
Lecture Notes 
in Control and Information Sciences 233 

Editor: M. Thoma 



Pasquale Chiacchio and Stefano Chiaverini (Eds) 

Complex 
Robotic 
Systems 

~ Springer 



Series  A d v i s o r y  B o a r d  

A. Bensoussan • M.J. Grimble • P. Kokotovic 
H. Kwakernaak • J.L. Masse)" 

Edi tors  

Dr Pasquale Chiacchio 
Dr Stefano Chiaverini 
Dipartimento di Informatica e Sistemistica, 
Universith degli Studi Napoli Federico II, 
Via Claudio 21,1-80125 Napoli, Italy 

ISBN 3-540-76265-5 Springer-Verlag Berlin Heidelberg New York 

British Library Cataloguing in Publication Data 
Complex robotic systems. - (Lecture notes in control and 

information sciences ; 233) 
1.Robotics 
I.Chiacchio, Pasquale II.Chiaverini, Stefano 
629.8'92 
ISBN 3540762655 

Library of Congress Cataloging-in-Publication Data 
A catalog record for this book is available from the L~rary of Congress 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be 
reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing 
of the publishers, or in the case of reprographic reproduction in accordance with the terms of 
ticences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those 
terms should be sent to the publishers. 

© Springer-Verlag London Limited 1998 
Printed in Great Britain 

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence 
of a specific statement, that such names are exempt from the relevant laws and regulations and 
therefore free for general use. 

The pubnsher makes no representation, express or impUed, with regard to the accuracy of the 
information contained in this book and cannot accept any legal responsibility or liability for any 
errors or omissions that may be made. 

Typesetting: Camera read)" by editors 
Printed and bound at the Athenmum Press Ltd., Gateshead, Tyne & Wear 
6913830-543210 Printed on acid-free paper 



No '  si volta chi a stella ~ fisso. 

Leonardo da Vinci 



P r e f a c e  

The challenges that mankind must face in this era of astonishing progress 
in technology calls for the development of a common and up-to-date world- 
wide knowledge base. When working at this book our intention was to 
realize a small contribution to the achievement of this goal within the field 
of Robotics. 

Robotic systems have proven themselves to be of increasing importance 
and are widely adopted to substitute for humans in repetitive and/or haz- 
ardous tasks. Their diffusion has outgrown the limits of industrial appli- 
cations in manufacturing systems to cover all the aspects of exploration 
and servicing in hostile environments such as undersea, outer space, battle- 
fields, and nuclear plants. 

Complex robotic systems, i.e. robotic systems with a complex structure 
and architecture, are gaining increasing attention from both the academic 
community and industrial users. The modeling and control problems for 
these systems cannot be regarded as simple extensions of those for tradi- 
tional single manipulators since additional complexity arises: to accomplish 
typical tasks there is the need to ensure coordinated motion of the whole 
system together with management of interaction between each component 
of the system. 

This book focuses on two examples of complex robotic systems; namely, 
cooperating manipulators and multi-fingered hands. 

In April 1997 we organized a Tutorial Session on these topics at the 
IEEE International Conference on Robotics and Automation held in Albu- 
querque, NM, collecting contributions from distinguished scientists through- 
out the world. The collected material was of high quality and up-to-date, 
thus we thought it could be of interest to a wider audience. Therefore, we 
asked all the contributors to further extend their manuscripts; all of them 
agreed and the result of this joint effort is this book. 

Although the book is the outcome of a joint project, the individual 
contributions are attributed as detailed in the following. We feel the need 
to thank our colleagues for their motivation during the project. 
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viii Preface 

In Chapter 1, Masaxu Uchiyama gives a general perspective of the state 
of the art of multi-arm robot systems. After outlining the historical evolu- 
tion of studies in this area, he gives the fundamentals of kinematics, statics 
and dynamics of such systems. 

Chapter 2 has been written by John T. Wen and Lee S. Wilfinger. They 
extend the manipulability concept commonly used for serial manipulators 
to general constrained rigid multibody systems. The concepts of unstable 
grasp and manipulable grasp are also introduced. 

In Chapter 3 we present the kinematic control approach for a dual- 
arm system. An effective formulation is presented which fully characterizes 
a coordinated motion task, and a closed-loop algorithm for the inverse 
kinematics problem is developed. A joint-space control scheme based on 
kineto-static filtering of the joint errors is devised and analyzed. 

Michael A. Unseren in Chapter 4 reviews a method for dynamic load 
distribution, dynamic modeling, and explicit internal force control when 
two serial link manipulators mutually lift and transport a rigid object. A 
control architecture is also suggested which explicitly decouples the two set 
of equations comprising the model. 

Ian D. Walker devotes Chapter 5 to a survey of design, analysis, and 
control of artificial multi-fingered hands and corresponding research in the 
area of machine dexterity. An extensive bibliography is also provided. 

In Chapter 6 Friedrich Pfeiffer presents optimal coordination and control 
of multi-fingered hands for grasping and regrasping. The method is applied 
to an experimental setup consisting of a hand with hydraulically driven 
fingers which ensure good force control. 

The book is addressed to graduate students as well as to researchers in 
the field. We hope they will find it useful and fruitful. 

Napoli, Italy, September 1997 

Pasquale Chiacchio, Ste/ano Chiaverini 

Contributors, in chapters' order, are: Masaru Uchiyama, Tohoku Univer- 
sity, Japan; John T. Wen and Lee S. Wilfinger, Rensselaer Polytechnic 
Institute, U.S.A.; Pasquale Chiacchio and Stefano Chiaverini, Universit/~ 
di Napoli Federico II, Italy; Michael A. Unseren, Oak Ridge National Labo- 
ratory, U.S.A.; Inn D. Walker, Clemson University, U.S.A.; Friedrich Pfeif- 
fer, Technische Universit£t M/inchen, Germany. 
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Chapter 1 

M u l t i - a r m  robot  s y s t e m s :  
A s u r vey  

This chapter presents a generM perspective of the state of the art of multi- 
arm robot systems which consists of multiple arms cooperating together on 
an object. It presents first a historical perspective and, then, gives funda- 
mentals of the kinematics, statics, and dynamics of such systems. Definition 
of task vectors highlights the contents and gives a basis on which cooper- 
ative control schemes such as hybrid position/force control, load sharing 
control, etc. are discussed systematically. Practical implementation of the 
control schemes is also discussed. Implementation of hybrid position/force 
control without using any force/torque sensors but with exploiting motor 
currents is presented. Friction compensation techniques are crucial for the 
implementation. Lastly, the chapter presents a couple of advanced topics 
such as cooperative control of multi-flexible-arm robots and robust holding 
with slip detection. 

1.1 I n t r o d u c t i o n  

It was not late after the emergence of robotics technologies that multi-arm 
robot systems began to be interested in by some of robotics researchers. 
In the early 1970's, they had Mready started research on this topic. The 
reason was apparent, that is, due to many limitations in applications of the 
single-arm robot; the single-arm robot can carry only smM1 objects that can 
be grasped by its end-effector, needs auxiliary equipments in assembly tasks 
and, therefore, is not suited for applications in unstructured environments. 

Examples of research work in the early days include that by Fujii and 
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Kurono [1], Nakano et  aI. [2], and Talmse et al. [3]. Already in those pieces 
of work have been discussed important key issues in the control of multi- 
arm robots: master/slave control, force/compliance control, and task space 
control. Nakano et al. [2] proposed master/slave force control for the co- 
ordination of the two arms to carry an object cooperatively. They pointed 
out the necessity of force control for cooperative multiple robots. The force 
control is discussed also in [4]. Kurono presented the master/slave control 
in [5] earlier than Nakano et al. [2], incidentally. Fnjii and Kurono's pro- 
posal in [1] is compliance control for the coordination; they defined a task 
vector with respect to the object frame and controlled the compliance that 
was expressed in the coordinate frame. Interesting features in the work by 
Fujii and Kurono [1] and also by Tal~se et al. [3], by the way, are that 
both of the work implemented force/compliance control without using any 
force/torque sensors; they exploited the back-drivability of the actuators. 
The importance of this technique in practical applications, however, was 
not recognized at that time. More complicated techniques to use precise 
force/torque sensors lured people in robotics. 

In the 1980's, having had theoretical results for the single-arm robot, 
strong research on the multi-arm robot was renewed [6]. Definition of task 
vectors with respect to the object to be handled [7], dynamics and control of 
the closed-loop system formed by the multi-arm robot and the object [8], [9], 
and force control issues such as hybrid position/force control [10], [11] have 
been explored. Through the research work, strong theoretical background 
for the control of the multi-arm robot is being formed, as is described below, 
and giving basis for research on more advanced topics, such as cooperative 
control of dual flexible arms, or development of practical implementation. 

How to parameterize the constraint forces/moments on the object, based 
on the dynamic model for the closed-loop system, is an important issue to 
be studied; the parameterization gives a task vector for the control and, 
hence, an answer to one of the most frequently asked questions in the field 
of multi-arm robotics, that is, how to control simultaneously the trajectory 
of the object, the contact forces/moments on the object, the load sharing 
among the arms, and even the external forces/moments on the object. 

Many researchers have challenged solving the problem; force decomposi- 
tion may be a key to solving the problem and has been studied by Uchiyama 
and Dauchez [12], [13], Walker et  al. [14], and Bonitz and Hsia [15]. Param- 
eterization of the internal forces/moments on the object to be intuitively 
understood is important. Williams and Khatib have given a solution to 
this [16]. Cooperative control schemes based on the parameterization are 
then designed; they include hybrid control of position/motion and force 
[121, [13], [171, [181, [19], and impedance control [201, [21 I. 

Load sharing among the arms is also an interesting issue on which many 



1.2. Dynamics of multi-arm robots 

papers have been published [221, [23], [24], [25], [26]. The toad sharing is 
for optimal distribution of the load among the arms. Also, it may be 
exploited for robust holding of the object when the object is held by the 
arms without being grasped rigidly. In both cases, anyhow, it becomes a 
problem of optimization and can be solved by either heuristic methods [27] 
or mathematical methods [28], [29]. 

In practical implementation, sophisticated equipments such as force/ 
torque sensors tend to be avoided in industry by many reasons: unreliability, 
expensiveness, etc. Rebirth of the early methods by Fujii and Kurono 
[1], or by Inoue [30], should be attractive for people in industry. Hybrid 
position/force control without using any force/torque sensors but using 
motor currents at the joints is being successfully implemented in [31]. A 
key technique in the work is compensation of the friction at the joints. 

Recent reseaxch is focused on more advanced topics such as handling 
of multi-bodied objects, or even flexible objects [32], [33], [34], [35]. Also 
cooperative control of multi-flexible-arm robots is an advanced topic of 
interest [36], [37]. Once modeling and control problem is solved, the flexible- 
arm robot is a robot with many merits [38]: it is of light-weight, compliant, 
and hence safe, etc. Robust holding of the object in presence of slippage 
of end-effectors on the object may be achieved if the slippage is detected 
correctly [39]. 

The rest of the chapter is organized as follows: In Section 1.2, dynamics 
formulation of closed-loop systems consisting of a multi-arm robot and an 
object is presented. In Section 1.3, the constraint forces/moments on the 
object derived in Section 1.2, are elaborated; they are parameterized by ex- 
ternal and internal forces/moments. In Section 1.4, a hybrid position/force 
control scheme that is based on the results in the previous section, is pre- 
sented, followed by load sharing control methods discussed in Section 1.5. 
Consideration on practical implementation is given in Section 1.6. Ad- 
vanced topics being presented in Section 1.7 are mainly those of research 
in the author's laboratory. This chapter is finally concluded in Section 1.8. 

1.2 D y n a m i c s  of  mul t i -arm robots  

Let suppose the situation depicted in Figure 1.1 where two arms hold a 
single object. The arms and the object form a closed kinematic chain and, 
therefore, equations of motion for the system is easily obtained. A point 
here is that the system is an over-actuated system where the number of 
actuators to drive the system is more than the number of degrees of freedom 
of the system. Therefore, how to deal with the constraint forces/moments 
acting on the system becomes crucial. Here, we formulate those as the 
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Figure 1.1: Two arms holding an object. 

forces/moments that  the arms impart to the object. 
A model for the analysis that we introduce here is a lumped-mass model 

and a concept of virtual stick. The virtual stick concept was originally 
presented in kinematics formulation [12], [13]. The object is modeled as a 
point with mass and moment of inertia, and the two arms holds the point 
through the virtual sticks. The point has the same mass and moment of 
inertia as the object and is located on the center of mass. The model is 
illustrated in Figure 1.2 with definitions of the frames S~ and S~ that  will 
be used later in this chapter. With this modeling the formulation becomes 
straightforward. 

Let denote the forces and moments at the point acting on the object 
through the arm i as f i ,  then, the forces and moments reacting on the arm 
through the object is - f i ,  and the equations of motion of the arm i is given 
by 

Mi(Oi) Oi + Gi(0i ,  0i) = T, + J~(Oi) ( - f , )  (1.1) 

where Oi is a vector of the joint variables, T~ is a vector of the joint torques 
or forces, Mi(Oi) is an inertia matrix, Gi(Oi, 0~) represents the joint torques 
or forces due to the centrifugal, Coriolis, gravity, and friction torques or 
forces at the joints. J~(0~) is the Jacobian matrix to transform the joint 
velocity 0i into the velocity of the frame Z~ at the tip of the virtual stick. 

Another factor to influence the dynamics of the system is that  of the 
object which in this case is obtained as one for a rigid body. Supposing 
the position and orientation of the object be represented by a vector p~, 
we have the following equation of motion: 

Mo(q~)~ + Go(dp,~) = f l  + f2 (1.2) 
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Figure 1.2: A lumped-mass model with virtual sticks. 

where ¢ is a vector to represent orientation angles of the object, Mo(¢)  is 
an inertia matrix of the object, and Go(C, (~) represents nonlinear compo- 
nents of the inertial forces such as gravity, centrifugal, and Coriolis forces. 

The geometrical constraints imposed on the system come from the fact 
that the two arms hold the object. Let denote the position and orientation 
of the object calculated from the joint vector of the arm i as Pi, and suppose 
that the vector is given by 

p~ = Hi(e~). (1.3) 

Since the object is rigid, the constraints are represented by 

p~ = H1(01) = H2(e2) (1.4) 

where p~ represents the position and orientation of the object. 
Now, we have a set of fundamental equations to describe the dynamics 

of the closed-loop system, that consists of the differential equations (1.1) 
and (1.2) to describe the dynamics of the arms and the object, respectively, 
and the algebraic equation (1.4) to represent the constraint condition. 

The system of equations forms a singular system and the solution is 
obtained as follows [8]: The differential equations (1.1) and (1.2) are written 
by one equation as 

M ( q )  (t + G(q, 4) = 7" + j T ( q ) A  (1.5) 

where M ( q )  is the inertia matrix of the whole system, G(q, q) represents 
the nonlinear components of the whole system, q is a vector of generalized 
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coordinates that consist of the joint variables of the arms and the posi- 
tion and orientation of the object, ~- represents the generalized forces, and 
J(q) is a Jacobian matrix. )~ represents constraint forces/moments. The 
constraint condition (1.4) is written in a compact form as 

H(q) = O. (1.6) 

Combining Equations (1.5) and (1.6), we have 

M ( q )  0 7 " -  jT(q)A 
H(q) ] . (1.7) 

It is noted that the matrix in the left side of the equation is singular and 
hence direct integration of Equation (1.7) is impossible, of course. 

The solution of Equation (1.7) is obtained after the reduction trans- 
formation as follows [8]: Differentiating the constraint condition twice by 
time, we have 

[-I(q) = J(q)~l + J ( q ) / / =  0. (1.8) 

Since M(q)  in Equation (1.5) is positive definite, its inverse exists and we 
have 

~ =  M ( q )  -1 {'r + j T ( q ) , ~ - G ( q , q ) } ,  (1.9) 

Substituting Equation (1.9) into Equation (1.8), we have 

J(q)M(q) - l jT (q) .~  = J(q) [M(q)  -1 {G(q, q) - T}] - .I(q)q. 

(1.10) 

Therefore, 

A = { J ( q ) M ( q ) - l j T ( q ) } - 1  { j ( q ) [ M ( q ) _  1 { G ( q , / / ) -  "r}] - J (q ) / / } .  

(1.11) 
From Equations (1.9) and (1.11), we obtain q and ~, that is the solution 
for a given r .  

It is noted that the inverse kinematics problem of flexible-arm robots 
is formulated as a problem of finding a solution for a set of differential- 
algebraic equations [40]. The problem may be mathematically similar to 
the one in this section. 

1.3 D e r i v a t i o n  o f  t a s k  v e c t o r s  

The task vector consists of a set of variables that is convenient for describing 
a given task. A set of Cartesian coordinates in the workspace forms a task 
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vector for a task of carrying an object in the workspace, for example. For 
more complicated tasks that include constrained motion, it has to be defined 
not only as position/orientation of the object but also as forces/moments 
acting on the object. In this section, we derive task vectors to describe a 
task performed by the multi-arm robot. 

The constraint forces/moments f i  are those applied to the object by 
the arm i and are obtained from Equation (1.11) when the joint torques or 
forces -ri are given. Since f i  is 6-dimensional, the forces/moments applied 
to the object by the two arms are altogether 12-dimensional, six of which are 
for driving the object, and the rest of which do not contribute to the motion 
of the object but yield internal forces/moments on the object. Noting this 
intuition, we derive the task vector for the cooperative two arms [12], [13], 
[24]. 

1 . 3 . 1  E x t e r n a l  a n d  i n t e r n a l  f o r c e s / m o m e n t s  

First, the external forces/moments on the object are defined as those to 
drive the object. That  is, 

Io = / 1 + / 2  

: t,0 i0 [fl  
= (1 .12)  

where W is a 6 x 12 matrix with range of 6-dimension and null space of 
6-dimension. I,~ is the unit matrix of n-dimension. This relation is shown 
in Figure 1.3 (a). A solution for A when f a  is given is 

A : W + f a  + (I12 - W + W )  z 

= W + f ~  + [I6 -I6] T f~  

= W + f ~  + V f r  (1.13) 

where W + is the Moore-Penrose inverse of W given by 

W + = 116 . (1.14) 

z is an arbitrary vector of 12-dimension. The second term of the right 
hand side of Equation (1.13) represents the null space of W ,  and V rep- 
resents its bases by which the vector f r  is represented. The relation is 
shown in Figure 1.3 (b). It is apparent when viewing V that  f~ repre- 
sents forces/moments being applied by the two arms in opposite directions. 
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(a) External forces/moments 

Constraint forces/moments 
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,6 
. t  

es/moments 
c e  

t~ R 6 

(b) Internal forces/moments 

Figure 1.3: External  and internal forces/moments. 

We call the forces/moments represented by f~  internal forces/moments. 
Solving Equation (1.13) for f~  and f~, we have 

f~  = f~ + f2 (1.15) 
1 

f~ = ~ (fl  - f2). (1.16) 

1 .3 .2  E x t e r n a l  a n d  i n t e rna l  ve loci t ies  

The velocities corresponding to the external and internal forces/moments 
are derived using the principle of virtual work, as follows: 

1 
sa = 5 (Sl + s2) (1.17) 

Asr  : s l  - s2 (1.18) 

where s~, Asr,  Sl and s2 are velocity vectors corresponding to f~,  f~, f l  
and f2 ,  respectively. The velocities s~, sl and s2 are those of Z~, ~1 and 
E~ in Figure 1.2, respectively. 
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1 . 3 . 3  E x t e r n a l  a n d  i n t e r n a l  p o s i t i o n s / o r i e n t a t i o n s  

The positions/orientations corresponding to external and internal forces/ 
moments are derived by integrating the relation in Equations (1.17) and 
(1.18), as follows: 

1 
P~ = ~ (Pl + P2) (1.19) 

Ap~ = p~ - m (1.20) 

where p~, Apt, Pl and P2 are position/orientation vectors corresponding 
to s~, st,  Sl and s2, respectively. The positions/orientations p,, Pl and 
P2 are those of S~, $1 and $2 in Figure 1.2, respectively. 

An alternative way of representing the positions/orientations is to use 
the homogeneous transformation matrix [24]: The positions and orienta- 
tions of the frames $1 $2 in Figure 1.2 is represented by 

H~=[ TMO oi0 a~0 X~]l " (1.21) 

Corresponding to the positions/orientations p ,  and Ap~, the homogeneous 
transformation matrix to represent the position/orientation of the frame 
Za:  

Ha=[ naO Oao aao :Ca (1.22) 

and the vectors Axe, A~  to represent the small (virtual) deformation of 
the object are derived as follows: 

1 
n~ = ~ (nl + n2) (1.23) 

1 
o~ = ~ (o l  + 02) (1.24) 

1 
a~ = ~ (al + a2) (1.25) 

1 
:co = ~ (:ci + :c2) (1.26) 

A:C~. = :cl -- x2 (1.27) 

A ~ r  = £ (n2 x n l  + 02 x ol + a2 x a l ) .  (1.28) 
2 
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1.4 Hybrid position/force control 
In the previous section we have seen that the task vectors for the coop- 
erative two arms are the external and internal forces/moments, velocities, 
and positions/orientations. The internal positions/orientations are con- 
strained in tasks such as carrying a rigidly held object. Therefore, a cer- 
tain force-related control scheme should be applied to the control of the 
cooperative two arms. There have been proposed different schemes for the 
force-related control. They include compliance control [1], hybrid control of 
position/motion and force [10], [11], [12], [13], [17], [18], [19], and impedance 
control [20], [21]. Any of those control schemes will be successfully applied 
to the control of this system if the task vector is properly chosen. For those 
systems that this chapter deals with and in which constraint conditions are 
clearly stated, however, hybrid position/force control will be most suitably 
used. The rest of this section, therefore, describes the hybrid position/force 
control [12], [13], [17]. 

Using the equations derived 
hybrid position/force control are 

z=[ 

u=[ 
h=[ 

in Section 1.3, the task vectors for the 
defined as 

p~ A p  T IT (1.29) 

]T (1.30) 
]T 

where z, u, and h are the task position, velocity, and force vectors, re- 
spectively. The organization of the control scheme is shown in Figure 1.4, 
diagrammatically. The suffixes r, c and m represent the reference value, 
current value and control command, respectively. The command vector e~ 
to the actuators of the two arms is calculated by 

e~ = ez + eu (1.32) 

where ez is the command vector for the position control and is calculated 
by 

e~ = K z  J -~ IGz( s )SB~  (z~ - z~) (1.33) 

and eu is the command vector for the force control and is calculated by 

eh -= g h  J T G h ( S ) ( I  -- S)  (h~ - he) .  (1.34) 

B~ in Equation (1.33) is a matrix to transforra the errors of orientation 
angles into a rotation vector. J e  is the Jacobian matrix to transform the 

joint velocity ~ = [0T ~T] T into the task vector of velocity u. G~(s) 
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Zcl_ "'" l Zc,"-- O~l ~ , 

h r ~ ~ ~ +  ~ r  s~m~ V Ec 

4 l" I_ , L -I h~ 4 -  ~ j- ~c 

Figure 1.4: A hybrid position/force control scheme. 

and Gh(s) are operator matrices representing position and force control 
laws, respectively. The matrices K s  and gh are assumed to be diagonal. 
Their diagonal elements convert velocity and force commands into actuator 
commands, respectively. S is a matrix to switch the control modes from 
position to force or vice versa. S is diagonal and its diagonal elements take 
the values of 1 or 0. The ith workspace coordinate is position-controlled if 
the ith diagonal element of S is 1, and force-controlled if 0. I is the unit 
matrix with the same dimension as S. 0c and Ac are vectors of measured 
joint variables and measured forces/moments, respectively. 

In the above control scheme, without distinguishing a master nor a 
slave, the two arms are controlled cooperatively. It is not necessary to 
assign master and slave modes to each arm. Also, in the control of internal 
forces/moments, since the references to the external positions/orientations 
are sent to the both arms, the disturbance from the position control loop 
to the force control loop is decreased. This enables the above scheme to 
achieve more precise force control than the master/slave scheme [11], [17]. 

1.5  L o a d  s h a r i n g  

The problem of load sharing in the multi-arm robot system is that  of how to 
distribute the load to each arm; a strong arm may share the load more than 
a weak one, for instance. This is possible because the multi-arm robot has 
redundant actuators; if the robot has only suificient number of actuators 
for supporting the load, no optimization of load distribution is possible. In 
this section, we elaborate this problem according to our previous work [24], 
[27], [28], [29]. Also, it should be noted that  the work by Unseren [25], [26] 
is more comprehensive. 
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We can introduce a load-sharing matrix in the framework presented in 
Section 1.3. By replacing the Moore-Penrose inverse in Equation (1.13) by 
a generalized inverse, we obtain: 

where 

), = w - l o  + vf'  (1.35) 

I T  W -  = [ K T ( I 6 -  K )  T (1.36) 

The matrix K is the load-sharing matrix. We can prove easily that  the 
non-diagonal elements of K only yield a A vector in the null space of W,  
that  is, the space of internal forces/moments. Therefore, without loosing 
generality, let us choose K such that: 

K = diag [a~] (1.37) 

where we call a~ a load sharing coefficient. 
Now, the problem we have to deal with is that of how to tune the load 

sharing coefficient a~ to ensure correct manipulation of the object by the 
two arms. To answer this question, we have to notice first that by mixing 
Equations (1.13) and (1.35), we obtain: 

f r  = V-1 ( W -  - W +) f~  + f'r (1.38) 

which, by recalling that  only f a  and ~k are really existing forces/moments, 
notifies that: 

• f~,  f t  and a~ are "artificial" parameters introduced for better un- 
derstanding of the manipulation process. 

• fP~ and a~ are not independent quantities. The concept of internal 
forces/moments and the concept of load sharing are mathematically 
mixed with each other. 

Therefore, we can conclude that  to tune the load sharing coefficients or 
to choose suitable internal forces/moments is strictly equivalent from the 
mathematical and also from the performance point of view. One of f~,  
fP, and ai  is independent parameters, that is redundant parameters, to 
be optimized for load sharing. This is more generally stated in [25], [26]. 
We have proposed to tune the internal forces/moments f~ for simplicity of 
equations and also for consistency with control [28], [29]. 

One of interesting problems regarding the load sharing is that  of robust 
holding: a problem to determine the forces/moments A, which the two arms 
apply to the object, in order not to drop it even when disturbing external 
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forces/moments are applied to it. This problem can be solved by tuning 
the internal forces/moments (or the load sharing coefficients, of course). 

This problem is addressed in [27], where conditions to keep holding are 
expressed by the forces/moments at the end-effectors, and Equation (1.35) 
being substituted into the conditions, a set of linear inequalities for both 
f'~ and a~ are obtained as: 

Af~  + B(~ < c (1.39) 

where A and B are 6 × 6 matrices, c a 6-dimensional vector, and a = 
[al,  a2, . . . ,  a6] T. In the paper [27], a solution of a~ for the inequality is 
obtained, heuristically. The above inequality can be transformed into that  
with respect to f , ,  of course, but the parameter a~ is fitter to such heuristic 
algorithm because a~ can be understood intuitively. 

The same problem may be solved mathematically: introducing an ob- 
jective function to be optimized, we can formulate the problem as that  
of mathematical programming. For that  purpose, we choose a quadratic 
function of f~ as 

rain f T Q I  r (1.40) 

where Q is a 6×6 positive definite matrix. The objective function represents 
a kind of energy to be consumed by the joint actuators; the arms consume 
electric energy in the actuators to yield the internal forces/moments f , .  
The problem to minimize the objective function under the constraints is a 
quadratic programming problem. A solution can be found in [28], [29]. 

