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Series Preface

Mechanical engineering, and engineering discipline born of the needs of the indus-
trial revolution, is once again asked to do its substantial share in the call for indus-
trial renewal. The general call is urgent as we face profound issues of productivity
and competitiveness that require engineering solutions, among others. The Me-
chanical Engineering Series is a series featuring graduate texts and research mono-
graphs intended to address the need for information in contemporary areas of me-
chanical engineering.

The series is conceived as a comprehensive one that covers a broad range of
concentrations important to mechanical engineering graduate education and re-
search. We are fortunate to have a distinguished roster of consulting editors, each
an expert in one of the areas of concentration. The names of the consulting editors
are listed on page vi of this volume. The areas of concentration are applied me-
chanics, biomechanics, computational mechanics, dynamic systems and control,
energetics, mechanics of materials, processing, thermal science, and tribology.
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Preface to the Third
Edition

The broad area of robotic mechanical systems continues developing at an impres-
sive pace. The Third Edition of Fundamentals of Robotic Mechanical Systems
does not claim to give a comprehensive account of developments up-to-date.
The book still aims at establishing the fundamentals of a multidiscipline that
is nowadays more active than it was in 2002, the year of publication of the
Second Edition. In doing this, however, I have tried to give an account of cur-
rent trends and to include references to a representative sample of developments
up to 2005. An invaluable source on the state of the art is the International
Conference on Robotics and Automation (ICRA), one of the best attended and
most respectable conferences on the subject. I have thus given, in Chapter 1,
an account of the pertinent topics and trends reported in the Proceedings of
ICRA 2005.

Among the most remarkable trends, I can cite: the intensive research recorded
in medical applications of robotics, which include surgery and rehabilitation;
micro-robots, which are intimately related to medical applications; and hu-
manoids. On the downside, space applications showed a stagnation in the last
five years, probably due to the emerging security applications.

In producing the Third Edition, I undertook an in-depth revision of Chap-
ters 4 and 8 of the Second Edition, which appeared to be disproportionately
long. In this vein, I split each of these chapters into two, which led to 12 chap-
ters in the current edition. Moreover, I took the opportunity to thoroughly
revise the first part of old Chapter 8, which is now included in Chapter 9. In
fact, I looked, in the Second Edition, for inaccuracies or ambiguities that needed
rectification. This work led to an in-depth revision of text and developments in
various chapters, besides new exercises.

A feature of the Third Edition is an accompanying CD that includes various
items: code intended to help the reader better understand the most cumber-
some derivations, and to provide useful tools when working out the exercises or
simply to assist the curious reader in exploring alternative examples or alterna-
tive methods; animations; and film. An important feature of the code provided
is that it allows for either symbolic manipulations, using Maple, or numerical
computations, using Matlab. The rough estimates of the solutions to systems of
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bivariate equations, arising in various chapters, but most intensively in Chap-
ter 9, is facilitated by the inclusion of a Matlab graphic user interface. Further
refinements of these estimates are implemented by means of a Newton-Gauss
least-square approximation to an overdetermined system of nonlinear equations,
as implemented in Matlab.

The excellent work done by Dr. Kourosh Etemadi Zanganeh, Canmet (Ne-
pean, Ontario, Canada), was instrumental in completing the Second Edition.
This work comprises the development of algorithms and code for the solution of
the inverse displacement problem of serial robots with architectures that prevent
a decoupling of the positioning from the orientation problems. The material in
Chapter 9 is largely based on that work.

I would like to thank all those who provided valuable advice in the Sec-
ond Edition: Profs. Carlos Lépez-Cajin, Universidad Auténoma de Querétaro
(Mexico), and J. Jests Cervantes-Sénchez, Universidad de Guanajuato (Mex-
ico), pointed out many inconsistencies in the first edition; Dr. Zheng Liu, Cana-
dian Space Agency, St.-Hubert (Quebec, Canada), who is teaching a course
based on the first six chapters of the book at McGill University, pointed out
mistakes and gave valuable suggestions for improving the readability of the
book. In the Third Edition, further suggestions received from Dr. Liu were
incorporated. Additionally, the valuable suggestions received from Prof. Pierre
Larochelle, Florida Institute of Technology, were also incorporated. Needless to
say, the feedback received from students throughout some 20 years of using this
material in the classroom, is highly acknowledged.

Not the least, I am planning to port the C-code RVS, developed on Silicon
Graphics’ IRIX—a dialect of UNIX-—in the nineties, into Windows. The code
should be available on the book website in the fall 2006. RVS, introduced already
in the First Edition, is the software system I have used at McGill University’s
Centre for Intelligent Machines to visualize robot motions in projects on design,
control and motion-planning,.

Chapter 1 has undergone a thorough facelift, besides an in-depth revision
to reflect the state of the art. In this light, I included new photographs on: a
modern industrial robot of the serial type; parallel robots; affordable Mekanum
wheels; legged robots; and an underwater robot. For the magnificent new pho-
tos, absent in the first two editions, I am indebted to: ABB Robotics; Prof.
C.M. Gosselin, Université Laval; Kornylak Corporation; and Prof. G. Dudek,
McGill University. For the magnificent animation of space robots, included in
the accompanying CD, I am indebted to the Canadian Space Agency and MDA,
the Brampton, Ontario-based manufacturer of Canadarm and Canadarm2.

Since there is always room for improvement, I welcome suggestions from the
readership, to the address below. Updates on the book will be posted at

www.cim.megill.ca/ “rmsl

The Solutions Manual has been expanded to include more solutions of sam-
pled problems. By the same token, the number of exercises has been expanded
as well. Moreover, the exercises have now been placed more appropriatedly, at
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the end of each chapter. The manual is typeset in WTEX with Autocad drawings;
it is available from the publisher upon request.

In closing, I would like to thank Dr. Svetlana Ostrovskaya, who assisted me
not only with the editing of the whole book, but also with the excellent tech-
nical work behind the many changes in Chapters 4 and 9. Waseem A. Khan,
a Ph.D. candidate at McGill University, is to be thanked for the excellent ad-
ditional drawings required by the third edition, besides some coding, while Dr.
Stephane Caro, a postdoctoral fellow, provided expertise in Matlab coding.

Montreal, June 2006 Jorge Angeles
angeles@cim.mcgill.ca



Preface to the First Edition

No todos los pensamientos son algoritmicos.

—M ario Bunge*

The beginnings of modern robotics can be traced back to the late sixties with
the advent of the microprocessor, which made possible the computer control
of a multiaxial manipulator. Since those days, robotics has evolved from a
technology developed around this class of manipulators for the replaying of a
preprogrammed task to a multidiscipline encompassing many branches of science
and engineering. Research areas such as computer vision, artificial intelligence,
and speech recognition play key roles in the development and implementation
of robotics; these are, in turn, multidisciplines supported by computer science,
electronics, and control, at their very foundations. Thus we see that robotics
covers a rather broad spectrum of knowledge, the scope of this book being only
a narrow band of this spectrum, as outlined below.

Contemporary robotics aims at the design, control, and implementation of
systems capable of performing a task defined at a high level, in a language re-
sembling those used by humans to communicate among themselves. Moreover,
robotic systems can take on forms of all kinds, ranging from the most intangible,
such as interpreting images collected by a space sound, to the most concrete,
such as cutting tissue in a surgical operation. We can, therefore, notice that
motion is not essential to a robotic system, for this system is meant to replace
humans in many of their activities, moving being but one of them. However,
since robots evolved from early programmable manipulators, one tends to iden-
tify robots with motion and manipulation. Certainly, robots may rely on a
mechanical system to perform their intended tasks. When this is the case, we
can speak of robotic mechanical systems, which are the subject of this book.
These tasks, in turn, can be of a most varied nature, mainly involving motions
such as manipulation, but they can also involve locomotion. Moreover, manipu-
lation can be as simple as displacing objects from a belt conveyor to a magazine.

! Not all thinking processes are algorithmic—translation of the author—personal commu-
nication during the Symposium on the Brain-Mind Problem. A Tribute to Professor Mario
Bunge on His 75th Birthday, Montreal, September 30, 1994.
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On the other hand, manipulation can also be as complex as displacing these ob-
jects while observing constraints on both motion and force, e.g., when cutting
live tissue of vital organs. We can, thus, distinguish between plain manipulation
and dextrous manipulation. Furthermore, manipulation can involve locomotion
as well.

The task of a robotic mechanical system is, hence, intimately related to mo-
tion control, which warrants a detailed study of mechanical systems as elements
of a robotic system. The aim of this book can, therefore, be stated as establish-
ing the foundations on which the design, control, and implementation of robotic
mechanical systems are based.

The book evolved from sets of lecture notes developed at McGill University
over the last twelve years, while I was teaching a two-semester sequence of
courses on robotic mechanical systems. For this reason, the book comprises two
parts—an introductory and an intermediate part on robotic mechanical systems.
Advanced topics, such as redundant manipulators, manipulators with flexible
links and joints, and force control, are omitted. The feedback control of robotic
mechanical systems is also omitted, although the book refers the reader, when
appropriate, to the specialized literature. An aim of the book is to serve as a
textbook in a one-year robotics course; another aim is to serve as a reference to
the practicing engineer.

The book assumes some familiarity with the mathematics taught in any
engineering or science curriculum in the first two years of college. Familiarity
with elementary mechanics is helpful, but not essential, for the elements of this
science needed to understand the mechanics of robotic systems are covered in
the first three chapters, thereby making the book self-contained. These three
chapters, moreover, are meant to introduce the reader to the notation and the
basics of mathematics and rigid-body mechanics needed in the study of the
systems at hand. The material covered in the same chapters can thus serve
as reading material for a course on the mathematics of robotics, intended for
sophomore students of science and engineering, prior to a more formal course
on robotics.

The first chapter is intended to give the reader an overview of the subject
matter and to highlight the major issues in the realm of robotic mechanical
systems. Chapter 2 is devoted to notation, nomenclature, and the basics of
linear transformations to understand best the essence of rigid-body kinematics,
an area that is covered in great detail throughout the book. A unique feature
of this chapter is the discussion of the hand-eye calibration problem: Many a
paper has been written in an attempt to solve this fundamental problem, al-
ways leading to a cumbersome solution that invokes nonlinear-equation solving,
a task that invariably calls for an iterative procedure; moreover, within each
iteration, a singular-value decomposition, itself iterative as well, is required. In
Chapter 2, a novel approach is introduced, which resorts to invariant proper-
ties of rotations and leads to a direct solution, involving straightforward matrix
and vector multiplications. Chapter 3 reviews, in turn, the basic theorems of
rigid-body kinetostatics and dynamics. The viewpoint here represents a major
departure from most existing books on robotic manipulators: proper orthogonal



Preface to the First Edition xxi

matrices can be regarded as coordinate transformations indeed, but they can
also be regarded as representations, once a coordinate frame has been selected,
of rigid-body rotations. I adopt the latter viewpoint, and hence, fundamental
concepts are explained in terms of their invariant properties, i.e., properties that
are independent of the coordinate frame adopted. Hence, matrices are used first
and foremost to represent the physical motions undergone by rigid bodies and
systems thereof; they are to be interpreted as such when studying the basics
of rigid-body mechanics in this chapter. Chapter 4 is the first chapter entirely
devoted to robotic mechanical systems, properly speaking. This chapter covers
extensively the kinematics of robotic manipulators of the serial type. However,
as far as displacement analysis is concerned, the chapter limits itself to the
simplest robotic manipulators, namely, those with a decoupled architecture, i.e.,
those that can be decomposed into a regional architecture for the positioning of
one point of their end-effector (EE), and a local architecture for the orientation of
their EE. In this chapter, the notation of Denavit and Hartenberg is introduced
and applied consistently throughout the book. Jacobian matrices, workspaces,
singularities, and kinetostatic performance indices are concepts studied in this
chapter. A novel algorithm is included for the determination of the workspace
boundary of positioning manipulators. Furthermore, Chapter 5 is devoted to
the topic of trajectory planning, while limiting its scope to problems suitable
to a first course on robotics; this chapter thus focuses on pick-and-place oper-
ations. Chapter 6, moreover, introduces the dynamics of robotic manipulators
of the serial type, while discussing extensively the recursive Newton-Euler algo-
rithm and laying the foundations of multibody dynamics, with an introduction
to the Euler-Lagrange formulation. The latter is used to derive the general al-
gebraic structure of the mathematical models of the systems under study, thus
completing the introductory part of the book.

The intermediate part comprises four chapters. Chapter 7 is devoted to
the increasingly important problem of determining the angular velocity and
the angular acceleration of a rigid body, when the velocity and acceleration of
a set of its points are known. Moreover, given the intermediate level of the
chapter, only the theoretical aspects of the problem are studied, and hence,
perfect measurements of point position, velocity, and acceleration are assumed,
thereby laying the foundations for the study of the same problems in the presence
of noisy measurements. This problem is finding applications in the control of
parallel manipulators, which is the reason why it is included here. If time
constraints so dictate, this chapter can be omitted, for it is not needed in the
balance of the book.

The formulation of the inverse kinematics of the most general robotic manip-
ulator of the serial type, leading to a univariate polynomial of the 16th degree,
not discussed in previous books on robotics, is included in Chapter 8. Like-
wise, the direct kinematics of the platform manipulator popularly known as the
Stewart platform, a.k.a. the Stewart-Gough platform, leading to a 16th-degree
monovariate polynomial, is also given due attention in this chapter. Moreover,
an alternative approach to the monovariate-polynomial solution of the two fore-
going problems, that is aimed at solving them semigrophically, is introduced in
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this chapter. With this approach, the underlying multivariate algebraic system
of equations is reduced to a system of two nonlinear bivariate equations that
are trigonometric rather than polynomial. Each of these two equations, then,
leads to a contour in the plane of the two variables, the desired solutions being
found as the coordinates of the intersections of the two contours.

Discussed in Chapter 9 is the problem of trajectory planning as pertaining to
continuous paths, which calls for some concepts of differential geometry, namely,
the Frenet-Serret equations relating the tangent, normal, and binormal vectors
of a smooth curve to their rates of change with respect to the arc length. The
chapter relies on cubic parametric splines for the synthesis of the generated
trajectories in joint space, starting from their descriptions in Cartesian space.
Finally, Chapter 10 completes the discussion initiated in Chapter 6, with an
outline of the dynamics of parallel manipulators and rolling robots. Here, a
multibody dynamics approach is introduced, as in the foregoing chapter, that
eases the formulation of the underlying mathematical models.

Two appendices are included: Appendix A summarizes a series of facts from
the kinematics of rotations, that are available elsewhere, with the purpose of
rendering the book self-contained; Appendix B is devoted to the numerical
solution of over- and underdetermined linear algebraic systems, its purpose being
to guide the reader to the existing robust techniques for the computation of
least-square and minimum-norm solutions. The book concludes with a set of
problems, along with a list of references, for all ten chapters.

On Notation

The important issue of notation is given due attention. In figuring out the
notation, I have adopted what I call the C® norm. Under this norm, the notation
should be

1. Comprehensive,
2. Concise, and

3. Consistent.

Within this norm, I have used boldface fonts to indicate vectors and matrices,
with uppercases reserved for matrices and lowercases for vectors. In compliance
with the invariant approach adopted at the outset, I do not regard vectors solely
as arrays, but as geometric or mechanical objects. Regarding such objects as
arrays is necessary only when it is required to perform operations with them
for a specific purpose. An essential feature of vectors in a discussion is their
dimension, which is indicated with a single number, as opposed to the convention
whereby vectors are regarded as matrix arrays of numbers; in this convention,
the dimension has to be indicated with two numbers, one for the number of
columns, and one for the number of rows; in the case of vectors, the latter
is always one, and hence, need not be mentioned. Additionally, calligraphic
literals are reserved for sets of points or of other objects. Since variables are
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defined every time that they are introduced, and the same variable is used in
the book to denote different concepts in different contexts, a list of symbols is
not included.

How to Use the Book

The book can be used as a reference or as a text for the teaching of the mechanics
of robots to an audience that ranges from junior undergraduates to doctoral
students. In an introductory course, the instructor may have to make choices
regarding what material to skip, given that the duration of a regular semester
does not allow to cover all that is included in the first six chapters. Topics
that can be skipped, if time so dictates, are the discussions, in Chapter 4, of
workspaces and performance indices, and the section on simulation in Chapter 6.
Under strict time constraints, the whole Chapter 5 can be skipped, but then,
the instructor will have to refrain from assigning problems or projects that
include calculating the inverse dynamics of a robot performing pick-and-place
operations. None of these has been included in Section 6 of the Exercises.

If sections of Chapters 4 and 5 have been omitted in a first course, it is highly
advisable to include them in a second course, prior to discussing the chapters
included in the intermediate part of the book.
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Chapter 1

An Overview of Robotic
Mechanical Systems

1.1 Introduction

In defining the scope of our subject, we have to establish the genealogy of robotic
mechanical systems. These are, obviously, a subclass of the much broader class
of mechanical systems. Mechanical systems, in turn, constitute a subset of the
more general concept of dynamic systems. In the end, we must have an idea of
what, in general, a system is.

The Concise Oxford Dictionary defines system as a “complex whole, set of
connected things or parts, organized body of material or immaterial things,”
whereas the Random House College Dictionary defines the same as “an assem-
blage or combination of things or parts forming a complex or unitary whole.”
Le Petit Robert, in turn, defines system as “Ensemble possédant une structure,
constituont un tout organique,” which can be loosely translated as “A struc-
tured assemblage constituting an organic whole.” In the foregoing definitions,
we note that the underlying idea is that of a set of elements interacting as a
whole.

On the other hand, a dynamic system is a subset of the set of systems. For
our purposes, we can dispense with a rigorous definition of this concept. Suffice
it to say that, to qualify as dynamic, a system should be endowed with three
elements, namely, a state, an input, and an output, in addition to a rule of tran-
sitton from one current state to a future one. Moreover, the state is a functional
of the input and a function of a previous state. In this concept, then, the idea of
order is important, and can be taken into account by properly associating each
state value with time. The state at every instant is a functional, as opposed to
a function, of the input, which is characteristic of dynamic systems. This means
that the state of a dynamic system at a certain instant is determined not only
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by the value of the input at that instant, but also by the past history of the
input—besides, of course, its initial state. By virtue of this property, dynamic
systems are said to have memory.

On the contrary, systems whose state at a given instant is only a function
of the input at the current time are static, and said to have no memory. Addi-
tionally, since the state of a dynamic system is a result of all the past history
of the input, the future values of this having no influence on the state, dynamic
systems are said to be nonanticipative or cousal. By the same token, systems
whose state is the result of future values of the input are said to be anticipative
or noncausal. In fact, we need not worry about the latter, and hence, all systems
we will study will be assumed to be causal.

Obviously, a mechanical system is a system composed of mechanical ele-
ments. If this system complies with the definition of dynamic system, then we
end up with a dynamic mechanical system. For brevity, we will refer to such
systems as mechanical systems, the dynamic property being implicit throughout
the book. Mechanical systems of this type are those that occur whenever the
inertia of their elements is accounted for. Static mechanical systems are those
in which inertia is neglected. Moreover, the elements constituting a mechanical
system are rigid and deformable solids, compressible and incompressible fluids,
and inviscid and viscous fluids.

From the foregoing discussion, then, it is apparent that mechanical systems
can be constituted either by lumped-parameter or by distributed-parameter
elements. The former reduce to particles; rigid bodies; massless, conservative
springs; and massless, nonconservative dashpots. The latter appear whenever
bodies are modeled as continuous media. In this book, we will focus on lumped-
parameter mechanical systems. In mechanical systems, the driving forces and
moments exerted by the actuators and the environment play the role of the
input, the set of signals picked up by the sensors that of the output. Finally, the
rules of transition are dictated by the laws of nature, especially from mechanics,
electromagnetics and biology.

Furthermore, a mechanical system can be either natural or engineered®,
the latter being the subject of our study. Engineered mechanical systems can
be either controlled or uncontrolled. Most engineering systems are controlled
mechanical systems, and hence, we will focus on these. Moreover, a controlled
mechanical system may be robotic or nonrobotic. The latter are systems supplied
with primitive controllers, mostly analog, such as thermostats, servovalves, etc.
Robotic mechanical systems, in turn, can be programmable, such as most current
industrial robots, or intelligent, as discussed below. Programmable mechanical
systems obey motion commands either stored in a memory device or generated
on-line. In either case, they need sensors, such as joint encoders, accelerometers,
and dynamometers.

Intelligent robots or, more broadly speaking, intelligent machines, are yet to
be demonstrated, but have become the focus of intensive research. If intelligent

!In the previous editions we had used the term “man-made” instead. To avoid a gender-
biased terminology, we could have used “artificial,” but this term, while meaning “human-
made,” also has a negative connotation: “lacking in natural or spontaneous quality.”
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machines are ever feasible, they will depend highly on a sophisticated sensory
system and the associated hardware and software for the processing of the infor-
mation supplied by the sensors. The processed information would then be sup-
plied to the actuators in charge of producing the desired robot motion. Contrary
to programmable robots, whose operation is limited to structured environments,
intelligent machines should be capable of reacting to unpredictable changes in an
unstructured environment. Thus, intelligent machines should be supplied with
decision-making capabilities aimed at mimicking the natural decision-making
process of living organisms. This is the reason why such systems are termed
intelligent in the first place. Thus, intelligent machines are expected to per-
ceive their environment and draw conclusions based on this perception. What
is supposed to make these systems intelligent is their capability of perceiving,
which involves a certain element of subjectivity. By far, the most complex of
perception tasks, both in humans and machines, is visual (Levine, 1985; Horn,
1986).

In summary, then, an intelligent machine is expected to (i) perceive the
environment; (i{) reason about this perception; (ii¢) make decisions based on
this reasoning; and (iv) act according to a plan specified at a very high level.
What the latter means is that the motions undergone by the machine are decided
upon based on instructions similar to those given to a human being, like bring
me a glass of water without spilling the water.

Whether intelligent machines with all the above features will be one day
possible or not is still a subject of discussion, sometimes at a philosophical
level. Penrose (1994) wrote a refutal to the claim that intelligent machines are
possible.

A genealogy of mechanical systems, including robotic ones, is given in Fig. 1.1.
In that figure, we have drawn a dashed line between mechanical systems and
other systems, both engineered and natural. This line is intended to emphasize
the interaction of mechanical systems with electrical, thermal, and other sys-
tems, including the human system, which is present in telemanipulators, to be
discussed below.

1.2 The General Architecture of Robotic Me-
chanical Systems

From Section 1.1, then, a robotic mechanical system is composed of a few sub-
systems, namely, (i) a mechanical subsystem composed in turn of both rigid and
deformable bodies, although the systems we will study here are composed only
of the former; (i7) a sensing subsystem; (i44) an actuation subsystem; (iv) a con-
troller; and (v) an information-processing subsystem. Additionally, these sub-
systems communicate among themselves via interfoces, whose function consists
basically of decoding the transmitted information from one medium to another.
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DYNAMIC
SYSTEMS

