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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts
and interpretations emerge quite spontaneously and these are then discussed,
used, discarded or subsumed into the prevailing subject paradigm. Sometimes
these innovative concepts coalesce into a new sub-discipline within the broad
subject tapestry of control and signal processing. This preliminary battle be-
tween old and new usually takes place at conferences, through the Internet and
in the journals of the discipline. After a little more maturity has been acquired
by the new concepts then archival publication as a scientific or engineering
monograph may occur.

A new concept in control and signal processing is known to have arrived
when sufficient material has evolved for the topic to be taught as a specialized
tutorial workshop or as a course to undergraduate, graduate or industrial
engineers. Advanced Textbooks in Control and Signal Processing are designed
as a vehicle for the systematic presentation of course material for both popular
and innovative topics in the discipline. It is hoped that prospective authors will
welcome the opportunity to publish a structured and systematic presentation
of some of the newer emerging control and signal processing technologies in
the textbook series.

One of our aims for the Advanced Textbooks in Control and Signal Pro-
cessing series is to create a set of course textbooks that are comprehensive
in their coverage. Even though a primary aim of the series is to service the
textbook needs of various types of advanced courses we also hope that the
industrial control engineer and the control academic will be able to collect
the series volumes and use them as a reference library in control and signal
processing.

Robotics is an area where the series has the excellent entry in the volume
by L. Sciavicco and B. Siciliano entitled Modelling and Control of Robot Ma-
nipulators, now in its second edition. To complement our coverage in Robotics,
we are pleased to welcome into the series this new volume Control of Robot
Manipulators in Joint Space by Rafael Kelly, Vı́ctor Santibáñez and Antonio
Loŕıa. Other topics like models, kinematics and dynamics are introduced into
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the narrative as and when they are needed to design and compute the robot
manipulator controllers. Another novel feature of the text is the extensive use
of the laboratory prototype Pelican robotic manipulator as the test-bed case
study for the robot manipulator controllers devised. This ensures that the
reader will be able to see how robot manipulator control is done in practice.
Indeed, this means that the text can be closely linked to “hands on” laboratory
experience. Control and mechatronics lecturers wishing to use the textbook
to support their advance course on robot manipulator control will find the
lecture presentation slides, and the problem solutions, which are available at
springonline.com, an added bonus.

The style of the text is formally rigorous but avoids a lemma–theorem
presentation in favour of one of thorough explanation. Chapter 2 of the text
covers the main mathematical tools and introduces the concepts of the direct
(or second) method of Lyapunov for system stability analysis. This is needed
because the robot manipulator system is a nonlinear system. Since the cover-
age in this chapter includes a wide range of stability concepts, the reader will
be pleased to find each new concept supported by a worked example. Robot
dynamics and their implications for robot manipulator control are covered in
Chapters 3 and 4 whilst Chapter 5 moves on to discuss the model details of
the Pelican prototype robotic manipulator. The kinematic and dynamic mod-
els are, described and model parameter values given. This chapter shows how
the Pelican prototype is “kitted out” with a set of models the properties of
which are then investigated in preparation for the control studies to follow.

Parts II to IV (covering Chapters 6 to 16) are devoted to robot manip-
ulator controller design and performance case studies. This shows just how
focused the textbook is on robot manipulator control. This study is given
in three stages: position control (Part II); motion control (Part Ill) and ad-
vanced control topics (Part IV). Remarkably, the workhorse controller type
being used is from the PID family so that the control focus is close to the
type of controllers used widely in industrial applications, namely from the
classical Proportional, Integral, Derivative controller family. In these chapter-
length controller studies, the earlier lessons in Lyapunov stability methods
come to the fore, demonstrating how Lyapunov theory is used for controllers
of a classical form being used with nonlinear system models to prove the
necessary stability results. The advanced control topics covered in Part IV
include a range of adaptive control methods. Four appendices are given with
additional material on the mathematical and Lyapunov methods used and on
the modelling details of direct current motors.

There is no doubt that this robot manipulator control course textbook
is a challenging one but ultimately a very rewarding one. From a general
viewpoint the reward of learning about how to approach classical control for
systems having nonlinear models is a valuable one with potential application in
other control fields. For robot manipulator control per se, the book is rigorous,
thorough and comprehensive in its presentation and is an excellent addition
to the series of advanced course textbooks in control and signal processing.

M.J. Grimble and M.A. Johnson
Glasgow, Scotland, U.K.

March 2005



Preface

The concept of robot has transformed from the idea of an artificial super-
human, materialized by the pen of science fiction writer Karel Čapek, into
the reality of animated autonomous machines. An important class of these
are the robot manipulators, designed to perform a wide variety of tasks in
production lines of diverse industrial sectors; perhaps the most clear exam-
ple is the automotive industry. Robotics, introduced by science fiction writer
Isaac Asimov as the study of robots, has become a truly vast field of modern
technology involving specialized knowledge from a range of disciplines such as
electrical engineering, mechatronics, cybernetics, computer science, mechani-
cal engineering and applied mathematics.

As a result, courses on robotics continue to gain interest and, following the
demands of modern industry, every year more and more program studies, from
engineering departments and faculties of universities round the globe, include
robotics as a compulsory subject. While a complete course on robotics that
is, including topics such as modeling, control, technological implementation
and instrumentation, may need two terms at graduate level to be covered in
fair generality, other more specialized courses can be studied in one senior
year term. The present text addresses the subject in the second manner; it is
mostly devoted to the specific but vast topic of robot control.

Robot control is the spine of robotics. It consists in studying how to make a
robot manipulator do what it is desired to do automatically; hence, it consists
in designing robot controllers. Typically, these take the form of an equation
or an algorithm which is realized via specialized computer programs. Then,
controllers form part of the so-called robot control system which is physically
constituted of a computer, a data acquisition unit, actuators (typically elec-
trical motors), the robot itself and some extra “electronics”. Thus, the design
and full implementation of a robot controller relies on every and each of the
above-mentioned disciplines.

The simplest controller for industrial robot manipulators is the Propor-
tional Integral Derivative (PID) controller. In general, this type of controller
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is designed on the basis that the robot model is composed of independent cou-
pled dynamic (differential) equations. While these controllers are widely used
in industrial manipulators (robotic arms), depending on the task to be carried
out, they do not always result in the best performance. To improve the latter
it is current practice to design so-called model-based controllers, which require
a precise knowledge of the dynamic model including the values of the physi-
cal parameters involved. Other, non-model-based controllers, used mainly in
academic applications and research prototypes include the so-called variable-
structure controllers, fuzzy controllers, learning controllers, neural-net-based
controllers, to mention a few.

The majority of available texts on robotics cover all of its main aspects,
that is, modeling (of kinematics and dynamics), trajectory generation (that is,
the mathematical setting of a task to be performed by the robot), robot control
and some of them, instrumentation, software and other implementation issues.
Because of their wide scope, texts typically broach the mentioned topics in a
survey rather than a detailed manner.

Control of robot manipulators in joint space is a counter-fact to most avail-
able literature on robotics since it is mostly devoted to robot control, while ad-
dressing other topics, such as kinematics, mainly through case studies. Hence,
we have sacrificed generality for depth and clarity of exposition by choosing
to address in great detail a range of model-based controllers such as: Pro-
portional Derivative (PD), Proportional Integral Derivative (PID), Computed
torque and some variants including adaptive versions. For purely didactic rea-
sons, we have also chosen to focus on control in joint space, totally skipping
task space and end-effector space based control. These topics are addressed in
a number of texts elsewhere.

The present book opens with an introductory chapter explaining, in gen-
eral terms, what robot control involves. It contains a chapter on preliminaries
which presents in a considerably detailed manner the main mathematical con-
cepts and tools necessary to study robot control. In particular, this chapter
introduces the student to advanced topics such as Lyapunov stability, the
core of control theory and therefore, of robot control. We emphasize at this
point that, while this topic is usually reserved for graduate students, we have
paid special attention to include only the most basic theorems and we have
reformulated the latter in simple statements. We have also included numer-
ous examples and explanations to make this material accessible to senior year
undergraduate students.

Kinematics is addressed mainly through examples of different manipula-
tors. Dynamics is presented in two chapters but from a viewpoint that stresses
the most relevant issues for robot control; i.e. we emphasize certain funda-
mental properties of the dynamic model of robots, which are commonly taken
as satisfied hypotheses in control design.
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We have also included a chapter entirely devoted to the detailed descrip-
tion of the Pelican prototype, a 2-degrees-of-freedom direct-drive planar ar-
ticulated arm that is used throughout the book as a case study to test the
performance of the studied controllers, in lab experimentation. Dynamic and
kinematic models are derived in detail for this particular robot. The rest of
the book (about 70%) is devoted to the study of a number of robot controllers,
each of which is presented in a separate chapter.

The text is organized in four main parts: I) Preliminaries, which contains
the two chapters on robot dynamics, the chapter on mathematical preliminar-
ies and the chapter describing the Pelican prototype. Parts II and III contain,
respectively, set-point and tracking model-based controllers. Part IV covers
additional topics such as adaptive versions of the controllers studied in parts
II and III, and a controller that does not rely on velocity measurements. Ap-
pendices containing some extra mathematical support, Lyapunov theory for
the advanced reader and a short treatment on DC motors, are presented at
the end of the book.

Thus, the present book is a self-contained text to serve in a course on robot
control e.g., within a program of Mechatronics or Electrical Engineering at
senior year of BSc or first year of MSc. Chapter 1 may be covered in one or
two sessions. We strongly recommend taking the time to revise thoroughly
Chapter 2 which is instrumental for the remainder of the textbook. The rest
of the material may be taught in different ways and depths depending on
the level of students and the duration of the course. For instance, Parts I
through III may be covered entirely in about 50 hours at senior year level. If
the course is to be shortened, the lecturer may choose to pass over Chapters
3 and 4 faster (or even completely skip them and refer to their contents only
when necessary) and to introduce the student to kinematics and dynamics
using Chapter 5; then, to focus on Parts II and III. For a yet shorter but
coherent basic course, the lecturer may choose to teach only Chapters 1, 2,
5 and, for the subsequent chapters of Parts II and III, concentrate on a brief
study of the control laws while emphasizing the examples that concern the
Pelican prototype. Further, support material for class -presentation slides for
the lecturer and problems’ solutions manual- are available in electronic form
at springonline.com.

For a graduate course the lecturer may choose to cover, in addition, the
three chapters on adaptive control (Chapters 14–16), or Chapter 13 on control
without velocity measurements and Chapter 14, to give a short introduction
to adaptive control. We remark that the advanced topics of Part IV require
the material in the appendices which could be taught, for instance, at the
beginning of the course or could be left as a self-study topic.

The textbook is written in a style and technical language targeted toward
undergraduate senior students. Hence, we have favored a thoroughly explana-
tory, yet rigorous, style over a stiff mathematical (theorem-proof streamed)
one. We have taken care to invoke a strictly minimum number of mathematical



xiv Preface

terms and these are mostly explained when introduced. Mathematical objects
such as theorems and definitions are kept to a minimum; they are mainly
present in Chapter 2 (mathematical preliminaries) and some appendices. Yet,
when simplicity in the language may induce mathematical ambiguity or im-
precision we have added clarifying footnotes. A large number of examples,
illustrations and problems to be solved in class or as homework by the stu-
dent are provided.

The precedents of the text date back to lecture notes of the first author
that were printed by the National Autonomous University of Mexico (UNAM)
in 1989. It has been enriched by the authors’ experience of teaching the topic
over more than 15 years at undergraduate (senior year) and graduate levels
(first year), in several institutions in Europe and The Americas: National Au-
tonomous Univ. of Mexico (UNAM), Mexico; Technological Institute and of
High Studies of Monterrey (ITESM), Mexico; Center of Research and High
Studies of Ensenada (CICESE), Mexico; Laguna Institute of Technology, Mex-
ico; University of California at Santa Barbara, USA; National University of
Science and Technology (NTNU), Norway; San Juan National University, Ar-
gentina. This has provided the text with invaluable feedback from a varied
audience with different technical and cultural backgrounds. Thus, the authors
are confident to say that this textbook has not been written to be tested but
to be used in class.

A few final words on the nomenclature are necessary. Figures, Examples,
Equations, Tables, Theorems, Lemmas, Definitions are numbered indepen-
dently and carry the number of the chapter. We use the following abbrevia-
tions of Latin idioms:

i.e. –id est– meaning “that is”;
e.g. –exempli gratia– meaning “for instance”;
cf. –confer– meaning “see”;
etc. –etcetera– meaning “and the rest”.
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Introduction to Part I

The high quality and rapidity requirements in production systems of our
globalized contemporary world demand a wide variety of technological ad-
vancements. Moreover, the incorporation of these advancements in modern
industrial plants grows rapidly. A notable example of this situation, is the
privileged place that robots occupy in the modernization of numerous sectors
of the society.

The word robot finds its origins in robota which means work in Czech.
In particular, robot was introduced by the Czech science fiction writer Karel
Čapek to name artificial humanoids – biped robots – which helped human
beings in physically difficult tasks. Thus, beyond its literal definition the term
robot is nowadays used to denote animated autonomous machines. These ma-
chines may be roughly classified as follows:

• Robot manipulators

• Mobile robots

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ground robots

{
Wheeled robots
Legged robots

Submarine robots
Aerial robots

.

Both, mobile robots and manipulators are key pieces of the mosaic that con-
stitutes robotics nowadays. This book is exclusively devoted to robot manip-
ulators.

Robotics – a term coined by the science fiction writer Isaac Asimov – is
as such a rather recent field in modern technology. The good understanding
and development of robotics applications are conditioned to the good knowl-
edge of different disciplines. Among these, electrical engineering, mechanical
engineering, industrial engineering, computer science and applied mathemat-
ics. Hence, robotics incorporates a variety of fields among which is automatic
control of robot manipulators.
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To date, we count several definitions of industrial robot manipulator not
without polemic among authors. According to the definition adopted by the
International Federation of Robotics under standard ISO/TR 8373, a robot
manipulator is defined as follows:

A manipulating industrial robot is an automatically controlled, re-
programmable, multipurpose manipulator programmable in three
or more axes, which may be either fixed in place or mobile for use
in industrial automation applications.

In spite of the above definition, we adopt the following one for the prag-
matic purposes of the present textbook: a robot manipulator – or simply,
manipulator – is a mechanical articulated arm that is constituted of links in-
terconnected through hinges or joints that allow a relative movement between
two consecutive links.

The movement of each joint may be prismatic, revolute or a combination
of both. In this book we consider only joints which are either revolute or pris-
matic. Under reasonable considerations, the number of joints of a manipulator
determines also its number of degrees of freedom (DOF ). Typically, a manip-
ulator possesses 6 DOF, among which 3 determine the position of the end of
the last link in the Cartesian space and 3 more specify its orientation.

q1
q2

q3

Figure I.1. Robot manipulator

Figure I.1 illustrates a robot manipulator. The variables q1, q2 and q3

are referred to as the joint positions of the robot. Consequently, these posi-
tions denote under the definition of an adequate reference frame, the positions
(displacements) of the robot’s joints which may be linear or angular. For ana-
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lytical purposes, considering an n-DOF robot manipulator, the joint positions
are collected in the vector q, i.e.2

q :=

⎡⎢⎢⎣
q1

q2
...

qn

⎤⎥⎥⎦ .

Physically, the joint positions q are measured by sensors conveniently located
on the robot. The corresponding joint velocities q̇ := d

dtq may also be mea-
sured or estimated from joint position evolution.

To each joint corresponds an actuator which may be electromechanical,
pneumatic or hydraulic. The actuators have as objective to generate the forces
or torques which produce the movement of the links and consequently, the
movement of the robot as a whole. For analytical purposes these torques and
forces are collected in the vector τ , i.e.

τ :=

⎡⎢⎢⎣
τ1

τ2
...

τn

⎤⎥⎥⎦ .

In its industrial application, robot manipulators are commonly employed
in repetitive tasks of precision and others, which may be hazardous for human
beings. The main arguments in favor of the use of manipulators in industry
is the reduction of production costs, enhancement of precision, quality and
productivity while having greater flexibility than specialized machines. In ad-
dition to this, there exist applications which are monopolized by robot manip-
ulators, as is the case of tasks in hazardous conditions such as in radioactive,
toxic zones or where a risk of explosion exists, as well as spatial and sub-
marine applications. Nonetheless, short-term projections show that assembly
tasks will continue to be the main applications of robot manipulators.

2 The symbol “:=” stands for is defined as.
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What Does “Control of Robots” Involve?

The present textbook focuses on the interaction between robotics and electri-
cal engineering and more specifically, in the area of automatic control. From
this interaction emerges what we call robot control.

Loosely speaking (in this textbook), robot control consists in studying how
to make a robot manipulator perform a task and in materializing the results
of this study in a lab prototype.

In spite of the numerous existing commercial robots, robot control design
is still a field of intensive study among robot constructors and research cen-
ters. Some specialists in automatic control might argue that today’s industrial
robots are already able to perform a variety of complex tasks and therefore,
at first sight, the research on robot control is not justified anymore. Never-
theless, not only is research on robot control an interesting topic by itself but
it also offers important theoretical challenges and more significantly, its study
is indispensable in specific tasks which cannot be performed by the present
commercial robots.

As a general rule, control design may be divided roughly into the following
steps:

• familiarization with the physical system under consideration;
• modeling;
• control specifications.

In the sequel we develop further on these stages, emphasizing specifically
their application in robot control.



8 1 What Does “Control of Robots” Involve?

1.1 Familiarization with the Physical System under
Consideration

On a general basis, during this stage one must determine the physical variables
of the system whose behavior is desired to control. These may be temperature,
pressure, displacement, velocity, etc. These variables are commonly referred to
as the system’s outputs. In addition to this, we must also clearly identify those
variables that are available and that have an influence on the behavior of the
system and more particularly, on its outputs. These variables are referred to
as inputs and may correspond for instance, to the opening of a valve, voltage,
torque, force, etc.

Figure 1.1. Freely moving robot

Figure 1.2. Robot interacting with its environment

In the particular case of robot manipulators, there is a wide variety of
outputs – temporarily denoted by y – whose behavior one may wish to control.
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For robots moving freely in their workspace, i.e. without interacting with
their environment (cf. Figure 1.1) as for instance robots used for painting,
“pick and place”, laser cutting, etc., the output y to be controlled, may cor-
respond to the joint positions q and joint velocities q̇ or alternatively, to the
position and orientation of the end-effector (also called end-tool).

For robots such as the one depicted in Figure 1.2 that have physical contact
with their environment, e.g. to perform tasks involving polishing, deburring of
materials, high quality assembling, etc., the output y may include the torques
and forces f exerted by the end-tool over its environment.

Figure 1.3 shows a manipulator holding a marked tray, and a camera which
provides an image of the tray with marks. The output y in this system may
correspond to the coordinates associated to each of the marks with reference
to a screen on a monitor. Figure 1.4 depicts a manipulator whose end-effector
has a camera attached to capture the scenery of its environment. In this case,
the output y may correspond to the coordinates of the dots representing the
marks on the screen and which represent visible objects from the environment
of the robot.

Image

Camera

Figure 1.3. Robotic system: fixed camera

From these examples we conclude that the corresponding output y of a
robot system – involved in a specific class of tasks – may in general, be of the
form

y = y(q, q̇,f) .

On the other hand, the input variables, that is, those that may be modified
to affect the evolution of the output, are basically the torques and forces
τ applied by the actuators over the robot’s joints. In Figure 1.5 we show
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Camera

Image

Figure 1.4. Robotic system: camera in hand

the block-diagram corresponding to the case when the outputs are the joint
positions and velocities, that is,

y = y(q, q̇, f) =
[

q
q̇

]
while τ is the input. In this case notice that for robots with n joints one has,
in general, 2n outputs and n inputs.

ROBOT �
�

�

�̇

�

�

Figure 1.5. Input–output representation of a robot

1.2 Dynamic Model

At this stage, one determines the mathematical model which relates the input
variables to the output variables. In general, such mathematical representa-
tion of the system is realized by ordinary differential equations. The system’s
mathematical model is obtained typically via one of the two following tech-
niques.
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• Analytical: this procedure is based on physical laws of the system’s motion.
This methodology has the advantage of yielding a mathematical model as
precise as is wanted.

• Experimental: this procedure requires a certain amount of experimental
data collected from the system itself. Typically one examines the system’s
behavior under specific input signals. The model so obtained is in gen-
eral more imprecise than the analytic model since it largely depends on
the inputs and the operating point1. However, in many cases it has the
advantage of being much easier and quicker to obtain.

On certain occasions, at this stage one proceeds to a simplification of the
system model to be controlled in order to design a relatively simple con-
troller. Nevertheless, depending on the degree of simplification, this may yield
malfunctioning of the overall controlled system due to potentially neglected
physical phenomena. The ability of a control system to cope with errors due to
neglected dynamics is commonly referred to as robustness. Thus, one typically
is interested in designing robust controllers.

In other situations, after the modeling stage one performs the parametric
identification. The objective of this task is to obtain the numerical values of
different physical parameters or quantities involved in the dynamic model. The
identification may be performed via techniques that require the measurement
of inputs and outputs to the controlled system.

The dynamic model of robot manipulators is typically derived in the an-
alytic form, that is, using the laws of physics. Due to the mechanical nature
of robot manipulators, the laws of physics involved are basically the laws of
mechanics.

On the other hand, from a dynamical systems viewpoint, an n-DOF system
may be considered as a multivariable nonlinear system. The term “multivari-
able” denotes the fact that the system has multiple (e.g. n) inputs (the forces
and torques τ applied to the joints by the electromechanical, hydraulic or
pneumatic actuators) and, multiple (2n) state variables typically associated
to the n positions q, and n joint velocities q̇ . In Figure 1.5 we depict the cor-
responding block-diagram assuming that the state variables also correspond
to the outputs. The topic of robot dynamics is presented in Chapter 3. In
Chapter 5 we provide the specific dynamic model of a two-DOF prototype of
a robot manipulator that we use to illustrate through examples, the perfor-
mance of the controllers studied in the succeeding chapters. Readers interested
in the aspects of dynamics are invited to see the references listed on page 16.

As was mentioned earlier, the dynamic models of robot manipulators are
in general characterized by ordinary nonlinear and nonautonomous2 differ-
ential equations. This fact limits considerably the use of control techniques
1 That is the working regime.
2 That is, they depend on the state variables and time. See Chapter 2.
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tailored for linear systems, in robot control. In view of this and the present
requirements of precision and rapidity of robot motion it has become neces-
sary to use increasingly sophisticated control techniques. This class of control
systems may include nonlinear and adaptive controllers.

1.3 Control Specifications

During this last stage one proceeds to dictate the desired characteristics for
the control system through the definition of control objectives such as:

• stability;
• regulation (position control);
• trajectory tracking (motion control);
• optimization.

The most important property in a control system, in general, is stabil-
ity. This fundamental concept from control theory basically consists in the
property of a system to go on working at a regime or closely to it for ever.

Two techniques of analysis are typically used in the analytical study of the
stability of controlled robots. The first is based on the so-called Lyapunov sta-
bility theory. The second is the so-called input–output stability theory. Both
techniques are complementary in the sense that the interest in Lyapunov the-
ory is the study of stability of the system using a state variables description,
while in the second one, we are interested in the stability of the system from
an input–output perspective. In this text we concentrate our attention on
Lyapunov stability in the development and analysis of controllers. The foun-
dations of Lyapunov theory are presented in the Chapter 2.

In accordance with the adopted definition of a robot manipulator’s output
y, the control objectives related to regulation and trajectory tracking receive
special names. In particular, in the case when the output y corresponds to the
joint position q and velocity q̇, we refer to the control objectives as “position
control in joint coordinates” and “motion control in joint coordinates” respec-
tively. Or we may simply say “position” and “motion” control respectively.
The relevance of these problems motivates a more detailed discussion which
is presented next.

1.4 Motion Control of Robot Manipulators

The simplest way to specify the movement of a manipulator is the so-called
“point-to-point” method. This methodology consists in determining a series
of points in the manipulator’s workspace, which the end-effector is required
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to pass through (cf. Figure 1.6). Thus, the position control problem consists
in making the end-effector go to a specified point regardless of the trajectory
followed from its initial configuration.

Figure 1.6. Point-to-point motion specification

A more general way to specify a robot’s motion is via the so-called (con-
tinuous) trajectory. In this case, a (continuous) curve, or path in the state
space and parameterized in time, is available to achieve a desired task. Then,
the motion control problem consists in making the end-effector follow this
trajectory as closely as possible (cf. Figure 1.7). This control problem, whose
study is our central objective, is also referred to as trajectory tracking control.

Let us briefly recapitulate a simple formulation of robot control which, as
a matter of fact, is a particular case of motion control; that is, the position
control problem. In this formulation the specified trajectory is simply a point
in the workspace (which may be translated under appropriate conditions into
a point in the joint space). The position control problem consists in driving the
manipulator’s end-effector (resp. the joint variables) to the desired position,
regardless of the initial posture.

The topic of motion control may in its turn, be fitted in the more general
framework of the so-called robot navigation. The robot navigation problem
consists in solving, in one single step, the following subproblems:

• path planning;
• trajectory generation;
• control design.
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Figure 1.7. Trajectory motion specification

Path planning consists in determining a curve in the state space, connect-
ing the initial and final desired posture of the end-effector, while avoiding
any obstacle. Trajectory generation consists in parameterizing in time the so-
obtained curve during the path planning. The resulting time-parameterized
trajectory which is commonly called the reference trajectory, is obtained pri-
marily in terms of the coordinates in the workspace. Then, following the so-
called method of inverse kinematics one may obtain a time-parameterized
trajectory for the joint coordinates. The control design consists in solving the
control problem mentioned above.

The main interest of this textbook is the study of motion controllers and
more particularly, the analysis of their inherent stability in the sense of Lya-
punov. Therefore, we assume that the problems of path planning and trajec-
tory generation are previously solved.

The dynamic models of robot manipulators possess parameters which de-
pend on physical quantities such as the mass of the objects possibly held by
the end-effector. This mass is typically unknown, which means that the values
of these parameters are unknown. The problem of controlling systems with
unknown parameters is the main objective of the adaptive controllers. These
owe their name to the addition of an adaptation law which updates on-line,
an estimate of the unknown parameters to be used in the control law. This
motivates the study of adaptive control techniques applied to robot control.
In the past two decades a large body of literature has been devoted to the
adaptive control of manipulators. This problem is examined in Chapters 15
and 16.

We must mention that in view of the scope and audience of the present
textbook, we have excluded some control techniques whose use in robot mo-
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tion control is supported by a large number of publications contributing both
theoretical and experimental achievements. Among such strategies we men-
tion the so-called passivity-based control, variable-structure control, learning
control, fuzzy control and neural-networks-based. These topics, which demand
a deeper knowledge of control and stability theory, may make part of a second
course on robot control.
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Mathematical Preliminaries

In this chapter we present the foundations of Lyapunov stability theory. The
definitions, lemmas and theorems are borrowed from specialized texts and,
as needed, their statements are adapted for the purposes of this text. The
proofs of these statements are beyond the scope of the present text hence, are
omitted. The interested reader is invited to consult the list of references cited
at the end of the chapter. The proofs of less common results are presented.

The chapter starts by briefly recalling basic concepts of linear algebra
which, together with integral and differential undergraduate calculus, are a
requirement for this book.

Basic Notation

Throughout the text we employ the following mathematical symbols:
∀ meaning “for all”;
∃ meaning “there exists”;
∈ meaning “belong(s) to”;

=⇒ meaning “implies”;
⇐⇒ meaning “is equivalent to” or “if and only if”;
→ meaning “tends to” or “maps onto”;

:= and =: meaning “is defined as” and “equals by definition” respectively;

ẋ meaning
dx

dt
.

We denote functions f with domain D and taking values in a set R by
f : D → R. With an abuse of notation we may also denote a function by f(x)
where x ∈ D.
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2.1 Linear Algebra

Vectors

Basic notation and definitions of linear algebra are the starting point of our
exposition.

The set of real numbers is denoted by the symbol IR. The real numbers are
expressed by italic small capitalized letters and occasionally, by small Greek
letters.

The set of non-negative real numbers, IR+, is defined as

IR+ = {α ∈ IR : α ∈ [0,∞)} .

The absolute value of a real number x ∈ IR is denoted by |x|.
We denote by IRn, the real vector space of dimension n, that is, the set of

all vectors x of dimension n formed by n real numbers in the column format

x =

⎡⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎦ = [x1 x2 · · · xn]T ,

where x1, x2, · · · , xn ∈ IR are the coordinates or components of the vector x
and the super-index T denotes transpose. The associated vectors are denoted
by bold small letters, either Latin or Greek.

Vector Product

The inner product of two vectors x, y ∈ IRn is defined as

xTy =
n∑

i=1

xiyi = [x1 x2 · · · xn]

⎡⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎦
T⎡⎢⎢⎣

y1

y2
...

yn

⎤⎥⎥⎦ .

It can be verified that the inner product of two vectors satisfies the following:

• xTy = yT x for all x, y ∈ IRn ;
• xT(y + z) = xTy + xT z for all x,y, z ∈ IRn.

Euclidean Norm

The Euclidean norm ‖x‖ of a vector x ∈ IRn is defined as
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‖x‖ :=

√√√√ n∑
i=1

x2
i =

√
xTx,

and satisfies the following axioms and properties:

• ‖x‖ = 0 if and only if x = 0 ∈ IRn;
• ‖x‖ > 0 for all x ∈ IRn with x 
= 0 ∈ IRn;
• ‖αx‖ = |α| ‖x‖ for all α ∈ IR and x ∈ IRn;
• ‖x‖ − ‖y‖ ≤ ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ IRn;
• ∣∣xTy

∣∣ ≤ ‖x‖ ‖y‖ for all x,y ∈ IRn (Schwartz inequality).

Matrices

We denote by IRn×m the set of real matrices A of dimension n×m formed by
arrays of real numbers ordered in n rows and m columns,

A = {aij} =

⎡⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

⎤⎥⎥⎦ .

A vector x ∈ IRn may be interpreted as a particular matrix belonging to
IRn×1 = IRn. The matrices are denoted by Latin capital letters and occasion-
ally by Greek capital letters.

The transpose matrix AT = {aji} ∈ IRm×n is obtained by interchanging
the rows and the columns of A = {aij} ∈ IRn×m.

Matrix Product

Consider the matrices A ∈ IRm×p and B ∈ IRp×n. The product of matrices A
and B denoted by C = AB ∈ IRm×n is defined as

C = {cij} = AB

=

⎡⎢⎢⎣
a11 a12 · · · a1p

a21 a22 · · · a2p

...
...

. . .
...

am1 am2 · · · amp

⎤⎥⎥⎦
⎡⎢⎢⎣

b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...
bp1 bp2 · · · bpn

⎤⎥⎥⎦



22 2 Mathematical Preliminaries

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑p
k=1 a1kbk1

∑p
k=1 a1kbk2 · · · ∑p

k=1 a1kbkn∑p
k=1 a2kbk1

∑p
k=1 a2kbk2 · · · ∑p

k=1 a2kbkn

...
...

. . .
...∑p

k=1 amkbk1

∑p
k=1 amkbk2 · · · ∑p

k=1 amkbkn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It may be verified, without much difficulty, that the product of matrices satisfy
the following:

• (AB)T = BT AT for all A ∈ IRm×p and B ∈ IRp×n ;
• in general, AB 
= BA ;
• for all A ∈ IRm×p, B ∈ IRp×n :

A(B + C) = AB + AC with C ∈ IRp×n ;
ABC = A(BC) = (AB)C with C ∈ IRn×r .

In accordance with the definition of matrix product, the expression xTAy
where x ∈ IRn, A ∈ IRn×m and y ∈ IRm is given by

xTAy =

⎡⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎦
T ⎡⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

⎤⎥⎥⎦
⎡⎢⎢⎣

y1

y2
...

ym

⎤⎥⎥⎦
=

n∑
i=1

m∑
j=1

aijxiyj .

Particular Matrices

A matrix A is square if n = m, i.e. if it has as many rows as columns. A square
matrix A ∈ IRn×n is symmetric if it is equal to its transpose that is, if A = AT .
A is skew-symmetric if A = −AT . By −A we obviously mean −A := {−aij} .
The following property of skew-symmetric matrices is particularly useful in
robot control:

xTAx = 0, for all x ∈ IRn.

A square matrix A = {aij} ∈ IRn×n is diagonal if aij = 0 for all i 
= j. We
denote a diagonal matrix by diag{a11, a22, · · · , ann} ∈ IRn×n, i.e.

diag{a11, a22, · · · , ann} =

⎡⎢⎢⎣
a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

⎤⎥⎥⎦ ∈ IRn×n.
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Obviously, any diagonal matrix is symmetric. In the particular case when
a11 = a22 = · · · = ann = a, the corresponding diagonal matrix is denoted
by diag{a} ∈ IRn×n. Two diagonal matrices of particular importance are the
following. The identity matrix of dimension n which is defined as

I = diag{1} =

⎡⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎦ ∈ IRn×n

and the null matrix of dimension n which is defined as 0n×n := diag{0} ∈
IRn×n.

A square matrix A ∈ IRn×n is singular if its determinant is zero that is,
if det[A]=0. In the opposite case it is nonsingular. The inverse matrix A−1

exists if and only if A is nonsingular.
A square not necessarily symmetric matrix A ∈ IRn×n, is said to be positive

definite if
xTAx > 0, for all x ∈ IRn, with x 
= 0 ∈ IRn.

It is important to remark that in contrast to the definition given above, the
majority of texts define positive definiteness for symmetric matrices. However,
for the purposes of this textbook, we use the above-cited definition. This
choice is supported by the following observation: let P be a square matrix of
dimension n and define

A = {aij} =
P + PT

2
.

The theorem of Sylvester establishes that the matrix P is positive definite if
and only if

det[a11] > 0, det
[

a11 a12

a21 a22

]
> 0, · · · ,det[A] > 0.

We use the notation A > 0 to indicate that the matrix A is positive
definite1. Any symmetric positive definite matrix A = AT > 0 is nonsingular.
Moreover, A = AT > 0 if and only if A−1 = (A−1)T > 0.

It can also be shown that the sum of two positive definite matrices yields
a positive definite matrix however, the product of two symmetric positive
definite matrices A = AT > 0 and B = BT > 0, yields in general a matrix
which is neither symmetric nor positive definite. Yet the resulting matrix AB
is nonsingular.
1 It is important to remark that A > 0 means that the matrix A is positive definite

and shall not be read as “A is greater than 0” which makes no mathematical
sense.
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A square not necessarily symmetric matrix A ∈ IRn×n, is positive semidef-
inite if

xTAx ≥ 0 for all x ∈ IRn.

We employ the notation A ≥ 0 to denote that the matrix A is positive semidef-
inite.

A square matrix A ∈ IRn×n is negative definite if −A is positive definite
and it is negative semidefinite if −A is positive semidefinite.

Lemma 2.1. Given a symmetric positive definite matrix A and a nonsingular
matrix B, the product BTAB is a symmetric positive definite matrix.

Proof. Notice that the matrix BTAB is symmetric. Define y = Bx which, by
virtue of the hypothesis that B is nonsingular, guarantees that y = 0 ∈ IRn

if and only if x = 0 ∈ IRn. From this we obtain

xT
[
BTAB

]
x = yT Ay > 0

for all x 
= 0 ∈ IRn, which is equivalent to having that BTAB is positive
definite. ♦♦♦

Eigenvalues

For each square matrix A ∈ IRn×n there exist n eigenvalues (in general, com-
plex numbers) denoted by λ1{A}, λ2{A}, · · · , λn{A}. The eigenvalues of the
matrix A ∈ IRn×n are numbers that satisfy

det [λi{A}I − A] = 0, for i = 1, 2, · · · , n

where I ∈ IRn×n is the identity matrix of dimension n.
For the case of a symmetric matrix A = AT ∈ IRn×n, its eigenvalues are

such that:

• λ1{A}, λ2{A}, · · · , λn{A} ∈ IR ; and,
• expressing the largest and smallest eigenvalues of A by λMax{A} and

λmin{A} respectively, the theorem of Rayleigh–Ritz establishes that for
all x ∈ IRn we have

λMax{A} ‖x‖2 ≥ xTAx ≥ λmin{A} ‖x‖2
.

A symmetric matrix A = AT ∈ IRn×n is positive definite if and only if its
eigenvalues are positive, i.e. if and only if λi{A} > 0 where i = 1, 2, · · · , n.
Consequently, any square matrix A ∈ IRn×n is positive definite if λi{A +
AT } > 0 where i = 1, 2, · · · , n.
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Remark 2.1. Consider a matrix function A : IRm → IRn×n with A symmetric.
We say that A is positive definite if B := A(y) is positive definite for each
y ∈ IRm. In other words, if for each y ∈ IRm we have

xT A(y)x > 0 for all x ∈ IRn , with x 
= 0 .

By an abuse of notation, we define λmin{A} as the greatest lower-bound (i.e.
the infimum) of λmin{A(y)} for all y ∈ IRm, that is

λmin{A} := inf
y∈IRm

λmin{A(y)} .

For the purposes of this textbook most relevant positive definite matrix func-
tions A : IRm → IRn×n satisfy λmin{A} > 0.

Spectral Norm

The spectral norm ‖A‖ of a matrix A ∈ IRn×m is defined as2

‖A‖ =
√

λMax{ATA},

where λMax{ATA} denotes the largest eigenvalue of the symmetric matrix
ATA ∈ IRm×m.

In the particular case of symmetric matrices A = AT ∈ IRn×n, we have

• ‖A‖ = maxi |λi{A}| ;
• ∥∥A−1

∥∥ =
1

mini |λi{A}| .

In the expressions above, the absolute value is redundant if A is symmetric
positive definite, i.e. if A = AT > 0.

The spectral norm satisfies the following properties and axioms:

• ‖A‖ = 0 if and only if A = 0 ∈ IRn×m ;
• ‖A‖ > 0 for all A ∈ IRn×m where A 
= 0 ∈ IRn×m ;
• ‖A + B‖ ≤ ‖A‖ + ‖B‖ for all A,B ∈ IRn×m ;
• ‖αA‖ = |α| ‖A‖ for all α ∈ IR and A ∈ IRn×m ;
• ∥∥ATB

∥∥ ≤ ‖A‖ ‖B‖ for all A, B ∈ IRn×m.

2 It is important to see that we employ the same symbol for the Euclidean norm of
a vector and the spectral norm of a matrix. The reader should take special care
in not mistaking them. The distinction can be clearly made via the fonts used for
the argument of ‖ · ‖, i.e. we use small bold letters for vectors and capital letters
for matrices.
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An important result about spectral norms is the following. Consider the
matrix A ∈ IRn×m and the vector x ∈ IRm. Then, the norm of the vector Ax
satisfies

‖Ax‖ ≤ ‖A‖ ‖x‖ ,

where ‖A‖ denotes the spectral norm of the matrix A while ‖x‖ denotes the
Euclidean norm of the vector x. Moreover, since y ∈ IRn, the absolute value
of yTAx satisfies ∣∣yTAx

∣∣ ≤ ‖A‖ ‖y‖ ‖x‖ .

2.2 Fixed Points

We start with some basic concepts on what are called fixed points; these are
useful to establish conditions for existence and unicity of equilibria for ordi-
nary differential equations. Such theorems are employed later to study closed-
loop dynamic systems appearing in robot control problems. To start with, we
present the definition of fixed point that, in spite of its simplicity, is of great
importance.

Consider a continuous function f : IRn → IRn. The vector x∗ ∈ IRn is a
fixed point of f(x) if

f(x∗) = x∗.

According to this definition, if x∗ is a fixed point of the function f(x),
then x∗ is a solution of f(x) − x = 0.

Some functions have one or multiple fixed points but there also exist func-
tions which have no fixed points. The function f(x) = sin(x) has a unique
fixed point at x∗ = 0, while the function f(x) = x3 has three fixed points:
x∗ = 1, x∗ = 0 and x∗ = −1. However, f(x) = ex has no fixed point.

We present next a version of the contraction mapping theorem which pro-
vides a sufficient condition for existence and unicity of fixed points.

Theorem 2.1. Contraction Mapping

Consider Ω ⊂ IRm, a vector of parameters θ ∈ Ω and the continuous function
f : IRn × Ω → IRn. Assume that there exists a non-negative constant k such
that for all y, z ∈ IRn and all θ ∈ Ω we have

‖f(y,θ) − f(z, θ)‖ ≤ k ‖y − z‖ .

If the constant k is strictly smaller than one, then for each θ∗ ∈ Ω, the
function f(·, θ∗) possesses a unique fixed point x∗ ∈ IRn.
Moreover, the fixed point x∗ may be determined by

x∗ = lim
n→∞x(n,θ∗)

where x(n,θ∗) = f(x(n − 1, θ∗)) and with x(0,θ∗) ∈ IRn being arbitrary.
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An important interpretation of the contraction mapping theorem is the
following. Assume that the function f(x, θ) satisfies the condition of the theo-
rem then, for each θ∗ ∈ Ω the equation f(x,θ∗) − x = 0 has a solution in x
and moreover it is unique. To illustrate this idea consider the function h(x, θ)
defined as

h(x, θ) = ax − b sin(θ − x) (2.1)
= −a [f(x, θ) − x]

with a > 0, b > 0, θ ∈ IR and

f(x, θ) =
b

a
sin(θ − x). (2.2)

We wish to find conditions on a and b so that h(x, θ) = 0 has a unique
solution in x. From (2.1) and (2.2) we see that this is equivalent to establishing
conditions to guarantee that b

a sin(θ − x) − x = 0 has a unique solution in x.
In other words, conditions to ensure that b

a sin(θ−x) has a unique fixed point
for each θ. To solve this problem we may employ the contraction mapping
theorem. Notice that

|f(y, θ) − f(z, θ)| =
∣∣∣∣ ba [sin(θ − y) − sin(θ − z)]

∣∣∣∣
and, invoking the mean value theorem (cf. Theorem A.2 on page 384) which
ensures that | sin(θ − y) − sin(θ − z)| ≤ |y − z|, we obtain

|f(y, θ) − f(z, θ)| ≤ b

a
|y − z|

for all y, z and θ ∈ IR. Hence, if 1 > b/a ≥ 0 for each θ, f(x, θ) has a unique
fixed point and consequently, h(x, θ) = 0 has a unique solution in x.

2.3 Lyapunov Stability

In this section we present the basic concepts and theorems related to Lyapunov
stability and, in particular the so-called second method of Lyapunov or
direct method of Lyapunov.

The main objective in Lyapunov stability theory is to study the behavior
of dynamical systems described by ordinary differential equations of the form

ẋ = f(t, x), x ∈ IRn, t ∈ IR+ , (2.3)

where the vector x corresponds to the state of the system represented by
(2.3). We denote solutions of this differential equation by x(t, t◦, x(t◦)). That
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is, x(t, t◦,x(t◦)) represents the value of the system’s state at time t and with
arbitrary initial state x(t◦) ∈ IRn and initial time t◦ ≥ 0. However, for sim-
plicity in the notation and since the initial conditions t◦ and x(t◦) are fixed,
most often we use x(t) to denote a solution to (2.3) in place of x(t, t◦,x(t◦)).

We assume that the function f : IR+ × IRn → IRn is continuous in t and
x and is such that:

• Equation (2.3) has a unique solution corresponding to each initial condition
t◦, x(t◦) ;

• the solution x(t, t◦,x(t◦)) of (2.3) depends continuously on the initial con-
ditions t◦, x(t◦).

Generally speaking, assuming existence of the solutions for all t ≥ t◦ ≥ 0 is
restrictive and one may simply assume that they exist on a finite interval.
Then, existence on the infinite interval may be concluded from the same the-
orems on Lyapunov stability that we present later in this chapter. However,
for the purposes of this book we assume existence on the infinite interval.

If the function f does not depend explicitly on time, that is, if f(t,x) =
f(x) then, Equation (2.3) becomes

ẋ = f(x), x ∈ IRn (2.4)

and it is said to be autonomous. In this case it makes no sense to speak of
the initial time t◦ since for any given t◦ and t′◦ such that x(t◦) = x(t′◦), we
have x(t◦ + T, t◦, x(t◦)) = x(t′◦ + T, t′◦, x(t′◦)) for any T ≥ 0. Therefore, for
all autonomous differential equations we can safely consider that t◦ = 0.

If f(t,x) = A(t)x + u(t) with A(t) being a square matrix of dimension
n and A(t) and vector u(t) being functions only of t – or constant – then
Equation (2.3) is said to be linear. In the opposite case it is nonlinear.

2.3.1 The Concept of Equilibrium

Among the basic concepts in Lyapunov theory that we underline are: equi-
librium, stability, asymptotic stability, exponential stability and uniformity.
We develop each of these concepts below. First, we present the concept of
equilibrium which plays a central role in Lyapunov theory.

Definition 2.1. Equilibrium

A constant vector xe ∈ IRn is an equilibrium or equilibrium state of the system
(2.3) if

f(t,xe) = 0 ∀ t ≥ 0 .

A direct consequence of the definition of equilibrium, under regularity
appropriate conditions that exclude “pathological” situations, is that if the
initial state x(t◦) ∈ IRn is an equilibrium (x(t◦) = xe ∈ IRn) then,
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• x(t) = xe ∀ t ≥ t◦ ≥ 0
• ẋ(t) = 0 ∀ t ≥ t◦ ≥ 0 .

This idea is illustrated in Figure 2.1, where the case x(t◦) ∈ IR2 is depicted.
The initial state x(t◦) is precisely xe, so the evolution of the solution x(t)
corresponds exactly to the constant value xe for all times t ≥ t◦.

•

•

•
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Figure 2.1. Concept of equilibrium

It is typically assumed that the origin of the state space IRn, that is,
x = 0 ∈ IRn, is an equilibrium of (2.3). If this is not the case, it may be
shown that by a suitable change of variable, any equilibrium of (2.3) may be
translated to the origin.

In general, a differential equation may have more than one equilibrium,
indeed even an infinite number of them! However, it is also possible that a
differential equation does not possess any equilibrium at all. This is illustrated
by the following example.

Example 2.1. Consider the following linear differential equation

ẋ = a x + b u(t),

with initial conditions (t◦, x(t◦)) ∈ IR+×IR and where a 
= 0 and b 
= 0
are real constants and u : IR+ → IR is a continuous function. If u(t) =
u0 for all t ≥ 0, that is, if the differential equation is autonomous,
then the unique equilibrium point of this equation is xe = −bu0/a.

On the other hand, one must be careful in concluding that any
autonomous system has equilibria. For instance, the autonomous non-
linear system

ẋ = e−x

has no equilibrium point.
Consider the following nonlinear autonomous differential equation
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ẋ1 = x2

ẋ2 = sin(x1) .

The previous set of equations has an infinite number of (isolated)
equilibria, which are given by xe = [x1e x2e]T = [nπ 0]T with
n = · · · ,−1, 0, 1, · · ·. ♦

Systems with multiple equilibria are not restricted to mathematical ex-
amples but are fairly common in control practice and as a matter of fact,
mechanisms are a good example of these since in general, dynamic models
of robot manipulators constitute nonlinear systems. The following example
shows that even for robots with a simple mathematical model, multiple equi-
libria may co-exist.

Example 2.2. Consider a pendulum, as depicted in Figure 2.2, of mass
m, total moment of inertia about the joint axis J , and distance l
from its axis of rotation to the center of mass. It is assumed that the
pendulum is affected by the force of gravity induced by the gravity
acceleration g.

q

l

m

τ

g

Figure 2.2. Pendulum

We assume that a torque τ(t) is applied at the axis of rotation.
Then, the dynamic model which describes the motion of such a system
is given by

Jq̈ + mgl sin(q) = τ(t)
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where q is the angular position of the pendulum with respect to the
vertical axis and q̇ is the corresponding angular velocity. Or, in terms
of the state [q q̇]T , the dynamic model is given by

d

dt

⎡⎣ q

q̇

⎤⎦ =

⎡⎣ q̇

J−1 [τ(t) − mgl sin(q)]

⎤⎦ .

If τ(t) = 0, the equilibrium states are then given by [q q̇]T = [nπ 0]T

for n = · · · ,−2,−1, 0, 1, 2, · · · since mgl sin(nπ) = 0. Notice that if
τ(t) = τ∗ and |τ∗| > mgl then, there does not exist any equilibrium
since there is no q∗ ∈ IR such that τ∗ = mgl sin(q∗). ♦

2.3.2 Definitions of Stability

In this section we present the basic notions of stability of equilibria of differ-
ential equations, evoked throughout the text. We emphasize that the stability
notions which are defined below are to be considered as attributes of the
equilibria of the differential equations and not of the equations themselves.
Without loss of generality we assume in the rest of the text that the origin of
the state space, x = 0 ∈ IRn, is an equilibrium of (2.3) and accordingly, we
provide the definitions of stability of the origin but they can be reformulated
for other equilibria by performing the appropriate changes of coordinate.

Definition 2.2. Stability

The origin is a stable equilibrium (in the sense of Lyapunov) of Equation (2.3)
if, for each pair of numbers ε > 0 and t◦ ≥ 0, there exists δ = δ(t◦, ε) > 0
such that

‖x(t◦)‖ < δ =⇒ ‖x(t)‖ < ε ∀ t ≥ t◦ ≥ 0 . (2.5)

Correspondingly, the origin of Equation (2.4) is said to be stable if for each
ε > 0 there exists δ = δ(ε) > 0 such that (2.5) holds with t◦ = 0.

In Definition 2.2 the constant δ (which is clearly smaller than ε) is not
unique. Indeed, notice that for any given constant δ that satisfies the condition
of the definition any δ′ ≤ δ also satisfies it.

If one reads Definition 2.2 with appropriate care, it should be clear that
the number δ depends on the number ε and in general, also on the initial time
t◦. Indeed, note that the definition of stability for nonautonomous systems
requires existence of a number δ > 0 for each t◦ ≥ 0 and ε > 0 and not
just for some t◦ ≥ 0 and ε > 0. Correspondingly, in the case of autonomous
differential equations it is required that there exists δ > 0 for each ε > 0 and
not only for some ε.
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Also, in Definition 2.2 one should not understand that the origin is Lya-
punov stable if for each δ > 0 one may find ε > 0 such that

‖x(t◦)‖ < δ =⇒ ‖x(t)‖ < ε ∀ t ≥ t◦ ≥ 0 . (2.6)

In other words, the latter statement establishes that “the origin is a stable
equilibrium if for any bounded initial condition, the corresponding solution
is also bounded”. This is commonly known as “boundedness of solutions” or
“Lagrange stability” and is a somewhat weaker property than Lyapunov sta-
bility. However, boundedness of solutions is neither a necessary nor a sufficient
condition for Lyapunov stability of an equilibrium.
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Figure 2.3. Notion of stability

To illustrate the concept of stability, Figure 2.3 shows a trajectory with
an initial state x(t◦) ∈ IR2 such that the origin x = 0 ∈ IR2 is a stable
equilibrium. In Figure 2.3 we also show ε and δ which satisfy the condition
from the definition of stability, that is, ‖x(t◦)‖ < δ implies that ‖x(t)‖ < ε
for all t ≥ t◦ ≥ 0.

Definition 2.3. Uniform stability

The origin is a uniformly stable equilibrium (in the sense of Lyapunov) of
Equation (2.3) if for each number ε > 0 there exists δ = δ(ε) > 0 such that
(2.5) holds.

That is, the origin is uniformly stable if δ can be chosen independently
of the initial time, t◦. For autonomous systems this is always the case, i.e.
uniform stability and stability of the equilibrium are equivalent.

Example 2.3. Consider the system (harmonic oscillator) described by
the equations:
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Figure 2.4. Phase plane of the harmonic oscillator

ẋ1 = x2 (2.7)
ẋ2 = −x1 (2.8)

and whose solution is

x1(t) = x1(0)cos(t) + x2(0)sin(t)
x2(t) = −x1(0)sin(t) + x2(0)cos(t).

Note that the origin is the unique equilibrium point. The graphs
of some solutions of Equations (2.7)–(2.8) on the plane x1–x2, are
depicted in Figure 2.4.

Notice that the trajectories of the system (2.7)–(2.8) describe con-
centric circles centered at the origin. For this example, the origin is
a stable equilibrium since for any ε > 0 there exists δ > 0 (actually
any3 δ ≤ ε) such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε ∀ t ≥ 0.

♦

Observe that in Example 2.3 stability is uniform since the system is au-
tonomous (notice that the solutions do not depend on t◦). It is also important
to stress that the solutions do not tend to the origin. That is, we say that the
origin is stable but not asymptotically stable, a concept that is defined next.

Definition 2.4. Asymptotic stability

The origin is an asymptotically stable equilibrium of Equation (2.3) if:

1. the origin is stable;
3 From this inequality the dependence of δ on ε is clear.
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Figure 2.5. Asymptotic stability

2. the origin is attractive, i.e. for each t◦ ≥ 0, there exists δ′ = δ′(t◦) > 0
such that

‖x(t◦)‖ < δ′ =⇒ ‖x(t)‖ → 0 as t → ∞ . (2.9)

Asymptotic stability for the origin of autonomous systems is stated by
replacing above “for each t◦ ≥ 0, there exists δ′ = δ′(t◦) > 0” with “there
exists δ′ > 0”.

Figure 2.5 illustrates the concept of asymptotic stability for the case of
x(t◦) ∈ IR2.

In Definition 2.4 above, one should not read that “the origin is stable
when t → ∞” or that “attractivity implies stability in the sense of Definition
2.2”. As a matter of fact, even though it may seem counter-intuitive to some
readers, there exist systems for which all the trajectories starting close to an
equilibrium tend to that equilibrium but the latter is not stable. We see in
the following example that this phenomenon is not as unrealistic as one might
think.

Example 2.4. Consider the autonomous system with two state vari-
ables expressed in terms of polar coordinates:

ṙ =
5

100
r(1 − r)

θ̇ = sin2(θ/2) θ ∈ [0, 2π) .

This system has an equilibrium at the origin [r θ]T = [0 0]T

and another one at [r θ]T = [1 0]T . The behavior of this system,
expressed in Cartesian coordinates x1 = rcos(θ) and x2 = r sin(θ),
is illustrated in Figure 2.6. All the solutions of the system (with the
exception of those that start off at the equilibria) tend asymptoti-
cally to [x1 x2]T = [1 0]T . In particular, notice from Figure 2.6
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Figure 2.6. Attractive but unstable equilibrium

that for each initial condition inside the dashed disk (but excluding
[x1 x2]T = [1 0]T ) the generated trajectory goes asymptotically to
the equilibrium. That is, the equilibrium is attractive in the sense of
Definition 2.4. Intuitively, it may seem reasonable that this implies
that the equilibrium is also stable and therefore, asymptotically sta-
ble. However, as pointed out before, this is a fallacy since the first item
of Definition 2.4 does not hold. To see this, pick ε to be the radius of
the dashed disk. For this particular ε there does not exist a number δ
such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε ∀ t ≥ 0,

because there are always solutions that leave the disk before “coming
back” towards the equilibrium. Hence, the equilibrium [x1 x2]T =
[1 0]T is attractive but unstable (cf. Definition 2.9). ♦

Definition 2.5. Uniform asymptotic stability

The origin is a uniformly asymptotically stable equilibrium of Equation (2.3)
if:

1. the origin is uniformly stable;
2. the origin is uniformly attractive, i.e. there exists a number δ′ > 0 such

that (2.9) holds with a rate of convergence independent of t◦.

For autonomous systems, uniform asymptotic stability and asymptotic stabil-
ity are equivalent.

One may make precise the idea of “rate of convergence independent of t◦”
by saying that uniform attractivity means that there exists δ′ > 0 and, for
each ε′ (arbitrarily small) there exists T (ε′) > 0 such that
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‖x(t◦)‖ < δ′ =⇒ ‖x(t)‖ < ε′ ∀ t ≥ t◦ + T . (2.10)

Therefore, the rate of convergence is determined by the time T and we say
that it is independent of t◦ if T is independent of the initial time.

The following example shows that some nonautonomous systems may be
asymptotically stable but not with a uniform rate of convergence; hence, not
uniformly asymptotically stable.

Example 2.5. Consider the system

ẋ = − x

1 + t

with initial conditions t◦ ∈ IR+ and x◦ := x(t◦) ∈ IR and whose origin
is an equilibrium point. One can solve this differential equation by
simple integration of

dx

x
= − dt

1 + t
,

i.e.

ln
(

x(t)
x(t◦)

)
= ln

(
1 + t◦
1 + t

)
,

from which we obtain

x(t) =
1 + t◦
1 + t

x◦ . (2.11)

From Equation (2.11) we see that |x(t)| → 0 as t → ∞; therefore, the
origin is an attractive equilibrium. More precisely, we see that given
any numbers ε′ and δ′ > 0, if |x◦| < δ′ then

|x(t)| <
1 + t◦
1 + t

δ′ for all t ≥ t◦ .

It means that for |x(t)| to be smaller than ε′ we need to wait at least
until t = t◦ + T where

T >
(1 + t◦)(δ′ − ε′)

ε′
.

However, since T grows proportionally with t◦, for any fixed values
of δ′ and ε′, the origin is not uniformly attractive. In other words,
|x(t)| → 0 as t → ∞ but no matter what the tolerance that we impose
on |x(t)| to come close to zero (that is, ε′) and how near the initial
states are to the origin (that is, δ′), we see that the later |x(t)| starts
to decay the slower it tends to zero. That is, the rate of convergence
becomes smaller as t◦ becomes larger.
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On the other hand, the origin is stable and, actually, uniformly
stable. To see this, observe from (2.11) that, since

1 + t◦
(1 + t)

≤ 1

for any t ≥ t◦ and any t ≥ 0 then, |x(t)| ≤ |x◦|. We conclude that for
any given ε > 0 it holds, with δ = ε, that

|x◦| < δ =⇒ |x(t)| < ε , ∀t ≥ t◦ .

We conclude that the origin is asymptotically stable and uniformly
stable but not uniformly asymptotically stable. ♦

The phenomena observed in the previous examples are proper to nonau-
tonomous systems. Nonautonomous systems appear in robot control when
the desired task is to follow a time-varying trajectory, i.e. in motion control
(cf. Part III) or when there is uncertainty in the physical parameters and
therefore, an adaptive control approach may be used (cf. Part IV).

The concept of uniformity for nonautonomous systems is instrumental be-
cause uniform asymptotic stability ensures a certain robustness with respect
to disturbances. We say that a system is robust with respect to disturbances
if, in the presence of the latter, the equilibrium of the system preserves ba-
sic properties such as stability and boundedness of solutions. In the control
of robot manipulators, disturbances may come from unmodeled dynamics or
additive sensor noise, which are fairly common in practice. Therefore, if for
instance we are able to guarantee uniform asymptotic stability for a robot con-
trol system in a motion control task, we will be sure that small measurement
noise will only cause small deviations from the control objective. However, one
should not understand that uniform asymptotic stability guarantees that the
equilibrium remains asymptotically stable under disturbances or measurement
noise.

In robot control we are often interested in studying the performance of
controllers, considering any initial configuration for the robot. For this, we
need to study global definitions of stability.

Definition 2.6. Global asymptotic stability

The origin is a globally asymptotically stable equilibrium of Equation (2.3)
if:

1. the origin is stable;
2. the origin is globally attractive, that is,

‖x(t)‖ → 0 as t → ∞, ∀ x(t◦) ∈ IRn , t◦ ≥ 0 .
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It should be clear from the definition above, that if the origin is globally
asymptotically stable then it is also asymptotically stable, but the converse is
obviously not always true.

Definition 2.7. Global uniform asymptotic stability

The origin is a globally uniformly asymptotically stable equilibrium of Equa-
tion (2.3) if:

1. the origin is uniformly stable with δ(ε) in Definition 2.3 which satisfies
δ(ε) → ∞ as ε → ∞ (uniform boundedness) and

2. the origin is globally uniformly attractive, i.e. for all x(t◦) ∈ IRn and all
t◦ ≥ 0,

‖x(t)‖ → 0 as t → ∞
with a convergence rate that is independent of t◦.

For autonomous systems, global asymptotic stability and global uniform
asymptotic stability are equivalent.

As for Definition 2.5, we can make item 2 above more precise by saying
that for each δ′ and ε′ there exists T (δ′, ε′) – hence, independent of t◦ – such
that the implication (2.10) holds.

It is important to underline the differences between Definitions 2.5 and 2.7.
First, in item 1 of Definition 2.7 one asks that δ grows unboundedly as ε → ∞.
In particular, this implies that the norm of all solutions must be bounded and,
moreover, by a bound which is independent of t◦ (uniform boundedness of all
solutions). Secondly, attractivity must be global which translates into: “for
each δ′ > 0 and ε′ > 0 there exists T (δ′, ε′) > 0 such that (2.10) holds”, i.e.
in Definition 2.7 we say “for each δ′ > 0” and not “there exists δ′ > 0” as in
Definition 2.5.

It is also convenient to stress that the difference between items 1 and
2 of Definitions 2.6 and 2.7 is not simply that the required properties of
stability and attractivity shall be uniform but also that all the solutions must
be uniformly bounded. The latter is ensured by the imposed condition that
δ(ε) can be chosen so that δ(ε) → ∞ as ε → ∞.

We finish this section on definitions with a special case of global uniform
asymptotic stability.

Definition 2.8. Global exponential stability

The origin is a globally exponentially stable equilibrium of (2.3) if there exist
positive constants α and β, independent of t◦, such that

‖x(t)‖ < α ‖x(t◦)‖ e−β(t−t◦), ∀ t ≥ t◦ ≥ 0, ∀ x(t◦) ∈ IRn . (2.12)
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According to the previous definitions, if the origin is a globally exponen-
tially stable equilibrium then it is also globally uniformly asymptotically sta-
ble. The opposite is clearly not necessarily true since the convergence might
not be exponential.

We emphasize that the numbers α and β must be independent of t◦ since in
some cases, one may establish that for a given system the bound (2.12) holds
but with constants α and β which depend on the initial times t◦. Then, we
may speak of global exponential (non-uniform) convergence and as a matter
of fact, of global asymptotic stability but it would be erroneous to say that
the origin is globally exponentially stable. Notice that in such case, neither
the origin is uniformly attractive nor the solutions are uniformly bounded.

Definition 2.9. Instability

The origin of Equation (2.3) is an unstable equilibrium if it is not stable.

Mathematically speaking, the property of instability means that there ex-
ists at least one ε > 0 for which no δ > 0 can be found such that

‖x(t◦)‖ < δ =⇒ ‖x(t)‖ < ε ∀ t ≥ t◦ ≥ 0 .

Or, in other words, that there exists at least one ε > 0 which is desired to be
a bound on the norm of the solution x(t) but there does not exist any pair
of initial conditions t◦ ∈ IR+ and x(t◦) 
= 0 ∈ IRn whose solution x(t) may
satisfy ‖x(t)‖ < ε for all t ≥ t◦ ≥ 0 .

It must be clear that instability does not necessarily imply that the solution
x(t) grows to infinity as t → ∞. The latter is a contradiction of the weaker
property of boundedness of the solutions, discussed above.

We now present an example that illustrates the concept of instability.

Example 2.6. Consider the equations that define the motion of the van
der Pol system,

ẋ1 = x2, (2.13)
ẋ2 = −x1 + (1 − x2

1)x2, (2.14)

where x1 and x2 ∈ IR. Notice that the origin is an equilibrium of these
equations.

The graph of some solutions generated by different initial condi-
tions of the system (2.13)–(2.14) on the phase plane, are depicted in
Figure 2.7. The behavior of the system can be described as follows. If
the initial condition of the system is inside the closed curve Γ , and is
away from zero, then the solutions approach Γ asymptotically. If the
initial condition is outside of the closed curve Γ , then the solutions
also approach Γ .
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Figure 2.7. Phase plane of the van der Pol oscillator

The origin of the system (2.13)–(2.14) is an unstable equilibrium.
To show this, we simply need to pick ε := ε0 (cf. Figure 2.7) to see
that there does not exist δ > 0 dependent on ε0 such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε0 ∀ t ≥ 0.

♦

We close this subsection by observing that some authors speak about “sta-
bility of systems” or “stability of systems at an equilibrium” instead of “sta-
bility of equilibria (or the origin)”. For instance the phrase “the system is
stable at the origin” may be employed to mean that “the origin is a stable
equilibrium of the system”. Both ways of speaking are correct and equiva-
lent. In this textbook we use the second one to be strict with respect to the
mathematical definitions.

2.3.3 Lyapunov Functions

We present definitions that determine a particular class of functions that are
fundamental in the use of Lyapunov’s direct method to study the stability of
equilibria of differential equations.

Definition 2.10. Locally and globally positive definite function

A continuous function W : IRn → IR+ is said to be locally positive definite if

1. W (0) = 0,
2. W (x) > 0 for small ‖x‖ 
= 0.
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A continuous function W : IRn → IR is said to be globally positive definite
(or simply positive definite) if

1. W (0) = 0,
2. W (x) > 0 ∀ x 
= 0 .

According to this definition it should be clear that a positive definite func-
tion is also locally positive definite. Also, according to the definition of positive
definite matrix, a quadratic function f : IRn → IR, i.e. of the form

f(x) = xTPx , P ∈ IRn×n

is positive definite if and only if P > 0.
The function W (x) is said to be (locally) negative definite if −W (x) is

(locally) positive definite.
For a continuous function V : IR+ × IRn → IR+, i.e. which also depends

on time, we say that V (t,x) is (resp. locally) positive definite if:

1. V (t,0) = 0 ∀ t ≥ 0 ;
2. V (t, x) ≥ W (x), ∀ t ≥ 0, ∀ x ∈ IRn (resp. for small ‖x‖)

where W (x) is a (resp. locally) positive definite function.

Definition 2.11. Radially unbounded function and decrescent func-
tion

A continuous function W : IRn → IR is said to be radially unbounded if

W (x) → ∞ as ‖x‖ → ∞ .

Correspondingly, we say that V (t, x) is radially unbounded if V (t, x) ≥
W (x) for all t ≥ 0.

A continuous function V : IR+ × IRn → IR is (locally) decrescent if there
exists a (locally) positive definite function W : IRn → IR+ such that

V (t,x) ≤ W (x) ∀ t ≥ 0 ∀ x ∈ IRn (for small ‖x‖).

If V (t, x) is independent of t, i.e. if V (t,x) = V (x) then V (x) is decres-
cent.

The following examples illustrate the concepts presented above.

Example 2.7. Consider the graphs of the functions Vi(x) with i =
1, . . . , 4 as depicted in Figure 2.8. It is apparent from these graphs
that:
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Figure 2.8. Examples

• V1(x) is locally positive definite but is not (globally) positive defi-
nite;

• V2(x) is locally positive definite, (globally) positive definite and
radially unbounded;

• V3(x) is locally positive definite and (globally) positive definite but
it is not radially unbounded;

• V4(x) is positive definite and radially unbounded. ♦

Example 2.8. The function W (x1, x2) = x2
1 + x2

2 is positive definite
and radially unbounded. Since W is independent of t, it follows im-
mediately that it is also decrescent. ♦
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Example 2.9. The function V (t, x1, x2) = (t + 1)(x2
1 + x2

2) is positive
definite since V (t, x1, x2) ≥ x2

1 + x2
2 and V (t, 0, 0) = 0 for all t ≥ 0.

However, V (t, x1, x2) is not decrescent. ♦

Example 2.10. The function W (x1, x2) = (x1 + x2)
2 is not positive

definite since it does not satisfy W (x) > 0 for all x 
= 0 such that
x1 = −x2. However, the function W (x1, x2) = (x1 + x2)

2 + αx2
1, and

the function W (x1, x2) = (x1 + x2)
2 + αx2

2, with α > 0 are positive
definite. ♦

In order to prepare the reader for the following subsection, where we
present Lyapunov’s direct method for the study of stability of equilibria, we
present below a series of concepts related to the notion of Lyapunov function
candidate.

Definition 2.12. Lyapunov function candidate

A continuous and differentiable4 function V : IR+ × IRn → IR+ is said to be a
Lyapunov function candidate for the equilibrium x = 0 ∈ IRn of the equation
ẋ = f(t,x) if:

1. V (t, x) is locally positive definite;

2.
∂V (t, x)

∂t
is continuous with respect to t and x ;

3.
∂V (t, x)

∂x
is continuous with respect to t and x .

Correspondingly, a continuous and differentiable function V : IRn → IR+ is
said to be a Lyapunov function candidate for the equilibrium x = 0 ∈ IRn of
Equation (2.4), i.e. ẋ = f(x), if V (x) is locally positive definite and

dV (x)
dx

is continuous.
In other words, a Lyapunov function candidate for the equilibrium x = 0 ∈

IRn of Equations (2.3) or (2.4) is any locally positive definite and continuously
differentiable function; that is, with continuous partial derivatives.

The time derivative of a Lyapunov function candidate plays a key role in
drawing conclusions about the stability attributes of equilibria of differential
equations. For this reason, we present the following definition.
4 In some of the specialized literature authors do not assume differentiability. We

shall not deal with that here.
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Definition 2.13. Time derivative of a Lyapunov function candidate

Let V (t, x) be a Lyapunov function candidate for the equation (2.3). The total
time derivative of V (t, x) along the trajectories of (2.3), denoted by V̇ (t, x),
is given by

V̇ (t, x) :=
d

dt
{V (t, x)} =

∂V (t,x)
∂t

+
∂V (t, x)

∂x

T

f(t, x).

From the previous definition we observe that if V (x) does not depend
explicitly on time and Equation (2.3) is autonomous then,

V̇ (x) =
dV (x)

dx

T

f(x)

which does not depend explicitly on time either.

Definition 2.14. Lyapunov function

A Lyapunov function candidate V (t, x) for Equation (2.3) is a Lyapunov
function for (2.3) if its total time derivative along the trajectories of (2.3)
satisfies

V̇ (t, x) ≤ 0 ∀ t ≥ 0

and for small ‖x‖ .

Correspondingly, a Lyapunov function candidate V (x) for Equation (2.4) is a
Lyapunov function if V̇ (x) ≤ 0 for small ‖x‖.

2.3.4 Lyapunov’s Direct Method

With the above preliminaries we are now ready to present the basic results of
Lyapunov stability theory. Indeed, the theory of Lyapunov is the product of
more than a hundred years of intense study and there are numerous specialized
texts. The avid reader is invited to see the texts cited at the end of the chapter.
However, the list that we provide is by no means exhaustive; the cited texts
have been chosen specially for the potential reader of this book.

Theorem 2.2. Stability and uniform stability

The origin is a stable equilibrium of Equation (2.3), if there exists a Lya-
punov function candidate V (t, x) (i.e. a locally positive definite function with
continuous partial derivatives with respect to t and x) such that its total time
derivative satisfies

V̇ (t, x) ≤ 0, ∀ t ≥ 0 for small ‖x‖ .

If moreover V (t,x) is decrescent for small ‖x‖ then the origin is uniformly
stable.
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This theorem establishes sufficient conditions for stability of the equilib-
rium in the sense of Lyapunov. It is worth remarking that the conclusion of
the theorem holds also if V̇ (t,x) ≤ 0 for all t ≥ 0 and for all x ∈ IRn, or if
the Lyapunov function candidate V (t, x) is globally positive definite instead
of being only locally positive definite. The following theorem allows us to es-
tablish some results on stability of the equilibrium and on boundedness of
solutions.

Theorem 2.3. (Uniform) boundedness of solutions plus uniform sta-
bility

The origin is a uniformly stable equilibrium of Equation (2.3) and the so-
lutions x(t) are uniformly bounded for all initial conditions (t◦,x(t◦)) ∈
IR+×IRn if there exists a radially unbounded, globally positive definite, decres-
cent Lyapunov function candidate V (t, x) such that its total time derivative
satisfies

V̇ (t,x) ≤ 0 ∀ t ≥ t◦ ≥ 0 ∀ x ∈ IRn .

In particular, item 1 of Definition 2.7 holds.

Example 2.11. Consider the dynamic model of an ideal pendulum
without friction as analyzed in Example 2.2 and shown in Figure 2.2
(cf. page 30) for which we now assume that no torque τ(t) is applied
at the axis of rotation, i.e. we consider the system described by the
differential equation

Jq̈ + mgl sin(q) = 0 with q(0), q̇(0) ∈ IR .

This equation may be rewritten in the state-space form as

ẋ1 = x2

ẋ2 = −mgl

J
sin(x1),

where x1 = q and x2 = q̇. Notice that these equations are au-
tonomous nonlinear, and the origin is an equilibrium. However, we
remind the reader that from Example 2.2, we know that the pen-
dulum has multiple equilibria, more precisely at [q q̇]T = [nπ 0]T

for n = · · · ,−2,−1, 0, 1, 2, · · · ; that is, the origin is the equilibrium
corresponding to the case n = 0.

In order to analyze the stability of the origin we use Theorem 2.2
with the following locally positive definite function:

V (x1, x2) = mgl [1 − cos(x1)] + J
x2

2

2
.

Notice that the first term on the right-hand side corresponds to the
potential energy, while the second one corresponds to the kinetic en-
ergy. Observe that V (x1, x2) is not a positive definite function since



46 2 Mathematical Preliminaries

it does not fulfil V (x1, x2) > 0 for all [x1 x2]T 
= 0 ∈ IR2. However, it
is locally positive definite because V (x1, x2) > 0 for ‖x‖ > 0 small, in
the sense that ‖x‖ < 2π .

Evaluating the total time derivative of V (x1, x2) we obtain

V̇ (x1, x2) = mgl sin(x1)ẋ1 + Jx2ẋ2

= 0 .

According to Theorem 2.2, the origin is a stable equilibrium, i.e.
the solutions x1(t) and x2(t) remain as close to the origin as desired
if the initial conditions x1(0) and x2(0) are sufficiently small.

0
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Figure 2.9. Phase plane of the pendulum

Above, we proved that the origin is a stable equilibrium point; this
corresponds to n = 0. As a matter of fact, considering the multiple
equilibria, i.e. n 
= 0, one can also show that the equilibria associated
to n even are stable while those for n odd are unstable.

We stress that although the origin (and strictly speaking, infinitely
many other equilibria) is Lyapunov stable, this system has unbounded
solutions. Notice indeed from Figure 2.9, how the solution may grow
indefinitely to the right or to the left, i.e. in the direction of the
displacements, x1; while the solution remains bounded in the direction
of the velocities, x2. In other words, if the pendulum starts to oscillate
at a speed larger than 2

√
mgl/J from any position then it will spin

for ever after! ♦

Thus, Example 2.2 shows clearly that stability of an equilibrium is not
synonymous with boundedness of the solutions.

We present next, sufficient conditions for global asymptotic and exponen-
tial stability.
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Theorem 2.4. Global (uniform) asymptotic stability

The origin of Equation (2.3) (respectively of Equation 2.4) is globally asymp-
totically stable if there exists a radially unbounded, globally positive definite
Lyapunov function candidate V (t,x) (respectively V (x) ) such that its time
derivative is globally negative definite. If, moreover, the function V (t, x) is
decrescent, then the origin is globally uniformly asymptotically stable.

It should be clear that the origin of the autonomous Equation (2.4) is glob-
ally asymptotically stable if and only if it is globally uniformly asymptotically
stable.

Example 2.12. Consider the following scalar equation

ẋ = −ax3 , x(0) ∈ IR,

where a is a positive constant. The origin is a unique equilibrium. To
analyze its stability consider the following Lyapunov function candi-
date which is positive definite and radially unbounded:

V (x) =
x2

2
.

Its total time derivative is

V̇ (x) = xẋ

= −ax4 .

So we see that from Theorem 2.4, the origin is globally asymptot-
ically stable. ♦

In the case that Equation (2.3) is autonomous there is no difference be-
tween global asymptotic stability and global uniform asymptotic stability.

Theorem 2.5. Global exponential stability

The origin of (2.3) is globally exponentially stable if there exists a Lyapunov
function candidate V (t,x) and positive constants α, β, γ and p ≥ 1 such that:

• α‖x‖p ≤ V (t,x) ≤ β‖x‖p ;
• V̇ (t, x) ≤ −γ‖x‖p ∀ t ≥ t◦ ≥ 0 ∀ x ∈ IRn .

If all the above conditions hold only for small ‖x‖ then we say that the origin
is an exponentially stable equilibrium.
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Example 2.13. Consider the following scalar equation:

ẋ = −a

[
1 − 1

2
sin(t)

]
x x(0) ∈ IR,

where a is a positive constant. Note that the origin is a unique equilib-
rium. To analyze its stability consider the following Lyapunov function
candidate which is positive definite and radially unbounded:

V (x) = x2 .

Since V does not depend on t, it is decrescent. The total time deriva-
tive of V is

V̇ (x) = 2xẋ

= −2a

[
1 − 1

2
sin(t)

]
x2

≤ −ax2 .

So the conditions of Theorem 2.4 are satisfied and we conclude
that the origin is globally uniformly asymptotically stable. Moreover,
notice that the conditions of Theorem 2.5 also hold, with α = β = 1,
γ = a and p = 2 so the the origin is also globally exponentially stable.

♦

The following result establishes necessary conditions for certain global
properties of stability of equilibria.

Theorem 2.6. Consider the differential Equations (2.3) and (2.4). The unic-
ity of an existing equilibrium point is necessary for the following properties (or,
in other words, the following properties imply the unicity of an equilibrium):

• global asymptotic stability;
• global exponential stability.

The proof of Theorem 2.6 follows straightforwardly from the observation that
each of the above-cited concepts of stability implies that ‖x(t) − xe‖ → 0
when t → ∞, and where xe is the equilibrium under analysis. In view of the
“globality” of the mentioned properties of stability, the convergence of the
solution x(t) to the equilibrium xe, must be verified for all initial conditions.
Clearly, this would not be the case if besides xe there existed other equilibria,
since in this case any solution starting off at other equilibria, by definition,
would remain at that point forever after.
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Notice that Theorem 2.6 does not establish as a necessary condition for
stability of the equilibrium, that the equilibrium in question be unique. It
is important to mention that for a given system there may coexist equilibria
with local stability properties and in particular, stable equilibria with unstable
equilibria.

Since for a given system the global properties of stability imply existence
of a unique equilibrium, it is correct to speak of not only the properties of
global stability of that equilibrium, but also of such properties for the system
itself. That is, sentences such as “such a system is globally asymptotically
stable” or, “the system is globally exponentially stable” are mathematically
meaningful and correct.

In control theory, i.e. when we are required to analyze the stability of
a particular system, finding a Lyapunov function with a negative definite
derivative is in general very hard. Nevertheless, if in spite of painstaking efforts
we are unable to find a Lyapunov function we must not conclude that the
origin of the system under analysis is unstable; rather, no conclusion can be
drawn. Fortunately, for autonomous systems, there are methods based on more
restrictive conditions but considerably easier to verify. A notable example
is the so-called La Salle’s invariance principle5 which is widely used in the
analysis of robot control systems. The following theorem is a simplified version
of La Salle’s invariance principle that appears adequate for the purposes of
this textbook.

Theorem 2.7. La Salle

Consider the autonomous differential equation

ẋ = f(x)

whose origin x = 0 ∈ IRn is an equilibrium. Assume that there exists a globally
positive definite and radially unbounded Lyapunov function candidate V (x),
such that

V̇ (x) ≤ 0 ∀ x ∈ IRn.

Define the set Ω as
Ω =

{
x ∈ IRn : V̇ (x) = 0

}
. (2.15)

If x(0) = 0 is the only initial state in Ω whose corresponding solution, x(t),
remains forever in Ω (i.e. x(t) ∈ Ω for all t ≥ 0 ) then the origin x = 0 ∈ IRn

is globally asymptotically stable.
5 While in the western literature this result is mainly attributed to the French math-

ematician J. P. La Salle, some authors call this “Krasovskĭı–La Salle’s theorem”
to give credit to the Russian mathematician N. N. Krasovskĭı who independently
reported the same theorem. See the bibliographical remarks at the end of the
chapter.
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We stress that the application of the theorem of La Salle to establish global
asymptotic stability does not require that V̇ (x) be a negative definite function.
However, we recall that this theorem can be employed only for autonomous
differential equations. A practical way to verify the condition of La Salle’s
theorem and which suffices for most of this textbook is given in the following
statement.

Corollary 2.1. Simplified La Salle
Consider the set of autonomous differential equations

ẋ = fx(x, z) , x ∈ IRn (2.16)
ż = fz(x, z) , z ∈ IRm . (2.17)

where fx(0,0) = 0 and fz(0,0) = 0. That is, the origin is an equilibrium
point. Let V : IRn × IRm → IR+ be globally positive definite and radially un-
bounded in both arguments. Assume that there exists a globally positive definite
function W : IRm → IR+ such that

V̇ (x, z) = −W (z) . (2.18)

If x = 0 is the unique solution of fz(x,0) = 0 then the origin [xT zT ]T = 0
is globally asymptotically stable.

The proof of this corollary is simple and follows by applying Theorem 2.7.
Therefore, for the sake of completeness and to illustrate the use of Theorem
2.7 we present it next.

Proof of Corollary 2.1. Since W (z) is globally positive definite in z we have
from (2.18) that the set Ω defined in (2.15) is in this case, {z = 0}∪{x ∈ IRn}.
This means that for the solutions of (2.16), (2.17) to be contained in Ω they
must verify that for all t ≥ 0, z(t) = ż(t) = 0 and

ẋ(t) = fx(x(t),0) (2.19)
0 = fz(x(t),0) . (2.20)

However, by assumption the unique solution that satisfies (2.20) is the trivial
solution, i.e. x(t) = 0 for all t ≥ 0. In its turn, the trivial solution also satisfies
(2.19) since ẋ(t) = 0 and by assumption, fx(0,0) = 0. Thus, the only initial
state for which [x(t)T z(t)T ]T ∈ Ω for all t ≥ 0 is [x(0)T z(0)T ]T = 0. Global
asymptotic stability of the origin follows from Theorem 2.7. ♦♦♦

We present next some examples to further illustrate the use of La Salle’s
theorem.
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Example 2.14. Consider the autonomous equations

ẋ = −k z, x(0) ∈ IR
ż = −z3 + k x, z(0) ∈ IR

where k 
= 0. Note that the origin is an equilibrium point. Consider
now the following Lyapunov function candidate – positive definite and
radially unbounded – to study the stability of the origin:

V (x, z) =
1
2
[
x2 + z2

]
.

