

Building Autonomous Line

Followers with

Arduino and PID!

By:

\Aneesh Vartakavi/

/ Krishna\

Building Autonomous Line Followers with Arduino and PID! Page | 2

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

God…Why another one?
A lot of guides and webpages already cover autonomous line following robotics with an Arduino, but

most of them just throw a sketch and a few pictures and a video of their effort at you. There is limited

scope for experimentation, improvisation and ‘tinkering’ as Massimo Banzi calls it!

People have described their efforts at building their robot in detail, but the fact still remains that it is

THEIR robot, and you will obviously not build the same robot as they did. This guide in that sense

intends to help you build your own robot, crafting your own design as you read along. This is what I

believe, makes this unique!

This is made with both a beginner and novice in mind, so don’t fret if you find something too new (read

up on it before continuing) or too easy (please bear with us and continue reading!).

Hope you like this, and find robotics as much fun as we did!

Please feel free to share this and post/upload it wherever you want to! Knowledge should be free and

this will always be!

Before you start…
There are very few references to commercial parts/circuit diagrams. This is intentional! Once you know

what a component is and what it does, you should be able to search around for the exact information

you need. This is not another spoon-feed guide!

Do not expect circuit diagrams and part assembly instructions! We focus on how to choose the part, not

how to fix it up.

You need not follow the same approach as we preach in the guide, but carefully modify whatever code

or design you might need. It is encouraged that you try something new and different!

Some stuff is taken from websites and forums around the web, and some of it is our own experience in

building robots and helping others build them. If you find any of your material in here and you wish it

removed, edited or highlighted, do please contact us; details are at the end of this guide. We’ll be happy

to acknowledge your request!

Building Autonomous Line Followers with Arduino and PID! Page | 3

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

If you decided to build a line following robot, you probably already know what it is…let’s take a closer

look at the various aspects.

To Battle!!

The Arena
You should know what you’re up against. Study these carefully!

A Simple Arena

Hill Climb – An arena with varying

gradient, and note the sharper

turnings!

Building Autonomous Line Followers with Arduino and PID! Page | 4

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

Let’s spend a little more time with the “Square Route” as this arena is called.

 Notice all the turnings are acute or right angles.

 The spacing between the lines in some places (the parallel tracks on the left) is very narrow, so

your sensors can read both lines and confuse your robot.

 There are gaps in the track on the right. They’re not even equal in length.

 The ‘stairs’ in the top right are small!

Right angle turnings introduce different sensor readings. You’ll understand more about these when we

discuss sensor types and placement. The difficulty lies in differentiating a right and a left turn, which can

be quite hard if your robot ‘swings’ on its track. This also means the algorithm for turning has to be

sharper than a gentle turning (we’ll come to handling soon). The gaps in the track can be confusing

because your sensors ‘read dead’. You can both interpret this as the robot has strayed away from the

line, and therefore program it to find the line again, or a gap in a straight track where you ignore this

and move on.

A ‘tight’ track like this means your robot has to be smaller, and the handling tighter.

Building Autonomous Line Followers with Arduino and PID! Page | 5

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

This is one beast of a track! Notice the track crosses back and the successive acute angle turns!

Possibly one of the hardest you’ll face! Take note of its features.

Knowledge of the arena layout is important, because a robot designed for one may not work on the

other. A general guideline is to keep your robot size as small as possible, and work from the basics to

handle progressively more difficult arenas. Sensor placement is also an important aspect, as is the

algorithms used to interpret these readings. We’ll cover how to do the simplest tracks, and suggest how

you can modify this to build better robots.

The Integrator

Building Autonomous Line Followers with Arduino and PID! Page | 6

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

The Sensors

There are many kinds of sensors, and quite a few have been put to use in autonomous robotics. Do look

up the types of sensors various other robots have used.

We chose Infra-Red Sensors, and advise you to do the

same. The reasons are

 Ease of Implementation

 Cost

 Availability

 IR sensors work on the principle illustrated by this

diagram.

The physics which govern reflection of visible and

infrared light are the same. IR LED’s are easily available,

and so are the sensors to detect IR radiation.

Unless shielded properly, ambient radiation may affect

these readings. You can “smooth” the data after receiving, but proper placement and shielding of

sensors will go a long way to help get accurate readings off the track.

You’ve two options now, to purchase a manufactured IR sensormodule, or to build one yourself.

A manufactured one has many benefits, like less susceptibility to noise and easy tuning and integration.

The biggest disadvantage of a manufactured module is…it is not configurable. Exactly the opposite is

true for a DIY module. If you’re only just starting out, it will probably save you quite a bit of trouble if

you purchase one, but it does have its limitations. Read this full section out before you make a decision.

Sensor modules in this sense refers to a circuit which can sense reflected light and convert it into a

quantity which can be interpreted by a microcontroller…voltage.