PHYSICAL NONPHYSICAL
NATURAL

~~~~~~~~~~~~~~

UNCONTROLLED [ CONTROLLED | ["nonrosoTIC |
PROGRAMMABLE TELEMANIPULATORS INTELLIGENT MACHINES
ROBOTS « Surface Manlpulators + Manipulators
* Manipulators » Space Manipulators * Rolling Robots
* Automatic Guided Vehicles + Underwater Manipulators + Dextrous Hands

+ Walking Machines

Figure 1.1: A genealogy of robotic mechanical systems

Figure 1.2 illustrates the general architecture> of a typical robotic mechani-
cal system. The input here is a prescribed task, which is defined either on the
spot or off-line. The former case is essential for a machine to be called intelli-
gent, while the latter is present in programmable machines. Thus, tasks would
be described to intelligent machines by a software system based on techniques
of artificial intelligence (AI). This system would replace the human being in
the decision-making process. Programmable robots require human intervention
either for the coding of preprogrammed tasks at a very low level or for tele-
manipulotion. A very low level of programming means that the motions of the
machine are specified as a sequence of either joint motions or Cartesian coordi-
nates associated with landmark points of that specific body performing the task
at hand. The output of a robotic mechanical system is the actual task, which is
monitored by the sensors. The sensors, in turn, transmit task information in the
form of feedback signals, to be compared with the prescribed task. The errors
between the prescribed and the actual task are then fed back into the controller,
which then synthesizes the necessary corrective signals. These are, in turn, fed

2In Ch. 4 we introduce the concept of robotic architecture, to indicate the geometry of
the underlying mechanical system. We refer here to the “general architecture” of the whole
robotic system, to distinguish between the two concepts.
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back into the actuators, which then drive the mechanical system through the
required task, thereby closing the loop. The problem of robot control has re-
ceived extensive attention in the literature, and will not be pursued here. The
interested reader is referred to the excellent works on the subject, e.g., those of
Samson, Le Borgne, and Espiau (1991); Khalil and Dombre (2002); and Spong,
Hutchinson and Vidyasagar (2006). Of special relevance to robot control is the
subject of nonlinear control at large, a pioneer here being Isidori (1989).

task ROBOT | SIV error P&FS driving actual
CONTROLLER ACTUATORS - ROBOT
description | MODEL signals actions task
AJV INFORMATION c&ls
PROCESSING SENSORS
UNIT

SIV:  synthesized joint variables (angles and torques)
P&FS: position and force signals
C&JS: Cartesian and joint signals

AJV:  actual joint variables (angles and torques)

Figure 1.2: General architecture of a robotic mechanical system

Robotic mechanical systems with a human being in their control loop are
called telemanipulators. Thus, a telemanipulator is a robotic mechanical system
in which the task is controlled by a human, possibly aided by sophisticated
sensors and display units. The human operator replaces the ROBOT MODEL block
in the diagram of Fig. 1.2, produces the task description, becomes a part of
the sensory system, and plays a major role in the INFORMATION PROCESSING
UNIT block. Based on the information displayed, the operator makes decisions
about corrections in order to accomplish the prescribed task. Shown in Fig. 1.3
is a telemanipulator designed for space applications, namely, the Canadarm2,
along with DEXTRE, the Special-Purpose Dextrous Manipulator (SPDM), both
mounted on the Mobile Servicing System (MSS), a module of the International
Space Station. Moreover, a detailed view of DEXTRE is shown in Fig. 1.4.
In the manipulators of these two figures, the human operator is an astronaut
who commands and monitors the motions of the robot from inside the EVA
(extravehicular activity) workstation. The number of controlled axes of each
of these manipulators being larger than six, both are termed redundant. The
challenge here is that the mapping from task coordinates to joint motions is
not unique, and hence, among the infinitely many joint trajectories that the
operator has at his or her disposal for a given task, an on-board processor must
evaluate the best one according to a performance criterion.
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Figure 1.3: Canadarm2 and DEXTRE (courtesy of the Canadian Space Agency)

1.2.1 Types of Robots by Function

When the first edition was written, in the early nineties, the classification of
robots was rather straightforward, for there were mainly two kinds: scrial and
parallel. Nowadays a robot classification is a daunting task, by virtue of the
intenge activity displayed in the areas of robotics research, robot design, innova-
tion and applications. For example, a look at the Table of Contents of the Pro-
ceedings of the 2005 IEEE International Conference on Robotics and Automa-
tion will reveal a vast spectrum of robots currently working on the shopfloor, in
the operating room, in rehabilitation centers, and even at home. In attempting a
clagsification of robots, the most comprehensive criterion would be by function.
We thus have a tentative, but by no means comprehensive, classification:

e Manipulators: robotic arms and hands;

¢ motion generators: flight simulators; SCARA (Selective-Compliance As-
scmbly Robot Arm); and moving platforms at large;

# locomotors, a.k.a. mobile robots: legged and wheeled robots;
s swimming robots; and
¢ flying robots.

We expand below on these robot types.
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Figure 1.4: DEXTRE, the Special-Purpose Dextrous Manipulator (courtesy of
the Canadian Space Agency)

1.2.2 Types of Robots by Size

The most common type of robots under this criterion is macro-robots, or those
whose dimensions are measured in meter. These are robots with a recach of
typically a couple of meters. Shown in Fig. 1.5 is a heavy-duty robot, IRB-7600,
manufactured by ABB Robotics, with a reach of 2.800 m and a load-carrying
capacity of 3,332 N. This robot finds applications mainly in the manipulation
of heavy parts in the automobile industry.

Micro-robots bear dimensions allowing them a reach of a fraction of a mm.
For example, the robot. reported by Sun et al. (2005) for MEMS (micro-elec-
tromechanical systems) assembly, features a maximum reach of 100 um in each
of two orthogonal directions and one of 50 gm in a direction orthogonal to these
two.

1.2.3 Types of Robots by Application

Robot applications have widespread as much as robot architecturcs. Current
applications span the classical industrial robots for arc-welding, for example,
on to material-handling, surveillance, surgical operations, rehabilitation and
entertainment.

1.3 Manipulators

Of all robotic mechanical systems, manipulators deserve special attention for
various reasons. One is that, in their simplest form, as robotic arms, they
occur most frequently in industry. Another is that the architecture of robotic
arms constitutes the simplest of all robotic architectures, and hence, appear as
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Figure 1.5: The IRB-7600, a heavy-duty robotic arm with a serial architecture
(courtesy of ABB robotics)

constituents of other, more complex robotic mechanical systems, as will become
apparent in later chapters. A manipulator, in general, is a mechanical system
aimed at manipulating objects. Manipulating, in turn, means to move something
with one’s hands, as the word derives from the Latin manus, meaning hand. The
basic idea behind the foregoing concept is that hands are among the organs that
the human brain can control mechanically with the highest accuracy, as the work
of an artist like Picasso, of an accomplished guitar player, or of a surgeon can
attest.

A manipulator is thus any device that helps a human operator perform a
manipulating task. Although manipulators have existed ever since man created
the first tool, only very recently, namely, by the end of World War II, have
manipulators developed to the extent that they are now capable of actually
mimicking motions of the human arm, and of the human hand, for that matter.
In fact, during WWII, the need arose for manipulating probe tubes contain-
ing radioactive substances. This led to the first six-degree-of-freedom (DOF)
manipulators.

Shortly thereafter, the need for manufacturing workpieces with high accu-
racy arose in the aircraft industry, which led to the first numerically-controlled
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(NC) machine tools. The synthesis of the six-DOF manipulator and the NC ma-
chine tool produced what became the robotic manipulator. Thus, the essential
difference between the early manipulator and the evolved robotic manipulator is
the “robotic” qualifier, which came into the picture in the late sixties. A robotic
manipulator is to be distinguished from the early manipulator by its capabil-
ity of lending itself to computer control. While the early manipulator needed
the presence of a human in the loop, to have a master manipulator perform a
gesture, the robotic manipulator can be programmed once and for all to repeat
the same task forever. Programmable manipulators have existed for close to
30 years, since the advent of the microprocessor. Indeed, the microprocessor,
introduced in 1976 by Intel, allowed a human master to teach the manipula-
tor by actually driving the manipulator itself, or a replica thereof, through a
desired task, while recording all motions undergone by the master. Thus, the
manipulator would later repeat the identical task by mere playback. However,
the capabilities of industrial robots are fully exploited only if the manipulator is
programmed with software, rather than actually driving it through its task tra-
jectory, which many a time, e.g., in car-body spot-welding, requires separating
the robot from the production line for more than a week. One of the objectives
of this book is to develop tools for the programming of robotic manipulators.

Nevertheless, the capabilities offered by robotic mechanical systems go well
beyond the mere playback of preprogrammed tasks. Current research aims at
providing robotic systems with software and hardware that will allow them to
make decisions on the spot and learn while performing a task. The implementa-
tion of such systems calls for task-planning techniques that fall beyond the scope
of this book and, hence, will not be treated here. For a glimpse of such tech-
niques, the reader is referred to the work of Latombe (1991) and the references
therein.

1.3.1 Robotic Arms

Robotic manipulators first appeared as mechanical systems resembling the hu-
man arm. Robotic arms are thus constituted by a structure consisting of struc-
turally robust links coupled by either rotational or translating joints, the former
being called revolutes, the latter prismatic joints. Moreover, these structures
are a concatenation of links, thereby forming an open kinematic chain, with
each link coupled to a predecessor and a successor, except for the two end links,
which are coupled only to either a predecessor or to a successor, but not to both.
The robot displayed in Fig. 1.5 is an example of a robotic arm with strong links.

Because of the serial nature of the coupling of links in this type of manipula-
tor, even if they are supplied with structurally robust links, their load-carrying
capacity and their stiffness is too low when compared with the other multiaxis
machines, such as NC machine tools. Obviously, a low stiffness implies a low
positioning accuracy.
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1.3.2 Robotic Hands

Besides the hand, other mechanical subsystems constituting the human manip-
ulation system are the arm and the forearm. Moreover, the shoulder, coupling
the arm with the torso, can be regarded as a spherical joint, i.e., the concatena-
tion of three revolute joints with intersecting axes. Furthermore, the arm and
the forearm are coupled via the elbow, with the forearm and the hand finally
being coupled by the wrist. Frequently, the wrist is modeled as a spherical joint
as well, while the elbow is modeled as a simple revolute joint. Robotic mechan-
ical systems mimicking the motions of the arm and the forearm constitute the
manipulators discussed above. Here we outline more sophisticated manipula-
tion systems that aim at producing the motions of the human hand, i.e., robotic
hands. These systems are designed to perform manipulation tasks, a distinction
being made between simple manipulation and dextrous manipulation. What the
former means is the simplest form, in which the fingers play a minor role, namely,
by serving as simple static structures that keep an object rigidly attached with
respect to the palm of the hand—when the palm is regarded as a rigid body. As
opposed to simple manipulation, dextrous manipulation involves a controlled
motion of the grasped object with respect to the palm. Simple manipulation
can be achieved with the aid of a manipulator and a gripper, and need not be
further discussed here. The discussion here is about dextrous manipulation.

In dextrous manipulation, the grasped object is required to move with re-
spect to the palm of the grasping hand. This kind of manipulation appears in
performing tasks that require high levels of accuracy, like handwriting or cutting
tissue with a scalpel. Usually, grasping hands are multifingered, although some
grasping devices exist that are constituted by a simple, open, highly redundant
kinematic chain (Pettinato and Stephanou, 1989). The kinematics of grasping is
discussed in Chapter 10. The basic kinematic structure of a multifingered hand
consists of a palm, which plays the role of the base of a simple manipulator,
and a set of fingers. Thus, kinematically speaking, a multifingered hand has a
tree topology, i.e., it entails a common rigid body, the palm, and a set of jointed
bodies emanating from the palm. Upon grasping an object with all the fin-
gers, the chain becomes closed, with multiple loops. Moreover, the architecture
of the fingers is that of a simple manipulator, consisting of a number—two to
four—of revolute-coupled links playing the role of phalanges. However, unlike
manipulators of the serial type, whose joints are all independently actuated,
those of a mechanical finger are not and, in many instances, are driven by one
single master actuator, the remaining joints acting as slaves. Many versions of
multifingered hands exist: Stanford/JPL; Utah/MIT; TU Munich; Karlsruhe;
Bologna; Leuven; Milan; Belgrade; and University of Toronto, among others.
Of these, the Utah/MIT Hand (Jacobsen et al., 1984; 1986) is commercially
available. This hand carried four fingers, one of which is opposed to the other
three and hence, plays the role of the human thumb. Each finger consists, in
turn, of four phalanges coupled by revolute joints; each of these is driven by
two tendons that can deliver force only when in tension, each being actuated
independently. The TU Munich Hand, shown in Fig. 1.6(a), is designed with
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Figure 1.6: Two instances of robotic hands: (a)} The four-fingered hydraulically
actuated TU Munich Hand (courtesy of Prof. F. Pfeiffer); and (b) Université
Laval's, three-fingered SARAH (courtesy of Prof. C. Gosselin)

four identical fingers laid out symmetrically on a hand palm. This hand is
hydraulically actuated, and provided with a very high payload-to-weight ratio.
Indeed, each finger weighs only 1.470 N, but can exert a force of up to 30 N. A
three-fingered hand with 12 deprees of freedom and six actuators, SARAH, was
designed at Université Laval’s Laboratoire de Robotique. This hand, illustrated
in Fig. 1.6(b), is twice as big as the human hand, weighs 88.2 N, and can hold
a 686-N load (Laliberté et al., 2002; Laliberté and Gosselin, 2003)

We outline below some problems and rescarch trends in the area of dextrous
hands. A key issue here is the programming of the motions of the fingers, which
is a much more complicated task than the programming of a six-axis manip-
ulator. In this regard, Liu et al. (1989) introduced a task-analysis approach
intended to program robotic hand motions at a higher level. These researchers
used a heuristic, knowledge-based approach. From an analysis of the various
modes of grasping, they concluded that the requirements for grasping tasks are
(%) stability, (ii) manipulability, (ii) torquability, and (iv) radial rotatability.
Stability is defined as a measure of the tendency of an object to return to its
original position after disturbances. Manipulability, as understood in this con-
text, is the ability to impart motion to the object while keeping the fingers in
contact with the objeet. Torquability, or tangential rotatability, is the ability to
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rotate the long axis of an object—here the authors must assume that the ma-
nipulated objects are convex and can be approximated by three-axis ellipsoids,
thereby distinguishing between a long and a short axis—with a minimum force,
for a prescribed amount of torque. Finally, radial rotatability is the ability to
rotate the grasped object about its long axis with minimum torque about the
axis.

Furthermore, Allen et al. (1989) introduced an integrated system of both
hardware and software for dextrous manipulation. The system integrates force
and position sensors with control commands for both the arm and the hand. To
demonstrate the effectiveness of their system, the authors implemented a task
consisting of removing a light bulb from its socket. Rus (1992) proposed, in
turn, a paradigm allowing the high-level, task-oriented manipulation control of
planar hands.

While the technological aspects of dextrous manipulation are highly ad-
vanced, theoretical aspects are still under research in this area. An extensive
literature survey, with 405 references on the subject of manipulation, was given
by Reynaerts (1995). But that was the state of the art more than 10 years ago.
In the 2005 IEEFE International Conference on Robotics and Automation, there
were five sessions on grasping, robotic-finger design, robotic hands and dextrous
manipulation. An interesting approach to the programming of dextrous hands,
programming by demonstration, was reported by Ekvall and Kragié¢ (2005), un-
der which the robotic hand is taught how to reproduce the grasping sequences
of a human hand. The use of vision as a means of grasp-planning was also
reported in this conference (Gockel et al., 2005).

1.4 Motion Generators

Under this heading we include robotic systems designed to produce a certain
class of motions for various purposes, ranging from manipulation tasks, e.g.,
the positioning of a camera for surveillance, to the orientation of a surgeon’s
scalpel, on to moving platforms for pilot training, as in flight simulators, or for
entertainment, to give people the realism of an earthquake or a roller-coaster,
or simply of following a musical rhythm. Many a motion generator is supplied
with a parallel architecture, as described below.

1.4.1 Parallel Robots

Parallel robots were originally proposed to cope with the problems encountered
with their serial counterparts (Merlet, 2006), namely, a limited load-carrying
capacity, low accuracy, and low stiffness. This kind of robots was thus intro-
duced to withstand higher payloads with lighter links. In a parallel robot, we
distinguish one base platform, one moving platform, and various legs or limbs.
Each leg is, in turn, a kinematic chain of the serial type, whose end-links are the
two platforms. Contrary to serial robots, all of whose joints are actuated, paral-
lel robots are supplied with unactuated joints, which brings about a substantial
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Figure 1.7: Université Laval’s Agile Eye, a three-degree-of-freedom spherical
robot. with a parallel architecture (courtesy of Prof. Clément. Gosselin)

difference between the two types. The presence of unactuated joints makes the
analysis of parallel manipulators, in general, more complex than that of serial
robots.

A paradigm of parallel manipulators is the flight simulator, consisting of six
legs actuated by hydraulic pistons. The flight simulator with this architecture
motivated the early work, starting in the late eighties, on parallel robots. Re-
cently, an explosion of novel designs of parallel robots has occurred, aimed at
fast manipulation tasks. An example of these robots, departing from the archi-
tecture of flight simulators, is Université Laval’s Agile Eye, depicted in Fig. 1.7.
This robot is designed with one fixed base and one moving platform, that carries
a small camera. Basc and platform are coupled by means of three identical legs,
cach composed of two links and three revolute joints®. Moreover, the axes of
all nine revolutes intersect at one single point, the center of the mechanical sys-
tem. For this reason, all robot links move, with respect to the base, under pure
rotation, with the robot center remaining fixed. All three direct-drive motors

211 can be appreciated in Fig. 1.7 that the proximal links are made up of two curved beams,
each with an axis in the form of one-quarter of a circle. These two beams are rigidly fastened,
with their planes forming a 90° dihedral angle.
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are mounted on the base, and actuate the proximal links of the legs. This robot
can reportedly produce angular velocities of the camera as high as 1,000°/s and
angular aceelerations of 20,000°/s?.

Figure 1.8: FlexPicker, a realization of EPFL’s Delta Robot (courtesy of ABB
Robotics)

Other parallel robots have been designed for fast assembly operations, e.g.,
the Delta robot (Clavel, 1988), developed at the Lausanne Federal Polytechnic
Institute (EPFL). The Delta robot was designed to produce pure translations
of its end-platform in 3D space. An instance of this robot, the FlexPicker, is
shown in Fig. 1.8. This robot is designed with three identical legs, hanging from
the ceiling, which is the robot base. Fach leg carries one proximal link, coupled
to the base by a revolute, which is actuated by the leg-motor. Furthermore,
this link is coupled to the end-plate by means of two revolutes and onc novel
kinematic pair, the II-pair, which is nothing but a parallelogram four-bar link-
age, the II-pair being located between the two revolutes. It is noteworthy that
the FlexPicker is supplied with one additional actuated joint, at the interface
between the moving platform of the original Delta Robot and the gripper, ap-
pearing in the figure as a cylindrical piece. This revolute is actuated from the
base by means of a transmission mechanism stemming from the center of the
base in the figure,
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Figure 1.9: A sample of parallel manipulators: (a) The UTTAS Trussarm (cour-
tesy of Prof. P. C. Hughes); (b) the Merlet left hand (courtesy of Dr. J.-P.
Merlet); and (c) the Hayward shoulder module (courtesy of Prof. V. Hayward)

Other instances of parallel robots can be cited: Hexa (Pierrot et al., 1991),
developed at Université de Montpellier, as a six-degree-of-freedom extension of
Clavel’s Delta Robot; Star (Hervé and Sparacino, 1992), developed at Ecole
Centrale of Paris; the Trussarm, developed at the University of Toronto Insti-
tute of Aerospace Studies (UTIAS), shown in Fig. 1.9(a) (Hughes et al., 1991);
INRIA’s main gauche, or left hand, developed by Merlet (2006)* and shown
in Fig. 1.9(b), which is used as an aid to another robot, possibly of the serial

4INRIA is France’s Institut National de Recherche en Informatique et en Automatique,
the left hand, and other parallel robots having been developed at INRIA’s center at Sophia-
Antipolis, France.
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type, to enhance its dexterity; and McGill University’s parallel manipulator,
intended as a shoulder module for orientation tasks (Hayward, 1994), and capa-
ble of three-degree-of-freedom motions, produced by four hydraulic actuators,
which gives the robot redundant actuation—Fig. 1.9(c).

1.4.2 SCARA Systems

SCARA is an acronym standing for Selective-Compliance Assembly Robot Arm,
as coined by Hiroshi Makino (Makino and Furuya, 1980), the inventor of this new
class of robots. The class was proposed as a means to provide motion capabilities
to the end-effector that are required by the assembly of printed-board circuits
and other electronic devices with a flat geometry. Motions consist of three
independent translations and one rotation about an axis of fixed orientation,
usually vertical. These robots have received special attention because of their
special structure, offering an extremely high stiffness about two axes of tilting—
the axes normal to the axis of rotation. The first robots of this kind appeared
with a serial architecture, involving three revolutes and one prismatic joint, the
latter being located either at the base or at the end-effector. These robots have
attained impressive performance, capable of cycle times of 500 ms or lower,
for a standard pick-and-place operation consisting of: a) upwards translation
of 25 mm; b) horizontal translation of 300 mm, concurrently rotating through
an angle of 180°; and ¢) downwards translation of 25 mm. The cycle is closed
by returning to the original posture following exactly the same displacement
program, but in the reverse order.

Given the serial architecture of most SCARA systems, it appears that the
cycle times are extremely difficult to cut further and the load-carrying capacity
is equally difficult to increase. This state of affairs has motivated the emer-
gence of alternative architectures, such as parallel or hybrid (serial-parallel).
For example, Fanuc’s M410iB and ABB Robotics’ IRB 660 robot feature hy-
brid SCARA architectures with long reaches, of around 3 m and payloads of
above 2000 N. The manufacturers did this by means of parallelogram linkages
capable of transmitting torque and motion from a common base, turning about
a vertical axis, to two horizontal revolute joints, the fourth revolute having a
vertical axis. Interestingly, although these robots are medium-to-heavy-duty
SCARAs, the manufacturers bill them as “palletizing robots,” with no relation
to SCARAs. As a matter of fact, SCARAs can be regarded as generators of
the Schonflies displacement subgroup (Bottema and Roth, 1979; Hervé, 1999).
For this reason, SCARA systems are currently referred to as Schinflies-motion
generators. An architecture for a hybrid SCARA departing from those of the
M410iB and the IRB 660 robots features two pairs of pan-tilt drives in series,
each being constituted by a RII dyad, with the II-joint having been defined in
connection with Fig. 1.9. One innovative serial-parallel SCARA system with
this architecture was introduced by Angeles et al. (2000).

In yet another attempt to overcome the natural limitations of serial SCARAs,
parallel architectures have been proposed: H4, a four-limb Schoénflies-motion
generator developed at France’s Université de Montpellier (Company et al.,
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2001); the four-limb robot driven with actuated prismatic joints developed at
Institut Frangais de Mécanigue Avancée (Gogu, 2004); and the MeGill SMG
developed at McGill Univesity (Al-Widyan and Angeles, 2004), that features
only two limbs.

1.5 Locomotors

Under locomotors we include all robots capable of displacing themselves on a
surface without any attachment to the surface. Here we distinguish two kinds
of robots, legged and wheeled, as outlined below.

1.5.1 Legged Robots

A common architecture of walking machines is the hexapod, examples of which
arc the Ohio State University (OSU) Hexapod (Klein et al., 1983) and the OSU
Adaptive Suspension Vehicle (ASV) (Song and Waldron, 1989). A six-legged
walking machine with a design that mimics the locomotion system of the Carau-
sius morosus (Graham, 1972), also known as the walking stick, was developed
at the Technical University of Munich (Pfeiffer et al., 1995). A prototype of
this machine, known as the TUM Hezapod, i3 included in Fig. 1.10. The legs
of the TUM Hexapod are operated under neural-network control, which gives
them a reflex-like response when encountering obstacles: Upon sensing an ob-
stacle, the leg bounces back and tries again to move forward, but raising the
foot to a higher level, Other legged robots worth mentioning as pioncers are the
Sutherland, Sprout and Associates Hexapod (Sutherland and Ullner, 1984), the
Titan series of quadrupeds (Hirose et al., 1985) and the Odetics series of axially
symmetric hexapods (Russell, 1983).

Figure 1.10: A prototype of the TU Munich Hexapod (Courtesy of Prof. F. Pfeif-
fer. Reproduced with permission of TSI Enterprises, Inc.)
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Figure 1.11: RHEX, a six-legged robot (Courtesy of G. Dudek, McGill Univer-
sity)

A gurvey of walking machines, of a rather historical interest now, was given
in (Todd, 1985), while a more recent comprehensive account of walking machines
is available in a special issue of The International Journal of Robotics Research
(Volume 9, No.2, 1990).

Walking machines appear as the sole means of providing lJocomotion in highly
unstructured cnvironments. In fact, the unique adaptive suspension provided
by these machines allows them to navigate on uneven terrain. However, walking
machines cannot traverse every type of uneven terrain, for they are of limited
dimensions. Hence, if terrain irregularitics such as a crevasse wider than the
maximum horizontal leg reach or a cliff of depth greater than the maximum
vertical leg reach are present, then the machine is prevented from making any
progress. This limitation, however, can be overcome by providing the machine
with the capability of attaching its feet to the terrain in the same way as a
mountain climber goes up a cliff. Moreover, machine functionality is limited
not only by the topography of the terrain, but also by the terrain constitution.
Whereas hard rock poses no serious problem to a walking machine, muddy
terrain can hamper its operation to the point that it may jam the machine. Still,
under such adverse conditions, walking machines offer a better maneuverability
than other vehicles. Recent work at McGill University® on legged locomotion
has led to robots with robust designs allowing them to negotiate mud and even
ponds. A serics of hexapods, under the name RHEX, has been developed with
these features, as shown in Fig. 1.11. The same robot is shown in Fig. 1.12
roaming a patterned floor, to give a clue on its dimensions, of about 500 mm in

5Originally led by Prof. Martin Buehler,
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Figure 1.12: RHEX walking on a patterned floor, to indicate its dimensions
(Courtesy of G. Dudek, McGill University)

length.

Humanoids

An important class of legged robots is constituted by humanoids. Pioncer work
by Vukobratovic and Stepanenko (1972) has led to modern bipeds exhibiting
impressive performance. Indeed, work initiated in 1986 at Honda led to ASIMO,
a robotic mechanical system integrating both manipulation and locomotion in
one single unit.

Research in humanoids is quite intensive at the moment, with eight sessions
on the subject during the 2005 IEEE International Conference on Robotics and
Automation, including controls, motion-planning, design, voice-mimicry, and
human-robot interaction.

1.5.2 Wheeled Robots

Robots in this category are systems evolved from earlicr systems called auto-
matic guided vehicles, or AGVs for short. AGVs in their most primitive versions
are four-wheeled, electrically powered vehicles that perform moving tasks with a
certain degree of autonomy. However, these vehicles are usually limited to mo-
tions along predefined tracks that arc either railways or magnetic strips glued
to the ground.

The most common rolling robots use conventional wheels, i.e., whecls con-
sisting basically of a pncumatic tire mounted on a hub that rotates about an
axle fixed to the robot platform. Thus, the operation of these machines does not
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Figure 1.13: (a) A sample of omnidirectional wheels, the 4202KX and the
2052KX Cat-Trak Transwheel (courtesy of Kornylak Corporation); and (b) a
computer model of a rolling robot supplicd with ODW carrying rollers at an
acute angle with the hub axis

differ much from that of conventional terrestrial vehicles. An essential difference
between rolling robots and other robotic mechanical systems is the kinematic
constraints between wheel and ground in the former. These constraints are of
a type known as nenholonomic, as discussed in detail in Chapter 12. Nonholo-
nomic constraints are kinematic relations between point velocities and angular
velocities that cannot be integrated in the form of algebraic relations between
translational and rotational displacement variables. The outcome of this lack
of integrability leads to a lack of a one-to-one relationship between Cartesian
variables and joint variables. In fact, while angular displacements read by joint
encoders of serial manipulators determine uniquely the position and orientation
of their end-effector, the angular displacement of the wheels of rolling machines
do not determine the position and orientation of the vehicle body. As a matter of
fact, the control of rolling robots bears common features with the redundancy-
resolution of manipulators of the serial type at the joint-rate level. In these
manipulators, the number of actuated joints is greater than the dimension of
the task space. As a consequence, the task velocity does not. determine the joint
rates. Not surprisingly, the two types of problems have been solved using the
same tools, namely, differential geometry and Lic algebra (De Luca and Oriolo,
1995).

As a means to supply rolling robots with three-dof capabilities, not found
in conventional terrestrial vehicles, omnidirectional wheels (ODW) have been
developed. Examples of ODW bear names such as Mekonum wheels, Swedish
wheels, ilonators, or others. ODW consist of a hub with rollers on its periphery
that roll freely about their axes, the latter being oriented at a constant angle
with respect to the hub axis. In Fig. 1.13(a), two commercial ODW, the 4202KX
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Figure 1.14: QUASIMORO, a quasiholonomic mobile robot

and the 2052KX Cat-Trak Transwheels® are shown; in Fig. 1.13(b), the com-
puter model of a rolling robot supplied with Mekanum wheels, bearing rollers
at an acute angle with the hub axis, is depicted. Rolling robots with ODW
arce, thus, three-dof vehicles, and hence, can translate freely in two horizontal
directions and rotate independently about a vertical axis. However, like their
two-dof counterparts, three-dof rolling robots are also nonholonomic devices,
and thus, pose the same problems for their control as the former.

Further developments in the technology of rolling robots have been reported
that incorporate alternative types of ODWs. For example, Killough and Pin
(1992) developed a rolling robot with what they call erthogonal bell wheels,
consisting basically of spherical whecls that can rotate about two mutually or-
thogonal axcs. Borenstein (1993) proposed a mobile robot with four degrees
of freedom; these were achieved with two chassis coupled by an extensible link,
each chassis being driven by two actuated conventional wheels. West and Asada
(1995), in turn, designed a rolling robot with ball wheels, i.e., balls that act as
omnidirectional wheels; each ball is mounted on a set of rollers, one of which
is actuated; hence, three such wheels are necessary to fully control the vehicle.
The unactuated rollers serve two purposes, i.e., to provide stability to the wheels
and the vehicle, and to measure the rotation of the ball, thereby detecting slip.

Mobile Wheeled Pendulums

A new class of whecled robots has emerged since the turn of the century. This
class, known as mobile wheeled penduluwms (MWP), comprises two coaxial wheels
and an intermediate body, the challenge being to control both the motion of
the common wheel axis and that of the intermediate body. Interest on the

5The two wheels bear synthetic rubber-coated polypropylene rollers: the larger wheel has
a 4” diameter, with a 17 inside diameter; the smaller wheel has a 2” diameter, with a 1/2”
inside diameter.
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subject was probably promoted by the US patent behind the Ginger and the
Segway Human Transporter projects (Kamen et al., 1999). Another mobile
inverted pendulum is known as JOE (Grasser et al., 2002). More recently, a
new class of nonholonomic mechanical systems was found that lies somewhat
between holonomic and nonholonomic systems; these systems were thus termed
quasiholonomic (Ostrovskaya and Angeles, 1998). A realization of this class
was reported by Salerno and Angeles (2004), featuring Quasimoro, shown in
Fig. 1.14, a quasiholonomic mobile robot intended as a service robot for para-
plegics. Quasimoro’s central body is to carry food, drinks and books to the user.
This robot also falls within the category of MWP. A feature common to this
category, that is not encountered in other wheeled robots, is that their central
body, which constitutes the robot platform, can rotate about the wheel axis,
This motion should be controlled, thereby leading to a new challenging problem,
which is the stabilization of the central body, aside the classical control problem
due to nonholonomy.

Figure 1.15: Aqua, an amphibious robot (Courtesy of G. Dudek/M. Jenkin on
behalf of the Aqua Project)

1.6 Swimming Robots

A novel class of robots with swimming capabilities is currently under devel-
opment in various research laboratories, with three sessions on the subject at
the 2005 IEEE International Conference on Robotics and Automation. Some
of these robots have been designed with the morphology of fish (Yu and Wang,
2005; Liu and Hu, 2005). One swimming robot designed with a hexapod mor-
phology, featuring six flippers in lieu of legs is Aqua, developed at McGill Uni-
versity, and depicted in Figs. 1.15 and 1.16. The latter shows Aqua with its
designer, Chris Prahacs.
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Figure 1.16: Aqua, swimming under monitoring by its designer (Courtesy of G.
Dudek/M. Jenkin on behalf of the Aqua Project)

1.7 Flying Robots

This field is becoming quite active, with some robots mimicking the morphology
of insects, and falling into the category of micro-robots (Steltz, Wood, Avad-
hanula and Fearing, 2005); other flying robots are designed as unmanned aerial
vehicles (UAV) (Kadniche et al., 2005; Rongier et al., 2005).



24 1. An Overview of Robotic Mechanical Systems

1.8 Exercises

The exercises included below are intended to familiarize the uninitiated reader
with the issues involved in robotics, especially in the area of robotic mechanical
systems. A major issue, regrettably quite often overlooked, is terminology. In
attempting to work out these exercises, the beginner should be able to better
understand the language of robotics and realize that a common terminology is
not yet available. Some exercises are provided as an aid to either recall or learn
fundamental computational issues that are extremely useful in the development
of algorithms for the analysis, simulation and control of robotic mechanical
systems.

1.1 List some definitions of machine, say about half a dozen, trying to cover
the broadest timespan to date. Hint: Hartenberg and Denavit (1964) list
a few bibliographical references.

1.2 Try to give an answer to the question: Are intelligent machines possible?
Express your own ideas and explore what scientists like Penrose (1994)
think about this controversial issue.

1.3 What is the difference among machine, mechanism, and linkage? In par-
ticular, analyze critically the definitions given by authorities, such as those
found in the most respected dictionaries, encyclopedias, and archival doc-
uments of learned societies, e.g., the complete issue of Vol. 38, Nos. 7-10
(2003) of Mechanism and Machine Theory on Standardization of Termi-
nology.

1.4 What is artificial intelligence? What is fuzzy logic? Can the techniques
of these fields be applied to robotics?

1.5 What is mechatronics? What is the difference between mechatronics and
robotics? Comerford (1994) and Soureshi et al. (1994) give an account on
this technology.

1.6 What do you understand as dexterity? The concept of dexterity is nor-
mally applied to persons. Can it be applied to animals as well? What
about machines?

1.7 Define the term algorithm. In this context, make a clear distinction be-
tween recursion and iteration. Note that, in the robotics literature, there
is often confusion between these two terms in particular. Make sure that
you do not make the same mistake! Again, Penrose (1994) has provided
an extensive discussion on the nature of algorithms.

1.8 What is the difference among terms like real-time, on-line, and run-time?

1.9 How fast can two floating-point numbers be multiplied using a personal
computer? What about using a UNIX workstation? a supercomputer?
Write a piece of code to estimate this time on your computer facility.
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1.10 Answer the foregoing question as pertaining to floating-point addition.

1.11 What is the smallest floating-point number on your computer? Rather
than looking for the answer in manuals, write a procedure to estimate it.

1.12 What is the difference between procedural programming and object-oriented
programming? In terms of programming languages, what is the difference
between C and C++? Rumbaugh et al. (1991) provide an introduction
to object-oriented programming, while Stroustrup (1991) gives an intro-
duction to C+-+.



Chapter 2

Mathematical Background

2.1 Preamble

First and foremost, the study of motions undergone by robotic mechanical sys-
tems or, for that matter, by mechanical systems at large, requires a suitable
motion representa}ion. Now, the motion of mechanical systems involves the
motion of the particular links comprising those systems, which in this book are
supposed to be rigid. The assumption of rigidity, although limited in scope, still
covers a wide spectrum of applications, while providing insight into the motion
of more complicated systems, such as those involving deformable bodies.

The most general kind of rigid-body motion consists of both translation and
rotation. While the study of the former is covered in elementary mechanics
courses and is reduced to the mechanics of particles, the latter is more chal-
lenging. Indeed, point translation can be studied simply with the aid of 3-
dimensional vector calculus, while rigid-body rotations require the introduction
of tensors, i.e., entities mapping vector spaces into vector spaces.

Emphasis is placed on invariant concepts, i.e., items that do not change upon
a change of coordinate frame. Examples of invariant concepts are geometric
quantities such as distances and angles between lines. Although we may resort
to a coordinate frame and vector algebra to compute distances and angles, and
will represent vectors in that frame, the final result will be independent of how we
choose that frame. The same applies to quantities whose evaluation calls for the
introduction of tensors. Here, we must distinguish between the physical quantity
represented by a vector or a tensor and the representation of that quantity in
a coordinate frame using a 1-dimensional array of components in the case of
vectors, or a 2-dimensional array in the case of tensors. It is unfortunate that
the same word is used in English to denote a vector and its array representation
in a given coordinate frame. Regarding tensors, the associated arrays are called
matrices. By abuse of terminology, we will refer to both tensors and their
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arrays as matrices, although keeping in mind the essential conceptual differences
involved.

2.2 Linear Transformations

The physical 3-dimensional space is a particular case of a vector space. A vec-
tor space is a set of objects, called vectors, that follow certain algebraic rules.
Throughout the book, vectors will be denoted by boldface lowercase characters,
whereas tensors and their matrix representations will be denoted by boldface
uppercase characters. Let v, vi, vo, v3, and w be elements of a given vector
space V, which is defined over the real field, and let o and 8 be two elements
of this field, i.e., @ and § are two real numbers. Below we summarize the rules
mentioned above:

(1) The sum of v; and v,, denoted by v; + va, is itself an element of V and
is commutative, i.e., Vi + Vo = vg -+ vy;

(i) V contains an element 0, called the zero vector of V, which, when added
to any other element v of V), leaves it unchanged, i.e., v+ 0 = v;

(#9i) The sum defined in (¢) is associative, i.e., vi + (Vo +v3) = (v1 + Vo) +v3;

(fv) For every element v of V, there exists a corresponding element, w, also
of V, which, when added to v, produces the zero vector, i.e., v+ w = 0.
Moreover, w is represented as —v;

(v) The product av, or va, is also an element of V, for every v of V and every
real a. This product is associative, i.e., a(8v) = (af)v;

(vi) If « is the real unity, then av is identically v;

(vii) The product defined in (v) is distributive in the sense that (a) (a+ 8)v =
av + fv and (b) a(vy + va) = avy + ava.

Although vector spaces can be defined over other fields, we will deal with
vector spaces over the real field, unless explicit reference to another field is made.
Moreover, vector spaces can be either finite- or infinite-dimensional, but we will
not need the latter. In geometry and elementary mechanics, the dimension of
the vector spaces needed is usually three, but when studying multibody systems,
an arbitrary finite dimension will be required. The concept of dimension of a
vector space is discussed in more detail later.

A linear transformation, represented as an operator L, of a vector space If
into a vector space V, is a rule that assigns to every vector u of U at least one
vector v of V, represented as v = Lu, with L endowed with two properties:

(1) homogeneity: L{ou) = av; and
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(%) additivity: L(ug + u2) = v1 + va.

Note that, in the foregoing definitions, no mention has been made of com-
ponents, and hence, vectors and their transformations should not be confused
with their array representations.

Particular types of linear transformations of the 3-dimensional Euclidean
space that will be encountered frequently in this context are projections, reflec-
tions, and rotations. One further type of transformation, which is not linear,
but nevertheless appears frequently in kinematics, is the one known as affine
transformation. The foregoing transformations are defined below. It is nec-
essary, however, to introduce additional concepts pertaining to general linear
transformations before expanding into these definitions.

The range of a linear transformation L of I/ into V is the set of vectors v
of V into which some vector u of I/ is mapped, i.e., the range of L is defined
as the set of v = Lu, for every vector u of /. The kernel of L is the set of
vectors uy of U that are mapped by L into the zero vector 0 € V. It can be
readily proven (see Exercises 2.1-2.3) that the kernel and the range of a linear
transformation are both vector subspaces of U and V, respectively, i.e., they are
themselves vector spaces, but of a dimension smaller than or equal to that of
their associated vector spaces. Moreover, the kernel of a linear transformation
is often called the nullspace of the said transformation.

Henceforth, the 3-dimensional Euclidean space is denoted by £®. Having
chosen an origin O for this space, its geometry can be studied in the context
of general vector spaces. Hence, points of £2 will be identified with vectors of
the associated 3-dimensional vector space. Moreover, lines and planes passing
through the origin are subspaces of dimensions 1 and 2, respectively, of £3.
Clearly, lines and planes not passing through the origin of £2 are not subspaces
but can be handled with the algebra of vector spaces, as will be shown here.

An orthogonal projection P of £3 onto itself is a linear transformation of the
said space onto a plane IT passing through the origin and having a unit normal
n, with the properties:

P?=P, Pn=0 (2.1a)

Any matrix with the first property above is termed idempotent. For n x n
matrices, it is sometimes necessary to indicate the lowest integer ! for which an
analogous relation follows, i.e., for which P! = P. In this case, the matrix is
said to be idempotent of degree [.

Clearly, the projection of a position vector p, denoted by p’, onto a plane
IT of unit normal n, is p itself minus the component of p along n as shown in
Fig. 2.1, i.e,,

p' =p—n(n’p) (2.1b)

where the superscript T’ denotes either vector or matrix transposition and n”p
is equivalent to the usual dot product n - p.

Now, the identity matrix 1 is defined as the mapping of a vector space V
into itself leaving every vector v of V unchanged, i.e.,

lv=v (2.2)
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P

Figure 2.1: A projection onto a plane I7 of unit normal n

Thus, p’, as given by eq.(2.1b), can be rewritten as
p'=1p—nnTp= (1 -—nnT)p (2.3)
and hence, the orthogonal projection P onto IT can be represented as
P=1-nn” (2.4)

where the product nn” amounts to a 3 x 3 matrix.

Now we turn to reflections. Here we have to take into account that reflec-
tions occur frequently accompanied by rotations, as yet to be studied. Since
reflections are simpler to represent, we first discuss these, rotations being dis-
cussed in full detail in Section 2.3. What we shall discuss in this section is pure
reflections, i.e., those occurring without any concomitant rotation. Thus, all re-
flections studied in this section are pure reflections, but for the sake of brevity,
they will be referred to simply as reflections.

A reflection R of £3 onto a plane IT passing through the origin and having a
unit normal n is a linear transformation of the said space into itself, as depicted
in Fig. 2.2, such that a vector p is mapped by R into a vector p’ given by

p'=p-2nnTp=(1-2nnT)p

Thus, the reflection R can be expressed as
R=1-2nn7 (2.5)

From eq.(2.5) it is then apparent that a pure reflection is represented by a
linear transformation that is symmetric and whose square equals the identity
matrix, i.e., R2 = 1. Indeed, symmetry is apparent from the equation above;
the second property is readily proven below:

R? = (1 — 20n7)(1 - 2nn7)
=1-2nn7 — 2nn7 + 4(anT)(nnT) = 1 — 40nT + 4n(0Tn)n?
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Figure 2.2: A reflection onto a plane IT of unit normal n

which apparently reduces to 1 because n is a unit vector. Note that from the
second property above, we find that pure reflections observe a further interesting
property, namely,

R!'=R

i.e., every pure reflection equals its inverse. This result can be understood
intuitively by noticing that, upon doubly reflecting an image using two mirrors,
the original image is recovered. Any square matrix which equals its inverse will
be termed self-inverse henceforth.
Further, we take to deriving the orthogonal decomposition of a given vector
v into two components, one along and one normal to a unit vector e. The
component of v along e, termed here the azial component, v|—read v-par—is
simply given as
v = eeTv (2.6a)

while the corresponding normal component, v, —read v-perp—is simply the
difference v — vy, i.e.,

viEv-vy=(1- eel)v (2.6b)

the matrix in parentheses in the foregoing equation being rather frequent in
kinematics. This matrix will appear when studying rotations.

Further concepts are now recalled: The basis of a vector space V is a set of
linearly independent vectors of V, {v;}7, in terms of which any vector v of V
can be expressed as

Vv=a1vy +aavyt+ -+ anvy (2.7)

where the elements of the set {a;}7 are all elements of the field over which V
is defined, i.e., they are real numbers in the case at hand. The number n of
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elements in the set B = {v;}7 is called the dimension of V. Note that any set
of n linearly independent vectors of V can play the role of a basis of this space,
but once this basis is defined, the set of real coefficients {a;}} representing a
given vector v is unique.

Let U/ and V be two vector spaces of dimensions m and n, respectively, and
L a linear transformation of { into V, and define bases By and By for & and V
as

By = {w;}1*, Bv ={vi}t (2.8)

Since each Lu; is an element of V, it can be represented uniquely in terms of
the vectors of By, namely, as

Lu; =ljvi+bjva+---+1lajve, j=1,...,m (2.9)

Consequently, in order to represent the images of the m vectors of By,
namely, the set {Lu;}{*, n x m real numbers l;;, for ¢ = 1,...,n and j =
1,...,m, are necessary. These real numbers are now arranged in the n x m

array [L]gl‘; defined below:

il - lim
b1 lao - by

Llgv=|. . . . (2.10)
lnl ln2 ot lnm

The foregoing array is thus called the matriz representation of L with respect
to By and By. We thus have an important definition:

Definition 2.2.1 The jth column of the matriz representation of L with re-
spect to the bases By and By is composed of the n real coefficients l;; of the
representation of the image of the jth vector of By in terms of By .

The notation introduced in eq.(2.10) is rather cumbersome, for it involves
one subscript and one superscript. Moreover, each of these is subscripted. In
practice, the bases involved are self-evident, which makes an explicit mention
of these unnecessary. In particular, when L is a mapping of U/ onto itself, a
single basis suffices to represent L in matrix form. In this case, its bracket will
bear only a subscript, and no superscript, namely, [ L ]g. Moreover, we will use,
henceforth, the concept of basis and coordinate frame interchangeably, since one
implies the other.

Two different bases are unavoidable when the two spaces under study are
physically distinct, which is the case in velocity analysis of manipulators. As
we will see in Chapter 4, in these analyses we distinguish between the velocity