The total time derivative of V (x, z) is given by

V̇ (x, z) = −z4

≤ 0 .

Hence, according to Theorem 2.2 we may conclude stability of the
origin. However, note that V̇ (x, z) = 0 for any value of x and z = 0,
so it cannot be even locally negative definite. Therefore, since V̇ (x, z)
does not satisfy the conditions of Theorem 2.4 we may not conclude
global asymptotic stability of the origin from this result.

Nevertheless, since the equations under study are autonomous, we
may try to invoke La Salle’s theorem (Theorem 2.7). To that end, let
us follow the conditions of Corollary 2.1.
• We already verified that the origin is an equilibrium point.
• We also have verified that V (x, z) is globally positive definite and

radially unbounded in both arguments.
• In addition, V̇ (x, z) = −z4 so we define W (z) := z4 which is a

globally positive definite function of z.
• It is only left to verify that the only solution of fz(x, 0) = 0 is x = 0

which in this case, takes the form 0 = kx. Hence it is evident that
x = 0 is the only solution.

We conclude from Corollary 2.1 that the origin is globally asymptot-
ically stable. ♦

Example 2.15. Consider the following equations

ẋ1 = −x1 + k1x2 + k2x3 x1(0) ∈ IR
ẋ2 = −k1x1 x2(0) ∈ IR
ẋ3 = −k2x1 x3(0) ∈ IR
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where k1 
= 0, k2 
= 0. These equations represent an autonomous linear
differential equation whose equilibria are the points

[x1 x2 x3] =
[
0 x2 − k1

k2
x2

]
.

Notice that there exist an infinite number of equilibrium points, one
for each x2 ∈ IR. In particular, for x2 = 0, the origin is an equilibrium.
To study its stability we consider the Lyapunov function candidate
which is positive definite and radially unbounded,

V (x) =
1
2
[
x2

1 + x2
2 + x2

3

]
,

and whose total time derivative is

V̇ (x) = −x2
1.

Theorem 2.3 guarantees stability of the origin and boundedness of
the solutions. Theorem 2.4 on global asymptotic stability, may not be
used since V̇ (x) is zero at x1 = 0 and for any values of x2 and x3; that
is, it does not hold that V̇ (x) is negative definite. Even though the
equations under study are autonomous they have an infinite number
of equilibria. For this reason and according to Theorem 2.6, the origin
may not be globally asymptotically stable. ♦

In the previous example it is not possible to conclude that the origin
is an asymptotically stable equilibrium however, under the above conditions
one may conclude that limt→∞ x1(t) = 0. Indeed this can be achieved by
invoking the following Lemma which guarantees boundedness of the solutions
and convergence of part of the state. This is obviously a weaker property
than (global) asymptotic stability but it is still a useful property to evaluate,
rigorously, the performance of a controller.

Lemma 2.2. Consider the continuously differentiable functions x : IR+ →
IRn, z : IR+ → IRm, h : IR+ → IR+ and P : IR+ → IR(n+m)×(n+m). Assume
that P (t) is a symmetric positive definite matrix for each t ∈ IR+ and P is
continuous. Define the function V : IR+ × IRn × IRm × IR+ → IR+ as

V (t, x,z, h) =
[

x
z

]T

P (t)
[

x
z

]
+ h(t) ≥ 0 .

If the total time derivative of V (t, x, z, h), i.e.

V̇ (t, x, z, h) :=
∂V (t, x, z, h)

∂t
+

∂V (t,x,z, h)
∂x

T
dx

dt

+
∂V (t,x,z, h)

∂z

T
dz

dt
+

dh

dt
,
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satisfies, for all t ∈ IR+, x ∈ IRn, z ∈ IRm and h ∈ IR+,

V̇ (t, x, z, h) = −
[

x
z

]T[
Q(t) 0
0 0

] [
x
z

]
≤ 0

where Q(t) = Q(t)T > 0 for all t ≥ 0 then,

1. x(t), z(t) and h(t) are bounded for all t ≥ 0 and
2. x(t) is square-integrable, i.e.∫ ∞

0

‖x(t)‖2
dt < ∞ .

If, moreover, ẋ is also bounded then we have

lim
t→∞x(t) = 0 .

The proof of this lemma is presented in Appendix A.
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de la faculté de sciences de Toulouse, volume 9, pp. 203-474. Translation
—revised by A. M. Lyapunov— from the original published in Russian in
Comm. Soc. Math., Kharkov 1892. Reprinted in Ann. Math. Studies 17,
Princeton 1949. See also the more recent edition “The general problem of
stability of motion”, Taylor and Francis: London, 1992.

La Salle’s Theorem as adapted here for the scope of this text, is a corol-
lary of the so-called La Salle’s invariance principle which was originally and
independently proposed by J. La Salle and by N. N. Krasovskĭı and may be
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Problems

1. Consider the vectors x ∈ IRn and y ∈ IRm. Show that∥∥∥∥x
y

∥∥∥∥ =
∥∥∥∥‖x‖‖y‖

∥∥∥∥ .
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2. Consider the matrix

P (x) =

⎡⎣ k − ε

1 + 2x2

− ε

1 + 2x2
1

⎤⎦
where ε > 0. Show that if k > ε2 then P is positive definite, i.e. P (x) > 0
for all x ∈ IR.

3. Consider the differential equation that describes the behavior of a Hopfield
neuron:

ẋ = −ax + w tanh(x) + b

where a > 0, w, b ∈ IR.
a) Show by use of the contraction mapping theorem that if a − |w| > 0

then the differential equation has a unique equilibrium.
b) Assume that a = b = 1 and w = 1/2. Use the contraction mapping

theorem together with a numerical algorithm to obtain an approxi-
mated value of the unique equilibrium of the differential equation.

4. Consider the function

V (x1, x2) = [ x1 x2 ]
[

4 1
−10 3

] [
x1

x2

]
.

Is V (x1, x2) positive definite?
5. Consider the function

V (x1, x2) = ax2
1 + 2bx1x2 + cx2

2 .

Show that if a > 0 and ac > b2 then V (x1, x2) is positive definite.
6. Consider the linear autonomous differential equation

ẋ = Ax, x ∈ IRn .

Show that if there exists a pole of this equation at the origin of the complex
plane, then the equation has an infinite number of equilibria.
Hint: Here, the “poles” are the eigenvalues of A.

7. An equilibrium xe ∈ IRn is an isolated equilibrium of ẋ = f(x) if there
exists a real positive number α > 0 such that there may not be any
equilibrium other than xe in Ω, where

Ω = {x ∈ IRn : ‖x − xe‖ < α} .

In the case that there does not exist any α > 0 that satisfies the above
then the equilibrium xe is not isolated.
Assume that xe is a non-isolated equilibrium. Answer ‘true’ or ‘false’ to
the following claims:
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a) the equilibrium xe may not be asymptotically stable;
b) the equilibrium xe is stable.

8. Consider the function f(x, y) : IR2 → IR2,

f(x, y) =
[

f1(x, y)
f2(x, y)

]
.

Assume that f(x, y) = 0 ⇐⇒ x = 0 and y = 0. Does this imply that

f1(x, y) = 0 ⇐⇒ x = 0 and y = 0?

9. Consider the following two differential equations:

ẋ1 = ε[x1 − ε] + x2 − [x1 − ε]
[
[x1 − ε]2 + x2

2

]
, x1(0) ∈ IR

ẋ2 = −[x1 − ε] + εx2 − x2

[
[x1 − ε]2 + x2

2

]
, x2(0) ∈ IR

where ε ∈ IR is constant. Determine the equilibria.
10. Consider the following second-order differential equation,

ÿ + [y2 − 1]ẏ + y2 + 1 = 0, y(0), ẏ(0) ∈ IR .

Express this equation in the form ẋ = f(t, x) .
a) Is this equation linear in the state x ?
b) What are the equilibrium points? Discuss.

11. Consider the equation ẋ = f(x). Assume that xe = 0 ∈ IRn is a stable
equilibrium. Does this imply that the solutions x(t) are bounded for all
t ≥ 0 ?

12. Consider the equations

ẋ1 = x2 − x3
1

ẋ2 = −x1 − x3
2

for which the origin is the unique equilibrium. Use the direct Lyapunov’s
method (propose a Lyapunov function) to show that the origin is stable.

13. Pick positive integer numbers m and n and appropriate constants a and
b to make up a Lyapunov function of the form

V (x1, x2) = ax2m
1 + bx2n

2

in order to show stability of the origin for
a)

ẋ1 = −2x3
2

ẋ2 = 2x1 − x3
2
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b)

ẋ1 = −x3
1 + x3

2

ẋ2 = −x3
1 − x3

2 .

14. Theorem 2.4 allows us to conclude global uniform asymptotic stability of
an equilibrium of a differential equation. To show only uniform asymptotic
stability (i.e. not global), the conditions of Theorem 2.4 that impose to
the Lyapunov function candidate V (t, x) to be:
• (globally) positive definite;
• radially unbounded;
• (globally) decrescent and,
• for V̇ (t,x), to be (globally) negative definite;
must be replaced by:
• locally positive definite;
• locally decrescent and,
• for V̇ (t,x), to be locally negative definite.
If moreover, the differential equation is autonomous and the Lyapunov
function candidate V (x) is independent of time, then the equilibrium is
(locally) asymptotically stable provided that V (x) is locally positive def-
inite and V̇ (x) is locally negative definite.
An application of the latter is illustrated next.
Consider the model of a pendulum of length l and mass m concentrated
at the end of the pendulum and subject to the action of gravity g, and
with viscous friction at the joint (let f > 0 be the friction coefficient), i.e.

ml2q̈ + f q̇ + mgl sin(q) = 0,

where q is the angular position with respect to the vertical. Rewrite the
model in the state-space form ẋ = f(x) with x = [q q̇]T .
a) Determine the equilibria of this equation.
b) Show asymptotic stability of the origin by use of the Lyapunov func-

tion

V (q, q̇) = 2mgl[1 − cos(q)] +
ml2

2
q̇2 +

1
2

[
f

l
√

m
q + l

√
mq̇

]2

.

c) Is V̇ (q, q̇) a negative definite function?
15. Complete the analysis of Example 2.15 by applying Lemma 2.2.
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Robot Dynamics

Robot manipulators are articulated mechanical systems composed of links
connected by joints. The joints are mainly of two types: revolute and prismatic.
In this textbook we consider robot manipulators formed by an open kinematic
chain as illustrated in Figure 3.1.

q1

z1

z2

z3

q3
zn

qn

x =

⎡⎢⎣x1x2...
xm

⎤⎥⎦

q2

z0

x0

y0

joint 2

link 1
joint 1

link 2
joint n

link n

Figure 3.1. Abstract diagram of an n-DOF robot manipulator

Consider the generic configuration of an articulated arm of n links shown
in Figure 3.1. In order to derive the mathematical model of a robot one typ-
ically starts by placing a 3-dimensional reference frame (e.g. in Cartesian
coordinates) at any location in the base of the robot. Here, axes will be la-
beled with no distinction using {x y z} or {x0 y0 z0} or {x1 x2 x3}. The
links are numbered consecutively from the base (link 0) up to the end-effector
(link n). The joints correspond to the contact points between the links and
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are numbered in such a way that the ith joint connects the ith to the (i−1)th
link. Each joint is independently controlled through an actuator, which is usu-
ally placed at that joint and the movement of the joints produces the relative
movement of the links. We temporarily denote by zi, the ith joint’s axis of
motion. The generalized joint coordinate denoted by qi, corresponds to the
angular displacement around zi if the ith joint is revolute, or to the linear
displacement along zi if the ith joint is prismatic. In the typical case where
the actuators are placed at the joints among the links, the generalized joint
coordinates are named joint positions. Unless explicitly said otherwise, we
assume that this is the case.

x0

z0

z1

q1

q2

z2

z3

q3

z4

q4

y0

x =

⎡⎣ x1
x2
x3

⎤⎦

Figure 3.2. Example of a 4-DOF robot

Example 3.1. Figure 3.2 shows a 4-DOF manipulator. The placement
of the axes zi as well as the joint coordinates, are illustrated in this
figure. ♦

The joint positions corresponding to each joint of the robot, and which
are measured by sensors adequately placed at the actuators, that are usually
located at the joints themselves, are collected for analytical purposes, in the
vector of joint positions q. Consequently, for a robot with n joints, that is,
with n DOF (except for special cases, such as elastic-joints or flexible-link
robots), the vector of joint positions q has n elements:
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q =

⎡⎢⎢⎣
q1

q2
...

qn

⎤⎥⎥⎦
i.e. q ∈ IRn. On the other hand it is also of great interest, specifically from a
practical viewpoint, to determine the position and orientation (posture) of the
robot’s end-effector since it is the latter that actually carries out the desired
task. Such position and orientation are expressed with respect to the reference
frame placed at the base of the robot (e.g. a Cartesian frame {x0, y0, z0}) and
eventually in terms of the so-called Euler angles. Such coordinates (and angles)
are collected in the vector x of operational positions1

x =

⎡⎢⎢⎣
x1
x2
...
xm

⎤⎥⎥⎦
where m ≤ n. In the case when the robot’s end-effector can take any position
and orientation in the Euclidean space of dimension 3 (e.g. the room where
the reader is at the moment), we have m = 6. On the other hand, if the
robot’s motion is on the plane (i.e. in dimension 2) and only the position of
the end-effector is of interest, then m = 2. If, however, the orientation on the
plane is of concern then, m = 3.

The direct kinematic model of a robot, describes the relation between the
joint position q and the position and orientation (posture) x of the robot’s
end-effector. In other words, the direct kinematic model of a robot is a function
ϕ : IRn → IRm such that

x = ϕ(q) .

Although lengthy, computation of the direct kinematic model, x = ϕ(q),
is methodical and in the case of robots of only few DOF, it involves simple
trigonometric expressions.

The inverse kinematic model consists precisely in the inverse relation of
the direct kinematic model, that is, it corresponds to the relation between the
operational posture x and the joint position q, i.e.

q = ϕ−1(x).

In contrast to the direct kinematic model, computation of the inverse kine-
matic model q = ϕ−1(x) may be highly complex and, as a matter of fact, may
yield multiple solutions.

The dynamic model of a robot consists of an ordinary differential equation
where the variable corresponds to the vector of positions and velocities, which
1 These are also known as positions in the operational space or workspace.



62 3 Robot Dynamics

may be in joint coordinates q, q̇ or in operational coordinates x, ẋ. In general,
these are second-order nonlinear models which can be written in the generic
form

fEL(q, q̇, q̈, τ ) = 0 , (3.1)
fC(x, ẋ, ẍ, τ ) = 0 . (3.2)

The vector τ stands for the forces and torques applied at the joints by
the actuators. The dynamic model (3.1) is the dynamic model in joint space,
while (3.2) corresponds to the dynamic model in operational space. In this
text, we focus on the dynamic model in joint space and, for simplicity, we
omit the words “in joint space”.

Kinematics as much as dynamics, is fundamental to plan and carry out
specific tasks for robot manipulators. Both concepts are dealt with in consid-
erable detail in a large number of available textbooks (see the list of references
at the end of this chapter). However, for the sake of completeness we present
in this chapter the basic issues related to robot dynamics. In the next two
chapters we present properties of the dynamic model, relevant for control. In
Chapter 5 we present in detail the model of a real 2-DOF lab prototype which
serves as a case study throughout the book.

Besides the unquestionable importance that robot dynamics has in control
design, the dynamic models may also be used to simulate numerically (with a
personal computer and specialized software), the behavior of a specific robot
before actually being constructed. This simulation stage is important, since it
allows us to improve the robot design and in particular, to adapt this design
to the optimal execution of particular types of tasks.

One of the most common procedures followed in the computation of the
dynamic model for robot manipulators, in closed form (i.e. not numerical), is
the method which relies on the so-called Lagrange’s equations of motion. The
use of Lagrange’s equations requires the notion of two important concepts
with which we expect the reader to be familiar: kinetic and potential energies.

We describe next in some detail, how to derive the dynamic model of a
robot via Lagrange’s equations.

3.1 Lagrange’s Equations of Motion

The dynamic equations of a robot manipulator in closed form may be obtained
from Newton’s equations of motion or, via Lagrange’s equations. All of these
are well documented in textbooks on analytical mechanics and are only briefly
presented here.

The disadvantage of the first method is that the complexity of the analysis
increases with the number of joints in the robot. In such cases, it is better
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to use Lagrange’s equation of motion. The latter are named after the French
mathematician Joseph Louis de La Grange (today spelled “Lagrange”) which
first reported them in 1788 in his celebrated work “Mécanique analytique”2.

Consider the robot manipulator with n links depicted in Figure 3.1. The
total energy E of a robot manipulator of n DOF is the sum of the kinetic and
potential energy functions, K and U respectively, i.e.

E (q, q̇) = K (q, q̇) + U(q)

where q = [q1, · · · , qn]T .
The Lagrangian L(q, q̇) of a robot manipulator of n DOF is the difference

between its kinetic energy K and its potential energy U , that is,

L (q, q̇) = K (q, q̇) − U(q) . (3.3)

We assume here that the potential energy U is due only to conservative
forces such as gravitational energy and energy stored in compressed springs.

Then, the Lagrange equations of motion for a manipulator of n DOF, are
given by

d

dt

[
∂L(q, q̇)

∂q̇

]
− ∂L(q, q̇)

∂q
= τ ,

or in the equivalent form by

d

dt

[
∂L(q, q̇)

∂q̇i

]
− ∂L(q, q̇)

∂qi
= τi, i = 1, · · · , n (3.4)

where τi correspond to the external forces and torques (delivered by the ac-
tuators) at each joint as well as to other (nonconservative) forces. In the class
of nonconservative forces we include those due to friction, the resistance to
the motion of a solid in a fluid, and in general, all those that depend on time
and velocity and not only on position.

Notice that one has as many scalar dynamic equations as the manipulator
has degrees of freedom.

The use of Lagrange’s equations in the derivation of the robot dynamics
can be reduced to four main stages:

1. Computation of the kinetic energy function K(q, q̇) .
2. Computation of the potential energy function U(q) .
3. Computation of the Lagrangian (3.3) L(q, q̇) .
4. Development of Lagrange’s equations (3.4).
2 These equations are also called Euler–Lagrange equations in honor to the Swiss

scientist Leonhard Euler, contemporary of La Grange, who discovered a similar
but more general set of second-order differential equations.
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In the rest of this section we present some examples that illustrate the
process of obtaining the robot dynamics by the use of Lagrange’s equations
of motion.

z0
z0

x0
y0

x0

q1
y0

ϕ

l2

m2

m1

l1

Figure 3.3. Example of a 1-DOF mechanism

Example 3.2. Consider the mechanism shown in Figure 3.3. It consists
of a rigid link formed by two parts, of lengths l1 and l2, whose masses
m1 and m2 are, for simplicity, considered to be concentrated at their
respective centers of mass, located at the ends. The angle ϕ is constant.

The mechanism possesses only revolute motion about the z0 axis,
the angle of which is represented by q1. For this example, the only
degree-of-freedom is associated to the joint 1. Then, q is a scalar de-
fined as q = q1.

We emphasize that the dynamic model of this mechanism may be
obtained using the concepts of dynamics of rigid bodies in rotation,
which are subjects of study in elementary courses of physics. However,
for the sake of illustration we employ Lagrange’s equations of motion.

The kinetic energy function K(q, q̇) of the system is given by the
product of half the moment of inertia times the angular velocity
squared, i.e.

K (q, q̇) =
1
2
m2l

2
2 cos2(ϕ) q̇2

and the corresponding potential energy

U(q) = m1l1g + m2 (l1 + l2 sin(ϕ)) g
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where g is the gravity acceleration. Here, we assumed that the poten-
tial energy function is zero on the plane x0–y0. Actually, notice that
in this example the potential energy is constant so in particular, it
does not depend on the joint position q.

The Lagrangian L(q, q̇), expressed by (3.3), is in this case

L(q, q̇) =
m2

2
l22 cos2(ϕ) q̇2 − m1l1g − m2 (l1 + l2sin(ϕ)) g .

From this, one can obtain the following equations:

∂L
∂q̇

= m2l
2
2 cos2(ϕ) q̇

d

dt

[
∂L
∂q̇

]
= m2l

2
2 cos2(ϕ) q̈

∂L
∂q

= 0 .

Then, the corresponding Lagrange Equation (3.4) is

m2l
2
2 cos2(ϕ) q̈ = τ , (3.5)

where τ is the torque applied at the joint 1. Equation (3.5) describes
the dynamic behavior of the mechanism. Notice that the dynamic
model is simply a linear second-order nonautonomous differential
equation.

Equation (3.5) may be expressed in terms of the state vector [q q̇]T

as

d

dt

⎡⎣ q

q̇

⎤⎦ =

⎡⎢⎣ q̇

τ

m2l22 cos2(ϕ)

⎤⎥⎦ ;

⎡⎣ q(0)

q̇(0)

⎤⎦ ∈ IR2 .

The necessary and sufficient condition for the existence of equi-
libria is τ(t) = 0 for all t ≥ 0. In this situation, the equation has an
infinite number of equilibria which are given by [q q̇]T = [q∗ 0]T ∈ IR2

with q∗ ∈ IR. The interpretation of this result is the following. If at the
instant t = 0 the position q(0) has any value q∗ ∈ IR, the velocity q̇(0)
is zero and moreover no torque is applied at the joint (i.e. τ(t) = 0 for
all t) then, we have q(t) = q∗ and q̇(t) = 0 for all t ≥ 0. Note that the
latter is in accordance with the physical interpretation of the concept
of equilibrium. ♦

The following example illustrates the derivation of the dynamic model of
the 2-DOF robot with revolute joints shown in Figure 3.4 and that moves
about purely on the horizontal plane. Therefore, gravity has absolutely no
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influence on the robot dynamics. This should not surprise the reader; note
that the potential energy for this robot is constant since its mass does not
move in the vertical direction.

A particularity of this example, is that the actuators that deliver the
torques are not physically located at the joints themselves, but one of them
transmits the motion to the link through belts. Such types of transmission are
fairly common in industrial robots. The motivation for such configurations is
to lighten the weight (henceforth the inertia) of the arm itself by placing the
actuators as close to the base as possible.

l1 q1

x

y

τ1

z

τ2

m2
I2

δq2

lc2

m1

I1 lc1

Figure 3.4. Example of a 2-DOF robot

Example 3.3. Consider the robot manipulator with 2 DOF shown in
Figure 3.4. This manipulator consists of two rigid links where l1 is
the length the first link. Both joints are revolute. The robot moves
about only on the horizontal plane x–y as is shown in Figure 3.4. The
masses of the links are denoted by m1 and m2 respectively. Notice
that the center of mass of link 2 may be physically placed “out” of
the link itself! This is determined by the value of the constant angle δ.
The distances of the rotating axes to the centers of mass, are denoted
by lc1 and lc2 respectively. Finally, I1 and I2 denote the moments
of inertia of the links with respect to axis that passes through their
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respective centers of mass and that are parallel to the z axis. The joint
positions associated to the angles q1 and q2 are measured between each
respective link and an axis which is parallel to the x axis. Both angles
are taken to be positive counterclockwise. The motion is transmitted
to link 2 by a belt since the corresponding actuator is placed at the
base of the robot. The vector of joint positions q is defined as

q = [q1 q2]T .

The kinetic energy function K(q, q̇) for this arm may be decom-
posed into the sum of two parts: K(q, q̇) = K1(q, q̇)+K2(q, q̇), where
K1(q, q̇) and K2(q, q̇) are the kinetic energies associated with the
masses m1 and m2 respectively. In turn, the kinetic energy includes the
linear and angular motions. Thus, we have K1(q, q̇) = 1

2m1v
2
1 + 1

2I1q̇
2
1 ,

where v1 is the speed3 of the center of mass of link 1. In this case,

K1(q, q̇) =
1
2
m1l

2
c1q̇

2
1 +

1
2
I1q̇

2
1 . (3.6)

On the other hand, K2(q, q̇) = 1
2m2v

2
2 + 1

2I2q̇
2
2 , where v2 is the

speed of the center of mass of link 2. This speed squared, i.e. v2
2 , is

given by
v2
2 = ẋ2

2 + ẏ2
2

where ẋ2 and ẏ2 are the components of the velocity vector of the
center of mass of link 2. The latter are obtained by evaluating the
time derivative of the positions x2 and y2 of the center of mass of link
2, i.e.

x2 = l1 cos(q1) + lc2 cos(q2 − δ)

y2 = l1 sin(q1) + lc2 sin(q2 − δ) .

Using the trigonometric identities, cos(θ)2 + sin(θ)2 = 1 and
sin(q1)sin(q2 − δ)+cos(q1)cos(q2 − δ) = cos(q1 − q2 + δ), we finally get

v2
2 = l21 q̇

2
1 + l2c2q̇

2
2 + 2l1lc2 cos(q1 − q2 + δ)q̇1q̇2

which implies that

K2(q, q̇) =
m2

2
l21 q̇

2
1 +

m2

2
l2c2q̇

2
2 + m2l1lc2 cos(q1 − q2 + δ)q̇1q̇2

+
1
2
I2q̇

2
2 . (3.7)

Since the robot moves only on the horizontal plane, the potential
energy is constant, e.g. U(q) = 0 .

3 Some readers may be surprised that we use the word speed as opposed to velocity.
We emphasize that velocity is a vector quantity hence, it has a magnitude and
direction. The magnitude of the velocity is called speed.
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So from Equations (3.6) and (3.7), it is clear that the Lagrangian,

L(q, q̇) = K(q, q̇) − U(q) ,

takes the form

L(q, q̇) = K1(q, q̇) + K2(q, q̇)

=
1
2
(m1l

2
c1 + m2l

2
1)q̇

2
1 +

1
2
m2l

2
c2q̇

2
2

+ m2l1lc2 cos(q1 − q2 + δ)q̇1q̇2

+
1
2
I1q̇

2
1 +

1
2
I2q̇

2
2 .

From this equation we obtain the following expressions:

∂L
∂q̇1

= (m1l
2
c1 + m2l

2
1 + I1)q̇1

+ m2l1lc2 cos(q1 − q2 + δ)q̇2 ,

d

dt

[
∂L
∂q̇1

]
=

(
m1l

2
c1 + m2l

2
1 + I1

)
q̈1

+ m2l1lc2 cos(q1 − q2 + δ)q̈2

− m2l1lc2sin(q1 − q2 + δ)(q̇1 − q̇2)q̇2 ,

∂L
∂q1

= −m2l1lc2 sin(q1 − q2 + δ)q̇1q̇2 ,

∂L
∂q̇2

= m2l
2
c2q̇2 + m2l1lc2 cos(q1 − q2 + δ)q̇1 + I2q̇2 ,

d

dt

[
∂L
∂q̇2

]
= m2l

2
c2q̈2 + m2l1lc2 cos(q1 − q2 + δ)q̈1

− m2l1lc2 sin(q1 − q2 + δ)q̇1(q̇1 − q̇2) + I2q̈2 ,

∂L
∂q2

= m2l1lc2 sin(q1 − q2 + δ)q̇1q̇2 .

Thus, the dynamic equations that model the robot manipulator
may be obtained by using Lagrange’s equations (3.4),

τ1 =
[
m1l

2
c1 + m2l

2
1 + I1

]
q̈1

+ m2l1lc2 cos(q1 − q2 + δ)q̈2

+ m2l1lc2 sin(q1 − q2 + δ)q̇2
2

and,
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τ2 = m2l1lc2 cos(q1 − q2 + δ)q̈1 + [m2l
2
c2 + I2]q̈2

− m2l1lc2 sin(q1 − q2 + δ)q̇2
1 .

Finally using the identities

cos(q1 − q2 + δ) = cos(δ)cos(q1 − q2) − sin(δ)sin(q1 − q2)
= cos(δ)cos(q2 − q1) + sin(δ)sin(q2 − q1),

sin(q1 − q2 + δ) = cos(δ)sin(q1 − q2) + sin(δ)cos(q1 − q2)
= −cos(δ)sin(q2 − q1) + sin(δ)cos(q2 − q1) ,

and denoting C21 = cos(q2 − q1), S21 = sin(q2 − q1), one obtains

τ1 =
[
m1l

2
c1 + m2l

2
1 + I1

]
q̈1

+ [m2l1lc2 cos(δ)C21 + m2l1lc2 sin(δ)S21]q̈2

+ [−m2l1lc2 cos(δ)S21 + m2l1lc2 sin(δ)C21]q̇2
2

(3.8)

and

τ2 = [m2l1lc2 cos(δ)C21 + m2l1lc2 sin(δ)S21]q̈1

+ [m2l
2
c2 + I2]q̈2

+ [m2l1lc2 cos(δ)S21 − m2l1lc2 sin(δ)C21]q̇2
1

(3.9)

which are of the form (3.1) with

fEL(q, q̇, q̈, τ ) =
[

τ1 − RHS(3.8)
τ2 − RHS(3.9)

]
where RHS(3.8) and RHS(3.9) denote the terms on the right-hand
side of (3.8) and (3.9) respectively. ♦

In the following example we derive the dynamic model of a Cartesian robot
with 3 DOF whose main feature is that it has a linear dynamic model.

Example 3.4. Consider the 3-DOF Cartesian robot manipulator shown
in Figure 3.5. The manipulator consists of three rigid links mutually
orthogonal. The three joints of the robot are prismatic. The robot’s
displacements happen in the space x0–y0–z0 shown in Figure 3.5. The
vector of joint positions is q = [q1 q2 q3]T .

The kinetic energy function for this manipulator is given by (cf.
Figure 3.5):
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q2

q3
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z0
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q3
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Figure 3.5. Example of a 3-DOF Cartesian robot

K(q, q̇) =
1
2
[
m1q̇

2
3 + [m1 + m2]q̇2

2 + [m1 + m2 + m3]q̇2
1

]
. (3.10)

On the other hand, the potential energy is given by

U(q) = [m1 + m2 + m3]gq1 . (3.11)

From Equations (3.10) and (3.11) we obtain the Lagrangian,

L(q, q̇) = K(q, q̇) − U(q)

=
1
2
[
m1q̇

2
3 + [m1 + m2]q̇2

2 + [m1 + m2 + m3]q̇2
1

]
− [m1 + m2 + m3]gq1 .

So we have

∂L
∂q̇1

= [m1 + m2 + m3]q̇1
d

dt

[
∂L
∂q̇1

]
= [m1 + m2 + m3]q̈1

∂L
∂q̇2

= [m1 + m2]q̇2
d

dt

[
∂L
∂q̇2

]
= [m1 + m2]q̈2

∂L
∂q̇3

= m1q̇3
d

dt

[
∂L
∂q̇3

]
= m1q̈3

∂L
∂q2

=
∂L
∂q3

= 0
∂L
∂q1

= −[m1 + m2 + m3]g.

The dynamic equations that model this robot may be obtained by
applying the Lagrange’s equations (3.4) to obtain



3.2 Dynamic Model in Compact Form 71

[m1 + m2 + m3]q̈1 + [m1 + m2 + m3]g = τ1 (3.12)
[m1 + m2]q̈2 = τ2 (3.13)

m1q̈3 = τ3 (3.14)

where τ1, τ2 and τ3 are the external forces applied at each joint. Notice
that in this example Equations (3.12)–(3.14) define a set of linear
autonomous differential equations.

In terms of the state vector [q1 q2 q3 q̇1 q̇2 q̇3] , the equations
(3.12), (3.13) and (3.14) may be expressed as

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

q̇1

q̇2

q̇3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇1

q̇2

q̇3

1
m1 + m2 + m3

[τ1 − [m1 + m2 + m3]g]

1
m1 + m2

τ2

1
m1

τ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The necessary and sufficient condition for the existence of equilib-
ria is τ1 = [m1 + m2 + m3]g, τ2 = 0 and τ3 = 0 and actually we have
an infinite number of them:

[q1 q2 q3 q̇1 q̇2 q̇3]
T = [q∗1 q∗2 q∗3 0 0 0]T

with q∗1 , q∗2 , q∗3 ∈ IR. ♦

3.2 Dynamic Model in Compact Form

In the previous section we presented some examples to illustrate the applica-
tion of Lagrange’s equations to obtain the dynamic equations for robots with
particular geometries. This same methodology, however, may be employed in
general to obtain the dynamic model of any robot of n DOF.

This methodology is commonly studied in classical texts on robotics and
theoretical mechanics and therefore, we present it here only in compact form.
The interested reader is invited to see the cited texts at the end of the chapter.

Consider a robot manipulator of n DOF composed of rigid links intercon-
nected by frictionless joints. The kinetic energy function K(q, q̇) associated
with such an articulated mechanism may always be expressed as
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K(q, q̇) =
1
2
q̇TM(q)q̇ (3.15)

where M(q) is a matrix of dimension n×n referred to as the inertia matrix.
M(q) is symmetric and positive definite for all q ∈ IRn. The potential energy
U(q) does not have a specific form as in the case of the kinetic energy but it
is known that it depends on the vector of joint positions q.

The Lagrangian L(q, q̇), given by Equation (3.3), becomes in this case

L(q, q̇) =
1
2
q̇TM(q)q̇ − U(q) .

With this Lagrangian, the Lagrange’s equations of motion (3.4) may be
written as

d

dt

[
∂

∂q̇

[
1
2
q̇TM(q)q̇

]]
− ∂

∂q

[
1
2
q̇TM(q)q̇

]
+

∂U(q)
∂q

= τ .

On the other hand, it holds that

∂

∂q̇

[
1
2
q̇TM(q)q̇

]
= M(q)q̇ (3.16)

d

dt

[
∂

∂q̇

[
1
2
q̇TM(q)q̇

]]
= M(q)q̈ + Ṁ(q)q̇. (3.17)

Considering these expressions, the equation of motion takes the form

M(q)q̈ + Ṁ(q)q̇ − 1
2

∂

∂q

[
q̇TM(q)q̇

]
+

∂U(q)
∂q

= τ ,

or, in compact form,

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (3.18)

where

C(q, q̇)q̇ = Ṁ(q)q̇ − 1
2

∂

∂q

[
q̇TM(q)q̇

]
(3.19)

g(q) =
∂U(q)

∂q
. (3.20)

Equation (3.18) is the dynamic equation for robots of n DOF. Notice that
(3.18) is a nonlinear vectorial differential equation of the state [qT q̇T ]T .
C(q, q̇)q̇ is a vector of dimension n called the vector of centrifugal and
Coriolis forces, g(q) is a vector of dimension n of gravitational forces or
torques and τ is a vector of dimension n called the vector of external
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forces, which in general corresponds to the torques and forces applied by the
actuators at the joints.

The matrix C(q, q̇) ∈ IRn×n, called the centrifugal and Coriolis forces
matrix may be not unique, but the vector C(q, q̇)q̇ is indeed unique. One way
to obtain C(q, q̇) is through the coefficients or so-called Christoffel symbols
of the first kind, cijk(q), defined as

cijk(q) =
1
2

[
∂Mkj(q)

∂qi
+

∂Mki(q)
∂qj

− ∂Mij(q)
∂qk

]
. (3.21)

Here, Mij(q) denotes the ijth element of the inertia matrix M(q). Indeed, the
kjth element of the matrix C(q, q̇), Ckj(q, q̇), is given by (we do not show here
the development of the calculations to obtain such expressions, the interested
reader is invited to see the texts cited at the end of the chapter)

Ckj(q, q̇) =

⎡⎢⎢⎢⎣
c1jk(q)
c2jk(q)

...
cnjk(q)

⎤⎥⎥⎥⎦
T

q̇ . (3.22)

The model (3.18) may be viewed as a dynamic system with input, the
vector τ , and with outputs, the vectors q and q̇. This is illustrated in Figure
3.6.

ROBOT �
�

�

�̇

�

�

Figure 3.6. Input–output representation of a robot

Each element of M(q), C(q, q̇) and g(q) is in general, a relatively complex
expression of the positions and velocities of all the joints, that is, of q and q̇.
The elements of M(q), C(q, q̇) and g(q) depend of course, on the geometry of
the robot in question. Notice that computation of the vector g(q) for a given
robot may be carried out with relative ease since this is given by (3.20). In
other words, the vector of gravitational torques g(q), is simply the gradient
of the potential energy function U(q).

Example 3.5. The dynamic model of the robot from Example 3.2, that
is, Equation (3.5), may be written in the generic form (3.18) by taking

M(q) = m2l
2
2 cos2(ϕ) ,
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C(q, q̇) = 0 ,

g(q) = 0 .

♦

Example 3.6. The Lagrangian dynamic model of the robot manipula-
tor shown in Figure 3.4 was derived in Example 3.3. A simple inspec-
tion of Equations (3.8) and (3.9) shows that the dynamic model for
this robot in compact form is[

M11(q) M12(q)
M21(q) M22(q)

]
︸ ︷︷ ︸

M(q)

q̈ +
[

C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

]
︸ ︷︷ ︸

C(q, q̇)

q̇ = τ (t)

where

M11(q) =
[
m1l

2
c1 + m2l

2
1 + I1

]
M12(q) = [m2l1lc2 cos(δ)C21 + m2l1lc2 sin(δ)S21]
M21(q) = [m2l1lc2 cos(δ)C21 + m2l1lc2 sin(δ)S21]
M22(q) = [m2l

2
c2 + I2]

C11(q, q̇) = 0
C12(q, q̇) = [−m2l1lc2 cos(δ)S21 + m2l1lc2 sin(δ)C21]q̇2

C21(q, q̇) = [m2l1lc2 cos(δ)S21 − m2l1lc2 sin(δ)C21]q̇1

C22(q, q̇) = 0

That is, the gravitational forces vector is zero. ♦

The dynamic model in compact form is important because it is the model
that we use throughout the text to design controllers and to analyze the
stability, in the sense of Lyapunov, of the equilibria of the closed-loop system.
In anticipation of the material in later chapters of this text and in support of
the material of Chapter 2 it is convenient to make some remarks at this point
about the “stability of the robot system”.

In the previous examples we have seen that the model in compact form
may be rewritten in the state-space form. As a matter of fact, this property is
not limited to particular examples but stands as a fact for robot manipulators
in general. This is because the inertia matrix is positive definite and so is the
matrix M(q)−1; in particular, the latter always exists. This is what allows us
to express the dynamic model (3.18) of any robot of n DOF in terms of the
state vector [qT q̇T ]T that is, as
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d

dt

⎡⎣ q

q̇

⎤⎦ =

⎡⎣ q̇

M(q)−1 [τ (t) − C(q, q̇)q̇ − g(q)]

⎤⎦ . (3.23)

Note that this constitutes a set of nonlinear differential equations of the
form (3.1). In view of this nonlinear nature, the concept of stability of a robot
in open loop must be handled with care.

We emphasize that the definition of stability in the sense of Lyapunov,
which is presented in Definition 2.2 in Chapter 2, applies to an equilibrium
(typically the origin). Hence, in studying the “stability of a robot manipula-
tor” it is indispensable to first determine the equilibria of Equation (3.23),
which describes the behavior of the robot.

The necessary and sufficient condition for the existence of equilibria of
Equation (3.23), is that τ (t) be constant (say, τ ∗) and that there exist a
solution q∗ ∈ IRn to the algebraic possibly nonlinear equation, in g(q∗) = τ ∗.
In such a situation, the equilibria are given by [qT q̇T ]T = [q∗T 0T ]T ∈ IR2n.
In the particular case of τ ≡ 0, the possible equilibria of (3.23) are given
by [qT q̇T ]T = [q∗T 0T ]T where q∗ is a solution of g(q∗) = 0. Given the
definition of g(q) as the gradient of the potential energy U(q), we see that q∗

corresponds to the vectors where the potential energy possesses extrema.
A particular case is that of robots whose workspace corresponds to the

horizontal plane. In this case, g(q) = 0 and therefore it is necessary and
sufficient that τ (t) = 0 for equilibria to exist. Indeed, the point

[
qT q̇T

]T
=

[q∗T 0T ]T ∈ IR2n where q∗ is any vector of dimension n is an equilibrium.
This means that there exist an infinite number of equilibria. See also Example
2.2.

The development above makes it clear that if one wants to study the topic
of robot stability in open loop (that is, without control) one must specify the
dynamic model as well as the conditions for equilibria to exist and only then,
select one among these equilibria, whose stability is of interest. Consequently,
the question “is the robot stable? ” is ambiguous in the present context.

3.3 Dynamic Model of Robots with Friction

It is important to notice that the generic Equation (3.18) supposes that the
links are rigid, that is, they do not present any torsion or any other defor-
mation phenomena. On the other hand, we also considered that the joints
between each pair of links are stiff and frictionless. The incorporation of these
phenomena in the dynamic model of robots is presented in this and the fol-
lowing section.

Friction effects in mechanical systems are phenomena that depend on mul-
tiple factors such as the nature of the materials in contact, lubrication of the
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latter, temperature, etc. For this reason, typically only approximate models of
friction forces and torques are available. Yet, it is accepted that these forces
and torques depend on the relative velocity between the bodies in contact.
Thus, we distinguish two families of friction models: the static models, in
which the friction force or torque depends on the instantaneous relative ve-
locity between bodies and, dynamic models, which depend on the past values
of the relative velocity.

Thus, in the static models, friction is modeled by a vector f(q̇) ∈ IRn that
depends only on the joint velocity q̇. Friction effects are local, that is, f(q̇)
may be written as

f(q̇) =

⎡⎢⎢⎢⎢⎢⎣
f1(q̇1)
f2(q̇2)

...
fn(q̇n)

⎤⎥⎥⎥⎥⎥⎦ .

An important feature of friction forces is that they dissipate energy, that
is,

q̇T f(q̇) > 0 ∀ q̇ 
= 0 ∈ IRn .

A “classical” static friction model is one that combines the so-called viscous
and Coulomb friction phenomena. This model establishes that the vector f(q̇)
is given by

f(q̇) = Fm1q̇ + Fm2 sign(q̇) (3.24)

where Fm1 and Fm2 are n×n diagonal positive definite matrices. The elements
of the diagonal of Fm1 correspond to the viscous friction parameters while the
elements of Fm2 correspond to the Coulomb friction parameters. Furthermore,
in the model given by (3.24)

sign(q̇) =

⎡⎢⎢⎢⎣
sign(q̇1)
sign(q̇2)

...
sign(q̇n)

⎤⎥⎥⎥⎦
and sign(x) is the sign “function”, given by

sign(x) =
{

1 if x > 0
−1 if x < 0 .

However, sign(0) is undefined in the sense that one do not associate a partic-
ular real number to the “function” sign(x) when x = 0.

In certain applications, this fact is not of much practical relevance, as for
instance, in velocity regulation, – when it is desired to maintain an operating
point involving high and medium-high constant velocity, but the definition of
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sign(0) is crucial both from theoretical and practical viewpoints, in position
control (i.e. when the control objective is to maintain a constant position).

For this reason, and in view of the fact that the “classical” model (3.24)
describes inadequately the behavior of friction at very low velocities, that is,
when bodies are at rest and start to move, this is not recommended to model
friction when dealing with the position control problem (regulation). In this
case it is advisable to use available dynamic models. The study of such models
is beyond the scope of this textbook.

Considering friction in the joints, the general dynamic equation of the
manipulator is now given by

M(q)q̈ + C(q, q̇)q̇ + g(q) + f(q̇) = τ . (3.25)

In general, in this text we shall not assume that friction is present in the
dynamic model unless it is explicitly mentioned. In such a case, we consider
only viscous friction.

3.4 Dynamic Model of Elastic-joint Robots

In many industrial robots, the motion produced by the actuators is transmit-
ted to the links via gears and belts. These, are not completely stiff but they
have elasticity which can be compared to that of a spring. In the case of revo-
lute joints, where the actuators are generally electric motors these phenomena
boil down to a torsion in the axis that connects the link to the rotor of the
motor. The elasticity effect in the joints is more noticeable in robots which
undergo displacements with abrupt changes in velocity. A direct consequence
of this effect, is the degradation of precision in the desired motion of the robot.
Evidently, industrial robots are designed in a way to favor the reduction of
joint elasticity, however, as mentioned above, such an effect is always present
to some degree on practically any mechanical device. An exception to this
rule is the case of the so-called direct-drive robots, in which the actuators are
directly connected to the links.

Robot dynamics and control under the consideration of joint elasticity, has
been an important topic of research since the mid-1980s and continues today.
We present below only a brief discussion.

Consider a robot manipulator composed of rigid n links connected through
revolute joints. Assume that the motion of each link is furnished by electric
motors and transmitted via a set of gears. Denote by Ji, the moment of inertia
of the rotors about their respective rotating axes. Let ri be the gear reduction
ratio of each rotor; e.g. if r = 50 we say that for every 50 rotor revolutions, the
axis after the corresponding gear undergoes only one full turn. Joint elasticity
between each link and the corresponding axis after the set of gears is modeled
via a torsional spring of constant torsional ‘stiffness’, ki. The larger ki, the
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stiffer the joint. Figure 3.7 illustrates the case of a robot with two joints.
The joint positions of each link are denoted, as usual by q while the angular
positions of the axes after the set of gears are θ = [θ1 θ2 · · · θn]T . Due to
the elasticity, and while the robot is in motion we have, in general, q 
= θ.

q2

k2

r2 : 1
q1

k1

r1 : 1

τ2

θ2

θ1

τ1

Figure 3.7. Diagram of a robot with elastic joints

Typically, the position and velocity sensors are located at the level of the
rotors’ axes. Thus knowing the gears reduction rate, only θ may be determined
and in particular, q is not available. This observation is of special relevance in
control design since the variable to be controlled is precisely q, which cannot
be measured directly unless one is able to collocate appropriate sensors to
measure the links’ positions, giving a higher manufacturing cost.

Due to elasticity a given robot having n links has 2n DOF. Its generalized
coordinates are [qT θT ]T . The kinetic energy function of a robot with elastic
joints corresponds basically to the sum of the kinetic energies of the links and
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those of the rotors,4 that is,

K(q, q̇, θ̇) =
1
2
q̇TM(q)q̇ +

1
2
θ̇

T
J θ̇

where M(q) is the inertia matrix of the “rigid” (that is, assuming an infinite
stiffness value of ki for all i) robot, and J is a diagonal positive definite
matrix, whose elements are the moments of inertia of the rotors, multiplied
by the square of the gear reduction ratio, i.e.

J =

⎡⎢⎢⎣
J1r

2
1 0 · · · 0

0 J2r
2
2 · · · 0

...
...

. . .
...

0 0 · · · Jnr2
n

⎤⎥⎥⎦ .

On the other hand, the potential energy is the sum of the gravitational
energy plus that stored in the torsional fictitious springs5, i.e.

U(q,θ) = U1(q) +
1
2
[q − θ]TK[q − θ] (3.26)

where U1(q) is the potential energy due to gravity and corresponds exactly
to that of the robot as if the joints were absolutely stiff. The matrix K is
diagonal positive definite and its elements are the ‘torsion constants’, i.e.

K =

⎡⎢⎢⎣
k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · kn

⎤⎥⎥⎦ .

The Lagrangian is in this case

L(q,θ, q̇, θ̇) =
1
2
q̇TM(q)q̇ +

1
2
θ̇

T
J θ̇ − U1(q) − 1

2
[q − θ]TK[q − θ] .

Hence, using Lagrange’s motion equations (3.4) we obtain

d

dt

⎡⎢⎢⎢⎢⎣
∂

∂q̇

[
1
2
q̇T M(q)q̇

]
∂

∂θ̇

[
1
2
θ̇

T
J θ̇

]
⎤⎥⎥⎥⎥⎦ −

⎡⎢⎢⎢⎢⎣
∂

∂q

[
1
2
q̇T M(q)q̇ − U1(q) − 1

2
[q − θ]T K[q − θ]

]
∂

∂θ

[
−1

2
[q − θ]T K[q − θ]

]
⎤⎥⎥⎥⎥⎦

=
[
0
τ

]
.

4 Here, we neglect the gyroscopic and other coupling effects between the rotors and
the links.

5 We assume here that the rotors constitute uniform cylinders so that they do not
contribute to the total potential energy. Therefore, in (3.26) there is no term
‘U2(�) ’.



80 3 Robot Dynamics

Finally, using (3.16), (3.17), (3.19) and

∂

∂θ

[
−1

2
[q − θ]TK[q − θ]

]
= K[q − θ] ,

we obtain the dynamic model for elastic-joint robots as

M(q)q̈ + C(q, q̇)q̇ + g(q) + K(q − θ) = 0 (3.27)
J θ̈ − K[q − θ] = τ . (3.28)

The model above may, in turn, be written in the standard form, that is
through the state vector [qT θT q̇T θ̇

T
]T as

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q

θ

q̇

θ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̇

θ̇

M−1(q) [−K[q − θ] − C(q, q̇)q̇ − g(q)]

J−1 [τ + K[q − θ]]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Example 3.7. Consider the device shown in Figure 3.8, which consists
of one rigid link of mass m, and whose center of mass is localized
at a distance l from the rotation axis. The moment of inertia of the
link with respect to the axis that passes through its center of mass is
denoted by I. The joint is elastic and has a torsional constant k. The
rotor’s inertia is denoted by J .

The dynamic model of this device may be computed noticing that

K(q̇, θ̇) =
1
2
[ml2 + I]q̇2 +

1
2
Jr2θ̇2

U(q, θ) = mgl[1 − cos(q)] +
1
2
k[q − θ]2,

which, using Lagrange’s equations (3.4), leads to

[ml2 + I]q̈ + mgl sin(q) + k[q − θ] = 0 ,

Jr2θ̈ − k[q − θ] = τ .

♦
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τ

J

r : 1
θ

l

m
I,

q

k

Figure 3.8. Link with an elastic joint

Unless clearly stated otherwise, in this text we consider only robots with
stiff joints i.e. the model that we use throughout this textbook is given by
(3.18).

v1

v2

q1

q2

Figure 3.9. Example of a 2-DOF robot
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v1

q1

v2

q2

Figure 3.10. Example of a 2-DOF robot

3.5 Dynamic Model of Robots with Actuators

On a real robot manipulator the torques vector τ , is delivered by actuators
that are typically electromechanical, pneumatic or hydraulic. Such actuators
have their own dynamics, that is, the torque or force delivered is the product
of a dynamic ‘transformation’ of the input to the actuator. This input may
be a voltage or a current in the case of electromechanical actuators, fluid
(typically oil) flux or pressure in the case of hydraulic actuators. In Figures
3.9 and 3.10 we illustrate two robotic arms with 2 DOF which have actuators
transmitting the motion through gears in the first case, and through gear and
belt in the second.

Actuators with Linear Dynamics

In certain situations, some types of electromechanical actuators may be mod-
eled via second-order linear differential equations.

A common case is that of direct-current (DC) motors. The dynamic model
which relates the input voltage v applied to the motor’s armature, to the out-
put torque τ delivered by the motor, is presented in some detail in Appendix
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D. A simplified linear dynamic model of a DC motor with negligible armature
inductance, as shown in Figure 3.11, is given by Equation (D.16) in Appendix
D,

Jmq̈ + fmq̇ +
KaKb

Ra
q̇ +

τ

r2
=

Ka

rRa
v (3.29)

where:

• Jm : rotor inertia [kg m2],
• Ka : motor-torque constant [N m/A],
• Ra : armature resistance [Ω],
• Kb : back emf [V s/rad],
• fm : rotor friction coefficient with respect to its hinges [N m],
• τ : net applied torque after the set of gears at the load axis [Nm],
• q : angular position of the load axis [rad],
• r : gear reduction ratio (in general r � 1),
• v : armature voltage [V].

Equation (3.29) relates the voltage v applied to the armature of the motor
to the torque τ applied to the load, in terms of its angular position, velocity
and acceleration.

Ka,Kb, Ra

v

Jm

fm 1 : r

q τ

Figure 3.11. Diagram of a DC motor

Considering that each of the n joints is driven by a DC motor we obtain
from Equation (3.29)

J q̈ + Bq̇ + Rτ = Kv (3.30)

with
J = diag {Jmi}

B = diag
{

fmi +
(

KaKb

Ra

)
i

}
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R = diag
{

1
r2
i

}
(3.31)

K = diag
{(

Ka

Ra

)
i

1
ri

}
where for each motor (i = 1, · · · , n), Jmi corresponds to the rotor inertia, fmi

to the damping coefficient, (KaKb/Ra)i to an electromechanical constant and
ri to the gear reduction ratio.

Thus, the complete dynamic model of a manipulator (considering friction
in the joints) and having its actuators located at the joints6 is obtained by
substituting τ from (3.30) in (3.25),

(R M(q) + J) q̈ + R C(q, q̇)q̇ + R g(q) + R f(q̇) + B q̇ = Kv . (3.32)

The equation above may be considered as a dynamic system whose input
is v and whose outputs are q and q̇. A block-diagram for the model of the
manipulator with actuators, given by (3.32), is depicted in Figure 3.12.

q̇

q
τ

v

q̈

ACTUATORS ROBOT

Figure 3.12. Block-diagram of a robot with its actuators

Example 3.8. Consider the pendulum depicted in Figure 3.13. The de-
vice consists of a DC motor coupled mechanically through a set of
gears, to a pendular arm moving on a vertical plane under the action
of gravity.

The equation of motion for this device including its load is given
by [

J + ml2
]
q̈ + fLq̇ + [mblb + ml] g sin(q) = τ

where:
• J : arm inertia without load (i.e. with m = 0), with respect to the

axis of rotation;
• mb : arm mass (without load);

6 Again, we neglect the gyroscopic and other coupling effects between the rotors
and the links.
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v

Ka,Kb, Ra

Jm

fm

1 : r

fL

lb

lmb, J

m

q

Figure 3.13. Pendular device with a DC motor

• lb : distance from the rotating axis to the arm center of mass
(without load);

• m : load mass at the tip of the arm (assumed to be punctual7);
• l : distance from the rotating axis to the load m;
• g : gravity acceleration;
• τ : applied torque at the rotating axis;
• fL : friction coefficient of the arm and its load.

The equation above may also be written in the compact form

JLq̈ + fLq̇ + kL sin(q) = τ

where
JL = J + ml2

kL = [mblb + ml]g .

Hence, the complete dynamic model of the pendular device may
be obtained by substituting τ from the model of the DC motor, (3.29),
in the equation of the pendular arm, i.e.[

Jm +
JL

r2

]
q̈ +

[
fm +

fL

r2
+

KaKb

Ra

]
q̇ +

kL

r2
sin(q) =

Ka

rRa
v ,

from which, by simple inspection, comparing to (3.32), we identify

7 That is, it is all concentrated at a point – the center of mass – and has no “size”
or shape.
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M(q) = JL

R =
1
r2

B = fm +
KaKb

Ra

C(q, q̇) = 0

J = Jm

K =
Ka

rRa

f(q̇) = fLq̇

g(q) = kL sin(q) .

♦

The robot-with-actuators Equation (3.32) may be simplified considerably
when the gear ratios ri are sufficiently large. In such case (ri � 1), we have
R ≈ 0 and Equation (3.32) may be approximated by

J q̈ + Bq̇ ≈ Kv .

That is, the nonlinear dynamics (3.25) of the robot may be neglected. This can
be explained in the following way. If the gear reduction ratio is large enough,
then the associated dynamics of the robot-with-actuators is described only
by the dynamics of the actuators. This is the main argument that supports
the idea that a good controller for the actuators is also appropriate to control
robots having such actuators and geared transmissions with a high reduction
ratio.

It is important to remark that the parameters involved in Equation (3.30)
depend exclusively on the actuators, and not on the manipulator nor on its
load. Therefore, it is reasonable to assume that such parameters are constant
and known.

Since the gear ratio ri is assumed to be nonzero, the matrix R given by
(3.31) is nonsingular and therefore, R−1 exists and Equation (3.32) may be
rewritten as

M ′(q)q̈ + C(q, q̇)q̇ + g(q) + f(q̇) + R−1Bq̇ = R−1Kv (3.33)

where M ′(q) = M(q) + R−1J .
The existence of the matrix M ′(q)−1 allows us to express the model (3.33)

in terms of the state vector [q q̇] as

d

dt

⎡⎣ q

q̇

⎤⎦ =

⎡⎣ q̇

M ′(q)−1
[
R−1 Kv − R−1 Bq̇ − C(q, q̇)q̇ − g(q) − f(q̇)

]
⎤⎦ .

That is, the input torque becomes simply a voltage scaled by R−1K. At
this point and in view of the scope of this textbook we may already formulate
the problem of motion control for the system above, under the conditions
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previously stated. Given a set of bounded vectors qd, q̇d and q̈d, determine a
vector of voltages v, to be applied to the motors, in such a manner that the
positions q, associated to the joint positions of the robot, follow precisely qd .
This is the main subject of study in the succeeding chapters.

Actuators with Nonlinear Dynamics

A dynamic model that characterizes a wide variety of actuators is described
by the equations

ẋ = m(q, q̇,x) + G(q, q̇,x)u (3.34)

τ = l(q, x) (3.35)

where u ∈ IRn and x ∈ IRn are the input vectors and the state variables
corresponding to the actuator and m, G and l are nonlinear functions. In
the case of DC motors, the input vector u, represents the vector of voltages
applied to each of the n motors. The state vector x represents, for instance,
the armature current in a DC motor or the operating pressure in a hydraulic
actuator. Since the torques τ are, generally speaking, delivered by different
kinds of actuators, the vector m(q, q̇,x) and the matrix G(q, q̇,x) are such
that the ∂l(q,x)/∂xT and G(q, q̇, x) are diagonal nonsingular matrices.

For the sake of illustration, consider the model of a DC motor with a non-
negligible armature inductance (La 
≈ 0) as described in Appendix D, that
is,

v = La
dia
dt

+ Raia + Kbrq̇

τ = rKaia

where v is the input (armature voltage), ia is the direct armature current and
τ is the torque applied to the load, after the set of gears. The rest of the
constants are defined in Appendix D. These equations may be written in the
generic form (3.34) and (3.35),

d

x︷︸︸︷
ia
dt

=

m(q, q̇, x)︷ ︸︸ ︷
−L−1

a [Raia + Kbrq̇] +

G(q, q̇, x)︷︸︸︷
L−1

a

u︷︸︸︷
v

τ = rKaia︸ ︷︷ ︸
l(q, x)

.

Considering that the actuators’ models are given by (3.34) and (3.35), the
model of the robot with such actuators may be written in terms of the state
vector [q q̇ x], as
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d

dt

⎡⎢⎢⎢⎣
q

q̇

x

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
q̇

M(q)−1 [l(q, x) − C(q, q̇)q̇ − g(q)]

m(q, q̇, x)

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0

0

G(q, q̇, x)

⎤⎥⎥⎥⎦u .

The dynamics of the actuators must be taken into account in the model
of a robot, whenever these dynamics are not negligible with respect to that of
the robot. Specifically for robots which are intended to perform high precision
tasks.
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Problems

1. Consider the mechanical device analyzed in Example 3.2. Assume now
that this device has friction on the axis of rotation, which is modeled here
as a torque or force proportional to the velocity (f > 0 is the friction
coefficient). The dynamic model in this case is

m2l
2
2cos2(ϕ)q̈ + f q̇ = τ .

Rewrite the model in the form ẋ = f(t, x) with x = [q q̇]T .

a) Determine the conditions on the applied torque τ for the existence of
equilibrium points.

b) Considering the condition on τ of the previous item, show by using
Theorem 2.2 (see page 44), that the origin [q q̇]T = [0 0]T is a stable
equilibrium.
Hint: Use the following Lyapunov function candidate

V (q, q̇) =
1
2

(
q +

m2l
2
2cos2(ϕ)

f
q̇

)2

+
1
2
q̇2 .

2. Consider the mechanical device depicted in Figure 3.14.
A simplistic model of such a device is

mq̈ + f q̇ + kq + mg = τ, q(0), q̇(0) ∈ IR

where
• m > 0 is the mass
• f > 0 is the friction coefficient
• k > 0 is the stiffness coefficient of the spring
• g is the acceleration of gravity
• τ is the applied force
• q is the vertical position of the mass m with respect to origin of the

plane x–y.
Write the model in the form ẋ = f(t,x) where x = [q q̇]T .

a) What restrictions must be imposed on τ so that there exist equilibria?
b) Is it possible to determine τ so that the only equilibrium is the origin,

x = 0 ∈ IR2 ?
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Figure 3.14. Problem 2
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Figure 3.15. Problems 3 and 4

3. Consider the mechanical arm shown in Figure 3.15.
Assume that the potential energy U(q1, q2) is zero when q1 = q2 = 0.
Determine the vector of gravitational torques g(q),

g(q) =
[

g1(q1, q2)
g2(q1, q2)

]
.

4. Consider again this mechanical device but with its simplified description
as depicted in Figure 3.15.

a) Obtain the direct kinematics model of the device, i.e. determine the
relations

y02 = f1(q1, q2)
z02 = f2(q1, q2) .
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b) The analytical Jacobian J(q) of a robot is the matrix

J(q) =
∂

∂q
ϕ(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂q1
ϕ1(q) ∂

∂q2
ϕ1(q) · · · ∂

∂qn
ϕ1(q)

∂

∂q1
ϕ2(q) ∂

∂q2
ϕ2(q) · · · ∂

∂qn
ϕ2(q)

...
...

. . .
...

∂

∂q1
ϕm(q) ∂

∂q2
ϕm(q) · · · ∂

∂qn
ϕm(q)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ϕ(q) is the relation in the direct kinematics model (x = ϕ(q)),
n is the dimension of q and m is the dimension of x. Determine the
Jacobian.

5. Consider the 2-DOF robot shown in Figure 3.16, for which the meaning
of the constants and variables involved is as follows:

� �� � τ2

δ
q2

l1

lc1

q1

I1, m1

m2

y

z

x

τ1

Figure 3.16. Problem 5

• m1,m2 are the masses of links 1 and 2 respectively;
• I1 is the moment of inertia of link 1 with respect to the axis parallel

to the axis x which passes through its center of mass; the moment of
inertia of the second link is supposed negligible;

• l1 is the length of link 1;
• lc1 is the distance to the center of mass of link 1 taken from its rotation

axis;
• q1 is the angular position of link 1 measured with respect to the hori-

zontal (taken positive counterclockwise);
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• q2 is the linear position of the center of mass of link 2 measured from
the edge of link 1;

• δ is negligible (δ = 0).

Determine the dynamic model and write it in the form ẋ = f(t, x) where
x = [q q̇]T .

6. Consider the 2-DOF robot depicted in Figure 3.17. Such a robot has a
transmission composed of a set of bar linkage at its second joint. Assume
that the mass of the lever of length l4 associated with actuator 2 is negli-
gible.

l1

lc2

I3

l4

I2, m2
q2

q1

l1

l4

z

y
lc1

I1, m1

lc3

x

m3

link 1

actuator 1

actuator 2

link 1

Figure 3.17. Problem 6

Determine the dynamic model. Specifically, obtain the inertia matrix
M(q) and the centrifugal and Coriolis matrix C(q, q̇).
Hint: See the robot presented in Example 3.3. Both robots happen to be
mechanically equivalent when taking m3 = I3 = δ = 0 .
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Properties of the Dynamic Model

In this chapter we present some simple but fundamental properties of the
dynamic model for n-DOF robots given by Equation (3.18), i.e.

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (4.1)

In spite of the complexity of the dynamic Equation (4.1), which describes
the behavior of robot manipulators, this equation and the terms which consti-
tute it have properties that are interesting in themselves for control purposes.
Besides, such properties are of particular importance in the study of control
systems for robot manipulators. Only properties that are relevant to control
design and stability analysis via Lyapunov’s direct method (see Section 2.3.4
in Chapter 2) are presented. The reader is invited to see the references at the
end of the chapter to prove further.

These properties, which we use extensively in the sequel, may be classified
as follows:

• properties of the inertia matrix M(q);
• properties of the centrifugal and Coriolis forces matrix C(q, q̇);
• properties of the gravitational forces and torques vector g(q);
• properties of the residual dynamics.

Each of these items is treated independently and constitute the material of
this chapter. Some of the proofs of the properties that are established below
may be consulted in the references which are listed at the end of the chapter
and others are developed in Appendix C.

4.1 The Inertia Matrix

The inertia matrix M(q) plays an important role both in the robot’s dynamic
model as well as in control design. The properties of the inertia matrix which is
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closely related to the kinetic energy function K = 1
2 q̇TM(q)q̇, are exhaustively

used in control design for robots. Among such properties we underline the
following.

Property 4.1. Inertia matrix M(q)
The inertia matrix M(q) is symmetric positive definite and has dimension
n × n. Its elements are functions only of q. The inertia matrix M(q) satisfies
the following properties.

1.

There exists a real positive number α such that

M(q) ≥ αI ∀ q ∈ IRn

where I denotes the identity matrix of dimension n×n. The matrix
M(q)−1 exists and is positive definite.

2.

For robots having only revolute joints there exists a constant β > 0
such that

λMax{M(q)} ≤ β ∀ q ∈ IRn .

One way of computing β is

β ≥ n

(
max
i,j,q

|Mij(q)|
)

where Mij(q) stands for the ijth element of the matrix M(q).

3.

For robots having only revolute joints there exists a constant kM >
0 such that

‖M(x)z − M(y)z‖ ≤ kM ‖x − y‖ ‖z‖ (4.2)

for all vectors x, y, z ∈ IRn. One simple way to determine kM is
as follows

kM ≥ n2

(
max
i,j,k,q

∣∣∣∣∂Mij(q)
∂qk

∣∣∣∣) . (4.3)

4.

For robots having only revolute joints there exists a number k′
M >

0 such that
‖M(x)y‖ ≤ k′

M ‖y‖
for all x,y ∈ IRn.

The reader interested in the proof of Inequality (4.2) is invited to see
Appendix C.
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An obvious consequence of Property 4.1 and, in particular of the fact that
M(q) is positive definite, is that the function V : IRn × IRn → IR+, defined as

V (q, q̇) = q̇TM(q)q̇

is positive definite in q̇. As a matter of fact, notice that with the previous
definition we have V (q, q̇) = 2K(q, q̇) where K(q, q̇) corresponds to the kinetic
energy function of the robot, (3.15).

4.2 The Centrifugal and Coriolis Forces Matrix

The properties of the Centrifugal and Coriolis matrix C(q, q̇) are important
in the study of stability of control systems for robots. The main properties of
such a matrix are presented below.

Property 4.2. Coriolis matrix C(q, q̇)
The centrifugal and Coriolis forces matrix C(q, q̇) has dimension n×n and its
elements are functions of q and q̇. The matrix C(q, q̇) satisfies the following.

1. For a given manipulator, the matrix C(q, q̇) may not be unique
but the vector C(q, q̇)q̇ is unique.

2. C(q,0) = 0 for all vectors q ∈ IRn.

3.

For all vectors q,x,y, z ∈ IRn and any scalar α we have

C(q, x)y = C(q, y)x
C(q, z + αx)y = C(q, z)y + αC(q, x)y .

4.

The vector C(q, x)y may be written in the form

C(q, x)y =

⎡⎢⎢⎢⎢⎢⎣
xTC1(q)y

xTC2(q)y
...

xTCn(q)y

⎤⎥⎥⎥⎥⎥⎦ (4.4)

where Ck(q) are symmetric matrices of dimension n × n for all
k = 1, 2, · · · , n. The ij-th element Ckij (q) of the matrix Ck(q)
corresponds to the so-called Christoffel symbol of the first kind
cjik(q) and which is defined in (3.21).
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5.

For robots having exclusively revolute joints, there exists a number
kC1 > 0 such that

‖C(q, x)y‖ ≤ kC1 ‖x‖ ‖y‖

for all q, x, y ∈ IRn.

6.

For robots having exclusively revolute joints, there exist numbers
kC1 > 0 and kC2 > 0 such that

‖C(x, z)w − C(y, v)w‖ ≤ kC1 ‖z − v‖ ‖w‖
+kC2 ‖x − y‖ ‖w‖ ‖z‖ (4.5)

for all vector v, x, y,z, w ∈ IRn.

7.

The matrix C(q, q̇), defined in (3.22) is related to the inertia ma-
trix M(q) by the expression

xT

[
1
2
Ṁ(q) − C(q, q̇)

]
x = 0 ∀ q, q̇, x ∈ IRn

and as a matter of fact, 1
2Ṁ(q) − C(q, q̇) is skew-symmetric.

Equivalently, the matrix Ṁ(q)− 2C(q, q̇) is skew-symmetric, and
it is also true that

Ṁ(q) = C(q, q̇) + C(q, q̇)T .

Independently of the way in which C(q, q̇) is derived, it always
satisfies

q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ = 0 ∀ q, q̇ ∈ IRn .

We present next, the proof for the existence of a positive constant kC1

such that ‖C(q, x)y‖ ≤ kC1 ‖x‖ ‖y‖ for all vectors q, x, y ∈ IRn.

Considering (4.4), the norm ‖C(q, x)y‖2 of the vector C(q, x)y is defined
in the usual way that is, as the sum of its elements squared,

‖C(q,x)y‖2 =
n∑

k=1

(
xTCk(q)y

)2
.

This implies that
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‖C(q, x)y‖2 =
n∑

k=1

∣∣xTCk(q)y
∣∣2

≤
[

n∑
k=1

‖Ck(q)‖2

]
‖x‖2 ‖y‖2 (4.6)

where we have used the fact that for vectors x, y and a square matrix A of
compatible dimensions it holds that

∣∣xTAy
∣∣ ≤ ‖A‖ ‖x‖ ‖y‖.

Taking into account that the spectral norm ‖A‖ of a symmetric matrix
A = {aij} of dimension n × n verifies the inequality ‖A‖ ≤ n maxi,j {|aij |},
we have

‖Ck(q)‖2 ≤ n2

[
max
i,j,q

{∣∣Ckij
(q)

∣∣}]2

,

where Ckij (q) stands for the ijth element of the symmetric matrix Ck(q).
Therefore, we obtain[

n∑
k=1

‖Ck(q)‖2

]
≤ n2

n∑
k=1

[
max
i,j,q

{∣∣Ckij (q)
∣∣}]2

≤ n3

[
max
k,i,j,q

{∣∣Ckij (q)
∣∣}]2

≤ n4

[
max
k,i,j,q

{∣∣Ckij
(q)

∣∣}]2

where we used the fact that n ≥ 1. Though conservative, the last step above,
is justified to maintain integer exponents. Using this last inequality in (4.6)
we finally obtain

‖C(q,x)y‖ ≤ n2

(
max
k,i,j,q

∣∣Ckij
(q)

∣∣) ‖x‖ ‖y‖ (4.7)

where one clearly identifies the constant kC1 as

kC1 = n2

(
max
k,i,j,q

∣∣Ckij
(q)

∣∣) . (4.8)

As an immediate application of the expression in (4.7), ‖C(q,x)y‖ ≤
kC1 ‖x‖ ‖y‖, we have

‖C(q, q̇)q̇‖ ≤ kC1‖q̇‖2
.

We present now an example with the purpose of illustrating the previous
computations.
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Example 4.1. Consider the centrifugal and Coriolis forces matrix

C(q, q̇) =

⎡⎣−m2l1lc2 sin(q2)q̇2 −m2l1lc2 sin(q2)[q̇1 + q̇2]

m2l1lc2 sin(q2)q̇1 0

⎤⎦ .

We wish to find a positive constant kC1 such that ‖C(q, q̇)q̇‖ ≤
kC1 ‖q̇‖2. To that end, the vector C(q, q̇)q̇ may be rewritten as

C(q, q̇)q̇ =

⎡⎣−m2l1lc2 sin(q2)
[
2q̇1q̇2 + q̇2

2

]
m2l1lc2 sin(q2)q̇2

1

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
q̇1

q̇2

]T

C1(q)︷ ︸︸ ︷[
0 −m2l1lc2 sin(q2)

−m2l1lc2 sin(q2) −m2l1lc2 sin(q2)

] [
q̇1

q̇2

]
[

q̇1

q̇2

]T [
m2l1lc2 sin(q2) 0

0 0

]
︸ ︷︷ ︸

C2(q)

[
q̇1

q̇2

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the matrices C1(q) and C2(q) one can easily verify that

max
q

|C111(q)| = 0

max
q

|C112(q)| = m2l1lc2

max
q

|C121(q)| = m2l1lc2

max
q

|C122(q)| = m2l1lc2

max
q

|C211(q)| = m2l1lc2

max
q

|C212(q)| = 0

max
q

|C221(q)| = 0

max
q

|C222(q)| = 0 .

Hence, considering (4.8) we obtain

kC1 = 4m2l1lc2 .

♦

The reader interested in the proof of Inequality (4.5) is invited to see
Appendix C.
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4.3 The Gravitational Torques Vector

The vector of gravitational torques, g(q), is present in robots which from a
mechanical viewpoint, have not been designed with compensation of gravi-
tational torques. For instance, without counter-weights, springs or for robots
designed to move out of the horizontal plane. Some of the most relevant prop-
erties of this vector are enunciated next.

Property 4.3. Gravity vector g(q)
The gravitational torques vector g(q), of dimension n × 1, depends only on
the joint positions q. The vector g(q) is continuous and therefore bounded for
each bounded q. Moreover, g(q) also satisfies the following.

1.

The vector g(q) and the velocity vector q̇ are correlated as∫ T

0

g(q(t))Tq̇(t) dt = U(q(T )) − U(q(0)) (4.9)

for all T ∈ IR+ .

2.

For robots having only revolute joints there exists a number kU
such that ∫ T

0

g(q(t))Tq̇(t) dt + U(q(0)) ≥ kU

for all T ∈ IR+ and where kU = min
q

{U(q)}.

3.

For robots having only revolute joints, the vector g(q) is Lips-
chitz, that is, there exists a constant kg > 0 such that

‖g(x) − g(y)‖ ≤ kg ‖x − y‖ (4.10)

for all x,y ∈ IRn. A simple way to compute kg is by evaluating
its partial derivative

kg ≥ n

(
max
i,j,q

∣∣∣∣∂gi(q)
∂qj

∣∣∣∣) . (4.11)

Furthermore, kg satisfies

kg ≥
∥∥∥∥∂g(q)

∂q

∥∥∥∥ ≥ λMax

{
∂g(q)

∂q

}
.
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4.

For robots having only revolute joints there exists a constant k′

such that
‖g(q)‖ ≤ k′

for all q ∈ IRn.

To prove (4.9) consider the potential energy function U(q) for a given
manipulator. The partial time derivative of U(q) is given by

d

dt
U(q(t)) =

∂U(q)
∂q

T

q̇

hence, replacing (3.20) we obtain

d

dt
U(q(t)) = g(q)T

q̇ .

To integrate the above on both sides from 0 to T , define U0 := U(q(0))
and UT := U(q(T )) for any T ∈ IR+ then,∫ UT

U0

dU =
∫ T

0

g(q(t))T
q̇(t) dt ,

which is equivalent to

U(q(T )) − U(q(0)) =
∫ T

0

g(q)T
q̇ dt .

The proof of (4.10) is presented in Appendix C.

4.4 The Residual Dynamics

To each robot dynamic model there is an associated function named “residual
dynamics” that is important in the study of stability of numerous controllers.

The residual dynamics h(t, q̃, ˙̃q) is defined as follows1:

h(t, q̃, ˙̃q) = [M(qd) − M(qd − q̃)] q̈d

+
[
C(qd, q̇d) − C(qd − q̃, q̇d − ˙̃q)

]
q̇d

+ g(qd) − g(qd − q̃), (4.12)

1 Note that, in general, because �d depends on time so does the function of residual
dynamics.
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and with an abuse of notation it may be written as

h(t, q̃, ˙̃q) = [M(qd) − M(q)] q̈d + [C(qd, q̇d) − C(q, q̇)] q̇d + g(qd) − g(q).

This function has the characteristic that h(t,0,0) = 0 for all t but more
importantly, the residual dynamics h(t, q̃, ˙̃q) has the virtue of not growing
faster than ‖ ˙̃q‖ and ‖q̃‖. Moreover it may grow arbitrarily fast only when so
does ‖ ˙̃q‖, independently of ‖q̃‖.

In order to make this statement formal we need to recall the definition and
properties of a continuously differentiable monotonically increasing function:
the tangent hyperbolic. As a matter of fact, the statement can be shown for a
large class of monotonically increasing functions but for clarity of exposition,
here we restrict our discussion to

tanh(x) =
ex − e−x

ex + e−x

which is illustrated in Figure 4.1.
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Figure 4.1. Graph of tangent hyperbolic: tanh(x)

As it is clear from Figure 4.1, tanh(x) is continuous monotonically in-
creasing. Also, it has continuous derivatives and it satisfies |x| ≥ |tanh(x)|
and 1 ≥ |tanh(x)| for all x ∈ IR. All these observations are stated formally
below.

Definition 4.1. Vectorial tangent hyperbolic function
We define the vectorial tangent hyperbolic function as

tanh(x) :=

⎡⎢⎣ tanh(x1)
...

tanh(xn)

⎤⎥⎦ (4.13)
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where x ∈ IRn. The first partial derivative of tanh(x) is given by

∂tanh
∂x

(x) =: Sech2(x) = diag{sech2(xi)} (4.14)

where
sech(xi) :=

1
exi − e−xi

.

The vectorial tangent hyperbolic function satisfies the following properties.
For any x, ẋ ∈ IRn

• ‖tanh(x)‖ ≤ α1 ‖x‖
• ‖tanh(x)‖ ≤ α2

• ‖tanh(x)‖2 ≤ α3 tanh(x)T x

• ∥∥Sech2(x)ẋ
∥∥ ≤ α4 ‖ẋ‖

where α1, · · · , α4 > 0. With tanh(x) defined as in (4.13), the constants α1 =
1, α2 =

√
n, α3 = 1, α4 = 1.

Property 4.4. Residual dynamics vector h(t, q̃, ˙̃q)
The vector of residual dynamics h(t, q̃, ˙̃q) of n × 1 depends on the position
errors q̃, velocity errors ˙̃q, and on the desired joint motion —qd, q̇d, and
q̈d— that is supposed to be bounded. In this respect, we denote by ‖q̇d‖M

and ‖q̈d‖M the supreme values over the norms of the desired velocity and
acceleration. In addition, h(t, q̃, ˙̃q) has the following property:

1.

There exist constants kh1, kh2 ≥ 0 such that the norm of the
residual dynamics satisfies∥∥∥h(t, q̃, ˙̃q)

∥∥∥ ≤ kh1‖ ˙̃q‖ + kh2 ‖tanh(q̃)‖ (4.15)

for all q̃, ˙̃q ∈ IRn, where tanh(q̃) is the vectorial tangent hyper-
bolic function introduced in Definition 4.1.

Proof. According to the definition of the residual dynamics function (4.12),
its norm satisfies∥∥∥h(t, q̃, ˙̃q)

∥∥∥ ≤ ‖[M(qd) − M(qd − q̃)] q̈d‖

+
∥∥∥[C(qd, q̇d) − C(qd − q̃, q̇d − ˙̃q)

]
q̇d

∥∥∥
+ ‖g(qd) − g(qd − q̃)‖ . (4.16)
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We wish to upperbound each of the three terms on the right-hand side of
this inequality. We start with ‖g(qd) − g(qd − q̃)‖. From Property 4.3 it fol-
lows that the vector of gravitational torques – considering robots with revolute
joints – satisfies the inequalities

‖g(qd) − g(qd − q̃)‖ ≤ kg ‖q̃‖
‖g(qd) − g(qd − q̃)‖ ≤ 2k′

for all qd, q̃ ∈ IRn and where we have used ‖g(q)‖ ≤ k′ for the second in-
equality. This may be illustrated as in Figure 4.2 where ‖g(qd) − g(qd − q̃)‖
is in the dotted region, for all qd, q̃ ∈ IRn.
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Figure 4.2. Belonging region for ‖�(�d) − �(�d − �̃)‖

Regarding the first term on the right-hand side of Inequality (4.16), we
have from Property 4.1 of the inertia matrix M(q), that the following two
inequalities hold:

‖[M(qd) − M(qd − q̃)] q̈d‖ ≤ kM ‖q̈d‖M ‖q̃‖ ,

‖[M(qd) − M(qd − q̃)] q̈d‖ ≤ 2k′
M ‖q̈d‖M ,

where for the second inequality, we used that ‖M(x)q̈d‖ ≤ k′
M ‖q̈d‖, which is

valid for all x ∈ IRn .
Finally it is only left to bound the second term on the right-hand side

of Inequality (4.16). This operation requires the following computations. By
virtue of Property 4.2 it follows that (see (4.5))∥∥∥[C(qd, q̇d) − C(qd − q̃, q̇d − ˙̃q)

]
q̇d

∥∥∥ ≤ kC1 ‖q̇d‖M

∥∥∥ ˙̃q
∥∥∥ + kC2 ‖q̇d‖2

M ‖q̃‖ .

(4.17)
Also, observe that the left-hand side of (4.17) also satisfies
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∥∥∥[C(qd, q̇d) − C(qd − q̃, q̇d − ˙̃q)
]
q̇d

∥∥∥ ≤ ‖C(qd, q̇d)q̇d‖

+
∥∥∥C(qd − q̃, q̇d − ˙̃q)q̇d

∥∥∥
(4.18)

but in view of the fact that ‖C(q,x)y‖ ≤ kC1 ‖x‖ ‖y‖ for all q, x, y ∈ IRn,
the terms on the right-hand side also satisfy

‖C(qd, q̇d)q̇d‖ ≤ kC1 ‖q̇d‖2
M

and, ∥∥∥C(qd − q̃, q̇d − ˙̃q)q̇d

∥∥∥ ≤ kC1 ‖q̇d‖M

∥∥∥q̇d − ˙̃q
∥∥∥

≤ kC1 ‖q̇d‖2
M + kC1 ‖q̇d‖M

∥∥∥ ˙̃q
∥∥∥ .