We call it modules, because sometimes more than one sensor pair is integrated, forming an array of

sensors!

Here are the different configurations in a module:

Single Sensor
A single sensor is enough to track a simple line, but it is comparatively very imprecise in its movements

and is severely crippled in its abilities. In a way a single sensor robot does not become a line follower, it

just tracks one of two edges of the line. People have posted videos and reports of their efforts on the

web, check them out!

Building Autonomous Line Followers with Arduino and PID! Page | 7

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

Sensor Arrays
Sensor arrays are usually configured in a straight line, and usually range from 2-8 sensor/receiver pairs

in an array. They are called reflectance arrays, as they use the properties of reflection to determine

distance of an object.

As a general rule, more sensors in an array giveyou

 More readings and therefore more control. On the other hand these may be hard to control

and process if you’re short on microcontroller performance (Don’t worry about the

performance just yet!).

 Readings from adjacent tracks as well(applicable only on tight tracks)

 The distances between the sensors are also fixed, and may not be the perfect for the given

track width. This, as you will see later, affects the set point of our control algorithm.

Here’s what the array from Pololu looks like. It’s probably the best online retail store along with

SparkFun and many others. You can save lots if you can find a similar thing with a local dealer instead of

shipping them internationally if you need to.

Selecting the Type
Most manufactured sensors give you little choice in deciding how many sensors in an array to use.

Pololu has this special product where two sensor pairs at the extreme ends can be removed. You can

decide how many sensors you need in your array based on:

 Availability – See what’s available, and what’s in your budget. Don’t fantasize!

 Size – The module should be small, and the sensors should not read the adjacent track.

 Range – It is not critical, but it should be sensitive in the height you place it in your robot.

As long as these two aspects are satisfied, you should be safe…unless there is a rare, lurking exception!

There are, and always will be different opinions about the optimum number of sensor pairs in a module.

The only thing common about all this is…they all worked! Don’t give too much thought to how many

sensors you have, as a working robot can be built from one to a dozen pairs. A personal suggestion -

Pololu Line Sensor Array

Building Autonomous Line Followers with Arduino and PID! Page | 8

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

Between 4 to 8 pairs in an array will serve you well, and are available easily. Remember an Arduino has

only 5 analog input ports, so if you’re using an Arduino and more than 5 sensors, you need to use a

special IC or maybe a multiplexer to read the ‘extra’ sensors.

Making your own sensors
If you find a need to customize your sensors, or don’t want to buy one; gear up to build your own arrays.

This is not advised for beginners. It requires you to know some analog circuitry like OPAMPS. Circuit

implementations are available everywhere on the web.Remember analog electronics is not to

everyone’s taste!

Here’s a helpful link: http://www.ikalogic.com/ir_prox_sensors.php

Look it up even if you don’t intend to build one of your own!

Think twice before you venture this path, it is effort intensive compared to buying a prefabricated one!

Don’t get discouraged if you intended to build your own sensors though. Some of the best robot

builders around have built their own sensors and swear by them!The ultimate choice lies with you and

your resources!

Sensor Configurations
Most sensors come in a linear array. Interesting implementations with ‘V’ and inverted ‘V’ shaped arrays

have also been made. Most of these shapes have been custom made, and are not available easily.These

perform better in some advanced tracks, but we’ll stick to the in-line configuration here in this guide.

Search up on this in case you decide to upgrade your robot later!

Analog and Digital Arrays
There are two types of arrays based on the kind of voltage output, analog and digital.

 A digital voltage array gives out only 2 values. Logically, this will just tell you if you are over a line or not.

A digital array cannot accurately predict color difference in a track, for example if you have a black track

with a red discontinuity on a white background, there is a chance that the white and red may give out

the same reading. This means when your robot is actually over a red track, the sensors tell the robot

that it is on white, which means it has strayed off the path, and it’ll perform whatever action you tell it

to do when it’s strayed off the path.

A digital array is actually just an analog array with its output through a ‘darlington pair’ of transistors;

which converts the output into what we can now call ‘digital’. Many manufacturers don’t specify this

directly in the name, so you might have to search their datasheet to get what you need.

An analog array requires the extra task of converting to digital using an ADC in the microcontroller. We

assume you’re using an Arduino, so this will be no extra effort at all.

http://www.ikalogic.com/ir_prox_sensors.php

Building Autonomous Line Followers with Arduino and PID! Page | 9

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

If you’re using AVR’s or PIC’s, you’ll need to code the microcontroller’s input through the ADC, and

probably define a buffer at the input and output. Help is available online!

Given a choice, an analog array will serve you better, and can be implemented in a good, tight control

algorithm coming up in the next few sections!

Microcontrollers

We need a brain for the robot, which reads values from the sensors and tells the motors what to do. A

microcontroller, or µC for short, does this exact job.

