processor and pipelined image-computing modules.

One common way to reduce the computational load of the host computer
is to add a dedicated microprocessor on the board of the image digitizer. A
popular type of on-board microprocessors are the Digital Signal Processors
(DSP), such as C80 from Texas Instruments, Inc.

As shown in Fig. 7.28, a DSP microprocessor is made up of five proces-
sors, each of which has its own Arithmetic and Logic Unit (ALU). One of
them is the master processor (MP), with a floating-point processing unit
(FPU). And, the other four are co-processors, which can only perform com-
putations with integers.

A DSP microprocessor usually has its own on-board memory (RAM)
which can store a large amount of image data. An internal bus, known as
the cross-bar network, supports the fast exchange of large streams of bytes
among the processors and on-board memory (RAM).

438 The Fundamentals of Robotics: Linking Perception to Action

Example 7.7 Fig. 7.29 shows an example of a color image digitizer
with an on-board DSP microprocessor. This DSP microprocessor is pro-
grammable through the host computer.

Fig. 7.29 Example of an image digitizer equipped with a DSP microprocessor.

oooooooooooooooooo

7.6.3 Pipelined Computing Modules

Sometimes, it is more efficient to implement some computational tasks with
well-established algorithms using dedicated hardware instead of dedicated
processors (e.g. certain convolution filters for image feature-enhancement
or pre-processing).

A filter, or algorithm, implemented on a chip is called a computing
module (CM). Since a filter's output can be another filter's input, a series
of computing modules can be linked together to form a pipe. This pipe is
known as an image-processing pipeline. (See Fig. 7.28).

The configuration of an image-processing pipeline is user-programmable.
This means it is easy to form a sub-pipeline for a given computational task.
For example, we can form the sub-pipeline: CM1 —> CM3 —> CM2 or CM2
-> CM3 -> CM1 even if CM1, CM2, CM3 and CM4 are all present in a
pipelined image-processing hardware. This flexibility for reconfiguring an
image-processing pipeline is achieved with a cross-port switch which ties
the pipeline's computing units together. In fact, a cross-port switch makes

Visual Sensory System of Robots 439

the pipelined image-processing hardware behave like the network in a star-
topology.

Example 7.8 Fig. 7.30 shows an example of a color image digitizer with
pipelined image-processing hardware. This image-processing pipeline is
programmable through the host computer.

Image Dipili/ur Pi|vlmcJ
" • ^ (. ' i i ipuliml MKIIIIU-!,

Fig. 7.30 Example of an image digitizer equipped with an image-pro cess ing pipeline.

000000000000000000

7.6.4 Parallel Computing Platforms

For advanced computations in real-time such as 3-D reconstruction, face
recognition, hand-gesture recognition, and conceptual symbol-learning, it
is necessary to use a cluster of microprocessors in order to supply the com-
putational power required. In general, a robot's visual sensory and percep-
tion systems should be on a parallel computing platform because a robot
normally has two or more electronic eyes.

Depending on the configuration of the processors and memories, par-
allel computing platforms can be divided into two categories: a) Multiple
Instructions Single Data (MISD), and b) Multiple Instructions Multiple
Data (MIMD). For an MISD platform, all processors have equal access to
the shared memories. A DSP microprocessor is a mini-MISD computing
platform, because its memory is shared among its five processors. In gen-
eral, however, an MISD computing platform has 16 or more processors. It

440 The Fundamentals of Robotics: Linking Perception to Action

A, ,
——I microprocessor < y $ $
I/O < - ^ (Pentium) , , * 1 i * 1

1—T—' | |RAM | <—> Computer 1 * * Computer 2 * >
C^^> Bus ^ ' '

4 *" H 0 I 1 I 1
L J •< >• Computer 3 <-> Computer 4 * >

I vr.A |<—> , * , , * 1
1 IVRAMI < — > Computer 5 O Computer 6 <">

jUggilgrjj I ImagrDigitiz~e7~|< [camera O
Z / VRAM [| 1

< f

Video

Monitor

Fig. 7.31 Illustration of the generic image-processing hardware, including the host com-
puter, image digitizer, and an array of parallel processors.

is a stand-alone computing system which is very different from a personal
computer. As a result, it is expensive and unpopular.

An MIMD computing platform is composed of a cluster of networked
processors. With the availability of USB and FireWire ports in today's
personal computers, it is easy to form an array of personal computers,
as shown in Fig. 7.31. This architecture is similar to a transputer-based
parallel computing platform (no longer popular). The USB is a serial com-
munication standard, and a high-speed USB can transmit 12 Megabits per
second (Mbits).

IEEE-1394 (or Firewire) is a new serial communication standard for
computers and peripheral devices. It is a universal standard for intercon-
necting all digital devices such as computers and digital cameras. And, the
basic working principle behind it is asynchronous serial communication (see
Chapter 6). The transmission speed of the FireWire falls within the range
of lOOMbits to lOOOMbits, making it a good way to communicate digital
images among an array of microprocessors.

Instead of using serial communication links such as the USB or FireWire,
it is possible to make use of the Internet because today's personal computers
are all Internet-enabled.

Visual Sensory System of Robots 441

As we mentioned in Chapter 6, the biggest challenge now is how to
develop a real-time programming language (or real-time operating system)
which can effectively manage the distributed processing powers and mem-
ories, in the form of a cluster of networked microprocessors.

7.7 Summary

Although the electronic camera is one of the most important components
in the robot, it is a common fact that the robotics- and vision-research
communities have made little effort in its development. Rather, this has
been fuelled by competition in consumer products (e.g. digital cameras,
camcorders) and the media industry.

Based on our studies in this chapter, we should realize that the visual
sensory system is of fundamental importance to the humanoid robot or
other autonomous robots. Without visual sensory input, the important
perception-decision-action loops cannot function properly at all. Therefore,
we should not neglect the importance of the continuous improvement of
electronic cameras.

In this chapter, we learned that an electronic camera is a device which
is part of a robot's visual sensory system and imitates the human eye.
Functionally, the optical lens of a camera focuses incoming light into a
small planar area, known as an image plane. The focused light's intensity
is then converted into corresponding electrical signals by an imaging sensor.
Subsequently, the electrical signals are packed with the timing signals to
form videos which can be either analogue or digital.

We also learned that when an optical lens focuses incoming light onto an
image plane, it is necessary to control the light intensity with the help of a
device called an iris. In addition, we learned that one way of sensing colors
selectively is to make use of a light-splitting and color-filtering mechanism.
In this case, the output from an imaging sensor will be three streams of
RGB component color images.

Since 1970s, electronic imaging has been dominated by CCD imaging
sensors. A CCD image-sensing cell looks like a pair of coupled capacitors:
one for sensing incoming light, and the other for storing electric charges. It
is necessary to form an array of CCD sensing-cells in order to convert an
optical image into a corresponding electronic image.

Since 1990s, the CMOS imaging sensor has become the new device for
electronic imaging. A CMOS image-sensing cell looks like a current gener-

442 The Fundamentals of Robotics: Linking Perception to Action

ator. Output from a CMOS image-sensing cell is proportional to the lights
striking its surface. As CMOS imaging sensors are produced with the same
equipment as that used in the manufacturing of microprocessors and mem-
ory chips, they are more cost-efficient. And this broadens the horizon for
the development of the smart camera on a chip. This will be a tremendous
advantage for the future of embedded & vision-guided applications such as
the humanoid robot.

As electronic cameras cater to the video entertainment and media in-
dustry, electronic camera output must follow a certain video standard (e.g.
PAL and NTSC). In order to conform to video standards, an imaging sen-
sor's direct output must undergo signal conversion. This conversion will
result in the loss of chromatic information, and thus, it is undesirable for a
robot's visual sensory and perception systems.

Before a computer can process an image, it is necessary to convert ana-
logue video into a stream of digital images. This can be done by using an
image digitizer. If a color camera's output is an image digitizer's input,
the image digitizer's output will be three streams of RGB component color
images. These digital images can be represented by three two-dimensional
matrices. In order to reduce the computational load caused by three two-
dimensional matrices, it is sufficient to process an intensity image which
preserves most visual information and can easily be obtained by a weighted
sum of the RGB component color images.

Finally, the geometric aspect of an image formation can be treated ap-
proximately as a perspective projection. If we know a camera's intrinsic
parameters, the coordinates in the camera frame can be uniquely projected
onto the index coordinates in the image plane. However, when the coor-
dinates are projected from a three-dimensional camera space onto a two-
dimensional image space, a dimension is lost. For a robot's visual perception
system, the ultimate challenge is to recover this missing dimension. We will
discuss this challenge further, in the next chapter.

7.8 Exercises

(1) What is light?
(2) Does a photon's energy depend entirely on a light's wavelength?
(3) What is the index of refraction?
(4) Prove Eq. 7.13.
(5) Explain the difference between the human eye's central vision and its

Visual Sensory System of Robots 443

peripheral vision.
(6) What is a circle of confusion?
(7) Draw a graph to illustrate the fact that a smaller aperture will reduce

the dimensions of the confusion circles.
(8) Human vision is intrinsically color vision. But, is it possible for a robot

to see a colorful world?
(9) Explain how to design an active pixel.

(10) Prove Eq. 7.22.
(11) Explain the working principle of a CMOS imaging sensor.
(12) Explain the working principle of a CCD imaging sensor.
(13) Explain the advantages and disadvantages of a CMOS imaging sensor

vs. a CCD imaging sensor.
(14) What is a video camera's output?
(15) What are the typical types of video?
(16) Explain why video camera's output is usually not digital.
(17) Explain why an image digitizer is necessary for a robot's visual sensory

system.
(18) Is a digital image's resolution equal to that of an imaging sensor's?
(19) When digitizing a PAL video, the resolution of the digital images is set

to be (512, 512). What is the frequency of the pixel clock inside the
image digitizer?

(20) How is a color image represented inside a robot's "brain"?
(21) How do you obtain the intensity image from the component color im-

ages?
(22) Prove that the projection matrix from a camera frame's coordinates to

the index coordinates with respect to the image array is:

fix 0 u00\
Ipc=\ 0 /„ i>0 0 I .

\ o o i o/

(23) Explain why a robot should have dedicated computing hardware as
part of the visual sensory system.

(24) What are the possible ways to form a parallel computing platform for
image-and-vision computing.

(25) What issues are related to the use of a parallel computing platform?

444 The Fundamentals of Robotics: Linking Perception to Action

7.9 Bibliography

(1) Hecht, E. (1987). Optics, Addison-Wesley.
(2) Galbiati, Jr. L. J. (1990). Machine Vision and Digital Image Process-

ing Fundamentals, Prentice-Hall.
(3) Gonzalez, R. C. and R. E. Woods (1992). Digital Image Processing,

Addison-Wesley.
(4) Ng, K. K. (1995). Complete Guide to Semiconductor Devices,

McGraw-Hill.
(5) Pratt, W. K. (1991). Digital Image Processing, John Willey and Sons.
(6) Umbaugh, S. E. (1998). Computer Vision and Image Processing,

Prentice-Hall.

Chapter 8

Visual Perception System of Robots

8.1 Introduction

We constantly perform all kinds of activities and this dynamism depends
on our ability to act and interact with our environment. This autonomy
and freedom of mobility in turn depends on our powerful vision.

While blind people can live very rewarding lives, it is true that without
vision, people's activities are highly limited, their knowledge acquisition is
tremendously compromised, human interaction is difficult and, in general,
mental and physical development is slowed.

This is also true for a humanoid robot or any intelligent artificial system.
Vision is an ability which enables autonomy in action-taking, knowledge
acquisition, and social interaction with humans. In fact, there can be no
humanoid robot if there is no competent (artificial) vision.

Image processing, computer vision, and pattern recognition are three
related but distinct subjects. These three subjects form the important
pillars of machine perception and we have accumulated a great deal of
knowledge about these fields over the past 30 or 40 years. I do not intent
to cover all this knowledge here, but rather to study those topics of primary
importance to motion execution.

In this chapter, we will discuss the basic computational principles and
methodologies of image processing, feature extraction and computational
vision, which are considered to be relevant to the development of a hu-
manoid robot. We will place special emphasis on the computations of geo-
metrical features which are useful for determining an object's posture and
motion in a scene.

445

446 The Fundamentals of Robotics: Linking Perception to Action

8.2 The Basics of Visual Perception

From Chapter 7, we know that a visual-sensory system's output is digital
images. This output will be the visual-perception system's input. One may
question why we are concerned about a visual-perception system which
takes digital images as input?

8.2.1 A Process of Visual Perception

From a systems point of view, artificial vision is an information process
that takes digital images as input, and produces descriptions of the ob-
jects in a scene as output. This input-output relationship is illustrated in
Fig. 8.1. Those who are familiar with computer graphics can easily see
that the visual-perception process is the inverse of the computer-graphics
process. In computer graphics, the goal is to produce realistic images or
image sequences from descriptions of objects and characters in a (virtual)
scene.

Vis ion Process. ' " <•
„,-••, I 'rv / • <

I \ision ! | Cruphics f

"""*. Ohicil "*=^- —•

Vision Attributes _',- —1___

- - • * " "'" "~ r *

'.' (^"I IK- IM • (.' \ | , |VJI. I IKC ~.J

{ I1 in j ^ M i l ^ M , . î ' . I . I . . ^ i I n.n i j<^ I .in '•

i Vision Applications

1 \ i>>ii.il (•uul . i iki: I I Kimwk'Jpi1 .\ii |in->ilii'ii

j ML IMIII'MICIII In&pixuoii ! IUcnuiiLuii(>]i [

Fig. 8.1 Illustration of the process, attributes and applications of a visual-perception
system.

Visual Perception System of Robots 447

Formally, we can define the process of visual perception as follows:

Definition 8.1 Visual perception is an information process which takes
digital images as input, and produces descriptions of the objects in a scene
as output.

In robot vision (and computer vision), a scene means the environment in
proximity to the robot. We can formally define the term scene, as follows:

Definition 8.2 A scene is a collection of objects and physical entities
which are in proximity to an observer such as a robot.

From our study of the robot's visual-sensory system, we know that the
process underlying it is very similar to the process underlying computer
graphics. In fact, outputs from these two processes are of the same na-
ture (digital images or image sequences). However, there is a fundamental
difference between them:

• In computer graphics, input is a precise description of objects in a
(virtual) scene.

• In a visual-sensory system, input is not known in advance and the
scene is real (not virtual).

Moreover, a robot's visual-sensory system does not explicitly output de-
scriptions of objects in a real scene, and therefore the visual-perception sys-
tem must infer them from digital images. In this way, the visual-perception
and visual-sensory systems complement each other.

The inference of geometrical features from images is a decision-making
process. We will study this topic further in Chapter 9. However, it turns out
that today's computers perform poorly when it comes to complex decision-
making. Whereas, humans can perform visual perception effortlessly, it is a
challenging task for a machine (including a robot) to do it with comparable
quality.

8.2.2 Attributes of Visual Perception

A physical object generally exhibits two types of properties:

• Physical properties such as smell, color, stiffness, electrical conductiv-
ity, and thermal conductivity, etc.

• Geometric properties such as shape (implicitly dimension), posture
(position and orientation), and motion (velocity and acceleration).

448 The Fundamentals of Robotics: Linking Perception to Action

As shown in Fig. 8.1, a digital image only preserves the appearance of an
object in terms of chrominance (color), luminance (intensity), and texture
(specific and regular distribution of chrominance and/or luminance). This
information combined with geometric features is useful for visual perception
because an object's most important attributes are its geometric properties.
In summary, a robot's visual-perception system will consider the following
attributes:

(1) Geometric properties, in terms of posture, motion, and shape,
(2) Appearance, in terms of chrominance, luminance, and texture.

An image is the projection of a scene onto a camera's image plane. In
a spatial domain, a scene is a three-dimensional (3-D) space, and an image
is a two-dimensional (2-D) plane. (NOTE: Time adds another dimension).
As one spatial dimension is lost, an image does not explicitly measure a
scene's geometric properties.

On the other hand, a digital image is a 2-D matrix of pixels, which, as
it is, doesn't contain any geometric information. Since a digital image only
preserves the appearance of objects in a scene, their geometric properties
must be inferred through the processing of chrominance, luminance, or
texture information. Thus, a visual-perception system always starts with
image processing and feature extraction which computationally manipulate
chrominance, luminance, or texture information in order to obtain useful
geometric information.

8.2.3 Applications of Visual Perception

A visual-perception system is capable of recovering the geometry and ap-
pearance of a scene from images. This capability is indispensable for a
system such as the humanoid robot which should autonomously act and
interact in a dynamically changing environment.

Refer to Fig. 8.1. Vision-enabled, autonomous behaviors can be classi-
fied into these categories:

(1) Visual Guidance:
Walking, manipulating, and grasping are three types of daily human
activities. The autonomy we gain from visual guidance gives us a sense
of freedom in performing these activities. For a humanoid robot, it is
necessary for its visual perception system to link tightly with the exe-
cution of activities, such as walking, manipulating, and grasping. From

Visual Perception System of Robots 449

the viewpoint of control, a humanoid robot should adopt as much as
possible the image-space control scheme for most of its motion execu-
tions.

(2) Knowledge Acquisition:
Our mental and physical abilities develop through real-time interaction
with a dynamically changing environment. One important aspect of
mental development is knowledge acquisition which results from the
comprehension of natural languages (e.g. English). With the help
of a visual-perception system, it is easy for humans to read, observe
and associate meanings with conceptual symbols. A humanoid robot's
visual-perception system will also enable it to develop its ability to
acquire knowledge through the use of a language.

(3) Visual Inspection:
A successful vision application used in industries is visual inspection
for quality control. The quality of a product is measured with respect
to the product's design specifications. The purpose of quality control
is to minimize variation in a product's parameters with respect to the
reference values stipulated by the design (the mean and standard de-
viations). A subgroup of the product's parameters are usually related
to the uniformity of geometry and appearance (i.e. shape, alignment,
dimension, color, smoothness of surface, etc). Thus, automatic visual
inspection is a must, especially given the increase in the rate of pro-
duction and the decrease in product size (e.g. semiconductors).

(4) Visual Identification:
Geometry and appearance may also provide other useful information,
such as identity, emotion, and language symbols. Two typical examples
of visual identification in the domain of bio-metrics are finger-print and
face identifications. In the area of man-machine interaction, the ability
to decode meaning and emotion from body movements and gestures is
very important in the development of a sociable humanoid robot.

(5) Visual Measurement:
It is worth noting that human vision is not metric. In terms of appear-
ance, color perception in human vision is the physiological and psycho-
logical interpretation of lights by our brain. Moreover, color perception
depends on the lighting conditions of a scene. On the other hand, hu-
man vision does not metrically infer the geometry of a scene or object.
For example, human vision is unable to guess the length of an object
with a reasonable level of precision. This is not the case with a robot's
visual-perception system. In fact, an electronic camera can serve as

450 The Fundamentals of Robotics: Linking Perception to Action

a scientific instrument for the measurement of color (colorimeter) and
geometry (photogrammetry or range finder).

In this chapter, we will study the principles and methodologies relevant
to the process of inferring geometry from digital images.

8.2.4 Information Processing in Visual Perception

We know that a color image inside a robot's visual-sensory or perception
system is represented by three image arrays (2-D matrices) as follows:

{ IR = {r(v, u), 1 < v < ry and 1 < u < rx}
IG = {g\v, u), l<v<ry and 1 < u < rx} (8.1)

IB = {b(v, u), 1 < v < ry and 1 < u < rx}.
These represent the Red, Green and Blue (RGB) component color images.
In Eq. 8.1, (ry, rx) is the image resolution (i.e. the number of columns and
rows in an image array). And, (u, v) are the index coordinates. A set of
RGB component color images contain both the chrominance and luminance
information about a scene being projected onto an image plane.

By computing the weighted average of RGB component color images,
an intensity image can be obtained as follows:

/ / = {I(v, u), l<v<ry and 1 < u < rx] (8.2)

where

I(v, u) = 0.3 • r(v, u) + 0.59 • g(v, u) + 0.11 • b(v, u). (8.3)

As we already mentioned, an intensity image encodes the luminance of a
scene being projected onto an image plane. Thus, a digital image explicitly
measures the chrominance, luminance, and texture of a scene, but not its
geometry. Since the most useful information relevant to motion execution
is the geometry of a scene, it is necessary to find a way to infer this from
the available information.

Refer to Fig. 8.2. The process of inferring geometry from digital im-
ages starts with image processing, followed by feature extraction and fi-
nally, geometry measurement. Let us consider intensity images as input
to image processing. As shown in Fig. 8.2, the flow of information in a
visual-perception system generally involves the following modules:

Visual Perception System of Robots 451

Geometry . Feature ^ Image ^ Visual
Measurement | Extraction [| Processing | I Sensors

ir y •

Recognition |» |

TT , .. _ Ml Mental 4 ! I Real J
Understanding 4 M I : I 1

I T *V World / : f ~ World /

Representation •

\r

• Decision-making • Action-taking

Fig. 8.2 Illustration of the flow of information in a visual-perception system.

Image Processing

A digital (color) image explicitly contains the chrominance, luminance, and
texture of a scene. The corresponding geometric properties are implicitly
encoded into the uniformity, continuity, and discontinuity of the chromi-
nance, luminance, and texture. Therefore, the primary goal of image-
processing, with regard to the perception of geometry, is to detect the
uniformity, continuity, and discontinuity in a digital image's chrominance,
luminance, and texture. This can be achieved with some specific linear
and/or nonlinear filters.

Feature Extraction

Image features are closely related to the uniformity, continuity, and discon-
tinuity in terms of chrominance, luminance, or texture. The presence of
image features can be caused by various physical reasons. But, the main
causes are the object's geometry and color. For example, the discontinuity
of chrominance or luminance may be due to the discontinuity of an ob-
ject surface's normal vectors, depth, and color. Therefore, image-feature
extraction is a first and necessary step towards geometry inference.

452 The Fundamentals of Robotics: Linking Perception to Action

Geometry Measurement

The spatial locations of image features are measured with respect to the
index coordinate system uv, which has no unit of measurement. There-
fore, it is necessary to know the relationship among the index coordinates
(u, v), the image coordinates (x,y), and the three-dimensional coordinates
(CX, CY, CZ) in a scene. In this way, it is possible to compute the actual
dimensions of image features. However, there is a loss of one spatial dimen-
sion when three-dimensional coordinates in a scene are projected onto an
image plane. And, it is still a question on how to reliably determine the
three-dimensional coordinates from images.

Object Recognition

Object recognition refers to the identification of objects in terms of geom-
etry, appearance, and meaning, from images. This is relatively easy in a
well-controlled and simple environment such as a production line, where
there are only a few types of products which are known in advance. How-
ever, it is difficult for a robot to perform object recognition. A crucial step
towards object recognition is to group image features into distinct sets,
each of which corresponds to only one physical object. This will be difficult
unless the robot is capable of extracting image features and making a reli-
able estimation of the geometry of a three-dimensional scene. Thus, these
remain the critical issues for a visual-perception system.

Image Understanding

Image understanding refers to the process of generating an ordered se-
quence of descriptions (or interpretations) of a scene, or the content in an
image. The success of image understanding depends on the robot's ability
to perform object recognition and description at a semantic level.

Knowledge Representation

The outcome of the linguistic description (or programming) of a scene is
naturally a representation of knowledge. Therefore, the visual-perception
system is important for knowledge acquisition which is based on real-time
interaction with the environment and others. The results of the linguistic
description or interpretation of the external world will largely contribute to
the formation of the robot's mental or virtual world.

Scientists around the world are actively researching object recognition,

Visual Perception System of Robots 453

image understanding, and knowledge representation. A systematic discus-
sion of these topics is beyond the scope of this book. Instead, we will
focus our study on the basics of image processing, feature extraction, and
geometry measurement, which the results can directly contribute to the
perception-decision-action loop, as shown in Fig. 8.2.

8.3 Image Processing

Refer to Eq. 8.2. By default, a digital image means an intensity image
and is a function of two spatial variables (w, v). However, a robot's visual
perception is a continuous dynamic process. The input to a robot's visual-
perception system is a sequence of digital images (or digital video, for short).
Thus, the exact representation of a digital image should be a function of
three variables: a) two spatial variables (u, v) and b) one temporal variable
t (time). In general, we can denote a digital image by Ir(v,u,t).

Accordingly, image processing will include all possible computational
techniques for the manipulation of image function Ii(v, u, t), with respect to
variables (u, v, t) and their neighborhood. Of all the possible computational
techniques, the two special types which are important to a robot's visual-
perception system are: a) image transformation and b) image filtering.

8.3.1 Image Transformation

Image transformation refers to all operations which aim at obtaining alter-
native representations of an input image. The result of an image transfor-
mation is called an image transform. In other words, an image transform
is an alternative representation of the input image. If there is no loss of
information after image transformation, the original input image can be
recovered exactly by an inverse transformation applied to the image trans-
form.

8.3.1.1 Frequency-domain Transforms

One well-known image transform is the Fourier Transform which is the
representation of an image in a frequency domain. If an input image at
time-instant t is represented by

Ii(v,u), 1 < v < ry and 1 < u < rx,

454 The Fundamentals of Robotics: Linking Perception to Action

the corresponding discrete Fourier Transform will be

ry rx

F(m, n) = ^ Y^ {Ti(v, u) • e~juJ™v • e-ju"u} (8.4)
v=l u=l

where

{ wm = ^ « (m - l) , Vme [l,rv]
(8.5)

wn = ^ . (n - 1) , V n e [l , r J .

The discrete Fourier Transform has an inverse, which is

Il{~V'u) = Tr 1 4 IT*£ £ {F(m,n).ei—.e^}. (8.6)
(.^ i J l ^ 1J v=l u=1

Since the Fourier Transform is an alternative representation of an input
image in a frequency domain, we can perform image feature extraction
either with the original image or with its Fourier Transform. However, for
geometric feature extraction, it is not wise to do the latter.

8.3.1.2 Time-domain Transforms

If the result of an image transformation is of the same nature as the input
image, it is called time-domain image transform.

Example of Color-Image Transformation

The result of the transformation from an RGB color image, represented by
Eq. 8.1, to the corresponding intensity image, represented by Eq. 8.2, is a
time-domain transform.

Mathematically, the red, green, and blue component colors define a
three-dimensional color space, commonly known as the RGB color space.
Any 3 x 3 matrix will transform the RGB color space into another space.
Of all the possible 3x3 matrices, the one below, used by NTSC TV, defines
the transformation from RGB color space to YIQ color space:

/R\ /0.30 0.59 0.11 \ /Y\
G = 0.60 - 0.27 - 0.32) • [/] . (8.7)

\BJ \0.21 -0.52 - 0 . 3 1 / \QJ

Visual Perception System of Robots 455

Since the matrix in Eq. 8.7 has an inverse, the transformation from YIQ
to RGB will be

/Y\ / -4 .8084 7.3086 - 9.2505 \ /R\
I ! } = \ 6.9074 - 6.7504 9.4192 • I G . (8.8)
\Qj \-14.8439 16.2742 -25.2922/ \B J

Example of Intensity-Image Transformation

Image thresholding which acts on an intensity-image's individual pixels, is
the simplest and most useful transformation. If we denote Ijn(v,u) the
input image, and Ijut(v,u) the corresponding image transform, the math-
ematical description of the image thresholding transformation is

(1 iU}n(v,u)>vo
I°ut(v, u) = I Vv€ [1, ry] and Vu e [1, rx] (8.9)

[0 otherwise

where VQ is a threshold value. If a pixel's luminance is encoded with one
byte, vo will fall within the range of 0 to 255. In fact, image thresholding
transformation divides an intensity-image's pixels into two groups: a) the
foreground pixels and b) the background pixels.

Threshold value VQ can be manually set if the nature of the input images
is known in advance. One useful bit of prior knowledge is the intensity

• histogram. This is a vector that each element encodes a luminance-value's
frequency of occurrence. If v denotes the luminance value which varies from
0 to 255, a histogram is simply described by

Hf = {h(v), Vv e [0, 255]} (8.10)

where v serves as the index from which to retrieve the frequency of occur-
rence h(v) of luminance value v.

Example 8.1 A common process for estimating the camera's parameters
in a robot's visual sensory system is calibration. This process normally
makes use of a special object called a calibration rig. This rig can be as
simple as a box with a grid or an array of regular patterns painted on one
or more of the box's facets. Fig. 8.3a shows an image of a calibration rig,
as seen by a robot's camera. Before the calibration process can begin, it is
necessary to precisely locate, in the image plane, the array of patterns on
the calibration rig.

456 The Fundamentals of Robotics: Linking Perception to Action

^BK ^HrS-ag'' « • • • • »

(a) Input Image (b) Image Transform

Fig. 8.3 Example of image-thresholding transformation: a) input image and b) image
transform.

In this example, we first compute the intensity histogram. Refer to
Fig. 8.4. We can see that there are two dominant peaks in the histogram,
which are separable around the index value 80. So, we choose ô = 80.
Fig. 8.3b illustrates the result of image-thresholding transformation when
v0 = 80. Clearly, the array of patterns on the calibration rig has been
isolated from the other objects. (There is only one exception to the pattern
at row 2, column 1).

1500 - 1 ' ' " ' ' r-

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ — • B E E . . — illllll,,,.

0 50 100 .-- — 250

Fig. 8.4 Example of a histogram.

Visual Perception System of Robots 457

oooooooooooooooooo
As shown in the above example, it is possible to automatically determine

the threshold value by analyzing the intensity distribution in an image.
A simple and practical algorithm automatically determining the threshold
value is Otsu's method. This method evaluates all possible threshold values
ranging from 0 to 255, and chooses the one which minimizes the variances
of luminance of both the foreground and background pixels.

8.3.1.3 Spatial Transforms

Mathematically, we can also manipulate spatial variables (u, v) without al-
tering the luminance value. The outcome of a transformation acting on
spatial variables (u,v) is called a spatial transform. If we denote I}n(v,u)
the input image and Ifut(vi,Ui) the output image, a general spatial trans-
formation can be described by

/ r * K « i) = #*(«,«), Vv e [!,»•„] and \/u e [l,rx] (8.11)

where

/uA (a b c\ /u\

••(v-ltuHy- (812)
In fact, Eq. 8.12 represents the following types of spatial transformation:

• Projective Transformation, if (g,h,i) is not equal to (0,0,1),
• Affine Transformation, if (g, h, i) is equal to (0, 0,1),
• Motion Transformation, if (g,h,i) is equal to (0,0,1), and the four

elements (a, b, d, e) form a rotation matrix.

8.3.2 Image Filtering

"Filtering" literally means to remove impurities or undesirable substances
from something (e.g. water, air, or even signals). For image processing,
"filtering" means to remove a subset of (undesirable) signals from an input
image. In a frequency domain, a signal is the sum of harmonic functions,
such as sinusoids and exponentials which have different frequencies, magni-
tudes and phases. Depending on the application, one may wish to remove
the harmonic functions above, below, or outside a certain frequency. In
general, image filtering causes a loss of information. Consequently, it does

458 The Fundamentals of Robotics: Linking Perception to Action

not make sense to recover the original input image from a filtered image in
the frequency domain.

Just as the purpose of a control law is to alter the dynamics of the system
under control, the purpose of filtering is to alter the dynamics of a signal.
From this point of view, it is possible to unify the philosophy underlying
the design of a mechanical system, a control system, and a computational
algorithm for image feature extraction.

8.3.2.1 Convolutions

In Chapter 5, we learned that a differential equation describes a linear
system's dynamics. And, the Laplace transform of a differential equation
is in algebraic form. For a linear system, the ratio between the output's
Laplace transform and the input's Laplace transform is called a transfer
function. If the input to a system is an impulse, its Laplace transform is
1 and the Laplace transform of the output is exactly equal to the transfer
function. Because of this, the inverse Laplace transform of the transfer
function when the input is an impulse is called an impulse response.

l(x) | 1 y(x) I(s) | 1 Y(s)
• h{x) • • H(s) •

(a) Time Domain (b) Frequency Domain

Fig. 8.5 Dynamics of a linear system: a) the impulse-response in the time domain, and
b) the transfer function in the frequency domain.

As shown in Fig. 8.5, a system's output in the frequency domain is
expressed as the product of the input's Laplace transform and the system's
transfer function, that is,

Y{s)=H{s)»I{s). (8.13)

If we treat I(s) as the Laplace transform of an input signal or image, Y(s) is
the filtered signal or image, the dynamics of which have been altered by the
filter's transfer function H(s). Clearly, it is easy to change the dynamics of
an input signal or image by manipulating the filter H(s).

In the time domain, the inverse Laplace transform of Eq. 8.13 is

rx rx

y(x) = h{x)*I{x) = / h{a)»I(x-a) da = I(a)»h(x-a) da (8.14)
«/ — oo J-co

Visual Perception System of Robots 459

where a is a dummy variable for integration.
By definition, the operation in Eq. 8.14 is called convolution, and the

impulse response h(x) is known as the convolution kernel for signal or image
filtering.

The above results are obtained in a continuous time domain. In a dis-
crete image plane, an input digital image at time-instant t is represented
by

jin = {/}«(„,u), vv G [l,ry] and Vw G [l,rx]}

and the output digital image is represented by

jout = {/»*(„,„), V« G [l,ry] and Vu G [1,^]}.

If a discrete convolution kernel is

{hk} = {hk{m,n), \lm £ [l,ky] and Vn G [l,kx]}

with

{ hk(m, n) ^ 0 if Vm G [1, fcy] and Vn G [1, fcx]
(8.15)

hk(m,n) = 0 otherwise,

the result of discrete convolution will be

Ifat(v,u) = hk{v,u)*I}n{v,u)
(8.16)

= EJUi E"1=i {^(^ - vi,u - uO • i}n(vu m)}.

By applying Eq.8.15, Eq. 8.16 can be rewritten as

v—1 u—1

/?"*(«.«)= J2 E {M«-"i.«-«i)*//n(«i,«i)}- (8-17)
Vi=v — ky u\=u—kx

If we substitute v — Vi with m, and u — ui with n, Eq. 8.17 will become

ky kx

/^t(u)u)= 2 H { M m , n) » i } n (w - m , « - n) } . (8.18)
m=ln=l

Consider an image's boundary condition. Indexes (v,u) in Eq. 8.18
must vary within the range of [ky + l,ry] and [kx + l,rx]. This indicates
that the output is not centered on the original input image. In other words,
the information in the first ky rows and kx columns is not considered in
the convolution. To make full use of the information centered on an image

460 The Fundamentals of Robotics: Linking Perception to Action

plane, we should shift the input image using displacement vector {kx/2 +
1, ky/2 + 1) so that the output will be centered on the input image. (NOTE:
If kx = 3, kx/2 is equal to-1; and if ky = 3, ky/2 is equal to 1). Accordingly,
Eq. 8.18 becomes

ky kx

Ifut(v,u) = Y^ J2 {hk(m,n) • l\n{v - rn + ky/2 + l,u - n + kx/2 + 1)} .
7 7 1 = 1 Tl = l

(8.19)
If a convolution kernel is symmetric, Eq. 8.20 can also be expressed as

ky kx

I°ut(v, u)=J2Yl {hk(m, n) • I}n(v + m- ky/2 ~l,u + n- kx/2 - 1)} .
m = l n = l

(8.20)
However, a convolution kernel can be asymmetric. In this case, it is

still possible to use Eq. 8.20 to perform the convolution if the results of the
convolution with either a convolution kernel or its symmetrically-swapped
version are equally acceptable. For example, the symmetrically-swapped
version of the convolution kernel

"1 0 - 1 "
1 0 - 1

.10 - 1 .

is

- 1 0 1 "
- 1 0 1 .
- 1 0 1 .

Example 8.2 Fig. 8.6a shows an image array which the size is 10 X 10.
Assume that the convolution kernel is

1 f1 1 0'
{h(m,n)} = - • 1 1 0 .

[no.

The result of the convolution after applying Eq. 8.20, is shown in
Fig. 8.6b. The convolution is computed using integers. Therefore, 100/6,
which would be 16.6667 if working with floating-point numbers, is 17.

oooooooooooooooooo

Visual Perception System of Robots 461

1 [b~ |0 IO ~[O [0 10 |O IO [0 [0 1 1 | 0 JO |0 |0 |0 IO IO 10 |0 |O~

2 (T~ <T~ 0~ O~~ 100 0~~ <T~ <T~ 0~~ 6 ~ 2 O~~ 0 ~ O~~ W W 50~ W 0~ O~~ 6"~

3 o~o~o~7ooToo7o6o~o~o~o~ 3 o~ o~~ W so" 83~ 83~ 50~ W o~ o~

4 (PO^IOOTOOTOOTOOTOOO^O^ 0~~ 4 0 ~ 17" 50" 83" TOO 100 83" 50~ TT 0~

5 o~ Too Too Too Too Too Too Too o~o~ 5 o~ W W Too Too Too Too WT W o~
6 o~o~TooTooTooTooTooo~o~o~ 6 o~ W so" §3" Too Too 83~ 50~ W o~
7 o~ o~ <T~ Too Too Too o~ o~ o~ o~ 7 o~ o~ rf 50" 83" 83~ 50" W <T~ o~
8 o"b~o~o~Tooo~o~o~o^"6~ 8 o~cPo~ W5F50" Wo~o~o~
9 cP6~6~(T"o~o~o~5~o~(r~ 9 o~ o~ o~ o~ W vf o~ o~ (T~ 6~

10 o^6~o~o~o~o~o^o~o~6~ 10 o~b~o^o^"o~o~F"o~o~o^
u\—I—I—I—I—I—I—I—I—I—I u\—I—I—I—I—I—I—I—I—I—I

2 4 6 8 10 2 4 6 8 10
(a) Input (b) Output

Fig. 8.6 Example of convolution with a convolution kernel: a) the input image and b)
the result of the convolution.

8.3.2.2 Derivative of Convolutions

If the initial conditions of linear function f(x) are all zeros, the Laplace
transform of its derivative *j£' will be s»F(s), in which F(s) is the Laplace
transform of function f(x). Now, let us multiply the complex variable s to
both sides of Eq. 8.13. This yields

smY(s) = s»H(s)»I(s). (8.21)

Eq. 8.21 can also be written as

{s»Y(s)} = H{s)»{s*I(s)}. ~ (8.22)

The computation of the inverse Laplace transform of Eq.8.22 results in

*d£=h{x)**M. (8.23)
ax ax

Eq. 8.23 indicates that a linear system's response to an input's deriva-
tive is equal to the derivative of the system's response to the input itself.
Therefore, it is possible to compute derivative yJ£' directly without in-
voking the input's derivative if response y(x) is already known. This is a
well-known result in control engineering. Here, we call it the principle of
dynamics conservation. In control engineering, we often use a unit-step
function as a linear system's input. If we know a system's response to a
unit-step input, then its derivative is exactly equal to the system's response
to a unit-impulse input.

462 The Fundamentals of Robotics: Linking Perception to Action

Interestingly enough, there is a different interpretation to the above
principle when dealing with image or signal filtering. In fact, Eq. 8.21 can
alternatively be expressed as

{s*Y(s)} = {s»H{s)}*I(s). (8.24)

Computation of the inverse Laplace transform of Eq.8.24 yields

Eq. 8.24 indicates that the response of a linear system (or filter) repli-
cates the dynamics of the system (or filter) even though the input remains
the same. In other words, input I(x) is able to resonate not only with a
system's impulse-response h(x), but also with its derivative j - * ' . We call
this phenomenon the principle of dynamics resonance.

With regard to feature extraction from signals, it is possible to inter-
pret a feature as a specific type of dynamics exhibited by the signal itself,
in terms of uniformity, continuity, and discontinuity. If a filter is sensi-
tive to a specific type of dynamics and the resonance stimulated by the
input signal does not vanish, this indicates that the signal contains features
corresponding to this type of dynamics. From this point of view, feature
extraction from a signal can easily be achieved in two steps: a) resonance
generation and b) resonance detection. We will discuss this in more detail
in the section on image-feature extraction.

Example 8.3 Fig. 8.7a shows an image array that the size is 10 x 10. If
we compute the derivative of the convolution kernel from Example 8.2 in
the horizontal direction, we will obtain

(„ , ^ , r i o - r
(dh(m,n)}l_u i Q _ 1

I <** J 6 [^ ^
If we apply Eq. 8.20, the result of the convolution between the input

image and convolution kernel < ^ [is shown in Fig. 8.7b. Clearly,

there is a resonance caused by the presence of vertical edges in the input

image.

oooooooooooooooooo

(8.25)

Visual Perception System of Robots 463

1 [6 [5 lo lo lo [6 [6 lo [o lo I 1 lo lo [6 lo lo lo |6 io lo [o~~
2 o"~ Too Too IOO Too Too Too Too Too <T~ 2 o ~ 3 3 ~ b ~ " o ~ o ~ o ^ c T ~ o ~ 3 3 ~ o ~

3 <T~ Too Too Too Too Too Too Too Too <T~ 3 o"~ 50~ o~~ o~~ o~~ o"~ o ~ o"~ so" o~"

4 o~ Too Too Too Too Too Too Too Too o~~ Ao~W25^25"o~'o~25"25'Wo~
5 0~0~0~T50T50T50T50 0 ~ 0 ~ 0 " 5 0~ VT 50" 50~ 0~ 0~ 50~ 50~ W 0~
6 0~0~0~T50T50T50T50b~0~0~~ 6 6~̂ 0~ 75" 75" 0~ 0~ 75~ 75~ 0~ 0~

7 0~0^0~T50T56T50T50 0 ~ 0 ~ 0 " 7 0 " 0~ 75" 7lT 0~ 0~ 75" 75~ 0~ 0~"

8 0~0~0~T50T56T50T50 6~"6~0~~ 8 0~0~75"75~6~(r~75"75~0~"0~~

9 0~0~0~T56T50T50T560~0~0~" 9 0~0~50"5T6~0~50"50"0~0~~
10 b~o~o~6~o~o~(T~6~o~<r" 10FFFFFFFo~FF
i -i I—I—I—I—I—I—I—'—I—I—I -i -i I—i—'—'—'—'—'—'—'—>—'

2 4 6 8 10 2 4 6 8 10
(a) Input (b) Output

Fig. 8.7 Example of a convolution with the derivative of a convolution kernel: a) the
input image and b) the result of a convolution.

8.3.2.3 Integral of Convolutions

Both the principles of dynamics conservation and dynamics resonance are
equally valid for the integral of a convolution. In order to verify this state-
ment, let us multiply the inverse of complex variable s to both sides of
Eq. 8.13. It becomes

-•Y(s) = -»H(s)»I(s). (8.26)
s s

Eq. 8.26 can also be rewritten as

ji.y(5)j = #(*). ji./(s)j. (8.27)
Computation of the inverse Laplace transform of Eq. 8.27 yields

r f r 1/ y(x) »dx = h(x) * 1 / I(x) •dx\. (8.28)

This indicates that a linear system's response to an input's integral is equal
to the integral of the system's response to that input.

Alternatively, Eq. 8.26 can also be expressed as

^ • y (S) j = j i .H(a) j •/(*). (8.29)

The inverse Laplace transform of Eq.8.29 is

fy(x)»dx= | /'h(x)»dx*I{x). (8.30)

464 The Fundamentals of Robotics: Linking Perception to Action

This indicates that the dynamics of a system (or filter) is replicated by the
output, even though the input remains the same.

8.3.2.4 Spatial Displacement of Convolutions

Interestingly enough, the above concepts are also valid for a convolution's
spatial transform (displacement). For feature detection, an important con-
cern is the localization of detected features. Therefore, it is interesting
to know whether a filter itself has a degree of freedom to adjust feature
localization.

The multiplication of the term e-alPha^ to both sides of Eq. 8.13 yields

{e~as • Y(s)} = H(s) • {e~as • I(s)} (8.31)

or

{e-as • Y(s)} = {e~as • H(s)} • I(s). (8.32)

The inverse Laplace transforms of Eq. 8.31 and Eq. 8.32 are

y(x -a) = h(x) * I(x - a) (8.33)

and

y(x-a)=h(x-a)*I(x). (8.34)

Eq. 8.34 clearly illustrates the phenomenon of a signal feature's location
shift which is caused by a filter. This phenomenon can advantageously be
exploited to design filters with the ability to adjust the location of detected
features in a signal.

Example 8.4 Fig. 8.8a shows an image array which the size is 10 x 10.
In Example 8.2, if we shift the convolution kernel towards the right by 1
pixel, we will obtain

i r o i r
{ / i (m , n - l) } = - • O i l .

1.0 11 .
If we apply Eq. 8.20, the result of the convolution between the input

image and convolution kernel {h(m,n — 1)} is shown in Fig. 8.8b. If we
compare the output in Fig. 8.8b with the output in Fig. 8.6b, we can see
that there is a horizontal shift. The shift is towards the left because we
use Eq. 8.20 instead of Eq. 8.19 to compute the convolution. It is worth

Visual Perception System of Robots 465

noting that the boundary of the input image array includes the first and
last rows as well as the first and last columns. This is because the size
of the convolution kernel is 3 x 3. For easy programming, pixels inside an
input image's boundary are not processed.

1|0 |0 |0 |0 |0 |0 |0 |0 |0 |0 I 1|0 |0 |0 |0 |0 |0 |0 |0 |0 |0

2 6~O~6~b~Too6~6~(Pcr~(r~ 2 6~~ 0~~ VT 50" 50~ 17" 6~~ 6~~ 6~~ 0~~

3 O~O~O~TOOTOO1OOO~O~O~O~~ 3 0~17~50~83~83~5(ri7^0~6~0~

4 o~o~7ooTooiooTooTooo~o~o~~ 4 o ~ s o 83 Too7oo83"5cTTTo^o~

5 o ~ Too Too Too Too Too Too ioo o ~ o ~ 5 o~67~TooTooTooToo67~T7~o~b~

6 O~b~TOOTOOTOOTOOTOOO~O~O~~ 6 0~50"83^T06T60 83~50~T7~0~0~~

7 0~0~6^T06TOOTOOO~0~0~0~~ 7 6~~ W 50" 83" 83~ 50~ W 0~ 0~ 0~

8 o~ o~ o~ o~ Too o~ o~ o~ <T~ 6 " 8 o~ o~ TT so" so" TF o^ o~ o~ b~

9 o~ o~ o~ o~~ o~ o~ o^ o~ o~ 6~~ 9 6~ o~ o~ W W o~ o~~ o~ o~ o~

1 0 o~6~o~o~~6~~o~6~o~o™"(T~ 1 0 o~ o~ o~ 6~ o^ o^ F" o~ 6~~ b~~
11'—'—'—'—'—'—'—'—'—'—' 11'—'—'—'—'—'—'—'—'—'—

2 4 6 8 10 2 4 6 8 10
(a) Input (b) Output

Fig. 8.8 Example of a convolution with the spatial transform of a convolution kernel:

a) the input image and b) the result of the convolution.

•ooooooooooooooooo

8.4 Image Feature Extraction

An input image explicitly represents the chrominance and luminance of
a scene (or object). However, for manipulative and cognitive tasks, the
most important attributes of a scene (or object) are the geometric features.
Thus, in a visual-perception system, it is crucial to obtain the geometric
representation of a scene (or object) from the chrominance and luminance
information. Mathematically, an image's geometric representation is the
image's alternative representation. Thus, it can also be called an image
transform if we treat the complex process of image-feature extraction as a
nonlinear image transformation.

8.4.1 The Basics of Feature Detection

In the frequency domain, the multiplication of complex variable s to a
filter linearly enhances the high-frequency signals. In the time domain,
this enhances a signal's discontinuity. Similarly, the multiplication of the

466 The Fundamentals of Robotics: Linking Perception to Action

inverse of complex variable s linearly attenuates the high-frequency signals
which has the effect of enhancing a signal's uniformity.

As we mentioned earlier, a robot's visual-perception system is a con-
tinuous dynamic process. And, an image is the basic element of a video
or image sequence. Accordingly, an image should be treated as a spatio-
temporal function. However, for the sake of simplicity, let us consider an
image to be a spatial function only.

8.4.1.1 Feature Definition

Mathematically, spatial function fix) in the domain of spatial variable x
will exhibit three types of dynamic characteristics:

(1) Uniformity:
f(x) = constant within certain intervals of x,

(2) Continuity:
f(x) is continuously differentiable within certain intervals of x, and

(3) Discontinuity:
f(x) is not differentiable at certain locations of x, or some derivatives
of f(x) vanish at certain locations of x.

Since an image explicitly represents the chrominance, luminance, and
texture of a scene (or object), the uniformity of these characteristics are
directly related to the characteristics of the geometric surfaces in a scene.
For example, if a surface is smooth and uniform in color, the corresponding
region in an image plane will be uniform.

Similarly, discontinuity of these characteristics in an image depends not
only on the surfaces themselves but also on the optical and geometric in-
terference among the surfaces. For example, if light rays coming towards a
surface are partly blocked by the presence of an opaque object, a shadow
will form on the surface. Moreover, the reflected light rays coming off the
surface and entering the optical lens of a visual sensory system can be
blocked by an opaque object as well. This phenomenon is known as occlu-
sion. Shadows, occlusions, and surface boundaries are the common causes
for discontinuity in an image.

From the above discussions, it is clear that the presence of an object
in image space is considered as the sum of an image's uniformity, continu-
ity, and discontinuity. Since it is possible to transform an image into an
alternative representation called image transform, we can define an image
feature either in image space or in the space of its transform. However,

Visual Perception System of Robots 467

regardless of which space is used, image features must be meaningful and
useful. Formally, we can state the definition of an image feature as follows:

Definition 8.3 Any uniformity or discontinuity, which is meaningful and
useful in an image (or its transform), is an image feature.

Based on this definition, the process of detecting image features is called
image feature extraction. And, the process of analytically describing the
detected image features is called image feature description. By default,
image feature extraction is performed using intensity images.

8.4.1.2 A Generic Procedure for Feature Detection

In general, an image contains many types of features, including noise. In
theory, it is impossible to design a filter which responds to only one type
of feature and perfectly removes all the others. In electrical engineering,
there is a saying about signal filters which sums up the problem. That is:
"Garbage in, garbage out." If a signal contains one type of feature, it is
easy to filter out the noise and enhance that feature. However, if there are
multiple types of features plus noise, image-feature extraction becomes a
very difficult task.

Images Noise Reduction Feature Enhancement Feature Selection Features

Hj(s) H2(s) (Decision - making)

Fig. 8.9 A Generic feature-detection procedure.

In order to cope with the difficulty caused by noise and multiple features,
a feature-extraction process generally involves the following modules, as
shown in Fig. 8.9:

• Noise Reduction:
The purpose of this module is to reduce the noise level in an input
image. If the image quality is good, this step is unnecessary and
H^s) = 1.

• Feature Enhancement:
It is almost impossible to directly pick up desired features from an
original input image if there are multiple features. It is necessary to
enhance the features of interest and, at the same time, to reduce the
other types of features including noise. This is usually done with a
specific filter, called a feature detector.

468 The Fundamentals of Robotics: Linking Perception to Action

• Feature Selection:
Whether in theory or practice, it is impossible to design a filter which
can totally reduce undesired features and noise. It is, however, possible
to design a filter capable of responding differently to different features.
After the feature enhancement, a decision-making process is responsible
for selecting the desired features.

8.4.1.3 Criteria for Feature Detection

"Garbage in, garbage out" generally implies that there is no ideal filter for
a given type of feature. However, there are some guidelines for general filter
design, which if followed, can ensure a good feature detector.

John Canny in his work on edge-detection while studying at MIT as a
graduate student first stipulated three criteria for the design of a step-edge
detector. We can generalize these as follows:

Criterion 1: Resistance to Noise

Canny's first criterion, called good response, stipulated the necessity of max-
imizing the signal-to-noise ratio. We can clearly explain this criterion using
Laplace transform.