Using the latter in (4.18) we obtain∥∥∥[C(qd, q̇d) − C(qd − q̃, q̇d − ˙̃q)
]
q̇d

∥∥∥ ≤ 2kC1 ‖q̇d‖2
M + kC1 ‖q̇d‖M

∥∥∥ ˙̃q
∥∥∥ .

(4.19)
Hence, to bound the norm of the residual dynamics (4.16) we use (4.17)

and (4.19), as well as the previous bounds on the first and third terms. This
yields that h(t, q̃, ˙̃q) also satisfies∥∥∥h(t, q̃, ˙̃q)

∥∥∥ ≤ kC1 ‖q̇d‖M

∥∥∥ ˙̃q
∥∥∥ +

[
kg + kM ‖q̈d‖M + kC2 ‖q̇d‖2

M

]
‖q̃‖ ,

and ∥∥∥h(t, q̃, ˙̃q)
∥∥∥ ≤ kC1 ‖q̇d‖M

∥∥∥ ˙̃q
∥∥∥ + 2

[
k′ + k′

M ‖q̈d‖M + kC1 ‖q̇d‖2
M

]
for all q̃ ∈ IRn. In other terms,∥∥∥h(t, q̃, ˙̃q)

∥∥∥ ≤ kC1 ‖q̇d‖M

∥∥∥ ˙̃q
∥∥∥ + s(q̃) (4.20)

where the scalar function s(q̃) is given by

s(q̃) =
{

s1 ‖q̃‖ if ‖q̃‖ < s2/s1

s2 if ‖q̃‖ ≥ s2/s1

with
s1 =

[
kg + kM ‖q̈d‖M + kC2 ‖q̇d‖2

M

]
, (4.21)

and
s2 = 2

[
k′ + k′

M ‖q̈d‖M + kC1 ‖q̇d‖2
M

]
. (4.22)
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Figure 4.3. Graph of the function s(�̃)

The plot of s(q̃) is shown in Figure 4.3. It is clear that s(q̃) may be
upperbounded by the tangent hyperbolic function of ‖q̃‖ that is,

|s(q̃)| ≤ kh2 tanh(‖q̃‖) (4.23)

where kh2 is any number that satisfies

kh2 ≥ s2

tanh
(

s2

s1

) . (4.24)

Thus, we conclude that
∥∥∥h(t, q̃, ˙̃q)

∥∥∥ in (4.20) satisfies∥∥∥h(t, q̃, ˙̃q)
∥∥∥ ≤ kh1

∥∥∥ ˙̃q
∥∥∥ + kh2 ‖tanh(q̃)‖

where we have used the fact that

tanh(‖q̃‖) ≤ ‖tanh(q̃)‖ ,

where tanh(q̃) is the vectorial tangent hyperbolic function (4.13) and kh1 is
assumed to satisfy

kC1 ‖q̇d‖M ≤ kh1 . (4.25)

Thus, Property 4.4 follows.
♦♦♦

Residual Dynamics when q̇d ≡ 0

In the situation when q̇d ≡ 0, and therefore q̈d ≡ 0, the residual dynamics
(4.12) boils down to
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h(t, q̃, ˙̃q) = g(qd) − g(qd − q̃),
= g(qd) − g(q).

Notice also that s1 and s2 in (4.21) and (4.22) respectively, become

s1 = kg,

s2 = 2k′.

With this information and what we know about kh1 from (4.25) and about
kh2 from (4.24), we conclude that these constants

kh1 = 0 ,

kh2 ≥ 2k′

tanh
(

2k′

kg

) .

From this last inequality one can show that kh2 satisfies

kh2 ≥ kg .

Thus, we finally conclude from (4.20) and (4.23) that∥∥∥h(t, q̃, ˙̃q)
∥∥∥ = ‖g(qd) − g(qd − q̃)‖ ≤ kh2 tanh(‖q̃‖),

≤ kh2

∥∥∥∥∥∥∥
⎡⎢⎣ tanh(q̃1)

...
tanh(q̃n)

⎤⎥⎦
∥∥∥∥∥∥∥ ,

for all qd, q̃ ∈ IRn.

4.5 Conclusions

Properties 4.1, 4.2, 4.3 and 4.4 are exhaustively used in the succeeding chap-
ters in the stability analysis of the control schemes that we present. In particu-
lar, Property 4.1 is used to construct non-negative functions and occasionally,
Lyapunov functions to study stability and convergence properties for equilib-
ria in robot control systems.

To close the chapter we summarize, in Table 4.1, the expressions involved
in the computation of the main constants introduced, where s1 and s2 are
given by Equations (4.21) and (4.22), respectively.
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Table 4.1. Bounds on the matrices involved in the Lagrangian model

Bound Definition

β n (maxi,j,q |Mij(q)|)

kM n2

(
maxi,j,k,q

∣∣∣∣∂Mij(q)

∂qk

∣∣∣∣)
kC1 n2

(
maxi,j,k,q

∣∣Ckij (q)
∣∣)

kC2 n3

(
maxi,j,k,l,q

∣∣∣∣∂Ckij (q)

∂ql

∣∣∣∣)

kg n

(
maxi,j,q

∣∣∣∣∂gi(q)

∂qj

∣∣∣∣)
kh1 kc1 ‖�̇d‖M

kh2
s2

tanh
(

s2

s1

)
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Problems

1. Consider the simplified Cartesian mechanical device of Figure 4.4.

x0

y0

z0

q1

q2

x0

y0

z0

q1

q2

m1

m2

Figure 4.4. Problem 1

a) Obtain the dynamic model using Lagrange’s equations. Specifically,
determine M(q), C(q, q̇) and g(q).

b) Verify that the matrix 1
2Ṁ(q) − C(q, q̇) is skew-symmetric.

c) Express the dynamic model in terms of the state vector [q1 q2 q̇1

q̇2]T . Under which conditions on the external τ1 and τ2 do there exist
equilibria?
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2. Is it true that the inertia matrix M(q) is constant if and only if C(q, q̇) =
0 ? (The matrix C(q, q̇) is assumed to be defined upon the Christoffel
symbols of the first kind.)

3. Consider the dynamic model (3.33) of robots with (linear) actuators. Sup-
pose that there is no friction (i.e. f(q̇) = 0). Show that

1
2
Ṁ ′(q) − C(q, q̇) =

1
2
Ṁ(q) − C(q, q̇) .

4. Consider the equation that characterizes the behavior of a pendulum of
length l and mass m concentrated at the edge and is submitted to the
action of gravity g to which is applied a torque τ on the axis of rotation,

ml2q̈ + mgl sin(q) = τ

where q is the angular position of the pendulum with respect to the ver-
tical.
Show that there exists a constant β such that∫ T

0

τ(s)q̇(s) ds ≥ β, ∀ T ∈ IR+ .

Hint: Using Property 4.3, show that for any T ≥ 0,∫ T

0

q̇(s)sin(q(s)) ds ≥ −K

with K ≥ 0.



5

Case Study: The Pelican Prototype Robot

The purpose of this chapter is twofold: first, to present in detail the model of
the experimental robot arm of the Robotics lab. from the CICESE Research
Center, Mexico. Second, to review the topics studied in the previous chapters
and to discuss, through this case study, the topics of direct kinematics and
inverse kinematics, which are fundamental in determining robot models.

For the Pelican, we derive the full dynamic model of the prototype; in par-
ticular, we present the numerical values of all the parameters such as mass,
inertias, lengths to centers of mass, etc. This is used throughout the rest of the
book in numerous examples to illustrate the performance of the controllers
that we study. We emphasize that all of these examples contain experimen-
tation results.

Thus, the chapter is organized in the following sections:

• direct kinematics;
• inverse kinematics;
• dynamic model;
• properties of the dynamic model;
• reference trajectories.

For analytical purposes, further on, we refer to Figure 5.2, which represents
the prototype schematically. As is obvious from this figure, the prototype is a
planar arm with two links connected through revolute joints, i.e. it possesses
2 DOF. The links are driven by two electrical motors located at the “shoulder”
(base) and at the “elbow”. This is a direct-drive mechanism, i.e. the axes of
the motors are connected directly to the links without gears or belts.

The manipulator arm consists of two rigid links of lengths l1 and l2, masses
m1 and m2 respectively. The robot moves about on the plane x–y as is illus-
trated in Figure 5.2. The distances from the rotating axes to the centers of
mass are denoted by lc1 and lc2 for links 1 and 2, respectively. Finally, I1 and
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Figure 5.1. Pelican: experimental robot arm at CICESE, Robotics lab.

l2

lc2
q2

q1

I1 m1

g

y

x

l1

m2

I2

lc1Link 1

Link 2

Figure 5.2. Diagram of the 2-DOF Pelican prototype robot

I2 denote the moments of inertia of the links with respect to the axes that
pass through the respective centers of mass and are parallel to the axis x.
The degrees of freedom are associated with the angle q1, which is measured
from the vertical position, and q2, which is measured relative to the extension
of the first link toward the second link, both being positive counterclockwise.
The vector of joint positions q is defined as

q = [q1 q2]T .
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The meaning of the diverse constant parameters involved as well as their
numerical values are summarized in Table 5.1.

Table 5.1. Physical parameters of Pelican robot arm

Description Notation Value Units

Length of Link 1 l1 0.26 m

Length of Link 2 l2 0.26 m

Distance to the center of mass (Link 1) lc1 0.0983 m

Distance to the center of mass (Link 2) lc2 0.0229 m

Mass of Link 1 m1 6.5225 kg

Mass of Link 2 m2 2.0458 kg

Inertia rel. to center of mass (Link 1) I1 0.1213 kg m2

Inertia rel. to center of mass (Link 2) I2 0.0116 kg m2

Gravity acceleration g 9.81 m/s2

5.1 Direct Kinematics

The problem of direct kinematics for robot manipulators is formulated as
follows. Consider a robot manipulator of n degrees-of-freedom placed on a
fixed surface. Define a reference frame also fixed at some point on this sur-
face. This reference frame is commonly referred to as ‘base reference frame’.
The problem of deriving the direct kinematic model of the robot consists in
expressing the position and orientation (when the latter makes sense) of a ref-
erence frame fixed to the end of the last link of the robot, referred to the base
reference frame in terms of the joint coordinates of the robot. The solution to
the so-formulated problem from a mathematical viewpoint, reduces to solving
a geometrical problem which always has a closed-form solution.

Regarding the Pelican robot, we start by defining the reference frame of
base as a Cartesian coordinated system in two dimensions with its origin
located exactly on the first joint of the robot, as is illustrated in Figure 5.2. The
Cartesian coordinates x and y determine the position of the tip of the second
link with respect to the base reference frame. Notice that for the present case
study of a 2-DOF system, the orientation of the end-effector of the arm makes
no sense. One can clearly appreciate that both Cartesian coordinates, x and
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y, depend on the joint coordinates q1 and q2. Precisely it is this correlation
that defines the direct kinematic model,[

x
y

]
= ϕ(q1, q2) ,

where ϕ : IR2 → IR2.
For the case of this robot with 2 DOF, it is immediate to verify that the

direct kinematic model is given by

x = l1sin(q1) + l2sin(q1 + q2)
y = −l1cos(q1) − l2cos(q1 + q2) .

From this model is obtained: the following relation between the velocities[
ẋ
ẏ

]
=

[
l1cos(q1) + l2cos(q1 + q2) l2cos(q1 + q2)
l1sin(q1) + l2sin(q1 + q2) l2sin(q1 + q2)

] [
q̇1

q̇2

]
= J(q)

[
q̇1

q̇2

]

where J(q) =
∂ϕ(q)

∂q
∈ IR2×2 is called the analytical Jacobian matrix or

simply, the Jacobian of the robot. Clearly, the following relationship between
accelerations also holds,[

ẍ
ÿ

]
=

[
d

dt
J(q)

] [
q̇1

q̇2

]
+ J(q)

[
q̈1

q̈2

]
.

The procedure by which one computes the derivatives of the Jacobian
and thereby obtains expressions for the velocities in Cartesian coordinates, is
called differential kinematics. This topic is not studied in more detail in this
textbook since we do not use it for control.

5.2 Inverse Kinematics

The inverse kinematic model of robot manipulators is of great importance
from a practical viewpoint. This model allows us to obtain the joint positions
q in terms of the position and orientation of the end-effector of the last link
referred to the base reference frame. For the case of the Pelican prototype
robot, the inverse kinematic model has the form[

q1

q2

]
= ϕ−1(x, y)
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where ϕ−1 : Θ → IR2 and Θ ⊆ IR2.
The derivation of the inverse kinematic model is in general rather complex

and, in contrast to the direct kinematics problem, it may have multiple solu-
tions or no solution at all! The first case is illustrated in Figure 5.3. Notice
that for the same position (in Cartesian coordinates x, y) of the arm tip there
exist two possible configurations of the links, i.e. two possible values for q.

qd2

qd1

y

x

Figure 5.3. Two solutions to the inverse kinematics problem

So we see that even for this relatively simple robot configuration there
exist more than one solution to the inverse kinematics problem.

The practical interest of the inverse kinematic model relies on its utility
to define desired joint positions qd = [qd1 qd2 ]

T from specified desired posi-
tions xd and yd for the robot’s end-effector. Indeed, note that physically, it
is more intuitive to specify a task for a robot in end-effector coordinates so
that interest in the inverse kinematics problem increases with the complexity
of the manipulator (number of degrees of freedom).

Thus, let us now make our this discussion more precise by analytically

computing the solutions
[

qd1

qd2

]
= ϕ−1(xd, yd). The desired joint positions qd

can be computed using tedious but simple trigonometric manipulations to
obtain

qd1 = tan−1

(
xd

−yd

)
− tan−1

(
l2sin(qd2)

l1 + l2cos(qd2)

)

qd2 = cos−1

(
x2

d + y2
d − l21 − l22
2l1l2

)
.
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The desired joint velocities and accelerations may be obtained via the
differential kinematics1 and its time derivative. In doing this one must keep
in mind that the expressions obtained are valid only as long as the robot does
not “fall” into a singular configuration, that is, as long as the Jacobian J(qd)
is square and nonsingular. These expressions are[

q̇d1

q̇d2

]
= J−1(qd)

[
ẋd

ẏd

]
[

q̈d1

q̈d2

]
= −J−1(qd)

[
d

dt
J(qd)

]
J−1(qd)︸ ︷︷ ︸

d

dt

[
J−1(qd)

]
[

ẋd

ẏd

]
+ J−1(qd)

[
ẍd

ÿd

]

where J−1(qd) and d
dt [J(qd)] denote the inverse of the Jacobian matrix and

its time derivative respectively, evaluated at q = qd. These are given by

J−1(qd) =

⎡⎢⎢⎣
S12

l1S2
− C12

l1S2

−l1S1 − l2S12

l1l2S2

l1C1 + l2C12

l1l2S2

⎤⎥⎥⎦ ,

and

d

dt
[J(qd)] =

⎡⎣−l1S1q̇d1 − l2S12(q̇d1 + q̇d2) −l2S12(q̇d1 + q̇d2)

l1C1q̇d1 + l2C12(q̇d1 + q̇d2) l2C12(q̇d1 + q̇d2)

⎤⎦ ,

where, for simplicity, we have used the notation S1 = sin(qd1), S2 = sin(qd2),
C1 = cos(qd1), S12 = sin(qd1 + qd2), C12 = cos(qd1 + qd2) .

Notice that the term S2 appears in the denominator of all terms in J(q)−1

hence, qd2 = nπ, with n ∈ {0, 1, 2, . . .} and any qd1 also correspond to singular
configurations. Physically, these configurations (for any valid n) represent the
second link being completely extended or bent over the first, as is illustrated
in Figure 5.4. Typically, singular configurations are those in which the end-
effector of the robot is located at the physical boundary of the workspace
(that is, the physical space that the end-effector can reach). For instance, the
singular configuration corresponding to being stretched out corresponds to
the end-effector being placed anywhere on the circumference of radius l1 + l2,
which is the boundary of the robot’s workspace. As for Figure 5.4 the origin
of the coordinates frame constitute another point of this boundary.

Having illustrated the inverse kinematics problem through the planar ma-
nipulator of Figure 5.2 we stop our study of inverse kinematics since it is
1 For a definition and a detailed treatment of differential kinematics see the book

(Sciavicco, Siciliano 2000) —cf. Bibliography at the end of Chapter 1.
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qd1

x

y qd2

Figure 5.4. “Bent-over” singular configuration

beyond the scope of this text. However, we stress that what we have seen in
the previous paragraphs extends in general.

In summary, we can say that if the control is based on the Cartesian coor-
dinates of the end-effector, when designing the desired task for a manipulator’s
end-effector one must take special care that the configurations for the latter
do not yield singular configurations. Concerning the controllers studied in this
textbook, the reader should not worry about singular configurations since the
Jacobian is not used at all: the reference trajectories are given in joint coor-
dinates and we measure joint coordinates. This is what is called “control in
joint space”.

Thus, we leave the topic of kinematics to pass to the stage of modeling
that is more relevant for control, from the viewpoint of this textbook, i.e.
dynamics.

5.3 Dynamic Model

In this section we derive the Lagrangian equations for the CICESE proto-
type shown in Figure 5.1 and then we present in detail, useful bounds on
the matrices of inertia, centrifugal and Coriolis forces, and on the vector of
gravitational torques. Certainly, the model that we derive here applies to any
planar manipulator following the same convention of coordinates as for our
prototype.

5.3.1 Lagrangian Equations

Consider the 2-DOF robot manipulator shown in Figure 5.2. As we have
learned from Chapter 3, to derive the Lagrangian dynamics we start by writing
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the kinetic energy function, K(q, q̇), defined in (3.15). For this manipulator,
it may be decomposed into the sum of the two parts:

• the product of half the mass times the square of the speed of the center of
mass; plus

• the product of half its moment of inertia (referred to the center of mass)
times the square of its angular velocity (referred to the center of mass).

That is, we have K(q, q̇) = K1(q, q̇)+K2(q, q̇) where K1(q, q̇) and K2(q, q̇) are
the kinetic energies associated with the masses m1 and m2 respectively. Let
us now develop in more detail, the corresponding mathematical expressions.
To that end, we first observe that the coordinates of the center of mass of link
1, expressed on the plane x–y, are

x1 = lc1 sin(q1)
y1 = −lc1 cos(q1) .

The velocity vector v1 of the center of mass of such a link is then,

v1 =
[

ẋ1

ẏ1

]
=

[
lc1 cos(q1)q̇1

lc1 sin(q1)q̇1

]
.

Therefore, the speed squared, ‖v1‖2 = vT
1v1, of the center of mass becomes

vT
1v1 = l2c1q̇

2
1 .

Finally, the kinetic energy corresponding to the motion of link 1 can be ob-
tained as

K1(q, q̇) =
1
2
m1v

T
1v1 +

1
2
I1q̇

2
1

=
1
2
m1l

2
c1q̇

2
1 +

1
2
I1q̇

2
1 . (5.1)

On the other hand, the coordinates of the center of mass of link 2, expressed
on the plane x–y are

x2 = l1 sin(q1) + lc2 sin(q1 + q2)
y2 = −l1cos(q1) − lc2 cos(q1 + q2) .

Consequently, the velocity vector v2 of the center of mass of such a link is

v2 =
[

ẋ2

ẏ2

]
=

[
l1 cos(q1)q̇1 + lc2 cos(q1 + q2)[q̇1 + q̇2]
l1 sin(q1)q̇1 + lc2 sin(q1 + q2)[q̇1 + q̇2]

]
.
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Therefore, using the trigonometric identities cos(θ)2 + sin(θ)2 = 1 and
sin(q1)sin(q1 + q2) + cos(q1)cos(q1 + q2) = cos(q2) we conclude that the speed
squared, ‖v2‖2 = vT

2v2, of the center of mass of link 2 satisfies

vT
2v2 = l21 q̇

2
1 + l2c2

[
q̇2
1 + 2q̇1q̇2 + q̇2

2

]
+ 2l1lc2

[
q̇2
1 + q̇1q̇2

]
cos(q2)

which implies that

K2(q, q̇) =
1
2
m2v

T
2v2 +

1
2
I2[q̇1 + q̇2]2

=
m2

2
l21 q̇

2
1 +

m2

2
l2c2

[
q̇2
1 + 2q̇1q̇2 + q̇2

2

]
+ m2l1lc2

[
q̇2
1 + q̇1q̇2

]
cos(q2)

+
1
2
I2[q̇1 + q̇2]2.

Similarly, the potential energy may be decomposed as the sum of the
terms U(q) = U1(q)+U2(q), where U1(q) and U2(q) are the potential energies
associated with the masses m1 and m2 respectively. Thus, assuming that the
potential energy is zero at y = 0, we obtain

U1(q) = −m1lc1g cos(q1)

and
U2(q) = −m2l1g cos(q1) − m2lc2g cos(q1 + q2) . (5.2)

From Equations (5.1)–(5.2) we obtain the Lagrangian as

L(q, q̇) = K(q, q̇) − U(q)
= K1(q, q̇) + K2(q, q̇) − U1(q) − U2(q)

=
1
2
[m1l

2
c1 + m2l

2
1]q̇

2
1 +

1
2
m2l

2
c2

[
q̇2
1 + 2q̇1q̇2 + q̇2

2

]
+ m2l1lc2 cos(q2)

[
q̇2
1 + q̇1q̇2

]
+ [m1lc1 + m2l1]g cos(q1)
+ m2glc2 cos(q1 + q2)

+
1
2
I1q̇

2
1 +

1
2
I2[q̇1 + q̇2]2.

From this last equation we obtain the following expression:

∂L
∂q̇1

= [m1l
2
c1 + m2l

2
1]q̇1 + m2l

2
c2q̇1 + m2l

2
c2q̇2

+ 2m2l1lc2 cos(q2)q̇1 + m2l1lc2 cos(q2)q̇2

+ I1q̇1 + I2[q̇1 + q̇2].
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d

dt

[
∂L
∂q̇1

]
=

[
m1l

2
c1 + m2l

2
1 + m2l

2
c2 + 2m2l1lc2 cos(q2)

]
q̈1

+
[
m2l

2
c2 + m2l1lc2 cos(q2)

]
q̈2

− 2m2l1lc2sin(q2)q̇1q̇2 − m2l1lc2 sin(q2)q̇2
2

+ I1q̈1 + I2[q̈1 + q̈2].

∂L
∂q1

= −[m1lc1 + m2l1]g sin(q1) − m2glc2 sin(q1 + q2).

∂L
∂q̇2

= m2l
2
c2q̇1 + m2l

2
c2q̇2 + m2l1lc2 cos(q2)q̇1 + I2[q̇1 + q̇2].

d

dt

[
∂L
∂q̇2

]
= m2l

2
c2q̈1 + m2l

2
c2q̈2

+ m2l1lc2 cos(q2)q̈1 − m2l1lc2 sin(q2)q̇1q̇2

+ I2[q̈1 + q̈2].

∂L
∂q2

= −m2l1lc2 sin(q2)
[
q̇1q̇2 + q̇2

1

]− m2glc2 sin(q1 + q2).

The dynamic equations that model the robot arm are obtained by applying
Lagrange’s Equations (3.4),

d

dt

[
∂L
∂q̇i

]
− ∂L

∂qi
= τi i = 1, 2

from which we finally get

τ1 =
[
m1l

2
c1 + m2l

2
1 + m2l

2
c2 + 2m2l1lc2 cos(q2) + I1 + I2

]
q̈1

+
[
m2l

2
c2 + m2l1lc2 cos(q2) + I2

]
q̈2

− 2m2l1lc2 sin(q2)q̇1q̇2 − m2l1lc2 sin(q2)q̇2
2

+ [m1lc1 + m2l1]g sin(q1)
+ m2glc2 sin(q1 + q2) (5.3)

and

τ2 =
[
m2l

2
c2 + m2l1lc2 cos(q2) + I2

]
q̈1 + [m2l

2
c2 + I2]q̈2

+ m2l1lc2 sin(q2)q̇2
1 + m2glc2 sin(q1 + q2) , (5.4)

where τ1 and τ2, are the external torques delivered by the actuators at joints
1 and 2.

Thus, the dynamic equations of the robot (5.3)-(5.4) constitute a set of
two nonlinear differential equations of the state variables x = [qT q̇T ]T , that
is, of the form (3.1) .
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5.3.2 Model in Compact Form

For control purposes, it is more practical to rewrite the Lagrangian dynamic
model of the robot, that is, Equations (5.3) and (5.4), in the compact form
(3.18), i.e.[

M11(q) M12(q)
M21(q) M22(q)

]
︸ ︷︷ ︸

M(q)

q̈ +
[

C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

]
︸ ︷︷ ︸

C(q, q̇)

q̇ +
[

g1(q)
g2(q)

]
︸ ︷︷ ︸

g(q)

= τ ,

where

M11(q) = m1l
2
c1 + m2

[
l21 + l2c2 + 2l1lc2 cos(q2)

]
+ I1 + I2

M12(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M21(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M22(q) = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2) [q̇1 + q̇2]
C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0

g1(q) = [m1lc1 + m2l1] g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

We emphasize that the appropriate state variables to describe the dynamic
model of the robot are the positions q1 and q2 and the velocities q̇1 and q̇2. In
terms of these state variables, the dynamic model of the robot may be written
as

d

dt

⎡⎢⎣
q1

q2

q̇1

q̇2

⎤⎥⎦ =

⎡⎢⎣ q̇1

q̇2

M(q)−1 [τ (t) − C(q, q̇)q̇ − g(q)]

⎤⎥⎦ .

Properties of the Dynamic Model

We present now the derivation of certain bounds on the inertia matrix, the ma-
trix of centrifugal and Coriolis forces and the vector of gravitational torques.
The bounds that we derive are fundamental to properly tune the gains of the
controllers studied in the succeeding chapters. We emphasize that, as stud-
ied in Chapter 4, some bounds exist for any manipulator with only revolute
rigid joints. Here, we show how they can be computed for CICESE’s Pelican
prototype illustrated in Figure 5.2.



124 5 Case Study: The Pelican Prototype Robot

Derivation of λmin{M}

We start with the property of positive definiteness of the inertia matrix. For
a symmetric 2×2 matrix [

M11(q) M21(q)
M21(q) M22(q)

]
to be positive definite for all q ∈ IRn, it is necessary and sufficient that2

M11(q) > 0 and its determinant

M11(q)M22(q) − M21(q)2

also be positive for all q ∈ IRn.
In the worst-case scenario M11(q) = m1l

2
c1 + I1 + I2 + m2(l1 − lc2)2 > 0,

we only need to compute the determinant of M(q), that is,

det[M(q)] = I1I2 + I2[l2c1m1 + l21m2] + l2c2m2I1 + l2c1l
2
c2m1m2

+ l21l
2
c2m

2
2[1 − cos2(q2)] .

Notice that only the last term depends on q and is positive or zero. Hence,
we conclude that M(q) is positive definite for all q ∈ IRn, that is3

xT M(q)x ≥ λmin{M}‖x‖2 (5.5)

for all q ∈ IRn, where λmin{M} > 0.
Inequality (5.5) constitutes an important property for control purposes

since for instance, it guarantees that M(q)−1 is positive definite and bounded
for all q ∈ IRn.

Let us continue with the computation of the constants β, kM , kC1 , kC2

and kg from the properties presented in Chapter 4.

Derivation of λMax{M}

Consider the inertia matrix M(q). From its components it may be verified
that
2 Consider the partitioned matrix [

A B
BT C

]
.

If A = AT > 0, C = CT > 0 and C − BT A−1B ≥ 0 (resp. C − BT A−1B > 0 ),
then this matrix is positive semidefinite (resp. positive definite). See Horn R. A.,
Johnson C. R., 1985, Matrix analysis, p. 473.

3 See also Remark 2.1 on page 25.
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max
i,j,q

|Mij(q)| = m1l
2
c1 + m2

[
l21 + l2c2 + 2l1lc2

]
+ I1 + I2 .

According to Table 4.1, the constant β may be obtained as a value larger or
equal to n times the previous expression, i.e.

β ≥ n
[
m1l

2
c1 + m2

[
l21 + l2c2 + 2l1lc2

]
+ I1 + I2

]
.

Hence, defining, λMax{M} = β we see that

xT M(q)x ≤ λMax{M}‖x‖2

for all q ∈ IRn. Moreover, using the numerical values presented in Table 5.1,
we get β = 0.7193 kg m2, that is, λMax{M} = 0.7193 kg m2.

Derivation of kM

Consider the inertia matrix M(q). From its components it may be verified
that

∂M11(q)
∂q1

= 0,
∂M11(q)

∂q2
= −2m2l1lc2sin(q2)

∂M12(q)
∂q1

= 0,
∂M12(q)

∂q2
= −m2l1lc2sin(q2)

∂M21(q)
∂q1

= 0,
∂M21(q)

∂q2
= −m2l1lc2sin(q2)

∂M22(q)
∂q1

= 0,
∂M22(q)

∂q2
= 0 .

According to Table 4.1, the constant kM may be determined as

kM ≥ n2

(
max
i,j,k,q

∣∣∣∣∂Mij(q)
∂qk

∣∣∣∣) ,

hence, this constant may be chosen to satisfy

kM ≥ n22m2l1lc2 .

Using the numerical values presented in Table 5.1 we get kM = 0.0974 kg m2 .

Derivation of kC1

Consider the vector of centrifugal and Coriolis forces C(q, q̇)q̇ written as

C(q, q̇)q̇ =

⎡⎣−m2l1lc2 sin(q2)
(
2q̇1q̇2 + q̇2

2

)
m2l1lc2 sin(q2)q̇2

1

⎤⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
q̇1

q̇2

]T

C1(q)︷ ︸︸ ︷[
0 −m2l1lc2 sin(q2)

−m2l1lc2 sin(q2) −m2l1lc2 sin(q2)

] [
q̇1

q̇2

]
[

q̇1

q̇2

]T[
m2l1lc2 sin(q2) 0

0 0

]
︸ ︷︷ ︸

C2(q)

[
q̇1

q̇2

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.6)

According to Table 4.1, the constant kC1 may be derived as

kC1 ≥ n2

(
max
i,j,k,q

∣∣Ckij (q)
∣∣)

hence, this constant may be chosen so that

kC1 ≥ n2m2l1lc2

Consequently, in view of the numerical values from Table 5.1 we find that
kC1 = 0.0487 kg m2.

Derivation of kC2

Consider again the vector of centrifugal and Coriolis forces C(q, q̇)q̇ written
as in (5.6). From the matrices C1(q) and C2(q) it may easily be verified that

∂C111(q)
∂q1

= 0,
∂C111(q)

∂q2
= 0

∂C112(q)
∂q1

= 0,
∂C112(q)

∂q2
= −m2l1lc2cos(q2)

∂C121(q)
∂q1

= 0,
∂C121(q)

∂q2
= −m2l1lc2cos(q2)

∂C122(q)
∂q1

= 0,
∂C122(q)

∂q2
= −m2l1lc2cos(q2)

∂C211(q)
∂q1

= 0,
∂C211(q)

∂q2
= m2l1lc2cos(q2)

∂C212(q)
∂q1

= 0,
∂C212(q)

∂q2
= 0

∂C221(q)
∂q1

= 0,
∂C221(q)

∂q2
= 0
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∂C222(q)
∂q1

= 0,
∂C222(q)

∂q2
= 0 .

Furthermore, according to Table 4.1 the constant kC2 may be taken to satisfy

kC2 ≥ n3

(
max

i,j,k,l,q

∣∣∣∣∂Ckij (q)
∂ql

∣∣∣∣) .

Therefore, we may choose kC2 as

kC2 ≥ n3m2l1lc2 ,

which, in view of the numerical values from Table 5.1, takes the numerical
value kC2 = 0.0974 kg m2:

Derivation of kg

According to the components of the gravitational torques vector g(q) we have

∂g1(q)
∂q1

= (m1lc1 + m2l1) g cos(q1) + m2lc2g cos(q1 + q2)

∂g1(q)
∂q2

= m2lc2g cos(q1 + q2)

∂g2(q)
∂q1

= m2lc2g cos(q1 + q2)

∂g2(q)
∂q2

= m2lc2g cos(q1 + q2) .

Notice that the Jacobian matrix ∂g(q)
∂q

corresponds in fact, to the Hessian

matrix (i.e. the second partial derivative) of the potential energy function
U(q), and is a symmetric matrix even though not necessarily positive definite.

The positive constant kg may be derived from the information given in
Table 4.1 as

kg ≥ n max
i,j,q

∣∣∣∣∂gi(q)
∂qj

∣∣∣∣ .

That is,
kg ≥ n [m1lc1 + m2l1 + m2lc2] g

and using the numerical values from Table 5.1 may be given the numerical
value kg = 23.94 kg m2/s2.
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Table 5.2. Numeric values of the parameters for the CICESE prototype

Parameter Value Units

λMax{M} 0.7193 kg m2

kM 0.0974 kg m2

kC1 0.0487 kg m2

kC2 0.0974 kg m2

kg 23.94 kg m2/s2

Summary

The numerical values of the constants λMax{M}, kM , kC1 , kC2 and kg obtained
above are summarized in Table 5.2.

5.4 Desired Reference Trajectories

With the aim of testing in experiments the performance of the controllers
presented in this book, on the Pelican robot, we have selected the following
reference trajectories in joint space:⎡⎣ qd1

qd2

⎤⎦ =

⎡⎣ b1[1 − e−2.0 t3 ] + c1[1 − e−2.0 t3 ] sin(ω1t)

b2[1 − e−2.0 t3 ] + c2[1 − e−2.0 t3 ] sin(ω2t)

⎤⎦ [rad] (5.7)

where b1 = π/4 [rad], c1 = π/9 [rad] and ω1 = 4 [rad/s], are parameters
for the desired position reference for the first joint and b2 = π/3 [rad], c2 =
π/6 [rad] and ω2 = 3 [rad/s] correspond to parameters that determine the
desired position reference for the second joint. Figure 5.5 shows graphs of
these reference trajectories against time.

Note the following important features in these reference trajectories:

• the trajectory contains a sinusoidal term to evaluate the performance of the
controller following relatively fast periodic motions. This test is significant
since such motions excite nonlinearities in the system.

• It also contains a slowly increasing term to bring the robot to the operating
point without driving the actuators into saturation.

The module and frequency of the periodic signal must be chosen with
care to avoid both torque and speed saturation in the actuators. In other
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Figure 5.5. Desired reference trajectories

words, the reference trajectories must be such that the evolution of the robot
dynamics along these trajectories gives admissible velocities and torques for
the actuators. Otherwise, the desired reference is physically unfeasible.

Using the expressions of the desired position trajectories, (5.7), we may
obtain analytically expressions for the desired velocity reference trajectories.
These are obtained by direct differentiation, i.e.

q̇d1 = 6b1t
2e−2.0 t3 + 6c1t

2e−2.0 t3sin(ω1t) + [c1 − c1e
−2.0 t3 ] cos (ω1t)ω1,

q̇d2 = 6b2t
2e−2.0 t3 + 6c2t

2e−2.0 t3sin(ω2t) + [c2 − c2e
−2.0 t3 ] cos (ω2t)ω2 ,

(5.8)

in [ rad/s ]. In the same way we may proceed to compute the reference accel-
erations to obtain

q̈d1 = 12b1te
−2.0 t3 − 36b1t

4e−2.0 t3 + 12c1te
−2.0 t3sin(ω1t)

− 36c1t
4e−2.0 t3sin(ω1t) + 12c1t

2e−2.0 t3 cos (ω1t)ω1

− [c1 − c1e
−2.0 t3 ]sin(ω1t)ω2

1

[
rad/s2

]
,

q̈d2 = 12b2te
−2.0 t3 − 36b2t

4e−2.0 t3 + 12c2te
−2.0 t3 sin (ω2t)

− 36c2t
4e−2.0 t3 sin (ω2t) + 12c2t

2e−2.0 t3 cos (ω2t)ω2

− [c2 − c2e
−2.0 t3 ] sin (ω2t)ω2

2

[
rad/s2

]
.

(5.9)
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Figure 5.6. Norm of the desired positions
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Figure 5.7. Norm of the desired velocities vector

Figures 5.6, 5.7 and 5.8 show the evolution in time of the norms corresponding
to the desired joint positions, velocities and accelerations respectively. From
these figures we deduce the following upper-bounds on the norms

‖qd‖Max ≤ 1.92 [rad]
‖q̇d‖Max ≤ 2.33 [rad/s]
‖q̈d‖Max ≤ 9.52 [rad/s2] .
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Figure 5.8. Norm of the desired accelerations vector
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Problems

1. Consider the matrices M(q) and C(q, q̇) from Section 5.3.2. Show that
the matrix

[
1
2Ṁ(q) − C(q, q̇)

]
is skew-symmetric.

2. According to Property 4.2, the centrifugal and Coriolis forces matrix
C(q, q̇), of the dynamic model of an n-DOF robot is not unique. In Sec-
tion 5.3.2 we computed the elements of the matrix C(q, q̇) of the Pelican

4 “Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada”.
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robot presented in this chapter. Prove also that the matrix C(q, q̇) whose
elements are given by

C11(q, q̇) = −2m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2)q̇2

C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0

characterizes the centrifugal and Coriolis forces, C(q, q̇)q̇. With this def-
inition of C(q, q̇), is 1

2Ṁ(q) − C(q, q̇) skew-symmetric?

Does it hold that q̇T
[

1
2Ṁ(q) − C(q, q̇)

]
q̇ = 0 ? Explain.
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Position Control



Introduction to Part II

Depending on their application, industrial robot manipulators may be classi-
fied into two categories: the first is that of robots which move freely in their
workspace (i.e. the physical space reachable by the end-effector) thereby un-
dergoing movements without physical contact with their environment; tasks
such as spray-painting, laser-cutting and welding may be performed by this
type of manipulator. The second category encompasses robots which are de-
signed to interact with their environment, for instance, by applying a comply-
ing force; tasks in this category include polishing and precision assembling.

In this textbook we study exclusively motion controllers for robot manip-
ulators that move about freely in their workspace.

For clarity of exposition, we shall consider robot manipulators provided
with ideal actuators, that is, actuators with negligible dynamics or in other
words, that deliver torques and forces which are proportional to their inputs.
This idealization is common in many theoretical works on robot control as well
as in most textbooks on robotics. On the other hand, the recent technological
developments in the construction of electromechanical actuators allow one to
rely on direct-drive servomotors, which may be considered as ideal torque
sources over a wide range of operating points. Finally, it is important to
mention that even though in this textbook we assume that the actuators are
ideal, most studies of controllers that we present in the sequel may be easily
extended, by carrying out minor modifications, to the case of linear actuators
of the second order; such is the case of DC motors.

Motion controllers that we study are classified into two main parts based on
the control goal. In this second part of the book we study position controllers
(set-point controllers) and in Part III we study motion controllers (tracking
controllers).

Consider the dynamic model of a robot manipulator with n DOF, rigid
links, no friction at the joints and with ideal actuators, (3.18), and which we
recall below for convenience:
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M(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (II.1)

where M(q) ∈ IRn×n is the inertia matrix, C(q, q̇)q̇ ∈ IRn is the vector of
centrifugal and Coriolis forces, g(q) ∈ IRn is the vector of gravitational forces
and torques and τ ∈ IRn is a vector of external forces and torques applied
at the joints. The vectors q, q̇, q̈ ∈ IRn denote the position, velocity and joint
acceleration respectively.

In terms of the state vector
[
qT q̇T

]T
these equations take the form

d

dt

⎡⎣ q

q̇

⎤⎦ =

⎡⎣ q̇

M(q)−1 [τ (t) − C(q, q̇)q̇ − g(q)]

⎤⎦ .

The problem of position control of robot manipulators may be formulated
in the following terms. Consider the dynamic equation of an n-DOF robot,
(II.1). Given a desired constant position (set-point reference) qd, we wish to
find a vectorial function τ such that the positions q associated with the robot’s
joint coordinates tend to qd accurately.

In more formal terms, the objective of position control consists in finding
τ such that

lim
t→∞ q(t) = qd

where qd ∈ IRn is a given constant vector which represents the desired joint
positions.

The way that we evaluate whether a controller achieves the control ob-
jective is by studying the asymptotic stability of the origin of the closed-loop
system in the sense of Lyapunov (cf. Chapter 2). For such purposes, it appears
convenient to rewrite the position control objective as

lim
t→∞ q̃(t) = 0

where q̃ ∈ IRn stands for the joint position errors vector or is simply called
position error, and is defined by

q̃(t) := qd − q(t) .

Then, we say that the control objective is achieved, if for instance the
origin of the closed-loop system (also referred to as position error dynamics)
in terms of the state, i.e. [q̃T q̇T ]T = 0 ∈ IR2n, is asymptotically stable.

The computation of the vector τ involves, in general, a vectorial nonlinear
function of q, q̇ and q̈. This function is called the “control law” or simply,
“controller”. It is important to recall that robot manipulators are equipped
with sensors to measure position and velocity at each joint, hence, the vectors
q and q̇ are assumed to be measurable and may be used by the controllers.
In general, a control law may be expressed as
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τ = τ (q, q̇, q̈, qd,M(q), C(q, q̇), g(q)) . (II.2)

However, for practical purposes it is desirable that the controller does not
depend on the joint acceleration q̈, because measurement of acceleration is
unusual and accelerometers are typically highly sensitive to noise.

Figure II.1 presents the block-diagram of a robot in closed loop with a
position controller.

ROBOTCONTROLLER τ q
q̇

qd

Figure II.1. Position control: closed-loop system

If the controller (II.2) does not depend explicitly on M(q), C(q, q̇) and
g(q), it is said that the controller is not “model-based”. This terminology is,
however, a little misfortunate since there exist controllers, for example of the
PID type (cf. Chapter 9), whose design parameters are computed as functions
of the model of the particular robot for which the controller is designed. From
this viewpoint, these controllers are model-dependent or model-based.

In this second part of the textbook we carry out stability analyses of
a group of position controllers for robot manipulators. The methodology to
analyze the stability may be summarized in the following steps.

1. Derivation of the closed-loop dynamic equation. This equation is obtained
by replacing the control action τ (cf. Equation II.2 ) in the dynamic model
of the manipulator (cf. Equation II.1). In general, the closed-loop equation
is a nonautonomous nonlinear ordinary differential equation.

2. Representation of the closed-loop equation in the state-space form, i.e.

d

dt

[
qd − q

q̇

]
= f(q, q̇, qd,M(q), C(q, q̇), g(q)) . (II.3)

This closed-loop equation may be regarded as a dynamic system whose
inputs are qd, q̇d and q̈d, and with outputs, the state vectors q̃ = qd − q
and q̇. Figure II.2 shows the corresponding block-diagram.

3. Study of the existence and possible unicity of equilibrium for the closed-
loop equation. For this, we rewrite the closed-loop equation (II.3) in the
state-space form choosing as the state, the position error and the velocity.
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CONTROLLER

ROBOT
+qd q̃

q̇

Figure II.2. Set-point control closed-loop system. Input–output representation.

That is, let q̃ := qd−q denote the state of the closed-loop equation. Then,
(II.3) becomes

d

dt

[
q̃
q̇

]
= f̃(q̃, q̇) (II.4)

where f̃ is obtained by replacing q with qd − q̃. Note that the closed-loop
system equation is autonomous since qd is constant.
Thus, for Equation (II.4) we want to verify that the origin, [q̃T q̇T ]T =
0 ∈ IR2n is an equilibrium and whether it is unique.

4. Proposal of a Lyapunov function candidate to study the stability of the
origin for the closed-loop equation, by using the Theorems 2.2, 2.3, 2.4
and 2.7. In particular, verification of the required properties, i.e. positivity
and negativity of the time derivative.

5. Alternatively to step 4, in the case that the proposed Lyapunov function
candidate appears to be inappropriate (that is, if it does not satisfy all of
the required conditions) to establish the stability properties of the equilib-
rium under study, we may use Lemma 2.2 by proposing a positive definite
function whose characteristics allow one to determine the qualitative be-
havior of the solutions of the closed-loop equation.

It is important to underline that if Theorems 2.2, 2.3, 2.4, 2.7 and Lemma
2.2 do not apply because one of their conditions does not hold, it does not
mean that the control objective cannot be achieved with the controller under
analysis but that the latter is inconclusive. In this case, one should look for
other possible Lyapunov function candidates such that one of these results
holds.

The rest of this second part of the textbook is divided into four chapters.
The controllers that we present may be called “conventional” since they are
commonly used in industrial robots. These controllers are:

• Proportional control plus velocity feedback and Proportional Derivative
(PD) control;

• PD control with gravity compensation;
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• PD control with desired gravity compensation;
• Proportional Integral Derivative (PID) control.
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6

Proportional Control plus Velocity Feedback
and PD Control

Proportional control plus velocity feedback is the simplest closed-loop con-
troller that may be used to control robot manipulators. The conceptual ap-
plication of this control strategy is common in angular position control of DC
motors. In this application, the controller is also known as proportional control
with tachometric feedback. The equation of proportional control plus velocity
feedback is given by

τ = Kpq̃ − Kvq̇ (6.1)

where Kp, Kv ∈ IRn×n are symmetric positive definite matrices preselected by
the practitioner engineer and are commonly referred to as position gain and
velocity (or derivative) gain, respectively. The vector qd ∈ IRn corresponds to
the desired joint position, and the vector q̃ = qd − q ∈ IRn is called position
error. Figure 6.1 presents a block-diagram corresponding to the control system
formed by the robot under proportional control plus velocity feedback.

q̇
qROBOTqd ΣΣ Kp

Kv

τ

Figure 6.1. Block-diagram: Proportional control plus velocity feedback

Proportional Derivative (PD) control is an immediate extension of propor-
tional control plus velocity feedback (6.1). As its name suggests, the control
law is not only composed of a proportional term of the position error as in the
case of proportional control, but also of another term which is proportional
to the derivative of the position, i.e. to its velocity error, ˙̃q. The PD control
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law is given by
τ = Kpq̃ + Kv

˙̃q (6.2)

where Kp,Kv ∈ IRn×n are also symmetric positive definite and selected by
the designer. In Figure 6.2 we present the block-diagram corresponding to the
control system composed of a PD controller and a robot.

KpKv

τ
ROBOT q̇

q

qd

q̇d

Σ

Σ

Σ

Figure 6.2. Block-diagram: PD control

So far no restriction has been imposed on the vector of desired joint posi-
tions qd to define the proportional control law plus velocity feedback and the
PD control law. This is natural, since the name that we give to a controller
must characterize only its structure and should not be reference-dependent.

In spite of the veracity of the statement above, in the literature on robot
control one finds that the control laws (6.1) and (6.2) are indistinctly called
“PD control”. The common argument in favor of this ambiguous terminology
is that in the particular case when the vector of desired positions qd is re-
stricted to be constant, then it is clear from the definition of q̃ that ˙̃q = −q̇
and therefore, control laws (6.1) and (6.2) become identical.

With the purpose of avoiding any polemic about these observations, and
to observe the use of the common nomenclature from now on, both control
laws (6.1) and (6.2), are referred to in the sequel as “PD control”.

In real applications, PD control is local in the sense that the torque or force
determined by such a controller when applied at a particular joint, depends
only on the position and velocity of the joint in question and not on those of
the other joints. Mathematically, this is translated by the choice of diagonal
design matrices Kp and Kv.

PD control, given by Equation (6.1), requires the measurement of positions
q and velocities q̇ as well as specification of the desired joint position qd (cf.
Figure 6.1). Notice that it is not necessary to specify the desired velocity and
acceleration, q̇d and q̈d.
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We present next an analysis of PD control for n-DOF robot manipulators.
The behavior of an n-DOF robot in closed-loop with PD control is deter-

mined by combining the model Equation (II.1) with the control law (6.1),

M(q)q̈ + C(q, q̇)q̇ + g(q) = Kpq̃ − Kvq̇ (6.3)

or equivalently, in terms of the state vector
[
q̃T ˙̃q

T
]T

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

q̈d − M(q)−1 [Kpq̃ − Kvq̇ − C(q, q̇)q̇ − g(q)]

⎤⎦
which is a nonlinear nonautonomous differential equation. In the rest of this
section we assume that the vector of desired joint positions, qd, is constant.
Under this condition, the closed-loop equation may be rewritten in terms of
the new state vector

[
q̃T q̇T

]T
, as

d

dt

⎡⎣ q̃

q̇

⎤⎦ =

⎡⎣ −q̇

M(q)−1 [Kpq̃ − Kvq̇ − C(q, q̇)q̇ − g(q)]

⎤⎦ . (6.4)

Note that the closed-loop differential equation is still nonlinear but au-
tonomous. This is because qd is constant. The previous equation however, may
have multiple equilibria. If such is the case, they are given by

[
q̃T q̇T

]T
=

[sT 0T ]T where s ∈ IRn is solution of

Kps − g(qd − s) = 0 . (6.5)

Obviously, if the manipulator model does not include the gravitational
torques term g(q), then the only equilibrium is the origin of the state space,
i.e. [q̃T q̇T ]T = 0 ∈ IR2n. Also, if g(q) is independent of q, i.e. if g(q) = g
constant, then s = K−1

p g is the only solution.
Notice that Equation (6.5) is in general nonlinear in s due to the gravi-

tational term g(qd − s). For this reason, and given the nonlinear nature of
g(qd −s), derivation of the explicit solutions of s is in general relatively com-
plex.

In the future sections we treat separately the cases in which the robot
model contains and does not contain the vector of gravitational torques g(q).

6.1 Robots without Gravity Term

In this section we consider robots whose dynamic model does not contain the
gravitational g(q), that is
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M(q)q̈ + C(q, q̇)q̇ = τ .

Robots that are described by this model are those which move only on
the horizontal plane, as well as those which are mechanically designed in a
specific convenient way.

Assuming that the desired joint position qd is constant, the closed-loop
Equation (6.4) becomes (with g(q) = 0),

d

dt

⎡⎣ q̃

q̇

⎤⎦ =

⎡⎣ −q̇

M(qd − q̃)−1 [Kpq̃ − Kvq̇ − C(qd − q̃, q̇)q̇]

⎤⎦ (6.6)

which, since qd is constant, represents an autonomous differential equation.
Moreover, the origin

[
q̃T q̇T

]T
= 0 is the only equilibrium of this equation.

To study the stability of the equilibrium we appeal to Lyapunov’s direct
method, to which the reader has already been introduced in Section 2.3.4 of
Chapter 2. Specifically, we use La Salle’s Theorem 2.7 to show asymptotic
stability of the equilibrium (origin).

Consider the following Lyapunov function candidate

V (q̃, q̇) =
1
2

⎡⎣ q̃

q̇

⎤⎦T⎡⎣Kp 0

0 M(qd − q̃)

⎤⎦⎡⎣ q̃

q̇

⎤⎦
=

1
2
q̇TM(q)q̇ +

1
2
q̃TKpq̃ .

Notice that this function is positive definite since M(q) as well as Kp are
positive definite matrices.

The total derivative of V (q̃, q̇) yields

V̇ (q̃, q̇) = q̇TM(q)q̈ +
1
2
q̇TṀ(q)q̇ + q̃TKp

˙̃q.

Substituting M(q)q̈ from the closed-loop Equation (6.6), we obtain

V̇ (q̃, q̇) = −q̇TKvq̇

= −
⎡⎣ q̃

q̇

⎤⎦T⎡⎣ 0 0

0 Kv

⎤⎦⎡⎣ q̃

q̇

⎤⎦ ≤ 0,

where we canceled the term q̇T
[

1
2Ṁ − C

]
q̇ by virtue of Property 4.2.7 and

we used the fact that ˙̃q = −q̇ since qd is a constant vector.
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From this and the fact that V̇ (q̃, q̇) ≤ 0 we conclude that the function
V (q̃, q̇) is a Lyapunov function. From Theorem 2.3 we also conclude that the
origin is stable and, moreover, that the solutions q̃(t) and q̇(t) are bounded.

Since the closed-loop Equation (6.6) is autonomous, we may try to apply
La Salle’s theorem (Theorem 2.7) to analyze the global asymptotic stability
of the origin.

To that end, notice that here the set Ω is given by

Ω =
{

x ∈ IR2n : V̇ (x) = 0
}

=
{

x =
[

q̃
q̇

]
∈ IR2n : V̇ (q̃, q̇) = 0

}
= {q̃ ∈ IRn, q̇ = 0 ∈ IRn} .

Observe also that V̇ (q̃, q̇) = 0 if and only if q̇ = 0. For a solution x(t) to
belong to Ω for all t ≥ 0, it is necessary and sufficient that q̇(t) = 0 for all
t ≥ 0. Therefore, it must also hold that q̈(t) = 0 for all t ≥ 0. Considering all
this, we conclude from the closed-loop equation (6.6), that if x(t) ∈ Ω for all
t ≥ 0 then,

0 = M(qd − q̃(t))−1Kpq̃(t) .

Since M(qd − q̃(t))−1 and Kp are positive definite their matrix product
is nonsingular1, this implies that q̃(t) = 0 for all t ≥ 0 and therefore,[
q̃(0)T q̇(0)T

]T = 0 ∈ IR2n is the only initial condition in Ω for which x(t) ∈
Ω for all t ≥ 0. Thus, from La Salle’s theorem (Theorem 2.7), this is enough
to establish global asymptotic stability of the origin,

[
q̃T q̇T

]T
= 0 ∈ IR2n

and consequently,

lim
t→∞ q̃(t) = lim

t→∞ [ qd − q(t) ] = 0

lim
t→∞ q̇(t) = 0 .

In other words the position control objective is achieved.
It is interesting to emphasize at this point, that the closed-loop equation

(6.6) is exactly the same as the one which will be derived for the so-called PD
controller with gravity compensation and which we study in Chapter 7. In
that chapter we present an alternative analysis for the asymptotic stability of
the origin, by use of another Lyapunov function which does not appeal to La
Salle’s theorem. Certainly, this alternative analysis is also valid for the study
of (6.6).

1 Note that we are not claiming that the matrix product M(�d − �̃(t))−1Kp is
positive definite. This is not true in general. We are only using the fact that this
matrix product is nonsingular.
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6.2 Robots with Gravity Term

The behavior of the control system under PD control (cf. Equation 6.1) for
robots whose models include explicitly the vector of gravitational torques g(q)
and assuming that qd is constant, is determined by (6.4), which we repeat
below, i.e.

d

dt

⎡⎣ q̃

q̇

⎤⎦ =

⎡⎣ −q̇

M(q)−1 [Kpq̃ − Kvq̇ − C(q, q̇)q̇ − g(q)]

⎤⎦ . (6.7)

The study of this equation is somewhat more complex than that for the
case when g(q) = 0.

In this section we analyze closed-loop Equation (6.7), and specifically, we
address the following issues:

• unicity of the equilibrium;
• boundedness of solutions.

The study of this section is limited to robots having only revolute joints.

6.2.1 Unicity of the Equilibrium

In general, system (6.7) may have several equilibrium points. This is illustrated
by the following example.

Example 6.1. Consider the model of an ideal pendulum, such as the
one studied in Example 2.2 (cf. page 30)

Jq̈ + mgl sin(q) = τ .

In this case the expression (6.5) takes the form

kps − mgl sin(qd − s) = 0 . (6.8)

For the sake of illustration consider the following numerical values

J = 1 mgl = 1
kp = 0.25 qd = π/2.

Either by a graphical method or using numerical algorithms, it
may be verified that Equation (6.8) has exactly three solutions in
s whose approximate values are: 1.25 (rad), −2.13 (rad) and −3.59
(rad). This means that the closed-loop system under PD control for
the ideal pendulum, has the equilibria
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[
q̃
q̇

]
∈

{[
1.25
0

]
,

[−2.13
0

]
,

[−3.56
0

]}
.

♦

Multiplicity of equilibria certainly poses a problem for the study of (global)
asymptotic stability; hence, it is desirable to avoid such a situation. For the
case of robots having only revolute joints we show below that, by choosing Kp

sufficiently large, one may guarantee unicity of the equilibrium of the closed-
loop Equation (6.7). To that end, we use the contraction mapping theorem
presented in this textbook as Theorem 2.1.

The equilibria of the closed-loop Equation (6.7) satisfy[
q̃T q̇T

]T
=

[
sT 0T

]T
,

where s ∈ IRn is solution of

s = K−1
p g(qd − s)

= f(s, qd) .

If the function f(s, qd) satisfies the condition of the contraction mapping
theorem (Theorem 2.1) then the equation s = f(s, qd) has a unique solution
s∗ and consequently, the unique equilibrium of the closed-loop Equation (6.7)

is
[
q̃T q̇T

]T
=

[
s∗T

0T
]T

.

Now, notice that for all vectors x, y, qd ∈ IRn,

‖f(x, qd) − f(y, qd)‖ =
∥∥K−1

p g(qd − x) − K−1
p g(qd − y)

∥∥
=

∥∥K−1
p {g(qd − x) − g(qd − y)}∥∥

≤ λMax{K−1
p } ‖g(qd − x) − g(qd − y)‖ .

On the other hand, using the fact that λMax{A−1} = 1/λmin{A} for any
symmetric positive definite matrix A, and Property 4.3.3 that guarantees the
existence of a positive constant kg such that ‖g(x) − g(y)‖ ≤ kg ‖x − y‖, we
get

‖f(x, qd) − f(y, qd)‖ ≤ kg

λmin{Kp} ‖x − y‖

hence, invoking the contraction mapping theorem, a sufficient condition for
the unicity of the solution of f(s, qd) − s = K−1

p g(qd − s) − s = 0 and
consequently, for the unicity of the equilibrium of the closed-loop equation, is
that Kp be selected to satisfy λmin{Kp} > kg.
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6.2.2 Arbitrarily Bounded Position and Velocity Error

We present next a qualitative study of the behavior of solutions of the
closed-loop Equation (6.7) for the case where Kp is not restricted to satisfy
λmin{Kp} > kg, but it is enough that Kp be positive definite.

For the purposes of the result presented here we make use of Lemma 2.2,
which, even though it does not establish any stability statement, enables one
to make conclusions about the boundedness of trajectories and eventually
about the convergence of some of them to zero. We assume that all joints are
revolute.

Define the following non-negative function

V (q̃, q̇) = K(q, q̇) + U(q) − kU +
1
2
q̃TKpq̃

where K(q, q̇) and U(q) denote the kinetic and potential energy functions of
the robot, and the constant kU is defined as (cf. Property 4.3)

kU = min
q

{U(q)} .

The function V (q̃, q̇) may be expressed in the form

V (q̃, q̇) =

⎡⎣ q̃

q̇

⎤⎦T

P︷ ︸︸ ︷⎡⎣ 1
2Kp 0

0 1
2M(qd − q̃)

⎤⎦⎡⎣ q̃

q̇

⎤⎦
+ U(qd − q̃) − kU︸ ︷︷ ︸

h

≥ 0. (6.9)

or equivalently, as

V (q̃, q̇) =
1
2
q̇TM(q)q̇ +

1
2
q̃TKpq̃ + U(q) − kU ≥ 0 .

The derivative of V (q̃, q̇) with respect to time yields

V̇ (q̃, q̇) = q̇TM(q)q̈ +
1
2
q̇TṀ(q)q̇ + q̃TKp

˙̃q + q̇T g(q) (6.10)

where we used (3.20), i.e. g(q) = ∂
∂qU(q). Factoring out M(q)q̈ from the

closed-loop equation (6.3) and substituting in (6.10),

V̇ (q̃, q̇) = q̇TKpq̃ − q̇TKvq̇ + q̃TKp
˙̃q , (6.11)

where the term q̇T
[

1
2Ṁ − C

]
q̇ has been canceled by virtue of the Property

4.2. Recalling that the vector qd is constant and that q̃ = qd−q, then ˙̃q = −q̇.
Taking this into account Equation (6.11) boils down to
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V̇ (q̃, q̇) = −q̇T

Q︷︸︸︷
Kv q̇

= −
⎡⎣ q̃

q̇

⎤⎦T⎡⎣ 0 0

0 Kv

⎤⎦⎡⎣ q̃

q̇

⎤⎦ ≤ 0 . (6.12)

Using V (q̃, q̇) and V̇ (q̃, q̇) given in (6.9) and (6.12) respectively and in-
voking Lemma 2.2, we conclude that q̇(t) and q̃(t) are bounded for all t and
moreover, the velocities vector is square integrable, that is∫ ∞

0

‖q̇(t)‖2dt < ∞ . (6.13)

Moreover, as we show next, we can determine the explicit bounds for
the position and velocity errors, q̃ and q̇. Considering that V (q̃, q̇) is a non-
negative function and non-increasing along the trajectories (V̇ (q̃, q̇) ≤ 0), we
have

0 ≤ V (q̃(t), q̇(t)) ≤ V (q̃(0), q̇(0))

for all t ≥ 0. Consequently, considering the definition of V (q̃, q̇) it readily
follows that

1
2
q̃(t)T

Kpq̃(t) ≤ V (q̃(0), q̇(0))

1
2
q̇(t)T

M(q(t))q̇(t) ≤ V (q̃(0), q̇(0))

for all t ≥ 0, from which we finally conclude that the following bounds:

‖q̃(t)‖2 ≤ 2V (q̃(0), q̇(0))
λmin{Kp}

=
q̇(0)T

M(q(0))q̇(0) + q̃(0)T
Kpq̃(0) + 2U(q(0)) − 2kU

λmin{Kp} (6.14)

‖q̇(t)‖2 ≤ 2V (q̃(0), q̇(0))
λmin{M(q)}

=
q̇(0)T

M(q(0))q̇(0) + q̃(0)T
Kpq̃(0) + 2U(q(0)) − 2kU

λmin{M(q)} (6.15)

hold for all t ≥ 0.
We can also show that actually limt→∞ q̇(t) = 0. To that end, we use (6.3)

to obtain
q̈ = M(q)−1 [Kpq̃ − Kvq̇ − C(q, q̇)q̇ − g(q)] . (6.16)
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Since q̇(t) and q̃(t) are bounded functions, then C(q, q̇)q̇ and g(q) are
also bounded, this in view of Properties 4.2 and 4.3. On the other hand, since
M(q)−1 is bounded (from Property 4.1), we conclude from (6.16) that q̈(t) is
also bounded. This, and (6.13) imply in turn that (by Lemma 2.2),

lim
t→∞ q̇(t) = 0 .

Nevertheless, it is important to underline that the limit above does not
guarantee that q(t) → qd as t → ∞ and as a matter of fact, not even that2

q(t) → constant as t → ∞.

Example 6.2. Consider again the ideal pendulum from Example 6.1

Jq̈ + mgl sin(q) = τ,

where we clearly identify M(q) = J and g(q) = mgl sin(q). As was
shown in Example 2.2 (cf. page 30), the potential energy function is

U(q) = mgl[1 − cos(q)] .

Since minq{U(q)} = 0 the constant kU is zero.
Consider next the numerical values from Example 6.1

J = 1 mgl = 1
kp = 0.25 kv = 0.50
qd = π/2 .

Assume that we apply the PD controller to drive the ideal pendu-
lum from the initial conditions q(0) = 0 and q̇(0) = 0.

According to the bounds (6.14) and (6.15) and considering the
information above, we get

q̃2(t) ≤ q̃2(0) = 2.46 rad2 (6.17)

q̇2(t) ≤ kp

J
q̃2(0) = 0.61

(
rad
s

)2

(6.18)

for all t ≥ 0. Figures 6.3 and 6.4 show graphs of q̃(t)2 and q̇(t)2 respec-
tively, obtained in simulations. One can clearly see from these plots
that both variables satisfy the inequalities (6.17) and (6.18). Finally,
it is interesting to observe from these plots that limt→∞ q̃2(t) = 1.56
and limt→∞ q̇2(t) = 0 and therefore,

lim
t→∞

[
q̃(t)
q̇(t)

]
=

[
1.25
0

]
.

That is, the solutions tend to one of the three equilibria determined
in Example 6.1. ♦

2 Counter example: For x(t) = ln(t + 1) we have limt→∞ ẋ(t) = 0; however,
limt→∞ x(t) = ∞ !
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Figure 6.3. Graph of q̃(t)2
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Figure 6.4. Graph of q̇(t)2

To close this section we present next the results we have obtained in ex-
periments with the Pelican prototype under PD control.

Example 6.3. Consider the 2-DOF prototype robot studied in Chapter
5. For ease of reference, we rewrite below the vector of gravitational
torques g(q) from Section 5.3.2, and its elements are

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2glc2 sin(q1 + q2)
g2(q) = m2glc2 sin(q1 + q2).

The control objective consists in making
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lim
t→∞ q(t) = qd =

[
π/10
π/30

]
[rad].

It may easily be verified that g(qd) 
= 0. Therefore, the origin[
q̃T q̇T

]T
= 0 ∈ IR4 of the closed-loop equation with the PD con-

troller, is not an equilibrium. This means that the control objective
cannot be achieved using PD control. However, with the purpose of
illustrating the behavior of the system we present next some experi-
mental results.

Consider the PD controller

τ = Kpq̃ − Kvq̇

with the following numerical values

Kp =
[

30 0
0 30

]
[Nm/rad] , Kv =

[
7 0
0 3

]
[Nms/rad] .
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Figure 6.5. Graph of the position errors q̃1 and q̃2

The initial conditions are fixed at q(0) = 0 and q̇(0) = 0. The
experimental results are presented in Figure 6.5 where we show the
two components of the position error, q̃. One may appreciate that
limt→∞ q̃1(t) = 0.1309 and limt→∞ q̃2(t) = 0.0174 therefore, as was
expected, the control objective is not achieved. Friction at the joints
may also affect the resulting position error. ♦
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6.3 Conclusions

We may summarize what we have learned in this chapter, in the following
ideas. Consider the PD controller of n-DOF robots. Assume that the vector
of desired positions qd is constant.

• If the vector of gravitational torques g(q) is absent in the robot model,
then the origin of the closed-loop equation, expressed in terms of the state
vector

[
q̃T q̇T

]T
, is globally asymptotically stable. Consequently, we have

limt→∞ q̃(t) = 0.
• For robots with only revolute joints, if the vector of gravitational torques

g(q) is present in the robot model, then the origin of the closed-loop equa-
tion expressed in terms of the state vector

[
q̃T q̇T

]T
, is not necessarily

an equilibrium. However, the closed-loop equation always has equilibria.
In addition, if λmin{Kp} > kg, then the closed-loop equation has a unique
equilibrium. Finally, for any matrix Kp = KT

p > 0, it is guaranteed that
the position and velocity errors, q̃ and q̇, are bounded. Moreover, the
vector of joint velocities q̇ goes asymptotically to zero.
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Problems

1. Consider the model of the ideal pendulum studied in Example 6.1

Jq̈ + mgl sin(q) = τ
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with the numerical values

J = 1, mgl = 1, qd = π/2

and under PD control. In Example 6.1 we established that the closed-loop
equation possesses three equilibria for kp = 0.25.

a) Determine the value of the constant kg (cf. Property 4.3).
b) Determine a value of kp for which there exists a unique equilibrium.
c) Use the value of kp from the previous item and the contraction map-

ping theorem (Theorem 2.1) to obtain an approximate numerical value
of the unique equilibrium.
Hint: The equilibrium is [q̃ q̇]T = [x∗ 0]T , where x∗ = limn→∞ x(n)
with

x(n) =
mgl

kp
sin(qd − x(n − 1))

and, for instance x(−1) = 0.

2. Consider the model of the ideal pendulum studied in the Example 6.1

Jq̈ + mgl sin(q) = τ

with the following numerical values,

J = 1, mgl = 1, qd = π/2 .

Consider the PD control with initial conditions q(0) = 0 and q̇(0) = 0.
From this, we have q̃(0) = π/2.

a) Obtain kp which guarantees that

|q̇(t)| ≤ c1 ∀ t ≥ 0

where c1 > 0. Compute a numerical value for kp with c1 = 1.
Hint: Use (6.15).

3. Consider the PD control of the 2-DOF robot studied in Example 6.3. The
experimental results in this example were obtained with Kp = diag {30}
and the following numerical values

l1 = 0.26 lc1 = 0.0983 lc2 = 0.0229
m1 = 6.5225 m2 = 2.0458 g = 9.81
qd1 = π/10 qd2 = π/30

Figure 6.5 shows that limt→∞ q̃1(t) = 0.1309 and limt→∞ q̃2(t) = 0.0174.
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a) Show that
[
q̃T q̇T

]T
=

[
q̃T 0T

]T
with

q̃ =
[

q̃1

q̃2

]
=

[
0.1309
0.0174

]
is an equilibrium of the closed-loop equation. Explain.

4. Consider the 2-DOF robot from Chapter 5 and illustrated in Figure 5.2.
The vector of gravitational torques g(q) for this robot is presented in
Section 5.3.2, and its components are

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2glc2 sin(q1 + q2)
g2(q) = m2glc2 sin(q1 + q2) .

Consider PD control. In view of the presence of g(q), in general the origin[
q̃T q̇T

]T
= 0 ∈ IR4 of the closed-loop equation is not an equilibrium.

However, for some values of qd, the origin happens to be an equilibrium.

a) Determine all possible vectors qd = [qd1 qd2]T for which the origin of
the closed-loop equation is an equilibrium.

5. Consider the 3-DOF Cartesian robot from Example 3.4 (cf. page 69) il-
lustrated in Figure 3.5. It dynamic model is given by

(m1 + m2 + m3)q̈1 + (m1 + m2 + m3)g = τ1

(m1 + m2)q̈2 = τ2

m1q̈3 = τ3.

Consider the PD control law

τ = Kpq̃ − Kvq̇

where qd is constant and Kp,Kv are diagonal positive definite matrices.

a) Obtain M(q), C(q, q̇) and g(q). Verify that M(q) = M is a constant
diagonal matrix. Verify that g(q) = g is a constant vector.

b) Define q̃ = [q̃1 q̃2 q̃3]T . Obtain the closed-loop equation.
c) Verify that the closed-loop equation has a unique equilibrium at[

q̃
q̇

]
=

[
K−1

p g
0

]
.

d) Define z = q̃−K−1
p g. Rewrite the closed-loop equation in terms of the

new state
[
zT q̇T

]T
. Verify that the origin is the unique equilibrium.

Show that the origin is a stable equilibrium.
Hint: Use the Lyapunov function,

V (z, q̇) =
1
2
q̇T q̇ +

1
2
zTM−1Kpz .
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e) Use La Salle’s theorem (Theorem 2.7) to show that moreover the origin
is globally asymptotically stable.

6. Consider the model of elastic-joint robots (3.27) and (3.28), but without
the gravitational term (g(q) = 0), that is,

M(q)q̈ + C(q, q̇)q̇ + K(q − θ) = 0

J θ̈ − K(q − θ) = τ .

It is assumed that only the positions vector corresponding to the motor
shafts θ, is available for measurement as well as its corresponding velocities
θ̇. The goal is that q(t) → qd as t → ∞ for any constant qd.
The PD controller is in this case,

τ = Kpθ̃ − Kvθ̇

where θ̃ = qd − θ and Kp,Kv ∈ IRn×n are symmetric positive definite
matrices.

a) Obtain the closed-loop equation in terms of the state vector
[
q̃T θ̃

T

q̇T θ̇
T
]T

where q̃ = qd − q. Verify that the origin is the unique
equilibrium.

b) Show that the origin is a stable equilibrium.
Hint: Use the following Lyapunov function

V (q̃, θ̃, q̇, θ̇) =
1
2
q̇TM(q)q̇ +

1
2
θ̇

T
J θ̇

+
1
2

[
θ̃ − q̃

]T

K
[
θ̃ − q̃

]
+

1
2
θ̃

T
Kpθ̃

and the skew-symmetry of 1
2Ṁ − C.

c) Use La Salle’s theorem (Theorem 2.7) to show also that the origin is
globally asymptotically stable.
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PD Control with Gravity Compensation

As studied in Chapter 6, the position control objective for robot manipulators
may be achieved via PD control, provided that g(q) = 0 or, for a suitable
selection of qd. In this case, the tuning – for the purpose of stability – of
this controller is trivial since it is sufficient to select the design matrices Kp

and Kv as symmetric positive definite. Nevertheless, PD control does not
guarantee the achievement of the position control objective for manipulators
whose dynamic models contain the gravitational torques vector g(q), unless
the desired position qd is such that g(qd) = 0.

In this chapter we study PD control with gravity compensation, which
is able to satisfy the position control objective globally for n DOF robots;
moreover, its tuning is trivial. The formal study of this controller goes back
at least to 1981 and this reference is given at the end of the chapter. The
previous knowledge of part of the dynamic robot model to be controlled is
required in the control law, but in contrast to the PID controller which, under
the tuning procedure proposed in Chapter 9, needs information on M(q) and
g(q), the controller studied here only uses the vector of gravitational torques
g(q).

The PD control law with gravity compensation is given by

τ = Kpq̃ + Kv
˙̃q + g(q) (7.1)

where Kp,Kv ∈ IRn×n are symmetric positive definite matrices. Notice that
the only difference with respect to the PD control law (6.2) is the added term
g(q). In contrast to the PD control law, which does not require any knowledge
of the structure of the robot model, the controller (7.1) makes explicit use of
partial knowledge of the manipulator model, specifically of g(q). However,
it is important to observe that for a given robot, the vector of gravitational
torques, g(q), may be obtained with relative ease since one only needs to
compute the expression corresponding to the potential energy U(q) of the
robot. The vector g(q) is obtained from (3.20) and is g(q) = ∂U(q)/∂q.
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The control law (7.1) requires information on the desired position qd(t)
and on the desired velocity q̇d(t) as well as measurement of the position q(t)
and the velocity q̇(t) at each instant. Figure 7.1 shows the block-diagram
corresponding to the PD controller with gravity compensation.

g(q)

ROBOTΣ

KpKv

Σ

Σ

q̇d

qd

q

q̇

Figure 7.1. Block-diagram: PD control with gravity compensation

The equation that describes the behavior in closed loop is obtained by
combining Equations (II.1) and (7.1) to obtain

M(q)q̈ + C(q, q̇)q̇ + g(q) = Kpq̃ + Kv
˙̃q + g(q) .

Or, in terms of the state vector
[
q̃T ˙̃q

T
]T

,

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

q̈d − M(q)−1
[
Kpq̃ + Kv

˙̃q − C(q, q̇)q̇
]
⎤⎦ .

A necessary and sufficient condition for the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n,
to be an equilibrium of the closed-loop equation is that the desired position
qd(t) satisfies

M(qd)q̈d + C(qd, q̇d)q̇d = 0

or equivalently, that qd(t) be a solution of

d

dt

[
qd

q̇d

]
=

[
q̇d

−M(qd)−1C(qd, q̇d)q̇d

]

for any initial condition
[
qd(0)T q̇d(0)T

]T ∈ IR2n .
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Obviously, in the case that the desired position qd(t) does not satisfy
the established condition, then the origin may not be an equilibrium of the
closed-loop equation and, therefore, we may not expect to satisfy the control
objective. That is, to drive the position error q̃(t) asymptotically to zero. Nev-
ertheless, we may achieve the condition that the position error q̃(t) becomes,
asymptotically, as small as wished if the matrices Kp and Kv are chosen suf-
ficiently “large”. For the formal proof of this claim, the reader is invited to
see the corresponding cited reference at the end of the chapter.

A sufficient condition for the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n to be the unique
equilibrium of the closed-loop equation is that the desired joint position qd

be a constant vector. In what is left of this chapter we assume that this is the
case.

As we show next, this controller achieves the position control objective,
that is,

lim
t→∞ q(t) = qd

where qd ∈ IRn is any constant vector.

7.1 Global Asymptotic Stability by La Salle’s Theorem

Considering the desired position qd as constant, the closed-loop equation may
be written in terms of the new state vector

[
q̃T q̇T

]T
as

d

dt

⎡⎣ q̃

q̇

⎤⎦ =

⎡⎣ −q̇

M(qd − q̃)−1 [Kpq̃ − Kvq̇ − C(qd − q̃, q̇)q̇]

⎤⎦ (7.2)

which, in view of the fact that qd is constant, is an autonomous differential
equation. The origin

[
q̃T q̇T

]T
= 0 ∈ IR2n is the unique equilibrium of this

equation.
The stability analysis that we present next is taken from the literature.

The reader may also consult the references cited at the end of the chapter.
To study the stability of the origin as an equilibrium, we use Lyapunov’s

direct method, which has already been presented in Chapter 2. Specifically,
we use Theorem 2.2 to prove stability of the equilibrium (origin).

Consider the following Lyapunov function candidate

V (q̃, q̇) = K(q, q̇) +
1
2
q̃TKpq̃

where K(q, q̇) stands for the kinetic energy function of the robot, i.e. Equa-
tion (3.15). The function V (q̃, q̇) is globally positive definite since the kinetic
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energy K(q, q̇) is positive definite in q̇ and on the other hand, Kp is a positive
definite matrix. Then, also the quadratic form q̃TKpq̃ is a positive definite
function of q̃.

The Lyapunov function candidate may be written as

V (q̃, q̇) =
1
2

⎡⎣ q̃

q̇

⎤⎦T⎡⎣Kp 0

0 M(qd − q̃)

⎤⎦⎡⎣ q̃

q̇

⎤⎦
=

1
2
q̇TM(q)q̇ +

1
2
q̃TKpq̃ (7.3)

and its total derivative with respect to time is

V̇ (q̃, q̇) = q̇TM(q)q̈ +
1
2
q̇TṀ(q)q̇ + q̃TKp

˙̃q .

Substituting M(q)q̈ from the closed-loop Equation (7.2) we get

V̇ (q̃, q̇) = −q̇TKvq̇

= −
⎡⎣ q̃

q̇

⎤⎦T⎡⎣ 0 0

0 Kv

⎤⎦⎡⎣ q̃

q̇

⎤⎦ ≤ 0 (7.4)

where we have eliminated the term q̇T
[

1
2Ṁ − C

]
q̇ by virtue of Property 4.2

and used ˙̃q = −q̇ since qd is assumed to be a constant vector.
Therefore, the function V (q̃, q̇) is a Lyapunov function since moreover

V̇ (q̃, q̇) ≤ 0 for all q̃ and q̇ and consequently, the origin is stable and all the
solutions q̃(t) and q̇(t) are bounded (cf. Theorem 2.3).

Since the closed-loop Equation (7.2) is independent of time (explicitly) we
may explore the use of of La Salle’s theorem (cf. Theorem 2.7) to analyze the
global asymptotic stability of the origin.

To that end, we first remark that the set Ω is here given by

Ω =
{

x ∈ IR2n : V̇ (x) = 0
}

=
{

x =
[

q̃
q̇

]
∈ IR2n : V̇ (q̃, q̇) = 0

}
= {q̃ ∈ IRn, q̇ = 0 ∈ IRn} .

Observe that V̇ (q̃, q̇) = 0 if and only if q̇ = 0. For a solution x(t) to
belong to Ω for all t ≥ 0, it is necessary and sufficient that q̇(t) = 0 for all
t ≥ 0. Therefore it must also hold that q̈(t) = 0 for all t ≥ 0. Taking this into
account, we conclude from the closed-loop Equation (7.2) that if x(t) ∈ Ω for
all t ≥ 0 then
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0 = M(qd − q̃(t))−1Kpq̃(t)

which means that q̃(t) = 0 for all t ≥ 0. Thus,
[
q̃(0)T q̇(0)T

]T = 0 ∈ IR2n is
the only initial condition in Ω for which x(t) ∈ Ω for all t ≥ 0. Then, according
to La Salle’s theorem (cf. Theorem 2.7), this is enough to guarantee global
asymptotic stability of the origin

[
q̃T q̇T

]T
= 0 ∈ IR2n.

As a result we have
lim

t→∞ q̃(t) = 0

lim
t→∞ q̇(t) = 0 ,

that is, the position control objective is achieved.
We present next an example with the purpose of showing the performance

of PD control with gravity compensation for the Pelican robot.

l2

lc2
q2

q1

I1 m1

g

y

x

l1

m2

I2

lc1Link 1

Link 2

Figure 7.2. Diagram of the Pelican robot

Example 7.1. Consider the Pelican robot studied in Chapter 5, and
shown in Figure 7.2.

The components of the vector of gravitational torques g(q) are
given by

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .
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Figure 7.3. Graph of the position errors q̃1 and q̃2

Consider the PD control law with gravity compensation for this
robot where the design matrices Kp and Kd are positive definite. In
particular, let us pick (arbitrarily)

Kp = diag{kp} = diag{30} [Nm/rad]
Kv = diag{kv} = diag{7, 3} [Nm s/rad] .

The components of the control input vector τ , are given by

τ1 = kpq̃1 − kv q̇1 + g1(q)
τ2 = kpq̃2 − kv q̇2 + g2(q) .

The initial conditions corresponding to the positions and velocities
are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .

The desired joint positions are chosen as

qd1 = π/10, qd2 = π/30 [rad] .

In terms of the state vector of the closed-loop equation, the initial
state is taken to be⎡⎣ q̃(0)

q̇(0)

⎤⎦ =

⎡⎢⎣
π/10
π/30

0
0

⎤⎥⎦ =

⎡⎢⎣
0.3141
0.1047

0
0

⎤⎥⎦ .

Figure 7.3 presents the components of the position error q̃ obtained
in the experiment. The steady state position errors shown this figure
are a product of the friction phenomenon which has not been included
in the robot dynamics. ♦
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7.2 Lyapunov Function for Global Asymptotic Stability

In this section we present an alternative proof for global asymptotic stability
without the use of La Salle’s theorem. Instead, we use a strict Lyapunov
function, i.e. a Lyapunov function whose time derivative is globally negative
definite. We consider the case of robots having only revolute joints and where
the proportional gain matrix Kp is diagonal instead of only symmetric, but
of course, positive definite. Some readers may wish to omit this somewhat
technical section and continue to Section 7.3.
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Figure 7.4. Graph of the tangent hyperbolic function: tanh(x)

Before starting with the stability analysis of the equilibrium
[
q̃T q̇T

]T

= 0 ∈ IR2n of the closed-loop Equation (7.2), it is convenient to cite some
properties of the vectorial function1

tanh(x) = [ tanh(x1) tanh(x2) · · · tanh(xn)]T (7.5)

where tanh(x) (see Figure 7.4) denotes the hyperbolic tangent function,

tanh(x) =
ex − e−x

ex + e−x
.