of the manipulator in Cartesian space and that in the joint-rate space. While
the Cartesian-space velocity—or Cartesian velocity, for brevity——consists, in
general, of a 6-dimensional vector containing the 3-dimensional angular velocity
of the end-effector and the translational velocity of one of its points, the latter
is an n-dimensional vector. Moreover, if the manipulator is coupled by revolute
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joints only, the units of the joint-rate vector are all s™1, whereas the Cartesian
VQIO(;ity contains some components with units of s~! and others with units of
ms™'.
Further definitions are now recalled. Given a mapping L of an n-dimensional
vector space U into the n-dimensional vector space V, a nonzero vector e that
is mapped by L into a multiple of itself, Ae, is called an eigenvector of L, the
scalar X being called an eigenvalue of L. The eigenvalues of L are determined
by the equation

det(A1-L) =0 (2.11)

Note that the matrix A1 — L is linear in ), and since the determinant of a n xn
matrix is a homogeneous nth-order function of its entries, the left-hand side of
eq.(2.11) is a nth-degree polynomial in A. The foregoing polynomial is termed
the characteristic polynomial of L. Hence, every n X n matrix L has n complex
eigenvalues, even if L is defined over the real field. If it is, then its complex
eigenvalues appear in conjugate pairs. Clearly, the eigenvalues of L are the
roots of its characteristic polynomial, while eq.(2.11) is called the characteristic
equation of L.

Example 2.2.1 What is the representation of the reflection R of £ into itself,
with respect to the z-y plane, in terms of unit vectors parallel to the X, Y, Z
azes that form a coordinate frame F?

Solution: Note that in this case, U = V = £3 and, hence, it is not necessary to
use two different bases for ¢ and V. Now, let i, j, k, be unit vectors parallel to
the X, ¥, and Z axes. Clearly,

Ri=i
Rj=]
Rk = -k

Thus, the representations of the images of i, j and k under R, in F, are

1 0 0
[Ril=|0|, [Rjlr=]|1]|, [Rk]r=]0
0 0 -1

where subscripted brackets are used to indicate the representation frame. Hence,
the matrix representation of R in F, denoted by [R ], is

10 0
[Rlz={0 1 0
00 -1

2.3 Rigid-Body Rotations

A linear isomorphism, i.e., a one-to-one linear transformation mapping a space
V onto itself, is called an isometry if it preserves distances between any two
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points of V. If u and v are regarded as the position vectors of two such points,
then the distance d between these two points is defined as

d=/(u-v)T(u-v) (2.12)

The volume V of the tetrahedron defined by the origin and three points of
the 3-dimensional Euclidean space of position vectors u, v, and w is obtained
as one-sixth of the absolute value of the double mized product of these three
vectors,

1 1
Egluxv-w|=6|det[u v o w]| (2.13)

i.e., if a 3x3 array [A] is defined in terms of the components of u, v, and w, in
a given basis, then the first column of [A] is given by the three components of
u, the second and third columns being defined likewise.

Now, let Q be an isometry mapping the triad {u, v, w} into {u’, v/, w'}.
Moreover, the distance from the origin to the points of position vectors u, v,
and w is given simply as ||lu, ||v||, and ||w]|, which are defined as

|[u]] = vVuTu, |v||=vvlv, |w|=vwTw (2.14)
Clearly,
'l = [lall, [Vl =lvll, [w=Iw] (2.15a)
and
det[u' v w]==xdet[u v w] (2.15Db)

If, in the foregoing relations, the sign of the determinant is preserved, the
isometry represents a rotaotion; otherwise, it represents a reflection. Now, let p
be the position vector of any point of £3, its image under a rotation Q being
p'. Hence, distance preservation requires that

p’p=p"p (2.16)
where
p' =Qp (2.17)
condition (2.16) thus leading to
QTQ =1 (2.18)

where 1 was defined in Section 2.2 as the 3 x 3 identity matriz, and hence,
eq.(2.18) states that Q is an orthogonal matriz. Moreover, let T and T’ denote
the two matrices defined below:

T=[u v w], T'=[v v w] (2.19)

from which it is clear that
T = QT (2.20)
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Now, for a rigid-body rotation, eq.(2.15b) should hold with the positive sign,
and hence,
det(T) = det(T’) (2.21a)

and, by virtue of eq.(2.20), we conclude that
det(Q) = +1 (2.21b)

Therefore, Q is a proper orthogonal matriz, i.e., it is a proper isometry. Now
we have

Theorem 2.3.1 The eigenvalues of a proper orthogonal matriz Q lie on the
unit circle centered at the origin of the complex plane.

Proof: Let X be one of the eigenvalues of Q and e the corresponding eigenvector,
so that

Qe = Xe (2.22)

In general, Q is not expected to be symmetric, and hence, A is not necessarily
real. Thus, X is considered complex, in general. In this light, when transposing
both sides of the foregoing equation, we will need to take the complex conjugates
as well. Henceforth, the complex conjugate of a vector or a matrix will be
indicated with an asterisk as a superscript. As well, the conjugate of a complex
variable will be indicated with a bar over the said variable. Thus, the transpose
conjugate of the above equation takes on the form

e*Q* = de* (2.23)
Multiplying the corresponding sides of the two previous equations yields
e*Q*Qe = Xe*e (2.24)

However, Q has been assumed real, and hence, Q* reduces to Q7 , the foregoing
equation thus reducing to

e*Q7Qe = Xe*e (2.25)

But Q is orthogonal by assumption, and hence, it obeys eq.(2.18), which means
that eq.(2.25) reduces to

e*e = |\|°e*e (2.26)
where | - | denotes the module of the complex variable within it. Thus, the
foregoing equation leads to

A2 =1 (2.27)

thereby completing the intended proof. As a direct consequence of Theo-
rem 2.3.1, we have

Corollary 2.3.1 A proper orthogonal 3 X 3 metrixz has at least one eigenvalue
that is +1.
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Now, let e be the eigenvector of Q associated with the eigenvalue +1. Thus,
Qe=¢e (2.28)
What eq.(2.28) states is summarized as a theorem below:

Theorem 2.3.2 (Euler, 1776) A rigid-body motion ebout a point O leaves
fized a set of points lying on a line L that passes through O and is parallel to
the eigenvector e of Q associated with the eigenvalue +1.

A further result, that finds many applications in robotics and, in general, in
system theory, is given below:

Theorem 2.3.3 (Cayley-Hamilton) Let P()\) be the characteristic polyno-
mial of a n X n matriz A, i.e.,

P(A) =det(A\1 —A) = A"+ a, 1 A"V + -+ ar X +ag (2.29)
Then A satisfies its characteristic equation, i.e.,
A"+ a, A" 4+t a1A +agl =0 (2.30)
where O is the n x n zero matriz.

Proof: See (Kaye and Wilson, 1998).

What the Cayley-Hamilton Theorem states is that any power p > n of the
n X n matrix A can be expressed as a linear combination of the first n powers of
A—the Oth power of A is, of course, the n x n identity matrix 1. An important
consequence of this result is that any analytic matrix function of A can be
expressed not as an infinite series, but as a sum, namely, a linear combination
of the first n powers of A: 1, A, ..., A"}, An analytic function f(z) of a real
variable z is, in turn, a function with a series expansion. Moreover, an analytic
matrix function of a matrix argument A is defined likewise, an example of which
is the exponential function. From the previous discussion, then, the exponential
of A can be written as a linear combination of the first n powers of A. It will
be shown later that any proper orthogonal matrix Q can be represented as the
exponential of a skew-symmetric matrix derived from the unit vector e of Q, of
eigenvalue +1, and the associated angle of rotation, as yet to be defined.

2.3.1 The Cross-Product Matrix

Prior to introducing the matrix representation of a rotation, we will need a few
definitions. We will start by defining the partial derivative of a vector with
respect to another vector. This is a matrix, as described below: In general, let
u and v be vectors of spaces U and V, of dimensions m and n, respectively.
Furthermore, let ¢t be a real variable and f be real-valued function of ¢, u = u(t)
and v = v(u(t)) being m- and n-dimensional vector functions of ¢ as well, with
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f = f(u,v). The derivative of u with respect to t, denoted by u(t), is a m-
dimensional vector whose ith component is the derivative of the ith component
u; of u, in a given basis, with respect to t. A similar definition follows for
v(t). The partial derivative of f with respect to u is a m-dimensional vector
whose ith component is the partial derivative of f with respect to u;, with a
corresponding definition for the partial derivative of f with respect to v. The
foregoing derivatives, as all other vectors, will be assumed, henceforth, to be
column arrays. Thus,

af [ow 8f [ov
af _ | 0f/0us of _ | 0f/ov
Of [Oum df /vn,

Furthermore, the partial derivative of v with respect to u is a n x m array
whose (4, j) entry is defined as dv;/du;, i.e.,

81)1 /6U1 3’01/8’&2 L 81}1/6um
QY_ _ ng(aul 6v2/.8uz . am/-aum (2.52)
Su : : . .
O fO0uy B, [Ous -+ Ovu,[Oup,
Hence, the total derivative of f with respect to u can be written as
o _or, (3w Of
du = du (au) v (2:33)

If, moreover, f is an explicit function of ¢, i.e., if f = f(u,v,¢) and v =
v(u,t), then, one can write the total derivative of f with respect to t as

T T T
ﬁ=?_f+ Qi d_u+ _a_f_ QX+ Qi ?Xi‘_l_ (2.34)
dt Ot Ou dt ov ot ov/) Oudt

The total derivative of v with respect to ¢ can be written, likewise, as

dv 9v dvdu

B A Al st 2.35

&~ ot Teud (2.35)
Example 2.3.1 Let the components of v and x in a certain reference frame F
be given as

V1 1
[viF=|v2|, [x]r= |2 (2.36a)
V3 z3

Then
VoZ3 — V3X2
[V X X]]: = | V31 —V1x3 (236b)

N Ty — V21
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Hence,

% U3 0 - (2.36¢)

[vaﬂ] R
F —uy v 0

Henceforth, the partial derivative of v x x with respect to x will be denoted
by the 3 x 3 matrix V. For obvious reasons, V is termed the cross-product matriz
of vector v. Sometimes the cross-product matrix of a vector v is represented
as v, but we do not follow this notation for the sake of consistency, since we
decided at the outset to represent matrices with boldface uppercases. Thus, the
foregoing cross product admits the alternative representations

vxx=Vx (2.37)
Now, it should be apparent that:

Theorem 2.3.4 The cross-product matriz A of any 3-dimensional vector a is
skew-symmetric, i.e.,
AT =_A

and, as a consequence,
ax (axb)=A% (2.38)

where A2 can be readily proven to be
A? = —[a]|’1 + aa” (2.39)
with || - || denoting the Euclidean norm of the vector inside it.

Note that given any 3-dimensional vector a, its cross-product matrix A is
uniquely defined. Moreover, this matrix is skew-symmetric. The converse also
holds, i.e., given any 3 x 3 skew-symmetric matrix A, its associated vector is
uniquely defined as well. This result is made apparent from Example 2.3.1 and
will be discussed further when we define the axial vector of an arbitrary 3 x 3
matrix below.

2.3.2 The Rotation Matrix

In deriving the matrix representation of a rotation, we should recall Theo-
rem 2.3.2, which suggests that an explicit representation of Q in terms of its
eigenvector e is possible. Moreover, this representation must contain informa-
tion on the amount of the rotation under study, which is nothing but the angle
of rotation. Furthermore, line £, mentioned in Euler’s Theorem, is termed the
axis of rotation of the motion of interest. In order to derive the representation
mentioned above, consider the rotation depicted in Fig. 2.3 of angle ¢ about
line L.
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(b)

Figure 2.3: Rotation of a rigid body about a line

From Fig. 2.3(a), one can apparently write

|
p' =0Q + QP'
eq.(2.6a), namely,

(2.40)
Furthermore, from Fig. 2.3(b),

—

where O(Q) is the axial component of p along vector e, which is derived as in
—

0Q=ee’p

(2.41)
— —_
QP'= (cosp) QP +(sing) QP"
introduced in eq.(2.6b), i.e

(2.42)

with QP being nothing but the normal component of p with respect to e, as
? " "7

—

and QP" given as

QP=(1-ee")p

(2.43)
QP'=exp=Ep
Substitution of eqs.(2.43) and (2.44) into eq.(2.42) leads to

(2.44)
—
QP' = cos p(1 — eeT)p + sin gEp
If now eqs.(2.41) and (2.45) are substituted into eq.(2.40), one obtains

(2.45)
p’' = ee”p + cos ¢(1 — ee”)p + sin JEp

(2.46)
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Thus, eq.(2.40) reduces to
p' = [eeT + cos #(1 — ee”) + sin ¢E]p (2.47)

From eq.(2.47) it is apparent that p’ is a linear transformation of p, the
transformation being given by the expression inside the brackets, which is the
rotation matrix Q sought, i.e.,

Q = ee” + cosp(1 — eeT) + sin ¢E (2.48)
A special case arises when ¢ = T,
Q=-1+2e", for¢g=n (2.49)

whence it is apparent that Q is symmetric if ¢ = w. Of course, Q becomes
symmetric also when ¢ = 0, but this is a rather obvious case, leading to Q = 1.
Except for these two cases, the rotation matrix is not symmetric. However,
under no circumstance does the rotation matrix become skew-symmetric, for
a 3 x 3 skew-symmetric matrix is by necessity singular, which contradicts the
property of proper orthogonal matrices of eq.(2.21b).

Now one more representation of Q in terms of e and ¢ is given. For a fixed
axis of rotation, i.e., for a fixed value of e, the rotation matrix Q is a function
of the angle of rotation ¢, only. Thus, the series expansion of Q in terms of ¢ is

Q) = Q) + QO + 5, Q O+ + QRO+ (2.50)

where the superscript (k) stands for the kth derivative of Q with respect to ¢.
Now, from the definition of E, one can readily prove the relations below:

E®HD = (—1)FE, E? = (—1)%(1 — ee”) (2.51)
Furthermore, using egs.(2.48) and (2.51), one can readily show that
Q¥ (0) = EF (2.52)

with E defined already as the cross-product matrix of e. Moreover, from
eqs.(2.50) and (2.52), Q(¢) can be expressed as

1 1
Q(¢) =14+ E¢ + §E2¢2+."+EEk¢k+"'
whose right-hand side is nothing but the exponential of E¢, i.e.,

Q(¢) = €™ (2.53)

Equation (2.53) is the exponential representation of the rotation matrix in terms
of its natural invariants, e and ¢. The foregoing parameters are termed invari-
ants because they are independent of the coordinate axes chosen to represent
the rotation under study. The adjective natural is necessary to distinguish them
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from other invariants that will be introduced presently. This adjective seems
suitable because the said invariants stem naturally from Euler’s Theorem.
Now, in view of eqs.(2.51), the above series can be written as
1
(2k)!

(_1)k¢2k+1 + .- :I E

Q(¢) =1+ [—21!¢2+4l!¢4~-~+ (——1)’“¢2’“+~--] (1—ee”)

1
+[¢“3‘z¢3+"'+<§m

The series inside the first pair of brackets is apparently cos ¢ — 1, while that in
the second pair is sin ¢. We have, therefore, an alternative representation of Q:

Q=1+singE + (1 — cos qS)E2 (2.54)

which is an expected result in view of the Cayley-Hamilton Theorem.

The Canonical Forms of the Rotation Matrix

The rotation matrix takes on an especially simple form if the axis of rotation
coincides with one of the coordinate axes. For example, if the X axis is parallel
to the axis of rotation, i.e., parallel to vector e, in a frame that we will label X,
then, we will have

1 00 0 0 0 0
[elx=]0|, [ElJx=|0 0 -1|, [E*lx=|0 -1 0
0 01 0 0 0 -1

In the X-frame, then,
1 0 0
[Qlx=|0 cos¢ —sing (2.55a)
0 sing cos¢

Likewise, if we define the coordinate frames ) and Z so that their Y and Z
axes, respectively, coincide with the axis of rotation, then

[ cos¢ 0 sing]

[Qly = 0 1 0 (2.55b)
| —sing 0 cos¢ |
and ) _
cos¢p —sing 0
[Qlz = |sing cosgp O (2.55¢)
0 0 1

The representations of egs.(2.55a—c) can be called the X-, Y-, and Z-canonical
forms of the rotation matrix. In many instances, a rotation matrix cannot be
derived directly from information on the original and the final orientations of a
rigid body, but the overall motion can be readily decomposed into a sequence of
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simple rotations taking the above canonical forms. An application of canonical
forms lies in the parameterization of rotations by means of Fuler angles, con-
sisting of three successive rotations, ¢, 8 and 9, about one axis of a coordinate
frame. Euler angles are introduced in Exercise 18, and applications thereof are
given in Exercises 2.36, 2.37, 3.1.9, and 3.1.10.

2.3.3 The Linear Invariants of a 3 x 3 Matrix

Now we introduce two linear invariants of 3 x 3 matrices. Given any 3 x 3 matrix
A, its Cartesian decomposition, the counterpart of the Cartesian representation
of complex numbers, consists of the sum of its symmetric part, Ag, and its
skew-symmetric part, Agg, defined as

1 1
As=_(A+ AT), Ags= S(A- AT) (2.56)
The axial vector or for brevity, the vector of A, is the vector a with the property
axv=Aggv (2.57)

for any 3-dimensional vector v. The trace of A is the sum of the eigenvalues
of Ag, which are real. Since no coordinate frame is involved in the above
definitions, these are invariant. When calculating these invariants, of course, a
particular coordinate frame must be used. Let us assume that the entries of
matrix A in a certain coordinate frame are given by the array of real numbers
ai;, for 4,7 =1,2,3. Moreover, let a have components a;, for ¢ = 1,2,3, in the
same frame. The above-defined invariants are thus calculated as

1 agz — Q23
vect(A)=a= 5 |as—as |, tr(A) = ay1 + azz + ass (2.58)
a1 — a2

From the foregoing definitions, we have now

Theorem 2.3.5 The vector of a 3 X 3 matriz vanishes if and only if it is sym-
metric, whereas the trace of an n x n matriz vanishes if the matriz is skew
symmetric.

Other useful relations are given below. For any 3-dimensional vectors a and
b,

vect(abT) = ——;—a «b (2.59)
and
tr(abT) = a’b (2.60)

The second relation is quite straightforward, but the first one is less so; a proof
of the first relation follows: Let w denote vect(ab”). From Definition (2.57),
for any 3-dimensional vector v,

wxv=Wv (2.61)
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where W is the skew-symmetric component of ab”, namely,
W = %(abT — ba”) (2.62)

and hence,
Wyv=wxv= —;—[(bTv)a — (aTv)b] (2.63)

Now, let us compare the last expression with the double cross product (bxa)x v,
namely,
(b xa) xv=(bTv)a—(aTv)b (2.64)

from which it becomes apparent that
1
w= ib X a (2.65)

thereby proving the aforementioned relation.

Note that Theorem 2.3.5 states a necessary and sufficient condition for the
vanishing of the vector of a 3 x 3 matrix, but only a sufficient condition for the
vanishing of the trace of a n x n matrix. What this implies is that the trace of a
n X n matrix can vanish without the matrix being necessarily skew symmetric,
but the trace of a skew-symmetric matrix necessarily vanishes. Also note that
whereas the vector of a matrix is defined only for 3 x 3 matrices, the trace can
be defined more generally for n x n matrices.

In some applications, the cross-product matrix of the product Ab of a 3 x 3
matrix A by a vector b is needed:

CPM(Ab) = (BA)T —BA +tr(A)B = [tr(A)1 - AT|B-BA  (2.66)

where B = CPM(b). The proof is left as an exercise.

2.3.4 The Linear Invariants of a Rotation

From the invariant representations of the rotation matrix, egs.(2.48) and (2.54),
it is clear that the first two terms of Q, ee” and cos #(1 — ee” ), are symmetric,
whereas the third one, sin ¢E, is skew-symmetric. Hence,

vect(Q) = vect(sind E) =singe (2.67)
whereas
tr(Q) = tr[ee” + cos p(1 — eeT)] = eTe 4 cos (3 —eTe) =14+ 2cosp (2.68)
from which one can readily solve for cos ¢, namely,

cos¢ = tr_(Qz)_—_l (2.69)

1This relation was derived by Ph.D. candidate Philippe Cardou.
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Henceforth, the vector of Q will be denoted by q and its components in a
given coordinate frame by ¢1, g2, and ¢3. Moreover, rather than using tr(Q) as
the other linear invariant, gg = cos¢ will be introduced to refer to the linear
invarionts of the rotation matriz. Hence, the rotation matrix is fully defined by
four scalar parameters, namely {g;}§, which will be conveniently stored in the
4-dimensional array A, defined as

A= [qI’ g2, g3, qO]T (270)

Note, however, that the four components of A are not independent, for they
obey the relation
llal|? + g2 =sin®¢ +cos? ¢ =1 (2.71)

Thus, eq.(2.71) can be written in a more compact form as
NP =at +¢ + 65 +a5 =1 (2.72)

What eq.(2.71) states has a straightforward geometric interpretation: As a
body rotates about a fixed point, its motion can be described in a 4-dimensional
space by the motion of a point of position vector A that moves on the surface
of the unit sphere centered at the origin of the said space. Alternatively, one
can conclude that, as a rigid body rotates about a fixed point, its motion can
be described in a 3-dimensional space by the motion of position vector q, which
moves within the unit solid sphere centered at the origin of the said space. Given
the dependence of the four components of vector A, one might be tempted to
solve for, say, go from eq.(2.71) in terms of the remaining components, namely,
as

qo—d:\/l—(ql +6 +¢) (2.73)

This, however, is not a good idea because the sign ambiguity of eq.(2.73)
leaves angle ¢ undefined, for q¢ is nothing but cos ¢. Moreover, the three com-
ponents of vector q alone, i.e., singe, do not suffice to define the rotation
represented by Q. Indeed, from the definition of q, one has

sing = +[lql|, e=aq/sin¢ (2.74)

from which it is clear that q alone does not suffice to define the rotation under
study, since it leaves angle ¢ undefined. Indeed, the vector of the rotation matrix
provides no information about cos ¢. Yet another representation of the rotation
matrix is displayed below, in terms of its linear invariants, that is readily derived
from representations (2.48) and (2.54), namely,

T
aQqa qq9
Q= + 1-— ) + 2.75a

Hfl”2 o ( l|all? Q ( )

in which Q is the cross-product matrix of vector q, i.e.,

d(q x x)

Q= ox
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for any vector x.
Note that by virtue of eq.(2.71), the representation of Q given in eq.(2.75a)
can be expressed alternatively as

aq”

1+qo

Q=ql+Q+ (2.75b)
From either eq.(2.75a) or eq.(2.75b) it is apparent that linear invariants are
not suitable to represent a rotation when the associated angle is either 7 or
close to it. Note that a rotation through an angle ¢ about an axis given by
vector e is identical to a rotation through an angle —¢ about an axis given by
vector —e. Hence, changing the sign of e does not change the rotation matrix,
provided that the sign of ¢ is also changed. Henceforth, we will choose the sign
of the components of e so that sin ¢ > 0, which is equivalent to assuming that
0 < ¢ < 7. Thus, sin ¢ is calculated as ||q|, while cos ¢ as indicated in eq.(2.69).
Obviously, e is simply q normalized, i.e., ¢ divided by its Euclidean norm.

2.3.5 Examples

The examples below are meant to stress the foregoing ideas on rotation invari-
ants.

Example 2.3.2 If [e]r = [V/3/3, —v/3/3, V/3/3]T in a given coordinate frame
F and ¢ = 120°, what is Q in F?

Solution: From the data,
1
COS¢:—§, Sin¢=—2—3

Moreover, in the F frame,

([t (1 -1 1
[eeT]fzg -1|[1 -1 1]:g -1 1 -1
1 1 -1 1
and hence,
2 1 -1 0 -1 -1
[1—eeT]f=% 1 2 1], [E]fz? 1 0 -1
-1 1 1 1 0
Thus, from eq.(2.48),
(1 -1 o1 2 1 -1 5[0 -1 -1
QF=z|-1 1 —1j-z1 2 1|+211 0 -1
1 -1 1 -1 1 2 1 1 0
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0 -1 0
Qlr = [0 0 -—1}
1 0 0

i.e.,

Example 2.3.3 The matriz representation of a linear transformation Q in a
certain reference frame F is given below. Find out whether the said transfor-
mation is a rigid-body rotation. If it is, find its natural invariants.

010
[Qlr=|0 0 1
1 00

Solution: First the given array is tested for orthogonality:

01 0 0 0 1 1 00
[Q]F[QT]x=|0 0 1| |1 0 0f=]0 1 0
1 00 010 0 0 1

thereby showing that the said array is indeed orthogonal. Thus, the linear
transformation could represent a reflection or a rotation. In order to decide
which one this represents, the determinant of the foregoing array is computed:

det(Q) = +1

which makes apparent that Q indeed represents a rigid-body rotation. Now,
its natural invariants are computed. The unit vector e can be computed as the
eigenvector of Q associated with the eigenvalue +1. This requires, however,
finding a nontrivial solution of a homogeneous linear system of three equations
in three unknowns. This is not difficult to do, but it is cumbersome and is not
necessary. In order to find e and ¢, it is recalled that vect(Q) = sin ¢ e, which
is readily computed with differences only, as indicated in eq.(2.58), namely,

1 1
[alr =single]r = -5 11
1
Under the assumption that sin ¢ > 0, then,
: V3
sing = laf| = >
and hence,
1
le]r = lr __v3|,
llall 3 1
and

¢=60° or 120°
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The foregoing ambiguity is resolved by the trace of Q, which yields
1+2cosp=tr(Q) =0, cos¢= —%
The negative sign of cos ¢ indicates that ¢ lies in the second quadrant—it cannot

lie in the third quadrant because of our assumption about the sign of sin ¢—and
hence

¢ = 120°

Example 2.3.4 A coordinate frame X1, Y1, Z1 is rotated into a configuration
X, Yy, Zy in such a woy that

Xo==-Y1, Yo=2, Zr=-X

Find the matriz representation of the rotation in X1, Y1, Z1 coordinates. From
this representation, compute the direction of the axis and the angle of rotation.

Solution: Let iy, j1, k1 be unit vectors parallel to X, Y1,Z;, respectively,
i2, j2, ko being defined correspondingly. One has

ib=—j1, jo=ki, ko= -i

and hence, from Definition 2.2.1, the matrix representation [ Q]; of the rotation
under study in the X, Y3, Z; coordinate frame is readily derived:

from which the linear invariants follow, namely,

1| ! 1 1
[q)1 = [vect(Q)]1 =sing[e]; = 3 —i , Cos¢= i[tl‘(Q) -1]= )

Under our assumption that sin ¢ > 0, we obtain

1
3 3
sing = ol = %, [l = [0 = 43 .

From the foregoing values for sin ¢ and cos ¢, angle ¢ is computed uniquely as
¢ =120°

Example 2.3.5 Show that the matriz P given in eq.(2.4) satisfies properties
(2.1a).
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Solution: First, we prove idempotency, i.e.,

P?2=(1-nn")(1 — nn7)
=1-2nn” +on"nn” =1 -nn” =P

thereby showing that P is, indeed, idempotent. Now we prove that n is an
eigenvector of P with eigenvalue, 0 and hence, n spans the nullspace of P. In
fact,

Pn=(1-on")n=n-nn"n=n-n=0

thereby completing the proof.

Example 2.3.6 The representations of three linear transformations in a given
coordinate frame F are given below:

1 [ 2 1 2]
[A];:E -2 2 1
[-1 -2 2]

i 2 1 1]

|1 -1 2

1 [1 2 2]

(2 -2 1 |

One of the foregoing matrices is an orthogonal projection, one is a reflection,
and one is a rotation. Identify each of these and give its invariants.

Solution: From representations (2.48) and (2.54), it is clear that a rotation
matrix is symmetric if and only if sin ¢ = 0. This means that a rotation matrix
cannot be symmetric unless its angle of rotation is either 0 or 7, i.e., unless its
trace is either 3 or —1. Since [B]s and [C]# are symmetric, they cannot be
rotations, unless their traces take on the foregoing values. Their traces are thus
evaluated below:

tr(B) =2, r(C)=1

which thus rules out the foregoing matrices as suitable candidates for rotations.
Thus, A is the only candidate left for proper orthogonality, its suitability being
tested below:

(]9 00
[AAT]fz§ 0 9 0|, det(A)=+1
009

and hence, A indeed represents a rotation. Its natural invariants are next
computed:

~1
sin ¢ [e] 7 = [vect(A)] 5 = % L] coso= —;—[tr(A) ~1]= %(2 —1)= %
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We assume, as usual, that sin¢ > 0. Then,

sin ¢ = ||vect(A)|| = ?, i.e., ¢ =60°
Moreover,
 [vect(A)F V3 |
el = eaa) = 3 |,

Now, one matrix of B and C is an orthogonal projection and the other is a
reflection. To be a reflection, a matrix has to be orthogonal. Hence, each
matrix is tested for orthogonality:

116 3 3 119 00
[BBT]»=5|3 6 -3|=[B’lr=[B]s [CCT]z=5|0 9 0
3 -3 6 009

thereby showing that C is orthogonal and B is not. Furthermore, det(C) = —1,
which confirms that C is a reflection. Now, if B is a projection, it is bound to
be singular and idempotent. From the orthogonality test it is clear that it is
idempotent. Moreover, one can readily verify that det(B) = 0, and hence B is
singular, the unit vector [n]z = [n1, n2, n3]7 that spans its nullspace being
determined from the general form of projections, eq.(2.1a), whence,

nmT=1-8

Therefore, if a solution n has been found, then —n is also a solution, i.e., the
problem admits two solutions, one being the negative of the other. These two
solutions are found below, by first rewriting the above system of equations in
component form:

nf ning nNiNng 1 1 -1 -1
nnme N nana| =< |-1 1 1
Ning nNans ng -1 1 1

Now, from the diagonal entries of the above matrices, it is apparent that the
three components of n have identical absolute values, i.e., v/3/3. Moreover, from
the off-diagonal entries of the same matrices, the second and third components
of n bear equal signs, but we cannot tell whether positive or negative, because
of the quadratic nature of the problem at hand. The two solutions are thus
obtained as

which is the only invariant of B.
We now look at C, which is a reflection, and hence, bears the form

C=1-2nmm7
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In order to determine n, note that
r 1
nn' = 5(1 - C)

or in component form,

n?  nng ning 1 -1 -1
nng ni menz|==-|-1 1 1
nin3 nang TL% -1 1 1

which is identical to the matrix equation derived in the case of matrix B. Hence,
the solution is the same, i.e.,

1
n= :!:ﬁ -1
31

thereby finding the invariant sought.

Example 2.3.7 The vector and the trace of a rotation matriz Q, in a certain
reference frame F, are given as

~1

[vect(@)) = L w@=

Find the matriz representation of Q in the given coordinate frame and in a
frame having its Z-axzis parallel to vect(Q).

Solution: We shall resort to eq.(2.75a) to determine the rotation matrix Q. The
quantities involved in the representation of Q in F are readily computed:

1 -1 1 0 1

1 3 — 1
[qu]]: =- -1 1 -1 ) Hq||2 = [Q]f =5
4 4 2
1 -1 1
from which Q follows:

2 1 2
-2 2 1
-1 -2 2

(Qlr =

in the given coordinate frame. Now, let Z denote a coordinate frame whose
Z-axis is parallel to q. Hence,

3 [0 40 00 B J3[0 -1 0
[alz=-]0], [qu]z=Z 00 0f, [Qlz=-3{1 0 0
1 00 1 0 0 0
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which readily leads to

1/2 —/3/2 0
- Ve 9
0 0 1

and is in the Z-canonical form.

Example 2.3.8 A procedure for trajectory planning produced a matriz repre-
senting a rotation for a certain pick-and-place operation, as shown below:

0433 —0.500 =z
[Q]=| = 0866 —0.433
0866 0.500

where z, y, and z are entries that are unrecognizable due to failures in the
printing hardware. Knowing that Q is in fact o rotation matriz, find the missing
entries.

Solution: Since Q is a rotation matrix, the product P = Q7 Q should equal
the 3 x 3 identity matrix, and det(Q) should be +1. The foregoing product is
computed first:

0.437+ 22 0.433(z —~z~1) 0.5(—~y+2)+0.375
[Plr = * 0.937 + 22 0.866(z + y) — 0.216
* * 1+ y2

where the entries below the diagonal need not be printed because the matrix is
symmetric. Upon equating the diagonal entries of the foregoing array to unity,
we obtain

z==+0250, y=0, z==0.750

while the vanishing of the off-diagonal entries leads to
=0250, y=0, z=-0.750

which can be readily verified to produce det(Q) = +1.

2.3.6 The Euler-Rodrigues Parameters

The invariants defined so far, namely, the natural and the linear invariants of a
rotation matrix, are not the only ones that are used in kinematics. Additionally,
one has the Fuler parameters, or Fuler-Rodrigues parameters, as Cheng and
Gupta (1989) propose that they should be called, represented here as r and ro.
The Euler-Rodrigues parameters are defined as

r = sin (—g) e, T =Co08 (g) (2.76)
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One can readily show that Q takes on a quite simple form in terms of the
Fuler-Rodrigues parameters, namely,

Q= (ro®> —~r-1r)1 +2rr” + 2R (2.77)
in which R is the cross-product matrix of r, i.e.,

O(r x x)

R = %

for arbitrary x.

Note that the Euler-Rodrigues parameters appear quadratically in the ro-
tation matrix. Hence, these parameters cannot be computed with simple sums
and differences. A closer inspection of eq.(2.75b) reveals that the linear invari-
ants appear almost linearly in the rotation matrix. This means that the rotation
matrix, as given by eq.(2.75b), is composed of two types of terms, namely, linear
and rational. Moreover, the rational term is composed of a quadratic expres-
sion in the numerator and a linear expression in the denominator, the ratio thus
being linear, which explains why the linear invariants can be obtained by sums
and differences from the rotation matrix.

The relationship between the linear invariants and the Euler-Rodrigues pa-
rameters can be readily derived, namely,

114+ q q
= _— _ 2'
ro = =% 5 o T org’ p#T (2.78)

Furthermore, note that, if ¢ = =, then rg = 0, and formulae (2.78) fail to
produce r. However, from eq.(2.76),

Forog=n: r=e, ro=0 (2.79)

We now derive invariant relations between the rotation matrix and the Euler-
Rodrigues parameters. To do this, we resort to the concept of matriz square
root. As a matter of fact, the square root of a square matrix is nothing but a
particular case of an analytic function of a square matrix, discussed in connection
with Theorem 2.3.3 and the exponential representation of the rotation matrix.
Indeed, the square root of a square matrix is an analytic function of that matrix,
and hence, admits a series expansion in powers of the matrix. Moreover, by
virtue of the Cayley-Hamilton Theorem (Theorem 2.3.3) the said square root
should be, for a 3 x 3 matrix, a linear combination of the identity matrix 1, the
matrix itself, and its square, the coefficients being found using the eigenvalues
of the matrix.

Furthermore, from the geometric meaning of a rotation through the angle
¢ about an axis parallel to the unit vector e, it is apparent that the square
of the matrix representing the foregoing rotation is itself a rotation about the
same axis, but through the angle 2¢. By the same token, the square root of
the rotation matrix is again a rotation matrix about the same axis, but through
an angle ¢/2. Now, while the square of a matrix is unique, its square root is
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not. This fact is apparent for diagonalizable matrices, whose diagonal entries
are their eigenvalues. Each eigenvalue, whether positive or negative, admits
two square roots, and hence, a diagonalizable n X n matrix admits as many
square roots as there are combinations of the two possible roots of individual
eigenvalues, disregarding rearrangements of the latter. Such a number is 27,
and hence, a 3 x 3 matrix admits eight square roots. For example, the eight
square roots of the identity 3 x 3 matrix are displayed below:

100 10 0 1 0 0 -1 00
010, |01 o], |0 -1 of, (0o 10/,
00 1 00 -1 0 0 1 0 01

1 0 0 10 0 -1 0 0 -1 0 0

0 -1 0/, o1 0], [0 -10], [0 -1 o0

0 0 -1 0 0 -1 0 0 1 0 0 -1

In fact, the foregoing result can be extended to orthogonal matrices as well
and, for that matter, to any square matrix with n linearly independent eigen-
vectors. That is, an n X n orthogonal matrix admits 2" square roots. However,
not all eight square roots of a 3 x 3 orthogonal matrix are orthogonal. In fact,
not all eight square roots of a 3 x 3 proper orthogonal matrix are proper or-
thogonal either. Of these square roots, nevertheless, there is one that is proper
orthogonal, the one representing a rotation of ¢/2. We will denote this partic-
ular square root of Q by +/Q. The Euler-Rodrigues parameters of Q can thus
be expressed as the linear invariants of /Q, namely,

r = vect(v/Q), 70 = t_r(l?)_—l_ (2.80)

It is important to recognize the basic differences between the linear invariants
and the Euler-Rodrigues parameters. Whereas the former can be readily derived
from the matrix representation of the rotation involved by simple additions
and subtractions, the latter require square roots and entail sign ambiguities.
However, the former fail to produce information on the axis of rotation whenever
the angle of rotation is 7, whereas the latter produce that information for any
value of the angle of rotation.

The Euler-Rodrigues parameters are nothing but the quaternions invented
by Sir William Rowan Hamilton (1844) in an extraordinary moment of creativity
on Monday, October 16, 1843, as “Hamilton, accompanied by Lady Hamilton,
was walking along the Royal Canal in Dublin towards the Royal Irish Academy,
where Hamilton was to preside a meeting.” (Altmann, 1989).

Moreover, the Euler-Rodrigues parameters should not be confused with the
Euler angles, which are not invariant and hence, admit multiple definitions. The
foregoing means that no single set of Euler angles exists for a given rotation
matrix, the said angles depending on how the rotation is decomposed into three
simpler rotations. For this reason, Euler angles will not be stressed here. The
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reader is referred to Exercise 2.18 for a short discussion of Euler angles; Synge
(1960) includes a classical treatment, while Kane, Likins and Levinson (1983)
provide an extensive discussion of the same.

Example 2.3.9 Find the Euler-Rodrigues parameters of the proper orthogonal
matriz Q given as

Q= 2 -1 2

Solution: Since the given matrix is symmetric, its angle of rotation is m and its
vector linear invariant vanishes, which prevents us from finding the direction of
the axis of rotation from the linear invariants; moreover, expressions (2.78) do
not apply. However, we can use eq.(2.49) to find the unit vector e parallel to
the axis of rotation, i.e.,

eel = %(1 +Q)

or in component form,

el elex eles 1 1 1

etea €3 ees|=-11 11
2 3

eje3 esez €3 1 1 1

A simple inspection of the components of the two sides of the above equation
reveals that all three components of e are identical and moreover, of the same
sign, but we cannot tell which sign this is. Therefore,

1
e::tﬁ 1
3

Moreover, from the symmetry of Q, we know that ¢ = 7, and hence,

1
r:esin(%)::&? i , r0:c0s<§):0

2.4 Composition of Reflections and Rotations

As pointed out in Section 2.2, reflections occur often accompanied by rotations.
The effect of this combination is that the rotation destroys the two properties of
pure reflections, symmetry and self-inversion, as defined in Section 2.2. Indeed,
let R be a pure reflection, taking on the form appearing in eq.(2.5), and Q
an arbitrary rotation, taking on the form of eq.(2.48). The product of these
two transformations, QR, denoted by T, is apparently neither symmetric nor
self-inverse, as the reader can readily verify. Likewise, the product of these two
transformations in the reverse order is neither symmetric nor self-inverse.



2.4 Composition of Reflections and Rotations 55

As a consequence of the foregoing discussion, an improper orthogonal trans-
formation that is not symmetric can always be decomposed into the product
of a rotation and a pure reflection, the latter being symmetric and self-inverse.
Moreover, this decomposition can take on the form of any of the two possible
orderings of the rotation and the reflection. Note, however, that once the or-
der has been selected, the decomposition is not unique. Indeed, if we want to
decompose T in the above paragraph into the product QR, then we can freely
choose the unit normal n of the plane of reflection and write

R=1-2nn”
vector n then being found from
r 1
nn' = -(1-R)
2
Hence, the factor Q of that decomposition is obtained as
Q=TR!'=TR =T - 2(Tn)nT

where use has been made of the self-inverse property of R. Any other selection
of vector n will lead to a different decomposition of T.

Example 2.4.1 Join the palms of your two hands in the position adopted by
swimmers when preparing for plunging, while holding a sheet of paper between
them. The sheet defines a plane in each hand that we will call the hand plane,
its unit normal, poiniing outside of the hand, being called the hand normal
and represented as vectors ng and ny, for the right and left hand, respectively.
Moreover, let og and oy, denote unit vectors pointing in the direction of the
finger azes of each of the two hands. Thus, in the swimmer position described
above, n;, = —npg and oy, = or. Now, without moving your right hand, let
the left hand attain o position whereby the left-hand normal lies at right angles
with the right-hand normal, the palm pointing dounwards and the finger azes of
the two hands remaining parallel. Find the representation of the transformation
carrying the right hand to the final configuration of the left hand, in terms of
the unit vectors ng and og.

Solution: Let us regard the desired transformation T as the product of a rotation
Q by a pure reflection R, in the form T = QR. Thus, the transformation occurs
so that the reflection takes place first, then the rotation. The reflection is simply
that mapping the right hand into the left hand, and hence, the reflection plane
is simply the hand plane, i.e.,

R=1 ——2an£

Moreover, the left hand rotates from the swimmer position about an axis parallel
to the finger axes through an angle of 90° clockwise from your viewpoint, i.e.,



56 2. Mathematical Background

in the positive direction of vector og. Hence, the form of the rotation involved
can be derived readily from eq.(2.48) and the above information, namely,

Q = ook +Or

where Op is the cross-product matrix of op. Hence, upon performing the
product QR,, we have

T = ogok + 205 — 2(or X ng)nk

which is the transformation sought.

2.5 Coordinate Transformations and Homoge-
neous Coordinates

Crucial to robotics is the unambiguous description of the geometric relations
among the various bodies in the environment surrounding a robot. These re-
lations are established by means of coordinate frames, or frames, for brevity,
attached to each rigid body in the scene, including the robot links. The origins
of these frames, moreover, are set at landmark points and orientations defined by
key geometric entities like lines and planes. For example, in Chapter 4 we attach
two frames to every moving link of a serial robot, with origin at a point on each
of the axis of the two joints coupling this link with its two neighbors. Moreover,
the Z-axis of each frame is defined, according to the Denavit-Hartenberg nota-
tion, introduced in that chapter, along each joint axis, while the X-axis of the
frame closer to the base—termed the fore frame—is defined along the common
perpendicular to the two joint axes. The origin of the same frame is thus defined
as the intersection of the fore axis with the common perpendicular to the two
axes. This section is devoted to the study of the coordinate transformations of
vectors when these are represented in various frames.

2.5.1 Coordinate Transformations Between Frames
with a Common Origin

We will refer to two coordinate frames in this section, namely, A = {X, Y, Z}
and B = {X, Y, Z}. Moreover, let Q be the rotation carrying A4 into B, i.e.,

Q: 4 - B (2.81)
The purpose of this subsection is to establish the relation between the represen-

tations of the position vector of a point P in 4 and in B, denoted by [p]4 and
[p]ls, respectively. Let

[pla= |y (2.82)
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We want to find [p]g in terms of [p]4 and Q, when the latter is represented
in either frame. The coordinate transformation can best be understood if we
regard point P as attached to frame A, as if it were a point of a box with sides
of lengths z, y, and 2z, as indicated in Fig. 2.4(a). Now, frame A undergoes a
rotation Q about its origin that carries it into a new attitude, that of frame
B, as illustrated in Fig. 2.4(b). Point P in its rotated position is labeled II, of
position vector 7, i.e.,

T =Qp (2.83)

It is apparent that the relative position of point P with respect to its box does
not change under the foregoing rotation, and hence,

[*ls= |y (2.84)

Moreover, let

e
(mla=|n (2.85)
¢

Lo Jd

The relation between the two representations of the position vector of any point
of the 3-dimensional Euclidean space is given by

Theorem 2.5.1 The representations of the position vector m of any point in
two frames A and B, denoted by [w) 4 and [ 7], respectively, are related by

[7la=[Qlal7]s (2.86)

Proof: Let us write eq.(2.83) in A:

[7)a=[Qlalp]a (2.87)
Now, from Fig. 2.4(b) and eqs.(2.82) and (2.84) it is apparent that
(7] =[p]a (2.88)
Upon substituting eq.(2.88) into eq.(2.87), we obtain
[7]a=[Qla[7]s (2.89)

q.e.d. Moreover, we have

Theorem 2.5.2 The representations of Q carrying A into B in these two
frames are identical, i.e.,

[Qla=[Qls (2.90)
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(a) (b)

Figure 2.4: Coordinate transformation: (a) coordinates of point P in the A-
frame; and (b) relative orientation of frame B with respect to A

Proof: Upon substitution of eq.(2.83) into eq.(2.86), we obtain

[Qpla=[Ql4[QpP]s

[Qlalpla =[Q]a[Qp]5

Now, since Q is orthogonal, it is nonsingular, and hence, [ Q] can be deleted
from the foregoing equation, thus leading to

(pla=[Qlslpls (2.91)

However, by virtue of Theorem 2.5.1, the two representations of p observe the
relation

[Pla=[Qlalpls (2.92)
the theorem being proved upon equating the right-hand sides of eqgs.(2.91) and
(2.92).

Note that the foregoing theorem states a relation valid only for the conditions
stated therein. The reader should not conclude from this result that rotation

matrices have the same representations in every frame. This point is stressed
in Example 2.5.1. Furthermore, we have

Theorem 2.5.3 The inverse relation of Theorem 2.5.1 is given by

[7]s=[Q"s[7]a (2.93)

Proof: This is straightforward in light of the two foregoing theorems, and is left
to the reader as an exercise.
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A

A 0
X Tem——]
X

Figure 2.5: Coordinate frames A and B with a common origin

Example 2.5.1 Coordinate frames A and B are shown in Fig. 2.5. Find the
representations of Q rotating A into B in these two frames and show that they
are identical. Moreover, if [pla =[1, 1, 1]7, find [p]s.

Solution: Let i, j, and k be unit vectors in the directions of the X-, Y-, and
Z-axes, respectively; unit vectors ¢, v, and k are defined likewise as parallel to
the X-, V-, and Z-axes of Fig. 2.5. Therefore,

Qi=v=-k, Qj=v=-1, Qk=kr=]

Therefore, using Definition 2.2.1, the matrix representation of Q carrying A

into B, in A, is given by
0 -1 0
[Qla=]0 0 1
-1 0 0

Now, in order to find [Q]g, we apply Q to the three unit vectors of B, ¢, ¥,
and k. Thus, for ¢, we have

0 -1 0 0 0
Q=10 0 1 O |=|-1|=-j=~k
-1 0 0f]-1 0
Likewise,
Qv=—-t, Qr=7y

again, from Definition 2.2.1, we have

0 -1 0

[Qls = [ 0 0 1} =[Q]a
-1 0 0
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thereby confirming Theorem 2.5.2. Note that the representation of this matrix
in any other coordinate frame would be different. For example, if we represent
this matrix in a frame whose X-axis is directed along the axis of rotation of Q,
then we end up with the X-canonical representation of QQ, namely,

1 0 0
[Qlx =10 cos¢ —sing
0 sing cos¢

with the angle of rotation ¢ being readily computed as ¢ = 120°, which thus
yields
1 0 0
[Qlx= [0 -1/2 —v3/2
0 V3/2 -1/2
Apparently, the entries of [Q]x are different from those of [Q]4 and [Q]s

found above.
Now, from eq.(2.93),

0 0 -1][1 -1
[pls=|-1 0 0| [|1]|=]|-1
0 1 0|1 1

a result that can be readily verified by inspection.

2.5.2 Coordinate Transformation with Origin Shift

Now, if the coordinate origins do not coincide, let b be the position vector of O,
the origin of B, from O, the origin of A, as shown in Fig. 2.6. The corresponding
coordinate transformation from A to B, the counterpart of Theorem 2.5.1, is
given below.

Theorem 2.5.4 The representations of the position vector p of a point P of
the Fuclidean 3-dimensional space in two frames A and B are related by

[pla=[bla+[Qla[r]s (2.94a)
[7]s =[Q]5([-bla+[pla) (2.94b)

with b defined as the vector directed from the origin of A to that of B, and =
the vector directed from the origin of B to P, as depicted in Fig. 2.6.

Proof: We have, from Fig. 2.6,
p=b+m (2.95)
If we express the above equation in the A-frame, we obtain

[Pla=[bla+[m]a
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Figure 2.6: Coordinate frames with different origins

where 7 is assumed to be readily available in B, and so the foregoing equation
must be expressed as

[Pla=[bla+[Qla[r]s

which thus proves eq.(2.94a). To prove eq.(2.94b), we simply solve eq.(2.95) for
7 and apply eq.(2.93) to the equation thus resulting, which readily leads to the
desired relation.

Example 2.5.2 If [b]4 =[—1,—1, —1]T and A and B have the relative ori-
entations given in Example 2.5.1, find the position vector, in B, of a point P of
position vector [p] 4 given as in the same example.

Solution: What we obviously need is [ ]g, which is given in eq.(2.94b). We
thus compute first the sum inside the parentheses of that equation, i.e.,

2
[-bla+[pla= g

We need further [ Q7 |5, which can be readily derived from [Q]s. We do not
have as yet this matrix, but we have [ QT ]4, which is identical to [Q” |z by
virtue of Theorem 2.5.2. Therefore,

0 0 —1772 )
[wls=|-1 0 0] |2|=]-2
0 1 01]2 2

a result that the reader is invited to verify by inspection.
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2.5.3 Homogeneous Coordinates

The general coordinate transformation, involving a shift of the origin, is not
linear, in general, as can be readily realized by virtue of the nonhomogeneous
term involved, i.e., the first term of the right-hand side of eq.(2.94a), which
is independent of p. Such a transformation, nevertheless, can be represented
in homogeneous form if homogeneous coordinates are introduced. These are
defined below: Let [p]ar be the coordinate array of a finite point P in reference
frame M. What we mean by a finite point is one whose coordinates are all
finite. We are thus assuming that the point P at hand is not at infinity, points
at infinity being dealt with later. The homogeneous coordinates of P are those
in the 4-dimensional array {p}m, defined as

{PIm = [[pl]’”] (2.96)

The affine transformation of eq.(2.94a) can now be rewritten in homogene-
ous-coordinate form as

{Pla={T}a{m}s (2.97)
where {T} 4 is defined as a 4 x 4 array, i.e.,
{Tha= [[(%]ﬁ [bl]“‘] (2.98)

Furthermore, similar to Theorem 2.5.2, we have

Theorem 2.5.5 The representations of {T} carrying coordinates in frome B
into coordinates in frame A, in these two frames, are identical:

{T}a={T}s (2.99)

The inverse transformation of that defined in eq.(2.98) is derived from eqs.(2.94a
& b), i.e.,

—1 _ [QT]B [-bls
(1= (e 1700 (2:100

Furthermore, homogeneous transformations can be concatenated. Indeed,
let F, for k =i—1, 4, i+ 1, denote three coordinate frames, with origins at Oy.
Moreover, let Q;—; be the rotation carrying F;_; into an orientation coinciding
with that of F;. If a similar definition for Q; is adopted, then Q; denotes the
rotation carrying F; into an orientation coinciding with that of F;, . First, the
case in which all three origins coincide is considered. Clearly,

[Pl =[Q 1 Jica[pli-1 (2.101)
[pliva = [Q] lilp)i = [Q] 1:[QI_; lica[Plis (2.102)
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the inverse relation of that appearing in eq.(2.102) being
[Plic1 = [Qi-11i-1[ Qi Jilp lira (2.103)

If now the origins do not coincide, let a;_; and a; denote the vectors O;_10;
and 0;0;41, respectively. The homogeneous-coordinate transformations {T;—1 }i~1
and {T;}; thus arising are obviously

{Tiz1}io1 = [[%ﬁi]:l [ai—i ]i—l] , {Ti}hi= H(?qft [ali]i] (2.104)

whereas their inverse transformations are

T 1.

{T—11}1 — l:[%fi]i [Q 1] [ a;— 1]1 1] (2‘105)
(T = [[Q Ji+1 [Q?]i+1[—ai]i] (2.106)

’ [07 )it 1

Hence, the coordinate transformations involved are?
{p}ti-1 = {Ti-1}i-1{p}: (2.107)
{pli-1 = {Ti—1}i-1{Ti}e{Plina (2.108)
the corresponding inverse transformations being

{p}i={T }i-1{p }isr (2.109)
{plir1 ={T7 }{p}i = {T7 }{ T Yo { P }icn (2.110)

Now, if P lies at infinity, we can express its homogeneous coordinates in a
simpler form. To this end, we rewrite expression (2.96) in the form

hac= ol [ 151 ]

i m (Pl = <npl|i|§l “p”) (npn%oo[g/l}ffll])

oo PYM = <le|i|r3m||p||) [[GAM}

We now define the homogeneous coordinates of a point P lying at infinity as
the 4-dimensional array appearing in the foregoing expression, i.e.,

and hence,

or

{Pootm = [[e(])M] (2.111)

2The derivations below are more easily understood with the aid of Theorem 2.5.5, under
which {T;}s = {T:}i-1
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which means that a point at infinity, in homogeneous coordinates, has only a
direction, given by the unit vector e, but an undefined location. When working
with objects within the atmosphere of the Earth, for example, stars can be
regarded as lying at infinity, and hence, their location is completely specified
simply by their longitude and latitude, which suffice to define the direction
cosines of a unit vector in spherical coordinates.

On the other hand, a rotation matrix can be regarded as composed of three
columns, each representing a unit vector, e.g.,

Q=[e; e e3]

where the triad { ey, }$ is orthonormal. We can thus represent { T } 4 of eq.(2.98)
in the form
_ler e ez b
{T}A—[O 0 0 1] (2.112)
thereby concluding that the columns of the 4 x 4 matrix T represent the homo-
geneous coordinates of a set of corresponding points, the first three of which lie
at infinity.

Example 2.5.3 An ellipsoid is centered at a point Og of position vector b, its
three azxes X, Y, and Z defining a coordinate frame B. Moreover, its semiazes
have lengths a = 1, b = 2, and ¢ = 3, the coordinates of Op in a coordinate
frame A being [bla = [1,2,3]T. Additionally, the direction cosines of X
are (0.933, 0.067, —0.354), whereas Y is perpendicular to b and to the unit
vector u that is parallel to the X -azis. Find the equation of the ellipsoid in A.
(This example has relevance in collision-avoidance algorithms, some of which
aepproximate manipulator links as ellipsoids, thereby easing tremendously the
computational requirements.)

Solution: Let u, v, and w be unit vectors parallel to the X-, Y-, and Z-axes,
respectively. Then,

0.933
[ula=| 00671, vzﬂ, w=uxv
—0.354 |lu x bl
and hence,
0.243 —0.266
[via=|-0843|, [w]a=[-0.535