Let 7(s) denote an input image's Laplace transform. Assume that input
image I(s) is contaminated by white noise N(s). The output from filter
Hi(s) (the Laplace transform of discrete filter {hi(m, n)}) will be

Yx (s) = Hx (s) • I (a) + Hi (s) . N{s) (8.35)

or

m.HM+aM.m. (m

From Eq. 8.36, we can see that an ideal filter is one which can totally
cancel out term Hi(s) • -jnx-- This type of feature detector will be resistant
to the presence of noise. And accordingly, it is more appropriate to call
this criterion resistance to noise.

In theory, there is no such design of filter Hi(s) which is able to cancel
out term Hi(s) • -jffi- regardless of the type of noise and input. In practice,

any filter which greatly reduces signal Hi (s) • -ŷ y- is a good filter for noise
reduction.

Visual Perception System of Robots 469

Criterion 2: Good Accuracy for Feature Localization

Canny's second criterion is called good localization. As shown in Fig. 8.9,
a decision-making process normally identifies the features to be the local
maxima from filter H2's output. The presence of noise may slightly shift
the local maxima away from their true locations. Canny believed that a
good feature detector should minimize this shift despite the presence of
noise.

Again, this criterion can be better explained using the Laplace trans-
form. Assume that the input to filter H2(s), as shown in Fig. 8.9, is
/i(s) + iVi(s) with

(h(s) = H^s) . I(s)
{ (8-37)
[N1(s) = H1(s)*N(s).

The output from filter H2(s) will be

Y2{s) = H2(s) • h(s) + H2{s) • JVi(»). (8.38)

The results shown in Eq.8.32 and Eq.8.34 indicate two interesting facts:

• If H2(s)»Ni(s) in Eq. 8.38 is a complex function having zero(s) and/or
pole(s), it will cause the output shift in the time domain. This is
because a complex function introduces the additive term:

a • cos(w) + j[b • sin(u>)]

or, the multiplicative term e@s to output Y2(s). A phase change in the
frequency domain means a location shift in the time domain.

• If filter H2(s) incorporates multiplicative term e~as, it will have one de-
gree of freedom to compensate for the location shift in the time domain
caused by signal H2(s) • N\(s).

Based on the above observations, it is clear that in order for a filter to
satisfy the criterion of good localization, it must have the ability to cancel
out signal H2(s) • Ni(s). Interestingly enough, this can be achieved by
incorporating term e~as into filter H2{s). To prove this statement, let us
substitute H2{s) with e~as • H2(s). Then, Eq. 8.38 becomes

Y2(s) = e~as • H2{s) • h{s) + N2(s) (8.39)

where N2(s) = e~as • H2{s) • Ni(s).

470 The Fundamentals of Robotics: Linking Perception to Action

If we substitute term e~as with its Taylor series:

1! n\

Eq. 8.39 becomes

^ 1 = H2(s) + N3(s) (8.40)

with

N3(s) = N2(s) + H2(s) . \^-8 + ... + (-^sn + ...}. (8.41)
^ 1! TV.)

Obviously, a filter having good feature localization is one in which pa-
rameter a minimizes Eq. 8.41. In practice, parameter a can manually be
tuned and tested with sample images.

Criterion 3: Good Selectivity of Desired Features

Canny's third criterion is called single response. By single response, he
meant that a filter will only produce one response to a single (step) edge
input if there is no noise. This criterion is applicable to the continuous
step-signal but not in the discrete time domain. The following example
illustrates this.

Example 8.5 Fig. 8.10a shows an image array which the size is 10 x 10.
We choose the convolution kernel to be

"0 1 0"
{ h (m , n) } = 0 0 0 .

1 .0 -10 ,

If we apply Eq. 8.20, the result of the convolution between the input
image and convolution kernel {h(m, n)} is shown in Fig. 8.10b. Clearly,
although the input image has no noise, there are multiple responses for the
horizontal edge in the middle.

oooooooooooooooooo
In a discrete time domain, an output's redundancy may be advantageous

as it allows us to achieve sub-pixel accuracy in localizing image features.
In principle, the single-response criterion should be called good selectiv-

ity of desired features. This is because a feature-detection filter should, as

Visual Perception System of Robots 471

1 fo lo lo To lo lo jo lo lo lo I 1 [o [o lo lo lo |o lo (o ((T i e r "

2 o ~ Too Too Too Too Too Too Too Too o~~ 2 o~~ Too Too Too Too Too Too Too Too o~~

3 <T~ Too Too Too Too Too Too Too Too o~~ 3 o~o~o~6^o~o~o~"o~o~o~~

4 o~~ Too Too Too Too Too Too Too Too 6~~ 4 o~TooToo50~56~50~50~TooToo6~

5 0~0~0~T56i50T50T50 0 ~ 0 ~ 0 ~ ~ 5 <T~ TOO TOO 50" 50~ 50~ 50~ TOO TOO 0~~

6 0~0~0~T50T50T50T50 0 ~ 0 ~ 0 ~ ~ 6 0~~ 0~~ 0~~ 6~~ 0 ~ 0~~ 0~~ 0~~ 0 ~ 0~~

7 0~0~0~T50T50T50T50 0~6~0~~ 7 0~ 0~ 0~ 0~ 0~ 0~ 6~ 0~ 6~ 0~

8 b~o~6~T5oT56T5oT5oo~cT<r~ 8 o~o^6~o~o~o~o~"o~6~o~

9 0~0~O^T50T50T56i56o~0~0~~ 9 0~0~0~T50T50T56T50 0~0~0~
10 o^o~o^6~o~o~o~"o~o~6~~ 10 o~o~o~o~o~o~o~o~"o~o~
111—'—'—!—i—!—I—!—!—!—' 111—'—'—'—'—'—'—'—'—I—'

2 4 6 8 10 2 4 6 8 10
(a) Input (b) Output

Fig. 8.10 Example of multiple responses in horizontal-edge detection.

much as possible, enhance the desired features and reduce all the others,
including noise.

Example 8.6 Fig. 8.11a shows an image array which the size is 10 x 10.
Assume that we want to detect the type of corner at location (2,3). For
this purpose, we design a convolution kernel as follows:

"-1 - 1 - 1 "
{h(m,n)}= - 1 2 1 .

- 1 1 1 _

The response of this filter to a uniform region will be zero because the
sum of elements in {h(m, n)} is zero.

If we apply Eq. 8.20, the result of the convolution between the input
image and convolution kernel {h(m,n)} is shown in Fig. 8.11b. We can
see that there are multiple responses to this filter. However, the corner at
location (2,3) has the strongest output (500).

•••ooooooooooooooo

8.4.2 Edge Detection

Edge is an image feature which characterizes the discontinuity of an image
function in terms of chrominance or luminance. Here, we will not consider
discontinuity caused by texture.

To a certain extent, it is possible to say that edges are an image's most
important geometric features. Without edges, any higher-level description

472 The Fundamentals of Robotics: Linking Perception to Action

1 |o jo jo lo jo jo jo jo jo jo I 1 |o jo jo jo lo |o lo jo jo jo
2 cr~o~TooTooTo6o~<r~o"o~o~" 2 6~~2005003001002000"o~o~cT~

3 o~o~TociT66To6cPcr~b~o~b~~ 3 o~io63Ooo~Too3OOO~o~o~6~~
4 O~~6~To6T66T6o6~(r~6~0~<T~ 4 0^"T00 300 0~T00 300 0 ~ 0 ~ 0 ~ 0 ^

5 o~b~TooT66T666~o~6~o~<r~ 5 <T~ Too3o6o~To63ooo~o~o~5~~
6 b~o~To6To6Toocf~cP(r~o~cr~ 6 o~~ Too 300 6~~ 6~~ 100 Too Too b~~ o~~

7 O ^ O ~ TOO TOO 100 TOO TOO TOO TOO O ~ 7 0 ~ T 0 0 300 0 ~ T 0 0 200 300 306T060~~

8 o ~ o ~ Too Too Too Too Too Too Too 0 ^ 8 6 ~ T61) 306 o ~ b~ cT~ 6 ~ 6 ~ Too (T~

9 o ~ o ~ Too Too Too Too Too Too Too o ~ 9 o ~ b ~ Too Too Too Too Too Too Too o ~

10 o~o^o~o~o~o^o^b~o~o^ 10 o~o~o~o~"o~o~o~5~o~o~"
111—I—I—I—I—'—1—I—I—I—I 111—1—I—I—I—I—I—I—I—I—I

2 4 6 8 10 2 4 6 8 10
(a) Input (b) Output

Fig. 8.11 Example of good selectivity in response to a desired feature,

of a scene's geometric features would be difficult to obtain.

8.4.2.1 Definition of Edges

An image is a spatio-temporal function which has two spatial variables
(u, v) and one temporal variable t. If we denote I(v, u, t) as an input image
at time-instant t, the image's discontinuity can be measured by these first-
order derivatives:

dl dl dl
Iv = -1-, Iu = -J-, and It = —.

dv du at

In fact, the local maxima of the above signals indicate the image func-
tion's discontinuity at these locations. Accordingly, we can state the defi-
nition of edge as follows:

Definition 8.4 Edges are the locations in an image array where the
image function's first-order derivatives have the local maxima. Locations
where the local maxima of {%,^) occur are called spatial edges. And,
locations where the local maxima of ^ occur are called temporal edges.

An edge is a geometric feature because it has a specific location within
an image array. Here, let us consider spatial edges first.

8.4.2.2 Types of Edges

An image function can have two spatial, first-order derivatives: ^ and ^ .
Mathematically, these two derivatives can be computed independently. In
fact, j ^ is the image gradient in the vertical direction (column) while ^

Visual Perception System of Robots 473

is the image gradient in the horizontal direction (row). For the sake of
convenience, let us analyze and detect the image function's discontinuity
separately in the vertical and horizontal directions. In this way, we only
need to deal with two single-variable image functions: one with spatial
variable u, and the other with spatial variable v.

A fix) * fix)

—~Z1 M ^ „
(a) Step - edge (b) Ramp - edge

A. fix) A fix)

^ - - ^ • * L A >x

(c) Roof-edge (d) Ridge-edge

Fig. 8.12 Typical types of edge.

Let fix) denote a one-dimensional function with spatial variable x. If
fix) is an image function and represents the luminance (or chrominance)
of a scene (or object), the discontinuity of f(x) can typically be classified
into these four categories, as shown in Fig. 8.12:

• Step-type Edge:
This edge can be caused by two different colors on an object's surface.
For example, printed or hand-written characters exhibit this type of
edge. Step-type edges can also be caused by: a) the outline of a shadow
on an object's surface, b) impurities on the surface, or c) discontinuity
in the depths of two overlapping surfaces.

• Ramp-type Edge:
A planar surface exposed to light rays from a single point, such as a
bulb, will form this type of edge at the surface's boundary.

• Roof-type Edge:
This edge typically results from the discontinuity of the normal vectors
of a single or two adjacent surfaces. For example, the edge separating
two adjacent facets of a cube will form a roof-type edge in images.

474 The Fundamentals of Robotics: Linking Perception to Action

• Ridge-type Edge:
A curved surface normally exhibits a ridge-type edge. For example, a
cylindrical or conical surface in certain orientations forms a ridge-type
edge.

From Fig. 8.12, we can see that a roof-type edge is a combination of
two ramp-type edges placed back-to-back. And, a ridge-type edge can be
treated as a combination of two ramp-type edges and two step-type edges.
If we denote l{x — XQ) a unit-step function at location xo, we have

| /,W/

\/3U)

Fig. 8.13 Description of a ramp-type edge.

Refer to Fig. 8.13. If a ramp-type edge has slope a within interval
(xi,x2), its analytical description will be the combination of /i(x), ^ (z)
and fz{x), as follows:

f(x) = fx(x)-f2(x) + f3(x) (8.43)

with

' h{x) = a • / ^ l(x - x{)dx

< f2{x) = b*l(x-x2) (8.44)

h(x) = -a • / ^ l(x - x2)dx

(8.42)

Visual Perception System of Robots 475

and b = a» (X2 — x\). Clearly, f2(x) is a step-type edge at location X2• This
leads to the following interesting observations:

• The step-type edge is the most important edge in an image.
• A good detector of step-type edges is also a good detector of other types

of edges.
• The discontinuity of the ramp-edge at location x\ can be detected with

a filter which is the second-order derivative of a continuous function.

8.4.2.3 A General Scheme for Edge Detection

As shown in Fig. 8.9, feature detection generally consists of three steps: a)
noise reduction, b) feature enhancement, and c) feature selection. Since an
image's spatial dimension is two, it is convenient to detect the edges in both
the image-plane's vertical and horizontal directions. For a given direction,
either vertical or horizontal, an image is treated as a single-variable signal.
As a result, the general scheme for edge detection includes two parallel
edge-detection processes, as shown in Fig. 8.14:

• Horizontal-Edge Detection:
The horizontal-edge detection process consists of two steps: a) noise
reduction with filter Hn(s), and b) horizontal-edge enhancement with
derivative filter H\2(s) (H12(s) = s). Noise reduction, meaning the
removal of high-frequency signals, has a smoothing effect on the edges.
Since an image is a two-dimensional signal, one can choose to smooth
the input image vertically, horizontally or uniformly (in both direc-
tions). To avoid the smoothing effect on the horizontal edges, the
noise-reduction filter should be applied to the input image horizontally.

• Vertical-Edge Detection:
Similarly, the vertical-edge detection process consists of two steps: a)
noise reduction with filter H2i{s), and b) vertical-edge enhancement
with derivative filter #22(5) (-#22 (5) = s). To avoid the smoothing
effect on the vertical edges, the noise reduction filter should be applied
to the input image vertically.

• Selection of Edges:
If we know the image gradients in both the horizontal and vertical
directions, it is possible to compute the norms of the gradients at each
pixel location. Based on the norms of a gradient, it is possible to invoke
a decision-making process which selects the edges as final output.

476 The Fundamentals of Robotics: Linking Perception to Action

\ . ' i ~ . I;.•! II . i i - ' 1 1 , 1 ' .

i i . l l '•- • • •• fc I i.li fc

/ / • > . / / . . ,

• s ^ i 'I Arrays

Images of Edges

(. I I I . I I . I I K ^

V . i . !:.• II i ••!. \ 11 l_\

l"\ I _ ^ Ililim . . . " — ^

II .1 M / / H I

Fig. 8.14 A general scheme for performing edge detection.

8.4.2.4 Sobel Edge Detector

A simple and useful edge detector is the Sobel edge detector. If the numbers
2 in the convolution kernels are replaced by the numbers 1, the Sobel edge
detector becomes the Prewitt edge detector. Here, we will only discuss the
Sobel edge detector.

Noise Reduction in the Horizontal Direction

Sobel's convolution kernel for noise reduction in the horizontal direction is

"1 2 1'
{hn(m,n)}= 12 1 . (8.45)

Looo.
Horizontal-Edge Enhancement

In Eq.8.45, differentiating {hn(m,n)} with respect to spatial variable v in
the vertical direction yields

" 1 2 1"
{/iii(m,ra)*/ii2(m,ra)}= 0 0 0 . (8.46)

|_-1 - 2 - 1 _

(NOTE: H\2(s) = s, which represents a derivative operator in the time
domain).

Visual Perception System of Robots 477

The kernel in Eq. 8.46 is Sobel's convolution kernel for the enhancement
of an image's horizontal edges.

Horizontal-Edge Selection

Edge selection is a decision-making process which can be simple or complex.
Let us denote Iu(v, u) the gradient image of the enhanced horizontal-edges.
A simple process for identifying location (i>, u) as the horizontal-edge is to
test the following conditions:

{ Iu(v,u) > g0

Iu(v,u)>Iu(v~l,u) (8.47)

Iu(v,u) > Iu(v + l,u).
The first inequality in Eq. 8.47 means that the first-order derivative

at an edge location must be higher than gradient value go. This allows
us to select edges of higher contrast and to remove the false edges caused
by noise. The second and third inequalities mean that a horizontal-edge
should be the local maximum in the vertical direction.

Noise Reduction in the Vertical Direction

Sobel's convolution kernel for noise reduction in the vertical direction is

'1 10"
{/i2i (m,n)}= 2 2 0 . (8.48)

.1 10 .

Vertical-Edge Enhancement

In Eq. 8.48, differentiating {h2i (m,n)} with respect to spatial variable u
in the horizontal direction yields

"1 0 - 1 "
{h2i(m, n) * h22(m, n)} = 2 0-2 . (8.49)

|_1 0 - 1 .

(NOTE: H22(s) = s, which also represents a derivative operator in the time
domain).

The kernel in Eq. 8.49 is Sobel's convolution kernel for the enhancement
of an image's vertical-edges.

478 The Fundamentals of Robotics: Linking Perception to Action

Vertical-Edge Selection

Let us denote Iv(v,u) the gradient-image of enhanced vertical edges. A
simple process for identifying location (v,u) as the vertical-edge is to test
the following conditions:

{ Iv(v,u) > g0

Iv(v,u) > Iu(v,u- 1) (8.50)

Iv(v,u) > Iu(v,u+1).
In Eq. 8.50, the first inequality means that the first-order derivative at

an edge location must be higher than gradient value go. The second and
third inequalities mean that a vertical-edge should be the local maximum
in the horizontal direction.

Edge Selection for Final Output

A simple way to combine the horizontal and vertical edges is to retain all
the edge locations. For edge location {v,u), edge gradient Ig(v,u) will be
the norm of the corresponding horizontal and vertical gradients, that is,

Ig(v, u) = ^/Pu{v,u) + Pv{v,u). (8.51)

E x a m p l e 8.7 Fig. 8.15a shows an image array which the size is 10 x 10.

1 fo lo [o [o [o [o 16 [o [o lo I 1 [o [6 (o lo [o lo lo [o [o fo~
2 0~0~~ O~O~TOOO~O~O~(T~cr~ 2 <T~ 6~~ 6~~ 424 400 424 6~~ 0~~ 0~~ 0~~

3 O~6~O~To6TO0Too6~O~O~(T~ 3 0 ~ O " 424 424 6 ~ 424 424 0 ~ 0 ~ 0~~

4 o~o~TooiooiooTooT66o~o~"o~~ 4 o~424424o~o~o~424424Toob~~

5 o ~ Too Too Too Too Too Too Too c H o " 5 o ~ 400 o~ o ~ b~ o ~ o ~ 400 o~ 6 ~

6 o~ o~~ Too Too Too Too Too o~ o~ o~ 6 o~ 4244240" o ~ o ~ 424 424 Too o~

7 ¥~ o~~ o~ Too Too Too o~ o~ o~ o~~ 7 o~ o~ 424 424 o~ 424 424 o~ o~ o~~

8 0~ 0~ 0~ 0^ TOO 0~ 0~ 0~ 0~ 0~ 8 0~ 0 " 0~ 424 400 424 0~ 0~ 0~ 0~~

9 0™ 0~ 0~ 0~ 0^ 0~ 0~ 0~ 0~ 0~ 9 0~ 0~~ 0~~ TOO 0~ TOO 0~ 6~ 0~ 0~~

10 o~o~o~o~o~o~o~o~o~o~ 10 o" '^o~o~o~o~b~o~o~o~"
11'—I—I—I—I—I—I—I—I—'—' 111—I—I—I—'—I—'—I—I—I—I

2 4 6 8 10 2 4 6 8 10
(a) Input Image (b) Output Edgemap

Fig. 8.15 Example of edge detection using the Sobel edge detector: a) input of image
array and b) output of edge-map.

Let us apply the Sobel edge detector. The intermediate results for both
horizontal and vertical edges are shown in Fig. 8.16. The array of the

Visual Perception System of Robots 479

computed gradient norms is shown in Fig. 8.15b. We can see that there are
some artifacts.

1 [6 lo lo [6 [6 [6 lo lo lo lo I 1 [6 [6 lo lo lo [o lo jo jo [o~
2 0~0~~ 0^300 400 306<T~ 0 ~ (T ~ 0 ~ 2 (T~ <T~ <T~ 300 <T~ 300 6~~ 0~~ 0~ 0~

3 6~~ 6 ~ 300 300 6~~ 300 300 6~~ 0~~ 0~~ 3 0 ~ 6~~ 300 300 <T~ 300 300 0~ 0~~ 0~

4 0~3OT3lwb~O~~0~3O7>3O0UJ0<r~ 4 0~ 300 300 0~~ 0~ 0 ~ 300 300 0~ 0~

5 0 " O~ 0~ 0 ^ 0 ~ 0 ~ 0 ^ 0 ~ 0 ^ 6~~ 5 O~ 400 O~ 0~^ 0~ 0 ~ 0 ~ 400 0 " 6 ~

6 0~3003006~~ 0~0~ 300 300 100 0 ~ 6 0~ 300 300 6 ~ 0 ~ O~ 300 300 0 ~ O~

7 0~~"0~300 300 0~3063060~"0~0~^ 7 0 ~ 0~ 300 300 0 ~ 300 300 0 ~ 0 ~ 0 ~

8 0 ^ 0 ~ 0^300 400 300 6 ~ 6 ~ O ~ O ~ 8 0 ~ 0~^ O~ 300 O~ 300 0~ 0~ 0~ 0~

9 o~ <T~ o~ o~ o~ o~ o~ o~ cT~ o~~ 9 6~o"o~Tooo~Tooo~o~"o~~o~~

10 o^o^o"*o~o~o~o~o~o~o^ 10 b~"o~o^"o^o~"o~o~"6~6~b~
11'—I—I—I—I—I—I—I—I—I—I -I -I I—I—I—I—I—I—I—I—I—I—

2 4 6 8 10 2 4 6 8 10
(a) H-Edges (b) V-Edges

Fig. 8.16 Results of horizontal and vertical edges detected using the Sobel edge detector

oooooooooooooooooo
The above example illustrates that, if we want to remove undesirable

artifacts, the decision-making process for edge selection is not a simple task.
In his work on edge detection, Canny proposed a hysteresis thresholding

method, with two threshold values (91,32) (<7i < 92), which allows us to
remove unwanted artifacts. The idea behind this method is to perform
edge tracing, which starts from a local maximum, the gradient-norm of
which is greater than g2- The edge-tracing process results in edge chains
which are groupings of consecutive edges linked together. The tracing of an
edge-chain stops when there is no more connected edge with gradient-norm
greater than g\. This process is repeated until all the local maxima, with
gradient-norms greater than g2, have been treated.

8.4.2.5 Gaussian Edge Detector with Tunable Response and Lo-
calization

The first Gaussian edge detector was proposed by Marr and Hildreth. Their
idea did not follow the principle of dynamics resonance. Instead, they advo-
cated the use of second-order derivatives from a Gaussian filter to perform
the convolution with an input image. In this way, edges are identified at
locations, where the results of the convolution make transitions across ze-

480 The Fundamentals of Robotics: Linking Perception to Action

ros. The sum of the second-order derivatives of a Gaussian function with
respect to spatial variables (v, u) is called Laplacian, that is,

with

/ (v ' w) = 2 ^ # e " 4 ^ -

The Laplacian of Gaussian (or LoG for short), as shown in Eq. 8.52, is
invariant to the rotational transformation applied to function f(v,u). Marr-
Hildreth's edge detector is based on the detection of zero-crossings of LoG.
This is why Marr-Hildreth's edge detector is also called the zero-crossing
of LoG.

A Gaussian function is a continuously differentiable function and has the
advantage of a tunable, smoothing effect for noise reduction. The larger
the a, the stronger the smoothing effect. According to the general scheme
for edge detection as shown in Fig. 8.14 and the principle of dynamics
resonance, a Gaussian edge detector with tunable response and localization
can easily be designed as follows:

Noise Reduction in the Horizontal Direction

To smooth out the input image in the horizontal direction, we choose the
following Gaussian function:

1 —4-
hu{v,u) = -===• e ^Ti. (8.53)

V2 7 r o i i
Parameter an controls the smoothing effect in the horizontal direction.

Example 8.8 Let us consider the following Gaussian function:
1 3,2

fix) = , • e 2«2.

Now, let us choose a to be 0.3, 0.6 and 0.9. The corresponding Gaussian
curves are shown in Fig. 8.17a. We can see that the larger a, the stronger
the smoothing effect.

Since an image is an array of pixels, the continuous curve of a Gaussian
function must be sampled in order to obtain a discrete convolution kernel.
To perform the sampling, one has to specify the sampling range and the
number of discrete values. For a Gaussian function, a is the standard

(8.52)

Visual Perception System of Robots 481

deviation of Gaussian distribution. Here, let us choose the sampling range
to be ±2.5cr, which is very close to ±3<7. The number of discrete values
depends on the size of the convolution kernel. Here, let us set this number
to be 7. Based on these settings, the corresponding discrete convolution
kernels are plotted in Fig. 8.17b.

1.4r Mi-

ll A signma=0.3

1.2 - f 1.2 - / \ /
signma=0.3 I \

sigma=0.6 \
0.8 0.8 - f I

sigma=0.6 / \ \

0.6 - / \ 0.6 • / / \ \
\ sigma=0.9 / / \ \

o.4 \y\ ° - 4 ' I / x \ \

J \ \ / sigma=0.9\\ \

\\ °'2 ' I \«l \
u ' ^ ^ * ~ - 1 o' ——' ' ' — 3 1
- 4 - 2 0 2 4 - 4 - 2 0 2 4

(a) Gaussian (b) Discrete KernelFig. 8.17 Gaussian curves and the corresponding discrete kernels with different a values.

•••ooooooooooooooo

Horizontal-Edge Enhancement

After smoothing out the input image in the horizontal direction, it is pos-
sible to enhance the horizontal edges with the derivative of a Gaussian
function, such as:

h12(v + av,u)= L7 v' .e ~^T. (8.54)
V2?r • 0^2

Parameter a\2 controls the amplitude of the enhanced horizontal-edges, and
parameter av adjusts the vertical locations of horizontal-edges.

482 The Fundamentals of Robotics: Linking Perception to Action

Example 8.9 Consider the following derivative of a Gaussian function:

—x _ x2

q(x) = . • e 2^.

Now, let us choose a as 0.3, 0.6 and 0.9. The corresponding curves of the
Gaussian derivative are shown in Fig. 8.18a. We can see that the smaller
the a, the stronger the response of the edges. The corresponding convolu-
tion kernels, when we choose a sampling range of ±2.5<r and a convolution
kernel's size of 7, are plotted in Fig. 8.18b.

3r 3 • • •

A sigma=0.3
sigma=0.3 / \ /

2 - / 2 J V

I \ sigma=0.6
1 - 1 • / \ /

sigma=0.6 / y

—^A n^~ - ^Y\ ^
sigma=0.9 V ' \ \r^ j

- 1 - - 1 • \ /

-2 -2 - \ T

_3I 1 1 1 1 _3I 1 1 1 1
- 4 - 2 0 2 4 - 4 - 2 0 2 4

(a) Gaussian Derivative (b) Discrete Kernel

Fig. 8.18 Gaussian derivative curves and the corresponding discrete kernels with dif-
ferent a values.

Noise Reduction in the Vertical Direction

To detect vertical edges, we first smooth out the input image in the vertical
direction with a Gaussian function:

1 i,2
h2i(v,u) = i e 5 ^ . (8.55)

•^/2TTO"21

Parameter a^\ controls the smoothing effect. In practice, we can set a^\ =
On.

Visual Perception System of Robots 483

Vertical-Edge Enhancement

Subsequently, the vertical edges can be enhanced using the following deriva-
tive of a Gaussian function:

h22(v,u + au)= -(u + au) %-H^~^ (g i 5 6)

V 2TT • CT22

Parameter CT22 controls the amplitude of the enhanced vertical edges, while
parameter au adjusts the horizontal locations of vertical edges. In practice,
we can set a22 — <J\\-

Example 8.10 Consider the following derivative of a Gaussian function:

-(x + a) (»+°)2

g(x) = —p= - » e 2»2 .
V 2?r • a6

Let us set a to be 0.3, and a to be 0.0, 0.05 and 0.1. The corresponding
curves of the Gaussian derivative are shown in Fig. 8.19a. The correspond-
ing convolution kernels, if we choose a sampling range of ±2.5<r and a
convolution kernel's size of 7, are plotted in Fig. 8.19b. We can see that
parameter a allows us to adjust the convolution kernel's shift. In other
words, parameter a controls the localization of the enhanced edges. By
controlling parameter a, we can easily achieve a sub-pixel accuracy regard-
ing localization of the enhanced edges.

8.4.2.6 Canny and Deriche Edge Detectors

If a function is smooth and behaves like a low-pass filter, its derivative
will enhance the edges in an image. A low-pass filter in the frequency
domain will have more poles than zeros. For example, the following Laplace
transform:

s + a
{s + a)2+LU2

will behave like a low-pass filter. Not surprisingly, its inverse Laplace trans-
form is:

e~atcos{u>t).

Similarly, the inverse of the following Laplace transform:

{s + a)2+u>2

484 The Fundamentals of Robotics: Linking Perception to Action

3r 3 -

-31 1 1 1 1 -31 i 1 i 1
- 2 - 1 0 1 2 - 4 - 2 0 2 4

(a) Gaussian Derivative (b) Discrete Kernel

Fig. 8.19 Shift effect on the curves of a Gaussian derivative and the corresponding
discrete kernels with different values of a.

is

e~atsm(ut).

The above observation suggests that a smooth and differentiable func-
tion's derivative can be used to enhance edge features in an image.

Nowadays, there are two widely-used edge detectors: a) the Canny
method and b) the Deriche method. Here, we will not cover the details
of these two methods, but instead, simply explain their functions for edge
enhancement.

Canny's Function for Edge Enhancement

Canny's function for edge enhancement is as follows:

(g{x) ifxe[-a;o,O]
f{x)=l-g{-x) ifzelO.zo] (8.57)

\ 0 otherwise

where

g(x) = [ai sin(wx) + a2 cos(ujx)]e~ax + [a3 s'm(ujx) + a4 cos(wo;)]etrx — A
(8.58)

Visual Perception System of Robots 485

and A = a2 + 04. Conceptually, function g(x) in Eq. 8.58 is very similar to
the derivative of the following function:

a • e~ax sin(a;x) + b • eax sin(wx).

Example 8.11 In Canny's function, we set

(ai, 02, a3, a4) = (0.15, -0.15, -1.0, -1.0)

and LO = 1.5. Fig. 8.20a shows the curves of Canny's function in interval
[—4,4] (i.e. xo = 4) when we set a as 0.1 and 0.3 respectively. The cor-
responding discrete kernels, if we choose the convolution kernel's size as 7,
are plotted in Fig. 8.20b.

From this example, we can see that the smaller the <x, the stronger the
response of the edges.

2.5r 2.5 -

f\ sigma=0.1 c, sigma=0.1

/ T \ \ >igma=0.3 / M \

I /sigma-0.3\ / / |

0.5 ' / ' ' \ : 0S ' 01 \

o - A • • 0 " • • • <y

-0.5 - \ I -0.5 - \ 9

-2.5' ' ' ' ' -2.5' ' ' ' '
- 4 - 2 0 2 4 - 4 - 2 0 2 4

(a) Canny Function (b) Discrete Kernel

Fig. 8.20 Curves of Canny's function and the corresponding discrete kernels with dif-
ferent values of a.

•••ooooooooooooooo

486 The Fundamentals of Robotics: Linking Perception to Action

Deriche 's Function for Edge Enhancement

Deriche's function for edge enhancement is as follows:

'<*>-{-*-.> ;i:>o («9»
where

g(x) = -[b1sm{ujx)}eax. (8.60)

Conceptually, by setting (01,02,04) = (0,0,0) and b± = — 03, Canny's
function becomes Deriche's function. Since function f(x) in Eq. 8.59 decays
to zero when variable x approaches infinity, spatial domain [—XQ,XQ] in
Eq. 8.57 can be extended to infinity.

Example 8.12 In Deriche's function, we set

(bi, u>) = (2.0, 1.0).

Fig. 8.21a illustrates the curves of Deriche's function in interval [—4,4] when
a equals 0.5 and 1.0 respectively. The corresponding discrete kernels, if we
choose a convolution kernel's size as 7, are plotted in Fig. 8.21b.

Again, we can see that the smaller the a, the stronger the response of
the edges.

oooooooooooooooooo
8.4.2.7 Summary of Edge-Detection Algorithm

Refer to Fig. 8.14. The algorithm implementing the Gaussian, Canny or
Deriche edge detector will consist of the following steps:

• Step 1:
Smooth the input image horizontally with convolution kernel
{hu(m,n)} computed from a Gaussian function.

• Step 2:
Enhance the horizontal edges with convolution kernel {hi2(m, n)} com-
puted from Canny's function, Deriche's function or the derivative of a
Gaussian function.

• Step 3:
Smooth the input image vertically with convolution kernel {h2i{m, n)}
computed from a Gaussian function. By default, we can choose
{h2i(m,n)} = {hn(m,n)y.

Visual Perception System of Robots 487

1.5r • • • • 1 . 5 -

sigma=0.5
sigma=0.5 , a

1 " /"\ X 1 " J^ /

0.5- / \ 0.5 - / • / \ \

°V ^ /7 ° \ \ /
y sigma=1.0 I / / sigma=1.0 V /p

-0.5 - \ / ""° 5 ' \ \ / /

—1 51 ' 1 ' ' -1.51 1 1 1 >
- 4 - 2 0 2 4 - 4 - 2 0 2 4

(a) Deriche Function (b) Discrete Kernel

Fig. 8.21 Curves of Deriche's function and the corresponding discrete kernels with dif-
ferent values of a.

• Step 4:
Enhance the vertical edges with convolution kernel {h22{m,n)} com-
puted from Canny's function, Deriche's function or the derivative
of a Gaussian function. By default, we can choose {h22(m,n)} =
{/ii2(m,n)}*.

• Step 5:
Compute the gradient norms at all pixel locations in order to obtain a
gradient image.

• Step 6:
Select the edges as final output using hysteresis thresholding over the
gradient image. This step is also known as nonmaximum suppression.

Example 8.13 Fig. 8.22a shows an input image. For the purpose of
comparison, let us compute the edge gradients using the Gaussian, Canny
and Deriche edge detectors. The convolution kernels for these three edge
detectors are as follows:

• Convolution Kernel for Noise Reduction:
To reduce noise, we create a discrete convolution kernel with a Gaussian

488 The Fundamentals of Robotics: Linking Perception to Action

function. By setting a = 0.3 and the kernel size to be 5, we obtain

{/iu(m,ra)} = {/i2i (m,n)}* = [0.0584,0.6088,1.3298,0.6088,0.0584].

• Discrete Convolution Kernel of a Gaussian Derivative:
To enhance the edges in both the horizontal and vertical directions, we
create a discrete convolution kernel from a Gaussian derivative function.
By setting a — 0.3, we have

{h12(m, n)Y = {h22(m, n)} = [0.4869,2.5368,0, -2.5368, -0.4869].

• Discrete Convolution Kernel of Canny's Function:
We can also use the discrete convolution kernel computed from Canny's
function to enhance the horizontal and vertical edges. By setting a =
0.3, w = 1.5, and the kernel size to be 5, we obtain

{h12(m,n)}t = {h22(m,n)} = [0.4376,2.0028,0,-2.0028,-0.4376].

• Discrete Convolution Kernel of Deriche's Function:
By setting a = 1, u> = 1, and the kernel size to be 5, the discrete con-
volution kernel computed from Deriche's function for the enhancement
of the horizontal and vertical edges will be

{h21(m,n)Y = {h22{m,n)} = [0.0407,0.4860,0,-0.4860,-0.0407].

The computed gradient-images are shown in Fig. 8.22b, Fig. 8.22c and
Fig. 8.22d respectively. We can see that there isn't any significant difference
among the three methods.

oooooooooooooooooo
Example 8.14 The gradient-images in the above example indicate the
possible presence of edges. A final step is to make a decision on whether
a pixel location is an edge or not. The hysteresis thresholding method
is a better way of retaining the local maxima in a gradient-image, and
removing the non-maxima. Fig. 8.23 shows the final output from a Deriche
edge detector.

oooooooooooooooooo

Visual Perception System of Robots 489

(a) Input Image (b) Gaussian Method

j , ^ > . ^ ^ >

I

* I

(c) Canny's Method (d) Deriche's Method

Fig. 8.22 Results of edge gradients computed from Gaussian, Canny and Deriche edge
detectors.

8.4.3 Corner Detection

The set of edges in Example 8.14 is a geometric representation of the original
input image shown in Fig. 8.22a. Theoretically, all high-level descriptions
of a scene (or object) can be obtained from low-level edge features. But, in
practice, it is not easy to analyze an array of edges. We will discuss this
issue further in the section on feature description.

When there is an array of edges, the term contour can be denned as
follows:

Definition 8.5 A contour is a set of interconnected edges in an image
array.

Obviously, the discontinuities of curvature along a contour indicate par-
ticular points, such as corners and junctions. Because of the smoothing
effect caused by an edge detector, a corner may not appear sharp. (Refer
to the results in Fig. 8.23). Therefore, it is interesting to know whether it
is possible to detect directly from an input image, the image feature known
as a corner or junction.

490 The Fundamentals of Robotics: Linking Perception to Action

h——/—•—r iy?

Jl^~5>/ b D a a a o j
=s^p±===h • a a D o F=

I h a n D D D /
/ _n • • a a o /

/ n_a_ci_Q_D,o=j'

Fig. 8.23 Final output of edges from a Deriche edge detector.

8.4.3.1 Definition of Corners

If we take the interconnected edges as input, a corner can be defined as a
location where the curvature of a contour is a local maximum. According
to this definition, corner detection directly depends on edge detection. Due
to curvature computation, the detection of corners from edges should be
considered as part of feature description. Here, we are interested in the
question of how to detect corners from an intensity image directly without
invoking any analytical description of contours.

At a time-instant, an intensity image is a two-dimensional spatial func-
tion. In a continuous space, an image function can be treated as a surface
in a spatial domain defined by the image coordinates (v,u). If an im-
age surface can be described by a smooth and differentiable function, it is
possible to compute the curvature at each location (v,u), and along any
direction. In particular, the curvatures computed along two orthogonal di-
rections (e.g. along the u and v axes) are called principal curvatures. Based
on the concept of image surface, a corner can be defined as a location where
the principal curvatures of the image surface are the local maxima.

If f(x) is a single-variable function which is smooth and differentiable,

Visual Perception System of Robots 491

the curvature of f(x) at location x is

« = » '»» (8.61)

K/i + (/»)2]3

where / (x) = ^ and / (x) = J^ • In order to compute the prin-
cipal curvatures, it is necessary for the image function to be smooth and
differentiable up to the second-order. This is a very stringent requirement
because an image is digital and is not noise-free. And, a curvature-based
corner detector is thus very sensitive to noise.

THPW
Background Background

•»• A ^

Background

Fig. 8.24 Illustration of corner definition.

An alternative definition of corner which does not require the computa-
tion of second-order derivatives of an image function is as follows:

Definition 8.6 Location (v,u) is a corner if and only if the following
conditions hold:

• Condition 1: The location (v,u) is an edge.
• Condition 2: The gradient at (v, u) is zero in at least one direction. We

call this direction zero-gradient direction.
• Condition 3: There is no edge in the vicinity of the zero-gradient di-

rection.

492 The Fundamentals of Robotics: Linking Perception to Action

Fig. 8.24 illustrates the validity of this definition. If we examine the
contour separating regions Ri and R2, we can see that the corner at location
A satisfies all the conditions for this definition. However, while all the edges
satisfy Conditions 1 and 2, a non-corner edge, such as the one at location B
in Fig. 8.24 does not meet Condition 3 because a smoothed contour locally
looks like a line segment.

8.4.3.2 Zero-gradient Corner Detector

A corner-detection algorithm depends on the definition of a corner. If
a corner is considered the location where the principal curvatures are the
local maxima, a corresponding corner detector must compute the curvature-
related measurement.

Here, we present a simple corner-detection algorithm which uses the
corner definition stated in the above section. We call this algorithm zero-
gradient corner detector. It works as follows:

Implementation of Condition 1

As we stated in the above definition of corner, the first condition is that a
corner must be an edge as well. In order to measure about the edge at a
pixel location, we simply filter an input image with a set of directional con-
volution masks. Let {hg(m, n)} denote a convolution mask which enhances
the edges in the direction of 6. For example, we can choose {ho(m,n)} to
be:

" 0 0 0 0 0
0 0 0 0 0

{hg(m,n) \g=0} = 0.4869 2.5368 0-2.5368-0.4869 . (8.62)
0 0 0 0 0

. 0 0 0 0 0

In Eq. 8.62, the matrix's row 3 is a convolution kernel computed from
a Gaussian derivative function. If we rotate convolution kernel {ho(m, n)}
with rotation angle 9, we obtain the corresponding convolution kernel for
the enhancement of edges in the direction of 0. For example, we can choose
6 to be 45°, 90° and 135° in order to obtain convolution kernels {h^{m, n)},
{h9o(m,n)} and {hi35(m,n)}.

Now, let Ge(v, u) denote the array of enhanced edges in the direction of
9. Assume that direction 9 takes a value from the set [9\, 92, —, Ok]- Pixel

Visual Perception System of Robots 493

location (v,u) will be declared an edge if the following condition holds:

Ge(v,u)>g0, for any 0 in [0 i ,0 2 , -A] (8-63)

where go is a threshold value on the directional gradient.

Implementation of Condition 2

Because of noise and the discrete nature of an input image, it is rare to
obtain the zero gradients perfectly across a uniform region of an image.
Therefore, a zero-gradient should be interpreted as a low-gradient value.
It is necessary to define a reference value below which a gradient value is
judged to be low (or zero). One way to specify a reference value is to choose
a default value g\.

Let 9min denote the direction in which directional gradient Ggmin (v, u)
at (v, u) is considered zero. In practice, we can implement this condition
as follows:

Gom,Av^)<Ge(v,u), for all 9 in [9U <92,..., 9k] except 0min. (8.64)

Eq. 8.64 interprets a low-gradient value as anything that is not a high-
gradient value. In this way, it is not necessary to introduce threshold value
Si-

Implementation of Condition 3

As we described earlier, the third condition states that there should be no
edge in the vicinity of the zero-gradient direction 0min. In a discrete space,
a vicinity in direction 9min can be specified by two intervals of indexes:
[—12, —i\\ and [ii, £2] (*i < h)- On the array of an input image, we can de-
termine the pixel locations corresponding to intervals [—12, —ii] and [i\, i2],
if Qmin and (v, u) are known.

Let £>_ and D+ denote the sets of pixel locations corresponding to
intervals [—12,—ii] and [11,12} respectively. Then, we have

{D_ = {{v + i»sm9min, u + i»cos9min), Vi e [-i2, -h]}
(8.65)

D+ = {(v + i»sm9min, u + i»cos9min), Vie[zi,i2]}.

If we know the vicinity specified by D- and £>+, Condition 3 can be
interpreted as follows:

Ge±(vi,u{) < g0, V(ui,ui) e £>_ and V(^i,wi) e D+ (8.66)

494 The Fundamentals of Robotics: Linking Perception to Action

where 0± = Omin + 90°. This means that in the vicinity of a corner can-
didate, we only test the gradients computed in the direction perpendicular
tO 0min-

Summary of Zero-gradient Corner Detector

The zero-gradient corner detector does not involve any computation of
curvature-related measurements. In addition, the decision-making pro-
cess for verifying the three conditions is simple. The zero-gradient cor-
ner detector, if we choose two pairs of orthogonal directions: (0°, 90°) and
(45°, 135°), is illustrated in Fig. 8.25.

^ ^ ^ ^ ^ ^ f e - Arrays
Images of Comers

Fig. 8.25 Illustration of the zero-gradient corner detector.

The major steps in the zero-gradient corner detection algorithm are:

• Step 1: Compute the directional gradients with a set of convolution
kernels.

• Step 2: Scan the image array to locate the edges (Condition 1).
• Step 3: For each edge candidate, determine the zero-gradient direction

(Condition 2).
• Step 4: For each corner candidate, verify Condition 3. If confirmed,

accept the candidate as a corner.
• Repeat Steps 3 and 4.

Example 8.15 The zero-gradient corner detector has three parameters:
go and (ii, i2). If we have an input image, such as is shown in Fig. 8.26a,
we set (go, ii, i2) = (90, 2, 5). The response of the corners is shown in

Visual Perception System of Robots 495

Fig. 8.26b. We can see that the result is reasonably good. At an actual cor-
ner, there may be multiple responses which are closely clustered together. A
simple grouping by connectivity will cluster the multiple responses together
to form a single output.

jft « • . * * *

(a) Input Image (b) Corner Response

Fig. 8.26 Results of corner detection.

•ooooooooooooooooo
Example 8.16 Fig. 8.27 illustrates another example of corner detection.
The parameters (g0, ii, i2) are set as (90, 2, 5). The response of the
corners is shown in Fig. 8.27b. The result is reasonably good. As for the
multiple responses at an actual corner, they can easily be grouped together
to form a single output.

pfjppjjMif-'ji •'*'" W"W"m ' • • *

•;iu*~ii- - - • • - #. • • . .•- * _ • -
(a) Input Image (b) Corner Response

Fig. 8.27 Results of corner detection.

00000<>000^00<>^00^

496 The Fundamentals of Robotics: Linking Perception to Action

8.4.3.3 Other Corner Detectors

There have been many studies on corner detection. A large group of corner-
detection algorithms are based on the measurement related to the curvature
of contours or intensity surfaces. This category of algorithms uses the
following definition of corner:

Definition 8.7 Locations where the curvatures of contours or intensity
surfaces are the local maxima are considered corners.

One representative algorithm from this category, proposed indepen-
dently by the teams Harris-Stephens and Forstner-Gulch, is the Plessey
corner detector. Since the curvature measurement requires the second-
order derivatives, it is necessary for a corner detector from this category
to invoke a noise-reduction process. This makes it and all corner-detection
algorithms computationally expensive.

One interesting corner detector is the SUSAN algorithm, proposed by
the team Smith-Brady. This algorithm uses a circular disk to scan an input
image, row-by-row and column-by-column. At each scanned location, the
intensity values of the pixels within the disk are compared with the intensity
value underneath the center of the disk (also known as the nucleus). The
output of this circular disk at this location is the number of pixels with
intensity values similar to that of the nucleus. This number is called the
Univalue Segment Assimilating Nucleus or, US AN for short. A location is
considered a corner if the USAN at that location is a local maximum. (In
other words, it has the smallest USAN, also called SUSAN). Testing for
the similarity among intensity values is a complicated issue. If a simple
criterion is used, such as the difference between two intensity values, the
algorithm may not be resistant to noise. If a sophisticated criterion is used,
such as the exponential of the difference between two intensity values, the
algorithm will be computationally expensive.

8.4.4 Spatial Uniformity Detection

An image is a spatio-temporal function. It not only exhibits discontinuity in
both time and spatial domains but also uniformity, in terms of chrominance,
luminance and texture. Therefore, uniformity detection is an interesting
and important issue in image-feature extraction. We will first study spatial-
uniformity detection, and then temporal-uniformity detection.

Visual Perception System of Robots 497

8.4.4.1 Definition of Image Regions

In a scene, uniform surfaces under uniform lighting conditions will create a
uniform appearance in certain areas or regions on a camera's image plane.
For the sake of simplicity, let us consider the case of the intensity image and
the spatial domain defined by image coordinates (v,u). If I(v,u) denotes
an intensity image, the simplest definition of an image region is the set of
pixel locations {(i>j,Ui), i = 1,2,...} where image function I(v,u) is equal
to L. In other words, image region RL having intensity value L will be

RL = {{vr,Ui) I I(vuUi) = L, Vvi G [1,ry], Vu, e [1,r*]}. (8.67)

This way of denning an image region has two drawbacks:

• First of all, an image is not noise-free. Moreover, because of variations
in lighting and viewing directions in a scene, a uniform surface does
not have a uniform appearance in an image.

• Secondly, two separate surfaces in a scene may exhibit very similar
appearances in a camera's image plane. Pixels having similar intensity
values may not correspond to a same surface in a scene.

As noise in an image is random, we should treat image function I(v,u)
as a random variable. Without any a priori knowledge, we can reasonably
assume that random variable I(v, u) follows a Gaussian distribution. Thus,
the intensity distribution of a uniform image-area should have a mean of
yii£ and a variance of a\. Accordingly, an image region can be defined as
follows:

Definition 8.8 An image region, described by intensity distribution
N{HL,,O\), consists of those interconnected pixel locations where the fol-
lowing condition holds:

RL = {{Vi,u%) | \\Hyi,Ui)-nL\\ < k.aL, V«4 G [l,ry], Vw, G [l,rx]} (8.68)

with k — 3 (or other value).

If the input is a color image, then the image region refers to an area
of a specific color. In this case, both mean \i and variance a1 are three-
dimensional vectors.

8.4.4.2 A General Scheme for Uniformity Detection

According to the above definition of an image region, uniformity detection
is purely a decision-making process (or nonlinear filtering). This is because

498 The Fundamentals of Robotics: Linking Perception to Action

no linear filter is able to enhance one region while at the same time, reducing
all the other regions.

In general, there are two big challenges with using a decision-making
process:

• Uncertainty:
Decision-making is a process which associates inputs with outcomes.
Possible inputs include sensory data, fact, hypothesis, context, or goal.
And, possible outcomes can be an action, statement, confirmation, or
rejection. If there is uncertainty in the representation (or description)
of the input or outcome, decision-making is a difficult task. Uncertainty
can be caused by: a) noise in the sensory data, b) incomplete sensory
data, c) ambiguities in the formulation of facts, goals, hypothesis and
contexts, and d) ambiguities in the description of the desired outcome.

• Redundancy:
In our study of robot kinematics, we know that there are multiple
solutions for inverse kinematics. This indicates that there are multi-
ple pathways for associating an input with an outcome. In a robot's
visual-perception system, redundancy occurs as well. For example, un-
der different lighting conditions, certain colored surfaces (e.g. red) will
appear numerically different in a camera's image plane. In this case,
a similar outcome can be associated with a set of different inputs. On
the other hand, sometimes there can be multiple solutions (or inter-
pretations) for the same input. This in turn makes decision-making a
difficult job. Statistical inference is a powerful tool to cope with uncer-
tainty because it effectively deals with probability (i.e. the likelihood
of an observation). When dealing with possibility (i.e. the feasibility
of a solution or mapping) , it is necessary to adopt other useful tools
such as a Neural Network or Fuzzy Logic.

A feature detector generally consists of three steps: a) noise reduc-
tion, b) feature enhancement, and c) feature selection. For edge detection,
feature enhancement is the most important step. However, for uniformity
detection, the most important step is the decision-making process of feature
selection.

As shown in Fig. 8.28, a uniformity detection algorithm involves the
following modules:

• Selection of Seed Regions:
A decision-making process can be one or a combination of the following

Visual Perception System of Robots 499

three: a) knowledge-driven, b) experience-driven and c) expectation-
driven. Generally speaking, for uniformity detection, there is no a pri-
ori knowledge about intensity (or chrominance) distribution N(fi, a2) of
a region (or color) in a given input image. The specification of N(fi, a2)
can be done either manually (by expectation) or automatically (by ex-
perience) . Given an input image, a user can manually delimit a region
and use it to compute the corresponding N(n, a2). An alternative way
to specify the possible regions is to subdivide an input image into an
array of regular partitions. Among the partitions, those having the
smallest variances, in term of luminance (or chrominance), are treated
as seed regions. Distribution N(fi, a2) of a seed region defines a possible
region to be detected from an input image.

• Storage of Seed Regions:
If a region has a generic meaning regardless of the input images, it
can be treated as knowledge. For example, a region corresponding to
a red color has the generic meaning of "being red". This knowledge
can be stored and reused in the future. A neural network, or associa-
tive memory, is a good mechanism for storing generic information or
knowledge.