Note that this function satisfies |x| ≥ | tanh(x)|, and 1 ≥ | tanh(x)| for all
x ∈ IR therefore, the Euclidean norm of tanh(x) satisfies

‖ tanh(x)‖ ≤
{‖x‖ ∀ x ∈ IRn

√
n ∀ x ∈ IRn (7.6)

1 See also Definition 4.1 on page 103.
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and tanh(x) = 0 if and only if x = 0.
One can prove without much difficulty that for a symmetric positive defi-

nite matrix A the inequality

q̃T Aq̃ ≥ λmin{A} ‖ tanh(q̃)‖2 ∀ q̃ ∈ IRn

holds. If moreover, A is diagonal, then

tanh(q̃)T Aq̃ ≥ λmin{A} ‖ tanh(q̃)‖2 ∀ q̃ ∈ IRn . (7.7)

We present next our alternative stability analysis. To study the stability
properties of the origin

[
q̃T q̇T

]T
= 0 ∈ IR2n, of the closed-loop Equation

(7.2), consider the Lyapunov function (7.3) with an added term, that is,

V (q̃, q̇) =
1
2
q̇T M(q)q̇ +

1
2
q̃T Kpq̃ − γtanh(q̃)T M(q)q̇ (7.8)

where tanh(q̃) was defined in (7.5) and γ > 0 is a constant sufficiently small
so as to satisfy simultaneously,

λmin{Kp}λmin{M}
λ2

Max{M} > γ2 (7.9)

and
4λmin{Kp}λmin{Kv}

λ2
Max{Kv} + 4λmin{Kp}[

√
nkC1 + λMax{M}] > γ . (7.10)

Since the upper-bounds above are always strictly positive constants, there
always exists γ > 0 arbitrarily small and that satisfies both inequalities.

7.2.1 Positivity of the Lyapunov Function

In order to show that the Lyapunov function candidate (7.8) is positive definite
we first observe that the third term in (7.8) satisfies

γtanh(q̃)T M(q)q̇ ≤ γ ‖tanh(q̃)‖ ‖M(q)q̇‖
≤ γ λMax{M} ‖tanh(q̃)‖ ‖q̇‖
≤ γ λMax{M} ‖q̃‖ ‖q̇‖

where we have used (7.6) in the last step. Therefore,

−γtanh(q̃)T M(q)q̇ ≥ −γ λMax{M} ‖q̃‖ ‖q̇‖
and consequently the Lyapunov function candidate (7.8) satisfies the inequal-
ity

V (q̃, q̇) ≥ 1
2

[ ‖q̃‖
‖q̇‖

]T [
λmin{Kp} −γ λMax{M}

−γ λMax{M} λmin{M}
] [ ‖q̃‖

‖q̇‖
]

Since by assumption Kp is positive definite – λmin{Kp} > 0 – and γ is sup-
posed to satisfy (7.9) it follows that V (q̃, q̇) is a positive definite function and
moreover it is radially unbounded.
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7.2.2 Time Derivative of the Lyapunov Function

The time derivative of the Lyapunov function candidate (7.8) along the tra-
jectories of the closed-loop system (7.2) may be written as

V̇ (q̃, q̇) = q̇T [Kpq̃ − Kvq̇ − C(q, q̇)q̇] +
1
2
q̇T Ṁ(q)q̇

− [Kpq̃]T q̇ + γq̇T Sech2(q̃)T M(q)q̇ − γtanh(q̃)T Ṁ(q)q̇
− γtanh(q̃)T [Kpq̃ − Kvq̇ − C(q, q̇)q̇]

where we used Equation (4.14) in

d

dt
{tanh(q̃)} = −Sech2(q̃)q̇

that is, Sech2(q̃) := diag{sech2(q̃i)} where

sech(q̃i) :=
1

eq̃i + e−q̃i

and therefore, Sech2(q̃) is a diagonal matrix whose elements, sech2(q̃i), are
positive and smaller than 1.

Using Property 4.2, which establishes that q̇T
[

1
2Ṁ − C

]
q̇ = 0 and Ṁ(q) =

C(q, q̇) + C(q, q̇)T , the time derivative of the Lyapunov function candidate
yields

V̇ (q̃, q̇) = −q̇T Kvq̇ + γq̇T Sech2(q̃)T M(q)q̇ − γtanh(q̃)T Kpq̃

+ γtanh(q̃)T Kvq̇ − γtanh(q̃)T C(q, q̇)T q̇ . (7.11)

We now proceed to upper-bound V̇ (q̃, q̇) by a negative definite function
of the states q̃ and q̇. To that end, it is convenient to find upper-bounds for
each term of (7.11).

The first term of (7.11) may be trivially bounded by

−q̇T Kvq̇ ≤ −λmin{Kv}‖q̇‖2 .

To upper-bound the second term of (7.11) we use |sech2(x)| ≤ 1, so∥∥Sech2(q̃)q̇
∥∥ ≤ ‖q̇‖ .

From this argument we also have

γq̇T Sech2(q̃)T M(q)q̇ ≤ γλMax{M} ‖q̇‖2
.

On the other hand, note that in view of (7.7), the following inequality also
holds true since Kp is a diagonal positive definite matrix,
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γtanh(q̃)T Kpq̃ ≥ γλmin{Kp} ‖tanh(q̃)‖2

which in turn, implies the key inequality

−γtanh(q̃)T Kpq̃ ≤ −γλmin{Kp} ‖tanh(q̃)‖2
.

A bound on γtanh(q̃)T Kvq̇ that is obtained directly is

γtanh(q̃)T Kvq̇ ≤ γλMax{Kv} ‖q̇‖ ‖tanh(q̃)‖ .

The upper-bound on the term −γtanh(q̃)T C(q, q̇)T q̇ must be carefully
selected. Notice that

−γtanh(q̃)T C(q, q̇)T q̇ = −γq̇T C(q, q̇)tanh(q̃)
≤ γ ‖q̇‖ ‖C(q, q̇)tanh(q̃)‖ .

Then, considering Property 4.2 but in its variant that establishes the existence
of a constant kC1 such that ‖C(q, x)y‖ ≤ kC1 ‖x‖ ‖y‖ for all q, x, y ∈ IRn,
we obtain

−γtanh(q̃)T C(q, q̇)T q̇ ≤ γkC1 ‖q̇‖2 ‖tanh(q̃)‖ .

Making use of the inequality (7.6) of tanh(q̃) which says that ‖tanh(q̃)‖ ≤√
n for all q̃ ∈ IRn, we obtain

−γtanh(q̃)T C(q, q̇)T q̇ ≤ γ
√

n kC1 ‖q̇‖2
.

The previous bounds yield that the time derivative V̇ (q̃, q̇) in (7.11), sat-
isfies

V̇ (q̃, q̇) ≤ −γ

[
‖tanh(q̃)‖

‖q̇‖

]T

Q

[
‖tanh(q̃)‖

‖q̇‖

]
(7.12)

where

Q =

⎡⎢⎣ λmin{Kp} −1

2
λMax{Kv}

−1

2
λMax{Kv} 1

γ
λmin{Kv} −

√
nkC1 − λMax{M}

⎤⎥⎦ .

The two following conditions guarantee that the matrix Q is positive defi-
nite, hence, these conditions are sufficient to ensure that V̇ (q̃, q̇) is a negative
definite function,

λmin{Kp} > 0

and
4λmin{Kp}λmin{Kv}

λ2
Max{Kv} + 4λmin{Kp}[

√
nkC1 + λMax{M}] > γ .



Bibliography 167

The first condition is trivially satisfied since Kp is assumed to be diagonal
positive definite. The second condition also holds due to the upper-bound
(7.10) imposed on γ.

According to the arguments above, there always exists a strictly positive
constant γ such that the function V (q̃, q̇), given by (7.8) is positive definite,
while V̇ (q̃, q̇) expressed as (7.12), is negative definite. For this reason, V (q̃, q̇)
is a strict Lyapunov function.

Finally, Theorem 2.4 allows one to establish global asymptotic stability of
the origin. It is important to underline that it is not necessary to know the
value of γ but only to know that it exists. This has been done to validate the
result on global asymptotic stability that was stated.

7.3 Conclusions

Let us restate the most important conclusion from the analyses done in this
chapter.

Consider the PD control law with gravity compensation for n-DOF robots
and assume that the desired position qd is constant.

• If the symmetric matrices Kp and Kv of the PD control law with grav-
ity compensation are positive definite, then the origin of the closed-loop
equation, expressed in terms of the state vector

[
q̃T q̇T

]T
, is a globally

asymptotically stable equilibrium. Consequently, for any initial condition
q(0), q̇(0) ∈ IRn, we have limt→∞ q̃(t) = 0 ∈ IRn .
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Problems

1. Consider the PD control with gravity compensation for robots. Let qd(t)
be the desired joint position.
Assume that there exists a constant vector x ∈ IRn such that

x − K−1
p [M(qd − x)q̈d + C(qd − x, q̇d)q̇d] = 0 ∈ IRn .

a) Show that
[
q̃T ˙̃q

T
]T

=
[
xT 0T

]T ∈ IR2n is an equilibrium of the
closed-loop equation.

2. Consider the model of an ideal pendulum studied in Example 2.2 (see
page 30)

Jq̈ + mgl sin(q) = τ .

The PD control law with gravity compensation is in this case

τ = kpq̃ + kv
˙̃q + mgl sin(q)

where kp and kv are positive constants.

a) Obtain the closed-loop equation in terms of the state vector
[
q̃ ˙̃q

]T
.

Is this equation linear in the state ?
b) Assume that the desired position is qd(t) = αt where α is any real

constant. Show that
lim

t→∞ q̃(t) = 0 .

3. Verify the expression of V̇ (q̃, q̇) obtained in (7.4).
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4. Consider the 3-DOF Cartesian robot studied in Example 3.4 (see page 69)
and shown in Figure 3.5. Its dynamic model is given by

(m1 + m2 + m3)q̈1 + (m1 + m2 + m3)g = τ1

(m1 + m2)q̈2 = τ2

m1q̈3 = τ3 .

Assume that the desired position qd is constant. Consider using the PD
controller with gravity compensation,

τ = Kpq̃ − Kvq̇ + g(q)

where Kp,Kv are positive definite matrices.

a) Obtain g(q). Verify that g(q) = g is a constant vector.
b) Define q̃ = [q̃1 q̃2 q̃3]T . Obtain the closed-loop equation. Is the

closed-loop equation linear in the state ?
c) Is the origin the unique equilibrium of the closed-loop equation?
d) Show that the origin is a globally asymptotically stable equilibrium

point.

5. Consider the following variant of PD control with gravity compensation2

τ = Kpq̃ − M(q)Kvq̇ + g(q)

where qd is constant, Kp is a symmetric positive definite matrix and Kv =
diag{kv} with kv > 0.

a) Obtain the closed-loop equation in terms of the state vector
[
q̃T q̇T

]T
.

b) Verify that the origin is a unique equilibrium.
c) Show that the origin is a globally asymptotically stable equilibrium

point.

6. Consider the PD control law with gravity compensation where the matrix
Kv is a function of time, i.e.

τ = Kpq̃ − Kv(t)q̇ + g(q)

and where qd is constant, Kp is a positive definite matrix and Kv(t) is
also positive definite for all t ≥ 0.

a) Obtain the closed-loop equation in terms of the state vector
[
q̃T q̇T

]T
.

Is the closed-loop equation autonomous?
b) Verify that the origin is the only equilibrium point.
c) Show that the origin is a stable equilibrium.

7. Is the matrix Sech2(x) positive definite?

2 This problem is taken from Craig J. J., 1989, “ Introduction to robotics: Mechanics
and control”, Second edition, Addison–Wesley.
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PD Control with Desired Gravity
Compensation

We have seen that the position control objective for robot manipulators
(whose dynamic model includes the gravitational torques vector g(q)), may be
achieved globally by PD control with gravity compensation. The correspond-
ing control law given by Equation (7.1) requires that its design symmetric
matrices Kp and Kv be positive definite. On the other hand, this controller
uses explicitly in its control law the gravitational torques vector g(q) of the
dynamic robot model to be controlled.

Nevertheless, it is worth remarking that even in the scenario of position
control, where the desired joint position qd ∈ IRn is constant, in the imple-
mentation of the PD control law with gravity compensation it is necessary to
evaluate, on-line, the vector g(q(t)). In general, the elements of the vector g(q)
involve trigonometric functions of the joint positions q, whose evaluations, re-
alized mostly by digital equipment (e.g. ordinary personal computers) take a
longer time than the evaluation of the ‘PD-part’ of the control law. In certain
applications, the (high) sampling frequency specified may not allow one to
evaluate g(q(t)) permanently. Naturally, an ad hoc solution to this situation
is to implement the control law at two sampling frequencies: a high frequency
for the evaluation of the PD-part, and a low frequency for the evaluation of
g(q(t)). An alternative solution consists in using a variant of this controller,
the so-called PD control with desired gravity compensation. The study of this
controller is precisely the subject of the present chapter.

The PD control law with desired gravity compensation is given by

τ = Kpq̃ + Kv
˙̃q + g(qd) (8.1)

where Kp,Kv ∈ IRn×n are symmetric positive definite matrices chosen by the
designer. As is customary, the position error is denoted by q̃ = qd − q ∈ IRn,
where qd stands for the desired joint position. Figure 8.1 presents the block-
diagram of the PD control law with desired gravity compensation for robot
manipulators. Notice that the only difference with respect to the PD controller
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with gravity compensation (7.1) is that the term g(qd) replaces g(q). The
practical convenience of this controller is evident when the desired position
qd(t) is periodic or constant. Indeed, the vector g(qd), which depends on qd

and not on q, may be evaluated off-line once qd has been defined and therefore,
it is not necessary to evaluate g(q) in real time.

qd

q̇d

g(qd)

Kv Kp

Σ

Σ

Σ

ROBOT
q

q̇

Figure 8.1. Block-diagram: PD control with desired gravity compensation

The closed-loop equation we get by combining the equation of the robot
model (II.1) and the equation of the controller (8.1) is

M(q)q̈ + C(q, q̇)q̇ + g(q) = Kpq̃ + Kv
˙̃q + g(qd)

or equivalently, in terms of the state vector
[
q̃T ˙̃q

T
]T

,

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

q̈d − M(q)−1
[
Kpq̃ + Kv

˙̃q − C(q, q̇)q̇ + g(qd) − g(q)
]
⎤⎦

which represents a nonautonomous nonlinear differential equation. The nec-

essary and sufficient condition for the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n to be an
equilibrium of the closed-loop equation, is that the desired joint position qd

satisfies
M(qd)q̈d + C(qd, q̇d)q̇d = 0 ∈ IRn

or equivalently, that qd(t) be a solution of

d

dt

⎡⎣ qd

q̇d

⎤⎦ =

⎡⎣ q̇d

−M(qd)−1 [C(qd, q̇d)q̇d]

⎤⎦
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for any initial condition
[
qd(0)T q̇d(0)T

]T ∈ IR2n.
Obviously, in the scenario where the desired position qd(t) does not satisfy

the established condition, the origin may not be an equilibrium point of the
closed-loop equation and therefore, it may not be expected to satisfy the mo-
tion control objective, that is, to drive the position error q̃(t) asymptotically
to zero.

A sufficient condition for the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n to be an equi-
librium point of the closed-loop equation is that the desired joint position qd

be a constant vector. In what is left of this chapter we assume that this is the
case.

As we show below, this controller may verify the position objective globally,
that is,

lim
t→∞ q(t) = qd

where qd ∈ IRn is a any constant vector and the robot may start off from any
configuration. We emphasize that the controller “may achieve” the position
control objective under the condition that Kp is chosen sufficiently ‘large’.
Later on in this chapter, we quantify ‘large’.

Considering the desired position qd to be constant, the closed-loop equa-
tion may be written in terms of the new state vector

[
q̃T q̇T

]T
as

d

dt

⎡⎣ q̃

q̇

⎤⎦ =

⎡⎣ −q̇

M(q)−1 [Kpq̃ − Kvq̇ − C(q, q̇)q̇ + g(qd) − g(q)]

⎤⎦ (8.2)

that is, in the form of a nonlinear autonomous differential equation whose
origin

[
q̃T q̇T

]T
= 0 ∈ IR2n is an equilibrium point. Nevertheless, besides the

origin, there may exist other equilibria. Indeed, there are as many equilibria
as solutions in q̃, may have the equation

Kpq̃ = g(qd − q̃) − g(qd) . (8.3)

Naturally, the explicit solutions of (8.3) are hard to obtain. Nevertheless,
as we show that later, if Kp is taken sufficiently “large”, then q̃ = 0 ∈ IRn is
the unique solution.

Example 8.1. Consider the model of the ideal pendulum studied in
Example 2.2 (see page 30)

Jq̈ + mgl sin(q) = τ

where we identify g(q) = mgl sin(q).
In this case, the expression (8.3) takes the form
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kpq̃ = mgl [sin(qd − q̃) − sin(qd)] . (8.4)

For the sake of illustration, consider the following numerical values,

J = 1 mgl = 1
kp = 0.25 qd = π/2 .

Either via a graphical method or numerical algorithms, one may
verify that Equation (8.4) possess exactly three solutions in q̃. The
approximated values of these solutions are: 0 (rad), −0.51 (rad) and
−4.57 (rad). This means that the PD control law with desired gravity
compensation in closed loop with the model of the ideal pendulum
has as equilibria,[

q̃
q̇

]
∈

{[
0
0

]
,

[−0.51
0

]
,

[−4.57
0

]}
.

Consider now a larger value for kp (sufficiently “large”), e.g.

kp = 1.25

In this scenario, it may be verified numerically that Equation (8.4)
has a unique solution at q̃ = 0 (rad). This means that the PD control
law with desired gravity compensation in closed loop with the model
of the ideal pendulum, has the origin as its unique equilibrium, i.e.[

q̃
q̇

]
=

[
0
0

]
∈ IR2 .

♦

The rest of the chapter focuses on:

• boundedness of solutions;
• unicity of the equilibrium;
• global asymptotic stability.

The studies presented here are limited to the case of robots whose joints
are all revolute.

8.1 Boundedness of Position and Velocity Errors, q̃ and q̇

Assuming that the design matrices Kp and Kv are positive definite (without
assuming that Kp is sufficiently “large”), and of course, for a desired constant
position qd to this point, we only know that the closed-loop Equation (8.2) has
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an equilibrium at the origin, but there might also be other equilibria. In spite
of this, we show by using Lemma 2.2 that both, the position error q̃(t) and the
velocity error q̇(t) remain bounded for all initial conditions

[
q̃(0)T q̇(0)T

]T ∈
IR2n.

Define the function (later on, we show that it is non-negative definite)

V (q̃, q̇) = K(q, q̇) + U(q) − kU +
1
2
q̃TKpq̃

+ q̃T g(qd) +
1
2
g(qd)

TK−1
p g(qd)

where K(q, q̇) and U(q) denote the kinetic and potential energy functions of
the robot, and the constant kU is defined as (see Property 4.3)

kU = min
q

{U(q)} .

The function V (q̃, q̇) may be written as

V (q̃, q̇) = q̇TP (q̃)q̇ + h(q̃) (8.5)

where

P (q̃) :=
1
2
M(qd − q̃)

h(q̃) := U(qd − q̃) − kU +
1
2
q̃TKpq̃ + q̃T g(qd) +

1
2
g(qd)

TK−1
p g(qd) .

Since we assumed that the robot has only revolute joints, U(q) − kU ≥ 0
for all q ∈ IRn. On the other hand, we have

1
2
q̃TKpq̃ + q̃T g(qd) +

1
2
g(qd)

TK−1
p g(qd),

may be written as

1
2

⎡⎣ q̃

g(qd)

⎤⎦T ⎡⎣Kp I

I K−1
p

⎤⎦⎡⎣ q̃

g(qd)

⎤⎦
which is non-negative for all q̃, qd ∈ IRn. Therefore, the function h(q̃) is
also non-negative. Naturally, since the kinetic energy 1

2 q̇TM(q)q̇ is a positive
definite function of q̇, then the function V (q̃, q̇) is non-negative for all q̃, q̇ ∈
IRn.

The time derivative of V (q̃, q̇) is

V̇ (q̃, q̇) = q̇TM(q)q̈ +
1
2
q̇TṀ(q)q̇ + q̇T g(q) + q̃TKp

˙̃q + ˙̃q
T
g(qd) (8.6)
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where we used (3.20), i.e. g(q) = ∂
∂qU(q). Solving for M(q)q̈ in the closed-

loop Equation (8.2) and substituting in (8.6) we get

V̇ (q̃, q̇) = q̇TKpq̃ − q̇TKvq̇ + q̇T g(qd) + q̃TKp
˙̃q + ˙̃q

T
g(qd) (8.7)

where the term q̇T
[

1
2Ṁ − C

]
q̇ was eliminated by virtue of Property 4.2. Re-

calling that the vector qd is constant and that q̃ = qd − q, then ˙̃q = −q̇.
Incorporating this in Equation (8.7) we obtain

V̇ (q̃, q̇) = −q̇T Kvq̇ . (8.8)

Using V (q̃, q̇) and V̇ (q̃, q̇) given by (8.5) and (8.8) respectively, and in-
voking Lemma 2.2 (cf. page 52), we conclude that both, q̇(t) and q̃(t) are also
bounded and that the velocities vector q̇(t), is square integrable, i.e.∫ ∞

0

‖q̇(t)‖2dt < ∞ . (8.9)

As a matter of fact, it may be shown that the velocity q̇ is not only
bounded, but that it also tends asymptotically to zero. For this, notice from
(8.2) that

q̈ = M(q)−1 [Kpq̃ − Kvq̇ + g(qd) − g(q) − C(q, q̇)q̇] . (8.10)

Since q̇(t) and q̃(t) were shown to be bounded then it follows from Prop-
erties 4.2 and 4.3 that C(q(t), q̇(t))q̇(t) and g(q(t)) are also bounded. On the
other hand, M(q)−1 is a bounded matrix (from Property 4.1), and finally,
from (8.10) we conclude that the accelerations vector q̈(t) is also bounded
and therefore, from (8.9) and Lemma 2.2, we conclude that

lim
t→∞

˙̃q(t) = lim
t→∞ q̇(t) = 0 .

For the sake of completeness we show next how to compute explicit upper-
bounds on the position and velocity errors. Taking into account that V (q̃, q̇) is
a non-negative function that decreases along trajectories (i.e. d

dtV (q̃, q̇) ≤ 0),
we have

0 ≤ V (q̃(t), q̇(t)) ≤ V (q̃(0), q̇(0))

for all t ≥ 0. Consequently, considering the definition of V (q̃, q̇) we deduce
immediately that

1
2
q̃(t)TKpq̃(t) + q̃(t)T g(qd) +

1
2
g(qd)

TK−1
p g(qd) ≤ V (q̃(0), q̇(0)) (8.11)

1
2
q̇(t)T

M(q(t))q̇(t) ≤ V (q̃(0), q̇(0)) (8.12)
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for all t ≥ 0, and where

V (q̃(0), q̇(0)) =
1
2
q̇(0)T

M(q(0))q̇(0) + U(q(0)) − kU

+
1
2
q̃(0)T

Kpq̃(0) + g(qd)
T
q̃(0) +

1
2
g(qd)

T
K−1

p g(qd) .

The value of V (q̃(0), q̇(0)) may be obtained if we know the inertia ma-
trix M(q) and the vector of gravitational torques g(q). Naturally, we assume
here that the position q(t), the velocity q̇(t) and, in particular at the instant
t = 0, are measured by appropriate instruments physically collocated for this
purpose on the robot.

We obtain next, explicit bounds on ‖q̃‖ and ‖q̇‖ as a function of the initial
conditions. We first notice that

λmin{Kp}
2

‖q̃‖2 − ‖g(qd)‖ ‖q̃‖ ≤ 1
2
q̃TKpq̃ + g(qd)

T
q̃ +

1
2
g(qd)

T
K−1

p g(qd)︸ ︷︷ ︸
c

where we used the fact that c ≥ 0 and that for all vectors x and y ∈ IRn

we have −xT y ≤ ∣∣xT y
∣∣ ≤ ‖x‖ ‖y‖, so −‖x‖ ‖y‖ ≤ xT y. Taking (8.11) into

account, we have

λmin{Kp}
2

‖q̃‖2 − ‖g(qd)‖ ‖q̃‖ − V (q̃(0), q̇(0)) ≤ 0

from which we finally obtain

‖q̃(t)‖ ≤
‖g(qd)‖ +

√
‖g(qd)‖2 + 2λmin{Kp}V (q̃(0), q̇(0))

λmin{Kp} (8.13)

for all t ≥ 0.
On the other hand, it is clear from (8.12) that

‖q̇(t)‖2 ≤ 2V (q̃(0), q̇(0))
λmin{M(q)} (8.14)

for all t ≥ 0. The expressions (8.13) and (8.14) establish the bounds we were
looking for.

Example 8.2. Consider again the model of the ideal pendulum from
Example 8.1

Jq̈ + mgl sin(q) = τ,

where we clearly identify M(q) = J and g(q) = mgl sin(q). As has
been shown before in Example 2.11 (see page 45), the potential energy
function is given by
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U(q) = mgl[1 − cos(q)] .

Since minq{U(q)} = 0, the constant kU takes the value of zero.
Consider the numerical values used in Example 8.1

J = 1 mgl = 1
kp = 0.25 kv = 0.50
qd = π/2 .

Assume that we use PD control with desired gravity compensation
to control the ideal pendulum from the initial conditions q(0) = 0 and
q̇(0) = 0.
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Figure 8.2. PD control with desired gravity compensation: graph of the position
error q̃(t)2

With the previous values it is easy to verify that

g(qd) = mgl sin(π/2) = 1

V (q̃(0), q̇(0)) =
1
2
kpq̃

2(0) + mglq̃(0) +
1

2kp
(mgl)2 = 3.87 .

According to the bounds (8.13) and (8.14) and taking into account
the previous information, we get

q̃2(t) ≤
⎡⎣mgl +

√
[mgl + kpq̃(0)]2 + (mgl)2

kp

⎤⎦2

≤ 117.79 [ rad2 ] (8.15)

q̇2(t) ≤ 2
J

[
kp

2
q̃2(0) + mglq̃(0) +

1
2kp

(mgl)2
]
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Figure 8.3. PD control with desired gravity compensation: graph of velocity, q̇(t)2

≤ 7.75
[
rad
s

]2

, (8.16)

for all t ≥ 0. Figures 8.2 and 8.3 show the plots of q̃(t)2 and q̇(t)2

respectively, obtained by simulation. We clearly appreciate from the
plots that both variables satisfy the inequalities (8.15) and (8.16).
Finally, it is interesting to observe from Figure 8.2 that limt→∞ q̃(t)2 =
20.88 (evidence from simulation shows that limt→∞ q̃(t) = −4.57) and
limt→∞ q̇2(t) = 0 and therefore

lim
t→∞

[
q̃(t)
q̇(t)

]
=

[−4.57
0

]
.

This means that the solutions tend precisely to one among the three
equilibria computed in Example 8.1, but which do not correspond to
the origin. The moral of this example is that PD control with desired
gravity compensation may fail to meet the position control objective.

♦

To summarize the developments above we make the following remarks.
Consider the PD control law with desired gravity compensation for robots
with revolute joints. Assume that the design matrices Kp and Kv are positive
definite. If the desired joint position qd(t) is a constant vector, then:

• the position error q̃(t) and the velocity q̇(t) are bounded. Maximal bounds
on their norms are given by the expressions (8.13) and (8.14) respectively.

• lim
t→∞ q̇(t) = 0 ∈ IRn.
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8.2 Unicity of Equilibrium

For robots having only revolute joints, we show that with the choice of Kp

sufficiently “large”, we can guarantee unicity of the equilibrium for the closed-
loop Equation (8.2). To that end, we use here the contraction mapping theorem
(cf. Theorem 2.1 on page 26).

The equilibria of the closed-loop Equation (8.2) satisfy
[
q̃T q̇T

]T
=[

q̃T 0T
]T ∈ IR2n where q̃ ∈ IRn solves (8.3),

q̃ = K−1
p [g(qd − q̃) − g(qd)]

= f(q̃, qd) .

Naturally, q̃ = 0 ∈ IRn is a trivial solution of q̃ = f(q̃, qd), but as has
been illustrated above in Example 8.1, there may exist other solutions.

If the function f(q̃, qd) satisfies the condition of the contraction mapping
theorem, that is, if f(q̃, qd) is Lipschitz (cf. page 101) with Lipschitz constant
strictly smaller than 1, then the equation q̃ = f(q̃, qd) has a unique solution
q̃∗ and consequently, the unique equilibrium of the closed-loop Equation (8.2)

is
[
q̃T q̇T

]T
=

[
q̃∗T

0T
]T

∈ IR2n.

Now, notice that for all vectors x, y ∈ IRn

‖f(x, qd) − f(y, qd)‖ =
∥∥K−1

p g(qd − x) − K−1
p g(qd − y)

∥∥
=

∥∥K−1
p {g(qd − x) − g(qd − y)}∥∥

≤ λMax{K−1
p } ‖g(qd − x) − g(qd − y)‖ .

On the other hand, using the fact that λMax{A−1} = 1/λmin{A} for any
symmetric positive definite matrix A, and Property 4.3 that guarantees the
existence of a positive constant kg such that ‖g(x) − g(y)‖ ≤ kg ‖x − y‖, we
have

‖f(x, qd) − f(y, qd)‖ ≤ kg

λmin{Kp} ‖x − y‖ ,

which, according to the contraction mapping theorem, implies that a sufficient
condition for unicity of the solution of f(q̃, qd) − q̃ = 0 or equivalently of

K−1
p [g(qd − q̃) − g(qd)] − q̃ = 0

and consequently, for the unicity of the equilibrium of the closed-loop equa-
tion, is that Kp be chosen so as to satisfy

λmin{Kp} > kg . (8.17)
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Therefore, assuming that Kp is chosen so that λmin{Kp} > kg, then the

unique equilibrium of the closed-loop Equation (8.2) is the origin,
[
q̃T q̇T

]T
=[

0T 0T
]T ∈ IR2n.

8.3 Global Asymptotic Stability

The objective of the present section is to show that the assumption that the
matrix Kp satisfies the condition (8.17) is actually also sufficient to guarantee
that the origin is globally asymptotically stable for the closed-loop Equation
(8.2). To that end we use as usual, Lyapunov’s direct method but comple-
mented with La Salle’s theorem. This proof is taken from the works cited at
the end of the chapter.

First, we present a lemma on positive definite functions of particular rel-
evance to ultimately propose a Lyapunov function candidate.1

Lemma 8.1. Consider the function f : IRn → IR given by

f(q̃) = U(qd − q̃) − U(qd) + g(qd)
T
q̃ +

1
ε
q̃TKpq̃ (8.18)

where Kp = Kp
T > 0, qd ∈ IRn is a constant vector, ε is a real positive

constant number and U(q) is the potential energy function of the robot. If

2
ε
Kp +

∂g(qd − q̃)
∂(qd − q̃)

> 0

for all qd, q̃ ∈ IRn, then f(q̃) is a globally positive definite function. The
previous condition is satisfied if

λmin{Kp} >
ε

2
kg

where kg has been defined in Property 4.3, and in turn is such that

kg ≥
∥∥∥∥∂g(q)

∂q

∥∥∥∥ .

Due to the importance of the above-stated lemma, we present next a de-
tailed proof.
Proof. It consists in establishing that f(q̃) has a global minimum at q̃ = 0 ∈
IRn. For this, we use the following result which is well known in optimization
techniques. Let f : IRn → IR be a function with continuous partial derivatives
up to at least the second order. The function f(x) has a global minimum at
x = 0 ∈ IRn if
1 See also Example B.2 in Appendix B.
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1. The gradient vector of the function f(x), evaluated at x = 0 ∈ IRn is
zero, i.e.

∂

∂x
f(0) = 0 ∈ IRn .

2. The Hessian matrix of the function f(x), evaluated at each x ∈ IRn, is
positive definite, i.e.

H(x) =
∂2

∂xi∂xj
f(x) > 0 .

The gradient of f(q̃) with respect to q̃ is

∂

∂q̃
f(q̃) =

∂U(qd − q̃)
∂q̃

+ g(qd) +
2
ε
Kpq̃ .

Recalling from (3.20) that g(q) = ∂U(q)/∂q and that2

∂

∂q̃
U(qd − q̃) =

∂(qd − q̃)
∂q̃

T
∂U(qd − q̃)
∂(qd − q̃)

we finally obtain

∂

∂q̃
f(q̃) = −g(qd − q̃) + g(qd) +

2
ε
Kpq̃ .

Clearly the gradient of f(q̃) is zero for q̃ = 0 ∈ IRn. Indeed, one can show
that if λmin{Kp} > ε

2kg the gradient of f(q̃) is zero only at q̃ = 0 ∈ IRn.
The proof of this claim is similar to the proof of unicity of the equilibrium in
Section 8.2.

The Hessian matrix H(q̃) (which by the way, is symmetric) of f(q̃),
defined as

H(q̃) =
∂

∂q̃

[
∂f(q̃)

∂q̃

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f(�̃)

∂q̃1∂q̃1

∂2f(�̃)

∂q̃1∂q̃2
· · · ∂2f(�̃)

∂q̃1∂q̃n

∂2f(�̃)

∂q̃2∂q̃1

∂2f(�̃)

∂q̃2∂q̃2
· · · ∂2f(�̃)

∂q̃2∂q̃n

...
...

. . .
...

∂2f(�̃)

∂q̃n∂q̃1

∂2f(�̃)

∂q̃n∂q̃2
· · · ∂2f(�̃)

∂q̃n∂q̃n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2 Let f : IRn → IR, � : IRn → IRn, �,� ∈ IRn and � = �(�). Then,

∂f(�)

∂�
=

[
∂�(�)

∂�

]T
∂f(�)

∂�
.



8.3 Global Asymptotic Stability 183

corresponds to3

H(q̃) =
∂g(qd − q̃)
∂(qd − q̃)

+
2
ε
Kp .

Hence, f(q̃) has a (global) minimum at q̃ = 0 ∈ IRn if H(q̃) > 0 for all
q̃ ∈ IRn, in other words, if the symmetric matrix

∂g(q)
∂q

+
2
ε
Kp (8.19)

is positive definite for all q ∈ IRn.
Here, we use the following result whose proof is given in Example B.2 of

Appendix B. Let A, B ∈ IRn×n be symmetric matrices. Assume also that the
matrix A is positive definite but possibly not B. If λmin{A} > ‖B‖, then the
matrix A + B is positive definite. Defining A = 2

εKp, B = ∂g(q)
∂q , and using

the result previously mentioned, we conclude that the matrix (8.19) is positive
definite if

λmin{Kp} >
ε

2

∥∥∥∥∂g(q)
∂q

∥∥∥∥ . (8.20)

Since the constant kg satisfies kg ≥
∥∥∥∂g(q)

∂q

∥∥∥, then the condition (8.20) is
implied by

λmin{Kp} >
ε

2
kg .

Therefore, if λmin{Kp} > ε
2kg, then f(q̃) has only one global minimum4 at

q̃ = 0 ∈ IRn. Moreover, f(0) = 0 ∈ IR, then f(q̃) is a globally positive definite
function. ♦♦♦

We present next, the stability analysis of the closed-loop Equation (8.2) for
which we assume that Kp is sufficiently “large” in the sense that its smallest
eigenvalue satisfies

λmin{Kp} > kg .

As has been shown in Section 8.2, with this choice of Kp, the closed-loop

equation has a unique equilibrium at the origin
[
q̃T q̇T

]T
= 0 ∈ IR2n.

To study the stability of the latter, we consider the Lyapunov function
candidate

V (q̃, q̇) =
1
2
q̇TM(qd − q̃)q̇ + f(q̃) (8.21)

3 Let � , � : IRn → IRn, �,� ∈ IRn and � = �(�). Then

∂�(�)

∂�
=

∂�(�)

∂�

∂�(�)

∂�
.

4 It is worth emphasizing that it is not redundant to speak of a unique global
minimum.
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where f(q̃) is given in (8.18) with ε = 2. In other words, this Lyapunov
function candidate may be written as

V (q̃, q̇) =
1
2
q̇TM(qd − q̃)q̇ + U(qd − q̃) − U(qd)

+ g(qd)
T
q̃ +

1
2
q̃TKpq̃ .

The previous function is globally positive definite since it is the sum of
a globally positive definite term q̇: q̇T M(q)q̇, and another globally positive
definite term of q̃: f(q̃).

The time derivative of V (q̃, q̇) is given by

V̇ (q̃, q̇) = q̇TM(q)q̈ +
1
2
q̇TṀ(q)q̇

+ q̇Tg(qd − q̃) − g(qd)
T
q̇ − q̃TKpq̇ ,

where we used g(qd − q̃) = ∂U(qd − q̃)/∂(qd − q̃) and also

d

dt
U(qd − q̃) = ˙̃q

T∂U(qd − q̃)
∂q̃

= ˙̃q
T∂(qd − q̃)

∂q̃

T
∂U(qd − q̃)
∂(qd − q̃)

= ˙̃q
T
(−I)g(qd − q̃)

= q̇Tg(qd − q̃) .

Solving for M(q)q̈ from the closed-loop Equation (8.2) and substituting
its value, we get

V̇ (q̃, q̇) = −q̇T Kvq̇

where we also used Property 4.2 to eliminate q̇T
[

1
2Ṁ − C

]
q̇. Since −V̇ (q̃, q̇)

is a positive semidefinite function, the origin is stable (cf. Theorem 2.2).
Since the closed-loop Equation (8.2) is autonomous, we may explore the

application of La Salle’s Theorem (cf. Theorem 2.7) to analyze the global
asymptotic stability of the origin.

To that end, notice that the set Ω is here given by

Ω =
{

x ∈ IR2n : V̇ (x) = 0
}

=
{

x =
[

q̃
q̇

]
∈ IR2n : V̇ (q̃, q̇) = 0

}
= {q̃ ∈ IRn, q̇ = 0 ∈ IRn} .
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Observe that V̇ (q̃, q̇) = 0 if and only if q̇ = 0. For a solution x(t) to
belong to Ω for all t ≥ 0, it is necessary and sufficient that q̇(t) = 0 for all
t ≥ 0. Therefore, it must also hold that q̈(t) = 0 for all t ≥ 0. Taking this into
account, we conclude from the closed-loop Equation (8.2) that if x(t) ∈ Ω for
all t ≥ 0, then

0 = M(qd − q̃(t))−1 [Kpq̃(t) + g(qd) − g(qd − q̃(t)] .

Moreover, since Kp has been chosen so that λmin{Kp} > kg hence, q̃(t) = 0
for all t ≥ 0 is its unique solution. Therefore,

[
q̃(0)T q̇(0)T

]T = 0 ∈ IR2n is
the unique initial condition in Ω for which x(t) ∈ Ω for all t ≥ 0. Thus, from
La Salle’s theorem (cf. Theorem 2.7), it follows that the latter is enough to
guarantee global asymptotic stability of the origin

[
q̃T q̇T

]T
= 0 ∈ IR2n.

In particular, we have
lim

t→∞ q̃(t) = 0 ,

lim
t→∞ q̇(t) = 0 ,

that is, the position control objective is achieved.
We present next an example with the purpose of showing the performance

achieved under PD control with desired gravity compensation on a 2-DOF
robot.

Example 8.3. Consider the 2-DOF prototype robot studied in Chapter
5 and illustrated in Figure 5.2.

The components of the gravitational torques vector g(q) are given
by

g1(q) = [m1lc1 + m2l1]g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

According to Property 4.3, the constant kg may be obtained as
(see also Example 9.2)

kg = n

[
max i,j,q

∣∣∣∣∂gi(q)
∂qj

∣∣∣∣]
= n [[m1lc1 + m2l1]g + m2lc2g]

= 23.94
[
kg m2/s2

]
.

Consider the PD control law with desired gravity compensation
of the robot shown in Figure 5.2 for position control, and where the
design matrices are taken positive definite and such that
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λmin{Kp} > kg .

In particular, we pick

Kp = diag{kp} = diag{30} [Nm/rad] ,
Kv = diag{kv} = diag{7, 3} [Nm s/rad] .

The components of the control input τ are given by

τ1 = kpq̃1 − kv q̇1 + g1(qd) ,

τ2 = kpq̃2 − kv q̇2 + g2(qd) .

The initial conditions corresponding to the positions and velocities,
are set to

q1(0) = 0, q2(0) = 0 ,
q̇1(0) = 0, q̇2(0) = 0 .

The desired joint positions are chosen as

qd1 = π/10 [rad] qd2 = π/30 [rad] .

In terms of the state vector of the closed-loop equation, the initial
state is set to ⎡⎣ q̃(0)

q̇(0)

⎤⎦ =

⎡⎢⎣
π/10
π/30

0
0

⎤⎥⎦ =

⎡⎢⎣
0.3141
0.1047

0
0

⎤⎥⎦ [ rad ] .

0.0 0.5 1.0 1.5 2.0
−0.1

0.0

0.1

0.2

0.3

0.4 [rad]

q̃1

0.0359

0.0138

q̃2

t [s]
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Figure 8.4. Graph of the position errors q̃1 and q̃2

Figure 8.4 shows the experimental results. In particular, it shows
that the components of the position error vector q̃(t) tend asymptoti-
cally to a small value. They do not vanish due to non–modeled friction
effects at the arm joints.
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It is interesting to note the little difference between the results
shown in Figure 8.4 and those obtained with PD control plus gravity
compensation presented in Figure 7.3. ♦

The previous example clearly shows the good performance achieved under
PD control with desired gravity compensation for a 2-DOF robot. Certainly,
the suggested tuning procedure has been followed carefully, that is, the matrix
Kp satisfies λmin{Kp} > kg. Naturally, at this point one may ask the question:
What if the tuning procedure (λmin{Kp} ≤ kg) is violated? As was previously
shown, if the matrix Kp is positive definite (of course, also with Kv positive
definite) then boundedness of the position and velocity errors q̃ and q̇ may
be guaranteed. Nevertheless, this situation where kg ≥ λmin{Kp} yields an
interesting dynamic behavior of the closed-loop equation. Phenomena such as
bifurcations of equilibria and catastrophic jumps may occur. These types of
phenomena appear even in the case of one single link with a revolute joint.
We present next an example which illustrates these observations.

Example 8.4. Consider the pendulum model studied in Example 2.2
(see page 30),

Jq̈ + mgl sin(q) = τ

where we identify g(q) = mgl sin(q).
The PD control law with desired gravity compensation applied in

the position control problem (qd constant) is in this case given by

τ = kpq̃ − kv q̇ + mgl sin(qd)

where kv > 0 and we consider here that kp is a real number not
necessarily positive and not larger than kg = mgl.

The equation that governs the behavior of the control system in
closed loop may be described by

d

dt

[
q̃
q̇

]
=

⎡⎣ −q̇

1
J

[ kpq̃ − kv q̇ + mgl[sin(qd) − sin(qd − q̃)] ]

⎤⎦
which is an autonomous differential equation and whose origin [q̃ q̇]T =
0 ∈ IR2 is an equilibrium regardless of the values of kp, kv and qd.
Moreover, given qd (constant) and defining the set Ωqd

as

Ωqd
= {q̃ ∈ IR : kpq̃ + mgl [sin(qd) − sin(qd − q̃)] = 0 ∀ kp} ,

any vector [q̃∗ 0]T ∈ IR2 is also an equilibrium as long as q̃∗ ∈ Ωqd
.

In the rest of this example we consider the innocuous case when
qd = 0, that is when the control objective is to drive the pendulum to
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Figure 8.5. Bifurcation diagram

the vertical downward position. In this scenario the set Ωqd
= Ω0 is

given by

Ω0 =
{

q̃ ∈ IR : q̃ = sinc−1

(
− kp

mgl

)}
,

where the function sinc(x) = sin(x)
x . Figure 8.5 shows the diagram

of equilibria in terms of kp. Notice that with kp = 0 there are an
infinite number of equilibria. In particular, for kp = −mgl the origin
[q̃ q̇]T = 0 ∈ IR2 is the unique equilibrium. As a matter of fact, we
say that the closed-loop equation has a bifurcation of equilibria for
kp = −mgl since for slightly smaller values than −mgl there exists
a unique equilibrium while for values of kp slightly larger than −mgl
there exist three equilibria.

Even though we do not show it here, for values of kp slightly smaller
than −mgl, the origin (which is the unique equilibrium) is unstable,
while for values slightly larger than −mgl the origin is actually asymp-
totically stable and the two other equilibria are unstable. This type of
phenomenon is called pitchfork bifurcation. Figure 8.6 presents several
trajectories of the closed-loop equation for kp = −11,−4, 3, where we
considered J = 1, mgl = 9.8 and kv = 0.1

Besides the pitchfork bifurcation at kp = −mgl, there also exists
another type of bifurcation for this control system in closed loop:
saddle-node bifurcation. In this case, for some values of kp there exists
an isolated equilibrium, and for slightly smaller (resp. larger) values
there exist two equilibria, one of which is asymptotically stable and
the other unstable, while for values of kp slightly larger (resp. smaller)
there does not exist any equilibrium in the vicinity of the one which
exists for the original value of kp. As a matter of fact, for the closed-
loop control system considered here (with qd = 0), the diagram of
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q̇
q̃

kp

kp = −11

kp = −4

kp = 3

Figure 8.6. Simulation with kp = −11,−4, 3

equilibria shown in Figure 8.5 suggests the possible existence of an
infinite number of saddle-node bifurcations.
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Figure 8.7. Catastrophic jump 1
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The closed-loop equation also exhibits another interesting type of
phenomenon: catastrophic jumps. This situation may show up when
the parameter kp varies “slowly” passing through values that corre-
spond to saddle-node bifurcations. Briefly, a catastrophic jump occurs
when for a small variation (and which moreover is slow with respect
to the dynamics determined by the differential equation in question)
of kp, the solution of the closed-loop equation whose tendency is to
converge towards a region of the state space, changes abruptly its be-
havior to go instead towards another region “far away” in the state
space. Figures 8.7 and 8.8 show such phenomenon; here we took

kp(t) = 0.01t + 1.8

•
•

q̃
q̇
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Figure 8.8. Catastrophic jump 2

and we considered again the numerical values: J = 1, mgl = 9.8 and
kv = 0.1, with the initial conditions q(0) = 4 [rad] and q̇(0) = 0 [rad/s].
When the value of kp is increased passing through 2.1288, the asymp-
totically stable equilibrium at [q̃ q̇]T = [1.43030π 0]T , disappears
and the system solution “jumps” to the unique (globally) asymptoti-
cally stable equilibrium: the origin [q̃ q̇]T = 0 ∈ IR2. ♦

8.4 Lyapunov Function for Global Asymptotic Stability

A Lyapunov function which allows one to show directly global asymptotic
stability without using La Salle’s theorem is studied in this subsection. The
reference corresponding to this topic is given at the end of the chapter. We
present next this analysis for which we consider the case of robots having
only revolute joints. The reader may, if wished, omit this section and continue
his/her reading with the following section.
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Consider again the closed-loop Equation (8.2),

d

dt

⎡⎣ q̃

q̇

⎤⎦ =

⎡⎣ −q̇

M(q)−1 [Kpq̃ − Kvq̇ − C(q, q̇)q̇ + g(qd) − g(q)]

⎤⎦ . (8.22)

As a design hypothesis, we assume here, as in Section 8.3, that the gain
position matrix Kp has been chosen to satisfy

λmin{Kp} > kg .

This selection of Kp satisfies the sufficiency condition obtained in Section
8.2 to guarantee that the origin is the unique equilibrium of the closed-loop
Equation (8.22).

To study the stability properties of the origin, consider now the following
Lyapunov function candidate, which as a matter of fact, may be regarded as
a generalization of the function (8.21),

V (q̃, q̇) =
1
2

⎡⎣ q̃

q̇

⎤⎦T

P︷ ︸︸ ︷⎡⎢⎣
2
ε2

Kp − ε0

1 + ‖�̃‖M(q)

− ε0

1 + ‖�̃‖M(q) M(q)

⎤⎥⎦
⎡⎣ q̃

q̇

⎤⎦
+ U(q) − U(qd) + g(qd)

Tq̃ +
1
ε1

q̃TKpq̃︸ ︷︷ ︸
f(q̃)

,

=
1
2
q̇TM(q)q̇ + U(q) − U(qd) + g(qd)

Tq̃

+
[

1
ε1

+
1
ε2

]
q̃TKpq̃ − ε0

1 + ‖q̃‖ q̃TM(q)q̇ (8.23)

where f(q̃) was defined in (8.18) and the constants ε0 > 0, ε1 > 2 and ε2 > 2
are chosen so that

2λmin{Kp}
kg

> ε1 > 2 (8.24)

ε2 =
2ε1

ε1 − 2
> 2 (8.25)√

2λmin{Kp}
ε2β

> ε0 > 0 (8.26)

where β ( ≥ λMax{M(q)} ) was defined in Property 4.1. The condition (8.24)
guarantees that f(q̃) is a positive definite function (see Lemma 8.1), while
(8.26) ensures that P is a positive definite matrix. Finally (8.25) implies that
1
ε1

+ 1
ε2

= 1
2 .
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Alternatively, to show that the Lyapunov function candidate V (q̃, q̇) is
positive definite, first define ε as

ε = ε(‖q̃‖) =
ε0

1 + ‖q̃‖ . (8.27)

Consequently, Inequality (8.26) implies that the matrix

2
ε2

Kp −
[

ε0

1 + ‖q̃‖
]2

M(q) =
2
ε2

Kp − ε2M(q)

is positive definite.
On the other hand, the Lyapunov function candidate (8.23) may be rewrit-

ten as

V (q̃, q̇) =
1
2

[−q̇ + εq̃]T M(q) [−q̇ + εq̃] +
1
2
q̃T

[
2
ε2

Kp − ε2M(q)
]

q̃

+ U(q) − U(qd) + g(qd)
Tq̃ +

1
ε1

q̃TKpq̃︸ ︷︷ ︸
f(q̃)

,

which is clearly positive definite since the matrices M(q) and 2
ε2

Kp − ε2M(q)
are positive definite and f(q̃) is also a positive definite function (due to
λmin{Kp} > kg and Lemma 8.1).

The time derivative of the Lyapunov function candidate (8.23) along the
trajectories of the closed-loop Equation (8.22) takes the form

V̇ (q̃, q̇) = q̇T [Kpq̃ − Kvq̇ − C(q, q̇)q̇ + g(qd) − g(q)] +
1
2
q̇TṀ(q)q̇

+ g(q)Tq̇ − g(qd)
Tq̇ − q̃TKpq̇ + εq̇TM(q)q̇ − εq̃TṀ(q)q̇

− εq̃T [Kpq̃ − Kvq̇ − C(q, q̇)q̇ + g(qd) − g(q)]
− ε̇q̃TM(q)q̇,

where we used g(q) = ∂U(q)
∂q . After some simplifications, the time derivative

V̇ (q̃, q̇) may be written as

V̇ (q̃, q̇) = −q̇TKvq̇ + q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ + εq̇TM(q)q̇

− εq̃T
[
Ṁ(q) − C(q, q̇)

]
q̇ − εq̃T [Kpq̃ − Kvq̇]

− εq̃T [g(qd) − g(q)] − ε̇q̃TM(q)q̇.

Finally, considering Property 4.2, i.e. that the matrix 1
2Ṁ(q)−C(q, q̇) is

skew-symmetric and that Ṁ(q) = C(q, q̇) + C(q, q̇)T , we get
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V̇ (q̃, q̇) = −q̇TKvq̇ + εq̇TM(q)q̇ − εq̃TKpq̃ + εq̃TKvq̇

− εq̇TC(q, q̇)q̃ − εq̃T [g(qd) − g(q)] − ε̇q̃TM(q)q̇ . (8.28)

As is well known, to conclude global asymptotic stability by Lyapunov’s
direct method, it is sufficient to prove that V̇ (0,0) = 0 and V̇ (q̃, q̇) < 0 for
all vectors

[
q̃T q̇T

]T 
= 0 ∈ IR2n. These conditions are verified if V̇ (q̃, q̇) is
a negative definite function. Observe that it is very difficult to ensure from
(8.28), that V̇ (q̃, q̇) is negative definite. With the aim of finding additional
conditions on ε0 such that V̇ (q̃, q̇) is negative definite, we present now the
upper-bounds on the following three terms:

• −εq̇TC(q, q̇)q̃
• −εq̃T [g(qd) − g(q)]
• −ε̇q̃TM(q)q̇ .

First, concerning −εq̇TC(q, q̇)q̃, we have

−εq̇TC(q, q̇)q̃ ≤ ∣∣−εq̇TC(q, q̇)q̃
∣∣

≤ ε ‖q̇‖ ‖C(q, q̇)q̃‖
≤ εkC1 ‖q̇‖ ‖q̇‖ ‖q̃‖
≤ ε0kC1 ‖q̇‖2 (8.29)

where we took into account Property 4.2, i.e. ‖C(q,x)y‖ ≤ kC1 ‖x‖ ‖y‖, and
the definition of ε in (8.27).

Next, concerning the term −εq̃T [g(qd) − g(q)] we have

−εq̃T [g(qd) − g(q)] ≤ ∣∣−εq̃T [g(qd) − g(q)]
∣∣

≤ ε ‖q̃‖ ‖g(qd) − g(q)‖
≤ εkg ‖q̃‖2 (8.30)

where we used Property 4.3, i.e. ‖g(x) − g(y)‖ ≤ kg ‖x − y‖.
Finally, for the term −ε̇q̃T M(q)q̇, we have

−ε̇q̃T M(q)q̇ ≤ ∣∣−ε̇q̃T M(q)q̇
∣∣

=

∣∣∣∣∣ ε0

‖q̃‖ [1 + ‖q̃‖]2 q̃T q̇q̃TM(q)q̇

∣∣∣∣∣
≤ ε0

‖q̃‖ [1 + ‖q̃‖]2 ‖q̃‖ ‖q̇‖ ‖q̃‖ ‖M(q)q̇‖

≤ ε0

1 + ‖q̃‖ ‖q̇‖2
λMax{M(q})

≤ ε0β ‖q̇‖2 (8.31)
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where we used again the definition of ε in (8.27) and Property 4.1, i.e. β ‖q̇‖ ≥
λMax{M(q)} ‖q̇‖ ≥ ‖M(q)q̇‖.

From the inequalities (8.29), (8.30) and (8.31), the time derivative V̇ (q̃, q̇)
in (8.28) reduces to

V̇ (q̃, q̇) ≤ −q̇TKvq̇ + εq̇TM(q)q̇ − εq̃TKpq̃ + εq̃TKvq̇

+ ε0kC1 ‖q̇‖2 + εkg ‖q̃‖2 + ε0β ‖q̇‖2
,

which in turn may be written as

V̇ (q̃, q̇) ≤ −
⎡⎣ q̃

q̇

⎤⎦T⎡⎣ εKp − ε
2Kv

− ε
2Kv

1
2Kv

⎤⎦⎡⎣ q̃

q̇

⎤⎦ + εkg ‖q̃‖2

− 1
2

[λmin{Kv} − 2ε0(kC1 + 2β)] ‖q̇‖2
, (8.32)

where we used

−q̇TKvq̇ ≤ −1
2
q̇TKvq̇ − λmin{Kv}

2
‖q̇‖2

and εq̇TM(q)q̇ ≤ ε0β ‖q̇‖2.
Finally, from (8.32) we get

V̇ (q̃, q̇) ≤ − ε

⎡⎣ ‖q̃‖

‖q̇‖

⎤⎦T

Q︷ ︸︸ ︷⎡⎣λmin{Kp} − kg − 1
2λMax{Kv}

− 1
2λMax{Kv} 1

2ε0
λmin{Kv}

⎤⎦⎡⎣ ‖q̃‖

‖q̇‖

⎤⎦
− 1

2
[λmin{Kv} − 2ε0(kC1 + 2β)]︸ ︷︷ ︸

δ

‖q̇‖2
. (8.33)

Next, from the latter inequality we find immediately the conditions on ε0

for V̇ (q̃, q̇) to be negative definite. To that end, we first require to guarantee
that the matrix Q is positive definite and that δ > 0. The matrix Q is positive
definite if it holds that

λmin{Kp} > kg , (8.34)
2λmin{Kv}(λmin{Kp} − kg)

λ2
Max{Kv} > ε0 , (8.35)

and we have δ > 0 if
λmin{Kv}
2[kC1 + 2β]

> ε0 . (8.36)

Observe that (8.34) is verified since Kp was assumed to be picked so as
to satisfy λmin{Kp} > ε1

2 kg with ε1 > 2. It is important to stress that the
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constant ε0 is only needed for the purposes of stability analysis and it is
not required to know its actual numerical value. Choosing ε0 so as to satisfy
simultaneously (8.35) and (8.36), we have λmin{Q} > 0. Under this scenario,
we get from (8.33) that

V̇ (q̃, q̇) ≤ − ε0

1 + ‖q̃‖λmin{Q}
[
‖q̃‖2 + ‖q̇‖2

]
− δ

2
‖q̇‖2

,

≤ −ε0λmin{Q} ‖q̃‖2

1 + ‖q̃‖ − δ

2
‖q̇‖2

,

which is a negative definite function. Finally, using Lyapunov’s direct method
(cf. Theorem 2.4), we conclude that the origin

[
q̃T q̇T

]T
= 0 ∈ IR2n is a

globally asymptotically stable equilibrium of the closed-loop equation.

8.5 Conclusions

The conclusions drawn from the analysis presented in this chapter can be
summarized as follows.

Consider PD control with desired gravity compensation for n-DOF robots.
Assume that the desired position qd is constant.

• If the symmetric matrices Kp and Kv of the PD control law with desired
gravity compensation are positive definite and moreover λmin{Kp} > kg,
then the origin of the closed-loop equation, expressed in terms of the state
vector

[
q̃T q̇T

]T
, is globally asymptotically stable. Consequently, for any

initial condition q(0), q̇(0) ∈ IRn we have limt→∞ q̃(t) = 0 ∈ IRn .
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Problems

1. Consider the model of the ideal pendulum studied in Example 8.2

Jq̈ + mgl sin(q) = τ

with the following numerical values

J = 1, mgl = 1, qd = π/2 .

Consider the use of PD control with desired gravity compensation and
suppose the following initial conditions: q(0) = 0 and q̇(0) = 0. From this,
we have q̃(0) = π/2. Assume that kp = 4/π.

a) Obtain an upper-bound on q̇(t)2.
Hint: Use (8.16).

2. Consider the PD control law with desired gravity compensation for the
pendulum described by the equation

Jq̈ + mgl sin(q) = τ .
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The equilibria of the closed-loop equation are [q̃ q̇]T = [s 0]T where s is
the solution of

kps + mgl [sin(qd) − sin(qd − s)] = 0 .

a) Show that s satisfies

|s| ≤ 2mgl

kp
.

b) Simulate the system in closed loop with the following numerical values:
J = 1, m = l = 1, g = 10, kp = 1/4, kv = 1 and with initial conditions:
q(0) = π/8 and q̇(0) = 0. For the desired angular position qd = π/2,
verify by simulation that limt→∞ q(t) 
= qd.

c) Obtain by simulation the approximate value of limt→∞ q(t). Verify
that limt→∞ |qd − q(t)| ≤ 2mgl

kp
.

3. Consider the model of the ideal pendulum studied in Example 8.1

Jq̈ + mgl sin(q) = τ

with the following numerical values:

J = 1, mgl = 1, qd = π/2 .

Consider the use of PD control with desired gravity compensation.

a) Obtain the closed-loop equation in terms of the state vector [q̃ q̇]T .
b) Compute the value of the constant kg (see Property 4.3).
c) In Example 8.1 we showed that the closed-loop equation had three

equilibria for kp = 0.25. Compute a value for kp that guarantees that
the origin [q̃ q̇]T = 0 ∈ IR2 is the unique equilibrium point of the
closed-loop equation.

d) Consider the previously obtained value for kp. Show that the origin is
a stable equilibrium point.
Hint: Show that

f(q̃) = −mgl cos(qd − q̃) + mgl cos(qd)

+ mgl sin(qd)q̃ +
1
2
kpq̃

2

is a positive definite function. Use the Lyapunov function candidate

V (q̃, q̇) =
1
2
Jq̇2 + f(q̃) .

e) Use La Salle’s theorem (cf. Theorem 2.7) to show that the origin is
globally asymptotically stable.



198 8 PD Control with Desired Gravity Compensation

4. Verify the expression for V̇ (q̃, q̇) given in Equation (8.7).
5. Consider the model of robots with elastic joints, (3.27) and (3.28), but with

an additional term for friction at the links f(q̇) that satisfies q̇T f(q̇) >
0 ∀q̇ 
= 0 and f(0) = 0 , i.e.

M(q)q̈ + C(q, q̇)q̇ + g(q) + f(q̇) + K(q − θ) = 0 ,

J θ̈ − K(q − θ) = τ .

It is assumed that only the vector of positions θ of the motors axes, and the
corresponding velocities θ̇, are available from measurement. The control
objective is that q(t) → qd as t → ∞ where qd is constant.
A variant of the PD control with desired gravity compensation is5

τ = Kpθ̃ − Kvθ̇ + g(qd)

where

θ̃ = qd − θ + K−1g(qd) ,

q̃ = qd − q ,

and Kp,Kv ∈ IRn×n are symmetric positive definite matrices. The matrix
of elasticity K, is diagonal and positive definite.

a) Verify that the closed-loop equation in terms of the state vector[
q̃T θ̃

T
q̇T θ̇

T
]T

, may be written as

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̃

θ̃

q̇

θ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q̇

−θ̇

M(q)−1
[
−K(θ̃ − q̃) + g(qd) − C(q, q̇)q̇ − g(q) − f(q̇)

]
J−1

[
Kpθ̃ − Kvθ̇ + K(θ̃ − q̃)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

b) Verify that the origin is an equilibrium of the closed-loop equation.
c) Show that if λmin{Kp} > kg and λmin{K} > kg, then the origin is a

stable equilibrium point.
Hint: Use the following Lyapunov function:

V (q̃, θ̃, q̇, θ̇) = V1(q̃, θ̃, q̇, θ̇) +
1
2
q̃TKq̃ + V2(q̃)

5 This controller was proposed and analyzed in Tomei P., 1991, “A simple PD con-
troller for robots with elastic joints”, IEEE Transactions on Automatic Control,
Vol. 36, No. 10, October.
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where

V1(q̃, θ̃, q̇, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
J θ̇ +

1
2
θ̃

T
Kpθ̃

+
1
2
θ̃

T
Kθ̃ − θ̃

T
Kq̃ ,

V2(q̃) = U(qd − q̃) − U(qd) + q̃T g(qd) ,

and verify that

V̇ (q̃, θ̃, q̇, θ̇) = −θ̇
T
Kvθ̇ − q̇T f(q̇) .



9

PID Control

With PD control we are able to achieve the position control objective for
robots whose models do not contain the gravitational term (i.e. g(q) = 0). In
this case, the tuning procedure1 for PD control is trivial since it is enough to
select the design matrices Kp and Kv to be symmetric and positive definite
(see Chapter 6).

In the case where the robot model contains the vector of gravitational
torques (i.e. g(q) 
= 0) and if in particular, g(qd) 
= 0, where qd is the joint
desired position, then the position control objective cannot be achieved by
means of a simple PD control law. As a matter of fact it may happen that the
position error q̃ tends to a constant vector but which is always different from
the vector 0 ∈ IRn. Then, from an automatic control viewpoint and with the
aim of satisfying the position control objective, in this case it seems natural
to introduce an Integral component to the PD control to drive the position
error to zero. This reasoning justifies the application of Proportional Integral
Derivative (PID) control to robot manipulators.

The PID control law is given by

τ = Kpq̃ + Kv
˙̃q + Ki

∫ t

0

q̃(σ) dσ (9.1)

where the design matrices Kp,Kv,Ki ∈ IRn×n, which are respectively called
“position, velocity and integral gains”, are symmetric positive definite and
suitably selected. Figure 9.1 shows the block-diagram of the PID control for
robot manipulators.

Nowadays, most industrial robot manipulators are controlled by PID con-
trollers. The wide use of robot manipulators in everyday applications, is testa-
ment to the performance that can be achieved in a large variety of applications
1 By ‘tuning procedure’ the reader should interpret the process of determining the

numerical values of the design parameters of the control law, which guarantee the
achievement of the control objective.
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ROBOT

KpKv

τ

q̇d
Σ

Σ

Σ

Ki

∫ t

0

q

q̇

qd

Figure 9.1. Block-diagram: PID control

when using PID control. However, in contrast to PD control, the tuning proce-
dure for PID controllers, that is, the procedure to choose appropriate positive
definite matrices Kp, Kv and Ki, is far from trivial.

In practice, the tuning of PID controllers is easier for robots whose trans-
mission system includes reduction mechanisms such as gears or bands. The
use of these reductions effectively increases the torque or force produced by
the actuators, and therefore, these are able to drive links of considerably large
masses. In principle, this has the consequence that large accelerations may
be reached for ‘light’ links. Nevertheless, the presence of reduction mecha-
nisms, such as gears and bands, may introduce undesired physical phenomena
that hamper the performance of the robot in its required task. Among these
phenomena we cite vibrations due to backlash among the teeth of the gears,
positioning errors and energy waste caused by friction in the gears, positioning
errors caused by vibrations and elasticity of the bands and by gear torsions.
In spite of all these the use of reduction mechanisms is common in most robot
manipulators. This has a positive impact on the tuning task of controllers, and
more particularly of PID controllers. Indeed, as has been shown in Chapter 3
the complete dynamic of the robot with high-reduction-ratio transmissions is
basically characterized by the model of the actuators themselves, which are
often modeled by linear differential equations. Thus, in this scenario the differ-
ential equation that governs the behavior of the closed-loop system becomes
linear and therefore, the tuning of the controller becomes relatively simple.
This last topic is not treated here since it is well documented in the literature;
the interested reader is invited to see the texts cited at the end of the chapter.
Here, we consider the more general nonlinear case.

In the introduction to Part II we assumed that the considered robot ac-
tuators were ideal sources of torques and forces. Under this condition, the
dynamic model of a robot of n DOF is given by (3.18), i.e.

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (9.2)
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where the vector of gravitational torques g(q) is clearly present. In this chap-
ter, we assume that the joints of the robot are all revolute.

We study the control system formed by the PID controller given by Equa-
tion (9.1) and the robot model (9.2). This study is slightly more complex than
that for the PID control of robots with high-reduction actuators. Specifically,
we obtain a tuning procedure for PID control that guarantees achievement of
the position control objective, locally. In other words, for the desired constant
position qd, tuning ensures that limt→∞ q̃(t) = 0, as long as the initial posi-
tion error q̃(0) and the initial velocity error q̇(0) are sufficiently “small”. From
an analytic viewpoint this is done by proving local asymptotic stability of the
origin of the equation that describes the behavior of the closed-loop system.
For this analysis, we use the following information drawn from Properties 4.1,
4.2, and 4.3:

• The matrix
1
2
Ṁ(q) − C(q, q̇) is skew-symmetric.

• There exists a non-negative constant kC1 such that for all x, y,z ∈ IRn,
we have

‖C(x, y)z‖ ≤ kC1 ‖y‖ ‖z‖ .

• There exists a non-negative constant kg such that for all x, y ∈ IRn, we
have

‖g(x) − g(y)‖ ≤ kg ‖x − y‖ ,

where kg ≥
∥∥∥∥∂�(�)

∂�

∥∥∥∥ for all q ∈ IRn.

The integral action of the PID control law (9.1) introduces an additional
state variable that is denoted here by ξ, and whose time derivative is ξ̇ = q̃.

The PID control law may be expressed via the two following equations:

τ = Kpq̃ + Kv
˙̃q + Kiξ (9.3)

ξ̇ = q̃ . (9.4)

The closed-loop equation is obtained by substituting the control action τ
from (9.3) in the robot model (9.2), i.e.

M(q)q̈ + C(q, q̇)q̇ + g(q) = Kpq̃ + Kv
˙̃q + Kiξ

ξ̇ = q̃,

which may be written in terms of the state vector
[
ξT q̃T ˙̃q

T
]T

, as

d

dt

⎡⎢⎢⎢⎣
ξ

q̃

˙̃q

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣

q̃

˙̃q

q̈d − M(q)−1
[
Kpq̃ + Kv

˙̃q + Kiξ − C(q, q̇)q̇ − g(q)
]
⎤⎥⎥⎥⎥⎦. (9.5)
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The equilibria of the equation above, if any, have the form
[
ξT q̃T ˙̃q

T
]T

=[
ξ∗T 0T 0T

]T

where

ξ∗ = K−1
i [M(qd)q̈d + C(qd, q̇d)q̇d + g(qd)]

must be a constant vector. Certainly, for ξ∗ to be a constant vector, if the
desired joint position qd is time-varying, it may not be arbitrary but should
have a very particular form. One way to obtain a qd for which ξ∗ is constant,
is by solving the differential equations

d

dt

⎡⎣ qd

q̇d

⎤⎦=

⎡⎣ q̇d

M(qd)−1 [τ 0 − C(qd, q̇d)q̇d − g(qd)]

⎤⎦ ,

⎡⎣ qd(0)

q̇d(0)

⎤⎦∈ IR2n

(9.6)
where τ 0 ∈ IRn is a constant vector. This way ξ∗ = K−1

i τ 0. In particular,
if τ 0 = 0 ∈ IRn then the origin of the closed-loop Equation (9.5), is an
equilibrium. Notice that the solution of (9.6) is simply the position q and
velocity q̇ when one applies a constant torque τ = τ 0 to the robot in question.
In general, it is not possible to obtain an expression in closed form for qd, so
Equation (9.6) must be solved numerically. Nevertheless, the resulting desired
position qd, may have a capricious form and therefore be of little utility. This
is illustrated in the following example.

Example 9.1. Consider the Pelican prototype robot studied in Chapter
5, and shown in Figure 5.2.

Considering τ 0 = 0 ∈ IR2 and the initial condition [qd1 qd2 q̇d1

q̇d2]
T = [−π/20 π/20 0 0]T ; the numerical solution of (9.6) for

qd(t), is shown in Figure 9.2.
With qd(t), whose two components are shown in Figure 9.2, the

origin
[
ξT q̃T ˙̃q

T
]T

= 0 ∈ IR6 is an equilibrium of the closed-loop
equation formed by the PID control and the robot in question. ♦

In the case where the desired joint position qd is an arbitrary function
of time, and does not tend to a constant vector value, then the closed-loop
equation has no equilibrium. In such cases, we cannot study the stability in
the sense of Lyapunov and in particular, one may not expect that the position
error q̃ tend to zero. In the best case scenario, and under the hypothesis that
the initial position and velocity errors q̃(0) and q̇(0) are small, the position
error q̃ remains bounded. The formal proof of these claims is established in
the works cited at the end of the chapter.

Let us come back to our discussion on the determination of an equilibrium
for the closed-loop system. We said that a sufficient condition for the existence
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Figure 9.2. Desired joint positions

and unicity of the equilibrium for the closed-loop Equation (9.5) is that the
desired position qd(t) be constant. Denoting by qd such a constant vector the
equilibrium is ⎡⎢⎢⎢⎣

ξ

q̃

˙̃q

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Ki

−1 g(qd)

0

0

⎤⎥⎥⎥⎦ ∈ IR3n .

This equilibrium may of course, be translated to the origin via a suitable
change of variable, e.g. defining

z = ξ − Ki
−1g(qd) .

Then, the corresponding closed-loop equation may be expressed in terms of
the state vector

[
zT q̃T q̇T

]T
as

d

dt

⎡⎢⎢⎢⎣
z

q̃

q̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
q̃

−q̇

M(q)−1 [Kpq̃ − Kvq̇ + Kiz + g(qd) − C(q, q̇)q̇ − g(q)]

⎤⎥⎥⎥⎦ .

(9.7)

Notice that the previous equation is autonomous and its unique equilibrium
is the origin

[
zT q̃T q̇T

]T
= 0 ∈ IR3n.

For the sequel, we find it convenient to adopt the following global change
of variables,
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⎡⎣w
q̃
q̇

⎤⎦ =

⎡⎣α I I 0
0 I 0
0 0 I

⎤⎦⎡⎣z
q̃
q̇

⎤⎦ (9.8)

with α > 0.
The closed-loop Equation (9.7) may be expressed as a function of the new

variables as

d

dt

⎡⎢⎢⎢⎣
w

q̃

q̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
α q̃ − q̇

−q̇

M(q)−1
[[

Kp − 1

α
Ki

]
q̃ − Kvq̇ + 1

α
Kiw + g(qd) − C(q, q̇)q̇ − g(q)

]
⎤⎥⎥⎥⎥⎦ .

(9.9)

These equations are autonomous and the origin of the state space,
[
wT q̃T

q̇T
]T

= 0 ∈ IR3n is the unique equilibrium of the closed-loop system.
Moreover, due to the globality of the change of variable (9.8), the sta-
bility features of this equilibrium correspond to those for the equilibrium[
zT q̃T q̇T

]T
= 0 ∈ IR3n of Equation (9.7).

If we can find conditions on the matrices Kp, Kv and Ki of the PID con-
troller such that the origin of the closed-loop Equation (9.9) is asymptotically
stable, i.e. such that the origin is stable and at least for sufficiently small val-
ues of the initial states z(0), q̃(0) and q̇(0), the state – particularly q̃(t) – tend
asymptotically to zero, then we are able to conclude that the position control
objective is achieved (at least locally). Therefore, based on this argument we
use Lyapunov’s direct method via La Salle’s theorem to establish conditions
under which the choice of design matrices for the PID controller guarantee
asymptotic stability of the origin of the closed-loop Equation (9.9).

Thus, let us study the stability of the origin of the equation closed-loop
(9.9). This equation governs the behavior of n-DOF robot manipulators under
PID control in the case of a constant desired position qd. Specifically, we shall
see that if the matrices Kp and Kv are sufficiently “large” and the integral
gain matrix Ki sufficiently “small” in the following sense

λmin{M}λmin{Kv}
λMax

2{M} >
λMax{Ki}

λmin{Kp} − kg
, (9.10)
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and moreover
λmin{Kp} > kg (9.11)

then, we can guarantee that the position control objective is achieved locally.
As a matter of fact, the larger the margin with which the inequality (9.10)
holds, the larger the domain of attraction2 of the equilibrium will be. The
property of asymptotic stability with domain of attraction arbitrarily large is
commonly referred to as semiglobal asymptotic stability.

9.1 Lyapunov Function Candidate

To study the stability of the origin of the state space, we use Lyapunov’s
direct method by proposing the following Lyapunov function candidate

V (q̃, q̇, w) =
1
2

⎡⎢⎢⎣
w

q̃

q̇

⎤⎥⎥⎦
T ⎡⎢⎢⎣

1

α
Ki 0 0

0 αKv −αM(q)

0 −αM(q) M(q)

⎤⎥⎥⎦
⎡⎢⎢⎣

w

q̃

q̇

⎤⎥⎥⎦
+

1
2
q̃T

[
Kp − 1

α
Ki

]
q̃ + U(qd − q̃) − U(qd) + q̃T g(qd)

(9.12)

where U(q) denotes as usual, the robot’s potential energy and α is the positive
constant used in the definition of the variable transformation (9.8). For the
sequel we assume that this number satisfies

λmin{M}λmin{Kv}
λMax

2{M} > α >
λMax{Ki}

λmin{Kp} − kg
. (9.13)

Following the tuning guide given by (9.10), there always exists α that
satisfies the above.

For the Lyapunov function candidate (9.12) to be a Lyapunov function we
must verify first that it is positive definite. For this, consider the following
terms from this function,

1
2
q̃T

[
Kp − 1

α
Ki

]
q̃ + U(qd − q̃) − U(qd) + q̃T g(qd) .

According to Example B.2 of Appendix B and taking ε = 2, we conclude
that the function defined as the sum of these terms is positive definite, globally
for all q̃ if
2 Roughly, for the purposes of this book, a domain of attraction may be considered

as the set of all possible initial conditions which generate trajectories that tend
to the equilibrium asymptotically.
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λmin{Kp − 1
α

Ki} > kg .

In its turn, this inequality is implied by3

λmin{Kp} − 1
α

λMax{Ki} > kg ,

which holds due to the lower-bound condition imposed on α, in accordance
with (9.13). Therefore, we may claim that the Lyapunov function candidate
(9.12) satisfies

V (q̃, q̇, w) ≥ 1
2

⎡⎢⎢⎣
w

q̃

q̇

⎤⎥⎥⎦
T ⎡⎢⎢⎣

1

α
Ki 0 0

0 αKv −αM(q)

0 −αM(q) M(q)

⎤⎥⎥⎦
⎡⎢⎢⎣

w

q̃

q̇

⎤⎥⎥⎦ .

On the other hand using the inequalities

1
α

wT Kiw ≥ 1
α

λmin{Ki} ‖w‖2
,

α q̃T Kvq̃ ≥ α λmin{Kv} ‖q̃‖2
,

q̇T M(q)q̇ ≥ λmin{M} ‖q̇‖2
,

−αq̃T M(q)q̇ ≥ −αλMax{M} ‖q̃‖ ‖q̇‖ ,

we come to the following lower-bound for the Lyapunov function candidate,

V (q̃, q̇,w) ≥ α

2

⎡⎢⎢⎢⎣
‖w‖

‖q̃‖

‖q̇‖

⎤⎥⎥⎥⎦
T⎡⎢⎢⎢⎢⎣

1

α2
λmin{Ki} 0 0

0 λmin{Kv} −λMax{M}

0 −λMax{M} 1

α
λmin{M}

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
‖w‖

‖q̃‖

‖q̇‖

⎤⎥⎥⎥⎦ .

This shows that V (q̃, q̇, w) is globally positive definite, since α is supposed to
satisfy (9.13), in particular because
3 Theorem of Weyl (R. A. Horn and C. R. Johnson, 1985, “Matrix Analysis”,

Cambridge University Press, pp. 181.). For matrices A and B symmetric it holds
that

λmin{A + B} ≥ λmin{A} + λmin{B} .

On the other hand, since λmin{A} = −λMax{−A}, we have

λmin{A − B} ≥ λmin{A} − λMax{B}
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λmin{M}λmin{Kv}
λMax

2{M} > α ,

which implies that the determinant of the ‘southeastern’ 2 × 2 sub-block in
the matrix above is positive for all q.

9.2 Time Derivative of the Lyapunov Function
Candidate

Once we have established the conditions under which the Lyapunov function
candidate is (globally) positive definite, we may proceed to compute its time
derivative. After some straightforward algebraic computations which involve
the use of the skew-symmetry of the matrix 1

2Ṁ(q)−C(q, q̇) and the equality
Ṁ(q) = C(q, q̇)+C(q, q̇)T established in Property 4.2, the time derivative of
the Lyapunov function candidate (9.12) along the solutions of the closed-loop
Equation (9.9), may be written as

V̇ (q̃, q̇, w) = −q̇T [Kv − αM(q)] q̇ − q̃T [αKp − Ki] q̃
− αq̃T C(q, q̇)T q̇ − αq̃T [g(qd) − g(q)] (9.14)

where we also used (3.20), i.e. g(q) = ∂U(q)/∂q .
From standard properties of symmetric positive definite matrices we con-

clude also that the first two terms of the derivative of the Lyapunov function
candidate above, satisfy the following inequalities:

−q̇T [Kv − αM(q)] q̇ ≤ − [λmin{Kv} − α λMax{M}] ‖q̇‖2

and
−q̃T [αKp − Ki] q̃ ≤ − [α λmin{Kp} − λMax{Ki}] ‖q̃‖2

respectively.
On the other hand, from Properties 4.2 and 4.3 and using:

• ‖C(x, y)z‖ ≤ kC1 ‖y‖ ‖z‖ ,
• ‖g(x) − g(y)‖ ≤ kg ‖x − y‖ ,

we may show that the last two terms in the expression of the derivative of the
Lyapunov function candidate satisfy

−αq̃T C(q, q̇)T q̇ ≤ α kC1 ‖q̃‖ ‖q̇‖2

and
−αq̃T [g(qd) − g(q)] ≤ α kg ‖q̃‖2

.
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Consequently, it also holds that

V̇ (q̃, q̇,w) ≤ −
[ ‖q̃‖
‖q̇‖

]T [
Q11 0
0 Q22(q̃)

] [ ‖q̃‖
‖q̇‖

]
(9.15)

where

Q11 = α [λmin{Kp} − kg] − λMax{Ki},
Q22(q̃) = λmin{Kv} − α [λMax{M} + kC1 ‖q̃‖] .

We show next that there exists a ball D of radius η > 0 centered at the
origin of the state space, that is,

D :=

⎧⎨⎩q̃, q̇,w ∈ IRn :

∥∥∥∥∥∥
w
q̃
q̇

∥∥∥∥∥∥ < η

⎫⎬⎭
on which V̇ (q̃, q̇,w) is negative semidefinite.

With this goal in mind, notice that we have from the condition (9.13)
imposed on α that

λmin{M}λmin{Kv} [λmin{Kp} − kg]
λMax{Ki} > λ2

Max{M} .