1.6 Practical  implementat ion  

The results regarding the topics of this chapter that  the researchers have 
yielded so far are of value, of course, but not being used in industry. Why 
are they not being used? A reason will be that  the schemes require sophisti- 
cated force/torque sensors and special control software that  is incompatible 
to current industrial robots. Therefore, we re-examine the control scheme 
that  we presented in the previous sections so that it may be used in industry. 
A solution will be that we should use motor currents to get force/ torque 
information instead of wrist force/torque sensors. This technique was pro- 
posed first long time ago [30]. 

To see if this solution is feasible, we implement the hybrid position/force 
control scheme in Section 1A by a robot developed for experimental  re- 
search on application to shipbuilding work [31]. The robot is called C- 
ARM (Cooperative-ARM) and is drawn in Figure 1.5. Each arm has three 
degrees-of-freedom in the same vertical plane. The first joint is a prismatic 
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X~t 

Figure 1.5: An experimental two-arm robot. 

one, and the second and the third are rotary. Every joint is actuated by 
an AC servo motor. The torque 7-,,i at the i th joint is proportional to the 
motor current I~i, that  is: 

r,~i = K t i  I ~  (1.41) 

where K t i  is a constant of proportionality for the motor. Using this prop- 
erty, we realize cooperative control without using any force/torque sensors 
but  measuring the motor currents only. 

Generally, the motor torques at each joint are amplified by the reduction 
gears. The amplified torques are represented by 

K~7",~ = r v + v /  (1.42) 

where K~ is a diagonal matrix with the reduction gear ratios as its diagonal 
elements, 7" m is a motor torque vector, ~'v is a torque vector to move the 
arms, and ~rf is a torque vector corresponding to the forces/moments on 
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Figure 1.6: A friction model. 

the end-effectors. The term K ~ r , ~  is obtained by measuring the motor 
currents. 

Now, a question arises: how can we get only ~-f from the measured 
values of the motor currents? To answer this, we need to derive equations 
of motion for the robot with considering even the dynamics of its motors and 
the reduction gears. Neglecting the inertia terms due to the link dynamics 
in the equations of motion, we obtain 

~-p = r~  + r 9 (1.43) 

where r~ and 1" 9 are the friction and the gravity force vectors, respectively. 
Then, ~-p is deducted from the joint torque KrT"m, to yield ~-f, which in 
turn is used to calculate the forces/moments being applied to the object,  
and hence external and internal forces/moments on the object. 

The friction model used for the calculation of ~-~, is shown in Figure 1.6. 
This model includes both Coulomb and viscous frictions. In Figure 1.6, Oi 
and R,~ are the joint angle and the maximum static friction, respectively, 
while ei is a constant parameter which is a threshold for the approximation 
of 8i to be zero. Here, since it is difficult to decide the direction and 
magnitude of the static friction, we propose a novel method in which static 
friction is switched alternately between +R,~ and - R ~  at each sampling 
period At. In this case, the friction of each joint ~-~{ is written as follows: 

rv{ 

I v~ O~ + Rc~ sgn( O~ ) 
-e~ < 0i <_ e~ (1.44) 

where Vi and Rci are the coefficients of viscous and Coulomb frictions, 
respectively. 
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Figure 1.7: Experimental results: °xa. 

On applying the hybrid position/force control scheme, we find the robot 
has three external and three internal degrees of freedom. In the experiment, 
the external and internal coordinates are controlled by position- and force- 
control modes, respectively. For reference positions/orientations, those at 
the object center is used, and for reference forces/moments, the internal 
forces/moments on the object are taken. 

Experimental results are shown in Figures 1.7-1.10. The reference po- 
sitions/orientations are given as a cosine curve in x direction, and the ref- 
erence internal forces/moments are all set to be constant. To see if the 
internal forces/moments calculated from the motor currents give good es- 
timation, we compared those with the internal forces/moments measured 
by a force/torque sensor embedded in the object. The "Sample" in Fig- 
ure 1.9 and 1.10 means that the force data are obtained by the force/torque 
sensor. As to the internal forces, large vibrations in the controlled values 
are observed when the object velocity approaches to zero. These vibra- 
tions are caused by the static friction determined by Equation (1.44). The 
forces measured by the force/torque sensor, however, are held close to the 
reference values during the whole task. This shows that our method works 
well. 
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Figure 1.10: Experimental results: ~Fry. 

1.7 Advanced topics 

1 . 7 . 1  M u l t i - f l e x i b l e - a r m  r o b o t s  

The flexible-arm robot is a robot with light weight and structural com- 
pliance. Due to the compliance, demerits such as positioning errors and 
structural vibrations take place. Nevertheless, merits with it such as light 
weight, compliance, and safety, are worth being paid for by the disadvan- 
tages. We are applying the cooperative control techniques to this kind of 
robots of future [36], [37]. This section briefs our progress. 

Let us suppose the situation where a two-flexible-arm robot hold a single 
object as shown in Figure 1.11. The task of the robot is to carry the 
object. A control scheme for this task consists of the hybrid position/force 
control and the vibration-suppression control presented in [38]. The hybrid 
position/force control in Figure 1.4, however, has to be extended to the one 
for the flexible-arm robot. The extension is based on the kinematics and 
statics of the flexible-arm robot. 

The relation between the task vector of velocity u and the link-deflection 
and joint-displacement velocity vectors can be written as: 

u = J00  + Je@ (1.45) 

where 0 = [0 T 0T] T and e = [e T eT] T are the joint-displacement and 
the link-deflection vectors, respectively. Since @ are kept small during the 
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Figure 1.11: Overview of ADAM handling a rigid object. 

vibration control, J~e can be neglected. Therefore, the joint-displacement- 
velocity vector 0z for position control is calculated from the task vector of 
velocity um as: 

#~ = J~ lum.  (1.46) 

Considering Equations (1.30) and (1.31) and the duality relation between 
forces and velocities, the vector of joint torques ~'h ---- [rT1 rT2] T for force 
control is calculated from the force/moment vector h,~ as follows: 

= JoT hm. (1.47) 

By using Equations (1.46) and (1.47), the hybrid position/force control 
scheme for the flexible-arm robot can be organized like for the rigid one. 

In addition to the above control, vibration-suppression control has to be 
included for stable cooperation. In the study, the scheme in [38] is applied 
to each arm. The mass of the object is neglected. 

To illustrate the validity of the proposed scheme, experiments on a real 
flexible robot with two flexible arms having seven degrees-of-freedom for 
each are performed. The robot is called ADAM (Aerospace Dual-Arm Ma- 
nipulator) [41] and has been shown in Figure 1.11. In the experiment, a 
light and rigid object is handled. Results of the experiments are shown 
in Figures 1.12-1.15. In the particular experiment, the reference posi- 
tions/orientations and forces/moments but the position of z are kept con- 
stant. Figure 1.12 shows the position of the object, while Figures 1.13, 1.14, 
and 1.15 show the internal forces exerted on the object. The experimental 
results illustrate the effectiveness of the proposed control scheme. 
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1 . 7 . 2  S l i p  d e t e c t i o n  a n d  r o b u s t  h o l d i n g  

Cooperating multiple robots experience slip when grasps on the object are 
defined by the internal forces developed due to each robot. Such manip- 
ulations without physical grasps have got many constraints like friction 
between a robot 's finger-tip and the object, and the friction cone defined 
due to it. A contact-point slip is evident if any of the constraints is over- 
looked. This slip causes not only manipulation errors but also a failure 
of system control. However, if this slip or its effects are compensated just 
after its occurrence, then a successful manipulation is possible even in an 
enhanced workspace. 

Since all the robotic systems normally have got some conventional and 
cheap sensors which can give sufficiently rich informations to localize the 
end-point tips, it is quite beneficial to utilize only these sensors to detect 
and compensate the contact-point slips. The basic tools in this approach 
are some very simple laws based on geometrical analysis of the mesh of 
links developed by inter-connecting all the contact-points. The main tool 
is a slip indicator Si, which is defined as 

= f i  I zxR,j I (1.4s) 
j = l  

w h e r e i  = j = 1, 2, 3 , . - . , n  is the contact-point number. ARij is the 
change in an inter-contact link between ith and j th  contact-points after a 
slip occurs. Si sums up all these absolute changes for the links having their 
one end at ith contact-point. 

Surely Si will have a maximum value for the contact-point which actu- 
ally slips. For a few cases of two or more simultaneous slips, a recursion 
in the above procedure results in correct detection of all the slipped finger- 
tips unless more than half of them experience slips simultaneously. Once 
slipped contact-points have been detected, it needs a little knowledge of 
geometry, and probably some checks, to calculate the amounts by which 
each contact-point slips, taking the unslipped contact-points as reference 
and some other fixed points on the object 's surface, regarded as landmarks. 

An illustration for a four-arm robot system cooperating to manipulate 
a geometrically regular shaped object is shown in Figure 1.16. The dis- 
tances of the robot 's finger-tips from the nearest landmarks are defined as 
c~i. These distances are very helpful in determining the physical amounts 
of slips geometrically. The control structure which takes into account the 
phenomenon of slip is shown in Figure 1.17. This control method gener- 
ates the actuator force commands for a proper force distribution between 
all the arms to generate a resultant external force corresponding to the 
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Figure 1.16: Four-arm robot system cooperating at an object. 

desired manipulation along with maintaining certain fixed internal forces 
responsible for grasps. 

The experimental results obtained using the control algorithm of Fig- 
ure 1.17 on the system of Figure 1.16 are shown in Figures 1.18-1.21. For 
a manipulation with no slip, M1 the values of c~ should remain constant. 
But as a finger slips, the new values of a~ are calculated after an execution 
of the slip detection Mgorithm for all manipulating arms. The results show 
that  a successful object manipulation was possible even after two contact- 
points changed their positions due to occurrence of slips at different t ime 
intervals. 

A sensor-based approach is to employ a vision-tracking system for slip 
detection. One way is to track the contact-points and whenever there occurs 
a slip, its amount is known by making a comparison with previously tracked 
video frames, while the other way is to track the object being manipulated; 
in this way the vision-tracking system acts as a sensor for the actual posture 
of the object. This approach should work well as a sensor for object 's  
posture is present in the main control loop, but the main problem is the 
slow tracking speed which is dependent on video scanning speed. Moreover, 
another problem is the high cost of this system which makes the overall 
system a cost non-effective one. 
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Figure 1.18: Experimental results: Position along x. 
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1.8 Conc lus ions  

In this chapter, we have presented a general perspective of the state of the 
art of multi-arm robot systems. First, we presented a historical perspective 
and, then, gave fundamentals of the kinematics, statics, and dynamics of 
such systems. Definition of task vectors highlighted the results and gave a 
basis on which cooperative control schemes such as hybrid position/force 
control, load sharing control, etc. were discussed systematically. We also 
discussed practical implementation of the control schemes and reported suc- 
cessful implementation of hybrid posit ion/force control without using any 
force/torque sensors but with exploiting motor currents. Friction compen- 
sation techniques are crucial for the implementation. Lastly, we presented a 
couple of advanced topics such as cooperative control of multi-flexible-arm 
robots, and robust holding with slip detection. In concluding this chapter, 
we should note that application of theoretical results to real robot systems 
is of prime importance, and that efforts in future research will be directed in 
this direction to yield stronger results. Advanced topics for future research 
will include kinematics for more sophisticated tasks [42] and decentralized 
control [43]. 
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Chapter 2 

Kinematic manipulability 
of general mechanical 
systems 

This paper extends the kinematic manipulability concept commonly used 
for serial manipulators to general constrained rigid multibody systems. Ex- 
amples of such systems include multiple cooperating manipulators, multiple 
fingers holding a payload, multi-leg walking robots, and variable geometry 
trusses. Explicit formulas for velocity and force manipulability ellipsoids 
are derived and their duality explained. The concept of unstable grasp 
and manipulable grasp are also extended and illustrated with examples. 
It is then shown that manipulability can be significantly modified through 
bracing with another arm. Finally, several methods for comparing manip- 
ulability ellipsoids are developed which can be used in turn to optimize the 
brace design. 

2.1 I n t r o d u c t i o n  

This paper considers the kinematic manipulability of general constrained 
multibody systems. Such systems include a single articulated robot in 
contact with the environment, a multi-finger hand (Figure 2.1), multiple 
cooperative robots, and even a Stewart Platform (Figure 2.2). We first 
present a general kinematic model which considers all degrees of freedom 
and then imposes the constraints as Mgebraic conditions. Kinematic models 
of multi-finger grasping and a 6-DOF Stewart Platform are used as illus- 

33 
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Figure 2.1: Two constrained manipulators in a load-sharing configuration. 
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Figure 2.2: A Stewart platform. 

trative examples. Through the Principle of Virtual Force, we also derive 
the general static force balance model which can be considered as a dual of 
the differential kinematics. 

We then extend the familiar single arm manipulability ellipsoid concept 
first proposed in [1]. Characterization for both velocity and force ellipsoids 
is presented. When applied to multiple cooperative arms employing a rigid 
grasp or to multiple finger grasping, this work is closest to the work by 
[2] and is also closely related to the past work by [3, 4]. We also extend 
the important concepts of grasp stability and manipulability. We obtain 
explicit characterization for both properties and present their physical in- 
terpretation. As illustrations, we include a planar Stewart Platform, a full 
6-DOF Stewart Platform, and a planar two-finger grasping example from 
[3, 4]. 



2.2. Differential kinematics and static force model 35 

We also consider the effect of bracing on manipulability, by using a ma- 
nipulator as a mobile fixture. Finding the best location and grasp type for 
a fixturing manipulator may be posed as a kinematic optimization problem, 
but a metric must first be defined for the manipulability ellipsoid. Several 
possible choices for ellipsoids metrics are stated and compared. 

This paper is laid out in the following manner. We will first present 
the differential kinematic and static force model of a general constrained 
multiple-manipulator systems in Section 2.2. The velocity and force ellip- 
soids, and extension of grasp stability and manipulability are presented in 
Section 2.3. Section 2.4 presents a number of examples. 
Terminology and Notat ion:  We shall use the term "spatial force" at a given 

[ t°rque ] and the term "spatial velocity" frame to mean the 6 x 1 vector of force ' 

[ angular vet°city ]. Given a 
at a given frame to mean the 6 × 1 vector linear velocity 

matrix G, we use G to either denote the annihilator of G (GG = 0) or the 
transpose of the annihilator of G T (GG = 0). Which of the two cases will 
be clear from the context. 

2.2 Differential  k inemat i c s  and s tat ic  force 
m o d e l  

This section considers the differential kinematics and static force balance 
of general rigid multibody systems. Multiple-finger grasping and a Stewart 
Platform will be used as examples. 

2.2.1 Differential kinematics  

We consider a general mechanism subject to kinematic constraints. The 
generalized coordinate (with the constraints removed) is denoted by 0. The 
active joints' angles are denoted by 0~ and passive ones by 0p. We order 
the angles so that 0T = [0F, 0T]. Consider a general constraint (written in 
terms of the joint velocity vector) 

Jc(t?)~ -- 0. (2.1) 

Let the spatial velocity of the task frame be 

VT = JT(8)~.  (2.2) 
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Suppose that  J c  (9) is full rank. Then ~ = Jc~, where j T  is the annihilator 
of jT .  The task velocity can be written as 

VT = JT Jc~.  (2.3) 

The mechanism is singular if JT.]C loses rank; in other words, there are 
some directions in VT that  cannot be attained (but which can be attained 
in other arm configurations). 

As an example, consider the kinematic model of multiple fingers grasp- 
ing a rigid payload. For each serial chain, the joint velocity vector is defined 
as 0i, the arm tip spatial velocity is v +, and they are related by the arm 
Jacobian Ji(0i): 

v + = 

We consider a single task frame attached to the constraining rigid body 
(see Figure 2.1) whose spatial velocity is defined as VT. On the payload 
side of the contact, the spatial velocity, v~-, is related to the task velocity 
VT by [ , °] 

v~- = AiVT where A/---: Lit x I 

where Lit is the vector from the ith tip to the task frame. The relative 
velocity at each contact is parameterized by a velocity vector Wi: 

v + + H T W ,  = v~- 

where the columns of H T are the directions where relative velocities at the 
contact are allowed. 

To write the multi-arm kinematics more compactly, we stack all the 
vectors (e.g., 0i's are stacked into a single vector Oa) and block diagonal- 
ize all the matrices (e.g., Ji 's form the diagonal blocks of J) ,  except for 

A T ~ [ A T . . .  A T ]. Then the differential kinematic relationship can 
be written as 

v + + H T w  = v -  

v + = J~a (2.5) 

v -  = AVT 

Some examples of possible contacts are shown in Figures 2.3-2.6. 
Defining ~p = W, we can represent the multi-finger kinematic model in 

the general form as in (2.1)-(2.2): 

A [  J H T  ] 0p = 0 (2.6) 
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Figure 2.3: line contact (1 DOF - -  rotation about  h permitted). 
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Figure 2.4: Sliding contact (2 DOF - -  sliding along hx and h u permitted).  
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Figure 2.5: Point contact 
permitted). 

H T w =  Io' °  jF!!l hxh Vx 

(6xl) (6x5) (5xl) 

(5 DOF - -  rotation, sliding along hx and hy 
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Figure 2.6: Point contact with friction (3 DOF - -  only rotation permitted).  
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A+[ J Z T ]  0, = vT (2.7) 
J~e) 

where A is the annihilator for A and A + is the Moore-Penrose pseudo- 
inverse of A. Note that A is of full column rank. 

It is important to note that information may be removed from J and 
H T prior to calculating JT(O). For example, if orientation is not important 
for the task to be performed, it may be useful to remove the orientation 
components of J and H T, and calculate a simpler form for JT. However, the 
constraint Jacobian Jc should contain full information about the system. 

For another example, consider a Stewart Platform which consists of 
two triangular plates, with spherical joints at each of their three nodes 
(see Figure 2.2). Each bottom node is connected to two top nodes via a 
linear actuator, so there axe six actuators in all. Suppose the task frame is 
attached rigidly to the top plate. Let the unit vector attached to each linear 
actuator be denoted by ei, where i = 1 , . . . ,  6, the length of the connection 
be di, the angular velocity of each leg be wl, and the angular velocity 
between the top plate and leg i be Wi. The rigid body transformation 
between the task frame and the top node connected to the ith leg is denoted 
by Ai (as given in (2.4). The kinematics then becomes 

[ Wi ] + [ 0 ] d i +  [ Wi ] =AivT 
-diei X wi ei 0 

Define a joint velocity vector with 42 components: 

O= [ d l  . . .  d~ ~.d 1 [/V 1 . . .  (M 6 W 6 ] T .  ( 2 . 8 )  

Note that dl to d6 are active and others are passive. Stacking all the 
kinematic relations up vectorially, we have 

JO = AVT (2.9) 

where 

J = 

0 I I 
el -die1 × 0 

"o. ".. 

0 

e6 
I 

-d6e6 x 

and A = 

I 
0 

[AI] 
A6 

(2.10) 
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Eq. (2.9) can be equivalently written as 

A+JO = VT 

AJO = O. 

In addition, the legs are constrained so they cannot spin about  themselves, 
so 

eTwl = 0 

which can also be written in terms of 0 as JclO = 0 where J d  is 6 x 42. 
Put t ing the constraints together, we have J c  in (2.1) as 

[Jcl ] (2.11) J c =  ~ j  • 

2 . 2 . 2  F o r c e  b a l a n c e  

Static force balance can be considered as a dual to the kinematics. However, 
there is also the additional complication of static load such as gravity on 
each link and position feedback on the joint torque. We assume that  these 
loads have already been excluded from the joint torque, or more specifically, 
we consider the joint torque T to be the portion that  balances with the load 
torque fT  (the force that  the arm exerts at frame T). In the serial arm 
case, the force balance is simply T -- JT(O)fT,  where T is the joint torque. 
This follows from the Principle of Virtual Work: 

Since this holds true for any 0, the stated force relationship follows. 
In the constrained mechanism case, we can apply the Principle of Virtual 

Wbrk in a similar fashion (using the differential kinematic relationship (2.2)- 
(2.3) and noting that  ~- is now applied only at the active joints): 

Since this holds true for any 4, we have the force balance equation: 

0 = C T J T "  

This can be equivalently stated as 

IT I T T 
o 

(2.13) 
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where ~T is the "internal force" (in the multiple-arm context, the squeeze 
force). 

The above can be viewed from another perspective. Instead of the 
constraint (2.1), we replace it with a "virtual velocity" (in the same spirit 
as in [5] in the multiple-arm rigid grasp context): 

vc = JcO. (2.14) 

Applying the Principle of Virtual Work again, we obtain 

[ 0 = l vT +/g c = (I JT + lgJc)O (21 ) 
0 

where fc is the force that  enforces the constraint (2.1). Since the explicit 
constraint is removed, we have 

T = JTfT + J~ fc .  (2.16) 
0 

This shows that  the internal force ~T in (2.13) is actually the force that  
enforces the constraint (2.1). 

As an aside, it should be noted that  in mechanism design, it is important 
to know the internal loading, re, for a given amount of actuator torque, 
7, and task loading, fT. This can be done unambiguously if Af(J T) = {0} 
(where Af(-) denotes the null space). Equivalently, this means that  the total 
number of unconstrained degrees of freedom (dimension of 0) is at least as 
many as the number of independent constraints. Otherwise, one has an 
underdetermined problem for the constraint force. This problem has been 
noted in the walking robot literature [6, 7]. 

We now apply the general frame work to the specific example of multi- 
finger grasping. The force relationship is given by 

T = j T f  H f  = 0 fT = AT f  (2.17) 

which states that  the stacked contact force f is zero in the direction where 
the contact is unconstrained (i.e., where relative motion is allowed) and the 
contact forces sum at the task frame to fT. Solving ] in terms of fT, we 
have: 

f -- (AT)+fT + AT fc  

where f c  is the force that  enforces the constraint. Substituting into the ~- 
equation and the contact constraint equation, we obtain (2.13): 

0 = H (AT) + fT + H ~T re. (2.18) 

Y 

s~ z~ 
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As a specific example, consider two fingers pressing against each other with 
a frictional point contact. In the absence of the load force, fT,  we have the 
force balance 

T1 
T2 ---- 
0 
0 

[I, 0] fc. 
[ - i ,  0] 

The last two sets of equations mean that  f c  is a pure force (no torque 
component).  The first two equations mean that  the force due to the first 
finger is exactly balanced with the force from the second finger. 

2.3 Velocity  and force manipulabi l i ty  ellip- 
soids 

2.3.1 Serial manipulators 

The velocity manipulability ellipsoid of a single, serially-linked manipulator  
was introduced in [1] as an indication of the relative capability of a robot  
arm to move in different directions. Singular value decomposition (SVD) 
of the Jacobian, J ,  is tile key tool in this analysis: 

J = U ~ V  T (2.19) 

where U and V are orthogonal matrices, and ~ consists of a diagonal matr ix  
with rows or columns of zeros added so that  its dimension is the same as 
that  of J.  The Jacobian maps a ball in the joint velocity space to an 
ellipsoid in the spatial task velocity space: 

Ev = (vT : VT = JO, lO ----1). 

The principal axes of the ellipsoid are given by the columns of U (left 
singular vectors), ui's, and the lengths are given by the singular values, 
ai's. The right singular vectors, vi's, (v T is the ith row of V) are the 
preimage of ui's: Jvi = a{ui. If J is less than full rank, then one or more 
principal axes of the ellipsoid will have zero length, and the ellipsoid will 
have zero volume. We say that  the ellipsoid is degenerate in this case. If 
the ellipsoid is degenerate for all configurations (for example, for an arm 
with less than 6 DOF), then we can restrict the spatial task velocity to 
a lower dimensional manifold so that  the ellipsoid is not degenerate at 
least for some configurations. If the rank of the Jacobian drops below its 
maximum rank at certain configurations, the arm is said to be singular 
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in those configurations. With the spatial task velocity suitably restricted, 
singular configurations would correspond to degenerate ellipsoids. In this 
paper, we shall always assume that  the maximum row rank of J over all 
possible configurations is full (i.e., Af(J  T) -- {0}); this necessarily means 
that  J is square or fat (redundant arm). Otherwise, the range of J can be 
suitably restricted (for all configurations) so this assumption would satisfy. 

As a dual to the velocity ellipsoid, the force ellipsoid has also been 
introduced in the literature as the image in the end effector force space 
corresponding to a ball in the joint torque space: 

EF = { fT : JT fT = T, [IT[I = 1}. 

By applying the SVD to J ,  we have v ~ T U T f T  = T. The non-degeneracy 

assumption means that  E r  = [ ~ 1  ] where El is square, diagonal, and 

full rank for at least some configurations. Partition V = [ V1 V2 ] with 
dimensions compatible with El. Then 

0 ' 

The bottom half of the above says that  certain combination of joint torques 
cancel one another and does not produce an effector spatial force. They 
correspond to the self motion of a redundant arm. Solving the top half we 
obtain: 

EF = { fT  : f r  = U  IV T, Ilrll = 1}. 

This means that  the principal axes of the force ellipsoid are the same as the 
velocity ellipsoid, but the lengths are the reciprocal of those in the velocity 
ellipsoid. When the arm is in a singular configuration, the null space of 
j T  would be non-zero (or one or more diagonal entries in E1 are zero), 
implying that  the force ellipsoid is infinite in the corresponding directions in 
U. Such configurations restrict motion but are mechanically advantageous 
as the mechanism can (theoretically) bear infinite load in certain direction. 

In this section, we present an extension of these concepts to general 
constrained mechanisms. For the specific cases of multi-finger grasp, the 
development here is similar to that  in [3, 4] and the more recent work in 
[2]. 

2.3.2 Ve loc i ty  el l ipsoid 

Consider the general kinematic equation (2.1)-(2.2). The unconstrained 
Jacobian, JT, maps a unit ball in the joint velocity space to an ellipsoid in 
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the tip contact velocity space. Due to the constraint (2.1), only a certain 
slice of the ball (resp., ellipsoid) is feasible. It is reasonable to define the 
constrained ellipsoid as the set of spatial task velocities generated by a unit 
ball in the active joint velocity space: 

Ev = {, , r  : =x,vr=J 4,JcO=O} (2.20) 

Substituting the parameterization as in (2.3) and partitioning J c  and J c  
(corresponding to the active and passive joints, respectively) as 

Jc=[Jc. Jc,] Jc= jo, 

then the constrained ellipsoid can be written as 

(2.21) 

We shall consider three cases: 

. No independent passive joint motion N(Jco)  = {0}. This means that  
if the active joints are locked, the entire mechanism is also locked. An 
example of this case is a stable multi-finger grasp. 

. No unactuated task motion Af(Jc.) ~ {0} and A/'(Jc.) c N'(JTJc). 
This means that  there can be independent passive joint motion, but  
it does not produce any task motion. As an example, consider a 
Stewart Platform with all spherical joints at the nodes. Then each 
leg can spin about its own axis without causing motion of the task 
frame attached to the upper platform. 

. Unactuated task motion Af(Jc.) # {0} and A/(Jc.)  ~ N ( J T J c ) .  This 
case covers the remaining scenario: even if all the active joints are 
locked, there can still be task motion involving the passive joints. An 
unstable multi-finger grasp is an example of this case. 

In the first two cases, the manipulability ellipsoid is still well defined. In 
the last case, the mechanism is in a sense unstable, and the manipulability 
ellipsoid would be infinite. Note that  there is no counterpart  to this case 
in the serial arm case. Even in the multi-finger literature, unstable grasp 
is rarely addressed - - t h e y  are usually eliminated by assumption. We now 
address the above three cases in greater details. 
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Case I. A/'(J~) = {0}. The ellipsoid can be rewritten as 

8 v  = V T  : V T  = J T J c  o - ~  x ,  l lxl l  = 1 . (2.22) 

As in the unconstrained arm case, the singular values and left singular 1 
vectors of the reduced Jacobian JT Jc (JT Jc "~ -'~ correspond to the 

length and direction of the principal axes of the multiple arm ellipsoid. 
It is also straightforward to include weighted norms in the joint and/or 
task spaces in the above definition. 