• Classification of Pixels:
When we know a set of seed regions, the next step is to classify the pixels
in an input image into groups corresponding to these seed regions. This
can be done by testing the condition in Eq. 8.68 explicitly, or by using
a classifier implicitly.

• Grouping of Classified Pixels:
As we already mentioned, an input image may contain multiple regions
with the same distribution N(fj,, a2). It is, therefore, necessary to per-
form a simple process such as the grouping by connectivity to cluster
the pixels belonging to the same region.

In general, there is no generic representation to codify luminance-related
information. In other words, any attempt at specifying a generic represen-
tation of luminance, such as darkness, brightness or dimness, will create
ambiguity.

However, this is not the case with color. Colors can be classified and
codified using a generic representation or symbol (e.g. the conceptual sym-
bols such as red, green, blue, yellow, pink, cyan, orange, etc). Obviously,
the colored seed regions can be stored and reused. In the following section,
we will study a general solution for detecting colored regions. By removing

500 The Fundamentals of Robotics: Linking Perception to Action

1 j ^ | •*•• I K •!•,, ^ i v I I ; , .

i l U-.immg ,

T • I m a 8 e

Images , ' ' F i „ ,,~. ~\ Regions
"I ^ 1 < Lissillriilinn i>l'pixt'ls | ^ i (I ' , ' . . I | ' . . | f"~ W

! I I . i • ' •' - I
I Recognition ,

Fig. 8.28 A general scheme for uniformity detection.

the chrominance from a color, we can obtain the luminance. As a result, the
solution to detecting colored regions also applies to detecting uniformity,
which takes an intensity image as input.

8.4.4.3 Color Detection

Color is the brain's physiological and psychological interpretation of light.
Physically, a color is the measurement of a light's chrominance and lumi-
nance. The chrominance characterizes the property of "pure color" (i.e. a
psychological sensation), while the luminance characterizes the property of
energy, or the absolute intensity (i.e. the amount of photons entering a unit
area).

L*a*b Color Space

Color measurement by an electronic device, such as a camera, depends on
the device's characteristics. Just as when we measure an object's location,
we use a coordinate system as a reference. If we want an unbiased color
measurement, it is necessary to have a reference. And, it is necessary to
define a color space which takes into account that reference. A common
reference, for color measurement, is the "white" color. So far, there isn't
an ideal color space which satisfies all needs in terms of color measurement,
display, and artistic visual effects. However, the most widely-adopted color
space for color measurement is the L*a*b color space.

Let us consider a color camera and its associated image digitizer as an
electronic device for color measurement. Output will be in the form of
three two-dimensional arrays of pixels which correspond to the Red, Green,
and Blue component colors respectively. At pixel location (v, u), the triplet

Visual Perception System of Robots 501

(IR(V,U),IG(V,U),IB(V,U)) is called the RGB tristimulus values. If the
RGB tristimulus values undergo the following transformation:

/X\ / 0.607 0.174 0.200\ /IR(v,u)\
I Y I = I 0.299 0.587 0.114 • IG(v,u) (8.69)
\Z) \ 0.0 0.066 1.116/ \lB{v,u))

and

' L(v,u) = 25. f f ^ } 1 / 3 - 16

' «K«) = 500 .{ [^] 1 /3__[^_] i /3 j (8.70)

b(v,u) = 200 . { [y^] 1 / 3 - lz^}1/3}

where (Xmax, Ymax, Zmax) are the results obtained using white as reference
color, and triplet {L(v,u),a(v,u),b(v,u)} are the L*a*b tristimulus values
in L*a*b color space.

In L*a*b color space, the L axis measures the relative luminance of a
color. In other words, the L value is proportional to a color's brightness
with reference to white. The negative L axis indicates the darkness while
the positive L axis measures the whiteness. However, the a and b axes
measure a color's relative chromaticity. More precisely:

• The positive a axis measures the redness of a color.
• The negative a axis measure the greenness of a color.
• The positive b axis measures the yellowness of a color.
• The negative b axis measures the blueness of a color.

L*a*b color space is both numerically and perceptually uniform. This
means that a numerical difference between two colors at any location in
L*a*b color space causes the same sensation of color difference.

Representation of Colored Seed Regions

When we have a seed region in an RGB image as input, we first con-
vert it using Eq. 8.69 and Eq. 8.70 into the corresponding L*a*b image.
Then, we can compute the means and variances corresponding to the triplet
{L(v, u), a(v, u),b(v, u)}. If /xc and a\ denote the vectors of mean and vari-

502 The Fundamentals of Robotics: Linking Perception to Action

ance, we have

/M (ul\
Mc = \na\ a n d a\ = \ a\\ . (8.71)

W W/
Accordingly, a colored seed region is represented by a normal distribu-

tion N(fic> at) if the variations in its chrominance and luminance follow a
Gaussian distribution.

Architecture of a RCE Neural Network

When we know the representation of the seed regions, the next question is:
How do we design a memory to store seed regions and a classifier capable of
recognizing image regions similar to the seed regions? A simple answer is
to use an appropriate neural network which can effectively deal with both
the uncertainty of input data and the redundancy of solutions.

The RCE (Restricted Coulomb Energy) neural network, developed by
Reilly et al. in the early 1980s, is a specific design of the hyper-spherical
classifier. A RCE neural network can serve as a general purpose classifier for
adaptive pattern recognition. It is suitable not only for classifying separable
classes, but also for recognizing non-separable classes. Moreover, an RCE
neural network can serve as an active-memory mechanism and is able to
perform fast and incremental learning, if necessary.

As shown in Fig. 8.29, an RCE neural network consists of three layers
of neurons:

• Input Layer:
This layer contains neuron cells that store the feature vector of input
data (or training samples). In the case of colored seed regions, the
input layer has three cells: one for mean value /j,L, one for mean value
/j,a, and one for mean value fib-

• Prototype Layer:
This layer contains a large number of neuron cells which are grouped
into a set of clusters. Each cluster is mapped to its corresponding
output. In fact, a neuron cell in a cluster represents one feasible way
of mapping between cells in the input layer and corresponding cells in
the output layer. Clearly, an RCE neural network is a good tool for
dealing with the redundancy of solutions.

• Output Layer:
This layer contains a number of cells, each of which represents a generic

Visual Perception System of Robots 503

~~TVfyf'l ^x:j—P
Mean a f 4 ^C^N ̂ \ / / / :

Meanb f , N fc~ —J_^V \Xl/~~ \ " " ' ' "

i \ V\'--y ->*'•- v
Input Layer t ^ \ \ w ~^-' ^

Prototype Layer Output Layer

Fig. 8.29 Architecture of an RCE neural network.

class. In the case of spatial-uniformity detection in color images, a class
refers to a region of a specific color.

One interesting feature of the RCE neural network is that there is no
limit to the number of cells in the prototype layer. While a practical limit
is imposed by the computing hardware, still, there is plenty of freedom to
allocate as many cells as possible in the prototype layer to represent or
memorize a class. Since it is possible for a new cluster and a new cell in
the prototype layer to be allocated at any time, the RCE neural network
is indeed an incremental mechanism for the incremental representation of
any meaningful entity. And, this incremental representation can gradu-
ally be built through real-time interaction between a physical agent, like a
humanoid robot, and its environment.

Parameters in a RCE Neural Network

In the original proposal for the RCE neural network, prototype cells are
described by a set of five parameters:

504 The Fundamentals of Robotics: Linking Perception to Action

• c: Label indicating the class to which a prototype cell belongs,
• UJ: Position vector of a prototype cell in the feature space, the dimension

of which is determined by the cells in the input layer,
• A: Dimension (i.e. radius) of the hyper-spherical volume (also known

as influence field) of a prototype cell in the feature space,
• t: Counter which indicates the number of times a prototype cell has

responded to the input either during training or real-time activation,
• a: Radial decaying coefficient of the hyper-spherical influence field

which can be set to zero if there is no decaying effect.

Response from an RCE Neural Network

Assume that an RCE neural network has n cells in the input layer and N
cells in the output layer. In response to input data X = {2:1,2:2, ...,xn},
prototype cell j of class i will use a radial basis function to determine
activating signal u^ as follows:

Uij = \ij - Wnx - UijW (8.72)

where \ix is the mean value of input data X.
If Uij > 0 and ax < A^/3, prototype cell j of class i will respond

to input feature vector X. When a prototype cell is fired, or triggered,
parameter t will be increased by 1. A prototype cell in the RCE neural
network has two modes of response:

(1) Fast-Response Mode:
In this mode, prototype cell j of class i outputs value 1 to the corre-
sponding output-layer's cell, known as the class cell, that is,

_ J 1 if u^ > 0 and ax < A^/3; ,
^ ~ \ 0 otherwise. [^'6)

(2) Probability-Response Mode:
In this mode, prototype cell j of class i outputs a probability value
based on the following calculation:

\pij=e-^^. (8 - 7 4)

If we have class cell Cj (i £ [1,N]) in the output layer, we can first
compute all the responses of the prototype cells belonging to this class cell.
These responses will then be the input to the class cell. Finally, output

Visual Perception System of Robots 505

from the class cell will be the weighted sum of inputs as follows:

Ri= J2 ta'PiJi Vie[l,JV]. (8.75)

If input data triggers responses from all the class cells in the output
layer, a conditional probability describing the likelihood that feature vector
X belongs to class d, is determined as follows:

P(Ci\X) = —p—-, Vie[l,N}. (8.76)

If we know the conditional probabilities P(d\X) (Vi G [1, N]), it is easy
to decide which class input data belongs to.

Training of an RCE Neural Network

Refer to the architecture of an RCE neural network, as shown in Fig. 8.29.
The dimension of the input layer depends on the size of the input data. For
example, the input layer will have three cells if an RCE neural network is
used to memorize seed regions represented by N(fic,cr^). This is because
mean vector /xc has three elements. On the other hand, the number of
cells in the output layer depends on the number of seed regions, and can
dynamically be increased or decreased.

When an RCE neural network is activated for the first time, there will be
no cell in the prototype layer. Therefore, before an RCE neural network can
be used for recognizing or classifying data, the mappings between the cells
in the input layer and the cells in the output layer must be established.
The process of associating the cells in the input layer to the cells in the
output layer is known as RCE neural network training.

In order to train an RCE neural network, a set of training samples must
be available. At the very least, it is necessary to have one training sample
per class so that we can establish at least one pathway from input layer to
output layer for each class. Let us assume that a training sample is repre-
sented by sample mean /i and sample variance CT2 . If this training sample
has only one observation (one vector), the sample mean is the feature vec-
tor itself, and the sample variance is a user-defined positive value. When
we use a set of training samples as input, the training process for an RCE
neural network operates in the following way:

• Case 1: Creation of a New Prototype Cell:
When we use training sample X, belonging to class i, if it does not

506 The Fundamentals of Robotics: Linking Perception to Action

trigger any response (see Eq. 8.72) from existing prototype cells (if
any), new prototype cell j is created with the following settings:

C-ij = Ci

Uij = fJ-X

• Xij =3»ax

tij = 1

.<?ij =°~X-

And, this new cell will be connected to class cell Ci which represents
class i.

• Case 2: Increase in an Existing Prototype Cell's Counter t:
When we use training sample X, belonging to class Ci, if it triggers
a response from prototype cell j of the same class Ci, counter t of
prototype cell j is increased by 1 as follows:

• Case 3 (optional): Modification of the Influence Field of an Existing
Prototype Cell:
When we use training sample X, belonging to class Ci, if it triggers a
response from prototype cell j which belongs to another class Cfc, the
radius of the hyper-spherical influence field of prototype cell j must be
decreased according to the following calculation:

Afej = \\ukj ~ Hx\\-

This indicates that the radius of the hyper-spherical influence field of
prototype cell j is now equal to the distance between the center of
prototype cell j and the center of training sample X.

We can see that an RCE neural network has the innate mechanism to
dynamically create new cells in the prototype layer. This makes it an ideal
tool to incrementally represent any family of meaningful entities, such as
the regions in a color image, the conceptual symbols in a natural language,
etc. Most importantly, the incremental training process of an RCE neural
network is very simple and has no issue of convergence.

Summary of a Color Detection Algorithm

The prototype cells in an RCE neural network perform dual roles: a) to
memorize training samples and b) to classify input data with reference to

Visual Perception System of Robots 507

stored samples. Thus, an RCE neural network can serve as both a memory
and a classifier. If we treat seed regions as training samples, then an RCE
neural network is an effective tool for detecting spatial uniformity in color
images.

The algorithm implementing a probabilistic RCE neural network for
color detection can be summarized as follows:

• Step 1: Select seed regions to train the RCE neural network.
• Step 2: Compute the means and variances of the seed regions, described

by the L*a*b tristimulus values.
• Step 3: Train the probabilistic RCE neural network.
• Step 4: Scan an input image row-by-row and column-by-column.
• Step 5: At an unclassified pixel location, use the L*a*b tristimulus

values as the mean value of input data and set the variance to zero.
Alternatively, take a sub-image centered at the pixel location, and com-
pute the mean and variance of the sub-image, described by the L*a*b
tristimulus values.

• Step 6: Classify the scanned pixel by testing the responses from the
probabilistic RCE neural network.

• Repeat Steps 4, 5 and 6 until all pixels are classified. If a pixel or
its sub-image does not trigger a response from the probabilistic RCE
neural network, it will be treated as belonging to an unknown class.

Example 8.17 Human-robot interaction is an important skill that a hu-
manoid robot should possess. There are different forms of interactive com-
munication between a humanoid robot and a human master, one of which is
hand gestures. However, in order to understand the meaning behind hand
gestures, it is necessary to reliably identify the hand's image which can be
captured in different environments (e.g. indoor or outdoor) with simple or
complex backgrounds.

A useful visual cue for quick and reliable identification of hand's im-
ages is skin color. Fig. 8.30 shows the results of hand-image segmentation
based on skin-color recognition by a probabilistic RCE neural network. The
classified and grouped pixels belonging to a hand's image are displayed in
black. We can see that the RCE neural network works well, regardless of
differences in sex or race.

oooooooooooooooooo
Example 8.18 In recent times, there have been many ambitious initia-

508 The Fundamentals of Robotics: Linking Perception to Action

C.ni Tm.î i' I (b) Image 2

(c) Image 3 (d) Image 4

Fig. 8.30 Examples of hand-image segmentation based on skin-color identification.

tives at developing autonomous vehicles. One common way of attempting
this is to develop a built-in intelligent system which is fully integrated with
the vehicle. An alternative and relatively new approach is to combine a
humanoid robot with an existing vehicle.

The day when a humanoid robot is capable of driving a vehicle on the
road may not be far away. However, before that happens, it is necessary for
the robot to be able to quickly and reliably recognize landmarks and road
signs. Interestingly enough, all landmarks and road-signs are painted with
specific colors. This makes it easy to identify landmarks and road-signs
from color cues. Fig. 8.31 shows an example of using a probabilistic RCE
neural network to identify landmarks painted in red. The classified pixels
are displayed in black.

••oooooooooooooooo

8.4.5 Temporal Uniformity Detection

The property of uniformity not only exists in an image-plane's spatial do-
main, but also in the time domain. The latter occurs when there is relative
motion between a robot's visual-sensory system and a scene. If the viewing

Visual Perception System of Robots 509

(a) Road Image (b) Red Landmarks

Fig. 8.31 Example of a landmark segmentation based on the identification of specific
colors.

angle with respect to an object in a scene does not change too much within
a certain time interval, the projection of this object onto the camera's im-
age plane will appear uniform within a sequence of images captured by the
camera.

In a dynamically changing environment, it is important to be able to
visually follow the temporal evolution of an object in a scene. This is
commonly known as image feature tracking. In order to be able to perform
image feature tracking, it is necessary to detect the uniformity in the image
plane's time domain.

8.4.5.1 Definition of Image Templates

If we only have a single image, an object with a general geometry and color
may not appear spatially uniform in the camera's image plane. However, if
we capture a sequence of images and the viewing angle with respect to this
object remains relatively constant, the projection of this object onto the
image plane will exhibit temporal uniformity within a sequence of images,
as shown in Fig. 8.32.

Let Is(v,u,tk) denote the projection of an object onto the camera's
image plane at time-instant tk- If Is(v, u, tk) appears to be constant within
time interval [£i,£n], then Is(v,u,tk) can be treated as the time-invariant
representation of an object's image. This image is commonly known as
the image template of an object of interest. Formally, we can state the
definition of an image template as follows:

Definition 8.9 An image template Is(v,u,tk) is the time-invariant pro-
jection of an object onto the camera's image plane within a certain time

510 The Fundamentals of Robotics: Linking Perception to Action

U

Fig. 8.32 Illustration of spatio-temporal image function describing a sequence of images.

interval.

Mathematically, this definition can be translated as

AIs(t) = \\Ie(v,u,tk) -/.(u.u.ifc-i)!! <gs, Vifc e [t2,tn] (8.77)

where gs specifies the minimum permissible variation of an image tem-
plate. Since Is(v,u,tk) is time-invariant, it can be written more concisely
as Is(v,u).

8.4.5.2 Template Matching

When we have a sequence of n images Ij(v,u,tk) (k € [l,n], and n > 1)
and image template Is(v,u), the problem of temporal-uniformity detection
is finding the locus of an image template within the image sequence. Since
an image sequence is a discrete sequence, a simple way to pinpoint the
locus of the image template is to determine the image-template's location
in each image. A more advanced method treats the locus as a trajectory
with a specific kinematic property. In this way, the temporal evolution of
the locus is predictable in order to cope with uncertainty due to noise and
incomplete (or missing) data.

When we have image Ii(v, u, tk) within an image sequence, the detection
of temporal uniformity operates in two steps:

Visual Perception System of Robots 511

• Prediction of Possible Locations:
In this step, all the possible locations of an image template in image
Ii(v,u,tk) are predicted. In practice, if we know the location of the
image template in the previous image Ij(v,u,tk~i), we can define a
small window W : wx x wy centered at this location. All the possible
locations of the image template are within the window W : wx x wy.

• Search for the Image Template's Location:
This step is to determine the most likely location of an image template
within the window W : wx x wy. In practice, we choose a location
where the sub-image is similar to the image template. If we denote
sub{Ii(v,u,tk) | (vo,uo)} the sub-image centered at location (i>o,«o),
then the search for the image template's location is a minimization
process described by

min \\Is{v,u)~sub{Ii{v,u,tk) | (vo,uo)}]\, V(vo,wO) £ W. (8.78)
("o,"o)

Example 8.19 In a visual-perception system, feature tracking is an im-
portant issue. The ability to follow an object of interest within an image
sequence will enable a robot to lock its visual attention. If the template im-
age of an object of interest is known in advance, one can apply the template
matching technique directly to detect the locus of the object's template im-
age within an image sequence. If no template image is available, we can
choose some sub-images, taken from the image at time-instant tk-\, as
image templates.

Fig. 8.33 shows the results of temporal-uniformity detection within two
consecutive images. The sub-images centered at selected points of interest
are used as image templates taken at time-instant tk-i- The detected
locations of these image templates in the image at time-instant tk are shown
in Fig. 8.33b.

oooooooooooooooooo
Example 8.20 Feature correspondence in binocular vision is a crucial
step towards the inference of three-dimensional geometry of a scene (or
object). This is still difficult to do. However, for some distinct objects, we
can treat the problem of feature correspondence in binocular vision as the
problem of temporal uniformity detection if the images captured by the two
cameras in binocular vision do not differ too much. In this way, the left
image can be treated as an image taken at time-instant tk-i and the right
image as an image taken at time-instant tk.

512 The Fundamentals of Robotics: Linking Perception to Action

(a) Image at tk-1 (b) Image at tk

Fig. 8.33 Example of template matching between two consecutive images.

Fig. 8.34 shows an example of binocular correspondence. We can see
that the objects corresponding to the computer monitor and printer can be
effectively matched within the pair of images.

(a) Left Image (b) Right Image

Fig. 8.34 Example of template matching between two images from binocular vision.

oooooooooooooooooo

Visual Perception System of Robots 513

8.4.6 Temporal Discontinuity Detection

When dealing with a sequence of images, one may wonder whether temporal
discontinuity within an image sequence is an important issue. It is, because
detection of temporal discontinuity is a quick and simple way to detect any
moving object in a scene which has a stationary background.

In our study of the visual-sensory system, we learned that human vision
consists of two parts: a) central vision and b) peripheral vision. One impor-
tant role of peripheral vision is that it enables humans to quickly respond
to the intrusion of any moving object in their field of vision. Thinking
about it from an engineering point of view, it is possible that human pe-
ripheral vision makes use of the simple technique of temporal-discontinuity
detection to achieve the results of quick response.

Let I[(tk-i) and //(ifc) denote two consecutive images. If we consider
the time interval between two consecutive time-instants to be 1, then the
first-order derivative of an image function, with respect to time, can be
computed from the image difference as follows:

AJ/(t) = ||J/(ifc)-//(tfc-i)l|. (8.79)

Therefore, the algorithm implementing temporal-discontinuity detection
will be extremely simple.

Example 8.21 In robotics, the ability of a visual-sensory system to de-
tect a moving object in the field of vision has useful applications. For
example, temporal-discontinuity detection can help a humanoid robot to
choose an object of interest so that the robot's visual attention focuses on
it.

Fig. 8.35 illustrates a scene with a complex background. We can see that
the intrusion of an arm can be quickly and easily detected using Eq. 8.79.

oooooooooooooooooo

8.5 Geometric-Feature Description

A digital image is a two-dimensional array of pixels. This implies that
an image array is without any unit of measurement. In fact, a pixel may
correspond to any real dimension in a scene. Therefore, while it seems
too early to undertake a parametric description of geometric features in an
image, there are two reasons which justify it.

514 The Fundamentals of Robotics: Linking Perception to Action

O^M u\ -i^P IP* QH 'SIMP P I ^^^^^^^^^^^^^^^H

Image at tk - Image at tk-1 = Output Image

Fig. 8.35 Example of temporal-discontinuity detection.

First of all, an image contains a large amount of information. Even after
the feature extraction, the size of the data is still large. Feature description
is an effective way to reduce raw data while preserving useful information.
For example, in a digital image, the contour of a straight line is a list of
edges. However, two end points, or a parametric equation, such as:

a*u+b»v+c=0

are sufficient and accurate enough to represent a straight contour.
Secondly, a parametric description of raw data is a helpful way to infer

the geometry of a scene. For example, a binocular correspondence of two
circles is much simpler to handle than dealing with two lists of points. We
will study the problem of binocular vision in the latter part of this chapter.

8.5.1 The Basics of Feature Description

The ultimate goal of feature description is to derive a compact representa-
tion of pixels belonging to the same physical entity, such as a contour or
surface. In order to achieve this goal, one must address the following issues,
as shown in Fig. 8.36:

• Feature Grouping:
An image contains a large amount of raw data. After feature extrac-
tion, the results are still in the form of individual pixels, called feature
points. In general, these feature points are unlikely to belong to a single
physical entity, because a scene usually has more than one object. As
a result, it is necessary to first divide the feature points into a set of
groups. This process is commonly called feature grouping.

Visual Perception System of Robots 515

• Contour Splitting:
A contour is a list of interconnected edges which may, or may not
belong to a single object. Even if a contour belongs to the boundary of
a surface, it may have a complicated shape which cannot be described
by a single equation. Therefore, it is necessary to split a contour into a
set of simple contours, each of which can be described analytically by
one equation.

• Curve Fitting:
When we have a simple contour, the purpose of curve fitting is to de-
termine a compact representation of it. In the simplest case, a contour
can always be approximated by a set of line segments.

Features F e a t u r e Contour ^ Curve C l ^ e s

° Grouping Splitting Fitting

Fig. 8.36 General procedure for feature description.

8.5.2 Feature Grouping

Feature grouping turns out to be a very difficult process because it involves
complex decision-making, as shown in Fig. 8.37. The psychological inter-
pretation by the brain, regarding the content shown in Fig. 8.37, is that
there is a rectangle overlapping four circles. However, there is no direct
visual-sensory data which computationally leads to this interpretation.

Fig. 8.37 Example of feature grouping with an invisible but expected, physical entity.

This example indicates that feature grouping may be one or a combi-

516 The Fundamentals of Robotics: Linking Perception to Action

nation of the following:

• Expectation-Driven:
Based on our visual experience, the brain is skillful at postulating a se-
ries of expectations. These expectations will eventually guide a feature-
grouping process. For the example shown in Fig. 8.37, the expectation
of the presence of a rectangle is indirectly verified by the visual-sensory
data. Therefore, this expectation is confirmed as a valid outcome. Hu-
mans are very skillful at formulating expectations. However, even for
today's robots, this is one of the most difficult things to perform well.

• Data-Driven:
Two pixels which are close to each other are likely to belong to the same
physical entity. Human vision makes use of this property to quickly and
reliably partition visual-sensory data into a set of groups. This process
of partitioning image features based on the property of neighborhood
is commonly known as grouping by connectivity.

Here, we will study the data-driven process of feature grouping.

8.5.2.1 Types of Neighborhoods

Grouping by connectivity is a data-driven process based on a neighborhood
of image features. An image is a two-dimensional array. When we have pixel
location (v,u), there are three typical types of neighborhoods, as shown in
Fig. 8.38:

• 4-neighborhood:
Neighbors in the north, south, east and west are called the 4-
neighborhood. When we have pixel location (v,u), the locations of its
four neighbors are

(v-l,u), (v,u+l), (v + l,u), (v,u-l)

• 8-neighborhood:
An image is a regular two-dimensional array. A pixel location is gen-
erally surrounded by a set of eight neighbors, as shown in Fig. 8.38b.
These eight neighbors are called the 8-neighborhood.

• Causal Neighborhood:
At any time-instant, an image is a two-dimensional spatial function.
Therefore, when processing an image, decision-making regarding a pixel
must take into account the results of its neighbors or its spatial causal-
ity. In order to achieve a deterministic outcome, it is necessary to know

Visual Perception System of Robots 517

(v-l,u) (v-l.u-1) (v-l,u) (v-l,u+l)

| (v.u-1) (V,H) (V.U+1) (V.U-1) (V,U) (V.U+1)

(v+1, u) (v+l.u-1) (v+l,u) (v+l.u+1)

(a) 4-neighborhood (b) 8-neighborhood

| (v-c, u-a) | (v-c, u) (v-c, u+b)

(v-l,u-a) (v-l,u) (v-l,u+b)

(v, u-a) (v, U)

(c) Causal Neighborhood

Fig. 8.38 Typical types of neighborhoods.

the results of decision-making with regard to the neighbors in the vicin-
ity of a pixel. If there is mutual dependency between a pixel and its
neighbors, a decision cannot be made, and the process will be dead-
locked. Of all the possible neighbors of a pixel, those with known re-
sults are called causal neighborhoods. For example, if a decision-making
process is performed by scanning an input image row-by-row (starting
from the first row) and column-by-column (starting from the first col-
umn), the neighbors inside the neighborhood, as shown in Fig. 8.38c,
will have already been processed when the scanning process reaches
pixel location (v,u). As shown in Fig. 8.38c, the size of a causal neigh-
borhood depends on three integer parameters: (a,b,c). For example,
the neighbors of pixel location (v, u) will be

{ {(vi, m) | VUJ € [u - a, u + b]} ii Vi e [v — l,v - c]

{(vi, Ui)] Mvn € [u - a, u - 1]} if Vi = v.

(8.80)

In the following sections, we will demonstrate the usefulness of the above
neighborhoods.

518 The Fundamentals of Robotics: Linking Perception to Action

8.5.2.2 Pixel Clustering

Assume that input to feature description comes from an algorithm of
spatial-uniformity detection. In this case, pixels classified as belonging
to uniform region N(fi, a2) may not correspond to a single physical entity.
Therefore, it is necessary to partition the pixels in order to form distinct
clusters, known as groups.

If we know the pixels belonging to uniform distribution N(/j,, cr2), group-
ing by connectivity is a simple process which effectively groups the pixels
into a set of distinct clusters. An algorithm for pixel clustering usually uses
the 8-neighborhood and includes the following steps :

• Step l:Set the group-label variable to the value of 1.
• Step 2: Scan an input image, row-by-row and column-by-column.
• Step 3: At each unlabelled pixel which belongs to uniform region

N(fi,a2), check the results of its neighbors in the 8-neighborhood. If
any one of them has been assigned with a group label, assign this group
label to the pixel. If none of its neighbors has been assigned with a
group label, assign the value of the group-label variable to the pixel,
and increase the group-label variable by 1.

• Repeat Steps 2 and 3 until all pixels belonging to N(fj,,a2) have been
labelled.

Example 8.22 Figure 8.39a shows a small image array which contains
three distinct clusters of pixels. The results of applying the pixel clustering
algorithm are shown in Fig. 8.39b. We can see that these clusters are
labelled as clusters 1, 2 and 3 by the algorithm.

oooooooooooooooooo
8.5.2.3 Boundary Tracing

The pixel-clustering algorithm outputs distinct regions, each of which has
a label. If we know the pixels belonging to a labelled cluster (or region),
we can directly compute some quantitative measurements, such as area,
circumference, rectangularity, circularity and moments, which characterize
the cluster.

Alternatively, we can choose to represent a labelled cluster or region by
its boundary. In this case, it is necessary to identify pixels belonging to the
edges of a labelled cluster (or region). A process which does this is called
boundary tracing. A boundary-tracing algorithm normally makes use of the

Visual Perception System of Robots 519

1 [o lo lo lo [o [6 [6 lo lo [o I 1 | o [o lo lo |6 [6 [6 |6 [o lo I

2 0^200 200 0 ^ 6 " O~O~~O~O~O~ 2 0~T 1 0~ 0~ 0~ <T~ 0~ 0~ 0

3 0~200(T~ 0~ 0^200 200 200 200 <T~ 3 0~ 1 0~~ 0~~ (T~ 2~ 2~ 2~ 2~ 0~

4 0~~ 200 0 " 0 ~ 0 ~ 200 200 2002000"" 4 <T~ 1 0~~ 0~~ (T~ 2~~ 2~ 2~~ 2~ 0

5 o~2OO2ooo~6~o^o~b~o^o~~ 5 o~T~T~o~(T~o~(r~o~o~cr~
6 b~~ o~ o^ o~ o~ 200 200 o~ 6~ b~~ 6 o~~ o~ 6~ 6 " o^ 3~ 3~ 6~ o~ o "

7 0~ 0~ 0~~ 0~ 0~ 200 200 0~ 6~ 0~ 7 0~ 0~ 0~ 0~ 0~ 3~ 3" 0~ 0~ 0~

8 0~0~ 0^0" 0^0~0~ 2002000~~ 8 0^ 0~ 0~" 0~ 0~ 0~ 0~ 3~ T~ 0~~

9 0~0~0^ 0~0~0~0~200 200 0~~ 9 0~0~0~0~0^0^0~3~3^6~~

10 5~(Po~o~o"o~o~o"o~o~~ 10 o^o~o~o^o^o~o^o~o~6"
11'—I—I—I—'—L—I—'—'—I—I 11'—'—'—'—'—'—'—'—'—'—

2 4 6 8 10 2 4 6 8 10
(a) Input (b) Output

Fig. 8.39 Example of pixel clustering.

4-neighborhood and operates in the following way:

• Step 1: Scan an input image row-by-row and column-by-column.
• Step 2: At each unmarked pixel which belongs to a labelled cluster (or

region), check the results of its neighbors in the 4-neighborhood. If at
least one pixel does not belong to the labelled cluster or region, mark
this as a boundary pixel.

• Repeat Steps 1 and 2 until all pixels belonging to the labelled cluster
(or region) have been marked.

Example 8.23 Figure 8.40a shows a labelled region (label 100). The
result of applying the boundary-tracing algorithm is shown in Fig. 8.40b.

1lo lo lo lo lo lo lo lo lo lo I 1|o lo lo lo lo lo lo lo lo lo

2 o~6~6~o~Tooo~o~o~o~o~~ 2 6~0^o~"o~255o~o~o~o~0^

3 5~o~o~~T6o7ooTooo~o~o~cr~ 3 o~o~o~25s0^255o~o~o~o~~

4 o~o~TooTooiooioo7o6o~6~o~~ 4 o~ o~ 255o~ 0^ o~ 255o~ o~ o~~

5 o~ Too Too 100106 Too Too Too o~o~~ 5 o~ 2 5 5 0 ^ 0 " 0 6 0 2550" o~~

6 0~0~TOOTOOT06T06TOOO^O~0~~ 6 6~0~255 0^b"0~255 0~0~0~~

7 o^o^o^TooTboT6oo~o~o~o~~ 7 o~o~~o~2556^255o~o~o~6~~

8 0~ 0~ 0^ 0~ TOO 0~ 0~ 0~ 0~ 0~ 8 0~ 0~ 0^ 0~ 255 0~ 0~ 0^ 0~ 0~

9 0~ 0~ 0^ 0~ 0^ 0~ 0~ 0~ 0~ 0 " 9 0~ 0~ 0~~ 0~ 0^ 0~" 0~ 0~ 0~ 0~~

10 0~0~0^ 0~ 0~ 6~ 0~ 0~ 0~ (T~ 10 0~0~0~0~0^0~0~"0"0~0~
111—'—I—'—'—'—I—I—I—I—I 11I—I—I—I—I—I—I—I—I—I—I

2 4 6 8 10 2 4 6 8 10
(a) Input (b) Output

Fig. 8.40 Example of boundary tracing.

520 The Fundamentals of Robotics: Linking Perception to Action

oooooooooooooooooo
8.5.2.4 Edge Linking

The purpose of edge linking is to partition edges in an image into a set of
labelled groups, known as contours. The input to an edge-linking process
is an array of edges. The output is a set of contours. However, for the
ease of curve fitting, it is desirable to obtain a set of contours without any
intersection nor bifurcation.

Edge linking can be treated as the process of clustering edges in an
image. This can be done using the 8-neighborhood to scan the array of
edges row-by-row and column-by-column. Then, the interconnected edges
will be grouped into a single entity.

However, this process does not guarantee that a contour will not have
any intersection or bifurcation. In order to obtain contours without any
intersection or bifurcation, it is necessary to perform a second scanning on
the array of edges in order to detect the junctions where a contour is broken
into a subset of simple contours. Since two successive scans are performed
in this method, it is called the two-pass algorithm for edge linking.

In summary, a two-pass algorithm for edge linking includes the following
steps:

• Step 1: Set the contour-label variable to the value of 1.
• Step 2: Scan an array of edges, row-by-row and column-by-column.
• Step 3: At each unlabelled edge, check the results of its neighbors in

the 8-neighborhood. If none of them has been assigned a contour-label,
assign the value of the contour-label variable to the edge, and increase
the contour-label variable by 1. If any one of them has been assigned
a contour label, assign this contour-label to the edge.

• Repeat Steps 2 and 3 until all edges have been labelled.
• Step 4: Scan a labelled contour, edge-by-edge.
• Step 5: At each edge under the scan, check whether it is a junction

point. Normally, this is not easy to do. Thus, let us assume that
the thickness of a contour is one pixel. At each edge under the scan,
its neighbors will be assigned the logic value "1" if they belong to
the contour, and the logic value "0" if they do not. If we put the
eight logic values from the eight neighbors together in a clockwise (or
counterclockwise) order, we will obtain a logic byte. If the transition
from "1" to "0" in the logic byte occurs more than twice, then the edge
is a junction point.

Visual Perception System of Robots 521

• Step 6: Break the contour at the junction point if one exists.
• Repeat Steps 4, 5 and 6 until all edges on the contour are processed.

If we make use of the causal neighborhood, we can develop a more
reliable edge-linking algorithm which can scan an array of edges in a single
pass, and produce contours without any intersection or bifurcation. This
method is called the single-pass algorithm for edge linking, and represents
a contour with three parameters (see contour C2 in Fig. 8.41):

• Tail:
The tail is the starting edge of a contour. Normally, we scan an array
from the top row until bottom, and from the first column until the last.
Thus, the tail of a contour is the first scanned edge (or endpoint) of a
contour.

• Running Head:
During the process of edge linking, a contour grows gradually. The
edge, which is added to a contour during linking, is called the actual
running head.

• Head:
When a contour stops growing, the running head becomes the actual
head of the contour. In fact, it is the last edge (or endpoint) of a
contour.

Tail

^ * Cl\

/C2 \ \

/ C3/ I

!V\(vi,ui> / /
Running Head IC4 / I c<f^

/ \& cv \
/ /(V2,u2) / \

/* 1 (
Head \

Fig. 8.41 Illustration of a single-pass algorithm for edge linking.

In Fig. 8.41, there are three clusters of interconnected edges. The one
on the left-hand side is a simple contour without any intersection or bifur-

522 The Fundamentals of Robotics: Linking Perception to Action

cation. The one in the middle has one intersection at location (v2, U2). The
one on the right-hand side has a bifurcation at location (113, H3).

Refer to Fig. 8.41. A single-pass algorithm which makes use of a causal
neighborhood can be summarized, as follows:

• Step 1: Set the contour-label variable to the value of 1.
• Step 2: Scan an array of edges, row-by-row and column-by-column.
• Step 3: For an unlabelled edge at location (v,u), check the results of

its neighbors in causal neighborhood Nc(v,u).
• Step 4a: If there is no neighbor, assign the contour-label variable to the

edge, thereby creating a new contour. Then, increase the contour-label
variable by 1, and assign the edge as the tail and running head of the
new contour.

• Step 4b: If there is only one running head inside Nc(v, u), lengthen the
contour which contains the running head to the edge, and assign the
edge to be the new running head of the lengthened contour.

• Step 4c: If the running head of contour i and the tail of contour j are
both present inside Nc(v, u), lengthen contour i to the edge and merge
these two contours at the tail of contour j . The merged contour will
be assigned label i, and its running head will be the running head of
contour j .

• Step 4d: If there is more than one running head inside Nc(v,u), find
the running head nearest to the limit on the left-hand side of Nc(v, u).
Lengthen the contour which contains this running head to the edge,
and assign the edge to be the new running head of the lengthened
contour. Subsequently, disable the other running heads inside Nc(v, u).
This decision rule is called the priority-left rule. Alternatively, we can
choose the running head nearest to the limit on the right-hand side of
Nc(v,u). This will result in the priority-right rule.

• Repeat Steps 2, 3 and 4 until all edges are processed.

Assume that contour-thickness in Fig. 8.41 is one pixel. If we set (a, 6, c)
to be (1,1,1) and choose the priority-left rule, it is not difficult to verify
that the single-pass algorithm for edge linking will produce five contours,
as shown in Fig. 8.41.

8.5.3 Contour Splitting

In a digital image, a contour is a list of interconnected edges. It is unlikely
that all the contours extracted from an image will have a simple shape.

Visual Perception System of Robots 523

However, this is necessary before a curve can be fitted into a contour. If
the contour is not in a simple shape, we must split it into a set of simple
contours so that it can be approximated by a curve.

8.5.3.1 Successive Linear Curves

The strategy for splitting contours depends on the expected outcome of
the curve fitting. If the intention is to obtain a set of successive linear
curves (line segments), then a contour splitting algorithm can operate in
the following way:

• Step 1: Arrange the edges of a contour in sequential order.
• Step 2: Compute line passing through the two endpoints of the contour.

We call this line the approximation line. Mathematically, the equation
describing an approximation line in the camera's image plane is:

a»u + b»v + c = 0.

• Step 3: Compute the distance from each edge to the approximation line.
If the edge's location is (vi, Uj), then its distance to the approximation
line is

\\a • Ui + b • Vi + c\\
d; = , .

Va2 + b2

• Step 4: Determine the edges, the distances of which to the approxi-
mation line are local maxima. We call these edges the local-maximum
edges.

• Step 5a: Find the local-maximum edge nearest to one endpoint of the
contour. If its distance to the approximation line is above threshold
value do, split the contour at this edge.

• Step 5b: Find the local-maximum edge nearest to the other endpoint of
the contour. If its distance to the approximation line is above threshold
value do, split the contour at this edge.

• Step 6: If the contour has been split at least once, repeat the algorithm
until no splitting occurs.

Example 8.24 Figure 8.42 shows an example which illustrates the pro-
cedure of splitting a contour into a set of successive linear curves. Assume
that the two endpoints of the contour are A and B. In the first iteration,
the local-maximum edges at C\ and D\ will be selected to split the contour.
In the subsequent iterations, contour AC\ will be split at C2, contour D\B

524 The Fundamentals of Robotics: Linking Perception to Action

at Z>2, and contour C\D\ at C3 and D3. The final output of the successive
linear curves will be AC2, C2Ci, C1C3, C3D3, D3D1, DXD2, and D2B.

C2 __—-—-Si

^ ^ ^ ^ ^ ' V Approximation Line

Fig. 8.42 Generation of successive linear curves by contour splitting.

oooooooooooooooooo
8.5.3.2 Successive Nonlinear Curves

If the desired output is a set of successive nonlinear curves (circular,
parabolic or elliptic), a practical contour-splitting algorithm is as follows:

• Step 1: Arrange the edges of a contour in sequential order.
• Step 2: Compute line passing through the two endpoints of the contour.

We also call this line the approximation line. Its equation is

a»u + b»v + c = Q.

• Step 3: Compute the distance from every edge to the approximation
line. If the edge's location is (vi,Ui), then its distance to the approxi-
mation line is

\\a*Ui + b»Vi +c\\
Uj = . .

• Step 4: Determine the edges, the distances of which to the approxima-
tion line are local maxima. We also call these edges the local-maximum
edges.

Visual Perception System of Robots 525

• Step 5: Find the local-maximum edge nearest to one endpoint of the
contour. Similarly, find the local-maximum edge nearest to the other
endpoint of the contour. If these two edges are at the same location,
take no action (Optional: Depending on the intended application, split-
ting can occur at this location).

• Step 6: Between the two local-maximum edges, find the edge nearest
to the approximation line and split the contour at this edge.

• Step 7: If the contour has been split at least once, repeat the algorithm
until no splitting occurs.

Example 8.25 Figure 8.43 shows an example which illustrates the proce-
dure of splitting a contour into a set of successive nonlinear curves. Assume
that the two endpoints of a contour are A and B. In the first iteration,
the local-maximum edges at C\ and D\ are selected. In this example, two
edges between C\ and D\ have a distance to the approximation line which is
zero. These two points are E\ and E2 and the contour will be split here. In
the second iteration, there is no contour splitting at AE\ and E\E2- But,
contour E^B is further split at edge E3. The final output of successive
nonlinear curves is AEi, E1E2, E2E3 and E3B.

C2

/ ' 1 ' / ' ' E 3 1 \

, 1 Approximation Line

Fig. 8.43 Generation of successive conic curves by contour splitting.

000000000000000000

8.5.4 Curve Fitting

When we have a simple contour which can be approximated by a linear or
conic curve, it is easy to estimate the parameters of the equation describing
the contour. In general, the input to a curve-fitting process is a simple

526 The Fundamentals of Robotics: Linking Perception to Action

contour in the form of a list of edges:

C = {(vi,Ui), i = l,2,. . . ,n}.

And, the output are the parameters of an implicit (or explicit) equation
describing the contour.

8.5.4.1 Line-Segment Approximation

Let us consider image plane uv to be a continuous, two-dimensional space.
A line in the uv plane can be described by the equation:

a»u + bmv + c = 0 (8.81)

where (a, b, c) are three nonindependent parameters. Dividing Eq. 8.81 by
term y/a2 + b2 yields

u»cos6 + vsm0 + p = O (8.82)

with

j s i n 0 = 7 P = F (8-83)
I P ~ Va2+b2 '

It is clear that parameters (6, p) are independent and uniquely determine
a line in the uv plane. When we have contour:

C = {(vi,Ui), i = 1,2, ...,n}

which can be approximated by a line, we define the following error function:

n

L = ̂ 2(ui» cos6> + Vi sin 6 + pf . (8.84)

The optimal solution for p, which minimizes Eq. 8.84, must satisfy

dp

Accordingly, we obtain

p = —u cos 9 — v sin 6 (8.85)

Visual Perception System of Robots 527

with

{ (8.86)

Substituting Eq.8.85 into Eq. 8.84 yields

n
L =] T (Hi • cos 0 + Si sin 0)2 (8.87)

with uz — Ui — u and Vi = Vi — v.

Similarly, the optimal solution for 8, which minimizes Eq. 8.87, must
satisfy

§-»•
86As a result, we obtain the following equation:

n^^ {(iii cos8+ Vi sin 8) • (-Ui sin 8 + ViCosO)} = 0 (8.88)

i=i

Eq. 8.88 can also be written as

(B - A) • sin 8 • cos 9 + C • (cos2 9 - sin2 8) = 0. (8.89)

with

< B = £?=!«? (8.90)

Since 2 • sintf • cos^ = sin(20) and cos2 0 - sin2 6 = cos(20), Eq. 8.89
becomes

tan(2e) = z — ^ . (8.91)

Finally, the solution for 6 will be

(8.92)

528 The Fundamentals of Robotics: Linking Perception to Action

8.5.4.2 Circular-Arc Approximation

A circle (or circular arc) in the uv plane is described by the equation:

(u - uof + {v- v0)2 = r2 (8.93)

where (VO,UQ) is the center of the circle while r is the circle's radius.
(uo,vo,r) are three independent parameters which uniquely represent a
circle.

Eq. 8.93 can also be written in a parametric form as follows:

(u = uo + r.coS0
I v = VQ + r • smv.

Now, we eliminate parameter r from Eq. 8.94. This can be done by first
multiplying sin 6 to the first equation and cos 9 to the second equation, and
then, computing the difference. As a result, we obtain

Mo sin 0 — VQ COS 9 = v cos 9 — u sin 9. (8.95)

When we have contour:

C = {(vi,Ui), i = l,2,...,n}

which can be approximated by a circular arc or circle, we can estimate the
tangential angle at each edge on the contour. In this way, the raw data of
a contour is represented in the form of a list of triplets as follows:

C = {(vi,ui,0i), i = l,2,...,n}.

From Eq. 8.95, we can directly establish a linear system of equations:

uosm9i - vocos9i — Vicos9i—UiSiB.9i, i — 1,2, ...,n. (8.96)

Parameters (UQ, VO) in Eq. 8.96 can be determined by a least-square
estimation. If we know (uo, VQ), then the estimation of radius r is

1 n
r = - J2 V(ui - MO)2 + (vi - v0)2. (8.97)

n »=i

8.5.4.3 Elliptic-Arc Approximation

The implicit equation describing an ellipse or elliptic arc in the uv plane is

(u — Un)2 (v — VQ)2

K—^L + ^ — ^ = 1- (8-98)

(8.94)

Visual Perception System of Robots 529

The four independent parameters of an ellipse are (uo, vo, ru,rv).
As in the case of the circle, the parametric representation of an ellipse

is

(u = u0 + rucos9
[v = vo + rv sine*.

When we have a contour in the form of a list of triplets:

C = {{vh m, 9i), i = 1,2,..., n},

we can directly establish two linear equations from Eq. 8.99 as follows:

{ Ui = uo + ru • cosOi, i = 1,2, ...,n
(8.100)

Vi = vo + rv • sinSj, i = l,2,...,n.

Clearly, the four parameters (UQ,VQ, ru,rv) can be determined by a least-
square estimation.

8.6 Geometry Measurement

There are two problems with geometric-feature grouping and description in
a camera's image plane:

• First of all, a digital image is an array of pixels. The index coordi-
nates (v, u) are without any unit of measurement. Therefore, feature
description in image plane uv is qualitative, not quantitative, and all
measurements done in the uv plane are relative to a projective scale.
In order to obtain metric measurements, it is necessary to study the
relationship between index coordinates (v, u) and coordinates (X, Y, Z)
in a three-dimensional space.

• Secondly, while feature grouping in the uv plane is very elementary
and it is easy to partition feature points into a set of simple contours
or regions, this is insufficient for object recognition. This is because
the projection of an object onto an image plane only creates a subset
of simple contours and/or regions. Feature grouping at a higher level is
necessary because the final outcome must be a set of contours and/or
regions, each of which only corresponds to a single physical object.
Without any knowledge about the real dimensions, geometries or mod-
els of image features, it is theoretically impossible to distinguish image

(8.99)

530 The Fundamentals of Robotics: Linking Perception to Action

features which have very similar geometries/appearances but belong to
different objects.

In this section, we will first study what can be done with a single cam-
era (monocular vision). Then we will look at the principle behind and
challenges of binocular vision.

8.6.1 Monocular Vision

The monocular-vision system takes images as input, and produces geo-
metrical measurement as output. A monocular-vision system is normally
composed of: a) a single electronic camera (either color or monochrome),
b) an image digitizer (if the camera's output is analogue video), and c)
computing hardware.

The information transformation inside a monocular-vision system is
shown in Fig. 8.44. Point Q in a three-dimensional space, referenced to
frame r, is projected onto the image plane of the single camera. The image
of point Q will form image point q. Then, the electrical signals, picked up
by the imaging sensor of the camera, will be converted into an analogue
image. If the camera's output is not digital, the image digitizer will convert
analogue image into a corresponding digital image. Finally, the digital im-
ages from the image digitizer will be the input to the process of geometry
measurement in the monocular-vision system.

Assume that we are able to detect image feature q in an image array.
Then, the question is: How do we determine the coordinates of point Q
if the coordinates of its image q are known? This problem is called the
problem of inverse projective-mapping. In order to derive an answer, it is
necessary to know how the coordinates of image point q are related to the
coordinates of corresponding object point Q, which is referenced to frame
r. This problem is called the problem of forward projective-mapping.

8.6.1.1 Forward Projective-Mapping

When we have coordinates (rX, rY, rZ) of point Q which is referenced to
frame r, the problem of forward projective-mapping is how to determine
coordinates (u, v) of its image point q in the image array, which is referenced
to index coordinate system uv.

Assume that frame c is assigned to the camera, as shown in Fig. 8.44.
If motion transformation cMr describes the transformation from reference
frame r to camera frame c, then the coordinates of point Q with respect to

Visual Perception System of Robots 531

u VaBg^V

" ' Inverse
* 1—=-> ^

A u t , Projection
i Camera , I .
. _ Image

Frame , t

Feature Digital | Ix^S^x v '
Extraction / image , /^^y ^4 ^ ̂ '

J ^ / A _ _ ^ _ _ _ _ _ _ _ _ _ _ N _ 1

i—J 11̂ ® / -2^^^; 7
Image A / */V - • /

Processing I r /r^' /
Analogue „ T

" Reference
image ^

I = 1 Frame

Fig. 8.44 Illustration of geometric projection in a monocular-vision system.

camera frame c are

(cx\ rx\

cy I ry
cz = ^ r . \ z . (8.101)
i / V i /

In Chapter 7, we studied the relationship between index coordinates
(u,v) and the corresponding coordinates (CX, CY, CZ), with respect to
camera frame c. This relationship is described by projective-mapping ma-
trix IPc as follows:

/u\ (CX\s» lv\ = 7 P C . CJA (8.102)

with

/ s i 0 «oO\
7PC = 0 ^ o 0 . (8.103)

\ 0 0 1 0 /

(8.101)

532 The Fundamentals of Robotics: Linking Perception to Action

In Eq. 8.102, s is an unknown scaling factor. In Eq. 8.103, parameter
fc is the focal length of the camera, (Dx,Dy) the sampling steps of the
image digitizer and (uo,t>o) the coordinates of the optical center in index
coordinate system uv.

The combination of Eq. 8.101 and Eq. 8.102 yields

* • \v = { 7 P c } . { c M r } . l z . (8.104)

Eq. 8.104 describes forward projective-mapping. The coefficients inside
1Pc are called the camera's intrinsic parameters, while the elements in cMr

are called the camera's extrinsic parameters. If we denote

H={IPc}*{cMr), (8.105)

matrix H is known as the camera's calibration matrix. And, H is a 3 x 4
matrix.

Eq. 8.104 has two practical applications: a) construction of a virtual
camera for vision simulation, and b) camera calibration for determining
the camera's intrinsic and extrinsic parameters.