Since obviously λMax{M} ≥ λmin{M} , then

λmin{Kv} [λmin{Kp} − kg]
λMax{Ki} > λMax{M}

and knowing that kC1 ≥ 0, it readily follows that

1
kC1

[
λmin{Kv} [λmin{Kp} − kg]

λMax{Ki} − λMax{M}
]
≥ 0 . (9.16)

It is now convenient to define the radius η of the ball D centered at the
origin of the state space to be exactly the term on the left-hand side of the
inequality (9.16), that is

η :=
1

kC1

[
λmin{Kv} [λmin{Kp} − kg]

λMax{Ki} − λMax{M}
]

. (9.17)

It is important to observe that the radius η is not only positive but it
increases as λmin{Kp} and λmin{Kv} increase and as λMax{Ki} decreases,
while always satisfying the condition (9.13) on α.

We now show that V̇ (q̃, q̇,w) is negative semidefinite on the ball D. On
this region of the state space we have
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‖q̃‖ < η .

Incorporating the definition (9.17) of η we get

‖q̃‖ <
1

kC1

[
λmin{Kv} [λmin{Kp} − kg]

λMax{Ki} − λMax{M}
]

which, after some simple manipulations, yields the inequality

λmin{Kv}
λMax{M} + kC1 ‖q̃‖

>
λMax{Ki}

λmin{Kp} − kg

which is valid on the region D.
Since α is any real number that satisfies the condition (9.13) and in par-

ticular it satisfies

α >
λMax{Ki}

λmin{Kp} − kg
,

it can always be picked to satisfy also,

λmin{Kv}
λMax{M} + kC1 ‖q̃‖

> α >
λMax{Ki}

λmin{Kp} − kg

on the region D. It is precisely these inequalities that captures the conditions
on α such that the scalars Q11 and Q22(q̃) in the derivative (9.15) of the
Lyapunov function candidate are strictly positive. This implies that V̇ (q̃, q̇, w)
is negative semidefinite on the ball D with radius η defined by (9.17).

9.3 Asymptotic Stability

Summarizing, so far we have shown that if the matrices Kp, Kv and Ki of the
PID control law satisfy the conditions (9.10) and (9.11), then V (q̃, q̇, w) is
a globally positive definite function while V̇ (q̃, q̇, w) is negative semidefinite
– locally, though the domain of validity may be arbitrarily enlarged by an
appropriate choice of the control gains. Therefore, according to Theorem 2.2,
the origin of the closed-loop Equation (9.9), is a stable equilibrium. Since
V̇ (q̃, q̇,w) is not negative definite but only negative semidefinite, Theorem
2.4 cannot be invoked to prove asymptotic stability. Yet, since the closed-loop
Equation (9.9) is autonomous, we may use a local version of La Salle’s theorem
(i.e. a local version of Theorem 2.7).

Since the function V̇ (q̃, q̇,w) obtained in (9.15) is negative semidefinite
but only locally, Theorem 2.7 may not be invoked directly. Even though we do
not show this here4, it is also true that if in the statement of Theorem 2.7 we
4 See any of the cited texts on nonlinear systems.
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replace “V̇ (x) ≤ 0 for all x ∈ IRn”, by “V̇ (x) ≤ 0 for all x ∈ IRn sufficiently
small in norm” then, one can guarantee local asymptotic stability. We may
proceed to claim that in this case the set Ω is given by

Ω =
{

x ∈ IR3n : V̇ (x) = 0
}

=

⎧⎨⎩x =

⎡⎣w
q̃
q̇

⎤⎦ ∈ IR3n : V̇ (q̃, q̇, w) = 0

⎫⎬⎭
= {w ∈ IRn, q̃ = 0 ∈ IRn, q̇ = 0 ∈ IRn} .

Observe that from (9.14) and with the restrictions imposed on the choice
of α, it follows that V̇ (q̃, q̇, w) = 0 if and only if q̃ = 0 and q̇ = 0. For a
solution x(t) to belong to Ω for all t ≥ 0, it is necessary and sufficient that
q̃ = 0 and q̇(t) = 0 for all t ≥ 0. Therefore it must also hold that q̈(t) = 0
for all t ≥ 0. Taking this into consideration, we conclude from the closed-loop
Equation (9.9) that if x(t) ∈ Ω for all t ≥ 0, then

ẇ(t) = 0

0 =
1
α

M(qd)
−1Kiw(t) ,

which, since M(qd) is positive definite, implies that w(t) = 0 for all t ≥ 0.
Therefore,

[
w(0)T q̃(0)T q̇(0)T

]T = 0 ∈ IR3n is the only initial condition
in Ω for which x(t) ∈ Ω for all t ≥ 0. Finally, we conclude from all this that the
origin of the closed-loop Equation (9.9) is locally asymptotically stable. It is
worth emphasizing that in the particular situation of robots for which kC1 = 0,
e.g. a pendulum, some Cartesian robots or with transmission by levers, the
function V̇ (q̃, q̇, w) obtained in (9.15), is globally negative semidefinite. In
this situation, the asymptotic stability of the origin is also global.

The analysis developed so far applies to the classic PID control law given
by (9.3) and (9.4). We have also assumed that the joint desired position qd

is constant. In the practical implementation of the PID controller on ordi-
nary personal computers, the desired position qd may be a piecewise constant
function, being constant in between two sampling times. Therefore, before
and after the sampling times, the desired position qd takes constant values
which are usually different, and at the sampling instant there occurs an abrupt
change of magnitude. For this reason, the position error q̃ = qd − q, and the
control action τ = Kpq̃−Kvq̇+Kiξ also vary abruptly at the sampling times.
Consequently, the control action τ demands instantaneous variations to the
actuators; in this situation the latter may be damaged or, simply, we may
obtain unacceptable performance in some tasks.

With the aim of conserving the advantages of PID control but avoiding this
undesirable phenomenon, several modifications to the classical PID control
have been proposed in the literature. An interesting modification is
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τ = −Kpq − Kvq̇ + Kiξ

where

ξ(t) =
∫ t

0

q̃(σ) dσ + ξ(0) .

This modified PID control preserves exactly the same closed-loop Equation
(9.7) that the classical PID control, but with z defined by

z = ξ − K−1
i [g(qd) + Kpqd] .

Therefore, the analysis and conclusions established above also apply to
this modified PID control.

9.4 Tuning Procedure

From the stability analysis presented in the previous subsections we can draw
a tuning procedure which is fairly simple for PID control. This method yields
symmetric matrices Kp, Kv and Ki that guarantee achievement of the position
control objective, locally.

The procedure stems from (9.11) and from the condition (9.13) imposed
on α and may be summarized in terms of the eigenvalues of the gain matrices
as follows:

• λMax{Ki} ≥ λmin{Ki} > 0 ;

• λMax{Kp} ≥ λmin{Kp} > kg ;

• λMax{Kv} ≥ λmin{Kv} >
λMax{Ki}

λmin{Kp} − kg
· λMax

2{M}
λmin{M} .

It is important to underline that this tuning procedure requires knowledge
of the structure of the inertia matrix M(q) and of the vector of gravita-
tional torques g(q) of the robot in question. This, is necessary to compute
λmin{M(q)}, λMax{M(q)} and kg respectively. Nonetheless, since it is suffi-
cient to have upper-bounds on λMax{M(q)} and kg, and a lower-bound for
λmin{M(q)} to use the tuning procedure, it is not necessary to know the exact
values of the dynamic parameters of the robot, e.g. masses and inertias, but
only the bounds.

Next, we present an example in order to show an application of the ideas
discussed above.

Example 9.2. Consider the 2-DOF Pelican robot shown in Figure 9.3.
The elements of the inertia matrix M(q) are
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l2

lc2
q2

q1

I1 m1

g

y

x

l1

m2

I2

lc1Link 1

Link 2

Figure 9.3. Diagram of the Pelican prototype robot

M11(q) = m1l
2
c1 + m2

[
l21 + l2c2 + 2l1lc2 cos(q2)

]
+ I1 + I2

M12(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M21(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M22(q) = m2l
2
c2 + I2.

The components of the gravitational torques vector g(q), are given
by

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2).

The purpose of this example is to use the tuning procedure pre-
sented above in order to determine suitable gain matrices Kp, Kv and
Ki. First, we compute the value of kg and then that of the eigenvalues
λmin{M(q)} and λMax{M(q)}.

Using Property 4.3, as well as the elements of the vector of gravi-
tational torques g(q), we obtain

kg = n

(
Max i,j,q

∣∣∣∣∂gi(q)
∂qj

∣∣∣∣)
= n(m1lc1 + m2l1 + m2lc2)g
= 23.94

[
kg m2/s2

]
where we also used the numerical values of the robot parameters listed
in Table 5.1 on page 115.
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We proceed next to compute λmin{M(q)} and λMax{M(q)}, which
for this robot depend only on q2; we do this by evaluating the matrix
M(q) for a set of values of q2 between 0 and 2π, and extracting the
corresponding eigenvalues. The values obtained are

λmin{M(q)} = 0.011
[
kg m2

]
,

λMax{M(q)} = 0.361,
[
kg m2

]
which correspond to q2 = 0.

With the numerical values of λmin{M(q)}, λMax{M(q)} and kg,
and following the tuning procedure, we finally determine the following
matrices:

Ki = diag{1.5} [Nm / (rad s)] ,
Kp = diag{30} [Nm / rad] ,
Kv = diag{7, 3} [Nm s / rad] .

0.0 12.5 25.0 37.5 50.0
−0.1

0.0

0.1

0.2

0.3

0.4 [rad]

q̃1

q̃2

t [s]





Figure 9.4. Graphs of position errors q̃1 and q̃2

Figure 9.4 depicts the position errors against time; notice that
the scale on the ordinates axis spans up to 50 s which is longer than
the intervals used elsewhere. We may conclude from this, that the
transient response is slower than those obtained with PD control with
gravity compensation (see Figure 7.3) and PD control with desired
gravity compensation (see Figure 8.4). This is due to the fact that the
control gains of the PID control law were chosen according with the
tuning procedure exposed in this chapter, which limits the maximal
eigenvalue of Ki by a relatively small upper-bound.

However, as may be appreciated from Figure 9.5, if the tuning pro-
cedure is violated the performance of PID control improves to parallel
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Figure 9.5. Graphs of position errors q̃1 and q̃2

the respective performances of PD control with gravity compensation
and PD control with desired gravity compensation. The latter exper-
imental results have been obtained with the following gains:

Kp =
[

30 0
0 30

]
[Nm / rad] ,

Kv =
[

7 0
0 3

]
[Nm s / rad] ,

Ki =
[

70 0
0 100

]
[Nm / (rad s)] ,

that is, Kp and Kv have the same values than in the cases of the
PD-based control laws. ♦

9.5 Conclusions

We may summarize the ideas of this chapter as follows. Consider PID control
for n-DOF robots and assume that the desired position qd is constant.

• If the symmetric matrices Kp, Kv and Ki of the PID control law satisfy

(i ) λMax{Ki} ≥ λmin{Ki} > 0

(ii) λMax{Kp} ≥ λmin{Kp} > kg

(iii) λMax{Kv} ≥ λmin{Kv} >
λMax{Ki}

λmin{Kp} − kg
· λMax

2{M}
λmin{M}
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then the origin of the closed-loop equation, expressed in terms of the state
vector

[
wT q̃T q̇T

]T
is locally asymptotically stable. Consequently, if

the initial conditions are “sufficiently small”, we have limt→∞ q̃(t) = 0.
Nevertheless, this conclusion holds also for “large” initial conditions as long
as λmin{Kp} and λmin{Kv} also are “large” and λMax{Ki} are “small”.
If the terms of centrifugal and Coriolis forces, C(q, q̇) do not appear in
the robot dynamic model then, the asymptotic stability is global.
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Problems

1. Consider the model of an ideal pendulum studied in Example 2.2 (see
page 30)

Jq̈ + mgl sin(q) = τ .

Assume that the PID control
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τ = kpq̃ + kv
˙̃q + ki

∫ t

0

q̃(σ) dσ

is used to drive the position q to a desired constant position qd.

a) Obtain the closed-loop equation in terms of the state vector [w q̃ q̇]T ,
where

w = α

∫ t

0

q̃(σ) dσ − α
mgl

ki
sin(qd) + q̃

with α > 0 .
b) Show, by means of a candidate Lyapunov function that if

• ki > 0,

• kp > mgl,

• kv >
ki J

kp − mgl
,

then the origin of the closed-loop equation is globally asymptotically
stable.

c) Does this imply that limt→∞ q̃(t) = 0 for all q̃(0) ∈ IR ?

2. Verify the expression of V̇ (q̃, q̇, z) given in Equation (9.14).
3. Consider the PID control law with gravity compensation for the position

control problem (i.e. with constant desired position, qd) for n-DOF robots
and whose control law is

τ = Kpq̃ + Kv
˙̃q + Kiξ + g(q)

ξ̇ = q̃ .

a) Obtain the closed-loop equation in terms of the state vector
[
ξT q̃T

q̇T
]T

. Verify that the origin is an equilibrium of the closed-loop equa-
tion.

b) Explain why the following tuning policy guarantees local asymptotic
stability of the origin.
• λMax{Ki} ≥ λmin{Ki} > 0,

• λMax{Kp} ≥ λmin{Kp} > 0,

• λMax{Kv} ≥ λmin{Kv} >
λMax{Ki}
λmin{Kp} · λMax

2{M}
λmin{M} .

Hint: The only difference with the tuning procedure established above is
the absence of kg in the expressions for Kp and Kv.

4. Consider the PID control law given by (9.1). Show that this is equivalent
to

τ = K ′
pq̃ − Kvq̇ + K ′

i

∫ t

0

[
αq̃(σ) + ˙̃q(σ)

]
dσ
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where
K ′

p = Kp − 1
α

Ki

K ′
i =

1
α

Ki

for all α 
= 0 .
5. Consider the linear multivariable system described by the equation:

M ẍ + Cẋ + g = u

where x ∈ IRn is part of the state and at the same time, the output of
the system, u ∈ IRn is the input, M, C ∈ IRn×n are symmetric positive
definite constant matrices and g ∈ IRn is constant as well.
Consider the application of PID control to drive the state trajectories x(t)
to a constant vector xd ∈ IRn, i.e.

u = Kpx̃ − Kvẋ + Kiξ

ξ̇ = x̃

where x̃ = xd − x.
a) Obtain the closed-loop equation expressed in terms of the state[

ξT x̃T ẋT
]T

.

b) Verify that the point ⎡⎢⎢⎣
ξ

x̃

ẋ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
K−1

i g

0

0

⎤⎥⎥⎦ ∈ IR3n

of the closed-loop equation is the unique equilibrium.
c) Use the tuning procedure presented in this chapter to suggest a pol-

icy of tuning that guarantees asymptotic stability of the equilibrium
for the closed-loop equation. Can it be shown that the asymptotic
stability is actually global ?
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Consider the dynamic model of a robot manipulator with n degrees of freedom,
rigid links, no friction at the joints and with ideal actuators, (3.18), which we
repeat here for ease of reference:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (III.1)

In terms of the state vector
[
qT q̇T

]T
these equations are rewritten as

d

dt

⎡⎣ q

q̇

⎤⎦ =

⎡⎣ q̇

M(q)−1 [τ (t) − C(q, q̇)q̇ − g(q)]

⎤⎦
where M(q) ∈ IRn×n is the inertia matrix, C(q, q̇)q̇ ∈ IRn is the vector of
centrifugal and Coriolis forces, g(q) ∈ IRn is the vector of gravitational torques
and τ ∈ IRn is a vector of external forces and torques applied at the joints.
The vectors q, q̇, q̈ ∈ IRn denote the position, velocity and joint acceleration
respectively.

The problem of motion control, tracking control, for robot manipulators
may be formulated in the following terms. Consider the dynamic model of an
n-DOF robot (III.1). Given a set of vectorial bounded functions qd, q̇d and q̈d

referred to as desired joint positions, velocities and accelerations we wish to
find a vectorial function τ such that the positions q, associated to the robot’s
joint coordinates follow qd accurately.

In more formal terms, the objective of motion control consists in finding τ
such that

lim
t→∞ q̃(t) = 0

where q̃ ∈ IRn stands for the joint position errors vector or is simply called
position error, and is defined by

q̃(t) := qd(t) − q(t) .
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Considering the previous definition, the vector ˙̃q(t) = q̇d(t) − q̇(t) stands
for the velocity error. The control objective is achieved if the manipulator’s
joint variables follow asymptotically the trajectory of the desired motion.

The computation of the vector τ involves in general, a vectorial nonlinear
function of q, q̇ and q̈. This function is called “control law” or simply, “con-
troller”. It is important to recall that robot manipulators are equipped with
sensors to measure position and velocity at each joint henceforth, the vectors
q and q̇ are measurable and may be used by the controllers. In some robots,
only measurement of joint position is available and joint velocities may be
estimated. In general, a motion control law may be expressed as

τ = τ (q, q̇, q̈, qd, q̇d, q̈d,M(q), C(q, q̇), g(q)) .

However, for practical purposes it is desirable that the controller does not
depend on the joint acceleration q̈ since accelerometers are usually highly
sensitive to noise.

Figure III.1 presents the block-diagram of a robot in closed loop with a
motion controller.

ROBOTCONTROLLER τ q
q̇

qd

q̇d

q̈d

Figure III.1. Motion control: closed-loop system

In this third part of the textbook we carry out the stability analysis of a
group of motion controllers for robot manipulators. As for the position control
problem, the methodology to analyze the stability may be summarized in the
following steps.

1. Derivation of the closed-loop dynamic equation. Such an equation is ob-
tained by replacing the control action control τ in the dynamic model of
the manipulator. In general, the closed-loop equation is a nonautonomous
nonlinear ordinary differential equation since qd = qd(t).

2. Representation of the closed-loop equation in the state-space form,

d

dt

[
qd − q
q̇d − q̇

]
= f(q, q̇, qd, q̇d, q̈d,M(q), C(q, q̇), g(q)) .
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This closed-loop equation may be regarded as a dynamic system whose
inputs are qd, q̇d and q̈d, and whose outputs are the state vectors q̃ =
qd−q and ˙̃q = q̇d−q̇. Figure III.2 shows the corresponding block-diagram.

CONTROLLER

ROBOT
+q̈d

q̇d

qd

q̃
˙̃q

Figure III.2. Motion control closed-loop system in its input–output representation

3. Study of the existence and possible unicity of the equilibrium for the
closed-loop equation

d

dt

[
q̃
˙̃q

]
= f̃(t, q̃, ˙̃q) (III.2)

where f̃ is obtained by replacing q with qd(t) − q̃ and q̇ with q̇d(t) − ˙̃q.
Whence the dependence of f̃ on t. That is, the closed-loop system equation
is nonautonomous.
Thus, for Equation (III.2) we want to verify that the origin, [q̃T , ˙̃q

T
]T = 0

∈ IR2n is an equilibrium and whether it is unique.
4. Proposal of a Lyapunov function candidate to study the stability of any

equilibrium of interest for the closed-loop equation, by using the Theorems
2.2, 2.3 and 2.4. In particular, verification of the required properties, i.e.
positivity and, negativity of the time derivative. Notice that in this case,
we cannot use La Salle’s theorem (cf. Theorem 2.7) since the closed-loop
system is described, in general, by a nonautonomous differential equation.

5. Alternatively to step 4, in the case that the proposed Lyapunov func-
tion candidate appears to be inappropriate (that is, if it does not satisfy
all of the required conditions) to establish the stability properties of the
equilibrium under study, we may use Lemma 2.2 by proposing a positive
definite function whose characteristics allow one to determine the quali-
tative behavior of the solutions of the closed-loop equation. In particular,
the convergence of part of the state.

The rest of this third part is divided in three chapters. The controllers
that we consider are, in order,

• Computed torque control and computed torque+ control.
• PD control with compensation and PD+ control.
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• Feedforward control and PD plus feedforward control.

For references regarding the problem of motion control of robot manipu-
lators see the Introduction of Part II on page 139.



10

Computed-torque Control and
Computed-torque+ Control

In this chapter we study the motion controllers:

• Computed-torque control and
• Computed-torque+ control.

Computed-torque control allows one to obtain a linear closed-loop equation
in terms of the state variables. This fact has no precedent in the study of the
controllers studied in this text so far. On the other hand, computed-torque+
control is characterized for being a dynamic controller, that is, its complete
control law includes additional state variables. Finally, it is worth anticipating
that both of these controllers satisfy the motion control objective with a trivial
choice of their design parameters.

The contents of this chapter have been taken from the references cited at
the end. The reader interested in going deeper into the material presented
here is invited to consult these and the references therein.

10.1 Computed-torque Control

The dynamic model (III.1) that characterizes the behavior of robot manipula-
tors is in general, composed of nonlinear functions of the state variables (joint
positions and velocities). This feature of the dynamic model might lead us
to believe that given any controller, the differential equation that models the
control system in closed loop should also be composed of nonlinear functions
of the corresponding state variables. This intuition is confirmed for the case
of all the control laws studied in previous chapters. Nevertheless, there exists
a controller which is also nonlinear in the state variables but which leads to a
closed-loop control system which is described by a linear differential equation.
This controller is capable of fulfilling the motion control objective, globally
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and moreover with a trivial selection of its design parameters. It receives the
name computed-torque control.

The computed-torque control law is given by

τ = M(q)
[
q̈d + Kv

˙̃q + Kpq̃
]

+ C(q, q̇)q̇ + g(q) , (10.1)

where Kv and Kp are symmetric positive definite design matrices and q̃ =
qd − q denotes as usual, the position error.

Notice that the control law (10.1) contains the terms Kpq̃ + Kv
˙̃q which

are of the PD type. However, these terms are actually premultiplied by the
inertia matrix M(qd − q̃). Therefore this is not a linear controller as the
PD, since the position and velocity gains are not constant but they depend
explicitly on the position error q̃. This may be clearly seen when expressing
the computed-torque control law given by (10.1) as

τ = M(qd − q̃)Kpq̃ + M(qd − q̃)Kv
˙̃q + M(q)q̈d + C(q, q̇)q̇ + g(q) .

Computed-torque control was one of the first model-based motion control
approaches created for manipulators, that is, in which one makes explicit
use of the knowledge of the matrices M(q), C(q, q̇) and of the vector g(q).
Furthermore, observe that the desired trajectory of motion qd(t), and its
derivatives q̇d(t) and q̈d(t), as well as the position and velocity measurements
q(t) and q̇(t), are used to compute the control action (10.1).

The block-diagram that corresponds to computed-torque control of robot
manipulators is presented in Figure 10.1.

q
q̇

Σ

Σ

Σ

Σ M(q)

C(q, q̇)

ROBOT

g(q)

τ

Kv Kp

q̈d

q̇d

qd

Figure 10.1. Block-diagram: computed-torque control

The closed-loop equation is obtained by substituting the control action τ
from (10.1) in the equation of the robot model (III.1) to obtain

M(q)q̈ = M(q)
[
q̈d + Kv

˙̃q + Kpq̃
]

. (10.2)
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Since M(q) is a positive definite matrix (Property 4.1) and therefore it is also
invertible, Equation (10.2) reduces to

¨̃q + Kv
˙̃q + Kpq̃ = 0

which in turn, may be expressed in terms of the state vector
[
q̃T ˙̃q

T
]T

as

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

−Kpq̃ − Kv
˙̃q

⎤⎦
=

⎡⎣ 0 I

−Kp −Kv

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ , (10.3)

where I is the identity matrix of dimension n.
It is important to remark that the closed-loop Equation (10.3) is repre-

sented by a linear autonomous differential equation, whose unique equilibrium

point is given by
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n. The unicity of the equilibrium fol-
lows from the fact that the matrix Kp is designed to be positive definite and
therefore nonsingular.

Since the closed-loop Equation (10.3) is linear and autonomous, its so-
lutions may be obtained in closed form and be used to conclude about the
stability of the origin. Nevertheless, for pedagogical purposes we proceed to
analyze the stability of the origin as an equilibrium point of the closed-loop
equation. We do this using Lyapunov’s direct method.

To that end, we start by introducing the constant ε satisfying

λmin{Kv} > ε > 0 .

Multiplying by xT x where x ∈ IRn is any nonzero vector, we obtain
λmin{Kv}xT x > εxT x. Since Kv is by design, a symmetric matrix then
xT Kvx ≥ λmin{Kv}xT x and therefore,

xT [Kv − εI] x > 0 ∀ x 
= 0 ∈ IRn .

This means that the matrix Kv − εI is positive definite, i.e.

Kv − εI > 0 . (10.4)

Considering all this, the positivity of the matrix Kp and that of the con-
stant ε we conclude that

Kp + εKv − ε2I > 0 . (10.5)
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Consider next the Lyapunov function candidate

V (q̃, ˙̃q) =
1
2

⎡⎣ q̃

˙̃q

⎤⎦T⎡⎣Kp + εKv εI

εI I

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦
=

1
2

[
˙̃q + εq̃

]T[
˙̃q + εq̃

]
+

1
2
q̃T

[
Kp + εKv − ε2I

]
q̃ (10.6)

where the constant ε satisfies (10.4) and of course, also (10.5). From this, it
follows that the function (10.6) is globally positive definite. This may be more
clear if we rewrite the Lyapunov function candidate V (q̃, ˙̃q) in (10.6) as

V (q̃, ˙̃q) =
1
2

˙̃q
T˙̃q +

1
2
q̃T[Kp + εKv] q̃ + εq̃T ˙̃q .

Evaluating the total time derivative of V (q̃, ˙̃q) we get

V̇ (q̃, ˙̃q) = ¨̃q
T ˙̃q + q̃T [Kp + εKv] ˙̃q + ε ˙̃q

T ˙̃q + εq̃T ¨̃q .

Substituting ¨̃q from the closed-loop Equation (10.3) in the previous ex-
pression and making some simplifications we obtain

V̇ (q̃, ˙̃q) = − ˙̃q
T
[Kv − εI] ˙̃q − εq̃TKpq̃

= −
⎡⎣ q̃

˙̃q

⎤⎦T⎡⎣ εKp 0

0 Kv − εI

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ . (10.7)

Now, since ε is chosen so that Kv − εI > 0, and since Kp is by design
positive definite, the function V̇ (q̃, ˙̃q) in (10.7) is globally negative definite.

In view of Theorem 2.4, we conclude that the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n

of the closed-loop equation is globally uniformly asymptotically stable and
therefore

lim
t→∞

˙̃q(t) = 0

lim
t→∞ q̃(t) = 0

from which it follows that the motion control objective is achieved. As a matter
of fact, since Equation (10.3) is linear and autonomous this is equivalent to
global exponential stability of the origin.

For practical purposes, the design matrices Kp and Kv may be chosen diag-
onal. This means that the closed-loop Equation (10.3) represents a decoupled
multivariable linear system that is, the dynamic behavior of the errors of each
joint position is governed by second-order linear differential equations which
are independent of each other. In this scenario the selection of the matrices
Kp and Kv may be made specifically as
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Kp = diag
{
ω2

1 , · · · , ω2
n

}
Kv = diag {2ω1, · · · , 2ωn} .

With this choice, each joint responds as a critically damped linear system
with bandwidth ωi. The bandwidth ωi defines the velocity of the joint in
question and consequently, the decay exponential rate of the errors q̃(t) and
˙̃q(t). Therefore, in view of these expressions we may not only guarantee the
control objective but we may also govern the performance of the closed-loop
control system.

Example 10.1. Consider the equation of a pendulum of length l and
mass m concentrated at its tip, subject to the action of gravity g and
to which is applied a torque τ at the axis of rotation that is,

ml2q̈ + mgl sin(q) = τ,

where q is the angular position with respect to the vertical. For this
example we have M(q) = ml2, C(q, q̇) = 0 and g(q) = mgl sin(q). The
computed-torque control law (10.1), is given by

τ = ml2
[
q̈d + kv

˙̃q + kpq̃
]
+ mgl sin(q),

with kv > 0, kp > 0. With this control strategy it is guaranteed that
the motion control objective is achieved globally.

♦

Next, we present the experimental results obtained for the Pelican proto-
type presented in Chapter 5 under computed-torque control.

Example 10.2. Consider the Pelican prototype robot studied in Chap-
ter 5, and shown in Figure 5.2. Consider the computed-torque control
law (10.1) on this robot for motion control.

The desired reference trajectory, qd(t), is given by Equation (5.7).
The desired velocities and accelerations q̇d(t) and q̈d(t), were ana-
lytically found, and they correspond to Equations (5.8) and (5.9),
respectively.

The symmetric positive definite matrices Kp and Kv are chosen as

Kp = diag{ω2
1 , ω2

2} = diag{1500, 14000} [1/s]
Kv = diag{2ω1, 2ω2} = diag{77.46, 236.64} [

1/s2
]

,

where we used ω1 = 38.7 [rad/s] and ω2 = 118.3 [rad/s].
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Figure 10.2. Graph of position errors against time

The initial conditions which correspond to the positions and ve-
locities, are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .

Figure 10.2 shows the experimental position errors. The steady-
state position errors are not zero due to the friction effects of the
actual robot which nevertheless, are neglected in the analysis. ♦

10.2 Computed-torque+ Control

Most of the controllers analyzed so far in this textbook, both for position as
well as for motion control, have the common structural feature that they use
static state feedback (of joint positions and velocities). The exception to this
rule are the PID control and the controllers that do not require measurement
of velocities, studied in Chapter 13.

In this section1 we study a motion controller which uses dynamic state
feedback. As we show next, this controller basically consists in one part that
1 The material of this section may appear advanced to some readers; in particular,

for a senior course on robot control since it makes use of results involving con-
cepts such as ‘functional spaces’, material exposed in Appendix A and reserved
for the advanced student. Therefore, the material may be skipped if convenient
without affecting the continuity of the exposition of motion controllers. The ma-
terial is adapted from the corresponding references cited as usual, at the end of
the chapter.
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is exactly equal to the computed-torque control law given by the expression
(10.1), and a second part that includes dynamic terms. Due to this character-
istic, this controller was originally called computed-torque control with com-
pensation, however, in the sequel we refer to it simply as computed-torque+.

The reason to include the computed-torque+ control as subject of study
in this text is twofold. First, the motion controllers analyzed previously use
static state feedback; hence, it is interesting to study a motion controller whose
structure uses dynamic state feedback. Secondly, computed-torque+ control
may be easily generalized to consider an adaptive version of it, which allows
one to deal with uncertainties in the model (cf. Part IV).

The equation corresponding to the computed-torque+ controller is given
by

τ = M(q)
[
q̈d + Kv

˙̃q + Kpq̃
]

+ C(q, q̇)q̇ + g(q) − C(q, q̇)ν (10.8)

where Kv and Kp are symmetric positive definite design matrices, the vector
q̃ = qd − q denotes as usual, the position error and the vector ν ∈ IRn is
obtained by filtering the errors of position q̃ and velocity ˙̃q, that is,

ν = − bp

p + λ
˙̃q − b

p + λ

[
Kv

˙̃q + Kpq̃
]
, (10.9)

where p is the differential operator (i.e. p := d
dt ) and λ, b are positive design

constants. For simplicity, and with no loss of generality, we take b = 1.
Notice that the difference between the computed-torque and computed-

torque+ control laws given by (10.1) and (10.8) respectively, resides exclu-
sively in that the latter contains the additional term C(q, q̇)ν.

The implementation of computed-torque+ control expressed by (10.8) and
(10.9) requires knowledge of the matrices M(q), C(q, q̇) and of the vector
g(q) as well as of the desired motion trajectory qd(t), q̇d(t) and q̈d(t) and
measurement of the positions q(t) and of the velocities q̇(t). It is assumed
that C(q, q̇) in the control law (10.8) was obtained by using the Christoffel
symbols (cf. Equation 3.21). The block-diagram corresponding to computed-
torque+ control is presented in Figure 10.3.

Due to the presence of the vector ν in (10.8) the computed-torque+ control
law is dynamic, that is, the control action τ depends not only on the actual
values of the state vector formed by q and q̇, but also on its past values. This
fact has as a consequence that we need additional state variables to completely
characterize the control law. Indeed, the expression (10.9) in the state space
form is a linear autonomous system given by

d

dt

⎡⎣ ξ1

ξ2

⎤⎦ =

⎡⎣−λI 0

0 −λI

⎤⎦⎡⎣ ξ1

ξ2

⎤⎦ +

⎡⎣Kp Kv

0 −λI

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ (10.10)
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Σ
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1
p + λ

p

p + λ

g(q)

Figure 10.3. Computed-torque+ control

ν = [−I −I ]

⎡⎣ ξ1

ξ2

⎤⎦− [ 0 I ]

⎡⎣ q̃

˙̃q

⎤⎦ (10.11)

where ξ1, ξ2 ∈ IRn are the new state variables.
To derive the closed-loop equation we combine first the dynamic equation

of the robot (III.1) with that of the controller (10.8) to obtain the expression

M(q)
[
¨̃q + Kv

˙̃q + Kpq̃
]
− C(q, q̇)ν = 0 . (10.12)

In terms of the state vector
[
q̃T ˙̃q

T
ξT

1 ξT
2

]T

, the equations (10.12),
(10.10) and (10.11) allow one to obtain the closed-loop equation

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q̃

˙̃q

ξ1

ξ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

˙̃q

−M(q)−1C(q, q̇)
[
ξ1 + ξ2 + ˙̃q

]
− Kv

˙̃q − Kpq̃

−λξ1 + Kpq̃ + Kv
˙̃q

−λξ2 − λ ˙̃q

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (10.13)

of which the origin
[
q̃T ˙̃q

T
ξT

1 ξT
2

]T

= 0 ∈ IR4n is an equilibrium point.



10.2 Computed-torque+ Control 235

The study of global asymptotic stability of the origin of the closed-loop
Equation (10.13) is actually an open problem in the robot control academic
community. Nevertheless we can show that the functions q̃(t), ˙̃q(t) and ν(t) are
bounded and, using Lemma 2.2, that the motion control objective is verified.

To analyze the control system we first proceed to write it in a different
but equivalent form. For this, notice that the expression for ν given in (10.9)
allows one to derive

ν̇ + λν = −
[
¨̃q + Kv

˙̃q + Kpq̃
]

. (10.14)

Incorporating (10.14) in (10.12) we get

M(q) [ν̇ + λν] + C(q, q̇)ν = 0 . (10.15)

The previous equation is the starting point in the analysis that we present
next. Consider now the following non-negative function

V (t, ν, q̃) =
1
2
νTM(qd − q̃)ν ≥ 0 ,

which, even though it does not satisfy the conditions to be a Lyapunov func-
tion candidate for the closed-loop Equation (10.13), it is useful in the proofs
that we present below. Specifically, V (ν, q̃) may not be a Lyapunov function
candidate for the closed-loop Equation (10.13) since it is not a positive defi-
nite function of the whole state, that is, considering all the state variables q̃,
˙̃q, ξ1 and ξ2. Notice that it does not even depend on all the state variables.

The derivative with respect to time of V (ν, q̃) is given by

V̇ (ν, q̃) = νTM(q)ν̇ +
1
2
νTṀ(q)ν .

Solving for M(q)ν̇ in Equation (10.15) and substituting in the previous
equation we obtain

V̇ (ν, q̃) = −νTλM(q)ν ≤ 0 (10.16)

where the term νT
[

1
2Ṁ − C

]
ν was canceled by virtue of Property 4.2. Now,

considering V (ν, q̃) and (10.16) we see that

V̇ (ν, q̃) = −2λV (ν, q̃) ,

which in turn implies that

V (ν(t), q̃(t)) = V (ν(0), q̃(0))e−2λt .

Invoking Property 4.1 that there exists a constant α > 0 such that M(q) ≥ αI,
we obtain
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α ν(t)Tν(t) ≤ ν(t)TM(q(t))ν(t) = 2V (ν(t), q̃(t))

from which we finally get

ν(t)Tν(t)︸ ︷︷ ︸
‖ν(t)‖2

≤ 2V (ν(0), q̃(0))
α

e−2λt . (10.17)

This means that that ν(t) → 0 exponentially.
On the other hand, the Equation (10.14) may also be written as

(p + λ)ν = − [
p2I + pKv + Kp

]
q̃

or in equivalent form as

q̃ = −(p + λ)
[
p2I + pKv + Kp

]−1
ν . (10.18)

Since λ > 0, while Kv and Kp are positive definite symmetric matrices,
Equation (10.14) written in the form above defines a linear dynamic system
which is exponentially stable and strictly proper (i.e. where the degree of
the denominator is strictly larger than that of the numerator). The input to
this system is ν which tends to zero exponentially fast, and its output q̃. So
we invoke the fact that a stable strictly proper filter with an exponentially
decaying input produces an exponentially decaying output2, that is,

lim
t→∞ q̃(t) = 0 ,

which means that the motion control objective is verified.
It is interesting to remark that the equation of the computed-torque+

controller (10.8), reduces to the computed-torque controller given by (10.1) in
the particular case of manipulators that do not have the centrifugal and forces
matrix C(q, q̇). Such is the case for example, of Cartesian manipulators.

Next, we present the experimentation results obtained for the computed-
torque+ control on the Pelican robot.

Example 10.3. Consider the 2-DOF prototype robot studied in Chapter
5, and shown in Figure 5.2.

Consider the computed-torque+ control law given by (10.8), (10.10)
and (10.11) applied to this robot.

The desired trajectories are those used in the previous examples,
that is, the robot must track the position, velocity and acceleration
trajectories qd(t), q̇d(t) and q̈d(t) given by Equations (5.7)–(5.9).

2 The technical details of why the latter is true rely on the use of Corollary A.2
which is reserved to the advanced reader.
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Figure 10.4. Graph of position errors against time

The symmetric positive definite matrices Kp and Kv, and the con-
stant λ are taken as

Kp = diag{ω2
1 , ω2

2} = diag{1500, 14000} [1/s]
Kv = diag{2ω1, 2ω2} = diag{77.46, 236.64} [

1/s2
]

λ = 60 .

The initial conditions of the controller state variables are fixed at

ξ1(0) = 0, ξ2(0) = 0 .

The initial conditions corresponding to the actual positions and
velocities are set to

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .

Figure 10.4 shows the experimental tracking position errors. It is
interesting to remark that the plots presented in Figure 10.2 obtained
with the computed-torque control law, present a considerable similar-
ity to those of Figure 10.4. ♦

10.3 Conclusions

The conclusions drawn from the analysis presented in this chapter may be
summarized as follows.
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• For any choice of the symmetric positive definite matrices Kp and Kv, the
origin of the closed-loop equation by computed-torque control expressed in

terms of the state vector
[
q̃T ˙̃q

T
]T

, is globally uniformly asymptotically
stable. Therefore, computed-torque control satisfies the motion control ob-
jective, globally. Consequently, for any initial position error q̃(0) ∈ IRn

velocity error ˙̃q(0) ∈ IRn, we have limt→∞ q̃(t) = 0.
• For any selection of the symmetric positive definite matrices Kp and Kv,

and any positive constant λ, computed-torque+ control satisfies the mo-
tion control objective, globally. Consequently, for any initial position error
q̃(0) ∈ IRn and velocity error ˙̃q(0) ∈ IRn, and for any initial condition of
the controller ξ1(0) ∈ IRn, ξ2(0) ∈ IRn, we have limt→∞ q̃(t) = 0.
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Problems

1. Consider the Cartesian robot 2-DOF shown in Figure 10.5.

x0

y0

z0

q1

q2

x0

y0

z0

q1

q2

m1

m2

Figure 10.5. Problem 1. Cartesian 2-DOF robot.

a) Obtain the dynamic model and specifically determine explicitly M(q),
C(q, q̇) and g(q).

b) Write the computed-torque control law and give explicitly τ1 and τ2.

2. Consider the model of an ideal pendulum with mass m concentrated at
the tip, at length l from its axis of rotation, under the control action of a
torque τ and a constant external additional torque τe,

ml2q̈ + mgl sin(q) = τ − τe .

To control the motion of this device we use a computed-torque controller
that is,

τ = ml2
[
q̈d + kv

˙̃q + kpq̃
]
+ mgl sin(q),

where kp > 0 and kv > 0. Show that

lim
t→∞ q̃(t) =

τe

kpml2
.

Hint: Obtain the closed-loop equation in terms of the state vector
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⎡⎣ q̃ − τe

kpml2

˙̃q

⎤⎦T

and show that the origin is globally asymptotically stable.
3. Consider the model of an ideal pendulum as described in the previous

problem to which is applied a control torque τ , and an external torque τe

from torsional spring of constant ke > 0 (τe = keq),

ml2q̈ + mgl sin(q) = τ − keq .

To control the motion of such a device we use the computed-torque con-
troller

τ = ml2
[
q̈d + kv

˙̃q + kpq̃
]
+ mgl sin(q)

where kp > 0 and kv > 0. Assume that qd is constant. Show that

lim
t→∞ q̃(t) =

ke

kpml2 + ke
qd .

Hint: Obtain the closed-loop equation in terms of the state vector⎡⎢⎣ q̃ − ke

kpml2 + ke
qd

q̇

⎤⎥⎦
and show that the origin is a globally asymptotically stable equilibrium.

4. Consider the model of an ideal pendulum described in Problem 2 under
the control action of a torque τ , i.e.

ml2q̈ + mgl sin(q) = τ .

Assume that the values of the parameters l and g are exactly known, but
for the mass m only an approximate value m0 is known. To control the
motion of this device we use computed-torque control where m has been
substituted by m0 since the value of m is assumed unknown, that is,

τ = m0l
2
[
q̈d + kv

˙̃q + kpq̃
]
+ m0gl sin(q),

where kp > 0 and kv > 0.

a) Obtain the closed-loop equation in terms of the state vector
[
q̃ ˙̃q

]T
.

b) Verify that independently of the value of m and m0 (but with m 
= 0),
the origin

[
q̃ ˙̃q

]T
= 0 ∈ IR2 is an equilibrium of the closed-loop

equation if the desired position qd(t) satisfies

q̈d(t) +
g

l
sin(qd(t)) = 0 ∀ t ≥ 0 .
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5. Consider the closed-loop equation obtained with the computed-torque+

controller given by Equation (10.13) and whose origin
[
q̃T ˙̃q

T
ξT

1 ξT
2

]T

= 0 is an equilibrium. Regarding the variable ν we shown in (10.17) that

ν(t)Tν(t)︸ ︷︷ ︸
‖ν(t)‖2

≤ 2V (ν(0), q̃(0))
α

e−2λt .

On the other hand we have from (10.10) and (10.18)

ξ1 =
1

p + λ

[
Kpq̃ + Kv

˙̃q
]

ξ2 = − λ

p + λ
˙̃q

q̃ = −(p + λ)
[
p2I + pKv + Kp

]−1
ν

where Kp and Kv are symmetric positive definite matrices. Assume that
the robot has only revolute joints.
a) May we also conclude that q̃(t), ˙̃q(t), ξ1(t) and ξ2(t) tend exponen-

tially to zero ?
b) Would the latter imply that the origin is globally exponentially stable?

6. In this chapter it was shown that the origin of the robot system in closed
loop with the computed-torque controller is globally uniformly asymptot-
ically stable. Since the closed-loop system is linear autonomous, it was
observed that this is equivalent to global exponential stability. Verify this
claim using Theorem 2.5.



11

PD+ Control and PD Control with
Compensation

As we have seen in Chapter 10 the motion control objective for robot ma-
nipulators may be achieved globally by means of computed-torque control.
Computed-torque control belongs to the so-called class of feedback linearizing
controllers. Roughly, the technique of feedback linearization in its simplest
form consists in applying a control law such that the closed-loop equations
are linear. Historically, the motivation to develop feedback-linearization based
controllers is that the stability theory of linear systems is far more developed
than that of nonlinear systems. In particular, the tuning of the gains of such
controllers is trivial since the resulting system is described by linear differen-
tial equation.

While computed-torque control was one of the first model-based controllers
for robot manipulators, and rapidly gained popularity it has the disadvantages
of other feedback-linearizing controllers: first, it requires a considerable com-
puting load since the torque has to be computed on-line so that the closed-loop
system equations become linear and autonomous, and second, it relies on a
very accurate knowledge of the system. This second feature may be of signif-
icant importance since the computed-torque control law contains the vector,
of centrifugal and Coriolis forces vector, C(q, q̇)q̇, which contains quadratic
terms of the components of the joint velocities. The consequence of this is that
high order nonlinearities appear in the control law and therefore, in the case of
model uncertainty, the control law introduces undesirable high order nonlin-
earities in the equations of the closed-loop system. Moreover, even in the case
that the model is accurately known, the control law increases proportionally
to the square of certain components of the vector of joint velocities hence,
these demanded large control actions may drive the actuators into saturation.

In this chapter we present two controllers whose control laws are based on
the dynamic equations of the system but which also involve certain nonlinear-
ities that are evaluated along the desired trajectories, i.e. the desired motion.
These control systems are presented in increasing order of complexity with
respect to their stability analyses. They are:
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• PD control with compensation and
• PD+ control.

These controllers have been thoroughly studied in the literature and, as
for the other chapters, the corresponding references are given at the end. For
clarity of exposition each of these controllers is treated in separate sections.

11.1 PD Control with Compensation

In 1987 an adaptive controller to solve the motion control problem of robot
manipulators was reported in the literature. This controller, which over the
years has become increasingly popular within the academic environment, is
often referred to by the names of its creators: ‘Slotine and Li controller’. The
related references are presented at the end of the chapter. While this controller
is the subject of inquiry in Chapter 16 its ‘non-adaptive’ version is studied
in this first section of the present chapter in its non-adaptive version. From a
purely structural viewpoint, the control law of this controller is formed by a
‘PD’ term plus a ‘compensation’ term hence, one could also call it “PD plus
compensation control”.

The material of this section has been taken from the references cited at
the end of the text. The PD control law with compensation may be written
as

τ = Kpq̃ + Kv
˙̃q + M(q)

[
q̈d + Λ ˙̃q

]
+ C(q, q̇) [q̇d + Λq̃] + g(q), (11.1)

where Kp,Kv ∈ IRn×n are symmetric positive definite design matrices, q̃ =
qd − q denotes the position error and Λ is defined as

Λ = Kv
−1Kp .

Notice that Λ is the product of two symmetric positive definite matrices.
Even though in general this matrix may or may not be symmetric or positive
definite, it is always nonsingular. This characteristic of Λ will be of utility
later on. It is assumed that the centrifugal and Coriolis matrix C(q, q̇) is
built using the Christoffel symbols (cf. Equation 3.21).

Observe that the first two terms on the right-hand side of the control
law (11.1) correspond to the PD control law. PD control with compensation
is model-based, that is, the control law explicitly uses the terms from the
model of the robot (III.1), M(q), C(q, q̇) and g(q). Figure 11.1 presents the
block-diagram that corresponds to the PD control law with compensation.

The closed-loop equation is obtained by substituting the control action
τ from the control law (11.1) in the equation of the robot model (III.1), to
obtain
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q
q̇

Σ

Σ

Σ

Σ ΣΣ

C(q, q̇) KpKv

Λ

Λ

q̈d

q̇d

qd

τ
ROBOT

g(q)

M(q)

Figure 11.1. Block-diagram: PD control with compensation

M(q)
[
¨̃q + Λ ˙̃q

]
+ C(q, q̇)

[
˙̃q + Λq̃

]
= −Kpq̃ − Kv

˙̃q,

which may be expressed in terms of the state vector
[
q̃T ˙̃q

T
]T

as

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

M(q)−1
[
−Kpq̃ − Kv

˙̃q − C(q, q̇)
[
˙̃q + Λq̃

]]
− Λ ˙̃q

⎤⎦ , (11.2)

that is, this differential equation is nonautonomous and has the origin
[
q̃T ˙̃q

T
]T

=

0 ∈ IR2n as an equilibrium point.
The stability analysis of the origin of the closed-loop equation may be

carried out by considering the Lyapunov function candidate

V (t, q̃, ˙̃q) =
1
2

⎡⎣ q̃

˙̃q

⎤⎦T⎡⎣ 2Kp + ΛTM(qd − q̃)Λ ΛTM(qd − q̃)

M(qd − q̃)Λ M(qd − q̃)

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ .

At first sight it may not appear evident that this Lyapunov function candidate
is positive definite but it may help that we rewrite it in the following form:

V (t, q̃, ˙̃q) =
1
2

[
˙̃q + Λq̃

]T

M(q)
[
˙̃q + Λq̃

]
+ q̃TKpq̃ (11.3)

which is equivalent to

V (t, q̃, ˙̃q) =
1
2

[ ˙̃q
q̃

]T [
I ΛT

0 I

] [
2Kp 0
0 M(q)

] [
I 0
Λ I

]
︸ ︷︷ ︸

BT AB

[ ˙̃q
q̃

]
. (11.4)
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And we see from Lemma 2.1 (cf. page 24) that the matrix product BT AB,
above, is positive definite since Kp and M(q) are positive definite1.

Also, it is apparent from (11.4) that V (t, q̃, ˙̃q) satisfies

V (t, q̃, ˙̃q) ≥ 1
2
λmin{BT AB}

[
‖ ˙̃q‖2 + ‖q̃‖2

]
so it is also radially unbounded. Correspondingly, since the inertia matrix is
bounded uniformly in q, from (11.3), we have

V (t, q̃, ˙̃q) ≤ 1
2
λMax{M}

∥∥∥ ˙̃q + Λq̃
∥∥∥2

+ λMax{Kp} ‖q̃‖2

hence, V (t, q̃, ˙̃q) is also decrescent.
It is interesting to mention that the function (11.3) may be regarded as

an extension of the Lyapunov function (11.9) used in the study of the PD+
control. Indeed, both functions are the same if, as well as in the control laws,
Λ is set to zero.

The time derivative of the Lyapunov function candidate (11.3) is

V̇ (q̃, ˙̃q) =
[
˙̃q + Λq̃

]T

M(q)
[
¨̃q + Λ ˙̃q

]
+

1
2

[
˙̃q + Λq̃

]T

Ṁ(q)
[
˙̃q + Λq̃

]
+ 2q̃TKp

˙̃q . (11.5)

Solving for M(q)¨̃q in the closed-loop Equation (11.2) and substituting in
the previous equation, we obtain

V̇ (t, q̃, ˙̃q) = −
[
˙̃q + Λq̃

]T

Kv

[
˙̃q + Λq̃

]
+ 2q̃T Kp

˙̃q,

where we canceled the term[
˙̃q + Λq̃

]T
[
1
2
Ṁ(q) − C(q, q̇)

] [
˙̃q + Λq̃

]
by virtue of Property 4.2. Now, using Kp = KvΛ, the equation of V̇ (t, q̃, ˙̃q)
reduces finally to

V̇ (t, q̃, ˙̃q) = − ˙̃q
T
Kv

˙̃q − q̃TΛTKvΛq̃

= −
⎡⎣ q̃

˙̃q

⎤⎦T⎡⎣ΛT KvΛ 0

0 Kv

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ . (11.6)

Recalling again Lemma 2.1, since Kv is symmetric positive definite and Λ
is nonsingular, we conclude that ΛTKvΛ is positive definite. Consequently,
1 See Remark 2.1 on page 25.
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V̇ (t, q̃, ˙̃q) given by (11.6) is indeed a globally negative definite function. Since
moreover the Lyapunov function candidate (11.3) is globally positive definite,
from Theorem 2.4 we conclude immediately global uniform asymptotic sta-

bility of the equilibrium
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n. Consequently, for any initial
position and velocity error we have

lim
t→∞

˙̃q(t) = lim
t→∞ (q̇d(t) − q̇(t)) = 0

lim
t→∞ q̃(t) = lim

t→∞ (qd(t) − q(t)) = 0,

thus, the motion control objective is verified.
Next, we present some experimental results for the PD control with com-

pensation on the Pelican robot.

l2

lc2
q2

q1

I1 m1

g

y

x

l1

m2

I2

lc1Link 1

Link 2

Figure 11.2. Diagram of the Pelican robot

Example 11.1. Consider the Pelican robot presented in Chapter 5, and
shown in Figure 11.2. The numerical values of its parameters are listed
in Table 5.1.

Consider this robot under PD control with compensation (11.1). It
is desired that the robot tracks the trajectories qd(t), q̇d(t) and q̈d(t)
represented by Equations (5.7)–(5.9).

The symmetric positive definite matrices Kp and Kv are chosen so
that
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Kp = diag{200, 150} [Nm/rad] ,
Kv = diag{3} [N m s/rad] ,

and therefore Λ = K−1
v Kp = diag{66.6, 50} [1/s].

The initial conditions corresponding to the positions and velocities
are

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .
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Figure 11.3. Graph of position errors against time

Figure 11.3 shows that the experimental tracking position errors
q̃(t) remain acceptably small. Although in view of the stability anal-
ysis of the control system we could expect that the tracking errors
vanish, a number of practical aspects – neglected in the theoretical
analysis – are responsible for the resulting behavior; for instance, the
fact of digitally implementing the robot control system, the sampling
period, the fact of estimating (and not measuring) velocities and, most
importantly, in the case of the Pelican, friction at the joints. ♦

11.2 PD+ Control

PD+ control is without doubt one of the simplest control laws that may be
used in the control of robot manipulators with a formal guarantee of the
achievement of the motion control objective, globally. The PD+ control law
is given by
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τ = Kpq̃ + Kv
˙̃q + M(q)q̈d + C(q, q̇)q̇d + g(q) (11.7)

where Kp,Kv ∈ IRn×n are symmetric positive definite matrices chosen by
the designer and as is customary, q̃ = qd − q denotes the position error.
The centrifugal and Coriolis matrix C(q, q̇) is assumed to be chosen by us-
ing the Christoffel symbols (cf. Equation 3.21). This ensures that the matrix
1
2Ṁ(q) − C(q, q̇) is skew-symmetric; a feature that will be useful in the sta-
bility analysis.

The practical implementation of PD+ control requires the exact knowl-
edge of the model of the manipulator, that is, of M(q), C(q, q̇) and g(q). In
addition, it is necessary to know the desired trajectories qd(t), q̇d(t) and q̈d(t)
as well as to have the measurements q(t) and q̇(t). Figure 11.4 depicts the
corresponding block-diagram of the PD+ control for robot manipulators.

q
q̇

C(q, q̇)

ROBOTq̈d

q̇d

qd

g(q)

Σ

Σ

Σ

τ
M(q)

KpKv

Figure 11.4. Block-diagram: PD+ control

Notice that in the particular case of position control, that is, when q̇d =
q̈d = 0 ∈ IRn, PD+ control described by (11.7) is equivalent to PD control
with gravity compensation, (7.1).

The equation which governs the behavior in closed loop is obtained by
substituting the control action τ of the control law (11.7) in the equation of
the robot model (III.1) to get

M(q)¨̃q + C(q, q̇) ˙̃q = −Kpq̃ − Kv
˙̃q .

Notice that the closed-loop equation may be written in terms of the state[
q̃T ˙̃q

T
]T

as

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

M(qd − q̃)−1
[
−Kpq̃ − Kv

˙̃q − C(qd − q̃, q̇d − ˙̃q) ˙̃q
]
⎤⎦ , (11.8)
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which is a nonlinear differential equation – in general, nonautonomous. The
latter is due to the fact that this equation depends explicitly on the functions
of time: qd(t) and q̇d(t).

Moreover, it is immediate to see the only equilibrium point of the closed-

loop equation is the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n. Therefore, if q(0) = qd(0)
and q̇(0) = q̇d(0), then q(t) = qd(t) and q̇(t) = q̇d(t) for all t ≥ 0. Notice that
the latter follows simply from the concept of equilibrium without needing to
invoke any other argument. However, to draw conclusions for the case when
q(0) 
= qd(0) or q̇(0) 
= q̇d(0) it is necessary to proceed to the stability analysis
of the equilibrium.

To analyze the stability of the origin consider now the following Lyapunov
function candidate

V (t, q̃, ˙̃q) =
1
2

⎡⎣ q̃

˙̃q

⎤⎦T⎡⎣Kp 0

0 M(qd − q̃)

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦
=

1
2

˙̃q
T
M(q) ˙̃q +

1
2
q̃TKpq̃, (11.9)

which is positive definite since both the inertia matrix M(q) and the matrix
of position (or proportional) gains, Kp, are positive definite.

Taking the time derivative of (11.9) we obtain

V̇ (t, q̃, ˙̃q) = ˙̃q
T
M(q)¨̃q +

1
2

˙̃q
T
Ṁ(q) ˙̃q + q̃TKp

˙̃q .

Solving for M(q)¨̃q of the closed-loop Equation (11.8) and substituting in
the previous equation,

V̇ (t, q̃, ˙̃q) = − ˙̃q
T
Kv

˙̃q

= −
⎡⎣ q̃

˙̃q

⎤⎦T⎡⎣ 0 0

0 Kv

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ ≤ 0 (11.10)

where the term ˙̃q
T
[

1
2Ṁ − C

]
˙̃q has been canceled by virtue of Property

4.2. From Theorem 2.3 we immediately conclude stability of the origin[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n and, by Theorem 2.3, the state remains bounded.

Notice that the expression (11.10) is similar to that obtained for the Lya-
punov function used to analyze the stability of the robot in closed loop with
PD control with gravity compensation (cf. Inequality 7.4). For that controller
we used La Salle’s theorem to conclude global asymptotic stability. With this
under consideration one might also be tempted to conclude global asymptotic
stability for the origin of the closed-loop system with the PD+ controller that
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is, for the origin of (11.8). Nevertheless, this procedure would be incorrect
since we remind the reader that the closed-loop Equation (11.8) is nonau-
tonomous due to the presence of qd = qd(t). Hence, Theorem (2.7) cannot be
used.

Alternatively, we may use Lemma 2.2 to conclude that the position and
velocity errors are bounded and the velocity error is square-integrable, i.e. it
satisfies: ∫ ∞

0

∥∥∥ ˙̃q(t)
∥∥∥2

dt < ∞ . (11.11)

Taking into account these observations, we show next that the velocity
error ˙̃q tends asymptotically to zero. For this, notice from the closed-loop
Equation (11.8) that

¨̃q = M(q)−1
[
−Kpq̃ − Kv

˙̃q − C(q, q̇) ˙̃q
]

(11.12)

where the terms on the right-hand side are bounded due to the following. We
know that q̃(t) and ˙̃q(t) are bounded and that M(q) and C(q, q̇) are bounded
matrices provided that their arguments are also bounded. Now, due to the
boundedness of q̃ and ˙̃q, we have q(t) = −q̃(t)+qd(t), and q̇(t) = − ˙̃q(t)+q̇d(t)
are also bounded since the desired position and velocity qd and q̇d are bounded
vector functions. Under these conditions, the acceleration error ¨̃q(t) in (11.12)
is a bounded vector function of time. The latter, together with (11.11) and
Lemma 2.2, imply that

lim
t→∞

˙̃q(t) = lim
t→∞ (q̇d(t) − q̇(t)) = 0 ∈ IRn .

Unfortunately, from the study sketched above, it is not possible to draw
any immediate conclusion about the asymptotic behavior of the position error
q̃. For this, we need to show not only stability of the origin, as has already
been done, but we also need to prove asymptotic stability. As mentioned
above, La Salle’s theorem (cf. Theorem 2.7) cannot be used to study global
asymptotic stability since the closed-loop Equation (11.8) is nonautonomous.
However, we stress that one may show that the origin of (11.8) is global
uniform asymptotic stability by other means. For instance, invoking the so-
called Matrosov’s theorem which applies nonautonomous differential equations
specifically in the case that the derivative of the Lyapunov function is only
negative semidefinite. The study of this theorem is beyond the scope of this
text, hence reader is invited to see the references cited at the end of the chapter
for more details on this subject.

Yet for the sake of completeness, we present in the next subsection an alter-
native analysis of global uniform asymptotic stability by means of a Lyapunov
function which has a negative definite derivative.

Example 11.2. Consider the model of an ideal pendulum of length l
with mass m concentrated at its tip, subject to the action of gravity g
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and to which a torque τ is applied at the axis of rotation (see Example
2.2) that is,

ml2q̈ + mgl sin(q) = τ

where we identify M(q) = ml2, C(q, q̇) = 0 and g(q) = mgl sin(q).
For this example, the PD+ control law given by (11.7) becomes

τ = kpq̃ + kv
˙̃q + ml2q̈d + mgl sin(q)

where kp and kv are real positive numbers. The closed-loop equation
is

ml2¨̃q + kv
˙̃q + kpq̃ = 0

which constitutes a linear autonomous differential equation whose
unique equilibrium

[
q̃ ˙̃q

]T
= 0 ∈ IR2, as can easily be shown, is

globally exponentially stable. ♦

Next, we present experimental results obtained for the Pelican 2-DOF
robot under PD+ control.

Example 11.3. Consider the 2-DOF prototype robot studied in Chapter
5, and shown in Figure 11.2.

Consider the application of PD control+ (11.7) to this robot. The
joint desired trajectories of position, velocity and acceleration, qd(t),
q̇d(t) and q̈d(t), are given by Equations (5.7)–(5.9) on page 128.

The symmetric positive definite matrices Kp and Kv are chosen as

Kp = diag{200, 150} [N m/rad]
Kv = diag{3} [Nm s/rad] .

The initial conditions corresponding to the positions and velocities,
are fixed at

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .

Figure 11.5 presents the experimental steady state tracking posi-
tion errors q̃(t), which, in view of the practical aspects mentioned in
Example 11.1 (mainly friction phenomena), do not vanish. ♦

Comparing the experimental results in Figures 11.5 and 11.3, we see that
PD control with compensation behaves better than PD+ control, in the sense
that the tracking error |q̃1| satisfies a smaller bound.
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Figure 11.5. Graph of the position errors against time

11.2.1 Lyapunov Function for Asymptotic Stability

We present next an alternative stability analysis for the origin of the closed-
loop Equation (11.8). This study has been taken from the literature and its
reference is cited at the end of the chapter. The advantage of the study we
present in this section is that we use a Lyapunov function that allows one to
conclude directly global uniform asymptotic stability.

In the particular case that all the joints of the robot manipulator are rev-

olute, it may be shown that the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n is globally
uniformly asymptotically stable. This can be done by using a Lyapunov func-
tion somewhat more complex than the one proposed in (11.9) and exploiting
the properties presented in Chapter 4.

As stated in Property 4.1, the fact that a robot manipulator has only
revolute joints, implies that the largest eigenvalue λMax{M(q)} of the inertia
matrix is bounded. On the other hand, in this study we assume that the
desired joint velocity q̇d(t) is a bounded vector, but the bound does not need
to be known.

We present now the formal stability analysis. To study the stability prop-

erties of the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n of the closed-loop Equation (11.8),
consider the following Lyapunov function candidate:

V (t, q̃, ˙̃q) =
1
2

⎡⎣ q̃

˙̃q

⎤⎦T
⎡⎢⎣ Kp

ε0

1 + ‖�̃‖M(q)

ε0

1 + ‖�̃‖M(q) M(q)

⎤⎥⎦
⎡⎣ q̃

˙̃q

⎤⎦ (11.13)
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= W (t, q̃, ˙̃q) +
ε0

1 + ‖q̃‖︸ ︷︷ ︸
ε(q̃)

q̃T M(q) ˙̃q

where W (t, q̃, ˙̃q) is the Lyapunov function (11.9). The positive constant ε0 is
chosen so as to satisfy simultaneously the three inequalities:

•
√

λmin{Kp}
λMax{M(q)} > ε0 > 0 ;

• λmin{Kv}
2 (kC1 + 2λMax{M(q)}) > ε0 > 0 ;

• 2λmin{Kp}λmin{Kv}
(λMax{Kv} + kC1 ‖q̇d‖Max)

2 > ε0 > 0 ;

where kC1 > 0 is a constant such that ‖C(q, q̇)q̃‖ ≤ kC1 ‖q̇‖ ‖q̃‖ for all q ∈ IRn

(by Property 4.2) and ‖q̇d‖Max is the largest value of ‖q̇d(t)‖. It is important to
underline that in the study presented here, it is only required to guarantee the
existence of ε0 > 0 and it is not necessary to know its actual numerical value.
In particular, it is not necessary to know ‖q̇d‖Max. Fortunately, the existence
of ε0 > 0 is guaranteed since in the inequalities above, upper-bounds on ε0

exist (that is, they are finite) and are strictly positive.
Next, we show that the Lyapunov function candidate (11.13) is positive

definite provided that√
λmin{Kp}

λMax{M(q)} > ε0 > 0 ∀ q ∈ IRn . (11.14)

To show that under the previous condition the function (11.13) is positive
definite, we proceed in two steps. First, notice that since ε2

0 ≥ ε2 where ε =
ε0/(1 + ‖q̃‖), Inequality (11.14) implies that

λmin{Kp}
λMax{M(q)} > ε2 > 0 ∀ q ∈ IRn .

This in turn, implies that the matrix Kp − ε2M(q) is positive definite, i.e.

Kp − ε2M(q) > 0 .

On the other hand, the function (11.13) may be rewritten as

V (t, q̃, ˙̃q) =
1
2

[
˙̃q + εq̃

]T

M(q)
[
˙̃q + εq̃

]
+

1
2
q̃T

[
Kp − ε2M(q)

]
q̃

which is positive definite since so are M(q) and Kp − ε2M(q).
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To show that the function defined in (11.13) is also decrescent, notice that
V (t, q̃, ˙̃q) satisfies

V (t, q̃, ˙̃q) ≤ 1
2

[ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
]T [

λMax{Kp} ε0 λMax{M}
ε0 λMax{M} λMax{M}

] [ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
]

, (11.15)

for which we have used the fact that∣∣∣∣ ε0

1 + ‖q̃‖
∣∣∣∣ ‖q̃‖ ≤ ε0‖q̃‖ .

The matrix on the right-hand side of inequality (11.15) is positive definite
in view of the condition on ε0,√

λMax{Kp}
λMax{M(q)} > ε0 > 0 ∀ q ∈ IRn ,

which implies that the determinant of this matrix is positive, and which triv-
ially holds under hypothesis (11.14). Thus, the function (11.13) is positive
definite, radially unbounded and decrescent.

It is interesting to remark that the Lyapunov function candidate (11.13)
is very similar to that used for the study of the PD control law with gravity
compensation (7.8). On the other hand, the function (11.13) may be consid-
ered as a more general version of the previous Lyapunov function (11.9) which
corresponds to the case ε0 = 0.

Following the study of stability, the time derivative of the Lyapunov func-
tion candidate (11.13) is given by

V̇ (t, q̃, ˙̃q) = Ẇ (t, q̃, ˙̃q) + ε(q̃) ˙̃q
T
M(q) ˙̃q + ε(q̃)q̃TṀ(q) ˙̃q

+ ε(q̃)q̃TM(q)¨̃q + ε̇(q̃)q̃TM(q) ˙̃q (11.16)

where Ẇ (t, q̃, ˙̃q) corresponds to the right-hand side of (11.10), that is

Ẇ (t, q̃, ˙̃q) = − ˙̃q
T
Kv

˙̃q .

Taking into account the previous expression, substituting M(q)¨̃q from the
closed-loop Equation (11.8) and rearranging terms, Equation (11.16) becomes

V̇ (t, q̃, ˙̃q) = − ˙̃q
T
Kv

˙̃q + ε(q̃) ˙̃q
T
M(q) ˙̃q + ε(q̃)q̃T

[
Ṁ(q) − C(q, q̇)

]
˙̃q

− ε(q̃)q̃T
[
Kpq̃ + Kv

˙̃q
]

+ ε̇(q̃)q̃TM(q) ˙̃q . (11.17)

Now, considering Property 4.2 which establishes Ṁ(q) = C(q, q̇) +
C(q, q̇)T , Equation (11.17) becomes
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V̇ (q̃, ˙̃q) = − ˙̃q
T
Kv

˙̃q + ε(q̃) ˙̃q
T
M(q) ˙̃q + ε(q̃) ˙̃q

T
C(q, q̇)q̃︸ ︷︷ ︸

a(q̃, ˙̃q)

− ε(q̃)q̃T
[
Kpq̃ + Kv

˙̃q
]

+ ε̇(q̃)q̃TM(q) ˙̃q︸ ︷︷ ︸
b(q̃, ˙̃q)

. (11.18)

Next, we proceed to obtain upper-bounds on the terms a(q̃, ˙̃q) and b(q̃, ˙̃q).
Regarding the term a(q̃, ˙̃q) we have

a(q̃, ˙̃q) ≤
∣∣∣a(q̃, ˙̃q)

∣∣∣ =
∣∣∣ε ˙̃q

T
C(q, q̇)q̃

∣∣∣
≤ ε

∥∥∥ ˙̃q
∥∥∥ ‖C(q, q̇)q̃‖

≤ εkC1

∥∥∥ ˙̃q
∥∥∥ ‖q̇‖ ‖q̃‖

≤ εkC1

∥∥∥ ˙̃q
∥∥∥(∥∥∥ ˙̃q

∥∥∥ + ‖q̇d‖
)
‖q̃‖

=
ε0

1 + ‖q̃‖kC1 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥2

+ εkC1 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ ‖q̇d‖

≤ ε0kC1

∥∥∥ ˙̃q
∥∥∥2

+ εkC1 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ ‖q̇d‖

where once again, we used Property 4.2 (i.e. that ‖C(q, q̇)q̃‖ ≤ kC1 ‖q̇‖ ‖q̃‖
for all q ∈ IRn).

Next, regarding the term b(q̃, ˙̃q), first notice that

ε̇(q̃) = − ε0

‖q̃‖ [1 + ‖q̃‖]2 q̃T ˙̃q .

Taking this into account we obtain

b(q̃, ˙̃q) ≤
∣∣∣b(q̃, ˙̃q)

∣∣∣ =
∣∣∣ε̇(q̃)q̃TM(q) ˙̃q

∣∣∣
≤ ε0

‖q̃‖ [1 + ‖q̃‖]2
∣∣∣q̃T ˙̃q

∣∣∣ ∣∣∣q̃TM(q) ˙̃q
∣∣∣

≤ ε0

‖q̃‖ [1 + ‖q̃‖]2 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ ∣∣∣q̃TM(q) ˙̃q
∣∣∣

≤ ε0

‖q̃‖ [1 + ‖q̃‖]2 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ ‖q̃‖∥∥∥M(q) ˙̃q
∥∥∥

≤ ε0

‖q̃‖ [1 + ‖q̃‖]2 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ ‖q̃‖√λMax{M(q)TM(q)}
∥∥∥ ˙̃q

∥∥∥
≤ ε0

1 + ‖q̃‖︸ ︷︷ ︸
ε(q̃)

∥∥∥ ˙̃q
∥∥∥2

λMax{M(q)}
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where λMax{M} =
√

λMax{MTM}, since M(q) is a symmetric positive defi-
nite matrix function.

Keeping in mind the upper-bounds on a(q̃, ˙̃q) and b(q̃, ˙̃q), the derivative
V̇ (t, q̃, ˙̃q) of the Lyapunov function given by Equation (11.18), may be upper-
bounded as

V̇ (t, q̃, ˙̃q) ≤ − ˙̃q
T
Kv

˙̃q + ε ˙̃q
T
M ˙̃q + ε0kC1

∥∥∥ ˙̃q
∥∥∥2

+ εkC1 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ ‖q̇d‖

− εq̃T
[
Kpq̃ + Kv

˙̃q
]

+ ελMax{M}
∥∥∥ ˙̃q

∥∥∥2

(11.19)

where for simplicity in the notation we omitted the arguments of ε(q̃) and
M(q). Using the inequalities

• − ˙̃q
T
Kv

˙̃q ≤ − 1
2

˙̃q
T
Kv

˙̃q − λmin{Kv}
2

∥∥∥ ˙̃q
∥∥∥2

• ελMax{M}
∥∥∥ ˙̃q

∥∥∥2

≤ ε0λMax{M}
∥∥∥ ˙̃q

∥∥∥2

• ε ˙̃q
T
M(q) ˙̃q ≤ ελMax{M}

∥∥∥ ˙̃q
∥∥∥2

≤ ε0λMax{M}
∥∥∥ ˙̃q

∥∥∥2

,

we see that Inequality (11.19) may be rewritten in the form

V̇ (t, q̃, ˙̃q) ≤ −
⎡⎣ q̃

˙̃q

⎤⎦T⎡⎣ εKp
ε
2Kv

ε
2Kv

1
2Kv

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ + εkC1 ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ ‖q̇d‖

− 1
2

[λmin{Kv}−2ε0(kC1 + 2λMax{M})]
∥∥∥ ˙̃q

∥∥∥2

.

Notice that in addition V̇ (t, q̃, ˙̃q) may be upper-bounded in the following
manner:

V̇ (t, q̃, ˙̃q) ≤ −ε

⎡⎣ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
⎤⎦T

Q

⎡⎣ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
⎤⎦

︸ ︷︷ ︸
h(‖q̃‖ , ‖ ˙̃q‖)

− 1
2

[λmin{Kv}−2ε0 (kC1 + 2λMax{M})]︸ ︷︷ ︸
δ

∥∥∥ ˙̃q
∥∥∥2

, (11.20)

where the symmetric matrix Q is given by

Q =

⎡⎣ λmin{Kp} − 1
2 (λMax{Kv} + kC1 ‖q̇d‖)

− 1
2 (λMax{Kv} + kC1 ‖q̇d‖) 1

2ε0
λmin{Kv}

⎤⎦
and where we used
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• −ε

2
q̃TKv

˙̃q ≤ ε

2

∣∣∣q̃TKv
˙̃q
∣∣∣ ≤ ε

2
‖q̃‖

∥∥∥Kv
˙̃q
∥∥∥ ≤ ε

2
‖q̃‖

√
λMax{KT

vKv}
∥∥∥ ˙̃q

∥∥∥
• − 1

2ε
λmin{Kv}

∥∥∥ ˙̃q
∥∥∥2

= −1 + ‖q̃‖
2ε0

λmin{Kv}
∥∥∥ ˙̃q

∥∥∥2

≤ − 1
2ε0

λmin{Kv}
∥∥∥ ˙̃q

∥∥∥2

.

To guarantee that V̇ (t, q̃, ˙̃q) is a negative definite function, it is necessary
to pick ε0 appropriately. On one hand, it is required that δ > 0, that is

λmin{Kv}
2 (kC1 + 2λMax{M}) > ε0 .

On the other hand, it is also required that the matrix Q be positive definite.
The latter is guaranteed if

2λmin{Kp}λmin{Kv}
(λMax{Kv} + kC1 ‖q̇d‖Max)

2 > ε0,

where ‖q̇d‖Max ≥ ‖q̇d(t)‖ for all t ≥ 0, since the previous inequality implies
that

1
2ε0

λmin{Kp}λmin{Kv} − 1
4
(λMax{Kv} + kC1 ‖q̇d‖)2 > 0 ,

which actually corresponds to the determinant of Q.
To summarize, the inequality in (11.20) involving V̇ (t, q̃, ˙̃q), may be writ-

ten as
V̇ (t, q̃, ˙̃q) ≤ −ε(q̃) h(‖q̃‖ , ‖ ˙̃q‖) − c‖ ˙̃q‖2,

where, with the choice we made for ε0, it follows that h(‖q̃‖ ,
∥∥∥ ˙̃q

∥∥∥) is a positive

definite function and c > 0. The function V̇ (t, q̃, ˙̃q) is negative definite since
ε(q̃) h(‖q̃‖ , ‖ ˙̃q‖)−c| ˙̃q‖2 is a positive definite function of q and q̇. In particular,

• V̇ (t,0,0) = 0

• V̇ (t, q̃, ˙̃q) < 0 ∀
⎡⎣ ‖q̃‖

‖ ˙̃q‖

⎤⎦ 
= 0

• V̇ (t, q̃, ˙̃q) → −∞ when ‖q̃‖2 + ‖ ˙̃q‖2 → ∞ .

Thus, using Theorem 2.4 we conclude that the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n

is globally uniformly asymptotically stable.

11.3 Conclusions

We may summarize the ideas exposed in this chapter as follows:
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• For any selection of the symmetric positive definite matrices Kp and Kv,
the origin of the closed-loop equation of robots with the PD control law

with compensation, expressed in terms of the state vector
[
q̃T ˙̃q

T
]T

, is
globally uniformly asymptotically stable. Therefore, the PD control law
with compensation satisfies the motion control objective, globally. This
implies in particular, that for any initial position error q̃(0) ∈ IRn and any
velocity error ˙̃q(0) ∈ IRn, we have limt→∞ q̃(t) = 0.

• For any choice of the symmetric positive definite matrices Kp and Kv, the
origin of the closed-loop equation of a robot with the PD+ control law,

expressed in terms of the state vector
[
q̃T ˙̃q

T
]T

, is globally uniformly
asymptotically stable. Therefore, PD+ control satisfies the motion control
objective, globally. In particular, for any initial position error q̃(0) ∈ IRn

and velocity error ˙̃q(0) ∈ IRn, we have limt→∞ q̃(t) = 0.
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Problems

1. Consider the model of an ideal pendulum studied in Example 2.2 (see
page 30)

Jq̈ + mgl sin(q) = τ .

Assume that we apply the PD controller with compensation

τ = kpq̃ + kv
˙̃q + J [q̈d + λ ˙̃q] + mgl sin(q)

where λ = kp/kv, kp and kv are positive numbers.

a) Obtain the closed-loop equation in terms of the state vector
[
q̃ ˙̃q

]T
.

Verify that the origin is its unique equilibrium point.

b) Show that the origin
[
q̃ ˙̃q

]T
= 0 ∈ IR2 is globally asymptotically

stable .
Hint: Use the Lyapunov function candidate

V (q̃, ˙̃q) =
1
2
J
[ ˙̃q + λq̃

]2
+ kpq̃

2 .

2. Consider PD+ control for the ideal pendulum presented in Example 11.2.
Propose a Lyapunov function candidate to show that the origin

[
q̃ ˙̃q

]
=

[0 0]T = 0 ∈ IR2 of the closed-loop equation

ml2¨̃q + kv
˙̃q + kpq̃ = 0

is a globally asymptotically stable equilibrium point.
2 This, together with PD control with compensation were the first controls with

rigorous proofs of global uniform asymptotic stability proposed for the motion
control problem.
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3. Consider the model of the pendulum from Example 3.8 and illustrated in
Figure 3.13,(

Jm +
JL

r2

)
q̈ +

(
fm +

fL

r2
+

KaKb

Ra

)
q̇ +

kL

r2
sin(q) =

Ka

rRa
v

where
• v is the armature voltage (input)
• q is the angular position of the pendulum with respect to the vertical

(output),
and the rest of the parameters are constants related to the electrical and
mechanical parts of the system and which are positive and known.
It is desired to drive the angular position q(t) to a constant value qd. For
this, we propose to use the following control law of type PD+3,

v =
rRa

Ka

(
kpq̃ − kv q̇ +

kL

r2
sin(q)

)
with kp and kv positive design constants and q̃(t) = qd − q(t).
a) Obtain the closed-loop equation in terms of the state [q̃ q̇]T .
b) Verify that the origin is an equilibrium and propose a Lyapunov func-

tion to demonstrate its stability.
c) Could it be possible to show as well that the origin is actually globally

asymptotically stable?
4. Consider the control law

τ = Kpq̃ + Kv
˙̃q + M(q)q̈d + C(q, q̇d)q̇ + g(q) .

a) Point out the difference with respect to the PD+ control law given by
Equation (11.7)

b) Show that in reality, the previous controller is equivalent to the PD+
controller.
Hint: Use Property 4.2.

5. Verify Equation (11.6) by use of (11.5) .

3 Notice that since the task here is position control, in this case the controller is
simply of type PD with gravity compensation.
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Feedforward Control and PD Control plus
Feedforward

The practical implementation of controllers for robot manipulators is typically
carried out using digital technology. The way these control systems operate
consists basically of the following stages:

• sampling of the joint position q (and of the velocity q̇);
• computation of the control action τ from the control law;
• the ‘order’ to apply this control action is sent to the actuators.

In certain applications where it is required that the robot realize repetitive
tasks at high velocity, the previous stages must be executed at a high cadence.
The bottleneck in time-consumption terms, is the computation of the control
action τ . Naturally, a reduction in the time for computation of τ has the ad-
vantage of a higher processing frequency and hence a larger potential for the
execution of ‘fast’ tasks. This is the main reason for the interest in controllers
that require “little” computing power. In particular, this is the case for con-
trollers that use information based on the desired positions, velocities, and
accelerations qd(t), q̇d(t), and q̈d(t) respectively. Indeed, in repetitive tasks
the desired position qd(t) and its time derivatives happen to be vectorial pe-
riodic functions of time and moreover they are known once the task has been
specified. Once the processing frequency has been established, the terms in
the control law that depend exclusively on the form of these functions, may
be computed and stored in memory, in a look-up table. During computation
of the control action, these precomputed terms are simply collected out of
memory, thereby reducing the computational burden.

In this chapter we consider two control strategies which have been sug-
gested in the literature and which make wide use of precomputed terms in
their respective control laws:

• feedforward control;
• PD control plus feedforward.

Each of these controllers is the subject of a section in the present chapter.
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12.1 Feedforward Control

Among the conceptually simplest control strategies that may be used to con-
trol a dynamic system we find the so-called open-loop control, where the
controller is simply the inverse dynamics model of the system evaluated along
the desired reference trajectories.

For the case of linear dynamic systems, this control technique may be
roughly sketched as follows. Consider the linear system described by

ẋ = Ax + u

where x ∈ IRn is the state vector and at same time the output of the system,
A ∈ IRn×n is a matrix whose eigenvalues λi{A} have negative real part,
and u ∈ IRn is the input to the system. Assume that we specify a vectorial
function xd as well as its time derivative ẋd to be bounded. The control goal
is that x(t) → xd(t) when t → ∞. In other words, defining the errors vector
x̃ = xd −x, the control problem consists in designing a controller that allows
one to determine the input u to the system so that limt→∞ x̃(t) = 0. The
solution to this control problem using the inverse dynamic model approach
consists basically in substituting x and ẋ with xd and ẋd in the equation of
the system to control, and then solving for u, i.e.

u = ẋd − Axd .