Case 2. Af(Jco) ~ {0} and 

Af(Jco) C .M(JTffC) (2.23) 

In this case, the ellipsoid can be computed by removing the Af(J~o) 
component in (2.21). To this end, let K = [ K1 /(2 ] where sp{ 

col (K1) } = ~ ( J ~ )  and sp{ col (//2) } = Af(JCa). By construction, 
K is square invertible. Then under the assumption (2.23), 

~V : {~T:VT : JTJc[KI 0]g-l~; tLo[K1 0]g-le I = 1} 

[ ( J c o g l )  (K1gca) ]  2X, HXll = 1 

The second equality is obtained by eliminating the bottom portion 
of K-I~.  The ellipsoid can be computed from SVD of JTJcK1 
[(JcoK1)T(JcoK1)]-½. Note that by construction, Af(J~K1) = {0}. 

Case 3. Af(Je~) ~ {0} and 

Af(Jc~ ) q~Af(JTffC). (2.24) 

In this case, there exist ~ E Af(J~o) such that Oa = 0 and VT 
0, implying that the ellipsoid would be infinite in these directions. 
Such configurations are in a sense unstable (see the force ellipsoid 
section below for further discussion) and should be avoided. If such a 
situation is encountered, it may be tempting to consider the ellipsoid 
resulting from the motion of the active joints only. This ellipsoid is 
not meaningful since, for the same active joint velocity, there may 
be multiple possible task velocities, depending on the motion of the 
passive joints. 
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Manipulability ellipsoids also provide a geometric visualization for sin- 
gular configurations. Suppose that  the ellipsoid is not always degenerate 
(where the lengths of one or more axes become zero, implying that  the 
ellipsoid has zero volume). Then the configurations at which the ellipsoid 
does become degenerate are the singular configurations. They can be found 
by solving for the zeros of the singular values of the Jacobian matrices dis- 
cussed above. 

2 . 3 . 3  F o r c e  e l l i p s o i d  

The force ellipsoid can be intuitively defined as the set of task forces that  
can be applied by the mechanism with active torques (or forces) constrained 
on the surface of a weighted ball. Recalling the constraint force balance 
equation (2.12), we obtain the dual of (2.21) 

eF ---- fT  : C TJT  -~ Jc~T, ilTI[ = 1 . (2.25) 

As in the single arm case, we assume that  Af ( JTJ  T) = { 0 } except at sin- 
gular configurations (i.e., the velocity manipulability ellipsoid is not always 
degenerate). If this is not satisfied, we can always suitably restrict fT  so it 
is true. Similar to the velocity ellipsoid case above, there are three cases to 
consider: 

1. ~T is onto. This condition means that  the active joints can generate 
all forces corresponding to the independent degrees of freedom, ~. 
Mathematically, this condition is also equivalent to the Case 1 for 
the velocity ellipsoid, Af(Jco) = { 0 }. 

2. ~T is not onto and 

c (2.26) 

In this case, active joints can generate all possible spatial forces in 
the task frame, but there are some internal forces (corresponding to 
motion) that  cannot be generated. This condition is also equivalent 
to the Case 2 for the velocity ellipsoid, Af(Jc~) ~ {0} and Af(Jco) C 

H(JTYc). 
3. 7~(jTJT T) qT~(ffT). For this remaining case, there are spatial task 

forces that  cannot be generated by the active joint torques. The 
condition is also equivalent to the Case 3 for the velocity ellipsoid, 
N(Lo) Cx(JrYc). 

As in the single serial arm case, the ellipsoid computation is the dual of 
the velocity ellipsoid. We now elaborate each case below: 
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Case 1. Since Jc= is onto, the active joint torque T can be decomposed 
as 

T = J c . ' l  + JTrl2.  

It is clear that ~/2 does not contribute to ]T and so can be ignored in 
the ellipsoid calculation. The force ellipsoid can then be written as: 

~F { f T  r~T ~ -1  T~T j T  : tiT_ II / 
= : (J~ .Jca)  ( J c  T ) f T  ~1 [[-~.r/l[[ = Xj 

= jl lj:l} 

Again as in the single serial arm case, if the SVD of the overall Jaco- 
bian is (Z )-+ ,T JTJ  Joo =V[ 0] 
the force ellipsoid can be computed from UE'~Iv T. 

Case 2. In this case, ~T is no longer onto. We can recover the case 
above by projecting both sides of the force balance onto the range 
of ~T. Let g -- [ K1 /(2 ] be defined as in the previous section. 
Then 

J$ ST = 

.,....~. 1 T C d T ..~ 
• " 0 0 " 

The above equations means that any spatial force at the task frame 
would only affect the active joints and not the passive joints. There- 
fore, we only need to keep the top equation and obtain the dual of 
Case 2 of the velocity ellipsoid. If the SVD of the overall Jacobian 
JTJcgl  [(]c:K,)T(jc.K1)] -½ is U [ E1 0 ] Y T, then the force el- 
lipsoid can be computed from UE'~IV1T. 

Case 3 As in Case 2, we can multiply K to both sides of the force balance 
again: 

1 T c J T  (2.27) 
T T ~ T  -- 

T h i s  means that spatial force at the task frame not only will affect 
the active joints but will load the passive joints as well. Since the 
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passive joints cannot resist such load, uncontrolled motion will result. 
The task frame forces that  will load the passive joints are those in 
the range of ]cJTK2. To avoid uncontrolled motion, there can be 
no external load in this subspace. This condition (the bottom half of 
(2.27)) means that  the force ellipsoid is a slice of the ellipsoid from 
the top half of (2.27). In other words, the ellipsoid is degenerate (or 
zero volume). 

2 . 3 . 4  C o n f i g u r a t i o n  s t a b i l i t y  a n d  m a n i p u l a b i l i t y  

For multi-finger systems, there are two important concepts: grasp stability 
and grasp manipulability. A grasp is stable if any external force applied 
at the task frame can be resisted by suitably chosen joint torques. Equiv- 
alently, a grasp is also stable if there is no task motion independent from 
the joint motion. A classic example of an unstable grasp is two fingers 
holding a payload with frictional point contacts. The object can then spin 
about the line linking the contact points. Mathematically, the stable grasp 
condition can be stated as 

Af(~ITA) = {0}. 

where H T and A are as defined in 2.5. A grasp is manipulable if any task ve- 
locity can be achieved with suitably chosen joint velocity. Mathematically, 
this condition can be stated as 

7~(IYIT j)  D ~(HT A). 

where H T, J, and A are as in 2.5 
These concepts can be generalized to general constrained mechanisms. 

We will say that  the mechanism is in a stable configuration if any external 
force applied at the task frame can be resisted by suitably chosen active joint 
force/torque, or equivalently, if there is no task motion independent from 
the active joint motion. Under this definition, it is clear that  assumptions 
(2.23) or (2.26) is the condition for a stable configuration. 

We can similarly define that  a mechanism is manipulable if any task 
velocity can be achieved with suitably chosen active joint velocity. This 
simply means that  the manipulability ellipsoid defined in the previous sec- 
tion is not degenerate (i.e., none of the principal axes has zero length). We 
have already made the assumption that  the mechanism under consideration 
is manipulable except at singular configurations. 

It is interesting to observe the dual relationship between unstable con- 
figurations and singular configurations. At a singular configuration, the 
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velocity ellipsoid is degenerate (mechanism cannot move in certain direc- 
tions) and the force ellipsoid is infinite (mechanism can resist infinite force 
in the same directions). At an unstable configuration, the force ellipsoid 
is degenerate (mechanism cannot resist force in certain directions) and the 
velocity ellipsoid is infinite (mechanism can have any velocity using only 
passive joints). In a near singular configuration, large joint motion may be 
required to achieve small task motion. Similarly, in a near unstable config- 
uration, large joint torques may be required to counteract small external 
force applied at the task frame. 

2 . 3 . 5  I n t e r n a l  f o r c e  a n d  v i r t u a l  v e l o c i t y  

In (2.14), we introduced the concept of virtual velocity as the dual of the 
internal force. Similar to [8], we can also define a virtual velocity ellipsoid 
(resp. internal force ellipsoid) as the image of a unit ball of active joint 
velocity (resp. active joint torque) subject to the constraint that  the spatial 
task velocity (resp. spatial task force) is zero: 

: : J o, : o, oo : 1 }  (2.28) $rc 

eFc = f c  : J ~ J ~ f c = ~ T T  7 0 ' I1~'11 = 1 . (2.29) 

Mathematically, these ellipsoids are exactly the same as the velocity and 
force ellipsoids discussed before except that  the subscripts T and C are 
exchanged. Therefore, all the preceding discussion on their computation 
remains valid. The concept of unstable configuration now translates to a 
degenerate internal force ellipsoid and infinite virtual velocity ellipsoid. 

In a general mechanism, internal force may determine if a constraint can 
be enforced. For example, in a multi-finger grasp with frictional contacts, 
each contact force needs to be in the friction cone to ensure that  the contact 
can be sustained. The internal force ellipsoid provides information on the 
ability that  the active joints may impart on the internal force. Virtual 
velocity provides an appealing dual to the internal force, but it is not as 
practically significant. 

2.4 Il lustrative examples  

2 . 4 . 1  S i m p l e  t w o - a r m  e x a m p l e  

We first consider a planar two-finger grasping example. Figure 2.7 shows 
two two-joint fingers holding a rigid object (here depicted as a bar) between 
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them. First consider the Jacobian for each arm mapping the joint angles 
to the tip translational velocity: 

~ i l C i l  -~- ~i2Ci12 ~i2Ci12 

where ~ij is the length of the j th  link of the ith arm, sij is the sine of the 
j th  angle of the ith arm, sijk is the sine of the sum of the j th  and kth angles 
of the ith arm. The task velocity (defined as the translational velocity of a 
specific point on the held bar) is related to the tip velocity as: 

- L l s l  01 = v 2 +  02 
V T  -~ "Vl -~- Ll cl L2c2 

where si = sin(Oi), ci = cos(Oi), and 0i denotes the angle at the ith contact. 
The overall kinematics is of the following form: 

JO + H T w  --- AVT 

where J = diag{J1, J2}, H T = diag{g T, HT}, and 

0l I 

(2.30) 

For the constraint, the orientation needs to be included. The corresponding 
kinematics are: 

j(c)O -t- H ( c ) T w  : A(C)VT (2.31) 

where 

= diag J  

j}c) : [ [1,11 

H(C) r = diag{H~ ~)r ,//2( ~)r} 1] 
0 0 

A(~) = Ie×2 
0 0 
I2×2 

The kinmeatics can be written as (2.1)-(2.2) with 

jc=A(c [ j(c) J =A÷E J H T ] .  
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Figure 2.7: Two arms holding a rigid payload. 

Consider in particular the configuration shown in Figure 2.7. Such an 
example was first suggested in [8], and discussed further in [9, 3, 10, 4]. 
The ellipsoid indicates that  the system permits VT in both the x and y 
directions. This makes sense since the robots are allowed to pivot at the 
contact points. 

To prevent pivoting at the contact, we simply remove H T w  in (2.30) 

and H(c)Tw in (2.31). In this case, the ellipsoid is degenerate and the task 
frame can only translate in the x direction. The degenerate ellipsoid (a 
horizontal line segment) is shown in Figure 2.8. 

In [4], this example was used to demonstrate the superiority of the 
ellipsoid characterization as compared to those in [11, 8]. However, the key 
difference in terms of the nature of the grasp was not noted. 

2.4.2 Planar Stewart platform example 

We use a planar Stewart Platform to illustrate our approach applied to 
a mechanism that  is not a single closed chain. Figure 2.9 shows various 
different planar Stewart Platforms each with 3 active prismatic joints and 
6 passive rotational joints. 

We consider the task velocity as the linear velocity of the center of the 
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Figure 2.8: Manipulability ellipsoid with orientation consideration. 

platform. 
ArT = Jd + H T w  (2.32) 

where J = diag{J1,J2,J3}, g T = diag{HT, HT, HT}, d = [dl,d2,d3] T 
(prismatic joint velocities), W = [W1, W2, W3] T, A = [I2×2,/2×2,/2×2] T 

Ji = [ ci ] 
8 i  

Wi = [ $ , ]  

8i is the angular velocity of leg i with respect to the ground, $i is the angular 
velocity of the platform with respect to leg i, ci ~ cos(Oi), si ~ sin(Oi). 

As in the previous example, the constraint kinematics include orienta- 
tion and therefore needs to be separately stated: 

A(c)VT = J(C)d + H(c)Tw (2.33) 

. . . . .  (c)  T r , ( c )  T ,,'~-(c)T'~ where j(c) = diag{&C),j~c),j~e)}, n(c) T = o , ag l~  ' , _~2  ,~§ I, 
A (c)T [Aic)T,A(c)T A (c)TI and 

2 ~ 3 J 
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zsl 

-1 

Figure 2.9: Velocity ellipsoids for various Stewart platforms. 

H(c)T. = [ [1,Hi ]1] 

Ale) = [ [0,0] 
I2×~ ]" 

Transforming these equations to the form that we have used, (2.1)-(2.2), 
we have 

Jc = A(c~ [ j(c) .(~)T ] (2.34) 
JT = A+[  J HT ]- (2.35) 

Using the results presented earlier, ellipsoids for different configurations 
can be readily generated (as shown in Figure 2.9). All of these cases corre- 
spond to stable, nonsingular configurations. 

For the configuration shown in Figure 2.10, 2¢'{]~} ~ {0}. For the 
case shown, the mechanism can have a pure horizontal motion involving 
only the passive joints (~1 = ~2 = -~3 = 1). LFrom a force perspective, the 
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Figure 2.10: Unstable configuration. 

unstable configuration means that  the mechanism cannot resist x direction 
force applied at the task frame. 

When the mechanism is near an unstable configuration, it may not be 
unstable mathematically, but the ellipsoid will be badly conditioned. As 
shown in Figure 2.11, the motion in the x direction is much larger than 
in the y direction. When the mechanism moves in to the unstable config- 
uration, the ellipsoid becomes infinite in the x direction. From the force 
perspective, this suggests that  a nearly unstable configuration is also highly 
undesirable as large forces from the active joints are needed to counteract  
disturbance force at the task frame. We have constructed a physical 3DOF 
Stewart Platform, and have indeed verified that  unstable and nearly unsta- 
ble configurations can have large internal motion with all the active joints 
locked. When the ellipsoid is well conditioned, such internal motion is no 
longer possible. 

2 . 4 . 3  S i x - D O F  S t e w a r t  p l a t f o r m  e x a m p l e  

We now consider a 6-DOF Stewart Platform. Let the three base nodes be 
at [:01] [ ] [0] Xl ---- 1 x2 = x3 = 1 . 

0 
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Figure 2.11: Nearly unstable configuration. 

The top platform is an isosceles triangle with the two equal sides of length 
1.12 and the third side of length 1. The task velocity, VT, is defined as 
the translational velocity of the half way point of the line perpendicular to 
the base of the isosceles platform• As in the two previous examples, the 
task velocity only involves the linear motion but the constraints need to 
include orientation. Therefore, the kinematics developed in Section 2.2.1 
needs to be slightly modified. With 0 as defined in (2.8), the task velocity 
kinematics is now 

el - d t e l x  03x3 13×3 ] 

" .  ".. 0 = • VT. 

e6 -d6e6x 03x3 I3x3 
(2.36) 

The constraint equation, (2.1), is the same as in Section 2.2.1, given by 
(2.11). 

The velocity ellipsoids of the Stewart Platform in three different con- 
figurations are shown in Figures 2.12- 2.14 (the force ellipsoids have the 
same principal axes but reciprocal length). In the first case, the platform 
is horizontal. In the second case, the task frame is rotated 45 ° about the 
axis [ 0.71 0.71 0 IT. In the third case, the task frame is rotated 22.5 ° 
about the vertical axis [ 0 0 1 ]. 

In each case, three ellipses lying in the plane generated by two of the 
principal axes are shown. In the first case, the ellipse is well conditioned 
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Figure 2.12: 3D ellipsoid for 6-DOF Stewart platforms: Case 1. 

with the lengths of principal axes: {1.78, 1.43,0.81}. In the second case, 
the ellipsoid becomes less well conditioned, the lengths of the principal axes 
are {2.31, 1.62, 0.29}. The motion parallel to the platform is more difficult 
than other directions. In the third case, the lengths of the principal axes are 
{5.62, 1.69, 1.49}. Even though the ellipsoid is fairly welt conditioned (con- 
dition number of the singular values is 3.78), but external forces along the 
principal axis that  corresponds to 5.62, [ -0.54 0.12 -0.83 ], cannot 
be resisted as easily as in other directions. 

2.5 Effects  of  arm p o s t u r e  and  brac ing  on  
manipu lab i l i t y  

In this section, we consider the effect of arm posture, bracing, and grasp 
type on the manipulability of the arm (and therefore the ellipsoid). 

2 . 5 . 1  E f f e c t  o f  a r m  posture 

For nonredundant arms, there is little choice in positioning the robot joints 
in order to allow the end-effector to perform some task. For redundant 
arms, there is much more flexibility, allowing the joints to be positioned in 
a way which makes it easier for the arm to perform the desired task. 
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Figure 2.13: 3D ellipsoid for 6-DOF Stewart platforms: Case 2. 
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Figure 2.14: 3D ellipsoid for 6-DOF Stewart platforms: Case 3. 
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Figure 2.15: Ellipsoids for the end effector and for the tool  tip. 

An inefficient arm posture will require the motors to either apply more 
force to the joints in order to obtain some desired force at the end-effector, 
or to move the joints more quickly in order to achieve some desired end- 
effector velocity, than is necessary. If a change in the arm posture can 
improve the performance (efficiency) of the arm, it makes sense to alter the 
configuration of the robot. 

Figure 2.15 shows a 3 DOF (redundant) planar robot arm, holding a 
pool  cue straight out to the right. For simplicity, all robot links are of 
length 1, and the cue is of length 2. The arm is shown in red. The ellipsoid 
for the end-effector is shown in green, while the pool  cue and the ellipsoid 
at the cue's tip is shown in light blue. The ellipsoids indicate the ability 
of the end-effector and the cue's end to move in the x or y directions (i.e. 
rotation is not considered). 

Figures 2.16 and 2.17 show this same robot arm in a variety of different 
postures, and the manipulability ellipsoid at the tool  tip in each case. In 
all of  the figures, the location of the end effector is the same (1 unit below 
the base of the robot).  From the figures, it is clear that the arm posture 
can have a major effect on the shape and orientation of the ellipsoid - and 
thus, its manipulability. 

Applying the ellipsoid metrics here can provide more insight into the 



58 Chapter 2. Kinematic manipulability of general mechanical systems 

lheta = [0 - 9 0  -901 

/ 
/ 

, [ 

............ ;~ , /  
./ 

; / 

J ¢ / 
z 

theta = [0 - 1 8 0  90] 

/ / 

- 0 / ,/ 

I .............. / /  
/ ,/ 

/ / "  
; z 
iz / 

theta = [30 - 1 2 0  -60]  theta = [60 - 1 5 0  -30]  

;/  z / / 
/ / / / 

/ / .s 

Figure 2.16: Effect of different arm postures on the manipulability ellipsoid. 
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Figure 2.17: Effect of different arm postures on the manipulability ellipsoid. 
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Figure 2.18: Effect of arm postures on the manipulability ellipsoid: Second 
example. 

effect that  the arm posture may have on the manipulability in this example. 
A comparison of a large number of the possible manipulability ellipsoids 
indicates that  shape, scale and rotation of the ellipsoids are all affected by 
the arm posture. The largest distance between the various ellipsoids was 
found to be: a : 0.92,/3 : 0.44, ~ : 2.17, 5 : 0. Only translation has not been 
affected, since the end effector could always be placed in the same location. 

Figures 2.18 and 2.19 show this same robot arm holding the tool at 
a different location. The manipulability ellipsoid for the end-effector is 
shown in green, while the ellipsoid for the tool tip is shown in light blue. 
The second part of figure 2.18 shows several arm configurations, and their 
ellipsoids all superimposed on each other; from this, one can get a feel for the 
how much the ellipsoid can be shaped by arm posture in this case. Figure 
2.19 shows 4 different individual arm postures, with their corresponding 
ellipsoids. 

The largest "distance" between the various ellipsoids was found to be: 
a : 0.33,/3 : 0.07, 7 : 0.75, 6 : 0. Note that  all of the metric results are less 
than in the previous example. This indicates that  the arm posture does not 
have has much effect on the shape of the ellipsoid as it did in the previous 
example. However, it still has a noticeable effect, as can be seen from the 
metric results, and from figure 2.18. 

2.5.2 Effect of bracing 

Figure 2.20 shows a 3-DOF planar manipulator. This example was first 
posed by Harry West [12] to illustrate how bracing could improve the toad 
bearing ability of a simple planar manipulator. The idea was to have this 
manipulator pick up a toad and move it horizontally. 

For this example, the link lengths of the robot arm are all 1, and the 
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joint angles are [45 - 90 45] T. The Jacobian for the unbraced arm is: 

0 0.7071 0 ] (2.37) 
J1 = 2.4142 1.7071 1 

The large ellipsoid in the first part  of the figure is the manipulability 
ellipsoid for the unbraced arm. The ellipsoid indicates that  the arm config- 
uration is good for motions, but poor for applying force (i.e. lifting objects) 
in the vertical direction. 

To improve the performance of the arm, West proposed that  a brace 
be mounted to the robot, near the end-effector. This brace would rest on 
the horizontal surface that  the load rested on, and would support  the arm. 
This brace could slide along the surface, and would also allow the robot arm 
to rotate about the point of contact between the brace and the horizontal 
surface. 

The height of the brace was 0.25, and it was located 0.25 units from 
the end-effector. The motions which the brace allows make it equivalent 
to a two-link arm with a translational and a rotational joint, whose base 
is located in the same place as that  of the brace itself [12]. Therefore, the 
Jacobian for the brace is: 

1 -0 .25 ] (2.38) 
J2 = 0 0.25 

The smaller ellipsoid shown in the second part of figure 2.20 is the 
manipulability ellipsoid for the brace. The shape of the brace's ellipsoid 
indicates that  the brace has greater force bearing capability in the vertical 
direction, but will readily allow motion in the horizontal direction. 

Because the brace is attached to the robot arm, it can be t reated as a 
rigid grasp (H T does not exist). Let VT be the linear end-effector velocity of 
the robot arm. The ellipsoid for the braced arm indicates tha t  it has much 
better  load-bearing capacity in the vertical direction than the unbraced 
arm, while it has retained nearly all of its ability to move in the horizontal 
direction. Thus, the overall effect of this brace is to drastically improve the 
lifting capability of the robot arm for this specific task. 

It should be noted that  the ellipsoid for the whole system is smaller than 
the ellipsoid for either arm taken individually. This makes sense; because 
of the kinematic constraint which each arm imposes upon the other,  the 
arms restrict each other's motion. This effect can be seen in the reduced 
size of the ellipsoid. 
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Figure 2.21: Effect of brace location on the manipulability ellipsoid. 

2 .5 .3  E f f e c t  o f  b r a c e  l o c a t i o n  

Returning to the example shown in figure 2.20, it is reasonable to ask what 
gains can be achieved by altering the location brace on the robot arm. 

LFrom a load-bearing standpoint, the velocity ellipsoid of the braced arm 
system should be a horizontal line, (a degenerate ellipsoid) permitting only 
horizontal motion. However, because the brace has to be fixed somewhere, 
the brace will act as a fulcrum about which the last link of the arm can 
pivot. The weight of the load being lifted must be counteracted by the 
joints of the arm. Thus, the closer the brace is to the end-effector, the 
larger the load that the arm should be able to bear. 

Figure 2.21 shows the effect of moving the brace closer to the end- 
effector of the robot. As the brace is placed closer to the end-effector, the 
ellipsoid of the braced system becomes shorter, indicating that the system 
is less able to move in the vertical direction, but more able to apply force 
in the vertical direction. 

In the last part, the brace is exactly under the end-effector, and the 
system ellipsoid is degenerate, allowing only horizontal motion. In this 
situation, the load bearing ability of the braced arm would be (theoretically) 
infinite, since the load would be applying a force directly upon the kinematic 
structure of the bracing links, instead of on the joints of the main arm. 
However, there is a problem with placing the brace in this location. By 
having the brace directly underneath the end-effector, the robot end-effector 
no longer can change its height to pick up the workpiece. Thus, in addition 
to improving the manipulability of the system, the brace location must also 
allow for the task to be accomplished. 
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Figure 2.22: Effect of grasp contact type on the manipulability ellipsoid. 

2 . 5 . 4  E f f e c t  o f  b r a c e  c o n t a c t  t y p e  

In [12], West modeled the braces he used as robot arms. In the example 
of the robot trying to lift a load (figure 2.20), the brace was modeled as a 
2-jointed arm, with a prismatic and a revolute joint. However, the brace 
was in reality attached to the last link of the robot arm. 

An alternative way of bracing a robot arm would be to have a single 
jointed, single link arm, upon which the first arm would rest its last link. 
This model more closely resembles the way that  human arms are used to 
brace each another - each arm is separate:, and the end-effectors (hands) 
are used to grasp and support objects. Figure 2.22 depicts this scenario. 

As before, the Jacobian of the main arm is: 

Yl = 2.4142 1.7071 1 

As in West's example, the brace is 0.25 units tall, located 0.25 units 
behind the end-effector of the main arm. In this case, the bracing arm has 
only one (revolute) joint, so the Jacobian of the bracing arm is: 

J 2 =  [ - 0 0 2 5  ] (2.40) 
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Figure 2.22 shows the ellipsoid for the bracing arm. Since the brace 
has only a single joint, its ellipsoid has only one dimension, and is thus a 
horizontal line segment, centered at its end-effector. 

The matrix A2 is the rigid body Jacobian from the end effector of arm 
1 to that  of arm 2: [100] 

A 2 =  0 1 -0.25 (2.41) 
0 0 1 

We can extend the Jacobian of the second arm to map the joint velocities 
of the bracing arm to the end-effector of arm 1, by using the equation: 

J~ = A~-IJ2 (2.42) 

which yields the result: 
-0.2500 ] 

4 =  0.2500 
1.0000 

(2.43) 

[I] 
H T =  0 (2.44) 

0 

It is also necessary to translate H T to the point V T (the end effector of the 
main arm), in order to maintain consistency in the equations. We can do 
this in the same manner as the Jacobian: [1] 

H~ T = A~ 1H,~' = 0 
0 

(2.45) 

Since the main arm's grasp is rigid, H T is nonexistent. H T is a sliding 
contact in the x direction. The ellipsoid shown in Figure 2.22 with a solid 
line is the multiple-arm ellipsoid. Note that  while the ellipsoid of the bracing 
arm is degenerate, the multiple-arm ellipsoid is not. A comparison of figures 
2.22 and 2.20 shows that  the multiple-arm ellipsoids for both systems are 
quite similar in size and shape. 

Using the metrics presented earlier in this chapter, we find the "dis- 
tance" between the ellipsoids to be: a = 0.1003, fl = 0.0611, 7 = 0.0913, 
and (~ = 0. Thus, translationally, the ellipsoids are identical (as expected). 
Rotationally, scalewise, and shapewise, the differences are quite small. Such 
a result would be expected, since the bracing arms are similar in nature and 
location. 
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Figure 2.23: Effect of grasp contact type on the manipulability ellipsoid. 