8.6.1.2 Simulation of Monocular Vision

For construction of a virtual camera, the specification of parameters
{fc,Dx,Dy) are not intuitive. Refer to Fig. 8.44. The most intuitive way
of indirectly specifying a camera's intrinsic parameters is to define focal
length fc as well as the aperture angles in both the vertical and horizontal
directions. In fact, if {rx,ry) are the resolution of the digital image, the
size of the camera's image plane is

\T = rx9nX (8-106>
{hI = ry*Dy

where wi and hi are the width and height of an image plane. If we denote
6U the horizontal aperture-angle and 6V the vertical aperture-angle, we have

(8.107)

tan(£) = &.

Visual Perception System of Robots 533

If we know aperture-angles (9u,0v), then the sampling steps (Dx,Dy)
can be computed as follows:

x ~~ rx L d U V 2 /

(8.108)
n - 2/c # t a n (^

Example 8.26 We are going to construct a virtual camera with a fo-
cal length of 1.0cm, aperture angles of (70°, 70°) and image resolution
of (512,512). If we apply Eq.8.108, sampling steps (Dx,Dy) will be
(0.0027,0.0027) (cm). From Eq. 8.103, projective-mapping matrix 'Pc of
the virtual camera is

/ 365.6059 0.0 256.0 0.0 \
'Pc = 0.0 365.6059 256.0 0.0 .

\ 0.0 0.0 1.0 0.0/

(NOTE: It is assumed that the optical center is at (256,256)).

OO^O^OOOOO^O^OOOOO

Example 8.27 We now position the camera we constructed in the above
example at location (200, —100,200) (cm) in a scene, as shown in Fig. 8.45b.
The orientation of the camera frame, with respect to the reference frame, is
obtained by rotating the camera frame —100° about the X axis. (NOTE:
The initial orientation of the camera frame coincides with the reference
frame). As a result, the extrinsic parameters of the virtual camera are

/1.0 0.0 0.0 - 200.0 \
cM _ °-° -0.1736 -0.9848 179.5967

r ~~ 0.0 0.9848 - 0.1736 133.2104
\0.0 0.0 0.0 1.0 /

and the camera's calibration matrix is

Z2.7446 1.8926 -0.3337 -292.9149X
H=\ 0 1.4160 - 3.0366 748.9166

\ 0 0.0074 -0.0013 1.0 /

(NOTE: H is normalized by the element ft.34).
Now, let us choose three points in the reference frame: A =

(200.0,400.0,0.0) (cm), B = (100.0,500.0,200.0) (cm), and C =

534 The Fundamentals of Robotics: Linking Perception to Action

(400.0,500.0,100.0) (cm). If we apply calibration matrix H, the projec-
tions of these three points onto the image plane will be: a = (256,332),
b = (194,192) and c = (376, 253).

(a) Image Plane (b) Camera and Scene

50

100 • ' .

3 0 0 ^

150 b

200 ' 250.
c s

250 • 200. " \ . 5
300 a ^ ^ ^ ^ ^ N.

150. ^"~-~^ \
350 ^ - - ^ ^ \ .

400 ioo. ^ ^ f ^ - - r ' x

450 50. : . \^-**~^~^[

100 200 300 400 500 °>.
500 \ ^ ^ 2

4 0 ° ^ ^ I ^^--^~400
3°° " ^ \ ^ c ^ - - 3 0 0

200 ̂ \ y _ I _^J^^200
100 ̂ sv]r».^^^100

o o

Fig. 8.45 Example of a simulated monocular vision.

•ooooooooooooooooo
8.6.1.3 Inverse Projective-Mapping

Now, let us rewrite Eq. 8.104 as follows:

s. iv \=H. I z . (8.109)

Then, the question is: Is it possible to determine coordinates (rX, rY, rZ),
given image point (u, v) and calibration matrix HI

In Eq. 8.109, the scaling factor s is unknown. Therefore, in order to ob-
tain a solution, it is necessary to have at least four constraints. Otherwise,
there will be an infinite number of solutions for the unknowns (rX, rY, r Z)
and s.

From Eq. 8.109, it is clear that one image point will impose only three
constraints on the four unknowns. In order to have a unique solution, there

Visual Perception System of Robots 535

are two possible ways to proceed: a) to increase the number of constraints,
or b) to reduce the number of unknowns.

Model-based Inverse Projective-Mapping

Refer to Fig. 8.45. Assume that we have a set of three points (A,B,C),
and the relative distances between them are known. Let us denote
{{rXi, rYt, rZi), 2 = 1,2,3} the coordinates of points (A, B, C) with refer-
ence to frame r and {{ui,Vi), i = 1,2, 3} the coordinates of the correspond-
ing image points. If we apply Eq. 8.109, we can establish the following
system of equations:

8i»\vi\=H*\ * , 2 = 1,2,3. (8.110)

W {?)
In Eq. 8.110, there are twelves unknowns and nine constraints. Thus,

it is necessary to have three more constraints in order to derive a solution.
Interestingly enough, the size of the triangle formed by points A, B and
C provides three extra constraints. If we denote £12, £23 and £31 as the
lengths of AB, BC, and CA respectively, then

' £12 = s/{rXx - rX2)2 + (»•*! - T 2) 2 + (rZl - rZ2y

< £23 = V(r*2 - rX3)2 + {rY2 - -Y3)2 + {-Z2 - rzzy (8.111)

£31 = y/(rx3- rJCi)2 + C-r3- -Y^ + i-z^ r Z l) 2 .

Eq. 8.110 and Eq. 8.111 contain twelve constraints for the twelves un-
knowns. Thus, a solution exists. However, we must solve the nonlinear
equations in the three constraints expressed by Eq. 8.111. This method
of determining 3-D coordinates is known as model-based inverse projective-
mapping, and the nonlinear equations must be numerically solved by a
computer program.

2-D Monocular Vision

For some applications, it is likely that the coordinates, in a reference frame,
are not all of equal importance. For example, the objects carried by a
conveyor in a production line can be treated as two-dimensional (2-D).
This is because their locations are uniquely determined by two coordinates

536 The Fundamentals of Robotics: Linking Perception to Action

with respect to a frame assigned to the conveyor's top surface. These two
coordinates are sufficient for a robot to perform pick-and-place actions.

Refer to Eq. 8.109. If we set rZ = 0, the equation becomes

s . l v \ = H . Q . (8.112)

^ ' \ 1 /

If calibration matrix H, which has been normalized by its element /i34,
is expressed as

(/in /112 hi3 h u \

h21 h22 h23 h24 (8.113)

fl31 ^32 /l33 1 /
and we define a 3 x 3 matrix H' as

(hu hi2 h14\
h2i h22 h24 . (8.114)

h3i hS2 1 /
Eq. 8.112 can be rewritten as

s * \ v \ = H ' » \ r Y \ . (8.115)

In Eq. 8.115, H' describes the mapping from a planar surface in a scene
onto a camera's image plane. As shown in Fig. 8.45, it is clear that the
back-projection from image point a has a unique intersection with place
rZ = 0 at point A. This indicates that matrix H' has an inverse.

If we denote D = (H')~l, Eq. 8.115 becomes

rx\ /u\
p . l r Y = £ > • \ v \ (8.116)

where p = l/s.
In fact, Eq. 8.116 describes the inverse.projective-mapping between a

camera's image plane and the planar surface in a reference frame. This
mapping can be called the geometric principle of 2-D monocular vision (or
2-D vision for short). Interestingly enough, inverse projective-mapping in

Visual Perception System of Robots 537

2-D vision is unique as long as the posture of the camera, with respect to
the planar surface, remains unchanged.

The geometric principle of 2-D vision has practical applications in
vision-guided walking or locomotion by a humanoid or mobile robot. We
will study these applications in detail in the next chapter. Here, however,
we will explore another interesting application of 2-D vision: its use in
acquiring three-dimensional models of geometric objects.

Example 8.28 Nowadays, a reliable way of obtaining the 3-D coordi-
nates of the points on an object's surface is to use a laser scanning system,
commonly called a Laser Range-Finder or 3-D Scanner. Another interest-
ing approach for 3-D scanner is to use a laser projector which projects a
laser plane onto an object placed on a rotating table, as shown in Fig. 8.46a.

The laser plane intersects with an object placed in front of it and this
intersection creates a curved line on the object's surface. This line can easily
be detected in the camera's image plane because a laser beam creates a very
bright, curved line on an object. If we know matrix D which describes the
inverse projective-mapping from the image plane to the laser plane, the
X and Y coordinates of points on the intersection line can be computed
by Eq. 8.116. If we rotate the object being scanned, a set of intersection
lines can be obtained. The coordinates of the points on these lines can be
computed by Eq. 8.116.

If we know rotation angle k • A9 which corresponds to the kth intersec-
tion line, the coordinates {rX(k), rY(k), rZ(k)} of a point on this inter-
section line with reference to frame r can be determined as follows:

/rX(k)\ / cos(k*9) 0 sin(k»0)\ (lX{k)\
rY(k) = 0 1 0 . lY{k)

\rZ{k)J \-sin(&.0) 0 cos(k»0)J \ 0 /

where (lX(k), lY(k)) are the coordinates of the point with reference to the
frame assigned to the laser plane.

If we add all the coordinates (rX(k), rY{k), rZ{k)) together, the result
is the set of 3-D coordinates of the scanned points on an object's surface(s).
Fig. 8.46b shows one view of the result.

••oooooooooooooooo

538 The Fundamentals of Robotics: Linking Perception to Action

S ^ ^ ^ | Camera ^^^^^^^^^H |B **£ *

^ ^ ^ ^ ^ ^ | Rotating Table B j Laser Projector I

(a) System setup (b) View of 3D coordinates

Fig. 8.46 Example of the application of 2-D monocular vision for the acquisition of a
three-dimensional model of an object.

8.6.1.4 Camera Calibration

From our study of a camera's frame assignment in Chapter 7, we know
that the frame assigned to a camera is located at the center of the camera's
optical lens, and this center is not directly accessible. Therefore, for a
camera randomly placed in a scene, we will not know motion-transformation
matrix cMr. This means, we will also not know the camera's extrinsic
parameters in advance.

If a camera's extrinsic parameters are unknown, calibration matrix H
will also not be known even if its intrinsic parameters are available. Without
the calibration matrix, it is not possible for monocular vision to make any
useful geometric measurements. Thus, it's necessary to estimate calibration
matrix H using a process commonly known as camera calibration. The
process of camera calibration can be explained as follows:

Substituting Eq. 8.113 into Eq. 8.112 yields

(TV \

f ry
rZ • (8-117)

x j

If we eliminate unknown s in Eq. 8.117, we obtain

{ ,, _ rXhn+ rYhr2+ rZhlx+ fe14

" ~ '•X/131+ rYh32+ rZh33+ 1
(8.118)

„ _ rXh2i+ rYh^+ rZh2x+ h,A
" — rXh3i+ rYh32+ rZh33+ 1 •

(8.117)

Visual Perception System of Robots 539

If we define

\rX rY rZ 0 0 0 0 -(rX»u) -(rY»u) -{rZ*u)]
[o 0 0 0 rX rY rZ -(rX»v) -(rY»v) -\rZ •v)\'

- [:]
and

V = [hn hi2 hi3 /li4 /l2l /l22 /l23 ^24 ^31 ^32 ^33] ,

Eq. 8.118 can be compactly written in a matrix form, as follows:

A»V = B. (8.119)

Eq. 8.119 describes the linear relationship among vectors A, V and B.
When we have the coordinates (rX, rY, rZ) of a point in a scene, and its
image coordinates (u,v) are known, Eq. 8.119 imposes two constraints on
the eleven unknowns in vector V. In order to derive a unique solution for
the eleven unknowns in V, we must have at least eleven constraints. Since
one pair of {(u,v), (rX, rY, rZ)} provides two constraints, it is necessary
to have at least six pairs of {(u,v), (rX, rY, rZ)} in order to calibrate a
camera.

Assume that a set of n pairs of {(u, v), (rX, rY, rZ)} are available (n >
6). The optimal solution which minimizes the squared error \\A • V — B\\2

is

V={AtA)~1m{AtB). (8.120)

Example 8.29 A common way to manually calibrate a camera is to use a
calibration rig. A calibration rig can be as simple as an array of dot patterns
painted on a planar surface, as shown in Fig. 8.47. In this example, a 3 x 3
array of dot patterns are painted on a planar surface. The distances among
the adjacent dots are (100.0mm, lOO.Orrzm). Then, we place the calibration
rig at three different locations along the Z axis, as shown in Fig. 8.47. The
camera under calibration will output three images, which are the input to
the process for camera calibration.

In each image, the dots of the calibration rig can be detected by a
simple thresholding technique because the dots are in dark color on a rect-
angular white region. After thresholding, each dot produces a cluster of
pixels. And, the center of gravity of each cluster indicates the location of

540 The Fundamentals of Robotics: Linking Perception to Action

• L f - * • • • P * ° » • • : ' • • • fir
• ^ + > , U K * . •3^K1' • o •»

^̂ ^̂ ^ HB^^^'' * ' B B K L * " * JM

(a) At Z= 0 (mm) (b) At Z= 200 (mm) (c) At Z= 400 (mm)

Fig. 8.47 Example of images used for camera calibration.

a dot in the image plane. As a result, we have twenty-seven (27) pairs of
{(u,v), (rX, rY, rZ)}, as shown in Table 8.1.

If we apply Eq. 8.120, the estimated calibration matrix of the camera is

/ 0.337599 -0.004174 -0.068044 112.500411 \
H = 0.015303 - 0.367294 - 0.013599 110.527718 .

V-0.000209 -0.000212 -0.000322 1.0 /

OOOOOOOOOOOOOOOOOO

8.6.1.5 Determining the Parameters of Cameras

Interestingly enough, when we have a camera's calibration matrix as input,
we can compute its intrinsic and extrinsic parameters.

Refer to Eq. 8.104. We express motion transformation matrix cMr as
follows:

/ H\ tx \

V o i /

with

{ Ri = (r-n r 1 2 r13)

R-2 = (r-21 r 2 2 r 2 3)

-^3 = (r-3i r 3 2 r 3 3) .

Since R\, i?2 and i?3 are the row vectors of the rotation matrix in cMr,
they are unit vectors. Moreover, they are mutually orthogonal. Accord-

(8.121)

Visual Perception System of Robots 541

Table 8.1 Camera Calibration Data

Nb I u I v 1 rX I rY 1 rZ
~~1 116.210 38.842 00 200.0 0.0
2 155.200 41.075 100.0 200.0 0.0
3 195.667 44.000 200.0 200.0 0.0
4 114.500 75.500 0.0 100.0 0.0
5 152.294 78.500 100.0 100.0 0.0
6 191.891 82.027 200.0 100.0 0.0
7 112.451 110.580 0.0 0.0 0.0
8 149.500 114.500 100.0 0.0 0.0
9 187.852 118.382 200.0 0.0 0.0
10 109.814 38.512 0.0 200.0 200.0
11 151.087 41.000 100.0 200.0 200.0
12 194.400 44.140 200.0 200.0 200.0
13 107.789 77.842 0.0 100.0 200.0
14 148.128 81.128 100.0 100.0 200.0
15 190.444 84.933 200.0 100.0 200.0
16 105.806 115.055 0.0 0.0 200.0
17 145.102 119.641 100.0 0.0 200.0
18 186.075 123.950 200.0 0.0 200.0
19 102.160 38.260 0.0 200.0 400.0
20 146.358 40.679 100.0 200.0 400.0
21 193.175 44.175 200.0 200.0 400.0
22 99.808 80.362 0.0 100.0 400.0
23 143.081 84.102 100.0 100.0 400.0
24 188.500 88.500 200.0 100.0 400.0
25 97.928 120.690 0.0 0.0 400.0
26 139.837 125.674 100.0 0.0 400.0
27 | 184.146 130.583 | 200.0 | 0.0 | 400.0

ingly, we have

\\Ri\\ = l, Pfc|| = l, 11̂311 = 1, RiRi = 0, R2Rt3 = 0, 7^1=0 .

Then, substituting Eq. 8.121 into Eq. 8.104 yields

(8.122)

542 The Fundamentals of Robotics: Linking Perception to Action

where fx = fc/Dx and fy = fc/Dy.
Since Eq. 8.117 and Eq. 8.122 are equal up to a scaling factor, we have

(fxf+uo% /*fr+«o\ //in hi2 h13 h14\

fyJ7+v°lf fvtt+vo = ^ i h22 h23 h24 . (8.123)
\ § • 1 / W /132 /133 1 /

From Eq. 8.123, we know the following equalities must hold:

' /x§-+«o^ = (/in h12h13)

fyJ7+^ = {h2ih22h23)

< ^ = (/i3i /132/133) (8.124)

/y^+V 0 = /l24-

Eq. 8.124 contains a sufficient number of constraints. If a camera's
calibration matrix H is known, it is possible to derive its intrinsic and
extrinsic parameters as follows:

Solution for tz

If we apply the property ||i?3|| = 1 to the third equality in Eq. 8.124, we
can directly obtain the following solution for tz:

tz = 1 . (8.125)
\A§i + hh + hh

Solution for R3

If we know tz, the solution for R3 can be directly derived from the third
equality in Eq. 8.124 as follows:

R3 = tz • (h31 h32 h33.) (8.126)

Solution for UQ

First multiply R3 to both sides of the first equality in Eq. 8.124. Then,
apply properties R\R3 = 0 and RsR3 = 1. The result will be

uo = (h11h12h13)*(tzRt3). (8.127)

Visual Perception System of Robots 543

Solution for vo

Similarly, multiply R3 to both sides of the second equality in Eq. 8.124.
Then, apply properties R2R3 = 0 and R3R3 = 1. The result will be

vo={h2lh22h23)*{tzR\). (8.128)

Solution for fx

From the first equality in Eq. 8.124, we have

fxR\ = tz (hu hi2 hi3) — u0R3.

Since \\Ri \\ — 1, the computation of the norm on both sides of the above
equation yields

fx = \\tz O n hi2 h13)-u0R3\\. (8.129)

Solution for fy

Similarly, from the second equality in Eq. 8.124, we have

fyR2 = tz (/i2i h22 h23) - v0R3.

If we compute the norm on both sides of the above equation, and apply
the property H-R2II = 1> the solution for fy will be

fy = \\tz (h 2 1 h22 h23) - v0R3\\. (8.130)

Solution for R\ and R2

From the first and second equalities in Eq. 8.124, we can directly write
down the solution for R\ and R2, as follows:

(Ri = ^(hnh12h13)-fR3

\ ' (8.131)
[R2 = fy{h21h22h23)-fyR3.

544 The Fundamentals of Robotics: Linking Perception to Action

Solution for tx and ty

Finally, the fourth and fifth equalities in Eq. 8.124 directly produce the
solution for tx and ty as follows:

{ tx = J^(/ii4-«o)
(8.132)

ty = 7j-(/l24 - V0).

Example 8.30 Assume that a camera's calibration matrix is

Z2.7446 1.8926 -0.3337 - 292.9149 \
H=[0 1.4160 - 3.0366 748.9166

V 0 0.0074 -0.0013 1.0 /

If we apply the solutions discussed above, the results of the camera's
intrinsic and extrinsic parameters are as follows:

(fx, fy, u0, v0) = (365.5961, 365.5822, 255.9932, 256.0130)

and

{
Ri = (1.0, 0.0, 0.0)
R2 = (0, -0.1737, -0.9848)
R3 = (0, 0.9848, - 0.1737)
{tx,ty,tz) = (-199.9976, 179.5989, 133.2069).

The ground-truth data in this example can be found in Example 8.26
and Example 8.27. One can see that the estimated parameters are very
close to the ground-truth data.

oooooooooooooooooo
Example 8.31 For vision-guided walking (or locomotion) on a man-
made road, as shown in Fig. 8.48, it is necessary to estimate the robot's
walking direction. Assume that the camera in a monocular vision system
has been calibrated and its parameters are known. Then, the interesting
question is: What is the walking direction if the robot is programmed to
follow a target seen at location q = (u, v) in a digital image?

If we know index coordinates (u, v) of the target, its corresponding image
coordinates (x, y) will be

(x = Dx • (u - u0)
\y = Dy»(v-vo).

Visual Perception System of Robots 545

If the focal length of the camera is fc, then the vector which indicates
the walking direction expressed in camera frame c, will be

cV={x,y,fc)

or

CV = [Dx • (u - u0), Dy*(v- vo),fc].

When we normalize vector CV with scaling factor fc, the walking direc-
tion becomes

cv - fu~u° v~v° i\
\ f ' f '
\ Jx Jy J

This walking direction indicates the direction of the projection line passing
through point a.

If the camera's extrinsic parameters in cMr are known, it is easy to
compute the inverse of cMr. Accordingly, the walking direction with respect
to reference frame r will be

rv= {cMryl*cv.

Clearly, the projection of vector rV onto the road surface indicates the
robot's walking direction.

Digital Image

/ » / Camera Frame \

Fig. 8.48 Example of vision-guided walking.

•<>0000^<><><>00<>0^^

546 The Fundamentals of Robotics: Linking Perception to Action

8.6.2 Binocular Vision

From our study of monocular vision, we know that if there is no additional
knowledge about the model of an object, the coordinates of a point in a
three-dimensional space cannot be determined from the forward projective-
mapping of a single camera. This is because there are four unknowns, as
shown in Eq. 8.109, but only three constraints.

Instead of specifying the model of an object (the relative geometry of
three points), one may question whether it is possible to determine the
coordinates of a point in a three-dimensional scene if the displacement
vector of this point, with reference to frame r, is known. Interestingly
enough, this is possible. For example, let (rX, rY, rZ) be the coordinates
of point A in a scene, and (AX, Ay, AZ) be its displacement vector. From
Eq. 8.109, we can establish the following two systems of equations:

s i ' [v) = H ' \ r Z \ (8133)

and

U + A U \ rY+AY)

s2.^v + Avj=H.\r Z++AZ . (8.134)

Clearly, we have five unknowns and six constraints. As a result, the
coordinates of point A can be uniquely determined. This principle is called
motion stereo or dynamic monocular vision. An even more challenging ques-
tion is whether it is possible to determine the three-dimensional structure
of a scene when the displacement vector of a scene or object is unknown.
This problem is known as structure from motion in computer vision.

For dynamic monocular vision to work properly, there is an implicit
assumption that the camera must be stationary with respect to a scene.
Mathematically, the displacement of an object (or scene), with respect to
a stationary camera, is equivalent to the displacement of a camera with
respect to a stationary object (or scene). In other words, if an object
is stationary, one can move the camera to two different locations. The
coordinates of any point on the object can then be uniquely determined if
the displacement vector of the camera is known.

Visual Perception System of Robots 547

In a dynamically changing environment, the constraint on the immo-
bility of an object (or a camera) may not be acceptable. Mathematically,
Eq. 8.133 and Eq. 8.134 illustrate that the coordinates of a point in a three-
dimensional space can be fully determined if two locations and the images
captured at these two locations are known in advance. Instead of moving a
camera to these two locations, we can simultaneously place two cameras at
these two locations. This, then, becomes the well-known binocular vision.

8.6.2.1 Forward Projective-Mapping

As shown in Fig. 8.49, there are two cameras, each of which has been
assigned with a camera frame. Let us assume that frame C\ is assigned to
the left camera and frame c% to the right camera. In addition, we assign a
common reference frame (frame r) to the scene.

w Correspondence of Computing of

^ ^ 2D Features 3D Geometry

\ I —[*'- Left p Z J ^ . u ;
' * b ' ' ^ C a m e r a |

: v^ t [r^v*t :
] Right Camera | ^ T ^ * 3 I '

i y "z \ ' ;

^WIPllBiiH!.". ^H Reference Frame

Fig. 8.49 Illustration of the geometric projection in binocular vision.

Refer to Fig. 8.49 again. It is unlikely that the two cameras used for
the binocular vision will be identical. Thus, the intrinsic and extrinsic
parameters of these two cameras will not be the same. Therefore, we have
to calibrate these two cameras separately.

Now, let us denote H\ the calibration matrix of the left camera, and
H2 the calibration matrix of the right camera. Consider point Q in the
scene. Its coordinates are (rX, rY, rZ). The projection of point Q onto

548 The Fundamentals of Robotics: Linking Perception to Action

the left camera's image plane is a = (ui,Vi), and its projection onto the
right camera's image plane is b = («2, ^2)- If we apply Eq. 8.109, we obtain

(
r X \

7Z (8-135)

and

s2 • U 2 I = H2 . T x \ . (8.136)

Eq. 8.135 and Eq. 8.136 describe the forward projective-mapping in a
binocular vision system.

Example 8.32 Let us construct two virtual cameras in order to form
virtual binocular vision. Fig. 8.50c shows a virtual scene and two virtual
cameras. The calibration matrix of the left camera is

/2.7446 1.8926 -0.3337 - 18.4574 \
Hx = 0 1.4160 - 3.0366 748.9166 I

V 0 0.0074 -0.0013 1.0 /

and the calibration matrix of the right camera is

/2.7446 1.8926 -0.3337 -238.0234\
2 = 1 0 1.4160 - 3.0366 748.9166

V 0 0.0074 -0.0013 1.0 /

When we have point A, and its coordinates in reference frame r are

A = (200.0, 500.0, 100.0) (cm),

then the projection of point A onto the image planes of the two virtual
cameras is

(a= (ui,vi) = (316, 253)
1&=(U2^2) = (268, 253).

The locations of image points a and b are shown in Fig. 8.50a and Fig. 8.50b
respectively.

••oooooooooooooooo

Visual Perception System of Robots 549

(a) Left Image Plane

100 (c) Camera and Scene

200
a

300
300 ^

400
250 s .

500 I J
100 200 300 400 500

, 5 0 . * ^ _ ^ •

(b) Right Image Plane 1 0 0 • ^ - ^ ~ — ^ _ _ ^

I I-- • ^ ^ p S ' *
100 . • L + 1 •• Y

Y
0>l

200 ^ 500 ^ - \ Z
400 \ . I - ^ ^ ~ 4 0 0

300 3 ° ° " \ ^ ^ - ^ 0 0
400 2 0 0 ^ , ^^X-~200
4 0 0 1 0 0 ^ 100

0 0
100 200 300 400 500

Fig. 8.50 Example of forward projective-mapping in virtual binocular vision.

8.6.2.2 Inverse Projective-Mapping

One primary goal we hope to achieve with a robot's visual-perception sys-

tem is that it is capable of inferring the geometry of objects in a three-

dimensional space. This means that inverse projective-mapping is a major

concern. And, the question here is whether it is possible to determine

the coordinates of a point in a three-dimensional scene from its images in

binocular vision.

Refer to Fig. 8.49. Assume that the correspondence between a pair of

image feature points (a, b) has been established. In other words, the index

coordinates of feature points a and b are given as input. We would like to

know how to determine the coordinates of point Q.

Let us denote the coordinates of feature points a and b as

• a = (ui,vi), and

• b= (u2,v2).

Moreover, let us represent the two calibration matrices in binocular

vision as follows:

(hi i\2 iiz iu\
hi «22 «23 «24 I (8.137)

hi hi *33 1 /

550 The Fundamentals of Robotics: Linking Perception to Action

and

(in J12 J13 ju\
321 322 323 324 • (8.138)

J31 J32 J33 1 /

If we apply Eq. 8.135, we have

s1»v1=i21» rX + i22» rY + i23» rZ + i2A (8.139)

«1 = *31 • rX + i32 • ^ + «33 • ^ + 1where (rX, rY, rZ) are the coordinates of point Q. Now, let us eliminate
scaling factor si from Eq. 8.139. This results in

f (in - hiui) • rX + (i12 - «32«i) • ry + (h3 ~ «33«i) • rZ = m- i u

1 («2i - «3i^i) • rX + (i22 - h2vi) • rY + (i23 - i33Vi) • rZ - vi - i2i-
(8.140)

If we do the same to Eq. 8.136, we will obtain

f (in - J31W2) • rX + (ii2 - J32U2) • rY + (i i3 - i33u2) • rZ = u2- j u

1 (i 2 1 - J 3 1 ^ 2) • VX + {j22 - J32V2) • ^ + {J23 - i 3 3 ^ 2) # rZ = V2~ J24-
(8.141)

If we define

(hi - hiui in - «32«i i\3 ~ *33«i \

*21 - «31^1 «22 - h2V\ «23 ~ «33^1 /o j ^ ^)

i l l - i31«2 i l2 - J32«2 i l3 ~ J33W2

J21 - J31"2 i22 - J32^2 i23 - J33«2 /

Eq. 8.140 and Eq. 8.141 can be combined into the following matrix form:

A. -y = h 1 " 1 . 2 4 . (8.143)

\V2-324/

Accordingly, the optimal solution which minimizes the squared errors is

rx\
r y = (A* A)'1 • (A*B) (8.144)

\rz)

Visual Perception System of Robots 551

with

/ui - iu\

B= Vl~i24 \ . (8.145)

V V2 - J24 /

Eq. 8.144 describes inverse projective-mapping in a binocular-vision sys-
tem. We can see that all the parameters and variables in Eq. 8.144 have
values within a continuous range. For easy reference, we call it direct 3-D
reconstruction.

Example 8.33 Let us use the same virtual binocular vision set up in
Example 8.32. Assume that we have a pair of image-feature points (a, b)
as follows:

(a= (ui,«i) = (300, 200)
\b=(u2,v2) = (200, 200).

From Eq. 8.142, we obtain

(
2.7446 -0.3253 0.0574 \

0 - 0.0626 - 2.7759 I
2.7446 0.4140 - 0.0730

0 -0.0626 -2.7759/
From Eq. 8.145, we can see that vector B is:

/ 318.4574 \
-548.9166 I

~ 438.0234 I '
\-548.9166/

Finally, the coordinates of the object point with respect to reference
frame r assigned to the scene can be computed using Eq. 8.144. And, the
results are

(rX, rY, rZ) = (35.2cm, 195.8207cm, 193.33cm).

000000000000000000

Example 8.34 Figure 8.51 shows an example of the results obtained
using binocular vision mounted on a mobile robot. An object (a box) is
placed on the floor. The two images captured by the robot's binocular
vision are displayed in Fig. 8.51a and Fig. 8.51b.

552 The Fundamentals of Robotics: Linking Perception to Action

The vision process starts with edge detection and is followed by edge
linking. Subsequently, simple contours are approximated by line segments.
Then, a critical step is establishing correspondence between the line seg-
ments in the left image and the line segments in the right image. Here,
let us assume that the characteristics of the two cameras in the binocular
vision are similar. In this way, the two images are treated as a pair of
consecutive images captured by a single camera, and an algorithm on the
detection of temporal uniformity (template matching) is used to establish
the correspondence of edges. If we know the correspondence of the edges,
then the correspondence of line segments is decided by a voting technique.
The final results of binocular correspondence are shown in Fig. 8.51c.

Finally, if the calibration matrices of the two cameras in binocular vi-
sion are known, the coordinates of the endpoints of the line segments with
respect to frame r assigned to the scene can be computed. Fig. 8.51d shows
one view of the results of 3-D line segments.

(a) Left Image (b) Right Image

J .. j
(c) Binocular Correspondence (d) 3D Line Segments

Fig. 8.51 Example of 3-D reconstruction using binocular vision.

Visual Perception System of Robots 553

000000000000000000

8.6.2.3 Unresolved Issue: Binocular Correspondence

For feature points, inverse projective-mapping in binocular vision has a
closed-form solution. (See Eq. 8.144). However, this solution depends on
two necessary conditions:

• Necessary Condition 1:
The two cameras in the binocular vision must be calibrated. In other
words, the calibration matrices (Hi,H2) must be known in advance.

• Necessary Condition 2:
When we have image-feature point a in the left image, its corresponding
point b in the right image must be known in advance. Refer to Fig. 8.49.
This indicates that the determination of 3-D geometry through binoc-
ular vision is only possible if the correspondence of image-features has
already been established.

The first necessary condition is easy to meet because it is not difficult to
manually calibrate a camera. However, for some applications, it is still not
desirable to know the calibration matrices. We will study this issue in the
next chapter when we discuss the iterative approaches to robotic limb-eye
coordination (or, image-space control).

The second necessary condition, known as binocular correspondence, is
still a major problem of the visual perception system. This problem is hard
to solve for two reasons:

(1) Difficulty 1:
Images in binocular vision are digital images. When we have image-
feature point a in the left image, we have to search for its corresponding
point in the right image which is a two-dimensional array of pixels. If
we have to verify all the possible locations in the right image, the search
will be computationally prohibitive.

(2) Difficulty 2:
The binocular vision's two cameras may not be optically and electron-
ically identical. This means that it is unlikely that the intrinsic pa-
rameters of these two cameras will be the same. And, since these two
cameras are not placed in the same location, their extrinsic parameters
will not be the same either. Since the parameters will be different, these
two cameras will "see" the same object differently in terms of geometry
and appearance.

554 The Fundamentals of Robotics: Linking Perception to Action

8.6.2.4 Continuous Epipolar-Line Constraint

A common solution which addresses the first difficulty with binocular corre-
spondence is to use the epipolar-line constraint. This constraint helps limit
the search for correspondence to within an interval along a line. This results
in the reduction of search space for binocular correspondence. Here, we will
derive the (continuous) epipolar-line constraint in a progressive manner.

Refer to Fig. 8.49. Assume that a pair of image-feature points (a, b) are
projections of the same object point onto the binocular vision's two image
planes. Now, let us examine what constraint is imposed onto the index
coordinates of these two corresponding feature points (a, b). Let us denote
the index coordinates of these two feature points as follows:

(a = (ui,vx)
\b= {u2,v2).

As we discussed in Example 8.31, the direction of the projection line
passing through feature point a in the left camera, is

c l K = f e ^ , ^ £ i). (8.146)
V h,x Jl,y J

Vector clVa is expressed with respect to camera frame cl and
(wi,o, vi,0i fi,x, fi,y) a r e the left camera's intrinsic parameters. In fact,
Eq. 8.146 can also be written in a matrix form as follows:

V o o i) \i)

Similarly, for feature point b in the right camera, we have the following
result:

C2V»=\ 0 Jt -7% « U (8-148)
V o o i / \ i /

where (M2,0J ^2,0, fi,x, f2,y) are the right camera's intrinsic parameters.
If image-feature points (a, b) are projections of the same object point

onto the binocular vision's two image planes, vectors clVa and c2Vb will
intersect. Now, assume that the motion transformation between the left

(8.147)

Visual Perception System of Robots 555

and right cameras is

d M c 2 = (C ^ 2 Cl[c2) (8.149)

where clRC2 is the orientation of camera frame c2 with respect to camera
frame cl, and clTC2 is the origin of camera frame c2 with respect to camera
frame cl.

Since c2 Vb is a vector expressed with respect to camera frame c2, the
same vector expressed with respect to camera frame cl will be

clVb = (clRc2) . c 2 Vb. (8.150)

Mathematically, when clTC2 = (0,0,0)*, it means that the binocular
vision's two cameras coincide at the origins of their assigned frames. When
the origins of the frames assigned to these two cameras are at the same
location, the two projection lines passing through feature points (a, b) will
be superimposed. Then, we will have

clVa = c l Vb.

By applying Eq. 8.147, Eq. 8.148 and Eq. 8.150, the above equality
becomes

(ux\ /u2\

\V! = M 3 x 3 • «2 (8-151)

with

/ i o - ^ \ - 1 (-±- o -¥&\
I J l ,x J l , i 1 I /2.x 11, x I

M3X3= 0 ^ - g . (^ c 2) . 0 jL- - ^ .
\ 0 0 1 / \ 0 0 1 /

(8.152)
Eq. 8.151 describes computer vision's well-known homography trans-

form. It states that under the pure rotation of a camera, any set of two
images are related by a 3 x 3 transformation matrix.

Unfortunately, vector clTC2 is not a vector of zero length because the
binocular vision's two cameras cannot physically overlap in the centers of
their optical lenses.

As the translational vector clTC2 connects the origins of frames cl and
c2 together, vectors clVa, clVb and clTc2 are coplanar. The normal vector of

556 The Fundamentals of Robotics: Linking Perception to Action

the plane passing through these three vectors can be computed as follows:

clAT = (clTc2) x (c l K) . (8.153)

Accordingly, we have (cl./V)4 • (c lH) = 0. This means that the following
equality holds:

[(clTc2) x (c lK)]* . (clVb) = 0. (8.154)

If we denote clTC2 = (tx,ty,tzy and its skew-symmetric matrix ST as

/ 0 ~tZ ty \

ST = S (clTc2) = \ tz 0 -tx ,
\-ty tx 0 /

Eq. 8.154 becomes

{clVa)t»(ST)i*{clVb)=0. (8.155)

Substituting Eq. 8.147 and Eq. 8.148 into Eq. 8.155 yields

fu2\
(Ul v i l) « F 3 x 3 » [v 2 1 = 0 (8.156)

with

(^- 0 - ^ \ * (-£- 0 - ^ \
I J l , x J l , x \ / J2,x J2,x \

^3X3= 0 -fa - ^ \.Fo. o , f c - ^ (8-157)
\ 0 0 1 / \ 0 0 1 /

and

Fo = (ST)* • (Cl-Rc2) -

In fact, Eq. 8.156 imposes one constraint in which matrix ^3x3 only
depends on the intrinsic parameters and relative posture (clMC2) of the
binocular vision's two cameras. Matrix F3X3 is commonly called the funda-
mental matrix of binocular vision. If index coordinates (ui,vi) in the left
image plane are given, Eq. 8.156 imposes a continuous linear constraint on
index coordinates (1*2,̂ 2) m the right image plane. This linear constraint
imposed to the index coordinates is known as the epipolar-line constraint.

In order to identify a possible match for the feature point at (ui,vi), we
just need to search the pixel locations along the continuous line described
by Eq. 8.156. In practice, the search interval is the intersection between

Visual Perception System of Robots 557

the continuous epipolar line and the image plane. Although the continuous
epipolar line is a one-dimensional space, the search interval will depend on
the size of the image plane.

Example 8.35 Fig. 8.52 shows a virtual binocular vision. The left cam-
era's parameters are

(/i,*,/i,y,ullo,t>i,o) = (365.6059, 365.6059, 256, 256)

and

(0.9848 -0.1710 0.0302 -121.6125 \

0.0 -0.1736 -0.9848 179.5967
0.1736 0.9698 -0.1710 113.8218
0 0 0 1.0 /

(a) Left Image Plane

1°0 (c) Camera and Scene

200

300

300

5001 , . J
100 200 300 400 500 UU"

150- i ^ ^

H> HigHI Imaas Plan. m ^ ^ ^ Z ~ ^ ~ ~ ^ ~ z £ ~ \ .
• = = - . ^ ^

Y
oJ

2 0 0 500 \ . z

300 —"~~~~ ' 4 o ° ^ > \ i ^^<r~m°
400 ioo^Nl^--ioo

o o
100 200 300 400 500

Fig. 8.52 Example of continuous epipolar-line constraint in a binocular vision system.

The right camera's parameters are

(f2,x, f2,y, "2,0, v2to) = (365.6059, 365.6059, 256, 256)

and

(0.9848 0.1710 -0.0302 -153.8321 \

0.0 -0.1736 -0.9848 189.4448
-0.1736 0.9698 -0.1710 164.1534

0 0 0 1.0 /

558 The Fundamentals of Robotics: Linking Perception to Action

From the extrinsic parameters of these two cameras, the motion trans-
formation from camera frame c2 to camera frame cl can be computed. The
result is

(0.9397 0.0 -0.3420 79.0862 \

0.0 1.0 0.0 -9.8481
0.3420 0.0 0.9397 12.1818

0 0 0 1.0 /
If we apply Eq. 8.157, we can obtain the fundamental matrix of binocular

vision as follows:
/ 0.0 0.0001 - 0.0045 \

F 3 x 3 = I 0.0001 0.0 0.1848
\-0.0616 -0.2396 19.0640 /

When we have an image-feature point at the following location in the
left image:

(ui,t;i) = (252, 253),

the continuous epipolar line computed from Eq. 8.156 is

-0.0258 •u2- 0.2167 • v2 + 64.6883 = 0.
This line is shown in Fig. 8.52c. We can see that the projection (point

b) of object point A onto the right image plane is on the epipolar line.
oooooooooooooooooo

Example 8.36 In a four-camera vision system such as the one shown
in Fig. 8.55, a set of four images is available at a time-instant. Refer to
Fig. 8.53. We treat the upper-left image as the master image, and the rest
the slave images. In this way, we have three pairs of images as follows:

• (upper-left image, upper-right image),
• (upper-left image, lower-left image),
• (upper-left image, lower-right image).

When we select an image feature in the master image, its match can-
didate in a slave image must be on an epipolar line. In this example, the
selected image features are marked by "+". From Fig. 8.53, we can see that
the match candidates are actually on the corresponding epipolar lines.

oooooooooooooooooo

Visual Perception System of Robots 559

Fig. 8.53 Example of continuous epipolar-line constraint, in a four-camera vision system.

8.6.2.5 Discrete Epipolar-Line Constraint

Continuous epipolar-line constraint partially solves the issue of search space
because a continuous epipolar line still depends on the size of the image
plane. For example, when image resolution (rx,ry) increases, the search
interval along the continuous epipolar line increases, as well. Mathemati-
cally, if the image resolution becomes infinite, the search interval along the
continuous epipolar becomes infinite as well. Therefore, it is interesting
to investigate whether it is possible to break the dependence between the
search interval and the image resolution.

Before we study a solution, let us first examine the following two inter-
esting observations:

• Finite Dimensions of Objects of Interest:
As we already mentioned, one primary goal we hope to achieve with a
robot's visual perception system is the ability to infer the 3-D geome-
try of a scene (or object) from 2-D images. Interestingly enough, for
most applications, the relevant dimensions of a scene (or object) are

560 The Fundamentals of Robotics: Linking Perception to Action

not infinite. For example, when a robot is walking down a road, the
primary concerns are: a) where does the road go? b) are there any
obstacles to avoid? A robot's visual-perception system should not be
programmed to watch for objects falling from the sky, as this is not a
primary concern. If the height of a robot is measured along the Z axis
of the reference frame assigned to a scene, it is reasonable to assume
that the Z coordinates from any object of interest should vary within
a fixed range, say: [0cm, 300cm].

• Finite Accuracy of a Geometry of Interest:
The robot's visual-perception system deals with digital images. In the-
ory, the accuracy of the results obtained from images is not infinite
(i.e. the error is not infinitely small). Still, the desired accuracy of the
results in a visual-perception system should depend on the intended
application. In other words, we should have the freedom to specify the
desired accuracy. For example, for AZ, we can choose the Z coordi-
nates to be within lmm or within lcm, etc.

From the above two observations, let us assume that the Z coordi-
nates from the objects of interest in a scene vary within a certain range:
[Zmin, Zmax\. When inferring the 3-D geometry from 2-D images, we can
specify the desired accuracy for the Z coordinates to be AZ. In this way,
all the possible values of the Z coordinates which are consistent with the
specified accuracy will be

Zi = Zmin + i • AZ, i e [0, n] (8.158)

with n • AZ — Zmax. Clearly, n only depends on the range [Zmin, Zmax]
and accuracy AZ. It is independent of the image size.

If we apply Eq. 8.158, then Eq. 8.135 and Eq. 8.136 becomes

(rX \

T

, i = 0,1,2,...n (8.159)

Zmin + 1 • AZ
1 /

and
/ \ / rX \S2»\v2 \=H2m , i = 0,1,2,...,n. (8.160)

I . / Zmin + i • AZ
v ' V i /

Visual Perception System of Robots 561

Interestingly enough, index i helps us predict not only the possible co-
ordinates (rX, rY, rZ), but also the possible binocular correspondence.
This is explained as follows:

When we have a value for index i, Eq. 8.159 allows us to compute
coordinates (rX, rY, rZ) because coordinates («i,i»i) have been given as
input. If we know coordinates (rX, rY, rZ), Eq. 8.160 allows us to directly
determine the location where the image feature at (1*2^2) m the right
image, matches with the image feature at (u\,vi) in the left image.

Eq. 8.160 describes a discrete constraint along an epipolar line because
all the predicted locations («2,^2) are on a continuous epipolar line. We call
this the discrete epipolar-line constraint. Most importantly, the dimension
of search space, regarding a discrete epipolar-line constraint, depends on
the value of n, and is independent of image size. This property does not
hold true with a continuous epipolar-line constraint.

In summary, an algorithm which implements inverse projective-mapping
and takes into account the discrete epipolar-line constraint will do the fol-
lowing:

• Step 1: Specify the range and accuracy of one coordinate (e.g. Z).
Then, determine interval [0,n] for index i.

• Step 2: Set up Eq. 8.159 and Eq. 8.160.
• Step 3: Find the value of index i within interval [0, n] and compute the

predicted coordinates (rXi, rYi, rZi) from Eq. 8.159.
• Step 4: When the predicted coordinates (rXi, rYi, rZ{) are known,

compute the predicted location (u2i,v2i) from Eq. 8.160.
• Step 5: Compute the difference between a sub-image centered at

(«i,i>i) in the left image, and a sub-image centered at (u2i,V2i) in
the right image. This difference is called a dissimilarity.

• Repeat Steps 3, 4, and 5 for all the values of index i.
• Step 6: Choose location (u2j,V2j) where the dissimilarity is minimum.

This dissimilarity should also be smaller than a user-specified threshold
value in order to eliminate false matching. If such a location exists in
the right image, it will be the match for the feature point at location
(ui,vi) in the left image. And, coordinates (rXj, rYj, rZj) will be the
results of the binocular vision's inverse projective-mapping.

This algorithm is fundamentally different from the one which makes
use of the inverse projective-mapping described by Eq. 8.144. Here, we
have the freedom to specify the range and accuracy for one coordinate.
Most importantly, this algorithm simultaneously solves the issues of both

562 The Fundamentals of Robotics: Linking Perception to Action

binocular correspondence and determination of 3-D coordinates. Moreover,
the computational time necessary for each feature point is independent of
image size. For easy reference, we call this algorithm the indirect 3-D
reconstruction.

Example 8.37 We use a four-camera vision system, as shown in
Fig. 8.55. At a time-instant, a set of four images is available. Refer to
Fig. 8.54. We treat the upper-left image as the master image, and the rest
the slave images.

When we undertake 3-D reconstruction, we normally select image fea-
tures, such as edges or corners, from the master image. If an image feature
in the master image is given as input, its match candidate in a slave image
must be on an epipolar line. However, if we apply the discrete epipolar line
constraint, the search space for a match candidate in a slave image is a set
of discrete spatial locations, as shown in Fig. 8.54.

In this example, we set the range for the Y coordinate to [0,300mm],
and the desired accuracy to 10mm. (NOTE: The Y axis is perpendicular
to the table's top-surface). The selected image features in the master image
are marked by "x".

•••••••••ooooooooo

8.6.2.6 Differential Epipolar-Line Constraint

In literature, the second difficulty with binocular vision has been largely
overlooked. All existing algorithms for binocular correspondence still re-
quire that the two cameras in the binocular vision system see the same
object in as similar a manner as possible. In other words, it is necessary
that the two cameras are optically and electronically similar, if not iden-
tical, so that the measurement of similarity or dissimilarity between the
image features is meaningful.

Because of this stipulation, it would be inappropriate to form a binoc-
ular vision system with one monochrome camera and one color camera.
However, if we could eliminate this stipulation, we could form a binocular
vision system with two cameras which have very different characteristics.
Here, we propose a simple solution which overcomes the second difficulty
with binocular vision, and permits the use of dissimilar cameras.

Refer to Eq. 8.145. A binocular vision system's fundamental matrix
^3x3 depends only on the intrinsic parameters and relative posture (clMc2)
of its two cameras. Now, if we assume that these intrinsic parameters and

Visual Perception System of Robots 563

Fig. 8.54 Example of discrete epipolar-line constraint where a search space for a match
candidate is a set of discrete locations.

relative posture remain unchanged, then the fundamental matrix becomes a
constant matrix. And, differentiating Eq. 8.144 with respect to time allows
us to obtain

fu2\ /Au2\
(Aui Awi l) « F 3 x 3 » v2 +(u1 vi l) « F 3 x 3 » Av2 =0 . (8.161)

We call Eq. 8.161 the differential epipolar-line constraint. It can be used
in two ways:

• Dynamic Binocular Vision:
When a binocular vision system moves along with the head of a hu-
manoid robot (or mobile vehicle), the visual-sensory system outputs
two streams of digital images: a) the left image sequence and b) the
right image sequence. We can estimate the displacements of the image
features within the left and right image sequences respectively using a
technique for detecting temporal uniformity. Clearly, the estimation of

564 The Fundamentals of Robotics: Linking Perception to Action

(AMI , A«i) in the left image sequence does not depend on the charac-
teristics of the right camera. Similarly, the estimation of (Aw.2, AV2) is
independent of the characteristics of the left camera. As a result, the
left and right cameras can be very different.

• Composite Binocular Vision:
Instead of forming a binocular vision system with two simple cameras,
we can use two composite cameras, as shown in Fig. 8.55. A composite
camera is made up of two similar cameras. In this way, the composite
camera's output is a sequence of two images at a time instant. As a
result, we can not only detect the image features, but also estimate their
displacements from the output of the composite camera. Since feature
extraction and displacement estimation are carried out independently
using the outputs from the two composite cameras, it is not necessary
for the (composite) cameras to be optically and electronically similar.

mL ; ' « H 1 \ ! • • •

^^^^^^^^^^^^^H^^^P^^^P*t (b) Composite cameras

(a) Composite binocular vision for robots

Fig. 8.55 Illustration of a composite binocular vision system for a humanoid robot.

Interestingly enough, the differential epipolar-line constraint is unique
if and only if a scene (or an object) does not undergo a pure rotation about
the origin of camera frame cl (or c2). This can be easily explained as
follows:

When there is an image feature at a = [u\, v\) in the left image plane, its
possible matches in the right image plane are the projections of the object
points on the projection line passing through feature point a. Among the
possible matches, there is only one correct one. The rest are treated as false

Visual Perception System of Robots 565

matches.
If the scene (or object) does not undergo a pure rotation about the origin

of camera frame cl, a pair of two consecutive images in the left camera will
not be related by a homography transform. In other words, none of the false
matches will reappear on the epipolar line which is determined by feature
point (ui + Aui,vi + Av\). Therefore, Eq. 8.144 and Eq. 8.161 provide the
necessary and sufficient constraints for the selection of a correct match. In
practice, when there is an image feature point at (ui,v\), the correct match
is the one which verifies Eq. 8.144 and minimizes

/u2\ /A«2\
£(ui,Vl) = (A«! Avi l) • F3x3» \ V2 + (f l Wl 1) •ir3x3» Av2 •

\ i / V i /
(8.162)

Example 8.38 A composite binocular vision system outputs a set of four
images at a time-instant. Refer to Fig. 8.56. We form two pairs of images
as follows:

• (upper-left image, lower-left image),
• (upper-right image, lower-right image).

In the pair of upper-left and lower-left images, we select image features
from the upper-left image. In this example, two features are selected from
the locations:

Uua,va) = (160,121)
I {ub,vb) = (256,248).

For a selected image feature, we use template matching technique and
epipolar line constraint to find its match in the lower-left image. Then,
the matches in the pair of upper-right and lower-right images can be easily
determined by the intersections of epipolar lines. As a result, displacement
vectors (Aua, Az;a) and (Auj, Avb) can be computed directly.

By applying Eq. 8.162, the computed values of differential epipolar line
constraint, with regard to the two selected image features, are

(E(ua,va) = 0.174416
\E(ub,vb) =0.599551.

Because of numerical error, differential epipolar line constraint is unlikely
to be exactly equal to zero.