In this manner, the system formed by the linear system to control and the
previous controller satisfies

˙̃x = Ax̃

which in turn is a linear system of the new state vector x̃ and moreover we
know from linear systems theory that since the eigenvalues of the matrix A
have negative real parts, then limt→∞ x̃(t) = 0 for all x̃(0) ∈ IRn.

In robot control, this strategy provides the supporting arguments to the
following argument. If we apply a torque τ at the input of the robot, the
behavior of its outputs q and q̇ is governed by (III.1), i.e.

d

dt

⎡⎣ q

q̇

⎤⎦ =

⎡⎣ q̇

M(q)−1 [τ − C(q, q̇)q̇ − g(q)]

⎤⎦ . (12.1)

If we wish that the behavior of the outputs q and q̇ be equal to that
specified by qd and q̇d respectively, it seems reasonable to replace q, q̇ and q̈
by qd, q̇d, and q̈d in the Equation (12.1) and to solve for τ . This reasoning
leads to the equation of the feedforward controller, given by

τ = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd) . (12.2)
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Notice that the control action τ does not depend on q nor on q̇, that is,
it is an open loop control. Moreover, such a controller does not possess any
design parameter. As with any other open-loop control strategy, this approach
needs the precise knowledge of the dynamic system to be controlled, that is,
of the dynamic model of the manipulator and specifically, of the structure
of the matrices M(q), C(q, q̇) and of the vector g(q) as well as knowledge
of their parameters (masses, inertias etc.). For this reason it is said that the
feedforward control is (robot-) ‘model-based’. The interest in a controller of
this type resides in the advantages that it offers in implementation. Indeed,
having determined qd, q̇d and q̈d (in particular for repetitive tasks), one may
determine the terms M(qd), C(qd, q̇d) and g(qd) off-line and easily compute
the control action τ according to Equation (12.2). This motivates the qualifier
“feedforward” in the name of this controller.

Nonetheless, one should not forget that a controller of this type has the
intrinsic disadvantages of open-loop control systems, e.g. lack of robustness
with respect to parametric and structural uncertainties, performance degra-
dation in the presence of external perturbations, etc. In Figure 12.1 we present
the block-diagram corresponding to a robot under feedforward control.

C(qd, q̇d) g(qd)

τ
ROBOT q

q̇

q̇d

qd

q̈d
M(qd) Σ Σ

Figure 12.1. Block-diagram: feedforward control

The behavior of the control system is described by an equation obtained
by substituting the equation of the controller (12.2) in the model of the robot
(III.1), that is

M(q)q̈ + C(q, q̇)q̇ + g(q) = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd) . (12.3)

To avoid cumbersome notation in this chapter we use from now on and
whenever it appears, the following notation

M = M(q)
Md = M(qd)
C = C(q, q̇)
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Cd = C(qd, q̇d)
g = g(q)

gd = g(qd) .

Equation (12.3) may be written in terms of the state vector
[
q̃T ˙̃q

T
]T

as

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

−M−1 [(Md − M)q̈d + Cdq̇d − Cq̇ + gd − g]

⎤⎦ ,

which represents an ordinary nonlinear nonautonomous differential equation.

The origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n is an equilibrium point of the previous equa-
tion but in general, it is not the only one. This is illustrated in the following
examples.

Example 12.1. Consider the model of an ideal pendulum of length l
with mass m concentrated at the tip and subject to the action of
gravity g. Assume that a torque τ is applied at the rotating axis

ml2q̈ + mgl sin(q) = τ

where we identify M(q) = ml2, C(q, q̇) = 0 and g(q) = mgl sin(q).
The feedforward controller (12.2), reduces to

τ = ml2q̈d + mgl sin(qd) .

The behavior of the system is characterized by Equation (12.3),

ml2q̈ + mgl sin(q) = ml2q̈d + mgl sin(qd)

or, in terms of the state
[
q̃ ˙̃q

]T
, by

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

− g
l [sin(qd) − sin(qd − q̃)]

⎤⎦ .

Clearly the origin
[
q̃ ˙̃q

]T
= 0 ∈ IR2 is an equilibrium but so are

the points
[
q̃ ˙̃q

]T
= [2nπ 0]T for any integer value that n takes. ♦

The following example presents the study of the feedforward control of a 3-
DOF Cartesian robot. The dynamic model of this manipulator is an innocuous
linear system.
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Example 12.2. Consider the 3-DOF Cartesian robot studied in Exam-
ple 3.4 (see page 69) and shown in Figure 3.5. Its dynamic model is
given by

[m1 + m2 + m3]q̈1 + [m1 + m2 + m3]g = τ1

[m1 + m2] q̈2 = τ2

m1q̈3 = τ3 ,

where we identify

M(q) =

⎡⎣m1 + m2 + m3 0 0
0 m1 + m2 0
0 0 m1

⎤⎦
C(q, q̇) = 0

g(q) =

⎡⎣ [m1 + m2 + m3]g
0
0

⎤⎦ .

Notice that the dynamic model is characterized by a linear differen-
tial equation. The “closed-loop” equation1 obtained with feedforward
control is given by

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ 0 I

0 0

⎤⎦⎡⎣ q̃

˙̃q

⎤⎦ ,

which has an infinite number of non-isolated equilibria given by[
q̃T ˙̃q

T
]T

=
[
q̃T 0T

]T ∈ IR2n,

where q̃ is any vector in IRn. Naturally, the origin is an equilibrium
but it is not isolated. Consequently, this equilibrium (and actually
any other) may not be asymptotically stable even locally. Moreover,
due to the linear nature of the equation that characterizes the control
system, it may be shown that in this case any equilibrium point is
unstable (see problem 12.2). ♦

The previous examples makes it clear that multiple equilibria may coexist
for the differential equation that characterizes the behavior of the control
system. Moreover, due to the lack of design parameters in the controller, it is
impossible to modify either the location or the number of equilibria, and even
1 Here we write “closed-loop” in quotes since as a matter of fact the control system

in itself is a system in open loop.
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less, their stability properties, which are determined only by the dynamics of
the manipulator. Obviously, a controller whose behavior in robot control has
these features is of little utility in real applications. As a matter of fact, its
use may yield catastrophic results in certain applications as we show in the
following example.

l2

lc2
q2

q1

I1 m1

g

y

x

l1

m2

I2

lc1Link 1

Link 2

Figure 12.2. Diagram of the Pelican prototype

Example 12.3. Consider the 2-DOF prototype robot studied in Chapter
5, and shown in Figure 12.2.

Consider the feedforward control law (12.2) on this robot. The
desired trajectory in joint space is given by qd(t) which is defined in
(5.7) and whose graph is depicted in Figure 5.5 (cf. page 129).

The initial conditions for positions and velocities are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .

Figure 12.3 presents experimental results; it shows the components
of position error q̃(t), which tend to a largely oscillatory behavior.
Naturally, this behavior is far from satisfactory.

♦
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Figure 12.3. Graphs of position errors q̃1 and q̃2

So far, we have presented a series of examples that show negative features
of the feedforward control given by (12.2). Naturally, these examples might
discourage a formal study of stability of the origin as an equilibrium of the
differential equation which models the behavior of this control system.

Moreover, a rigorous generic analysis of stability or instability seems to
be an impossible task. While we presented in Example 12.2 the case when
the origin of the equation which characterizes the control system is unstable,
Problem 12.1 addresses the case in which the origin is a stable equilibrium.

The previous observations make it evident that feedforward control, given
by (12.2), even with exact knowledge of the model of the robot, may be
inadequate to achieve the motion control objective and even that of position
control. Therefore, we may conclude that, in spite of the practical motivation
to use feedforward control (12.2) should not be applied in robot control.

Feedforward control (12.2) may be modified by the addition, for example,
of a feedback Proportional–Derivative (PD) term

τ = M(qd)q̈d + C(qd, q̇d)q̇d + g(qd) + Kpq̃ + Kv
˙̃q (12.4)

where Kp and Kv are the gain matrices (n × n) of position and velocity
respectively. The controller (12.4) is now a closed-loop controller in view of
the explicit feedback of q and q̇ used to compute q̃ and ˙̃q respectively. The
controller (12.4) is studied in the following section.

12.2 PD Control plus Feedforward

The wide practical interest in incorporating the smallest number of computa-
tions in real time to implement a robot controller has been the main motiva-
tion for the PD plus feedforward control law, given by
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τ = Kpq̃ + Kv
˙̃q + M(qd)q̈d + C(qd, q̇d)q̇d + g(qd), (12.5)

where Kp,Kv ∈ IRn×n are symmetric positive definite matrices, called gains
of position and velocity respectively. As is customary in this textbook, q̃ =
qd−q stands for the position error. The term ‘feedforward’ in the name of the
controller results from the fact that the control law uses the dynamics of the
robot evaluated explicitly at the desired motion trajectory. In the control law
(12.5), the centrifugal and Coriolis forces matrix, C(q, q̇), is assumed to be
computed via the Christoffel symbols (cf. Equation 3.21). This allows one to
ensure that the matrix 1

2Ṁ(q)−C(q, q̇) is skew-symmetric, a property which
is fundamental to the stability analysis of the closed-loop control system.

It is assumed that the manipulator has only revolute joints and that the
upper-bounds on the norms of desired velocities and accelerations, denoted as
‖q̇d‖M and ‖q̈d‖M, are known.

The PD control law plus feedforward given by (12.5) may be regarded as
a generalization of the PD control law with gravity precompensation (8.1).
Figure 12.4 shows the block-diagram corresponding to the PD control law
plus feedforward.

g(qd) Kv Kp

Σ Σ

qd

q̇d

C(qd, q̇d)

q̇
Σ

Σ

Σ

τ
ROBOT

q
q̈d M(qd)

Figure 12.4. Block-diagram: PD control plus feedforward

Reported experiences in the literature of robot motion control using the
control law (12.5) detail an excellent performance actually comparable with
the performance of the popular computed-torque control law, which is pre-
sented in Chapter 10. Nevertheless, these comparison results may be mislead-
ing since good performance is not only due to the controller structure, but
also to appropriate tuning of the controller gains.

The dynamics in closed loop is obtained by substituting the control action
τ from (12.5) in the equation of the robot model (III.1) to get

M(q)q̈ + C(q, q̇)q̇ + g(q) = Kpq̃ + Kv
˙̃q + M(qd)q̈d + C(qd, q̇d)q̇d + g(qd) .

(12.6)
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The closed-loop Equation (12.6) may be written in terms of the state

vector
[
q̃T ˙̃q

T
]T

as

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

M(q)−1
[
−Kpq̃ − Kv

˙̃q − C(q, q̇) ˙̃q − h(t, q̃, ˙̃q)
]
⎤⎦ (12.7)

where we remind the reader that h(t, q̃, ˙̃q) is the so-called residual dynamics,
given by

h(t, q̃, ˙̃q) = [M(qd) − M(q)]q̈d + [C(qd, q̇d) − C(q, q̇)]q̇d + g(qd) − g(q) .

See (4.12).

It is simple to prove that the origin [q̃T ˙̃q
T
]T = 0 ∈ IR2n of the state space

is an equilibrium, independently of the gain matrices Kp and Kv. However,
the number of equilibria of the system in closed loop, i.e.(12.7), depends on
the proportional gain Kp. This is formally studied in the following section.

12.2.1 Unicity of the Equilibrium

We present sufficient conditions on Kp that guarantee the existence of a unique
equilibrium (the origin) for the closed-loop Equation (12.7).

For the case of robots having only revolute joints and with a sufficiently

“large” choice of Kp, we can show that the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n is the
unique equilibrium of the closed-loop Equation (12.7). Indeed, the equilibria

are the constant vectors [q̃T ˙̃q
T
]T = [q̃∗T 0T ]T ∈ IR2n, where q̃∗ ∈ IRn is a

solution of
Kpq̃

∗ + h(t, q̃∗,0) = 0 . (12.8)

The previous equation is always satisfied by the trivial solution q̃∗ = 0 ∈
IRn, but this does not exclude other vectors q̃∗ from being solutions, depending
of course, on the value of the proportional gain Kp. Explicit conditions on the
proportional gain to ensure unicity of the equilibrium are presented next. To
that end define

k(q̃∗) = K−1
p h(t, q̃∗,0) .

The idea is to note that any fixed point q̃∗ ∈ IRn of k(q̃∗) is a solution of
(12.8). Hence, we wish to find conditions on Kp so that k(q̃∗) has a unique
fixed point. Given that q̃∗ = 0 is always a fixed point, then this shall be
unique.

Notice that for all vectors x,y ∈ IRn, we have
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‖k(x) − k(y)‖ ≤ ∥∥K−1
p [h(t, x,0) − h(t, y,0)]

∥∥
≤ λMax

{
K−1

p

} ‖h(t,x,0) − h(t,y,0)‖ .

On the other hand, using the definition of the residual dynamics (4.12),
we have

‖h(t, x,0) − h(t, y,0)‖ ≤ ‖[M(qd − y) − M(qd − x)] q̈d‖
+ ‖[C(qd − y, q̇d) − C(qd − x, q̇d)] q̇d‖
+ ‖g(qd − y) − g(qd − x)‖ .

From Properties 4.1 to 4.3 we guarantee the existence of constants kM , kC1 ,
kC2 and kg, associated to the inertia matrix M(q), to the matrix of centrifugal
and Coriolis forces C(q, q̇), and to the vector of gravitational torques g(q)
respectively, such that

‖M(x)z − M(y)z‖ ≤ kM‖x − y‖ ‖z‖,
‖C(x,z)w − C(y,v)w‖ ≤ kC1‖z − v‖ ‖w‖

+kC2‖z‖ ‖x − y‖ ‖w‖ ,

‖g(x) − g(y)‖ ≤ kg‖x − y‖ ,

for all v, w, x, y, z ∈ IRn. Taking into account this fact we obtain

‖h(t,x,0) − h(t, y,0)‖ ≤
[
kg + kM ‖q̈d‖M + kC2 ‖q̇d‖2

M

]
‖x − y‖ .

From this and using λMax

{
K−1

p

}
= 1/λmin {Kp}, since Kp is a symmetric

positive definite matrix, we get

‖k(x) − k(y)‖ ≤ 1
λmin {Kp}

[
kg + kM ‖q̈d‖M + kC2 ‖q̇d‖2

M

]
‖x − y‖ .

Finally, invoking the contraction mapping theorem (cf. Theorem 2.1 on
page 26), we conclude that

λmin {Kp} > kg + kM ‖q̈d‖M + kC2 ‖q̇d‖2
M (12.9)

is a sufficient condition for k(q̃∗) to have a unique fixed point, and therefore,
for the origin of the state space to be the unique equilibrium of the closed-loop
system, i.e. Equation (12.7).

As has been shown before, the PD control law plus feedforward, (12.5),
reduces to control with desired gravity compensation (8.1) in the case when
the desired position qd is constant. For this last controller, we shown in Section
8.2 that the corresponding closed-loop equation had a unique equilibrium if
λmin{Kp} > kg. It is interesting to remark that when qd is constant we recover
from (12.9), the previous condition for unicity.
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Example 12.4. Consider the model of an ideal pendulum of length l
with mass m concentrated at its tip and subject to the action of gravity
g. Assume that a torque τ is applied at the axis of rotation, that is

ml2q̈ + mgl sin(q) = τ .

The PD control law plus feedforward, (12.5), is in this case

τ = kpq̃ + kv
˙̃q + ml2q̈d + mgl sin(qd)

where kp and kv are positive design constants. The closed-loop equa-
tion is

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

− 1
ml2

[
kpq̃ + kv

˙̃q + mgl [sin(qd) − sin(qd − q̃)]
]
⎤⎦

which has an equilibrium at the origin
[
q̃ ˙̃q

]T
= 0 ∈ IR2. If qd(t) is

constant, there may exist additional equilibria
[
q̃ ˙̃q

]T
= [q̃∗ 0]T ∈ IR2

where q̃∗ is a solution of

kpq̃
∗ + mgl [sin(qd) − sin(qd − q̃∗)] = 0 .

Example 8.1 shows the case when the previous equation has three
solutions. For the same example, if kp is sufficiently large, it was shown
that q̃∗ = 0 is the unique solution.

We stress that according to Theorem 2.6, if there exist more than
one equilibrium, then none of them may be globally uniformly asymp-
totically stable. ♦

12.2.2 Global Uniform Asymptotic Stability

In this section we present the analysis of the closed-loop Equation (12.6) or
equivalently, of (12.7). In this analysis we establish conditions on the design
matrices Kp and Kv that guarantee global uniform asymptotic stability of
the origin of the state space corresponding to the closed-loop equation. We
assume that the symmetric positive definite matrix Kp is also diagonal.

Before studying the stability of the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n of the
closed-loop Equation (12.6) or (12.7), it is worth recalling Definition 4.1 of
the vectorial tangent hyperbolic function which has the form given in (4.13),
i.e.
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tanh(x) =

⎡⎢⎣ tanh(x1)
...

tanh(xn)

⎤⎥⎦ (12.10)

with x ∈ IRn. As stated in Definition 4.1, this function satisfies the following
properties for all x, ẋ ∈ IRn

• ‖tanh(x)‖ ≤ α1 ‖x‖
• ‖tanh(x)‖ ≤ α2

• ‖tanh(x)‖2 ≤ α3 tanh(x)T x

• ∥∥Sech2(x)ẋ
∥∥ ≤ α4 ‖ẋ‖

with α1, · · · , α4 > 0. For tanh(x) defined as in (4.13), the constants involved
are taken as α1 = 1, α2 =

√
n, α3 = 1, α4 = 1.

In the sequel we assume that given a constant γ > 0, the matrix Kv is
chosen sufficiently “large” in the sense that

λMax{Kv} ≥ λmin{Kv} > kh1 + γ b , (12.11)

and so is Kp but in the sense that

λMax{Kp} ≥ λmin{Kp} > α3

[
[2 γ a + kh2]

2

4 γ [λmin{Kv} − kh1 − γb]
+ kh2

]
(12.12)

so that

λMax{Kp} ≥ λmin{Kp} > γ2 α2
1 λ2

Max{M}
λmin{M} (12.13)

where kh1 and kh2 are defined in (4.25) and (4.24), while the constants a and
b are given by

a =
1
2

[λMax{Kv} + kC1 ‖q̇d‖M + kh1] ,

b = α4 λMax{M} + α2 kC1 .

Lyapunov Function Candidate

Consider the Lyapunov function candidate2 (7.3),

V (t, q̃, ˙̃q) =
1
2

˙̃q
T
M(q) ˙̃q +

1
2
q̃T Kpq̃ + γtanh(q̃)T M(q) ˙̃q (12.14)

2 Notice that V = V (t, �̃, ˙̃�). The dependence of t comes from the fact that, to
avoid cumbersome notation, we have abbreviated M(�d(t) − �̃) to M(�).
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where tanh(q̃) is the vectorial tangent hyperbolic function (12.10) and γ > 0
is a given constant.

To show that the Lyapunov function candidate (12.14) is positive definite
and radially unbounded, we first observe that the third term in (12.14) satisfies

γtanh(q̃)T M(q) ˙̃q ≤ γ ‖tanh(q̃)‖
∥∥∥M(q) ˙̃q

∥∥∥
≤ γ λMax{M} ‖tanh(q̃)‖ ‖ ˙̃q‖
≤ γ α1λMax{M} ‖q̃‖ ‖ ˙̃q‖

where we used ‖tanh(q̃)‖ ≤ α1 ‖q̃‖ in the last step. From this we obtain

−γtanh(q̃)T M(q) ˙̃q ≥ −γ α1λMax{M} ‖q̃‖
∥∥∥ ˙̃q

∥∥∥ .

Therefore, the Lyapunov function candidate (12.14) satisfies the following
inequality:

V (t, q̃, ˙̃q) ≥ 1
2

⎡⎣ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
⎤⎦T [

λmin{Kp} −γ α1 λMax{M}
−γ α1 λMax{M} λmin{M}

]⎡⎣ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
⎤⎦

and consequently, it happens to be positive definite and radially unbounded
since by assumption, Kp is positive definite (i.e. λmin{Kp} > 0) and we also
supposed that it is chosen so as to satisfy (12.13).

Following similar steps to those above one may also show that the Lya-
punov function candidate V (t, q̃, ˙̃q) defined in (12.14) is bounded from above
by

V (t, q̃, ˙̃q) ≤ 1
2

⎡⎣ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
⎤⎦T [

λMax{Kp} γ α1 λMax{M}
γ α1 λMax{M} λMax{M}

]⎡⎣ ‖q̃‖∥∥∥ ˙̃q
∥∥∥
⎤⎦

which is positive definite and radially unbounded since the condition

λMax{Kp} > γ2α2
1 λMax{M}

is trivially satisfied under hypothesis (12.13) on Kp. This means that V (t, q̃, ˙̃q)
is decrescent.

Time Derivative

The time derivative of the Lyapunov function candidate (12.14) along the
trajectories of the closed-loop system (12.7) is
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V̇ (t, q̃, ˙̃q) = ˙̃q
T
[
−Kpq̃ − Kv

˙̃q − C(q, q̇) ˙̃q − h(t, q̃, ˙̃q)
]

+
1
2

˙̃q
T
Ṁ(q) ˙̃q

+ q̃T Kp
˙̃q + γ ˙̃q

T
Sech2(q̃)T M(q) ˙̃q + γtanh(q̃)T Ṁ(q) ˙̃q

+ γtanh(q̃)T
[
−Kpq̃ − Kv

˙̃q − C(q, q̇) ˙̃q − h(t, q̃, ˙̃q)
]

.

Using Property 4.2 which establishes the skew-symmetry of 1
2Ṁ − C and

Ṁ(q) = C(q, q̇) + C(q, q̇)T , the time derivative of the Lyapunov function
candidate yields

V̇ (t, q̃, ˙̃q) = − ˙̃q
T
Kv

˙̃q + γ ˙̃q
T
Sech2(q̃)T M(q) ˙̃q − γtanh(q̃)T Kpq̃

− γtanh(q̃)T Kv
˙̃q + γtanh(q̃)T C(q, q̇)T ˙̃q

− ˙̃q
T
h(t, q̃, ˙̃q) − γ tanh(q̃)T h(t, q̃, ˙̃q) . (12.15)

We now proceed to upper-bound V̇ (t, q̃, ˙̃q) by a negative definite function
in terms of the states q̃ and ˙̃q. To that end, it is convenient to find upper-
bounds for each term of (12.15).

The first term of (12.15) may be trivially bounded by

− ˙̃q
T
Kv

˙̃q ≤ −λmin{Kv}‖ ˙̃q‖2 . (12.16)

To upper-bound the second term of (12.15) we first recall that the
vectorial tangent hyperbolic function tanh(q̃) defined in (12.10) satisfies∥∥∥Sech2(q̃) ˙̃q

∥∥∥ ≤ α4

∥∥∥ ˙̃q
∥∥∥ with α4 > 0 . From this, it follows that

γ ˙̃q
T
Sech2(q̃)T M(q) ˙̃q ≤ γα4 λMax{M}

∥∥∥ ˙̃q
∥∥∥2

.

On the other hand, notice that in view of the fact that Kp is a diagonal
positive definite matrix, and ‖tanh(q̃)‖2 ≤ α3 tanh(q̃)T q̃, we get

γ α3 tanh(q̃)T Kpq̃ ≥ γλmin{Kp} ‖tanh(q̃)‖2

which finally leads to the important inequality,

−γtanh(q̃)T Kpq̃ ≤ −γ
λmin{Kp}

α3
‖tanh(q̃)‖2

.

A bound on γtanh(q̃)T Kv
˙̃q is obtained straightforwardly and is given by

γtanh(q̃)T Kv
˙̃q ≤ γλMax{Kv}

∥∥∥ ˙̃q
∥∥∥ ‖tanh(q̃)‖ .

The upper-bound on the term γtanh(q̃)T C(q, q̇)T ˙̃q must be carefully cho-
sen. Notice that
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γtanh(q̃)T C(q, q̇)T ˙̃q = γ ˙̃q
T
C(q, q̇)tanh(q̃)

≤ γ
∥∥∥ ˙̃q

∥∥∥ ‖C(q, q̇)tanh(q̃)‖ .

Considering again Property 4.2 but in its variant that establishes the existence
of a constant kC1 such that ‖C(q, x)y‖ ≤ kC1 ‖x‖ ‖y‖ for all q, x, y ∈ IRn,
we have

γtanh(q̃)T C(q, q̇)T ˙̃q ≤ γkC1

∥∥∥ ˙̃q
∥∥∥ ‖q̇‖ ‖tanh(q̃)‖ ,

≤ γkC1

∥∥∥ ˙̃q
∥∥∥∥∥∥q̇d − ˙̃q

∥∥∥ ‖tanh(q̃)‖ ,

≤ γkC1

∥∥∥ ˙̃q
∥∥∥ ‖q̇d‖ ‖tanh(q̃)‖

+γkC1

∥∥∥ ˙̃q
∥∥∥∥∥∥ ˙̃q

∥∥∥ ‖tanh(q̃)‖ .

Making use of the property that ‖tanh(q̃)‖ ≤ α2 for all q̃ ∈ IRn, we get

γtanh(q̃)T C(q, q̇)T ˙̃q ≤ γ kC1 ‖q̇d‖M

∥∥∥ ˙̃q
∥∥∥ ‖tanh(q̃)‖ + γα2 kC1

∥∥∥ ˙̃q
∥∥∥2

.

At this point it is only left to find upper-bounds on the two terms which
contain h(t, q̃, ˙̃q). This study is based on the use of the characteristics es-
tablished in Property 4.4 on the vector of residual dynamics h(t, q̃, ˙̃q), which
indicates the existence of constants kh1, kh2 ≥ 0 – which may be computed
by (4.24) and (4.25) – such that the norm of the residual dynamics satisfies
(4.15), ∥∥∥h(t, q̃, ˙̃q)

∥∥∥ ≤ kh1

∥∥∥ ˙̃q
∥∥∥ + kh2 ‖tanh(q̃)‖ .

First, we study the term − ˙̃q
T
h(t, q̃, ˙̃q):

− ˙̃q
T
h(t, q̃, ˙̃q) ≤

∥∥∥ ˙̃q
∥∥∥∥∥∥h(t, q̃, ˙̃q)

∥∥∥ ,

≤ kh1

∥∥∥ ˙̃q
∥∥∥2

+ kh2

∥∥∥ ˙̃q
∥∥∥ ‖tanh(q̃)‖ .

The remaining term satisfies

−γtanh(q̃)T h(t, q̃, ˙̃q) ≤ γ ‖tanh(q̃)‖
∥∥∥h(t, q̃, ˙̃q)

∥∥∥ ,

≤ γ kh1

∥∥∥ ˙̃q
∥∥∥ ‖tanh(q̃)‖ + γ kh2 ‖tanh(q̃)‖2

.

(12.17)

The bounds (12.16)–(12.17) yield that the time derivative V̇ (t, q̃, ˙̃q) in
(12.15), satisfies
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V̇ (t, q̃, q̇) ≤

−γ

[‖tanh(q̃)‖
‖q̇‖

]T
⎡⎢⎣ λmin{Kp}

α3
− kh2 −a − 1

γ

kh2

2

−a − 1

γ

kh2

2

1

γ
[λmin{Kv} − kh1] − b

⎤⎥⎦
︸ ︷︷ ︸

R(γ)

[‖tanh(q̃)‖
‖q̇‖

]

(12.18)
where

a =
1
2

[λMax{Kv} + kC1 ‖q̇d‖M + kh1] ,

b = α4 λMax{M} + α2 kC1 .

According to the theorem of Sylvester, in order for the matrix R(γ) to be
positive definite it is necessary and sufficient that the component R11 and the
determinant det{R(γ)} be strictly positive. With respect to the first condition
we stress that the gain Kp must satisfy

λmin{Kp} ≥ α3 kh2 . (12.19)

On the other hand, the determinant of R(γ) is given by

det{R(γ)} =
1
γ

[
λmin{Kp}

α3
− kh2

]
[λmin{Kv} − kh1]

−
[
λmin{Kp}

α3
− kh2

]
b −

[
a +

1
γ

kh2

2

]2

.

The latter must be strictly positive for which it is necessary and sufficient
that the gain Kp satisfies

λmin{Kp} > α3

[
[2 γ a + kh2]

2

4 γ [λmin{Kv} − kh1 − γb]
+ kh2

]
(12.20)

while it is sufficient that Kv satisfies

λmin{Kv} > kh1 + γ b (12.21)

for the right-hand side of the inequality (12.20) to be positive. Observe that
in this case the inequality (12.19) is trivially implied by (12.20).

Notice that the inequalities (12.21) and (12.20) correspond precisely to
those in (12.11) and (12.12) as the tuning guidelines for the controller. This
means that R(γ) is positive definite and therefore, V̇ (t, q̃, ˙̃q) is globally nega-
tive definite.

According to the arguments above, given a positive constant γ we may
determine gains Kp and Kv according to (12.11)–(12.13) in a way that the
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function V (t, q̃, q̇) given by (12.14) is globally positive definite while V̇ (t, q̃, q̇)
expressed as (12.18) is globally negative definite. For this reason, V (t, q̃, q̇) is a
strict Lyapunov function. Theorem 2.4 allows one to establish global uniform
asymptotic stability of the origin of the closed-loop system.

Tuning Procedure

The stability analysis presented in previous sections allows one to obtain a
tuning procedure for the PD control law plus feedforward. This method deter-
mines the smallest eigenvalues of the symmetric design matrices Kp and Kv

– with Kp diagonal – which guarantee the achievement of the motion control
objective.

The tuning procedure may be summarized as follows.

• Derivation of the dynamic robot model to be controlled. Particularly, com-
putation of M(q), C(q, q̇) and g(q) in closed form.

• Computation of the constants λMax{M(q)}, λmin{M(q)}, kM , k′
M ,kC1 ,

kC2 , k′ and kg. For this, it is suggested that the information given in
Table 4.1 (cf. page 109) is used.

• Computation of ‖q̈d‖Max, ‖q̇d‖Max from the specification of a given task
to the robot.

• Computation of the constants s1 and s2 given respectively by (4.21) and
(4.22), i.e.

s1 =
[
kg + kM ‖q̈d‖M + kC2 ‖q̇d‖2

M

]
,

and
s2 = 2

[
k′ + k′

M ‖q̈d‖M + kC1 ‖q̇d‖2
M

]
.

Computation of kh1 and kh2 given by (4.24) and (4.25), i.e.
• kh1 ≥ kC1 ‖q̇d‖M ;

• kh2 ≥ s2

tanh
(

s2
s1

) .

• Computation of the constants a and b given by

a =
1
2

[λMax{Kv} + kC1 ‖q̇d‖M + kh1] ,

b = α4 λMax{M} + α2 kC1 ,

where α2 =
√

n, α4 = 1.
• Select γ > 0 and determine the design matrices Kp and Kv so that their

smallest eigenvalues satisfy (12.11)–(12.13), i.e.
• λmin{Kv} > kh1 + γ b,
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• λmin{Kp} > α3

[
[2 γ a + kh2]

2

4 γ [λmin{Kv} − kh1 − γb]
+ kh2

]
,

• λmin{Kp} > γ2 α2
1 λ2

Max{M}
λmin{M} ,

with α1 = 1, α3 = 1.

Next, we present an example in order to illustrate the ideas presented so
far.

Example 12.5. Consider the Pelican prototype robot shown in Figure
12.2, studied in Chapter 5 and in Example 12.3.

The elements of the inertia matrix M(q) are

M11(q) = m1l
2
c1 + m2

[
l21 + l2c2 + 2l1lc2 cos(q2)

]
+ I1 + I2

M12(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M21(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M22(q) = m2l
2
c2 + I2 .

The elements of the centrifugal and Coriolis forces matrix C(q, q̇)
are given by

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2) [q̇1 + q̇2]
C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0 .

The elements of the vector of gravitational torques g(q) are

g1(q) = [m1lc1 + m2l1]g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

Using the numerical values of the constants given in Table 5.1 (cf.
page 115) as well as the formulas in Table 4.1 (cf. page 109), we get

kM = 0.0974
[
kg m2

]
,

kC1 = 0.0487
[
kg m2

]
,

kC2 = 0.0974
[
kg m2

]
,

kg = 23.94
[
kg m2/s2

]
,

k′
M = λMax{M(q)} = 0.3614

[
kg m2

]
,

λmin{M(q)} = 0.011
[
kg m2

]
.
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For the computation of λMax{M(q)} and λmin{M(q)}, see the
explanation in Example 9.2 on page 213.

To obtain k′, we proceed numerically, that is, we evaluate the norm
g(q) for a set of values of q1 and q2 between 0 and 2π, and extract
the maximum. This happens for q1 = q2 = 0 and the maximum is

k′ = 7.664 [N m]

Consider the PD control law plus feedforward, (12.5), for this
robot. As in Example 12.3, the specification of the task for the robot
is expressed in terms of the desired trajectory qd(t) shown in Figure
5.5 and whose analytical expression is given by (5.7). Equations (5.8)
and (5.9) correspond to the desired velocity q̇d(t), and desired accel-
eration q̈d(t) respectively. By numerical simulation, can be verified
the following upper-bounds on the norms of the desired velocity and
acceleration,

‖q̇d‖Max = 2.33 [ rad/s]

‖q̈d‖Max = 9.52 [ rad/s2] .

Using this information and the definitions of the constants from
the tuning procedure, we get

s1 = 25.385 [N m] ,
s2 = 22.733 [N m] ,

kh1 = 0.114
[
kg m2/s

]
,

kh2 = 31.834 [N m] ,
a = 1.614

[
kg m2/s

]
,

b = 0.43
[
kg m2

]
.

Finally, we set γ = 2 [s−1], so that it is only left to fix the de-
sign matrices Kp and Kv in accordance with the conditions (12.11)–
(12.13). An appropriate choice is

Kp = diag{200, 150} [Nm] ,
Kv = diag{3} [Nm s/rad] .

The initial conditions corresponding to the positions and velocities
are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .

Figure 12.5 shows the experimental tracking errors q̃(t). As pointed
out in previous examples, the trajectories q(t) do not vanish as ex-
pected due to several aspects always present in real implementations
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Figure 12.5. Graphs of position errors q̃1 and q̃2

– usually neglected in the theoretical analysis – such as digital im-
plementation of the continuous-time closed-loop control system (de-
scribed by an ordinary differential equation), measurement noise and,
most important in our experimental setting, friction at the arm joints.
Yet, in contrast to Example 12.3 where the controller did not carry
the PD term, the behavior obtained here is satisfactory. ♦

12.3 Conclusions

The conclusions drawn from the analysis presented in this chapter may be
summarized in the following terms.

• The feedforward control for n-DOF robots is an open-loop control scheme
in open loop. For this reason, it is not advisable and moreover, in general
this control is unable to satisfy the motion control objective.

• With PD control plus feedforward we may satisfy the control objective
globally for n-DOF robots under the condition that sufficiently “large”
design matrices Kp and Kv are used. More significantly, global uniform
asymptotic stability of the origin of the closed-loop equations may be
achieved under such conditions.
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Problems

1. Consider feedforward control of the ideal pendulum studied in Example
12.1. Assume that the desired position qd(t) is zero for all t ≥ 0.
a) Obtain the equation that governs the control system, in terms of

[q̃ q̇]T .
b) Show that the origin is a stable equilibrium.

Hint: See Example 2.2, on page 30.

2. Consider feedforward control of the 3-DOF Cartesian robot studied in
Example 12.2.
a) Show that if ˙̃q(0) 
= 0, then limt→∞ ‖q̃(t)‖ = ∞.

3. Consider the model of an ideal pendulum studied in Example 12.1 but
now including a term for viscous friction, that is,

ml2q̈ + mgl sin(q) + f q̇ = τ

where f > 0 is the friction coefficient. The feedforward controller (12.2)
obtained when neglecting the friction term is

τ = ml2q̈d + mgl sin(qd).

Assume that qd(t) = sin(t).

a) Obtain the equation ẋ = f(t,x) where x = [q̃ ˙̃q]T . Does this equation
have any equilibria ?

b) Assume moreover that qd(0) = q(0) and q̇d(0) = q̇(0). May it be
expected that limt→∞ q̃(t) = 0 ?

4. Consider a PD control law plus feedforward on the ideal pendulum ana-
lyzed in Example 12.4. In this example we derived the closed-loop equa-
tion,

d

dt

⎡⎣ q̃

˙̃q

⎤⎦ =

⎡⎣ ˙̃q

− 1
ml2

[
kpq̃ + kv

˙̃q + mgl (sin(qd) − sin(qd − q̃))
]
⎤⎦ .

Assume now that the desired position is given by

qd(t) = sin(t) .

On the other hand, the design constants kp and kv are chosen so that
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kv > ml2

kp >
2
[
mgl + ml2

]
tanh

(
2
[
mgl + ml2

]
mgl

) +

⎡⎢⎢⎢⎢⎣kv +
2
[
mgl + ml2

]
tanh

(
2
[
mgl + ml2

]
mgl

)
⎤⎥⎥⎥⎥⎦

2

4 [kv − ml2]
.

a) Show that the origin
[
q̃ ˙̃q

]T
= 0 ∈ IR2 is a globally asymptotically

stable equilibrium.
Hint: Use the Lyapunov function candidate

V (q̃, ˙̃q) =
1
2
ml2 ˙̃q

2
+

1
2
kpq̃

2 + ml2tanh(q̃) ˙̃q

and verify that its time derivative satisfies

V̇ (q̃, ˙̃q) ≤ −
⎡⎣ |tanh(q̃)|∣∣ ˙̃q∣∣

⎤⎦T

R

⎡⎣ |tanh(q̃)|∣∣ ˙̃q∣∣
⎤⎦

where

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kp − 2
[
mgl + ml2

]
tanh

(
2
[
mgl + ml2

]
mgl

) −1
2

⎡⎢⎢⎢⎢⎣kv +
2
[
mgl + ml2

]
tanh

(
2
[
mgl + ml2

]
mgl

)
⎤⎥⎥⎥⎥⎦

−1
2

⎡⎢⎢⎢⎢⎣kv +
2
[
mgl + ml2

]
tanh

(
2
[
mgl + ml2

]
mgl

)
⎤⎥⎥⎥⎥⎦ kv − ml2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5. Consider a PD control law plus feedforward on the 2-DOF robot proto-
type used in Example 12.5. In this example we presented some simulations
where Kp = diag{200, 150}. Verify that with such a selection, the corre-
sponding closed-loop equation has a unique equilibrium.
Hint: Verify that the condition (12.9) holds.



Part IV

Advanced Topics



Introduction to Part IV

In this last part of the textbook we present some advanced issues on robot
control. We deal with topics such as control without velocity measurements
and control under model uncertainty. We recommend this part of the text for
a second course on robot dynamics and control or for a course on robot control
at the first year of graduate level. We assume that the student is familiar with
the notion of functional spaces, i.e. the spaces L2 and L∞. If not, we strongly
recommend the student to read first Appendix A, which presents additional
mathematical baggage necessary to study these last chapters:

• P“D” control with gravity compensation and P“D” control with desired
gravity compensation;

• Introduction to adaptive robot control;
• PD control with adaptive gravity compensation;
• PD control with adaptive compensation.
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P“D” Control with Gravity Compensation and
P“D” Control with Desired Gravity
Compensation

Robot manipulators are equipped with sensors for the measurement of joint
positions and velocities, q and q̇ respectively. Physically, position sensors may
be from simple variable resistances such as potentiometers to very precise
optical encoders. On the other hand, the measurement of velocity may be
realized through tachometers, or in most cases, by numerical approximation
of the velocity from the position sensed by the optical encoders. In contrast to
the high precision of the position measurements by the optical encoders, the
measurement of velocities by the described methods may be quite mediocre in
accuracy, specifically for certain intervals of velocity. On certain occasions this
may have as a consequence, an unacceptable degradation of the performance
of the control system.

The interest in using controllers for robots that do not explicitly require
the measurement of velocity, is twofold. First, it is inadequate to feed back a
velocity measurement which is possibly of poor quality for certain bands of
operation. Second, avoiding the use of velocity measurements removes the need
for velocity sensors such as tachometers and therefore, leads to a reduction in
production cost while making the robot lighter.

The design of controllers that do not require velocity measurements to
control robot manipulators has been a topic of investigation since broached
in the decade of the 1990s and to date, many questions remain open. The
common idea in the design of such controllers has been to propose state ob-
servers to estimate the velocity. Then the so-obtained velocity estimations are
incorporated in the controller by replacing the true unavailable velocities. In
this way, it has been shown that asymptotic and even exponential stability
can be achieved, at least locally. Some important references on this topic are
presented at the end of the chapter.

In this chapter we present an alternative to the design of observers to
estimate velocity and which is of utility in position control. The idea consists
simply in substituting the velocity measurement q̇, by the filtered position
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q through a first-order system of zero relative degree, and whose output is
denoted in the sequel, by ϑ.

Specifically, denoting by p the differential operator, i.e. p = d
dt , the com-

ponents of ϑ ∈ IRn are given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϑ1

ϑ2

...

ϑn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1p

p + a1
0 · · · 0

0
b2p

p + a2
· · · 0

...
...

. . .
...

0 0 · · · bnp

p + an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

...

qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.1)

or in compact form,

ϑ = diag
{

bip

p + ai

}
q

where ai and bi are strictly positive real constants but otherwise arbitrary, for
i = 1, 2, · · · , n.

A state-space representation of Equation (13.1) is

ẋ = −Ax − ABq

ϑ = x + Bq

where x ∈ IRn represents the state vector of the filters, A = diag{ai} and
B = diag{bi}.

In this chapter we study the proposed modification for the following con-
trollers:

• PD control with gravity compensation and
• PD control with desired gravity compensation.

Obviously, the derivative part of both control laws is no longer proportional
to the derivative of the position error q̃; this motivates the quotes around “D”
in the names of the controllers. As in other chapters appropriate references
are presented at the end of the chapter.

13.1 P“D” Control with Gravity Compensation

The PD control law with gravity compensation (7.1) requires, in its derivative
part, measurement of the joint velocity q̇ with the purpose of computing the
velocity error ˙̃q = q̇d − q̇, and to use the latter in the term Kv

˙̃q. Even in the
case of position control, that is, when the desired joint position qd is constant,
the measurement of the velocity is needed by the term Kvq̇.
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A possible modification to the PD control law with gravity compensation
consists in replacing the derivative part (D), which is proportional to the
derivative of the position error, i.e. to the velocity error ˙̃q = q̇d − q̇, by a
term proportional to

q̇d − ϑ

where ϑ ∈ IRn is, as said above, the result of filtering the position q by means
of a dynamic system of first-order and of zero relative degree.

Specifically, the P“D” control law with gravity compensation is written as

τ = Kpq̃ + Kv [q̇d − ϑ] + g(q) (13.2)
ẋ = −Ax − ABq

ϑ = x + Bq (13.3)

where Kp,Kv ∈ IRn×n are diagonal positive definite matrices, A = diag{ai}
and B = diag{bi} and ai and bi are real strictly positive constants but other-
wise arbitrary for i = 1, 2, · · · , n.

Figure 13.1 shows the block-diagram corresponding to the robot under
P“D” control with gravity compensation. Notice that the measurement of the
joint velocity q̇ is not required by the controller.

Σ

ΣΣ

Σ ROBOT

g(q)

Kv Kp
B

ϑ
q̇d

qd

τ
q

(pI+A)−1AB

Figure 13.1. Block-diagram: P“D” control with gravity compensation

Define ξ = x + Bqd. The equation that describes the behavior in closed
loop may be obtained by combining Equations (III.1) and (13.2)–(13.3), which

may be written in terms of the state vector
[
ξT q̃T q̇T

]T

as
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d

dt

⎡⎢⎢⎢⎣
ξ

q̃

˙̃q

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−Aξ + ABq̃ + Bq̇d

˙̃q

q̈d − M(q)−1 [Kpq̃ + Kv[q̇d − ξ + Bq̃] − C(q, q̇)q̇]

⎤⎥⎥⎥⎦ .

A sufficient condition for the origin
[
ξT q̃T ˙̃q

T
]T

= 0 ∈ IR3n to be a
unique equilibrium point of the closed-loop equation is that the desired joint
position qd be a constant vector. In what is left of this section we assume that
this is the case. Notice that in this scenario, the control law may be expressed
as

τ = Kpq̃ − Kvdiag
{

bip

p + ai

}
q + g(q),

which is close to the PD with gravity compensation control law (7.1), when
the desired position qd is constant. Indeed the only difference is replacement
of the velocity q̇ by

diag
{

bip

p + ai

}
q,

thereby avoiding the use of the velocity q̇ in the control law.
As we show in the following subsections, P“D” control with gravity com-

pensation meets the position control objective, that is,

lim
t→∞ q(t) = qd

where qd ∈ IRn is any constant vector.
Considering the desired position qd as constant, the closed-loop equation

may be rewritten in terms of the new state vector
[
ξT q̃T q̇T

]T

as

d

dt

⎡⎢⎢⎢⎣
ξ

q̃

q̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−Aξ + ABq̃

−q̇

M(qd − q̃)−1 [Kpq̃ − Kv[ξ − Bq̃] − C(qd − q̃, q̇)q̇]

⎤⎥⎥⎥⎦ (13.4)

which, in view of the fact that qd is constant, constitutes an autonomous

differential equation. Moreover, the origin
[
ξT q̃T q̇T

]T

= 0 ∈ IR3n is the
unique equilibrium of this equation.

With the aim of studying the stability of the origin, we consider the Lya-
punov function candidate

V (ξ, q̃, q̇) = K(q, q̇) +
1
2
q̃TKpq̃ +

1
2
(ξ − Bq̃)T

KvB−1 (ξ − Bq̃) (13.5)
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where K(q, q̇) = 1
2 q̇TM(q)q̇ is the kinetic energy function corresponding to

the robot. Notice that the diagonal matrix KvB−1 is positive definite. Con-
sequently, the function V (ξ, q̃, q̇) is globally positive definite.

The total time derivative of the Lyapunov function candidate yields

V̇ (ξ, q̃, q̇) = q̇TM(q)q̈ +
1
2
q̇T Ṁ(q)q̇ + q̃TKp

˙̃q

+ [ξ − Bq̃]T KvB−1
[
ξ̇ − B ˙̃q

]
.

Using the closed-loop Equation (13.4) to solve for ξ̇, ˙̃q and M(q)q̈, and
canceling out some terms we obtain

V̇ (ξ, q̃, q̇) = − [ξ − Bq̃]T KvB−1A [ξ − Bq̃]

= −
⎡⎣ ξ

q̃
q̇

⎤⎦T⎡⎣KvB−1A −KvA 0
−KvA BKvA 0

0 0 0

⎤⎦⎡⎣ ξ
q̃
q̇

⎤⎦ (13.6)

where we used

q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ = 0 ,

which follows from Property 4.2.
Clearly, the time derivative V̇ (ξ, q̃, q̇) of the Lyapunov function candidate

is globally negative semidefinite. Therefore, invoking Theorem 2.3, we con-
clude that the origin of the closed-loop Equation (13.4) is stable and that all
solutions are bounded.

Since the closed-loop Equation (13.4) is autonomous, La Salle’s Theorem
2.7 may be used in a straightforward way to analyze the global asymptotic
stability of the origin (cf. Problem 3 at the end of the chapter). Neverthe-
less, we present below, an alternative analysis that also allows one to show
global asymptotic stability of the origin of the state-space corresponding to
the closed-loop Equation, (13.4). This alternative method of proof, which is
longer than via La Salle’s theorem, is presented to familiarize the reader with
other methods to prove global asymptotic stability; however, we appeal to the
material on functional spaces presented in Appendix A.

According to Definition 2.6, since the origin
[
ξT q̃T q̇T

]T

= 0 ∈ IR3n is a

stable equilibrium, then if
[
ξ(t)T q̃(t)T q̇(t)T

]T → 0 ∈ IR3n as t → ∞ (for all
initial conditions), the origin is a globally asymptotically stable equilibrium.
It is precisely this property that we show next.

In the development that follows we use additional properties of the dy-
namic model of robot manipulators. Specifically, assume that q, q̇ ∈ Ln

∞.
Then,
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• M(q)−1,
d

dt
M(q) ∈ Ln×n

∞

• C(q, q̇)q̇ ∈ Ln
∞ .

If moreover q̈ ∈ Ln
∞ then,

• d

dt
[C(q, q̇)q̇] ∈ Ln

∞ .

The Lyapunov function V (ξ, q̃, q̇) given in (13.5) is positive definite since
it is composed of the following three non-negative terms:

• 1
2 q̇TM(q)q̇

• 1
2 q̃TKpq̃

• 1
2 [ξ − Bq̃]T KvB−1 [ξ − Bq̃] .

Since the time derivative V̇ (ξ, q̃, q̇) expressed in (13.6) is negative semidef-
inite, the Lyapunov function V (ξ, q̃, q̇) is bounded along the trajectories.
Therefore, the three non-negative terms above are also bounded along tra-
jectories. From this conclusion we have

q̇, q̃, [ξ − Bq̃] ∈ Ln
∞ . (13.7)

Incorporating this information in the closed-loop system Equation (13.4),
and knowing that M(qd − q̃)−1 is bounded for all qd, q̃ ∈ Ln

∞ and also that
C(qd − q̃, q̇)q̇ is bounded for all qd, q̃, q̇ ∈ Ln

∞, it follows that the time deriva-
tive of the state vector is also bounded, i.e.

ξ̇, ˙̃q, q̈ ∈ Ln
∞, (13.8)

and therefore,
ξ̇ − B ˙̃q ∈ Ln

∞ . (13.9)

Using again the closed-loop Equation (13.4), we obtain the second time
derivative of the state variables,

ξ̈ = −Aξ̇ + AB ˙̃q
¨̃q = −q̈

q(3) = −M(q)−1

[
d

dt
M(q)

]
M(q)−1 [Kpq̃ − Kv [ξ − Bq̃] − C(q, q̇)q̇]

+ M(q)−1

[
Kp

˙̃q − Kv

[
ξ̇ − B ˙̃q

]
− d

dt
[C(q, q̇)q̇]

]

where q(3) denotes the third time derivative of the joint position q and we
used
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d

dt

[
M(q)−1

]
= −M(q)−1

[
d

dt
M(q)

]
M(q)−1 .

In (13.7) and (13.8) we have already concluded that ξ, q̃, q̇, ξ̇, ˙̃q, q̈ ∈ Ln
∞

then, from the properties stated at the beginning of this analysis, we obtain

ξ̈, ¨̃q, q(3) ∈ Ln
∞, (13.10)

and therefore,
ξ̈ − B ¨̃q ∈ Ln

∞ . (13.11)

On the other hand, integrating both sides of (13.6) and using that
V (ξ, q̃, ˙̃q) is bounded along the trajectories, we obtain

[ξ − Bq̃] ∈ Ln
2 . (13.12)

Considering (13.9), (13.12) and Lemma A.5, we obtain

lim
t→∞ [ξ(t) − Bq̃(t)] = 0 . (13.13)

Next, we invoke Lemma A.6 with f = ξ−Bq̃. Using (13.13), (13.7), (13.9)
and (13.11), we get from this lemma

lim
t→∞

[
ξ̇(t) − B ˙̃q(t)

]
= 0 .

Consequently, using the closed-loop Equation (13.4) we get

lim
t→∞−A[ξ(t) − Bq̃(t)] + Bq̇ = 0 .

From this expression and (13.13) we obtain

lim
t→∞ q̇(t) = 0 ∈ IRn . (13.14)

Now, we show that limt→∞ q̃(t) = 0 ∈ IRn. To that end, we consider again
Lemma A.6 with f = q̇. Incorporating (13.14), (13.7), (13.8) and (13.10) we
get

lim
t→∞ q̈(t) = 0 .

Taking this into account in the closed-loop Equation (13.4) as well as
(13.13) and (13.14), we get

lim
t→∞M(qd − q̃(t))−1Kpq̃(t) = 0 .

So we conclude that
lim

t→∞ q̃(t) = 0 ∈ IRn . (13.15)
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The last part of the proof, that is, the proof of limt→∞ ξ(t) = 0 follows
trivially from (13.13) and (13.15). Therefore, the origin is a globally attractive
equilibrium point.

This completes the proof of global asymptotic stability of the origin of the
closed-loop Equation (13.4).

We present next an example with the purpose of illustrating the perfor-
mance of the Pelican robot under P“D” control with gravity compensation.
As for all other examples on the Pelican robot, the results that we present are
from laboratory experimentation.

Example 13.1. Consider the Pelican robot studied in Chapter 5, and
depicted in Figure 5.2. The components of the vector of gravitational
torques g(q) are given by

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

Consider the P“D” control law with gravity compensation on this
robot for position control and where the design matrices Kp,Kv, A, B
are taken diagonal and positive definite. In particular, pick

Kp = diag{kp} = diag{30} [Nm/rad] ,
Kv = diag{kv} = diag{7, 3} [Nm s/rad] ,
A = diag{ai} = diag{30, 70} [1/s] ,
B = diag{bi} = diag{30, 70} [1/s] .

The components of the control input τ are given by

τ1 = kpq̃1 − kvϑ1 + g1(q)
τ2 = kpq̃2 − kvϑ2 + g2(q)
ẋ1 = −a1x1 − a1b1q1

ẋ2 = −a2x2 − a2b2q2

ϑ1 = x1 + b1q1

ϑ2 = x2 + b2q2 .

The initial conditions corresponding to the positions, velocities and
states of the filters, are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0
x1(0) = 0, x2(0) = 0 .
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Figure 13.2. Graphs of position errors q̃1(t) and q̃2(t)

The desired joint positions are chosen as

qd1 = π/10, qd2 = π/30 [rad] .

In terms of the state vector of the closed-loop equation, the initial
state is ⎡⎢⎢⎢⎢⎢⎢⎣

ξ(0)

q̃(0)

q̇(0)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
b1π/10
b2π/30
π/10
π/30

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
9.423
7.329
0.3141
0.1047

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Figure 13.2 presents the experimental results and shows that the
components of the position error q̃(t) tend asymptotically to a small
nonzero constant. Although we expected that the error would tend
to zero, the experimental behavior is mainly due to the presence of
unmodeled friction at the joints. ♦

In a real implementation of a controller on an ordinary personal computer
(as is the case of Example 13.1) typically the joint position q is sampled
periodically by optical encoders and this is used to compute the joint velocity
q̇. Indeed, if we denote by h the sampling period, the joint velocity at the
instant kh is obtained as

q̇(kh) =
q(kh) − q(kh − h)

h
,

that is, the differential operator p = d
dt is replaced by (1− z−1)/h, where z−1

is the delay operator that is, z−1q(kh) = q(kh − h). By the same argument,
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in the implementation of the P“D” control law with gravity compensation,
(13.2)–(13.3), the variable ϑ at instant kh may be computed as

ϑ(kh) =
q(kh) − q(kh − h)

h
+

1
2
ϑ(kh − h)

where we chose A = diag{ai} = diag{h−1} and B = diag{bi} = diag{2/h}.

13.2 P“D” Control with Desired Gravity Compensation

In this section we present a modification of PD control with desired gravity
compensation, studied in Chapter 7, and whose characteristic is that it does
not require the velocity term q̇ in its control law. The original references on
this controller are cited at the end of the chapter.

This controller, that we call here P“D” control with desired gravity com-
pensation, is described by

τ = Kpq̃ + Kv [q̇d − ϑ] + g(qd) (13.16)
ẋ = −Ax − ABq

ϑ = x + Bq (13.17)

where Kp,Kv ∈ IRn×n are diagonal positive definite matrices, A = diag{ai}
and B = diag{bi} with ai and bi real strictly positive constants but otherwise
arbitrary for all i = 1, 2, · · · , n.

Figure 13.3 shows the block-diagram of the P“D” control with desired
gravity compensation applied to robots. Notice that the measurement of the
joint velocity q̇ is not required by the controller.

(pI+A)−1AB

Σ

Σ Σ

Σ

g(qd)

ROBOT

B

ϑ

τ
q

KpKv

qd

q̇d

Figure 13.3. Block-diagram: P“D” control with desired gravity compensation
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Comparing P“D” control with gravity compensation given by (13.2)–(13.3)
with P“D” control with desired gravity compensation (13.16)–(13.17), we im-
mediately notice the replacement of the term g(q) by the feedforward term
g(qd).

The analysis of the control system in closed loop is similar to that from
Section 13.1. The most noticeable difference is in the Lyapunov function con-
sidered for the proof of stability. Given the relative importance of the controller
(13.16)–(13.17), we present next its complete study.

Define ξ = x + Bqd. The equation that describes the behavior in closed
loop is obtained by combining Equations (III.1) and (13.16)–(13.17), which

may be expressed in terms of the state vector
[
ξT q̃T q̇T

]T

as

d

dt

⎡⎢⎢⎢⎣
ξ

q̃

˙̃q

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

−Aξ + ABq̃ + Bq̇d

˙̃q

q̈d−M(q)−1[Kpq̃+Kv[q̇d−ξ+Bq̃]+g(qd)−C(q, q̇)q̇−g(q)]

⎤⎥⎥⎥⎦

A sufficient condition for the origin
[
ξT q̃T ˙̃q

T
]T

= 0 ∈ IR3n to be a
unique equilibrium of the closed-loop equation is that the desired joint position
qd is a constant vector. In what follows of this section we assume that this is
the case. Notice that in this scenario, the control law may be expressed by

τ = Kpq̃ − Kvdiag
{

bip

p + ai

}
q + g(qd),

which is very close to PD with desired gravity compensation control law (8.1)
when the desired position qd is constant. The only difference is the substitution
of the velocity term q̇ by

ϑ = diag
{

bip

p + ai

}
q,

thereby avoiding the use of velocity measurements q̇(t) in the control law.
As we show below, if the matrix Kp is chosen so that

λmin{Kp} > kg ,

then the P“D” controller with desired gravity compensation verifies the posi-
tion control objective, that is,

lim
t→∞ q(t) = qd

for any constant vector qd ∈ IRn.
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Considering the desired position qd to be constant, the closed-loop equa-

tion may then be written in terms of the new state vector
[
ξT q̃T q̇T

]T

as

d

dt

⎡⎢⎢⎢⎣
ξ

q̃

q̇

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

−Aξ + ABq̃

−q̇

M(q)−1 [Kpq̃−Kv[ξ−Bq̃]+g(qd)−C(qd−q̃, q̇)q̇−g(qd−q̃)]

⎤⎥⎥⎥⎦
(13.18)

which, since qd is constant, is an autonomous differential equation. Since
the matrix Kp has been picked so that λmin{Kp} > kg, then the origin[
ξT q̃T q̇T

]T

= 0 ∈ IR3n is the unique equilibrium of this equation (see
the arguments in Section 8.2).

In order to study the stability of the origin, consider the Lyapunov function
candidate

V (ξ, q̃, q̇) = K(qd − q̃, q̇) + f(q̃) +
1
2
(ξ − Bq̃)T

KvB−1 (ξ − Bq̃) (13.19)

where

K(qd − q̃, q̇) =
1
2
q̇T M(qd − q̃)q̇

f(q̃) = U(qd − q̃) − U(qd) + g(qd)
T q̃ +

1
2
q̃TKpq̃ .

Notice first that the diagonal matrix KvB−1 is positive definite. Since it
has been assumed that λmin{Kp} > kg, we have from Lemma 8.1 that f(q̃) is a
(globally) positive definite function of q̃. Consequently, the function V (ξ, q̃, q̇)
is also globally positive definite.

The time derivative of the Lyapunov function candidate yields

V̇ (ξ, q̃, q̇) = q̇TM(q)q̈ +
1
2
q̇T Ṁ(q)q̇ − ˙̃q

T
g(qd − q̃) + g(qd)

T ˙̃q

+ q̃TKp
˙̃q + [ξ − Bq̃]T KvB−1

[
ξ̇ − B ˙̃q

]
.

Using the closed-loop Equation (13.18) to solve for ξ̇, ˙̃q and M(q)q̈, and
canceling out some terms, we obtain

V̇ (ξ, q̃, q̇) = − (ξ − Bq̃)T
KvB−1A (ξ − Bq̃)

= −
⎡⎣ ξ

q̃

q̇

⎤⎦T ⎡⎣KvB−1A −KvA 0
−KvA BKvA 0

0 0 0

⎤⎦⎡⎣ ξ

q̃

q̇

⎤⎦ (13.20)

where we used (cf. Property 4.2)
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q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ = 0 .

Clearly, the time derivative V̇ (ξ, q̃, q̇) of the Lyapunov function candidate
is a globally semidefinite negative function. For this reason, according to the
Theorem 2.3, the origin of the closed-loop Equation (13.18) is stable.

Since the closed-loop Equation (13.18) is autonomous, direct application
of La Salle’s Theorem 2.7 allows one to guarantee global asymptotic stability
of the origin corresponding to the state space of the closed-loop system (cf.
Problem 4 at the end of the chapter). Nevertheless, an alternative analysis,
similar to that presented in Section 13.1, may also be carried out.

Since the origin
[
ξT q̃T q̇T

]T

= 0 ∈ IR3n is a stable equilibrium, then

if
[
ξ(t)T q̃(t)T q̇(t)T

]T → 0 ∈ IR3n when t → ∞ (for all initial conditions),
i.e. the equilibrium is globally attractive, then the origin is a globally asymp-
totically stable equilibrium. It is precisely this property that we show next.

In the development below we invoke further properties of the dynamic
model of robot manipulators. Specifically, assuming that q, q̇ ∈ Ln

∞ we have

• M(q)−1, d
dtM(q) ∈ Ln×n

∞
• C(q, q̇)q̇, g(q), d

dtg(q) ∈ Ln
∞.

The latter follows from the regularity of the functions that define M , g and
C. By the same reasoning, if moreover q̈ ∈ Ln

∞ then

• d
dt [C(q, q̇)q̇] ∈ Ln

∞.

The Lyapunov function V (ξ, q̃, q̇) given in (13.19) is positive definite and
is composed of the sum of the following three non-negative terms

• 1
2 q̇TM(q)q̇

• U(qd − q̃) − U(qd) + g(qd)T q̃ + 1
2 q̃TKpq̃

• 1
2 (ξ − Bq̃)T

KvB−1 (ξ − Bq̃) .

Since the time derivative V̇ (ξ, q̃, q̇), expressed in (13.6) is a negative
semidefinite function, the Lyapunov function V (ξ, q̃, q̇) is bounded along
trajectories. Therefore, the three non-negative listed terms above are also
bounded along trajectories. Since, moreover, the potential energy U(q) of
robots having only revolute joints is always bounded in its absolute value, it
follows that

q̇, q̃, ξ, ξ − Bq̃ ∈ Ln
∞ . (13.21)

Incorporating this information in the closed-loop Equation (13.18), and
knowing that M(qd − q̃)−1 and g(qd − q̃) are bounded for all qd, q̃ ∈ Ln

∞ and
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also that C(qd − q̃, q̇)q̇ is bounded for all qd, q̃, q̇ ∈ Ln
∞, it follows that the

time derivative of the state vector is bounded, i.e.

ξ̇, ˙̃q, q̈ ∈ Ln
∞, (13.22)

and therefore, it is also true that[
ξ̇ − B ˙̃q

]
∈ Ln

∞ . (13.23)

Using again the closed-loop Equation (13.18), we can compute the second
time derivative of the variables state to obtain

ξ̈ = −Aξ̇ + AB ˙̃q
¨̃q = −q̈

q(3) = −M(q)−1

[
d

dt
M(q)

]
M(q)−1 [Kpq̃ − Kv [ξ − Bq̃] − C(q, q̇)q̇

+g(qd) − g(q)]

+ M(q)−1

[
Kp

˙̃q − Kv

(
ξ̇ − B ˙̃q

)
− d

dt
(C(q, q̇)q̇) +

d

dt
g(q)

]

where q(3) denotes the third time derivative of the joint position q and we
used

d

dt

[
M(q)−1

]
= −M(q)−1

[
d

dt
M(q)

]
M(q)−1 .

In (13.21) and (13.22) we concluded that ξ, q̃, q̇, ξ̇, ˙̃q, q̈ ∈ Ln
∞ then, from

the properties stated at the beginning of this analysis, we obtain

ξ̈, ¨̃q, q(3) ∈ Ln
∞, (13.24)

and therefore also
ξ̈ − B ¨̃q ∈ Ln

∞ . (13.25)

On the other hand, from the time derivative V̇ (ξ, q̃, q̇), expressed in
(13.20), we get

ξ − Bq̃ ∈ Ln
2 . (13.26)

Considering next (13.23), (13.26) and Lemma A.5, we conclude that

lim
t→∞ ξ(t) − Bq̃(t) = 0 . (13.27)

Hence, using (13.27), (13.21), (13.23) and (13.25) together with Lemma
A.6 we get

lim
t→∞ ξ̇(t) − B ˙̃q(t) = 0
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and consequently, taking ξ̇ and ˙̃q from the closed-loop Equation (13.18), we
get

lim
t→∞−A[ξ(t) − Bq̃(t)] + Bq̇ = 0 .

From this last expression and since we showed in (13.27) that limt→∞ ξ(t)−
Bq̃(t) = 0 it finally follows that

lim
t→∞ q̇(t) = 0 . (13.28)

We show next that limt→∞ q̃(t) = 0 ∈ IRn. Using again Lemma A.6 with
(13.28), (13.21), (13.22) and (13.24) we have

lim
t→∞ q̈(t) = 0 .

Taking this into account in the closed-loop Equation (13.18) as well as
(13.27) and (13.28), we get

lim
t→∞M(qd − q̃(t))−1 [Kpq̃(t) + g(qd) − g(qd − q̃(t))] = 0

and therefore, since λmin{Kp} > kg we finally obtain from the methodology
presented in Section 8.2,

lim
t→∞ q̃(t) = 0 . (13.29)

The rest of the proof, that is that limt→∞ ξ(t) = 0, follows directly from
(13.27) and (13.29).

This completes the proof of global attractivity of the origin and, since we
have already shown that the origin is Lyapunov stable, of global asymptotic
stability of the origin of the closed-loop Equation (13.18).

We present next an example that demonstrates the performance that may
be achieved with P“D” control with gravity compensation in particular, on
the Pelican robot.

Example 13.2. Consider the Pelican robot presented in Chapter 5 and
depicted in Figure 5.2. The components of the vector of gravitational
torques g(q) are given by

g1(q) = (m1lc1 + m2l1)g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

According to Property 4.3, the constant kg may be obtained as (see
also Example 9.2):
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kg = n

(
max i,j,q

∣∣∣∣∂gi(q)
∂qj

∣∣∣∣)
= n((m1lc1 + m2l1)g + m2lc2g)

= 23.94
[
kg m2/s2

]
.

Consider the P“D” control with desired gravity compensation for
this robot in position control. Let the design matrices Kp,KvA, B be
diagonal and positive definite and satisfy

λmin{Kp} > kg .

In particular, these matrices are taken to be

Kp = diag{kp} = diag{30} [Nm/rad] ,
Kv = diag{kv} = diag{7, 3} [Nm s/rad] ,
A = diag{ai} = diag{30, 70} [1/s] ,
B = diag{bi} = diag{30, 70} [1/s] .

The components of the control input τ are given by

τ1 = kpq̃1 − kvϑ1 + g1(qd)
τ2 = kpq̃2 − kvϑ2 + g2(qd)
ẋ1 = −a1x1 − a1b1q1

ẋ2 = −a2x2 − a2b2q2

ϑ1 = x1 + b1q1

ϑ2 = x2 + b2q2 .

The initial conditions corresponding to the positions, velocities and
states of the filters, are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0
x1(0) = 0, x2(0) = 0 .

The desired joint positions are

qd1 = π/10, qd2 = π/30 [rad] .

In terms of the state vector of the closed-loop equation, the initial
state is ⎡⎢⎢⎢⎢⎢⎢⎣

ξ(0)

q̃(0)

q̇(0)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
b1π/10
b2π/30
π/10
π/30

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
9.423
7.329
0.3141
0.1047

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Figure 13.4. Graphs of position errors q̃1(t) and q̃2(t)

Figure 13.4 shows the experimental results; again, as in the previ-
ous controller, it shows that the components of the position error q̃(t)
tend asymptotically to a small constant nonzero value due, mainly, to
the friction effects in the prototype. ♦

13.3 Conclusions

We may summarize the material of this chapter in the following remarks.
Consider the P“D” control with gravity compensation for n-DOF robots.

Assume that the desired position qd is constant.

• If the matrices Kp, Kv, A and B of the controller P“D” with gravity
compensation are diagonal positive definite, then the origin of the closed-

loop equation expressed in terms of the state vector
[
ξT q̃T q̇T

]T

, is a
globally asymptotically stable equilibrium . Consequently, for any initial
condition q(0), q̇(0) ∈ IRn, we have limt→∞ q̃(t) = 0 ∈ IRn.

Consider the P“D” control with desired gravity compensation for n-DOF
robots. Assume that the desired position qd is constant.

• If the matrices Kp, Kv, A and B of the controller P“D” with desired
gravity compensation are taken diagonal positive definite, and such that
λmin{Kp} > kg, then the origin of the closed-loop equation, expressed

in terms of the state vector
[
ξT q̃T q̇T

]T

is globally asymptotically
stable. In particular, for any initial condition q(0), q̇(0) ∈ IRn, we have
limt→∞ q̃(t) = 0 ∈ IRn.
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The controller called here, P“D” with desired gravity compensation and
characterized by Equations (13.16)–(13.17) was independently proposed in
the latter two references; the formal proof of global asymptotic stability was
presented in the second.

Problems

1. Consider the following variant of the controller P“D” with gravity com-
pensation1:

τ = Kpq̃ + Kvϑ + g(q)
ẋ = −Ax − ABq̃

ϑ = x + Bq̃

where Kp,Kv ∈ IRn×n are diagonal positive definite matrices, A =
diag{ai} and B = diag{bi} with ai, bi real strictly positive numbers.
Assume that the desired joint position qd ∈ IRn is constant.

a) Obtain the closed-loop equation expressed in terms of the state vector[
xT q̃T q̇T

]T
.

b) Verify that the vector ⎡⎣x
q̃
q̇

⎤⎦ =

⎡⎣0
0
0

⎤⎦ ∈ IR3n

is the unique equilibrium of the closed-loop equation.
c) Show that the origin of the closed-loop equation is a stable equilibrium

point.
Hint: Use the following Lyapunov function candidate2:

V (x, q̃, q̇) =
1
2
q̇TM(q)q̇ +

1
2
q̃TKpq̃

+
1
2

(x + Bq̃)T
KvB−1 (x + Bq̃) .

2. Consider the model of robots with elastic joints (3.27) and (3.28),

1 This controller was analyzed in Berghuis H., Nijmeijer H., 1993, “Global regulation
of robots using only position measurements”, Systems and Control Letters, Vol.
21, October, pp. 289–293.

2 By virtue of La Salle’s Theorem it may also be proved that the origin is globally
asymptotically stable.
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M(q)q̈ + C(q, q̇)q̇ + g(q) + K(q − θ) = 0

J θ̈ − K(q − θ) = τ .

It is assumed that only the vector of positions θ of motors axes, but not
the velocities vector θ̇, is measured. We require that q(t) → qd, where qd

is constant.
A variant of the P“D” control with desired gravity compensation is3

τ = Kpθ̃ − Kvϑ + g(qd)
ẋ = −Ax − ABθ

ϑ = x + Bθ

where

θ̃ = qd − θ + K−1g(qd)
q̃ = qd − q

and Kp,Kv, A,B ∈ IRn×n are diagonal positive definite matrices.

a) Verify that the closed-loop equation in terms of the state vector[
ξT q̃T θ̃

T
q̇T θ̇

T
]T

may be written as

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ

q̃

θ̃

q̇

θ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Aξ + ABθ̃

−q̇

−θ̇

M(q)−1
[
−K(θ̃ − q̃) + g(qd) − C(q, q̇)q̇ − g(q)

]
J−1

[
Kpθ̃ − Kv(ξ − Bθ̃) + K(θ̃ − q̃)

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ξ = x + B

[
qd + K−1g(qd)

]
.

b) Verify that the origin is an equilibrium of the closed-loop equation.
c) Show that if λmin{Kp} > kg and λmin{K} > kg, then the origin is a

stable equilibrium point.
Hint: Use the following Lyapunov function and La Salle’s Theorem
2.7.

3 This controller was proposed and analyzed in Kelly R., Ortega R., Ailon A.,
Loria A., 1994, “Global regulation of flexible joint robots using approximate dif-
ferentiation”, IEEE Transactions on Automatic Control, Vol. 39, No. 6, June, pp.
1222–1224.
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V (q̃, θ̃, q̇, θ̇) = V1(q̃, θ̃, q̇, θ̇) +
1
2
q̃TKq̃ + V2(q̃)

+
1
2

[
ξ − Bθ̃

]T

KvB−1
[
ξ − Bθ̃

]
where

V1(q̃, θ̃, q̇, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
J θ̇ +

1
2
θ̃

T
Kpθ̃

+
1
2
θ̃

T
Kθ̃ − θ̃

T
Kq̃

V2(q̃) = U(qd − q̃) − U(qd) + q̃T g(qd)

and verify that

V̇ (q̃, θ̃, q̇, θ̇) = −
[
ξ − Bθ̃

]T

KvB−1A
[
ξ − Bθ̃

]
.

3. Use La Salle’s Theorem 2.7 to show global asymptotic stability of the
origin of the closed-loop equations corresponding to the P“D” controller
with gravity compensation, i.e. Equation (13.4).

4. Use La Salle’s Theorem 2.7 to show global asymptotic stability of the
origin of the closed-loop equations corresponding to the P“D” controller
with desired gravity compensation, i.e. Equation (13.18).
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Introduction to Adaptive Robot Control

Up to this chapter we have studied several control techniques which achieve
the objective of position and motion control of manipulators. The standing
implicit assumptions in the preceding chapters are that:

• The model is accurately known, i.e. either all the nonlinearities involved
are known or they are negligible.

• The constant physical parameters such as link inertias, masses, lengths to
the centers of mass and even the masses of the diverse objects which may
be handled by the end-effector of the robot, are accurately known.

Obviously, while these considerations allow one to prove certain stability
and convergence properties for the controllers studied in previous chapters,
they must be taken with care. In robot control practice, either of these assump-
tions or both, may not hold. For instance, we may be neglecting considerable
joint elasticity, friction or, even if we think we know accurately the masses
and inertias of the robot, we cannot estimate the mass of the objects carried
by the end-effector, which depend on the task accomplished.

Two general techniques in control theory and practice deal with these
phenomena, respectively: robust control and adaptive control. Roughly, the
first aims at controlling, with a small error, a class of robot manipulators
with the same robust controller. That is, given a robot manipulator model,
one designs a control law which achieves the motion control objective, with a
small error, for the given model but to which is added a known nonlinearity.

Adaptive control is a design approach tailored for high performance ap-
plications in control systems with uncertainty in the parameters. That is,
uncertainty in the dynamic system is assumed to be characterized by a set
of unknown constant parameters. However, the design of adaptive controllers
requires the precise knowledge of the structure of the system being controlled.
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Certainly one may consider other variants such as adaptive control for
systems with time-varying parameters, or robust adaptive control for systems
with structural and parameter uncertainty.

In this and the following chapters we concentrate specifically on adaptive
control of robot manipulators with constant parameters and for which we
assume that we have no structural uncertainties. In this chapter we present
an introduction to adaptive control of manipulators. In subsequent chapters
we describe and analyze two adaptive controllers for robots. They correspond
to the adaptive versions of

• PD control with adaptive desired gravity compensation,
• PD control with adaptive compensation.

14.1 Parameterization of the Dynamic Model

The dynamic model of robot manipulators1, as we know, is given by La-
grange’s equations, which we repeat here in their compact form:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (14.1)

In previous chapters we have not emphasized the fact that the elements of the
inertia matrix M(q), the centrifugal and Coriolis forces matrix C(q, q̇) and the
vector of gravitational torques g(q), depend not only on the geometry of the
corresponding robot but also on the numerical values of diverse parameters
such as masses, inertias and distances to centers of mass.

The scenario in which these parameters and the geometry of the robot are
exactly known is called in the context of adaptive control, the ideal case. A
more realistic scenario is usually that in which the numerical values of some
parameters of the robot are unknown. Such is the case, for instance, when the
object manipulated by the end-effector of the robot (which may be considered
as part of the last link) is of uncertain mass and/or inertia. The consequence
in this situation cannot be overestimated; due to the uncertainty in some of
the parameters of the robot model it is impossible to use the model-based
control laws from any of the previous chapters since they rely on an accurate
knowledge of the dynamic model. The adaptive controllers are useful precisely
in this more realistic case.

To emphasize the dependence of the dynamic model on the dynamic pa-
rameters, from now on we write the dynamic model (14.1) explicitly as a
function of the vector of unknown dynamic parameters, θ, that is2,
1 Under the ideal conditions of rigid links, no elasticity at joints, no friction and

having actuators with negligible dynamics.
2 In this textbook we have used � to denote the joint positions of the motor shafts

for models of robots with elastic joints. With an abuse of notation, in this and the
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M(q,θ)q̈ + C(q, q̇, θ)q̇ + g(q, θ) = τ . (14.2)

The vector of parameters θ may be of any dimension, that is, it does not
depend in any specific way on the number of degrees of freedom or on whether
the robot has revolute or prismatic joints etc. Notwithstanding, an upper-
bound on the dimension is determined by the number of degrees of freedom.
Therefore, we simply say that θ ∈ IRm where m is some known constant. It is
also important to stress that the dynamic parameters, denoted here by θ, do
not necessarily correspond to the individual physical parameters of the robot,
as is illustrated in the following example.

Example 14.1. Consider the example of an ideal pendulum with its
mass m concentrated at the tip, at a distance l from its axis of rotation.
Its dynamic model is given by

ml2q̈ + mgl sin(q) = τ (14.3)

hence, compared to (14.2) we identify M(q, θ) = ml2, g(q, θ) =
mgl sin(q). Hence, assuming that both the mass m and the length
from the joint axis to the center of mass l, are unknown, we identify
the vector of dynamic parameters as

θ =
[

ml2

mgl

]
,

which is, strictly speaking, a nonlinear vectorial function of the phys-
ical parameters m and l, since θ depends on products of them. ♦

Note that here, the number of dynamic parameters coincides with the
number of physical parameters, however, this is in general not the case as is
clear from the examples below.

14.1.1 Linearity in the Dynamic Parameters

Example 14.1 also shows that the dynamic model (14.3) is linear in the pa-
rameters θ. To see this more clearly, notice that we may write

ml2q̈ + mgl sin(q) = [q̈ sin(q)]
[

ml2

mgl

]
=: Φ(q, q̈)θ .

other chapters on adaptive control, the symbol � denotes the vector of dynamic
parameters.
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That is, the dynamic model (14.3) with zero input (τ = 0), can be rewritten as
the product of a vector function Φ which contains nonlinear terms of the state
(the generalized coordinates and its derivatives) and the vector of dynamic
parameters, θ.

This property is commonly known as “linearity in the parameters” or “lin-
ear parameterization”. It is a property possessed by many nonlinear systems
and, in particular, by a fairly large class of robot manipulators. It is also
our standing hypothesis for the subsequent chapters hence, we enunciate it
formally below.

Property 14.1. Linearity in the dynamic parameters.
For the matrices M(q,θ), C(q, q̇, θ) and the vector g(q, θ) from the dynamic
model (14.2), we have the following.

1.

For all u, v, w ∈ IRn it holds that

M(q,θ)u+C(q,w, θ)v +g(q,θ) = Φ(q, u, v, w)θ +κ(q, u, v, w)

(14.4)

where κ(q, u, v,w) is a vector of n × 1, Φ(q, u, v, w) is a matrix
of n × m and the vector θ ∈ IRm depends only on the dynamic
parameters of the manipulator and its load.

2. Moreover3, if q, u, v, w ∈ Ln
∞ then Φ(q,u,v,w) ∈ Ln×m

∞ .

It is worth remarking that one may always find a vector θ ∈ IRm for which
κ(q,u,v,w) ≡ 0 ∈ IRn. With this under consideration, setting u = q̈,
v = w = q̇, on occasions it appears useful to rewrite Equation (14.4) in
the simplified form

Y (q, q̇, q̈)θ = M(q, θ)q̈ + C(q, q̇, θ)q̇ + g(q,θ) (14.5)

where Y (q, q̇, q̈) = Φ(q, q̈, q̇, q̇) is a matrix of dimension n × m and θ is a
vector of dimension m × 1 which contains m constants that depend on the
dynamic parameters. The constant n is clearly the number of DOF and m
depends on the selection of the dynamic parameters of the robot.

Notice that Property 14.1 is stated in fair generality, i.e. it is not assumed,
as for many other properties stated in Chapter 4, that the robot must have
only revolute joints.

It is also important to underline, and it must be clear from Example 14.1,
that the dynamic model of the robot is not necessarily linear in terms of the

3 We remind the student reader that the notation L∞ is described in detail in
Appendix A which is left as self-study.
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masses, inertias and distances of the centers of mass of the links but rather, it
is linear in terms of the dynamic parameters θ which in general, are nonlinear
functions of the physical parameters. Therefore, given a selection of masses,
inertias and distances to the centers of mass (of all the links), called here
‘parameters of interest’, the dynamic parameters are obtained from the robot
model according to (14.4).

In general, the relation between the parameters of interest and the dy-
namic parameters is not available in a simple manner, but by developing
(14.4) explicitly and using the fact that the matrix Φ(q,u,v,w) as well as
the vector κ(q, u,v,w), do not depend on the dynamic parameters θ. This
methodology is illustrated below through several examples; the procedure to
determine the dynamic parameters may be too elaborate for robots with a
large number of degrees of freedom. However, procedures to characterize the
dynamic parameters are available.

Example 14.2. The right-hand side of the dynamic model of the device
studied in Example 3.2, that is, of Equation (3.5),

m2l
2
2cos2(ϕ)q̈ = τ

may be expressed in the form (14.5) where

Y (q, q̇, q̈) = l22cos2(ϕ)q̈
θ = m2 .