0.481 —0.803

from which the rotation matrix Q, rotating the axes of A into orientations
coinciding with those of B, can be readily represented in A, or in B for that
matter, as

0.933  0.243 —0.266
[Qla=[u,v,wla=]| 0067 —0.843 —0.535
—0.354  0.481 —0.803
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On the other hand, if the coordinates of a point P in 4 and B are [p]a =
[p1, P2, p3]T and [7]g = [71, 72, 73 ]7, respectively, then the equation of the
ellipsoid in B is, apparently,

2 2
. T Ty
B: 1—2+§—2-+

3

32 =1

Now, what is needed in order to derive the equation of the ellipsoid in A is
simply a relation between the coordinates of P in B and those in 4. These
coordinates are related by eq.(2.94b), which requires [Q7 |5, while we have
[Q].4. Nevertheless, by virtue of Theorem 2.5.2

0.933  0.067 —0.354
[QT15=[QT|a=| 0243 —0843 0.481
-0.266 —0.535 —0.803

Hence,
0.933 0.067 -0.354 -1 ”
[7]s = 0.243 -0.843 0.481 -2+ |p
—-0.266 —0.535 -—0.803 -3 3
Therefore,

m = 0.933p1 + 0.067p2 — 0.354p3 — 0.005
g = 0243])1 - 0843p2 + 0.481p3
73 = —0.266p; — 0.535ps — 0.803ps + 3.745

Substitution of the foregoing relations into the ellipsoid equation in B leads to

A: 32.1521p,% + 7.70235p, + 9.17286p3* — 8.30524p; — 16.0527p,
—23.9304p3 + 9.32655p1pa + 9.02784pops — 19.9676p;ps + 20.101 = 0

which is the equation sought, as obtained using computer algebra.

2.6 Similarity Transformations

Transformations of the position vector of points under a change of coordinate
frame involving both a translation of the origin and a rotation of the coordinate
axes was the main subject of Section 2.5. In this section, we study the transfor-
mations of components of vectors other than the position vector, while extending
the concept to the transformation of matrix entries. How these transformations
take place is the subject of this section.

What is involved in the present discussion is a change of basis of the associ-
ated vector spaces, and hence, this is not limited to 3-dimensional vector spaces.
That is, n-dimensional vector spaces will be studied in this section. Moreover,
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only isomorphisms, i.e., transformations L of the n-dimensional vector space V
onto itself will be considered. Let A4 = {a;}7 and B = {b;}} be two different
bases of the same space V. Hence, any vector v of V can be expressed in either
of two ways, namely,

v =q@a) + azas + -+ +aza, (2.113)
v =/[1by + foba + - + Brbs (2.114)

from which two representations of v are readily derived, namely,

ax P
[v]a= O? , Ivls= ﬂf (2.115)
a B
Furthermore, let the two foregoing bases be related by
b; = ajja; + agjan +---+anja,, j=1,...,n (2.116)

Now, in order to find the relationship between the two representations of
eq.(2.115), eq.(2.116) is substituted into eq.(2.114), which yields

v = f1(an1a1 + az1as + - -+ + ap1an)
+ B2(a12a1 + agpag + -« - + an2ay,)

+ Bnlainay + agnas + -+ - + apnag) (2.117)
This can be rearranged to yield
v ={(anf1 +a2fr+ - +awmbn)a
+ (a2101 + a22f2 + - - - + ag2nfn)as
+ (@181 + an2f2 + -+ + annfin)an (2.118)

Comparing eq.(2.118) with eq.(2.113), one readily derives

[via=[Alalv]s (2.119)
where
ayx aiz -+ Qin
a a e a n
[Ala=| . T (2.120)

Ap1 GQp2 " Qpp
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which are the relations sought. Clearly, the inverse relationship of eq.(2.119) is
[vis=[A""])alv]a (2.121)

Next, let L have the representation in A given below:

ln ho o ln
l l v o

[Lla=|" 7 ’ (2.122)
lnl ln2 ot lnn

Now we aim at finding the relationship between [L]4 and [L]g. To this end,
let w be the image of v under L, i.e.,

Lv=w (2.123)
which can be expressed in terms of either A4 or B as

[LIulvIa=[w]a (2.124)
[Llglvls =[wls (2.125)

Further, since L is an isomorphism by hypothesis, w of eq.(2.123) lies in the
same space V as v. Hence, similar to eq.(2.119),

[wla=[Alalw]s (2.126)
Now, substitution of eqs.(2.119) and (2.126) into eq.(2.124) yields
[Ala[w]s = [L]a[Ala[v]s (2.127)

which can be readily rearranged in the form
[wls = [AT J4[L]a[A)a[V]s (2.128)
Comparing eq.(2.125) with eq.(2.128) readily leads to
[L]s =[A7 4[L]a[A]4 (2.129)
which upon rearrangement, becomes
[L]a=[Ala[L]s[A™" 14 (2.130)
Now, paraphrasing Theorems 2.5.2 and 2.5.4, we can state

Theorem 2.6.1 The representations of A carrying A into B in these two
frames are identical, i.e.,
[Ala=[Als (2.131)
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Proof: Substitute L for A in eq.(2.129) to obtain the above relation, q.e.d.

Relations (2.119), (2.121), (2.129), and (2.130) constitute what are called
similarity transformations. These are important because they preserve invariant
quantities such as the eigenvalues and eigenvectors of matrices, the magnitudes
of vectors, the angles between vectors, and so on. Indeed, one has:

Theorem 2.6.2 The characteristic polynomial of a given n xn matriz remains
unchanged under a similarity transformation. Moreover, the eigenvalues of two
matriz representations of the same n x n linear transformation are identical,
and if [e]g is an eigenvector of [L]p, then under the similarity transformation
(2.130), the corresponding eigenvector of [L]4 is [e]a =[A]ale]s.

Proof: From eq.(2.11), the characteristic polynomial of [L]g is
P(X) =det(\[1]g —[L]r) (2.132)
which can be rewritten as

P(X) = det(AN A Ja[1]a[A)a = [AT JA[L]A[AR)
= det([A™ JA4(A[1]4 = [LIA[A]A)
= det([A™"]4)det(A[1]4 — [L]a)det([A]4)
But
det([A™" 4)det([A]4) =1

and hence, the characteristic polynomial of [L]4 is identical to that of [L]gz.
Since both representations have the same characteristic polynomial, they have
the same eigenvalues. Now, if [e]g is an eigenvector of [L]p associated with
the eigenvalue A, then

[Llsle]ls = Alels
Next, eq.(2.129) is substituted into the foregoing equation, which thus leads to
[A~'A[L]a[Aale]s = Ae]s
Upon rearrangement, this equation becomes
[L]a[Alale]s = A[A]a[e]s (2.133)

whence it is apparent that [ A]4[e]p is an eigenvector of [L] 4 associated with
the eigenvalue A, g.e.d.

Theorem 2.6.3 If[L]4 and [L]p are related by the similarity transformation
(2.129), then
[L¥]s = [A7" Ja[L*Ja[Ala (2.134)

for any integer k.
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Proof: This is done by induction. For k = 2, one has

[L?]g = [AT A[L)A[A]A[AT AL Al A LA
=[AT 4L )a[Al4

Now, assume that the proposed relation holds for k¥ = n. Then,

(L ) = [AT AL JA[AJA[AT JA[L]A[A A
=[AT LT A[A)A

i.e., the relation holds for £ =n + 1 as well, thereby completing the proof.

Theorem 2.6.4 The trace of a n Xn matriz does not change under a similarity
transformation.

Proof: A preliminary relation will be needed: Let [A], [B] and [C] be three
different n x n matrix arrays, in a given reference frame, that need not be
indicated with any subscript. Moreover, let a;;, bi;, and ¢;; be the components
of the said arrays, with indices ranging from 1 to n. Hence, using standard
index notation,

tI‘([A] [B] [C]) = aijbjkcki = 051 CriQi; = tr([B] [C] [A]) (2135)

Taking the trace of both sides of eq.(2.129) and applying the foregoing result
produces

tr([L]s) = tr((A7' Ja[L]a[A]a) = tr([AJA[ AT 4[L]4) = tr([L]a)
(2.136)
thereby proving that the trace remains unchanged under a similarity transfor-
mation.

Example 2.6.1 We consider the equilateral triangle sketched in Fig. 2.7, of
side length equal to 2, with vertices Py, P53, and P3, and coordinate frames A
and B of azes X, Y and X', Y, respectively, both with origin at the centroid of
the triangle. Let P be a 2 x 2 matriz defined by

P=[p: p2]

with p; denoting the position vector of P; in o given coordinate frame. Show
that matriz P does not obey a similarity transformation upon a change of frame,
and compute its trace in frames A and B to make it apparent that this matriz
does not comply with the conditions of Theorem 2.6.4.

Solution: From the figure it is apparent that

1 0 0 1
Pla= [ Jigs avis]e Pl Vi
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Figure 2.7: Two coordinate frames used to represent the position vectors of the
corners of an equilateral triangle

Apparently,

2v3 V3
— #u((Pls) =+

The reason why the trace of this matrix did not remain unchanged under a
coordinate transformation is that the matrix does not obey a similarity trans-
formation under a change of coordinates. Indeed, vectors p; change as

tr((Pla) =1+

[Pi]la=[Qlalp:ils

under a change of coordinates from B to .4, with Q denoting the rotation car-
rying A into B. Hence,

[Pla=[QJa[P]s

which is different from the similarity transformation of eq.(2.130). However, if
we now define

R = PPT
then . Vi3 . Vi3
[Rla=1_y3/3 /3 ] [R]s = [\/3/3 5/3 ]
and hence,

t(RL) = r(Rls) = 3

thereby showing that the trace of R does not change under a change of frame. In
order to verify whether matrix R. complies with the conditions of Theorem 2.6.4,
we notice that, under a change of frame, matrix R changes as

[R]4 = [PP"]4=[Ql4[P]s([Q]a[P]5)" = [QIA[PPIF[Q" |4

which is indeed a similarity transformation.
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2.7 Invariance Concepts

From Example 2.6.1 it is apparent that certain properties, like the trace of
certain square matrices, do not change under a coordinate transformation. For
this reason, a matrix like R of that example is said to be frame-invariant, or
simply invariant, whereas matrix P of the same example is not. In this section,
we formally define the concept of invariance and highlight its applications and
its role in robotics. Let a scalar, a vector, and a matrix function of the position
vector p be denoted by f(p), £f(p) and F(p), respectively. The representations
of £(p) in two different coordinate frames, labelled A and B, will be indicated as
[f(p)]4 and [f(p)]B, respectively, with a similar notation for the representations
of F(p). Moreover, let the two frames differ both in the location of their origins
and in their orientations. Additionally, let the proper orthogonal matrix [Q) 4
denote the rotation of coordinate frame A into B. Then, the scalar function
f(p) is said to be frame invariant, or invariant for brevity, if

f(lplg) = F([pla) (2.137)
Moreover, the vector quantity f is said to be invariant if
[fla = [Qlalflz (2.138)
and finally, the matrix quantity F is said to be invariant if
[Fla = [QI4F]5[Q"]4 (2.139)

Thus, the difference in origin location becomes irrelevant in this context, and
hence, will no longer be considered. From the foregoing discussion, it is clear
that the same vector quantity has different components in different coordinate
frames; moreover, the same matrix quantity has different entries in different
coordinate frames. However, certain scalar quantities associated with vectors,
e.g., the inner product, and matrices, e.g., the matrix moments, to be defined
presently, remain unchanged under a change of frame. Additionally, such vector
operations as the cross product of two vectors are invariant. In fact, the scalar
product of two vectors a and b remains unchanged under a change of frame,
ie.,

[a]%[bl, =[al5[b]s (2.140)
Additionally,
[axb]l,=[Q],[axblg (2.141)

The kth moment of a n x n matrix T, denoted by 7y, is defined as (Leigh,
1968)
Tr = t(TY), k=0,1,... (2.142)

where Zg = tr(1) = n. Now we have

Theorem 2.7.1 The moments of a n X n matriz are invariant under o simi-
larity transformation.
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Proof: This is straightforward. Indeed, from Theorem 2.6.3, we have
[T )5 =[A7 Al T*|4[ A4 (2.143)

Now, let [ZIi ] 4 and [Zi ]z denote the kth moment of [T], and [T]g, respec-
tively. Thus,

[Zx )5 =tr([A—1]A [Tk]A[A]A) =tr([A]4 [A—I]A [Tk]A)
= te([T*] ) = [Tl

thereby completing the proof.
Furthermore,

Theorem 2.7.2 A n x n matriz has only n linearly independent moments.

Proof: Let the characteristic polynomial of T be
PN =ay+aiA+-+a A"+ A" =0 (2.144)
Upon application of the Cayley-Hamilton Theorem, eq.(2.144) leads to
apl +a1 T+ +a TV +T" =0 (2.145)

where 1 denotes the n x n identity matrix.
Now, if we take the trace of both sides of eq.(2.145), and Definition (2.142)
is recalled, one has

a()I() + 011-1 R R an_lIn_l + In =0 (2146)

from which it is apparent that Z,, can be expressed as a linear combination of
the first n moments of T, { Z; }5~!. By simple induction, one can likewise prove
that the mth moment is dependent upon the first n moments if m > n, thereby
completing the proof. Also notice that Zg = n, and hence, all n X n matrices
share the same zeroth moment 1.

The vector invariants of a n x n matrix are its eigenvectors, which have a di-
rect geometric significance in the case of symmetric matrices. The eigenvalues of
these matrices are all real, its eigenvectors being also real and mutually orthogo-
nal. Skew-symmetric matrices, in general, need not have either real eigenvalues
or real eigenvectors. However, if we limit ourselves to 3 x 3 skew-symmetric
matrices, exactly one of their eigenvalues, and its associated eigenvector, are
both real. The eigenvalue of interest is 0, and the associated vector is the axial
vector of the matrix under study.

It is now apparent that two n x n matrices related by a similarity transfor-
mation have the same set of moments. Now, by virtue of Theorem 2.7.2, one
may be tempted to think that if two n x n matrices share their first n moments
{Z }3~', then the two matrices are related by a similarity transformation. To
prove that this is not the case, let two n x n matrices A and B have character-
istic polynomials with coefficients {ax}"~! and {b;}§~', respectively, the two



2.7 Invariance Concepts 73

sets being not necessarily identical. Moreover, let the n + 1 moments of A and
B be denoted by {Z; }§ and {Z} }3, with

To=ITy=n, Iy=1;, for k=1,...,n—1
Hence, from eq.(2.146),

In — _(aon + all-l +...+ an—lIn—l)
T, = ~(bon + b1 T + ... + ba-1Zn-1)

Therefore, in spite of Theorem 2.7.2, two n x n matrices with identical moments
Iy = I, for k = 1,...,n — 1 may still have Z,, # T, if these matrices are not
related by a similarity transformation, and hence, have distinct characteristic
polynomials. We thus have

Theorem 2.7.3 Two n x n matrices are related by o similarity transformation
if and only if their n moments {Z;}} are identical.

Hence,

Corollary 2.7.1 If two n x n matrices share the same n moments {Iy}7, then
their characteristic polynomials are identical.

Consider the two matrices A and B given below:

Al 4 meli

The two foregoing matrices cannot possibly be related by a similarity transfor-
mation, for the first one is the identity matrix, while the second is not. However,
the two matrices share the two moments Zg = 2 and 7; = 2. Let us now compute
the second moments of these matrices:

tr(A%) =2, tr(B?) = tr [5 4] ~ 10
4 5

which are indeed different. Therefore, to test whether two different n x n ma-
trices represent the same linear transformation, and hence, are related by a
similarity transformation, we must verify that they share the same set of n + 1
moments { Zj }§. In fact, since all n xn matrices share the same zeroth moment,
only the n moments { Z}, }1 need be tested for similarity verification. That is, if
two n X n matrices share the same n moments { Z; }7, then they represent the
same linear transformation, albeit in different coordinate frames.

The foregoing discussion does not apply, in general, to nonsymmetric ma-

trices, for these matrices are not fully characterized by their eigenvalues. For
example, consider the matrix

11 , 1 2
A‘[o 1] = A"[o 1J
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Its two moments of interest are Z; = tr(A) = 2, Z; = 2, which happen to be the
corresponding moments of the 2 x 2 identity matrix as well. However, while the
identity matrix leaves all 2-dimensional vectors unchanged, matrix A does not.

Now, if two symmetric matrices, say A and B, represent the same trans-
formation, they are related by a similarity transformation, i.e., a nonsingular
matrix T exists such that

B =T AT

Given A and T, then, finding B is trivial, a similar statement holding if B
and T are given; however, if A and B are given, finding T is more difficult. The
latter problem occurs sometimes in robotics in the context of calibration, to be
discussed in Subsection 2.7.1.

Example 2.7.1 Two symmetric matrices are displayed below. Find out whether
they are related by a similarity transformation.

101 1 0 0
A=[010|, B=|0 2 -1
1 0 2 0 -1 1

Solution: The traces of the two matrices are apparently identical, namely, 4.
Now we have to verify whether their second and third moments are also identical.
To do this, we need the square and the cube of the two matrices, from which
we then compute their traces. Thus, from

2 0 3 1 0 0
A’=10 1 0|, B*=|0 5 -3
305 0 -3 2

we readily obtain
tr(A%) =tr(B?) =8

Moreover,
5 0 8 1 0 0
A*=10 1 0}, B*=|0 13 -8
8 0 13 0 -8 5

whence

tr(A%) = tr(B?) = 19
Therefore, the two matrices are related by a similarity transformation. Hence,
they represent the same linear transformation.

Example 2.7.2 Same as Example 2.7.1, for the two matrices disployed below:

1 0 2 111
A={01 0|, B=|110
2 0 0 100

Solution: As in the previous example, the traces of these matrices are identical,
i.e., 2. However, tr(A?) = 10, while tr(B2?) = 6. We thus conclude that the two
matrices cannot be related by a similarity transformation.
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2.7.1 Applications to Redundant Sensing

A sensor, such as a camera or a range finder, is often mounted on a robotic
end-effector to determine the pose—i.e., the position and orientation, as defined
in Subsection 3.2.3—of an object. If redundant sensors are introduced, and
we attach frames A and B to each of these, then each sensor can be used to
determine the orientation of the end-effector with respect to a reference pose.
This is a simple task, for all that is needed is to measure the rotation R that
each of the foregoing frames underwent from the reference pose, in which these
frames are denoted by Ag and By, respectively. Let us assume that these mea-
surements produce the orthogonal matrices A and B, representing R in A and
B, respectively. With this information we would like to determine the relative
orientation Q of frame B with respect to frame 4, a problem that is called here
instrument calibration.

We thus have A = [R], and B = [R ], and hence, the algebraic problem
at hand consists in determining [Q], or equivalently, [Q]z. The former can
be obtained from the similarity transformation of eq.(2.139), which leads to

A =[Q],4B[Q"]4

or
A[Q]A = [Q]AB

This problem could be solved if we had three invariant vectors associated
with each of the two matrices A and B. Then, each corresponding pair of vectors
of these triads would be related by eq.(2.138), thereby obtaining three such vec-
tor equations that should be sufficient to compute the nine components of the
matrix Q rotating frame A into B. However, since A and B are orthogonal ma-
trices, they admit only one real invariant vector, namely, their axial vector, and
we are short of two vector equations. We thus need two more invariant vectors,
represented in both A and B, to determine Q. The obvious way of obtaining
one additional vector in each frame is to take not one, but two measurements
of the orientation of Ag and By with respect to A and B, respectively. Let the
matrices representing these orientations be given, in each of the two coordinate
frames, by A; and B, for ¢ = 1,2. Moreover, let a; and b;, for i = 1, 2, be the
axial vectors of matrices A; and B;, respectively.

Now we have two possibilities: () neither of a; and as and, consequently,
neither of by and by, is zero; and (i4) at least one of a; and aj, and conse-
quently, the corresponding vector of the { by, by } pair, vanishes. In the first
case, nothing prevents us from computing a third vector of each set, namely,

az = a; X asg, b3 = b1 X bg (2147)

In the second case, however, we have two more possibilities, namely, the angle
of rotation of that orthogonal matrix, A; or Aj, whose axial vector vanishes
is either 0 or wn. If the foregoing angle vanishes, then A underwent a pure
translation from A4g, the same holding, of course, for B and By. This means
that the corresponding measurement becomes useless for our purposes, and a
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new measurement is needed, involving a rotation. If, on the other hand, the
same angle is 7, then the associated rotation is symmetric and the unit vector e
parallel to its axis can be determined from eq.(2.49) in both .4 and B. This unit
vector, then, would play the role of the vanishing axial vector, and we would
thus end up, in any event, with two pairs of nonzero vectors, {a; }3 and {b; }3.
As a consequence, we can always find two triads of nonzero vectors, {a; }3 and
{b; }3, that are related by

a;=[Q] bi, fori=1,2,3 (2.148)

The problem at hand now reduces to computing [Q] 4 from eq.(2.148). In
order to perform this computation, we write the three foregoing equations in
matrix form, namely,

E=[Q]F (2.149)
with E and F defined as
E= [a1 as 83], F= [b1 bz b3] (2.150)

Now, by virtue of the form in which the two vector triads were defined, none of
the two above matrices is singular, and hence, we have

[Q],=EF! (2.151)

Moreover, note that the inverse of F can be expressed in terms of its columns
explicitly, without introducing components, if the concept of reciprocal bases is
recalled (Brand, 1965). Thus,

1 (bz X b3)T
Fl=_ (b3 X bl)T , A=Db; xby: b; (2152)
(b1 X bz)T
Therefore,
1 T T T
[Q].A - z[al(bz X b3) +a2(b3 X b1) +a3(b1 X b2) ] (2153)

thereby completing the computation of [Q], directly and with simple vector
operations.

Example 2.7.3 (Hand-Eye Calibration) Determine the relative orientation
of a frame B attached to a camera mounted on a robot end-effector, with respect
to a frame A fized to the latter, as shown in Fig. 2.8. It is assumed that two
measurements of the orientation of the two frames with respect to frames Ag and
By in the reference configuration of the end-effector are available. These mea-
surements produce the orientation matrices A; of the frame fized to the camera
and B; of the frame fized to the end-effector, for i = 1,2. The numerical data
of this example are given below:
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Figure 2.8: Measuring the orientation of a camera-fixed coordinate frame with
respect to a frame fixed to a robotic end-effector

[ — 0.92502593 —0.37037037 —0.07407407
A= 0.28148148 —0.80740741  0.51851852
| —0.25185185 0.45925926  0.85185185
[ —0.83134406  0.02335236 —0.55526725]

Ay = | —0.52153607  0.31240270  0.79398028
0.19200830  0.94969269 —0.24753503 |
[ —0.90268482  0.10343126 —0.41768659]

B; = | 0.38511568  0.62720266 —0.67698060
0.19195318 —0.77195777 —0.60599932 |
[ —0.73851280 —0.54317226  0.39945305 ]

B, = | —0.45524951  0.83872293  0.29881721
| —0.49733966  0.03882952 —0.86668653 |

Solution: Shiu and Ahmad (1987) formulated this problem in the form of a
matrix linear homogeneous equation, while Chou and Kamel (1988) solved the
same problem using quaternions and very cumbersome numerical methods that
involve singular-value computations. The latter require an iterative procedure
within a Newton-Raphson method, itself iterative, for nonlinear-equation solv-
ing. Other attempts to solve the same problem have been reported in the lit-
erature, but these also resorted to extremely complicated numerical procedures
for nonlinear-equation solving (Chou and Kamel, 1991; Horaud and Dornaika,
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1995). The latter proposed a more concise method based on quaternions—
isomorphic to the Euler-Rodrigues parameters—that nevertheless is still com-
putationally expensive.

More recently, Daniilidis (1999) proposed an algorithm based on dual quater-
nions to simultaneously estimate the relative pose of the two frames of interest.
In this book we do not study either quaternions—at least, not by this name—or
dual algebra; the former are, in fact, isomorphic to the Euler-Rodrigues param-
eters of a rotation, which were introduced in Subsection 2.3.6. Dual algebra,
in turn, is used to manipulate scalars, vectors and matrices comprising one ro-
tation and one translation, or their statics counterparts, one moment and one
force (Angeles, 1998). In the above reference, Daniilidis resorts to the singular-
value decomposition to find the relative pose in question, but this decomposition
slows down the computational procedure. Angeles et al. (2000), in turn, pro-
posed an alternative approach based on the invariance concepts introduced in
this section, that leads to an algorithm involving only linear equations. This al-
gorithm, moreover, relies on recursive least-square computations, thereby doing
away with singular-value computations and allowing for real-time performance.
This reference and (Daniilidis, 1999) report experimental results.

The approach outlined in this example is essentially the same as that pro-
posed in (Angeles, 1989), although here we have streamlined the procedure of
this reference.

First, the vector of matrix A;, represented by a;, and the vector of matrix
B;, represented by b;, for i = 1,2, are computed from simple differences of the
off-diagonal entries of the foregoing matrices, followed by a division by 2 of all
the entries thus resulting, which yields

'—0.029629631 0.07784121W

a; =] 0.08888889 |, a;= |—0.37363778
0.32592593 | | —0.27244422 |
[ —0.04748859] [ ~0.12999385 ]

b, —0.30481989 |, b, = | 0.44869636
0.14084221 | 0.04396138 |

In the calculations below, 16 digits were used, but only eight are displayed.
Furthermore, with the foregoing vectors, we compute az and bz from cross
products, thus obtaining

[0.09756097
0.01730293
| 0.00415020

az =

[ —0.07655343
—0.01622096
| —0.06091842

bz =

Furthermore, A is obtained as

A = 0.00983460
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while the individual rank-one matrices inside the brackets of eq.(2.153) are cal-
culated as

r

0.00078822  0.00033435 —0.00107955]
a;(by x bg)T = | —0.00236467 —0.00100306  0.00323866
| —0.00867044 —0.00367788  0.01187508 |

[ —0.00162359  0.00106467  0.00175680 |
as(bz x b;)T = | 0.00779175 —0.00510945 —0.00843102
| 0.00568148 ~0.00372564 —0.00614762

[ —0.00746863 —0.00158253 —0.00594326 ]
az(b; x by)T = | -0.00132460 —0.00028067 —0.00105407
| —0.00031771 —0.00006732 —0.00025282 |

whence Q in the A4 frame is readily obtained as

—0.84436553 —0.01865909 —0.53545750
Q4= 0.41714750 —0.65007032 —0.63514856
—0.33622873 —0.75964911  0.55667078

thereby completing the desired computation.

2.8 Exercises

2.1 Prove that the range and the nullspace of any linear transformation L of
vector space U into vector space V are vector spaces as well, the former of
V, the latter of U/.

2.2 Let L map U into V and dim{l/} = n, dim{V} = m. Moreover, let R and
N be the range and the nullspace of L, their dimensions being p and v,
respectively. Show that p + v = n.

2.3 Given two arbitrary nonzero vectors u and v in £3, find the matrix P
representing the projection of £2 onto the subspace spanned by u and v.

2.4 Verify that P, whose matrix representation in a certain coordinate system
is given below, is a projection. Then, describe it geometrically, i.e., iden-
tify the plane onto which the projection takes place. Moreover, find the
nullspace of P.

1 2 1 -1
-1 1 2

2.5 If for any 3-dimensional vectors a and v, matrix A is defined as

d(axv)

A Ov
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2.9

2.10

2.11
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then we have
8(v x a)
ov

Show that A is skew-symmetric without introducing components.

AT

Let u and v be any 3-dimensional vectors, and define T as
T=1+uv’

The (unit) eigenvectors of T are denoted by wy, wa, and w3. Show that,
say, w1 and wq are any unit vectors perpendicular to v and different
from each other, whereas w3 = u/||ul|. Also show that the corresponding
eigenvalues, denoted by A1, Az, and Aj, associated with wy, wy, and wj,
respectively, are given as

AM=X=1 Xl=14u-v

Show that if u and v are any 3-dimensional vectors, then
detl4+uv)y=14+u-v
Hint: Use the results of the Ezxercise 2.6.

For the two unit vectors e and f in 3-dimensional space, define the two
reflections

Ri=1—2ee’, Ro=1-2¢f7

Now, show that Q = RyR; is a rigid-body rotation, and find its axis and
its angle of rotation in terms of unit vectors e and f. Again, no components
are permitted in this exercise.

State the conditions on the unit vectors e and f, of two reflections Ry
and R, respectively, under which a given rotation Q can be factored into
the reflections R; and R given in the foregoing exercise. In other words,
not every rotation matrix Q can be factored into those two reflections, for
fixed e and f, but special cases can. Identify these cases.

Prove that the eigenvalues of the cross-product matrix of the unit vector
e are 0, j, and —j, where j = v/—1. Find the corresponding eigenvectors.

Without resorting to components, prove that the eigenvalues of a proper
orthogonal matrix Q are 1, ¢/%, and e~7¢, with ¢ denoting the angle of
rotation. Hint: Use the result of the foregoing ezercise and the Cayley-
Hamilton Theorem.
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2.12 Find the axis and the angle of rotation of the proper orthogonal matrix
Q given below in a certain coordinate frame F.

1 -1 -2 2
[Qr]= 3172 -1 -2
2 -2 -1

2.13 Find E and ¢ of the exponential representation of the rotation matrix
given in Exercise 2.12.

2.14 Cayley’s Theorem, which is not to be confused with the Theorem of
Cayley-Hamilton, states that every 3 x 3 proper orthogonal matrix Q
can be uniquely factored as

Q=(1-8)1+S)!

where S is a skew-symmetric matrix. Find a general expression for S
in terms of Q, and state the condition under which this factoring is not
possible.

2.15 Find matrix S of Cayley’s factoring for Q as given in Exercise 2.12.

2.16 If Q represents a rotation about an axis parallel to the unit vector e
through an angle ¢, then the Rodrigues vector p of this rotation can be

defined as
p = tan (g) e

Note that if r and r¢ denote the Euler-Rodrigues parameters of the rota-
tion under study, then p = r/rg. Show that

p = —vect(S)
for S given in Exercise 2.14.

2.17 The vertices of a cube, labeled A, B, ..., H, are located so that 4, B, C,
and D, as well as E, F, GG, and H, are in clockwise order when viewed
from outside. Moreover, AE, BH, CG, and DF are edges of the cube,
which is to be manipulated so that a mapping of vertices takes place as
indicated below:

A—-D, B»C, C—>G, D->»F
E—-A F—-E G—-H H-B

Find the angle of rotation and the angles that the axis of rotation makes
with edges AB, AD, and AE.

2.18 (Euler angles) A rigid body can attain an arbitrary configuration starting
from any reference configuration, 0, by means of the composition of three
rotations about coordinate axes, as described below: Attach axes Xg, Yg,
and Zg to the body in the reference configuration and rotate the body
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through an angle ¢ about Zg, thus carrying the axes into Xi, Yi, and
Zy (=2p), respectively. Next, rotate the body through an angle 6 about
axis Y7, thus carrying the axes into Xa, Y5, and Z, respectively. Finally,
rotate the body through an angle ¥ about Zs so that the axes coincide
with their desired final orientation, X3, Y3, and Z3. Angle 4 is chosen so
that axis Zs lies in the plane of Zg and X, whereas angle 8 is chosen so
as to carry axis Z1 (=Zg) into Zs (=Z,). Show that the rotation matrix
carrying the body from configuration 0 to configuration 3 is:

cOeperp — spsy)  —cledsyy — spe)  sBeq
Q = | clsécy + chpsyp —clsdsy + cpeyp  86s¢d
—88cyp s6sy cf

where ¢(-) and s(-) stand for cos(-) and sin(-), respectively. Moreover,
show that a, the angle of rotation of Q given above, obeys the relation

s (2) = o () o ()

Given an arbitrary rigid-body rotation about an axis parallel to the unit
vector e through an angle ¢, it is possible to find both e and ¢ using the
linear invariants of the rotation matrix, as long as the vector invariant does
not vanish. The latter happens if and only if ¢ = 0 or 7. Now, if ¢ = 0,
the associated rotation matrix is the identity, and e is any 3-dimensional
vector; if ¢ = 7, then we have

Q(7) = Qr = —1+ 2ee”

whence we can solve for ee as

ee’ = %(Q,r +1)

Now, it is apparent that the three eigenvalues of Q, are real and the
associated eigenvectors are mutually orthogonal. Find these.

Explain why all the off-diagonal entries of a symmetric rotation matrix
cannot be negative.

The three entries above the diagonal of a 3 x 3 matrix Q that is supposed
to represent a rotation are given below:

1 2 _§
CI23—4

Without knowing the other entries, explain why the above entries are
unacceptable.
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2.22

2.23

2.24

2.25

2.26

2.27

2.28

Let pi, p2, and ps be the position vectors of three arbitrary points in
3-dimensional space. Now, define a matrix P as

P=[pi p2 p3]

Show that P is not frame-invariant. Hint: Show, for erample, that it is
always possible to find a coordinate frame in which tr(P) vanishes.

For P defined as in Exercise 2.22, let
q = tr(P?) — tr*(P)

Show that ¢ vanishes if the three given points and the origin are collinear,
for P represented in any coordinate frame.

For P defined, again, as in Exercise 2.22, show that PP7 is invariant
under frame-rotations about the origin, and becomes singular if and only
if either the three given points are collinear or the origin lies in the plane

of the three points. Note that this matrix is more singularity-robust than
P.

The diagonal entries of a rotation matrix are known to be —0.5, 0.25, and
—0.75. Find the off-diagonal entries.

As a generalization to the foregoing exercise, discuss how you would go
about finding the off-diagonal entries of a rotation matrix whose diagonal
entries are known to be a, b, and ¢. Hint: This problem can be formulated
as finding the intersection of the coupler curve of a four-bar spherical link-
age (Chiang, 1988), which is a curve on a sphere, with a certain parallel
of the same sphere.

Shown in Fig. 2.9(a) is a cube that is to be displaced in an assembly
operation to a configuration in which face FFGH lies in the XY plane,
as indicated in Fig. 2.9(b). Compute the unit vector e parallel to the axis
of the rotation involved and the angle of rotation ¢, for 0 < ¢ < 7.

The axes Xy, Y1, Z1 of a frame F; are attached to the base of a robotic
manipulator, whereas the axes X2, Y2, Zs of a second frame F» are at-
tached to its end-effector, as shown in Fig. 2.10. Moreover, the origin P
of F, has the Fi-coordinates (1,—1,1). Furthermore, the orientation of
the end effector with respect to the base is defined by a rotation Q, whose
representation in J is given by

1 1 1-+v/3 1++3
Qi=<|1+v3 1 1-v3
31hi-v3 1443 1

(a) What are the end-effector coordinates of point C of Fig. 2.10?
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Figure 2.9: A cube in two different configurations

(b) The end-effector is approaching the ABC plane shown in Fig. 2.10.
What is the equation of the plane in end-effector coordinates? Verify
your result by substituting the answer to (a) into this equation.

Shown in Fig. 2.11 is a cube of unit side, which is composed of two parts.
Frames (Xg, Yo, Zo) and (X1, Y1, Z1) are attached to each of the two
parts, as illustrated in the figure. The second part is going to be picked
up by a robotic gripper as the part is transported on a belt conveyor and
passes close to the stationary first part. Moreover, the robot is to assemble
the cube by placing the second part onto the first one in such a way that
vertices Ay, By, C; are coincident with vertices Ag, By, Co. Determine
the axis and the angle of rotation that will carry the second part onto the
first one as described above.

A piece of code meant to produce the entries of rotation matrices is being
tested. In one run, the code produced a matrix with diagonal entries
—0.866, —0.866, —0.866. Explain how without looking at the other entries,
you can decide that the code has a bug.

Shown in Fig. 2.12 is a rigid cube of unit side in three configurations. The
second and the third configurations are to be regarded as images of the
first one. One of the last two configurations is a reflection, and the other
is a rotation of the first one. Identify the rotated configuration and find
its associated invariants.

Two frames, G and C, are attached to a robotic gripper and to a camera
mounted on the gripper, respectively. Moreover, the camera is rigidly
attached to the gripper, and hence, the orientation of C with respect to G,
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Figure 2.10: Robotic EE approaching a stationary object ABC

denoted by Q, remains constant under gripper motions. The orientation
of the gripper with respect to a frame B fixed to the base of the robot
was measured in both G and C. Note that this orientation is measured in
G simply by reading the joint encoders, which report values of the joint
variables, as discussed in detail in Chapter 4. The same orientation is
measured in C from estimations of the coordinates of a set of points fixed
to B, as seen by the camera.

Two measurements of the above-mentioned orientation, denoted R, and

Zy

By

Cl Yl

A
Xy

Figure 2.11: Roboticized assembly operation
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Figure 2.12: Three configurations of a cube

R, were taken in G and C, with the numerical values reported below:

P

0.667 0.333  0.667

[Ri]g = | —0.667 0.667 0.333 |,
| —0.333 —0.667  0.667
[0.500 0  —0.866

[Rile=| o0  1.000 0

| 0.866 0 0.500
[ 0.707 0577 0.408

[Ra]g = 0 0.577 —0.816 |,
| —0.707 0577  0.408
[1 o 0

[Rale= [0 0.346 —0.938
[0 0.938 0.346

(a) Verify that the foregoing matrices represent rotations.

(b) Verify that the first two matrices represent, in fact, the same rotation
R, albeit in different coordinate frames.

(¢) Repeat item (b) for Ra.

(d) Find [Q]g. Is your computed Q orthogonal? If not, can the error be
attributed to data-incompatibility? to roundoff-error amplification?

2.33 The orientation of the end-effector of a given robot is to be inferred from

joint-encoder readouts, which report an orientation given by a matrix Q
in Fj-coordinates, namely,

1 -1 2 2
Q= 3 2 -1 2
2 2 -1

(a) Show that the above matrix can indeed represent the orientation of
a rigid body.
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2.34

2.35

2.36

2.37

(b) What is Q in end-effector coordinates, i.e., in a frame Fy, if Z7 is
chosen parallel to the axis of rotation of Q?

The rotation Q taking a coordinate frame B, fixed to the base of a robot,
into a coordinate frame G, fixed to its gripper, and the position vector g
of the origin of G have the representations in B given below:

1 1 1-v3 1+43 1-+3
[Qls=5 (1+v3 1 1-V3|, [gls=| V3
1-v3 1+v3 1 1+3

Moreover, let p be the position vector of any point P of the 3-dimensional
space, its coordinates in B being (z, y, z). The robot is supported by a
cylindrical column C of circular cross section, bounded by planes I, and
I1,. These are given below:

C: 2> +y =4, I): 2=0; IT,: 2=10
Find the foregoing equations in G coordinates.

A certain point of the gripper of a robot is to trace an elliptical path of
semiaxes a and b, with center at C, the centroid of triangle PQ R, as shown
in Fig. 2.13. Moreover, the semiaxis of length @ is parallel to edge PQ,
while the ellipse lies in the plane of the triangle, and all three vertices are
located a unit distance away from the origin.

(a) For b = 2a/3, the gripper is to keep a fixed orientation with respect to
the unit tangent, normal, and binormal vectors of the ellipse, denoted
by e, e,, and e, respectively®. Determine the matrix representing
the rotation undergone by the gripper from an orientation in which
vector e; is parallel to the coordinate axis X, while e, is parallel to
Y and e, to Z. Express this matrix in X, Y, Z coordinates, if the
equation of the ellipse, in parametric form, is given as

2’ =acosyp, ¥y =bsiny, 2’ =0

the orientation of the gripper thus becoming a function of ¢.

(b) Find the value of ¢ for which the angle of rotation of the gripper,
with respect to the coordinate axes X, Y, Z, becomes .

With reference to Exercise 2.27, find Euler angles ¢, 8, and 1 that will
rotate the cube of Fig. 2.9(a) into the attitude displayed in Fig. 2.9(b).
For a definition of Euler angles, see Exercise 2.18

Find a sequence of Euler angles ¢, 8, and %), as defined in Exercise 2.18,
that will carry triangle Ay, By, C; into triangle Ag, By, Co, of Fig. 2.11.

3An account of curve geometry is given in Section 11.2
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Figure 2.13: An elliptical path on an inclined plane



Chapter 3

Fundamentals of
Rigid-Body Mechanics

3.1 Introduction

The purpose of this chapter is to lay down the foundations of the kinetostatics
and dynamics of rigid bodies, as needed in the study of multibody mechanical
systems. With this background, we study the kinetostatics and dynamics of
robotic manipulators of the serial type in Chapters 5 and 7, respectively, while
devoting Chapter 6 to the study of trajectory planning. The latter requires,
additionally, the background of Chapter 4. A special feature of the current
chapter is the study of the relations between the angular velocity of a rigid
body and the time-rates of change of the various sets of rotation invariants
introduced in Chapter 2. Similar relations between the angular acceleration
and the second time-derivatives of the rotation invariants are also recalled, the
corresponding derivations being outlined in Appendix A.

Furthermore, an introduction to the very useful analysis tool known as screw
theory (Roth, 1984) is included. In this context, the concepts of twist and wrench
are introduced, which prove in subsequent chapters to be extremely useful in
deriving the kinematic and static, i.e., the kinetostatic, relations among the
various bodies of multibody mechanical systems.

3.2 General Rigid-Body Motion and Its Associ-
ated Screw
In this section we analyze the general motion of a rigid body. Thus, let A

and P be two points of the same rigid body B, the former being a particular
reference point, whereas the latter is an arbitrary point of B, as shown in Fig. 3.1.
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Moreover, the position vector of point A in the original configuration is a, and
the position vector of the same point in the displaced configuration, denoted by
A’, is a’. Similarly, the position vector of point P in the original configuration
is p, while in the displaced configuration B, this point is P/, its position vector
being p’. Furthermore, p’ is to be determined, while a, a’, and p are given,
along with the rotation matrix Q. Vector p — a can be considered to undergo
a rotation Q about point A throughout the motion taking the body from the
original to the final configuration. Since vector p — a is mapped into p’ — a’
under the above rotation, one can write

B/

Figure 3.1: General rigid-body displacement

p —a' =Q(p-a) (3.1)
and hence
p=a +Q(p-a) (3.2)

which is the relationship sought. Moreover, let d4 and dp denote the displace-
ments of A and P, respectively, i.e.,

ds=a' —a, dp=p' —p (3.3)
From eqs.(3.2) and (3.3) one can readily obtain an expression for dp, namely,

dp=a'-p+Q(p—a)
=a'—a-p+Q(p—a)+a
=da+(Q-1)(p—a) (3.4)

What eq.(3.4) states is that the displacement of an arbitrary point P of a rigid
body, of position vector p in an original configuration, is determined by the dis-
placement of one certain point A and the concomitant rotation Q, as depicted
in Fig. 3.2. In this figure, the final configuration B’ is attained via an inter-
mediate configuration B”, attained from B by a pure translation!. Then, B' is
attained from B” by a pure rotation Q, of axis parallel to vector e and of angle
¢. Apparently, once the displacement of P is known, its position vector p’ can
be readily determined. An interesting result in connection with the foregoing
discussion is summarized below:

1A body undergoes a pure translation when all its points move under the same
displacement.
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Figure 3.2: General rigid-body displacement attained by a combination of trans-
lation and rotation

Theorem 3.2.1 Let o rigid body B move under a general displocement, of ro-
tation Q with axis parallel to the unit vector e. Then, the displacements of all
the points of B have the same component along e.

Proof: Multiply both sides of eq.(3.4) by e”, thereby obtaining
e’dp =eTds +e"(Q-1)(p—a)

Now, the second term of the right-hand side of the above equation vanishes
because Qe = e, and hence, Q7 e = e; the said equation thus leads to

erP = erA = do (35)

thereby showing that the displacements of all points of the body have the same
projection dy onto the axis of rotation, q.e.d.

As a consequence of the foregoing result, we have the classical Mozzi-Chasles
Theorem (Mogzzi, 1763; Chasles, 1830; Ceccarelli, 1995), namely,

Theorem 3.2.2 (Mozzi, 1763; Chasles, 1830) Given a rigid body moving
with a general displacement, o set of its points, located on a line L, undergo iden-
tical displacements of minimum magnitude. Moreover, line £ and the minimum-
magnitude displacement are parallel to the azis of the rotation involved, as il-
lustrated in Fig. 3.3.

Proof: The proof is straightforward in light of Theorem 3.2.1, which allows us to
express the displacement of an arbitrary point P as the sum of two orthogonal
components, namely, one parallel to the axis of rotation, independent of P and
denoted by dj—read “d-par”—and one perpendicular to this axis, denoted by
d) —read “d-perp”—i.e.,

dp ':—d” +d; (3.63,)
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e

¢

e

g B

Figure 3.3: The Mozzi-Chasles Theorem

where
dy=ee’dp=doe=dy, d.=(1-ee’)dp (3.6b)

and clearly, dy is a constant, as defined in eq.(3.5), while d| and d are mutually
orthogonal. Indeed, orthogonality is apparent by definition, but is also verified
below:

dj-d =doe’ (1 —eeT)dp =do(e” ~eT)dp =0

Now, by virtue of the orthogonality of the two components of dp, it is apparent
that
ldel® = lldyll? + (ldLl? = d§ + [ldL])?

for the displacement dp of any point of the body. Hence, in order to minimize
||dp|| we have to make {|d ||, and hence, d itself, equal to zero, i.e., we must
have dp parallel to e:

dp = ae

for a certain scalar . That is, the displacements of minimum magnitude of the
body under study are parallel to the axis of Q, thereby proving the first part of
the Mozzi-Chasles Theorem. The second part is also readily proven by noticing
that if P* is a point of minimum displacement magnitude, of position vector
p*, its component perpendicular to the axis of rotation must vanish, and hence,

d = (1 -eel)dp-
=(1-ee")ds+(1-ee")(Q-1)(p*~2) =0

Upon expansion of the above expression for d* , we obtain
(1—eeT)ds+(Q—-1)(p*—a)=0

Now it is apparent that if we define a line £ passing through P* and parallel to
e, then the position vector p* + Ae of any of its points P satisfies the foregoing
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equation. As a consequence, all points of minimum displacement magnitude lie
in a line parallel to the axis of rotation of Q, q.e.d.

An important implication of the foregoing theorem is that a rigid body can
attain an arbitrary configuration from a given original one, following a screw-
like motion of axis £ and pitch p, the latter being defined presently. Thus, it
seems appropriate to call £ the screw azis of the rigid-body motion.

Note that dy, as defined in eq.(3.5), is an invariant of the motion at hand.
Thus, associated with a rigid-body motion, one can then define a screw of axis
L and pitch p. Of course, the pitch is defined as

p:@—g_q’;_e or p=27rd0
¢ ¢ ¢

which has units of m/rad or, correspondingly, of m/turn. Moreover, the angle
¢ of the rotation involved can be regarded as one more feature of this motion.
This angle is, in fact, the amplitude associated with the said motion. We will
come across screws in discussing velocities and forces acting on rigid bodies,
along with their pitches and amplitudes. Thus, it is convenient to introduce
this concept at this stage.

(3.7

3.2.1 The Screw of a Rigid-Body Motion

The screw axis £ is totally specified by a given point Py of £ that can be defined,
for example, as that lying closest to the origin, and a unit vector e defining its
direction. Expressions for the position vector pg of Py in terms of a, a’ and Q,
are derived below:
Since Py was defined as the point of £ lying closest to the origin, pg obviously
is perpendicular to e, i.e.,
efpo =0 (3.8)

Moreover, the displacement dg of P, is parallel to the vector of Q, and hence,
is identical to d)| defined in eq.(3.6b), i.e., it satisfies

(Q-1)do =0

where dg can be expressed using the general expression for the displacement,
eq.(3.4), namely,

do=ds+(Q—-1)(po —a) (3.9a)
Now, since dg is identical to d, we have, from eq.(3.6b),
dy + (Q - 1)(P0 - a) = d” = eerO

But from Theorem 3.2.1,
e’dy =e’dy

and so
ds+(Q—1)(po—a) =eeldy
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or, after rearranging terms,
(Q—=1)po = (Q — 1)a— (1—eeT)ds (3.9b)

Furthermore, in order to find an expression for pg, eq.(3.8) is adjoined to
eq.(3.9b), thereby obtaining

Ap() =b (310)
where A is a 4 x 3 matrix and b is a 4-dimensional vector, both given by
- _ A1 — oaT
A= [QeT 1} , b= [(Q 1)a (()1 ee’)da (3.11)

Equation (3.10) cannot be solved for pg directly, because A is not a square
matrix. In fact, that equation represents an overdetermined system of four
equations and three unknowns. Thus, in general, that system does not admit
a solution. However, the four equations are compatible, and hence, in this
particular case, a solution of that equation, which turns out to be unique, can
be determined. In fact, if both sides of eq.(3.10) are multiplied from the left by
AT, we have

ATApo=ATb (3.12)

Moreover, if the product ATA, which is a 3 x 3 matrix, is invertible, then po
can be computed from eq.(3.12). In fact, the said product is not only invertible,
but also admits an inverse that is rather simple to derive, as shown below. Now
the rotation matrix Q is recalled in terms of its natural invariants, namely, the
unit vector e parallel to its axis of rotation and the angle of rotation ¢ about
this axis, as given in eq.(2.48), reproduced below for quick reference:

Q = ee” + cosp(1 — ee”) + singE

where 1 represents the 3 x 3 identity matrix and E the cross-product matriz of
e, as introduced in eq.(2.37). Further, eq.(2.48) is substituted into eq.(3.11),
which yields

ATA =2(1 - cos$)1 — (1 — 2cos p)ee” (3.13)

It is now apparent that the foregoing product is a linear combination of 1 and
eeT. This suggests that its inverse is very likely a linear combination of these
two matrices as well. If this is in fact true, then one can write

(ATA)™! = ol + Bee” (3.14)

coefficients & and 3 being determined from the condition that the product of
AT A by its inverse should be 1, which leads to

S S b Ll
&= S o)’ B = 301 = cos 6) (3.15)
and hence,
(ATA)! 1 1-2cos¢p (3.16)

- 2(1— cosqS)1 * 2(1 - cosgb)ee
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On the other hand, from eq.(3.11),
ATb=(Q-1)T[(Q-1)a—d4] (3.17)

Upon solving eq.(3.12) for py and substituting relations (3.16) and (3.17) into
the expression thus resulting, one finally obtains

_ (@-1)7(Qa-2)
2(1 —cosg) '’

for ¢ #0 (3.18)

Apparently, pg can be computed as long as ¢ # 0. If § = 0, then we are in
the presence of a pure translation, all the points of the body undergoing the
same displacement. Therefore, any point of the body is of minimum-magnitude
displacement.

We have thus defined aline £ of the rigid body under study that is completely
defined by its point P, of position vector pg and a unit vector e determining its
direction. Moreover, we have already defined the pitch of the associated motion,
eq.(3.7). The line thus defined, along with the pitch, determines the screw of
the motion under study.

3.2.2 The Pliicker Coordinates of a Line

Alternatively, the screw axis, and any line for that matter, can be defined more
conveniently by its Pliicker coordinates. In motivating this concept, we recall
the equation of a line £ passing through two points P; and P, of position vectors
p1 and p2, as shown in Fig. 3.4.

! 0

Figure 3.4: A line £ passing through two points

If point P lies in £, then, it must be collinear with P; and P», a property
that is expressed as

(p2—p1)x(P—p1)=0
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or upon expansion,
(P2—P1) XPp+P1 X (P2—P1) =0 (3.19)

If we now introduce the cross-product matrices P; and P2 of vectors p; and p»
in the above equation, we have an alternative expression for the equation of the
line, namely,

P2 -Pi)p+tp1x(P2—p1) =0

The above equation can be regarded as a linear equation in the homogeneous
coordinates of point P, namely,

[P2—P1 p1 X (p2—Pp1)] [I{] =0 (3.20)

It is now apparent that the line is defined completely by two vectors, the differ-
ence ps — p1, or its cross-product matrix for that matter, and the cross product
p1 X (P2 — p1). We will thus define a 6-dimensional array -+, containing these
two vectors, namely,

v = [pl 52(;2‘)_11)1)] (3.21)

whose six scalar entries are the Pliicker coordinates of £. Moreover, if we let

P2 —P1

e= ——, n=p;Xxe 3.22
Tz =i (3.2

then we can write
e
70 = 2= pall [ ]

The six scalar entries of the above array are the normalized Pliicker coordinates
of £. Vector e determines the direction of £, while n determines its location; n
can be interpreted as the moment of a unit force parallel to e and of line of action
L. Hence, n is called the moment of L. Henceforth, only the normalized Pliicker
coordinates of lines will be used. For brevity, we will refer to these simply as
the Pliicker coordinates of the line under study. The Pliicker coordinates thus
defined will be stored in a Pliicker array & in the form

e
K= [n] (3.23)
where for conciseness, we have dropped the subscript £, while assuming that
the line under discussion is self-evident.

Note, however, that the six components of the Pliicker array, i.e., the Pliicker
coordinates of line L, are not independent, for they obey

ece=1, n-e=0 (3.24)

and hence, any line £ has only four independent Pliicker coordinates. In the
foregoing paragraphs, we have talked about the Pliicker array of a line, and
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not about the Pliicker vector; the reason for this distinction is given below.