566 The Fundamentals of Robotics: Linking Perception to Action

mm * JL^J^H ^' —^ * ^M

Fig. 8.56 Example of differential epipolar line constraint.

oooooooooooooooooo

8.7 Summary

One primary goal we hope to achieve through a robot's visual-perception
system is the ability to infer the three-dimensional (3-D) geometry of a
scene (or object) from two-dimensional (2-D) digital images. This is a very
challenging task as digital images do not explicitly contain any geometric
information about a scene (or object). Therefore, one has to go through
a series of information-processing functions in order to derive geometric
information from digital images. These functions include image processing,
feature extraction, feature description, and geometry measurement.

In a robot's visual-perception system, there are two important categories
of image-processing techniques: a) image transformation and b) image fil-
tering. We learned that the purpose of image transformation is to obtain
alternative representations of the original input image. And, the purpose

Visual Perception System of Robots 567

of image filtering is to enhance specific dynamic characteristics in an input
image. For a linear filter, we studied the principle of dynamics conservation
and the principle of dynamics resonance. These two principles are clearly
explained using the convolution formulae and Laplace transform.

The purpose of image-feature extraction is to detect geometric features
from images. We learned that geometric features are implicitly encoded into
the discontinuity, continuity and uniformity of an input image's chromi-
nance, luminance, or texture. As a result, image-feature extraction is
mainly the detection of edges, corners and uniform regions.

Interestingly enough, most edge-detection algorithms can be explained
using the principle of dynamics resonance. These algorithms always start
with edge enhancement followed by a process of edge selection.

With regard to corner detection, the algorithm depends on the adopted
definition of corner. Here, we studied a zero-gradient algorithm for corner
detection which is conceptually simple and works well with real images.

As for uniformity detection, most algorithms rely on a complex decision-
making process because of the challenges caused by uncertainty and redun-
dancy. We discussed the probabilistic RCE neural network which deals
efficiently with uncertainty and redundancy, and is useful in the detection
of uniform regions in color images.

The output from image-feature extraction is individual feature points.
Thus, it is necessary to group these feature points into a set of clusters, each
of which can be described by analytical curves. We learned that geometric-
feature description involves three sequential steps: a) feature grouping, b)
contour splitting, and c) curve fitting. We studied three typical examples
of feature grouping which make use of three different neighborhood types:
a) the 4-neighborhood, b) the 8-neighborhood, and c) the causal neighbor-
hood.

We know that strategies for contour splitting are different, depending
on the types of analytical curves to be used for feature description. And,
we studied two methods of contour splitting. Subsequently, if we have a
set of simple contours as input, we can choose linear, circular, or elliptic
curves to approximate simple contours.

We also learned that feature description performed in the index coordi-
nate system assigned to a digital image does not have any unit of measure-
ment. Theoretically, the results are qualitative descriptions of the geometry
of a scene (or object). In order to obtain a quantitative description, it is
necessary to study the important topic of geometry measurement using
either monocular or binocular vision.

568 The Fundamentals of Robotics: Linking Perception to Action

We learned that the most important issue underlying geometry mea-
surement is inverse projective-mapping. With monocular vision, we must
reduce a scene's dimension (resulting in 2-D vision), or introduce extra
knowledge (resulting in model-based geometry measurement). In order to
measure the geometry, it is necessary to know a camera's parameters. For
this reason, we also studied camera calibration. We know that if a camera's
calibration matrix is known, the camera's intrinsic and extrinsic parameters
can be fully determined.

Finally, we studied binocular vision. We know that the inverse
projective-mapping in binocular vision has a closed form solution. How-
ever, this solution depends on two necessary conditions: a) the two cameras
must be calibrated in advance, and b) the binocular correspondence of the
image features must be established in advance as well. The first condition
is easy to meet but the second one largely undermines binocular vision's
practicality. In order to deal with the second issue, we studied two possible
Solutions: a) the application of a discrete epipolar-line constraint, and b)
the application of a differential epipolar-line constraint. These resulted in
two different algorithms for binocular vision.

8.8 Exercises

(1) Explain the process of visual perception.
(2) Is there any difference between the process behind computer graphics

and that behind the visual-sensory system of a robot?
(3) Does a digital image explicitly contain any geometric information?
(4) What are the typical applications of a visual-perception system?
(5) Explain information processing in a visual-perception system.
(6) Write a sample C-program that calculates the intensity histogram of

an input image.
(7) Explain the fundamental difference between image transformation and

image filtering.
(8) Write a sample C-program that automatically determines the optimal

threshold value VQ in Eq. 8.9.
(9) Explain the importance of the localization of a detected feature.

(10) What are the criteria for designing a good feature-detector?
(11) If f(x) represents a one-dimensional ridge-type edge, what is the exact

mathematical description of f{x)l
(12) How do you make a feature detector possess the degree of freedom to

Visual Perception System of Robots 569

compensate for the shift of feature localization caused by noise?
(13) If the coefficients in Canny's function satisfy the following constraints:

oi • a2 < 0 and a3»a,4 > 0, what is the physical meaning behind these
constraints?

(14) Explain why Deriche's function is a special case of Canny's function.
(15) What are the possible definitions of a corner feature?
(16) Explain why a boundary-tracing algorithm uses the 4-neighborhood

instead of the 8-neighborhood.
(17) Explain why contour splitting is necessary before performing curve fit-

ting.
(18) For curve fitting with circular or elliptic arcs, one problem is how to

compute the tangential angle at each edge pixel of a simple contour.
Propose some practical solutions to this problem.

(19) A virtual camera's focal length is 1.0 cm. Its aperture angles are
(100.0°, 100.0°). If the image resolution is (256,256), what is the pro-
jective matrix 7PC? Now, if we change the focal length to 10.0cm, what
is the new projective matrix 7PC?

(20) Refer to Fig. 8.45. Where are locations B and C if image points b and
c are inversely projected onto plane rZ = 0?

(21) In a camera's calibration matrix , what is the meaning of (/114, /124)?
(22) What is binocular vision?
(23) What is the sufficient condition for binocular vision to work properly?
(24) In Example 8.33, if a = (400,200) and b = (200,200), what are the

coordinates of the object point with respect to the reference frame of
the scene?

(25) In Example 8.35, compute the epipolar line corresponding to the image
feature point a = (100,100).

(26) What is the epipolar-line constraint?
(27) Explain the differences between the continuous epipolar-line constraint

and the discrete epipolar-line constraint.
(28) Do the two cameras in a binocular vision have to be absolutely similar

in terms of optical and electronic characteristics?
(29) Project 1: Implement an edge-detection algorithm.
(30) Project 2: Implement a corner-detection algorithm.
(31) Project 3: Implement a color-segmentation algorithm.
(32) Project 4: Implement a template-matching algorithm.
(33) Project 5: Implement an edge-linking algorithm.
(34) Project 6: Implement model-based inverse projective mapping in

monocular vision.

570 The Fundamentals of Robotics: Linking Perception to Action

(35) Project 7: Implement solutions for determining a camera's parameters
from its calibration matrix.

(36) Project 8: Implement the solution for continuous epipolar-line con-
straint.

(37) Project 9: Implement a binocular-vision algorithm with a discrete
epipolar-line constraint.

(38) Project 10: Implement a binocular-vision algorithm with a differential
epipolar-line constraint.

8.9 Bibliography

(1) Banks, S. (1990). Signal Processing, Image Processing and Pattern
Recognition, Prentice-Hall.

(2) Canny, J. (1986). A Computational Approach to Edge Detection,
IEEE Trans, on Pattern Analysis and Machine Intelligence, 8.

(3) Castleman, K. R. (1996). Digital Image Processing, Prentice-Hall.
(4) Crane, R. (1997). A Simplified Approach to Image Processing,

Prentice-Hall.
(5) Deriche, R. (1987). Using Canny's Criteria to Derive Optimal Edge

Detector Recursively Implemented, International Journal of Com-
puter Vision, 2.

(6) Faugeras, O. (1993). Three-Dimensional Computer Vision, MIT
Press.

(7) Fostner, W. and E. Gulch (1987). A Fast Operator for Detection and
Precise Location of Distinct Points, Corners and Centers of Circular
Features, ISPRS Intercommission Workshop.

(8) Haralick, R. M. and L. G. Shapiro (1993). Computer and Robot Vi-
sion, Addison-Wesley.

(9) Harris, C. G. and M. Stephens (1988). A Combined Corner and Edge
Detector, The 4th Alvey Vision Conference.

(10) Horn, B. K. P. (1994). Robot Vision, MIT Press.
(11) Jain, R., Kasturi, R. and B. G. Schunck (1995). Machine Vision,

McGraw-Hill.
(12) Marr, D. and E. Hildreth (1980). Theory of Edge Detection, Proceed-

ings of Royal Society, London, B207.
(13) Marshal, A. D. and R. R. Martin (1992). Computer Vision, Models

and Inspection, World Scientific.
(14) Philips, D. (1994). Image Processing in C, R&D Publications, Inc.

Visual Perception System of Robots 571

(15) Prewitt, J. M. S. (1970). Object Enhancement and Extraction, in
Picture Processing and Psychopictorics, Academics Press.

(16) Reilly, D. L., L. N. Cooper and C. Elbaum (1982). A Neural Model
for Category Learning, Biological Cybernetics, 45.

(17) Roberts, L. G. (1965). Machine Perception of Three-dimensional
Solids, in Optical and Electro-optical Information Processing, MIT
Press.

(18) Smith, S. M. and J. M. Brady (1997). SUSAN - A New Approach
to Low Level Image Processing, International Journal of Computer
Vision, 23.

(19) Specht, D. F. (1988). Probabilistic Neural Networks for Classification,
Mapping or Associative Memory, IEEE International Conference on
Neural Networks, I.

(20) Yakimovsky, Y. (1976). Boundary and Object Detection in Real
World Images, Journal of ACM, 23.

Chapter 9

Decision-Making System of Robots

9.1 Introduction

The ultimate goal of robotics research is to develop autonomous robots,
which can not only be deployed in industry for better productivity, but can
also co-exist in human society for better service. If a robot co-exists with
humans, however, it must have the ability to develop and learn behaviors
compatible with human society. Thus, an autonomous robot must also be
a sociable and educable robot.

Humans have an innate mechanism for autonomously developing mental
and physical abilities. What is this innate mechanism which determines the
degree of autonomy in a physical system, like a human being or a robot? So
far, this is still an unresolved issue which needs more research. However, as
we studied in Chapter 6, we know that any complex behavior is the result
of the interaction among mental and physical actors embedded in a physical
body, or system.

From an engineering point of view, a physical actor is a sensing-control
loop which acts on a physical kineto-dynamic chain; and, a mental actor is a
perception-decision-action loop which acts on the physical actors and may
also alter the mental world's internal representation(s). Mathematically,
a control law is a function-based, decision-making process which may be
complemented by some decision rules, such as the switching functions stud-
ied in Chapter 5. Clearly, decision making is an indispensable part of any
physical or mental actor, and forms an important pillar in an autonomous
system, such as a humanoid robot.

In Chapter 5, we learned that motion control can be fully automated if
and only if: a) the desired output is given and b) the chosen control law
makes the closed-feedback loop stable. In Chapter 5, we only addressed

573

574 The Fundamentals of Robotics: Linking Perception to Action

the second condition. In this chapter, we will address the first as we study
the basics of decision making and motion planning for autonomous robots.
The emphasis of our study in this chapter will be on image-guided motion
planning and control.

9.2 The Basics of Decision Making

Generally speaking, the decision-making process exists everywhere. With-
out decision making, there would be no automated actions, tasks or even
behaviors.

9.2.1 The Key to Automated Actions

In Chapter 5, we learned that control system is synonymous with automatic-
feedback control system. This means that an action taken by a system can
be fully automated if the desired output of the automatic-feedback control
loop can be specified in advance. This requirement must be satisfied by all
automated systems in manufacturing, transportation, military, etc.

However, for an automatic-feedback control system to work properly,
a critical issue is the design of suitable control law(s). In particular, the
control law(s) must achieve certain design specifications in terms of ab-
solute and relative stabilities, regardless of uncertainty caused by noise,
disturbance, unknown or un-modelled system dynamics, etc.

Mathematically, we can consider a control law to be a function-driven
decision-making process. Depending on the complexity of a system under
control, a set of control laws may be used to cope with variation caused by
the system's configuration. Therefore, control laws may be complemented
by some decision-making rules such as switching functions. Accordingly,
decision making is the key to the automation of many industrial tasks.
From this perspective, we can attempt to formally define the buzzword
automation as follows:

Definition 9.1 Automation is the interaction between a decision-making
process and an action-taking system which does not require any human
intervention.

Decision-Making System of Robots 575

9.2.2 The Key to Automated Behaviors

As we discussed above, "automation" means automated actions imple-
mented by feedback control loops. An automated action has only gained
independence in action taking. It still depends on the specification of de-
sired output or outcome, which, for many industrial automation systems
including robots, is programmed and re-programmed by humans. Because
of this human intervention, an automated system is not an autonomous
system.

So, how do we make an automated system an autonomous system?
Perhaps, first it is necessary to define scientifically the term autonomy.
Autonomy is related to the state of independence. As there is no absolute
independence for any physical system on Earth, there is no absolute au-
tonomy. As a result, autonomy is better described by a degree (or level) of
independence. Formally, we can attempt to define the term autonomy as
follows:

Definition 9.2 Autonomy is a characteristic which describes an auto-
mated system's degree (or level) of independence.

From Chapter 5, we know that without a specification of desired output,
an automated system will not produce any useful outcome. This indicates
that an automation system has at least one degree of dependence, which
is: the specification of desired output. Hopefully, the elimination of this
dependence will make an automated system an autonomous system. And,
the thoroughness in eliminating the degree of dependence will result in the
degree of autonomy attributed to an autonomous system. Therefore, it may
be useful to attempt to define the term autonomous system as follows:

Definition 9.3 An autonomous system is an automated system which
has gained at least one level of independence in specifying its desired output
without human intervention in programming or reprogramming.

It would signal tremendous progress if we could develop a robot
which could decide without human intervention the desired outcome to be
achieved. Since behavior is a sequence of ordered actions for the achieve-
ment of a desired outcome, the ability to self-specify the desired outcome
is the key to autonomous behaviors.

576 The Fundamentals of Robotics: Linking Perception to Action

9.2.3 Decision-Making Processes

According to the level of sophistication in performing actions, a system can
be classified into one of these categories:

• Active System:
A system which acts on its own, regardless of desired outcome or
sensory input, is called an active system. A system in this category
does not have the ability to interact with other systems, or the outside
world.

• Reactive System:
If a system is able to respond to outside stimulus, it is called a reactive
system. An open-loop control system is a reactive system. A reactive
system can interact with the environment.

• Automated System:
If a reactive system is equipped with a decision-making module, like
a controller, it becomes an automated system. Au automated system
acts according to desired output or outcome which has been specified
in advance as input.

• Autonomous System:
If an automated system specifies its own desired output or outcome,
it is called an autonomous system.

• Intelligent System:
In Chapter 1, we denned the term intelligence as a measurement which
is inversely proportional to the effort spent achieving a predefined out-
come or target. The term effort means energy spent in the planning
and execution of a sequence of mental and physical actions. As a re-
sult, effort depends on a subjective decision made in the planning of
an action sequence. Accordingly, the term intelligent can only be at-
tributed to a system which encompasses a decision-making subsystem.
Thus, either an automated or autonomous system can be attributed
with the qualifier intelligent if it has the ability to achieve a predefined
outcome or target in different ways.

Clearly, the enabling technology for the development of autonomous
systems is decision making. Most importantly, decision-making itself is a
process which has its own input and output, and must be embedded in a
native system (like robot) in order to be useful. Fig. 9.1 shows a simplistic
view of a generic decision-making process. The purpose here is to highlight
the complexity of the input-output relationship.

Decision-Making System of Robots 577

. i ^ i Z — OUTPUT
• Belief System ^ 1 • Actions

• Confirmations

^ I I II -Statements
• Others

• Sensory data f\ j^M^^BuHUI^H^^H —7 _ /
• Constraints \ I I \l-^

' G o a l s) Decision-makingProcess O U T P U T)
•Contexts / b 1 1/
•Facts I 1/ L _̂F "
• Previous Results | j 1 f
• Others _̂ U . ^ - — ^ .

("Knowledge _) (Experience ~)

Learning ^ —

Fig. 9.1 A simplistic view of a generic decision-making process.

9.2.3.1 Inputs of Decision-Making

As shown in Fig. 9.1, the input to a decision-making process can be divided
into two parts: a) hard input, and b) soft input. By hard input, we mean
all data and facts which are the direct outcome of the physical systems.
In contrast to hard input, soft input refers to all data and facts which are
subject to linguistic interpretation.

Hard Input

Generally speaking, the common forms of hard input to a decision-making
process include:

• Sensory Data:
These are measurements directly obtained from sensors embedded
onto physical systems.

• Constraints:
These are models, representations and hypotheses imposed on the
environment and physical systems. For example, kinematics imposes
kinematic constraints on a robot's mechanism.

578 The Fundamentals of Robotics: Linking Perception to Action

• Goals:
These can be instructions received from the outside world or self-
generated goals. For example, the instruction "Place the cup on the
dining table" is a goal specified by others. However, the statement "I
will do it in a better way" is typically a self-generated goal.

• Contexts:
These generally refer to conditions imposed by the environment. For
example, "indoor" and "outdoor" are two different contexts.

• Facts and Previous Results:
This is knowledge and information about what a physical system can
achieve. For example, the solutions and results of inverse kinematics
tell us what can be done with an open kineto-dynamic chain.

Soft Input

A decision-making process must consider not only hard input but also soft
input. This makes a decision-making process very different from a linear
transformation or filtering process (e.g. image transformation or image
filtering). So far, there is no concrete answer to the question of how to deal
with the softness (also called elasticity) of soft input. Thus, when it comes
to computing with words (the semantic level), decision making is a difficult
and complicated job for a robot to perform.

As shown in Fig. 9.1, the common forms of soft input include:

• Knowledge:
Knowledge itself has no elasticity, and is a kind of hard input. How-
ever, the interpretation of knowledge is subjective, and the application
of knowledge may also introduce some approximations (i.e. softness
or elasticity). For example, color has a specific range of wavelengths.
However, while an imaging sensor can be very accurate, the inter-
pretation of color in a digital image does not have a rigid range of
numerical values. For another example, let us interpret the equation
WK = \rrf v2. One can interpret it as "An increase in velocity in-
creases the kinetic energy of a body". In this case, the statement itself
has a lot of elasticity.

• Experience:
The skill or mental syntax of a physical system can be described as the
specific pattern of mapping (or association) between the input (e.g.
causes) and the output (e.g. effects or actions). This pattern of map-
ping is not pre-established, but is acquired from experiments or trials

Decision-Making System of Robots 579

which result in what is called experience. In fact, experience cultivates
the skill or mental syntax of a physical system. Accordingly, it condi-
tions the tendency for a physical system to plan familiar sequences of
ordered actions.

• Belief:
Belief is the "motor" which powers an autonomous system. It is
the source from which all goals and desired outcomes are formulated.
Without a belief system, a human being or a physical system would
not be able to self-develop and evolve. As we studied in Chapter 6,
the belief system determines four types of autonomous behaviors: a)
value-driven behaviors, b) expectation-driven behaviors, c) curiosity-
driven behaviors and d) state-driven behaviors. How to develop a
belief system for a robot is still an unresolved issue. However, if we
understand the importance of the belief system, it will help us to focus
our research effort in this direction. A belief system cannot exist on
its own, but must be embedded in a physical system (e.g. a body).
A belief system takes all the data from a body's sensory systems as
input. Interestingly enough, the output from a belief system may also
be taken as input to the belief system itself. When output from a be-
lief system remains permanent, it may be designated as the ultimate
goal(s) or ambition(s) of a physical system. Here, we can raise these
challenging questions: What should the ultimate goal of a humanoid
robot be? Could this ultimate goal be programmed once without any
further reprogramming?

9.2.3.2 Outputs of Decision-Making

As shown in Fig. 9.1, the possible forms of output from a decision-making
process include:

• Action:
This is the most common sort of output from a decision-making pro-
cess. Action can be in the form of action descriptions (e.g. what to
do), motion descriptions (e.g. desired path or trajectory), or signal
descriptions (e.g. voltage or current level).

• Statement:
This is the linguistic description of facts, conclusions, conjectures,
hypotheses, etc. Statements will introduce uncertainty or fuzziness
depending on the lexical elasticity, or softness, of words used. For ex-
ample, words with elastic meanings include: possible, probable, likely,

580 The Fundamentals of Robotics: Linking Perception to Action

very, small, large, many, etc.
• Confirmation:

This refers to statements without any ambiguity. The simplest con-
firmations include: "Yes", "No", "It is", "It is not", etc.

In a physical system, a set of simple decision-making processes can be
nested to form a complex decision-making system. Because of the nature
of soft input in a decision-making process, a robot must be equipped with
the appropriate mathematical tools to handle not only certainty and re-
dundancy but also uncertainty (including ambiguity).

9.2.4 Difficulties in Decision-Making

We mentioned that decision-making is a very difficult job for a robot. This
is largely due to uncertainty and redundancy.

9.2.4.1 Uncertainty

As shown in Fig. 9.2, uncertainty can exist in input, specification of goal,
and output. In general, uncertainty is the result of one or a combination of
the following three causes:

• Imprecision:
In Chapter 5, we studied the meaning of a sensor's precision. In fact,
the term precision refers to the statistical distribution of a sensor's
output s(t) when its input y(t) is set at a fixed value. Due to the
presence of noise, the statistical distribution of a sensor's output is
spread over a region, resulting in the imprecision of the sensory data.

• Incompleteness:
Mathematically, a spatial-temporal signal from a sensor has a limited
range in both space and time. Depending on the size of the spatial
or temporal window, the observation of a sensor's output at a specific
time-instant may not contain complete information about a physical
quantity. This incompleteness of sensory data will cause uncertainty.

• Ambiguity:
When the specification of a goal, fact or context is in the form of
a statement, ambiguity can arise depending on the elasticity of the
words used. For example, the goal specification, "Place part A on top
of part B" contains the elastic term "on top of". Thus, this goal speci-
fication has what is called fuzziness or vagueness. If a decision-making

Decision-Making System of Robots 581

Difficult?

| l \ l ' l I COM <Jl l l ' l I |
I IK0ll.lllll\ - I IM.'I[.IIII1> - [Ik.-ll.llllU I

Ki'ihiiKl.iiK\ Ki'iluiul.nm - knluml.iiii.> I

/ * * ' " ••*.

Decision-Milking
^ -. _--"/'

I \ | ' i . l l KlI.'VK k'llL'i.- I Sl.lllslk.il Illlil.-lUi-

- - - ~ i"~ 1
I u / / \ IniciciKC I V u i . i l V l ' . m i k

Methodology

Fig. 9.2 Difficulties and methodologies in decision-making.

process is not able to completely eliminate fuzziness, ambiguity will
certainly reappear in the output.

9.2.4.2 Redundancy

In literature, the difficulty of decision making due to redundancy has been
overlooked. As shown in Fig. 9.2, redundancy may also appear in input,
specification of goal, and output. In general, redundancy may come from:

• Multiple Sources of Input:
The same physical quantity can be measured by a set of different sen-
sors. For example, the posture of an end-effector (e.g. gripper or
hand) attached to a robot can be determined from the measurements
of joint angles and forward kinematics. This posture can also be mea-
sured by a robot's visual perception system. Alternatively, the same
physical quantity can be derived from the same set of sensory data by
using different signal-processing techniques. For example, the edges
of a surface's boundary can be detected by an edge-detection algo-
rithm. These edges can also be determined by a uniformity-detection
algorithm followed by a boundary-tracing algorithm.

• Multiple Mappings:
The pathway for associating input to output may not be unique. In
some cases, there may be an infinite number of mappings from input
to output. For example, take the solutions of inverse kinematics for a

582 The Fundamentals of Robotics: Linking Perception to Action

kinematically-redundant robot arm manipulator (i.e. an open kineto-
dynamic chain). In this case, a given input (e.g. the posture of an
end-effector's frame) can be mapped into an infinite number of output
(e.g. the possible sets of joint angles). Similarly, the same output may
be obtained from the mapping of different inputs. A typical example
is face recognition, in which the images of a person's face captured
at different places and at different times by the same camera may
appear different. However, the interpretation of these facial images
(i.e. multiple input) must be the same (i.e. a single output).

• Semantic Overlapping:
Lexical elasticity in statements or goal specifications creates vague-
ness, or fuzziness. In addition, semantic overlapping introduces re-
dundancy as well. For example, the goal specification, "Place part A
on top of part B, and center it as much as possible" has two overlap-
ping terms: "on top of" (which includes the center) and "center it as
much as possible" (which permits non-center locations).

For the most part, redundancy is different from uncertainty. Uncer-
tainty is the source of disturbance which may cause error in the output of
a decision-making process. However, redundancy is the source of informa-
tion which can be used advantageously by a decision-making process (e.g.
optimization, sensor fusion, etc).

9.2.5 Methodologies in Decision-Making

Uncertainty and redundancy cannot exist without the presence of certainty
(even white noise is a mathematical abstraction). Fortunately, the whole
world is dominated by a vast body of certainty. To a certain extent, we can
say that the ultimate goal of science and technology is to discover the laws,
principles and methodologies for the analysis, synthesis, design and control
of the physical, social, economic and biological systems in the world.

9.2.5.1 Expert Knowledge

There is a vast amount of expert knowledge in various fields of science and
technology which helps us to better understand and explain all kinds of
phenomena in physics, biology, the environment and human society. Expert
knowledge is a treasure for us to rely on in order to make wise decisions,
efficient solutions, and new discoveries.

This chapter is devoted to the study of expert knowledge which aims at

Decision-Making System of Robots 583

deriving efficient solutions for image-guided motion planning and control.

9.2.5.2 Statistical Inference

Despite uncertainty, all physical systems deployed in industry and society
are stable and have deterministic behaviors. This is due to the applica-
tion of expert knowledge together with powerful mathematical tools, which
efficiently transform uncertainty into a specific form of certainty (e.g. prob-
abilistic distribution, mean, variance, etc). One widely-used mathematical
tool is statistical inference which is based on the probability theory.

We know that if input to, or output from a system, device or sensor
exhibits the property of randomness, the corresponding quantity is better
described by random variable X. In the probability theory, observation of
a random variable is called a sample. Accordingly, all possible values of
a random variable are called the sample space. In practice, the statisti-
cal inference techniques include: a) estimation of statistics & interval, b)
hypothesis testing, and c) Bayes's decision rule.

Estimation of Statistics and Interval

When we have a set of n observations of random variable X:

{Xz, i = l,2,...,n},

we can compute the mean:

1 n
i = -.Vli (9.1)

i=l

and the variance:

1 = 1

The mean and variance are called the statistics of a random variable.
If we know the variance of random variable X, its square root is called the
standard deviation, which is useful for the determination of upper and lower
limits. In fact, upper and lower limits define an interval that the value of a
random variable is most expected to fall into. For example, the six-sigma
rule defines the interval to be [—3<7x, 3<TX]-

Mathematically, the computation of statistics with regard to a set of
observations of a random variable can be treated as a sort of transformation

(9.2)

584 The Fundamentals of Robotics: Linking Perception to Action

from uncertainty (e.g. random values) to certainty (e.g. statistics).

Hypothesis Testing

For a physical system to exhibit deterministic behaviors at the lowest level
of action, it is necessary to eliminate as much as possible uncertainty at
the output of a decision-making process. If we consider an output without
uncertainty to have a 100% confidence level, then any output with uncer-
tainty can better be described as a deterministic output (e.g. "Do it" or
"Don't do it") associated with the confidence level 7 (7 G (0,1)). In this
way, uncertainty can be eliminated by simply fixing the confidence level.
This is because all outputs above a predefined confidence level are treated
as deterministic outputs.

In probability, a decision or statement having uncertainty is called a
hypothesis. A decision-making process which accepts or rejects a hypothesis
is called hypothesis testing. Hypothesis testing can be explained as follows:

• Postulation of Hypothesis:
Usually, a statement always has a counter statement. As a result, we
normally postulate two hypotheses: a) the original statement (known
as the null hypothesis and denoted by Ho), and b) the alternative
statement (known as the alternative hypothesis and denoted by .ffi).

• Calculation of Errors:
When we have an input, the outcome of hypothesis testing is either
HQ or Hi. Because of uncertainty, any decision involves a certain level
of risk. The risk of decision-making is better described by Type-I and
Type-II errors. A Type-I error is the probability, denoted by a, of
making the wrong rejection of hypothesis HQ. That is,

a = P'(reject Ho | Ho is true). (9.3)

And, the Type-II error is the probability, denoted by j3, of making the
wrong acceptance of hypothesis HQ. That is,

/3 = P(accept HQ \ HQ is false).

Since the wrong acceptance of HQ also means the wrong rejection of
H\, then we have

/3 = P(reject H± \ Hi is true). (9.4)

Decision-Making System of Robots 585

• Decision making:
Ideally, both Type-I and Type-II errors must be low. However, due
to uncertainty, it is necessary to compromise. Depending on the ap-
plications, confidence level 7 can be defined as either 7 = 1 — a if we
test whether to accept Ho or, 7 = 1 — (3 if we test whether to accept

Bayes's Decision Rule

In the probability theory, the measurement of joint probability P(AB) can
be interpreted as the likelihood of mapping from an input (treated as event
A) to a possible output (treated as event B). In a decision-making process,
the input and output are correlated. Therefore, we have

P{AB) = P(A I B) • P(B) = P(B I A) • P(A) (9.5)

where P(A \ B) is the conditional probability of event A when event B
occurs, and P(B \ A) is the conditional probability of event B when event
A occurs.

The elimination of P(AB) in Eq. 9.5 yields the well-known Bayes's
theorem. That is,

P<B|.4)=^W m

Under the context of decision-making, Eq. 9.6 is interpreted as the prob-
ability of making decision B when the input is A.

In practice, we frequently encounter the situation of multiple possible
outputs for a given input. For example, if there are two possible outputs,
Ho and Hi, for a given input A, the application of Eq. 9.6 will yield the
following Bayes's decision-making rules:

• Rule 1: Accept HQ, if

P(A I Ho) • P(H0) > P(A I Hx) . P(HX). (9.7)

• Rule 2: Accept H\, if

P(A I H^ • P(Hx) > P{A I Ho) • P(H0). (9-8)

9.2.5.3 Fuzzy Inference

There are a lot of uncertainties when dealing with natural-language state-
ments or descriptions due to the lexical elasticity of the words used, such

586 The Fundamentals of Robotics: Linking Perception to Action

as small, big, many, few, etc.
In order to co-exist with humans, however, a humanoid robot must be-

come a sociable robot and, therefore, must be equipped with the necessary
mathematical tools to help it interpret and understand natural languages.

In the 1970s, Lofti A. Zadeh founded a new discipline, known as Fuzzy
Logic, which consists of fuzzy sets and membership functions (or possibility
distribution functions).

A fuzzy set is a superset of a Boolean set. For example, in color-image
segmentation, the set R (red) is a Boolean set if it is represented as follows:

R = {(ui,Vi), fJ,R(ui,Vi) = 1 | ut e [l,rx], Vi G [l,ry]}

where (rx, ry) are image resolutions in both the horizontal and vertical
directions, and [1R is called a membership function.

However, a pixel can also be described by the degree of redness. In
this case, the membership function /i/j can take values between 0 and 1.
Accordingly, the Boolean set R becomes a fuzzy set which is represented
as follows:

R= {(ui,Vi), 0 < fJ,R(ui,Vi) < 1 | Ui e [l,rx], Vi € [l,ry]}.

Boolean sets can not only be extended to fuzzy sets, but Boolean oper-
ators (AND, OR and NOT) can also be extended to Fuzzy operators (MIN,
MAX and additive complement).

When a system's input and output can be represented by fuzzy sets,
the mapping between fuzzy input and fuzzy output can be established by a
process called fuzzy inference. In general, a fuzzy-inference process involves
these steps:

• Fuzzification of Input:
Inputs to a fuzzy-inference process are called conditions. Thus, fuzzy
inference can be treated as a process of evaluating "if-then" rules,
such as "If the neighbors are red, then the pixel itself is certainly
red". Therefore, it is necessary to convert the "if" conditions into
corresponding fuzzy sets.

• Evaluation of "If" Conditions:
After the conditions in an "if-then" rule have been converted into the
fuzzy sets, the next step is to apply fuzzy operators (MIN, MAX, or
additive complement) to evaluate the "if" conditions. The result of
this evaluation will be a single numeric number (i.e. a membership

Decision-Making System of Robots 587

function's value) which indicates the degree of support for the "if-
then" rule.

• Evaluation of "Then" Outcomes:
Each "if-then" rule has a "then" outcome which must be fuzzified in
order to obtain the nominal fuzzy set of the "then" outcome. Subse-
quently, this fuzzy set is subject to evaluation by the result of the "if"
conditions. One way to evaluate the nominal fuzzy set of the "then"
outcome is to truncate its membership function by the result of the
"if" conditions in order to obtain the actual fuzzy set for the "then"
outcome.

• Fusion of "Then" Outcomes:
A fuzzy-inference process usually involves many different "if-then"
rules which lead to different outcomes. Together, these outcomes form
a single output set. Thus, it is necessary to combine the fuzzy sets
of the "then" outcomes, in order to obtain the fuzzy output set. A
simple way of doing this is to apply the MIN fuzzy operator.

• Defuzzification:
The purpose of defuzzification is to make a decision based on the
membership function of the fuzzy output set. A simple solution for
defuzzifying the output's fuzzy set is to compute the centroid of its
membership function, and use the value of the centroid as the thresh-
old to convert the output's fuzzy set into a corresponding Boolean
set.

While many advances have been made in fuzzy logic, the issue of how
to represent and filter out fuzziness in statements described by a natural
language still remains unresolved.

9.2.5.4 Neural Network

In Chapter 8, we studied the probabilistic RCE neural network, and we
know that its architecture is based on a multiple-layered structure composed
of neurons. The neurons in the middle layer are the information-processing
units. Most importantly, the neurons in the input layer are mapped to
the neurons in the output layer through multiple pathways formed by the
neurons in the middle layer.

Clearly, the advantages of using a computational neural network are
two-fold:

• A computational neural network can effectively handle redundancy

588 The Fundamentals of Robotics: Linking Perception to Action

because multiple neurons are present in both the input and output
layers and there are multiple pathways formed by the neurons in the
middle layer (s).

• A computational neural network can effectively handle uncertainty
because the neuron is an information-processing unit which can be
modelled as a statistical inference engine.

Not surprisingly, human brain's neural computing network is a complex,
multiple-layered neural architecture with well-established partitions, each
of which is dedicated to a specific sensory-motor function.

In the following sections, we will focus on the discussions of expert
knowledge underlying the decision-making for autonomous behaviors that
a robot tends to achieve.

9.3 Decision Making for Autonomous Behaviors

A robot is capable of automatically executing preprogrammed motions
without human intervention, because of the use of the automatic-feedback
control loop. Thus, a robot is indeed an automated machine. Now, the
challenging question is: How do we make a robot an autonomous machine
with a certain degree or level of autonomy?

As shown in Fig. 9.3, automatic execution of motions by a robot requires
the input of desired motions which must be preprogrammed. So far, all
industrial robots need human intervention to program or reprogram desired
motions. If we consider a goal description as the primitive input to a robot,
human intervention can occur at three levels:

• Task Level:
The aim is to translate a goal description into a sequence of ordered
tasks, each of which will have its own description.

• Action Level:
The aim is to translate a task description into a sequence of ordered
actions, each of which will have its own description.

• Motion Level:
The aim is to translate an action description into a sequence of ordered
motions, each of which will be described in a form suitable as input
to an automatic-feedback control loop.

Without any degree of autonomy, a robot will be dependent on human
intervention at these three levels. The only way for a robot to gain a certain

Decision-Making System of Robots 589

/ Human \ I ~ . I
() Perception * ^ ^ ^ B ^ .

Human Intervention Division-nukiiig.SisL.-ni f ^ ^ ^ ^ " ^ 1

IIII i . i. : • - • —» I i - I'l i : _• I [I • |

I-I. •Mm | — i ' . |3*3 ?^S ;

Inverse Kinematics « ([Desired Motions^)

I | , | , «" £»
•—» Control fc Kineto-Dynamic ^ ./I1;.- '.a;-

. p Algorithms Chains '. :•.• si-vT

Sensory Feedback < ' •— • >— <

Fig. 9.3 Illustration of human intervention, dependence, and the role of a robot's

decision-making system.

degree of autonomy is to develop a decision-making system which is able to
self-specify desired motions from the description of actions, tasks or even
goals.

9.3.1 Task or Scenario Planning

The aim of task or scenario planning is to translate a goal description into
a sequence of ordered tasks so that the combined outcomes of these tasks
result in the achievement of the goal. A scenario can be modelled by a
sequence of ordered tasks. Therefore, task planning also means scenario
planning.

9.3.1.1 A Goal Description as Input

The input to task planning is the description of goal(s). Now, the question
is: What generic model represents all possible goal descriptions? There is no
simple answer to this because a goal is the result of combined expectations
which satisfy multiple needs or desires. These needs, or desires, can be
internal (for personal consumption) and/or external (for the interest of
others).

In general, a goal description must consider the following two factors:

590 The Fundamentals of Robotics: Linking Perception to Action

• The Top-down Expectation:
Obviously, a goal must have a purpose. Usually, this purpose is derived
from the needs and/or desires of a physical system and a collectivity
(e.g. a factory, a community, an organization).

• The Bottom-up Constraint:
A goal must be achievable. The feasibility of a goal depends on many
factors. However, the most important one is the bottom-up constraint
imposed by the physical system which will realize the goal.

Because of the possible conflict or contradiction between a top-down ex-
pectation and bottom-up constraint, the goal description tends to be elastic.
For example, the goal description, "Try our best to win this match", has
certain semantic elasticity which is intended to accommodate the possi-
ble conflict or contradiction between the desire to win the match and the
bottom-up constraint of not-being able to.

So far, it is still not very clear what the innate mechanism is that hu-
mans use to specify coherent, consistent and structured goal descriptions.
Certainly, any breakthrough in this field would be a great discovery.

Example 9.1 A production line, which manufactures a specific product
in large quantities, is composed of three manufacturing processes A, B and
C aligned in a series. Each of these processes is fully automated by a
dedicated robot, as shown in Fig. 9.4.

Robot A Robot B Robot C

K , TT TT T T | K
i£S J Production Line | SKS)

Fig. 9.4 Example of a production line with three robot-stations.

If we assume:

• the production rate using the best robot for process A is 20 units per
minute,

• the production rate using the best robot for process B is 10 units per
minute, and

• the production rate using the best robot for process C is 30 units per

Decision-Making System of Robots 591

minutes,

then a goal description such as "Manufacture the product at a rate of 5 to
10 units per minute" is a realistic and achievable goal.

••oooooooooooooooo

9.3.1.2 A Task Sequence as Output

Output from task planning is a sequence of ordered tasks (also known as
a task plan). Here, the challenging question is: Will there be any general
model to represent the task description? The answer to this is not simple, as
all possible tasks are categorized differently. For example, in manufacturing,
we have the following common tasks: a) assembly task, b) welding task, c)
painting task, d) material-handling task, e) palletizing task, f) packaging
task, g) inspection task, h) transportation task, etc.

It seems that as in manufacturing, every application domain has its own
list of generic tasks. Accordingly, it may be useful to construct a library
of generic tasks which covers as wide a range of application-domains as
possible. However, this is an area in robotics where very little research has
been done.

9.3.1.3 The Task-Planning Process

Task planning is a process which translates the goal description into a
sequence of ordered tasks. Together, these ordered tasks must be able to
achieve the goal. Mathematically, the task-planning process can be treated
as the determination of a mapping function from the goal description to one
or more possible sets of ordered tasks. The final result of a task-planning
process is a selected set of ordered tasks which optimize the achievement
of the goal.

Clearly, the automation of the task-planning process requires the fulfill-
ment of the following conditions:

Necessary Condition 1: The goal description should be con-
sistently interpretable by the computer program. Here, "consis-
tency" means that repeated attempts at interpretation generate
the same result.

Necessary Condition 2: A list of the generic tasks in the
related application domains are known in advance.

592 The Fundamentals of Robotics: Linking Perception to Action

Necessary Condition 3: All possible sets of ordered tasks
can be validated and optimized through simulation in a virtual
world. (This is somewhat similar to a human being's judgement
and imagination which are performed in the mental world).

So far, these three necessary conditions constitute the major obstacles
to the automation of the task-planning process in robotics. And, without
the ability to automate the task-planning process, the only option is to rely
on human intervention. This is why none of today's robots have gained
autonomy at the task-planning level.

Example 9.2 In a production line, assume that the last station is the
palletizing station. The goal of the palletizing station is to load the finished
products, each of which has already been packaged into a box, into the
pallets, and transport the filled pallets to a warehouse.

Figure 9.5 shows a proposed layout of a palletizing station where robot A
is a stationary-arm manipulator, and robot B is a mobile-arm manipulator
mounted onto mobile robot C.

Assume that the goal description is "Palletize the products and store
them in a warehouse". If we know the proposed layout of equipment, as
shown in Fig. 9.5, the results of task planning will be a sequence of ordered
tasks such as:

• Task 1: Bring empty pallet to location near robot A (task assigned to
conveyor B).

• Task 2: Bring products to location near robot A (task assigned to
conveyor A).

• Task 3: Palletize products (task assigned to robot A).
• Task 4: Place filled pallet from conveyor B onto robot C (task assigned

to robot B).
• Task 5: Transport filled pallet to warehouse (task assigned to robot C).

000000000000000000

9.3.2 Action or Behavior Planning

As with task planning, the aim of action planning is to translate a task
description into a sequence of ordered actions so that the task can be per-
formed through the execution of these ordered actions.

Since behavior can be modelled using a sequence of ordered actions,
thus, action planning also refers to behavior planning.

Decision-Making System of Robots 593

Robot A I

^\|^^^L_ Conveyor A

(a) View at Time Instant Tl

^ B S ^ l Conveyor B HPj^Bjjj§fefa_ ^ ^ ^ 3 ^ "
(b)View at Time Instant T2

Fig. 9.5 Example of a palletizing station.

9.3.2.1 A Task Description as Input

The input to action planning is a task description. As we mentioned earlier,
a list of generic tasks in a specific application domain can be identified in
advance. However, the generic task descriptions largely depend on expert
knowledge and experience.

Conceptually, a generic task which represents the common characteris-
tics of all similar tasks is an abstracted version of a task description. So
far, understanding the innate mechanism behind the human ability to ab-
stract similar tasks into a description of generic tasks is still an object of
research. Thus, the first issue to achieve the automatic formulation of task
descriptions is how to abstract similar tasks into descriptions of common
generic tasks.

594 The Fundamentals of Robotics: Linking Perception to Action

The second issue is how to customize a generic task into a version which
will effectively contribute to the achievement of a specified goal. In Ex-
ample 9.2, task 1 is a customized version of the generic task, "Load and
unload", within the material-handling task category. Clearly, this generic
task can be customized in many different ways.

9.3.2.2 An Action Sequence as Output

The output from action planning is a sequence of ordered actions (also
known as an action plan) which guarantees the effective performance of a
specified task. As a task description can be treated as a customized version
of a generic task, the issue becomes: How do we predefine a sequence of
ordered generic actions which guarantees the performance of a generic task?

For example, the generic task of "Pick up and fix" under the assembly
task category, can be accomplished with these three generic actions:

(1) Pick up an object at a location
(2) Move an object along a path, or trajectory, from one location to an-

other
(3) Fix (e.g. screw, insert, attach, etc) an object at a location with respect

to another object (or common base)

When we have the description of a specified task, the first thing to do
is to determine the corresponding generic task. This can be done by an ab-
straction process. If a generic task has at least one set of predefined generic
actions, a customization process, with regard to these generic actions, will
result in an output of a sequence of ordered & customized actions. Here,
an actual action is treated as the customized version of a generic action.

9.3.2.3 The Action-Planning Process

As with task planning, the action-planning process can also be treated as
the determination of a mapping function from the task description to one or
more sets of ordered actions. The final result of an action-planning process
is a selected set of ordered actions which optimize the accomplishment of a
specified task.

As already discussed, the task description can be treated as a customized
version of a generic task. Thus, if the description of a generic task corre-
sponding to the description of a specified task (i.e. input) can be obtained
by abstraction, a sequence of ordered generic actions can easily be de-
termined. In general, we can automate action planning if the following

Decision-Making System of Robots 595

conditions are met:

Necessary Condition 1: The description of a specified task
can be abstracted into a description of a corresponding generic
task, which is known in advance.

Necessary Condition 2: One or more sets of ordered generic
actions for the accomplishment of a generic task are known in
advance.

Necessary Condition 3: All possible sets of ordered & cus-
tomized actions can be validated and optimized through simula-
tion in a virtual world.

In order to satisfy the first two necessary conditions, a task-action table
or relational database must be available in advance. Table 9.1 shows an
example of some generic task-action relations applicable to manufacturing.

Table 9.1 Example of generic task-action table.

Generic Task Action 1 Action 2 Action 3
Assembly pick up move fix

Arc Welding attach follow detach
Painting attach follow detach

Material Handling load move unload
Palletizing pick up move place

Transportation undock travel dock

Example 9.3 Refer to Fig. 9.5. The results of action planning for the
five tasks discussed in Example 9.2 will be:

• Action Plan for Task 1:

(1) Load an empty pallet at a specified location on conveyor B,

(2) Move it to a specified location near robot A.

• Action Plan for Task 2:

(1) Load a product at a specified location on conveyor A,

(2) Move it to a specified location near robot A.

• Action Plan for Task 3:

(1) Pick up a product present at a specified location on conveyor A,

596 The Fundamentals of Robotics: Linking Perception to Action

(2) Move it along a specified path, or trajectory, to a location above
a specified empty slot in the pallet,

(3) Place it into the specified empty slot.

• Action Plan for Task 4:

(1) Pick up the filled pallet from a specified location,
(2) Move it along a specified path, or trajectory, to a specified loca-

tion above robot C,
(3) Place it at a specified location on robot C.

• Action Plan for Task 5:

(1) Undock robot C from the present parking slot,
(2) Travel along a specified path, or trajectory, to a specified location

near a specified parking slot in the warehouse,
(3) Dock robot C into the specified parking slot.

•ooooooooooooooooo

9.3.3 Motion Planning

The purpose of motion planning is to determine feasible paths or trajec-
tories, and their mathematical descriptions (motion descriptions) which
guarantee the effective execution of a specified action. Here, motion de-
scriptions can be in either task space or joint space. But, they must be in
analytical or numerical forms so that they can be directly sent to a robot's
motion control system(s), as input.

9.3.3.1 An Action Description as Input

The description of a specified action is the input to motion planning. Nor-
mally, action description is still in semantic form but it has less semantic
elasticity than the semantic description of a task.

Depending on the intended application, it is possible to pre-establish the
generic forms of action description. As shown in Table 9.1, some generic
forms of action description in manufacturing include: pick up, move, follow,
place, load, dock, fix, screw, insert, etc.

In robotics, action is performed by the end-effector attached to an open
kineto-dynamic chain. Mathematically, the posture of an end-effector is
represented by the posture of the frame assigned to it. Thus, it is important
that an action's semantic description should explicitly or implicitly specify
the initial and final configurations of the end-effector, which is to perform

Decision-Making System of Robots 597

the action. This is a necessary and sufficient condition which guarantees
consistent switching between the semantic description of an action and the
corresponding analytical (or numerical) description of a motion.

9.3.3.2 A Motion Sequence as Output

The output from action planning is a sequence of ordered motions (also
known as a motion plan), each of which is described in an analytical or
numerical form. Mathematically, motion is represented by either a path
(i.e. continuous or discrete spatial locations) or trajectory (i.e. a path with
a time constraint).

As a path is a series of continuous or discrete spatial locations, it is
always possible to use a set of parametric curves to compactly describe
these locations. For example, we can choose one or a combination of the
following: a) a linear curve (i.e. straight line), b) a conic curve, c) a cubic
spline or other curve described by higher-order polynomials.

In practice, we can pre-establish a set of parametric representations of
some generic curves and store them into a database. In this way, a set
of generic motions are readily available. And, the actual motion will be
treated as a customized version of a generic motion.

9.3.3.3 The Motion-Planning Process

Motion planning is a process which transforms a semantic description of a
specified action into a sequence of analytical, or numerical descriptions of
motion. As we mentioned earlier, a necessary condition which guarantees
a feasible solution to motion planning, is:

Necessary Condition 1: The semantic description of an action
must explicitly or implicitly specify the initial and final configura-
tions of the end-effector which is to perform the action.

Accordingly, the first issue in motion planning is to identify the initial
and final configurations for the end-effector attached to an open kineto-
dynamic chain. In robotics, the posture of an end-effector is represented by
the frame assigned to it. This frame is known as the end-effector frame.

Normally, a coordinate system, or frame, uses the symbols X, Y and
Z to denote the three orthogonal axes. An alternative way is to explicitly
reflect the semantic meaning of the initial and final configurations in the
description of an action. To do this, we can choose symbols which have

598 The Fundamentals of Robotics: Linking Perception to Action

physical meanings as the labels of the axes of the frames describing an
end-effector's initial and final configurations.

For example, if one axis indicates the direction in which the end-effector
is approaching a location, we can label this axis the "A axis". Similarly,
if another axis indicates the direction in which an end-effector opens its
fingers, this axis can be labelled the "O axis". If the A and O axes are
orthogonal, the normal vector of the plane passing through the A and O
axes can be labelled the "JV axis". In this way, it makes more sense to label
the frame assigned to an end-effector with the symbols AON rather than
XYZ.

If we know the initial and final postures of an end-effector's frame,
the second issue is how to determine a feasible path, or trajectory, which
connects the initial and final postures of an end-effector's frame together.
It is challenging to solve the second issue because of the following two
additional requirements:

• Collision-free Path or Trajectory:
Motion execution implies the execution of motion in a safe man-
ner. Therefore, the path or trajectory to be followed by an end-
effector's frame should not intersect with any other object in a scene or
workspace. The determination of a collision-free path or trajectory is
not easy because it requires advance knowledge of the geometric model
of the workspace.

• Constrained Motion:
An open kineto-dynamic chain is composed of serially-connected links
which are rigid bodies. Each rigid body has its own frame and a corre-
sponding path, or trajectory, that the frame must follow. If there is no
external constraint imposed on the inner links (i.e. the links excluding
the end-effector link), and the inverse kinematics of the open kineto-
dynamic chain is solvable, it is relatively easy to determine the paths
or trajectories for the inner links. However, for some applications, con-
straints may be imposed on some or all of the inner links as well. In
this case, the final result is the constrained motions that the links in
an open kineto-dynamic chain must follow. In robotics, planning of
constrained motions is not an easy job.

Because of the requirement for a collision-free path/trajectory, given a
pair of initial and final configurations, the automation of motion planning
calls for another condition. That is,

Decision-Making System of Robots 599

Necessary Condition 2: The geometric description of a
workspace is known in advance.

This necessary condition is a very stringent requirement in an uncon-
trolled or unstructured environment. One promising solution which would
eliminate this requirement is the senor-guided (e.g. image-guided) motion
planning. We will study this in the later part of this chapter.

Example 9.4 Fig. 9.6 shows an assembly station. Assume that the goal
of this assembly station is to create a part by inserting object B into ob-
ject A. Two important tasks in this station are:

• Task 1: Pick up object A and place it onto the conveyor.
• Task 2: Pick up object B and insert it into object A.

(a) Pick up Object A (b) PJace Object A (c) Pick up Object B (d) Insert Object B

^ ^ ^ B H U ^ ^ ^ ^ ^ H V I I I I I D I ^ M I I ^ ^ ^ S ^ B Conveyor •

^^^^^^^^^^^^^KRBXB^M Robot ^^^^I^^^^H^B

Fig. 9.6 Example of an assembly station.