♦

The following example shows that, as expected, the model of the Pelican
prototype of Chapter 5 satisfies the linear parameterization property. This is
used extensively later to design adaptive control schemes for this prototype
in succeeding examples.

Example 14.3. Consider the Pelican manipulator moving on a vertical
plane under the action of gravity as depicted in Figure 5.2. For sim-
plicity, the manipulator is assumed to have two rigid links of unitary
length (l1 = l2 = 1) and masses m1 and m2 concentrated at the ends
of the links (lc1 = lc2 = 1, and I1 = I2 = 0). The dynamic model
associated with the manipulator was obtained in Chapter 5 and is
described by Equations (5.3) and (5.4):

τ1 = [[m1 + m2] + m2 + 2m2 cos(q2)] q̈1

+ [m2 + m2 cos(q2)] q̈2

− 2m2 sin(q2)q̇1q̇2 − m2 sin(q2)q̇2
2

+ [m1 + m2]g sin(q1)
+ m2g sin(q1 + q2) (14.6)
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τ2 = [m2 + m2 cos(q2)] q̈1 + m2q̈2

+ m2 sin(q2)q̇2
1 + m2g sin(q1 + q2) . (14.7)

The dynamic parameters in the model are the masses m1 and m2.
Define the vector θ of dynamic parameters as θ = [m1 m2]T .

The set of dynamic Equations (14.6) and (14.7) may be rewritten
in linear terms of θ, that is, in the form (14.5):

Y (q, q̇, q̈)θ = τ ,

where Y (q, q̇, q̈) is the matrix of dimension 2 × 2:

Y (q, q̇, q̈) =
[

Y11(q, q̇, q̈) Y12(q, q̇, q̈)
Y21(q, q̇, q̈) Y22(q, q̇, q̈)

]
with

Y11(q, q̇, q̈) = q̈1 + gS1

Y12(q, q̇, q̈) = 2q̈1 + q̈2 + C2(2q̈1 + q̈2)
− S2q̇

2
2 − 2S2q̇1q̇2 + gS12 + gS1

Y21(q, q̇, q̈) = 0
Y22(q, q̇, q̈) = C2q̈1 + q̈1 + q̈2 + S2q̇

2
1 + gS12 .

where Ci = cos(qi), Si = sin(qi), C12 = cos(q1 + q2) and S12 =
sin(q1 + q2). ♦

From Property 14.1, one can also show that the dynamic model of robots
with (linear) actuators described by (3.33) also satisfies a linearity relation
in terms of the dynamic parameters of the robot as well as in terms of the
actuator constants. Specifically, for all q, q̇, q̈ ∈ IRn ,

Ω(q, q̇, q̈)θ = K−1 [R M(q) + J ] q̈ + K−1R C(q, q̇)q̇
+ K−1R g(q) + K−1Rf(q̇) + K−1Bq̇

= v (14.8)

where Ω(q, q̇, q̈) is a matrix of dimension n×m and θ is a vector of dimension
m × 1 that contains m constants that depend on the dynamic parameters of
the robot and on those of the actuators.

Example 14.4. Consider the pendulum depicted in Figure 3.13 and
whose dynamic model is derived in Example 3.8, that is,[

Jm +
JL

r2

]
q̈ +

[
fm +

fL

r2
+

KaKb

Ra

]
q̇ +

kL

r2
sin(q) =

Ka

rRa
v .
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The dynamic equation may be written in linear terms of the vector
θ, that is, in the form (14.8),

Ω(q, q̇, q̈)θ = v

where

Ω(q, q̇, q̈) = [q̈ q̇ sin(q)]

θ =
rRa

Ka

[
Jm +

JL

r2
fm +

KaKb

Ra
+

fL

r2

kL

r2

]T

.

♦

14.1.2 The Nominal Model

We remark that for any given robot the vector of dynamic parameters θ is
not unique since it depends on how the parameters of interest are chosen. In
the context of adaptive control, the parameters of interest are those whose
numerical values are unknown. Usually, these are the mass, the inertia and
the physical location of the center of mass of the last link of the robot.

For instance, as mentioned and illustrated through examples above, the
vector κ(q, u, v, w) and the matrix Φ(q, u, v, w) are obtained from knowledge
of the dynamic model of the robot under study, as well as from the vector
θ ∈ IRm formed by the selection of the m dynamic parameters of interest.
Naturally, it is always possible to choose a vector of dynamic parameters θ
for which (14.4) holds with κ(q, u, v, w) = 0 ∈ IRn.

However, on certain occasions it may also appear useful to separate from
the dynamics (14.2), those terms (if any) which involve known dynamic pa-
rameters or simply, that are independent of these. In such case, the parame-
terization (14.4) may be expressed as

M(q,θ)u + C(q, w, θ)v + g(q, θ) =
Φ(q,u, v, w)θ + M0(q)u + C0(q, w)v + g0(q), (14.9)

where we may identify the nominal model or nominal part of the model,

κ(q,u,v, w) = M0(q)u + C0(q, w)v + g0(q) .

That is, the matrices M0(q), C0(q, w) and the vector g0(q) represent
respectively, parts of the matrices M(q), C(q, q̇) and of the vector g(q) that
do not depend on the vector of unknown dynamic parameters θ.

According with the parameterization (14.9), given a vector θ̂ ∈ IRm, the
expression Φ(q, u, v, w)θ̂ corresponds to
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Φ(q,u,v, w)θ̂ =

M(q, θ̂)u+C(q, w, θ̂)v+g(q, θ̂)−M0(q)u−C0(q, w)v−g0(q). (14.10)

A particular case of parameterization (14.9) is when u = v = w = 0 ∈
IRn. In this scenario we have the following parameterization of the vector of
gravitational torques:

g(q, θ) = Φ(q,0,0,0)θ + g0(q) .

The following example is presented with the purpose of illustrating these ideas.

Example 14.5. Consider the model of a pendulum of mass m, inertia
J with respect to the axis of rotation, and distance l from the axis of
rotation to the center of mass. The torque τ is applied at the axis of
rotation, that is,

Jq̈ + mgl sin(q) = τ .

We clearly identify M(q) = J , C(q, q̇) = 0 and g(q) = mgl sin(q).
Consider as parameters of interest the mass m and the inertia J .

The parameterization (14.9) in this scenario is

M(q, θ)u + C(q, w, θ)v + g(q, θ)
= Ju + mgl sin(q)
= Φ(q, u, v, w)θ + M0(q)u + C0(q, w)v + g0(q) (14.11)

where

Φ(q, u, v, w) = [u gl sin(q)] (14.12)

θ =
[

J
m

]
M0(q) = C0(q, w) = g0(q) = 0 . (14.13)

The reader may appreciate that particularly for this example, the
dynamic parameters coincide precisely with the parameters of interest,
m and J .

On the other hand, defining θ̂ ∈ IR2 as

θ̂ =
[

Ĵ
m̂

]
,

the expression (14.10) becomes

M(q, θ̂)u + C(q, w, θ̂)v + g(q, θ̂)
= Ĵu + m̂gl sin(q)

= Φ(q, u, v, w)θ̂ + M0(q)u + C0(q, w)v + g0(q)
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where Φ(q, u, v, w), M0(q), C0(q, w) and g0(q) are exactly the same as
in (14.12) and (14.13) respectively.

Assume now that the unique parameter of interest is the inertia
J . The expression (14.9) is given again by (14.11) but now

Φ(q, u, v, w) = u (14.14)
θ = J

M0(q) = 0
C0(q, w) = 0

g0(q) = mgl sin(q) . (14.15)

On the other hand, defining θ̂ = Ĵ , the expression (14.10) becomes

M(q, θ̂)u + C(q, w, θ̂)v + g(q, θ̂)
= Ĵu + mgl sin(q)

= Φ(q, u, v, w)θ̂ + M0(q)u + C0(q, w)v + g0(q),

where Φ(q, u, v, w), M0(q), C0(q, w) and g0(q) are exactly (14.14)–
(14.15). ♦

We present next an example of a planar 2-DOF robot. This robot is used in
succeeding chapters with the aim of illustrating different adaptive controllers.

Example 14.6. Consider the planar manipulator having two DOF il-
lustrated in Figure 14.1 and whose dynamic model was obtained in
Example 3.3.

The dynamic model of the considered 2-DOF planar manipulator
is given by (3.8)–(3.9), and may be written as

θ1q̈1 + (θ3C21 + θ4S21) q̈2 − θ3S21q̇
2
2 + θ4C21q̇

2
2 = τ1 (14.16)

(θ3C21 + θ4S21) q̈1 + θ2q̈2 + θ3S21q̇
2
1 − θ4C21q̇

2
1 = τ2 (14.17)

where

θ1 = m1l
2
c1 + m2l

2
1 + I1

θ2 = m2l
2
c2 + I2

θ3 = m2l1lc2 cos(δ)
θ4 = m2l1lc2 sin(δ) .

It is easy to see that the previous model may be written in the
standard form of the robot model (14.1) where
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l1 q1

x

y

τ1

z

τ2

m2
I2

δq2

lc2

m1

I1 lc1

Figure 14.1. Planar 2-DOF manipulator on a horizontal plane

M(q, θ) =
[

θ1 θ3C21 + θ4S21

θ3C21 + θ4S21 θ2

]
C(q, q̇, θ) =

[
0 (θ4C21 − θ3S21) q̇2

(θ3S21 − θ4C21) q̇1 0

]
g(q, θ) = 0 .

The dynamic model of the robot has been written in terms of
the components θ1, θ2, θ3 and θ4 of the vector of unknown dynamic
parameters. As mentioned above, these depend on the physical char-
acteristics of the manipulator such as the masses and inertias of its
links. The vector of dynamic parameters θ is given directly by

θ =

⎡⎢⎣
θ1

θ2

θ3

θ4

⎤⎥⎦ ∈ IR4 .

Next, define the vectors

u =
[

u1

u2

]
, v =

[
v1

v2

]
, w =

[
w1

w2

]
.

The parameterization (14.9) in this example yields
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M(q, θ)u + C(q,w, θ)v + g(q,θ)

=
[

θ1 θ3C21 + θ4S21

θ3C21 + θ4S21 θ2

]
u

+
[

0 (θ4C21 − θ3S21) w2

(θ3S21 − θ4C21) w1 0

]
v

=
[

Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

]⎡⎢⎣
θ1

θ2

θ3

θ4

⎤⎥⎦
+ M0(q)u + C0(q,w)v + g0(q).

After spelling out M(q, θ)u + C(q, w, θ)v + g(q, θ), it may be
verified that

Φ11 = u1

Φ12 = 0
Φ13 = C21u2 − S21w2v2

Φ14 = S21u2 + C21w2v2

Φ21 = 0
Φ22 = u2

Φ23 = C21u1 + S21w1v1

Φ24 = S21u1 − C21w1v1

M0(q) = 0 ∈ IR2×2

C0(q,w) = 0 ∈ IR2×2

g0(q) = 0 ∈ IR2 .

♦

Finally, we present an example of the Pelican robot, with which the reader
must already be familiar.

Example 14.7. Consider the Pelican robot presented in Chapter 5, and
shown in Figure 5.2. Its dynamic model is repeated here for conve-
nience:[

M11(q) M12(q)
M21(q) M22(q)

]
︸ ︷︷ ︸

M(q)

q̈ +
[

C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

]
︸ ︷︷ ︸

C(q,q̇)

q̇ +
[

g1(q)
g2(q)

]
︸ ︷︷ ︸

g(q)

= τ

where
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M11(q) = m1l
2
c1 + m2

[
l21 + l2c2 + 2l1lc2 cos(q2)

]
+ I1 + I2

M12(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M21(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M22(q) = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2) [q̇1 + q̇2]
C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0

g1(q) = [m1lc1 + m2l1] g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

For this example we have selected as parameters of interest, the
mass m2, the inertia I2 and the location of the center of mass of
the second link, lc2. In contrast to the previous example where the
dynamic model (14.16)–(14.17) was written directly in terms of the
dynamic parameters, here it is necessary to determine the latter as
functions of the parameters of interest.

To that end, define first the vectors

u =
[

u1

u2

]
, v =

[
v1

v2

]
, w =

[
w1

w2

]
.

The development of the parameterization (14.9) in this example
leads to

M(q, θ)u + C(q,w, θ)v + g(q,θ) =[
Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

]⎡⎣ θ1

θ2

θ3

⎤⎦ + M0(q)u + C0(q, w)v + g0(q),

where

Φ11 = l21u1 + l1g sin(q1)
Φ12 = 2l1 cos(q2)u1 + l1 cos(q2)u2 − l1 sin(q2)w2v1

−l1 sin(q2)[w1 + w2]v2 + g sin(q1 + q2)
Φ13 = u1 + u2

Φ21 = 0
Φ22 = l1 cos(q2)u1 + l1 sin(q2)w1v1 + g sin(q1 + q2)
Φ23 = u1 + u2

θ =

⎡⎣ θ1

θ2

θ3

⎤⎦ =

⎡⎣ m2

m2lc2
m2l

2
c2 + I2

⎤⎦
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M0(q) =
[

m1l
2
c1 + I1 0
0 0

]
C0(q,w) =

[
0 0
0 0

]
g0(q) =

[
m1lc1g sin(q1)

0

]
.

Notice that effectively, the vector of dynamic parameters θ depends
exclusively on the parameters of interest m2, I2 and lc2. ♦

14.2 The Adaptive Robot Control Problem

We have presented and discussed so far the fundamental property of linear
parameterization of robot manipulators. All the adaptive controllers that we
study in the following chapters rely on the assumption that this property
holds.

Also, it is assumed that uncertainty in the model of the manipulator con-
sists only of the lack of knowledge of the numerical values of the elements of
θ. Hence, the structural form of the model of the manipulator is assumed to
be exactly known, that is, the matrices Φ(q,u, v, w), M0(q), C0(q,w) and
the vector g0(q) are assumed to be known.

Formally, the control problem that we address in this text may be stated
in the following terms. Consider the dynamic equation of n-DOF robots (14.2)
taking into account the linear parameterization (14.9) that is,

M(q, θ)q̈ + C(q, q̇, θ)q̇ + g(q, θ) = τ

or equivalently,

Φ(q, q̈, q̇, q̇)θ + M0(q)q̈ + C0(q, q̇)q̇ + g0(q) = τ .

Assume that the matrices Φ(q, q̈, q̇, q̇) ∈ IRn×m, M0(q), C0(q, q̇) ∈ IRn×n and
the vector g0(q) ∈ IRn are known but that the constant vector of dynamic
parameters (which includes, for instance, inertias and masses) θ ∈ IRm is un-
known4. Given a set of vectorial bounded functions qd, q̇d and q̈d, referred
to as desired joint positions, velocities and accelerations, we seek to design
controllers that achieve the position or motion control objectives. The solu-
tions given in this textbook to this problem consist of the so-called adaptive
controllers.
4 By ‘Φ(q, q̈, q̇, q̇) and C0(q, q̇) known’ we understand that Φ(q, u, v, w) and C0(q, w)

are known respectively. By ‘ � ∈ IRm unknown’ we mean that the numerical values
of its m components θ1, θ2, · · · , θm are unknown.
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We present next an example with the purpose of illustrating the control
problem formulated above.

Example 14.8. Consider again the model of a pendulum of mass m,
inertia J with respect to the axis of rotation, and distance l from the
axis of rotation to its center of mass. The torque τ is applied at the
axis of rotation, that is,

Jq̈ + mgl sin(q) = τ .

We clearly identify M(q) = J , C(q, q̇) = 0 and g(q) = mgl sin(q).
Consider as parameter of interest, the inertia J . The model of the

pendulum may be written in the generic form (14.9)

M(q, θ)u + C(q, w, θ)v + g(q, θ)
= Ju + mgl sin(q)
= Φ(q, u, v, w)θ + M0(q)u + C0(q, w)v + g0(q),

where

Φ(q, u, v, w) = u

θ = J

M0(q) = 0
C0(q, w) = 0

g0(q) = mgl sin(q) .

Assume that the values of the mass m, the distance l and the
gravity acceleration g are known but that the value of the inertia
θ = J is unknown (yet constant). The control problem consists in
designing a controller that is capable of achieving the motion control
objective

lim
t→∞ q̃(t) = 0 ∈ IR

for any desired joint trajectory qd(t) (with bounded first and second
time derivatives). The reader may notice that this problem formula-
tion has not been addressed by any of the controllers presented in
previous chapters. ♦

It is important to stress that the lack of knowledge of the vector of dynamic
parameters of the robot, θ and consequently, the uncertainty in its dynamic
model make impossible the use of controllers which rely on accurate knowledge
of the robot model, such as those studied in the chapters of Part II of this
textbook. This has been the main reason that motivates the presentation of
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adaptive controllers in this part of the text. Certainly, if by any other means
it is possible to determine the dynamic parameters, the use of an adaptive
controller is unnecessary.

Another important observation about the control problem formulated
above is the following. We have said explicitly that the vector of dynamic
parameters θ ∈ IRm is assumed unknown but constant. This means precisely
that the components of this vector do not vary as functions of time. Conse-
quently, in the case where the parametric uncertainty comes from the mass
or the inertia corresponding to the manipulated load by the robot5, this must
always be the same object, and therefore, it may not be latched or changed.
Obviously this is a serious restriction from a practical viewpoint but it is
necessary for the stability analysis of any adaptive controller if one is inter-
ested in guaranteeing achievement of the motion or position control objectives.
As a matter of fact, the previous remarks also apply universally to all con-
trollers that have been studied in previous chapters of this textbook. The
reader should not be surprised by this fact since in the stability analyses the
dynamic model of robot manipulators (including the manipulated object) is
given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ

where we have implicitly involved the hypothesis that its parameters are con-
stant. Naturally, in the case of model-based controllers for robots, these con-
stant parameters must in addition, be known. In the scenario where the pa-
rameters vary with time then this variation must be known exactly.

14.3 Parameterization of the Adaptive Controller

The control laws to solve the position and motion control problems for robot
manipulators may be written in the functional form

τ = τ (q, q̇, qd, q̇d, q̈d,M(q), C(q, q̇), g(q)) . (14.18)

In general, these control laws are formed by the sum of two terms; the
first, which does not depend explicitly on the dynamic model of the robot to
be controlled, and a second one which does. Therefore, giving a little ‘more’
structure to (14.18), we may write that most of the control laws have the form

τ = τ 1(q, q̇, qd, q̇d, q̈d) + M(q)u + C(q, w)v + g(q),

where the vectors u, v, w ∈ IRn depend in general on the positions q, velocities
q̇ and on the desired trajectory and its derivatives, qd, q̇d and q̈d. The term

5 The manipulated object (load) may be considered as part of the last link of the
robot.
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τ 1(q, q̇, qd, q̇d, q̈d), which does not depend on the dynamic model, usually
corresponds to linear control terms of PD type, i.e.

τ 1(q, q̇, qd, q̇d, q̈d) = Kp[qd − q] + Kv[q̇d − q̇]

where Kp and Kv are gain matrices of position and velocity (or derivative
gain) respectively.

Certainly, the structure of some position control laws do not depend on
the dynamic model of the robot to be controlled; e.g. such is the case for PD
and PID control laws. Other control laws require only part of the dynamic
model of the robot; e.g. PD control with gravity compensation.

In general an adaptive controller is formed of two main parts:

• control law or controller;
• adaptive (update) law.

At this point it is worth remarking that we have not spoken of any partic-
ular adaptive controller to solve a given control problem. Indeed, there may
exist many control and adaptive laws that allow one to solve a specific control
problem. However, in general the control law is an algebraic equation that
calculates the control action and which may be written in the generic form

τ = τ 1(q, q̇, qd, q̇d, q̈d) + M(q, θ̂)u + C(q, w, θ̂)v + g(q, θ̂) (14.19)

where in general, the vectors u,v, w ∈ IRn depend on the positions q and
velocities q̇ as well as on the desired trajectory qd, and its derivatives q̇d and
q̈d. The vector θ̂ ∈ IRm is referred to as the vector of adaptive parameters
even though it actually corresponds to the vectorial function of time θ̂(t),
which is such that (14.10) holds for all t ≥ 0. It is important to mention that
on some occasions, the control law may be a dynamic equation and not just
‘algebraic’.

Typically, the control law (14.19) is chosen so that when substituting the
vector of adaptive parameters θ̂ by the vector of dynamic parameters θ (which
yields a nonadaptive controller), the resulting closed-loop system meets the
control objective. As a matter of fact, in the case of control of robot manipu-
lators nonadaptive control strategies that do not guarantee global asymptotic

stability of the origin
[
q̃T ˙̃q

T
]T

= 0 ∈ IR2n or
[
q̃T q̇T

]T
= 0 ∈ IR2n for the

case when qd(t) is constant, are not candidates for adaptive versions, at least
not with the standard design tools.

The adaptive law allows one to determine θ̂(t) and in general, may be
written as a differential equation of θ̂. An adaptive law commonly used in
continuous adaptive systems is the so-called integral law or gradient type

θ̂(t) = Γ

∫ t

0

ψ (s, q, q̇, q̈, qd, q̇d, q̈d) ds + θ̂(0) (14.20)



14.3 Parameterization of the Adaptive Controller 329

where6 Γ = ΓT ∈ IRm×m and θ̂(0) ∈ IRm are design parameters while ψ is a
vectorial function to be determined, of dimension m.

The symmetric matrix Γ is usually diagonal and positive definite and is
called ‘adaptive gain’. The “magnitude” of the adaptive gain Γ is related
proportionally to the “rapidity of adaptation” of the control system vis-a-
vis the parametric uncertainty of the dynamic model. The design procedures
for adaptive controllers that use integral adaptive laws (14.20) in general, do
not provide any guidelines to determine specifically the adaptive gain Γ . In
practice one simply applies ‘experience’ to a trial-and-error approach until sat-
isfactory behavior of the control system is obtained and usually, the adaptive
gain is initially chosen to be “small”.

On the other hand, θ̂(0) is an arbitrary vector even though in practice,
we choose it as the best approximation available to the unknown vector of
dynamic parameters, θ.

Figure 14.2 shows a block-diagram of the adaptive control of a robot.
An equivalent representation of the adaptive law is obtained by differen-

tiating (14.20) with respect to time, that is,

˙̂
θ(t) = Γψ (s, q, q̇, q̈, qd, q̇d, q̈d) . (14.21)

τqd
q̇d
q̈d

ROBOT qd

q̇
τ(t, q, q̇, q̇d, q̈d, θ̂)

∫ t

0

ψ (s, q, q̇, q̈, qd, q̇d, q̈d) ds

Figure 14.2. Block-diagram: generic adaptive control of robots

It is desirable, from a practical viewpoint, that the control law (14.19) as
well as the adaptive law (14.20) or (14.21), do not depend explicitly on the
joint acceleration q̈.

14.3.1 Stability and Convergence of Adaptive Control Systems

An important topic in adaptive control systems is parametric convergence.
The concept of parametric convergence refers to the asymptotic properties of
6 In (14.20) as in other integrals, we avoid the cumbersome notation

ψ(t, �(t), �̇(t), �̈(t), �d(t), �̇d(t), �̈d(t) ).
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the vector of adaptive parameters θ̂. For a given adaptive system, if the limit
of θ̂(t) when t → ∞ exists and is such that

lim
t→∞ θ̂(t) = θ,

then we say that the adaptive system guarantees parametric convergence. As
a matter of fact, parametric convergence is not an intrinsic characteristic of an
adaptive controller. The latter depends, of course, on the adaptive controller
itself but also on the behavior of some functions which may be internal or
eventually external to the system in closed loop.

The study of the conditions to obtain parametric convergence in adaptive
control systems is in general elaborate and requires additional mathematical
tools to those presented in this text. For this reason, this topic is excluded.

The methodology of stability analysis for adaptive control systems for
robot manipulators that is treated in this textbook is based on Lyapunov sta-
bility theory, following the guidelines of their nonadaptive counterparts. The
main difference with respect to the analyses presented before is the inclusion
of the parametric errors vector θ̃ ∈ IRm defined as

θ̃ = θ̂ − θ

in the closed loop equation’s state vector.
The dynamic equations that characterize adaptive control systems in

closed loop have the general form

d

dt

⎡⎢⎢⎢⎣
q̃

˙̃q

θ̃

⎤⎥⎥⎥⎦ = f
(
t, q, q̇, qd, q̇d, q̈d, θ̃

)
,

for which the origin is an equilibrium point. In general, unless we make appro-
priate hypotheses on the reference trajectories, the origin in adaptive control
systems is not the only equilibrium point; as a matter of fact, it is not even
an isolated equilibrium! The study of such systems is beyond the scope of the
present text. For this reason, we do not study asymptotic stability (neither
local nor global) but only stability and convergence of the position errors.
That is, we show by other arguments, achievement of the control objective

lim
t→∞ q̃(t) = 0 .

We wish to emphasize the significance of the last phrase. Notice that we are
claiming that even though we do not study and in general do not guarantee
parameter convergence (to their true values) for any of the adaptive con-
trollers studied in this text, we are implicitly saying that one can still achieve
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the motion control objective. This, in the presence of multiple equilibria and
parameter uncertainty.

That one can achieve the control objective under parameter uncertainty is
a fundamental truth that holds for many nonlinear systems and is commonly
known as certainty equivalence.
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Problems

1. Consider the simplified Cartesian mechanical device of Figure 14.3.
Express the dynamic model in the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = Y (q, q̇, q̈)θ

where θ = [m1 + m2 m2]T .
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Figure 14.3. Problem 2. Cartesian robot.
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PD Control with Adaptive Desired Gravity
Compensation

It must be clear at this point that position control – regulation – is one of the
simplest control objectives that may be formulated for robot manipulators. In
spite of this apparent simplicity, the controllers which may achieve it globally
require, in general, knowledge of at least the vector of gravitational torques
g(q) of the dynamic robot model in question. Among the simplest controllers
we have the following:

• PD control with gravity compensation;
• PD control with desired gravity compensation.

The first satisfies the position control objective globally with a trivial
choice of the design parameter (cf. Chapter 7) while the second, even though
it also achieves the position control objective globally, it requires a particular
choice of design parameters (cf. Chapter 8). Nevertheless, the second controller
is more attractive from a practical viewpoint due to its relative simplicity. As
mentioned above, a common feature of both controllers is the use of the vector
of gravitational torques g(q). The knowledge of this vector must be complete
in the sense that both the structure of g(q) and the numerical values of the
dynamic parameters must be known. Naturally in the case in which one of
them is unknown, the previous control schemes may not be implemented.

In this chapter we study an adaptive control that is capable of satisfying
the position control objective globally without requiring exact knowledge of
the numerical values involved in the dynamic model of the robot to be con-
trolled. We consider the scenario where all the joints of the robot are revolute.
Specifically, we study the adaptive version of PD control with desired gravity
compensation.

The material presented in this chapter has been taken from the corre-
sponding references cited at the end of the chapter.
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15.1 The Control and Adaptive Laws

We start by recalling the PD control law with desired gravity compensation
given by (8.1), and which we repeat below for convenience,

τ = Kpq̃ + Kv
˙̃q + g(qd) .

We also recall that Kp,Kv ∈ IRn×n are symmetric positive definite matrices
chosen by the designer. As is customary, the position error is denoted by
q̃ = qd − q, while qd ∈ IRn stands for the desired joint position. In this
chapter we assume that the desired joint position qd is constant and therefore
the control law covers the form

τ = Kpq̃ − Kvq̇ + g(qd) . (15.1)

The practical convenience of this control law with respect to that of PD
control with gravity compensation, given by (7.1), is evident. Indeed, the
vector g(qd) used in the control law (15.1) depends on qd and not on q
therefore, it may be evaluated “off-line” once qd is defined. In other words, it
is unnecessary to compute g(q) in real time.

For further development it is also worth recalling Property 14.1, which
establishes that the dynamic model of a n-DOF robot (with a manipulated
load included) may be written using the parameterization (14.9), i.e. as

M(q,θ)u + C(q, w, θ)v + g(q, θ) =
Φ(q,u, v, w)θ + M0(q)u + C0(q, w)v + g0(q), (15.2)

where Φ(q, u, v, w) ∈ IRn×m, M0(q) ∈ IRn×n, C0(q, w) ∈ IRn×n, g0(q) ∈ IRn

and θ ∈ IRm. The vector θ, known by the name vector of dynamic parameters,
contains elements that depend precisely on physical parameters such as masses
and inertias of the links of the manipulator and on the load. The matrices
M0(q), C0(q, w) and the vector g0(q) represent parts of the matrices M(q),
C(q, q̇) and of the vector g(q) that do not depend on the vector of (unknown)
dynamic parameters θ.

By virtue of the previous fact, notice that the following expression is valid
for all x ∈ IRn

g(x,θ) = Φ(x,0,0,0)θ + g0(x), (15.3)

where we set

u = 0

v = 0

w = 0 .

On the other hand, using (14.10), we conclude that for any vector θ̂ ∈ IRm

and x ∈ IRn
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g(x, θ̂) = Φ(x,0,0,0)θ̂ + g0(x) . (15.4)

For notational simplicity, in the sequel we use the following abbreviation

Φg(x) = Φ(x,0,0,0) . (15.5)

Considering (15.3) with x = qd, the PD control law with desired gravity
compensation, (15.1), may also be written as

τ = Kpq̃ − Kvq̇ + Φg(qd)θ + g0(qd) . (15.6)

It is important to emphasize that in the implementation of the PD control
law with desired gravity compensation, (15.1) or, equivalently (15.6), knowl-
edge of the dynamic parameters θ of the robot (including the manipulated
load) is required.

In the sequel, we assume that the vector θ ∈ IRm of dynamic parameters
is unknown but constant. Obviously, in this scenario, PD control with desired
gravity compensation may not be used for robot control. Nevertheless, we
assume that the unknown dynamic parameters θ lay in a known region Ω ⊂
IRm of the space IRm. In other words, even though the vector θ is supposed to
be unknown, we assume that the set Ω in which θ lays is known. The set Ω may
be arbitrarily “large” but has to be bounded. In practice, the set Ω may be
determined from upper and lower-bounds on the dynamic parameters which,
as has been mentioned, are functions of the masses, inertias and location of
the centers of mass of the links.

The solution that we consider in this chapter to the position control prob-
lem formulated above consists in the so-called adaptive version of PD control
with desired gravity compensation, that is, PD control with adaptive desired
gravity compensation.

The structure of the motion adaptive control schemes for robot manipu-
lators that are studied in this text are defined by means of a control law like
(14.19) and an adaptive law like (14.20). In the particular case of position
control these control laws take the form

τ = τ
(
t, q, q̇, qd, θ̂

)
(15.7)

θ̂(t) = Γ

∫ t

0

ψ (t, q, q̇, qd) dt + θ̂(0), (15.8)

where Γ = ΓT ∈ IRm×m (adaptation gain) and θ̂(0) ∈ IRm are design pa-
rameters while ψ is a vectorial function to be determined, and has dimension
m.

The PD control with adaptive desired gravity compensation is described
in (15.7)–(15.8) where
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τ = Kpq̃ − Kvq̇ + g(qd, θ̂) (15.9)

= Kpq̃ − Kvq̇ + Φg(qd)θ̂ + g0(qd), (15.10)

and

θ̂(t) = ΓΦg(qd)
T

∫ t

0

[
ε0

1 + ‖q̃‖ q̃ − q̇

]
ds + θ̂(0), (15.11)

where Kp,Kv ∈ IRn×n and Γ ∈ IRm×m are symmetric positive definite design
matrices and ε0 is a positive constant that satisfies conditions that are given
later on. The pass from (15.9) to (15.10) was made by using (15.4) with
x = qd.

Notice that the control law (15.10) does not depend on the dynamic pa-
rameters θ but on the so-called adaptive parameters θ̂ that in their turn,
are obtained from the adaptive law (15.11) which of course, does not depend
either on θ.

Among the design parameters of the adaptive controller formed by Equa-
tions (15.10)–(15.11), only the matrix Kp and the real positive constant ε0

must be chosen carefully. To that end, we start by defining λMax{M}, kC1

and kg as

•λMax{M(q,θ)} ≤ λMax{M} ∀ q ∈ IRn, θ ∈ Ω

• ‖C(q, q̇,θ)‖ ≤ kC1 ‖q̇‖ ∀ q, q̇ ∈ IRn, θ ∈ Ω

• ‖g(x, θ) − g(y,θ)‖ ≤ kg ‖x − y‖ ∀ x,y ∈ IRn, θ ∈ Ω.

Notice that these conditions are compatible with those established in Chapter
4. The constants λMax{M}, kC1 and kg are considered known. Naturally, to
obtain them it is necessary to know explicitly the matrices M(q, θ), C(q, q̇,θ)
and of the vector g(q,θ), as well as of the set Ω, but one does not require to
know the exact vector of dynamic parameters θ.

The symmetric positive definite matrix Kp and the positive constant ε0

are chosen so that the following design conditions be verified.

C.1) λmin{Kp} > kg ,

C.2)

√
2λmin{Kp}
ε2λMax{M} > ε0 ,

C.3)
2λmin{Kv}[λmin{Kp} − kg]

λ2
Max{Kv} > ε0 ,

C.4)
λmin{Kv}

2 [kC1 + 2λMax{M}] > ε0

where ε2 is defined so that

ε2 =
2ε1

ε1 − 2
(15.12)
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and ε1 satisfies the inequality

2λmin{Kp}
kg

> ε1 > 2 . (15.13)

It is important to underline that once the matrix Kp is fixed in accordance
with condition C.1 and the matrix Kv has been chosen arbitrarily but of
course, symmetric positive definite, then it is always possible to find a set
of strictly positive values for ε0 for which the conditions C.2–C.4 are also
verified.

Before proceeding to derive the closed-loop equation we define the param-
eter errors vector θ̃ ∈ IRm as

θ̃ = θ̂ − θ . (15.14)

The parametric errors vector θ̃ is unknown since this is obtained as a function
of the vector of dynamic parameters θ which is assumed to be unknown.
Nevertheless, the parametric error θ̃ is introduced here only for analytical
purposes and evidently, it is not used by the controller.

From the definition of the parametric errors vector θ̃ in (15.14), it may be
verified that

Φg(qd)θ̂ = Φg(qd)θ̃ + Φg(qd)θ

= Φg(qd)θ̃ + g(qd, θ) − g0(qd),

where we used (15.3) with x = qd.
Using the expression above, the control law (15.10) may be written as

τ = Kpq̃ − Kvq̇ + Φg(qd)θ̃ + g(qd,θ) .

Using the control law as written above and substituting the control action
τ in the equation of the robot model (14.2), we obtain

M(q,θ)q̈+C(q, q̇,θ)q̇ = Kpq̃−Kvq̇+Φg(qd)θ̃+g(qd,θ)−g(q,θ) . (15.15)

On the other hand, since the vector of dynamic parameters θ has been
assumed to be constant, its time derivative is zero, θ̇ = 0 ∈ IRm. Therefore,
taking the derivative with respect to time of the parametric errors vector θ̃,
defined in (15.14), we obtain ˙̃

θ = ˙̂
θ. In its turn, the time derivative of the

vector of adaptive parameters θ̂ is obtained by derivating with respect to time
the adaptive law (15.11). Using these arguments we finally get

˙̃
θ = ΓΦg(qd)

T

[
ε0

1 + ‖q̃‖ q̃ − q̇

]
. (15.16)
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From all the above conclude that the closed-loop equation is formed by
Equations (15.15) and (15.16) and it may be written as

d

dt

⎡⎢⎢⎢⎣
q̃

q̇

θ̃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−q̇

M(q, θ)−1
[
Kpq̃−Kvq̇ + Φg(qd)θ̃−C(q, q̇, θ)q̇+g(qd, θ) − g(q,θ)

]
ΓΦg(qd)T

[
ε0

1+‖q̃‖ q̃ − q̇

]
⎤⎥⎥⎥⎥⎥⎦

(15.17)

Notice that this is a set of autonomous differential equations with state[
q̃T q̇T θ̃

T
]T

and the origin of the state space, i.e.⎡⎢⎢⎢⎣
q̃

q̇

θ̃

⎤⎥⎥⎥⎦ = 0 ∈ IR2n+m ,

is an equilibrium point of (15.17).

15.2 Stability Analysis

The stability analysis of the origin of the state space of closed-loop equation
follows along the guidelines of Section 8.4. Consider the following extension of
the Lyapunov function candidate (8.23) with the additional term 1

2 θ̃
T
Γ−1θ̃,

i.e.

V (q̃, q̇, θ̃) =
1
2

⎡⎢⎢⎢⎣
q̃

q̇

θ̃

⎤⎥⎥⎥⎦
T

P︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣
2
ε2

Kp − ε0
1+‖q̃‖M(q, θ) 0

− ε0
1+‖q̃‖M(q,θ) M(q,θ) 0

0 0 Γ−1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q̃

q̇

θ̃

⎤⎥⎥⎥⎦
+ U(q,θ) − U(qd, θ) + g(qd, θ)Tq̃ +

1
ε1

q̃TKpq̃︸ ︷︷ ︸
f(q̃)
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=
1
2
q̇TM(q, θ)q̇ + U(q, θ) − U(qd,θ) + g(qd,θ)Tq̃

+
(

1
ε1

+
1
ε2

)
q̃TKpq̃ − ε0

1 + ‖q̃‖ q̃TM(q,θ)q̇

+
1
2
θ̃

T
Γ−1θ̃ , (15.18)

where f(q̃) is defined as in (8.18) and the constants ε0 > 0, ε1 > 2 and ε2 > 2
are chosen so that

2λmin{Kp}
kg

> ε1 > 2 (15.19)

ε2 =
2ε1

ε1 − 2
(15.20)√

2λmin{Kp}
ε2λMax{M} > ε0 > 0 . (15.21)

The condition (15.19) guarantees that f(q̃) is a positive definite function
(see Lemma 8.1), while (15.21) ensures that P is a positive definite matrix.
Finally (15.20) implies that 1

ε1
+ 1

ε2
= 1

2 . Notice that condition (15.21) cor-
responds exactly to condition C.2 which holds due to the hypothesis on the
choice of ε0.

Thus, to show that the Lyapunov function candidate V (q̃, q̇, θ̃) is positive
definite, we start by defining ε as

ε = ε(‖q̃‖) :=
ε0

1 + ‖q̃‖ . (15.22)

Consequently, the inequality (15.21) implies that the matrix

2
ε2

Kp −
(

ε0

1 + ‖q̃‖
)2

M(q,θ) =
2
ε2

Kp − ε2M(q, θ)

is positive definite.
On the other hand, the Lyapunov function candidate (15.18) may be

rewritten in the following manner:

V (q̃, q̇, θ̃) =
1
2

[−q̇ + εq̃]T M(q, θ) [−q̇ + εq̃]

+
1
2
q̃T

[
2
ε2

Kp − ε2M(q, θ)
]

q̃

+
1
2
θ̃

T
Γ−1θ̃

+ U(q, θ) − U(qd,θ) + g(qd,θ)Tq̃ +
1
ε1

q̃TKpq̃︸ ︷︷ ︸
f(q̃)

,
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which is a positive definite function since the matrices M(q, θ) and 2
ε2

Kp −
ε2M(q, θ) are positive definite and f(q̃) is also a positive definite function
(since λmin{Kp} > kg and from Lemma 8.1).

Now we proceed to compute the total time derivative of the Lyapunov
function candidate (15.18). For notational simplicity, in the sequel we drop the
argument θ from the matrices M(q, θ), C(q, q̇, θ), from the vectors g(q, θ),
g(qd, θ) and from U(q,θ) and U(qd, θ). However, the reader should keep in
mind that, strictly speaking, V depends on time since θ = θ̂(t) − θ̃.

The time derivative of the Lyapunov function candidate (15.18) along the
trajectories of the closed-loop Equation (15.17) becomes, after some simplifi-
cations,

V̇ (q̃, q̇, θ̃) = q̇T [Kpq̃ − Kvq̇ − C(q, q̇)q̇ + g(qd) − g(q)] +
1
2
q̇TṀ(q)q̇

+ g(q)Tq̇ − g(qd)
Tq̇ − q̃TKpq̇ + εq̇TM(q)q̇ − εq̃TṀ(q)q̇

− εq̃T [Kpq̃ − Kvq̇ − C(q, q̇)q̇ + g(qd) − g(q)]
− ε̇q̃TM(q)q̇,

where we used g(q) = ∂U(q)
∂q

. After some further simplifications, the time

derivative V̇ (θ̃, q̃, q̇) may be written as

V̇ (q̃, q̇, θ̃) = −q̇TKvq̇ + q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ + εq̇TM(q)q̇

− εq̃T
[
Ṁ(q) − C(q, q̇)

]
q̇ − εq̃T [Kpq̃ − Kvq̇]

− εq̃T [g(qd) − g(q)] − ε̇q̃TM(q)q̇ .

Finally, considering Property 4.2, i.e. that the matrix 1
2Ṁ(q)−C(q, q̇) is

skew-symmetric and Ṁ(q) = C(q, q̇) + C(q, q̇)T , we get

V̇ (q̃, q̇, θ̃) = −q̇TKvq̇ + εq̇TM(q)q̇ − εq̃TKpq̃ + εq̃TKvq̇

− εq̇TC(q, q̇)q̃ − εq̃T [g(qd) − g(q)]
− ε̇q̃TM(q)q̇ . (15.23)

As we know now, to conclude stability by means of Lyapunov’s direct
method, it is sufficient to prove that V̇ (0,0,0) = 0 and that V̇ (q̃, q̇, θ̃) ≤ 0

for all vectors
[
q̃T q̇T θ̃

T
]T


= 0 ∈ IR2n+m. These conditions are verified for

instance if V̇ (q̃, q̇, θ̃) is negative semidefinite. Observe that at this moment, it
is very difficult to ensure from (15.23), that V̇ (q̃, q̇, θ̃) is a negative semidefinite
function. With the aim of finding additional conditions on ε0 so that V̇ (q̃, q̇, θ̃)
is negative semidefinite, we present next some upper-bounds over the following
three terms:
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• −εq̇TC(q, q̇)q̃
• −εq̃T [g(qd) − g(q)]
• −ε̇q̃TM(q)q̇ .

First, with respect to −εq̇TC(q, q̇)q̃, we have

−εq̇TC(q, q̇)q̃ ≤ ∣∣−εq̇TC(q, q̇)q̃
∣∣

≤ ε ‖q̇‖ ‖C(q, q̇)q̃‖
≤ εkC1 ‖q̇‖ ‖q̇‖ ‖q̃‖
≤ ε0kC1 ‖q̇‖2 (15.24)

where we took into account Property 4.2, i.e. that ‖C(q,x)y‖ ≤ kC1 ‖x‖ ‖y‖,
and the definition of ε in (15.22).

Next, concerning the term −εq̃T [g(qd) − g(q)], we have

−εq̃T [g(qd) − g(q)] ≤ ∣∣−εq̃T [g(qd) − g(q)]
∣∣

≤ ε ‖q̃‖ ‖g(qd) − g(q)‖
≤ εkg ‖q̃‖2 (15.25)

where we used Property 4.3, i.e. that ‖g(x) − g(y)‖ ≤ kg ‖x − y‖.
Finally, for the term −ε̇q̃T M(q)q̇, we have

−ε̇q̃T M(q)q̇ ≤ ∣∣−ε̇q̃T M(q)q̇
∣∣

=

∣∣∣∣∣ ε0

‖q̃‖ (1 + ‖q̃‖)2 q̃T q̇q̃TM(q)q̇

∣∣∣∣∣
≤ ε0

‖q̃‖ (1 + ‖q̃‖)2 ‖q̃‖ ‖q̇‖ ‖q̃‖ ‖M(q)q̇‖

≤ ε0

1 + ‖q̃‖ ‖q̇‖2
λMax{M(q)}

≤ ε0λMax{M} ‖q̇‖2 (15.26)

where we considered again the definition of ε in (15.22) and Property 4.1, i.e.
that λMax{M} ‖q̇‖ ≥ λMax{M(q)} ‖q̇‖ ≥ ‖M(q)q̇‖.

From the inequalities (15.24), (15.25) and (15.26), it follows that the time
derivative V̇ (q̃, q̇, θ̃) in (15.23) reduces to

V̇ (q̃, q̇, θ̃) ≤ −q̇TKvq̇ + εq̇TM(q)q̇ − εq̃TKpq̃ + εq̃TKvq̇

+ ε0kC1 ‖q̇‖2 + εkg ‖q̃‖2 + ε0λMax{M} ‖q̇‖2
.

which in turn may be rewritten as

V̇ (q̃, q̇, θ̃) ≤ −
⎡⎣ q̃

q̇

⎤⎦T⎡⎣ εKp − ε

2
Kv

− ε

2
Kv

1

2
Kv

⎤⎦⎡⎣ q̃

q̇

⎤⎦ + εkg ‖q̃‖2

− 1

2
[λmin{Kv} − 2ε0(kC1 + 2λMax{M})] ‖q̇‖2

, (15.27)
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where we used −q̇TKvq̇ ≤ −1

2
q̇TKvq̇ − λmin{Kv}

2
‖q̇‖2 and εq̇TM(q)q̇ ≤

ε0λMax{M} ‖q̇‖2. Finally, from (15.27) we get

V̇ (q̃, q̇, θ̃) ≤ − ε

⎡⎣ ‖q̃‖

‖q̇‖

⎤⎦T

Q︷ ︸︸ ︷⎡⎢⎣λmin{Kp} − kg −1

2
λMax{Kv}

−1

2
λMax{Kv} 1

2ε0
λmin{Kv}

⎤⎥⎦
⎡⎣ ‖q̃‖

‖q̇‖

⎤⎦
− 1

2
[λmin{Kv} − 2ε0(kC1 + 2λMax{M})]︸ ︷︷ ︸

δ

‖q̇‖2
. (15.28)

From the inequality above, we may determine immediately the conditions
for ε0 to ensure that V̇ (q̃, q̇, θ̃) is a negative semidefinite function. For this,
we require first to guarantee that the matrix Q is positive definite and that
δ > 0. The matrix Q is positive definite if

λmin{Kp} > kg (15.29)
2λmin{Kv}(λmin{Kp} − kg)

λ2
Max{Kv} > ε0

while δ > 0 if
λmin{Kv}

2(kC1 + 2λMax{M}) > ε0 . (15.30)

Observe that the three conditions (15.29)–(15.30) are satisfied since by
hypothesis the matrix Kp and the constant ε0 verify conditions C.1 and C.3–
C.4 respectively. Therefore, the matrix Q is symmetric positive definite which
means that λmin{Q} > 0.

Next, invoking the theorem of Rayleigh–Ritz (cf. page 24), we obtain

−ε

⎡⎣ ‖q̃‖

‖q̇‖

⎤⎦T

Q︷ ︸︸ ︷⎡⎢⎣λmin{Kp} − kg −1

2
λMax{Kv}

−1

2
λMax{Kv} 1

2ε0
λmin{Kv}

⎤⎥⎦
⎡⎣ ‖q̃‖

‖q̇‖

⎤⎦ ≤

−ελmin{Q}
[
‖q̃‖2 + ‖q̇‖2

]
.

Incorporating this inequality in (15.28) and using the definition of ε we
obtain

V̇ (q̃, q̇, θ̃) ≤ − ε0

1 + ‖q̃‖λmin{Q}
[
‖q̃‖2 + ‖q̇‖2

]
− δ

2
‖q̇‖2

≤ −ε0λmin{Q} ‖q̃‖2

1 + ‖q̃‖ − δ

2
‖q̇‖2

. (15.31)
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Therefore, it appears that V̇ (q̃, q̇, θ̃) expressed in (15.31), is a globally neg-
ative semidefinite function. Since moreover the Lyapunov function candidate
(15.18) is globally positive definite, Theorem 2.3 allows one to guarantee that
the origin of the state space of the closed-loop Equation (15.17) is stable and
in particular that its solutions are bounded, that is,

q̃, q̇ ∈ Ln
∞, (15.32)

θ̃ ∈ Lm
∞ .

Since V̇ (q̃, q̇, θ̃) obtained in (15.31) is not negative definite we may not
conclude yet that the origin is an asymptotically stable equilibrium point.

Hence, from the analysis presented so far it is not possible yet to conclude
anything about the achievement of the position control objective. For this it
is necessary to make some additional claims.

The idea consists in using Lemma A.5 (cf. page 392) which establishes
that if a continuously differentiable function f : IR+ → IRn satisfies f ∈ Ln

2

and f , ḟ ∈ Ln
∞ then limt→∞ f(t) = 0 ∈ IRn.

Hence, if we wish to show that limt→∞ q̃(t) = 0 ∈ IRn, and we know from
(15.32) that q̃ ∈ Ln

∞ and ˙̃q = −q̇ ∈ Ln
∞, it is only left to prove that q̃ ∈ Ln

2 ,
that is, to verify the existence of a finite positive constant k such that

k ≥
∫ ∞

0

‖q̃(t)‖2
dt .

This proof is developed below.
Since δ

2 ‖q̇‖2 ≥ 0 for all q̇ ∈ IRn then, from (15.31), the following inequality
holds:

d

dt
V (q̃(t), q̇(t), θ̃(t)) ≤ −ε0λmin{Q} ‖q̃(t)‖2

1 + ‖q̃(t)‖ . (15.33)

The next step consists in integrating the inequality (15.33) from t = 0 to
t = ∞, that is1 ∫ V∞

V0

dV ≤ −ε0λmin{Q}
∫ ∞

0

‖q̃(t)‖2

1 + ‖q̃(t)‖dt

where we defined V0 := V (0, q̃(0), q̇(0), θ̃(0)) and

1 Recall that for functions g(t) and f(t) continuous in a ≤ t ≤ b, satisfying g(t) ≤
f(t) for all a ≤ t ≤ b, we have∫ b

a

g(t) dt ≤
∫ b

a

f(t) dt .
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V∞ := lim
t→∞V (q̃(t), q̇(t), θ̃(t)) .

The integral on the left-hand side of the inequality above may be trivially
evaluated to obtain

V∞ − V0 ≤ −ε0λmin{Q}
∫ ∞

0

‖q̃(t)‖2

1 + ‖q̃(t)‖dt ,

or in equivalent form

−V0 ≤ −ε0λmin{Q}
∫ ∞

0

‖q̃(t)‖2

1 + ‖q̃(t)‖dt − V∞ . (15.34)

Here it is worth recalling that the Lyapunov function candidate V (q̃, ˙̃q, θ̃)
is positive definite, hence we may claim that V∞ ≥ 0 and therefore, from the
inequality (15.34) we get

−V0 ≤ −ε0λmin{Q}
∫ ∞

0

‖q̃(t)‖2

1 + ‖q̃(t)‖dt .

From the latter expression it readily follows that

V0

ε0λmin{Q} ≥
∫ ∞

0

‖q̃(t)‖2

1 + ‖q̃(t)‖dt ,

where the left-hand side of the inequality above is constant, positive and
bounded. This means that the position error q̃ divided by

√
1 + ‖q̃‖ belongs

to the Ln
2 space, i.e.

q̃√
1 + ‖q̃‖ ∈ Ln

2 . (15.35)

Next, we use Lemma A.7. To that end, we express the position error q̃ as
the product of two functions in the following manner:

q̃ =
[√

1 + ‖q̃‖
]

︸ ︷︷ ︸
h

[
q̃√

1 + ‖q̃‖

]
︸ ︷︷ ︸

f

.

As we showed in (15.32), the position error q̃ belongs to the Ln
∞ space and

therefore,
√

1 + ‖q̃‖ ∈ L∞. On the other hand in (15.35) we concluded that
the other factor belongs to the space Ln

2 , hence q̃ is the product of a bounded
function times another which belongs to Ln

2 . Using this and Lemma A.7 we
obtain

q̃ ∈ Ln
2 ,
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which is what we wanted to prove .
Thus, from q̃ ∈ Ln

2 , (15.32) and Lemma A.5 we conclude that the position
error q̃ tends asymptotically to the zero vector, i.e.

lim
t→∞ q̃(t) = 0 ∈ IRn .

In words, the position control objective is achieved.
Invoking some additional arguments it may be verified that not only the

position error q̃ tends to zero asymptotically, but so does the velocity q̇.
Nevertheless, these conclusions should not be extrapolated to the parametric
errors θ̃(t).

Thus, from the previous analysis we conclude that in general, the origin of
the closed-loop Equation (15.17) may not be an asymptotically stable equi-
librium point, not even locally. Nevertheless, as has been demonstrated the
position control objective is guaranteed.

15.3 Examples

We present two examples that illustrate the application of PD control with
adaptive desired gravity compensation.

Example 15.1. Consider the model of a pendulum of mass m, inertia
J with respect to the axis of rotation, and distance l from the axis
of rotation to the center of mass. A torque τ is applied at the axis of
rotation, that is,

Jq̈ + mgl sin(q) = τ .

We clearly identify M(q) = J , C(q, q̇) = 0 and g(q) = mgl sin(q).
In Example 14.8 we stated the following control problem. Assume

that the values of mass m, distance l and gravity acceleration g, are
known but that the value of the inertia J is unknown (but constant).
The control problem consists now in designing a controller that is
capable of satisfying the position control objective

lim
t→∞ q(t) = qd ∈ IR

for any desired constant joint position qd.
We may try to solve this control problem by means of PD control

with adaptive desired gravity compensation. The parameter of interest
that has been assumed unknown is the inertia J .

The parameterization corresponding to (15.2) is, in this example:
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M(q, θ)u + C(q, w, θ)v + g(q, θ)
= Ju + mgl sin(q)
= Φ(q, u, v, w)θ + M0(q)u + C0(q, w)v + g0(q),

where

Φ(q, u, v, w) = u

θ = J

M0(q) = 0
C0(q, q̇) = 0

g0(q) = mgl sin(q) .

Notice that according to the definition of Φg(x) we have

Φg(x) = Φ(x, 0, 0, 0) = 0

for all x ∈ IR.
Therefore, the adaptive control law given by Equations (15.10) and

(15.11) becomes

τ = kpq̃ − kv q̇ + Φg(qd)θ̂ + g0(qd)
= kpq̃ − kv q̇ + mgl sin(qd)

and

θ̂(t) = γΦg(qd)
∫ t

0

[
ε0

1 + ‖q̃‖ q̃ − q̇

]
ds + θ̂(0)

= θ̂(0) .

As the reader may notice not without surprise, the design of the
PD controller with adaptive desired gravity compensation yields a
non-adaptive controller (observe that the control law does not depend
on the adaptive parameter θ̂ and consequently, there does not exist
any adaptive law). Therefore, it simply corresponds to PD control
with desired gravity compensation. This is because the parametric
uncertainty in the model of the pendulum considers only the inertia
J , otherwise the component g(q) = mgl sin(q) is completely known
and therefore, the control problem that has been formulated may be
solved directly for instance by the PD control law with desired gravity
compensation, that is without appealing to any concept from adaptive
control theory. Nevertheless, the control problem might not be solvable
by PD control with desired gravity compensation if for example, the
mass m were unknown. This interesting scenario is left as a problem
at the end of the chapter.
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Recall that condition C.1 establishes that the gain kp must be
larger than kg; in this example, kg ≥ mgl. This is a sufficient condi-
tion to guarantee global asymptotic stability for the origin of a PD
control with desired gravity compensation in closed loop with an ideal
pendulum (see Chapter 8).

The moral of this example is significant: the application of adaptive
controllers in the case of parametric uncertainty in the system must
be carefully evaluated. As the control problem of this example shows
adaptive control approaches are unnecessary in some cases. ♦

We present next the design of PD control with adaptive compensation for
the Pelican robot presented in Chapter 5. The reader should notice that the
resulting adaptive controller is more complex than in the previous example.

Example 15.2. Consider the Pelican robot studied in Chapter 5 and
shown in Figure 5.2. Its dynamic model is recalled here for conve-
nience:[

M11(q) M12(q)
M21(q) M22(q)

]
︸ ︷︷ ︸

M(q)

q̈ +
[

C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

]
︸ ︷︷ ︸

C(q,q̇)

q̇ +
[

g1(q)
g2(q)

]
︸ ︷︷ ︸

g(q)

= τ

where

M11(q) = m1l
2
c1 + m2

[
l21 + l2c2 + 2l1lc2 cos(q2)

]
+ I1 + I2

M12(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M21(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M22(q) = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2) [q̇1 + q̇2]
C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0

g1(q) = [m1lc1 + m2l1] g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

For this example we consider parametric uncertainty in the mass
m2, the inertia I2 and in the location of the center of mass lc2 of the
second link; that is, the numerical values of these constants are not
known exactly. Nevertheless, we assume we know upper-bounds on
these constants, and they are denoted by m2, I2 and lc2 respectively,
that is,
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m2 ≤ m2; I2 ≤ I2; lc2 ≤ lc2 .

The control problem consists in driving asymptotically to zero the
position error q̃(t) for any constant vector of desired joint positions
qd(t). Notice that in view of the supposed parametric uncertainty, the
solution of the control problem is not trivial. In particular, the lack of
knowledge of m2 and lc2 has a direct impact on the uncertainty in the
vector of gravitational torques g(q). The solution that we give below
is based on PD control with adaptive desired gravity compensation.

The robot considered here, including parametric uncertainty, was
analyzed in Example 14.7 where we used the (unknown) dynamic pa-
rameters vector θ ∈ IR3,

θ =

⎡⎣ θ1

θ2

θ3

⎤⎦ =

⎡⎣ m2

m2lc2
m2l

2
c2 + I2

⎤⎦ .

The structure of the PD control law with adaptive desired gravity
compensation is given by (15.10)–(15.11), i.e.

τ = Kpq̃ − Kvq̇ + Φg(qd)θ̂ + g0(qd)

θ̂(t) = ΓΦg(qd)
T

∫ t

0

[
ε0

1 + ‖q̃‖ q̃ − q̇

]
ds + θ̂(0)

where Kp,Kv ∈ IRn×n and Γ ∈ IRm×m are symmetric positive definite
design matrices and ε0 is a positive constant, which must be chosen
appropriately. The vector g0(q) was obtained previously for the robot
considered here, in Example 14.7, as

g0(qd) =
[

m1lc1g sin(qd1)
0

]
.

In Example 14.7 we determined Φ(q, u, v, w). Therefore, the matrix
Φg(qd) follows from (15.5) as

Φg(qd) = Φ(qd,0,0,0)

=
[

l1g sin(qd1) g sin(qd1 + qd2) 0
0 g sin(qd1 + qd2) 0

]
.

Once the structure of the controller has been defined, we proceed
to determine its parameters. For this, we see that we need to compute
the matrices Kp and Kv, as well as the constant ε0 in accordance with
conditions C.1 through C.4 (cf. page 340). To that end, we first need
to determine the numerical values of the constants λMax{M}, kC1 and
kg which must satisfy
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•λMax{M(q,θ)} ≤ λMax{M} ∀ q ∈ IRn, θ ∈ Ω

• ‖C(q, q̇,θ)‖ ≤ kC1 ‖q̇‖ ∀ q, q̇ ∈ IRn, θ ∈ Ω

• ‖g(x, θ) − g(y,θ)‖ ≤ kg ‖x − y‖ ∀ x,y ∈ IRn, θ ∈ Ω.

Therefore, it appears necessary to characterize the set Ω ⊂ IR3 to
which belongs the vector of unknown dynamic parameters θ. This can
be done by using the upper-bounds m2, I2 and lc2 which are assumed
to be known. The set Ω is then given by

Ω =

⎧⎨⎩
⎡⎣x1

x2

x3

⎤⎦ ∈ IR3 : |x1| ≤ m2; |x2| ≤ m2lc2; |x3| ≤ m2lc2
2

+ I2

⎫⎬⎭ .

Expressions for the constants λMax{M}, kC1 and kg were obtained
for the robot under study, in Chapter 5. In the case of parametric
uncertainty considered here, such expressions are

λMax{M} ≥ m1l
2
c1 + m2

[
l21 + 2lc2

2
+ 3lc1lc2

]
+ I1 + I2

kC1 ≥ n2m2l1lc2

kg ≥ n
[
m1lc1 + m2l1 + m2lc2

]
g .

Considering the numerical values shown in Table 5.1 of Chapter 5,
and fixing the following values for the bounds,

m2 = 2.898 [kg]
I2 = 0.0125

[
kg m2

]
lc2 = 0.02862 [m],

we finally obtain the values:

λMax{M} = 0.475
[
kg m2

]
kC1 = 0.086

[
kg m2

]
kg = 28.99

[
kg m2/s2

]
.

The next step consists in using the previous information together
with conditions C.1 through C.4 (cf. page 340) to calculate the matri-
ces Kp, Kv and the constants ε0 and ε2. As a matter of fact we may
simply choose Kp so as to satisfy condition C.1, any positive definite
matrix Kv and any constant ε2 strictly larger than two. Finally, using
conditions C.2 through C.4 we obtain ε0. The choice of the latter is
detailed below.

Condition C.1 establishes the inequality

λmin{Kp} > kg
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where kg = 28.99. Hence the matrix Kp = diag{kp} = diag{30}
satisfies such a condition.

The matrix Kv is chosen arbitrarily but of course it must be
symmetric positive definite. For instance, we may fix it at Kv =
diag{kv} = diag{7, 3}.

Next, we choose ε1 in accordance with the inequality (15.13), that
is,

2λmin{Kp}
kg

> ε1 > 2,

where for instance, ε1 = 2.01 is an appropriate value. The constant ε2

is determined from the definition (15.12), that is,

ε2 =
2ε1

ε1 − 2
,

so we get ε2 = 402 .
Using all this information, we immediately verify that√

2λmin{Kp}
ε2λMax{M} = 0.561

2λmin{Kv}[λmin{Kp} − kg]
λ2

Max{Kv} = 0.124

λmin{Kv}
2 [kC1 + 2λMax{M}] = 1.448

According to conditions C.2 through C.4, the positive constant ε0

must be strictly smaller than the previous quantities. Therefore, we
choose ε0 = 0.12.

The adaptation gains matrix Γ must be symmetric positive def-
inite. A choice is Γ = diag{γ1, γ2} = diag{500, 10}. The vector of
initial adaptive parameters is arbitrary, and here it is taken to be zero:
θ̂(0) = 0.

In summary, the control law may be written as

τ1 = kpq̃1 − kv q̇1 + l1g sin(qd1)θ̂1 + g sin(qd1 + qd2)θ̂2

+ m1lc1g sin(qd1)

τ2 = kpq̃2 − kv q̇2 + g sin(qd1 + qd2)θ̂2 .

Notice that the control law does not depend on the adaptive pa-
rameter θ̂3. This is because the vector of gravitational torques g(q)
does not depend explicitly on the dynamic parameter θ3 = m2l

2
c2 +I2.

Consequently, the adaptive law has only the following two components
instead of three:
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θ̂1(t) = γ1l1g sin(qd1)
∫ t

0

[
ε0

1 + ‖q̃‖ q̃1 − q̇1

]
ds + θ̂1(0)

θ̂2(t) = γ2g sin(qd1 + qd2)
∫ t

0

[
ε0

1 + ‖q̃‖ q̃1 − q̇1

]
ds

+ γ2g sin(qd1 + qd2)
∫ t

0

[
ε0

1 + ‖q̃‖ q̃2 − q̇2

]
ds + θ̂2(0) .

We describe next the laboratory experimental results. The initial
conditions corresponding to the positions and velocities, are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0 .

The desired joint positions are chosen as

qd1 = π/10, qd2 = π/30 [rad] .

In terms of the state vector of the closed-loop equation, the initial
state is ⎡⎣ q̃(0)

q̇(0)

⎤⎦ =

⎡⎢⎣
π/10
π/30

0
0

⎤⎥⎦ =

⎡⎢⎣
0.3141
0.1047

0
0

⎤⎥⎦ [rad] .
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Figure 15.1. Graphs of position errors q̃1 and q̃2

Figures 15.1 and 15.2 present the experimental results. In particu-
lar, Figure 15.1 shows that the components of the position error q̃(t)
tend asymptotically to zero in spite of the non-modeled friction phe-
nomenon. The evolution in time of the adaptive parameters is shown
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Figure 15.2. Graphs of adaptive parameters θ̂1 and θ̂2

in Figure 15.2 where we appreciate that both parameters tend to val-
ues which are relatively near the unknown values of θ1 and θ2, i.e.

lim
t→∞

[
θ̂1(t)
θ̂2(t)

]
=

[
3.2902
0.1648

]
≈

[
θ1

θ2

]
=

[
m2

m2lc2

]
=

[
2.0458
0.047

]
.

As mentioned in Chapter 14 the latter phenomenon, i.e. that θ̂(t) →
θ as t → ∞ is called parametric convergence and the proof of this
property relies on a property called persistency of excitation. Verifying
this property in applications is in general a difficult task and as a
matter of fact, often in complex (nonlinear) adaptive control systems
it may be expected that parameters do not converge to their true
values.

Similarly as for PID control, it may be appreciated from Figure
15.1 that the temporal evolution of the position errors is slow. Note
that the timescale spans 50 s. Hence, as for the case of PID control
the transient response here is slower than that under PD control with
gravity compensation (see Figure 7.3) or PD control with desired grav-
ity compensation (see Figure 8.4). As before, if instead of limiting the
value of ε0 we use the same gains as for the latter controllers, the
performance is improved, as can be appreciated from Figure 15.3. For
this, we set the gains to

Kp =
[

30 0
0 30

]
[Nm/rad] ,

Kv =
[

7 0
0 3

]
[Nm s/rad] ,

Γ =
[

500 0
0 10

]
[Nm/rad s] ,
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and ε0 = 5, i.e. Kp and Kv have the same values as for the PD
controllers.
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Figure 15.3. Graphs of position errors q̃1 and q̃2
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Figure 15.4. Graphs of adaptive parameters θ̂1 and θ̂2

♦

15.4 Conclusions

We may draw the following conclusions from the analysis presented in this
chapter.
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Consider the PD control law with adaptive desired compensation gravity
of robots with n revolute rigid joints.

• Assume that the desired position qd is constant.
• Assume that the symmetric matrices Kp and Kv of the control law satisfy

• λMax{Kp} ≥ λmin{Kp} > kg

• Kv > 0.

Choose the constants ε1 and ε2 in accordance with

2λmin{Kp}
kg

> ε1 > 2,

ε2 =
2ε1

ε1 − 2
.

If the symmetric matrix Γ and the constant ε0 from the adaptive law
satisfy

• Γ > 0

•
√

2λmin{Kp}
ε2λMax{M} > ε0

• 2λmin{Kv}[λmin{Kp} − kg]
λ2

Max{Kv} > ε0

• λmin{Kv}
2 [kC1 + 2λMax{M}] > ε0,

then the origin of the closed-loop equation expressed in terms of the state

vector
[
q̃T q̇T θ̃

T
]T

, is a stable equilibrium. Moreover, the position con-
trol objective is achieved globally. In particular we have limt→∞ q̃(t) = 0

for all initial condition
[
q̃(0)T q̇(0)T θ̃(0)T

]T

∈ IR2n+m.
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Problems

1. Consider the Example 15.1. In this example we assumed uncertainty in the
inertia J . Obtain explicitly the control and adaptive laws corresponding
to PD control with adaptive desired compensation assuming now that the
uncertainty is on the mass m.

2. Show that the PD control law with adaptive desired gravity compensation,
given by (15.10)–(15.11), may be written as a controller of type PID with
“normalized” integral action, that is,

τ = KP q̃ − Kvq̇ + Ki

∫ t

0

q̃

1 + ‖q̃‖ ds

where we defined

KP = Kp + Φg(qd)ΓΦg(qd)
T

Ki = ε0Φg(qd)ΓΦg(qd)
T

Φg(qd)θ̂(0) = −g0(qd) .
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PD Control with Adaptive Compensation

As mentioned in Chapter 11, in 1987 an adaptive control system – control
law and adaptive law – was proposed to solve the motion control problem for
robot manipulators under parameter uncertainty and, since then, this control
scheme has become increasingly popular in the study of robot control. This is
the so-called adaptive controller of Slotine and Li. In Chapter 11 we present
the ‘non-adaptive’ version of this controller, which we have called, PD control
with compensation. In the present chapter we study the same control law in
its original form, i.e. with adaptation. As usual, related references are cited
at the end of the chapter.

In Chapter 11 we showed that in the scenario that the dynamic robot
model is exactly known, that is, both its structure and its dynamic parame-
ters are known, this control law may be used to achieve the motion control
objective, globally; moreover, with a trivial choice of design parameters.

In this chapter we consider the case where the dynamic parameters are
unknown but constant.

16.1 The Control and Adaptive Laws

First, it is worth recalling that the PD control law with compensation is given
by (11.1), i.e.

τ = Kpq̃ + Kv
˙̃q + M(q)

[
q̈d + Λ ˙̃q

]
+ C(q, q̇) [q̇d + Λq̃] + g(q), (16.1)

where Kp,Kv ∈ IRn×n are symmetric positive definite design matrices, q̃ =
qd − q denotes the position error, and Λ is defined as

Λ = Kv
−1Kp .
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Notice that Λ is the product of two symmetric positive definite matrices.
Even though it is not necessarily symmetric nor positive definite, it is always
nonsingular. This property of Λ is used below.

Next, it is worth recalling Property 14.1, which establishes that the dy-
namic model of an n-DOF robot (with manipulated load included) may be
written according with the parameterization (14.9), i.e.

M(q, θ)u + C(q,w, θ)v + g(q, θ)
= Φ(q,u, v, w)θ + M0(q)u + C0(q, w)v + g0(q)

where Φ(q, u, v, w) ∈ IRn×m, M0(q) ∈ IRn×n, C0(q, w) ∈ IRn×n, g0(q) ∈ IRn

and θ ∈ IRm. The vector θ, referred to as the vector of dynamic parameters,
contains elements that depend precisely on the dynamic parameters of the
manipulator and on the manipulated load. The matrices M0(q), C0(q, w)
and the vector g0(q) represent parts of the matrices M(q), C(q, q̇) and of
the vector g(q) that do not depend on the vector of dynamic parameters θ
respectively.

By virtue of the previous fact, notice that the following holds:

M(q,θ)
[
q̈d + Λ ˙̃q

]
+ C(q, q̇,θ) [q̇d + Λq̃] + g(q,θ)

= Φ(q, q̈d + Λ ˙̃q, q̇d + Λq̃, q̇)θ + M0(q)
[
q̈d + Λ ˙̃q

]
+C0(q, q̇) [q̇d + Λq̃] + g0(q), (16.2)

where we defined

u = q̈d + Λ ˙̃q
v = q̇d + Λq̃

w = q̇ .

On the other hand, from (14.10) we conclude that for any vector θ̂ ∈ IRm,

M(q, θ̂)
[
q̈d + Λ ˙̃q

]
+ C(q, q̇, θ̂) [q̇d + Λq̃] + g(q, θ̂)

= Φ(q, q̈d + Λ ˙̃q, q̇d + Λq̃, q̇)θ̂ + M0(q)
[
q̈d + Λ ˙̃q

]
+C0(q, q̇) [q̇d + Λq̃] + g0(q) . (16.3)

For notational simplicity, in the sequel we use the abbreviation

Φ = Φ(q, q̈d + Λ ˙̃q, q̇d + Λq̃, q̇) .

Considering (16.2), the PD control law with compensation, (16.1) may also
be written as
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τ = Kpq̃+Kv
˙̃q+Φθ+M0(q)

[
q̈d + Λ ˙̃q

]
+C0(q, q̇) [q̇d + Λq̃]+g0(q) . (16.4)

It is important to emphasize that the realization of the PD control law
with compensation, (16.1), or equivalently (16.4), requires knowledge of the
dynamic parameters of the robot, including the manipulated load, i.e. θ. In
the sequel, we assume that the vector θ ∈ IRm of dynamic parameters is
unknown but constant. Of course, in this scenario, the control law (16.4) may
not be implemented. Therefore, the solution considered in this chapter for
the formulated control problem consists in applying PD control with adaptive
compensation.

As is explained in Chapter 14, the structure of the adaptive controllers for
motion control of robot manipulators that are studied in this text are of the
form (14.19) with an adaptive law (14.20), i.e.1

τ = τ
(
t, q, q̇, qd, q̇d, q̈d, θ̂

)
(16.5)

θ̂(t) = Γ

∫ t

0

ψ (s, q, q̇, qd, q̇d, q̈d) ds + θ̂(0) (16.6)

where Γ = ΓT ∈ IRm×m (adaptive gain) and θ̂(0) ∈ IRm are design parame-
ters while ψ is a vectorial function of dimension m to be determined.

The PD control law with adaptive compensation is given by (16.5)–(16.6)
where

τ = Kpq̃ + Kv
˙̃q + M(q, θ̂)

[
q̈d + Λ ˙̃q

]
+ C(q, q̇, θ̂) [q̇d + Λq̃]

+g(q, θ̂) (16.7)

= Kpq̃ + Kv
˙̃q + Φθ̂ + M0(q)

[
q̈d + Λ ˙̃q

]
+ C0(q, q̇) [q̇d + Λq̃]

+g0(q), (16.8)

and

θ̂(t) = Γ

∫ t

0

ΦT
[
˙̃q + Λq̃

]
ds + θ̂(0), (16.9)

where Kp,Kv ∈ IRn×n and Γ ∈ IRm×m are symmetric positive definite design
matrices. The pass from (16.7) to (16.8) follows by using (16.3). It is assumed
that the centrifugal and Coriolis forces matrix C(q, q̇, θ) is chosen by means
of the Christoffel symbols (cf. Equation 3.21).

Notice that the control law (16.8) does not depend on the dynamic param-
eters θ but on the adaptive parameters θ̂, which in turn, are obtained from
the adaptive law (16.9), which of course, does not depend on θ either.

1 In (16.6) as in other integrals throughout the chapter, we avoid the correct but
cumbersome notation � (s, �(s), �̇(s), �d(s), �̇d(s), �̈d(s)).
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Before proceeding to derive the closed-loop equation we first write the
parametric errors vector θ̃ ∈ IRm as

θ̃ = θ̂ − θ. (16.10)

The parametric errors vector θ̃ is unknown since it is a function of the vector
of dynamic parameters θ that has been assumed to be unknown. Nevertheless,
the parametric error θ̃ is introduced only with analytic purposes, and it is not
used by the controller.

From the definition of the parametric errors vector θ̃ in (16.10), it may be
verified that

Φθ̂ = Φθ̃ + Φθ

= Φθ̃ + M(q, θ)
[
q̈d + Λ ˙̃q

]
+ C(q, q̇, θ) [q̇d + Λq̃] + g(q, θ)

−M0(q)
[
q̈d + Λ ˙̃q

]
− C0(q, q̇) [q̇d + Λq̃] − g0(q)

where we used (16.2).
Making use of this last expression, the control law (16.8) takes the form

τ = Kpq̃ + Kv
˙̃q + Φθ̃

+M(q, θ)
[
q̈d + Λ ˙̃q

]
+ C(q, q̇, θ) [q̇d + Λq̃] + g(q, θ) .

Using the control law expressed above and substituting the control action
τ in the equation of the robot model (14.2), we get

M(q, θ)
[
¨̃q + Λ ˙̃q

]
+ C(q, q̇, θ)

[
˙̃q + Λq̃

]
= −Kpq̃ − Kv

˙̃q − Φθ̃ . (16.11)

On the other hand, since the vector of dynamic parameters θ has been
assumed constant, its time derivative is zero, that is θ̇ = 0 ∈ IRm. Therefore,
the time derivative of the parametric errors vector θ̃ defined in (16.10), satisfies
˙̃
θ = ˙̂

θ. In turn, the time derivative of the vector of adaptive parameters θ̂
is obtained by differentiating with respect to time the adaptive law (16.9).
Considering these facts we have

˙̃
θ = ΓΦT

[
˙̃q + Λq̃

]
. (16.12)

The closed-loop equation, which is formed of Equations (16.11) and
(16.12), may be written as

d

dt

⎡⎢⎢⎢⎣
q̃

˙̃q

θ̃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
˙̃q

M(q, θ)−1
[
−Kpq̃ − Kv

˙̃q − Φθ̃ − C(q, q̇,θ)
[
˙̃q + Λq̃

]]
− Λ ˙̃q

ΓΦT
[
˙̃q + Λq̃

]
⎤⎥⎥⎥⎥⎦ ,

(16.13)
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which is a nonautonomous differential equation and the origin of the state
space, i.e. ⎡⎢⎢⎢⎣

q̃

˙̃q

θ̃

⎤⎥⎥⎥⎦ = 0 ∈ IR2n+m ,

is an equilibrium point.

16.2 Stability Analysis

The stability analysis of the origin of the state space for the closed-loop system
is carried out using the Lyapunov function candidate

V (t, q̃, ˙̃q, θ̃) =
1
2

⎡⎢⎢⎢⎣
q̃

˙̃q

θ̃

⎤⎥⎥⎥⎦
T⎡⎢⎢⎢⎣

2Kp + ΛTM(q, θ)Λ ΛTM(q,θ) 0

M(q, θ)Λ M(q, θ) 0

0 0 Γ−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q̃

˙̃q

θ̃

⎤⎥⎥⎥⎦ .

At first sight, it may not appear evident that the Lyapunov function candidate
is positive definite, however, this may be clearer when rewriting it as

V (t, q̃, ˙̃q, θ̃) =
1
2

[
˙̃q + Λq̃

]T

M(q, θ)
[
˙̃q + Λq̃

]
+ q̃TKpq̃ +

1
2
θ̃

T
Γ−1θ̃ . (16.14)

It is interesting to remark that the function defined in (16.14) may be
regarded as an extension of the Lyapunov function (11.3) used in the study
of (nonadaptive) PD control with compensation. The only difference is the
introduction of the term 1

2 θ̃
T
Γ−1θ̃ in the Lyapunov function candidate for

the adaptive version.
The time derivative of the Lyapunov function candidate (16.14) becomes

V̇ (t, q̃, ˙̃q, θ̃) =
[
˙̃q + Λq̃

]T

M(q, θ)
[
¨̃q + Λ ˙̃q

]
+

1
2

[
˙̃q + Λq̃

]T

Ṁ(q, θ)
[
˙̃q + Λq̃

]
+ 2q̃TKp

˙̃q + θ̃
T
Γ−1 ˙̃

θ .

Solving for M(q)¨̃q and ˙̃
θ from the closed-loop Equation (16.13) and sub-

stituting in the previous equation, we obtain

V̇ (t, q̃, ˙̃q, θ̃) = −
[
˙̃q + Λq̃

]T

Kv

[
˙̃q + Λq̃

]
+ 2q̃T Kp

˙̃q,

where we canceled the term
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[
˙̃q + Λq̃

]T
[
1
2
Ṁ(q,θ) − C(q, q̇, θ)

] [
˙̃q + Λq̃

]
by virtue of Property 4.2. Now, using Kp = KvΛ, the equation of V̇ (t, q̃, ˙̃q, θ̃)
reduces to

V̇ (t, q̃, ˙̃q, θ̃) = − ˙̃q
T
Kv

˙̃q − q̃TΛTKvΛq̃

= −

⎡⎢⎢⎢⎣
q̃

˙̃q

θ̃

⎤⎥⎥⎥⎦
T⎡⎢⎢⎢⎣

ΛT KvΛ 0 0

0 Kv 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q̃

˙̃q

θ̃

⎤⎥⎥⎥⎦ . (16.15)

Recalling that Λ is a nonsingular matrix while Kv is a symmetric positive
definite matrix, it follows that the matrix ΛTKvΛ is also symmetric posi-
tive definite (cf. Lemma 2.1). Therefore, it follows that V̇ (t, q̃, ˙̃q, θ̃) expressed
in (16.15) is a globally negative semidefinite function. Since moreover the
Lyapunov function candidate (16.14) is globally positive definite, radially un-
bounded and decrescent, Theorem 2.3 guarantees that the origin of the closed-
loop Equation (16.13) is uniformly stable and all the solutions are bounded,
i.e.

q̃, ˙̃q ∈ Ln
∞, (16.16)

θ̃ ∈ Lm
∞ .

Since V̇ (t, q̃, ˙̃q, θ̃) obtained in (16.15) is not negative definite, we may not
yet conclude that the origin is an asymptotically stable equilibrium point. On
the other hand, La Salle’s theorem may not be used either to show asymptotic
stability since the closed-loop Equation (16.13) is nonautonomous since it
depends implicitly on the functions qd(t) and θ̂(t).

Thus, from the previous analysis, it is not possible yet to conclude anything
about the achievement of the motion control objective. For this, it is necessary
to present further arguments.

The idea consists in using Lemma A.5, which establishes the following.
Consider a continuously differentiable function f : IR+ → IRn which satisfies

• f ∈ Ln
2

• f , ḟ ∈ Ln
∞ .

Then, the function f necessarily satisfies limt→∞ f(t) = 0 ∈ IRn.

Therefore, if we wish to prove that limt→∞ q̃(t) = 0 ∈ IRn, and we know
from (16.16) and Theorem 2.3, that q̃, ˙̃q ∈ Ln

∞, it is only left to prove that
q̃ ∈ Ln

2 , that is, it is sufficient to show that there exists a finite positive
constant k such that

k ≥
∫ ∞

0

‖q̃(t)‖2
dt .
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This proof is carried out below.

Since ˙̃q
T
Kv

˙̃q ≥ 0 for all ˙̃q ∈ IRn, it follows from (16.15) that

d

dt
V (t, q̃(t), ˙̃q(t), θ̃(t)) ≤ −q̃(t)TΛT KvΛq̃(t)

≤ −λmin{ΛT KvΛ} ‖q̃(t)‖2 (16.17)

where we used the fact that ΛT KvΛ is a symmetric matrix and therefore (cf.
Theorem of Rayleigh–Ritz, on page 24),

q̃T
[
ΛT KvΛ

]
q̃ ≥ λmin{ΛT KvΛ} ‖q̃‖2

for all q̃ ∈ IRn. Notice that, moreover, λmin{ΛT KvΛ} > 0 since the matrix
ΛT KvΛ besides being symmetric, is also positive definite.