The set of Pliicker arrays is a clear example of an array of real numbers not
constituting a vector space. What disables Pliicker arrays from being vectors
are the two constraints that their components must satisfy, namely, (¢) the sum
of the squares of the first three components of a Pliicker array is unity, and (47)
the unit vector of a line is normal to the moment of the line. Nevertheless, we can
perform with Pliicker arrays certain operations that pertain to vectors, as long as
we keep in mind the essential differences. For example, we can multiply Pliicker
arrays by matrices of the suitable dimension, with entries having appropriate
units, as we will show presently.

Tt must be pointed out that a Pliicker array is dependent upon the location
of the point with respect to which the moment of the line is measured. Indeed,
let k4 and kp denote the Pliicker arrays of the same line £ when its moment
is measured at points A and B, respectively. Moreover, this line passes through
a point P of position vector p for a particular origin O. Now, let the moment
of £ with respect to A and B be denoted by n4 and ng, respectively, i.e.,

na=(p—a)xe, ng=(p—b)xe (3.25)
and hence,
e e
caz] o] mem 2] -
Obviously,
ng~ng=(a—b)xe (3.27)
i.e.,
= © 3.28
kB = ng+(a—b)xe (3.28)
which can be rewritten as
kg =Uky (3.29a)
with the 6 x 6 matrix U defined as
_ 1 (@)
o=[,15 ] (a2

while A and B are, respectively, the cross-product matrices of vectors a and b,
and O denotes the 3 x 3 zero matrix. Given the lower-triangular structure of
matrix U, its determinant is simply the product of its diagonal entries, which
are all unity. Hence,

det(U) = 1 (3.30)

U thus belonging to the unimodular group of 6 x 6 matrices. These matrices
are rather simple to invert. In fact, as one can readily prove,

U!= [B_I_A (1)] (3.31)
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Relations (3.29a & b) can then be called the Plicker-coordinate transfer formu-
las.
Note that upon multiplication of both sides of eq.(3.27) by (a — b),

(a—b)Tng =(a—b)Tny (3.32)

and hence, the moments of the same line £ with respect to two points are not
independent, for they have the same component along the line joining the two
points.

A special case of a line, of interest in kinematics, is a line at infinity. This
is a line with undefined orientation, but with a defined direction of its moment;
this moment is, moreover, independent of the point with respect to which it is
measured. Very informally, the Pliicker coordinates of a line at infinity can be
derived from the general expression, eq.(3.23), if we rewrite it in the form

]

where clearly n/||n|| is a unit vector; henceforth, this vector will be denoted by
f. Now let us take the limit of the above expression as P goes to infinity, i.e.,
when ||p|| = 00, and consequently, as ||n|| = co. Thus,

lim k= ( lim ||n||> ( lim [e/||n||])
lInjl—c0 Jlnjj—oc0 Inll»oo | £
. A 0
™ = <||n1|11130o”n”) [f]

The 6-dimensional array appearing in the above equation is defined as the
Pliicker array of a line at infinity, Ko, namely,

whence

Koo = [‘f’] (3.33)

Note that a line at infinity of unit moment £ can be thought of as being a
line lying in a plane perpendicular to the unit vector f, but otherwise with an
indefinite location in the plane, except that it is an infinitely large distance from
the origin. Thus, lines at infinity vary only in the orientation of the plane in
which they lie.

3.2.3 The Pose of a Rigid Body

A possible form of describing a general rigid-body motion, then, is through a
set of eight real numbers, namely, the six Pliicker coordinates of its screw axis,
its pitch, and its amplitude, i.e., its angle. Hence, e rigid-body motion is fully
described by siz independent parameters. Moreover, the pitch can attain values
from —oo to +00. Alternatively, a rigid-body displacement can be described



3.2 General Rigid-Body Motion and Its Associated Screw 99

by seven dependent parameters as follows: four invariants of the concomitant
rotation—the linear invariants, the natural invariants, or the Euler—-Rodrigues
parameters, introduced in Section 2.3—and the three components of the dis-
placement of an arbitrary point. Since those invariants are not independent,
but subject to one constraint, this description consistently involves six indepen-
dent parameters. Thus, let a rigid body undergo a general motion, of rotation Q
from a reference configuration Cq. If a landmark point A of the body undergoes
a displacement d 4, then the pose array, or simply the pose s, of the body in
configuration C is defined as a 7-dimensional array, namely,

s= | q (3.34)

where the 3-dimensional vector q and the scalar gy are any four invariants of
Q. For example, if these are the Euler-Rodrigues parameters, then

q= sin(%)e, Q@ = cos(%)

If alternatively, we work with the linear invariants, then

q = (singple, qo =cos¢

and, of course, if we work instead with the natural invariants, then

q=e, Q=¢

In the first two cases, the constraint mentioned above is
lall? + a5 =1 (3.35)

In the last case, the constraint is simply
lef> =1 (3.36)

Notice that the pose of a rigid body is an array of numbers quantifying the
displacement of the body from a reference configuration Cy to a current config-
uration C. As such, then, the pose is a relative concept.

An important problem in kinematics is the computation of the screw pa-
rameters, i.e., the components of s, as given in eq.(3.34), from coordinate mea-
surements over a certain finite set of points. From the foregoing discussion, it
is clear that the computation of the attitude of a rigid body, given by matrix Q
or its invariants, is crucial in solving this problem. Moreover, besides its theo-
retical importance, this problem, known as pose estimation, has also practical
relevance. Shown in Fig. 3.5 is the helmet-mounted display system used in flight
simulators. The helmet is supplied with a set of LEDs (light-emitting diodes)
that emit infrared light signals at different frequencies each. These signals are
then picked up by two cameras, from whose images the Cartesian coordinates of
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the LED centers are inferred. With these coordinates and knowledge of the LED
pattern, the attitude of the pilot’s head is determined from the rotation matrix
Q. Moreover, with this information and that provided via sensors mounted on
the lenses, the position of the center of the pupil of the pilot’s eyes is then esti-
mated. This position, then, indicates on which part of his or her visual field the
pilot’s eyes are focusing. In this way, a high-resolution graphics monitor syn-
thesizes the image that the pilot would be viewing with a high level of detail.
The rest of the visual field is rendered as a rather blurred image, in order to
allocate computer resources where it really matters.

Figure 3.5: Helmet-mounted display system (courtesy of CAE Electronics Ltd.,
St.-Laurent, Quebec, Canada)

A straightforward method of computing the screw parameters consists in
regarding the motion as follows: Choose a certain point A of the body, of
position vector a, and track it as the body moves to a displaced configuration,
at which point A moves to A', of position vector a’. Assume that the body
reaches the displaced configuration B’, passing through an intermediate one
B”, which is attained by a pure translation, as depicted in Fig. 3.2. Next,
configuration B’ is reached by rotating the body about point 4’, as indicated in
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Figure 3.6: Decomposition of the displacement of a rigid body

Fig. 3.6.

Matrix Q can now be readily determined. To do this, define three points of
the body, Py, P, and Ps, in such a way that the three vectors defined below
are orthonormal and form a right-hand system:

e Em, e Em, e3 = A_P3> (3.37)
e;-e; = (Sij, i,j = 1,2,3, €3 —e€; X e (338)

where J;; is the Kronecker delta, defined as 1 if i = j, and as 0 otherwise. Now,
let the set {e;}] be labeled {e}}} and {e/}} in configurations B’ and B", re-
spectively. Moreover, let ¢;; denote the entries of the matrix representation of
the rotation Q in a frame X, Y, Z with origin at A and such that the forego-
ing axes are parallel to vectors e1, es, and es, respectively. It is clear, from

Definition 2.2.1, that

Gij = €; - €] (3.39)

i.e.,

ej-e] e -ep, e -e}

/ } /
[Q]=|e2-€e] ex-e) ex-ef (3.40)

e;-e} ez-e, e3-e}

Note that all e; and e appearing in eq.(3.40) must be represented in the same
coordinate frame. Once Q is determined, computing the remaining screw pa-
rameters is straightforward. One can use, for example, eq.(3.18) to determine
the point of the screw axis that lies closest to the origin, which would thus allow
one to compute the Pliicker coordinates of the screw axis.
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3.3 Rotation of a Rigid Body About a Fixed
Point

In this section, the motion of a rigid body having a point fixed is analyzed.
This motion is fully described by a rotation matrix Q that is proper orthogonal.
Now, Q will be assumed to be a smooth function of time, and hence, the position
vector of a point P in an original configuration, denoted here by pg, is mapped
smoothly into a new vector p(¢), namely,

p(t) = Q(t)po (3.41)

The velocity of P is computed by differentiating both sides of eq.(3.41) with
respect to time, thus obtaining

p(t) = Q(t)po (3.42)

which is not a very useful expression, because it requires knowledge of the
original position of P. An alternative expression can be derived if eq.(3.41)
is solved for py and the expression thus resulting is substituted into eq.(3.42),
which yields

p=QQ"p (3.43)

where the argument ¢ has been dropped for the sake of simplicity, but one must
keep in mind that all quantities are now time-varying. The product QQ7 is
known as the angular-velocity matriz of the rigid-body motion and is denoted
by Q, i.e.,

Q=QQ7 (3.44)

As a consequence of the orthogonality of Q, one has a basic result, namely,
Theorem 3.3.1 The angular-velocity matriz is skew-symmetric.

Proof: This follows directly from definition (3.44).

In order to derive the angular-velocity vector of a rigid-body motion, we recall
the concept of azial vector, or simply vector, of a 3 x 3 matrix, introduced in
Subsection 2.3.3. Thus, the angular-velocity vector w of the rigid-body motion
under study is defined as the vector of €2, i.e.,

w = vect(£2) (3.45)
and hence, eq.(3.43) can be written as
P=Op=wxp (3.46)

from which it is apparent that the velocity of any point P of a body moving with
a point O fized is perpendicular to line OP.
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3.4 General Instantaneous Motion of a Rigid
Body

If a rigid body now undergoes the most general motion, none of its points
remains fixed, and the position vector of any of these, P, in a displaced config-
uration is given by eq.(3.2). Let ag and pg denote the position vectors of points
A and P of Section 3.2, respectively, in the reference configuration Co, a(t) and
p(t) being the position vectors of the same points in the displaced configuration
C. Moreover, if Q(t) denotes the rotation matrix, then

p(t) = a(t) + Q(t)(po — a0) (3.47)

Now, the velocity of P is computed by differentiating both sides of eq.(3.47)
with respect to time, thus obtaining

p(t) = a(t) + Q(t)(Po — a0) (3.48)

which again, as expression (3.48), is not very useful, for it requires the values
of the position vectors of A and P in the original configuration. However, if
eq.(3.47) is solved for pg — ag and the expression thus resulting is substituted
into eq.(3.48), we obtain

p=a+Q(p—a) (3.49)

or in terms of the angular-velocity vector,
p=a+wx(p—a) (3.50)

where the argument ¢ has been dropped for brevity but is implicit, since all
variables of the foregoing equation are now functions of time. Furthermore,
from eq.(3.50), it is apparent that

(p-a)-(p—a)=0 (3.51)
which can be summarized as

Theorem 3.4.1 The relative velocity of two points of the same rigid body is
perpendicular to the line joining them.

Moreover, similar to the outcome of Theorem 3.2.1, one now has an addi-
tional result that is derived upon dot-multiplying both sides of eq.(3.50) by w,
namely,

w-p=w-a

and hence,

Corollary 3.4.1 The projections of the velocities of all the points of a rigid
body onto the angular-velocity vector are identical.

Furthermore, similar to the Mozzi-Chasles Theorem, we have now
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Theorem 3.4.2 Given a rigid body under general motion, o set of its points
located on a line L' undergoes the identical minimum-magnitude velocity vo
parallel to the angular velocity.

Definition 3.4.1 The line containing the points of a rigid body undergoing
minimum-magnitude velocities is called the instant screw axis (ISA) of the body
under the given motion.

3.4.1 The Instant Screw of a Rigid-Body Motion

From Theorem 3.4.2, the instantaneous motion of a body is equivalent to that
of the bolt of a screw of axis £', the ISA. As the body moves, the ISA changes,
and the motion of the body is called an instantaneous screw. Moreover, since
vg is parallel to w, it can be written in the form

w
Vo = vor— (3.52)
[l
where v is a scalar quantity denoting the signed magnitude of vy and bears the
sign of vg - w. Furthermore, the pitch p’ of the instantaneous screw is defined

as .
, v _prw ) — 2@

p=—=7— or p=—">
el [lwl|? [lwl|
which thus bears units of m/rad or, correspondingly, of m/turn.

Again, the ISA £’ can be specified uniquely through its Pliicker coordinates,
stored in the pg array defined as

(3.53)

el
P = [n,] (354)
where e’ and n' are, respectively, the unit vector defining the direction of £’
and its moment about the origin, i.e.,

! w ! !

e Tl n=pxe (3.55)

p being the position vector of any point of the ISA. Clearly, €’ is defined uniquely
but becomes trivial when the rigid body instantaneously undergoes a pure trans-
lation, i.e., a motion during which, instantaneously, w = 0 and all body-points
move with the same velocity vo. In this case, €' is defined as the unit vector
parallel to vo. Thus, an instantaneous rigid-body motion is defined by a line £’,
a pitch p/, and an amplitude ||w||. Such a motion is, then, fully determined by
six independent parameters, namely, the four independent Pliicker coordinates
of L', its pitch, and its amplitude. A line supplied with a pitch is, in general,
called a screw; a screw supplied with an amplitude representing the magnitude
of an angular velocity provides the representation of an instantaneous rigid-body
motion that is sometimes called the twist, an item that will be discussed in more
detail below.
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Hence, the instantaneous screw is fully defined by six independent real num-
bers. Moreover, such as in the case of the screw motion, the pitch of the instan-
taneous screw can attain values from —oo to +o00.

The ISA can be alternatively described in terms of the position vector pg of
its point lying closest to the origin. Expressions for p{, in terms of the position
and the velocity of an arbitrary body-point and the angular velocity are derived
below. To this end, we decompose p into two orthogonal components, p|| and
P.1, along and transverse to the angular-velocity vector, respectively. Hence, a
is first decomposed into two such orthogonal components, 4, and a, , the former
being parallel, the latter normal to the ISA, i.e.,

a=aj+a, (3.56)

These orthogonal components are given as

] ) w wwT wwT\ . 1 .
j=a-w = a aLE<1—W>a:—WQa (3.57)

In the derivation of eq.(3.57) we have used the identity introduced in eq.(2.39),
namely,
Q? = ww? - ||w|”1 (3.58)

Upon substitution of eq.(3.57) into eq.(3.50), we obtain

L wwT 1 .
P= Wa —Wﬂ2a + Q(p — a) (359)
P ;:

Of the three components of p, the first, henceforth referred to as its axial com-
ponent, is parallel, the last two being normal to w. The sum of the last two
components is referred to as the normal component of p. From eq.(3.59) it
is apparent that the axial component is independent of p, while the normal
component is a linear function of p. An obvious question now arises: For an
arbitrary motion, is it possible to find o certain point of position vector p whose
velocity normal component vanishes? The vanishing of the normal component
obviously implies the minimization of the magnitude of p. The condition under
which this happens can now be stated as

pL=0
or

Q(p—a) — —1—292 a=0 (3.60)

[lwl]

which can be further expressed as a vector equation linear in p, namely,

1
Qp=Q (a + —-——Qé) 3.61
P (3.61)
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or
Qp-r)=0 (3.62a)
with r defined as 1
r=a+ —-0a (3.62b)
llwll?
and hence, a possible solution of the foregoing problem is
1
p=r=a+-——Qa (3.63)
llwl]?

However, this solution is not unique, for eq.(3.62a) does not require that p —r
be zero, only that this difference lie in the nullspace of €2, i.e., that p — r be
linearly dependent with w. In other words, if a vector aw is added to p as
given in eq.(3.63), then the sum also satisfies eq.(3.61). It is then apparent that
eq.(3.61) does not determine a single point whose normal velocity component
vanishes, but a set of points lying on the ISA, and thus, other solutions are
possible. For example, we can find the point of the ISA lying closest to the
origin. To this end, let p§ be the position vector of that point. This vector is
obviously perpendicular to w, i.e.,

wlph =0 (3.64)

Next, eq.(3.61) is rewritten for py, and eq.(3.64) is adjoined to it, thereby de-
riving an expanded linear system of equations, namely,

Apy=Db (3.65)
where A is a 4 X 3 matrix and b is a 4-dimensional vector, both being given
below: Q N cad

A= [:}T} b= [ at (/lwifera (3.66)

This system is of the same nature as that appearing in eq.(3.10), and hence, it
can be solved for pj, following the same procedure. Thus, both sides of eq.(3.65)
are multiplied from the left by AT, thereby obtaining

ATAp, =ATb (3.67)
where
ATA = 07TQ + wwT = —Q? + wwT (3.68)

Moreover, from eq.(3.58), the rightmost side of the foregoing relation becomes
lw]|?1, and hence, the matrix coefficient of the left-hand side of eq.(3.67) and
the right-hand side of the same equation reduce, respectively, to

ATA = |lw|?1, ATb=Q(a - Qa) (3.69)

Upon substitution of eq.(3.69) into eq.(3.67) and further solving for p{, the
desired expression is derived:

y_Q@-0a) wx(a-wxa)
Po= ™ =7 P

(3.70)
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Thus, the instantaneous screw is fully defined by an alternative set of six
independent scalars, namely, the three components of its angular velocity w and
the three components of the velocity of an arbitrary body point A, denoted by
a. As in the case of the screw motion, we can also represent the instantaneous
screw by a line and two additional parameters, as we explain below.

3.4.2 The Twist of a Rigid Body

A line, as we saw earlier, is fully defined by its 6-dimensional Plicker array,
which contains only four independent components. Now, if a pitch p is added
as a fifth feature to the line or correspondingly, to its Pliicker array, we obtain
a screw s, namely,

P Xe-+pe

An amplitude is any scalar A multiplying the foregoing screw. The am-
plitude produces a twist or a wrench, to be discussed presently, depending on
its units. The twist or the wrench thus defined can be regarded as an eight-
parameter array. These eight parameters, of which only six are independent, are
the amplitude, the pitch, and the six Pliicker coordinates of the associated line.
Clearly, a twist or a wrench is defined completely by six independent real num-
bers. More generally, a twist can be regarded as a 6-dimensional array defining
completely the velocity field of a rigid body; it comprises the three components
of the angular velocity and the three components of the velocity of any of the
points of the body.

Below we elaborate on the foregoing concepts. Upon multiplication of the
screw appearing in eq.(3.71) by the amplitude A representing the magnitude of
an angular velocity, we obtain a twist t, namely,

¢ = Ae
T | p x (Ae) + p(Ae)

where the product Ae can be readily identified as the angular velocity w parallel
to vector e, of magnitude A. Moreover, the lower part of t can be readily
identified with the velocity of a point of a rigid body. Indeed, if we regard
the line £ and point O as sets of points of a rigid body B moving with an
angular velocity w and such that point P moves with a velocity pw parallel to
the angular velocity, then the lower vector of t, denoted by v, represents the
velocity of point O, i.e.,

sz[ N ] (3.71)

V=—WwXPp-+pw
We can thus express the twist t as

v

t= [w] (3.72)

If the pitch is zero, the twist is a pure rotation; if infinite, the twist is a pure
translation, in which case the twist is

t= m = vl m (3.73)
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Then, the screw of infinite pitch s is defined as the 6-dimensional array ap-
pearing in the above equation, namely,

Soo = [0] (3.74)

Note that this screw array is identical to the Pliicker array of a line at infinity
lying in a plane of unit normal e, as displayed in eq.(3.33).

The twist array, as defined in eq.(3.72), with w on top, represents the ray
coordinates of the twist. An exchange of the order of the two Cartesian vectors
of this array, in turn, gives rise to the axis coordinates of the twist.

The foregoing twist was also termed motor by Everett (1875). As Phillips
(1990) points out, the word motor is an abbreviation of moment and vector. An
extensive introduction into motor algebra was published by von Mises (1924), a
work that is now available in English (von Mises, 1996). Roth (1984), in turn,
provided a summary of these concepts, as applicable to robotics. The foregoing
array goes also by other names, such as the German Kinemate or the French
torseur cinémaltique.

The relationships between the angular-velocity vector and the time deriva-
tives of the invariants of the associated rotation are linear. Indeed, let the three
sets of four invariants of rotation, namely, the natural invariants, the linear
invariants, and the Euler-Rodrigues parameters be grouped in the 4-dimensional
arrays v, A, and 71, respectively, i.e.,

o=[o] =[] =[] em

We then have the linear relations derived in full detail elsewhere (Angeles, 1988),
and outlined in Appendix A for quick reference, namely,

v=Nw, A=Lw, 7=Huw (3.76a)
with N, L, and H defined as

N = [[Sin ¢/(2(1 = cos ¢))](1 — eeT) — (1/2)E] , (3.76b)

_ (/@)1 - Q] .

L= [ —(sin ¢)e” } ’ (3.76¢)
_ 1 Tcos(¢/2)1 ~sin(¢/2)E

H= 5 [ ~sin(g/2)eT ] (3.76d)

where, it is recalled, tr(-) denotes the trace of its square matrix argument (-),
i.e., the sum of the diagonal entries of that matrix.

The inverse relations of those shown in eqs.(3.76a) are to be derived by
resorting to the approach introduced when solving eq.(3.65) for pj, thereby
obtaining _ .

w=Ni=LA=Hgp (3.77a)
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the 3 x 4 matrices ﬁ, f;, and H being defined below:

N =[(sin¢)1+ (1 —cos))E e], (3.77b)
L=[1+][sing)/(1+cosd)]E —[(sing)/(1+cosd)le], (3.77¢c)
H = 2[[cos(¢/2)]1 + [sin(¢/2)]E  —[sin($/2)]e] (3.77d)

Caveat The angular velocity vector is not a time-derivative, i.e., no Cartesian
vector exists whose time-derivative is the angular-velocity vector.

However, matrices N, L, and H of eqgs.(3.76b—d) can be regarded as integra-
tion factors that yield time-derivatives.

Now we can write the relationship between the twist and the time-rate of
change of the 7-dimensional pose array s, namely,

§=Tt (3.78)

T = [g 0143] (3.79)

in which O and O,43; are the 3 x 3 and the 4 x 3 zero matrices, while 1 is the
3 x 3 identity matrix and F is, correspondingly, N, L, or H, depending upon
the invariant representation chosen for the rotation. The inverse relationship of
€q.(3.78) takes the form

where

t =S5 (3.80a)

S= [01‘:4 (1)] (3.80b)

in which O34 is the 3 x 4 zero matrix. Moreover, F is one of 1<T, f, or ﬁ, de-
pending on the rotation representation adopted, namely, the natural invariants,
the linear invariants, or the Euler-Rodrigues parameters, respectively.

A formula that relates the twist of the same rigid body at two different points
is now derived. Let A and P be two arbitrary points of a rigid body. The twist
at each of these points is defined as

ty = [“,‘;] , tp= [“";} (3.81)

Moreover, eq.(3.50) can be rewritten as

where

vp=vat+(a—p) xw (3.82)
Combining eq.(3.81) with eq.(3.82) yields
tp = Uty (3.83a)
where
_ 1 O
U= [A_P 1] (3.83b)

with the 6 x 6 matrix U defined as in eq.(3.29b), while A and P denote the
cross-product matrices of vectors a and p, respectively. Thus, egs.(3.83a & b)
can be fairly called the twist-transfer formulas.
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3.5 Acceleration Analysis of Rigid-Body Motions
Upon differentiation of both sides of eq.(3.49) with respect to time, one obtains
P=4+Q(p—a)+Qp-a) (3.84)

Now, eq.(3.49) is solved for p—a, and the expression thus resulting is substituted
into eq.(3.84), thereby obtaining

p=a+(Q+Q%(p—a) (3.85)

where the matrix sum in parentheses is termed the angular-acceleration matriz
of the rigid-body motion and is represented by W, i.e.,

W= Q4 Q2 (3.86)

Apparently, the first term of the right-hand side of eq.(3.86) is skew-symmetric,
whereas the second one is symmetric. Thus,

vect(W) = vect(2) = w (3.87)

w being termed the angular-acceleration vector of the rigid-body motion. We
have now an interesting result, namely,

tr(W) = tr(Q?) = tr(—||w||*1 + ww?)
= —|lw|*tr(1) + w - w = —2||w||? (3.88)

Moreover, eq.(3.85) can be written as
P=d+wx(p—a)+wxjwx(p—a) (3.89)

On the other hand, the time derivative of t, henceforth referred to as the twist
rate, is displayed below:

- lw

i= [v] (3.90)
in which v is the acceleration of a point of the body. The relationship be-
tween the twist rate and the second time derivative of the screw is derived by
differentiation of both sides of eq.(3.78), which yields

§=Ti+Tt (3.91)
where o
N 43
T= [ 6 o ] (3.92)

and F is one of N, L, or H, accordingly. The inverse relationship of eq.(3.91)
is derived by differentiating both sides of eq.(3.80a) with respect to time, which
yields )

t = 8§ + S5 (3.93)



3.5 Acceleration Analysis of Rigid-Body Motions 111

where 5
§= [ F 0} (3.94)
O3, O

with O and O34 already defined in eq.(3.80b) as the 3 x 3 and the 3 x 4 zero

matrices, respectively, while F is one of ﬁ, i, or ﬁ, according with the type of
rotation representation at hand.
Before we take to differentiating the foregoing matrices, we introduce a few

definitions: Let
)\E[u], nz[r] (3.95a)

ie.,

u=singe, ug=cos¢, r=sin <g) e, Trg=cos <§) (3.95b)

Thus, the time derivatives sought take on the forms

N = Z(l—lTsaﬁ [E] (3.96a)

- (1/2[16:(Q) - Q) ]
~(1/2)w"[1tx(Q) ~ Q7]

_ [ =w-w1-(1/2)0Q
B [—(1/2)wT[1tr(Q) - QT]] (3.96b)
H= % [r.oii‘_T R] (3.96¢)

where we have used the identities below, which are derived in Appendix A.
tr(Q) = tr(QQ) = —2wu (3.96d)
Furthermore, R denotes the cross-product matrix of r, and B is defined as

= —2(e-w)l+2(3 —cosp)(e-w)ee” — 2(1 + sin p)weT

—(2cos ¢ + sin plew” — (sin ¢)[Q ~ (e - w)E] (3.96¢)

Moreover,
N = [¢(cos )1 + (sinO)E  &] (3.97a)
L=[V/D a] (3.97b)

H=[rl+R —f] (3.97¢)
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where V and D are defined below:
V=U- (i’ +ua?) — %(U — uuT) (3.97d)
D=1+uq (3.97¢)

with U denoting, now, the cross-product matrix of u.

3.6 Rigid-Body Motion Referred to Moving Co-
ordinate Axes

Although in kinematics no “preferred” coordinate system exists, in dynamics
the governing equations of rigid-body motions are valid only in inertial frames.
An inertial frame can be defined as a coordinate system that translates with
uniform velocity and constant orientation with respect to the stars. Thus, it is
important to refer vectors and matrices to inertial frames, but sometimes it is
not possible to do so directly. For instance, a space vessel can be supplied with
instruments to measure the velocity and the acceleration of a satellite drifting
in space, but the measurements taken from the space vessel will be referred to
a coordinate frame fixed to it, which is not inertial. If the motion of the vessel
with respect to an inertial coordinate frame is recorded, e.g., from an Earth-
based station, then the acceleration of the satellite with respect to an inertial
frame can be computed using the foregoing information. How to do this is the
subject of this section.

In the realm of kinematics, it is not necessary to distinguish between inertial
and noninertial coordinate frames, and hence, it will suffice to call the coordinate
systems involved fized and moving. Thus, consider the fixed coordinate frame
X, Y, Z, which will be labeled F, and the moving coordinate frame X, Y, Z,
which will be labeled M, both being depicted in Fig. 3.7. Moreover, let Q be the
rotation matrix taking frame F into the orientation of M, and o the position
vector of the origin of M from the origin of F. Further, let p be the position
vector of point P from the origin of F and p the position vector of the same
point from the origin of M. From Fig. 3.7 one has

[plr =[olr +[plr (3.98)
where it will be assumed that p is not available in frame F, but in M. Hence,
[plr =[Qlr[p]m (3.99)

Substitution of eq.(3.99) into eq.(3.98) yields
(plr =[o]r +[Qlr{p]Im (3.100)

Now, in order to compute the velocity of P, both sides of eq.(3.100) are
differentiated with respect to time, which leads to

[plr =10l +[Qlr[plMm + [Qlx[pIMm (3.101)
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Figure 3.7: Fixed and moving coordinate frames

Furthermore, from the definition of 2, eq.(3.44), we have

[QlF = [Q]#[Q]F (3.102)

Upon substitution of the foregoing relation into eq.(3.101), we obtain

[Pplr=[0]r+[Q]A[Qlxr[p]IMm +[Q]r[A]lMm (3.103)

which is an expression for the velocity of P in F in terms of the velocity of P in
M and the twist of M with respect to F. Next, the acceleration of P in [F is
derived by differentiation of both sides of eq.(3.103) with respect to time, which
yields

[Blr = [6]r+ [QF[Q]FpIm + [ Qlrl 011

+H QA QIF[PIM +[QlF[pIMm + [QIF[ D] M (3.104)

Further, upon substitution of identity (3.102) into eq.(3.104), we obtain

[B]7 = [8]7+ ([Q#+ (]2 Q)#[p]m
+2[QF[QlF[plMm + [QlF[ A (3.105)

Moreover, from the results of Section 3.5, it is apparent that the first two
terms of the right-hand side of eq.(3.105) represent the acceleration of P as a
point of M, whereas the fourth term is the acceleration of P measured from M.
The third term is known as the Coriolis acceleration, for it was first pointed out
by the French mathematician Gustave Gaspard Coriolis (1835).
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f

(a) (b)

Figure 3.8: Equivalent systems of force and moment acting on a rigid body

3.7 Static Analysis of Rigid Bodies

Germane to the velocity analysis of rigid bodies is their force-and-moment anal-
ysis. In fact, striking similarities exist between the velocity relations associated
with rigid bodies and the forces and moments acting on them. From elementary
statics it is known that the resultant of all external actions, i.e., forces and mo-
ments, exerted on a rigid body can be reduced to a force f acting at a point, say
A, and a moment n 4. Alternatively, the aforementioned force f can be defined
as acting at an arbitrary point P of the body, as depicted in Fig. 3.8, but then
the resultant moment np changes correspondingly.

In order to establish a relationship between n4 and np, the moment of the
first system of force and moment with respect to point P is equated to the
moment about the same point of the second system, thus obtaining

np=ns+(a—-p)xf (3.106)
which can be rewritten as
np=n4+f x (p — a) (3.107)

whence the analogy with eq.(3.50) is apparent. Indeed, np and n4 of eq.(3.107)
play the role of the velocities of P and A4, p and a, respectively, whereas f of
eq.(3.107) plays the role of w of eq.(3.50). Thus, similar to Theorem 3.4.2, one
has

Theorem 3.7.1 For a given system of forces and moments acting on a rigid
body, if the resultant force is applied at any point of a particular line L", then
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the resultant moment is of minimum magnitude. Moreover, that minimum-
magnitude moment is parallel to the resultant force.

Hence, the resultant of the system of forces and moments is equivalent to
a force f acting at a point of £" and a moment n, with both f and n parallel
to L”. Paraphrasing the definition of the ISA, one defines line £" as the azis
of the wrench acting on the body. Let ng be the minimum-magnitude moment.
Paraphrasing eq.(3.52) in turn, ng can be expressed as

l’lp'f

f
ng =nNge, No= —r=— (3.108)
Jial I1£]]
Moreover, the pitch of the wrench, p", is defined as
.f . f
n="To _Dnp-1 P = 2rop - £ (3.109)

p =t
el el €117

which, again, has units of m/rad or correspondingly, of m/turn. Of course, the
wrench axis can be defined by its Pliicker array, pge», i.e.,

1

e"] , €'= ﬁ, n" =pxe’ (3.110)

Py = [n

where e” is the unit vector parallel to £, n” is the moment of £" about the
origin, and p is the position vector of any point on L.

The wrench axis is fully specified, then, by the direction of f and point Py of
position vector py lying closest to the origin, which can be derived by analogy
with eq.(3.70), namely, as

1
Py = Wf x (ng —f x a) (3.111)

Similar to Theorem 3.4.1, one has

Theorem 3.7.2 Consider o system of moments and forces acting on a rigid
body, with the resultant force applied at an arbitrary point of the body. The pro-
jection of the resultant moment onto the wrench azis is identical for all points.

From the foregoing discussion, then, the wrench applied to a rigid body can
be fully specified by the resultant force f acting at an arbitrary point P and
the associated moment, np. We shall derive presently the counterpart of the 6-
dimensional array of the twist, namely, the wrench array. Upon multiplication of
the screw of eq.(3.71) by an amplitude A with units of force, what we will obtain
would be a wrench w, i.e., a 6-dimensional array with its first three components
having units of force and its last components units of moment. We would like to
be able to obtain the power developed by the wrench on the body moving with
the twist t by a simple inner product of the two arrays. However, because of the
form the wrench w has taken, the inner product of these two arrays would be
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meaningless, for it would involve the sum of two scalar quantities with different
units; moreover, none of the two quantities has an immediate physical meaning,.
In fact, the first scalar would have units of force by frequency (angular velocity
by force), while the second would have units of moment of moment multiplied
by frequency (velocity by moment), thereby leading to a physically meaningless
result. This inconsistency can be resolved if we redefine the wrench not simply
as the product of a screw by an amplitude, but as a linear transformation of
that screw involving the 6 x 6 array I" defined as

T = [(1) (1)] (3.112)

where O and 1 denote, respectively, the 3 x 3 zero and identity matrices. Now we
define the wrench as a linear transformation of the screw s defined in eq.(3.71).
This transformation is obtained upon multiplying s by the product AT, the
amplitude A having units of force, i.e.,

w=Als = [p X (A'i)h:‘p(Ae)]

The foregoing wrench is given in axis coordinates, while the twist was given in
ray coordinates.

Now, the first three components of the foregoing array can be readily iden-
tified as the moment of a force of magnitude A acting along a line of action
given by the Pliicker array of eq.(3.110), with respect to a point P, to which a
moment parallel to that line and of magnitude pA is added. Moreover, the last
three components of that array pertain apparently to a force of magnitude A4
and parallel to the same line. We denote here the above-mentioned moment by
n and the force by f, i.e.,

f=Ade, n=pxf+pf
The wrench w is then defined as

n

w = [f] (3.113)

which can thus be interpreted as a representation of a system of forces and
moments acting on a rigid body, with the force acting at point P of the body B
defined above and a moment n. Under these circumstances, we say that w acts
at point P of B.

With the foregoing definitions it is now apparent that the wrench has been
defined so that the inner product t7w will produce the power II developed by
w acting at P when B moves with a twist t defined at the same point, i.e.,

I=tTw (3.114)

When a wrench w that acts on a rigid body moving with the twist t develops
zero power onto the body, we say that the wrench and the twist are reciprocal
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to each other. By the same token, the screws associated with that wrench-twist
pair are said to be reciprocal. More specifically, let the wrench and the twist be
given in terms of their respective screws, s,, and sy, as

w=WTs,, t=Ts;, (3.115)

where W and T are the amplitudes of the wrench and the twist, respectively,
while T is as defined in eq.(3.112). Thus, the two screws s,, and s; are reciprocal
if

(T'sy) sy =sTTTs, = 0 (3.116)

and by virtue of the symmetry of T, the foregoing relation can be further ex-
pressed as

siTs; =0 or s sy, =0 (3.117)

The product sZT's; or its equivalent s} I's,, is termed the reciprocal product of
the two screws s; and s,,.

Now, if A and P are arbitrary points of a rigid body, we define the wrench
at these points as

n n
w4 = [ fA], wp = [ fP] (3.118)
Therefore, eq.(3.106) leads to
wp =Vwy (3.119a)

where

o 1 (3.119b)

V= [1 A - P]
with A and P already defined in eq.(3.83b) as the cross-product matrices of
vectors a and p, respectively. Thus, wp is a linear transformation of w4. By
analogy with the twist-transfer formulas of eqs.(3.83a & b), egs.(3.119a & b)
are termed here the wrench-transfer formulas.

Multiplying the transpose of eq.(3.83a) by eq.(3.119a) yields

tEwp =t UTVw, (3.120)
where
1 -A+P][1 A-P
UTv = [0 1 ] [0 1 } = lgxe (3.121)

with 16x¢ denoting the 6 x 6 identity matrix. Thus, tiwp = t{w 4, as expected,
since the wrench develops the same amount of power, regardless of where the
force is assumed to be applied. Also note that an interesting relation between
U and V follows from eq.(3.121), namely,

vi=u"T (3.122)
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3.8 Dynamics of Rigid Bodies

The equations governing the motion of rigid bodies are recalled in this section
and cast into a form suitable to multibody dynamics. To this end, a few defi-
nitions are introduced. If a rigid body has a mass density p, which need not be
constant, then its mass m is defined as

m:/de (3.123)
B

where B denotes the region of the 3-dimensional space occupied by the body.
Now, if p denotes the position vector of an arbitrary point of the body, from a
previously defined origin O, the mass first moment of the body with respect to
0, qo, is defined as

qo = / ppdB (3.124)
B

Furthermore, the mass second moment of the body with respect to O is defined
as

Io= /B o(lIpl21 - pp™ )dB (3.125)

which is apparently a symmetric matrix. This matrix is also called the moment-
of-inertia matrix, or inertia tensor, of the body under study with respect to O.
One can readily prove a classical result:

Theorem 3.8.1 The moment of inertia of a rigid body with respect to a point
O 1is positive definite.

Proof : We can prove the positive-definiteness of the mass moment of inertia
based on physical arguments. Indeed, the kinetic energy of the rigid body,
denoted by T, is defined as

1 ,.
T= / Sollplds
B

where p is the velocity of any point P of the body. For the purposes of this
discussion, it will be assumed that point O, about which the second moment
is defined, is a point of the body that is instantaneously at rest. Thus, if this
point is defined as the origin of the Euclidean space, the velocity of any point
of the body, moving with an angular velocity w, is given by

P=wXxp

which can be rewritten as
p=—-Pw

with P defined as the cross-product matrix of p. Hence,

B = (Pw)"Pw = w"PTPw = —w P%w
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Moreover, by virtue of eq.(2.39), the foregoing expression is readily reducible to
1BlI> = w”(IlplI*1 — pp")w (3.126)

Therefore, the kinetic energy reduces to
1
7= 5 [ " (IpIPL - pp* a3 (3.27)

and since the angular velocity is constant throughout the body, it can be taken
out of the integral sign, i.e.,

7=yt [ [ pllplP1 - poTyas] (3.128)

The term inside the brackets of the above equation is readily identified as I,
and hence, the kinetic energy can be written as

T= inIow (3.129)
Now, since the kinetic energy is a positive-definite quantity, the quadratic
form of eq.(3.129) is consequently positive-definite as well, thereby proving the
positive-definiteness of the second moment.
The mass center of a rigid body, measured from O, is defined as a point
C, not necessarily within the body-——think of a homogeneous torus—of position
vector ¢ given by

C

Il

qo0
- (3.130)

Naturally, the mass moment of inertia of the body with respect to its centroid
is defined as

ICE/p[Her]—rrT]dB (3.131)
B

where r is defined, in turn, as
r=p-c (3.132)

Obviously, the mass moment of inertia of a rigid body about its mass center,
also termed its centroidal mass moment of inertia, is positive-definite as well.
In fact, the mass—or the volume, for that matter—moment of inertia of a
rigid body with respect to any point is positive-definite. As a consequence, its
three eigenvalues are positive and are referred to as the principal moments of
tnertia of the body. The eigenvectors of the inertia matrix are furthermore
mutually orthogonal and define the principal azes of inertia of the body. These
axes are parallel to the eigenvectors of that matrix and pass through the point
about which the moment of inertia is taken. Note, however, that the principal
moments and the principal axes of inertia of a rigid body depend on the point
with respect to which the moment of inertia is defined. Moreover, let I and
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Ic be defined as in eqs.(3.125) and (3.131), with r defined as in eq.(3.132). Tt
is possible to show that

Io = Ic + m(||¢|*1 — ccT) (3.133a)

or, equivalently,
Io = I + mCCT (3.133b)

with C = CPM(c). Furthermore, the smallest principal moment of inertia of
a rigid body attains its minimum value at the mass center of the body. The
relationship appearing in eq.(3.133a) constitutes the Theorem of Parallel Azes,
a.k.a. Steiner’s Theorem.

Henceforth, we assume that c is the position vector of the mass center in
an inertial frame. Further, we recall the Newton-Euler equations governing the
motion of a rigid body, and let the body at hand be acted upon by a wrench
of force f applied at its mass center, and a moment no. The Newton equation
then takes the form

f = mé (3.134a)

whereas the Euler equation is
ng =Iow+w x Ipw (3.134b)

The momentum m and the angular momentum he of a rigid body moving with
an angular velocity w are defined below, the angular momentum being defined
with respect to the mass center. These are

m=meé, he=Iow (3.135)

Moreover, the time-derivatives of the foregoing quantities are readily computed
as

m=mé hg=Icw+wxIcw (3.136)
and hence, egs.(3.134a & b) take on the forms

f=1m, nc=he (3.137)

The set of equations (3.134a & b) are known as the Newton-Euler equations.
These can be written in a more compact form as we describe below. First, we
introduce a 6 x 6 matrix M that, following von Mises (1924), we term the inertia
dyad, namely,
_|Ie¢ O

M= [O ml] (3.138)
where O and 1 denote the 3 x 3 zero and identity matrices. A similar 6 x6 matrix
was defined by von Mises under the above name. However, von Mises’s inertia
dyad is full, while the matrix defined above is block-diagonal. Both matrices,
nevertheless, denote the same physical property of a rigid body, i.e., its mass
and moment of inertia. Now the Newton-Euler equations can be written as

Mt + WMt = w (3.139)
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in which matrix W, henceforth termed the angular-velocity dyad, by similarity
with the inertia dyad, is defined in turn as

(3.140)

K

O O

with  already defined as the angular-velocity matrix; it is, of course, the cross-
product matrix of the angular-velocity vector w. Note that the twist of a rigid
body lies in the nullspace of its angular-velocity dyad, i.e.,

Wt =0 (3.141)

Further definitions are introduced below: The momentum screw of the rigid
body about the mass center is the 6-dimensional vector p defined as

_ | Tow| _
p= [mé] = Mt (3.142)

Moreover, from egs.(3.136) and definition (3.142), the time-derivative of ¢ can
be readily derived as

i =Mt + Wy = Mt + WMt (3.143)

The kinetic energy of a rigid body undergoing a motion in which its mass
center moves with velocity ¢ and rotates with an angular velocity w is given by

1 1
T= §'ml|(':||2 + EwTIcw (3.144)
From the foregoing definitions, then, the kinetic energy can be written in com-
pact form as

T= —;—tTMt (3.145)

while the Newton-Euler equations can be written in an even more compact form
as

p=w (3.146)

which is a 6-dimensional vector equation.

Properly speaking, M, as given by eq.(3.138), should be subscripted with C,
to emphasize that the moment of inertia in the upper left block of M is taken
with respect to C. For brevity, we will dispense with this subscript whenever the
moment of inertia is centroidal. If the moment of inertia is taken with respect to
any other point O, then we will denote the inertia dyad with Mg. The reader
is asked to verify that Mo takes the form

(3.147)

MO:[ Io mC]

mCT mil
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Figure 3.9: Motion of a cube

3.9 Exercises

3.1 The cube of Fig. 3.9 is displaced from configuration AB... H into config-
uration A'B’... H'.

{(a) Determine the matrix representing the rotation Q undergone by the
cube, in X, Y, Z coordinates.

(b) Find the Pliicker coordinates of line £ of the cube undergoing dis-
placements of minimum magnitude.

(¢) Find the intersections of £ with the coordinate planes.

3.2 Two unit forces, f; and fs, are applied to the regular tetrahedron of unit-
length edges displayed in Fig. 3.10 in such a way that f; is directed from
Ps to P3, whereas f5 is directed from Py to P,. The effect of the foregoing
system of forces on the rigid tetrahedron is obtained by application of the
resultant of the two forces on a certain point P and a moment n. Find
the location of point P lying closest to P; that will make the magnitude
of n a minimum.

3.3 The moment of a line £; about a second line £, is a scalar u defined as

p=mn e
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34

Figure 3.10: A regular tetrahedron

where n, is the moment of £, about an arbitrary point P of Lo, while e, is
a unit vector parallel to line £o. Apparently, the necessary and sufficient
condition for two lines to intersect is that the moment of one about the
other vanish.

Using the above concept, show that the locus of all lines £ intersecting
three given lines { Ly }3 is a guadric, i.e., a surface defined by a func-
tion that is quadratic in the position vector p of a point of the surface:
fp) =p"™Mp+gTp+h =0, h>0. Notice that, the surface being
generated by the motion of a line constrained to touch the three given
lines, the surface is bound to be ruled. Now, there are only two ruled,
second-order surfaces (Pottmann and Wallner, 2001), the one-sheet hy-
perboloid and the hyperbolic paraboloid. Geometrically, the former is a
closed surface, the latter open. Algebraically, the former is characterized
by a matrix coefficient M with det(M) < 0, meaning that the matrix has
two positive and one negative eigenvalues. The hyperbolic paraboloid is
characterized by a singular M, i.e., det(M) = 0. Show, furthermore, that
det(M) is nonzero—showing that det(M) < 0 is far more challenging!—
and hence, the quadric is a one-sheet hyperboloid. Hint: Deriving the
given expression for f(p) should be done without resorting to components.
Showing that M is singular requires resorting to components. To this end,
choose the coordinate axes appropriately so as to avoid too cumbersome
eTpresstons.

A robotic gripper is provided with two redundant sensors that are meant
to measure a wrench acting on the gripper. The ith sensor, moreover, has
its own coordinate frame, labeled F;, for i = 1,2. Sensor ¢ reported the
1th measurement of the wrench wp, where subscript P indicates that the
force is applied at point P, as [wp]; = [nT, fT)7, for 4 = 1,2. These
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measurements are given as

[0 0
[n]i=10], [flhi=]2

5 0

[ —5/3 —-4/3
[n]o=[-10/3], ([flo=] 4/3

| 10/3 2/3

(a) Show that the measurements are compatible, based on invariance
arguments.

(b) Determine the relative orientation of the two frames, i.e., find the
rotation matrix transforming Fs-coordinates into Ji-coordinates.

A robot-calibration method has been proposed that allows us to determine
the location of a joint axis, £, via the Pliicker coordinates of the axis in a
coordinate frame fixed to the gripper. The Pliicker coordinates are given
aswy =[eT, nT]T.
(a) Show that the distance of the axis to the origin of the gripper-fixed
coordinate frame, d, can be determined as d = ||n|}.

(b) Show that the point P* on the axis, which lies closest to the above-
mentioned origin, has a position vector p* given as

p' =exn

(¢) From measurements on a robot, the Pliicker coordinates were esti-
mated, in a gripper-fixed frame G, as

[71'5](_; = [_\/_2_/21 0, \/5/2’ 0, _\/ia O]T

Find d and p* in gripper coordinates

The gripper G of a robot is approaching a workpiece B, as indicated in
Fig. 3.11, with planes I7; and Il parallel to each other and normal to
IT3. The workpiece is made out of a cube of unit length from which two
vertices have been removed, thereby producing the equilateral triangular
faces DEF and D'E'F’. Moreover, two coordinate frames, F (X, Y, Z)
and F' (X', Y’, Z'), are defined as indicated in the figure, in which Y is,
apparently, parallel to line D'C’.

It is required to grasp B with G in such a way that planes IT; and I, coin-
cide with the triangular faces, while carrying the Y’ axis to an orientation
perpendicular to the diagonal CC' of B. More concretely, in the grasping
configuration, frame F' is carried into F" (X", Y, and Z"), not shown
in the figure, in such a way that unit vectorsi”, j”, k", parallel to X", V",
Z", respectively, are oriented so that i" has all three of its F-components
positive, while j has its Z-component positive.
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(a) Compute the angle of rotation of the motion undergone by G from
a pose in which ' and F have identical orientations, termed the
reference pose, and find the unit vector parallel to the axis of rotation,
in frame F.

Figure 3.11: A workpiece B to be grasped by a gripper G

(b) The position vector of point P of G is known to be, in the reference
pose,
2
[plr=| -1
0.25
Determine the set of points of G undergoing a displacement of min-
imum magnitude, under the condition that P, in the displaced con-
figuration of G, coincides with C".

3.7 In calibrating a robot, the Pliicker coordinates of one of its axes are to be
determined in a given coordinate frame. To this end, the moment of this
axis is measured with respect to two points, A and B, of position vectors
[a] =[1,0,0]7 and [b] = [0, 1, 1], respectively. The said moments,
n4 and np, respectively, are measured as

0 0
[na]= (2], [ng]=|1
0 1

with all entries given in meters.

(a) Determine the unit vector e defining the direction of the axis under
discussion.

(b) Find the coordinates of the point P* of the axis that lies closest to
the origin



126

3.8

3.9

3.10

3.11

3.12

3.13

3. Fundamentals of Rigid-Body Mechanics

(¢) Find the Pliicker coordinates of the axis about the origin, i.e., the
Pliicker coordinates of the axis in which the moment is defined with
respect to the origin.

Prove that for any 3-dimensional vectors w and p,

w x (wx (W x (@xp)) ) = (~DF(w|**1 — jw|** DwwT)p
2k E;tors

W x (W x - (W x (W xp))--) = (1) (wlP*w) x p

~

2k+1 factors

A “small” rotation is defined as that about an arbitrary axis parallel to the
unit vector e, through a “small” angle ¢, so that ¢ << 1. Prove that the
angular-velocity vector, in the special case of “small” rotations, turns out
to be a time-derivative. What is the vector whose time-derivative yields
the angular-velocity vector?

Derive an expression for the angular velocity w in terms of Euler angles,
which were introduced in Exercise 2.18. More specifically, if we store the
Euler angles in array n = [6, ¢, ¥]7, then, find the matrix W such that

w=Wnq

Notice that, given 7 and w, an expression for 77 can be obtained upon
inverting W. However, W is not always invertible. Find under which
conditions W becomes singular. Notice: The use of computer algebra is
strongly recormmended to solve this exercise.

A rectangular prism with regular hexagonal bases whose sides are 25 mm
long and whose height is 150 mm is to undergo a pick-and-place operation—
See Chapter 6 to understand what this means—that requires knowledge
of its centroid location and its moment-of-inertia matrix. Find the cen-
troidal principal axes and moments of inertia under the assumption that
the prism is made from a homogeneous material.

The prism of Exercise 3.11 now undergoes a machining process cutting it
into two parts, which are separated by a plane that contains one of the
edges of the base and makes an angle of 45° with the axis of the prism.
Find the centroidal principal axes and moments of inertia of each of the
two parts.

In Exercise 2.22 assume that a mass m is located at every point P;
of position vector p;. Give a mechanical interpretation of the matrix
m[tr(PPT)1 — PP7], with P defined in that exercise.
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3.14

3.15

3.16

3.17

3.18

3.19

The centroidal inertia matrix of a rigid body is measured by two observers,
who report the two results below:

100 (6 2 2
[Ta={0 2 0, [Ms=5|2 5 0
00 3 2 0 7

Show that the two measurements are acceptable. Hint: Use invariance
arguments.

State the conditions under which a point and the mass center of a rigid
body share the same principal axes of inertia. In other words, let Ip and
I¢ be the moment-of-inertia matrices of a rigid body about a point P and
its mass center, C, respectively. State the conditions under which the two