Then, the results of task planning will be:

• Action Plan for Task 1:

(1) Pick up object A at a specified location,
(2) Move it along a specified path,

600 The Fundamentals of Robotics: Linking Perception to Action

Table 9.2 Example of motion descriptions.

Motion Initial Posture Final Posture Path/Trajectory
1 AON frame at p\ AON frame at P2 Line
2 AON frame at p\ AON frame at ps Line
3 AON frame at p§ AON frame at pe Line

(3) Place it at a specified location on the conveyor.

• Action Plan for Task 2:

(1) Pick up object B at a specified location,
(2) Move it along a specified path,
(3) Insert it into a specified location on top of object A.

The motion descriptions for the actions in task 1 are summarized in
Table 9.2.

Similarly, the motion descriptions for the actions in task 2 are summa-
rized in Table 9.3.

Table 9.3 Example of motion descriptions.

Motion Initial Posture Final Posture Path/Trajectory
1 AON frame at p^ AON frame at p4 Line
2 AON frame at ps AON frame at pr Line
3 AON frame at p-j AON frame at p$ Line

oooooooooooooooooo

9.3.4 A General Framework for Automated Planning

One of the ultimate goals of robotics research is to develop robots having
a certain degree of autonomy. As we~ discussed above, the key to doing
this depends on the ability to automate the planning processes at the task,
action, or motion level. So far, we cannot answer the question: What is the
innate mechanism behind the decision-making system of an autonomous
robot?

However, we do know that a decision-making system which is capable
of automatically generating task, action, or motion plans must possess the
following elements, as shown in Fig. 9.7:

Decision-Making System of Robots 601

• Modelling of Generic Motions:
The decision-making system of an autonomous robot should have a
library of generic motions, each of which has a generic parametric de-
scription. When there is a library of generic motions as input, a mod-
elling process should automatically organize these generic motions into
a library of generic actions as output.

Expert Knowledge Development and Learning

7i _ TT ZIT
Decision - making Systum [or.\ulonomciu-. Kuhot I

| — ! ; " — " i ,— - ' -

I 11 !•-. . I I l • I il • ii . I '' I il< i n . .I i n - | I i l ' i . i . • i I

C , , " K [, ' (. :i i , . i i . . M I . ' I i ! . ! , • I I ' I

M . - i . . . i . . \ . i . , i - ' . | I i K . ! l i . u ' .

* S I I; *,;; ' I-!I ,

' \ i . ' i . . i . s N . L . f \ . < - i - I ; 1 1 •. "• ! — i <•• i

i \ \ :\ JL_ ? _ i
JJoutput Jjoutput Jloutput Input

Fig. 9.7 A general framework for the automatic generation of task, action, and motion
plans.

• Modelling of Generic Actions:
Similarly, when there is a library of generic actions as input, a modelling
mechanism must be in place in order to group the generic actions into
a library of generic tasks.

• Modelling of Generic Tasks:
Since a generic goal corresponds to a sequence of ordered & generic
tasks, it is necessary to develop a modelling process which can auto-
matically organize these tasks into a library of generic goals as output.

• A Semantic Analysis-Synthesis Loop:
When there is a man-specified goal description as input, it is necessary
to have an abstraction process to filter out the semantic and lexical

602 The Fundamentals of Robotics: Linking Perception to Action

elasticity, and then, match the filtered description to a corresponding
generic-goal description stored in the library. Abstraction is an analysis
process which is likely to be performed in a closed-loop manner in order
to achieve consistency and accuracy. Consistency refers to the stable
mapping between a man-specified goal and its corresponding generic
goal. Accuracy is the degree of semantic conformity between a man-
specified goal and its corresponding generic goal. Within the closed-
loop of the semantic analysis-synthesis, the result of semantic analysis
(i.e. abstraction) can be re-mapped back to its original form through
a semantic-synthesis process (i.e. customization). In this way, the
customized version of a generic description can be compared with the
original description in order to decide whether the closed-loop of the
semantic analysis-synthesis was successful or should be repeated. If we
want to eliminate human intervention at the goal, task or action level,
the closed-loop of the semantic analysis-synthesis must be deployed at
these levels so that a robot will gain full autonomy (up to the goal
level).

With human intervention, it is possible to construct preliminary versions
of libraries which store generic motions, generic actions, generic tasks and
generic goals. The performance of the closed-loop for semantic analysis-
synthesis can also rely on human intervention to complete.

It is clear that expert knowledge and experience will enable a human
master to program a robot as an automated machine. However, the chal-
lenging question here is: Is it possible to develop an innate mechanism for
a robot to automatically acquire knowledge and skills, in order to perform
the modelling, planning and semantic analysis-synthesis processes inside its
decision-making system? Again, this is an interesting research topic in the
area of development and learning.

9.4 The Basics of Motion Planning

A first and necessary step towards the development of an autonomous robot
is to investigate principles and methodologies for automating the motion-
planning process. This is because, without the mental ability to automati-
cally undertake motion planning, a robot will never be able to achieve any
degree of autonomy at action or task level.

As we studied earlier, the purpose of motion planning is to identify the

Decision-Making System of Robots 603

initial and final configurations of an end-effector from the description of
a given action first. Then, it is necessary to determine a feasible path or
trajectory connecting these two configurations together while at the same
time, satisfying some constraints imposed by the workspace and physical
system (e.g. a robot).

„ /" \ l'inal
Lnviroiimenl ,'

i ; Conjuration

Initial ! ;, > • ' | ,
Configuration1, ,' \ \ |

' ' '̂ I'alhui \
\ ! \ Trajccioiy
i Workspace . \ i

Fig. 9.8 Illustration of the motion-planning problem.

Figure 9.8 illustrates the problem of motion planning. For the sake of
simplicity, let us assume that the description of a given action explicitly
specifies the initial and final configurations of the end-effector attached to
a robot's open kineto-dynamic chain. The critical issue, then, is how to
determine a feasible path or trajectory which will bring the end-effector's
frame from the initial configuration to the final configuration. By default,
the frame assigned to an end-effector is denoted as frame e.

9.4.1 Path and Trajectory

As shown in Fig. 9.8, the output from motion planning is a feasible path
or trajectory. Formally, with regard to motion planning, the definition of
path is as follows:

Definition 9.4 Path is a series of continuous, or discrete, spatial loca-
tions which connect the initial and final configurations of an end-effector.

Mathematically, a path can be described by a spatial curve such as a
linear, conic or spline curve. The spatial locations of a path only describe
the static configurations of an end-effector. They do not impose any dy-

604 The Fundamentals of Robotics: Linking Perception to Action

namic constraints in terms of velocity and acceleration. And, for some
applications, these may be the most important constraints. Therefore, it is
necessary to associate time to a planned path. This results in what is called
a trajectory. A formal definition of trajectory can be stated as follows:

Definition 9.5 Trajectory is a path with a time constraint.

In order to determine velocity and acceleration from the description of
a path and time constraint, it is convenient to consider a path as a one-
dimensional space. In this way, the end-effector is treated as a point which
travels in this one-dimensional space. If L denotes the travelled distance
with respect to reference point Os (the origin of the initial configuration),
the velocity and acceleration of the end-effector will be ^ and ^ £ .

9.4.2 Motion-Planning Strategy

If neither the workspace nor the robot impose any constraints, it is simple
to plan a feasible path, or trajectory, which connects the initial and final
configurations. However, motion planning becomes complicated when it
is necessary to consider the geometric constraints imposed by a workspace
and the kinematic (or dynamic) constraints imposed by a robot. Obviously,
different motion-planning strategies achieve different levels of effectiveness
depending on the constraints.

9.4.2.1 Forward Planning

A common motion-planning strategy is to determine a feasible path or
trajectory which connects the initial configuration to the final configura-
tion. Subsequently, the planned path or trajectory is directly executed by
a robot's end-effector. We call this strategy forward planning.

Fig. 9.9 illustrates forward-motion planning. The search for a feasible
path or trajectory starts from the initial configuration. Among all the
feasible paths or trajectories, we choose one which satisfies certain criterion
(e.g. shortest distance).

However, the forward-planning strategy has two drawbacks:

• If the final configuration is tightly constrained by the presence of other
objects (or obstacles), the forward search for a feasible path may be
computationally expensive. In certain cases, one may even fail to find
a solution. A typical example which illustrates the inefficiency of the
forward-planning strategy is the problem of planning a feasible path, or

Decision-Making System of Robots 605

i

Iinvironinent I m«.iul I'l.uiinii'.

I I i l 'A .Mi l I U M I I It ' l l

. . - - - - . l ' l l l i l l I

, ' 4^~J*>'~' Configuration,'

/ * ' - • - " - - - - '] / ,'
I n i t i a l ', " - • ' H *- '^'

Contiguratiunj I— " " - ^ i]

:' •-[—rr;
Workspace I I i

Fig. 9.9 Illustration of the forward-planning strategy.

trajectory, for the parallel parking of a car-like vehicle. This problem,
by the way, can be easily solved by the inverse-planning strategy (see
Example 9.5 below).

• Nowadays, image-guided motion planning is a very popular research
topic, and researchers aim at building future robots capable of imitat-
ing human behaviors, such as hand-eye coordination. In Chapter 8,
we studied the visual-perception system of robots. We know that an
image is an array of pixels, as well as the perspective projection of a
three-dimensional scene onto the camera's image plane. Due to the
digital nature of an image, inverse projective-mapping is not very ac-
curate when the actual coordinates of a point in the scene are far away
from the camera's image plane. Thus, hand-eye coordination imple-
mented with the forward planning strategy will perform poorly if the
initial configuration of the hand is closer to the eyes than the final con-
figuration. This problem can be easily solved, however, if we adopt
the inverse-planning strategy. We will study hand-eye coordination in
greater detail in the later part of this chapter.

9.4.2.2 Backward Planning

An alternative motion-planning strategy is to determine a feasible path or
trajectory which connects the final configuration to the initial configuration.
Subsequently, the planned path or trajectory is executed in reverse by a
robot's end-effector. We call this strategy backward or inverse planning.

606 The Fundamentals of Robotics: Linking Perception to Action

iuiiLMiiiuiit i , _ hiiinii.ii.ih

>' ^ < ••llIlm"iif-llK>ll

. . * ; , • • »in.. l .

.-" r l . * I iiTiflj-UMtmn

IMII I . I I •_ " * ^ ' ,

J •Mil.>iii:ilii>ii — "

Fig. 9.10 Illustration of the inverse-planning strategy.

Fig. 9.9 illustrates inverse-motion planning in task space. The key idea
behind backward planning in task space is to determine an intermediate
configuration which can easily be reached from the final configuration.
Normally, we can assume that the intermediate configuration is not so
constrained by the workspace. Thus, it is easy to determine a path or
trajectory connecting the intermediate configuration to the initial configu-
ration. If the initial configuration is highly constrained, one can iteratively
apply both forward and backward planning strategies.

Example 9.5 Under the initiative of intelligent transportation, there
has been a lot of studies about the development of smart vehicle which can
automatically execute maneuvers, such as road following, car following, ob-
stacle avoidance and parking. But, among the parking maneuvers, parallel
parking is undoubtedly the most difficult. This is an interesting issue in
robotics because future humanoid robots will certainly have the skill to
drive car-like vehicles.

Figure 9.11 illustrates the problem of parallel parking, and shows the
simulation results obtained using the inverse-planning strategy. If we treat
the road surface in the proximity of the car-like vehicle as a planar surface,
the posture of the car-like vehicle, with respect to a reference frame, is fully
determined by three variables: a) the coordinates (x,y), and b) the orien-
tation 8. For a car-like vehicle, these three variables are not independent.
In fact, the first-order derivatives of these three variables depend on one

Decision-Making System of Robots 607

IMJL
^ ^ Steering

direction

SOB " \ ^ ^

Occupied 1 Final 1 Occupied
Sloi I Posture I Slot

0 300 400 600 aOD 1030 I2E0 MB0 1B00 WOO 3000

(a) Final Contiguiation and Geometric Model

1000

[Initial j / > t
Posture / 9^ ' f

^ ^ | / >f Intermediate I

/ / [_ Posture I
^JsWrtTl

Occupied , 1 \ I Occupied
Slot H ^j^dS^A Slot

Q . • . •

0 200 400 SOO OS 1000 13D0 1400 1800 IKJO 33SS

(b) Intermediate and Initial Configurations

Fig. 9.11 Simulation results obtained using backward planning to parallel park a car-
like vehicle or mobile robot. The scale of the workspace is in millimeters.

another. This means that a constraint in the following form exists:

g(±,y,6) = 0.

However, there is no constraint in the form of

f{x,y,9) = 0.

Thus, a car-like vehicle (or mobile robot) is governed by a nonholonomic
constraint. With regard to a nonholonomic robot, a feasible path must
be one in which the maximum curvature does not exceed a limit. This
requirement makes forward-motion planning for a nonholonomic robot a
difficult job. But, it is manageable if one uses the inverse-motion planning
strategy.

608 The Fundamentals of Robotics: Linking Perception to Action

As shown in Fig. 9.11a, the final posture of a car-like vehicle is between
two occupied parking slots. An important controllable variable in maneu-
vering a car-like vehicle is steering angle a. Normally, steering angle a is
within a limited range [—ao, cuo] (ao > 0) which can be quantized into a set
of discrete values.

If we denote aj the steering angle for forward driving, and ar the steer-
ing angle for reverse driving, the set (a/,i, ar,i) specifies steering angles for
one cycle of forward-reverse or reverse-forward driving. When there is a set
of (a/,i,ar,i), we can compute the number of forward-reverse or reverse-
forward driving cycles which will bring the final posture to a free zone in
the workspace. We call this number the drive-out cycle number. If there is
no solution, the drive-out cycle number is set to infinity.

Interestingly enough, for all the possible sets (afti,arti) (i = 1, 2,...), we
can establish a reference table which is indexed by i and stores the drive-
out numbers. In fact, this reference table memorizes all feasible solutions
for determining intermediate postures. Figure 9.11b shows one solution
which brings the final posture to an intermediate posture in one cycle.
Once an intermediate posture is obtained, it is easy to plan a feasible path
connecting the intermediate posture to the initial posture.

oooooooooooooooooo
9.4.2.3 Formation Planning

By default, motion planning means the determination of a path or trajec-
tory which will make a frame reach a final configuration from an initial con-
figuration. The frame under consideration can either be the end-effector's
frame in an open kineto-dynamic chain or a frame assigned to a mobile
robot (or vehicle). For some applications, we have trouble planning paths
or trajectories for multiple frames (which can physically or virtually con-
strain each other). Two typical scenarios are:

• Open Kineto-dynamic Chains in Highly Constrained Workspace:
In general, an open kineto-dynamic chain has n (n > 1) rigid links
which connect in a series. The last link in the series is the end-effector
link. When dealing with kinematic analysis, a frame is assigned to each
link. In this way, we simply consider the kinematic constraints among
a set of n frames. In a less-constrained workspace, it is sufficient to
plan only the path or trajectory for the end-effector's frame (frame n).
Then, the paths or trajectories of the remaining n — 1 frames will be

Decision-Making System of Robots 609

determined by a solution of inverse kinematics. However, in a highly-
constrained workspace, this strategy does not work, and it is necessary
to plan the path or trajectory for each individual frame.

• Formation of Mobile Robots:
A mobile robot is a rigid body and can be treated as a link. Thus, a fleet
of mobile robots (or vehicles) can be modelled as an open-kinematic
chain formed by a set of rigid bodies which are virtually connected in
a series. The mobile robot at the head of the fleet is treated as the
end-effector link. If a frame is assigned to each rigid body (i.e. mobile
robot), n mobile robots will have n frames. If the mobile robots in a
fleet must form a certain shape or pattern, it is necessary to plan the
path or trajectory for each individual frame.

L, II 0 H*
(a) Motion Planning

(b) Shape Adaptation

Fig. 9.12 Illustration of formation planning, and two subproblems.

610 The Fundamentals of Robotics: Linking Perception to Action

Planning paths or trajectories for a set of n frames is known as formation
planning. As shown in Fig. 9.12, the problem of formation planning can
be divided into two subproblems: a) motion planning for frame n, and b)
shape adaptation for the remaining n — 1 frames.

If we know the current posture of frame n and its path or trajectory,
shape adaptation can be operated in the following way (see Fig. 9.12b):

• Step 1: Initialize index % to value n.
• Step 2: Draw a circle (or sphere, if in three-dimensional task space)

centered at the origin of frame i. The radius of the circle will be the
distance between the origin of frame i and the origin of frame i — 1.

• Step 3: Determine the posture of frame i — 1 which must be located
on the circle (or sphere, if in three-dimensional task space) centered
at frame i. One simple way to do this is to locate frame i — 1 at an
intersection point between the circle and the path of frame n.

• Step 4: Decrease index i by 1. Repeat Steps 2 and 3 until i = 2.

Since shape adaptation is not a difficult issue, the central problem of
formation planning is how to plan a feasible path or trajectory for the end-
effector's frame in an open kineto-dynamic chain. Clearly, this problem is
the same as that of motion planning (for a single frame).

9.5 Motion Planning in Task Space

Motion planning in task space is a problem which can be stated as fol-
lows: When we have the initial and final configurations of an end-effector's
frame, and we know the geometric model of the workspace as well as the
(kinematic) constraint of the robot, what is a feasible path or trajectory
which will make the end-effector's frame reach the final configuration from
the initial configuration?

There is no simple solution to the problem of motion planning in task
space due to the complexity of the geometric constraint imposed by the
workspace, and the kinematic/dynamic constraint imposed by the robot.
Here, we present a solution which assumes that the initial and final configu-
rations are not highly constrained. If this is not the case, one can apply the
inverse-planning strategy to turn a highly-constrained configuration into a
less-constrained intermediate configuration.

Decision-Making System of Robots 611

9.5.1 Planning of Collision-Free Paths

If the initial and final configuration are not highly constrained, motion
planning becomes a problem of determining a collision-free path in the
workspace. A practical solution to this is to first construct a path map in
the workspace similar to a city's road map, then select a pathway connecting
the initial configuration to the final configuration. For the sake of clarity,
we will consider a two-dimensional task space and explain the solution step-
by-step.

9.5.1.1 A Discrete and Normalized Workspace

If we know the initial and final configurations, we can normalize the
workspace, as shown in Fig. 9.13. One solution to normalize a workspace
is to choose the line passing through the origins of the initial and final con-
figurations as the horizontal axis. Then, the normalized workspace will be
a rectangular window (or a box in 3-D workspace) which is symmetrical
about the horizontal axis and centered at the mid-point between the two
origins. The dimension of the normalized workspace is to be specified by
the user.

Task Space , ' „ E H

*• A-'' ^ H
x » , • S ^ H Normalized

fonCrlmT*" *• H | Workspace

Fig. 9.13 Illustration of a normalized workspace.

The geometry of an object in a normalized workspace can be simple or
complex. A simple way to avoid the complexity of describing the geometry
of objects present in a normalized workspace is to quantize the workspace
into a matrix of cells (or voxels in 3-D workspace). Thus, a binary number is
assigned to each cell to indicate whether it is occupied or free. For example,
the value "1" can be assigned to an occupied cell, while the value "0" can

612 The Fundamentals of Robotics: Linking Perception to Action

be assigned to a free cell.

Example 9.6 Figure 9.14 shows an example of a discrete, normalized
workspace. The scale is chosen as 100 x 100, and the workspace is quantized
into a matrix of 10 x 10 cells. The cells colored in grey are occupied.

1 ^ ^ ^ r'na'
4 0 fm ial ^ ^ ^ " "uFifigura ion

Cc -(figuration | ^ ^ _ E

so L___H _____•

1 0 0 ' <- _ _ _ _ _ 1 l__—I 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Discrete Normalized Workspace

Fig. 9.14 Example of a discrete, normalized workspace.

•ooooooooooooooooo

Seed Cells of Paths

When we have a normalized workspace as input, the next step is to con-
struct a path map similar to the road map of a city. This can be done in
two steps: a) vertical grouping to determine the seed cells of a path, and
b) horizontal linking to construct the path map.

Vertical grouping is operated within each column (or vertical plane if in
a 3-D matrix of voxels). The idea is to group consecutive free cells together
to form a cluster. The cell at the center of this cluster is called the seed cell
of a path.

Assume that vertical grouping is done by scanning a column from the
first row to the last. If roj is the row index of the first cell in cluster j , and
r\j the last cell, the row index of the seed cell corresponding to cluster j

Decision-Making System of Robots 613

will be

r, = ro,j + (r u - rOli)/2. (9.9)

Alternatively, it is also possible to choose the cell at one end of a cluster
to be the seed cell.

Example 9.7 If we consider the discrete, normalized workspace in Ex-
ample 9.6 as input, the seed cells of the path obtained by vertical grouping
are shown in Fig. 9.15. The cells marked "x" are the seed cells of the path.

°l 1 1 1 1 1 IHffiB 1 1

50 I^^J ISm
^ x Î HH x HBHI X x x x)•

6o 9Bi—E^H
^ ^ r ^ ^

I^^B x ^ B H
90 BIB———^

1ooi ' ^ 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Seed Cells of Path

Fig. 9.15 Example of seed cells of a path.

oooooooooooooooooo
9.5.1.2 A Path Map

If we know the seed cells of paths in the columns, it is easy to construct
a path map which connects the seed cells together. This can be achieved
by a horizontal-linking process which finds the free paths and connects the
seed cells in column c to the seed cells in column c + 1.

Refer to Fig. 9.16. When constructing a path map, it is necessary to
consider the following two cases:

• Case 1:
A pair of seed cells are not in the same row. One is in column c and the

614 The Fundamentals of Robotics: Linking Perception to Action

1 2 3 4 5 6 7 8 9 1 0

ZZ^:±ZZZZZZ
:_^_ O:E_
i i i i

ZZZOZZzZZZ
ZZZZZZJ^ZZ

Fig. 9.16 Illustration of the horizontal linking of seed cells.

other is in column c + 1 . For example, seed cells A and B in Fig. 9.16
are not in the same row. In this case, we first test to see if there is a
free path in column c which connects seed cell A to seed cell B. If not,
then we test to see if there is a free path in column c+1 which connects
seed cell A to seed cell B. If not, seed cell A will not have a direct path
to seed cell B.

• Case 2:
A pair of seed cells are in the same row, one in column c and the other
in column c + 1 . For example, seed cells D and E in Fig. 9.16 are in
the same row. In this case, these two seed cells have a direct horizontal
path.

Example 9.8 If we apply the horizontal-linking process to Example 9.7,
we obtain a path map, as shown in Fig. 9.17. In this example, there are
multiple feasible paths which connect the initial configuration to the final
configuration.

oooooooooooooooooo
9.5.1.3 A Collision-Free Path

In a path map, we call the cells on the paths the path cells. As shown in
Fig. 9.17, a path map obtained by the horizontal-linking process consists
of:

Decision-Making System of Robots 615

x——*——¥ ^ ^ H
10 ^^^J ^

20 |^^H ^^^B ^ ^ H

50 M^M SHI

60 j ^ ^ H HHH

70 f̂ ^H ^^n ism

90 HIH ^
1 O O I 1 ^ 1 1 1 I I 1

0 10 20 30 40 50 60 70 80 90 100
Path Map

Fig. 9.17 Example of a path map.

• Junctions:
A junction is a path cell where a bifurcation or intersection occurs.

• Terminals:
A terminal is a seed cell which has only one path cell as its neighbor.

• Branches:
A branch is a simple path where there is no bifurcation or intersection.
The branches in a path map can be classified into three categories: a)
double-ended branch, b) single-ended branch, and c) in-loop branch. A
double-ended branch is one which links two terminals together, while
a single-ended branch is one which links a terminal to a junction. All
branches in the closed paths are called loop-branches. A loop-branch
connects two junctions together.

In order to select a feasible path which connects the initial configuration
to the final configuration, it is possible to apply the following algorithm:

• Step 1: Eliminate all double-ended branches.
• Step 2: If the initial configuration is not on a path, connect it to the

nearest single-ended or in-loop branch. We call this the initial branch.
• Step 3: If the final configuration is not on a path, connect it to the

nearest single-ended or in-loop branch. We call this the final branch.
• Step 4: Eliminate all remaining single-ended branches.

616 The Fundamentals of Robotics: Linking Perception to Action

1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 1 0

Ju ctioi Singl ;-end dbra ich

Z^ZfzzzzziIZ ZZIfzz:z=nZZ
zz!:Zz=rzzt zz:~^=rzzz

J S " _Cf lW^ul f i lL[a I1£ l_Z_

Tern inal

(a) Before Path Pruning (b) After Path Pruning

Fig. 9.18 Illustration of path pruning.

• Step 5: Choose a subset of in-loop branches to form a feasible path
connecting the initial and final branches.

The operation for eliminating double-ended and single-ended branches
is called path pruning. (See Fig. 9.18). After path pruning, there will be
three feasible paths: A, B and C, which connect the initial configuration to
the final configuration. In practice, we can choose the one which has the
shortest distance as output.

9.5.1.4 Constraints of Robots

Here, the output of a feasible path connecting the initial and final configura-
tions is a polyline. Interestingly enough, the angle between two consecutive
line segments in the polyline is 90°. In other words, a feasible path from
this motion-planning algorithm contains only straight angles, if any. These
straight angles can be approximated by circular arcs in order to take into
account the kinematic and dynamic constraints imposed by a robot.

When a mobile robot or a robot's end-effector follows a path, it is nec-
essary to consider two types of constraints:

• Kinematic Constraint:
This is an explicit constraint imposed on the robot's mechanism. If
the input and output motions of a robot's mechanism can be described
by both kinematics and motion (or differential) kinematics, the con-
straint imposed on the mechanism is a holonomic constraint. But, if

Decision-Making System of Robots 617

the input-output motion relationship is only governed by motion (or
differential) kinematics, the constraint is a nonholonomic constraint.
A car-like mobile robot is governed by a nonholonomic constraint. A
nonholonomic constraint implies that the curvature of the robot's path
should have a maximum limit.

• Dynamic Constraint:
This is an implicit constraint imposed on the robot's inertia. When
a robot is in motion, the change in its linear or angular momentum
requires effort (force or torque). If a path can be locally approximated
by a circular arc, this means that centrifugal acceleration exists even if
the robot is moving at a constant velocity along a path. In order to stay
on the planned trajectory (path with a time constraint), the robot must
expend extra effort to overcome the centrifugal acceleration. Thus, the
dynamic constraint implies that the radius of a circular arc should have
a minimum limit.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

(a) Before Path Smoothing (b) After Path Smoothing

Fig. 9.19 Illustration of path smoothing.

Since the maximum curvature limit is compatible with the requirement
for the minimum limit of a circular arc's radius, it is simple to consider
only the minimum-radius constraint . Mathematically, turning at a single
point (e.g. corner) is equivalent to movement along a circular arc, the
radius of which is zero. Clearly, all the corners on a feasible path must
be approximated by the corresponding circular arcs which must have radii
greater than the minimum limit. This operation is called path smoothing.

Figure 9.19 illustrates the path-smoothing process. The purpose here is

618 The Fundamentals of Robotics: Linking Perception to Action

to approximate the corners on a feasible path using circular arcs. After path
smoothing, the final output of a feasible path satisfies the requirement for
a minimum radius. Depending on the applications, an alternative solution
is to approximate the corners using spline curves (e.g. cubic spline).

9.5.2 Motion Description

The output from motion planning is a path which is represented in the
form of a list of line segments, circular arcs, or spline curves. These line

segments, circular arcs, or spline curves are called path curves, as shown in
Fig. 9.20.

\

o *x0 I o *xo

Fig. 9.20 Parametric representation of path curves.

The points which connect two consecutive path curves together are
called the key points (or knots, in computer graphics). In general, the
knots of a path can be represented as

P = {pi, i= 1,2,...,n] (9.10)

where pt = (°x, °yY in 2-D workspace or pi = (°X, °Y, °Z)t in 3-D
workspace.

And, a path curve can be concisely described by: a) implicit equation
{f(x,y) = 0), b) explicit equation (y = f(x)), or c) parametric equation
(x = f(t) and y = g(t)). As a path is to be followed by a robot at a
certain velocity or acceleration, it is more convenient to choose a parametric
representation. In this way, a time constraint can easily be added to the

Decision-Making System of Robots 619

path description in order to obtain the corresponding trajectory description.

9.5.2.1 Linear Curves

Refer to Fig. 9.20. Let A denote the travelled distance along a path by a mo-
bile robot or a robot's end-effector. If two consecutive knots pi and Pi+i are
connected by a line segment (linear curve), the parametric representation
of this line segment is

Pi&i) = Pi+*+1'*,.•>* (9.11)
\\Pi+i -Pi\\

where]\pi+i — Pi || is the length between the two knots p, and Pi+\.
And, one can easily verify the following results:

, , (pi if Xi = 0 , ,
Pi{\) = i -c , I, ii (9-12)

{Pi+1 if Xi = \\pi+1 -pi\\.
Thus, the physical meaning of Eq. 9.11 is that point pt(Xi) will travel

from pi to Pi+\ along a straight line if Â varies from 0 to ||y>i+i — Pi\\ and
A, measures the travelled distance.

When we have two consecutive knots and we use a cubic spline to in-
terpolate these two knots, there will be no parametric representation in
terms of the parametric variable A. However, a common solution is to
approximate a cubic spline using a polyline having a sufficient number of
line segments. In this way, Eq. 9.11 can be applied to represent the line
segments which approximate a cubic spline.

9.5.2.2 Circular Curves

Refer to Fig. 9.20 again. Assume that the path curve connecting two con-
secutive knots pi and Pi+i is a circular arc. Here, we denote the circular
arc's center and radius as piC and r, respectively. In order to obtain a para-
metric representation of the circular arc, we need to assign a frame to it.
One way of doing this is to choose PiC as the origin, and line piCp% as the x
axis.

If a frame assigned to a circular arc connecting two consecutive knots pi
and Pi+i is denoted as frame i, then the orientation of frame i, with respect
to frame 0 (reference frame), can be determined from the direction of line
PicPi- Let us denote °Ri the orientation of frame i with respect to frame 0.

In frame i, the circular arc is centered at the origin. Thus, its parametric

620 The Fundamentals of Robotics: Linking Perception to Action

representation is

Vrri'cosi (9.i3)
or

*P=(U'COSef))- (9.14)
\ 7-j • sin 0 /

In Eq. 9.14, parametric variable 6 is a rotation angle about the origin.
If Xi denotes the distance travelled by a point on the circular arc, then

0 = - . (9.15)
ri

Substituting Eq. 9.15 into Eq. 9.14 yields

*P(AO = . (9.16)

According to the Cosine Theorem governing a triangle, a point travelling
along a circular arc will reach point Pi+\ after a rotation angle of

^cos-^11^-^-2'^2)- (9-17)

Thus, one can easily verify the following results:

^•{w, £w*.* (9'18)
And, the physical meaning of Eq. 9.16 is that point lp(Aj) will travel

from %pi to lPi+\ along a circular arc if A* varies from 0 to rt • /?, and Ai
measures the travelled distance.

If we know the position and orientation of frame i with respect to frame
0, the coordinates of point lp{\i) in frame 0 will be

Pi(Ai)=PiC + (°^)«(ip(Ai)). (9.19)

Substituting Eq. 9.16 into Eq. 9.19 yields

/ri.cos(^)\

Pi(^)=ptc + (°Ri)»\ • (9.20)

Wsin^)/

Decision-Making System of Robots 621

Eq. 9.20 is the parametric representation of a circular arc.

9.5.2.3 Paths

Refer to Fig. 9.20. A path consists of a set of path curves connected in a
series. If a path curve can be described by a parametric equation, such as
Eq. 9.11 or Eq. 9.20, the next question is: Can we represent a path in an
analytical form?

Consider a path with n knots:

{pi, i = 1,2, ...,n}.

If Pi(Xi) is a point on the path curve between two consecutive knots pi and
Pi+i, the relative position of Pi(Xi) with respect to pi will be

APi(Xt) = Pi(\i) -Pi. (9.21)

Now, let Li denote the length between two consecutive knots pi and
Pi+i- As we discussed above, if a path curve is a linear curve, then

U = lbi+i-Pi| |-

However, if a path curve is a circular curve, then

L i = ri»p

with

/^COB-lf1^-*' '2 ,-2 '^-
V 2 . rf)

If A is the total distance travelled measured from pi by point Pi(Xi),
then we have

i - l
Xi = X-J2Lj. (9.22)

i=i

Substituting Eq. 9.22 into Eq. 9.21 yields

i-l i-l

3=1 0=1

If a path curve is a linear curve, from Eq. 9.11, we can obtain

Aft(A - Y, Lo) = \~ E j = 1 L>! • (Pi+i - Pi)- (9.24)
j=l WPi+l ~ Pi\\

(9.23)

622 The Fundamentals of Robotics: Linking Perception to Action

For a circular curve, the application of Eq. 9.20 will result in

APi(X - Y, Lj) = Pic -Pi + (°Ri) • • (9-25)

If we define

fo ifA<Ej;i^,
A f t (A) = ! A f t (A - Y,7=\ Lj) if E ; = l L J < \ < £ } = 1 ^ , (9-26)

[Li i fA>Ej= i L J '

then the position of a point on the path, after travelling distance A, will be

ra-l

p(A) = ^ A f t (A) . (9.27)
i=l

Eq. 9.27 is the analytical representation of a path described by a series of
(linear and/or circular) path curves.

9.5.2.4 Trajectories

Eq. 9.27 is a closed-form description of the spatial locations on a path. The
parametric variable A is the distance travelled by a mobile robot or a robot's
end-effector. Therefore, it is easy to impose a time constraint on A so that
the velocity and acceleration along the planned path can be specified.

Let us consider parametric variable A to be a function of time t. Then,
its first- and second-order derivatives are: j£ and ^ . From Eq. 9.27, it is
easy to determine the velocity and acceleration of point p(\) as follows:

{
dp(\) _ dp(\) d\

dt ~ d\ dt
(9.28)

d2PW _ d2p(X) (dX\2 dpW £x
dt2 ~ d\2 \dt) ~r d\ dt2 •

Clearly, if we impose a time constraint on A, the velocity and acceler-
ation along a path will be fully determined by Eq. 9.28. In theory, there
are many choices for function X(t) as long as it is differentiate up to the
second order. In practice, a common solution is to choose a function for
the first-order derivative of A(i). This function is called a velocity profile.

Decision-Making System of Robots 623

Let us denote:

\ d{t) = \{t).

The widely-adopted velocity profile v(t) is the one shown in Fig. 9.21. This
velocity profile is known as a trapezoid.

(t) Velocity

"••-/• K
a/\ i\ a

V-—i i—\ ^t<*,m . .u
d2 i --~»^p|

, \^S Traveled j !
1 HI^T distance ; j

Fig. 9.21 Trapezoidal velocity profile.

A trapezoidal velocity profile has six parameters:

• L: total traveled distance,
• a: acceleration (or deceleration),
• vc: cruising speed,
• (ti,t2): cruising time-interval,
• i3: stop time.

Usually, the parameters (L, a, vc) in a trapezoid are specified by the user
as input. The other three parameters must be determined as follows:

• Solution for t\:
A point travelling on a path will reach cruising speed at time-instant
ii, then

vc = a • t\.

624 The Fundamentals of Robotics: Linking Perception to Action

As a result,

.<vc
t\ = —.

a

• Solution for t2'-
The total distance traveled is

pti rt2

L = 2* a»t»dt + vc» dt.
Jo Jti

And, the solution for t2 is

L-a*t\
t2=h + i.

vc

• Solution for £3:
From Fig. 9.21, it is easy to see that

h =h + t2.

If all six parameters are known, a trapezoidal velocity profile can be
concisely described as follows:

' f*a»t»dt i f te[O,ti];

d{t) = \ \a»t\ + fi1vc»dt if * e [*i,*2]; (9-29)

\a»t\+vc» (t2 - h) - J^a»t»dt if t G [<2, 3̂]-

9.5.2.5 Interpolation of Orientations

For a nonholonomic robot, the change in the orientation of the robot's
assigned frame is coupled with the motion of the frame's origin. In this
case, planning the frame's angular motion is not a concern. However, for a
holonomic robot, the angular motion of its end-effector's frame is considered
as independent to the linear motion at the frame's origin. In this case, it is
necessary to plan the motion for the orientation of the end-effector's frame.

If an application does not specify any requirement for the orientation of
an end-effector's frame, it is easiest to keep it at a fixed orientation. But,
if the orientations of the initial and final configurations are different, it is
necessary to plan the motion of orientation. And, a common way to do this
is to linearly interpolate the relative orientation of the final configuration
with respect to the initial configuration.

Decision-Making System of Robots 625

A Inline s A I mine t

(a) Knots (b) Path/Trajectory

iZ

X

(c) Equivalent Axis of Rotation

Fig. 9.22 Determination of independent motion of orientation.

Refer to Fig. 9.22b. Assume that the initial configuration is denoted by
frame s, and the final configuration by frame / . Let sRf be the relative
orientation of frame / with respect to frame s. In Chapter 2, we learned
that a rotation matrix can be represented by the equivalent axis of rotation
r and the equivalent rotation angle 6. r and 6 can be determined by Eq. 2.72
and Eq. 2.73 respectively.

Now, assume that 6 is divided into n equal intervals. Then, the equiv-
alent rotation angle at interval i will be

n
0 i = i * - , i = 1 , 2 , . . . , r a . (9.30)

n

Refer to Fig. 9.22c. If r = (rx,ry, rz)1 and (3 denotes the angle between
r and the Z axis, then we have

{ /r2_|_r2

S in /3=^+V"? (9.31)

COS/3 = 7 ^ F T

626 The Fundamentals of Robotics: Linking Perception to Action

Similarly, if a denotes the angle between the X axis and the plane
passing through the Z axis and r, we have

f s i n a = / ^

| cosa= —A=-

Let sRi denote the intermediate orientation corresponding to 6*̂. Then,
the rotation matrix sRi (i = 1, 2,..., n) can be calculated as follows:

sRi = Rz{a) • Ry(p) • Rxidi) • Ry(-P) • Rz(-a) (9.33)

with

(cos(a) — sin(a) 0 \
sin(a) cos(a) 0 I ,

0 0 1 /

/ cos(P) 0 sin(/3)\
Ry(p) = 0 1 0

\-sin(/3) 0 cos(P)J

and

/ I 0 0 \
^ (^) = 0 cos(6»i) -sin(6»i) .

\ 0 sin(6»i) cos(6i) J

The physical meaning of Eq. 9.33 is as follows: First, rotate the equiv-
alent axis r to coincide with the X axis by rotation Rz(—a) followed by
rotation Ry{—(3). Then, perform a rotation about the equivalent axis r
using a 6i angle (i.e. Rx(6i). Finally, bring the equivalent axis r back to its
initial orientation with rotation Ry(f3), followed by rotation Rz(a). And,
the results of interpolation

{sRh i = l,2,...n}

represent the intermediate orientations of an end-effector's frame when it
travels along a planned path/trajectory.

9.6 Image-Guided Motion Planning and Control

Today's robot is an automated machine which has well-developed physical
abilities to perform actions. However, the automatic execution of motion

(9.32)

Decision-Making System of Robots 627

requires programming and reprogramming, which is done manually by hu-
man masters. The only way for a robot to gain a certain level of autonomy
is if we can develop its mental ability to perform motion, action or even
task planning. We learned that the final goal of motion, action, and task
planning is to specify desired motions for automatic motion-control loops.
Without the ability to self-specify a desired outcome, a robot will never be
autonomous.

In general, a robot's mental ability depends on its perception-decision-
action loop. Among the possible perception systems, vision is undoubtedly
the most important one because it is the best system for identifying phys-
ical quantities such as motion and geometry. Therefore, a necessary step
towards the development of an autonomous robot (e.g. humanoid robot) is
the investigation of the loop composed of: a) visual perception, b) decision
making and c) motion generating.

Research on the visual guidance of robotic systems dates back to the
early 1970s. However, it has only been since the late 1980s that extensive
work in this field has started to emerge. All these early works focused
on vision as a feedback sensor in a motion-control loop. This framework,
commonly known as visual servoing, has two limitations:

• Vision cannot outperform motion sensors with regard to sensory feed-
back in an articulated machine because the input to vision (i.e. image)
is the projection of task space, not joint space.

• The sensory-motor mapping from the visual-sensory system to the ac-
tuators is not direct or indispensable. For example, without vision, a
robot can still move on its own, just as a blind person can.

An alternative framework is to treat vision as an "on-line motion plan-
ner" or an "action (execution) controller", which is placed at a higher level
than a "motion (execution) controller". The purpose of an "on-line motion
planner" is to automatically specify the desired motions based on informa-
tion from a visual-perception system. This framework is clearly illustrated
in Fig. 9.23. If we use terminology from control engineering, an autonomous
robot should have a hierarchy of controllers in the following order:

• Motion Controller (action taking):
This is a closed-feedback control loop which performs physical actions
at the lowest level. The input to motion-control loop is called the
desired motion.

628 The Fundamentals of Robotics: Linking Perception to Action

| Menial Abilities (Mind) |

1 I Consciousness j

•r-H • , :
1 I I Belief System |

; -• ; ; -—^ 1
i Incision making System • J i n H i n i C 1 1

' (I.I I (i. .II.I | |I i J

1 I ^ Percept ion 4—•-

; [' ' ••""••"• '] ^ _ _ ; . :

Desired ' | •*—*\ Interaction •«—> ((|) (h

Motion ! F , ,. '
I • —i V IMII(. . i: II. i ,

i" " " " • " - - - , ^ |-|n,i,.i|

I Inverse ^y/N Motion . Kineto-Dynamic i ^ .
1 Kinematics x£y~~^ Controller Chains ~T .Swrm I

i Motion |

I Physical Abilities Sensors i

Fig. 9.23 Hierarchy of controllers in an autonomous robot.

• Action Controller (motion planning):
This controller encompasses the motion-control loop. Its role is to
automatically specify the desired motions which effectively perform a
given action (input). The action controller is the decision-making unit
of the action-execution loop.

• Task Controller (action planning):
A task can be represented by a sequence of ordered actions. A task con-
troller encompasses the action-execution loop. It automatically trans-
lates a given task (input) into a sequence of ordered actions (output).
Similarly, the task controller is the decision-making unit of the task-
execution loop.

• Goal Controller (task planning):
A goal can be achieved by performing a sequence of ordered tasks (or a
scenario/strategy for short). If a robot gains autonomy at the level of
task execution, it should have the mental ability to automatically plan
a sequence of ordered tasks (output) which will lead to the accomplish-
ment of a given goal (input).

As we already mentioned, a necessary step towards the development of

Decision-Making System of Robots 629

an autonomous robot is the investigation of the principles underlying the
robot's action controller. Undoubtedly, image-guided motion planning and
control have paramount importance because they constitute the general
framework within which it is possible to automate the motion planning
and control for some generic actions, such as:

• Image-guided manipulation (hand-eye coordination),
• Image-guided positioning (head-eye coordination),
• Image-guided locomotion (leg-eye coordination).

9.6.1 Hand-Eye Coordination

In Chapter 1, we learned that "manufacturing" means to "make things by
hand" directly or indirectly. And, we all know that it would be a difficult,
if not impossible job, if the motion of our hands was not under the visual
guidance of our eyes. Clearly, the coordination between hand and eye
plays an important role in daily activities, such as typing, writing, playing,
handling, manipulating, etc.

9.6.1.1 Input

Figure 9.24 illustrates hand-eye coordination with a binocular vision system
and a robotic hand-arm. Frames cl and c2 are assigned to the binocular
vision's two cameras. The base link of the robotic hand-arm is assigned
frame 0, while its end-effector is assigned frame e.

Assume that the generic-action's description is to go from the initial
configuration at location P to the final configuration at location Q. Obvi-
ously, input to the robotic hand-eye coordination should include:

• Initial Configuration:
This is the initial posture of a frame attached to a robot's end-effector,
or hand. Under the context of hand-eye coordination, the initial posture
is explicitly specified in image space but not in task space. Thus, it
must be visible to the binocular vision system. If not, it is necessary to
define an intermediate posture to replace the invisible initial posture.
For some applications, an action may not explicitly specify the initial
posture. In this case, a default initial posture can be easily defined
by a robotic arm because its forward kinematics is usually known in
advance.

630 The Fundamentals of Robotics: Linking Perception to Action

X . _ i S ? E y e Left Image Right Image

y Right Eye y ' M r " N ^ ^^E^afl^^Kii - l^^^^l

<sl + f*-i^J z" ^ ^^^^

T Initial ^ ^ r c " ^ ^ ^ ^ ^ ^ H ^ £ ^ ^ ^ ^ ^ |

A\ ov Configuration k — BKa^^^T^HIH

°z X 7 v — ^ ' ^ rp^SwP •**rp̂ J

' WorM Jranic

Fig. 9.24 Illustration of robotic hand-eye coordination.

• Final Configuration:
This is the final posture which a robot's hand or end-effector must
reach. Similarly, the specification of final posture is done in image
space but not in task space. As a result, the final posture must be
visible to a robot's binocular vision system.

For the sake of simplicity, we call the projection of the initial configu-
ration on an image plane the hand, and the projection of the final config-
uration on an image plane the target. Since the main purpose here is to
automatically plan a feasible path/trajectory from images, we will not con-
sider issues related to image-feature extraction and correspondence. Thus,
input to the robotic hand-eye coordination may also include:

• Images of Hand and Target:
The detection of a hand and target in a robot's binocular vision needs
to be automatic. Moreover, a robot's visual-perception system must

Decision-Making System of Robots 631

automatically handle the tracking and binocular correspondence with
regard to the hand and target in image space.

• Calibration Matrices (Hi,H2):
If the calibration matrices (Hi,H2) of the binocular vision's two cam-
eras are known in advance, a feasible path in task space can be directly
planned from input specified in image space. If these two matrices
are unknown, image-guided motion planning will act as an action con-
troller. In this case, a perception-planning-control loop will be formed,
which automatically brings a robot's hand, or end-effector, from the
initial configuration to the final configuration.

9.6.1.2 Output

Hand-eye coordination is a decision-making process at the action-controller
level. From a control point of view, under the context of hand-eye coordi-
nation, a given action's description is the desired output of a robot's action
controller. In general, an action can be either a generic action or a cus-
tomized version. However, the description of desired action should define
the initial and final configurations of a robot's hand or end-effector.

Accordingly, the primary goal we hope to achieve in robotic hand-eye
coordination is the robot's ability to automatically generate, from images,
a feasible path/trajectory which brings the robot's hand, or end-effector,
from the initial configuration to the final configuration.

However, in practice, the hand-eye coordination's decision-making pro-
cess may result in one or a combination of the following two outcomes:

• Feasible Path/Trajectory:
If the calibration matrices (H\,H2) are known, image-guided motion
planning automatically generates a feasible path in task space, based
on the input specified in image space. In addition, a robot's action
controller for hand-eye coordination can also monitor the motion con-
troller's execution of the planned path/trajectory (see Fig. 9.23).

• Control Law of the Action-Controller:
If the calibration matrices (Hi,H2) are unknown, image-guided motion
planning acts as an action controller which generates the desired dis-
placements in task space and monitors the motion controller's execution
of the planned displacements. This forms a perception-planning-control
loop (see Fig. 9.23) which operates in an iterative manner within the
action-execution loop.

632 The Fundamentals of Robotics: Linking Perception to Action

9.6.1.3 A Closed-form Solution

Refer to Fig. 9.24. Let (°XP, °YP, °ZP) be the coordinates of point P
with respect to frame 0. If the image coordinates on the left camera's
image plane are {clup, clvp), according to the forward projective-mapping
studied in Chapter 8, we have

Sl . c % = Hi • Ozpp (9.34)

where s\ is an unknown scaling factor.
Similarly, if (c2up, c2vp) are the image coordinates of point P on the

right camera's image plane, the following equation holds:

/CSA (°oXp\
s 2 . c% = H2 • I lYzPp (9.35)

where s2 is another unknown scaling factor.
If the calibration matrices (H\, H2) are known, and the binocular corre-

spondence of point P's images has been established in advance, the coordi-
nates (°Xp, °Yp, °Zp) of point P can be directly estimated from Eq. 9.34
and Eq. 9.35.

In a similar way, the coordinates (°XQ, °YQ, °ZQ) of point Q can also
be directly computed if the binocular correspondence of point Q's images
has been established in advance.

If we know the coordinates of point P and point Q, it is easy to plan
a feasible path connecting point P to point Q. A simple way to do this if
there is no obstacle between point P and point Q is to use a straight line.

9.6.1.4 An Iterative Approach

The closed-form solution for robotic hand-eye coordination has two limita-
tions:

• Lack of Flexibility:
The closed-form solution is based on the metric reconstruction of 3-D
coordinates. As a result, it is necessary to know the calibration ma-
trices (Hi,H2) in advance. This imposes a constraint on the intrinsic

Decision-Making System of Robots 633

and extrinsic parameters of a binocular vision's two cameras. In other
words, the camera parameters should remain unchanged or the binocu-
lar vision must be recalibrated. Clearly, this is not human-like hand-eye
coordination because human vision is qualitative (not metric).

• Lack of Error Compensation:
The noises from images and calibration contaminate the 3-D coordi-
nates of points A and B. As the closed-form solution operates in an
open-loop manner (a single step of perception-planning), there is no
feedback mechanism to compensate for the uncertainty, if any, caused
by noise.

Interestingly enough, an alternative solution to robotic hand-eye coor-
dination is the iterative approach which is based on a robot's qualitative
binocular-vision and is similar to human vision. This method can be ex-
plained in the following progressive manner.

Qualitative Binocular- Vision

Consider the 3-D coordinates (X, Y, Z) of point P in a reference frame which
can be any user-specified coordinate system. If (clu, clv) are point P's
image coordinates on the left camera's image plane in a robot's binocular
vision, we have

/clu\ fX\
Sl. / av J = Hl. y \ (9.36)

where s± is an unknown scaling factor. Now, let us purposely drop out the
unknown scaling factor si in Eq. 9.36. Accordingly, we obtain:

r « \ (XY)
[clv\=H1* . (9.37)

^ > VJ
The removal of the third row in Eq. 9.37 yields

(9.38)

634 The Fundamentals of Robotics: Linking Perception to Action

with

= / c l 6 n clb12 clb13 clb14\

1 \clb2i clb22 c l62 3 clb2j~

Mathematically, Eq. 9.38 is called the affine transformation. But here, we
call it qualitative projective-mapping by a camera.

In a similar way, with regard to the binocular vision's right camera, we
can obtain the following qualitative projective-mapping:

/X\
/c2u\ Y
(c2v)=B2. z (9.39)

\ 1 /

with

R _ fc2bn c26i2 c2b13 c2bu\

Binocular vision, governed by the qualitative projective-mappings de-
scribed by Eq. 9.38 and Eq. 9.39, is called qualitative binocular-vision.

Calibration of Qualitative Binocular- Vision

Matrices (£?i,i?2) in Eq. 9.38 and Eq. 9.39 are the calibration matrices in
a robot's qualitative binocular-vision. Interestingly enough, the following
properties can be easily verified:

• Property 1:
The first column vectors in both B\ and B2 are projections of unit
vector (1,0,0)* in a reference frame onto the two cameras' image planes.

• Property 2:
The second column vectors in both B\ and B2 are projections of unit
vector (0,1, 0)' in a reference frame onto the two cameras' image planes.

• Property 3:
The third column vectors in both B\ and B2 are projections of unit
vector (0,0,1)* in a reference frame onto the two cameras' image planes.

• Property 4:
The fourth column vectors in both B\ and B2 are image coordinates of
origin (0, 0, 0)' of a reference frame onto the two cameras' image planes.