If the sliding contact is replaced by a rigid contact, the ellipsoid becomes 
degenerate (see Figure 2.23), indicating that motion is only permitted along 
a line. 

As before, the system Jacobian is: 

J =  

0 0.7071 0 0 
2.4142 1.7071 1 0 

0 0 0 -0.25 
0 0 0 0.25 

(2.46) 

But in this case, since the grasp type of the bracing arm is rigid, H T is 
nonexistent. 

1 0 

A =  0 1 (2.47) 
1 0 
0 1 

Following the same calculation procedure, we obtain: 

[ 0 0.3536 0 -0 .125]  (2.48) 
(GT)+gh = 1.2071 0.8536 0.5 0.125 C1 
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0 -0.5 0 -0.1768 ] (2.49) 
C~ = ~ T  & = --1.7071 --1.2071 --0.7071 0.176S 

a-w~ [ I ° ] =  o I 
And finally, we obtain the result: 

(2.50) 

C1~2~-~_1/2 : [-0.13050.1305-0.183610.1836 (2.51) 

Applying the SVD to this matrix, we obtain the information about  the 
multi-arm ellipsoid: 

[ - 0 . 7 0 7 1 - 0 . 7 0 7 1 ]  [ 0 . 3 1 8 6 0 ]  (2.52) 
U = 0.7071 -0.7071 ~ = 0 0 

Comparing this figure with 2.22 shows the drastic effect that the grasp 
type may have on the system manipulability. (a = 1.1170, t3 -- 0.4196, 
7 = 0.2744, (f = 0.) Note that  the metric results indicate a much greater 
difference than was noted between West's example and the sliding contact 
result. 

2.6 Comparison of manipulability ellipsoids 
In order to use ellipsoids to guide the selection of robot pose, grappling 
point, and contact type, it is necessary to measure the "distance" of a 
given ellipsoid to a desired ellipsoid. In this section, we consider several 
possible metrics for ellipsoids. In addition, we also consider the special case 
of degenerate ellipsoids. 

Metrics involving ellipsoids have not received much attention in the 
literature. Several groups [13, 14, 15] have been concerned with using el- 
lipsoids as an aid in robot kinematic design. In [16], the manipulability 
ellipsoid is used to specify the desired manipulability of the robot arm. 
Their approach was to make the desired ellipsoid scalable, and they sought 
the largest desired ellipsoid which would fit inside the actual ellipsoid of the 
arm. A maximum value was achieved when the desired ellipsoid was the 
same size and shape as the actual ellipsoid. In [11, 17], the manipulability 
ellipsoid is also used to specify the desired performance of the robot arm, 
and the desired ellipsoid is compared with the actual ellipsoid of the robot. 
He proposed two different methods of comparing ellipsoids [11]: the volume 
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Figure 2.24: Volume of intersection between two ellipsoids. 

of intersection and a "shape discrepancy" measure,  along the principal axes 
of the ellipsoid. Neither of these measures is a t rue metric, however. 

The  first measure to compare two ellipsoids which Lee proposed was 
their volume of intersection. Figure 2.24 shows a typical example in two 
dimensions. One benefit to such a method is that  it is readily understand-  
able. However, the intersection of two ellipsoids does not usually result in 
an ellipsoid, but in a more complicated shape which is difficult to describe 
mathematically.  

Because of this complexity, Lee approximated the volume of intersection 
by a new ellipsoid, whose principal axes were determined from the principal 
axes of the desired ellipsoid, or from the intersection of the principal axes 
of the desired ellipsoid with the boundary of the actual ellipsoid, whichever 
was shorter. 

The volume of an m-dimensional ellipsoid is straightforward to compute  
[ls]: 

vol = d a l  a2 a3 . . .  am (2.53) 

where a l ,  • • •, am are the singular values of the Jacobian, and d is a constant  
given by 

( 2 ~ r ) m / 2 / ( 2 . 4 . 6 . . . . ( m - 2 ) . m )  m even 
d =  2 ( 2 z r ) ( m - 1 ) / 2 / ( 1 . 3 . 5 . . . ( m - 2 ) . m )  m odd 

(2.54) 

For ease of computation,  it may not be necessary to calculate d. The 
product  of the singular values of the a rm Jacobian will yield a result which 
is proport ional  to the true volume of the ellipsoid. 

There are a several drawbacks to using the approximation method.  
First, it uses an estimate of the volume, rather  than the volume itself. 
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Figure 2.25: Shape discrepancy between two ellipsoids. 

There is no indication that  the approximation will be close to the true vol- 
ume of intersection. Second, it is not clear why the approximation ellipsoid 
is defined the way it is; an equally valid (but different) ellipsoid could be 
obtained by using the principal axes of the actual ellipsoid, instead of those 
of the desired ellipsoid. 

Still another drawback is that  this method is not a metric, and does not 
result in a "distance" measurement. The measure results in a maximum 
when the desired ellipsoid is completely contained in the actual ellipsoid. 
It is possible that  many differently-shaped manipulability ellipsoids could 
contain a given desired ellipsoid; the volume of intersection method would 
return the same result for each of these ellipsoids. It would not be possible 
to identify any particular manipulability ellipsoid as being superior to the 
others. 

Finally, this method cannot handle degenerate ellipsoids. It  is easier for 
people to specify tasks as simple ellipsoids; one of the simplest is a line - 
which can be viewed as an ellipsoid with only one non-zero principM axis. 
(Such a desired ellipsoid would indicate that  motion was only desired along 
a single direction.) The volume method would always return zero in such 
a case, providing no useful information. 

S h a p e  discrepancy 

The second method proposed by Lee compared the distance from the cen- 
ter of the ellipsoids to their edges, along the principal axes of the desired 
ellipsoid. See figure 2.25. 

The darkened lines indicate the distances which were calculated as part  
of the shape discrepancy measure. The complete measure which Lee used 



2.6. Comparison of  manipulabi l i ty  ellipsoids 69 

was the reciprocal of the sum of squares of these lengths: 

m 

discrepancy = 1 / E ( d a i  -- 7,) 2 (2.55) 
i = l  

This measure is more useful than  the volume of intersection, and pro- 
vides information on the shape difference of the ellipsoids. I t  does not fail 
with degenerate ellipsoids. 

However, this measure still has flaws. First, the measure as given will 
tend to infinity as the actual ellipsoid tends to the desired ellipsoid. This 
can be remedied by not taking the reciprocal of the sum of squares; however, 
even this modified measure still is not a metric, as the result f rom the actual  
ellipsoid to the desired one is different than if the roles of the ellipsoid were 
reversed. 

Intuitively, there are several ways to distinguish between two ellipsoids: 

• translation: the centers of the ellipsoids are not located at  the same 
point in space. 

• rotation: the corresponding principal axes of the ellipsoids point in 
different directions. 

scaling: the corresponding principal axes of the ellipsoids differ by a 
constant scale factor; the principal axes of each ellipsoid have multi- 
plicative relationships between the axes, and these relationships hold 
for both  ellipsoids, but  the lengths of the corresponding axes are dif- 
ferent. 

shape discrepancy: the relationship between the lengths of the prin- 
cipal axes in each ellipsoid differs, resulting in a different shape for 
each ellipsoid. 

Any metric function we choose must  be able to handle the above cases. 
In addition, the metric function must be able to handle degenerate ellipsoids 
- which occurs when one or more principal axes of an ellipsoid has zero 
length. One way of constructing such a metric is to determine a metric for 
each of the above cases individually. 

Define the following at t r ibutes  of an ellipsoid: 

• position of the center of the ellipsoid c. 

,, m unit vectors pointing along the ellipsoid's principal axes u l , . . . ,  urn. 

• m lengths of the principal axes a l , . . . ,  am. 
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Figure 2.26: Comparison between ellipsoids 

The following functions are proposed for comparing ellipsoids. Proofs 
showing that  they are indeed metrics can be found in [19]. (Strictly speak- 
ing, the functions are semi-metrics; however, each function can be made 
into a metric by considering all ellipsoids which result in the function being 
zero as belonging to the same equivalent class.) 

translation: 

~ ( ~ 1 ,  ~2 )  = lie2 - -  a l l ]  = V / ( c2  - c l ) T ( c 2  --  e l )  ( 2 . 5 6 )  

where ci is the location of the center of ellipsoid i. 

rotation: 
m ......... 

c~(E1,E2) = E ~/1-cos¢(iU~i)],[u~i)]) (2.57) 
i=1 

where [u~ i)] and [u~ i)] are the ith (nondirectional) principal axes of el- 
lipsoids 1 and 2, respectively. That is, [u (i)] is the union of the vectors 
u (i) and - u  (i) . The function ¢ ([ul], [us]) = min{0(ul, u2), O ( - u i ,  us)). 

scaling: 

7 ( 6 ,  E2) = 1) - o s) l (2.58) 
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s h a p e  d i s c r e p a n c y :  

/~(£i, E2) = ~ I~l 1) - e~2) t (2.59) 
i = 1  

where: 

_(j) if > 0 
ei = if a~ j) = 0 (2.60) 

A weighted sum of these functions is itself a metric function, provided 
that  the weights are nonnegative. (If the weights are all positive, the 
weighted sum is a true metric.) This formulation has the advantage that  
certain aspects of the "distance" between ellipsoids can be emphasized if it 
would help in optimizing a certain task. For example, if the orientation of 
the ellipsoid was found to be more important  to some task than the scaling 
of the ellipsoid, the orientation component could have a larger weighting in 
the calculation of the composite metric. 

It is important  to note that  all of the component functions still return 
useful results, even if the lengths of one or more of the principal axes of 
the ellipsoids is zero (where the ellipsoid is degenerate). This is because 
none of the functions depend upon the lengths of the principal axes being 
non-zero. 

To provide some general insight into the values returned from these 
metrics, Figures 2.27-2.29 illustrate the results of the rotational, scale and 
shape discrepancy metrics. The translational metric is not shown, as it 
is fairly well understood. Note that  while the metric functions work for 
ellipsoids of other dimensions, two-dimensional ellipsoids are used in these 
examples because they are the easiest to visualize. 

Figure 2.27 shows a two-dimensional reference ellipsoid (depicted by a 
solid line) and several other ellipsoids (shown with dotted lines) rotated 
in increments of 30 °. The corresponding values of a are shown next to 
these ellipsoids. Note that c~ achieves a maximum value of 2 when the 
ellipsoids are 90 ° apart. A check of the formula for a shows that  in general, 
the maximum value it can attain is m - which would happen when all m 
corresponding principal axes of the ellipsoids being compared are at right 
angles to each other. 

Figure 2.28 shows a reference ellipsoid, along with several ellipsoids 
which have different shapes. The values of/~ are shown next to each ellip- 
soid. Note that  the fl increases as the shape of the ellipsoid differs more 
greatly from the initial form. The maximum value that  ~ might at tain is m 
- but this will only happen under special circumstances. For this to occur, 
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the one ellipsoid would have to be a ball (all principal axes are of the same 
length), while the other ellipsoid would have to be a point (all principal 
axes are of zero length). More generally, the maximum attainable value of 
/3 would be ~.m (1), (1) 1 ai / a l  , which would occur when the second ellipsoid was 
a point. 

Figure 2.29 shows some results of the scaling metric. As the ellipsoids 
get larger or smaller than the reference ellipsoid (where size is determined 
by the largest singular value), "7 becomes larger. As the second ellipsoid 
increases in size, "7 --~ oo. 

The range of values which the metrics can attain is summarized below: 

c~ : 0< >m 

: 0< >m 

~/ : O< >oo 

6 : 0¢ >oo (2.61) 

Figures 2.30 - 2.32 show some two-dimensional ellipsoids which differ in 
more than one aspect, and the resultant metric values. Figure 2.30 shows 
two identically shaped ellipsoids which are rotated and translated relative 
to each other. Note that  the appropriate metrics indicate this difference; 
however, the shape discrepancy and scale metrics return zero (because the 
ellipsoids have the same shape and scale). 

Figure 2.31 show two ellipsoids of different shape, centered at the same 
point. They are rotated slightly with respect to each other. The ellipsoids' 
longest principal axes are identical in length. In this case, the translation 
metric and the scale metric return zero, while the rotational metric and the 
shape discrepancy metric return non-zero values, indicating a difference 
between the two ellipsoids. 

Figure 2.32 shows two ellipsoids which have the same translational and 
rotational position, but which are shaped and scaled differently. Again, 
only the metrics which pertain to shape and scale return non-zero values. 

It may be the case that  which metrics are emphasized will be dependent 
upon the task being performed. For example, in controlling a pool cue, the 
exact rotation of the ellipsoid may not be important,  as long as the robot 
can readily move the cue in the needed direction. Translation would be 
important ,  since a translational error would indicate that  the tip of the 
pool cue is positioned incorrectly. The shape of the ellipsoid would also 
be important,  because we would want to most readily move in the desired 
direction, while resisting disturbances in other directions. 

If the robot has a different task, such as picking up and moving an 
object, other metrics may be more important.  If the exact location on the 
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Figure 2.27: Metric example 1: The values of a for several different orien- 
tations. 

object that the gripper contacts is not critical, then the translational metric 
may not be that important. The shape of the ellipsoid would be important 
(and rotation somewhat less so), since the end-effector should have good 
mobility in the direction the object should be moved, but should have very 
short dimension in the vertical axis (the direction force must be applied in 
order to lift the object). 

2 . 7  C o n c l u s i o n s  

This paper generalizes the velocity and force manipulability to general con- 
strained multibody systems. Such systems include simple closed kinematic 
chain as two arms jointly holding a payload, multiple kinematic chains as 
in multi-finger grasping, and more complex structures as multiple Stewart 
Platforms. We have extended the concept of stable grasp and manipulable 
grasp in the multi-finger grasp literature to general mechanisms and pro- 
vide necessary and sufficient conditions for their verifications. In general, 
unstable (or nearly unstable) configurations need to carefully considered in 
the kinematic analysis, otherwise there may be uncontrolled motion or large 
joint loading. We have also shown that that multiple arm maniputability 
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can be significantly modified through the bracing by arms. Several metrics 
for comparing ellipsoids are presented to guide the choice of brace location 
and contact condition. Future work will include optimal kinematic synthe- 
sis based on the manipulability ellipsoids and consideration of dynamics 
and control. 
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Chapter 3 

K i n e m a t i c  contro l  of  
d u a l - a r m  s y s t e m s  

This chapter focuses on the control problem for cooperative manipulator 
systems in the framework of kinematic control. The control problem is 
solved in two stages: first, an inverse kinematics problem is solved to trans- 
form cooperative task variables into the corresponding joint variables for all 
the manipulators constituting the cooperative system; then, the obtained 
joint variables are fed to a suitable joint space control scheme. A useful 
feature of the chosen approach is that coordination is solved at inverse kine- 
matics level while arm interactions can be handled at joint control level. 

An effective formulation is presented which fully characterizes a coordi- 
nated motion task in terms of a set of meaningful position and orientation 
variables. A closed-loop algorithmic approach for the inverse kinematics 
problem is pursued based on differential kinematics mappings; this also 
allows handling of kinematic redundancy and singular configurations. 

A joint-space control scheme based on kineto-static filtering of the joint 
errors is presented which is aimed at canceling out the internal force at 
steady state without using force measurements. Nevertheless, when force 
sensors are available, feedback of the internal forces can be added to im- 
prove performance of the system. Stability analysis is provided and asymp- 
totic stability of a set of equilibrium points is demonstrated. The case of 
imperfect compensation of the gravity terms is also discussed. 

79 
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3.1 In troduc t ion  

The two main goals of the control problem for cooperative manipulators 
are coordinated motion of multiple-arm systems and handling of internal 
forces arising from arm interactions through a commonly held object. In 
order to achieve these goals, a number of major aspects must be taken into 
account. 

First, specification of the cooperative task requires definition of a set 
of variables which are meaningful to the user and still allow a complete 
description of the objectives of the cooperation. 

Then, the control scheme should be robust to the occurrence of sin- 
gular configurations of the cooperative system; moreover, the capability 
of exploiting redundant degrees of freedom possibly present in the system 
should be provided. 

When the cooperative manipulator system results from grouping in- 
dividual robot systems, i.e. arm plus controller, it would be desirable to 
adopt a cooperative control scheme that takes advantage at the most of the 
decentralized structure inherent to the available hardware. 

Looking forward to industrial application of cooperative manipulator 
systems, the use of force sensors should not be crucial to functioning of the 
control scheme. In this respect, it is assumed that reduced performance is 
acceptable for a control scheme not requiring force measurement. 

In view of the above aspects, we have chosen to deal with the control 
problem for cooperative manipulator systems by resorting to a kinematic 
control approach. This means that the control problem is solved in two 
stages: first, an inverse kinematics problem is solved to transform cooper- 
ative task variables into the corresponding joint variables for all the ma- 
nipulators constituting the cooperative system; then, the obtained joint 
variables are fed to a suitable joint space control scheme. A useful feature 
of the chosen approach is that coordination is solved at inverse kinematics 
level while arm interactions can be handled at joint control level. 

To set up an inverse kinematics for cooperative manipulator systems 
it is first necessary to find a task description that allows specification of 
coordinated motion. To this purpose, it should be obvious that taking the 
end-effector position and orientation of each manipulator as task variables 
is inadequate, since the system would be regarded as composed by inde- 
pendent manipulators and coordination management would be left to the 
user. An effective formulation is presented in this chapter which fully char- 
acterizes a coordinated motion task in terms of a set of meaningful position 
and orientation variables. 

Finding closed-form solutions to the inverse kinematics problem is pos- 
sible only for special manipulator geometries and simple coordination tasks. 
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An algorithmic approach shall be pursued instead based on differential kine- 
matics mappings; this also allows handling of kinematic redundancy and 
singular configurations. We resort to a closed-loop inverse kinematics al- 
gorithm which does not suffer from numerical drift typical of open-loop 
algorithms. 

If an independent joint control law is used as second stage of the kine- 
matic control scheme, arising of internal forces is expected. These forces 
originate from different sources; namely, joint tracking errors causing vio- 
lation of closed-chain constraints, joint trajectories not consistent with the 
geometry of the grasp, non-compensated dynamics. The effect of the last 
source can be effectively reduced only by resorting to model-based control 
schemes; however, these schemes are computationally demanding for coop- 
erative systems where also the (possibly unknown) dynamics of the object 
plays a significant role. 

To retain the simplicity of a scheme without dynamic compensation 
we present a control scheme based on kineto-static filtering of the joint 
errors aimed at reducing the building of internal forces. A simple PD- 
type control law is described which is shown to cancel out the internal 
force at steady state. Remarkably, this is obtained without using force 
measurements. Nevertheless, when force sensors are available, feedback of 
the internal forces can be added to improve performance of the system and 
to achieve internal force regulation. 

Stability analysis is developed for the equilibrium points of the coop- 
erative system under the proposed joint-space control laws. By applying 
the global invariant set theorem in a singularity-free region, asymptotic 
convergence to the invariant set constituted by the equilibrium points is 
demonstrated and local stability of the minimum norm equilibrium points 
is analyzed. The analysis is extended also to the case of imperfect compen- 
sation of the gravity terms. 

3.2 Cooperative task description 

Most available task formulations are based on a global description of the 
system through the use of the so-called grasp matrix assuming that an ob- 
ject is commonly held by the manipulators [1,2,3,4]; the result is a complete 
description of the task at differential kinematics level. Position task vari- 
ables can be easily found by integration of linear velocities while a problem 
arises for orientation task variables, in view of the non-integrability of an- 
gular velocities. It might be argued that a description of orientation could 
be found by means of a minimal representation, e.g. Euler angles, but the 
resulting variables would not allow a clear specification of a coordination 
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task for the user. To overcome this problem, a description of the coordi- 
nated motion task will be sought in terms of a set of meaningful position 
and orientation variables [5]. 

In the present work, a system of two cooperative manipulators, namely 
manipulator 1 and manipulator 2, will be considered. In the remainder, the 
subscript i will denote quantities referred to manipulator i. Let Ei denote 
the frame attached to the end effector of manipulator i; quantities referred 
to Ei will be denoted by the superscript i. Moreover, all quantities referred 
to a common base frame Eb wilt be denoted by the superscript b. 

Then, let pb be the (3 x 1) vector denoting the end-effector position as 
the origin of Ei. Let also R b be the (3 × 3) rotation matrix expressing the 
end-effector orientation, i.e., its columns represent the unit vectors of Zi. 

In order to establish the sought task description, a suitable frame is to be 
introduced to specify coordinated motion of the two-manipulator system. 
Let such frame be termed as absolute frame and denoted by Za; quantities 
referred to the absolute frame will be denoted by the superscript a. 

The origin of the absolute frame is called absolute position of the coop- 
erative system and can be expressed as a function of the positions of the 
two end effectors. One simple choice is 

p b =  1 b 
~(Pl + P~). (3.1) 

In order to define the absolute orientation of the system, consider the 
matrix operator Rk(O) expressing the rotation by the angle 0 about the 
axis aligned with the unit vector k = [ kx ky k~ IT [6]. Then, the rotation 
matrix giving the absolute orientation can be defined as 

b 1 Rba = R1Rk~ 2 (t912/2), (3.2) 

where k~2 and 012 are respectively the unit vector and the angle that realize 
the rotation described by R~, i.e., the orientation of frame 2 with respect 
to frame 1. Therefore, the above choice corresponds to make a rotation 
about axis k~2 by an angle which is half the angle needed to align R~ with 

The absolute position and orientation describe the task in terms of the 
composition of the position and orientation of the single manipulators and 
thus it is clear that there exist infinite end-effector configurations giving 
the same absolute position and orientation. Therefore, in order to fully 
describe a coordinated motion, the position and orientation of one manip- 
ulator relative to the other is also of concern. 

The relative position between the two end effectors can be defined as 

p~ = p~ - p~. (3.3) 
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The relative orientation between the two end effectors can be defined 
with reference to the end-effector frame of either manipulator --say the 
first one-- in terms of the rotation matrix 

= (3.4) 

To simplify specification of some coordination task, it might be appro- 
priate to choose pb and R~ other than the actual end-effector position and 
orientation of the two manipulators. This results in embedding proper 
constant transformation matrices in the direct kinematics of the two ma- 
nipulators. 

To be independent of the absolute motion of the system, it might be 
more convenient to specify the relative position with reference to the abso- 
lute frame, i.e., pa. The relationship between pr a and pb is given by 

: R p: (3.5) 

with R b as in (3.2). 
A feature of the proposed formulation is that coordinated motion of the 

system is achieved without necessarily assuming that the two manipulators 
are kinematically constrained through the presence of an object between 
the two end effectors. Nevertheless, if the two end effectors hold a common 
object, general manipulation tasks can be described by the above formula- 
tion. For instance, if the task is to move a tightly grasped object without 
deforming it, a trajectory has to be assigned to pb a and Rba while pr a and R~r 
have to be kept constant. Yet, if the task is to stretch, bend or shear the 
object, suitable trajectories have to be specified for the relative variables 
too. 

3 . 3  D i f f e r e n t i a l  k i n e m a t i c s  

Having established a task formulation for the direct kinematics of the two- 
manipulator system, it is useful to derive also the differential kinematics 
relating the coordinated (absolute and relative) velocities to the end-effector 
velocities of the two manipulators. 

For each manipulator, the end-effector linear velocity is directly given 
as the time derivative of the position vector, that is lb b. The end-effector 
angular velocity is given by the (3 x 1) vector w b, which is related to the 
time derivative of the rotation matrix/ /b through the relationship 

• b b b 
R i = S ( o a i ) R i ,  (3.6) 
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where S(.) is the (3 x 3) skew-symmetric operator performing the cross 
product. 

The absolute linear velocity of the system is obtained as the time deriva- 
tive of (3.1), i.e., 

• b 1 b 
P~ = 2(Pl  .~_ pb). (3.7) 

Differentiating (3.2) with respect to time, using (3.6) and the relationship [6] 

R~ S(~.~2)(R~) T : S ( R ~ 2 ) ,  (3.8) 

yields 
b b S({~d~)nb 1 b b s(  )Ro = + (3.9) 

where w~2 denotes the angular velocity of frame 2 with respect to frame 1. 
From (3.9) it can be recognized that  the absolute angular velocity is 

given by 

b ! ( ~  q- wb), (3.10) ~a---- 2 

since wb2 = W b -- W b. 
The relative linear velocity of the system is obtained as the time deriva- 

tive of (3.3), i.e., 
pb r (3.11) 

If the relative position is expressed as p~, the time derivative of (3.5) 
gives 

= R~p~ + S(w~)p~ (3.12) 

b with w~ as in (3.10). 
Finally, differentiating (3.4) with respect to time and using (3.6) yields 

1 1 S(w,.)R~ = S(w~2)tl ~, (3.13) 

and thus the relative angular velocity is 

b = wb W~, ~ r  (3.14) 

which has been expressed in the base frame. 
Algorithmic solutions to the inverse kinematics problem are based on the 

computation of the Jacobian associated with the task variables of interest. 
Since these variables have been expressed as a function of the position and 
orientation of the two end effectors, the sought Jacobian can be related to 
the Jacobians of the single manipulators. 

Let ni denote the number of joints of manipulator i and qi be the (hi x 1) 
vector of its joint variables. The geometric Jacobian J~(qi) is the (6 × n~) 
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matrix relating the joint velocity vectors//i to the linear and angular end- 
effector velocities in the base frame as 

~ g~(q~)q~ i - -  

At this point, combining (3.7),(3.10) and taking into account (3.15) 
yields 

,:] ( 10) 
where the (6 x (nl + n2)) absolute Jacobian matrix is defined as 

g b  1 b 1 b ---- [~J1 ]" ~J2 (3.17) 

Further, combining (3.11),(3.14) and taking into account (3.15) yields 

where the (6 x (nl + n2)) relative Jacobian matrix is defined as 

J~ = [ - J~  J~]. (3.19) 

3.4 Inverse kinematics  algorithm 

The inverse kinematics problem for a two-manipulator system can be stated 
as that to compute the joint variable trajectories corresponding to given co- 
ordinated motion trajectories for the absolute and relative task variables. 
Finding closed-form solutions is possible only for special manipulator ge- 
ometries and simple coordination tasks, and thus an algorithmic approach 
shall be pursued. 

An effective inverse kinematics algorithm is given by the closed-loop 
scheme based on the computation of the pseudoinverse of the manipulator 
Jacobian [7,8]. The joint velocity solution can be written in the general 
form 

= 3f(Od + R~)  + (I  -- 3 t3)~o ,  (3.20) 

where ~/is a vector of joint variables, ) is the Jacobian associated with the 
velocity mapping, Od is the desired task velocity, zV¢ is a suitable diagonal 
positive gain matrix, ~ is the algorithmic error between the desired and 
current task variables, and ~0 is a vector of joint velocities that can be 
freely chosen. 
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Notice that the physical robot system is not involved since the algorithm 
only serves the purpose to invert the kinematics of the system along a given 
task trajectory, i.e., ~ is given by (3.20), and ~/is computed by integrating 
the obtained ~. 

The closed-loop inverse kinematics algorithm based on (3.20) avoids the 
typical numerical drift of open-loop resolved-rate schemes [9]. The solution 
can be made robust with respect to singularities of J by resorting to a 
damped least-squares inverse of the matrix [10,11]. 

When J is square and full rank the pseudoinverse in (3.20) reduces to the 
inverse and the second term on the r.h.s, vanishes. If J has more columns 
than rows the system is kinematically redundant; in this case, the joint 
velocity vector ~0 can be suitably chosen to meet additional constraints 

besides the primary task. This is made possible since the term ( I -  J l J )  is 
a projector onto the null space of J and thus the second term on the r.h.s. 
of (3.20) allows reconfiguration of the system without affecting the primary 
task [12]. 