matrices have common eigenvectors. Moreover, under these conditions,
what are the relationships between the two sets of principal moments of
inertia?

Show that the smallest principal moment of inertia of a rigid body attains
its minimum value at the mass center.

Show that the time-rate of change of the inertia dyad M of a rigid body
is given by )
M=WM-MW

Then, recall the momentum screw g defined as
n=Mt

where t is the twist of the body, defined at its mass center. Now, with
the above expression for M, restate the result displayed in eq.(3.143), i.e.,
show that

[t = Mt + WMt

A wrench w = [nT f7]7 with f acting at point P of the gripper of
Fig. 2.10, is measured by a siz-azis force sensor, to which a frame Fg is
attached, as indicated in that figure. If points P and S lie a distance of

100 mm apart, find the wrench in F5, when the readouts of the sensor are

1 0
[n]g=|0| Nm, [fls=]|1| N
1 0

Derive eq.(3.147). Moreover, paraphrasing Steiner’s Theorem, eq.(3.133b),
notice that Mo can be expressed as
mCT O

Mo = Mg + P, P:[ 0 mC]
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The above expression can be termed the 6 x 6 form of Steiner’s Theorem
or, equivalently, of the Parallel-Axis Theorem. Now, in trying to mimic
Steiner’s Theorem, one would like to express P in the same form as the
second term of eq.(3.133b), as the product mRR7, with R defined as a
suitable 6 x 6 matrix. Can this matrix be found? If yes, give an expression
for R, if not, explain why.



Chapter 4

Geometry of Decoupled
Serial Robots

4.1 Introduction

This chapter is devoted to the displacement analysis of robotic manipulators of
the serial type, which we call the geometry of serial robots. The study is limited
to decoupled robots, to be defined below, the inverse displacement analysis of
general six-axis robots being the subject of Chapter 9. These robots serving
mainly to perform manipulation tasks, they are also referred to as manipulators.

We begin by defining a serial, n-axis manipulator. In connection with this
manipulator, additionally, we will (¢) introduce the Denavit-Hartenberg notation
for the definition of link frames that uniquely determine the architecture and the
configuration, or posture, of the manipulator at hand; (it) define the Cartesian
and joint coordinates of this manipulator; and (i%i) relate these two sets of
variables by means of its geometric model. Moreover, with regard to six-axis
manipulators, we will define decoupled manipulators and provide a procedure
for the solution of their inverse displacement model.

4.2 The Denavit-Hartenberg Notation

One of the first tasks of a robotics engineer is the geometric modeling of a robotic
manipulator. This task consists in devising a model that can be unambiguously
(7) described to a control unit through a database and (i%) interpreted by other
robotics engineers. The purpose of this task is to give manipulating instructions
to a robot, regardless of the dynamics of the manipulated load and the robot
itself. The simplest way of geometrically modeling a robotic manipulator is by
means of the concept of kinematic chain. A kinematic chain is a set of rigid
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Figure 4.1: The two basic lower kinematic pairs: the revolute and the prismatic
joints

bodies, also called links, coupled by kinematic pairs, also termed joints. A
kinematic pair is, then, the coupling of two rigid bodies so as to constrain their
relative motion. We distinguish two basic types of kinematic pairs, namely,
higher and lower kinematic pairs. A higher kinematic pair arises between rigid
bodies when contact takes place along a line or at a point. This type of coupling
occurs in cam-and-follower mechanisms, gear trains, and roller bearings, for
example. A lower kinematic pair occurs when contact takes place along a surface
common to the two bodies. Six different types of lower kinematic pairs can be
distinguished (Hartenberg and Denavit, 1964; Angeles, 1982), but all these can
be produced from two basic types, namely, the rotating pair, denoted by R
and also called revolute, and the sliding pair, represented by P and also called
prismatic.

The common surface along which contact takes place in a revolute pair is
a circular cylinder, a typical example of this pair being the coupling through
journal bearings. Thus, two rigid bodies coupled by a revolute can rotate relative
to each other about the axis of the common cylinder, which is thus referred to as
the azis of the revolute, but are prevented from undergoing relative translations
as well as rotations about axes other than the cylinder axis. On the other hand,
the common surface of contact between two rigid bodies coupled by a prismatic
pair is a prism of arbitrary cross section, and hence, the two bodies coupled
in this way are prevented from undergoing any relative rotation and can move
only in a pure-translation motion along a direction parallel to the axis of the
prism. As an example of this kinematic pair, one can cite the dovetail coupling.
Note that whereas the revolute axis is a totally defined line in three-dimensional
space, the prismatic pair has no axis; this pair has only a direction. That is, the
prismatic pair does not, have a particular location in space. Nevertheless, and for
the sake of conciseness, we will refer to joint axis generically, when speaking of
either revolute or prismatic joints. Bodies coupled by a revolute and a prismatic
pair are shown in Fig. 4.1.
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Serial manipulators will be considered in this chapter, their associated kine-
matic chains thus being of the simple type, i.e., each and every link is coupled
to at most two other links. A simple kinematic chain can be either closed or
open. Tt is closed if each and every link is coupled to two other links, the chain
then being called a linkage; it is open if it contains exactly two links, the end
ones, that are coupled to only one other link. Thus, simple kinematic chains
studied in this chapter are open, and in the particular robotics terminology,
their first link is called the manipulator base, whereas their last link is termed
the end-effector (EE).

Thus, the kinematic chains associated with manipulators of the serial type
are composed of binary links, the intermediate ones, and exactly two simple
links, those at the ends. Hence, except for the end links, all links carry two
kinematic pairs, and as a consequence, two pair axes—but remember that a
prismatic pair has a direction but no axis. In order to uniquely describe the
architecture of a kinematic chain, i.e., the relative location and orientation
of its neighboring pair axes, the Denavit-Hartenberg notation (Denavit and
Hartenberg, 1955) is introduced. To this end, links are numbered 0, 1, ..., n,
the sth pair being defined as that coupling the (i — 1)st link with the ¢th link.
Hence, the manipulator is assumed to be composed of n + 1 links and n pairs;
each of the latter can be either R or P, where link 0 is the fixed base, while link
n is the end-effector. Next, a coordinate frame F; is defined with origin O; and
axes X;, Y;, Z;. This frame is attached to the (i — 1)st link—not to the ith
link!-—for ¢ = 1, ..., n + 1. This is the classical Denavit-Hartenberg notation.
Khalil and Kleinfinger (Khalil and Dombre, 2002) modified this notation to
make it “less ambiguous.” In the balance of the book we follow the classical
notation. For the first n frames, this is done following the rules given below:

1. Z; is the axis of the ith pair. Notice that there are two possibilities of
defining the positive direction of this axis, since each pair axis is only a
line, not a directed segment. Moreover, the Z; axis of a prismatic pair can
be located arbitrarily, since only its direction is defined.

2. X; is defined as the common perpendicular to Z;_; and Z;, directed from
the former to the latter, as shown in Fig. 4.2(a). Notice that if these
two axes intersect, the positive direction of X; is undefined and hence,
can be freely assigned. Henceforth, we will follow the right-hand rule in
this case. This means that if unit vectors i;, k;_y, and k; are attached to
axes X;, Z;_1, and Z;, respectively, as indicated in Fig. 4.2(b), then i; is
defined as k;_1 x k;. Moreover, if Z; 1 and Z; are parallel, the location
of X; is undefined. In order to define it uniquely, we will specify X; as
passing through the origin of the (i — 1)st frame, as shown in Fig. 4.2(c).

3. The distance between Z; and Z; 1 is defined as a;, which is thus nonneg-
ative.

4. The Z;-coordinate of the intersection O} of Z; with X;;; is denoted by b;.
Since this quantity is a coordinate, it can be either positive or negative.
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Figure 4.2: Definition of X; when Z;_; and Z;: (a) are skew; (b) intersect; and
(c) are parallel

Its absolute value is the distance between X; and X;i;, also called the
offset between successive common perpendiculars to the corresponding
joint axes.

5. The angle between Z; and Z;, is defined as «; and is measured about the
positive direction of X; ;. This item is known as the twist angle between
successive pair axes.

6. The angle between X; and X;;1 is defined as 6; and is measured about
the positive direction of Z;.

The (n + 1)st coordinate frame is attached to the far end of the nth link.
Since the manipulator has no (n + 1)st link, the foregoing rules do not apply to
the definition of this frame. The analyst, thus, has the freedom to define this
frame as it best suits the task at hand. Notice that n + 1 frames, Fy, Fo, ...,
Fn+1, have been defined, whereas links are numbered from 0 to n. In summary,
a n-axis manipulator is composed of n + 1 links and n + 1 coordinate frames.
These rules are illustrated with an example below.

Consider the architecture depicted in Fig. 4.3, usually referred to as a Puma
robot, which shows seven links, numbered from 0 to 6, and seven coordinate
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frames, numbered from 1 to 7. Note that the last frame is arbitrarily defined,
but its origin is placed at a specific point of the EE, namely, at the operation
point P, which is used to define the task at hand. Furthermore, three axes
intersect at a point C, and hence, all points of the last three links move on
concentric spheres with respect to Fy, for which reason the subchain comprising
these three links is known as a spherical wrist, point C being its center. By the
same token, the subchain composed of the first four links is called the arm.
Thus, the wrist is decoupled from the arm, and is used for orientation purposes,
the arm being used for the positioning of point C. The arm is sometimes called
the regional structure and the wrist the local structure, the overall manipulator
thus being of the decoupled type.

Figure 4.3: Coordinate frames of a Puma robot

In the foregoing discussion, if the ith pair is R, then all quantities involved in
those definitions are constant, except for 8;, which is variable and is thus termed
the joint variable of the ith pair. The other quantities, i.e., a;, b;, and ¢4, are the
joint parameters of the same pair. If, alternatively, the ith pair is P, then b; is
variable, and the other quantities are constant. In this case, the joint variable is
b;, and the joint parameters are a;, a;, and ;. Notice that associated with each
joint there are exactly one joint variable and three constant parameters. Hence,
a n-axis manipulator has n joint variables—which are henceforth grouped in the
n-dimensional vector 8, regardless of whether the joint variables are angular or
translational—and 3n constant parameters. The latter define the architecture
of the manipulator, while the former determine its configuration, or posture.

Whereas the manipulator architecture is fully defined by its 3n Denavit-
Hartenberg (DH) parameters, its posture is fully defined by its n joint variables,
also called its joint coordinates, once the DH parameters are known. The relative
pose—position and orientation-—between links is fully specified, then, from the
background of Chapter 2, by (¢) the rotation matrix taking the X;, Y;, Z; axes
into a configuration in which they are parallel pairwise to the X; 11, Yit1, Zit1
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Yigs

)

Figure 4.4: Relative orientation of the ith and (i + 1)st coordinate frames

axes, and (¢¢) the position vector of the origin of the latter in the former. The
representations of the foregoing items in coordinate frame F; will be discussed
presently. First, we obtain the matrix representation of the rotation Q; carrying
F; into an orientation coincident with that of F; 1, assuming, without loss of
generality because we are interested only in changes of orientation, that the
two origins are coincident, as depicted in Fig. 4.4. This matrix is most easily
derived if the rotation of interest is decomposed into two successive rotations,
as indicated in Fig. 4.5. In that figure, X}, ¥/, Z! is an intermediate coordinate
frame F., obtained by rotating F; about the Z; axis through an angle 8;. Then,
the intermediate frame is rotated about X; through an angle «;, which takes
it into a configuration coincident with F;;,. Let the foregoing rotations be
denoted by [C;]; and [A;]s, respectively, which are readily derived for they
are in the canonical forms (2.55¢) and (2.55a), respectively.
Moreover, let
Ai = cosSay, i = sinoy (4.1a)

One thus has, using subscripted brackets as introduced in Section 2.2,

cos®; —sinf; 0 1 0 0
[ Ci ]1' = | sin 01 COos 01' 0 3 [ Ai ]'i’ =10 Ai — 4 (41b)
0 0 1 0 p N

and hence, the matrix sought is computed simply as
[Q:]i =[C:i]i[Ails (4.1c)
Henceforth, we will use the abbreviations introduced below:

Qi=[Q:iiy Ci=[Cili, Ai=[Ails (4.1d)
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Figure 4.5: (a) Rotation about axis Z; through an angle 8;; and (b) relative
orientation of the ¢'th and the (i + 1)st coordinate frames

thereby doing away with brackets, when these are self-understood. Thus,

cos®; —A;sind;  p;sinb;
Q,’ = [ Qi ]i = | sin 91' /\i COS 01- — M3 COS 01' (4.16)
0 i Ai

One more factoring of matrix Q;, which will be used in Chapter 9, is given

below:
Qi = Z:X; (4.2a)

with X; and Z; defined as two pure reflections, the former about the Y; Z; plane,
the latter about the X;Y; plane, namely,

1 0 0 cosf; sin8; O
XZ' =10 “‘)\z’ il Zi = | sin 0,’ - CO8 01' 0 (42b)
0 2% )\i 0 0 1

Note that both X; and Z; are symmetric and self-inverse—see Section 2.2.
In order to derive an expression for the position vector a; connecting the origin
O; of F; with that of F;;1, Osy1, reference is made to Fig. 4.6, showing the
relative positions of the different origins and axes involved. From this figure,

apparently,
a; = mi+1 = mil + Oz‘l 61‘4_1 (43&)

where obviously,

0 a;
[a'_éi']i= 01, [Oi’6i+1]i+1= 0

b; 0
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Now, in order to compute the sum appearing in eq.(4.3a), the two foregoing
vectors should be expressed in the same coordinate frame, namely, F;. Thus,

a; cosf;
[Oi’6i+l i =[Qu)s [Oi’6i+1 Jit1 = | a;siné;
0
and hence,
a;cosf;
[a,' ]i =1 a; sin 61 (4312))
b;
For brevity, we introduce one more definition:
a; = [ai]i (4.3C)

Similar to the foregoing factoring of Q;, vector a; admits the factoring

a; = Q;b; (4.3d)
where b; is given by
a;
bi = bz’,u/'i (436)
biA;

with the definitions introduced in eq.(4.1a). Hence, vector b; is constant for
revolute pairs. From the geometry of Fig. 4.6, it should be apparent that b; is
nothing but a; in Fi4,, i.e.,

b; ={a;];+1 .

Matrices Q; can also be regarded as coordinate transformations. Indeed, let
i;, ji, and k; be the unit vectors parallel to the X;, Y;, and Z; axes, respectively,
directed in the positive direction of these axes. From Fig. 4.6, it is apparent
that

cos &; 4 8in 6;
[ii41]i = | sind; |, [kip1]i = [ —pscos;
0 Ai
whence
_)\i sin 01'
lJit1)i = [kig1 Xdig1]i = | Aicos®;
Hi

Therefore, the components of i;11, Ji+1, and k41 in F; are nothing but the
first, second, and third columns of Q;. In general, then, any vector v in F;1 is
transformed into F; in the form

[v]i=[Qili[v]in



4.2 The Denavit-Hartenberg Notation 137
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Figure 4.6: Layout of three successive coordinate frames

which is a similarity transformation, as defined in eq.(2.119). Likewise, any
matrix M in F;4; is transformed into JF; by the corresponding similarity trans-
formation, as given by eq.(2.130):

[M]; = [Qi]i[M]i1[QF I:
The inverse relations follow immediately in the form
[VIa = [QF Lilv], [Mlipr = [Qf LIML[Q:ls

or, upon recalling the first of definitions (4.1d),

[v]i = Qiv]it1, [M)i= QM1 Qf (4.4a)
[VIir = Q] [v];, [Mli1 = QI [M]:Q; (4.4b)
Moreover, if we have a chain of i frames, F1, Fa, ..., F;, then the inward

coordinate transformation from F; to F; is given by

[v]i=QiQa--- Qia[v]i (4.5a)
M) =QQa - Qi1 [Mi(Q1Q2 - Qi—1)T (4.5b)

Likewise, the outward coordinate transformation takes the form

[v])i=(QiQz- - Qi-1)T[v]h (4.6a)
[M]i = (Q1Q2- - Qi—1) " [M]1QiQ2-- - Qis (4.6b)
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4.3 The Geometric Model of Six-Revolute Ma-

nipulators

The kinematics of serial manipulators begins with the study of the geometric
relations between joint variables and Cartesian variables. The former were
defined in Section 4.2 as those determining the posture of a given manipulator,
with one such variable per joint; a six-axis manipulator, like the one displayed
in Fig. 4.7, thus has six joint variables, 8y, 85, ..., 8. The Cartesian variables
of a manipulator, in turn, are those variables defining the pose of the EE; since
six independent variables are needed to define the pose of a rigid body, the
manipulator of Fig. 4.7 thus involves six Cartesian variables.

The study outlined above pertains to the geometry of the manipulator, for it
involves one single pose of the EE. Besides geometry, the kinematics of manip-
ulators comprises the study of the relations between the time-rates of change of
the joint variables, referred to as the joint rates, and the twist of the EE. Addi-
tionally, the relations between the second time-derivatives of the joint variables,
referred to as the joint accelerations, with the time-rate of change of the twist
of the EE also pertain to robot kinematics.

In the balance of this chapter we study the geometry of manipulators, the
relations between joint rates, joint accelerations and their Cartesian counter-
parts, twist and twist-rate, being the subject of Chapter 5. In this regard, we
distinguish two problems, commonly referred to as the direct and the inverse
displacement problems, or DDP and correspondingly, IDP, for brevity. In the
DDP, the six joint variables of a given six-axis manipulator are assumed to be
known, the problem consisting in finding the pose of the EE. In the IDP, on the
contrary, the pose of the EE is given, while the six joint variables that produce
this pose are to be found.

The DDP reduces to matrix and matrix-times-vector multiplications; as we
shall show presently, the DDP poses no major problem. The IDP, however, is
more challenging, for it involves intensive variable-elimination and nonlinear-
equation solving. Indeed, in the most general case, the IDP amounts to elimi-
nating five out of the six unknowns, with the aim of reducing the problem to a
single monovariate polynomial of 16th degree or lower. While finding the roots
of a polynomial of this degree is no longer an insurmountable task, reducing the
underlying system of nonlinear equations to a monovariate polynomial requires
intensive computer-algebra work that must be very carefully planned to avoid
the introduction of spurious roots and, with this, an increase in the degree of
that polynomial. For this reason, we limit this chapter to the study of the ge-
ometric IDP of decoupled six-axis manipulators. The IDP of the most general
six-revolute serial manipulator is studied in Chapter 9.

In studying the DDP of six-axis manipulators, we need not limit ourselves
to a particular architecture. We thus study here the DDP of manipulators such
as the one sketched in Fig. 4.7. This manipulator consists of seven rigid bodies,
or links, coupled by six revolute joints. Correspondingly, we have seven frames,
Fi, Fa, ..., Fr, the ith frame fixed to the (i — 1)st link, F; being termed the
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Figure 4.7: Serial six-axis manipulator

base frame, because it is fixed to the base of the manipulator. Manipulators
with joints of the prismatic type are simpler to study and can be treated using
correspondingly simpler procedures.

A line £; is associated with the axis of the ith revolute joint, and a positive
direction along this line is defined arbitrarily through a unit vector e;. For a
prismatic pair, a line £; can be also defined, as a line having the direction of
the pair but whose location is undefined; the analyst, then, has the freedom
to locate this axis conveniently. Thus, a rotation of the ith link with respect
to the (¢ — 1)st link or correspondingly, of F;;1 with respect to F;, is totally
defined by the geometry of the ith link, i.e., by the DH parameters a;, b;, and o,
plus e; and its associated joint variable 8;. Then, the DH parameters and the
joint variables define uniquely the posture of the manipulator. In particular, the
relative position and orientation of F;; with respect to F; is given by matrix Q;
and vector a;, respectively, which were defined in Section 4.2 and are displayed
below for quick reference:

cosf; —MA;sinf;  p;siné; a; cos b;
Q; = | sinf; A;cos®; —picosb;|, a;=|a;sing; 4.7
0 Hi Ai b;

Thus, Q; and a; denote, respectively, the matrix rotating F; into an orien-
tation coincident with that of F;,, and the vector joining the origin of F; with
that of F;,,, directed from the former to the latter. Moreover, Q; and a;, as
given in eq.(4.7), are represented in F; coordinates. The equations leading to
the geometric model under study are known as the displacement equations. It
is noteworthy that the problem under study is equivalent to the input-output
analysis problem of a seven-revolute linkage with one degree of freedom and one
single kinematic loop (Duffy, 1980). Because of this equivalence with a closed
kinematic chain, sometimes the displacement equations are also termed closure
equations. These equations relate the orientation of the EE, as produced by
the joint coordinates, with the prescribed orientation Q and the position vector
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p of the operation point P of the EE. That is, the orientation Q of the EE is
obtained as a result of the six individual rotations { Q; }$ about each revolute
axis through an angle 8;, in a sequential order, from 1 to 6. If, for example, the
foregoing relations are expressed in Fi, then

[Q6]1[Qs)1[Q4]1[ Q31 [Q211[ Q11 = [QLx (4.8a)
[a1]i +[a2]i +[as)i + [aa)s +[as]1 + [as )1 = [P (4.8b)

Notice that the above equations require that all vectors and matrices involved
be expressed in the same coordinate frame. However, we derived in Section 4.2
general expressions for Q; and a; in F;, eqs.(4.1e) and (4.3b), respectively. It is
hence convenient to represent the foregoing relations in each individual frame,
which can be readily done by means of similarity transformations. Indeed, if we
apply the transformations (4.5a & b) to each of [a;]; and [Q;];, respectively,
we obtain a; or, correspondingly, Q; in F;. Therefore, eq.(4.8a) becomes

[Q1]1[Q2]2[Q3]3[Q414[Qs515[ Qs le = [ Q)1

Now for compactness, let us represent [Q]; simply by Q and let us recall the
abbreviated notation introduced in eq.(4.1d), where [ Q; }; is denoted simply by
Q;, thereby obtaining

Q1Q2Q3Q4Q:5Q6 = Q (4.9a)
Likewise, eq.(4.8b) becomes

a; + Qi (a2 + Qaz + Q2Qzas + Q2Q3Quas + Q2Q3Q4Qsa5) =p  (4.9b)

in which both sides are given in base-frame coordinates. Equations
(4.9a & b) above can be cast in a more compact form if homogeneous transforma-
tions, as defined in Section 2.5, are now introduced. Thus, if we let T; = {'T; };
be the 4 x 4 matrix transforming JF;1-coordinates into F;-coordinates, the fore-
going equations can be written in 4 X 4 matrix form, namely,

T TyT3TyTsTg =T (4.10)

with T denoting the transformation of coordinates from the end-effector frame
to the base frame. Thus, T contains the pose of the end-effector.

In order to ease the discussion ahead, we introduce now a few definitions. A
scalar, vector, or matrix expression is said to be multilinear in a set of vectors
{ v}V if each of those vectors appears only linearly in the same expression. This
does not prevent products of components of those vectors from occurring, as long
as each product contains only one component, of the same vector. Alternatively,
we can say that the expression of interest is multilinear in the aforementioned
set of vectors if and only if the partial derivative of that expression with respect
to vector v; is independent of v;, for i = 1,..., N. For example, every matrix
Q; and every vector a;, defined in egs.(4.1e) and (4.3b), respectively, is linear
in vector x;, where x; is defined as

x; = [COSG"], (4.11)

sin 01
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Moreover, the product Q; Q2:Q3Q4Q5Qs appearing in eq.(4.9a) is hezalinear, or
simply, multilinear, in vectors { x; }$. Likewise, the sum appearing in eq.(4.9b)
is multilinear in the same set of vectors. By the same token, a scalar, vector, or
matrix expression is said to be multiquadraetic in the same set of vectors if those
vectors appear at most quadratically in the said expression. That is, the expres-
sion of interest may contain products of the components of all those vectors, as
long as those products contain, in turn, a maximum of two components of the
same vector, including the same component squared. Qualifiers like multicubic,
multiquartic, etc., bear similar meanings.
Further, we partition matrix Q; rowwise and columnwise, namely,

QiE ng: E[pi q; uz-] (412)

It is noteworthy that the third row o of Q; is independent of 6;, a fact that
will be found useful in the forthcoming derivations. Furthermore, note that
according to the DH notation, the unit vector e; in the direction of the ith joint
axis in Fig. 4.7 has F;-components given by

[e;i= 0] =e (4.13)
1

Henceforth, e is used to represent a 3-dimensional array with its last component
equal to unity, its other components vanishing. Thus, we have

Q;o; = Q;frui —e (4.14a)

or
u;=Qie, 0;,=Qfe (4.14b)

That is, if we regard e in the first of the foregoing relations as [e;41 ]i+1, and
as [e;]; in the second relation, then, from the coordinate transformations of
egs.(4.4a & b),

u; =[e;1);, and o;=[e;]i (4.15)

4.4 The Inverse Displacement Analysis of De-
coupled Manipulators

Industrial manipulators are frequently supplied with a special architecture that
allows a decoupling of the positioning problem from the orientation problem. In
fact, a determinant design criterion in this regard has been that the manipulator
lend itself to a closed-form inverse displacement solution. Although the class
of manipulators with this feature is quite broad, we will focus on a special
kind, the most frequently encountered in commercial manipulators, that we have
termed decoupled. Decoupled manipulators were defined in Section 4.2 as those
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Figure 4.8: A general 6R manipulator with decoupled architecture

whose last three joints have intersecting axes. These joints, then, constitute
the wrist of the manipulator, which is said to be spherical, because when the
point of intersection of the three wrist axes, C, is kept fixed, all the points of
the wrist move on spheres centered at C. In terms of the DH parameters of
the manipulator, in a decoupled manipulator a4y = a5 = bs = 0, and thus, the
origins of frames 5 and 6 are coincident. All other DH parameters can assume
arbitrary values. A general decoupled manipulator is shown in Fig. 4.8, where
the wrist is represented as a concatenation of three revolutes with intersecting
axes.

In the two subsections below, a procedure is derived for determining all
the inverse displacement solutions of decoupled manipulators. In view of the
decoupled architecture of these manipulators, we conduct their displacement
analysis by decoupling the positioning problem from the orientation problem.

4.4.1 The Positioning Problem

We solve first the positioning problem. Let C' denote the intersection of axes
4, 5, and 6, i.e., the center of the spherical wrist, and let ¢ denote the position
vector of this point. Apparently, the position of C is independent of joint angles
84, 05, and 5; hence, only the first three joints are to be considered for this
analysis. The arm structure depicted in Fig. 4.9 will then be analyzed. From
that figure,

a; + Qiaz + Q1Qq2a3 + Q1 Q2Qza4 = ¢ (4.16)

where the two sides are expressed in Fj-coordinates. This equation can be
readily rewritten in the form

as + Qra; + Q2Qzas = Q7 (c — a;)
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or if we recall eq.(4.3d),
Q2(b2 + Qsb; + Q3Qubs) = Qfc — by
However, since we are dealing with a decoupled manipulator, we have

0
ay=Qibs= | 0| =bse
b4

which has been rewritten as the product of constant by times the unit vector e
defined in eq.(4.13).
Thus, the product Q3Q4by reduces to

Q3Qqby = b4Qze = byu3
with u; defined in eq.(4.14b). Hence, eq.(4.16) leads to
Q2 (b + Qzbs + byuz) = QT c — by (4.17)

Further, an expression for ¢ can be derived in terms of p, the position vector of
the operation point of the EE, and Q, namely,

c=p - Q:Q:Q:Qsa5 — Q:1Q2Q:3Q4Qs2¢ (4.18a)
Now, since as = by = 0, we have that a; = 0, eq.(4.18a) thus yielding
c=p-—QQfas =p— Qbg (4.18b)

Moreover, the base coordinates of P and C, and hence, the Fj-components of
their position vectors p and ¢, are defined as

x zc
[Pli=|y|, [ch=]ye
z zZC
o that eq.(4.18b) can be expanded in the form
zc T — (q1106 + qa2bejie + q13beAe)
yo | = |y — (2106 + qa2bs e + q23b6 A6) (4.18¢)
2c z — (g31a6 + @a2be 6 + ga3beAs)

where g;; is the (4, ) entry of [Q]1, and the positioning problem now becomes
one of finding the first three joint angles necessary to position point C at a
point of base coordinates z¢, y¢, and z¢. We thus have three unknowns, but
we also have three equations at our disposal, namely, the three scalar equations
of eq.(4.17), and we should be able to solve the problem at hand.

In solving the foregoing system of equations, we first note that (i) the left-
hand side of eq.(4.17) appears multiplied by Qa; and (#i) 82 does not appear
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C(xc: Yeo Zc)

Figure 4.9: Three-axis, serial, positioning manipulator

in the right-hand side. This implies that (¢) if the Euclidean norms of the two
sides of that equation are equated, the resulting equation will not contain 6s;
and (i4) the third scalar equation of the same equation is independent of 65,
by virtue of the structure of the Q; matrices displayed in eq.(4.1e). Thus, we
have two equations free of 85, which allows us to calculate the two remaining
unknowns 8; and 6.

Let the Euclidean norm of the left-hand side of eq.(4.17) be denoted by I,
that of its right-hand side by r. We then have

I = a2 + b3 + a2 + b2 + b2 + 2b] Qb3 + 2b4b uz + 2A3b3by
r? = [le|l? + |[b.||* — 2b7 QT ¢

from which it is apparent that [2 is linear in x3 and r? is linear in x;, for x;
defined in eq.(4.11). Upon equating I? with r2, then, an equation linear in x;
and x3—not bilinear in these vectors—is readily derived, namely,

Acy +Bsy +Cez+Dss+E =0 (4.19a)
whose coefficients do not contain any unknown, i.e.,

A =2ayz¢ (4.19D)
B = 2a1y¢ (4.19¢)
C = 20,20,3 —_ 2b2b4,u2,u3 (419(21)
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D= 2a3b2u2 + 2a2b4u3 (4.196)
E=a3+a} +b3+b5+b5—a?—2% —yE — (zc — b)?
+2bob3 Ag 4+ 2b2bi Ao A3 + 2b3ba A3 (419f)

Moreover, the third scalar equation of eq.(4.17) takes on the form
Fei +Gsy+Heg +1s3+J=0 (420&)

whose coeflicients, again, do not contain any unknown, as shown below:

F = yomu (4.20b)
G=—-zcm (4.20¢)
H = —bypapz (4.20d)
I=azpsy (4.20e)
J = by + bgda + badads — (20 — b1)As (4.20f)

Thus, we have derived two nonlinear equations in #; and €3 that are linear
in ¢, 1, ¢3, and s3. Each of these equations thus defines a contour in the 6;-683
plane, their intersections determining all real solutions to the problem at hand.

Note that if ¢; and s; are substituted for their equivalents in terms of
tan(6;/2), for i = 1,3, then two biquadratic polynomial equations in tan(f;/2)
and tan(f3/2) are derived. Thus, one can eliminate one of these variables from
the foregoing equations, thereby reducing the two equations to a single quartic
polynomial equation in the other variable. The quartic equation thus resulting
is called the characteristic equation of the problem at hand. Alternatively, the
two above equations, eqs.(4.19a) and (4.20a), can be solved for, say, ¢; and s;
in terms of the data and ¢3 and 33, namely,

_ —G(Ces + Ds3 + E)+ B(Heg + Isg + J)

1 A (4.21a)
o = F(Ces +D33-+-E)A—1 A(Hez + Isz + J) (4.21b)

with A, defined as
Ay = AG ~ FB = —2ay i1 (2% + y2) (4.21¢)

Note that in trajectory planning, to be studied in Chapter 6, A; can be com-
puted off-line, i.e., prior to setting the manipulator into operation, for it is a
function solely of the manipulator parameters and the Cartesian coordinates
of a point lying on the path to be tracked. Moreover, the above calculations
are possible as long as A; does not vanish. Now, A; vanishes if and only if
any of the factors ai, w, and z% + y% does. The first two conditions are
architecture-dependent, whereas the third is position-dependent. The former
occur frequently in industrial manipulators, although not both at the same
time. If both parameters a; and p; vanished, then the arm would be useless to
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position arbitrarily a point in space. The third condition, i.e., the vanishing of
zZ +yZ, means that point C lies on the Z; axis. Now, even if neither a; nor u;
vanishes, the manipulator can be postured in a configuration at which point C
lies on the Z; axis. Such a configuration is termed the first singularity. Note,
however, that with point C being located on the Z; axis, any motion of the first
joint, with the two other joints locked, does not change the location of C. For
the moment, it will be assumed that A; does not vanish, the particular cases
under which it does being studied presently. Next, both sides of eqs.(4.21a & b)
are squared, the squares thus obtained are then added, and the sum is equated
to 1, which leads to a quadratic equation in x3, namely,

Kc2+ Ls2+ Mczsz + Nes + Ps3+Q =0 (4.22)

whose coefficients, after simplification, are given below:

K =4ad2H? + piC? (4.232)
L =4a?I* + yiD? (4.23b)
M = 2(4a2HT + piCD) (4.23c)
N =2(4a?HJ + piCE) (4.23d)
P =2(4a21J + 2 DE) (4.23¢)
Q =4a3J? + piE? — 4ai i p? (4.23f)

with p? defined as
2_ 2 2
p=zotyYe
Now, two well-known trigonometric identities are introduced, namely,

_1-7

0
c3 = T , where 73 = tan(—2§) (4.24)

Sa = 03
SEIY 2
Henceforth, the foregoing identities will be referred to as the tan-half-angle
identities. We will be resorting to them throughout the book. Upon substitution
of the foregoing identities into eq.(4.22), a quartic equation in 73 is obtained,
i.e.,

R+ 813+ T2+ U +V =0 (4.25)

whose coefficients are all computable from the data. After some simplifications,
these coefficients take on the forms

R=4a}(J - H)? + p}(E - C)* - 4p%a3 13 (4.26a)
S = 4[4d21(J — H) + (2 D(E - C)] (4.26b)
T = 2[4a3(J? — H? + 2I°) + p2(E* — C? + 2D?)

—4p’aipi] (4.26¢)
U =4[4a2I(H + J) + 12D(C + E)] (4.26d)

V =4a}(J + H)? + p3(E + C)* — 4p*a313 (4.26¢)
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Furthermore, let { (73); }1 be the four roots of eq.(4.25). Thus, up to four
possible values of 83 can be obtained, namely,

(93),’ = 2a,rcta,n[(T3),~], 1= 1,2,3,4 (427)

Once the four values of 83 are available, each of these is substituted into
egs.(4.21a & b), which thus produce four different values of 8;. For each value
of 8; and 83, then, one value of 82 can be computed from the first two scalar
equations of eq.(4.17), which are displayed below:

A1y 088y + Ajasinfy = zocosfy + yosinb; — ay (4.28a)
—A12c086s + Aq18infy = ~xc A sindy + yo Ay costh
+ (2 — b1)n (4.28b)
where
A1l = as + az cos 3 + by sin 63 (4.28¢)
A12 = ~a3/\2 sin 03 + b3llz2 + b4A2/J,3 COS 93 + b4p,2>\3 (428(31)

Thus, if A3; and A;2 do not vanish simultaneously, angle 8, is readily com-
puted in terms of §; and 65 from eqs.(4.28a & b) as

cosfy = Ai{Au(wc cosb +yosinb; — ay)
2

—Aja[—zoAs sin by + yoA; cos by
+(z¢ — b))} (4.29a)

sinfy = Zl—{Alz(xo cosb; +yosind, —aq)
2

+ A11[—mc/\1 sin#, + yoAj cos 6,
+ (20 = bi)pl} (4.29b)

where A, is defined as

Ap = A} + Al
= a3 + a3(cos® 83 + A2 sin® 63) + bIp3(sin? 63 + A2 cos? 63)
+ 2a9a3 cos 03 + 2asbspug sin 83
+ 22 (b3 + baAz) (bajus cosfs — azsin 63)
+2a3bapiz p3 sin 03 cos fs + (bs + A3ba)> i3 (4.29¢)

the case in which Ay, = 0, which leads to what is termed here the second
singularity, being discussed presently.

Takano (1985) considered the solution of the positioning problem for all
possible combinations of prismatic and revolute pairs in the regional structure
of a manipulator, thereby finding that
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1. In the case of arms containing either three revolutes, or two revolutes and

one prismatic pair, with a general layout in all cases, a quartic equation
in cos 83 is obtained;

in the case of one revolute and two prismatic pairs, the positioning problem
was reduced to a single quadratic equation, the problem at hand thus
admitting two solutions;

finally, for three prismatic pairs, one single linear equation was derived,
the problem thus admitting a unique solution.

The Vanishing of A

In the above derivations we have assumed that neither y; nor a; vanishes. How-
ever, if either 3 = 0 or a; = 0, then one can readily show that eq.(4.25) reduces
to a quadratic equation, and hence, this case differs essentially from the gen-
eral one. Note that one of these conditions can occur, and the second occurs
indeed frequently, but both together never occur, because their simultaneous
occurrence would render the axes of the first two revolutes coincident. The ma-
nipulator would thus be short of one joint for the execution of three-dimensional
tasks. We thus have two cases:

1. p1 =0, a1 # 0. In this case,

A, B#0, F=G=0

Under these conditions, eq.(4.20a) and the tan-half-angle identities given
in eq.(4.24) yield

(J-—H)ri+2In+(J+H)=0
which thus produces two values of 73, namely,

I+VP - P+ H
J-H

(’1'3)1’2 = (4308,)
Once two values of §; have been determined according to the above equa-
tion, #; can be found using eq.(4.19a) and the tan-half-angle identities,
thereby deriving

(E'— A)1i +2B1 + (E' + A) =0

where 0
E' =Cecs+ Ds3 + E, 7 =tan <—2l>

whose roots are

BV —ET+ A2
(T1)1‘2 = A (430b)
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Thus, two values of 8; are found for each of the two values of 3, which
results in four positioning solutions. Values of 2 are obtained using
eqs.(4.29a & b).

2. a1 = 0, p1 # 0. In this case, one has an architecture similar to that of the
robot of Fig. 4.3. We have now

A=B=0, F,G#0
Under the present conditions, eq.(4.19a) reduces to
(E-C)r2 +2D13+(E+C) =0
which produces two values of 73, namely,

—D+ VD -2+ 7
E-C

With the two values of 63 obtained, #; can be found using eq.(4.20a) and
the tan-half-angle identities to produce

(J =P +2Gn +(J +F)=0

(7'3)1,2 = (4.313.)

where

J =Hes+Is3+J, 7 =tan (%)

whose roots are
—-G£VG?-J2 4+ F2
J—-F

(4.31b)

(7‘1)1,2 =

Once again, the solution results in a cascade of two quadratic equations,
one for 03 and one for 6;, which yields four positioning solutions. As
above, 6, is then determined using eqs.(4.29a & b). Note that for the
special case of the manipulator of Fig. 4.3, we have

ay=by=0, o =a3=90° ay=0°
and hence,
H=1=0, E=d}+ad+b}+b—[z%+ys+ (2c - b)?],
C =2aza3, D=2a3by, F=yo, G=—-2¢, J=0b;
In this case, the foregoing solutions reduce to

-D++/C?+ D? — E? zeo /2% + yd — bl
E_C y (e = ba —
3 —Yc

(7'3)1,2 =

A robot with the architecture studied here is the Puma, which is displayed
in Fig. 4.10 in its four distinct postures for the same location of its wrist center.
Notice that the orientation of the EE is kept constant in all four postures.
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(c)

Figure 4.10: The four arm configurations for the positioning problem of the
Puma robot: (a) and (b), elbow down; (a) and (c), shoulder fore; (¢) and (d),
elbow up; (b) and (d), shoulder aft

The Vanishing of A,

In some instances, Aq, as defined in eq.(4.29¢), may vanish at a certain pos-
ture, thereby preventing the calculation of 65 from eqs.(4.29a & b). This pos-
ture, termed the second singularity, occurs if both coefficients A4;; and Ajs
of eqs.(4.28a & b) vanish. Note that from their definitions, eqgs.(4.28¢ & d),
these coefficients are not only position- but also architecture-dependent. Thus,
an arbitrary manipulator cannot take on this configuration unless its geomet-
ric dimensions allow it. This type of singularity will be termed architecture-
dependent, to distinguish it from others that are common to all robots, regard-
less of their particular architectures.

We can now give a geometric interpretation of the singularity at hand: First,
note that the right-hand side of eq.(4.17), from which eqs.(4.28a & b) were
derived, is identical to Q¥ (¢ —a;), which means that this expression is nothing
but the Fs-representation of the position vector of C. That is, the components
of vector Q¥ (c—a; ) are the Fa-components of vector m . Therefore, the right-
hand sides of egs.(4.28a & b) are, respectively, the Xs- and Y>-components of
vector Oﬁ . Consequently, if 417 = A12 = 0, then the two foregoing components
vanish and, hence, point C' lies on the Z axis. The first singularity thus occurs
when point C lies on the axis of the first revolute, while the second occurs when
the same point lies on the axis of the second revolute.

Many industrial manipulators are designed with an orthogonal architecture,
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- (a) (b)

Figure 4.11: Architecture-dependent singularities of (a) the Cincinnati-Milacron
and (b) the Puma robots

which means that the angles between neighbor axes are multiples of 90°. More-
over, with the purpose of maximizing their workspace, orthogonal manipulators
are designed with their second and third links of equal lengths, thereby ren-
dering them vulnerable to this type of singularity. An architecture common to
many manipulators such as the Cincinnati-Milacron, ABB, Fanuc, and others,
comprises a planar two-axis layout with equal link lengths, which is capable
of turning about an axis orthogonal to these two axes. This layout allows for
the architecture singularity under discussion, as shown in Fig. 4.11(a). The
well-known Puma manipulator is similar to the aforementioned manipulators,
except that it is supplied with what is called a shoulder offset b3, as illustrated
in Fig. 4.3. This offset, however, does not prevent the Puma from attaining the
same singularity as depicted in Fig. 4.11(b). Notice that in the presence of this
singularity, angle 8 is undetermined, but #; and 83 are determined in the case
of the Puma robot. However, in the presence of the singularity of Fig. 4.11(a),
neither 6, nor 8, are determined; only 83 of the arm structure is determined.

Example 4.4.1 A manipulator with a common orthogonal architecture is dis-
played in Fig. 4.12 in an arbitrary configuration. The arm architecture of this
manipulator has the DH parameters shown below:

a1=a3:0, b1=b2=b3=0, 011:900, a2=0°
Find its inverse kinematics solutions.

Solution: A common feature of this architecture is that it comprises as = by.
In the present discussion, however, the latter feature need not be included, and
hence, the result that follows applies even in its absence. In this case, coefficients
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Figure 4.12: An orthogonal decoupled manipulator

C, D, and FE take on the forms
C=0, D=0, E=aj+a3— (% +yg+25)

Hence,

and so
Jl:O) F=yo, G=-z¢

The radical of eq.(4.31b) reduces to z% + y%. Thus,

+ /22 2 —-1+£+/1 2
tan (—9—1> = 2c ot Ye = + (yo/zo) (4.32a)
2 —yc yo/zc

Now we recall the relation between tan(6; /2) and tan 8y, namely,

01 . -1+ 1+tan291
tan <5) = r—y (4.32b)

Upon comparison of egs.(4.32a) and (4.32b), it is apparent that

@1 = arctan (?/_c_)
Tc

a result that can be derived geometrically for this simple arm architecture.
Given that the arctan(-) function is double-valued, its two values differing in
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Figure 4.13: An orthogonal RRR manipulator

180°, we obtain here, again, two values for ;. On the other hand, 83 is calcu-

lated from eq.(4.31a) as

VT ER
E-C
thereby obtaining two values of 5. As a consequence, the inverse positioning
problem of this arm architecture admits four solutions as well. These solutions
give rise to two pairs of arm postures that are usually referred to as elbow-up
and elbow-down.

(m3)12 =%

Example 4.4.2 Find all real inverse displacement solutions of the manipulator
shown in Fig. 4.13, when point C of its end-effector has the base coordinates
C(0, 2a, —a).

Solution: The Denavit-Hartenberg parameters of this manipulator are derived
from Fig. 4.14, where the coordinate frames involved are indicated. In defining
the coordinate frames of that figure, the Denavit-Hartenberg notation was fol-
lowed, with Z, defined, arbitrarily, as parallel to Z3. From Fig. 4.14, then, we
have

ag=ar=az3=by=by3=a, byi=by=0, a=ay=90° a3=0°

One inverse displacement solution can be readily inferred from the geometry
of Fig. 4.14. For illustration purposes, and in order to find all other inverse
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X

Figure 4.14: The coordinate frames of the orthogonal RRR manipulator

kinematic solutions, we will use the procedure derived above. To this end, we
first proceed to calculate the coefficients of the quartic polynomial equation,
eq.(4.25), which are given, nevertheless, in terms of coefficients K, ..., Q of
egs.(4.23a—1f). These coeflicients are given, in turn, in terms of coefficients A,
... J of eqs.(4.19b—f) and (4.20b—f). We then proceed to calculate all the
necessary coefficients in the proper order:
A=0, B=4d?, C=D=—E =2’
F=2a, G=H=0, I=J=a
Moreover,
K =4a*, L=8a', M=8d N=-8* P=0 Q=-8d',
The set of coefficients sought thus reduces to
R=K-N+Q = 4a*
S =2(P- M) = -16a*
T=2Q+2L—K)=28a*
U = 2(M + P) = 16a*
V=K+N+Q=-12a
which leads to a quartic equation, namely,

T§—4733+27'32+47’3—3=0
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with four real roots:
(s)y =(13)2 =1, (m3)3=-1, (73)s=3
These roots yield the 83 values that follow:
(63)1 = (B3)2 =90°, (B3)3 = —90°, (63)4 = 143.13°

The quartic polynomial thus admits one double root, which means that at the
configurations resulting from this root, two solutions meet, thereby producing
a singularity, an issue that is discussed in Subsection 5.4. Below, we calculate
the remaining angles for each solution: Angle 6; is computed from relations
(4.21a—c), where A; = —8a®.

The first two roots, (63)1 = (63)2 = 90°, yield ¢3 = 0 and s3 = 1. Hence,
eqs.(4.21a & b) lead to

_B(I+J) 4da*(a+a)

“a= Al - —8a3 =-1
. = F(D+E) 2a(2a® —2a%) _ 0
1= Al N —8a3 N

and hence,
(01)1 = (61)2 = 1800

With 6, known, 65 is computed from the first two of eqs.(4.17), namely,

co=0, s,=-1

and hence,
(02)1 - (02)2 = '—900

The remaining roots are treated likewise, thereby obtaining
(01)3 = 900, (02)3 = 0, (01)4 = 143.130, (92)4 =0

It is noteworthy that the architecture of this manipulator does not allow for
the second singularity, associated with A; = 0.

Example 4.4.3 For the same manipulator of Example 4.4.2, find all real in-
verse kinematic solutions when point C' of its end-effector has the base coordi-
nates C(0, a, 0), as displayed in Fig. 4.15.

Solution: In this case, one obtains, successively,
A=0, B=C=D=E=2d
F=a, G=0 H=0, I=J=a
K=4a°L = M =N =8a% P =16a% Q =4a®
R=0, S=16a° T =324a°% U=48a% V =16a°
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Zs

€ ~

Figure 4.15: Manipulator configuration for C(0, a, 0)

Moreover, for this case, the quartic eq.(4.22) degenerates into a cubic equation,
namely,

TS +215+33+1=0

whose roots are readily found as
(T3)1 = '—0.43016, (7’3)2,3 = —0.78492 :i:jl.30714

where j is the imaginary unit, i.e., j = +/—1. That is, only one real solution
is obtained, namely, (f3)1 = —46.551°. However, shown in Fig. 4.15 is a quite
symmetric posture of this manipulator at the given position of point C' of its
end-effector, which does not correspond to the real solution obtained above.
In fact, the solution yielding the posture of Fig. 4.15 disappeared because of
the use of the quartic polynomial equation in tan(f3/2). Note that if the two
contours derived from egs.(4.19a) and (4.20a) are plotted, as in Fig. 4.16, their
intersections yield the two real roots, including the one leading to the posture
of Fig. 4.15.

The explanation of how the fourth root of the quartic equation disappeared is
given below: Let us write the quartic polynomial in full, with a “small” leading
coefficient ¢, namely,

€ms + T3 4212 4313 +1=0
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Figure 4.16: Contours producing the two real solutions for Example 4.4.3

Upon dividing both sides of the foregoing equation by 7§, we obtain

1 2 3 1
e+ —+—5+—=5+—5=0
T3 T3 7—3 7-3
whence, apparently, the original equation is satisfled as ¢ — 0 if and only if
73 — too, i.e, if 83 = 180°. The missing root is, hence, 83 = 180°. The
remaining angles are readily calculated as

(01)1 = -—105.90, (02)1 = —149.350, (91)4 = 1800, (02)4 = 1800

4.4.2 The Orientation Problem

Now the orientation inverse displacement problem is addressed. This problem
consists in determining the wrist angles that will produce a prescribed orien-
tation of the end-effector. This orientation, in turn, is given in terms of the
rotation matrix Q taking the end-effector from its home attitude to its current
one. Alternatively, the orientation can be given by the natural invariants of
the rotation matrix, vector e and angle ¢. Moreover, since 6;, 83, and 83 are
available, Q1, Q2, and Qs become data for this problem. One now has the
general layout of Fig. 4.17, where angles {6; }§ are to be determined from the
problem data, which are in this case the orientation of the end-effector and the
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Figure 4.17: General architecture of a spherical wrist

architecture of the wrist; the latter is defined by angles a4 and ay, neither of
which can be either 0 or #.

Now, since the orientation of the end-effector is given, we know the compo-
nents of vector eg in any coordinate frame. In particular, let

£
[66 ]4 =17 (433)
¢

Moreover, the components of vector es in F4 are nothing but the entries of the
third column of matrix Qy4, i.e.,

44 8in B4
[65 ]4 = | —M4 COS 64 (434)
A4

Furthermore, vectors e and eg make an angle as, and hence,
eles=MX; or [es]Tes]s=As (4.35)
Upon substitution of egs.(4.33) and (4.34) into eq.(4.35), we obtain

Epasiny — npg cos8y + CAg = As (4.36)
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which can be readily transformed, with the aid of the tan-half-angle identities,
into a quadratic equation in 74 = tan(f4/2), namely,

(As — npa — ()75 — 26pama + (Ns +1pa — CAa) = 0 (4.37)
its two roots being given by

L= St VE )t — (s — ()
! A5 — (Ag — npa

(4.38)

Note that the two foregoing roots are real as long as the radical is positive,
the two roots merging into a single one when the radical vanishes. Thus, a
negative radical means an attitude of the EE that is not feasible with the wrist.
It is noteworthy that a three-revolute spherical wrist is kinematically equivalent
to a spherical joint. However, the spherical wrist differs essentially from a
spherical joint in that the latter has, kinematically, an unlimited workspace—
a physical spherical joint, of course, has a limited workspace by virtue of its
mechanical construction—and can orient a rigid body arbitrarily. Therefore,
the workspace W of the wrist is not unlimited, but rather defined by the set of
values of £, n, and ¢ that satisfy the two relations shown below:

E+n?+¢=1 (4.39a)
f(£7 yun C) = (62 + ?72)#3 - (’\5 - CA4)2 Z 0 (439b)

In view of condition (4.39a), however, relation (4.39b) simplifies to an inequality
in ¢ alone, namely,

F(¢)=¢* —2Xaxs¢ — (4 — M) <0 (4.40)
As a consequence,

1. W is a region of the unit sphere & centered at the origin of the three-
dimensional space;

2. W is bounded by the two parallels given by the roots of F({) = 0 on the
sphere;

3. the wrist attains its singular configurations along the two foregoing par-
allels.

In order to gain more insight on the shape of the workspace W, let us look
at the boundary defined by F({) = 0. Upon setting F(({) to zero, we obtain a
quadratic equation in {, whose two roots can be readily found to be

C1,2 = AaAs £ |paps) (4.41)

which thus defines two planes, II1 and IT5, parallel to the &7 plane of the three-
dimensional space, intersecting the (-axis at ¢; and (s, respectively. Thus, the
workspace W of the spherical wrist at hand is that region of the surface of
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the unit sphere S contained between the two paralles defined by II; and IT,.
For example, a common wrist design involves an orthogonal architecture, i.e.,
ay = ay = 90°. For such wrists,

C1,2 = ﬂ:l

and hence, orthogonal wrists become singular when [eg]s = [0, 0, £1]7, i.e.,
when the fourth and the sixth axes are aligned. Thus, the workspace of or-
thogonal spherical wrists is the whole surface of the unit sphere centered at the
origin, the singularity curve thus degenerating into two points, namely, the two
intersections of this sphere with the (-axis. If one views { = 0 as the equatorial
plane, then the two singularity points of the workspace are the poles.

An alternative design is the so-called three-roll wrist of some Cincinnati-
Milacron robots, with a4 = as = 120°, thereby leading to Ay = A5 = —1/2 and
p4 = ps = V/3/2. For this wrist, the two planes IT; and IT, are found below:
First, we note that with the foregoing architecture,

1
Goa=1,~2

2

and hence, the workspace of this wrist is the part of the surface of the unit