Because of the above properties, it is easy to determine (Bi,B2)- In
practice, it is possible to choose an orthogonal coordinate system and

Decision-Making System of Robots 635

project it onto the binocular vision's image planes. Two possible scenarios
include:

• If the robot's binocular vision has been calibrated in advance, it is easy
to define a virtual coordinate system and project it onto the image
planes by using (Hi, H-i).

• If the robot's binocular vision has not been calibrated, it is possible to
move the robot's end-effector into three orthogonal directions to define
an orthogonal coordinate system. The projection of this orthogonal co-
ordinate system will be captured by the actual (uncalibrated) cameras
in the binocular vision. Clearly, a robot's qualitative binocular-vision
does not require calibration matrices (Hi,H2), if a robotic hand-arm
is present.

Let us consider the base vectors and the origin of a randomly chosen
coordinate system which is visible from the robot's binocular vision. Then,
the images of points

{(1,0,0), (0,1,0), (0,0,1)}

and origin (0,0,0), captured by the actual cameras, directly form matrices
(Bx,B2) as follows:

• If (clux, clvx), (cluy, clvy) and (cluz, clvz) are the image coordinates
of points

{(1,0,0), (0,1,0), (0,0,1)}

which are projected onto the left camera's image plane, then

(el,, cl , , cl cl , , cl , , cl , , c l . \

Ux — Uo Uy — Uo Uz — Uo Uo \ , .
cl _ cl , . cl _ cl , . cl , cl cl I [V-tV)

Ux uo Uy — Uo UZ — Uo Vo Jwhere (clwo, clvo) are the image coordinates of origin (0, 0, 0) which is
projected onto the left camera's image plane.

• If (c2ux, c2vx), (c2uy, c2vy) and (c2uz, c2vz) are the image coordinates
of points

{(1,0,0), (0,1,0), (0,0,1)}
which are projected onto the right camera's image plane, then

/c2 _ c2, dl __ cl c2 _ c2 c2,, \
_ / ux uo Uy uo uz — uo uo \ . .

2 \ c2v - c2v c2v - c2v c2v C2D C2D I ^-^L)

(9.40)

(9.41)

636 The Fundamentals of Robotics: Linking Perception to Action

where (c2uo, c2vo) are the image coordinates of origin (0,0,0) which is
projected onto the right camera's image plane.

Example 9.9 Let us construct a virtual binocular-vision, as shown in
Fig. 9.25. The left camera's calibration matrix is

/ 3.5538 1.6320 -0.2878 - 134.6303 \
Hi = I 0.3906 1.6235 - 3.5479 832.8808

\ 0.0015 0.0085 -0.0015 1.0 /

and the right camera's calibration matrix is

/ 1.9226 1.8934 -0.3339 - 86.6181 \
H2 = -0.2708 1.1257 - 2.4601 677.9354

V-0.0011 0.0059 -0.0010 1.0 /

Now, let us place an orthogonal coordinate system, parallel to the refer-
ence frame, at (50cm, 100cm, 100cm). The projections of the base vectors
and the origin are shown in Fig. 9.25. For display purposes, the base vectors'
projections are amplified by a factor of 50. However, the actual calibration
matrices of qualitative binocular-vision are

/ 1.8400 0.3600 -0.0800 100.0000 \
1~V-0.1000 -17.5000 -1.7600 371.0000)

and

_/1.4800 0.7000 -0.1400 115.0000 \
2 V0.1000 -0.6000 -1.5000 370.0000J'

oooooooooooooooooo
Image-guided Motion-planning Function

In qualitative binocular-vision, (Bi,B2) fully describe the projections of a
configuration (coordinate system) onto image planes. Thus, motion plan-
ning in task space becomes equivalent to motion planning in image space
if inverse projective-mapping is available.

In image space, we can always determine displacement vectors
(Aclu, Aclv) and (Ac2u, Ac2v) which move towards the target. Then,
the question is: What should the corresponding displacement vector
(AX, AY, AZ) in task space be, which moves a robot's hand from the
initial configuration to the final configuration?

Decision-Making System of Robots 637

(a) Left Image Plane

100 (c) Camera and Scene

200

z
300 ' „

0 - X 300.

4 0 0 ' ' 250.

5001 . , . . J

100 200 300 400 500

150.

(b) Right Image Plane ^ Q ^-\

I 'j<\ ZCPX

s o . f nT*^
100 U P Y

o l M - - * Y ••
200 500 ^ \

2 4 0 ° \ . | Z _^-^~400
3 0 0 ' y 3 0 0 ^ ^ - ^ z u a

400 ioo\[^-^Too
0 0

500 { . . , , J
100 200 300 400 500

Fig. 9.25 Example of calibration of qualitative binocular-vision.

As Bi is a constant matrix, differentiating Eq. 9.38 with respect to time
will yield the following difference equation:

(ft)-*, (g)
with

/cl , . _ cl,. cl. cl,. cl, cl7 \
„ / Ux — Uo Uy — Uo Uz — Uo \

V vx vo Vy vo vz — uo y

Similarly, differentiating Eq. 9.39 with respect to time allows us to ob-
tain the difference equation with regard to the right camera, that is,

with

f cl.. _ c2 c2 _ c2 c2 _ c2,, \
^i I ux ao uy "o "z "o \
° 2 — I c 2 c 2 c 2 _ C2 c2 _ c2 I •

\ ^a; uo uy vo "z Vo /

(9.42)

(9.43)

638 The Fundamentals of Robotics: Linking Perception to Action

Eq. 9.42 and Eq. 9.43 impose four constraints on these three unknowns:

(AX, AY, AZ).

If we define

A/ = (Acl«, Aclv, Ac2u, Ac2vY (9.44)

as the displacement vector in image space, and

AP = (AX, Ay, AZf (9.45)

as the displacement vector in task space, the least-square estimation of AP
will be

AP = A»AI (9.46)

with

A = (C* • C)"1 • C* (9.47)

and

(
c l ? ; _ Cl,. c l , . _ c l , . c l , _ c l , . \t i x U o Uy t i o U 2 t i o \

c l , , _ c l , , c l , , _ c l . c l _ c l I
Vx Vo Vy Uo Vz Vo , .

c2 c-2 cl cl c2 cl (y.48J
**£ Wo (Xy U o ilz iio I

c2 _ cl c2 _ c2 c2 _ c2 /
Vx Vo Vy Vo Vz — VO /

As C is a constant matrix, A will also be a constant matrix. This
indicates that mapping from image space to task space can be done by a
constant matrix. Clearly, this is the simplest result that one could expect
to obtain. Here, we call matrix A the image-to-task mapping matrix.

If we consider A7 the error signal to a robot's action controller, A will
be the proportional-control gain matrix, and AP the control action which
acts on a robot's motion-controller, as shown in Fig. 9.23. In practice, we
can introduce one extra scalar proportional-gain g (0 < g < 1) so that the
transient response of a robot's action-controller can be manually tuned.
Accordingly, Eq. 9.46 becomes

AP = g»A*AI. (9.49)
Alternatively, one can also choose g to be a gain matrix as follows:

/feO 0\
9=1 0 gv 0 .

\0 0 gj

(9.48)

(9.49)

Decision-Making System of Robots 639

If the calibration matrices (i?i,i?2) are known, Eq. 9.49 can be called
the image-guided motion-planning function. Otherwise, it can serve as the
control law in an image-guided action controller.

Determination of Displacement Vectors in Image Space

When we have the initial and final configurations of an action, we know their
projections onto the binocular vision's image planes. We denote (clus, clvs)
and {c2us, c2vs) the projections of the initial configuration's origin. Simi-
larly, let (clUf, clVf) and (c2«/, c2Vf) denote the projections of the final
configuration's origin. Then, error signal A/ can be defined in two ways:

• Forward-Planning Strategy:
In this case, we define the error signal to the action controller to be

(
ci,., _ ci \

c s - cv
Uf as

c2vf- C V /
And, the computed AP at each iteration will update the position of
the initial configuration. Thus, the initial configuration moves towards
the final configuration under the control law described by Eq. 9.49.

• Inverse-Planning Strategy:
In this case, we define the error signal to the action controller to be

(clus- cluf\

AI- °1Vs- °lvf

V2vs- c2vfj

Then, then computed AP at each iteration will update the position of
the final configuration. This means that the final configuration moves
towards the initial configuration under the control law described by
Eq. 9.49.

Example 9.10 Refer to Example 9.9. By applying Eq. 9.48, matrix C is

(1.8400 0.3600 - 0.0800 \

-0.1000 - 0.7000 - 1.7600
1.4800 0.7000 -0.1400 "
0.1000 -0.6000 -1.5000/

640 The Fundamentals of Robotics: Linking Perception to Action

From Eq. 9.47, the calculated A matrix will be

(0.9106 -0.1053 -0.4716 0.1190 \
-1.7710 0.2074 2.2399 - 0.3580 .
0.7016 -0.4114 -0.8907 -0.1383/

Now, let us choose g to be 0.3. And, let us place an ini-
tial configuration at (50cm, 100cm, 100cm) and a final configuration at
(150cm, 200cm, 200cm).

(a) Left Image Plane

Final
Configuration

1 0 0 x (c) Camera and Scene

200 /

300
a ' 300~l

400 ' V l n i t i a l

Configuration 250. Final
Configuration

100 200 300 400 500200" \
'A

150. /*

(b) Right Image Plane , 0 0 / ^ - - i

F m a l I '•-, <~L UP*
1 0 0 Configuration 50 , • \ Q j X Y

V Initial V ' k - - X v
„„„ x a 0J Contiguration-V-P-^
2 0 0 y 500 \ ^ _

4 M ^ ^ ^ | Z , - - - ' " % 0 0

3 0 0 • " 3 0 ° \ ^ ^ ^ - 3 0 0
a. 200 ^ ~ \ v I ~^X"'"200

4 0 0 * \ Initial 1 0 0 " ^ — 100
Configuration Q Q

snnl I
100 200 300 400 500

Fig. 9.26 Example of image-guided motion-planning using Eq. 9.47 and forward-
planning strategy.

If we adopt the forward-planning strategy, the application of Eq. 9.49
will result in the path shown in Fig. 9.26. The initial configuration will
reach location (150.6003cm, 205.8964cm, 200.4105cm) after 19 iterations.

However, if we adopt the inverse-planning strategy, the application of
Eq. 9.49 will result in the path shown in Fig. 9.26. The final configuration
will reach location (50.5214cm, 99.1274cm, 100.9902cm) after 17 iterations.

This example clearly indicates that the inverse-planning strategy pro-
duces better results if the initial configuration is closer to the cameras than
the final configuration.

oooooooooooooooooo

Decision-Making System of Robots 641

(a) Left Image Plane

Final
Configuration

100 v (c) Camera and Scene

*a
200

300 • . •
a/ 300 . . :

400 Xj"i l ia l

Configuration 250* Final
Configuration

100 200 300 400 5 0 0 2 0 0 " \
' A

150. • •

(b) Right Image Plane 1 0 Q ' ' ~-)-{\,

™* I z ••' > c k W ' x
Configuration 50 . , . l j J X V

100 . L-f̂

\ Initial Vfc^X Y
* a °>L. C o n f i g u r a t i o n - * * - ^

200 • 500 ^ .
400 \ . I ,---"""""'400

300 ..• 3°° \ , ^ - " " 3 0 0
V 200 ^ \ y I JT^^^200

™ ^ ^ Initial 100 ^ 100
Configuration 0 Q

5001 . , . , J
100 200 300 400 500

Fig. 9.27 Example of image-guided motion-planning, using Eq. 9.47 and inverse-
planning strategy.

Stability of Image-guided Action Controllers

Refer to Fig. 9.23. A robot's action-controller encompasses its motion-
controller. If a robot's motion-control loop is stable, then the question is
whether the nested action/motion-control loop remains stable.

For the sake of simplicity, let us treat the robot's motion-control loop
as a plant, which is described by transfer function Gm(s). From Eq. 9.49,
we know that a robot's action-controller uses a proportional-control law.
Accordingly, let us denote K the proportional-control gain (or gain matrix)
in the action controller. In this way, the closed-loop transfer function of
the action-controller will look as follows :

K»Gm(s)

G a (s) = l + K.Gm(sY (9"5 0)

Now, let us increase proportional-control gain K (or the determinant of
the gain matrix K) to infinity. As a result, Eq. 9.50 will become

Ga{s) ~ 1. (9.51)

Eq. 9.51 indicates that the nested action/motion-control loop is abso-
lutely stable if and only if the motion-control loop itself is absolutely stable.

642 The Fundamentals of Robotics: Linking Perception to Action

In fact, the proportional-control gain K in the action controller will only
affect relative stability (i.e. the transient response).

Robustness of Image-guided Action Controllers

The following two examples illustrate the robustness of an image-guided
action controller or motion-planning function.

Example 9.11 Refer to Example 9.10. Let us now rotate the left camera
about the Y axis by —10°. And, let us keep matrix A as it is before:

/ 0.9106 -0.1053 -0.4716 0.1190 \
A = -1.7710 0.2074 2.2399 - 0.3580 I .

\ 0.7016 -0.4114 -0.8907 -0.1383/

The planned paths before and after the rotation are shown in Fig. 9.28.
We can see that the two paths in task space are very close to each other.

(a) Left Image Plane

1 0 0 Before rotation (c) Camera and Scene

200 \ .• ."

• • ' . • " \ : •

a/a,-' X 300
4 0 Q ' ' After rotation

250-

100 200 300 400 500 2 0 0 ~
A

150-

(b) Right Image Plane 1 0 0 * id-

100 .• L - V •-.

o l Y ^ - x Y • • • • • - ,
2 0 0 • 5 0 0 ^ ^

4 0 ° \ ^ | Z ^ - - ^ ^ " 4 0 0

V 200 \ » | ^ ^ - - 2 0 0

400 ioo^N^---^Too
0 0

FM I . , ..
100 200 300 400 500

Fig. 9.28 Example of robustness with respect to change in a camera's parameters.

000000000000000000

Example 9.12 Refer to Example 9.10 again. Let us now move the final
configuration to (250cm, 300cm, 300cm). The distance between the initial

Decision-Making System of Robots 643

and final configurations is about 346cm. In robotics, this is considered to
be a large working range.

The planned paths resulting from the application of both forward- and
inverse-planning strategies are shown in Fig. 9.29. We can see that the
inverse-planning strategy produces much better results.

(a) Left Image Plane

Forward Planning

100 ^ - \ ^ JT (c) Camera and Scene

2 0 0 < ' . , •-..

300 ; • \ A •
a .• Inverse Planning 30(K #•. ^ y

•QQ Forward Planning .' : .

2 5 0 ~ . Inverse Planning

100 200 300 400 500200~ .' /

150.

(b) Right Image Plane 1 0 0 • ' 7 r ' l

1 ' ' S3-M*
Inverse Planning *J 50. . f " P I T * Y

1 0 0 \ • T .' ^^

\ • / ol Y 4 ! > x Y '
200 \ ,.•' \ 500 ^ \

• • " ' I 4 0 0 ^ \ > . | Z ^ ^ ^ ~ i « t
3 0 0 a . - " ' Forward Planning 3 0 0 \ . ^ ^ " ™

/ 200 \ v I ^ir^"^ 200
400 I O O V J ^ loo

0 0
5001 , , .1

100 200 300 400 500

Fig. 9.29 Example of robustness with respect to a change in working range.

oooooooooooooooooo

Orientation Planning

By default, motion planning for a path/trajectory is separated from motion
planning for orientation. As a set of three points in task space fully defines
the position and orientation of a frame, it is possible to apply Eq. 9.49 to
automate motion planning for orientation.

Example 9.13 Refer to Example 9.10. In the initial configuration, we
choose three points

{ A — (50cm, 100cm, 100cm)
B = (50cm, 100cm, 150cm)
C = (100cm, 100cm, 100cm).

644 The Fundamentals of Robotics: Linking Perception to Action

When these points reach the final configuration, their coordinates are

{ A = (50cm, 200cm, 200cm)
B = (50cm, 200cm, 250cm)
C = (100cm, 200cm, 200cm).

The planned paths for points A, B and C resulting from the application
of inverse-planning strategy are shown in Fig. 9.30. From the coordinates
of these planned spatial locations, it is easy to determine the position and
orientation of intermediate configurations.

(a) Left Image Plane

1 0 0 b. (c) Camera and Scene

n c
200 . " '

300 *)
$ c/ 300. . . .

400 :

250.

100 200 300 400 5002 0 0~ B

150. A- C . .

(b) Right Image Plane 1 0 Q • • 7[^T,

200 . a. . 5 0 0 ^ - ^ ^

4: '• 4 0 0 ^ N ^ | z ^ - ^ ^ ~ ' 4 0 0
300 j ; 300 x ^ ^ - - - - 3 0 0

400 100X4^-^00
0 0

5001 . .
100 200 300 400 500

Fig. 9.30 Example of image-guided motion planning for a set of three points.

000000000000000000

9.6.2 Head-Eye Coordination

Hand-eye coordination is probably the most important behavior that hu-
man beings perform daily. It is indispensable for autonomous manipulation.
Similarly, another important type of image-guided behavior is head-eye co-
ordination. The main objective of head-eye coordination is to automati-
cally plan a feasible path/trajectory which will move a robot's head from
its initial configuration (posture) to a reference configuration (posture).
Normally, a robot's head is supported by its body. Therefore, head-eye

Decision-Making System of Robots 645

coordination is indispensable for autonomous positioning such as driving
a car on a road, landing a helicopter on a helipad, generating images for
augmented-reality, etc.

9.6.2.1 Input

Figure 9.31 shows an actual example of robotic head-eye coordination. We
can see, in Fig. 9.31a, that monocular vision is mounted on an arm manip-
ulator, and this combination imitates a robot's body-head mechanism. For
the sake of description, let us call the assembly of a robot's vision mounted
on top of its body-head mechanism a vision-head.

(a) Vision -Head (b) Reference Image

(c) Actual Image (d) Final Actual Image

Fig. 9.31 Example of robotic head-eye coordination with monocular vision.

At a reference configuration (also called a final configuration), a robot's
vision-head captures an image of a specified reference object and stores it
as a reference image (Fig. 9.31b). If a robot's vision-head is shifted from
the reference configuration for whatever reason, the question is: Using the
reference image (Fig. 9.31b) and the actual image (Fig. 9.31c) of a reference
object, is it possible to determine a feasible path/trajectory which brings a
robot's vision-head back to the reference configuration, so that the actual
image (Fig. 9.31d) is equal to the reference image?

According to the problem statement, input to the robotic head-eye co-
ordination includes:

646 The Fundamentals of Robotics: Linking Perception to Action

• Reference Object:
The aim of head-eye coordination is to position a frame assigned to a
robot's vision-head at a final configuration relative to a reference object
(e.g. a configuration in front of a door). Therefore, the reference object
must be defined in advance. In practice, the reference object can be a
door, a road, a helipad, or any physical object in a scene.

• Reference Image:
As we mentioned earlier, a reference image is an image captured by a
robot's vision-head at a reference configuration (or final configuration).
For repeated actions, it is not difficult to capture and store a reference
image. However, there are applications in which reference images are
not available in advance. Thus, this input should not be absolutely
necessary.

• Actual Image of Reference Object:
The issue here is how to automatically plan a feasible path for a robot's
vision-head. We assume that the detection and tracking of the refer-
ence object's images can be automatically done by the robot's visual-
perception system.

Head-eye coordination with monocular vision in three-dimensional task
space is difficult when there is no a priori knowledge about a reference ob-
ject. So far, none of the existing solutions developed within the framework
of monocular vision can outperform solutions based on binocular vision.
Most importantly, binocular vision provides much richer information than
monocular vision.

As human vision is binocular and humanoid robots are usually equipped
with binocular vision, it is more interesting to study robotic head-eye co-
ordination with binocular vision, as illustrated by Fig. 9.32.

Within the framework of binocular vision, additional input to the
robotic head-eye coordination may include:

• Calibration matrices (Hi, H2) of the two cameras in a robot's binocular
vision.

• Motion-transformation matrix clMc2 (or c2Mci) between the two
frames assigned to the binocular vision's two cameras (NOTE: Motion-
transformation matrix clMC2 or c2Mci can easily be estimated from
{HUH2)).

Decision-Making System of Robots • 647

iy Obsenred Image A l ^ Reference Image

^^JST |lg—H *T2p ||o o||

(a) Vision -Head at Initial Posture (b) Vision -Head at Final Posture

Fig. 9.32 Illustration of robotic head-eye coordination with binocular vision.

9.6.2.2 Output

As with hand-eye coordination, head-eye coordination is also a decision-
making process. Under the context of the robotic head-eye coordination,
the desired output of the robot's action-controller is an action description,
such as "Position the vision-head at the reference configuration in front
of the reference object". Thus, the primary goal of head-eye coordination
is to automatically generate a feasible path/trajectory which will bring a
robot's vision-head from its current (initial) configuration to the reference
configuration.

Since the binocular vision's two cameras will be assigned two frames, it is
possible to use one of these frames for the robot's vision-head as well. In this
way, we can reduce the number of frames under consideration. In practice,
we can assume that the frame assigned to the left camera also serves as the
vision-head's frame. Figure 9.33 illustrates the frame assignment when a
robot's vision-head is at its initial and reference configurations. Here, frame
cl and c2 are assigned to the two cameras when the robot's vision-head is
at its actual configuration. And, frames c3 and c4 are assigned to the two
cameras when the robot's vision-head is at its reference configuration. All
these frames can be called the camera's configurations or, views for short.

Accordingly, two possible outputs from the robotic head-eye coordina-
tion are:

• Motion-Transformation Matrix clMc3:
This matrix describes the reference configuration (frame c3) with re-
spect to frame cl. If we know clMC3 or its inverse matrix, it is easy
to choose a feasible path/trajectory which will move frame cl to frame

648 The Fundamentals of Robotics: Linking Perception to Action

I !—• I !—•

Reference Image > p q» *P

Pf Ml3 _ 2 . ^ J < i g h c Camera

*q , v • . ^~/[' r v *

, V [] * I^~7T] ' 2 .' ^ L » f Camera

/ br\ """̂ ^^Segment ' '

z*£ * /
World Frame

Fig. 9.33 Illustration of camera frames/configurations in robotic head-eye coordination
with binocular vision.

c3. For example, one can choose a straight line connecting the origins
of frames cl and c3.

• Feasible Path/Trajectory:
If clMC3 cannot be obtained directly, it is possible to iteratively plan
a feasible path/trajectory in task space, based on information from
images which will move frame cl to frame c3.

9.6.2.3 A Closed-form Solution

The objective of a closed-form solution is to estimate motion-transformation
matrix clMC3 or c3Mci from the reference image (captured at configuration
c3), and two actual images (captured at configurations cl and c2).

Refer to Fig. 9.33. Assume that a reference object contains at least
three line segments:

{(Pi.Qi), 1 = 1,2,3,...}

where Pi and Qi are the two end-points of line segment i.
If calibration matrices {H\,E.2) are known, an easy solution is to esti-

mate the end-points {(Pi, Qi), i = 1, 2, 3,...} in the binocular views (cl, c2)

Decision-Making System of Robots 649

and (c3,c4) first, and then estimate motion-transformation matrix c lMc 3

or c3Mcl from the correspondence of the line segments between views cl
and c3. This solution is called the four-view method. However, it has two
drawbacks:

• It requires two reference images. As a result, it is not applicable to
head-eye coordination with monocular vision.

• It is not a minimum-condition solution. In fact, just three views are
sufficient to estimate motion-transformation matrix clMC3 or c3Mcl.

Because of the above drawbacks, the four-view method is not effective in
either theory or practice. Here, we study the minimum-condition solution
which requires only three views and is called the three-view method. There
are two advantages to the three-view method:

• It is applicable to head-eye coordination with monocular vision because
views cl and c2 can be obtained by moving the camera from its current
configuration to an intermediate configuration. As the kinematics of a
robot's body-head mechanism is usually known in advance, the motion-
transformation matrix between views cl and c2 is automatically known.
If we take advantage of our knowledge of the kinematics, head-eye co-
ordination with monocular vision can be treated as a special case of
head-eye coordination with binocular vision.

• It is computationally efficient because there is one image less than in
the four-view method.

Now, let us introduce the three-view method step-by-step.

Equation of Line Segments in Image Space

Refer to Fig. 9.33 again. Let us consider the image plane in frame c3 (i.e. a
reference frame). Points p and q are the projections of points P; and Q; onto
the image plane in view c3. As the image plane is a two-dimensional space,
a line passing through points p and q can be described in the following
general form:

a»u + b»v + c = 0 (9.52)

where (a, b, c) are the coefficients in the equation describing a line in image
space.

650 The Fundamentals of Robotics: Linking Perception to Action

Equation of Line Segments in Task Space

In Chapter 8, we learned that the index coordinates (u, v) are related to
the real-image coordinates (x, y) by

\U = U°lf (9-53)

According to a camera's perspective projection, we have

Thus, Eq. 9.53 can also be expressed as follows:

{c3y

u = uo + fx-zrz
(9.54)

V = V0+fyl*z

where fx = f/Dx and fy = f/Dy.

Substituting Eq. 9.54 into Eq. 9.52 yields

a' • {c3X} + b'» {c3Y} + c' • {c3Z} = 0 (9.55)

where

{ a' = a • fx

b' = b.fy

d = a • u0 + b • VQ + c.

If we define

c3L, = (a', b', c'Y

and

c3 D /c3 v c3v c3 ry\t
"i = { -*, Y, 6) i

then Eq. 9.55 can be rewritten in the following concise form:

{ c 3 L t | . { c 3 p . } = Q_ (Q 5 6)

Decision-Making System of Robots 651

Eq. 9.56 is also valid for end-point Qi on line segment i. As a result, we
have

r{c3L*}-{c3m = o
{ (9.57)
({<%*} . {c3QJ = 0

In fact, Eq. 9.57 is the image-constrained representation of the line seg-
ment, in task space. This is because c3Lj is the parameter vector computed
from the image and the camera's intrinsic parameters, (u0, vo, fx, fy).

Equations of Deterministic Head-Eye Coordination

We denote:

• (clPi, clQi) the end-points of line segment i in frame cl,
• c3Rci the orientation of frame cl with respect to frame c3 (i.e. the

rotation matrix from frame cl to frame c3),
• c3Tci the origin of frame cl with respect to frame c3 (i.e. the translation

vector from frame cl to frame c3).

According to the motion transformation between frames, we have the
following relationship between coordinates {clPi, clQi) and (c3Pj, c3Qi):

r c 3 P i = {c3i?ci}«{cl^} + {c3rcl}
\ (9.58)

{<:3Qi = {'*Rci}»{clQi} + {c3Tcl}.

By applying Eq. 9.58 to Eq. 9.57, we obtain

r {c3L*} . {c3Rcl} . {clP,} + {c3Li} . {c3Tcl} = 0
\ (9.59)

[{c3Ll} . {=3^} . {<*<&} + {<*Li} • {c3Tcl} = 0.

The subtraction of the two equations in Eq. 9.59 yields

{C3LJ . {c3Rcl} . {clP, - clQi} = 0. (9.60)
Finally, when we have line segment i, we can establish the following

system of equations:

r {*L\} . {*Rcl} . {clP, - *QZ) = 0
< (9-61)
[{c3L*} . {c3i?cl} . {c lPJ + {c3L*} . {c3Tcl} = 0.

Prom Eq. 9.61, we can make the following remarks:

652 The Fundamentals of Robotics: Linking Perception to Action

• A line segment will impose two constraints on (c3i?ci, c3Tci).
• Rotation matrix c3i?ci can be independently estimated by using the

first equation in Eq. 9.61.
• As a rotation matrix has only three independent parameters, a set of

three line segments is sufficient to fully determine rotation matrix c3i?ci
if these three line segments are not in the same plane. However, one
must solve a system of three nonlinear equations.

• In practice, it is possible to treat the nine (9) elements inside c3-Rci as
nine unknowns. In this way, there will be twelve unknowns in Eq. 9.61
because translation vector cZTc\ has three unknowns. Consequently,
a set of six line segments is sufficient to fully estimate these twelve
unknowns by solving a system of twelve linear equations:

I i = l,2,...,6.
{ {c3Li} • {c3Rd} • {CIP1}+{c3m. {*TC1} = o

(9.62)

Here, we call Eq. 9.62 the equations of deterministic head-eye coordina-
tion.

Example 9.14 A binocular vision system is mounted on a mobile plat-
form, similar to the one illustrated in Fig. 9.32. At two different configu-
rations, two pairs of stereo images are captured. In total, there are four
images. But, we only need to use three images to validate the three-view
method of head-eye coordination. The input images are shown in Fig. 9.34.

When we move a mobile platform from one configuration to another, it
is impossible to know the motion transformation between the two config-
urations. This is because the kinematics of a mobile platform cannot be
known exactly due to the possible slippage of the wheels. Therefore, it is
important to be able to estimate the motion transformation from images.
In this example, the binocular vision has been calibrated and thus the cal-
ibration matrices (H\,H2) are known in advance. From Fig. 9.34, we can
see that the reference object contains more than three line segments. In
fact, all its edges can be approximated by line segments.

Fig. 9.35 shows the results of our experiment. Let us first detect the
edge pixels in the input images. (See Fig. 9.35a, Fig. 9.35b and Fig. 9.35c).
Then, let us approximate the edge pixels by line segments and establish
the binocular correspondence of the line segments in the binocular views
(cl,c2) (Fig. 9.35d), and (cl,c3) (Fig. 9.35e).

Decision-Making System of Robots 653

f'ni,-hi,i..a. V * S Eirfin.i.c : ^ w

• • V i , T>

-̂ "ar̂ a / 71
Ifc" ffK' M /Reference Object /

w 1 feT
Fig. 9.34 Input images in robotic head-eye coordination with binocular vision.

The application of Eq. 9.62 yields the estimated rotation matrix c3i?ci
as follows:

/ 0.980591 0.107180 - 0.164174\
c3i?el = I -0.104814 0.994225 0.023033

\ 0.165694 -0.005378 0.986162 /

and the estimated translation vector is

c3Tci = (22.871370cm, -3.478399cm, 1.009764cm)*.

In order to visually judge the correctness of the estimated solution
(c3Rci, c3Tci), let us transform the 3-D line segments from frame cl to
frame c3 (reference frame), and project the 3-D line segments back to the
camera's image plane at frame c3. The superimposition of the 2-D line
segments, estimated from the reference image, and the projected 3-D line
segments is shown in Fig. 9.35f. We can see that the superimposition is
quite accurate.

654 The Fundamentals of Robotics: Linking Perception to Action

_ ^

j___ ,-...„ _ -.„ . ^ _̂-_ _J

I
(a) Edge map of left image (b) Edge map of right image (c) Edge map of reference image

(d) Correspondence within (cl,c2) (e) Correspondence within (cl,c3) (f) Superimposition in reference view

Fig. 9.35 Results of a closed-form solution for robotic head-eye coordination with binoc-
ular vision.

Example 9.15 The closed-form solution for robotic head-eye coordina-
tion can also be applied to solve a critical issue in augmented reality. In
engineering visualization and medical applications, it is necessary to gener-
ate what is called look-through images (also known as augmented images).
For example, in surgery, a doctor can only see what is visible in his/her
field of vision. However, if the doctor can see look-through images, it will
make operations easier.

As shown in Fig. 9.36, look-through images are obtained by superim-
posing virtual images onto actual images. The virtual images contain other
relevant information which are absent or invisible in actual images. In or-
der to make look-through images realistic, the common areas in virtual
and actual images must be perfectly superimposed. This indicates that a
critical issue in generating look-through images is to position the virtual
binocular-vision at a configuration with respect to the virtual scene which
is exactly the same as the configuration of the actual binocular vision with
respect to the actual scene. This is a difficult problem because the actual
binocular-vision is mounted on the head of a user (e.g. surgeon) who may

Decision-Making System of Robots 655

Actual Images

— I — f — 1 | <l~~^?2$7

Look-through Images /V_i yAct\l&[S c e n e / ^
1 r / ' 1 / /

Virtual Images V " ' " ' (ciD c3T "\ I [Reference

| / ' / ^ I '''••\Jj^--^T' view<c3>

* 1 I, .1 s"^ /Virtual Scene/
Head-Eye Reference Image ^— - / . /

Coordination I I ^ _ - / ^ /

^ ^ I I /
Fig. 9.36 Illustration of how the problem of positioning virtual binocular vision, in a
virtual scene, can be treated as a problem of head-eye coordination.

change the head's posture depending on various needs.
Interestingly enough, the problem of positioning virtual binocular-vision

in a virtual scene can be treated as a problem of head-eye coordination. In
this case, the reference image is captured by a virtual camera at a refer-
ence view (frame c3), as shown in Fig. 9.36. The two actual images and
virtual reference image are the input to the three-view method of head-eye
coordination. The output is motion transformation (c3i?ci, c3Tci) which
describes the posture of the virtual binocular vision with respect to the
reference view (frame c3).

oooooooooooooooooo

656 The Fundamentals of Robotics: Linking Perception to Action

9.6.2.4 Iterative Approaches

There are two limitations to closed-form solution(s) of head-eye coordina-
tion because of the following two necessary conditions:

(1) The two calibration matrices (Hi,H2) must be known in advance in
order to compute the end-points (c lPi ; c l Qt) on the 3-D line segments
in frame cl. We know that any change in the camera's parameters
requires the recalibration of the camera. As a result, a closed-form
solution is not robust with regard to changes in a camera's parameters.

(2) The reference image must be available in advance. A reference image is
an image captured at a reference view in front of a reference object. For
some applications, we may not have any reference image even though
a reference object is present in a scene, because we may not be able to
position the camera at a reference view in advance in order to capture
the reference image. And, even if reference images are available, it is
possible that they are already obsolete for whatever reason (e.g. change
of reference object).

Because of the above limitations, it is interesting to investigate the pos-
sible application of qualitative binocular-vision to robotic head-eye coordi-
nation. Interestingly enough, it is possible because we can place the frame,
assigned to the robot's vision-head, in front of its binocular vision and treat
it as the initial configuration. In this way, it is possible to plan a feasible
path/trajectory which brings the reference view back to the frame that is
assigned to the robot's vision-head. Finally, the planned path/trajectory
can be executed in reverse by the robot.

Mathematically, a set of three points fully defines a frame in three-
dimensional space as long as these three points are not on the same line.
Let us choose three noncollinear points (A, B, C) to represent the frame
assigned to the robot's vision-head, as shown in Fig. 9.37. In this way, head-
eye coordination becomes a problem of planning a feasible path/trajectory
which brings a set of at least three noncollinear points to a reference view.
As the robot's vision-head moves together with these three points, the final
result is the positioning of the robot's vision-head at a reference view.

In order to apply the principle of qualitative binocular-vision, we sim-
ply attach an orthogonal coordinate-system to each of these three points
(A, B, C), as shown in Fig. 9.37. In this way, each point has its own image-
to-task mapping matrix. Then, from Eq. 9.49, we can establish the follow-
ing system of equations for motion planning under the context of head-eye

Decision-Making System of Robots 657

(a) Left Image Plane

100 (c) Camera and Scene

200

Reference View

300^ /

400 • / •
250 - r Head Posture

B • /

5001 , , . . J . . . • /

100 200 300 400 500 A /

150. 7

(b) Right Image Plane WQ f$-1T'X

100 ^T Y
Y

0>
200 500 ^ ^ \ ^

4 0 ° \ | Z . ^ - ^ 4 0 0
300 300 \ . ^ ^ ^ - - 3 0 0

200 ^ \ v I jr"" '2OO

4 0 0 1 0 0 ^ 100

0 0
snn I ^ ^ _

100 200 300 400 500

Fig. 9.37 Illustration of the representation of a head frame using a set of three non-
collinear points (A, B, C).

coordination:

r APA =9A»AA» AIA

I APB = gB»AB» A/B (9.63)
[APC = gc»Ac» Ale

where

• (9A,9By 9c) are three proportional gains (or gain matrices),
• (AA, AB, AC) are image-to-task mapping matrices corresponding to

points (A,B,C),
• (APA, APB, APC) are three displacement vectors in task space which

act on points (A, B, C),
• (AIA,AIB,AIC) are three displacement vectors in image space ob-

served by the robot's binocular vision.

Example 9.16 For the simulation setup shown in Fig. 9.37, the calibra-
tion matrices (Hi, H2) of the binocular vision's two cameras are

/ 3.6561 2.5600 0.0000 -146.1665\
H1 = j 0 2.5600 - 3.6561 987.2118 I

\ 0 0.0100 0.0000 1.0000 /

658 The Fundamentals of Robotics: Linking Perception to Action

and

/ 3.6561 2.5600 0.0000 - 328.9694 \
H2= \ 0 2.5600 - 3.6561 987.2118

V 0 0.0100 0.0000 1.0000 /

(NOTE: The two image planes are parallel to one another).
In the reference frame, a set of three non-collinear points are chosen to

represent the posture of the robot's vision-head. The coordinates of these
three points are

{ A = (100cm, 0cm, 180cm)
B — (100cm, 0cm, 220cm)
C = (140cm, 0cm, 220cm).

By attaching an orthogonal coordinate-system to each of these points,
it is possible to obtain the corresponding image-to-task mapping matrices.
They are

/ 0.3344 0.0000 -0.0650 0.0000 \
AA = -0.6781 0.0000 0.6874 0.0000

\ 0.1115 -0.1370 -0.1130 -0.1370/

/ 0.3344 -0.0000 -0.0650 - 0.0000 \
AB = I -0.6781 - 0.0000 0.6874 - 0.0000

V-0.1115 -0.1370 0.1130 -0.1370/

and

/ 0.1061 0 0.1679 0 \
Ac = I -0.6452 0 0.6452 0 I .

\-0.1061 -0.1370 0.1061 -0.1370/

Now, we set

(9A,gB,9c) = (0.3,0.3,0.3)

and choose three points in reference view (see Fig. 9.38) with the coordi-
nates

{ A = (100cm, 300cm, 210cm)
B = (100cm, 300cm, 250cm)
C = (140cm, 300cm, 250cm).

Decision-Making System of Robots 659

(a) Left Image Plane

100 (c) Camera and Scene

b c
200 1 c .

300 a/ Reference View

" 300 ^ /

400 /
250- c Head Posture

B . /
500i . . , , J •. •. /

100 200 300 400 500 A -._'•. /

150, ". '•. "•; ,

(b) Right Image Plane 100 '' •. " ^ *

100 50~ l-T V

Y

200 -2X 500 ^ \

,. "* 4 0 0 ^ \ . I ^^"^400
300 â ,.--' 300 \ ^ I ^ ^ ^ ^ ^ 3 0 0

200 ̂ ^ -y I _**<rK^~~^ 200

400 100 sJL^--^100

0 0

soot , J
100 200 300 400 500

Fig. 9.38 Example of results obtained from the iterative solution to head-eye coordina-
tion.

The application of Eq. 9.63 yields the planned paths shown in Fig. 9.38.
We can see that these paths almost follow a straight line.

OOOOOOOOOOOOOOOOOO

Example 9.17 Head-eye coordination provides an effective solution to
a range of image-guided positioning applications, such as missile guidance,
autonomous landings of aircraft, etc.

Figure 9.39 illustrates the autonomous landing of a helicopter. We
mount the binocular vision system at the bottom of the helicopter's body.
And, they form a vision-head together. At the base of the helicopter's sup-
porting legs, we place a rectangular landing guide, the four corners of which
will represent the frame that is assigned to the helicopter's vision-head. The
desired action here is to land the helicopter on top of the helipad. Clearly,
this action can be translated into the problem of positioning the landing
guide at the reference configuration represented by the helipad.

Figure 9.40 shows the simulation setup. For display purposes, the binoc-
ular vision's two cameras are indicated by two small triangles. The frames
of the vision-head and the reference are represented by four corner points.
In this setup, the Z axis is perpendicular to the ground.

660 The Fundamentals of Robotics: Linking Perception to Action

' ~ "i ___̂ —Left Camera

Right Camera ^ " " ^ F L

Landing Guide

j r ^ Helipad J^

Fig. 9.39 Illustration of how an autonomous landing of a helicopter is seen as a problem
of head-eye coordination.

For the autonomous landing of aircraft, it is desirable to approach the
landing area slowly in order to avoid sudden impact with the ground. In-
terestingly enough, it is easy to perform this slow approach by choosing a
small proportional-gain for the AZ component in Eq. 9.63.

In this example, we choose proportional-gain matrix g to be

/0.5 0 0 \
g = 0 0.5 0 .

\ 0 0 0.2/

The planned and executed path is shown in Fig. 9.41. We can see that the
helicopter approaches the helipad smoothly. During landing, the images
of the landing guide remain constant. However, the images of the helipad
follow the path which first moves down and then converges towards the
images of the landing guide.

000000000000000000

9.6.3 Leg-Eye Coordination

The aim of leg-eye coordination is to automate the generation of a feasible
path/trajectory for the generic action, commonly known as image-guided

Decision-Making System of Robots 661

(a) Left Image Plane
Oi

Image of Landing Guide
100 \ . (c) Camera and Scene

200 \ m ^ .
300 j

4 M ' ^ H e i i p a d 100. ^ G u i d e

5001 . . , . J s n /
0 100 200 300 400 500 /

60 v ^ ^
Left Camera > ^ < - ^ > H e | i p a d

(b) Right Image Plane 4Q Right Camera ^ ^^^^ (Reference Frame)
0 , j - • ,

20. /
100 f

s~—T °-L z <C^>
200 . / 7 ^ v . "

300 5 ^ ^ V j ^ X ^ ^ - ^ 100

400 °"^^^^--0

•inn I
0 100 200 300 400 500

Fig. 9.40 Simulation setup for testing an autonomous landing of a helicopter.

locomotion. However, in special cases, leg-eye coordination is equivalent to
hand-eye coordination (e.g. when a robot kicks a ball with its foot).

For the sake of simplicity, let us study leg-eye coordination dedicated to
generic actions, such as walking, running, cycling, driving, etc. As shown
in Fig. 9.42, image-guided locomotion has two subproblems:

• Image-guided Road Following:
For example, the first robot in Fig. 9.42 must determine a feasible
path/trajectory which will keep its body on the road.

• Image-guided Target Following:
In Fig. 9.42, the second robot can treat the first one as a moving target.
Thus, the problem becomes how to generate a feasible path/trajectory
which will position a robot (e.g. the second robot) at a relative config-
uration with respect to the moving target (e.g. the first robot).

9.6.3.1 Image-Guided Road Following

In the proximity of a robot, the road surface can be approximated by a
plane. As the plane is a two-dimensional space, there is a deterministic
relationship between the image plane and the two-dimensional plane in

662 The Fundamentals of Robotics: Linking Perception to Action

(a) Left Image Plane
Oi

1 0 0 iT^^n^r (c) Camera and Scene

300
120^

400
100,

5001 . . , , J
0 100 200 300 400 500

(b) Right Image Plane 4fl "^^P^^^^K

^ ^ \ Y I v ^^^^
300 5 0 \ V L - " ^ ^ ^ " ^ 10°

400 o"_---o

snot
0 100 200 300 400 500

Fig. 9.41 Simulation results of the autonomous landing of a helicopter.

task space (see Chapter 8).
As illustrated in Fig. 9.43, if D denotes the inverse projective-mapping

from the image space to a two-dimensional plane, we have

(X\ (u\
S » \ Y \ = D » \ V \ (9.64)

where (X, Y) are the coordinates of a point in road space and (w, v) the
index coordinates of its image.

According to Eq. 9.64, the automatic generation of a feasible
path/trajectory for image-guided road following involves the following
steps:

• Step 1: Determine the inverse projective-mapping matrix D using cal-
ibration.

• Step 2: Detect road boundaries in image space using color identification
of landmarks (or edge detection followed by edge linking).

• Step 3: Back-project road boundaries from image space to road space
using Eq. 9.64.

Decision-Making System of Robots 663

Fig. 9.42 Illustration of image-guided locomotion.

• Step 4: Plan a feasible path that is close to the central line of the road.
• Step 5: Generate a trajectory according to a time constraint.

Example 9.18 Parking is a special type of road following. In a parking
maneuver, the initial and final configurations are available. In fact, the
initial configuration is the actual posture of the robot (or vehicle), and the
final configuration is determined by the parking slot available.

Figure 9.44 shows the results of image-guided autonomous parking. The
process starts with color identification of the input image (Fig. 9.44a). In
this example, landmarks are painted in red. Thus, we first identify the red
pixels (Fig. 9.44b). Then, we filter out the small clusters of red pixels. For
a cluster corresponding to a landmark, a curve-fitting process results in two
angled line segments (Fig. 9.44c).

Since the inverse projective-mapping matrix D is known in advance
(through calibration), the angled line-segments can be back-projected onto
the road surface (Fig. 9.44d). In road space, the initial and final configu-
rations of the robot can be represented by two rectangles. Finally, a path
connecting these two configurations can be planned using a fifth-order poly-
nomial function which allows us to impose a limit on maximum curvature.

•ooooooooooooooooo

664 The Fundamentals of Robotics: Linking Perception to Action

£— Image Space

/

Road Space

Fig. 9.43 Illustration of image-guided road following.

9.6.3.2 Image-Guided Target Following

Target following is a common scenario in transportation. When we drive,
we often follow a car at a safe distance. When a team of robots move
together in formation, one robot must follow another at a certain distance.
Target following, therefore, is an important behavior.

As shown in Fig. 9.45, the problem of target following can be translated
into a problem of head-eye coordination. In fact, we can assign a frame
to a target, called a target frame. Interestingly enough, in image-guided
target following, the frame assigned to a vision-head called a head frame
for short, can be anywhere. Thus, we choose to put it in front of the
robot's body. For example, if a safe distance is about 6 meters, we can
place the head frame 6 meters in front of the robot's body. In this way,
the problem of target following becomes how to automatically generate a
feasible path/trajectory which ensures that the head frame coincides with
the target frame. Clearly, this problem can be solved using the iterative
approach to head-eye coordination.

Example 9.19 Figure 9.46 shows a simulation of image-guided target
following. The calibration matrices (Hi,H2) of the binocular vision's two

Decision-Making System of Robots 665

^ t ' * 7*i^ ••V3li[iMiJ Image Space IM|

(a) Input l!..ae- fl>) Pixels of Red Color

Image Space Kiiud Spnix

(c) Line Approximation (d) Back -projection and Path

Fig. 9.44 Example of image-guided parking.

cameras are

/ 0.0096 0.0026 0.0000 - 0.7949 \
H-i = 103 • I 0 0.0026 - 0.0096 2.1668

\ 0 0.0000 0.0000 0.0010 /

and

/ 0.0096 0.0026 0.0000 - 1.2726 \
H2 = 103 • I 0 0.0026 - 0.0096 2.1668

V 0 0.0000 0.0000 0.0010 /

In fact, these two camera frames are located respectively at

(110cm, - 100cm, 200cm)

and

(160cm, - 100cm, 200cm).

666 The Fundamentals of Robotics: Linking Perception to Action

y I . . i • l i1 if •: • t i w f f i ~'-

I / jgMmgL.iiitrLjL

^ :-'.J!apW«S1 Frame

Fig. 9.45 Illustration of image-guided target following.

Now, we choose three points to represent the head frame. In the reference
frame (world frame), the coordinates of these three points are

{ A = (100cm, 500cm, 180cm)
B = (100cm, 500cm, 220cm)
C = (140cm, 500cm, 220cm).

At each of these three points, an orthogonal coordinate-system, which is
parallel to the reference frame, is attached. As a result, the corresponding
image-to-task mapping matrices are

/ 0.8333 0 -0.2083 0 \
AA = -6.6667 0 6.6667 0 I ,

\ 0.2083 -0.3125 -0.2083 -0.3125/

/ 0.8333 0 -0.2083 0 \
AB = I -6.6667 0 6.6667 0

\-0.2083 -0.3125 0.2083 -0.3125/

and

/ 0.2083 0 0.4167 0 \
Ac = -6.6667 0 6.6667 0 I .

V-0.2083 -0.3125 0.2083 -0.3125/

Decision-Making System of Robots 667

(a) Left Image Plane

100 (c) Camera and Scene

200 b e

a • . * , Head Frame

300 ' . ••b •.£ /
. X ^ 300^ /

400 \ 2 5 0 Y J . Y ^ - X Target Frame

5Ool . . , , J Y|.X- ' . /
100 200 300 400 500

• ' -. B-v.C
150, - . N

• . A
(b) Right Image Plane 1 0 Q "*

100 5 0~ L-T Y
Y •

0>
200 b c 5 0 0 \ ^ ^

a '. ' . 400 ̂ ^ " \ I ^ 400

300 • .\ -^ 3 0 0 ^~-^ ^ ^ ^ - 3 0 0
200^^, _ J T ^ 2 0 0

400 \ 1 0 0 ^ ^ - "Too
0 0

5001 . .
100 200 300 400 500

Pig. 9.46 Example of image-guided target following.

Similarly, the target frame is also represented by a set of three points. At
a time-instant, assume that the coordinates of the three points representing
the target frame in the reference frame are

{ A = (150cm, 300cm, 130cm)
B = (150cm, 300cm, 170cm)
C = (190cm, 300cm, 170cm).

The above settings simulate the situation when one robot follows too
closely behind another. The generated path/trajectory must increase the
relative distance so that the head frame will coincide with the target frame.

Now, we choose the proportional gains (gA,9B,gc) to be (0.2,0.2,0.2).
The application of Eq. 9.63 yields the paths shown in Fig. 9.46c. Again,
the paths almost follow a straight line.

oooooooooooooooooo

9.7 Summary

In this chapter, we learned that the ultimate goal of robotics research is to
develop autonomous robots which can be deployed in industry and society.

668 The Fundamentals of Robotics: Linking Perception to Action

We also learned that a robot's autonomy can be achieved at three levels: a)
action-execution level, b) task-execution level, and c) goal-execution level.
And, a robot's autonomy depends on its decision-making system.

Decision making is a complex process. This is because of uncertainty
and redundancy which may be present at both the input and output of a
decision-making process. We now know that possible methods for dealing
with uncertainty and redundancy include: a) application of expert knowl-
edge, b) statistical inference, c) fuzzy inference, and d) application of neural
networks.

Under the motion-centric theme in robotics, the primary concern of
a robot's decision-making system is to automatically break down the de-
scription of a desired goal into detailed descriptions of motions, in terms
of feasible paths/trajectories. For this reason, we studied the topics of: a)
task planning, b) action planning, and c) motion planning.

We know that the objective of task planning is to break down the de-
scription of a desired goal (input) into detailed descriptions of a sequence
of desired tasks. So far, this level of decision-making still requires human
intervention.

Similarly, the objective of action planning is to break down the descrip-
tion of a desired task into detailed descriptions of a sequence of desired
actions. Again, this level of decision-making requires human intervention.

As for motion planning, the objective is to identify the initial and final
configurations of a robot's end-effector from the action description first,
and then plan a feasible path/trajectory which will move the robot's end-
effector from its initial configuration to the final configuration.

Subsequently, we studied motion planning in task space which requires
a priori knowledge of the geometric model of the scene. We know that
a feasible path can be easily obtained from a path map constructed in a
discrete, normalized workspace if the initial and final configurations are
given as input.

In order to gain autonomy at the motion-execution level, it is necessary
to automate motion planning. Otherwise, autonomy attained at higher lev-
els has no use because motion planning still requires human intervention.
For this reason, we studied the important topic of image-guided motion
planning in task space. And, we learned about three typical scenarios: a)
hand-eye coordination, b) head-eye coordination, and c) leg-eye coordina-
tion.

Hand-eye coordination is synonymous with image-guided manipulation.
We learned a closed-form solution, which is based on 3-D reconstruction.