It should be pointed out that kinematic redundancy of two-manipulator 
systems may be due either to the effective presence of additional joint vari- 
ables --i.e., more than 6 degrees of freedom for either manipulator-- or to 
relaxation of some coordination task variables. In [5] it has been show that 
non-tight grasps can be treated as a special case of kinematic redundancy. 

The above algorithm can be applied to solve the inverse kinematics for 
the two-manipulator system at issue. In detail, define 

The task Jacobian is 

ql ] .  (3.21) 
q =  q2 

[ ] (3.22) J =  [j j, 

where j b  j b  r are given as in (3.17),(3.19). The error is 

~ = [ ea l (3.23) 

The absolute error has a position and an orientation component and is 
given by 

[ ] - P° (3.24) ea --~ 1 b b b b + S(so)s d + ~(S(na)nad s(aba)a 

where pb d is the desired absolute position specified by the user in the base 
frame, pb is the actual absolute position that can be computed as in (3.1), 
n b  ob .~b ad, oad, "*ad are the column vectors of the rotation matrix Rbad giving the 
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desired absolute orientation specified by the user in the base frame, and 
n b  b b sa, a a are the column vectors of the rotation matrix Rba in (3.2). The 
relative error is given by 

~ P ~  - P~ (3.25) 
e r  = 1 b 1 1 1 I 1 1 " 

~ R 1 ( S ( n r ) n r d  + S ( S r ) S r d  q- S ( a r ) a r d  ) 

The rotation R b is aimed at expressing the desired relative position P~d, 
assigned by the user in the absolute frame, in the base frame; in this way, the 
specification of the desired relative position between the two end effectors 
is not affected by the absolute frame orientation. Further, in (3.25) notice 
that: pr b can be computed as in (3.3); 1 1 1 Tgrd ~ 8rd ~ ard are the column vectors 
of the rotation matrix Rlrd giving the desired relative orientation specified 
by the user in the end-effector frame of the first manipulator; _1,%, ~r,~l t%-1 are 
the column vectors of the rotation matrix Rlr in (3.4); and the rotation R b 
is aimed at expressing the orientation error in the base frame. 

Finally, the desired velocity is 

~ = [V°d] .  (3.26) 
[ V~d J 

The absolute velocity term is given by 

[ ] (3.27) 
• [o Idj ' 

where "b b Pad and Wad are respectively the desired absolute linear and angular 
velocities specified by the user in the base frame. The relative velocity term 
is given by 

b . a  b b a 
RaPrd + S(O;a)RaPrd ] 

V r d  : j (3.28) 

where lb~d is the desired relative linear velocity specified by the user in the 
object frame and wld is the desired relative angular velocity specified by 
the user in the end-effector frame of the first manipulator. Notice that  
the expression of the translational part  of the relative velocity presents 
an additional term which is a consequence of having assigned the relative 
position with reference to the absolute frame. 

3 . 5  C o o p e r a t i v e  s y s t e m  m o d e l i n g  

The dynamics of the two manipulators can be written in compact form as 

M(q)il  + C(q, it)q + g(q) = r - j T  (q)h, (3.29) 
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where the matrices are block-diagonal, e.g., M = blockdiag{M1, M2},  and 
the vectors are stacked, e.g., g = [gT get IT. For each manipulator, ~'i is 
the vector of joint generalized forces, M i  is the symmetric positive-definite 
inertia matrix, Ci//i is the vector of Coriolis and centrifugal generalized 
forces, gi is the vector of gravitational generalized forces, and hi is the 
vector of end-effector generalized forces. 

The dynamics of the object is given by 

Moi~o + Covo + 9o = hezt, (3.30) 

where Vo is the vector expressing the (linear and angular) velocity of a 
frame Eo attached to the center of mass of the object, Mo is the object 
inertia matrix, Covo is the vector of Coriolis and centrifugal forces, go is 
the vector of gravitational forces, and hext is the vector of external forces 
acting at the center of mass of the object. 

Under the assumption that  the two manipulators tightly grasp a rigid 
object, holonomic constraints on both joint positions and velocities arise, 
e.g., see [13]. From a kinetostatic point of view, these constraints result in 
suitable mappings involving forces and velocities at the object level. 

The mapping of the contact force vector h onto the external force vector 
hext is [4] 

[ I 0 I O] h =  W h ,  (3.31) 
h~xt = $1 I $2 

where W is the grasp matrix, S1 and S2 are the matrices which transform 
the applied contact forces in moments at the object frame and depend on 
the grasp geometry, and I ,  O are the identity and null matrices of proper 
dimension, respectively. 

The matrix W has full row rank; then, for a given h~xt, the inverse 
solution to (3.31) is given by 

 :Ew, 
L hint J L hint ' 

where W t denotes a pseudoinverse of W,  V is a full-column-rank matrix 
spanning the null space of W ,  and the vector hint represents the internal 
forces [14]. Notice that  the following relation holds 

W V  = O. (3.33) 

It has been recognized that  the use in (3.32) of a generic pseudoinverse, 
e.g., the Moore-Penrose pseudoinverse, may lead to internal stresses even if 
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hint = 0; to avoid this, W t must be properly chosen [15]. In the remainder, 
it is assumed that  the pseudoinverse of W has the following expression 

½i 
w t  = -½s l  

½i 
-½S2 

(3.34) 

As pointed out in [15], this choice is also motivated by the work in [16] since 
it avoids problems with numeric solutions being noninvariant with respect 
to changes of scale or origin. 

One possible choice for the matrix V is [14] 

I i] v = . (3.35) 

L - S 2  

In view of the duality between forces and velocities coming from the 
principle of virtual work, it can be recognized that  

where vr is the relative velocity dual to hint and v is the vector of end- 
effector velocities. Notice that  tight grasp of a rigid object results in vr = 0, 
i.e., 

v W j i t  = 0. (3.37) 

3 . 6  J o i n t  s p a c e  c o n t r o l  

The second stage of a kinematic control scheme for cooperative manipula- 
tors requires the development of a joint-space control law. In this case, it 
is assumed that  reference joint trajectories performing a cooperative task 
are available through proper inverse kinematics. 

First, a classical PD-type control taw is considered; compensation of the 
gravity term is used in order to avoid steady-state errors. The control law 
for the system (3.29), (3.30), (3.32), is [17] 

r = Kp( t  - K d q  + g + j W w t g  o (3.38) 

where E1 = qd - -  q is the error between desired and actual joint positions; K p  
and K d  are diagonal positive definite gain matrices of proper dimensions. 



90 Chapter 3. Kinematic control of dua/-arm systems 

It has been shown in [17] that  for a given set point qd, the equilibrium 
(q = O, it = O) of the system (3.29), (3.30), (3.32), under the control 
law (3.38) satisfies the condition 

Kp~lss -- JWVhint,ss = 0 (3.39) 

which reveals that  at steady state an internal force is present if a joint error 
exists. Such an error may be due to inconsistency of the joint set point with 
the geometry of the grasp, that  is, achievement of the joint set point would 
require violation Of closed-chain constraints. 

To avoid building of the internal force at steady state, a kineto-static 
filtering of the joint errors has been proposed which retains the simplicity 
of the above PD-type control law [18]. 

If the error term Kp~/ is regarded as an elastic torque acting at the 
joints, it can be first transformed into the corresponding force at the two 
end effectors through j - T ,  and then into an external force acting on the 
object through W.  In this way, the part  of the error term which builds 
internal force is filtered out. Thus, the control torque actually acting at the 
joints can be compute " ~ the image of the required external force. The 
proposed control law 

r = J T w t w J - T K p ? 1  -- Kdit  + g + J T W t g  o (3.40) 

where it is assumed that  the Jacobian matrix J is square (nl + na = 2m) 
and full rank. 

The equilibrium of the system (3.29), (3.30), (3.32), under the control 
law (3.40) satisfies 

J T W t w J - T  Kpqss  - JTVhin t , s s  = O. (3.41) 

Since jW is full column rank, it can be factored out and eq. (3.41) can be 
rewritten as 

W t W j - W  KpClss - Yhint,ss = 0. (3.42) 

To analyze the equilibrium obtained, it is useful to observe that  V spans 

the null space of W while W t spans the range space of w T ;  therefore, 
the two terms in the left-hand-side of (3.42) ave orthogonal and thus they 

must be each equal to zero. Moreover, since W t and V are full column 
rank matrices, it can be concluded that  at steady state it is 

( w j - T  Kp~tss = 0 
(3.43) 

hint,ss = 0 
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Remarkably, the former condition implies that the component of the joint 
error term in the external-force space vanishes, the latter ensures that the 
internal force is null at steady state. 

Therefore, the control law (3.40) cancels internal force at steady state, 
even if the joint set point cannot be reached due to closed-chain constraints. 
It is worth noting that the kineto-static filtering has no effect on steady- 
state errors due to external disturbances and thus the control law (3.40) 
reacts to them at full strength. 

Equation (3.43) represents a set of constraints on the vector variable qss. 
The nonlinearity of the constraint equations does not allow drawing general 
conclusions about the solution of (3.43); physical reasoning, however, leads 
to conjecturing that a set of solution points exists, corresponding to different 
system equilibrium configurations. 

3.7 Stability analysis 

La Salle's global invariant set theorem --as  reported in [19]-- is invoked to 
analyze the stability of the equilibrium (3.43) [20-21]. 

Consider the scalar function with continuous first partial derivatives 

1 T  1 T  ~ Y ( x )  = I ~ITMcl + -~v o M o v o  + 5~1 K p q ,  (3.44) 

where x = [oT aT IT belongs to the subspace • C IR 24 constituted by the 
joint errors and velocities satisfying the closed-chain constraints. Notice 
that V in (3.44) is radially unbounded. 

Under the assumption of a constant qd (i.e., regulation problem), by 
using (3.29) and (3.30), the time derivative of (3.44) is 

W h V(x) = qT (v -- j W h  - g)  + v o ( ezt - go) elTKpgl, (3.45) 

where the identities ~/T(M - 2C)q -- 0, v T ( M o  -- 2Co)vo = 0 have been 
exploited. 

By expressing vo as in (3.36) and taking (3.32) into account, equa- 
tion (3.45) can be rewritten as 

V ( x )  = qW ( r  -- j w V h , , ~ t  - g - J W W t 9 o  -- Kpcl) .  (3.46) 

Considering the closed-chain constraint (3.37) and substituting control 
law (3.40) into (3.46) yields 

y ( ~ )  = _ q T K d  ~ _ q T j T ( I  -- W t W ) j - T K p ~ I .  (3.47) 
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It can be recognized that  the second term on the right-hand side of (3.47) 
is null in view of the closed-chain constraint (3.37); in fact, the term 

( I  - W t W ) J i l  is a vector of end-effector velocities which correspond 
through (3.36) to sole relative velocities. At this point, equation (3.47) 
becomes 

? (x) = --clT K dcl (3.48) 

which is negative semi-definite all over ~. 
The set R of all points x E • where V(x)  = 0 is then 

R = { x e ~ :  / / = 0 } .  (3.49) 

Following the analysis of the equilibrium in the previous Section, it can be 
recognized that  the largest invariant set in R is 

M = {x E R :  ~,,  satisfies (3.43)}. (3.50) 

Therefore, the global invariant set theorem ensures global asymptotic con- 
vergence to M. 

Notice that ,  according to the assumption on J being full-rank, the result 
is valid for any perturbation such that  the resulting t rajectory does not 
involve crossing of kinematic singularities of the two-manipulator system. 

In the case when the set M contains the origin, i.e., when the given set 
point can be achieved without violating the closed-chain constraints, it is 
worth studying the domain of attraction of x = 0. Since V(x )  in (3.44) is 
quadratic, it is always possible to find a positive ~ and a bounded region 
~t  C (I, such that  ¢I't N M = {0} and 

V(x)  < ~ Vx e Or. (3.51) 
y(x )  < o 

By applying the local invariant set theorem, it can be recognized that  Ot 
is a domain of attraction for the equilibrium point x = 0. 

When the set M does not contain the origin, the given set point cannot 
be achieved without violating the closed chain constraints. In this case, 
it becomes worth studying local stability of the minimum-norm element(s) 
in M; to the purpose, by following the same reasoning as above, the local 
invariant set theorem can be invoked to establish the existence of a domain 
of attraction. 

3 . 7 . 1  I m p e r f e c t  c o m p e n s a t i o n  o f  g r a v i t y  t e r m s  

In many practical cases the mass of the object is not accurately known; 
thus, only a nominal estimate of the gravity term go is available. In this 
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case the control law (3.40) becomes 

T = J T w ~ w J - T K p ~ I  -- g d i  t + g + JTW~go.  (3.52) 

The equilibria of the system (3.29), (3.30) and (3.32) under the control 
law (3.52) satisfy 

{ w j - W g p q s s  = go - ~1o (3.53) 
hint,ss -= 0 

Inaccurate compensation of the object gravity term leads to a set of equi- 
librium configurations which are different from those obtained via (3.43). 
Nevertheless, the internal forces are still null at steady state. 

Stability of the equilibrium (3.53) can be analyzed following the guide- 
lines in [22]. To the purpose, consider the gravity energy functions Uo(q) 
and Uo(q) such that 

OUo(q) 
- g T w t g  o (3.54) 

Oq 

O~7o(q) 
- -  jTW~Oo (3.55) 

Oq 

Notice that both Uo(q) and Uo(q) are bounded for any q. 
At this point, consider the scalar function with continuous first partial 

derivatives 

Vo(x) = 2 qT Mil  + lvW + l ~tW + Uo(q) - Uo(q), (3.56) 

which is obtained by suitably extending the scalar function V in (3.44). 
Again, x belongs to the subspace (~ constituted by the joint errors and 
velocities satisfying the closed-chain constraints. Notice that Vo is radially 
unbounded in view of radial unboundedness of V and boundedness of the 
gravity energy functions. 

Taking into account (3.54,3.55), it can be easily recognized that 

"Co(X) = --~lT Kdil, (3.57) 

which is negative semi-definite all over ~. Thus, the global invariant set 
theorem can be invoked to conclude asymptotic convergence of x to the 
invariant set 

Mo = {x E R:  ~ satisfies (3.53)}. (3.58) 

In the case of imperfect compensation of the manipulators' gravity term 
the same argument as above leads to recognize asymptotic stability of the 
equilibrium 

{ w g - W  gp~lss = w g - W ( g  - ~) (3.59) 
Vhint,~ = j - T  (g _ ~1) 
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where 0 denotes the available estimate of g. It must be pointed out that in 
this case the equilibrium does not yield null internal force at steady state. 

3.8 A d d i t i o n  of  a force loop 

The proposed control law (3.40) achieves the equilibrium with null internal 
force. If it is desired to impose a given internal force set point, force feedback 
should be added. 

For a cooperative manipulator system, end-effector force measurements 
are typically available through wrist sensors. To extract internal forces 

from h, multiplication of (3.32) by V t gives 

hint = Vt h. (3.60) 

At this point, the control law (3.40) can be modified into 

"r : J T w t w j - T  Kp(I - gd(:l + g + j W W t g o  

+JTV(hi,~t,~ + Ki(hi,~t,d - V t h ) ) ,  (3.61) 

where K I is a positive definite matrix gain and h~nt,d is the desired internal 
force set point. 

For a given set point qd, the equilibrium of system (3.29), (3.30), and 
(3.32) under control law (3.61) satisfies 

J T w ~ w J - T  Kp(lss + J T v ( I  + KI)(hlnt ,d  - hint,ss) = 0 (3.62) 

which can be rewritten as 

f w j - W g p ( l s s  = 0 (3,63) 
hint,ss = hint,d. 

TO analyze stability of equilibrium (3.63), consider the same scalar func- 
tion V(x) as in (3.44). It can be recognized that the time derivative of (3.44) 
along the system trajectory is the same as in (3.48); indeed, by substituting 
control law (3.61) into (3A6), the force feedback terms do not contribute 
to I?(x) in view of the closed-chain constraint (3.37). 

The same argument as in Section 3.7 leads to establishing global asymp- 
totic convergence to the set 

M' = {x E R:  ~ satisfies (3.63)) (3.64) 

and local asymptotic stability of the minimum-norm element(s) in M'. Fur- 
ther, the same argument as in Subsection 3.7.1 can be used to analyze the 
case of imperfect compensation of the gravity terms. 
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3 .9  C o n c l u s i o n s  

A kinematic control approach for cooperative manipulator systems has been 
described. A useful feature of the chosen approach is that coordination is 
solved at inverse kinematics level while arm interactions are handled at 
joint control level. A set of meaningful variables has been defined to fully 
describe coordinated motion tasks in terms of absolute/relative position 
and orientation. An inverse kinematics algorithm has been presented whose 
outputs are the joint reference variables to be fed to joint-space controllers. 
In order to avoid building of internal forces kinetostatic filtering of the joint- 
space errors is adopted. Addition of a force control loop is also discussed. 

Stability analysis has been provided for the equilibrium points of the 
cooperative system under the proposed joint-space control laws. The anal- 
ysis has been extended to the case of imperfect compensation of the gravity 
terms. 

Application of the above control strategy to a setup of two industrial 
manipulators is ongoing. Preliminary experimental results are reported 
in [23]. 
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Chapter 4 

Load distr ibution and 
control  of interact ing 
manipulators  

The chapter reviews a method for modeling and controlling two serial link 
manipulators which mutually lift and transport a rigid body object in a 
three dimensional workspace [31, 32, 33, 34]. A new vector variable is in- 
troduced which parameterizes the internal contact force controlled degrees 
of freedom. A technique for dynamically distributing the payload between 
the manipulators is suggested which yields a family of solutions for the 
contact forces and torques the manipulators impart to the object. A set of 
rigid body kinematic constraints which restricts the values of the joint ve- 
locities of both manipulators is derived. A rigid body dynamical model for 
the closed chain system is first developed in the joint space. The model is 
obtained by generalizing our previous methods for deriving the model. The 
joint velocity and acceleration variables in the model are expressed in terms 
of independent pseudovariables. The pseudospace model is transformed to 
obtain reduced order equations of motion and a separate set of equations 
governing the internal components of the contact forces and torques. A 
theoretic control architecture is suggested which explicitly decouples the 
two sets of equations comprising the model. The controller enables the de- 
signer to develop independent, non-interacting control laws for the position 
control and internal force control of the system. 

99 
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4 .1  I n t r o d u c t i o n  

The problem of modeling and controlling two fixed base, serial link robotic 
manipulators to mutually lift and transport an object has been a subject 
of intensive study and research these past ten years. This interest has 
been motivated by the potential benefits of employing automatic and pro- 
grammable two handed cooperative manipulation in diverse areas such as 
material handling and assembly. In the former application, two manipula- 
tors can cooperatively lift and transport large or voluminous objects that 
would be difficult or awkward for a single manipulator to move. Further, 
two cooperating manipulators can transport objects whose mass is beyond 
the lifting capacity of just one. Two cooperating manipulators can reduce 
the need for fixturing in many assembly applications, and may ultimately 
lead to fixtureless assembly in the air. 

There have been numerous approaches proposed for modeling the inter- 
actions between the object and each manipulator and for controlling the 
forces and torques at the points of contact. In [1], models were developed 
which allow the contacts between the manipulators and object to be acci- 
dentally (e.g., due to slippage) or deliberately broken or the nature of the 
constraints changed due to wanted or unwanted disturbances. The analy- 
sis focused on a pair of two link planar revolute manipulators maintaining 
sliding point contacts with an object. The object was stabilized using a 
spring-dashpot combination. 

In [2], it was proposed that a pair of six degree of freedom (DOF) 
manipulators maintain rolling point contacts with a rigid object. In the 
approach, three virtual revolute joints were added at the location of each 
effector. The kinematics of the rolling grasps were modeled. 

The application of impedance control has resulted in successful imple- 
mentations of two manipulators transporting an object [3, 4, 5]. These 
approaches enforce a controlled impedance of the manipulator endpoints or 
of the manipulated object itself. 

This chapter, however, focuses on the case of two serial link manipula- 
tors mutually lifting and transporting objects that are rigid and jointless in 
a three dimensional workspace under the assumption of there being no rel- 
ative motion between the end effectors and the object. That is to say, it is 
assumed that each manipulator securely holds the object without any slip- 
page. The manipulators and object form a single closed chain mechanism, 
and there exists a large body of literature on modeling and controlling the 
manipulators in this configuration [6-33]. It should be mentioned that there 
have been some results reported for the case of two manipulators holding 
objects consisting of two rigid bodies connected by passive rotary or spheri- 
cal joints [34, 35], where the assumption of no relative motion between each 
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end effector and the rigid body it holds applied. 
There are two challenging problems when modeling and controlling a 

dual manipulator closed chain system. First, the problem of dynamically 
distributing the load induced by the object between the manipulators is 
underspecified. Indeed, assuming that the object is rigid and jointless, 
its dynamical equations, i.e., Newton's and Euler's equations, are linear 
functions of the twelve components of contact force and torque the ma- 
nipulators impart to it. Therefore, assuming that a reference trajectory 
for the center of mass of the object has been specified, there are infinitely 
many solutions for the contact forces and torques based on the object's 
dynamical equations. Each contact force§ 1 solution contains a component 
that causes the object to move along the reference trajectory and a com- 
ponent that induces internal stress and torsion in the object but does not 
contribute to its motion. Various approaches for distributing the load have 
been proposed [7, 13, 17, 18, 19, 20, 26, 27, 28, 31]. 

The second problem is how to control the motion of the closed chain sys- 
tem and the contact forces. It has been shown that a set of six rigid body 
kinematic constraints are imposed on the values of the joint variables of 
both manipulators in this configuration [33]. Each constraint causes a loss 
of one position controlled DOF. This complicates the motion control prob- 
lem because the number of actuated joints exceeds the number of positional 
DOF in the closed chain. If each manipulator is kinematically nonredun- 
dant, then the motion control objective is object trajectory tracking. H 
at least one of the manipulators is redundant, then there are additional 
positional DOF available to satisfy other objectives [36]. 

Another part of the control problem involves controlling or influencing 
the values of the internal component of the contact forces. Left unregulated, 
the internal forces could assume large values that result in the manipulators 
pulling against each other and would require large actuation torques at the 
joints while moving the object along its specified trajectory. Furthermore, 
excessively large values for the internal contact forces may even result in 
damage or deformity to the object or manipulators. There are two basic 
approaches to this problem: (i) to explicitly control the internal forces to 
track reference trajectories or (ii) to calculate the contact forces (includ- 
ing their internal components) by optimization techniques. In the explicit 
control case, some approaches proposed in the literature require knowledge 
of dynamics of the manipulators and object (e.g., see [10, 11]) while others 
do not (e.g. [9]). Most of the approaches that determine the contact forces 
to optimize a designer specified criteria involve no servoing and assume 

1Contact force implies both contact force and contact torque hereinafter, unless oth- 
erwise specified. 



102 _ _  Chapter 4. Load distribution and control of interacting manipulators 

knowledge of the dynamics of the held object [13, 17, 18, 19, 20, 31]. 
The chapter reviews our original approach for dynamic load distribu- 

tion and explicit position- and internal force-control of the closed chain 
system consisting of two manipulators securely lifting and transporting a 
rigid body object in a three dimensional workspace [31, 32, 34]. The control 
architecture is dynamic model based, thus the chapter will also present a 
method for deriving a rigid body model for the system. The joint space 
model given here is a generalization of our previous techniques for modeling 
the system [32, 33]. It will be shown that the earlier results are just special 
cases of the modeling given here. 

The chapter is organized as follows: A description of the system and 
the dynamical equations for the manipulators and object are given in Sec- 
tion 4.2. A general framework for load distribution is reviewed in Sec- 
tion 4.3. The kinematic coupling effects are modeled in Section 4.4 and a 
closed chain dynamical model in the joint space is derived in Section 4.5. 
A reduced order model governing the motion of the closed chain and a 
separate equation for calculating the internal components of the contact 
forces are the subject of Section 4.6. A control architecture originally pro- 
posed in [33] is reviewed in Section 4.7 where some recent insights into its 
net effect are discussed. A summary and conclusion are given in the final 
section. 

4.2 System description and dynamics 

The system is comprised of two serial link manipulators mutually holding 
and transporting a rigid body object in a three dimensional workspace. The 
manipulators and object form a single closed chain mechanism. Manipula- 
tor i (i = 1, 2) has a stationary base and contains N~ single DOF joints 
(N~ >_ 6 in the spatial case). The manipulators can be structurally distinct 
and possess different capabilities, i.e., they can have an equal (N1 = N2) 
or unequal (N1 ~ N2) number of joints. The object is rigid and jointless. 
It assumed that there is no relative motion between the end effectors and 
object, i.e., the end effectors securely hold the object without any slippage. 
The configuration of the system is shown in Figure 4.1. 

4 . 2 . 1  S y s t e m  v a r i a b l e s  a n d  c o o r d i n a t e  f r a m e s  

Let the joint positions, velocities, and accelerations of manipulator i be 
respectively represented by the (N~ x 1) vectors qi = [qil, q~2, . . . ,  qiN,] T, 
qi = [ q / l ,  {~i2, ' ' ' ,  (liNi] T, and qi = [qil, qi2, . . . ,  qiN,] T" The joint posi- 
tions of the two manipulators are the generalized coordinates describing 
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the configuration of the system. 
A stationary world coordinate frame ( Xw, Yw, Zw ) serves as a reference 

frame. The location of this coordinate frame is based on the task geometry. 
As shown in Figure 4.1, the coordinate frame ~ X (i)k , ' k  V(i), Z(k i) ) is assigned 
to the kth link of manipulator i, where k = 1, 2, . . . ,  Ni. 

The tips of the (3 x 1) vectors ir and i~r emanating from the centerpoint 
of the end effector of manipulator i coincide with the point CMo, the center 
of mass of the rigid object, as shown in Figure 4.2. 

ir and iWr are expressed in the end effector and world coordinate frames, 
respectively. They are related by: 

i~r -- i R ~  ir (4.1) 

where i N, i N~ R w = R~ (qi) is an orthogonal (3 x 3) rotation matrix that de- 

scribes the orientation of the (X(~!, V(1) ~(i) , " N i  ' L~N{ ) coordinate frame which has 
its origin at the centerpoint of the end effector of manipulator i in the world 
coordinates. 

4 . 2 . 2  M a n i p u l a t o r  d y n a m i c s  

This section presents the equations of motion of the individual manipula- 
tors. The composite dynamics of the manipulators are given by: 

[ JTw 0N1×6 ][ c1 ] (4.2) + 

where Ok×m denotes a (k x m) matrix of zeros and superscript T denotes 
a matrix transpose. The joint torques applied to the joint actuators of 
manipulator i are signified by the vector Ti = [~'tl, Ti2, . . - ,  Tig~] T" The 
(/~ × Ni) symmetric, positive definite inertia matrix is Di = Di(qi), and 
the Coriolis, centripetal, and gravity forces for manipulator i are described 
by the (N i x  1) vector Ci = Ci(qi, (li). 

Each manipulator imparts a contact force iWfgi,N~+l and a contact 
torque iWnN, N~+l to the object at and about the centerpoint of the end 
effector for manipulator i, respectively, as shown in Figure 4.2. i~fN~,Ni+l 
and i~nN~,N~+l are expressed in the world coordinates, and the subscript 
Ni, Ni + 1 signifies that the contact force or torque is transmitted from the 
Nith link of manipulator i to the (Ni + 1)th link, where the latter link is the 
held object itself. The (6 x 1) vector fci in eq. (4.2) signifies the generalized 
contact force imparted by manipulator i. It is defined by: 
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[~fN,,N,+I ] (4.3) 
fci  = iWnNi,Ni+l 

In eq. (4.2) , the ( N i x  6) transposed Jacobian matrix JT w = JTw(qi ) 
transforms the generalized contact force $2 imparted by manipulator i into 
the joint space. Jiw is assumed to possess full rank six. 