sphere S that lies between the planes IIy and I1s parallel to the £-n plane,
intersecting the (-axis at {; = 1 and {; = —1/2, respectively. Hence, if { =0
is regarded as the equatorial plane, then the points of the sphere S that are
outside of the workspace of this wrist are those lying at a latitude of less than
—30°. The singularity points are thus the north pole and those lying on the
parallel of latitude —30°.

Once 84 is calculated from the two foregoing values of 74, if these are real,
angle 85 is obtained uniquely for each value of 64, as explained below: First,
eq.(4.9a) is rewritten in a form in which the data are collected in the right-hand
side, which produces

QiQsQs =R (4.42a)

with R defined as
R=0Q;Q;Q{Q (4.42b)

Moreover, let the entries of R in the fourth coordinate frame be given as

11 Ti2 T13
[Rla=[ra1 722 723
T31 T32 733

Expressions for 85 and g can be readily derived by solving first for Q5 from
€q.(4.42a), namely,
Qs = Q{RQ] (4.43)

Now, by virtue of the form of the Q; matrices, as appearing in eq.(4.1e), it is
apparent that the third row of QQ; does not contain 6;. Hence, the third column
of the matrix product of eq.(4.43) is independent of 85. Thus, two equations for
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#; are obtained by equating the first two components of the third columns of
that equation, thereby obtaining

1585 = (6712 + Aer13)ca + (622 + A6T23)S4
—p5cs = —Aa(peT12 + A6T13)84 + Aa(Ueran + AeT23)ca + pa(pers2 + Aer3s)

which thus yield a unique value of 85 for every value of 84. Finally, with 84 and
85 known, it is a simple matter to calculate 8g. This is done upon solving for
Qg from eq.(4.42a), i.e.,

Qs = Q5 QiR

and if the partitioning (4.12) of Q; is now recalled, a useful vector equation is
derived, namely,

ps = QI Qi (4.44)
where r; is the first column of R. Let w denote the product QI ry, i.e.,
711C4 + 72184

—A4(r1184 — ro104) + par31
pa(r1184 — ro1ca) + Aar3

w=Qir

il

Hence,
wyCs + Wass
QgQIrl = )\5(—-10185 + U)ng) + wa s
ps (w185 — wacs) + wsds
in which w; denotes the ith component of w. Hence, ¢g and s¢ are determined
from the first two scalar equations of eq.(4.44), namely,

4 Zy

Figure 4.18: The two configurations of a three-axis spherical wrist

Ce = w1Cs + Wass
S6 = —W1As85 + WaAsCs + Walts
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thereby deriving a unique value of 8¢ for every pair of values (64, 65). In sum-
mary, then, two values of 84 have been determined, each value determining,
in turn, one single corresponding set of 5 and 8 values. Therefore, there are
two sets of solutions for the orientation problem under study, which lead to
two corresponding wrist postures. The two distinct postures of an orthogonal
three-revolute spherical wrist for a given orientation of its EE are displayed in
Fig. 4.18.

When combined with the four postures of a decoupled manipulator leading to
one and the same location of its wrist center—positioning problem—a maximum
of eight possible combinations of joint angles for a single pose of the end-effector
of a decoupled manipulator are found.

4.5 Exercises

4.1 Shown in Fig. 10.3 is the kinematic chain of one of the six-dof legs of
a flight simulator, whose architecture is defined by the HD parameters
of Table 10.1. In the flight simulator, M is the moving platform, to
which an aircraft cockpit is rigidly attached. The six-dof motion of M
is controlled by means of the six hydraulic cylinders identical to that
indicated in Fig. 10.3 as a prismatic joint. Find all inverse displacement
solutions of this manipulator, relating the pose of M with all the joint
variables.

4.2 Modify the solution procedure of Section 4.3 to obtain all the postures
of a PRR manipulator that give the same EE pose, and show that this
problem leads to a quartic polynomial equation.

4.3 Repeat Exercise 4.2 as pertaining to a PRP manipulator.

4.4 The manipulator appearing in Fig. 4.19 is of the orthogonal type, with
a decoupled, spherical wrist, and a regional structure consisting of two
parallel axes and one axis perpendicular to these two. Find all inverse
kinematics solutions for arbitrary poses of the EE of this manipulator.

4.5 Similar to the manipulator of Fig. 4.19, that of Fig. 4.20 is of the orthog-
onal, decoupled type, except that the latter has a prismatic pair. For an
arbitrary pose of its EE, find all inverse displacement solutions of this
manipulator.

4.6 Derive expressions for the angle of rotation and the unit vector parallel to
the axis of rotation of matrices Q;, as introduced in Section 4.2.

4.7 An orthogonal spherical wrist has the architecture shown in Fig. 4.18, with
the DH parameters
Qy = 900, a5 = 90°
A frame F7 is attached to its EE so that Z7 coincides with Zg. Find the
(Cartesian) orientation that can be attained with two inverse displace-
ment solutions @y and 8z, defining the two distinct postures, that lie the
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4.8

4.9

4.10

Figure 4.19: A six-revolute robot holding a heavy tool

farthest apart. Note that a distance between two manipulator postures
can be defined as the radical of the quadratic equation yielding the two
inverse kinematic solutions of the wrist, whenever the radical is positive.
Those postures giving the same EE orientation and lying farthest from
each other are thus at the other end of the spectrum from singularities,
where the two postures merge into a single one. Hence, the postures lying
farthest from each other are singularity-robust.

Given an arbitrary three-revolute manipulator, as shown in Fig. 4.9, its
singular postures are characterized by the existence of a line passing
through its operation point about which the moments of its three axes
vanish—see Exercise 3.3. Note that this condition can be readily applied
to manipulators with a simple architecture, whereby two successive axes
intersect at right angles and two others are parallel. However, more com-
plex architectures, like that of the manipulator of Fig. 4.13, are more elu-
sive in this regard. Find the line passing through the operation point and
intersecting the three axes of the manipulator of Fig. 4.13 at a singularity.
Hint: A singular posture of this manipulator was found in Example 4.4.2.

A robot of the Puma type has the architecture displayed in Fig. 4.3, with
the numerical values a; = 0.432 m, a3 = 0.020 m, b3 = 0.149 m, by =
0.432 m. Find its maximum reach R as well as the link length a of the
manipulator of Fig. 4.15 with the same reach R.

For the Fanuc Arc Mate 120iB robot displayed in Fig. 4.21, with the
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Figure 4.20: ABB-IRB 1000 robotic manipulator

dimensions included therein,

(a) Find its Denavit-Hartenberg parameters, using the Z; axes suggested
in Fig. 4.21(b).

(b) Apparently, the robot under study is of the decoupled type. Find
all its inverse-displacement solutions for an arbitrary pose of its end-

effector, assuming that the operation point is located at a point of
F+ coordinates [ 0.0, 100.0, 100.0]7 mm.
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Figure 4.21: Geometric information taken from the data sheet of an industrial
robot: (a) the top view; (b) an isometric view; (c) front view; and (d) side view



Chapter 5

Kinetostatics of Serial
Robots

5.1 Introduction

Kinetostatics is understood here as the study of the interplay between the fea-
sible twists of and the constraint wrenches acting on the various rigid bodies of
a mechanical system, when the system moves under static, conservative condi-
tions. The feasible twists of the various rigid bodies, or links, are those allowed
by the constraints imposed by the robot joints. The constraint wrenches are, in
turn, the reaction forces and moments exerted on a link by the links to which
that link is coupled by means of joints. The subject of this chapter is the kine-
tostatics of serial robots, with focus on six-axis manipulators. By virtue of the
duality between the kinematic and the static relations in the mechanics of rigid
bodies, as outlined in Section 3.7, the derivation of the kinematic relations is
discussed in detail, the static relations following from the former.

‘We derive first the relation between the twist of the robot EE and the set
of joint rates, which is given by a linear transformation induced by the robot
Jacobian matriz. Once the foregoing relation is established for a general six-
joint robot, the relation between the static wrench exerted by the environment
on the EE and the balancing joint torques is derived by duality. Special robotic
architectures are given due attention. Decoupled and planar architectures are
treated as special cases of six-joint robots. The fundamental problem of sin-
gularities arising from a singular robot Jacobian in decoupled manipulators is
given due attention as well. Two types of singularities are discussed here for the
regional structure of decoupled robots. As a follow-up to the singularity analy-
sis of this structure, its three-dimensional workspace is derived. An algorithm
is proposed for the display of this workspace as pertaining to general regional
structures whose inverse displacement analysis leads to a quartic polynomial.
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Figure 5.1: General n-axis manipulator

The chapter closes with a section on kinetostatic performance indices. The
purpose of these indices is twofold: They are needed in robot design to help the
designer best dimension the links of the robot in the early stages of the design
process, prior to the elastostatic and the elastodynamic design stages. These
indices are also needed in the control of & given robot to ensure an acceptable
kinetostatic performance under feedback control. One third, pragmatic appli-
cation of these indices is the comparison of various candidate robots when a
robotic facility is being planned.

Elastostatic design pertains to the structural design of a robot to ensure that
the links and the joint mechanical transmissions will be able to withstand the
static loads that arise when the robot is in operation. This aspect of design
is usually conducted under the assumption that all structural elements operate
within the linearly elastic range, and is valid at a specific robot posture. Elas-
todynamic design considers the inertial load of the structural elements while
accounting for link flexibility, which gives rise to mechanical vibration. The
main concern here is avoiding resonance under linear dynamical conditions or
limit cycles under nonlinear conditions. Both elastostatics and elastodynamics
lie beyond the scope of the book, and hence, will not be considered here.

5.2 Velocity Analysis of Serial Manipulators

The relationships between the prescribed twist of the EE, also referred to as
the Cartesian velocity of the manipulator, and the corresponding joint-rates
are derived in this section. First, a serial n-axis manipulator containing only
revolute pairs is considered. Then, relations associated with prismatic pairs are
introduced, and finally, the joint rates of six-axis manipulators are calculated in
terms of the EE twist. Particular attention is given to decoupled manipulators,
for which simplified velocity relations are derived.
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We consider here the manipulator of Fig. 5.1, in which a joint coordinate 8;,
a joint rate €;, and a unit vector e; are associated with each revolute axis. The
Xi, Yi, Z; coordinate frame, attached to the (i — 1)st link, is not shown, but its
origin O; is indicated. If the angular-velocity vector of the ith link is denoted
by w;, then we have, from Fig. 5.1,

Wwo = 0
w1 = élel
Wy = élel + égeg (5.1)

Wy = 9161 +9262 + "'+énen

and if the angular velocity of the EE is denoted by w, then
w=w, =010 +0ses+ - +0nen = bie;
1

Likewise, from Fig. 5.1, one readily derives
P=a +a+:--+a, (5.2)

where p denotes the position vector of point P of the EE. Moreover, notice that
all vectors of the above equation must be expressed in the same frame; otherwise,
the addition would not be possible—vector a; was defined as expressed in the
ith frame in eq.(4.3¢). Upon differentiating both sides of eq.(5.2), we have

P=a+as+--+an (5.3)
Since vector a; is fixed to the ith link,
a,=-w;xa;, 1=12,...,n (5.4)
Furthermore, substitution of egs.(5.1) and (5.4) into eq.(5.3) yields
p = b0ie; X a; + (B1e1 + bye2) X ag +

: (5.5)
+(9161 + ézez + -4+ 9nen) X ap

which can be readily rearranged as

p=~Ffie; x (a; +ay+---+ay,)+brey x (ag +az + - +ay)
+ o+ Opey, X ay,

Now vector r; is defined as that joining O; with P, directed from the former
to the latter, as depicted in Fig. 5.1, i.e.,

r;=a;+a;+ -+a, (5.6)
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and hence, p can be rewritten as

n
p= Z f;e; x r;
1
Further, let A and B denote the 3 x n matrices defined as

A=[e; e -+ e,] (5.7a)
B=[e; xr e;Xry --- epXry] (5.7b)

the n-dimensional joint-rate vector 0 being defined, in turn, as
0=16 6 - 6,7
Thus, w and p can be expressed in a more compact form as
w=A0, p=B9

the twist of the EE being defined, in turn, as

t= [“’} (5.8)

| &
The EE twist is thus linearly related to the joint-rate vector 8, i.e.,
Jo=t (5.9)
where J is the Jacobian matriz, or Jacobian, for brevity, of the manipulator

under study, first introduced by Whitney (1972). The Jacobian is defined as
the 6 X n matrix shown below:

A
I= {B} (5.102)
or
J= [ et e e ] (5.10b)
€1 XTIy €2 Xrg -+ e, Xr,

Apparently, an alternative definition of the foregoing Jacobian matrix can be

given as
_ ot

Y

Moreover, if j; denotes the ith column of J, one has

s e;
Ji = €; Xr;

It is noteworthy that if the axis of the ith revolute is denoted by R;, then
Ji is nothing but the Pliicker array of that line, with the moment of R; being
taken with respect to the operation point P of the EE.

J
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Figure 5.2: Shoulder singularity of the Puma robot

geometric representation of the nullspace of J,. The singularity displayed
in the foregoing figure, termed here the elbow singularity, pertains also to a
manipulator with the architecture of Fig. 4.3. Notice that motions along £
in the posture displayed in Fig. 5.3 are possible, but only in one direction,
from C to O,.

With regard to the wrist singularities, these were already studied when solv-
ing the orientation problem for the inverse displacement analysis of decoupled
manipulators. Here, we study the same in light of the sub-Jacobian J;o of
eq.(5.20b). This sub-Jacobian obviously vanishes when the wrist is so config-
ured that its three revolute axes are coplanar, which thus leads to

e4xe5~e6=0

Note that when studying the orientation problem of decoupled manipulators,
we found that orthogonal wrists are singular when the sixth and fourth axes
are aligned, in full agreement with the foregoing condition. Indeed, if these two
axes are aligned, then ey = —eg, and the above equation holds.

5.4.1 Manipulator Workspace

The workspace of spherical wrists for orientation tasks was discussed in Subsec-
tion 4.4.2. Here we focus on the workspaces of three-axis positioning manipu-
lators in light of their singularities.
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Figure 5.3: Elbow singularity of the Puma robot

~—R
] ﬂ
} Ze
-
4

(b)

(c)

Figure 5.4: Workspace of a Puma manipulator (a) top view; (b) cross-section;
and (c) perspective
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In order to gain insight into the problem, we study first the workspace of
manipulators with the architecture of Fig. 4.3. Figures 5.2 and 5.3 show such
a manipulator with point C at the limit of its positioning capabilities in one
direction, i.e., at the boundary of its workspace. Moreover, with regard to the
posture of Fig. 5.2, it is apparent that the first singularity is preserved if () point
C moves on a line parallel to the first axis and intersecting the second axis; and
(#4) with the second and third joints locked, the first joint goes through a full
turn. Under the second motion, the line of the first motion sweeps a circular
cylinder whose axis is the first manipulator axis and with radius equal to b3,
the shoulder offset. This cylinder constitutes a part of the workspace boundary,
the other part consisting of a spherical surface. Indeed, the second singularity
is preserved if (i) with point C in the plane of the second and third axes, the
second joint makes a full turn, thereby tracing a circle with center on Lq, a
distance bs from the first axis, and radius r = ag + /a2 + b3; and (i¢) with
point C' still in the plane of the second and third joints, the first joint makes
a full turn. Under the second motion, the circle generated by the first motion
describes a sphere of radius R = /b3 + r2 because any point of that circle lies a
distance R from the intersection of the first two axes. This point thus becomes
the center of the sphere, which is the second part of the workspace, as shown in
Fig. 5.4.

The determination of the workspace boundaries of more general manipula-
tors requires, obviously, more general approaches, like that proposed by Cec-
carelli (1996). By means of an alternative approach, Ranjbaran et al. (1992)
found the workspace boundary with the aid of the general characteristic equa-
tion of a three-revolute manipulator. This equation is a quartic polynomial, as
displayed in eq.(4.25). From the discussion of Subsection 4.4.1, it is apparent
that at singularities, two distinct roots of the IDP merge into a single one. This
happens at points where the plot of the characteristic polynomial of eq.(4.25) is
tangent to the 73 axis, which occurs in turn at points where the derivative of this
polynomial with respect to 73 vanishes. The condition for 83 to correspond to a
point C' on the boundary of the workspace is, then, that both the characteristic
polynomial and its derivative with respect to 73 vanish concurrently. These two
polynomials are displayed below:

P(r3)= Ry + S5 + T3 + Uns +V =0 (5.37a)
P'(13) = 4R75 + 3875 + 2T+ U =0 (5.37b)

with coefficients R, S, T, U, and V defined in egs.(4.26a—e). From these equa-
tions and eqs.(4.19d—f) and (4.20d-f), it is apparent that the foregoing coef-
ficients are solely functions of the manipulator architecture and the Cartesian
coordinates of point C. Moreover, from the same equations, it is apparent that
the above coefficients are all quadratic in p> = 22 +y2% and guartic in z¢. Thus,
since the Cartesian coordinates z¢ and yo do not appear in the foregoing coef-
ficients explicitly, the workspace is symmetric about the Z; axis, a result to be
expected by virtue of the independence of singularities from angle 8;. Hence,
the workspace boundary is given by a function f(p?, z¢) = 0 that can be derived
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by eliminating 73 from eqs.(5.37a & b). This can be readily done by resorting
to any elimination procedure, the simplest one being dialytic elimination, as
discussed below.

In order to eliminate 73 from the above two equations, we proceed in two
steps: In the first step, six additional polynomial equations are derived from
eqs.(5.37a & b) by multiplying the two sides of each of these equations by 73,
72, and 73, thereby obtaining a total of eight polynomial equations in 73, namely,

RII+ 8T8+ T +Urf + Vi =0
4R7$ +38m) + 2T + U =0
R+ St +Tri + U + Vi =0
4R7E + 38T + 2T + U =0
R} + ST+ T3 +Uri+Vr =0
AR7y + 3573 + 2772 + Uy =0
Ry +Sm3 +Tr3 +Uns+V =0
4R7) + 3573 + 2T+ U =0

In the second elimination step we write the above eight equations in linear
homogeneous form, namely,

Mr; =0 (5.38a)

with the 8 x & matrix M and the 8-dimensional vector 73 defined as

‘'R S T U V 0 0 07 g
0 4R 35 2T U 0 0 0 78
O R § T U V 0 0 3
0 0 4R 35 2T U 0 0 .
M=10 0 B s T U v of ™|z (5.38b)
0 0 0 4R 35 2T U 0 .
00 0 R S T U V 7
0 0 0 0 4R 35 2T U. 1

It is now apparent that any feasible solution of eq.(5.38a) must be nontrivial,
and hence, M must be singular. The desired boundary equation is then derived
from the singularity condition on M, i.e.,

(%, zo) = det(M) =0 (5.39)

As a matter of fact, function f(p?, 2¢) of eq.(5.39), known as the (polynomial)
resolvent of eqs.(5.37a & b), can be computed using computer algebra, upon
invoking the procedure to obtain the discriminant of eq.(5.37a).4

4 Although a quartic polynomial has, properly speaking, four discriminants (Yang, Hou and
Zeng, 1996), which are defined as the central minors of matrix M of eq.(5.39) when P(73)
is written in monic form—with leading coefficient equal to unity—the resolvent is sometimes
referred to as the discriminant in question.
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Regions Number of Solutions
Two Solutions A ;

Four Solutions

Figure 5.5: The workspace of the manipulator of Figs. 4.13-4.15

We used the foregoing procedure, with the help of computer algebra, to
obtain a rendering of the workspace boundary of the manipulator of Figs. 4.13—
4.15, the workspace thus obtained being displayed in Fig. 5.5. For the record,
the resolvent of this manipulator, given in eq.(5.39), turned out to be a 16th-
degree bivariate polynomial in p and 2¢, involving only even powers. That is,
the resolvent in question turns out to be a bivariate octic polynomial in p? and
2%. If we let 0 = p? and ¢ = 22, then

f(0,0) =+ (=240 + (T6? =320+ 27)¢% + (7T0® — 5402 + 970 — 42)¢5
+(350* —4000° + 121002 — 976 & + 283)¢* + (T0° — 1100* + 5100°
—68402 + 1230 — 70)¢% + (70 — 1446° + 965 0* — 2208 ¢° + 705 02
—2720 4 83)¢? + 8 (02 — 40 — 1)(c® — 220" + 154 6° — 3280
~1550 + 14)¢ + (6* — 240° +1900% — 5520 + 17) (6% — 40 —1)* =0

5.5 Acceleration Analysis of Serial Manipula-

tors
The subject of this section is the computation of vector 8 of second joint-variable
derivatives, also called the joint accelerations. This vector is computed from

Cartesian position, velocity, and acceleration data. To this end, both sides of
eq.(5.9) are differentiated with respect to time, thus obtaining

Jo=t-J6 (5.40)

and hence, ) .
0=J3"'t-1J6) (5.41)
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From eq.(5.40), it is apparent that the joint-acceleration vector is computed
in exactly the same way as the joint-rate vector. In fact, the LU decomposition
of J is the same in this case and hence, need not be recomputed. All that is
needed is the solution of a lower- and an upper-triangular system, namely,

Lz:i;—.ié, Ub=1z

The two foregoing systems are solved first for z and then for 8 by forward and
backward substitution, respectively. The first of the foregoing systems is solved
with M/ multiplications and A? additions; the second with M, multiplications
and Al additions. These figures appear in eqgs.(5.17b & c¢). Thus, the total
numbers of multiplications M; and additions A4; that the forward and backward
solutions of the aforementioned systems require are

My =n? A;=n(n-1) (5.42)

In eq.(5.40), the right-hand side comprises two terms, the first being the specified
time-rate of change of the twist of the EE, or twist-rate, for brevity, which is
readily available. The second term is not available and must be computed.
This term involves the product of the time-derivative of J times the previously
computed joint-rate vector. Hence, in order to evaluate the right-hand side of
that equation, all that is further required is J. From eq.(5.10a), one has

. A
= [5]
where, from eqs.(5.7a & b),
A=[é é - &] (5.43a)
B=[u; uy --- 11,] (5.43b)
and u; denotes e; X r;, for i = 1,2,...,n. Moreover,
él =Wp Xe = 0 (544&)
€; = W;_1 Xe=w; Xe, £=23,...,n (544b)
and
u;=e; Xr;+e; xr;, 1=12,...,n (5.44C)

Next, an expression for #; is derived by time-differentiating both sides of eq.(5.6),
which produces

r,=a+an+---+a, i=12,...n
Recalling eq.(5.4), the above equation reduces to

i‘izwixai+wi+1 Xajg+--+wy Xa, (545)
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Substitution of eqs.(5.44) and (5.45) into eqs.(5.43a & b) leads to
A:[O Wi Xey -+ Wpo1Xeq]
B—_—[el XT1 Wig XTg+eyXrfy --- wn_lmxrn+enx1‘n]

with 1y and wg ;41 defined as
n
i‘kEZwixai, k=1,...,n (5.46a)
k

WEk,k4+1 = Wi X €41, k= 1, I 1 (546b)

The foregoing expressions are invariant and hence, valid in any coordinate
frame. However, these expressions have to be incorporated into matrix J; then,
the latter is to be multiplied by vector 6, as indicated in eq.(5.40). Thus,
eventually all columns of both A and B will have to be represented in the same
coordinate frame. Hence, coordinate transformations will have to be introduced
in the foregoing matrix columns in order to have all of these represented in the
same coordinate frame, say, the first one. We then have the expansion below:

AN A R b (5.47)
n

The right-hand side of eq.(5.47) is computed recursively as described below in
five steps, the number of operations required being included at the end of each
step.

1. Compute {[w;]; }7:
[wilt « 91[91]1
Fori=1ton—1do
[wit1)irr « Oialeipn liva + QF [wils
enddo 8n—-1)M & 5(n—-1)A

2. Compute {[ez]z }?
fer]r « [0]s
For i =2 to n do
[61]z Lo [wi X ei],-

enddo 0M & 0A

3. Compute {[#;]; }1:
[frn]n < [wn Xan]s
Fori=n—-1to 1 do
[ti]i « [wixa;]s + Qu[Tig1 ]inr
enddo (14n—8)M & (10n—~T7)A
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4. Compute {[10;]); }T using the expression appearing in eq.(5.44c):
[1'11]1 (‘[91XI"1]1 Fori=2to n do

[l'li]i — [éi Xr;+e; X l",']i
enddo dn—-1)M & 3n—-1)A

5. Compute Jo

Letv=J 0, which is a 6-dimensional vector. A coordinate transformation
of its two 3-dimensional vector components will be implemented using the
6 x 6 matrices U;, which are defined as

_{Q: O
Ui:[o Qi]

where O stands for the 3x 3 zero matrix. Thus, the foregoing 6 x 6 matrices
are block-diagonal, their diagonal blocks being simply the matrices Q;
introduced in Section 4.2. One then has the algorithm below:

[v]n 8, [z:]
n

Fori=n—1to 1 do

[V]i — 0.1' [31:‘ +U¢[V]1‘+1
i

enddo
Jo v 20(n—1)+4M & 13(n—1) A

thereby completing the computation of J@.

The figures given above for the floating-point operations involved were ob-
tained based on a few facts, namely,

1. It is recalled that [e; ]; = [0, 0, 1]T. Moreover, if welet [w]; = [wg, wy, w,]T
be an arbitrary 3-dimensional vector, then

[eixw]i=| w,

0
this product thus requiring zero multiplications and zero additions.

2. [&;);, computed as in eq.(5.44b), takes on the form [wy, —w;, 0]7, where
wy and wy are the X; and Y; components of w;. Moreover, let [r;]; =
[z, y, 2]T. Then

— 2y
[éi X ri]i = —ZWy
TWy + Ywy

and this product is computed with four multiplications and one addition.
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3. As found in Section 5.3, any coordinate transformation from F; to Fiy1,
or vice versa, of any 3-dimensional vector is computed with eight multi-
plications and four additions.

_ Thus, the total numbers of multiplications and additions required to compute
J@ in frame Fi, denoted by M; and Ay, respectively, are as shown below:

Mj;=4Tn—-37, A;=31n-—28

Since the right-hand side of eq.(5.40) involves the algebraic sum of two 6-
dimensional vectors, then, the total numbers of multiplications and additions
needed to compute the aforementioned right-hand side, denoted by M, and A,
are

M, =4 —37, A.=3ln—22

These figures yield 245 multiplications and 164 additions for a six-revolute ma-
nipulator of arbitrary architecture. Finally, if the latter figures are added to
those of eq.(5.42), one obtains the numbers of multiplications and additions re-
quired for an acceleration resolution of a six-revolute manipulator of arbitrary
architecture as

M, =281, A, =194

Furthermore, for six-axis, decoupled manipulators, the operation counts of
steps 1 and 2 above do not change. However, step 3 is reduced by 42 multipli-
cations and 30 additions, whereas step 4 by 12 multiplications and 9 additions.
Moreover, step 5 is reduced by 63 multiplications and 39 additions. With re-
gard to the solution of eq.(5.40) for 8, an additional reduction of floating-point
operations, or flops, is obtained, for now we need only 18 multiplications and 12
additions to solve two systems of three equations with three unknowns, thereby
saving 18 multiplications and 18 additions. Thus, the corresponding figures for
such a manipulator, M, and A, respectively, are

M =146, A, =98

5.6 Static Analysis of Serial Manipulators

In this section, the static analysis of a serial n-axis manipulator is undertaken,
six-axis decoupled manipulators being treated as special cases. Let 7; be either
the torque acting at the ith revolute or the force acting at the ith prismatic
pair. Moreover, let T be the n-dimensional vector of joint forces and torques,
whose ith component is 7;, whereas w = [nT, fT]7 denotes the wrench exerted
by the environment on the EE, with n denoting the resultant moment and f
the resultant force applied at point P of the end-effector of the manipulator of
Fig. 5.1. Then, the power exerted on the manipulator by all forces and moments
acting on the EE is

Mg =wlt=nTw+fTp



5.6 Static Analysis of Serial Manipulators 191

whereas the power II; exerted on the manipulator by all joint motors is
;=776 (5.48)

Under static, conservative conditions, there is neither power dissipation nor
change in the kinetic energy of the manipulator, and hence, the two foregoing
powers are equal, which is just a restatement of the First Law of Thermody-
namics or, equivalently, a form of the Principle of Virtual Work, i.e.,

wit =770 (5.49a)
Upon substitution of eq.(5.9) into eq.(5.49a), we obtain
wlJ6 =176 (5.49b)

which is a relation valid for arbitrary 8. Under these conditions, if J is not
singular, eq.(5.49b) leads to
w=r (5.50)

This equation relates the wrench acting on the EE with the joint forces and
torques exerted by the actuators. Therefore, this equation finds applications
in the sensing of the wrench w acting on the EE by means of torque sensors
located at the revolute axes. These sensors measure the motor-supplied torques
via the current flowing through the motor armatures, the sensor readouts being
the joint torques—or forces, in the case of prismatic joints—{ 7% }7, grouped in
vector T.

For a six-axis manipulator, in the absence of singularities, the foregoing
equation can be readily solved for w in the form

w=JTr

where J-7 stands for the inverse of JT. Thus, using the figures recorded in
eq.(5.16b), w can be computed from eq.(5.50) with 127 multiplications and 100
additions for a manipulator of arbitrary architecture. However, if the manip-
ulator is of the decoupled type, the Jacobian takes on the form appearing in
eq.(5.19), and hence, the foregoing computation can be performed in two steps,
namely,

T
J12nw = Tw
T T
J21f =Tqa — Jlll’lw

where n,, is the resultant moment acting on the end-effector when f is applied
at the center of the wrist, while T has been partitioned as

T= [T" ]
Tw
with 7, and 7, defined as the wrist and the arm torques, respectively. These
two vectors are given, in turn, as
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Hence, the foregoing calculations, as pertaining to a six-axis, decoupled manip-
ulator, are performed with 55 multiplications and 37 additions, which follows
from a result that was derived in Section 5.2 and is summarized in eq.(5.23).

In solving for the wrench acting on the EE from the above relations, the
wrist equilibrium equation is first solved for n,,, thus obtaining

ny, =I5 T (5.51)

where J1,7 stands for the inverse of J7,, and is available in eq.(5.29). Therefore,
1
nwz——[(e5><e6) (66X84) (e4xe5)]1'w

12
1
= Z;[T4(e5 X 86) +’7’5(€6 X e4) +T6(e4 X 65)] (5.52)
Now, if we let
To =T, —Jny (5.53)

we have, from eq.(5.28),
7—‘
f:[u2><u3 uz X ug U1XUQ]J—
As
where
u; =e; Xr;
or
1

f= A_Ql[?l(uz X 113) +?2(U3 X 111) +?3(ll1 X 112)] (554)

5.7 Planar Manipulators

Shown in Fig. 5.6 is a three-axis planar manipulator. Note that in this case, the
DH parameters b; and «; vanish, for 1 = 1,2, 3, the nonvanishing parameters a;
being indicated in the same figure. Below we proceed with the displacement,
velocity, acceleration, and static analyses of this manipulator. Here, we recall
a few relations of planar mechanics that will be found useful in the discussion
below.

A 2 x 2 matrix A can be partitioned either columnwise or rowwise, as shown
below:

A=[a b]= [;ﬁ]

where a, b, ¢, and d are all 2-dimensional column vectors. Furthermore, let E
be defined as an orthogonal matrix rotating 2-dimensional vectors through an
angle of 90° counterclockwise. Hence,

E= [0 —1] (5.55)

We thus have
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Fact 5.7.1

and hence,
Fact 5.7.2

E2=-1

where 1 is the 2 x 2 identity matrix. Moreover,
Fact 5.7.3

det(A) = —a"Eb =bTEa = —c"Ed = d"Ec
and
Fact 5.7.4

41 bT _ 1
A= Gty | S| P e

5.7.1 Displacement Analysis

The inverse displacement analysis of the manipulator at hand now consists in
determining the values of angles 8;, for i = 1, 2, 3, that will place the end-effector
so that its operation point P will be positioned at the prescribed Cartesian
coordinates x, ¥ and be oriented at a given angle ¢ with the X axis of Fig. 5.6.
Note that this manipulator can be considered as decoupled, for the end-effector
can be placed at the desired pose by first positioning point Oz with the aid of
the first two joints and then orienting it with the third joint only. We then solve
for the joint angles in two steps, one for positioning and one for orienting,.
We now have, from the geometry of Fig. 5.6,

ajc) +ascio =2

a181 + a2812 = Y

where z and y denote the Cartesian coordinates of point O3z, while ¢;5 and s34
stand for cos(61 + 62) and sin(6; + 62), respectively. We have thus derived two
equations for the two unknown angles, from which we can determine these angles
in various ways. For example, we can solve the problem using a semigraphical
approach similar to that of Subsection 9.4.

Indeed, from the two foregoing equations we can eliminate both ¢;2 and 839
by solving for the second terms of the left-hand sides of those equations, namely,

asCia = T — a1Ct (5.56a)
Q9812 =Y — a181 (5.56Db)
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Figure 5.6: Three-axis planar manipulator

Figure 5.7: The two real solutions of a planar manipulator
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Figure 5.8: The two real values of 8; giving the two postures depicted in Fig. 5.7

If both sides of the above two equations are now squared, then added, and the
ensuing sum is equated to a2, we obtain, after simplification, a linear equation
in ¢; and s; that represents a line £ in the ¢;-s; plane:

L: —a? + a3 + 2a1ze; +2a1ys1 — (22 +43) =0 (5.57)

Apparently, the two foregoing variables are constrained by a quadratic equation
defining a circle C in the same plane:

C: A+si=1

which has a unit radius and is centered at the origin of the c¢i-s; plane. The
real roots of interest are then obtained as the intersections of £ and C. Thus,
the problem can admit (i) two real and distinct roots, if the line and the circle
intersect; (i7) one repeated root if the line is tangent to the circle; and (4i7) no
real root if the line does not intersect the circle.

With ¢; and s; known, angle 6; is fully determined. Note that the two real
intersections of £ with C provide each one value of ¢, as depicted in Fig. 5.8.

Once 8; and 62 are available, 63 is readily derived from the geometry of
Fig. 5.6, namely,

03 =¢ — (61 +02)

and hence, each pair of (61, 62) values yields one single value for 5. Since we
have two such pairs, the problem admits two real solutions.

5.7.2 Velocity Analysis

Velocity analysis is most easily accomplished if the general velocity relations
derived in Section 5.2 are recalled and adapted to planar manipulators. Thus
we have, as in eq.(5.9), )

Jo=t (5.58a)
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where now,

61
J=| & e e3 ]7 ] [ézjl, tz[;] (5.58b)

€] XI1 €y Xrg e3Xr3 é
3

Il

and {r; }} are defined as in eq.(5.6), i.e., as the vectors directed from O; to P.
As in the previous subsection, we assume here that the manipulator moves in
the X-Y plane, and hence, all revolute axes are parallel to the Z axis, vectors
e; and ry, for i = 1,2, 3, thus taking on the forms

0 x;
er=er=e=e= |0, r;=]y;
1 0
with t reducing to )
t=[0 0 ¢ @p yp 0]7 (5.58¢)
in which £p and ¢p denote the components of the velocity of P. Thus,
—yi-
e; Xr; = T
0

and hence, the foregoing cross product can be expressed as

ES,‘ |

e Xr; = 0

where E was defined in eq.(5.55) and s; is the 2-dimensional projection of r; onto
the X-Y plane of motion, i.e.,s; = [2; ¥; 7. Equation (5.58a) thus reduces to

0o 0 0 0
1 1 1|, |é

ES1 E82 E53 0= p (559)
0 0 0 0

where 0 is the 2-dimensional zero vector and p is now reduced top = [, ]7. In
summary, then, by working only with the three nontrivial equations of eq.(5.59),
we can represent the velocity relation using a 3 x 3 Jacobian in eq.(5.58a). To
this end, we redefine J and t as

N S T | _[é
J:[Esl E52 ES3]’ t:[p] (560)

The velocity resolution of this manipulator thus reduces to solving for the three
joint rates from eq.(5.58a), with J and t defined as in eq.(5.60), which thus leads
to the system below:

6, ;
S O I B I
[Es1 Esy Ess] 32 “[p] (5.60)
3
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Solving for { 8;}3 is readily done by first reducing the system of equations
appearing in eq.(5.58a) to one of two equations in two unknowns by resort-
ing to Gaussian elimination. Indeed, if the first scalar equation of eq.(5.61) is
multiplied by Es; and the product is subtracted from the 2-dimensional vector
equation, we obtain

01
1 1 1 ) é
0 E(s2—s;) E(ss— 51):| zz - [p _ (ZsESl} (5.62)

from which a reduced system of two equations in two unknowns is readily ob-
tained, namely,

[E(52 — Sl) E(S3 - Sl)] [g;} = p e d)ESl (563)

The system of equations (5.63) can be readily solved if Fact 5.7.4 is recalled,
namely,

. - ‘
[Zﬂ = —i— [ (S‘_ SB)TEE] E(p - ¢Esi)
_1 [ (ss —s1)T(p— ¢'5E51) ]
A | ~(s2—s1)" (D — ¢Es1)
where A is the determinant of the 2 x 2 matrix coeflicient of eq.(5.63), i.e.,
A =det([E(sy —s1) E(sz3—s1)]) = —(s2 —s1)TE(s3 — 1) (5.64)
We thus have

(83 — SI)T(p — (i’ESI)
(82 — 8 )TE(Sg — Sl)

b = (s2 —s1)T (P — ¢Es1)
° (s2 —81)TE(s3 — s1)

6y = — (5.65a)

(5.65b)

Further, §; is computed from the first scalar equation of eq.(5.61), i.e.,
01 = — (62 + 63) (5.65¢)

thereby completing the velocity analysis.

The foregoing calculations are summarized below in algorithmic form, with
the corresponding numbers of multiplications and additions indicated at each
stage. In those numbers, we have taken into account that a multiplication of E
by any 2-dimensional vector incurs no computational cost, but rather a simple
rearrangement of the entries of this vector, with a reversal of one sign.

1. d3; ¢ s2— 8 0M + 24
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2. d3; < s3 — 81 0M +24
3. A+ di Edy 2M + 14
4. u « p — ¢Bs; 2M + 24
5. u  u/A 2M + 04
6. 8y « uTdy 2M + 14
7. 03 «— —uTdy oM +1A
8. 6y« ¢—0y— 05 OM + 24

The complete calculation of joint rates thus consumes only 10M and 114,
which represents a savings of about 67% of the computations involved if Gaus-
sian elimination is applied without regarding the algebraic structure of the Ja-
cobian J and its kinematic and geometric significance. In fact, the solution of an
arbitrary system of three equations in three unknowns requires, from eq.(5.16a),
28 additions and 23 multiplications. If the cost of calculating the right-hand
side is added, namely, 44 and 6 M, a total of 32A and 29M is required to solve
for the joint rates if straightforward Gaussian elimination is used.

5.7.3 Acceleration Analysis

The calculation of the joint accelerations needed to produce a given twist rate of
the EE is readily accomplished by differentiating both sides of eq.(5.58a), with
definitions (5.60), i.e., L

JO+JO0 =t
from which we readily derive a system of equations similar to eq.(5.58a) with 8
as unknown, namely,

Jo=1i-1736
where ..
. 0 0 0 . 01 . é
I=\gs, Es, Es, |0 95|02 tz[ﬁ]
03
and

é3 = (91 + 92 + 93)Ea3
§2 = 4y + 83 = (61 + 62)Eay + 83
§1 =4a; +8 =0,Ea; +8;
Now we can proceed by Gaussian elimination to solve for the joint accelera-

tions in exactly the same manner as in Subsection 5.7.2, thereby obtaining the
counterpart of eq.(5.63), namely,

[E(s2 —s1) E(sz —s1)] [gz] =w (5.66a)
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with w defined as
w =P — E(0181 + 0980 + 0353 + ds1) (5.66b)

and hence, similar to eqs.(5.65a—), one has

by = Ssﬁ—_zlﬂ (5.67a)
by = —W (5.67b)
él = ¢ - (92 + 93) (5.67¢)

Below we summarize the foregoing calculations in algorithmic form, indicat-
ing the numbers of operations required at each stage.

1. 83 « (01 + 62 + 63)Eay oM & 24
2. 8 + (61 + 62)Bay + 53 2M & 34
3. 81 + 0,Ea; + 5, 2M & 2A
4. W p —E(0181 + 6282 + 0383 + ds1) 8M & 84
5 w4+ w/A 2M + 04
6. 8 « wlds 2M +1A
7. 03 « —wTldy oM +1A
8. 0y « ¢ — (62 + s) OM +2A4

where dg;, d3;, and A are available from velocity calculations. The joint acceler-
ations thus require a total of 20 multiplications and 19 additions. These figures
represent substantial savings when compared with the numbers of operations re-
quired if plain Gaussian elimination were used, namely, 33 multiplications and
35 additions.

It is noteworthy that in the foregoing algorithm, we have replaced neither
the sum 8; + 65 + 63 nor élE(sl + s2 + s3) by w and correspondingly, by p,
because in path tracking, there is no perfect match between joint and Cartesian
variables. In fact, joint-rate and joint-acceleration calculations are needed in
feedback control schemes to estimate the position, velocity, and acceleration
errors by proper corrective actions.

5.7.4 Static Analysis

Here we assume that the environment exerts a planar wrench on the EE of the
manipulator appearing in Fig. 5.6. In accordance with the definition of the
planar twist in Subsection 5.7.2, eq.(5.60), the planar wrench is now defined as

w = [?] (5.68)
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where n is the scalar couple acting on the EE and f is the 2-dimensional force
acting at the operation point P of the EE. If additionally, we denote by 7 the 3-
dimensional vector of joint torques, the planar counterpart of eq.(5.50) follows,
i.e.,

Tw=r (5.69)
where
1 (ESl)
JT=11 (Esy)T
1 (Bsy)”

Now, in order to solve for the wrench w acting on the end-effector, given the joint
torques T and the posture of the manipulator, we can still apply our compact
Gaussian-elimination scheme, as introduced in Subsection 5.7.2. To this end, we
subtract the first scalar equation from the second and the third scalar equations
of eq.(5.69), which renders the foregoing system in the form

0 [E(sy —s1)]” =|mn-n

1 (Bsy)T n T
0 [E(ss —s1)]” [ ]

T3 —T1

Thus, the last two equations have been decoupled from the first one, which
allows us to solve them separately, i.e., we have reduced the system to one of
two equations in two unknowns, namely,

[[E(s2 —sl)]T] £ [TQ —n] (5.70)

[E(ss —s1)]7 T3 —T1

from which we readily obtain

£ [[E(S2*Sl)]T]_l [Tz—ﬁ] (5.71)

T
[E(s3 — 51)] 73— T1
and hence, upon expansion of the above inverse,

1

f= Z[(Tz—ﬁ)(ss—81)—(73—7'1)(52—81)] (5.72)

where A is exactly as defined in eq.(5.64). Finally, the resultant moment n
acting on the end-effector is readily calculated from the first scalar equation of
eq.(5.69), namely, as

n=rm +s Ef
thereby completing the static analysis of the manipulator under study. A quick

analysis of computational costs shows that the foregoing solution needs 8 M and
6A, or a savings of about 70% if straightforward Gaussian elimination is applied.
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5.8 Kinetostatic Performance Indices

Chapters 6 and 7 do not depend on this section, which can thus be skipped in
an introductory course based on the first half of the book. We have included
this section because (%) it is a simple matter to render the section self-contained,
while introducing the concept of condition number and its relevance in robotics;
(1%) kinetostatic performance can be studied with the background of the mate-
rial included up to this section; and (#41) kinetostatic performance is becoming
increasingly relevant as a design criterion and as a figure of merit in robot
control.

A Einetostatic performance indez of a robotic mechanical system is a scalar
quantity that measures how well the system behaves with regard to force and
motion transmission, the latter being understood in the differential sense, i.e., at
the velocity level. Now, a kinetostatic performance index, or kinetostatic index
for brevity, may be needed to assess the performance of a robot at the design
stage, in which case we need a posture-independent index. In this case, the
index becomes a function of the robot architecture only. If, on the other hand,
we want to assess the performance of a given robot while performing a task,
what we need is a posture-dependent index. This difference is often overlooked
in the robotics literature, although it is extremely important. Moreover, while
performance indices can be defined for all kinds of robotic mechanical systems,
we focus here on those associated with serial manipulators, which are the ones
studied most intensively.

Among the various performance indices that have been proposed, one can
cite the concept of service angle, first introduced by Vinogradov et al. (1971),
and the conditioning of robotic manipulators, as proposed by Yang and Lai
(1985). Yoshikawa (1985), in turn, introduced the concept of manipulability,
which is defined as the square root of the determinant of the product of the
manipulator Jacobian by its transpose. Paul and Stevenson (1983) used the
absolute value of the determinant of the Jacobian to assess the kinematic per-
formance of spherical wrists. Note that Yoshikawa’s manipulability is identical
to the absolute value of the determinant of the Jacobian, and hence, the latter
coincides with Paul and Stevenson’s performance index. It should be pointed
out that these indices were defined for control purposes and hence, are posture-
dependent. Germane to these concepts is that of dextrous workspace, introduced
by Kumar and Waldron (1981), and used for geometric optimization by Vijayku-
mar et al. (1986). Although the concepts of service angle and manipulability
are apparently different, they touch upon a common underlying issue, namely,
the kinematic, or alternatively, the static performance of a manipulator from
an accuracy viewpoint. For this reason, we refer to these indices generically as
kinetostatic.

What is at stake when discussing the manipulability of a robotic manipulator
is a measure of the invertibility of the associated Jacobian matrix, since this is
required for velocity and force-feedback control. One further performance index
is based on the condition number of the Jacobian, which was first used by
Salisbury and Craig (1982) to design mechanical fingers. Here, we shall use this
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concept to define the kinetostatic conditioning index of the manipulator. For
the sake of brevity, we devote the discussion below to only two indices, namely,
manipulability and conditioning. Prior to discussing these indices, we recall a
few facts from linear algebra.

Although the concepts discussed here are equally applicable to square and
rectangular matrices, we shall focus on the former. First, we give a geometric
interpretation of the mapping induced by a n x n matrix A. Here, we do not
assume any particular structure of A, which can thus be totally arbitrary. How-
ever, by invoking the polar-decomposition theorem (Strang, 1988), we can factor
A as

A=RU=VR (5.73)

where R is orthogonal, although not necessarily proper, while U and V are both
at least positive-semidefinite. Moreover, if A is nonsingular, then U and V are
both positive-definite, and R is unique. Apparently,

ATA=TU? or AAT =V? (5.74)

and hence, U (V) can be readily determined as the positive-semidefinite or
correspondingly, positive-definite square root of the product AT A (AAT), which
is necessarily positive-semidefinite at least; it is, in fact, positive-definite if A
is nonsingular. We recall here that the square root of arbitrary matrices was
briefly discussed in Subsection 2.3.6. The square root of a positive-semidefinite
matrix can be most easily understood if that matrix is assumed to be in diagonal
form, which is possible because such a matrix is necessarily symmetric, and
every symmetric matrix is diagonalizable. The matrix at hand being positive-
semidefinite, its eigenvalues are nonnegative, and hence, their square roots are all
real. The positive-semidefinite square root of interest is, then, readily obtained
as the diagonal matrix whose nontrivial entries are the nonnegative square roots
of the above-mentioned eigenvalues. With U or V determined, R can be found
uniquely only if A is nonsingular, in which case U and V are positive-definite.
If this is the case, then we have

R=AU!=V-lA (5.75a)

It is a simple matter to show that U and V are related by a similarity transfor-
mation, namely,
V = RURT (5.75b)

Now, as a consequence of the above relation between U and V, both matrices
share the same set of nonnegative eigenvalues {o;}7, which are termed the
singular values of the given matrix A. Furthermore, if the eigenvectors of U are
denoted by {u;}} and those of V by {v;}7, then the two sets are related by a
similarity transformation as well:

vi=Ru;, i=1,...,n (5.76)
Now, let vector x be mapped by A into z, i.e.,

z = Ax = RUx (5.77a)
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Figure 5.9: Geometric representation of mapping induced by matrix A

Moreover, let
y=Ux (5.77b)

and hence, we have a concatenation of mappings: U maps x into y, while R
maps y into z. Thus, by virtue of the nature of matrices R and U, the latter
maps the unit n-dimensional ball into a n-axis ellipsoid whose semiaxis lengths
bear the ratios of the eigenvalues of U. Moreover, R maps this ellipsoid into
another one with identical semiaxes, except that it is rotated about its center
or reflected, depending upon whether R is proper or improper orthogonal. The
eigenvalues of U or, for that matter, those of V, are thus nothing but the singular
values of A. Yoshikawa (1985) explained the foregoing relations resorting to the
singular-value decomposition theorem. We prefer to invoke the polar-decompo-
sition theorem instead, because of the geometric nature of the latter, as opposed
to the former, which is of an algebraic nature—it is based on a diagonalization
of either U or V, which is really not needed.

We illustrate the two mappings U and R in Fig. 5.9, where we orient the
X,Y, and Z axes along the three eigenvectors of U. Therefore, the semiaxes of
the ellipsoid are oriented as the eigenvectors of U as well. If A is singular, then
the ellipsoid degenerates into one with at least one vanishing semiaxis. On the
other hand, if matrix A is isotropic, i.e., if all its singular values are identical,
then it maps the unit ball into another ball, either enlarged or shrunken.

For our purposes, we can regard the Jacobian of a serial manipulator as
mapping the unit ball in the space of joint rates into a rotated or reflected
ellipsoid in the space of Cartesian velocities, or twists. Now, let us assume that
the polar decomposition of J is given by R and U, the manipulability y of the
robot under study thus becoming

1 = |det(3)] = |det(R)]|det(U)| (5.78a)

Since R is orthogonal, the absolute value of its determinant is unity. Addi-
tionally, the determinant of U is nonnegative, and hence,

p = det(U) (5.78b)
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which shows that the manipulability is the product of the eigenvalues of U or
equivalently, of the singular values of J. Now, the product of those singular
values, in the geometric interpretation of the mapping induced by J, is propor-
tional to the volume of the ellipsoid at hand, and hence,  can be interpreted
as a measure of the volume of that ellipsoid. It is apparent that the manipula-
bility defined in eq.(5.78b) is posture-dependent. For example, if J is singular,
at least one of the semiaxes of the ellipsoid vanishes, and so does its volume.
Manipulators at singular configurations thus have a manipulability of zero.

Now, if we want to use the concept of manipulability to define a posture-
independent kinetostatic index, we have to define this index in a global sense.
This can be done in the same way as the magnitude of a vector is defined,
namely, as the sum of the squares of its components. In this way, the global
manipulability can be defined as the integral of a certain power of the manip-
ulability over the whole workspace of the manipulator, which would amount
to defining the index as a norm of the manipulability in a space of functionsS.
For example, we can use the maximum manipulability attained over the whole
workspace, thereby ending up with what would be like a Chebyshev norm®; al-
ternatively, we can use the root-mean square (rms) value of the manipulability,
thereby ending up with a measure similar to the Euclidean norm.

The condition number of a square matrix is a measure of the relative roundofi-
error amplification of the computed results upon solving a linear system of equa-
tions associated with that matrix, with respect to the relative roundoff error of
the data (Dahlquist and Bjorck, 1974; Golub and van Loan, 1989). Based on
the condition number of the Jacobian, a posture-independent kinetostatic con-
ditioning index of robotic manipulators can be defined as a global measure of
the condition number.

The definition of the condition number (Golub and van Loan, 1989) requires
that all the entries of the matrix at hand bear the same physical units, which
we assume first, in order to introduce the concept. The more frequent case
of disparate units will be treated in the sequel. The condition number of a
dimensionally homogeneous Jacobian J is defined as

w(I) = 13T (5.79)
where |} - || stands for a matrix norm (Golub and van Loan, 1989). While any
norm can be used in the above definition, the one that is most convenient for
our purposes is the Frobenius norm || - ||r, defined as”

1 1
13|F = \/atr(JJT) = \/ﬁtr(Vz) (5.80a)

5Lack of familiarity with the mathematics of functions regarded as elements of vector
spaces, what is called functional analysis, should not discourage the reader from continuing,
for the balance of the book does not depend on these concepts.

6 A norm is a generalization of the absolute value of real numbers, but applicable to arrays.
In the same way that a vector norm is a measure of the “size” of the vector components, a