The next step consists in integrating the inequality (16.17) from t = 0 to
t = ∞, that is2 ∫ V∞

V0

dV ≤ −λmin{ΛT KvΛ}
∫ ∞

0

‖q̃(t)‖2
dt

where we defined V0 := (0, q̃(0), ˙̃q(0), θ̃(0))

V∞ := lim
t→∞V (t, q̃(t), q̇(t), θ̃(t)) .

The integral on the left-hand side of this inequality is calculated trivially to
obtain

V∞ − V0 ≤ −λmin{ΛT KvΛ}
∫ ∞

0

‖q̃(t)‖2
dt,

or in equivalent form

−V0 ≤ −λmin{ΛT KvΛ}
∫ ∞

0

‖q̃(t)‖2
dt − V∞ . (16.18)

We recall that the Lyapunov function candidate V (t, q̃, ˙̃q, θ̃) is positive
definite, radially unbounded and decrescent and moreover, all the signals are
bounded. Therefore, ∞ > V∞ ≥ 0 and, from Inequality (16.18), we get

2 Here we are using the following elementary facts:

∫ ∞

0

dV

dt
dt =

∫ V∞

V0

dV and,

that for functions g(t) and f(t) continuous in a ≤ t ≤ b, satisfying g(t) ≤ f(t) for
all a ≤ t ≤ b, we have ∫ b

a

g(t) dt ≤
∫ b

a

f(t) dt .
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−V0 ≤ −λmin{ΛT KvΛ}
∫ ∞

0

‖q̃(t)‖2
dt .

From this expression we immediately conclude that

V0

λmin{ΛT KvΛ} ≥
∫ ∞

0

‖q̃(t)‖2
dt

where the left-hand side of the inequality is finite positive and constant. This
means that the position error q̃ belongs to the Ln

2 space which is precisely
what we wanted to prove.

Thus, according to the arguments above, we may conclude now that the
position error q̃ tends asymptotically to the zero vector, i.e.

lim
t→∞ q̃(t) = 0 ∈ IRn

or in words, that the motion control objective has been achieved.
Invoking further arguments one may also show that not only the position

error q̃ tends to zero asymptotically, but that so does the velocity error ˙̃q.
Nevertheless, these conclusions should not be extrapolated to the parametric
error θ̃, unless the desired joint position qd(t) satisfies some special proper-
ties that are not discussed here. From these comments we conclude that, in
general, the origin of the closed-loop Equation (16.13) may not be asymptoti-
cally stable, not even locally. However, as has been demonstrated, the motion
control objective is guaranteed.

16.3 Examples

Next, we present a series of examples which illustrate the application of PD
control with adaptive compensation.

The first example is presented as a solution to the formulated control
problem in Example 14.8.

Example 16.1. Consider the model of a pendulum of mass m, inertia
J with respect to the axis of rotation and distance l from the axis of
rotation to the center of mass. The torque τ is applied at the axis of
rotation, that is,

Jq̈ + mgl sin(q) = τ .

We clearly identify M(q) = J , C(q, q̇) = 0 and g(q) = mgl sin(q).
In Example 14.8 we formulated the following control problem. As-

sume that the values of the mass m, the distance l and the gravity
acceleration g are known but that the value of the inertia J is unknown
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(yet constant). The control problem consists in designing a controller
that is capable of satisfying the motion control objective

lim
t→∞ q̃(t) = 0 ∈ IR

for any desired joint position qd(t) (with bounded first and second
time derivatives).

The solution to this control problem may be obtained via PD con-
trol with adaptive compensation. The parameter of interest that has
been supposed unknown is the inertia J . The parameterization which
corresponds to (16.2) is, in this example,

M(q, θ)
[
q̈d + λ ˙̃q

]
+ C(q, q̇, θ) [q̇d + λq̃] + g(q, θ)

= J
[
q̈d + λ ˙̃q

]
+ mgl sin(q)

= Φθ + M0(q)
[
q̈d + λ ˙̃q

]
+ C0(q, q̇) [q̇d + λq̃] + g0(q)

where

Φ = q̈d + λ ˙̃q
θ = J

M0(q) = 0
C0(q, q̇) = 0

g0(q) = mgl sin(q) .

Therefore, the adaptive control system given by Equations (16.8)
and (16.9) becomes

τ = kpq̃ + kv
˙̃q + Φθ̂ + g0(q)

= kpq̃ + kv
˙̃q +

[
q̈d + λ ˙̃q

]
θ̂ + mgl sin(q)

and

θ̂(t) = γ

∫ t

0

Φ
[ ˙̃q + λq̃

]
ds + θ̂(0)

= γ

∫ t

0

[
q̈d + λ ˙̃q

] [ ˙̃q + λq̃
]

ds + θ̂(0),

where kp > 0, kv > 0, λ = kp/kv, γ > 0 and θ̂(0) ∈ IR. Figure 16.1
shows the block-diagram corresponding to this adaptive controller.

♦

We present next, the design of the PD control law with adaptive compen-
sation, the Slotine and Li controller, for a planar 2-DOF robot. As the reader
should notice, the resulting adaptive controller presents a higher degree of
complexity than the previous example.
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mgl sin(·)

ROBOT

q̇d

q̈d

qd

Σ

Σ

Σ

Π ΣΣ
q̇

q

kv kp

λ

λ

Π

Π

γ
∫

τ

: multiplication operator

Figure 16.1. Block-diagram: pendulum under PD control with adaptive compen-
sation

Example 16.2. Consider the 2-DOF planar manipulator shown in Fig-
ure 16.2 and whose dynamic model is described in Example 3.3.

The dynamic model of this planar manipulator is given by (3.8)–
(3.9), and may be written as

θ1q̈1 + (θ3C21 + θ4S21) q̈2 − θ3S21q̇
2
2 + θ4C21q̇

2
2 = τ1

(θ3C21 + θ4S21) q̈1 + θ2q̈2 + θ3S21q̇
2
1 − θ4C21q̇

2
1 = τ2

where

θ1 = m1l
2
c1 + m2l

2
1 + I1

θ2 = m2l
2
c2 + I2

θ3 = m2l1lc2 cos(δ)
θ4 = m2l1lc2 sin(δ) .

The four dynamic parameters θ1, θ2, θ3 and θ4 depend on the phys-
ical characteristics of the manipulator such as the masses and inertias
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l1 q1

x

y

τ1

z

τ2

m2
I2

δq2

lc2

m1

I1 lc1

Figure 16.2. Planar 2-DOF manipulator

of its links. The vector of unknown constant dynamic parameters θ is
defined as

θ =

⎡⎢⎣
θ1

θ2

θ3

θ4

⎤⎥⎦ .

In Example 14.6 we obtained the parameterization (14.9) of the
dynamic model, i.e.

M(q, θ)u + C(q, w,θ)v + g(q, θ)

=
[

Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

]⎡⎢⎣
θ1

θ2

θ3

θ4

⎤⎥⎦
+M0(q)u + C0(q, w)v + g0(q)

where

Φ11 = u1

Φ12 = 0
Φ13 = C21u2 − S21w2v2

Φ14 = S21u2 + C21w2v2
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Φ21 = 0
Φ22 = u2

Φ23 = C21u1 + S21w1v1

Φ24 = S21u1 − C21w1v1

M0(q) = 0 ∈ IR2×2

C0(q, q̇) = 0 ∈ IR2×2

g0(q) = 0 ∈ IR2 .

Hence, the parameterization (16.2) yields

M(q,θ)
[
q̈d + Λ ˙̃q

]
+ C(q, q̇,θ) [q̇d + Λq̃] + g(q,θ)

=
[

θ1 θ3C21 + θ4S21

θ3C21 + θ4S21 θ2

] [
q̈d + Λ ˙̃q

]
+

[
0 (θ4C21 − θ3S21) q̇2

(θ3S21 − θ4C21) q̇1 0

]
[q̇d + Λq̃]

= Φθ

where this time,

u = q̈d + Λ ˙̃q =
[

u1

u2

]
=

[
q̈d1 + λ11

˙̃q1 + λ12
˙̃q2

q̈d2 + λ21
˙̃q1 + λ22

˙̃q2

]

v = q̇d + Λq̃ =
[

v1

v2

]
=

[
q̇d1 + λ11q̃1 + λ12q̃2

q̇d2 + λ21q̃1 + λ22q̃2

]

w = q̇ =
[

w1

w2

]
=

[
q̇1

q̇2

]
and

Λ =
[

λ11 λ12

λ21 λ22

]
∈ IR2×2 .

The adaptive control system is given by Equations (16.8) and
(16.9). Notice that M0 = C0 = g0 = 0 therefore, the control law
becomes

τ = Kpq̃ + Kv
˙̃q +

[
Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

]⎡⎢⎢⎣
θ̂1

θ̂2

θ̂3

θ̂4

⎤⎥⎥⎦ ,

while the adaptive law is
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⎡⎢⎢⎢⎣
θ̂1(t)
θ̂2(t)
θ̂3(t)
θ̂4(t)

⎤⎥⎥⎥⎦ = Γ

∫ t

0

⎡⎢⎢⎢⎣
Φ11[v1 − q̇1]
Φ22[v2 − q̇2]

Φ13[v1 − q̇1] + Φ23[v2 − q̇2]
Φ14[v1 − q̇1] + Φ24[v2 − q̇2]

⎤⎥⎥⎥⎦ ds +

⎡⎢⎢⎢⎣
θ̂1(0)
θ̂2(0)
θ̂3(0)
θ̂4(0)

⎤⎥⎥⎥⎦
where Kp = KT

p > 0, Kv = KT
v > 0, Λ = K−1

v Kp, Γ = ΓT > 0 and
θ̂(0) ∈ IRm . ♦

We end this section with an example that illustrates the performance of
PD control with adaptive compensation on the Pelican robot prototype.

l2

lc2
q2

q1

I1 m1

g

y

x

l1

m2

I2

lc1Link 1

Link 2

Figure 16.3. Diagram of the Pelican robot

Example 16.3. Consider the Pelican robot presented in Chapter 5 and
shown in Figure 16.3. Its dynamic model is recalled below for ease of
reference:[

M11(q) M12(q)
M21(q) M22(q)

]
︸ ︷︷ ︸

M(q)

q̈ +
[

C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

]
︸ ︷︷ ︸

C(q,q̇)

q̇ +
[

g1(q)
g2(q)

]
︸ ︷︷ ︸

g(q)

= τ

where
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M11(q) = m1l
2
c1 + m2

[
l21 + l2c2 + 2l1lc2 cos(q2)

]
+ I1 + I2

M12(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M21(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M22(q) = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2) [q̇1 + q̇2]
C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0
g1(q) = [m1lc1 + m2l1] g sin(q1) + m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

For this example we selected as unknown parameters, the mass
m2, the inertia I2 and the distance to the center of mass, lc2.

We wish to design a controller that is capable of driving to zero
the articular position error q̃. It is desired that the robot tracks the
trajectories qd(t), q̇d(t) and q̈d(t) represented by Equations (5.7)–
(5.9). To that end, we use PD control with adaptive compensation.

In Example 14.6 we derived the parameterization (14.9) of the
dynamic model, i.e.

M(q, θ)u + C(q, w, θ)v + g(q,θ)

=
[

Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

]⎡⎣ θ1

θ2

θ3

⎤⎦
+M0(q)u + C0(q, w)v + g0(q)

where

Φ11 = l21u1 + l1g sin(q1)
Φ12 = 2l1 cos(q2)u1 + l1 cos(q2)u2 − l1 sin(q2)w2v1

−l1 sin(q2)[w1 + w2]v2 + g sin(q1 + q2)
Φ13 = u1 + u2

Φ21 = 0
Φ22 = l1 cos(q2)u1 + l1 sin(q2)w1v1 + g sin(q1 + q2)
Φ23 = u1 + u2

θ =

⎡⎣ θ1

θ2

θ3

⎤⎦ =

⎡⎣ m2

m2lc2
m2l

2
c2 + I2

⎤⎦ =

⎡⎣ 2.0458
0.047
0.0126

⎤⎦
M0(q) =

[
m1l

2
c1 + I1 0
0 0

]
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C0(q,w) =
[

0 0
0 0

]

g0(q) =
[

m1lc1g sin(q1)
0

]
.

Since the numerical values of m2, I2 and lc2 are assumed unknown,
the vector of dynamic parameters θ is also unknown. This hypothesis
obviously complicates our task of designing a controller that is capable
of satisfying our control objective.

Let us now see the form that the PD control law with adaptive
compensation takes for the Pelican prototype. For this, we first define

Λ =
[

λ11 λ12

λ21 λ22

]
∈ IR2×2 .

Then, the parameterization (16.2) is simply

M(q,θ)
[
q̈d + Λ ˙̃q

]
+ C(q, q̇,θ) [q̇d + Λq̃] + g(q, θ)

= Φθ + M0(q)
[
q̈d + Λ ˙̃q

]
+ g0(q),

where

u = q̈d + Λ ˙̃q =
[

u1

u2

]
=

[
q̈d1 + λ11

˙̃q1 + λ12
˙̃q2

q̈d2 + λ21
˙̃q1 + λ22

˙̃q2

]
v = q̇d + Λq̃ =

[
v1

v2

]
=

[
q̇d1 + λ11q̃1 + λ12q̃2

q̇d2 + λ21q̃1 + λ22q̃2

]

w = q̇ =
[

w1

w2

]
=

[
q̇1

q̇2

]
.

The adaptive control system is given by Equations (16.8) and
(16.9). Therefore the control law becomes

τ = Kpq̃ + Kv
˙̃q +

[
Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

]⎡⎣ θ̂1

θ̂2

θ̂3

⎤⎦
+

[
(m1l

2
c1 + I1)u1

0

]
+

[
m1lc1g sin(q1)

0

]
,

while the adaptive law is⎡⎢⎣ θ̂1(t)
θ̂2(t)
θ̂3(t)

⎤⎥⎦ = Γ

∫ t

0

⎡⎢⎢⎣
Φ11[v1 − q̇1]

Φ12[v1 − q̇1] + Φ22[v2 − q̇2]

Φ13[v1 − q̇1] + Φ23[v2 − q̇2]

⎤⎥⎥⎦ ds +

⎡⎢⎣ θ̂1(0)
θ̂2(0)
θ̂3(0)

⎤⎥⎦ .
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In this experiment the symmetric positive definite design matrices
were chosen as

Kp = diag{200, 150} [Nm/rad] ,
Kv = diag{3} [N m s/rad] ,
Γ = diag{1.6

[
kg s2/m2

]
, 0.004

[
kg s2

]
, 0.004

[
kg m2 s2

]},
and therefore Λ = K−1

v Kp = diag{66.6, 50} [1/s].
The corresponding initial conditions for the positions, velocities

and adaptive parameters are chosen as

q1(0) = 0, q2(0) = 0
q̇1(0) = 0, q̇2(0) = 0
θ̂1(0) = 0, θ̂2(0) = 0
θ̂3(0) = 0 .
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Figure 16.4. Graphs of position errors q̃1 and q̃2

Figures 16.4 and 16.5 show the experimental results. In particular,
Figure 16.4 shows the steady state tracking position errors q̃(t), which,
by virtue of friction phenomena in the actual robot, are not zero. It is
remarkable, however, that if we take the upper-bound on the position
errors as a measure of performance, we see that the latter is better
than or similar to that of other nonadaptive control systems (compare
with Figures 10.2, 10.4, 11.3, 11.5 and 12.5).

Finally, Figure 16.5 shows the evolution in time of the adaptive
parameters. As mentioned before, these parameters were arbitrarily
assumed to be zero at the initial instant. This has been done for no
specific reason since we did not have any knowledge, a priori, about
any of the dynamic parameters θ.
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Figure 16.5. Graphs of adaptive parameters θ̂1, θ̂2, and θ̂3

♦

16.4 Conclusions

We conclude this chapter with the following remarks.

• For PD control with adaptive compensation the origin of the state space

corresponding to the closed-loop equation, i.e.
[
q̃T ˙̃q

T
θ̃

T
]T

= 0, is
stable for any choice of symmetric positive definite matrices Kp, Kv and
Γ . Moreover, the motion control objective is achieved globally. That is,
for any initial position error q̃(0) ∈ IRn velocity error ˙̃q(0) ∈ IRn, and
arbitrary uncertainty over the dynamic parameters θ ∈ IRm of the robot
model, limt→∞ q̃(t) = 0.
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• A. Loŕıa, R. Kelly and A. Teel, 2003, “Uniform parametric convergence
in the adaptive control of manipulators: a case restudied”, in Proceedings
of International Conference on Robotics and Automation, Taipei, Taiwan,
pp. 106–1067.

Problems

1. Consider Example 16.1 in which we studied control of the pendulum

Jq̈ + mgl sin(q) = τ .
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Supposing that the inertia J is unknown, the PD control law with adaptive
compensation is given by

τ = kpq̃ + kv
˙̃q +

[
q̈d + λ ˙̃q

]
θ̂ + mgl sin(q)

θ̂ = γ

∫ t

0

[
q̈d + λ ˙̃q

] [ ˙̃q + λq̃
]

ds + θ̂(0)

where kp > 0, kv > 0, λ = kp/kv, γ > 0 and θ̂(0) ∈ IR.

a) Obtain the closed-loop equation in terms of the state vector
[
q̃ ˙̃q θ̃

]T

∈
IR3 where θ̃ = θ̂ − J .

b) Show that the origin of the closed-loop equation is a stable equilib-
rium, by using the following Lyapunov function candidate:

V (q̃, ˙̃q, θ̃) =
1
2

⎡⎢⎣ q̃

˙̃q

θ̃

⎤⎥⎦
T⎡⎢⎣2kp + Iλ2 λI 0

Iλ I 0

0 0 γ−1

⎤⎥⎦
⎡⎢⎣ q̃

˙̃q

θ̃

⎤⎥⎦ .

2. Consider again Example 16.1 in which we studied control of the pendulum

Jq̈ + mgl sin(q) = τ .

Assume now that, in addition, the inertia J and the mass m are unknown.
Design a PD controller with adaptive compensation, i.e. give explicitly
the control and adaptive laws.

3. On pages 366–368 we showed that q̃ ∈ Ln
2 . Use similar arguments to prove

also that ˙̃q ∈ Ln
2 . May we conclude that limt→∞ ˙̃q(t) = 0 ?

4. Consider the 2-DOF Cartesian robot showed in Figure 16.6. The corre-
sponding dynamic model is given by M(q)q̈+g(q) = τ where q = [q1 q2]T

and

M(q) =
[

m1 + m2 0
0 m2

]
g(q) =

[
(m1 + m2)g

0

]
.

Assume that the masses m1 and m2 are constant but unknown.
a) Design a PD controller with adaptive compensation to achieve the

motion control objective. Specifically, determine the matrix Φ for the
control law and for the adaptive law

τ = Kpq̃ + Kv
˙̃q + Φθ̂

θ̂ =
∫ t

0

ΦT
[
˙̃q + Λq̃

]
ds + θ̂(0),
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Figure 16.6. Problem 4. Cartesian 2-DOF robot.

where

θ =

⎡⎣ m1 + m2

(m1 + m2)g
m2

⎤⎦ .
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Mathematical Support

In this appendix we present additional mathematical tools that are employed
in the textbook, mainly in the advanced topics of Part IV. It is recommended
that the graduate student following these chapters read first this appendix,
specifically the material from Section A.3 which is widely used in the text. As
for other chapters and appendices, references are provided at the end.

A.1 Some Lemmas on Linear Algebra

The following lemmas, whose proofs may be found in textbooks on linear
algebra, are used to prove certain properties of the dynamic model of the
robot stated in Chapter 4.

Lemma A.1. Consider a vector x ∈ IRn. Its Euclidean norm, ‖x‖, satisfies

‖x‖ ≤ n
[
max

i
{|xi|}

]
.

Lemma A.2. Consider a symmetric matrix A ∈ IRn×n and denote by aij its
ijth element. Let λ1{A}, · · · , λn{A} be its eigenvalues. Then, it holds that

|λk{A}| ≤ n

[
max

i,j
{|aij |}

]
for all k = 1, · · · , n .

Lemma A.3. Consider a symmetric matrix A = AT ∈ IRn×n and denote by
aij its ijth element. The spectral norm of the matrix A, ‖A‖, induced by the
vectorial Euclidean norm satisfies

‖A‖ =
√

λMax{ATA} ≤ n

[
max

i,j
{|aij |}

]
.
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We present here a useful theorem on partitioned matrices which is taken
from the literature.

Theorem A.1. Assume that a symmetric matrix is partitioned as[
A B

BT C

]
(A.1)

where A and C are square matrices. The matrix is positive definite if and only
if

A > 0
C − BT A−1B > 0 .

A.2 Vector Calculus

Theorem A.2. Mean-value
Consider the continuous function f : IRn → IR. If moreover f(z1, z2, · · · , zn)
has continuous partial derivatives then, for any two constant vectors x, y ∈
IRn we have

f(x) − f(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f(z)
∂z1

∣∣∣∣
z=ξ

∂f(z)
∂z2

∣∣∣∣
z=ξ

...

∂f(z)
∂zn

∣∣∣∣
z=ξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

[x − y]

where ξ ∈ IRn is a vector suitably chosen on the line segment which joins the
vectors x and y, i.e. which satisfies

ξ = y + α[x − y]
= αx + (1 − α)y

for some real α in the interval (0, 1). Notice moreover, that the norm of ξ
verifies

‖ξ‖ ≤ ‖y‖ + ‖x − y‖
and also

‖ξ‖ ≤ ‖x‖ + ‖y‖ .

An extension of the mean-value theorem for vectorial functions is presented
next
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Theorem A.3. Mean-value theorem for vectorial functions
Consider the continuous vectorial function f : IRn → IRm. If fi(z1, z2, · · · , zn)
has continuous partial derivatives for i = 1, · · · ,m, then for each pair of vec-
tors x,y ∈ IRn and each w ∈ IRm there exists ξ ∈ IRn such that

[f(x) − f(y) ]T w = wT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1(�)

∂z1

∣∣∣∣
�=�

∂f1(�)

∂z2

∣∣∣∣
�=�

· · · ∂f1(�)

∂zn

∣∣∣∣
�=�

∂f2(�)

∂z1

∣∣∣∣
�=�

∂f2(�)

∂z2

∣∣∣∣
�=�

· · · ∂f2(�)

∂zn

∣∣∣∣
�=�

...
...

. . .
...

∂fm(�)

∂z1

∣∣∣∣
�=�

∂fm(�)

∂z2

∣∣∣∣
�=�

· · · ∂fm(�)

∂zn

∣∣∣∣
�=�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Jacobian of f evaluated in z = ξ

[x − y]

= wT ∂f(z)
∂z

∣∣∣∣
z=ξ

[x − y]

where ξ is a vector on the line segment that joins the vectors x and y, and
consequently satisfies

ξ = y + α[x − y]

for some real α in the interval (0, 1).

We present next a useful corollary, which follows from the statements of
Theorems A.2 and A.3.

Corollary A.1. Consider the smooth matrix-function A : IRn → IRn×n. As-
sume that the partial derivatives of the elements of the matrix A are bounded
functions, that is, that there exists a finite constant δ such that∣∣∣∣∣ ∂aij(z)

∂zk

∣∣∣∣
z=z0

∣∣∣∣∣ ≤ δ

for i, j, k = 1, 2, · · · , n and all vectors z0 ∈ IRn .
Define now the vectorial function

[A(x) − A(y)] w,

with x,y, w ∈ IRn. Then, the norm of this function satisfies

‖[A(x) − A(y)] w‖ ≤ n2 max
i,j,k,z0

{∣∣∣∣∣ ∂aij(z)
∂zk

∣∣∣∣
z=z0

∣∣∣∣∣
}

‖x − y‖ ‖w‖ , (A.2)

where aij(z) denotes the ijth element of the matrix A(z) while zk denotes the
kth element of the vector z ∈ IRn.
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Proof. The proof of the corollary may be carried out by the use of Theorems
A.2 or A.3. Here we use Theorem A.2.

The norm of the vector A(x)w − A(y)w satisfies

‖A(x)w − A(y)w‖ ≤ ‖A(x) − A(y)‖ ‖w‖ .

Considering Lemma A.3, we get

‖A(x)w − A(y)w‖ ≤ n

[
max

i,j
{|aij(x) − aij(y)|}

]
‖w‖ . (A.3)

On the other hand, since by hypothesis the matrix A(z) is a smooth func-
tion of its argument, its elements have continuous partial derivatives. Conse-
quently, given two constant vectors x, y ∈ IRn, according to the mean-value
Theorem (cf. Theorem A.2), there exists a real number αij in the interval
[0, 1] such that

aij(x) − aij(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂aij(z)
∂z1

∣∣∣∣
z=y+αij [x−y]

∂aij(z)
∂z2

∣∣∣∣
z=y+αij [x−y]

...

∂aij(z)
∂zn

∣∣∣∣
z=y+αij [x−y]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

[x − y].

Therefore, taking the absolute value on both sides of the previous equation
and using the triangle inequality, |aT b| ≤ ‖a‖‖b‖, we obtain the inequality

|aij(x) − aij(y)| ≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∂aij(z)
∂z1

∣∣∣∣
z=y+αij [x−y]

∂aij(z)
∂z2

∣∣∣∣
z=y+αij [x−y]

...
∂aij(z)

∂zn

∣∣∣∣
z=y+αij [x−y]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
‖x − y‖

≤ n

[
max

k

{∣∣∣∣∣ ∂aij(z)
∂zk

∣∣∣∣
z=y+αij [x−y]

∣∣∣∣∣
}]

‖x − y‖ ,

where for the last step we used Lemma A.1 ( ‖x‖ ≤ n [maxi {|xi|}]).
Moreover, since it has been assumed that the partial derivatives of the

elements of A are bounded functions then, we may claim that
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|aij(x) − aij(y)| ≤ n

[
max
k,z0

{∣∣∣∣∣ ∂aij(z)
∂zk

∣∣∣∣
z=z0

∣∣∣∣∣
}]

‖x − y‖ .

From the latter expression and from (A.3) we conclude the statement
contained in (A.2).

♦♦♦

Truncated Taylor Representation of a Function

We present now a result well known from calculus and optimization. In the
first case, it comes from the ‘theorem of Taylor’ and in the second, it comes
from what is known as ‘Lagrange’s residual formula’. Given the importance
of this lemma in the study of positive definite functions in Appendix B the
proof is presented in its complete form.

Lemma A.4. Let f : IRn → IR be a continuous function with continuous
partial derivatives up to at least the second one. Then, for each x ∈ IRn, there
exists a real number α (1 ≥ α ≥ 0) such that

f(x) = f(0) +
∂f

∂x
(0)T x +

1
2
xT H(αx)x

where H(αx) is the Hessian matrix (that is, its second partial derivative) of
f(x) evaluated at αx.

Proof. Let x ∈ IRn be a constant vector. Consider the time derivative of f(tx)

d

dt
f(tx) =

[
∂f(s)

∂s

∣∣∣∣
s=tx

]T

x

=
∂f

∂x
(tx)T x .

Integrating from t = 0 to t = 1,∫ f(1·x)

f(0·x)

df(tx) =
∫ 1

0

∂f

∂x
(tx)T x dt

f(x) − f(0) =
∫ 1

0

∂f

∂x
(tx)T x dt . (A.4)

The integral on the right-hand side above may be written as∫ 1

0

y(t)T x dt (A.5)

where
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y(t) =
∂f

∂x
(tx) . (A.6)

Defining

u = y(t)T x

v = t − 1

and consequently

du

dt
= ẏ(t)T x

dv

dt
= 1,

the integral (A.5) may be solved by parts1∫ 1

0

y(t)T x dt = −
∫ 1

0

[t − 1]ẏ(t)T x dt + y(t)T x[t − 1]
∣∣1
0

=
∫ 1

0

[1 − t)]ẏ(t)T x dt + y(0)T x . (A.7)

Now, using the mean-value theorem for integrals2, and noting that (1−t) ≥
0 for all t between 0 and 1, the integral on the right-hand side of Equation
(A.7) may be written as∫ 1

0

(1 − t)ẏ(t)T x dt = ẏ(α)T x

∫ 1

0

(1 − t) dt

=
1
2
ẏ(α)T x

for some α (1 ≥ α ≥ 0).
Incorporating this in (A.7) we get

1 We recall here the formula:∫ 1

0

u
dv

dt
dt = −

∫ 1

0

v
du

dt
dt + uv|10 .

2 Recall that for functions h(t) and g(t), continuous on the closed interval a ≤ t ≤ b,
and where g(t) ≥ 0 for each t from the interval, there always exists a number c
such that a ≤ c ≤ b and∫ b

a

h(t)g(t) dt = h(c)

∫ b

a

g(t) dt .
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∫ 1

0

y(t)T x dt =
1
2
ẏ(α)T x + y(0)T x

and therefore, (A.4) may be written as

f(x) − f(0) =
1
2
ẏ(α)T x + y(0)T x. (A.8)

On the other hand, using the definition of y(t) given in (A.6), we get

ẏ(t) = H(tx)x,

and therefore ẏ(α) = H(αx)x. Incorporating this and (A.6) in (A.8), we
obtain

f(x) − f(0) =
1
2
xT H(αx)T x +

∂f

∂x
(0)T x

which is what we wanted to prove.
♦♦♦

We present next a simple example with the aim of illustrating the use of
the statement of Lemma A.4.

Example A.1. Consider the function f : IR → IR defined by

f(x) = ex .

According to Lemma A.4, the function f(x) may be written as

f(x) = ex = 1 + x +
1
2
eαxx2

where for each x ∈ IR there exists an α (1 ≥ α ≥ 0). Specifically, for
x = 0 ∈ IR any α ∈ [0, 1] applies (indeed, any α ∈ IR). In the case
that x 
= 0 ∈ IR then α is explicitly given by

α =
ln

(
2(ex − 1 − x)

x2

)
x

.

Figure A.1 shows the corresponding graph of α versus x.

♦
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Figure A.1. Example A.1: graph of α

A.3 Functional Spaces

A special class of vectorial spaces are the so-called Ln
p (pronounce “el/pi:/en”)

where n is a positive integer and p ∈ (0,∞]. The elements of the Ln
p spaces

are functions with particular properties.
The linear spaces denoted by Ln

2 and Ln
∞, which are defined below, are

often employed in the analysis of interconnected dynamical systems in the
theory of input–output stability. Formally, this methodology involves the use
of operators that characterize the behavior of the distinct parts of the inter-
connected dynamic systems.

We present next a set of definitions and properties of spaces of functions
that are useful in establishing certain convergence properties of solutions of
differential equations.

For the purposes of this book, we say that a function f : IRn → IRm is
said to be continuous if

lim
x→x0

f(x) = f(x0) ∀ x0 ∈ IRn.

A necessary condition for a function to be continuous is that it is defined at
every point x ∈ IRn. It is also apparent that it is not necessary for a function
to be continuous that the function’s derivative be defined everywhere. For
instance the derivative of the continuous function f(x) = |x| is not defined
at the origin, i.e. at x = 0. However, if a function’s derivative is defined
everywhere then the function is continuous.

The space Ln
2 consists in the set of all the continuous functions f : IR+ →

IRn such that ∫ ∞

0

f(t)Tf(t) dt =
∫ ∞

0

‖f(t)‖2
dt < ∞ .
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In words, a function f belongs to the Ln
2 space (f ∈ Ln

2 ) if the integral of
its Euclidean norm squared, is bounded from above. We also say that f is
square-integrable.

The Ln
∞ space consists of the set of all continuous functions f : IR+ → IRn

such that their Euclidean norms are upperbounded as3,

sup
t≥0

‖f(t)‖ < ∞ .

The symbols L2 and L∞ denote the spaces L1
2 and L1

∞ respectively.
We present next an example to illustrate the above-mentioned definitions.

Example A.2. Consider the continuous functions f(t) = e−αt and
g(t) = α sin(t) where α > 0 . We want to determine whether f and g
belong to the spaces of L2 and L∞.

Consider first the function f(t):∫ ∞

0

|f(t)|2 dt =
∫ ∞

0

f2(t) dt

=
∫ ∞

0

e−2αt dt

=
1
2α

< ∞

hence, f ∈ L2. On the other hand, |f(t)| = |e−αt| ≤ 1 < ∞ for all
t ≥ 0, hence f ∈ L∞. We conclude that f(t) is bounded and square-
integrable, i.e. f ∈ L∞ ∩ L2 respectively.

Consider next the function g(t). Notice that the integral∫ ∞

0

|g(t)|2 dt = α2

∫ ∞

0

sin2(t) dt

does not converge; consequently g 
∈ L2. Nevertheless |g(t)| = |α sin(t)|
≤ α < ∞ for all t ≥ 0, and therefore g ∈ L∞. ♦

A useful observation for analysis of convergence of solutions of differential
equations is that if we consider a function x : IR+ → IRn and a radially
unbounded positive definite function W : IRn → IR+ then, since W (x) is
continuous in x the composition w(t) := W (x(t)) satisfies w ∈ L∞ if and
only if x ∈ Ln

∞.
3 For those readers not familiar with the sup of a function f(t), it corresponds

to the smallest possible number which is larger than f(t) for all t ≥ 0. For
instance sup | tanh(t)| = 1 but | tanh(t)| has no maximal value since tanh(t) is
ever increasing and tends to 1 as t → ∞.
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We remark that a continuous function f belonging to the space Ln
2 may not

have a limit. We present next a result from the functional analysis literature
which provides sufficient conditions for functions belonging to the Ln

2 space
to have a limit at zero. This result is very often used in the literature of
motion control of robot manipulators and in general, in the adaptive control
literature.

Lemma A.5. Consider a once continuously differentiable function f : IR+ →
IRn. Suppose that f and its time derivative satisfy the following

• f , ḟ = d
dtf ∈ Ln

∞,

• f ∈ Ln
2 .

Then, necessarily limt→∞ f(t) = 0 ∈ IRn.

Proof. It follows by contradiction4. Specifically we show that if the conclusion
of the lemma does not hold then the hypothesis that f ∈ Ln

2 is violated.
To that end we first need to establish a convenient bound for the function

‖f(t)‖2 = f(t)T f(t). Its total time derivative is 2f(t)T ḟ(t) and is continuous
by assumption so we may invoke the mean value theorem (see Theorem A.2)
to conclude that for any pair of numbers t, t1 ∈ IR+ there exists a number s
laying on the line segment that joins t and t1, such that∣∣∣ ‖f(t)‖2 − ‖f(t1)‖2

∣∣∣ ≤ 2f(s)T ḟ(s) |t − t1| .

On the other hand, since f , ḟ ∈ Ln
∞ it follows that there exists k > 0 such

that ∣∣∣ ‖f(t)‖2 − ‖f(t1)‖2
∣∣∣ ≤ k |t − t1| ∀ t, t1 ∈ IR+ . (A.9)

Next, notice that

‖f(t)‖2 = ‖f(t)‖2 − ‖f(t1)‖2 + ‖f(t1)‖2

for all t, t1 ∈ IR+. Now we use the inequality |a+ b| ≥ |a| − |b| which holds for
all a, b ∈ IR, with a = ‖f(t1)‖2 and b =

[ ‖f(t)‖2 − ‖f(t1)‖2
]

to see that

4 Proof “by contradiction” or, “by reductio ad absurdum”, is a technique widely
used in mathematics to prove theorems and other truths. To illustrate the method
consider a series of logical statements denoted A, B, C, etc. and their negations,
denoted A, B, C, etc. Then, to prove by contradiction the claim, “A and B =⇒
C”, we proceed as follows. Assume that A and B hold but not C. Then, we seek
for a series of implications that lead to a negation of A and B, i.e. we look for
other statements D, E, etc. such that C =⇒ D =⇒ E =⇒ A and B. So we
conclude that C =⇒ A and B. However, in view of the fact that A and B must
hold, this contradicts the initial hypothesis of the proof that C does not hold (i.e.
C). Notice that A and B = A or B.



A Mathematical support 393

‖f(t)‖2 ≥ ‖f(t1)‖2 −
∣∣∣‖f(t)‖2 − ‖f(t1)‖2

∣∣∣
for all t, t1 ∈ IR+. Then, we use (A.9) to obtain

‖f(t)‖2 ≥ ‖f(t1)‖2 − k |t − t1| . (A.10)

Assume now that the conclusion of the lemma does not hold i.e, either
limt→∞ f(t) 
= 0 or this limit does not exist. In either case, it follows that for
each T ≥ 0 there exists an infinite unbounded sequence {t1 , t2 , . . .}, denoted
{tn} ∈ IR+ with tn → ∞ as n → ∞, and a constant ε > 0 such that

‖f(ti)‖2
> ε ∀ ti ≥ T . (A.11)

To better see this, we recall that if limt→∞ f(t) exists and is zero then,
for any ε there exists T (ε) such that for all t ≥ T we have ‖f(t)‖2 ≤ ε.
Furthermore, without loss of generality, defining δ :=

ε

2k
, we may assume

that for all i ≤ n, ti+1 − ti ≥ δ —indeed, if this does not hold, we may always
extract another infinite unbounded subsequence {t′i} such that t′i+1 − t′i ≥ δ
for all i.

Now, since Inequality (A.10) holds for any t and t1 it also holds for any
element of {tn}. Then, in view of (A.11) we have, for each ti belonging to {tn}
and for all t ∈ IR+,

‖f(t)‖2
> ε − k |t − ti| . (A.12)

Integrating Inequality (A.12) from ti to ti + δ we obtain∫ ti+δ

ti

‖f(t)‖2
dt >

∫ ti+δ

ti

ε dt −
∫ ti+δ

ti

k |t − ti| dt . (A.13)

Notice that in the integrals above, t ∈ [ti, ti + δ] therefore, −k|t − ti| ≥ −kδ.
From this and (A.13) it follows that∫ ti+δ

ti

‖f(t)‖2
dt > εδ − kδ2

and since by definition
ε

2k
= δ we finally obtain∫ ti+δ

ti

‖f(t)‖2
dt >

εδ

2
> 0 . (A.14)

On the other hand, since ti+1 ≥ ti + δ for each ti, it also holds that

lim
t→∞

∫ t

0

‖f(τ)‖2
dτ ≥

∑
{ti}

∫ ti+1

ti

‖f(τ)‖2
dτ (A.15)

≥
∑
{ti}

∫ ti+δ

ti

‖f(τ)‖2
dτ . (A.16)
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We see that on one hand, the term on the left-hand side of Inequality (A.15)
is bounded by assumption (since f ∈ Ln

2 ) and on the other hand, since {tn}
is infinite and (A.14) holds for each ti the term on the right-hand side of
Inequality (A.16) is unbounded. From this contradiction we conclude that it
must hold that limt→∞ f(t) = 0 which completes the proof.

♦♦♦
As an application of Lemma A.5 we present below the proof of Lemma 2.2

used extensively in Parts II and III of this text.

Proof of Lemma 2.2. Since V (t,x, z, h) ≥ 0 and V̇ (t, x,z, h) ≤ 0 for all
x, z and h then these inequalities also hold for x(τ), z(τ) and h(τ) and all
τ ≥ 0. Integrating on both sides of V̇ (τ, x(τ),z(τ), h(τ)) ≤ 0 from 0 to t we
obtain5

V (0, x(0),z(0), h(0)) ≥ V (t,x(t), z(t), h(t)) ≥ 0 ∀ t ≥ 0 .

Now, since P (t) is positive definite for all t ≥ 0 we may invoke the theorem
of Rayleigh–Ritz which establishes that xTKx ≥ λmin{K}xTx where K is
any symmetric matrix and λmin{K} denotes the smallest eigenvalue of K, to
conclude that there exists6 pm > 0 such that yT P (t)y ≥ pm{P}‖y‖2 for all
y ∈ IRn+m and all t ∈ IR+. Furthermore, with an abuse of notation, we will
denote such constant by λmin{P}. It follows that⎡⎣x(0)

z(0)

⎤⎦T

P (0)

⎡⎣x(0)

z(0)

⎤⎦ + h(0) ≥ λmin{P}
∥∥∥∥x(t)

z(t)

∥∥∥∥2

+ h(t) ≥ 0 ∀ t ≥ 0

hence, the functions x(t), z(t) and h(t) are bounded for all t ≥ 0. This proves
item 1.

To prove item 2 consider the expression

V̇ (t, x(t),z(t), h(t)) = −x(t)TQ(t)x(t) .

Integrating between 0 and T ∈ IR+ we get

V (T, x(T ), z(T ), h(T )) − V (0, x(0), z(0), h(0)) = −
∫ T

0

x(τ)TQ(τ)x(τ) dτ

5 One should not confuse V (t,�,�, h) with V (t,�(t),�(t), h(t)) as often happens
in the literature. The first denotes a function of four variables while the sec-
ond is a functional. In other words, the second corresponds to the function
V (t,�,�, h) evaluated on certain trajectories which depend on time. Therefore,
V (t,�(t),�(t), h(t)) is a function of time.

6 In general, for such a bound to exist it may not be sufficient that P is positive
definite for each t but we shall not deal with such issues here and rather, we
assume that P is such that the bound exists. See also Remark 2.1 on page 25.
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which, using the fact that V (0,x(0), z(0), h(0)) ≥ V (T, x(T ),z(T ), h(T )) ≥ 0
yields the inequality

V (0, x(0), z(0), h(0)) ≥
∫ T

0

x(τ)TQ(τ)x(τ) dτ ∀T ∈ IR+ .

Notice that this inequality continues to hold as T → ∞ hence,

V (0,x(0),z(0), h(0)) ≥
∫ ∞

0

x(τ)TQ(τ)x(τ) dτ

so using that Q is positive definite we obtain7 xT Q(t)x ≥ λmin{Q}‖x‖2 for
all x ∈ IRn and t ∈ IR+ therefore

V (0,x(0), z(0), h(0))
λmin{Q} ≥

∫ ∞

0

x(τ)Tx(τ) dτ .

The term on the left-hand side of this inequality is finite, which means that
x ∈ Ln

2 .
Finally, since by assumption ẋ ∈ Ln

∞, invoking Lemma A.5 we may con-
clude that limt→∞ x(t) = 0.

♦♦♦
The following result is stated without proof. It can be established using the

so-called Barbălat’s lemma (see the Bibliography at the end of the appendix).

Lemma A.6. Let f : IR+ → IRn be a continuously differentiable function
satisfying

• limt→∞ f(t) = 0

• f , ḟ , f̈ ∈ Ln
∞ .

Then,

• limt→∞ ḟ(t) = 0 .

Another useful observation is the following.

Lemma A.7. Consider the two functions f : IR+ → IRn and h : IR+ → IR
with the following characteristics:

• f ∈ Ln
2

• h ∈ L∞ .

Then, the product hf satisfies

• hf ∈ Ln
2 .

7 See footnote 6 on page 394.
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Proof. According to the hypothesis made, there exist finite constants kf > 0
and kh > 0 such that ∫ ∞

0

f(t)T f(t) dt ≤ kf

sup
t≥0

|h(t)| ≤ kh .

Therefore∫ ∞

0

[h(t)f(t)]T [h(t)f(t)] dt =
∫ ∞

0

h(t)2f(t)T f(t) dt

≤ k2
h

∫ ∞

0

f(t)T f(t) dt ≤ k2
hkf ,

which means that hf ∈ Ln
2 .

♦♦♦
Consider a dynamic linear system described by the following equations

ẋ = Ax + Bu

y = Cx

where x ∈ IRm is the system’s state u ∈ IRn, stands for the input, y ∈ IRn for
the output and A ∈ IRm×m, B ∈ IRm×n and C ∈ IRn×m are matrices having
constant real coefficients. The transfer matrix function H(s) of the system is
then defined as H(s) = C(sI −A)−1B where s is a complex number (s ∈ C).

The following result allows one to draw conclusions on whether y and ẏ
belong to Ln

2 or Ln
∞ depending on whether u belongs to Ln

2 or Ln
∞.

Lemma A.8. Consider the square matrix function of dimension n, H(s) ∈
IRn×n(s) whose elements are rational strictly proper8 functions of the complex
variable s. Assume that the denominators of all its elements have all their
roots on the left half of the complex plane (i.e. they have negative real parts).

1. If u ∈ Ln
2 then y ∈ Ln

2 ∩ Ln
∞, ẏ ∈ Ln

2 and y(t) → 0 as t → ∞.
2. If u ∈ Ln

∞ then y ∈ Ln
∞, ẏ ∈ Ln

∞.

To illustrate the utility of the lemma above consider the differential equation

ẋ + Ax = u

where x ∈ IRn and A ∈ IRn×n is a constant positive definite matrix. If u ∈ Ln
2 ,

then we have from Lemma A.8 that x ∈ Ln
2 ∩ Ln

∞, ẋ ∈ Ln
2 and x(t) → 0

when t → ∞.
Finally, we present the following corollary whose proof follows immediately

from Lemma A.8.
8 That is, the degree of the denominator is strictly larger than that of the numer-

ator.
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Corollary A.2. For the transfer matrix function H(s) ∈ IRn×n(s), let u and
y denote its inputs and outputs respectively and let the assumptions of Lemma
A.8 hold. If u ∈ Ln

2 ∩ Ln
∞, then

• y ∈ Ln
2 ∩ Ln

∞
• ẏ ∈ Ln

2 ∩ Ln
∞

• y(t) → 0 when t → ∞ .

The following interesting result may be proved without much effort from
the definitions of positive definite function and decrescent function.

Lemma A.9. Consider a continuous function x : IR+ → IRn and a radially
unbounded, positive definite, decrescent continuous function V : IR+ × IRn →
IR+. The composition v(t) := V (t, x(t)) satisfies v ∈ L∞ if and only if x ∈
Ln
∞.
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Problems

1. Consider the continuous function

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2n+2[t − n] if n < t < n +
1

2n+2

1 − 2n+2

[
t −

[
n +

1
2n+2

]]
if n +

1
2n+2

≤ t < n +
1

2n+1

0 if n +
1

2n+1
≤ t ≤ n + 1

with n = 0, 1, 2, · · ·. The limit when t → ∞ of f(t) does not exist (see the
Figure A.2). Show that f(t) belongs to L2 .

1
2

1 3
2 2 t

f(t)

Figure A.2. Problem 1

Hint: Notice that f2(t) ≤ h2(t) where
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h2(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if n < t < n +
1

2n+2

1 if n +
1

2n+2
≤ t < n +

1
2n+1

0 if n +
1

2n+1
≤ t ≤ n + 1

and
∫ ∞

0

| h(t) |2dt =
∞∑

i=1

(1/2i) .



B

Support to Lyapunov Theory

B.1 Conditions for Positive Definiteness of Functions

The interest of Lemma A.4 in this textbook resides in that it may be used
to derive sufficient conditions for a function to be positive definite (locally or
globally). We present such conditions in the statement of the following lemma.

Lemma B.1. Let f : IRn → IR be a continuously differentiable function with
continuous partial derivatives up to at least second order. Assume that

• f(0) = 0 ∈ IR

• ∂f

∂x
(0) = 0 ∈ IRn.

Furthermore,

• if the Hessian matrix satisfies H(0) > 0, then f(x) is a positive definite
function (at least locally).

• If the Hessian matrix H(x) > 0 for all x ∈ IRn, then f(x) is a globally
positive definite function.

Proof. Considering Lemma A.4 and the hypothesis made on the function f(x)
we see that for each x ∈ IRn there exists an α (1 ≥ α ≥ 0) such that

f(x) =
1
2
xT H(αx)x .

Under the hypothesis of continuity up to the second partial derivative, if
the Hessian matrix evaluated at x = 0 is positive definite (H(0) > 0), then
the Hessian matrix is also positive definite in a neighborhood of x = 0 ∈ IRn,
e.g. for all x ∈ IRn such that ‖x‖ ≤ ε and for some ε > 0, i.e.

H(x) > 0 ∀ x ∈ IRn : ‖x‖ ≤ ε .
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Of course, H(αx) > 0 for all x ∈ IRn such that ‖x‖ ≤ ε and for any α
(1 ≥ α ≥ 0). Since for all x ∈ IRn there exists an α (1 ≥ α ≥ 0) and

f(x) =
1
2
xT H(αx)x ,

then f(x) > 0 for all x 
= 0 ∈ IRn such that ‖x‖ ≤ ε. Furthermore, since by
hypothesis f(0) = 0, it follows that f(x) is positive definite at least locally.
On the other hand, if the Hessian matrix H(x) is positive definite for all
x ∈ IRn, it follows that so is H(αx) and this, not only for 1 ≥ α ≥ 0 but for
any real α. Therefore, f(x) > 0 for all x 
= 0 ∈ IRn and, since we assumed
that f(0) = 0 we conclude that f(x) is globally positive definite.

♦♦♦
Next, we present some examples to illustrate the application of the previ-

ous lemma.

Example B.1. Consider the following function f : IR2 → IR used in the
study of stability of the origin of the differential equation that models
the behavior of an ideal pendulum, that is,

f(x1, x2) = mgl[1 − cos(x1)] + J
x2

2

2
.

Clearly, we have f(0, 0) = 0 that is, the origin is an equilibrium
point. The gradient of f(x1, x2) is given by

∂f

∂x
(x) =

[
mgl sin(x1)

Jx2

]
which, evaluated at x = 0 ∈ IR2 is zero. Next, the Hessian matrix is
given by

H(x) =
[

mgl cos(x1) 0
0 J

]
and is positive definite at x = 0 ∈ IR2. Hence, according to Lemma
B.1 the function f(x1, x2) is positive definite at least locally. Notice
that this function is not globally positive definite since cos(x1) = 0
for all x1 =

nπ

2
with n = 1, 2, 3 . . . and cos(x1) < 0 for all x1 ∈(

nπ

2
,

(n + 2)π
2

)
for all n = 1, 5, 7, 9, . . . ♦

The following example, less trivial than the previous one, presents a func-
tion that is used as part of Lyapunov functions in the study of stability of
various control schemes of robots.
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Example B.2. Consider the function f : IRn → IR defined as

f(q̃) = U(qd − q̃) − U(qd) + g(qd)
T q̃ +

1
ε
q̃T Kpq̃

where Kp = KT
p > 0, qd ∈ IRn is a constant vector, ε is a real positive

constant and U(q) stands for the potential energy of the robot. Here,
we assume that all the joints of the robot are revolute.

The objective of this example is to show that if Kp is selected so
that 1

λmin{Kp} >
ε

2
kg

then f(q̃) is a globally positive definite function.
To prove the latter we use Lemma B.1. Notice first that f(0) = 0.
The gradient of f(q̃) with respect to q̃ is

∂

∂q̃
f(q̃) =

∂U(qd − q̃)
∂q̃

+ g(qd) +
2
ε
Kpq̃ .

Recalling from (3.20) that g(q) = ∂U(q)/∂q and2

∂

∂q̃
U(qd − q̃) =

∂(qd − q̃)
∂q̃

T
∂U(qd − q̃)
∂(qd − q̃)

we finally obtain the expression:

∂

∂q̃
f(q̃) = −g(qd − q̃) + g(qd) +

2
ε
Kpq̃ .

Clearly the gradient of f(q̃) is zero at q̃ = 0 ∈ IRn.
On the other hand, the (symmetric) Hessian matrix H(q̃) of f(q̃),

defined as
1 The constant kg has been defined in Property 4.3 and satisfies

kg ≥
∥∥∥∥∂�(�)

∂�

∥∥∥∥ .

2 Let f : IRn → IR, � : IRn → IRn, �,� ∈ IRn and � = �(�). Then,

∂f(�)

∂�
=

[
∂�(�)

∂�

]T
∂f(�)

∂�
.
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H(q̃) =
∂

∂q̃

[
∂f(q̃)

∂q̃

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f(�̃)

∂q̃1∂q̃1

∂2f(�̃)

∂q̃1∂q̃2
· · · ∂2f(�̃)

∂q̃1∂q̃n

∂2f(�̃)

∂q̃2∂q̃1

∂2f(�̃)

∂q̃2∂q̃2
· · · ∂2f(�̃)

∂q̃2∂q̃n

...
...

. . .
...

∂2f(�̃)

∂q̃n∂q̃1

∂2f(�̃)

∂q̃n∂q̃2
· · · ∂2f(�̃)

∂q̃n∂q̃n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

actually corresponds to3

H(q̃) =
∂g(qd − q̃)
∂(qd − q̃)

+
2
ε
Kp .

According to Lemma B.1, if H(q̃) > 0 for all q̃ ∈ IRn, then the
function f(q̃) is globally positive definite.

To show that H(q̃) > 0 for all q̃ ∈ IRn, we appeal to the follow-
ing result. Let A,B ∈ IRn×n be symmetric matrices. Assume more-
over that the matrix A is positive definite, but B may not be so. If
λmin{A} > ‖B‖, then the matrix A + B is positive definite4. Defining

3 Let � , � : IRn → IRn, �,� ∈ IRn and � = �(�). Then,

∂�(�)

∂�
=

∂�(�)

∂�

∂�(�)

∂�
.

4 Proof. Since by hypothesis λmin{A} > ‖B‖, then

λmin{A} ‖�‖2 > ‖B‖ ‖�‖2

for all � �= 0.
Observe that the left-hand side of the inequality above satisfies

�
T A� ≥ λmin{A} ‖�‖2

while the right-hand side satisfies

‖B‖ ‖�‖2 = ‖B‖ ‖�‖ ‖�‖
≥ ‖B�‖ ‖�‖
≥

∣∣�T B�
∣∣

≥ −�T B� .

Therefore,
�

T A� > −�T B�

for all � �= 0, that is
�

T [A + B]� > 0 ,

which is equivalent to matrix A + B being positive definite.
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A = 2
εKp, B = ∂g(q)

∂q
, and using the latter result, we conclude that

the Hessian matrix is positive definite provided that

λmin{Kp} >
ε

2

∥∥∥∥∂g(q)
∂q

∥∥∥∥ . (B.1)

Since the constant kg satisfies kg ≥
∥∥∥∂g(q)

∂q

∥∥∥, the condition (B.1)
is implied by

λmin{Kp} >
ε

2
kg .

♦

The following example may be considered as a corollary of the previous
example.

Example B.3. This example shows that the function f(q̃) defined in
the previous example is lower-bounded by a quadratic function of q̃
and therefore it is positive definite.

Specifically we show that

U(qd − q̃) − U(qd) + g(qd)
T q̃ +

1
2
q̃T Kpq̃ ≥ 1

2
[λmin{Kp} − kg] ‖q̃‖2

is valid for all q̃ ∈ IRn, with Kp = KT
p such that λmin{Kp} > kg,

where qd ∈ IRn is a constant vector and U(q) corresponds to the
potential energy of the robot. As usual, we assume that all the joints
of the robot are revolute.

To carry out the proof, we appeal to the argument of showing that
the function

f(q̃) = U(qd−q̃)−U(qd)+g(qd)
T q̃+

1
2
q̃T Kpq̃−1

2
[λmin{Kp} − kg] ‖q̃‖2

is globally positive definite. With this objective in mind we appeal to
Lemma B.1. Notice first that f(0) = 0.

The gradient of f(q̃) with respect to q̃ is

∂

∂q̃
f(q̃) = −g(qd − q̃) + g(qd) + Kpq̃ − [λmin{Kp} − kg] q̃ .

Clearly the gradient of f(q̃) is zero at q̃ = 0 ∈ IRn.
The Hessian matrix H(q̃) of f(q̃) becomes

H(q̃) =
∂g(qd − q̃)
∂(qd − q̃)

+ Kp − [λmin{Kp} − kg] I .
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We show next that the latter is positive definite. For this, we start
from the fact that the constant kg satisfies

kg >

∥∥∥∥∂g(q)
∂q

∥∥∥∥
for all q ∈ IRn. Therefore, it holds that

λmin{Kp} − λmin{Kp} + kg >

∥∥∥∥∂g(q)
∂q

∥∥∥∥
or equivalently,

λmin{Kp} − λMax {[λmin{Kp} − kg] I} >

∥∥∥∥∂g(q)
∂q

∥∥∥∥ .

By virtue of the fact that for two symmetric matrices A and B we
have that λmin{A − B} ≥ λmin{A} − λMax{B}, it follows that

λmin {Kp − [λmin{Kp} − kg] I} >

∥∥∥∥∂g(q)
∂q

∥∥∥∥ .

Finally, invoking the fact that for any given symmetric positive
definite matrix A, and a symmetric matrix B it holds that A + B > 0
provided that λmin{A} > ‖B‖, we conclude that

Kp − [λmin{Kp} − kg] I +
∂g(q)

∂q
> 0

which corresponds precisely to the expression for the Hessian. There-
fore, the latter is positive definite and according to Lemma B.1, we
conclude that the function f(q̃) is globally positive definite. ♦



C

Proofs of Some Properties of the Dynamic
Model

Proof of Property 4.1.3

The proof of the inequality (4.2) follows straightforward invoking Corollary
A.1. This is possible due to the fact that the inertia matrix M(q) is continuous
in q as well as the partial derivative of each of its elements Mij(q). Since
moreover we considered the case of robots whose joints are all revolute, we
obtain the additional characteristic that∣∣∣∣∣ ∂Mij(q)

∂qk

∣∣∣∣
q=q0

∣∣∣∣∣
is a function of q0 bounded from above.

Therefore, given any two vectors x,y ∈ IRn, according to Corollary A.1,
the norm of the vector M(x)z − M(y)z satisfies

‖M(x)z − M(y)z‖ ≤ n2 max
i,j,k,q0

{∣∣∣∣∣ ∂Mij(q)
∂qk

∣∣∣∣
q=q0

∣∣∣∣∣
}

‖x − y‖ ‖z‖ .

Now, choosing the constant kM in accordance with (4.3), i.e.

kM = n2 max
i,j,k,q0

{∣∣∣∣∣ ∂Mij(q)
∂qk

∣∣∣∣
q=q0

∣∣∣∣∣
}

,

we obtain
‖M(x)z − M(y)z‖ ≤ kM ‖x − y‖ ‖z‖

which corresponds to the inequality stated in (4.2). ♦♦♦
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Proof of Property 4.2.6

To carry out the proof of inequality (4.5) we start by considering (4.4) which
allows one to express the vector C(x, z)w − C(y, v)w as

C(x, z)w − C(y,v)w =

⎡⎢⎢⎢⎣
wT C1(x)z
wT C2(x)z

...
wT Cn(x)z−

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

wT C1(y)v
wT C2(y)v

...
wT Cn(y)v

⎤⎥⎥⎥⎦ (C.1)

where Ck(q) is a symmetric matrix of dimension n, continuous in q and with
the characteristic of that all of its elements Ckij (q) are bounded for all q ∈ IRn

and moreover, so are its partial derivatives (Ckij
(q) ∈ C∞).

According to Equation (C.1), the vector C(x, z)w − C(y,v)w may also
be written as

C(x, z)w − C(y, v)w =

⎡⎢⎢⎢⎢⎣
wT [C1(x) − C1(y)] z − wT C1(y)[v − z]
wT [C2(x) − C2(y)] z − wT C2(y)[v − z]

...
wT [Cn(x) − Cn(y)] z − wT Cn(y)[v − z]

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
wT [C1(x) − C1(y)] z
wT [C2(x) − C2(y)] z

...
wT [Cn(x) − Cn(y)] z

⎤⎥⎥⎥⎥⎦− C(y, v − z)w.

Evaluating the norms of the terms on each side of the equality above we
immediately obtain

‖C(x, z)w − C(y, v)w‖ ≤

∥∥∥∥∥∥∥∥∥
wT [C1(x) − C1(y)] z
wT [C2(x) − C2(y)] z

...
wT [Cn(x) − Cn(y)] z

∥∥∥∥∥∥∥∥∥
+ ‖C(y, v − z)w‖ .

(C.2)
We proceed next to determine upper-bounds on the two normed terms on

the right-hand side of this inequality. First, using Lemma A.1 we get∥∥∥∥∥∥∥∥∥
wT [C1(x) − C1(y)] z
wT [C2(x) − C2(y)] z

...
wT [Cn(x) − Cn(y)] z

∥∥∥∥∥∥∥∥∥
≤ n max

k

{∣∣wT [Ck(x) − Ck(y)] z
∣∣} . (C.3)
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Furthermore, since the partial derivatives of the elements of the matrices
Ck(q) are bounded functions, Corollary A.1 leads to∣∣wT [Ck(x) − Ck(y)] z

∣∣ ≤ ‖[Ck(x) − Ck(y)] z‖ ‖w‖

≤ n2 max
i,j,l,q0

{∣∣∣∣∣ ∂Ckij (q)
∂ql

∣∣∣∣
q=q0

∣∣∣∣∣
}

‖x − y‖

‖z‖ ‖w‖ ,

and therefore, it follows that

n max
k

{∣∣wT [Ck(x) − Ck(y)] z
∣∣} ≤ n3 max

i,j,k,l,q0

{∣∣∣∣∣ ∂Ckij (q)
∂ql

∣∣∣∣
q=q0

∣∣∣∣∣
}

‖x − y‖ ‖z‖ ‖w‖ .

Incorporating this last inequality in (C.3) we finally obtain∥∥∥∥∥∥∥∥∥
wT [C1(x) − C1(y)] z
wT [C2(x) − C2(y)] z

...
wT [Cn(x) − Cn(y)] z

∥∥∥∥∥∥∥∥∥
≤

n3 max
i,j,k,l,q0

{∣∣∣∣∣ ∂Ckij (q)
∂ql

∣∣∣∣
q=q0

∣∣∣∣∣
}
‖x − y‖ ‖z‖ ‖w‖ . (C.4)

On the other hand, using (4.8) it follows that the second normed term on
the right-hand side of Inequality (C.2) may be bounded as

‖C(y, v − z)w‖ ≤ n2

(
max
k,i,j,q

∣∣Ckij (q)
∣∣) ‖v − z‖ ‖w‖ . (C.5)

Defining the constant kC1 and kC2 in accordance with table 4.1, i.e.

kC1 = n2

(
max
i,j,k,q

∣∣Ckij (q)
∣∣)

kC2 = n3

(
max

i,j,k,l,q

∣∣∣∣∂Ckij (q)
∂ql

∣∣∣∣) ,

and using (C.4) and (C.5) in the Inequality (C.2), we finally get

‖C(x, z)w − C(y, v)w‖ ≤ kC1 ‖v − z‖ ‖w‖ + kC2 ‖x − y‖ ‖z‖ ‖w‖ ,

which is what we wanted to demonstrate. ♦♦♦
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Proof of Property 4.3.3

The proof of inequality (4.10) follows invoking Theorem A.3. Since the vector
of gravitational torques g(q) is a vectorial continuous function, then for any
two vectors x, y ∈ IRn, we have

g(x) − g(y) =
∂g(q)

∂q

∣∣∣∣
q=ξ

[x − y]

where ξ = y +α[x−y] and α is a number suitably chosen within the interval
[0, 1]. Evaluating the norms of the terms on both sides of the equation above
we obtain

‖g(x) − g(y)‖ ≤
∥∥∥∥∥ ∂g(q)

∂q

∣∣∣∣
q=ξ

∥∥∥∥∥ ‖x − y‖ . (C.6)

On the other hand, using Lemma A.3, we get∥∥∥∥∥ ∂g(q)
∂q

∣∣∣∣
q=ξ

∥∥∥∥∥ ≤ n max
i,j

{∣∣∣∣∣ ∂gi(q)
∂qj

∣∣∣∣
q=ξ

∣∣∣∣∣
}

.

Furthermore, since we considered the case of robots with only revolute joints,
the function ∣∣∣∣∂gi(q)

∂qj

∣∣∣∣
is bounded. Therefore, it is also true that∥∥∥∥∥ ∂g(q)

∂q

∣∣∣∣
q=ξ

∥∥∥∥∥ ≤ n max
i,j,q

{∣∣∣∣∂gi(q)
∂qj

∣∣∣∣} .

Incorporating this inequality in (C.6), we obtain

‖g(x) − g(y)‖ ≤ n max
i,j,q

{∣∣∣∣∂gi(q)
∂qj

∣∣∣∣} ‖x − y‖ .

Choosing next the constant kg as in (4.11), i.e.

kg = n

(
max
i,j,q

∣∣∣∣∂gi(q)
∂qj

∣∣∣∣)
which by the way implies, from Lemma A.3, that

kg ≥
∥∥∥∥∂g(q)

∂q

∥∥∥∥ ,

we finally get the expression

‖g(x) − g(y)‖ ≤ kg ‖x − y‖
which is what we were seeking. ♦♦♦



D

Dynamics of Direct-current Motors

The actuators of robot manipulators may be electrical, hydraulic or pneu-
matic. The simplest electrical actuators used in robotics applications are
permanent-magnet direct-current motors (DC).

Ka,Kb, Ra

v

Jm

fm 1 : r

q τ

Figure D.1. DC motor

An idealized mathematical model that characterizes the behavior of a
permanent-magnet DC motor controlled by the armature voltage is typically
described by the set of equations (see Figure D.1)

τm = Kaia (D.1)

v = Raia + La
dia
dt

+ eb (D.2)

eb = Kbq̇m (D.3)
qm = rq,

where

• Ka : motor-torque constant (N m/A)
• Ra : armature resistance (Ω)
• La : armature inductance (H)
• Kb : back emf constant (V s/rad)
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• τm : torque at the axis of the motor (N m)
• ia : armature current (A)
• eb : back emf (V)
• qm : angular position of the axis of the motor (rad)
• q : angular position of the axis of the mechanical load1 (rad)
• r : gears reduction ratio (in general r � 1)
• v : armature voltage (V).

The equation of motion for this system is

Jmq̈m = τm − fm(q̇m) − τ

r
(D.4)

where τ is the torque applied after the gear box at the axis of the load, Jm

is the rotor inertia of the rotor, and fm(q̇m) is the torque due to friction
between the rotor and its bearings, which in general, is a nonlinear function
of its argument.

From a dynamic systems viewpoint, the DC motor may be regarded as
a device whose input is the voltage v and output is the torque τ , which is
applied after the gear box. Eventually, the time derivative τ̇ of the torque τ
may also be considered as an output.

The dynamic model that relates the voltage v to the torque τ is obtained
in the following manner. First, we proceed to replace ia from (D.1) and eb

from (D.3) in (D.2) to get

v =
Ra

Ka
τm + La

dia
dt

+ Kbq̇m . (D.5)

Next, evaluating the time derivative on both sides of Equation (D.1) we
obtain dia

dt = τ̇m/Ka which, when replaced in (D.5) yields

v =
Ra

Ka
τm +

La

Ka
τ̇m + Kbq̇m . (D.6)

On the other hand, from (D.4) we get τm as

τm = Jmq̈m + fm(q̇m) +
τ

r

and whose time derivative is

τ̇m = Jm
d

dt
q̈m +

∂fm(q̇m)
∂q̇m

q̈m +
τ̇

r

which, substituted in (D.6) yields
1 For instance, a link of a robot.
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v =
Ra

Ka

[
Jmq̈m + fm(q̇m) +

τ

r

]
+

La

Ka

[
Jm

d

dt
q̈m +

∂fm(q̇m)
∂q̇m

q̈m +
τ̇

r

]
+ Kbq̇m .

Finally, using the relation qm = rq, the previous equation may be written
as

Ka

rRa
v =

LaJm

Ra

d

dt
q̈ +

(
Jm +

La

Ra

∂fm(rq̇)
∂(rq̇)

)
q̈ +

1
r
fm(rq̇)

+
KaKb

Ra
q̇ +

τ

r2
+

La

r2Ra
τ̇ , (D.7)

which may also be expressed in terms of the state vector [q q̇ q̈ ], as

d

dt

⎡⎢⎢⎢⎣
q

q̇

Laq̈

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
q̇

q̈

1
Jm

[
Ka

r v −
(
RaJm + La

∂fm(rq̇)
∂(rq̇)

)
q̈ + g(q̇, τ, τ̇)

]
⎤⎥⎥⎥⎥⎦ (D.8)

where
g(q̇, τ, τ̇) = −Ra

r
fm(rq̇) − KaKbq̇ − Ra

τ

r2
− La

τ̇

r2
.

Equation (D.8) constitutes a differential equation of third order. In addi-
tion, this equation is nonlinear if the friction term fm(·) is a nonlinear function
of its argument. The presence of the armature inductance La multiplying d

dt q̈,
causes the equation to be a ‘singularly-perturbed’2 differential equation for
“small” inductance values.

Negligible Armature Inductance (L� ≈ 0)

In several applications, the armature inductance La is negligible (La ≈ 0).
In the rest of the present appendix we assume that this is the case. Thus,
considering La = 0, Equation (D.7) becomes

Jmq̈ +
1
r
fm(rq̇) +

KaKb

Ra
q̇ +

τ

r2
=

Ka

rRa
v (D.9)

or equivalently, in terms of the state vector [q q̇]

d

dt

⎡⎢⎣ q

q̇

⎤⎥⎦ =

⎡⎢⎣ q̇

1
Jm

[
Ka

rRa
v − fm(rq̇)

r
− KaKb

Ra
q̇ − τ

r2

]⎤⎥⎦ .

2 See for instance H. Khalil, Nonlinear Systems, Prentice-Hall, 1996.
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This important equation relates the voltage v applied to the armature of
the motor, to the torque τ applied to the mechanical load, in terms of the
angular position, velocity and acceleration of the latter.

Example D.1. Model of a motor with a mechanical load whose center
of mass is located at the axis of rotation.
In the particular case when the load is modeled by a single inertia JL

with friction torques fL(q̇) as illustrated in Figure D.2, the torque τ
is obtained from the equation of motion associated with the load as

JLq̈ = τ − fL(q̇) . (D.10)

v

Ka, Kb, Ra fm

Jm
1 : r

gears

τ

fL

q,

Figure D.2. DC motor with cylindrical inertia

The model of the motor-with-load for this case is obtained by
substituting τ from (D.10) in (D.9), that is,(

JL

r2
+ Jm

)
q̈ +

1
r
fm(rq̇) +

1
r2

fL(q̇) +
KaKb

Ra
q̇ =

Ka

rRa
v . (D.11)

♦

Example D.2. Model of a pendular device.
Consider the pendular device depicted in Figure D.3. The joint con-
sists of a DC motor connected through gears to the pendular arm.

The equation of motion for the arm and its load is given by(
J + ml2

)
q̈ + fL(q̇) + (mblb + ml) g sin(q) = τ (D.12)

where
• J : arm inertia (without load)
• mb : arm mass (without load)
• lb : distance from the axis of rotation to the center of mass of the

arm (without load)
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• m : load mass (assumed concentrated at the center of mass)
• l : distance from the axis of rotation to the load m
• g : gravity acceleration
• τ : applied torque at the axis of rotation
• fL(q̇) : friction torque between the arm and its bearings.

v

Ka,Kb, Ra

Jm

fm

1 : r

fL

lb

lmb, J

m

q

Figure D.3. Pendular device

Equation (D.12) may rewritten in compact form

JLq̈ + fL(q̇) + kL sin(q) = τ (D.13)

where

JL = J + ml2

kL = (mblb + ml) g .

Thus, the complete model of the pendular device that we obtain
by substituting τ from (D.13) in the model of the DC motor (D.9) is(

JL

r2
+ Jm

)
q̈ +

1
r
fm(rq̇) +

1
r2

fL(q̇) +
KaKb

Ra
q̇ +

kL

r2
sin(q) =

Ka

rRa
v .

(D.14)
Notice that the previous model constitutes a nonlinear differential

equation due not only to the friction torques fm(rq̇) and fL(q̇) but
also due to the term (kL/r2) sin(q).

In the particular case where the gear reduction ratio r is high
(r � 1) then, neglecting terms in 1/r2, the model (D.14) may be
approximated by the model of the DC motor (D.9) with zero torque
(τ = 0). Also, observe that if the center of mass of the arm and that of
the load are both located on the axis of rotation (i.e. lb = l = 0 ⇒
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kL = 0) then, Equation (D.11) corresponds to the model of a motor
with load whose center of mass is located on the axis of rotation.

♦

D.1 Motor Model with Linear Friction

In spite of the complexity of friction phenomena, typically linear models are
used to characterize their behavior, that is,

fm(q̇m) = fmq̇m (D.15)

where fm is a positive constant.
Considering the linear model above for the friction torques, Equation

(D.9), that relates the voltage v applied at the armature of the motor to
the torque τ applied on the load, takes the form

Jmq̈ +
(

fm +
KaKb

Ra

)
q̇ +

τ

r2
=

Ka

rRa
v . (D.16)

Example D.3. Model of the motor with a load whose center of mass is
located on the axis of rotation (linear friction).
Consider the linear model (D.15) for the friction torque corresponding
to the rotor with respect to its bearings as well as the following linear
equation for the friction torque between the load and its bearings:

fL(q̇) = fLq̇

where fL is a positive constant. The model of the motor-with-load
(D.11) reduces to(

JL

r2
+ Jm

)
q̈ +

(
fm +

fL

r2
+

KaKb

Ra

)
q̇ =

Ka

rRa
v

or, in compact form(
JL

r2
+ Jm

)
q̈ +

fL

r2
q̇ + bq̇ = kv

where

b = fm +
KaKb

Ra

k =
Ka

rRa
.

♦
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D.2 Motor Model with Nonlinear Friction

A more realistic model that characterizes the friction torques is given by the
nonlinear expression

fm(q̇m) = fmq̇m + c1 sign(q̇m) (D.17)

where fm and c1 are positive constants (see Figure D.4) and sign(·) is the sign
function which is defined as sign(s) = −1 if s < 0, sign(s) = +1 if s > 0 and
at zero this function is discontinuous since clearly, its limits from the left and
from the right are different.

fm

1

−c1

c1

q̇

f(q̇)

fm

1

Figure D.4. Nonlinear friction

Strictly speaking one must be very careful in studying the stability of
a system described by a differential equation which contain discontinuous
functions. None of the theorems of stability presented here apply to this case.
In general one cannot even guarantee the basic assumption that we made on
page 28 that the solutions are unique for each initial condition. All this makes
the study of Lyapunov stability for these systems a highly complex problem
that is beyond the scope of this textbook.

Nevertheless, for the sake of completeness we present below the dynamic
model of the motor with a discontinuous friction term. Considering the nonlin-
ear model above for the friction torques, Equation (D.9) relating the voltage
v applied to the armature of the motor together with the torque τ applied to
the load, becomes

Jmq̈ +
(

fm +
KaKb

Ra

)
q̇ +

c1

r
sign(rq̇) +

τ

r2
=

Ka

rRa
v .
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Example D.4. Model of the motor with load whose center of mass is
located on the axis of rotation (nonlinear friction).
Consider the model of nonlinear friction (D.17) for the friction torque
between the axis of the rotor and its bearings, and the corresponding
load’s friction,

fL(q̇) = fLq̇ + c2 sign(q̇) (D.18)

where fL and c2 are positive constants.
Taking into account the functions (D.17) and (D.18), the motor-

with-load model (D.11) becomes

(JL + Jm) q̈ +
(

fm +
KaKb

Ra
+ fL

)
q̇ + (c1 + c2) sign(q̇) =

Ka

Ra
v

where for simplicity, we took r = 1. ♦
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ẋ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
∃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
∀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
∈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
e.g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
i.e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
cf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv
Åström K. J. . . . . . . . . . . . . . 308, 333, 418

Abdallah C. T. . . . . . . . . . . . 139, 333, 378
absolute value . . . . . . . . . . . . . . . . . . . . . . . 20
actuators . . . . . . . . . . . . . . . . . . . 60, 82, 411

electromechanical . . . . . . . . . . . . . 82, 89
hydraulic . . . . . . . . . . . . . . . . . . . . . . . . . 82
linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
nonlinear . . . . . . . . . . . . . . . . . . . . . . . . . 87

adaptive
gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
update law. . . . . . . . . . . . . . . . . . . . . . .328

adaptive control
closed loop. . . . . . . . . . . . . . . . . . . . . . .330
law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
parametric convergence . . . . . . . . . . 329

adaptive law . . . . . . . . . . . . . . . . . . . . . . . 328
Ailon A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Alvarez R. . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Alvarez–Ramirez J. . . . . . . . . . . . . . . . . 218
An C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Anderson B. D. O. . . . . . . . . . . . . . . . . . 333
Annaswamy A. . . . . . . . . . . . . . . . . 333, 398
Arimoto S. . xv, 109, 139, 153, 167, 168,

195, 217, 218, 333, 334
armature current . . . . . . . . . . . . . . . . . . . 412
armature resistance . . . . . . . . . . . . .83, 411
Arnold V. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Arteaga A. . . . . . . . . . . . . . . . . . . . . . . . . . 332
Arteaga, M. . . . . . . . . . . . . . . . . . . . . . . . . . xv
Asada H. . . . . . . . . . . . . . . . . . . 88, 139, 283
asymptotic stability

definition. . . . . . . . . . . . . . . . . . . . . .33, 35
Atkeson C. . . . . . . . . . . . . . . . . . . . . . . . . . 283

back emf . . . . . . . . . . . . . . . . . . . . . . . 83, 412
back emf constant . . . . . . . . . . . . . . . . . . 411
bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 231
Barbălat
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Loŕıa A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Lozano R. . . . . . . . . . . . . . . . . . . . . . 332, 333
Luh J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Lyapunov

candidate function . . . . . . . . . . . . . . . . 43
direct method . . . . . . . . . . . . . . . . . 27, 44
function. . . . . . . . . . . . . . . . . . . . . . . . . . .44
second method . . . . . . . . . . . . . . . . . . . . 27
stability. . . . . . . . . . . . . . . . . . . . . . . . . . .27
stability in the sense of. . . . . . . . . . . .31
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
uniform stability in the sense of . . . 32

Lyapunov, A. M. . . . . . . . . . . . . . . . . . . . . 53

M’Saad M. . . . . . . . . . . . . . . . . . . . . . . . . . 333
manipulator

definition . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Mann W. R. . . . . . . . . . . . . . . . . . . . . . . . 397
mapping contraction . . . . . . . see theorem
Marcus M. . . . . . . . . . . . . . . . . . . . . . . . . . 397
Mareels I. M. Y. . . . . . . . . . . . . . . . . . . . 333
Marino R. . . . . . . . . . . . . . . . . . . . . . . 89, 333
Marth G. T. . . . . . . . . . . . . . . . . . . . . . . . 283
Massner W. . . . . . . . . . . . . . . . . . . . . . . . . 334
matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

centrifugal and Coriolis . . . . . . . . 73, 97
diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Hessian . . . . . . . . . . . . . . . . 182, 387, 403
identity . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
inertia. . . . . . . . . . . . . . . . . . . . . . . . .72, 95
Jacobian . . . . . . . . . . . . . . . . . . . . . 92, 116
negative definite . . . . . . . . . . . . . . . . . . 24
negative semidefinite . . . . . . . . . . . . . . 24
nonsingular . . . . . . . . . . . . . . . . . . . . . . . 23
partitioned . . . . . . . . . . . . . . . . . . 124, 384
positive definite . . . . . . . . . . . . . . . 23, 41
positive semidefinite . . . . . . . . . . . . . . 24
singular . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
skew-symmetric . . . . . . . . . . . . . . . 22, 98
square . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
symmetric . . . . . . . . . . . . . . . . . . . . . . . . 22
transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 396
transpose . . . . . . . . . . . . . . . . . . . . . . . . . 21

Mawhin J. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Mayorga R. V. . . . . . . . . . . . . . . . . . . . . . . 89
Meza J. L. . . . . . . . . . . . . . . . . . . . . . . . . . 217
Middleton R. H. . . . . . . . . . . . . . . . . . . . 331
Milano N. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Minc H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Miyazaki F.. . . . . . . . . .168, 195, 217, 218
model

direct kinematic . . . . . . . . . . . . . . 61, 115
dynamic. . . . . . . . . . . . . . . . . . . . . . .10, 71

elastic joints . . . . . . . . . . . . . . . . . . . . .77
with actuators . . . . . . . . . . . . . . . . . . .82
with elastic joints . . . . . . . . . . . . . . . 89
with friction . . . . . . . . . . . . . . . . . . . . . 75

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 88
inverse kinematic . . . . . . . . . . . . . 61, 116
kinematics . . . . . . . . . . . . . . . . . . . . . . . . 88

moment of inertia . . . . . . . . . . . . . . . . . . . 77
motion equations

Lagrange’s . . . . . . . . . . . . . . . . . . . . . . . . 79



424 Index

motor-torque constant . . . . . . . . . . 83, 411
multivariable linear system . . . . . . . . . 230
Murphy S. . . . . . . . . . . . . . . . . . . . . . . . . . 218

Nagarkatti S. P. . . . . . . . . . . . . . . . . . . . . 140
Naniwa T. . . . . . . . . . . . . . . . . . . . . . . . . . 334
Narendra K.. . . . . . . . . . . . . . . . . . .333, 398
Nicklasson P. J. . . . . . . . . . . . . . . . . . . . . 139
Nicosia S. . . . . . . . . . . . . . . . . . . . . . . 89, 308
Nijmeijer H. . . . . . . . . . . . . . . . . . . . . xv, 308
norm

Euclidean . . . . . . . . . . . . . . . . . . . . . . . . . 20
spectral . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

numerical approximation . . . . . . . . . . . 291

observers . . . . . . . . . . . . . . . . . . . . . . . . . . .291
Ogata K.. . . . . . . . . . . . . . . . . . . . . . . . . . .418
Olsson H. . . . . . . . . . . . . . . . . . . . . . . . . . . 418
open loop . . . . . . . . . . . . . . . . . . . . . . . . . . 265
operator

delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
differential . . . . . . . . . . . . . . . . . . . . . . . 292

optical encoder . . . . . . . . . . . . . . . . . . . . . 291
optimization . . . . . . . . . . . . . . . . . . . . . . . 181
Ortega R. . . xv, 109, 139, 218, 238, 259,

308, 332, 378
oscillator

harmonic . . . . . . . . . . . . . . . . . . . . . . . . . 32
van der Pol . . . . . . . . . . . . . . . . . . . . . . . 39

output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 73, 84
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