4 . 2 . 3  O b j e c t  dynamics 
The dynamics for the rigid object are obtained through application New- 
ton's and Euler's equations of motion. It is convenient to express these 
equations in a compact form: 

Y = L [ f~l ]fc2 (4.4) 

In eq. (4.4) , Y is a (6 x 1) vector representing the net force (and torque) 
acting at the center of mass of the object due to its acceleration and gravity. 
It is defined by: 

[mc,  03x3][ c] [mcg ] A[ c] 
Y = 03x3  Kc ~dc + ~cKc~)c L~Jc + ~cKc~dc 

(4.5) 
where Ik is a (k x k) identity matrix and where all Cartesian vectors are 
with respect to the world coordinate system ( X  w, Y~o, Zw )- In eq. (4.5) , 
mc is the mass of the rigid object, and Kc is the (3x3) symmetric inertia 
matrix of the object about its center of mass. The (3 x 1) vector g represents 
the gravitational acceleration of the object. The (6x 1) vectors [v T , w T ]T 
and [b T , &T ]T denote the Cartesian velocity and acceleration of the center 
of mass of the object, respectively, with (Vc, iJc) being the translational and 
(w~, &c) the rotational components. The (6 x 6) matrix A = A(mc, Kc) is 
a compact representation of the coefficient matrix of [b T , &T ]T in eq. (4.5) 

In eq. (4.5), (f~c Kcwc)iS a (3xl )  vector arising from expressing the vec- 

tor cross product (~7c x (Kc we)) in a matrix-column vector notation, where 
f~c is a (3 x 3) skew symmetric matrix [33]: 

O, -- ~cz, ~cy ] 
f~c = Wcz, O, -- Wc~ (4.6) 

-- b.)cy , 5dcx , 0 

2Generalized contact force will be referred to as contact force hereinafter. 
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and where aCe = [aCcz, aCcy, Wcz] T. 
The right side of eq. (4.4) represents the net force acting on the object 

at its center of mass due to the contact forces acting at the contact points 
between the manipulators and object. The (6 x 12) matrix L in eq. (4.4) 
is an explicit function of the (6 x 6) contact force transmission matrices L1 
and L2 [33]: 

L = [ L1, L2 ] (4.7) 

where matrix Li(i = 1, 2) is defined by [33]: 

Li ~- 

I3 03X3 

O, iWrz, -- iwry ] 
--iWrz, O, iwr. I3 
iwry, -- iwrx, 0 

I3 03x3 ] 
= Ei Ia 

(4.8) 
In eq. (4.8) , E/ = Ei(iWrz, i~r~, iWrz) is a (3 x 3) skew symmetric matrix 

arising from expressing the vector cross product (-iW~xiWfNi,Ni+l ) in a 
matrix-column vector notation, where - iWr represents a moment arm from 
point CMo to point of application of fci (see Figure 4.2). It should be 
mentioned that  Li = Li(qi) because iwr = iWr(qi) in accordance with 
eq. (4.1) . Interestingly, eq. (4.8) reveals that  Li is nonsingular and that  
its determinant is equal to one. 

In this chapter it is assumed that  the joint variables of the manipulators 
in the closed chain configuration are known through feedback of their sensed 
or measured values or by feedback of their calculated values in a forward 
dynamic simulation of the system. Thus the nonlinear terms {Di, Ci, Ji~} 
in eq. (4.2) are known quantities. Furthermore, it is assumed that  the 
object's mass, inertia, and geometric properties are known, and that  a 
trajectory for the object's center of mass has been specified. Thus matrix 
L and vector Y in eq. (4.4) are known quantities. 

4.3 A general  f ramework for load 
d i s tr ibut ion  

To solve the underspecified dynamic load distribution problem, a new vector 
variable e = [q, e2, . . . ,  e6] is introduced. Six position controlled degrees 
of freedom (DOF) are lost due to the closed chain configuration [33]. The 
number of components of e is equal to the dimension of the null space 
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of matrix L and reflects the fact that  the number of position controlled 
DOF lost is equal to the number of DOF gained for controlling the internal 
contact forces [18]. e parameterizes the internal contact force DOF and is 
defined by: 

e = M  

The (6 x 12) matrix M in eq. (4.9) 
composite matrix S, defined by: 

S =  M 

is nonsingular. 
It is convenient to partition the inverse of S into two matrices: 

L1 
f~2 ] (4.9) 

is selected such that the (12 x 12) 

(4.10) 

s-1 = [ , ,  9 ]  

where • and 9 are (12 x 6) matrices. Eqs. (4.10) and (4.11) 
matrix identities: 

(4.11) 

imply five 

L ~  = / 6 ,  L 9  = 06×6 ,  M ~  = 0 6 × 6 ,  M 9  = / 6 ,  e L  + 9 M  = /12 
(4.12) 

where, here again, Ik and 0k×t denote a (k x k) identity matrix and a (k x l) 
matrix of zeros, respectively. 

The identity L 9 = 06 × 6 reveals that  the column vectors comprising 9 
lie in and span the null space of L. Observing eq. (4.7) , an obvious choice 
for 9 is: 

9 = [ -L-~I 1 (4.13) 

Matrix 9 is not unique. Indeed, postmultiplying the choice for 9 in 
eq. (4.13) by an arbitrary (6 x 6) nonsingular matrix yields a new 9 which 
lies in the null space of L. In this chapter it is assumed that 9 -- 9(L1,  L2). 
Thus 9 ,  like L, is a known quantity. The designer chooses M to satisfy 
M 9 = /6. Then, given (L, 9 ,  M},  ¢ is determined based on the matrix 
identities in eq. (4.12) . These issues will be discussed later in this section. 

Eqs. (4.4) and (4.9) can be solved for the contact forces [31, 32]: 

[ fcl ] = ~ Y + 'I~ (4.14) 
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in which eq. (4.11) has been invoked. The second term {~ e) on the right 
of eq. (4.14) is the homogeneous solution to eq. (4.4) and is a component 

of [fT, fT ]  T which causes internal stress and torsion in the object but does 
not contribute to its motion since L ~ e  = 06×1. The first term {~Y} 
on the right of eq. (4.14) is a particular solution to eq. (4.4) and is the 

component of [f~T, f~T] T which causes the object to physically move, since 
L • Y -- Y. However, it will be shown in this chapter that  the particular 
solution to eq. (4.4) can contain a component which lies in the null space of 
L, and such a component causes internal stress and torsion in the object but 
does not contribute to its motion. This has been demonstrated previously 
in a dual manipulator context in [19] by a different approach which studied 
the characteristics of a class of pseudoinverses of L, but the approach given 
here is conceptually simpler. 

The symbolic solution for the contact forces given by eq. (4.14) is 
significant because it indicates that  the designer can specify the distribution 
of the payload's mass between the two manipulators by the choice of M 
and e. For example, since Y is known, matrix • governs the distribution 
of the payload among the motion inducing components in the contact force 
solution. 

4 . 3 . 1  I d e n t i f y i n g  m o t i o n  i n d u c i n g  a n d  i n t e r n a l  s t r e s s  

c o m p o n e n t s  o f  ((I) Y) 

Any vector in the 12-dimensional linear space describing the contact forces 
imparted to the object by the manipulators can be expressed as linear 
combinations of two orthogonal subspaces: the exact range space of L T 
and the null space • of L. It is convenient to introduce the basis V: 

v =  [L T, (4.15) 

It is easy to see that  the columns vectors comprising V span the 12- 
dimensional linear space. 

Matrix • can be expressed in terms of V: 

= LT(~ + @V (4.16) 

where a and 7 are (6 × 6) parameter matrices, respectively. It is easy to 
verify that  a = (L L T ) - I  and V = - M L T (L L T ) - I  by premultiplying 
eq. (4.16) by L and M, respectively, and noting eq. (4.12) . Substituting 
the solutions for {a, V} into eq. (4.16) yields [31]: 

= L T (L LT)  -1 - @ M L T (L  LT)  -1 (4.17) 
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Eq. (4.17) shows that ((I, Y) always contains a component {L T (L LT) -1 Y}  
which contributes to the object's motion, but it may also contain a com- 
ponent {-kO M L T (L L T ) - : Y }  which induces internal stress and torsion in 
the object in the general case. 

It is insightful to substitute for • in eq. (4.14) using eq. (4•17) : 

[ ] 1. • ' . -  0 

Eq. (4.18) describes all possible solutions to eq. (4.4) in terms of the basis 
V. Each solution in the family is distinguished by the designer's choice 
for the quantities {~, M, e} given {L, Y}. Interestingly, each and every 
distinct solution in the family has the identical object motion inducing 
component. Therefore the difference between any two distinct solutions 
lies in the null space of L. 

4 . 3 . 2  C h o o s i n g  m a t r i x  M 

Matrix S is defined in eq. (4.10). The purpose of this section is to determine 
a family of solutions for M which results in S being nonsingular and satisfies 
M • -- /6 when • is known• We then present three possible choices for 
M and calculate • for each of the choices. It is also shown how each choice 
for M can be obtained by selecting a parameter matrix in the family of 
solutions for M. 

M can be expressed in terms of the basis V defined in eq• (4.15) : 

M = EL + (~T (4•19) 

where f~ and ~ are (6 x 6) parameter matrices• It is easy to verify that 
= (~T ~)-1 by postmultiplying eq. (4.19) by • and observing eq. (4•12) 

• Substituting the solution for ~ in eq. (4.19) obtains: 

M = /~ L + (1I ~T ~)--1 lilt (4•20) 

When M is defined by eq. (4.20) , M T will always contain a component 
that lies in the null space of L and therefore S will be nonsingular• Indeed, 
eq. (4.20) describes a family of solutions for M, and each distinct member 
of the family is characterized by the designer's choice for 8- 

Example  1: Choosing M to obtain a previous result 

The dynamic load distribution problem that arises when two manipulators 
mutually lift a rigid object was not discussed in our earlier work [33] that 



110 _ _  Chapter 4, Load distribution and control of interacting manipulators 

modeled the closed chain configuration shown in Figure 4.1. The approach 
in [33] to modeling the dynamic coupling effects between the manipulators 
was to make the contact forces imparted by manipulator 1 implicit variables 
using the following procedure: (i) solve eq. (4.4) for f c l [=  L~  1 ( Y  - 
L2 fc2)] (ii) substitute for fcl into eq. (4.2) using its solution obtained in 
step i. The resulting equation represents the composite dynamics of both 
manipulators and the object and is an explicit function of .re2. The physical 
interpretation of this modeling procedure was not discussed in [33]. 

In this example it is shown that the result of [33] can be obtained by an 
application of the general load distribution procedure presented here. The 
modeling procedure in [33] is obtained by selecting matrices • and M to 
be: 

, = [ - L { - ' L 2  ] / 6  (4.21) 

M = [ 06x6, 16 ] (4.22) 

It should be noted that eq. (4.21) is obtained by postmultiplying the choice 
for • in eq. (4.13) by L2. Further, the choice for M in eq. (4.22) is obtained 
from eq. (4.20) by selecting fl to be: 

,/~ = (tI/T 1I/) -1L  T (L1LT) -1 (4.23) 

Substituting eqs. (4.21) and (4.22) into eq. (4.17) yields the solution 
for ¢: 

~ = [ L{-1 ]0ex~ (4.24) 

Substituting for {q~, ~} in eq. (4.14) using eqs. (4.21) and (4.24) and 
inserting the result into eq. (4.2) yields the model in [33] where e = fc2. 
The procedure in [33] has unknowingly distributed the load such that only 
manipulator 1 induces the object to physically move in space whereas the 
contact forces imparted by manipulator 2 are purely internal. In this ex- 
treme case, manipulator 1 bears the entire loa~. 

E x a m p l e  2: C h o o s i n g  M to  be  a funct ion  o f  cons tra ined  parame-  
ters 

Here • is defined by eq. (4.13). In this example matrix M is selected to be 
a function of the force transmission matrices {L1, L2} and two unknown 
scalar parameters {cl, c2} whose values are restricted as follows [31, 32]: 

cl + c2 = 1 (4.25) 
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Suppose M is chosen to be [31, 32]: 

M = [ - c 2 L 1 ,  clL2 ] (4.26) 

which is obtained from eq. (4.20) by selecting ~ to be: 

--~ e l / 6 -  (lilTs) -1 (L2LT) -1 (4.27) 

The symbolic solution for • can be determined by substituting for ~ and 
M in eq. (4.17) using eqs. (4.13) and (4.26) , respectively, and simplifying: 

= f Cl Li -1 ] (4.28) 
c2 L f  1 j 

The parameters {cl, c2} will be treated as constants to be selected by 
the designer in the explicit internal force control approach given in this 
chapter. As an example, the solution for • given in eq. (4.24) is just a 
special case ofeq. (4.28) with {ci = 1, c2 = 0}. Alternatively, {cl, c2} are 
viewed as variables when determining a solution for the internal contact 
forces by optimization techniques in [31]. 

It is repeated for emphasis that only the internal component of the 
particular solution (~ Y) to eq. (4.4) is a function of M. Therefore the 
terms in eq. (4.18) that are explicit functions of {cl, c2} only affect the 
internal stress and torsion in the held object when eq. (4.26) applies. 

Example  3: Choosing M so that M T lies in the null space o f  L 

This example is not dependent on a specific choice for matrix ~. Suppose 
that M is determined by choosing/~ = 06×6 in eq. (4.20) : 

M = (4 .29 )  

When eq. (4.29) applies, M T lies in the null space of L, i.e., L M T -- 06×6 
and eq. (4.17) immediately simplifies: 

= L T (L  LT)  - I  (4.30) 

Since the internal force component of (~)Y) has vanished, the terms 
(~ Y) and (k~ e) in eq. (4.14) are now mutually orthogonal because: 

(~T~ __ 06×6 (4.31) 

and orthogonality is the strongest form of linear independence between a 
pair of vectors [37]. 

The modeling of the kinematic coupling effects occurring between the 
manipulators is discussed next. 
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4.4 Model ing  of  kinematic coupling effects 

There are two purposes for this section. First, a linear transformation 
relating the Cartesian velocity vector of the object and the vector of joint 
velocities for both manipulators will be derived. This relationship will be 
useful for expressing the object's dynamical equations in the joint space. 
Second, a set of rigid body kinematic constraints which must be satisfied 
by the joint velocities of the manipulators will be derived. 

A linear relationship between the Cartesian velocity of the object at 
point CMo and at the point of application of the contact force imparted by 
manipulator i, i.e., the centerpoint of the end effector, is established using 
the theory of infinitesimal rotation of a rigid object [38, 33]: 

where the (3 x 1) vectors vi and 02i represent the Cartesian translational 
and rotational velocities, respectively, of the end effector of manipulator i 
in the world coordinates. 

Substituting for L T in eq. (4.32) using eq. (4.8) verifies that 02i = wc as 

expected. Indeed, the Cartesian angular velocities of the end effectors and 
object are identical due to the assumption that the manipulators securely 
hold the object without any slippage. 

Combining the two sets of equations obtained from eq. (4.32) with 
i = 1,2 gives: 

Vl 

021 

v2 

022 

L T 02c Wc 

There is a well specified solution for the object velocities Iv T, T T W c ] based 
on eq. (4.33) because L has full rank six and Iv T, 02T] T lies in the exact 
range space of L T. The solution is obtained by premultiplying eq. (4.33) 
by matrix <]~T and noting eq. (4.12) : 

Vl 

022 

Three distinct solutions for • were obtained in the three examples of 
Section 4.3 given choices for if' and M. It is straightforward to verify that 
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substituting for (I)T in eq. (4.34) using each of the three solutions (for q)) 
v T and applying eq. (4.32) yield [ c , wT] T vT = [ c ,  ~]~- 

The velocities of the end effector of manipulator i in the Cartesian 
world coordinate frame and the joint space are related through the (6 × Ni) 
Jacobian matrix Jiw, i.e.: 

[ vi ] w i  = J~w0i (4.35) 

Substituting for [v T, wT] T in eq. (4.34) using eq. (4.35) with i --= 1, 2 
relates the Cartesian velocities of the object at its center of mass to the 
joint space: 

[vcl oT[ 00xN1 02 ,436, 
The (12× (?/1 + N2)) composite Jacobian matrix J = J(ql ,  q2) in eq. (4.36) 
has full rank twelve since it is assumed that  Jiw has full rank six. 

It is easy to see from Figure 4.1 that  the end effectors of the manipu- 
lators cannot move independently when they mutually hold the rigid body 
object. The constraint between the Cartesian velocities of the end effectors 
is obtained by premultiplying eq. (4.33) by ~/T and noting eq. (4.12) : 

Vl 

koT wl = 06×I (4.37) 
V2 

~d 2 

The constraint can be expressed in the joint space by substituting for 
v T T T [ i , w i ]  ineq.  (4.37) usingeq. (4.35) w i t h i  = 1,2: 

[0110  = [01 ] = 00 lq  
where the (6 x (N1 + N2)) matrix A = A(ql,  q 2 ) ( =  ~ T j )  is assumed to 
have full rank six. 

Let k j  denote the kth column vector of J,  (k = 1, 2, . . . ,  N1 + N2). 
Since k j  is a twelve dimensional vector, it can be expressed in terms of the 
basis V defined in eq. (4.15) : 

k j  .= L T  o~ 4- q2"/ (4.39) 

where ~ and 3' are (6 x 1) parameter vectors. If 3' = 06×1 then the kth 
column of J lies in the null space of ~I/T because L @ -- 06x6. It follows 
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that  the kth column of A ( =  ~ T k j )  = 06xl. In this case, none of the 
kinematic constraints in eq. (4.38) would be a function of the kth element 

of the vector of joint velocities [a T, aT] T. Therefore it is further assumed 
that  each column vector comprising J has a nonzero component lying in 
the null space of L. 

Eq. (4.38) comprises six scalar constraint equations characterizing the 
kinematic dependence among the joint velocities when the manipulators 
operate in the closed chain configuration. Each independent scalar con- 
straint contained in eq. (4.38) causes the loss of one position controlled 
DOF in the closed chain [38]. Indeed, the number of positional DOF in the 
entire closed chain system is (N1 + N2 - 6). This is significant because the 
number of positional DOF specifies the number of independent ways that  
the dual-manipulator closed chain system can move without violating the 
constraints in eq. (4.38) . 

A dynamical model for the multiple manipulator system in the joint 
space is presented next. 

4.5 Derivat ion of  rigid b o d y  m o d e l  in joint  
space 

The two manipulators and object form a single closed chain mechanism, 
and a rigid body model governing the motion of the closed chain and the 
behavior of the internal component of the contact forces is derived in the 
joint space in this section. In the ensuing development it is useful to define 
N12 = N i  + N2 • 

The first step in deriving this model is to substitute for [ fT,  ]T] T in 
eq. (4.2) using eq. (4.14) : 

[ol 0Nlx  ] [cl] 
7" = ON2×N1 D2 q + Ca + d T o  y + e 

T T where J is defined in conjunction with eq. (4.36) and where q = [qT q2 ] , 
• T T ..r T [TI T, rT] T. Interestingly, it is = [q T,q2]  , q = [qT, q2] , and r = 

observed that  the coefficient matrix of e in eq. (4.40) is just the transpose 
of the coefficient matrix of the vector of joint velocities in the kinematic 
constraints given by eq. (4.38) . 

Vector Y in eq. (4.40) is a function of the Cartesian space variables 
{we, ~c, o)c} according to its definition in eq. (4.5) . Y can be expressed 

in the joint space by substituting for wc and [~3~, &T] w in eq. (4.5) using 
eq. (4.36) and its time derivative, respectively: 
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- meg ] r + + (  ) [ 03×3, I3 ]+T++ 
(4.41) 

In eq. (4.41) , the (12 x 6) and (12 x N12) matrices ~)[= (O+/Oq)q] and 
J [= (OJ/Oq)q], respectively, are both functions of the variables {q, 4}. 
The occurrence of wc on the right of eq. (4.5) has been replaced by 
[03x3, /3] +T Jq  in eq. @41) . The components {wc:, wc~, wcz} in ma- 
trix f~ are expressed in the joint space using this transformation, so ~c = 
f~c(q, q) in eq. (4.41). 

Substituting for Y in eq. (4.40) using eq. (4.41) and rearranging terms 
yield the closed chain dynamics in the joint space: 

T = D q  + C + Hm 4 + Hv + A T e  (4.42) 

The (N12 x N12) matrix D = D(q) in eq. (4.42) is the inertia matrix for 
the entire system. It is defined by: 

[ D1 0NI×N2 ] + j T ~ A ~ T  J (4.43) 
D = ON2xNI D2 

Since D~ is positive definite, the first term to the right of eq. (4.43) is 
positive definite. The second term to the right of eq. (4.43) is positive 
semidefinite. Therefore D is positive definite because the sum of a positive 
definite matrix and a positive semidefinite matrix is positive definite [37]. 

The (N12 × 1) vector C = C(q, 4) is defined by: 

C "~- [ C1 ]C2 (4.44) 

The (N12 × N12) matrix Hm = Hm(q, q) and the (N12 x 1) vector 
Hi, = Hv(q, 4) in eq. (4.42) are defined by: 

Hm : jT+  A (@T~ + +T j )  (4.45) 

[ - m e g  ] (4.46) Hv = jT¢~ flcKc [ 03×3, 13 ] +.Tjq 

It should be mentioned that the closed chain dynamical model derived in 
[32] is just a special case of eq. (4.42) with {~, ¢} defined by eqs. (4.13) 
and (4.28) , respectively. 

Eq. (4.42) accounts for the dynamics of all components of the closed 
chain but does not satisfy the rigid body kinematic constraints in eq. (4.38) 
. Indeed, eq. (4.42) , along with the time derivative of eq. (4.38) : 
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Aq + diq = 06xl (4.47) 

comprise a joint space model which governs the motion of the closed chain 
dual manipulator system and the internal component of the contact forces. 
The (6 x N12) matrix A [= (OA/Oq)dl] in eq. (4.47) is a function of the 
variables {q, 4}. 

The form of eqs. (4.42) and (4.47) has been obtained for a broad class 
of constrained rigid body mechanical systems in [39, 40] using the method 
of Lagrange undetermined multipliers [38]. However, it is very unclear 
how the issues of dynamically distributing the load and relating e to the 
internal contact forces would be addressed if the modeling techniques given 
in [39, 40] were applied to the multiple manipulator closed chain considered 
here. 

To discuss the application of the joint space model to accomplish a for- 
ward dynamics simulation of the system, it is useful to combine eqs. (4.42) 
and (4.47) into a single equation: 

D A T r - -  

e - A c~ ] (4.48) 

In the forward dynamics problem, the (N12 + 6) quantities {~, e} are un- 
knowns and the joint torques T are specified. A symbolic solution for the 
variables {~, e} based on eq. (4.48) can be obtained by inverting the coef- 

ficient matrix of [~T, ET] T using inverse by partitioning [37]: 

= D - 1 A  (V -- C - Hm~l - H,,) - D - 1 A T ( A D - 1 A T ) - I A ~ I  (4.49) 

~. : ( A n  -1 AT)  -1 { A n  -1 (T -- C - Urea - Hv) + ff~(~} (4.50) 

The solution for e in eq. (4.50) is based on the invertibility of the quantity 
( A D  -1 AT). D -1 is positive definite because D is. Given that A has 
full rank six, (A D -1 A T) is positive definite and therefore nonsingular. In 
eq. (4.49) , A is a (N12 × N12) matrix defined by: 

A = I l v 1 2  - A T ( A D  -1 AT) - 1 A D  -1 (4.51) 

where, here again, N12 = N1 + N2 and IN~2 signifies an (N12 ×N12) identity 
matrix. By a mathematical observation, A is idempotent, i.e., A 2 = A, 
and therefore singular, since the only nonsingular idempotent matrix is the 
identity matrix [37]. It has been shown in our earlier work [33] that  the 
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rank of A equals the number of position controlled DOF in the closed chain, 
i.e., r a n k { A }  = N12 - 6. 

While the joint space model is useful for understanding how the sys- 
tem evolves with time in response to applied joint torque inputs, it is not 
convenient for the controller design process. Indeed, the number of scalar 
equations in eq. (4.48) (or in eqs. (4.49) and (4.50) , which may also be 
viewed as a rigid body model) exceed the number of joint torque inputs. 
However, it is important  to note that  there is a well specified solution for 
7- based on the rigid body model. Since the rank of A equals (N12 - 6) 
and D is positive definite, the rank of the coefficient matrix (D - I  A) of T 
in eq. (4.49) is also equal to (N12 - 6) [41]. Therefore an additional six 
independent scalar equations that  are linear functions of T are needed to 
yield a well specified solution for the Nm joint torques T. The six equations 
are provided by eq. (4.50) . Rather  than at tempting to design a model 
based controller by solving eqs. (4.49) and (4.50) (or eq. (4 .48))  for the 
joint torques, we will derive a reduced order model and design a control 
architecture based on it. This is discussed next. 

4.6 R e d u c e d  order  m o d e l  

The joint velocities and accelerations form coupled sets of generalized ve- 
locities and accelerations for describing the configuration of the closed chain 
system, respectively. Linear transformations which express these variables 
in terms of new independent generalized velocities and accelerations are de- 
rived and then applied to eliminate {0, q} from the closed chain dynamical 
equations given by eq. (4.42) in this section. Then, building on the seminal 
work in [39], linear transformations are applied to eq. (4.42) to separate 
it into two sets of equations. The sets of equations govern the motion of 
the closed chain and the behavior of the internal component of the contact  
forces, respectively. 

A new vector variable ~ = [Vl, u2, . . . ,  //N12-6] T referred to as the 
pseudovelocity vector [42, 43, 40] is introduced. The pseudovelocity vector 
is defined by: 

= B q  (4.52) 

where the ((N12 - 6 )  × N12) matrix B = B(q)  selected so that  the composite 
(N12 × N12) matr ix U, defined by: 
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is nonsingular, where here again, A is defined in conjunction with eq. (4.38) 
and N12 = N1 + N2. 

It is convenient to partition the inverse of U into two matrices: 

U -1 = [ T ,  F ] (4.54) 

where T = T(q) is an (N12 x 6) matrix and F = F(q) an (N12 x (N12 - 6)) 
matrix. Eqs. (4.53) and (4.54) imply five matrix identities: 

A T  = Is 

A F  = 06×(N~2-6) 

B T = O(N12-6)x6 

B F = IN1~-8 

T A + F B = INI~ 

(4.55) 

The identity A F  = 06×(N12-6) reveals that  the column vectors com- 
prising F lie in and span the null space of A. F can be determined by the 
following procedure. Noting that A = kI/T J and L • = 06×6, six vectors 
lying in the null space (of A) are given by: 

j T  (]  j T ) - I  LT 

If N1 -- N2 = 6, then the above set of vectors spans the null space 
and is assigned to F. If one or both of the manipulators is kinematically 
redundant,  then (N12 - 12) additional vectors are needed to span the null 
space. By a mathematical obserwation, (N12 - 12) is the dimension of the 
null space of J ,  and any vector lying in the null space of J also lies in 
the null space of A. The null space of J can be determined by the zero 
eigenvalue matrix theorem [44]. 