matrix norm is a measure of the “size” of the matrix entries. In this vein, the Chebyshev
norm of a given vector (matrix) is the largest absolute value of its components (entries).

7 Actually, the definition of eq.(5.80a) yields what is known as the wieghted Frobenius norm,
which gives a unit norm for the n x n identity matrix, regardless of the value of n.
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where we have assumed that J is of nxn. Moreover, from the polar-decomposition
theorem and Theorem 2.6.4, one can readily verify that

13]|r = \/ %tr(JTJ) = \/ %tr(UZ’) (5.80b)

Now, since the trace of a matrix is nothing but the sum of the matrix eigenvalues,
it is apparent that the Frobenius norm is identical with the rms value of the set
of singular values of the given matrix. Likewise,

13 = \/ %tr(J—lJ—T) _ \/ %tr[(JTJ)—l] _ \/ %tr[(JJT)—l] (5.81)

and hence, computing the Frobenius norm of J~! requires the inversion not of
J itself, but rather that of JTJ, or of JIT for that matter. Furthermore, while
J is not frame-invariant under a change of Cartesian-coordinate frame, JJ7 is.
As a consequence, the latter lends itself better to a symbolic inversion than J
itself. Hence, the Frobenius condition number kg is derived as

= _\/tr(U'z Ytr(U-2) \/tr(V2 Ytr(V—2) (5.82)

Furthermore, if the matriz 2-norm is used in definition (5.79), then

1 1
|12 = m;jxx{cri} =ou, [T Y= m?x{;} =— (5.83a)
where
Om = min{o;} (5.83b)

It is noteworthy that both the Frobenius norm and the 2-norm are given in
terms of the matrix singular values. As a consequence, these two norms are
frame-invariant. The 2-norm condition number k2(J) is thus given by

Ka(d) = M (5.84)

Om

Now we can state a fundamental result:

Theorem 5.8.1 The condition number based on either the 2-norm or the Frobe-
nius norm of the robot Jacobian is invariant to changes of frame. In this light,
the said condition numbers are immutable under a change of by, which amounts
to o translation of frame Fi, or of 81, which amounts to looking ot the robot from
o frame rotated by this angle about Zy. Moreover, angle o, not depending on
the robot architecture, but on the location of the task frame, neither influences
the same condition numbers.

Note that, regardless of the norm adopted, the condition number can attain
values from unity to infinity. Apparently, the condition number attains its
minimum value of unity for matrices with identical singular values; such matrices
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map the unit ball into another ball, although of a different size, and are, thus,
called isotropic. By extension, isotropic manipulators are those whose Jacobian
matrix can attain isotropic values. On the other side of the spectrum, singular
matrices have a smallest singular value that vanishes, and hence, their condition
number is infinite. The condition number of J can be thought of as indicating
the distortion of the unit ball in the space of joint-variables. The larger this
distortion, the greater the condition number, the worst-conditioned Jacobians
being those that are singular. For these, one of the semiaxes of the ellipsoid
vanishes and the ellipsoid degenerates into what would amount to an elliptical
disk in the 3-dimensional space.

Now, if the entries of J have different units, its condition number is unde-
fined, for we would face a problem of either adding or ordering from largest to
smallest singular values of different units. Staffetti, Bruyninckx and De Schut-
ter (2002) called kinetostatic performance indices of manipulators with such a
Jacobian matrix “non-invariant” to changes of norms. The same authors went
on to claim that, because of this feature, such performance indices—Staffetti
et al. refer to these indices as “manipulabilty indices”—are not natural. We
will leave aside the discussion of whether the indices at stake are invariant or
not, to focus instead on means to cope with the problem at hand. We resolve
the inconsistency of physical units by defining a characteristic length, by which
we divide the Jacobian entries that have units of length, thereby producing a
new Jacobian that is dimensionally homogeneous. We shall therefore divide our
study into () manipulators for only positioning tasks, (44) manipulators for only
orientation tasks, and (#i4) manipulators for both positioning and orientation
tasks. The characteristic length will be introduced when studying the third
category.

In the sequel, we will need an important property of isotropic matrices that
is recalled below. First note that if A is isotropic, all its singular values are
identical, say equal to ¢, and hence, matrices U and V are proportional to the
n x n identity matrix, i.e.,

U=V =901 (5.85)
In this case, then,
A =0R (5.86a)

which means that isotropic square matrices are proportional to orthogonal ma-
trices. As a consequence, then,

ATA = AAT =61 (5.86b)

Given an arbitrary manipulator of the serial type with a Jacobian matrix whose
entries all have the same units, we can calculate its condition number and use a
global measure of this to define a posture-independent kinetostatic index. Let
K be the minimum value attained by the condition number of the dimension-
ally homogeneous Jacobian over the whole workspace, regardless of the norm
adopted. Note that 1/k,, can be regarded as a Chebyshev norm® of the re-
ciprocal of the condition munber, because now 1/k,, represents the maximum

8in a space of functions.



5.8 Kinetostatic Performance Indices 207

value of this reciprocal in the whole workspace. We then introduce a posture-
independent performance index, the kinetostatic conditioning index, or KCI for
brevity, defined as

KCI = —— x 100% (5.87)

m

Notice that since the condition number is bounded from below, the KCI is
bounded from above by a value of 100%. Manipulators with a KCI of 100% are
those identified above as isotropic.

5.8.1 Positioning Manipulators

Here, again, we shall distinguish between planar and spatial manipulators.
These are studied separately.

Planar Manipulators

If the manipulator of Fig. 5.6 is limited to positioning tasks, we can dispense
with its third axis, the manipulator thus reducing to the one shown in Fig. 5.7;
its Jacobian reduces correspondingly to

J= [ES1 ESQ]

with s; denoting the two-dimensional versions of vectors r; of the Denavit-
Hartenberg notation, as introduced in Fig. 5.1. Now, if we want to design
this manipulator for maximum manipulability, we resort to eq.(5.78a), whence
p = |det(J)|. First, notice that

det(J) = det(E[s; s2]) = det(E)det([s1 s2])

and since matrix E is orthogonal, its determinant equals unity. Thus, the de-
terminant of interest is now calculated using Fact 5.7.3 of Section 5.7, namely,

det(J) = —sTEs, (5.88)

Therefore,
g = [s{ Esa| = [|s1|l|sz]l| sin(s1, s2)]

where (s;, s2) stands for the angle between the two vectors inside the parenthe-
ses. Now let us denote the manipulator reach with R, i.e., R = a; + az, and let
ar = Rpy, where py, for k = 1,2, is a dimensionless number. As illustrated in
Fig. 5.10, ||s2|| | sin(s1,s2)| = h, the height of triangle 0104 P of base O, P, and
hence, u turns out to be twice the area of the same triangle, with the notation
adopted at the outset.

Moreover, in terms of the base 0,02 = a, and the height as|sin 85|, the area
of the triangle becomes ajas|sinf,|/2, and hence,

p = arag|sinbz| = R*pyps| sin by (5.89a)
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P(z,Y)

Figure 5.10: A planar, two-axis positioning manipulator, with 8; =0

with p; and p2 subject to
p1+p2=1 (5.89b)

The design task at hand, i.e., finding a1 and a2, can then be formulated as an
optimization problem aimed at maximizing ;4 as given in eq.(5.89a) over p; and
P2, subject to the constraint (5.89b). This optimization problem can be readily
solved using, for example, Lagrange multipliers, thereby obtaining

1 T
= = — 6 = +—
p1 = p2 5 72 2
the absolute value of sin#, attaining its maximum value when 8, = £90°. The
maximum manipulability thus becomes
R2
Pmax = T (5.90)

Incidentally, the equal-length condition maximizes the workspace volume as
well.

On the other hand, if we want to minimize the condition number of J, we
should aim at rendering J isotropic, which means that the product J7J should
be proportional to the identity matrix, and so,

s{s; sfsy] _[02 O
[sfsz sgsz)] - [0 02}
where ¢ is the repeated singular value of J. Hence, for J to be isotropic, all we
need is that the two vectors s; and s2 have the same norm and that they lie at
right angles. The solution is a manipulator with link lengths observing a ratio
of v/2/2, i.e., with az/a; = v/2/2, and the two link axes at an angle of 135°,
as depicted in Fig. 5.11. Manipulators of the above type, used as mechanical
fingers, were investigated by Salisburg and Craig (1982), who found that these

manipulators can be rendered isotropic if given the foregoing dimensions and
configured as shown in Fig. 5.11.
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Figure 5.11: A two-axis isotropic manipulator

Spatial Manipulators

Now we have a manipulator like that depicted in Fig. 4.9, its Jacobian matrix
taking on the form

J={e; Xxr; e xry e3xr;] (5.91)

The condition for isotropy of this kind of manipulator takes on the form of
€q.(5.86b), which thus leads to

ller x r12 (e1 xr))T(eg x1y) (e xr1)7(e3 x r3)
(61 X rl)T(ez X I'g) ||82 X I'2||2 (82 X r2)T(e3 X I‘3) = 0'21
(e1 X rl)T(e3 X 1‘3) (62 X rg)T(e3 X 1‘3) Heg X l‘3”2

(5.92)
Hence, the manipulator under study can be postured so as to attain isotropy
if its dimensions are chosen so that its three columns have the same Euclidean
norm and are mutually orthogonal. These conditions can be attained by various
designs, one example being the manipulator of Fig. 4.15. Another isotropic
manipulator for 3-dimensional positioning tasks is displayed in Fig. 5.12.

Note that the manipulator of Fig. 5.12 has an orthogonal architecture, the
ratio of its last link length to the length of the intermediate link being, as in
the 2-dimensional case, 1/2/2. Since the first axis does not affect singularities,
neither does it affect isotropy, and hence, not only does one location of the
operation point exist that renders the manipulator isotropic, but a whole locus,
namely, the circle known as the isotropy circle, indicated in the same figure. By
the same token, the manipulator of Fig. 5.11 has an isotropy circle centered at
the center of the first joint, with a radius of (v/2/2)a;.
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isotropy circle
— =

Figure 5.12: An isotropic manipulator for 3-dimensional positioning tasks

5.8.2 Orienting Manipulators

We now have a three-revolute manipulator like that depicted in Fig. 4.17, its
Jacobian taking on the simple form

J=[e1 (<)) e3] (593)

and hence, the first isotropy condition of eq. (5.86b) leads to

elTel eTeg e?es
JTI = | eles eles ele; | =01 (5.94)

ele; ele; ele;

What the foregoing condition states is that a spherical wrist for orienting tasks
is isotropic if its three unit vectors {e;,}} are so laid out that they are mutually
orthogonal, which thus yields J = 1, the 3 x 3 identity matrix. Since the three
singular values of 1 are all equal to unity, i.e., 0 = 1, JTJ = JJ7 = 1 as
well. This is the case in orthogonal wrists when the two planes defined by the
corresponding pairs of neighboring axes are at right angles. In summary, then,
orthogonal wrists, which are rather frequent among industrial manipulators,
are isotropic. Here we have an example of engineering insight leading to an
optimum design, for such wrists existed long before isotropy was introduced
as a manipulator design criterion. Moreover, notice that from the results of
Subsection 4.4.2, spherical manipulators with an orthogonal architecture have
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a maximum workspace volume. That is, isotropic manipulators of the spherical
type have two optimality properties: they have both a maximum workspace
volume and a maximum KCI. Apparently, the manipulability of orthogonal
spherical wrists is also optimal, as the reader is invited to verify, when the wrist
is postured so that its three axes are mutually orthogonal. In this posture, the
manipulability of the wrist is unity.

5.8.3 Positioning and Orienting Manipulators

We saw already in Subsubsection 5.8.1 that the optimization of the two indices
studied here—the Jacobian condition number and manipulability—leads to dif-
ferent manipulators. In fact, the two indices entail even deeper differences, as
we shall see presently. First and foremost, as we shall prove for both planar
and spatial manipulators, the manipulability p is independent of the operation
point P of the end-effector, while the condition number is not. One more fun-
damental difference is that while calculating the manipulability of manipulators
intended for both positioning and orienting tasks poses no problem, the condi-
tion number cannot be calculated, at least directly, for this kind of manipulator.
Indeed, in order to determine the condition number of the Jacobian matrix, we
must either add or order from largest to smallest its singular values. However,
in the presence of positioning and orienting tasks, three of these singular val-
ues, those associated with orientation, are dimensionless, while those associated
with positioning have units of length, thereby making impossible such an order-
ing. We resolve this dimensional inhomogeneity by introducing a normalizing
characteristic length. Upon dividing the three positioning rows, i.e., the bottom
rows, of the Jacobian by this length, a nondimensional Jacobian is obtained
whose singular values are nondimensional as well. The characteristic length is
then defined as the normalizing length that renders the condition number of
the Jacobian matrix a minimum. While this definition does not bear a direct
geometric interpretation, in general, we shall see that such an interpretation is
possible for isotropic manipulators. Below we shall determine the character-
istic length for isotropic manipulators; determining the same for nonisotropic
manipulators requires solving a minimization problem that calls for numerical
techniques, as illustrated with examples.

Planar Manipulators

In the sequel, we will need the planar counterpart of the twist-transfer formula
of Subsection 3.4.2. First, we denote by t4 the 3-dimensional twist of a rigid
body undergoing planar motion—introduced in eq.(5.60)—when defined at a
point A; when defined at point B, the corresponding twist is denoted by tg,
ie.,

ta = [:] tg = [ﬂ (5.95)
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The relation between the two twists, or the planar twist-transfer formule, is
given by a linear transformation U as

tp =TUty (5.96a)
where U is now defined as a 3 x 3 matrix, namely,

1 OT}

Bb—a) 1, (5.96b)

U= [
with a and b representing the position vectors of points A and B, and 1,
standing for the 2 x 2 identity matrix. Moreover, U is, not surprisingly, a
member of the 3 x 3 unimodular group, i.e.,

det(U) =1

Because of the planar twist-transfer formula, the Jacobian defined at an oper-
ation point B is related to that defined at an operation point A of the same
end-effector by the same linear transformation U, i.e., if we denote the two
Jacobians by J4 and Jp, then

Jp=Uly (5.97)

and if we denote by g4 and pp the manipulability calculated at points A and
B, respectively, then

pp = |det(Ip)| = |det(U)||det(I0)] = |det@a)| = pa  (5.98)

thereby proving that the manipulability is insensitive to a change of operation
point, or to a change of end-effector, for that matter. Note that a similar analysis
for the condition number cannot be completed at this stage because, as pointed
out earlier, the condition number of these Jacobian matrices cannot even be
calculated directly.

In order to resolve the foregoing dimensional inhomogeneity, we introduce
the characteristic length L, which will be defined as that rendering the Jacobian
dimensionally homogeneous and optimally conditioned, i.e., with a minimum
condition number. We thus introduce the normalized Jacobian matrix as

< _[ 1 1 1
J:[%Esl iEs, 1Bs, (5.99)

Now, if we want to size the manipulator at hand by properly choosing its ge-
ometric parameters so as to render it isotropic, we must observe the isotropy
condition, e.g., the second of eq.(5.86b), which readily leads to

3 3 (xisf) BT "0

_|%
1B se #E [T} (sis])| BT 0

o O

(5.100)

(V]

0

Q
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and hence,
o>=3 (5.101a)
3 3
<Z s{) ET or Y s=0 (5.101b)
1 1
1 3
73 (Z(Sks{)> ET = 0?1, (5.101c)
1

What eq.(5.101a) states is simply that the triple singular value of the isotropic
J is v/3; eq.(5.101b) states, in turn, that the operation point is the centroid of
the centers of all manipulator joints if its Jacobian matrix is isotropic. Now, in
order to gain insight into eq.(5.101c), we note that since E is orthogonal and
62 = 3, this equation can be rewritten in a simpler form, namely,

= (Z@ks}f)) = ()1, (5.102)

1

Further, if we recall the definition of the moment of inertia of a rigid body, we
can immediately realize that the moment of inertia Ip of a set of particles of
unit mass located at the centers of the manipulator joints, with respect to the
operation point P, is given by

3
Ip = Y (lIskl®12 — sesy) (5.103)
1

from which it is apparent that the moment of inertia of the set comprises two
parts, the first being isotropic—it is a multiple of the 2 x 2 identity matrix—the
second not necessarily so. However, the second part has the form of the left-hand
side of eq.(5.102). Hence, eq.(5.102) states that if the manipulator under study
is isotropic, then its joint centers are located, at the isotropic configuration, at
the corners of a triangle that has circular inertial symmetry. What we mean by
this is that the 2 x 2 moment of inertia of the set of particles, with entries I,
Iy, and Iy, is similar to that of a circle, i.e., with I, = I, and I;;, = 0. An
obvious candidate is an equilateral triangle, the operation point thus coinciding
with the center of the triangle. Since the corners of an equilateral triangle are
at equal distances d from the center, and these distances are nothing but ||s||,
the condition below is readily derived for isotropy:

Iskll* =d®, k=1,2,3 (5.104)

In order to compute the characteristic length of the manipulator under study,
let us take the trace of both sides of eq.(5.102), thereby obtaining

1 3
=3 llsel? =6
1
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Figure 5.13: The planar 3-R isotropic manipulator

and hence, upon substituting eq.(5.104) into the foregoing relation, an expres-
sion for the characteristic length, as pertaining to planar isotropic manipulators,
is readily derived:

3

L= —23(1 (5.105)

It is now a simple matter to show that the three link lengths of this isotropic
manipulator are a; = as = v/3d and a3 = d. Such a manipulator is sketched at
an isotropic posture in Fig. 5.13.

We now can give a geometric interpretation of the characteristic length for
the case at hand: To this end, we look at the manipulator of Fig. 5.13 from an
arbitrary viewpoint outside of the manipulator plane, as depicted in Fig. 5.4.
Let this plane be X-Y, with origin at O;, and X-axis directed towards Os.
Next, we look at a point O on the normal to the X-Y plane passing through
the operation point P, a distance h from P.

Further, we define vectors {r;}} as

ri=@—5,’, 1=1,2,3
Upon imposing the condition that the set {r;}3 be orthogonal, we find h as

Therefore, the characteristic length L renders matrix LJ isotropic. In fact, this
matrix becomes
L L L

Ly = ESl E52 ES3

(5.107)



5.8 Kinetostatic Performance Indices 215

Figure 5.14: A geometric interpretation of the characteristic length
of the planar 3R isotropic manipulator.

for {s;}} valued at the isotropic posture of Fig. 5.13. Notice that the difference
between the Jacobian matrix defined in eq.(5.60) and matrix LJ lies only in
their first row. Obviously, the former is not dimensionally homogeneous; the
latter is.

Spatial Manipulators

The entries of the Jacobian of a six-axis manipulator intended for both posi-
tioning and orienting tasks are dimensionally inhomogeneous as well. Indeed,
as discussed in Section 5.2, the ith column of J is composed of the Plicker
coordinates of the ith axis of the manipulator, namely,

e e e e e e
€1 XTIy € XTIy €3 XT3 €4 XTIy €5 XTIy € XTIg

Now it is apparent that the first three rows of J are dimensionless, whereas
the remaining three, corresponding to the moments of the axes with respect to
the operation point of the end-effector, have units of length. This dimensional
inhomogeneity is resolved in the same way as in the case of planar manipulators
for both positioning and orienting tasks, i.e., by means of a characteristic length.
This length is defined, again, as the one that minimizes the condition number
of the dimensionless Jacobian thus obtained. We then define the corresponding
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normalized Jacobian as

J= ey (=D es ey es €s
T |feixri tesxry fe3xry fesXry fes XI5 feg X Tg
(5.109)
and hence, the second isotropy condition of eq.(5.86b) leads to
6
Z erel =01 (5.110a)
1
6
> epler xr)T =0 (5.110b)
1
18
—L—2 Z(ek X rk)(ek X rk)T = 021 (5.1100)
1

where 1 is the 3 x 3 identity matrix, and O is the 3 x 3 zero matrix. Now, if we
take the trace of both sides of eq.(5.110a), we obtain

62=2 or o=v2
Furthermore, we take the trace of both sides of eq.(5.110c), which yields

6
1
T2 Z llex x ry]|? = 302
1

But |jex, x ri[|% is nothing but the square of the distance dy, of the kth revolute
axis to the operation point, the foregoing equation thus yielding

6
> d
1

i.e., the characteristic length of o spatial siz-revolute isotropic manipulator is
the root-mean square of the distances of the revolute axes to the operation point
when the robot finds itself at the posture of minimum condition number.

Furthermore, eq.(5.110a) states that if { ey }¢ is regarded as the set of posi-
tion vectors of points { P }$ on the surface of the unit sphere, then the moment-
of-inertia matrix of the set of equal masses located at these points has spherical
symmetry. What the latter means is that any direction of the 3-dimensional
space is a principal axis of inertia of the foregoing set. Likewise, eq.(5.110c)
states that if {e; x ry }$ is regarded as the set of position vectors of points
{ Q4 } in the 3-dimensional Euclidean space, then the moment-of-inertia matrix
of the set of equal masses located at these points has spherical symmetry as
well.

Now, in order to gain insight into eq.(5.110b), let us take the axial vector of
both sides of that equation, thus obtaining

L =

S| =
£

6
D erx(epx1p) =0 (5.111)
1
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Table 5.1: DH Parameters of DIESTRO

1 | a; (mm) | b; (mmm) a; 9;
1 50 50 90° | 64
2 50 50 —-90° | 6,
3 50 50 90° | 63
4 50 50 —90° | 04
5 50 50 920° | 85
6 50 50 —90° | 6s

with 0 denoting the 3-dimensional zero vector. Furthermore, let us denote by
E;, the cross-product matrix of ey, the foregoing equation thus taking on the
form

6
> Eir, =0
1

However,

El = -1 +epel
for every k, and hence, eq.(5.111) leads to

6

2(1 - ekeg)rk =0

1

Moreover, (1 — ege] )ry is nothing but the normal component of ry with respect
to ey, as defined in Section 2.2. Let us denote this component by rkL, thereby
obtaining an alternative expression for the foregoing equation, namely,

Zrkl =0 (5.112)

1

The geometric interpretation of the above equation is now apparent: Let O}, be
the foot of the perpendicular to the kth revolute axis from the operation point
P; then, 1 is the vector directed from O}, to P. Therefore, the operation point
of an isotropic manipulator, configured at the isotropic posture, is the centroid
of the set { O, }$ of perpendicular feet from the operation point.

A six-axis manipulator designed with an isotropic architecture, DIESTRO, is
displayed in Fig. 5.15. The Denavit-Hartenberg parameters of this manipulator
are given in Table 5.1. DIESTRO is characterized by identical link lengths a
and offsets identical with this common link length, besides twist angles of 90°
between all pairs of neighboring axes. Not surprisingly, the characteristic length
of this manipulator is a.
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Figure 5.15: DIESTRO, a six-axis isotropic manipulator in two postures: (a)
with the arm extended upwards; (b) with the arm down, showing the orthogo-
nality of the neighboring axes

5.8.4 Computation of the Characteristic Length: Appli-
cations to Performance Evaluation

‘We elaborate further on the concept of characterictic length. In order to provide
a better grasp of the concept, we focus on its computation as pertaining to a
given robot, that need not be isotropic. To do this, we include two examples,
one planar and one spatial, industrial robot. Once a numerical value of the
characteristic length is available, we can compute the minimum value of the
condition number of the robot Jacobian, with which we can assess the robot
kinetostatic performance by means of the KCI.

Example 5.8.1 (A planar, equilateral, three-revolute robot) Compute
the characteristic length of the robot of Fig. 5.16, depicting a posture in which
¢, has been set equal to zero. What is the KCI of this robot?

Solution: We have a1 = az = a3 = a for the robot under study. In order to
compute its length, we have to minimize the Jacobian condition number by a
proper choice of the characteristic length L and the joint variables 85 and 6;.
We thus start by deriving an expression for the Jacobian:

1 1 1

J= ESI ESz ES3
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p

Figure 5.16: Equilateral, three-revolute planar robot

Now, we render J dimensionally homogeneous by introducing the characteristic
length L, thus obtaining the normalized Jacobian J:

3 - [ 1 1 1 ]
(1/L)Es; (1/L)Es; (1/L)Es;
From the manipulator geometry, we have,
R i vl N el B R bl
with
€1 =cosby, c¢g=sinfs, c¢15 = cos(br +02), 123 = cos(fy + 02 +83)

81 =sinfy, sy =sinfy, 13 =sin(fy +62), S123 = sin(@y + 65 + 63)

Since we set 8; = 0, because the first joint does not affect the condition number,
the normalized Jacobian becomes

1 1 1
J=| —r(s2a+s23) —r(s2+523) —rsas|, r=
(1 +ca+co3) 7r(ca+coz)  Teas

the inverse of J, as derived with computer algebra, being

. s3/82 co/(rsa) 1/r
J = | —(s3+s2)/s2 —(1+c)/(rs2) —1/r
(82 -+ 823)/82 1/(7‘82) 0

The square of the Frobenius-norm condition number of J is now computed as

Ky = fg
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with f and g defined as the square of the weighted Frobenius norms of J and
J _1, respectively, i.e.,

_ —T— 4 2
=11 = 5@ T =1+ (2+ 2 ot it -c23) 2

3 3 3
and
=7 —1”2 _ (s2 + 823)2 + (83 + 823)% + 52 224‘62
- F 3s2 3 r2s2
which can be rewritten as
f=1+4r
and
_1D+ E/r?
3 s

with coefficients A, D and E independent of r, namely,

A== (3+62+203+C23)

D= (82 + 823)° + (53 + 523)° + 53
E=2(2+¢)

We now have a classical minimization problem:

D+ Efr?
2 — = - — 1
Fr = f - 3(1 + A ) S% r,rglzl,%a

where the characteristic length is implicit in . While the foregoing problem is
well posed, we should not forget that xr is unbounded from above. In order
to gain better insight into the problem at hand, it is preferable to treat the
problem as one of maximization of 1/kr, or of its square, for that matter. As
well, we can dispense with the constant factor 1/3 in %, which thus leads to
the maximization problem below:

IH

— max
r,02,03

Q
P

with P and @ defined as
P=ADr* + (AE+D)>+ E, Q=r’s2

In order to obtain the optimum values of the three design variables r, 65,
and 03, we need to set up the normality conditions of the problem at hand.
These are readily obtained upon zeroing the gradient of % with respect to the
vector of design variables, defined as x = [ r 6y 85 ]T. The said conditions
are, thus,
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The three components of the above gradient, 8z/9r, 82/88,, and 8z/06;, are
then derived using the general formula for the derivative of a rational expression:

a [QY _ 1 b ‘
81:1_ (']3) - ﬁ(QzP QP’L)

where Q; and P; stand for 8Q/dz; and 8P/dx;, with z; taking values of r, 82,
and 63, for 7 = 1, 2, 3, respectively. We thus have, using a similar notation for
the partial derivatives of coefficients A, D and E:
P, = 4ADr® + 2(AE + D)r, Qi =2rs?
P, = (AsD + AD2)7A + (AE + AEs + .Dz)’l~2 + Es, Q2= 2r2s9Cy
= (A3D + AD3)7‘4 + (A3E + AE;3 + D3)7‘2 +E;, Q3=0

Apparently, E3 = 0, the normality conditions thus simplifying to

g; = 2}’;32% (—ADr* + E) =0

8692 TS ([2ADcs — (AsD + ADg)salr* + [2(AE + D)es
(AQE + AE, + Dy)s5] 1> + 2Ecy — Eysy} = 0

gg—s =— T;f? [(AsD + AD3)r® + (AsE + D3)] =0

thereby obtaining a system of three nonlinear equations in three unknowns,
namely, the three design variables. Apparently, all three normality conditions
are satisfied for either » = 0 or s3 = 0, which just confirms that the normality
conditions are sufficient for a point in the design space to be stationary; such a
point can be a local minimum, a local mazimum or a saddle point. The vanishing
of the product rs, thus yields a minimum of z, which indicates kp — oo, r =0
giving an architecture singularity, s = 0 a posture singularity. We are not
interested, for our purposes, on such a minimum, for which reason we assume
henceforth that rsy # 0. Under this condition, the normality conditions thus
yield the reduced system of equations

$1=—-ADr* + E=0

¢2 = [2ADcy — (A2 D + AD5)sy]rt + [2(AE + D)cy — (A2E + AE, + Dy)sy)r?
+2Fc¢cy — Fy89 =0

$3 = (A3D + AD3)r? + (AsE+D3) =0

The problem at hand is thus solved by finding the roots of the foregoing
system. We can do this by means of the Newton-Raphson method, for example,
which (¢) requires the 3 x 3 Jacobian matrix of the three foregoing equations,
i.e., further differentiation, and (i7) yileds only one root, out of many, for one
given initial guess, when the method converges at all. Moreover, given the local
nature of the method, Newton-Raphson cannot tell whether one has found all
possible roots of the system of equations.
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An alternative, semigraphical approach, was introduced in Example 4.4.3.
This approach consists in reducing the problem to finding the roots of two
nonlinear equations in two unknowns; each equation, then, defines one contour
in the plane of the two unknowns, the intersection points of the two contours
yielding all possible real roots of the system at hand. In order to apply this
approach to the above system, we have to eliminate one of the three unknowns
from the system, the obvious candidate being r. We can do this by dialytic
elimination, as introduced in Subsection 5.4.1. Given the special structure of
the three given equations, it is simpler to eliminate r following a straightforward
approach: First, we solve for 7¢ from the first equation and for 72 from the third,
which yields:

a_E 5 AsE+ Ds
“ 4D " T TA;D+ AD;

Upon equating the above expression of r* with the square of its counterpart
expression for 72, we obtain

r

F (82, 63) = (AE — D)(AD? — A2DE) =0

Further, upon substituting the same expressions for 2 and r* into equation
¢2 = 0, we obtain

G(Oz, 93) = (AE — D)[(AA;;DEQ + AgAgDE - AD2D3) sin92
—2AD(A3E - D3) Cos 92] =0

thereby obtaining a reduced system of two equations in two unknowns only,
8, and 03. The foregoing system admits further simplifications. Indeed, the
common factor AE — D turns out to be positive-definite, i.e., AE — D > 0 for
any values of 62 and 83. While it is not obvious that the factor in question
is positive-definite, its sign-definiteness was verified with the aid of computer
algebra. To visualize this property, we include a three-dimensional rendering
of the function as a surface in Fig. 5.17(a) and a side view of the same in
Fig. 5.17(b). Given that the factor in question is positive-definite, we can safely
divide both sides of the two foregoing equations by this factor, which thus leads
to two nonlinear equations in 82 and 3 defining contours €y and Cs in the 65-03
plane, namely,

C,: AD} - A3DE=0
Cy: (AA3DE2 + Ay AsDE — AD2D3) sin 5 — 2AD(A3E — D3) cosfy =0

The two above contours are plotted in the #5-03 plane in Fig. 5.18.
Apparently, to any optimum posture with joint center O3 above line O;05
corresponds a symmetrically located posture of the robot with O3 below the
above line. This means that all solutions (64, 83) expected should be symmetric
about the origin of the #2-85 plane, which they are, as illustrated in Fig. 5.18(a).
That is, if a pair of numerical values (s, 83) verifies the normality conditions,
then so does the pair (—62, —83). By the same token, if we set §; = 7 in the
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Figure 5.17: A 3D rendering of the function ® = AE — D vs. #5 and 63: (a) an
isometric view; and (b) a view in the 62-® plane

Jacobian expression, a similar set of normality conditions should be obtained,
with the corresoponding symmetry.

In light of the symmetry of the plots of Fig. 5.18(a), we can focus on the first
quadrant of the ,-05 plane, and plot the zoom-in of Fig. 5.18(a), showing only
this quadrant. Moreover, it is apparent that contour C; exhibits two double
points, one at (0.9, 2.9), the other at (2.1, 2.6). Double points are likely to
produce spurious solutions®; hence, we discard those two double points, thereby
leaving only five intersections of interest. As it turns out, the intersection de-
tected by inspection at, roughly, 8> = 1.69 rad, 653 = 2.61 rad produces a maxi-
mum of 1/kpr. These rough values of the design variables were then refined using
the Newton-Raphson method, with the foregoing rough values as initial guess'®.
The Newton-Raphson method, as implemented with Matlab code, yielded the
refined solution displayed below in eight iterations:

02 = 1.68910726900188 rad = 96.77871763°,
0; = 2.61287852677543 rad = 149.7069120°,
r =2.040896177 = L =a/r =0.4899808287 m

9A spurious solution is a set of numerical values of the roots of a system of equations
that, although computed from a sound elimination procedure, does not verify the equations.
Example 9.7.3 includes a case of a double point in a contour that yields spurious solutions.

1014 is well known (Dahlquist and Bjérck, 1974) that, close to a root, the Newton-Raphson
method converges quadratically, i.e., the approximation to the root gains, roughly, two digits
of accuracy at each iteration. Hence, the Newton-Raphson procedure will likely converge to
the root closest to the given estimate.
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Figure 5.18: Contours C; and Cs in the 65-03 plane: (a) in the —7 < 6 < 7,
—7 < 83 < 7 range; (b) a zoom-in in the 0 < 8, < 7, 0 < 03 < 7 range

where we have recalled that a was specified as 1 m. The normalized Jacobian
J at the optimum posture is, moreover,

1 1 1
J=|-0.1552 -0.1552 1.8715
0.9858 —1.0552 —0.8143

with kp = 1.1832. Hence,
KCI = 84.52%

Note that, if we use the 2-norm to define the condition number, i.e., if we
minimize

Ka(r, 02,03) = i

m

then we cannot find expressions for the gradient of 1/x% with respect to the
design variables because the objective function now is not analytic'! in the de-
sign variables. That is, unlike the minimization of kr, now we do not have
normality conditions. Nevertheless, k5 can still be minimized using a direct-
search method, i.e., an optimization method not relying on gradients, but only
on objective-function evaluation. The objective function is that whose min-
imum, or maximum for that matter, is searched. In our case, the objective
function to minimize is k2. Direct-search minimization methods are available in
scientific software. Matlab, for example, uses the Nelder-Mead simplex method,
as implemented in its fminsearch function. A local minimum value of ko was
found by fminsearch with the initial guess

r=10, 6, =6.0°, 63 =18.0°

11 A real-valued function of a real argument is said to be analytic at one value of its argument
if the function admits a series exapnsion at this value.



5.8 Kinetostatic Performance Indices 225

Table 5.2: DH Parameters of the Fanuc Arc Mate S series manipulator of 1990

1 | ai (mm) | b; (mm) | a; | 6
1 200 810 90° | 61
2 600 0 0° | 6.
3 130 -30 90° | 63
4 0 550 90° | 64
5 0 100 90° | Os
6 0 100 0° | Be
after 148 iterations, as
ko = 1.9070

This value is attained at the values of the design variables given below:
r=2.1650, 0, =98.9785°, 63 =145.193°
which yield L = 0.4619 m and a nondimensional Jacobian

1 1 1
J=1 —0.1808 —0.1898 1.9488
0.8839 —1.2813 —0.9433

Shown in Fig. 5.19 is the given manipulator at the optimum posture under the
condition number calculated using the Frobenius norm, the posture correspond-
ing to the minimum condition number based on the 2-norm being indistinguish-
able from this one.

Figure 5.19: Optimum configuration for a minimum kg
Example 5.8.2 Find the KCI and the characteristic length of the Fanuc Robot

Arc Mate S series manipulator of 1990, whose DH parameters are given in
Table 5.2.
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Solution: We need the minimum value that the condition number xr of the
normalized robot Jacobian can attain, in order to calculate its KCI as indicated
in eq.(5.87). Now, the Fanuc Robot Arc Mate S series of 1990 is a six-revolute
manipulator for positioning and orienting tasks. Hence, its Jacobian matrix has
to be first recast in nondimensional form, as in eq.(5.109). Next, we find L along
with the joint variables that determine the posture of minimum condition num-
ber via an optimization procedure. Prior to the formulation of the underlying
optimization problem, however, we recall Theorem 5.8.1, under which the first
joint, accounting for motions of the manipulator as a single rigid body, does not
affect its Jacobian condition number. By the same token, we align axes Zg and
Zr. As a consequence, 85 does not affect the Jacobian condition number either.
We thus define the design vector x of the optimization problem at hand as a
5-dimensional array, namely,

x=[0 635 05 65 L]¥
and set up the optimization problem as
min x(J)
X

Now, given the architecture of the robot at hand, a symbolic expression for
J~1, or its dimensionless counterpart j—l, not to speak of kp itself, is elusive,
and hence, an approach like that of Example 5.8.1 appears rather unfeasible.
We thus resort to a direct-search—as opposed to a gradient-based—procedure
to solve the foregoing optimization problem. There are various methods of
this kind at our disposal; the one we chose is, again, the Nelder-Mead simplex
method, as implemented in Matlab within the fminsearch function, which was
provided with the initial guess

Xinip = [26° —56° 195° 107° 341.738]"
The results reported by Matlab are displayed below:
Xopt = [22.60° —51.13° —159.93° 88° 351.23]7
whose last entry, the characteristic length of the robot, is in mm, i.e.,
L = 351.23 mm

Furthermore, the minimum condition number attained at the foregoing posture,
with the characteristic length found above, is

krp = 1.2717

Therefore, the KCI of the Fanuc Robot Arc Mate S series manipulator of 1990
is
KCI = 78.63%

To be sure, the KCI of this manipulator can still be improved dramatically
by noting that the condition number is highly dependent on the location of the
operation point of the end-effector. The robot DH parameters given in Table 5.2
do not account for the geometry of the EE.
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5.9 Exercises

N.B.: Exercises 5.13-5.17 pertain to Section 5.8. They are thus to
be assigned only if this section was covered in class.

5.1 Shown in Fig. 5.20 is a computer-generated model of DIESTRO, the
robot displayed in Fig. 5.15, with a slightly modified EE. The Denavit-
Hartenberg parameters of this robot are given in Table 5.3. Find the
Jacobian matrix of the manipulator at the above configuration.

Figure 5.20: A six-revolute manipulator

Table 5.3: DH parameters of the modified DIESTRO

% | a; (mm) | b; (mm) a; 0;

1 50 50 90° 90°
2 50 50 —-90° | —90°
3 50 50 90° 90°
4 50 50 -90° | —90°
5 50 50 90° 90°
6 0 50 -90° | —90°

5.2 The robotic manipulator of Fig. 4.19 is instrumented with sensors measur-
ing the torque applied by the motors at the joints. Two readouts are taken
of the sensors for the robot in the configuration indicated in the figure. In
the first readout, the gripper is empty; in the second, it holds a tool. If
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the first readout is subtracted from the second, the vector difference ATt
is obtained as
Ar=[0 2 1 0 1 0]7 Nm

With the foregoing information, determine the weight w of the tool and
the distance d of its mass center from C, the center of the spherical wrist.

A planar three-axis manipulator is shown in Fig. 5.21, with a1 = as =
az = 1 m. When a wrench acts onto the EE of this manipulator, the joint
motors exert torques that keep the manipulator under static equilibrium.
Readouts of these joint torques are recorded when the manipulator is in
the posture §; = 8y = 03 = 45°, namely,

le—\/iNm, =—V2Nm, 75=1-+v2Nm

Calculate the above-mentioned wrench.

P(x,y)

Figure 5.21: A planar three-axis manipulator

For the two postures found in Exercise 4.7, the EE is to move with an an-
gular velocity w = w1, wa, ws]” s™. Show that if ||w|| remains constant,
then so does ||8]], for 8 defined as the joint-rate vector of the wrist.

Point C' of the manipulator of Fig. 4.15 is to move with a velocity v in
the posture displayed in that figure. Show that as long as ||v|| remains
constant, so does ||8|], for 8 defined as the joint-rate vector. Moreover,
let us assume that in the same posture, point C is to attain a given accel-
eration a. In general, however, ||6}|, where 8 denotes the corresponding
joint-acceleration vector, does not necessarily remain constant under a
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5.6

5.7

5.8

5.9

constant ||al|. Under which conditions does ||a|| remain constant for a
constant ||8]|?

A load f is applied to the manipulator of Fig. 4.15 in the posture displayed
in that figure. Torque cells at the joints are calibrated to supply torque
readouts resulting from this load only, and not from the dead load—its
own weight—of the manipulator. Show that under a constant-magnitude
load, the magnitude of the joint-torque vector remains constant as well.

Shown in Fig. 4.20 is the kinematic chain of an industrial robot, like the
ABB-IRB 1000, which contains five revolutes and one prismatic pair.

(a) Determine the manipulator Jacobian in the Xi, Yi, Z; coordinate
frame fixed to the base.

(b) Determine the twist of the end-effector, defined in terms of the ve-
locity of point P, for unit values of all joint-rates, and the posture
displayed in the same figure.

(c) Determine the joint accelerations that will produce a vanishing accel-
eration of the point of intersection, C, of the three wrist axes and a
vanishing angular acceleration of the gripper, for the unit joint rates
given above.

The robot in Fig. 4.20 is now used for a deburring task. When the robot is
in the configuration shown in that figure, a static force f and no moment
acts on point P of the deburring tool. This force is sensed by torque sensors
placed at the joints of the robot. Assume that the distance between the
operating point P and the wrist center is 500 mm and that the readings
of the arm joints are 7y, = 0, 72 = 100 Nm, and 73 = 50 Nm.

(a) Find the force f acting at P.

(b) Find the readings of the torque sensors placed at the wrist joints.

A decoupled manipulator is shown in Fig. 10.3 with the DH parameters
of Table 10.1 at arbitrary posture.

{a) Find the Jacobian matrix of this manipulator at a posture with axis
X; vertical and pointing downwards, while Z, and ¥; make an angle
of 180°. Moreover, in this particular posture, Z3 and Z4 are vertical
and pointing upwards, while Z; makes an angle of 180° with Y;.

(b) At the posture described in item (a), compute the joint-rates that
will produce the twist

1

[w]l =11 w, [p]l =
1

e
<
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(¢) A wrench given by a moment n and a force f applied at point P
acts on the EE of the same manipulator at the posture described in
item (a) above. Calculate the joint torques or moments required to
balance this wrench, which is given by

5.10 Dialytic elimination. The characteristic polynomial of decoupled ma-

nipulators for positioning tasks can be derived alternatively via dialytic
elimination, as introduced in Subsection 5.4.1. It is recalled here that
dialytic elimination consists in eliminating one unknown from a system
of polynomial equations by expressing this system in linear homogeneous
form, whereby each equation is a linear combination of various successive
powers of the unknown to be eliminated, including the zeroth power. This
elimination can be achieved as outlined below: In egs.(4.19a) and (4.20a),
express cosf; and sinf; in terms of tan(6, /2) = t;, thereby obtaining

(~A+Cc3+Ds3+E)t34+2Bt1 + (Ces +Ds3+E+ A) =0
(Hez+Isz3+ Nti+2G—-F)t1+(Hez +Isz3+J+F)=0
which can be further expressed as
mt?+2Bt; +n=0
pti4+(2G-F)t1 +q=0
with obvious definitions for coefficients m, n, p, and ¢q. Next, both sides
of the two foregoing equations are multiplied by ¢1, thereby producing
mt3+2Bt2 +nt; =0
pts+ (2G - F)tl+qt; =0
Now, the last four equations can be regarded as a system of linear homo-

geneous equations, namely,
Mtl =0

where 0 is the 4-dimensional zero vector, while M is a 4 x 4 matrix, and
t; is a 4-dimensional vector. These arrays are defined as

0 m 2B n 3
|0 » 26-F 4 _ | &
M= m 2B n 0ol’ t = t
p 2G-F q 0 1

Apparently, t; # 0, and hence, M must be singular. The characteristic
polynomial sought can then be derived from the condition

det(M) =0
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5.11

5.12

5.13

5.14

5.15

Show that the last equation is quadratic in cosf3 and sinf3. Hence, the
foregoing equation should lead to a quartic equation in tan(83/2). Derive
the quartic equation involved. Hint: Do not do this by hand, for it may
be too time-consuming and could quickly lead to algebraic mistakes. Use
software for symbolic computations instead.

Compute the workspace volume of the manipulator of Fig. 4.3. Here, you
can exploit the axial symmetry of the workspace by recalling the Pappus-
Guldinus Theorems—see any book on multivariable calculus—that yield
the volume as 27q, with ¢ defined as the first moment of the cross-section,
which is displayed in Fig. 5.4(b), with respect to the axis of symmetry, Z;.
To this end, you will need the first moment of a semicircle with respect
to its diameter. This information is tabulated in books on elementary
mechanics or multivariable calculus, a.k.a. advanced calculus.

Compute the workspace volume of the manipulator of Fig. 4.15, whose
workspace is sketched in Fig. 5.5. Here, you can also use the Pappus-
Guldinus Theorem, as suggested in Exercise 5.11. However, the first mo-
ment of the cross-section has to be determined numerically, for the area
properties of the curve that generates the 3-dimensional workspace are
not, tabulated. Now, for two manipulators, the Puma-type and the one
under discussion, with the same reach, determine which one has the larger
workspace. Note: This exercise is not more difficult than others, but it
requires the use of suitable software for the calculation of area properties
of planar regions bounded by arbitrary curves. Unless you have access to
such software, do not attempt this exercise.

Show that the maximum manipulability g = 1/det(3JJT) of an orthog-
onal spherical wrist is attained when all three of its axes are mutually
orthogonal. Find that maximum value.

Find an expression for the condition number of a three-revolute spherical
wrist of twist angles a4 and a5, and show that this number depends only on
Qy, ay, and the intermediate joint angle, 5. Moreover, find values of these
variables that minimize the condition number of the manipulator. Hint:
To find the required expression, the use of the condition number based
on the Frobenius norm is strongly recommended. However, rendering the
Jacobian matriz isotropic can be done by inspection.

Manipulability of decoupled manipulators. Let u, and ., represent
the manipulability of the arm and the wrist of a decoupled manipulator,

i.e.,
Mo = wdet(ngng), My = det(JngTQ)

with Ji2 and Jo; defined in Section 5.2. Show that the manipulability u
of the overall manipulator is the product of the two manipulabilities given
above, i.e.,

L= Hollw
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5.16 Consider a planar two-revolute manipulator with link lengths a; and a-.

Find an expression of the form «(r,82) for the condition number of its
Jacobian, with r = as/a;, and establish values of r and 6, that minimize
&, which reaches a minimum value of unity.

5.17 Shown in Fig. 5.12 is an orthogonal three-revolute manipulator with an

isotropic Jacobian. Find the volume of its workspace. Now consider a
second manipulator with a similar orthogonal architecture, but with more
common dimensions, i.e., with links of equal length A. If the two manip-
ulators have the same reach, that is, if

1++2

A= 5

l

find the volume of the workspace of the second manipulator. Finally, deter-
mine the KCI—see Section 5.8 for a definition of this term—of the second
manipulator. Draw some conclusions with regard to the performance of
the two manipulators.



Chapter 6

Trajectory Planning:
Pick-and-Place Operations

6.1 Introduction

The motions undergone by robotic mechanical systems should be, as a rule,
as smooth as possible; i.e., abrupt changes in position, velocity, and acceler-
ation should be avoided. Indeed, abrupt motions require unlimited amounts
of power to be implemented, which the motors cannot supply because of their
physical limitations. On the other hand, abrupt motion changes arise when the
robot collides with an object, a situation that should also be avoided. While
smooth motions can be planned with simple techniques, as described below,
these are no guarantees that no abrupt motion changes will occur. In fact, if
the work environment is cluttered with objects, whether stationary or mobile,
collisions may occur. Under ideal conditions, a flexible manufacturing cell is
a work environment in which all objects, machines and workpieces alike, move
with preprogrammed motions that by their nature, can be predicted at any in-
stant. Actual situations, however, are far from being ideal, and system failures
are unavoidable. Unpredictable situations should thus be accounted for when
designing a robotic system, which can be done by supplying the system with
sensors for the automatic detection of unexpected events or by providing for
human monitoring. Nevertheless, robotic systems find applications not only in
the well-structured environments of flexible manufacturing cells, but also in un-
structured environments such as exploration of unknown terrains and systems
in which humans are present. The planning of robot motions in the latter case
is obviously much more challenging than in the former. Robot motion planning
in unstructured environments calls for techniques beyond the scope of those
studied in this book, involving such areas as pattern recognition and artificial
intelligence. For this reason, we have devoted this book to the planning of robot
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motions in structured environments only.
Two typical tasks call for trajectory planning techniques, namely,

e pick-and-place operations (PPO), and
¢ continuous paths (CP).

We will study PPO in this chapter, with Chapter 11 devoted to CP. More-
over, we will focus on simple robotic manipulators of the serial type, although
these techniques can be directly applied to other, more advanced, robotic me-
chanical systems.

6.2 Background on PPO

In PPO, a robotic manipulator is meant to take a workpiece from a given ini-
tial pose, specified by the position of one of its points and its orientation with
respect to a certain coordinate frame, to a final pose, specified likewise. How-
ever, how the object moves from its initial to its final pose is immaterial, as
long as the motion is smooth and no collisions occur. Pick-and-place operations
are executed in elementary manufacturing operations such as loading and un-
loading of belt conveyors, tool changes in machine tools, and simple assembly
operations such as putting roller bearings on a shaft. The common denomina-
tor of these tasks is material handling, which usually requires the presence of
conventional machines whose motion is very simple and is usually characterized
by a uniform velocity. In some instances, such as in packing operations, a set
of workpieces, e.g., in a magazine, is to be relocated in a prescribed pattern
in a container, which constitutes an operation known as palletizing. Although
palletizing is a more elaborate operation than simple pick-and-place, it can be
readily decomposed into a sequence of the latter operations.

It should be noted that although the initial and the final poses in a PPO
are prescribed in the Cartesian space, robot motions are implemented in the
joint space. Hence, the planning of PPO will be conducted in the latter space,
which brings about the need of mapping the motion thus planned into the
Cartesian space, in order to ensure that the robot will not collide with other
objects in its surroundings. The latter task is far from being that simple, since
it involves the rendering of the motion of all the moving links of the robot,
each of which has a particular geometry. An approach to path planning first
proposed by Lozano-Pérez (1981) consists of mapping the obstacles in the joint
space, thus producing obstacles in the joint space in the form of regions that
the joint-space trajectory should avoid. The idea can be readily implemented
for simple planar motions and simple geometries of the obstacles. However, for
general 3-D motions and arbitrary geometries, the computational requirements
make the procedure impractical. A more pragmatic approach would consist
of two steps, namely, (i) planning a preliminary trajectory in the joint space,
disregarding the obstacles, and (i¢) visually verifying if collisions occur with
the aid of a graphics system rendering the animation of the robot motion in the
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presence of obstacles. The availability of powerful graphics hardware enables the
fast animati