Decision-Making System of Robots 669

However, the most important method of hand-eye coordination is the iter-
ative approach, which is based on qualitative binocular-vision. We stud-
ied an image-guided motion-planning function. We know that there is a
constant mapping matrix called an image-to-task mapping matrix which
directly maps paths in image space to corresponding paths in task space.
This mapping is robust, stable, and effective.

Head-eye coordination is synonymous with image-guided positioning.
We studied a closed-form solution which makes use of three views. This
solution is also applicable to solving the interesting problem of augmented
reality. By placing the head frame (assigned to a vision-head) in front of the
binocular vision, the image-guided motion-planning function, derived from
hand-eye coordination, is also applicable to solving the problem of head-
eye coordination. This illustrates the strong similarity between qualitative
binocular-vision and human vision under the context of visual guidance.

Leg-eye coordination is synonymous with image-guided locomotion.
There are two subproblems under this topic: a) image-guided road follow-
ing and b) image-guided target following. We learned that the first problem
can be easily solved using inverse projective-mapping of 2-D vision, while
the second can be treated as a problem of head-eye coordination.

A robot's mental ability to automate motion planning is a decisive step
towards autonomy. Future research in robotics will certainly look into the
issues of automatic planning at task and action levels.

9.8 Exercises

(1) What is automation?
(2) What is autonomy?
(3) What is an autonomous system?
(4) What is an automated system?
(5) What is an intelligent system?
(6) What are the possible inputs to a decision-making process?
(7) What are the possible outputs from a decision-making process?
(8) What are the possible difficulties in decision making?
(9) What is the necessary condition for a robot to become autonomous?

(10) What are the possible levels of autonomy that a robot is likely to reach?
(11) What are the possible generic actions relevant to the generic task of

"walking" ?
(12) What are the difficulties in automating a task-planning process?

670 The Fundamentals of Robotics: Linking Perception to Action

(13) What are the difficulties in automating an action-planning process?
(14) What are the difficulties in automating a motion-planning process?
(15) What is a path?
(16) What is a trajectory?
(17) Explain the physical meaning of Eq. 9.9.
(18) Explain how to use a cubic spline to represent a path.
(19) What is a holonomic constraint?
(20) What is a nonholonomic constraint?
(21) Why must a feasible path satisfy the constraint of maximum limit im-

posed to its curvature?
(22) What is the hand-eye coordination problem statement?
(23) What is the head-eye coordination problem statement?
(24) What is the leg-eye coordination problem statement?
(25) Derive an image-guided motion planning function.
(26) In Example 9.14, what is the equivalent rotation axis of c3i?ci? And,

what is the equivalent rotation angle?
(27) Project 1: Implement a motion-planning algorithm in task space.
(28) Project 2: Implement the iterative approach for hand-eye coordination.
(29) Project 3: Implement the three-view method for robotic head-eye co-

ordination.
(30) Project 4: Implement the iterative approach for head-eye coordination.
(31) Project 5: Implement a simulation of a flying vehicle making an au-

tonomous landing.
(32) Project 6: Implement a simulation of a robotic hand catching a moving

target.

9.9 Bibliography

(1) Balch, T. and R. C. Arkin (1999). Behavior-based Formation Control
for Multi-robot Team, IEEE Trans, on Robotics and Automation, 14.

(2) Brady, M., J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez and M.
T. Mason (1982). Robot Motion: Planning and Control, MIT Press.

(3) Cameron, S. and P. Probert (1994). Advanced Guided Vehicles, World
Scientific.

(4) Desai, J. P., J. P. Ostrowski and V. Kumar (2001). Modelling and
Control of Formations of Nonholonomic Mobile Robots, IEEE Trans,
on Robotics and Automation, 17, 6.

(5) Dubois, D. and H. Prade (1988). Possibility Theory, Plenum Press.

Decision-Making System of Robots 671

(6) Hashimoto, K. (1993). Visual Servoing, World Scientific.
(7) Hosoda, K and M. Asada (1994). Versatile Visual Servoing without

Knowledge of True Jacobian, IEEE International Conference on In-
telligent Robots and Systems.

(8) Latombe, J. C. (1991). Robot Motion Planning, Kluwer Academic.
(9) Meystel, A. (1991). Autonomous Mobile Robots, World Scientific.

(10) Mezouer, Y. and F. Chaumette (2000). Path Planning in Image
Space for Robust Visual Servoing, IEEE International Conference on
Robotics and Automation.

(11) Walpole, R. E., R. H. Meyers and S. L. Meyers (1998). Probability
and Statistics for Engineers and Scientists, Prentice-Hall.

Chapter 10

Prospects

Towards a Sociable Robot

An industrial robot is strongly characterized by its ability as a repro-
grammable machine. This makes it a machine tool for manufacturing.
However, motivation behind the development of the humanoid robot should
go beyond the scope of simply making another machine tool for manufac-
turing. The ultimate goal of humanoid-robot research should be to develop
sociable robots which may or may not be shaped like humans.

A sociable creature means an entity which is able to acquire and exhibit
coherent social behaviors without reprogramming. A human is a sociable
creature, as most of our social behaviors are learned through interactions
with others rather than from genetic programming and reprogramming. A
robot will become sociable if it evolves to the stage where it can be deployed
anywhere after a one-time programming (i.e. the birth of the robot). We
call this property Program-Once and Run-Everywhere (or PORE, for short).
A sociable robot will be a PORE robot.

Obviously, a sociable or PORE robot must be educable. In this way, a
less-experienced robot can learn from a more-experienced robot, or human
master, without being reprogrammed. A robot will become educable if and
only if it has an innate learning mechanism. Accordingly, a robot with
an innate learning mechanism will not depend on reprogramming. How to
develop an innate learning principle for educable robots is still an unresolved
issue. And, as long as it is unresolved, there is no point in speculating on
sociable robots.

673

674 The Fundamentals of Robotics: Linking Perception to Action

An Energy-efficient Mechanism

From a mechanical point of view, the human body has an innate mechanism
which evolves quantitatively but not qualitatively. Unless an external cause
alters this mechanism, it remains qualitatively the same. Similarly, we can
say that today's robots have an innate mechanism with stable kinematic
and dynamic properties.

However, the human biomechanical system is highly energy-efficient.
Humans can easily lift an object heavier than the weight of the arm. In
general, this is not true of today's industrial or humanoid robot.

Intelligent Control

From a dynamics point of view, the purpose of control is to achieve a
desired dynamic behavior by altering the intrinsic dynamics of a system
under control with a set of externally-added control and sensing elements.
It is challenging to design a good controller for a complex dynamic system
like a robot. There are two difficulties. The first one is uncertainty. A robot
is a dynamic system with a variable configuration which largely contributes
to the variation in the robot's dynamic property. The second difficulty is
redundancy. When there is a task as input, there may be multiple feasible
solutions with regard to the robot's configuration and the control strategy
of its controller.

In control engineering, the methodology of robust control aims at deal-
ing with uncertainty in a control system, while the commonly-called intelli-
gent control copes with the issue of redundancy. Mathematically, the goals
of robust control and intelligent control are related to the principle of con-
trol optimization. Then, the question is: What is the innate principle for
control optimization, given the innate structure (i.e. the feedback-control
loop) of a control system? In other words, could a robot's control system
be programmed once, and run everywhere without reprogramming?

Behavior Development and Learning

The human brain is a complex neural computing network with well-
established partitions and pathways of mappings among the partitions of
nerve cells. A human brain contains about 100 billion nerve cells (i.e. neu-
rons) and 1000-5000 billion glial cells (i.e. glia). At birth, almost all the

Prospects 675

neurons are present. However, the glial cells form as the brain grows. It is
the neurons, not the glial cells, which are in charge of all the sensory-data
processing, decision-making, and sensory-motor controls.

In addition, the transmission speed of neural information (i.e. potential
signal or pulse) among the neurons is in the range of 0.5 meters/s to 120
meters/s. Therefore, from an engineering point of view, a human brain's
neural computing network is a stable and innate system. Then, the question
is: What would a robot's stable and innate information system be which
could function continuously during its lifetime?

A distributed & networked platform of microprocessors is a kind of
modular system which is almost infinitely expandable. However, computing
hardware or architecture without the support of appropriate software (i.e.
an operating system) has very limited usage (if any). The question here is:
When will a distributed real-time operating system, supporting a cluster of
networked heterogeneous microprocessors, become a reality?

A sociable robot should not only learn, but also develop its own mental
and physical capabilities. The most important part of a robot's information
system is the information process running inside it. It is still not clear
what information process is supporting the development and learning of
a robot's behaviors. In other words, the question is: What is the innate
mechanism behind autonomous mapping among sensors, actuators, and
decision-making modules?

Real-time Visual Perception

A human receives a large amount of information from the visual-sensory
system. The brain is able to respond in a timely manner to visual-sensory
input no matter what the size of the visual information. The quality and
timely responsiveness of the human visual-perception system significantly
contributes to the degree of autonomy that we enjoy.

For a sociable robot to act and interact autonomously, it is clear that
the robot's visual-perception system must produce coherent, consistent, and
timely results. With the quality and timely responsiveness of the visual-
perception system, the next question is: Can all motion-centric actions be
controlled in image space without any reprogramming (e.g. without human
intervention in motion planning)?

In addition, human vision performs well in image-understanding and
object-recognition. We can effortlessly build a virtual representation of the

676 The Fundamentals of Robotics: Linking Perception to Action

real world although the result is highly qualitative. So far, it is not clear
what the innate principle underlying the powerful visual-perception process
of human vision is. Could a sociable robot perceive and describe a scene or
object in a timely manner in the near future ?

Emotion and Language

A human being is a complex decision-making system which exhibits multi-
ple behaviors. Our thinking, learning, perception, and action are strongly
dependant on a unique entity known as a belief system. The dynamism of
our belief system is usually reflected through our expressions of emotion.
If a robot is sociable, it should also have the ability to express emotions.

Interestingly enough, a belief system is not genetically preprogrammed.
A belief system is gradually built up based on outcomes of actions, behav-
iors, and linguistic input from others (e.g. what others say). Then, the
questions are: What is the innate principle underlying a belief system? Is
a natural language the basic building block of a belief system (e.g. the
statement of goals, the statement of outcomes, the statement of values, the
statement of rules, the statement of expectations, etc)?

Intelligence and Consciousness

We are able to consciously, and intelligently, coordinate behaviors which
may be simple or very elaborate. The questions are: What is human con-
sciousness? Is it a kind of resonance created by the multiple perception-
decision-action loops concurrently running inside our brain? Could con-
sciousness be imitated by an artificial information system?

Promising Future

Robotics is a fascinating field. There are many challenges, but also many
opportunities waiting ahead.

Index

2-D vision, 536 Register, 319
3-D reconstruction Affine transformation, 634

Direct, 551 Agent, 9, 305
Indirect, 562 ALU, 315, 437

3-D scanner, 537 Register, 320
3CCD camera, 402 Ambiguity, 580

Ambition, 579
A/D conversion, 433 Analog, 354
A/D converter, 241, 354, 356 Analogue
Absolute optical encoder, 251 Image, 417
Absolute stability, 201, 204, 213, 276 Video, 417
Abstraction, 602 Video camera, 417
Abstraction process, 594 Angle of
Acceleration, 27 Incidence, 387

Vector, 118 Reflection, 387
Accumulator, 319 Refraction, 388
Accuracy, 241, 560 Angular
Acknowledgement, 353 Acceleration, 40
Acting Velocity, 39, 80, 84

Body, 120 Angular momentum, 119
Torque, 120 AON, 598

Action, 19, 20, 579 Aperture, 400
Action plan, 594 Approaching vector, 87
Active pixel, 408, 415 Approximation line, 523, 524
Active signal Arm manipulator, 151

Capture, 373 Articulated robot, 64
Output, 373 Artificial

Actor, 305 Body, 8
Actuation elements, 116, 144 Intelligence, 1, 15
Actuator, 23, 125 Artificial intelligence, 303
Address, 364 Artificial mind, 308

Buss, 316 Artificial vision, 446

677

678 The Fundamentals of Robotics: Linking Perception to Action

Asimov's laws, 242 Qualitative, 633, 634
Assembly, 10 Virtual, 548
Assembly language, 323 Bio-metrics, 449
Assembly program, 323 Bit, 313
Asynchronous serial I/O, 362, 367 Blind spot, 393
Atom, 128 Blue sensitive, 395
Atomic structure, 380 Body-head, 645
Auditory, 239 Bottom-up constraint, 590
Augmented reality, 654 Brain power, 12
Auto-iris, 413 Branch, 615
Automated Branching, 331

Action, 575 Break, 330
Machine, 626 Brightness, 501
System, 574 Brush-less DC motor, 138

Automation, 6, 574 Brush-type DC motor, 136
Autonomous Buddy, 17

Landing, 659 Bus topology, 352
Manipulation, 644 Busy state, 368
Parking, 663 Byte, 313
Positioning, 645 Byte framing, 369
Robot, 573, 627
System, 575 C++ programming language, 327

Autonomous behavior, 448 C-programming language, 323
Autonomy, 14, 445, 575 Calibration, 264
Axis, 27 Calibration matrix, 631

Calibration matrix, 532
Backslash, 142 Calibration rig, 455, 539
Backward recursive algorithm, 179 Camera, 396
Base vector, 28 Calibration, 435
Baud rate, 369 Frame, 430
Bayer Pattern, 402 Camera parameters, 633
Bayes's theorem, 585 Camera's configuration, 647
Bearing, 269 Carbon brush, 137
Begin flag, 364 Cartesian, 28
Behavior, 18, 308 Coordinate System, 28
Behavior development, 675 Coordinates, 28
Behavior development and learning, Robot, 48, 63

308, 310 Space, 28, 70, 94
Behavior planning, 592 Cartesian frame, 157
Belief, 19, 579 Cartesian space, 267
Belief system, 307, 676 Case, 332
Bevel-gear mechanism, 151 Causality, 516
Bidirectional clutch, 148 CCD, 355, 413
Binary link, 60 Image sensing cells, 408
Binocular correspondence, 553 Pixel, 413
Binocular vision, 547, 629 CD-ROM, 344

Index 679

Center of gravity, 156, 171 Composite camera, 564
Center of projection, 429 Composite video, 421
Central vision, 395 Computation, 237
Centrifugal, 269 Computational task, 335
Centrifugal acceleration, 40, 617 Computer, 15
Centrifugal and Coriolis effects, 194 Computer graphics, 446
Certainty, 582 Computing module, 438
Chromaticity, 501 Configural
Chromaticity diagram, 422 Initial, 629
Chrominance, 448 Configuration, 41, 63
Circle of confusion, 399 Constraint, 159
Circular Final, 604, 630

Acceleration, 38, 39 Initial, 604
Velocity, 38, 39, 79 Intermediate, 606

Circular arc, 618 Space, 158
Circular spline, 143 Confirmation, 580
Class, 327 Connectivity, 499
Class cell, 504 Consciousness, 676
Closed dynamic chain, 121 Constrained motion, 291, 598
Closed-loop control, 202 Constraint, 158, 577
CMOS, 400 Equation, 159

Image sensing cells, 408 Contact force, 118, 126
Coaxial, 144 Contact friction, 248
Cognition, 237 Contact-based motion sensor, 250
Coil, 130, 133 Context, 578
Coil phase, 226 Continuity, 451, 466
Collision-free, 598 Continuous variable transmission, 150
Collision-free path, 611 Continuous-time system, 204
Color Contour, 489, 514, 520

Coordinates, 426 Contour splitting, 515
Correction, 403 Control, 23
Decoder, 423 Action, 202
Detection, 507 Bus, 316
Filter, 397, 401 Law, 203
Image, 497 Logic unit, 318, 321
Perception, 449 Objective, 202, 266
Space, 421 Performance, 204
Vision, 395 Signal, 203

Colorimeter, 450 Control elements, 221
Commerce, 2 Control law, 574
Communication, 237, 309 Control objective, 276
Commutation, 251 Control optimization, 674
Commutator, 136 Control system, 136

Plate, 137 Controllable, 131
Compiler, 324 Controller, 276
Component video, 420 Action, 628

680 The Fundamentals of Robotics: Linking Perception to Action

Goal, 628 Density, 131
Motion, 627 Depth of field, 400
Task, 628 Derivative time-constant, 278

Convolution, 459 Design of experiments, 6
Convolution kernel, 459 Desired output, 203
Cooperative multi-tasking, 336, 339 Deterministic network, 351
Coordination, 237 Devanit-Hartenberg, 71

Limb-eye, 25 Development and learning, 602
Coriolis matrix, 269 Developmental principle, 106, 282
Cornea, 393 DH parameter, 75
Corner, 489, 496 Diaphragm, 393
Correct match, 564 Difference equation, 205, 637
Cosine theorem, 90, 620 Differential
Cost function, 277 Kinematics, 78
Coupling, 145 Transformation, 45

Device, 141 Differential equation, 204
CPU, 237 Differential work, 122
Cross-bar network, 437 Diffuse reflection, 386
Cross-port switch, 438 Digital, 311, 354
Crystalline lens, 393 Image, 417
Current limit resistor, 250 Video, 417
Curve fitting, 515 Video camera, 417
Customization process, 594 Digital motion controller, 237, 273
Cutting, 9 Dimension, 559
Cycle-by-cycle, 238 Diode, 406
Cycle-by-cycle operation, 312 Direction of motion, 257
Cylindrical tube, 252 Directory, 346

Directory entry, 348
D'Alembert Principle, 182 Discontinuity, 451, 466
D/A conversion, 230 Discrete
D/A converter, 354 Forward mapping, 106
Data Inverse mapping, 108

Bus, 316 Discrete state, 311
Entry, 348 Discrete-time system, 205
Field, 365 Disk, 252
Framing, 352, 364 Displacement, 27, 31
Processing, 310 Displacement vector, 636
Storage and retrieval, 343 Dissimilarity, 561, 562
Structure, 328 Dissipation, 139

Data-driven, 516 Distal node, 71
Daylight vision, 395 Distributed computing, 238
Deadline, 303 Distributed motion control, 309
Debugger, 324 Distributed system, 303
Decision-making, 17, 237, 498, 573 DOF, 46, 63
Define, 328 Donor, 405
Degree of freedom, 141 Doping, 405

Index 681

Doping material, 405 Electrochemical, 116
Dot pattern, 539 Electromagnet, 129, 130
Drive-out cycle number, 608 Electromagnetic, 131
DSP architecture, 317 Electromechanical system, 154
Dynamic Electron, 129

Chain, 121 Electronic camera, 404
Model, 194 Electronic image, 404
Pair, 120, 126 Electrons, 404
Parameters, 176 Elliptical wave generator, 143

Dynamic C, 340 Embodiment, 304
Dynamic constraint, 617 Emergency stop sensor, 243
Dynamic model, 200, 268 emf current, 227
Dynamic monocular vision, 546 Emission of light
Dynamics, 21, 154 Spontaneous, 382

Stimulated, 382
Earth, 128 Emotion, 676
Edge, 131, 471 End flag, 365

Enhancement, 475, 481, 483 End-effector, 81, 200, 258
Ramp-type, 473 End-effector frame, 597
Ridge-type, 474 Energy, 115
Roof-type, 473 Conservation, 116
Step-type, 473 Storage, 116
Tracing, 479 Energy efficient, 674

Edge linking Energy level, 381
Head, 521 Energy state, 116
Running Head, 521 Entertainment, 15
Tail, 521 Epipolar line constraint, 556

Editor, 324 Differential, 563
Educable, 673 Discrete, 561
Education, 16, 17 EPROM, 313
EIA, 418 Equation
Eigenvalue, 102 Angular motion, 179
Einstein's equation, 116 Linear motion, 178
Elastic beam, 260 Equivalent
Elasticity, 578 Axis, 54
Electric Circuit, 407

Charge, 130 Projective coordinates, 30, 432
Field, 129 Equivalent electronic circuit, 271
Force, 128 Error checking, 353
Motor, 130, 131 Error checksum, 365

Electric motor, 7, 269 Error compensation, 103
Electrical Error signal, 202

Load, 139 Ethernet, 362
Power, 139 Euler Angles, 52

Electrical domain, 116 Euler-Lagrange Formula, 182
Electrical load, 231 Euler-Lagrange formula, 188

682 The Fundamentals of Robotics: Linking Perception to Action

Even-line field, 419 Focal length, 532
Excited levels, 382 Folder, 346
Executable file, 326 For, 329
Execution context, 338 Force, 117, 118
Execution time, 318 Force and Torque, 22
Expectation-driven, 499, 516 Force or torque feedback, 258
Experience, 578 Force/torque amplifier, 140
Experience-driven, 499 Force/torque generator, 125, 139
Exponent, 314 Force/torque vector, 262
Extern, 334 Formatted file, 347
External Forward

Force, 117 Kinematics, 70, 80
Torque, 120 Forward kinematics, 22, 629

Extrinsic parameters, 532 Forward projective mapping, 432,
Eye-in-hand, 297 530, 548
Eye-to-hand, 297 Forward recursive, 180
Eye-to-leg, 297 Four-view method, 649

Fourier Transform, 453
Falling edge, 312, 373 Fovea, 393
False match, 565 Frame, 31, 418
Fast response mode, 504 Free-running timer, 372
Feasible solution, 96 Frequency, 383
Feature Frequency of occurrence, 455

Correspondence, 511 Factional force, 140
Detector, 467 Full handshake I/O, 361
Enhancement, 467 Full-duplex, 363
Extraction, 448, 451 Fundamental matrix, 556
Grouping, 514 Fuzziness, 579
Localization, 464
Point, 514 Gaussian distribution, 394, 502
Selection, 468 Gaussian function, 480
Vector, 502 Gear mechanism, 141

Feedback sensor, 276 Generalized coordinates, 158, 269
Field force, 118, 126, 128 Generalized force, 158, 269
FIFO, 341 Generalized switching function, 281
File, 325 Generic
File system, 344 Action, 601
Filtering pattern, 402 Motion, 601
FireWire, 436 Task, 591
Flex spline, 143 Geometric property, 447
Flexibility, 13 Geometry measurement, 452
Floating-point number, 314 Glia, 674
Focal Global variable, 333

Length, 390, 398, 430 Goal, 578
Length of camera, 399 Good
Point, 390 Localization, 469

Index 683

Response, 468 Alternative, 584
Selectivity, 470 Null, 584

Granularity, 106 Hysteresis thresholding, 479
Gravitational force, 128
Green-sensitive, 395 I/O, 238
Ground state level, 382 I/O port, 350
Group, 518 I/O register, 349
Grouping by connectivity, 516 I/O system, 321, 349
Gustatory, 239 Idle, 368

If-esle, 331
H-bridge circuit, 227 Image
H-sync, 419 Digitization, 424
Half-duplex, 363 Digitizer, 397, 500
Hand, 630 Elements, 408
Hand gesture, 507 Feature, 451, 467
Hand-arm, 629 Feature description, 467
Hand-eye coordination, 146, 297 Feature extraction, 467
Hard input, 577 Feature tracking, 509
Hard-disk, 344 Focusing, 398
Harmonic drive, 143 Frame, 430
Harvard architecture, 317 Period, 418
Head frame, 664 Plane, 393, 398
Head-eye coordination, 297 Processing, 448, 451
Head-eye system, 297 Processing pipeline, 438
Header entry, 347 Rate, 418
Header file, 334 Region, 497
Healthcare, 16 Resolution, 424, 559
Holonomic constraint, 159, 616 Template, 509
Home or reference point, 255 Transform, 453, 465
Homing, 240, 246 Understanding, 452
Homing procedure, 256 Image space, 24, 268
Homogenous Image understanding, 675

Coordinate, 29, 30 Image-guided
Transformation, 43 Motion planning, 599

Homography transform, 555, 565 Locomotion, 629, 661
Horizontal edge detection, 475 Manipulation, 629
Horizontal linking, 612 Motion planning function, 639
Hue, 422 Positioning, 629
Human brain, 18, 304 Road following, 661
Human computer interaction, 240 Target following, 661
Human intervention, 588 Immobility, 547
Human-robot interaction, 507 Impedance, 232
Humanoid Impedance control, 295, 296

Robot, 59, 106, 238 Imprecision, 580
Hydraulic actuator, 127 Impulse response, 458
Hypothesis, 584 In focus, 399

684 The Fundamentals of Robotics: Linking Perception to Action

Incompleteness, 580 Inverse kinematics, 22
Incremental learning, 502 Inverse projective mapping, 432, 530,
Incremental optical encoder, 254 551
Incremental representation, 503 Model-based, 535
Incremental work, 123 Inverter, 224
Independence, 575 Inverting, 234
Index coordinate system, 433 Iris, 393, 400
Index coordinates, 433 Iris effect factor, 401
Index of refraction, 387
Index register, 319 Jacobian matrix, 85, 98, 259
Industrial robot, 254 Joint, 22, 63
Inertial Displacement, 87, 100

Force, 182, 188 Distal, 71
Load, 140, 147, 153 Limit, 105
Matrix, 171, 191 Prismatic, 63
Tensor, 171 Proximal, 71

Inertial load, 266 Revolute, 63
Inertial matrix, 269 Space, 70
Influence field, 504 Variable, 70
Input layer, 502 Velocity, 92
Input shaft, 140 Joint space, 267
Instruction decoder, 320 Joint torque vector, 189
Instruction set, 320 Joint variable vector, 189
Integral time-constant, 278 Joint-space control, 283
Integrated circuit, 312 Junction, 489, 520, 615
Intelligence, 20, 576
Intelligent control, 674 Key point, 618
Intensity histogram, 455 Kinematic
Intensity image, 450 Analysis, 71
Inter-operability, 327 Chain, 65, 125
Inter-robot communication, 310 Constraint, 70
Inter-task communication, 338 Mapping, 106
Interacting force, 165 Pair, 63, 125
Interaction force or torque, 258 Redundancy, 94
Interfacing, 359 Kinematic constraint, 616
Interlaced image, 418 Kinematic parameters, 174
Internal deformation, 118 Kinematics, 21
Internal energy, 116, 381 Kinesthetic, 239
Internal motion, 96 Kinetic energy, 117, 124, 173, 184,
Internet, 362 381
Interrupt-driven, 353 Kineto-dynamic chain, 154
INTime, 345 Kineto-dynamic pair, 145
Intrinsic parameters, 435, 532 Knot, 618
Inverse Knowledge, 19, 578

Kinematics, 70, 86 Knowledge acquisition, 449, 452
Inverse dynamics control, 294 Knowledge representation, 452

Index 685

Knowledge-driven, 499 Locus, 510
Logic circuit, 311

L*a*b color space, 500 Logic clock, 238
L*a*b tristimulus, 501 Logic high, 257
Lagrange Formula, 188 Logic low, 257
Lagrange formula, 183 Logic signal, 311
Lagrangian, 95, 96 Logic state, 226
Landmark, 508 Logic state variable, 251
Language, 19 Logic wave generator, 224
Laplace Transform, 206 Look-up table, 107
Laplace transform, 458 Looping, 329
Laplacian, 480 LSB, 314
Laser projector, 537 Luminance, 448
Laser range finder, 537 Lyapunov Function, 216
LDP, 357 Lyapunov's methods, 216
Learning, 19
LED, 250, 357, 386 Machine, 7
Library, 326 Machine design, 144
Light, 384 Machine language, 323

Beam, 401 Machine perception, 445
Intensity, 394 Machine program, 323
Source, 385 Macula, 393
Splitter, 397, 401 Magnetic, 129

Light emitting device, 250 Field, 129
Light pulses, 250 Flux, 135
Limb, 259 Man-robot interaction, 310
Limit switch, 357 Mantissa, 314
Line period, 418 Manufacture, 1
Line segment, 618 Manufacturing, 2
Linear Equipment, 4

Acceleration, 31 Material, 3
Displacement, 34 Process, 3
Momentum, 117 Product, 3
Velocity, 31, 78, 83, 117 Many-to-one, 89

Linear motor, 131 Mapping, 85
Linear power drive, 232 Mapping matrix
Linearity, 355 Image-to-task, 638
Linearizing, 295 Mass moments of inertia, 171
Linguistic language, 676 Material handling, 10
Linguistic programming, 375 Maximum curvature, 607
Link, 21, 59 Mean, 583

Matrix, 78 Mechanical
Linker, 324 System, 59, 125
Local variable, 333 Mechanical power, 136, 139
Local-maximum edge, 523, 524 Mechanism, 7, 21, 59
Location shift, 464 Mechanism design, 144

686 The Fundamentals of Robotics: Linking Perception to Action

Mechatronic design, 144 Motion sensor, 246
Mechatronics, 17 Motion stereo, 546
Membership function, 586 MSB, 314
Memory, 238, 313 Multi-behaving, 375

Address, 313 Multi-tasking, 334
Cell, 313 Multiple fingered hand, 149
Location, 313 Multiple mappings, 581
Management, 334 Multiplicity, 67

Memory cell, 410
Memory management, 337 N-type semiconductor, 405
MEMS, 240, 252 Neighborhood
Mental ability, 627 4-, 516
Mental actor, 307 8-, 516
Mental function, 307 Causal, 516
Mental syntax, 19 Network, 351
Mental world, 452 Neural computing network, 674
MFLOPS, 335 Neural network, 499
Micro force/torque sensor, 265 Neural network training, 505
Micro-controller, 321 Neural system, 304
Microprocessor, 14, 312 Neuron, 587
MIMD, 439 Neuroscience, 18
MIMO control system, 276 Neutron, 129
Mind, 306 Newton's
Minimally invasive, 147 First law, 117
Minimum energy, 95 Second law, 117
Minimum radius constraint, 617 Third law, 118
MIPS, 335 Newton-euler formula, 174
MISD, 439 Node, 351
Mobile robot, 609 Noise reduction, 467, 475, 480, 482
Mobility, 102 Non-contact motion sensor, 250
MODEM, 362 Nonholonomic constraint, 617
Molecular structure, 380 Noninverting, 234
Moment of force, 120 Nonlinear, 279
Monocular vision, 645 Nonmaximum suppression, 487
Motion, 7, 27 Norm of gradient, 475

Distributor, 147 Normal vector, 87
Kinematics, 78, 189 Normalized workspace, 611
Sensor, 133 NTSC, 418
Splitter, 147 Nucleus, 129, 380
Transformation matrix, 76 Null space, 98

Motion centric, 675 Numerical solution, 102
Motion controller, 222
Motion detection, 396 Object file, 326
Motion perception, 309 Object recognition, 452
Motion plan, 597 Object-oriented programming, 327
Motion planning, 23, 309, 602 Occlusion, 466

Index 687

Odd-line field, 419 Smoothing, 617
Olfactory, 239 Pathway, 304, 611, 674
On-line motion planner, 627 PCI, 436
One-to-many, 89 Perception, 19
One-to-many coupling, 147 Perceptual non-uniformity, 427
One-to-one coupling, 146 Periodic task, 336
Open kinematic chain, 67 Peripheral vision, 395, 396
Open-loop control, 201 Permanent magnet, 130
Operating range, 242 Perspective projection, 429
Operating system, 324, 344 Phase, 135, 257
Operational amplifier, 232 Phase-lag, 257
Optic nerve fibers, 393 Phase-lead, 257
Optical Phase-shift, 257

Axis, 390 Photo, 383
Center, 390 Photo-transistor, 250
Image, 397 Photodiode, 407
Lens system, 389, 392 Photoelectric effect, 404

Optical encoder, 240, 250 Photogrammetry, 450
Optimization, 94 Photon detector, 393
Origin, 28 Photosensitive cell, 396, 406
Origin of motions, 124 Phototransistor, 407
Otsu's method, 457 Physical actor, 307
Out of focus, 399 Physical function, 307
Output layer, 502 Physical property, 447
Output shaft, 140 PID

Derivative time-constant, 220
P-N junction, 407 Integral time-constant, 220
P-type semiconductor, 405 Proportional gain, 218
PAL, 418 PID control law, 204, 239, 266, 277
Parallel Pin-hole, 429

Communication, 352 Pipe, 438
I/O system, 357 Pitch, 135
Link, 359 Pivotal rotation, 151
Plane, 74 Pixel, 408

Parallel motion splitter, 150 Pixel clock, 424
Parallel process, 3 Planck's Constant, 383
Parallel shifts, 415 Plant, 204, 276
Parametric equation, 514 Plessey corner detector, 496
Parametric representation, 618 Pneumatic actuator, 127
Parity, 369 Point-to-point topology, 351
Particle, 117 Polling, 352
Password, 349 Possibility, 498
Path, 597, 603 Posture, 41, 81

Curve, 618 Potential energy, 123, 163, 185, 381
Map, 611 Potentiometer, 241, 248
Pruning, 616 Power, 123, 139, 158

688 The Fundamentals of Robotics: Linking Perception to Action

Amplification, 231 Pseudo-inverse, 94, 284
Amplifier, 223 Pulley-and-timing belt, 142
Drive, 223 Pulse waveform, 311
Signal, 203, 230 Pulse-width modulation, 232
Switch, 223 PWM wave, 223

Power amplifier, 147
Precision, 242 Qualitative, 298
Predicability, 303 Qualitative projective mapping, 634
Prediction, 356, 511 Quality, 6, 13
Preemptive multi-tasking, 336, 341 Quality control, 449
Prewitt, 476 Quanta, 383
Principal curvature, 490 Quantitative, 299
Principle Quantum, 341

Dynamics conservation, 461 Quaternary link, 61
Dynamics resonance, 462

Principle of virtual work, 162 RAM, 238
Priority-left rule, 522 Random variable, 497
Priority-right rule, 522 Random-access memory, 313
Probability, 498 Range, 98
Probability response mode, 504 Rank, 102
Process, 1 RCE neural network, 246, 502

Addition, 4 RDP, 357
Control, 6 Reacting
Deformation, 4 Body, 120
Removal, 4 Torque, 120
Solidification, 4 Reaction force, 118

Productivity, 13 Read, 313
Program, 311, 316, 323 Read-only memory, 313
Program counter, 319 Readability, 327
Program once Real-time, 303

Run everywhere, 673 Interrupt, 374
Programmable timer, 372 Kernel, 345
Programming, 325 Receiving, 358
Progressive approximation, 356 Receptor, 405
Projection matrix, 435 Reconstruction
Projective, 29 Metric, 632

Coordinate system, 30 Recursive algorithm, 101
Coordinates, 30 Red-sensitive, 395

Projective mapping, 531 Reduction ratio, 141
Proportional control gain, 278 Reduction ratio matrix, 270
Protocol, 359 Redundancy, 470, 498, 581
Proton, 129 Redundant, 94
Prototype cell, 503 Reference
Prototype layer, 502 Orthogonal, 28
Proximal node, 71 Spatial, 27
Proximity system, 243 Time, 27

Index 689

Reference image, 646 Root-Locus, 214
Reference object, 646 Rotary motor, 131
Reflection, 386 Rotation, 34, 35, 63
Refraction, 386 Angle, 38, 54
Register, 319 Axis, 34

Control, 349 Equivalent angle, 625
Data, 350 Equivalent axis, 625
Status, 350 Matrix, 36

Relative stability, 201, 204, 277 Rotational
Reliability, 242 Motion, 38
Reprogrammable, 673 Rotor, 133
Research, 18 Round-robin, 341
Reset circuit, 415 Router, 352
Resistance to noise, 468 RRR-type, 64
Resolution, 242 Robot, 64
Resonance, 462 RS-170A, 418
Response time, 242 RS232, 369
Responsiveness, 319, 675
Retina, 393 S-video, 423
Reusability, 327 Safety, 242
RGB color space, 426, 454 Safety sensor, 243
RGB component color images, 450 Sample, 583
RGB tristimulus, 501 Sample space, 583
RGB-to-YIQ, 422 Sampling, 480
RGB-to-YUV, 422 Sampling steps, 433, 532
Rhodopsin, 394 Saturation, 422
Rigid Body, 27, 31 Scenario planning, 589
Ringing effect, 245 Scene, 447
Rising edge, 312, 373 SCI, 362
Rising time, 219 Search, 511
Robot, 8 Search interval, 559

Arm, 15 Seed region, 498
Control, 86 Self-development, 17, 310
Dynamics, 121, 154, 165 Semantic
Hand, 15, 61 Analysis-synthesis loop, 601
Head, 15 Overlapping, 582
humanoid, 8, 14 Semiconductor, 405
Industrial, 8, 10 Sensing, 23
Kinematics, 154 Sensing elements, 249
Mechanism, 116, 125 Sensitivity, 242, 355
Statics, 154, 155 Sensor

Robot dynamics, 268 Electric, 241
Robot statics, 293 Electro-magnetic, 241
Robotics, 21 Optical, 241
Robust control, 674 Sensory data, 577
Rolling, 265 Sensory feedback, 203, 274

690 The Fundamentals of Robotics: Linking Perception to Action

Sensory system, 239 Spatial edge, 472
Sensory-motor mapping, 627 Spatial uniformity, 507
Serial Spatio-temporal function, 466

Communication, 352 Speech recognition, 240
I/O, 362 Speed reducer, 140, 247, 269
Link, 362 SPI, 362

Serial motion splitter, 151 Spline curve, 618
Serial process, 3 Sporadic task, 336
Serial shifts, 415 Stable orbit, 381
Settling time, 220 Standard, 418
Shadow, 466 Standard deviation, 583
Shaft, 135 Star topology, 352
Shape adaptation, 610 Start bit, 368
Shared memory, 338 State machine, 339
Shift register, 365, 415 State transition network, 339
Signal lines, 418 State variable, 280
Similarity, 562 Statement, 579
Simple contour, 515 Static, 334
Simple open kinematic chain, 67 Coupling, 59
Simplex, 363 Statics, 115, 154
Simultaneity, 303 Statistical inference, 498
Single motor, 148 Statistics, 583
Single response, 470 Stator, 133
Single-pass algorithm, 521 Steady-state response, 201
Singular posture, 94, 103 Step angle, 136
Singularity, 103 Stepper motor, 134
SISO control system, 276 Stiffness control, 296
Skew-symmetric, 44, 51 Stitch, 265
Skew-symmetric matrix, 173 Stop bit, 369
Skill, 19 Strain gauge, 260
Skin color recognition, 507 Strobed I/O, 360
Sliding mode control, 280 Structure, 59
Sliding vector, 87 Structure from motion, 546
Slippage, 265 Sub-image, 511
Slotted sheet, 252 Successive
Smart camera, 413 Rotations, 46
Smart sensor, 240 Translations, 46
Sobel, 476 Sum of forces, 176
Sociable creature, 673 Sum of torques, 177
Sociable robot, 573, 673 SUSAN algorithm, 496
Soft computing, 15 Switch, 331
Soft input, 577 Switch circuit, 224
Solenoid, 149 Switching function, 280
Spatial Switching function matrix, 280

Curve, 93, 101 Sync signal line, 420
Path, 93 Sync signals, 420

Index 691

Synchronous serial I /O, 362, 365 Time constraint, 604
System, 200 ' Time management, 334

Active, 576 Time slice, 341
Automated, 576 time-constant, 273
Autonomous, 576 Time-invariant, 509
Disturbance, 200 Time-slicing, 341
Dynamics, 200 Time-tick, 340
Input, 200 Time-varying, 279
Intelligent, 18, 576 Mechanism, 106
Output, 200 Timing signals, 420
Reactive, 576 Token-ring topology, 352
Sensory, 19 Tool, 1
State variable, 201 Toothed cylinder, 134

System clock, 312 Top-down expectation, 590
System of particles, 156 Topology, 351

Torque, 120
Tacho-meter, 241 Torque amplifier, 247
Tactile sensor, 264 Torque constant, 133
Tangential acceleration, 40 Touch, 264
Target, 630 Tracing, 518
Target frame, 664 Training, 505
Task, 9 Trajectory, 92, 165, 597, 604

Dispatcher, 337 Transducer, 241
Queue, 337, 341 Transfer function, 207
Scheduler, 337 Transient response, 201
Space, 70, 86 Transistor, 224, 406

Task plan, 591 Base, 224
Task space, 24, 267 Collector, 224
Task-action table, 595 Emitter, 224
TCP/IP, 362 Translation, 30, 63
Teach pendant, 357 Translation vector, 32
Tele-existence, 16 Translational
Tele-presence, 17 Motion, 38
Temporal edge, 472 Vector, 42
Temporal uniformity, 509 Transmitting, 358
Terminal, 615 Transputer, 440
Ternary link, 60 Trapezoid, 623
Texture, 448 Tunable response and localization,
Theme, 27 480
Thermal energy, 381 Tuning
Thin lens, 389 PID control law, 217
Thinking, 19 Twist rotation, 151
Three-beam structure, 261 Two-pass algorithm, 520
Three-view method, 649 Type control, 365
Time Type-I error, 584

Constraint, 92 Type-II error, 584

692 The Fundamentals of Robotics: Linking Perception to Action

Typedef struct, 328 Axis, 394
Feedback, 24

Ultimate goal, 579 Guidance, 448
Ultra-sonic sensor, 373 Identification, 449
Ultrasonic sensor, 243 Inspection, 449
Un-modelled dynamics, 285 Measurement, 449
Unary link, 60 Perception, 24, 447
Uncertainty, 498, 580 Pigment, 394
Unconstrained motion, 291 Sensory system, 397
Uniformity, 449, 451, 466 Visual sensory system, 245, 297, 298
UNIX, 328 Visual servoing, 627
Unsigned, 328 Voltage, 139
Unstable, 201 Voltage follower, 233
Upper and lower limits, 583 Voltage to force/torque mapping, 264
USAN, 496 Voltage-torque gain, 273
USB, 436 Von Neumann, 316

Voxel, 107
V-sync, 419
Variable configuration, 674 Wavelength, 382
Variable configuration system, 279 Wear and tear, 142
Variable resistor, 260 Wear-and-tear, 248
Variable structure control, 279 Welding, 9
Variance, 583 Wheatstone bridge, 262
Velocity, 27 While, 330
Velocity constraint, 159 Workspace, 598
Velocity control, 150 World
Velocity profile, 622 Mental, 19
Verification, 356 Real, 19
Vertical edge detection, 475 Wrist sensor, 260
Vertical grouping, 612 Write, 313
Video, 411, 416
View, 647 XYZ robot, 63
Virtual camera, 532
Virtual displacement, 160, 184 YIQ color space, 454
Virtual hospital, 16
Virtual university, 16 Z-Transform, 208
Virtual work, 161, 185 Zero-crossing, 480
Viscous damping, 270 Zero-gradient direction, 491
Visibility, 332 Ziegler-Nichols methods, 217
Vision, 24, 445
Vision simulation, 532
Vision system, 297
Vision-guided walking, 544
Vision-head, 645
Visual, 239

Attention, 511

	Preface
	Contents
	Chapter 1 Introduction to Robotics
	1.1 Introduction
	1.2 Manufacturing
	Products
	Materials
	Processes
	Equipment
	Factories

	1.3 Factory Automation
	1.3.1 Automation and Robots

	1.4 Impact of Industrial Robots
	1.5 Impact of Humanoid Robots
	1.5.1 Industry
	1.5.2 Society
	1.5.3 Space Exploration and Military
	1.5.4 Education
	1.5.5 Research

	1.6 Issues in Robotics
	1.6.1 Mechanism and Kinematics
	1.6.2 Actuation Elements and Dynamics
	1.6.3 Sensing Elements
	1.6.4 Control
	1.6.5 Information and Decision-Making
	1.6.6 Visual Perception

	1.7 Exercises
	1.8 Bibliography

	Chapter 2 Motion of Rigid Bodies
	2.1 Introduction
	2.2 Cartesian Coordinate Systems
	2.3 Projective Coordinate Systems
	2.4 Translational Motions
	2.4.1 Linear Displacement
	2.4.2 Linear Velocity and Acceleration

	2.5 Rotational Motions
	2.5.1 Circular Displacement
	2.5.2 Circular Velocity and Acceleration

	2.6 Composite Motions
	2.6.1 Homogenous Transformation
	2.6.2 Differential Homogenous Transformation
	2.6.3 Successive Elementary Translations
	2.6.4 Successive Elementary Rotations
	2.6.5 Euler Angles
	2.6.6 Equivalent Axis and Angle of Rotation

	2.7 Summary
	2.8 Exercises
	2.9 Bibliography

	Chapter 3 Mechanical System of Robots
	3.1 Introduction
	3.2 Robot Mechanism
	3.2.1 Links
	3.2.2 Joints
	3.2.3 Kinematic Chains
	3.2.4 Multiplicity of an Open Kinematic-Chain

	3.3 Robot Kinematics
	3.3.1 Kinematics of a Link
	3.3.2 Forward Kinematics of Open Kinematic-Chains
	3.3.3 Inverse Kinematics of Open Kinematic-Chains
	3.3.4 Discrete Kinematic Mapping

	3.4 Summary
	3.5 Exercises
	3.6 Bibliography

	Chapter 4 Electromechanical System of Robots
	4.1 Introduction
	4.2 Origin of a Rigid Body's Motion
	4.2.1 Energy Conservation in a System
	4.2.2 Forces
	4.2.3 Torques
	4.2.4 Dynamic Pairs and Chains
	4.2.5 Incremental Works
	4.2.6 Potential Energy
	4.2.7 Kinetic Energy
	4.2.8 Origin of Motions

	4.3 Actuation Elements
	4.3.1 Force and Torque Generators
	4.3.2 Force and Torque Amplifiers

	4.4 Formation of a Robot's Electromechanical System
	4.4.1 One-to-One Couplings
	4.4.2 One-to-Many Couplings
	4.4.3 Open Kineto-Dynamic Chains

	4.5 Robot Statics
	4.5.1 Dynamic System of Particles
	4.5.2 Generalized Coordinates and Forces
	4.5.3 Constraints of a Dynamic System
	4.5.4 Virtual Displacements
	4.5.5 Virtual Works
	4.5.6 Principle of Virtual Work for Statics
	4.5.7 Statics Against Self-Inertial Loads
	4.5.8 Statics Against Inertial Loads at End-effector

	4.6 Robot Dynamics
	4.6.1 Dynamic System of Rigid Bodies
	4.6.2 Dynamics of a Rigid Body
	4.6.3 Newton-Euler Formula
	4.6.4 Euler-Lagrange Formula

	4.7 Summary
	4.8 Exercises
	4.9 Bibliography

	Chapter 5 Control System of Robots
	5.1 Introduction
	5.2 Automatic-Feedback Control System
	5.2.1 System Concept
	5.2.2 Closed-loop Control Scheme
	5.2.3 System Dynamics
	5.2.4 Transfer Functions
	5.2.5 System Performance
	5.2.6 Analysis of Absolute Stability
	5.2.7 Tuning of PID Control Algorithms

	5.3 Control Elements
	5.3.1 Power Switches
	5.3.2 Power Drives
	5.3.3 Digital Motion Controllers

	5.4 Sensing Elements
	5.4.1 Generic Sensing Principle
	5.4.2 Safety Sensors
	5.4.3 Motion Sensors
	5.4.4 Force/Torque Sensors
	5.4.5 Tactile Sensors

	5.5 Control System Design
	5.5.1 Issues
	5.5.2 Planning of Desired Outputs
	5.5.3 A Robot's System Dynamics
	5.5.4 Sensory Feedback
	5.5.5 Control Algorithms and Performances
	5.5.6 Joint-Space Control
	5.5.7 Task-Space Control
	5.5.8 Image-Space Control

	5.6 Summary
	5.7 Exercises
	5.8 Bibliography

	Chapter 6 Information System of Robots
	6.1 Introduction
	6.2 Imitating the Brain
	6.3 Imitating the Mind
	6.3.1 Autonomous Actors or Agents
	6.3.2 Autonomous Behaviors
	6.3.3 Computational Tasks

	6.4 Data-Processing Hardware
	6.4.1 Digital Computers
	6.4.2 Microprocessors
	6.4.3 Micro-controllers

	6.5 Data-Processing Software
	6.5.1 Programming
	6.5.2 Multi-Tasking
	6.5.3 Real-Time Operating Systems

	6.6 Data Storage and Retrieval
	6.6.1 Storage Devices
	6.6.2 A File System
	6.6.3 Data Storage Using Unformatted Files
	6.6.4 Data Storage Using a File System
	6.6.5 Data Storage Using Formatted Files

	6.7 Data Interfacing and Communication
	6.7.1 Basic Concepts
	6.7.2 D/A Converters
	6.7.3 A/D Converters
	6.7.4 Parallel I/O
	6.7.5 Serial I/O
	6.7.6 Programmable Timers

	6.8 Summary
	6.9 Exercises
	6.10 Bibliography

	Chapter 7 Visual Sensory System of Robots
	7.1 Introduction
	7.2 The Basics of Light
	7.2.1 Physical Properties
	7.2.2 Geometrical Properties
	7.2.3 Refraction of Light Rays by a Thin Lens

	7.3 The Basics of the Human Eye
	7.3.1 Eyeballs
	7.3.2 Photosensitive Cells
	7.3.3 Central Vision
	7.3.4 Peripheral Vision

	7.4 Digital Image Acquisition
	7.4.1 Formation of Optical Images
	7.4.2 Formation of Electronic Images
	7.4.3 Formation of Digital Images

	7.5 Modelling of Digital Images
	7.5.1 Chromatic Modelling
	7.5.2 Geometric Modelling

	7.6 Digital Image-Processing Hardware
	7.6.1 Host Computers
	7.6.2 DSP Processors
	7.6.3 Pipelined Computing Modules
	7.6.4 Parallel Computing Platforms

	7.7 Summary
	7.8 Exercises
	7.9 Bibliography

	Chapter 8 Visual Perception System of Robots
	8.1 Introduction
	8.2 The Basics of Visual Perception
	8.2.1 A Process of Visual Perception
	8.2.2 Attributes of Visual Perception
	8.2.3 Applications of Visual Perception
	8.2.4 Information Processing in Visual Perception

	8.3 Image Processing
	8.3.1 Image Transformation
	8.3.2 Image Filtering

	8.4 Image Feature Extraction
	8.4.1 The Basics of Feature Detection
	8.4.2 Edge Detection
	8.4.3 Corner Detection
	8.4.4 Spatial Uniformity Detection
	8.4.5 Temporal Uniformity Detection
	8.4.6 Temporal Discontinuity Detection

	8.5 Geometric-Feature Description
	8.5.1 The Basics of Feature Description
	8.5.2 Feature Grouping
	8.5.3 Contour Splitting
	8.5.4 Curve Fitting

	8.6 Geometry Measurement
	8.6.1 Monocular Vision
	8.6.2 Binocular Vision

	8.7 Summary
	8.8 Exercises
	8.9 Bibliography

	Chapter 9 Decision-Making System of Robots
	9.1 Introduction
	9.2 The Basics of Decision Making
	9.2.1 The Key to Automated Actions
	9.2.2 The Key to Automated Behaviors
	9.2.3 Decision-Making Processes
	9.2.4 Difficulties in Decision-Making
	9.2.5 Methodologies in Decision-Making

	9.3 Decision Making for Autonomous Behaviors
	9.3.1 Task or Scenario Planning
	9.3.2 Action or Behavior Planning
	9.3.3 Motion Planning
	9.3.4 A General Framework for Automated Planning

	9.4 The Basics of Motion Planning
	9.4.1 Path and Trajectory
	9.4.2 Motion-Planning Strategy

	9.5 Motion Planning in Task Space
	9.5.1 Planning of Collision-Free Paths
	9.5.2 Motion Description

	9.6 Image-Guided Motion Planning and Control
	9.6.1 Hand-Eye Coordination
	9.6.2 Head-Eye Coordination
	9.6.3 Leg-Eye Coordination

	9.7 Summary
	9.8 Exercises
	9.9 Bibliography

	Chapter 10 Prospects
	Towards a Sociable Robot
	An Energy-efficient Mechanism
	Intelligent Control
	Behavior Development and Learning
	Real-time Visual Perception
	Emotion and Language
	Intelligence and Consciousness
	Promising Future

	Index