All vectors lying in the N12-dimensional articular space may be ex- 
pressed in terms of the following basis Z: 

z = [ r ] (4.56) 

It is straightforward to verify that T can be expressed in terms of this 
basis: 

T = A r (AAT) -1 - F B A  r (AAT) -1 (4.57) 

Eqs. (4.38) and (4.52) can be solved for the joint velocities: 

4 = r (4.58) 
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Differentiating eq. (4.52) with respect to time establishes the linear 
relationship between the pseudoaccelerations and the joint accelerations: 

= B~ + /}t) (4.59) 

The ((N12 - 6) × 5/12) matrix/3 [= (OB/Oq)(l] in eq. (4.59) is a function 
of the variables {q, q}. 

Eqs. (4.47) and (4.59) can be solved for ~/: 

= [T i + rB]r  (4.60) 

where eq. (4.58) has been used. As a result, the matrices A [= (OA/Oq)F u] 
and/~ [= (OB/Oq)r u] in eq. (4.60) are now functions of {q, u}. 

A solution for ~ may also be obtained by differentiating eq. (4.58) with 
respect to time: 

= FP + Fu  (4.61) 

where the (N12 × (Me - 6)) matrix F[= (OF/Oq)F u] is a function of the 
variables {q, u}. 

Eqs. (4.60) and (4.61) are mathematically equivalent because of the 
following matrix identity: 

= - [T.~i + r/~] F (4.62) 

Eq. (4.62) is obtained by differentiating the identity: T A + F B = IN12 
with respect to time and postmultiplying the resulting equation by F. 

Substituting for q in eq. (4.38) using eq. (4.58) yields the kinematic 
constraint equation A F u = 06× 1, which is identically true since A F = 
06×(N1~-6)- Therefore, the kinematic constraints at the velocity level axe 
satisfied regardless of the values of the pseudovelocities when eq. (4.58) 
applies. Likewise, substituting for {q, q} in eq. (4.47) using eqs. (4.58) 
and (4.60) reveals that the kinematic constraints at the acceleration level 
are also satisfied regardless of the values of {u, ~}. These findings lead to 
the observation that expressing the closed chain dynamical model given by 
eqs. (4.42) and (4.47) in terms of the pseudovariables results in eq. (4.42) 
alone representing a rigid body model of the multiple manipulator system: 

c -  + A + r . ] -  "m)r  (4.63) 

The number of equations in eq. (4.63) equals the sum of the position 
controlled DOF and the internal force controlled DOF in the closed chain 
system. 
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It is important to note that  eq. (4.63) is still a nonlinear function of 
the joint positions q, i.e., D = D(q), C = C(q, u), Hm = Hm(q, v), 
and H ,  = H,,(q, v). Thus it is difficult to perform a forward dynamics 
simulation of the system based on eq. (4.63) . However, as will now be 
shown, performing a linear transformation on eq. (4.63) makes the resulting 
set of equations valuable for controller design purposes. 

Premultiplying eq. (4.63) by the nonsingular matrix IF, D -1 AT] T and 
utilizing eq. (4.56) separates the model into two sets of equations gov- 
erning the position controlled DOF and the internal force controlled DOF, 
respectively: 

(4.64) 
A 9  -1 A T e  = A D  -1 {T - C -  Hv - g m F u }  + A F u  (4.65) 

The (N12 - 6 )  scalar equations comprising eq. (4.64) constitute the reduced 
order equations of motion for the closed chain system. Vector variable e, 
which parameterizes the internal force controlled DOF, has been eliminated 
from eq. (4.64) which in turn is calculated as a function of the variables 
(q, u, 7) using eq. (4.65) . Since D is positive definite and F and has full 
rank (N12 - 6 ) ,  then (F T D F) is positive definite and therefore nonsingular. 
(A D -1 A T) is positive definite and nonsingular by a similar argument given 
below eq. (4.50) . Thus eqs. (4.64) and (4.65) can be solved for ~ and e, 
respectively. 

Given the separated form of the reduced order model, we can now pro- 
ceed with the controller design. This is discussed next. 

4 . 7  C o n t r o l  a r c h i t e c t u r e  

The problem considered is to derive a control law for the N12 joint torques 
~- = [T T, TT] T SO that  the variables {e, v} quantifying the internal contact 
force- and position- controlled DOF can be controlled independently. This 
can be accomplished by applying the control architecture proposed in [33] 
to completely decouple eqs. (4.64) and (4.65). The composite control {~-} 
is the sum of an (N12 x 1) primary controller r p and an (N12 × 1) secondary 
controller 7 -s which are defined by: 

T p = ÷ c ÷ . v ,  (4.66) 

T s = A TT; + D F T ;  (4.67) 
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In eq. (4.67) , T] and ~-; are (6xl )  and ((N12 - 6 ) × 1 )  vectors, respectively, 
representing control variables to be determined. 

The composite control (T = 7 p + T s ) defined by eqs. (4.66) and (4.67) 
is substituted into eqs. (4.64) and (4.65) . The resulting equations, under 
the assumption of perfect knowledge of the nonlinear terms in the model, 
leads to the closed loop system: 

-- 7-;, (4.68) 

e --- T~ (4.69) 

in which eq. (4.56) has been invoked. Derivation of eqs. (4.68) and (4.69) 
is based on the quantities {(FTD F),  ( A  D -1  A T ) }  being invertible. It was 
shown earlier that  these quantities are positive definite and therefore non- 
singular. 

Suppose ~-; is selected to servo the pseudovariable error, and ~-~ for ser- 
voing the internal contact force error. Since eqs. (4.68) and (4.69) are 
completely decoupled, the secondary controller components T; and T} are 
non-interacting controllers for position and internal contact force, respec- 
tively. 

It was claimed in [33] that  the control architecture T = T p + T s decou- 
pled the control of the pseudovariables and an independent subset of the 
contact forces, namely those imparted by manipulator 2. As shown here 
in Example 1 of Section 4.3, the modeling procedure in [33] unknowingly 
distributed the toad such that  e = fc2, i.e., the contact forces imparted 
by manipulator 2 are purely internal. The control law ( r  = T p "~- T s )  de- 
fined by eqs. (4.66) and (4.67) in fact decouples the position- and internal 
force-controlled DOF. The physical insight into the decoupling was first 
identified in [34]. It should be mentioned that  a similar decoupling control 
architecture was developed independently by Wen et al. in [17]. 

4.8 Conc lus ions  

The chapter has reviewed a method for modeling and controlling two se- 
rial link manipulators which mutually lift and transport a rigid body ob- 
ject in a three dimensional workspace. The system was viewed as a single 
closed chain mechanism and it was assumed that  there is no relative mo- 
tion between the end effectors and object. A new vector variable e which 
parameterizes the internal contact force controlled degrees of freedom was 
introduced. It was defined as a linear function of the contact forces that  
both manipulators impart to the object using eq. (4.9) . A family of so- 
lutions to the dynamic load distribution problem was obtained by solving 



122 _ _  Chapter 4. Load distribution and control o[ interacting manipulators 

the object's dynamical equations and eq. (4.9) for the contact forces. The 
motion inducing component of every member of the family was shown to 
be identical. The internal component of the general load distribution solu- 
tion was shown to contain two terms: {~ e} and { -  • M L T (L LT) -1 Y} .  
Three choices for matrix M which transforms the contact forces to define 
e in eq. (4.9) were suggested. Interestingly, the third choice caused the 
latter internal force term to vanish and resulted in the motion inducing 
and internal components of the solution being mutually orthogonal. 

The kinematic coupling effects between the manipulators due to the 
shared payload were modeled. First, the Cartesian velocity of the object at 
its center of mass was expressed as a linear function of the joint velocities 
of both manipulators. Then a set of six rigid body kinematic constraints 
restricting the values of the joint velocities was derived. 

A rigid body dynamical model for closed chain system consisting of 
(NI + N2 + 6) second order differential equations was first derived in the 
joint space. The upper (N1 + N2) equations in the model are the closed 
chain dynamical equations. They were derived by substituting the load 
distribution solution for the contact forces into the manipulators' dynamical 
equations. The resulting equations are linear functions of the Cartesian 
vector Y defined in eq. (4.5) . We proposed here a generalization of our 
previous methods [32, 33] for expressing Y in the joint space where Y = 
Y(q, q, ~) becomes an explicit function of the matrix ~. Our previous 
results can be obtained by specifying choices for • in eq. (4.41) . 

The last six equations in the joint space model are the kinematic ac- 
celeration constraints. By expressing the model in the pseudospace, it was 
shown that these last six equations are satisfied regardless of the values of 
the pseudovariables. Therefore the upper (N1 + N2) equations of the model, 
when expressed in the pseudospace, comprise a rigid body model for the 
system. Linear transformations were applied to the (N1 + N2) equations 
in the model to obtain reduced order equations governing the motion of the 
system and a separate set of equations governing the internal components 
of the contact forces. Both sets are functions of the joint torques of both 
manipulators, but only the latter is a function of e. The control architec- 
ture originally proposed in [33] was applied to completely decouple the two 
sets of equations comprising the separated form of the model. As a result, 
the pseudovariables and the elements of e are controlled independently. 
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Chapter 5 

Mult i - f ingered hands: 
A survey 

Humans have evolved as the dominant species on the planet in part because 
of their skills in fine manipulation using their multifingered hands. In recent 
years, there has been much activity in the design, analysis, and control of 
artificial multi-fingered hands, and corresponding research in the area of 
machine dexterity. This chapter presents a brief survey of these efforts, 
and attempts to provide an extensive bibliography of the area. 

5.1 R o b o t  hand hardware  

We begin with a brief review of the state of the art in robot hand hard- 
ware. In the last fifteen years, significant progress has been made in the 
development of dextrous robot end effectors, which previously were largely 
constrained to variants of the parallel jaw gripper. Some specialized single 
degree of freedom grippers have been successfully introduced. However, 
these are largely limited to the case where the objects to be grasped are 
in a small, well-understood set, and are not truly dextrous in the general 
sense. 

Some early three-fingered hands, such as the Jameson Hands [47] began 
the trend of development of more sophisticated end effectors. Numerous 
multifingered hands have since been built and successfully demonstrated, 
notably the Salisbury hand [81, 102, 111] (Figure 5.1) and the MIT/Utah 
hand [55, 109, 116] (Figure 5.2). 

These two hands have become the standards for researchers involved in 
robot hand algorithm development and laboratory experimentation, partic- 

129 
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Figure 5.1: Salisbury Hand photograph (courtesy of NASA). 

Figure 5.2: MIT/Utah Hand photograph (courtesy of NASA). 
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ularly in the USA. Other hands of note include the Darmstadt Hand [13], 
the Karlsruhe hand [134], the Bologna Hand [82], the Anthrobot Hand [2], 
the Belgrade-USC Hand [105] and the Waseda series of hands [63]. Design 
and analysis of new hands continues [35, 36, 77, 120]. 

A wide range of design strategies have been followed in the production of 
these hands. There are three [13, 77, 81, 82, 120], four [55], and five-fingered 
[2, 36, 63] hands. A number of different arrangements fo the fingers have 
been adopted, although the most popular arrangement by far mimics that  
of the human hand, with a ' thumb' opposing two or more 'fingers'. Some 
hands are tendon-driven [2, 13, 55, 81, 82], and some powered by actuators 
in the hand unit itself [36, 77, 120]. Electric motors [2, 77, 81, 82, 120], 
hydraulics [55], and pneumatic [55] power units have been employed as 
actuation devices. 

Numerous different types of sensors have been suggested and imple- 
mented on robot hands. For finger control, in addition to joint position 
sensors (encoders, potentiometers, Hall Effect sensors, etc.), a common re- 
mote sensing mode has been that  of force sensing via strain gages [13]. In 
some cases the strain gages are installed directly at the fingers themselves 
[77, 120], and in other cases they have been mounted remote from the hand, 
sensing forces via tendon tensions [81]. 

For environmental sensing and measurement, various contact and non- 
contact sensors have been proposed. These range from resistive and capac- 
itive fingertip sensors or sensor arrays [42] to infrared and other proximity 
sensors at the finger joints and elsewhere [77]. Vision has also been success- 
fully used [77]. Contact sensing is a particularly difficult issue, since our 
intuition about hand sensors is based on the existence of a rich, dense, and 
highly varied set of sensors embedded in the skin of human hands [42]. Al- 
though tactile sensing technology is improving rapidly [7], it will be a long 
time before robot hands can rival human hands for sensor quantity and 
variety. This lack of sensor richness has proved an obstacle to robot hand 
development, however, numerous creative solutions are being developed. 

With the exception of the Barrett hand [120], which has been designed 
specifically for industrial applications, and possibly the Belgrade-USC Hand 
[105], most of the above hands have been confined to the laboratory at the 
time of writing, and this trend is likely to continue. There are numerous 
reasons for this. Many of the hands (including the Salisbury and MIT/Utah  
hands) were designed to be research testbeds, supporting theoretical and 
algorithmic research rather than being immediately practical devices. In 
addition, many of the current generation of hands have bulky remote actu- 
ation packages (the Barrett Hand and the recent self-contained Hirzinger 
hand [35] are notable exceptions) which make transition to applications dif- 
ficult. Reliability, control interfaces, and a lack of good sensory capabilities 
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are also issues of concern. 
However, another key obstacle, which we will concentrate on in the fol- 

lowing, has been the sheer complexity involved in modeling and control of 
dextrous muttifingered tasks. Although the efficient use of multifingered 
hands is familiar to almost all humans, the understanding and translation 
of this skill to robot hands is a significant and fascinating problem. In the 
following section, we will review some of the issues which make multifin- 
gered manipulation a unique undertaking. The remaining sections in this 
chapter attempt to provide a brief summary of the efforts researchers have 
made to address these issues to date. 

5.2 Key issues underlying multifingered 
manipulation 

Given a particular robot hand, the kinematic and dynamic (if desired) 
models of each finger can be readily obtained using techniques previously 
established for robot manipulators. However taking the next step, and 
modeling dextrous multifingered manipulation itself, is not an trivial un- 
dertaking. The essential difficulty is in modeling the interaction between 
the fingers and the object. 

Successful multifingered grasping can be viewed as an extension of the 
case of cooperation among multiple manipulator arms. The essential differ- 
ence lies in the nature of the contacts between the manipulators (fingers) 
and the grasped object. For the case of cooperating robot arms, where each 
arm has a solid grasp of the object, there is an extensive body of literature 
[22, 72, 93, 97, 119, 127, 128, 132, 143]. and modeling of the situation is 
fairly well understood [28, 46, 65, 67, 71, 131, 133, 135]. 

However, for the case of multi-fingered manipulation, the situation is 
complicated by the fact that the fingertips are not solidly attached to the 
held object, as in the typical multi-arm coordination problem. The whole 
essence of dextrous muttifingered manipulation lies in the ability of the fin- 
gertips to move relative to a held object. This causes extra complications in 
the analysis - on the other hand, this releasing of constraints (theoretically 
allowing a much wider class of manipulation with simpler mechanisms) is 
exactly what makes dextrous manipulation with fingers such an attractive 
goal! 

Thus it is immediately clear that a clear understanding of the nature 
of contact conditions (the geometry and physics of the constraints imposed 
between classes of fingertips and objects in contact) is a critical prerequisite 
for the development of motion and control algorithms for multifingered 
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hands. Analysis of contact conditions and geometries has been the subject 
of considerable research in the community. A brief review of these efforts 
follows. 

5 .2 .1  C o n t a c t  c o n d i t i o n s  a n d  t h e  r e l e a s e  o f  

C o n s t r a i n t s  

From the above discussion it is clear that for multifingered grasping, a crit- 
ical issue is the knowledge and modeling of the contact conditions present 
for a particular hand and held object. The existence of unconstrained de- 
grees of freedom between the fingers and a held object allow rolling (relative 
rotational motion between the bodies) and sliding contacts (relative trans- 
lational motion), and/or combinations of the two. This extra freedom in 
the contact conditions for fingers in general allows the possibility of more 
sophisticated manipulation than in the cooperating arm case, but at the 
cost of more complex planning and control requirements [114]. 

Significant early work concentrated on the kinematic constraints im- 
posed at a contact, for different types of fingertip and object geometry [7]. 
Frictionless and frictional cases were explored. For example, a frictionless 
point contact (hard finger) model formally constrains only one direction 
of motion, where a soft finger contact (with friction) constrains at least 
four. Ultimately, complete tables have been set up detailing the kinematic 
constraints for different geometries [81]. 

The imposition of constraints by the existence of non-trivial contact 
conditions also complicates the static and dynamic analysis. In contrast to 
the cooperating arm case, fingers cannot impart forces and moments in ar- 
bitrary directions at the contact point. For example, a point contact model 
(hard finger) allows only forces to propagate through the contact points [15], 
where a soft finger constraint permits some moments to propagate. This of 
course again complicates the planning and control of multifingered grasps. 
However, since the static constraints imposed for a given finger/object con- 
tact are dual to the kinematic constraints, they can be detailed in a similar 
fashion. 

At this time, the modeling of contact conditions and their constraints 
is a fairly well understood issue [81]. This is important since the effects of 
non-trivial contact conditions pervade almost all aspects of multifingered 
grasping research as we will see. In the following section, we review some 
of the areas of multifingered robot grasping that have occupied significant 
attention in the last decade or so. 
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5.3 Ongoing research issues 

Recent research efforts in multifingered robot hands can be broken down 
into several themes, according to which sub-problem of multi-fingered ma- 
nipulation is being addressed. In the following, we attempt to present an 
overview of the main research themes. 

5 . 3 . 1  G r a s p  s y n t h e s i s  

The first natural question to investigate for multifingered hands involves 
how to configure the fingers of the hand when grasping an object. This is 
the problem of grasp synthesis, or grasp planning, and can be restated as 'at 
which points on the object should the fingers be placed?'. Notice that  this is 
an issue that  is 'natural '  to humans, who grasp most objects instinctively. 
However, for robot hands (some of which have very different kinematic 
arrangements of the fingers than human hands) this is a non-trivial issue. 
Many researchers have concentrated on grasp synthesis [26, 30, 84, 103, 122] 
and planning [10, 25, 41, 43, 106, 140]. Much of this work has focused on 
matching the geometry of the hand to that  of an object to be grasped. 

Additional work has focused on grasp analysis [38, 64, 101,110]. Various 
grasp quality measures have been proposed [21, 75, 121], in order to rate 
different possible grasp choices. 

For example, in [75], Li et al. define three different grasp quality mea- 
sures. Based on a definition of stability requiring the grasp geometry to 
allow the fingers to balance disturbance forces in all directions (under fric- 
tion), a worst case grasp measure in [75] was based on the smallest singular 
value of the Grasp Matrix (which will be discussed in more detail in the 
next section). A second grasp measure was defined in [75] as the volume 
(in object space) of object forces and moments which were achievable with 
reasonable finger forces. 

These two measures are functions purely of the geometry of the grasp. 
Finally, a third grasp measure in [75] was defined to incorporate the desired 
task into the description. For this measure, an alignment condition between 
an ellipsoid (representing the task) in object space and an ellipsoid derived 
from the grasp geometry (representing the ability of the grasp to manipulate 
in different directions) was evaluated. Grasps with closer alignments are to 
be preferred. For more details, see [75]. 

Some measures developed for use in other robotics scenarios have been 
adapted to the multifingered case. tn the same way that  manipulability 
and force ellipsoids, which give a geometric sense of the quality of a robot 
configuration, have been extended to the multiple armed case [23, 24], dy- 
namic impact ellipsoids can be defined for multifingered grasps [129]. It is 
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shown in [129] how these ellipsoids can effectively and intuitively distinguish 
between 'good' and 'bad' grasps from the point of view of impact. 

One notion underlies much of the above work, the notion of grasp stabil- 
ity. Clearly it is usually desirable to choose a grasp that is 'stable', in some 
sense, in order to maintain the grasp of an object, possibly under external 
disturbances. Evaluation of grasps leads naturally to the issue of grasp 
stability [40, 49, 86, 88, 123], which can be expressed in several ways. A 
fundamental question in this regard is that of how many fingers are neces- 
sary in order to stably grasp a given object, and where these fingers should 
be placed. This is perhaps the area of multifingered hand research in which 
the most complete body of underlying theory has been developed. Some of 
the basic results are reviewed in the following. 

5 .3 .2  G r a s p  s t a b i l i t y  

Key questions in this area include the issue of how many fingers or contacts 
are required to constrain a given object, under various contact conditions 
(frictionless point contact, etc.) Significant work in this area has established 
bounds on the number and type of contacts [80, 94, 108]. 

The definitions of Force Closure and Form Closure Grasps have emerged 
from these works in the last several years [6, 104, 107, 137]. At this time, 
the definitions of Form and Force Closure, and their interrelationship are 
the subject of strong debate. However, one definition that seems to be 
generally accepted [7] defines Form Closure (or complete constraint) as the 
ability of a grasp to prevent motions of the object, relying on only unilat- 
eral, frictionless contact constraints. Force Closure, on the other hand, is 
defined in [7] as the situation where motions of the object are constrained 
by suitably large contact forces of the grasp (usually considering friction). 

As an example consider the Figure 5.3. The figure shows a three-fingered 
grasp of a planar circle, or disk. The grasp is not form closure in the sense 
above since a moment about the center of the circle can not be resisted by 
the fingers (with frictionless contact). However, the grasp is force closure 
under friction, since in this case the fingers can 'squeeze' suitably to invoke 
sufficient tangential frictional forces at the contact points to resist the mo- 
ment at the disk center (and also all other planar disturbance forces and 
moments). 

Using the above definition of form closure, Markenscoff et al. [80] show 
that form closure of any two-dimensional object with piecewise smooth 
boundary (except a circle, note the disk example above) can be achieved 
with four fingers. For three dimensions, it is shown in [80] that under very 
general conditions, form closure of any bounded object can be achieved 
with 7 fingers (provided the object does not have a rotational symmetry) 
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Finger 2 Finger3 

Figure 5.3: A Force Closure but not Form Closure Grasp. 

These bounds seem a little excessive. However, when Coulomb friction 
is taken into account, it is shown in [80] that under the most relaxed as- 
sumptions three fingers are necessary and sufficient in two dimensions, and 
four fingers in three dimensions. This agrees with our intuition from the 
disk example above. 

More recent significant work has considered the effects on form and force 
closure of second order (acceleration level) models [49, 107, 108]. This work 
has added increased understanding of the underlying physical effects of form 
and force closure, in particular focusing on conditions for the complete 
immobilization of an object, which can not be completely characterized by 
first order theories. 

5.3 .3  T h e  i m p o r t a n c e  of  f r i c t i o n  

From the above example, we see how helpful friction is in reducing the 
number of fingers theoretically necessary for grasping. In fact, this agrees 
strongly with our intuition. Humans perform dextrous grasping every day 
with as few as two fingers. This reduction in the number of required fingers 
over the above (worst case) bounds is largely due to our heavy reliance on 
friction at our fingertips. 

In many robotics applications, this is not so easy to do, since fine con- 
trol of frictional forces requires good sensing of effects such as slip [9], and 
such sensors are not readily available for robot hands at this time. Thus 
the above results are important primarily in establishing bounds on the 
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Figure 5.4: End-effector forces at contact points and object center of mass. 

required number of fingers, and in guiding their positioning on the object. 
Notice however that friction is a practical ally in multifingered manipula- 
tion, though as we will see in the next section, this transfers the difficulty 
of modeling frictional constraints to the user. 

5 .3 .4  F i n g e r  f o r c e  d i s t r i b u t i o n  i s s u e s  

In addition to the desire to constrain a held object when grasped, an im- 
portant consideration is to plan and control the interactive coupling effects 
felt by the fingers through the object during manipulation. The desire to 
plan grasps that both constrain and/or manipulate a held object and also 
produce desired internal finger forces (squeezing) leads to the grasp force 
distribution problem. The problem, which is an extension of that for load 
distribution of cooperating arms, can be expressed as follows: 

The total object inertial force can be expressed in terms of the end- 
effector forces as (see Figure 5.4). 

P = [w]P_. (5.1) 

where P is given by [fTnT]T and is the force and moment, respectively, 
experienced at the center of mass of the object (see Figure 5.4), and F__ is 
given by [F T ..... _.FT] T , the vector of forces (and moments) imparted to the 
object by the manipulators at the L contact points (note that T denotes 
transpose). 
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The matrix W is known in the literature as the Grasp Matrix or Grip 
Matrix. It is a function of the location of the contact points on the surface 
of the object. It thus incorporates the knowledge of the grasp geometry 
[81]. The Grasp matrix [W] in (5.1) is nonsquare, of dimensions 6 × 6L in 
general, if each of the L fingers imparted 3 forces and 3 moments to the 
object. However, as we have seen, this is not the case in general for fingers. 
If the number of forces and moments that  can be transmitted through each 
contact is d, then the dimensions of W for the spatial case are 6 × Ld (d = 3 
for point contact with friction, d = 4 for soft finger contact) 1. 

In general, for the case of more than two fingers, the Grasp matrix 
is nonsquare, indicating an underdetermined system. Consequently, there 
are an infinite number of solutions of (5.1) for F ,  which corresponds to 
the infinite number of ways in which the L fingers can divide the motion 
task ( 'share the load') between themselves. The load distribution task is to 
choose the 'best' of these alternatives. 

The general solution to (5.1) is given by 

F_ = [ W + ] P  + [I - W+W]  (5 .2)  

where [W +] is a generalized inverse, or pseudoinverse, of [W], I is the 
Ld × Ld identity matrix, and _~ is an arbitrary vector whose values dictate 
which of the possible solutions of (5.1) for _F is chosen. Equation (5.2) 
represents the basis for the great majority of approaches, both theoretical 
and empirical, to load distribution, and many algorithms to calculate ~_ 
for different possible pseudoinverses of [W] have been suggested. There 
has been much work on this problem in the last few years [20, 68, 89, 
99]. Most of the work concentrates on, for a given grasp configuration, 
solving for two components of finger forces: (a) a manipulating finger force 
component which constrains and moves the object as desired; and (b) an 
interactive finger force component which does not move the object, but 
generates internal forces on the object in an appropriate way. 

The solution to the load distribution problem for multifingered hands 
is not as simple as directly finding a solution via (5.2), however. There are 
additional constraints, such as friction and the fact that the finger forces 
must be directed inwards towards the object (fingers can push but not 
pull). Thus the solution must satisfy (5.1) and the additional constraints 
(assuming static friction with friction coefficient #): 

• Pushing 
! 

= > 0 (5 .3 )  

lIn a more general case, the dimensions of W would be 6 x (3a + 4b) where a is the 
number of point contacts with friction and b is the number of soft finger contacts 
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where n' i is the normal to the plane of contact between finger i and 
the object. 

• Friction 
Iftil ---- v/f i  " fi - IA, I = _< ~lf~ l  (5.4) 

where Fi = [:Tn T1T ~,~ ~j , f i =  f ~ i + f t i  and f~i and fti  are the normal 
and tangential (to the object surface) components of the applied finger 
force, respectively. 

The force distribution problem has been solved including the friction 
constraints in various ways (see above references, and also [70, 138]). In 
general, at this time there are a variety of possible approaches to solving 
the finger force distribution problem, and this area is one of the bet ter  
understood in multifingered grasp analysis. 

5 . 3 . 5  V a r y i n g  c o n t a c t s :  R o l l i n g  a n d  s l i d i n g  

Much of the above work has concentrated on analyzing candidate grasps 
singly (i.e. concentrating on one grasp in which the finger positions remain 
fixed to the same points on the held object during the analysis). However, 
there has also been much work on regrasping from one distinct grasp con- 
figuration to another [27, 81, 95]. For the case of regrasping by successive 
fingers discretely changing position on a grasped object,  this is known as 
finger gaiting [7]. 

A significant body of work has also been built up in developing the 
theory of continuously evolving grasps, both for rolling [8, 28, 73, 139] and 
sliding [4, 9, 51, 61, 62, 69, 124, 126, 136] contacts. For the case of rolling 
contact, the fundamental work of Cai and Roth [15] and Montana [87] on 
the kinematics of contact has proved important in relating the evolution 
of contact positions on two bodies in contact to the velocity differences 
between the bodies. Montana's result, which is reviewed briefly below, has 
been the basis for much work in analyzing rolling contacts for multifingered 
hands. 

5.3.6 Kinemat ics  of roiling contact  

In order to model and subsequently control roiling fingertip contacts of an 
object,  it is desirable to keep track of several fundamental quantities: the 
object location, the fingertip contact locations, and the curves traced by the 
fingertips on the object. In [14] and [16], the authors derive relationships 
between velocities and higher order derivatives for planar and spatial curves 
in point contact. Montana [87] has derived a set of input-output  equations 
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which describe how the points of contact on the surfaces of the contacting 
bodies evolve in time in response to relative motion between the bodies, at 
the velocity level. Corresponding second-order relations have been obtained 
in [112]. The problem of determining the existence of an admissible path 
between two contact configurations and determining such a path, for rolling 
constraint has been studied in [73]. 

In this section, we briefly summarize the first-order contact kinematics 
derived by Montana. Montana's equations use the curvature, torsion and 
metric forms of the contacting surfaces (see [87] for more details) to relate 
the relative velocities between the two contacting bodies to the velocities 
of the contact points on each of the surfaces as follows. 

The (instantaneous) relative motion between the bodies is defined as 
follows. Let v~, v u and vz be the components of the translational velocity 
and w~, wy and w~ be the components of the angular velocity of the finger 
with respect to the object at time t. 

There are five degrees of freedom of the evolution of the contact points 
(one degree of freedom, normal to the plane of contact between the two 
bodies, is constrained by the contact), defined as follows. The quantities 
fiS and rio are the (two-dimensional) velocities instantaneously tangential to 
the curves traced by the contact point on the finger and object, respectively. 
The angle of contact between the finger and object, ¢(t) is measured about 
the normal to the plane of contact between the two bodies. 

Let the curvature form, connection form and the metric of the finger 
surface and object surface finger/object contact point at time t, be/C/, Tf, 
]vi I and/Co, To, J~io respectively. Also, let 

[ c°s¢ - s i n e ]  . fCo=R¢lCoR ¢ 
Re = - sin (; -cos~b ' 

(lC/+/Co) is called the relative curvature form. 
At a point of contact, if the relative curvature form is invertible, then  

the point of contact and angle of contact evolve according to the following 
equations 

6S -"- M-II(ICf + ~°)-I ( [ -wY ] -f~° [ vx ] vy (5.5) 

¢ = + : rsMsus  + ToMoUo (5,7) 
= o (5 .8 )  

In particular, if the bodies maintain rolling contact with each other, this 
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implies that the relative translational velocities are zero, i.e. 

Additionally, if the bodies are not allowed to spin with respect to each other 
(pure rollin 9 motion), then 

wz = 0 (5.10) 

Substituting conditions (5.9) and (5.10) in the kinematic contact equa- 
tions (5.5-7), we obtain the first order equations for pure rolling contact 
a s  

: . / ~ 0 1  (]~f"f-]~o) (5.11) 

Much of the work in evolving rolling grasps has built on this framework, 
combining the above model with the conventional dynamic models of the 
object and fingers. With rolling contact, an important point to note is that  
the situation is complicated by the fact that  the motion planning problem 
is inherently nonholonomic [91]. Various methods (see above, and also 
[28, 32, 73, 113, 139]) have been proposed to address this issue. At this 
time, perhaps largely due to the computational complexity of the models 
involved, most of this work has been performed in simulation, rather than 
on actual hardware. 

In the case of sliding between the fingertips and object, a distinction 
is drawn between the frictionless and non-zero friction cases. In the case 
of friction, enough tangential finger force must be applied to begin sliding. 
There is the notion of contact formations, which describe functionally the 
state of a grasp, by annotating which geometrical features (edges, faces, 
etc) of the object are in contact with those of which fingers. Grasps which 
are equivalent under sliding are identified by the same contact formation. 
There has been significant work in understanding when it is possible to 
move from one to another distinct contact formations by fingertip sliding. 
The investigation of manipulation by sliding is currently an active area of 
research [4, 9, 51, 61, 62, 69, 124, 126, 136]. 

5.3.7 Grasp compliance and control 

Given a grasp analysis/plan, there has been extensive work in the area of 
grasp control [3, 45, 52, 74, 92, 98, 118] and optimization [12]. Real-time 
control of robot hands is made difficult by the complexity of the dynamic 
models, and the difficulty of extracting good sensory data  in real-time from 
typical hands. A good approach which has been used by a number of 
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Figure 5.5: Hand grasp frame. 

researchers is impedance control [33], or stiffness control [13, 118]. For 
example, in [33] the following layered impedance strategy is successfully 
employed for the JSC Salisbury hand. Impedance loops control tendon 
tension, joint moments, Cartesian finger forces, and grasped object forces 
and moments. At the lowest level tendon tension levels are obtained by 
driving each motor in velocity mode. The tension levels are read at strain 
gauges located directly behind the finger assemblies ensuring accurate ten- 
sion control at a distance from the driving motors. 

For thread mating experiments in [33] the Salisbury hand is configured 
in object grasp control mode, where the three fingers come together to 
grasp a male threaded fastener. In this configuration, the hand's 9 degrees 
of freedom combine together to actuate 6 degrees of freedom rigid body 
object control at the grasp center which is located at the centroid of the 
triangle defined by the finger tips (Figure 5.5). The three remaining degrees 
of freedom are used to maintain a positive force between each pair of fingers 
to prevent slip. Object force control is maintained by commanding the 
fingers in concert to yield forces and moments at the grasp center. The 
actual object force command, O, is generated from position errors in the 
grasp frame to yield a stiffness control of the form: 

O = [K]e, (5.12) 
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where the total force vector O is given by: 

- f01 f02 fl~ ]r.  (5.13) 

[K] is a 9 x 9 diagonal matrix and its elements can be set to obtain an 
arbitrary stiffness in each axis, and 

~-~ [ ex ey ez evoll epitch eyaw 
ex01 ex02 exl2 IT,  (5.14) 

The rigid body elements of the object force, O_ and the object position error, 
_e_ have their standard meanings (fixed angles). The force element, f01 refers 
to the force between fingers 0 and 1 along a vector between the tips, and 
fo2 and f12 follow the same convention. The position error element e~01 is 
the error in the distance between finger tips 0 and 1. 

The above approach largely neglects much of the compliance physically 
present in the hand itself. There is a general need for more complete com- 
pliance models. The issue of grasp compliance (that of determining the 
overall effective compliance of a hand and object) has addressed significant 
attention recently [31, 50, 125]. 

5 . 4  F u r t h e r  r e s e a r c h  i s s u e s  

Much of the work in analysis of multifingered robot grasping draws, at 
least intuitively, on features of human grasping. There has been work in 
the analysis of human hands and fingers [5, 42, 44, 60] and application to 
both robotics and prosthetics [37]. 

One feature of human grasping is that in many grasps, not only the 
fingertips are used (as has been the case in most robotic hand analysis and 
experiments). This type of grasp is typically denoted a precision grasp. 
Recent work has begun to address the issue of full finger and power grasps 
for robot hands [50, 54, 66, 85, 96, 141, 142]. In power grasps, grasps are 
made as in Figure 5.6, with contact between the object and the intermediate 
finger joints, as well as the fingertips and possibly the palm. This type of 
grasp is inherently more stable than fingertip grasps, however analysis is 
more difficult due to the extra constraints (and inherent loss of degrees of 
freedom) from the additional contacts. 

In contrast, there is recent interest in the issue of manipulation without 
grasping, or nonprehensile manipulation [144]. This offers the possibility 
of using simpler mechanisms to achieve the necessary results with the min- 
imum hardware (minimalist robotics). There is a strong relationship here 
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Figure 5.6: Full fingered power grasp. 

to the problem of parts sorting [1, 59, 76]. In this case, the difficulty is 
shifted from the device design to the skill and creativity of the planner. 

This point of view seems set to generate much interest, since most of the 
robot hands built thus far still suffer from being underutilized in the sense 
of having more physical capability (in theory) than is utilized with cur- 
rent sensing and planning methods. Other biologically-inspired attempts 
to utilize simpler hand designs include the analysis of simple but effective 
multifingered hand designs in nature [130] and recent application of genetic 
programming to grasp synthesis [39]. 

5.5 Current  l imi tat ions  

One important limitation of current multifingered grasping strategies is that 
most demonstrations have involved manipulating a held object independent 
of the rest of the world. Very few multifingered hands have been used effec- 
tively as end effectors [83], contacting and recontacting the environment. 
However, the fundamental nature of many interesting manipulation tasks 
is that they involve contact (basically impact) with a partially modeled 
environment. There is a need for more research in this area, although there 
has been some successful early work [53, 130]. 

In addition, the vast majority of work in the multifingered grasping area 
to date has been theoretical in nature. Many of the algorithms developed 
have not yet been successfully applied to hardware. There has however been 
a steady increase in experimental work in the last few years [11, 34, 56]. 
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There are also steady improvements in the areas of hand design, sensing, 
programming and control environments for robot hands. However, the 
state of the art multifingered robot hand is still, in general, fairly difficult 
to program and control, suffers from an insufficiently rich choice of sensors, 
and is fairly unreliable. 

5.6 C o n c l u s i o n s  

This chapter has concentrated mostly on theoretical and algorithmic de- 
velopments. However, there is ongoing progress in hardware, particularly 
for sensing and control. In particular, there is a critical need for better 
sensory systems (both contact and non-contact) in robot hands, in order to 
sense and learn about the environment and grasp objects. Most of the work 
mentioned above assumes significant knowledge of the object to be manip- 
ulated and the environment. However, there is ongoing work in grasping in 
uncertain environments, [58, 90, 117], using learning and knowledge-based 
systems. Recent work has concentrated on various aspects of multifingered 
manipulation incorporating tactile feedback [17, 18, 19, 48, 57, 78, 79, 115]. 

In summary, there has been much progress in the area of multifingered 
robot hands and dextrous robot grasping in the past few years. Most of 
the progress has been in the area of analysis of grasps and their evolution, 
though there is now a strong body of experimental work to support much of 
the theory. However, the results are still basically constrained to research 
laboratories, and significant applications of multifingered robot hands are 
lacking. More work is needed in the reliability of hand designs, sensing 
technologies (especially), and programming and control environments, in 
addition to further progress in the theoretical area. The next few years 
promise to be an exciting time in the area. For further information and 
sources, the reader is encouraged to consult [7, 29, 42, 63, 91, 100]. 
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Chapter 6 

Grasping optimization 
and control 

Grasping, regrasping are difficult operations requiring optimal coordination 
and control of the fingers. Paper gives a concept and applies it to a four- 
fingered hand. All fingers are equal and driven by hydraulic actuators. 
Comparison of theory and measurements are convincing. 

6.1 I n t r o d u c t i o n  

Grasping may be looked at as a process of multiple robots, the fingers, 
being in contact with some object. Therefore, a description of grasping 
must include the organization of multiple fingers and in addition the contact 
phenomena. As grasping by an artificial hand is rather slow we shall neglect 
in this first approach the dynamical aspects and focus on an optimization 
of grasping strategies and on the control of a hand with four fingers being 
modeled kinematicMly and quasi-statically only. 

The first step consists in an optimization of the grasp strategy. From 
trials with five grasp criteria the best one is evaluated. Best performance 
is achieved by a minimization of the finger force differences with the ad- 
ditional constraints that force and torque equilibrium is maintained, that 
contact remains established and that the finger forces are within the friction 
cone. Starting with this basic optimization problem various additional con- 
straints are included: stability of grasping, relative distances between the 
fingers, sliding of fingers and changing a finger's contact position. The last 
operation is the most difficult one including some more constraints which 
express the necessities that the new contact point can be reached, that the 
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fingers cannot penetrate the object and that no finger has a collision with 
another finger. 

In a second step and on the basis of above results another idea is real- 
ized which we call hand planning. It optimises the clearance of motion of 
each finger and the complete finger arrangement, and it regards additional 
constraints like finger positioning at the object, penetration aspects, the 
best finger arrangement and the best orientation and location of the grasp- 
ing plane. With the tools of the two first steps we are able to establish 
in a third step a typical manipulation planning, grasp planning and hand 
planning. 

All methods are verified experimentally using a hand with hydraulically 
driven fingers. This fingers have good positioning accuracy and very sen- 
sible force control. Maximum speed is about 0.5 sec for a closing/opening 
process. The size is near a man's finger size. A kind of damping control 
has been realized based on a oil model, which works without problems. 

The first famous artificial hands have been developed in USA and Japan. 
The UTAH/MIT-Hand [1], the Stanford/JPL-Hand [6] and the WASEDA- 
Hand are all based on tension-cable-drive-systems, which assure good po- 
sitioning accuracies and fast motion but not so good force control. In 
addition cable hands are difficult to design. Up to now direct drives are not 
small enough with respect to power efficiency, therefore another solution 
might be a pneumatically or hydraulically driven hand, where hydraulics 
possesses the advantage of a better density ratio [3]. In the following we 
shall consider a hydraulic solution. 

The hand hardware is one side, the hand software the other one. Grasp- 
ing, regrasping and manipulation with several fingers require straight and 
definite strategies which include all physical and geometrical conditions 
usually connected with processes of that kind. Equilibrium, contact with 
impacts and friction, questions of reachability, penetration, collision avoid- 
ance are some of the essential aspects. In recent years worldwide research 
focussed on some of these aspects but a comprehensive solution is still miss- 
ing and, as a matter of fact, still far away of the perfect behavior of the 
human hand. Strategies of the kind must not only calculate the finger forces 
necessary to manipulate the object [5], but also locate the fingers on the 
object in such a way that a stable grasp can be achieved [4]. With a few 
exceptions [2], the work on grasp planning has focused on one aspect or the 
other. In this paper, a grasp strategy is demonstrated which accomplishes 
both tasks. Given the desired external forces on the object and the ob- 
ject geometry, the strategy calculates the grasp points and the finger forces 
necessary to achieve the desired external wrench on the object. 
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Figure 6.1: Decomposition of finger forces. 

6.2 Grasp strategies 
Finger forces have been decomposed in a first step into components which 
are normal and tangential to the plane of contact. This deviates from 
the decomposition into manipulation and internal forces [8], but is more 
convenient for mechanical reasons. According to Figure 6.1 we then write 

f~ ,  = f~,n~, f~, = f t l ,  etl ,  + ft2,e~2~, f i  = In, + f t ,  (6.1) 

The second problem involves an optimization criterion for an evaluation 
of the finger forces. Five criteria have been investigated [7]: minimum 
dependence on the friction coefficients, minimum tangential finger forces, 
minimal sum of all finger force magnitudes, minimum of the maximal finger 
force, minimum difference of the finger force magnitudes. It turns out that 
the last criterion gives a best approach for a good distribution of the forces 
over all fingers. Therefore, for all further considerations finger forces are 
optimally selected according to the criterion 

i = l  j = 1  
( j # l )  

Three different optimization processes are considered, normal grasping 
with stability margins and sufficient finger distances, grasping with con- 
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trolled sliding and grasping with regrasping. The corresponding optimiza- 
tion processes together with the additional constraints are the following: 

• Normal Grasping 

Optimization Criterion G : ~  ~ (Ifi l2-1fj l2)2---*min 
i=1 j=l(j¢l) 

Necessary Conditions 
Force Equilibrium 

Moment Equilibrium 
Contact 

Friction Cone 
Stability 

Separation 

E,n_-i r, (fn, + f t , )  - M e  = 0 
f ~  " ni < 0 

t f~,  l 2 - # 2 1 f ~ ,  12 < 0 

IEL~,~,I _< s 
I~'i --  Tjl --  £min ~ 0 i ¢ j 

• Grasping with Controlled Sliding (see Figure 6.2) 

Optimization Criterion G = ~  ~ ( I f i } 2 - t f j t 2 )  2 ,~min 
i =1  j=l(j:/=l) 

Necessary Conditions 
Force Equilibrium 

Moment Equilibrium 
Contact 

Friction Cone 
Sliding Direction 

Sliding Forces 

F E,=I (f,~, + f t , )  - ~ = 0 

f ~  • n~ < 0 
J L ,  I 2 - , : l f ~ , l  2 < 0 
d = d t l e t l  -k dt2et2 

f,~r = - k ~ / l ~  with kr >_ 0 
f t l~ = krdt l  
ft2,. = krdt2 

• Grasping with Regrasping 

Optimization Criterion G = ~ ~ (ifi[ 2 -  [fjl:) 2 , min 
i=1 j----l(j~l) 

Necessary Conditions 
Force Equilibrium 

Moment Equilibrium 
Contact 

Friction Cone 
Regrasping 

Ein=1 r~ (fn, + ft~) - M~ = 0 
f~ • ni < 0 

If~,I ~ - .~ff~,I 2 < o 
• Reachability 

• No Penetration 
• No Collision 
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6.2. Grasp strategies 

Figure 6.2: Grasping with sliding from b to c. 

The meaning of the various conditions is evident. Neglecting inertia 
forces the finger forces and the external forces due to gravity must be in 
static equilibrium. The same is true for the torques (fib = a × b definition 
of cross product). The contact condition says that the finger forces normal 
to the contact plane must be negative to assure always pressure forces 
only. Furtheron the finger forces must be within the friction cone to avoid 
uncontrolled sliding. 

The normal vectors to the object's surface at the grasp points provide 
a good insight into the stability of the grip: the smaller the sum of the 
vectors, the more stable the grasp. The grasp is less stable in the direction 
opposite the resulting sum, which means that it is less capable of resisting 
disturbances in that direction. This stability writes 

t < s ,  (6.3) 
i = l  

where S is the desired stability measure. 
The separation condition guarantees that a minimum separation is main- 

tained between the grasp points, so that the fingers do not come too close 
to one another. For grasping with controlled sliding the sliding direction 
is given by a direct connection to the target point (point c in Figure 6.2). 
The sliding forces follow the geometry and are controlled by a constant 
magnitude k~ >_ 0. 

For regrasping questions of reachability, penetration and collision be- 
come important. Normal grasping and grasping with sliding can be per- 
formed with three fingers, for regrasping we need at least four fingers. Given 
the object and the geometry of the fingers we decide geometrically with the 
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help of the fingers' workspaces what points can be reached without violat- 
ing stability. Furtheron, with known finger geometry we also can evaluate 
the two problems of penetration and collision. Corresponding formulas and 
methods are described in [7]. 

In order to automate the grasping process, a strategy which can orient 
and locate the hand in such a manner that all fingers can reach their desig- 
nated grasp points is needed. The object has six degrees of freedom relative 
to the hand which have to be limited in such a way that the grasp points 
are reachable. To solve these problems of hand placement a method has 
been developed which includes several steps: the definition of the grasp- 
triangle, a rough hand orientation, the finger assignment, and, finally, an 
optimization of the hand orientation and distance to the object. 

Before evaluating these data the following geometric quantities must be 
known: 

Hand Geometry 
(position and orientation of the fingers on the palm described in hand 
frames) 

Workspace 
(position and orientation of the robot base described in a robot coor- 
dinate frame) 

• Path planning 
(position and orientation of the object in a tool frame) 

• Grasp Points 
(position of the i-th grasp point in a body-fixed object frame) 

• Hand Orientation 
(position and orientation of the robot hand) 

With these data known one must check in a first step by applying inverse 
finger kinematics if the grasp point can be reached without penetrating the 
object. In a second step position and orientation of the hand are calculated 
by arranging the palm surface parallel to the grasp triangle and the pMm 
center over the grasp center. Then in a third step the orientation and the 
distance of the hand are optimized by maximizing the remaining workspace 
of the fingers. 

The last step consists in a planning procedure for a manipulation process 
which includes all sequences of path planning, grasp planning and hand 
planning. Figure 6.3 indicates the corresponding strategy [7]. 
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..... first step ~ path planning ~ grasp planning ~ hand planning 

Figure 6.3: Manipulation planning. 
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Figure 6.4: The TUM-hydraulic hand. 

6.3 The TUM-hydraulic  hand 

6 .3 .1  T h e  d e s i g n  

When starting the development of an artificial hand at the author's insti- 
tute the following design requirements were established [3]: Size about the 
human hand, three to four equal fingers which can be exchanged easily, 
three degrees of freedom per finger, maximum manipulation weight at least 
10 N and minimum about 1 N, individual finger force 30 N, one complete 
grasping motion (open-closed-open) in 0.5 s, sensors to evaluate the fin- 
gertip forces with respect to amount, direction and location. A trade-off 
study with various drive systems (pneumatic, hydraulic, electric, cables) 
results in a solution with hydraulic drives. They allow excellent force con- 
trol in a wide range of force magnitudes, on the other hand they have some 
disadvantages like leakage and difficult calibration. Figure 6.4 gives an im- 
pression of a four-finger arrangement, and Figure 6.5 shows one finger in 
more detail [3,7]. The fingers are fixed to the palm by two screws only 
which allows a quick change of the finger-palm-combination. 

All fingers are equal, and each one possesses three degrees of freedom, 
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Figure 6.5: Design of the hydraulic finger [3]. 

one combined degree of freedom for the first two finger joints and additional 
two degrees of freedom at the finger's root. From this we have realized two 
DOF in the finger plane and one DOF to allow a motion of the finger plane 
itself (Figure 6.5). 

The fingers are driven by hydraulic cylinders which operate in one direc- 
tion by oil pressure and in the opposite direction by a prestressed spring. 
The tip and middle links are connected by a simple mechanism combin- 
ing them to one DOF. The basic joint is driven by two cylinders which 
can generate two DOF. Altogether this results in three degrees of freedom 
qgl, ~2,~3. The finger arrangement of Figure 6.5 has a size like a middle 
finger of a human hand. 

6 .3 .2  M e a s u r e m e n t  a n d  c o n t r o l  

Measurement and control of the hydraulic finger is realized in the following 
way, which again represents the outcome of an investigation concerning a 
large variety of possible solutions. 

The piston is driven by oil pressure on one side and by a prestressed 
spring on the opposite side (Figure 6.6). The oil is moved through a 4 m long 
elastic tube from the hydraulic power station to the piston. The hydraulic 
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Figure 6.6: The hydraulic finger control [3]. 

power station consists of a motor-gear-combination which drives a gear rack 
with a piston. This piston moves the oil within a cylinder and from there 
to the elastic oil tube. 

Two measurements are installed. Firstly, an odometer measures the 
location of the gear rack and with it of the oil piston, which gives an infor- 
mation about the position of the oil column in the cylinder-tube-cylinder 
combination. Secondly, a pressure sensor measures the oil pressure at the 
exit of the driving cylinder to the tube. Direct measurements at the finger 
cylinders are not implemented due to the requirement of having only one 
connection for each finger cylinder to the ground supported power station. 

With these two measurements the motor in Figure 6.6 cannot be con- 
trolled. We need in addition an oil model which takes into account all 
pressure losses and friction forces from the power station to the finger cylin- 
ders. Such a model is used as indicated in Figure 6.6, therefore it should 
be as simple as possible. Figure 6.7 depicts the principal modeling which 
represents a typical situation for cyclic motion. 

Increasing the pressure by moving the gear rack we walk along charac- 
teristic 1. When the pressure time derivative ~5 changes sign then the finger 
piston sticks and its position xF and its piston force FK remain constant 
(characteristic 2). This state is maintained until all external forces like oil 
pressure force, piston force, spring force are large enough to overcome the 
stiction state and then to drive the finger piston in the opposite direction. 
The pressure decreases along the characteristic 3. The piston again sticks 
when p will change sign and XF, FK will be constant along characteristic 
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Figure 6.7: Oil model. 

4. The two characteristics 1, 3 follow the simple equations 

FK = klXA + k2p + Frsgn(~F), 

XF = k3XA + k41,3P , with Fr = Fro + c~p (6.4) 

where the coefficients are partly determined by experiments [3]. The sign 
of ~F is given with the angular speed of the motor. The four switching 
points in Figure 6.7 can also be evaluated by considering sign (XF). If the 
velocity XF changes sign, the pressure derivative ib will change sign as well, 
at least for the relative slow motion as considered in this case. 

For a verification of this oil model we press the finger piston against a 
bending bar with a strain gauge arrangement. We compare these measure- 
ments with the forces recalculated from the oil model. Figure 6.8 gives a 
comparison for position XF and force FK. 

The advantages of the solution are obvious. The basic drive is the 
configuration of Figure 6.6, which is the same for M1 fingers. Each finger 
possesses three hydraulic drives of that type, and each hand might have any 
number of equal fingers. The number of connections of the fingers and the 
ground station is minimized, and all drives are rather simple. Nevertheless 
any complicated grasping program might be executed by these fingers [3,7]. 

To execute a complete grasping program we need a supervisory control 
of each finger cooperating together and performing the grasping sequences, 
and we need a planning process for manipulating an object with the fingers. 
Without going into details [3,7], we present two schemes. The first one 
of Figure 6.9 illustrates the hardware of the TUM-hand. All four fingers 
and all drives of the fingers are connecte~i by a VME-Bus-System which 
combines a SUN-workstation, a 486 CPU-PC-computer and several AD- 
and DA-converters. The converters receive the measurement signals and 
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Figure 6.8: Verification of the oil model. 

send signals to the finger drives. This set-up allows control of the complete 
hand. 

6.4 Examples  

On the basis of the optimizations in the grasping chapter and of the plan- 
ning procedures (Figure 6.3) several simulations have been performed to 
show the efficiency of the methods in grasping and regrasping [7]. As one 
typical example we show here the rotation of a sphere by regrasping with 
a four-fingered hand. A typical grasp pattern as developed in [7] is given 
with Figure 6.10, which is self-explaining. The sequence of finger positions 
in performing this task is illustrated by the pictures of Figure 6.11. We 
see that the above discussed optimizations generate meaningful sequences 
of finger operations. 

The theories for grasping and for the hand, the finger design and the 
hand-hardware are verified by experiments, rotation of an ellipsoid, re- 
grasping of a cuboid and manipulation of a raw egg. The last mentioned 
experiment also has been presented at the Hannover Industrial Fair 1994. 
We show here only the regrasping experiment for a cuboid which is held 
against gravity. Its weight amounts to 195 g, its size is 15 × 25 × 40 mm. 
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Figure 6.9: Hardware scheme of the TUM-hydraulic hand. 
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Figure 6,10: Grasping pattern [7]. 
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Figure 6.11: Rotating a sphere by a four-fingered hand [7]. 
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Figure 6.12: Grasp pattern for regrasping a cuboid. 

The static friction coefficient amounts to/z = 0.4. Two regrasping steps 
are performed (see pattern, Figure 6.12). 

Figure 6.13 depicts a comparison of theoretical finger planning accord- 
ing to Figure 6.12 with experimental measurements of the finger angles 
(Figure 6.6). Theory and experiments go very well together. 

6.5 Conclusions 

Strategies for cooperating fingers of an artificial hand are considered. Fin- 
ger force adaptation is carried through by minimizing the finger force differ- 
ences between the fingers and by taking into account certain constraints like 
equilibrium, friction, contact, stability, sliding motion, reachability, pene- 
tration, collision. A manipulation planning considers path planning of an 
object, grasp planning~ of the fingers and hand positioning planning. 

Grasp experiments are performed with a hydraulically driven hand with 
three and four fingers for which design and control concept are verified 
experimentally. Each finger possesses three degrees of freedom which are 
controlled by a ground station. It is connected by a 4 m long oil tube with 
the finger. All experiments agree well with theory. 
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