An Arduino is one of the simplest and most easy to use

microcontrollers out there.

We assume you are using the Arduino Duemilanovae, which

should be directly compatible with Decimila and UNO. If you

have any other version or clone, do ask for guidance on the

Arduino forums.

Arduino comes with an IDE, which helps burn code onto the

microcontroller from your PC. It is open source and the

website has links and extensive documentation on this.

An Arduino Duemilanovae has everything you need to get the

job done, and lots of computing power to spare. This is not the only microcontroller you can use, PIC’s

and AVR’s are among the other choices, but this is the easiest to work with! Others may be more

powerful or more efficient, but the brilliant brains behind the Arduino made it easy…and fun!

PID Control

PID is a control system algorithm, which predicts and minimizes errors. It stands for ‘Proportional

Integral and Differential Control’. It is a generic algorithm and has many implementations. Some have

even written libraries (in Arduino) for it. We will just use a simple implementation, but you can possible

improve it by using other’s extensive work on this subject.

Why this control?

You would have seen line followers with jerky movements. A control algorithm aims to reduce these, so

your robot can travel smoother and faster along the line!

Why only PID?

Building Autonomous Line Followers with Arduino and PID! Page | 10

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

You can use other digital control algorithms as well. We chose PID because it is efficient and simple to

implement. How good a controller performs is inversely proportional to its computational complexity.

Choose whatever suits your purpose.

Can I do without a PID control algorithm?

Yes, you definitely can, but it’s a small addition and will be a bonus to your design! If you have the

hardware to handle it, it’ll be worth your while!

The Mechanical Design…

Flesh and Bone!
The first aspect of your design is your chassis. The chassis should be strong, light and small.

Manufactured chassis are available, but it’s best if you make your own customized one.

A good material is important – Epoxy or polymer boards are probably the best, but any other material

should do as well.Avoid wood as it gets heavy and splinters when you drill holes or cut to size.

Sizing it up – Most competitions specify the size to be under a limit. Keep this in mind if you wish to

compete. Place all your components on your board, and cut out the extra bits out. Always cut the board

a little larger than you estimated at first, you can always cut it precise once the entire robot is finished.

You might be thankful for this later! Keep the size as small as possible! Popular shapes are the circle and

square, but you needn’t follow them.

Fixing onto the chassis – You’ll have to fix components onto the board. One way is to glue them (not

advised!), and another is to drill holes into the board and clamp the components using screws. The

Arduino has convenient holes for this as well. The placement has to be precise, so be careful! Use of

standard screw sizes is recommended!

How to choose a motor is covered in the next section, here only the mechanical aspects are covered.

You’ll have to get clamps for the motors to fix them onto your chassis. The shaft size should match the

inner hole of the wheel (duh!). Some come with a premade hole in the shaft for fixing. They are worth it!

Building Autonomous Line Followers with Arduino and PID! Page | 11

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

You can also use rubber bands, or simple plastic fasteners the tie your bags with in

supermarkets. Keep in mind some are temporary and some are permanent, so choose the best

one for your purpose.

The Wheels
Wheel selection is very important. You can get them in any hobby robotics or toy store. Many online

retailers sell them as well. The height of the center of the wheel should align with the motor shaft. It

should have some degree of friction, which depends on how the surface of the arena is made. Some

come with a readymade bushing so can be conveniently screwed in place. Look out for these! How you

place your wheels and how many depend on your mechanical design.

If you have a wheel that’s a little too small, you can always paste surgical tape (the cloth ones) or rubber

bands around it to increase diameter and improve friction. This is also useful as a last minute addition,

so keep some with you when you take your bot to battle!

Pipe Clamps

Plastic Fastener

A hole in the shaft…super convenient!

Building Autonomous Line Followers with Arduino and PID! Page | 12

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

The Drive System
The easiest and probably the best drive to use is called a differential drive. A lot has been written about

the number of wheels and motors, and it is pointless replicating it here. Choose what seems best to you,

and modify the rest of the design and code accordingly.

 Our code works if you’re using something like this…

It’s one of the easiest to implement and design, though other designs (like a tricycle drive) may perform

better in a few aspects. Spend time on this area and make a careful decision!

Motor Selection
There are three types of motors used in small robots, and each has its own advantages and

disadvantages. For what each motor does and how it works, research online. Here we only help you

decide which one is best for your robot.

DC motors
They’re cheap, and available in multiple variations of speed and torque. Some even come with gear sets,

so you can customize it to best suit your robot. The disadvantage is you have no internal feedback

control. That means you have no idea of the speed of the motor.

A word of caution here, the speed mentioned in the motor stats represents what is called the “no-load”

speed of the motor. The motor will never run at that speed when you fix a chassis and all your

components onto it.

A lot has been written about this, but I’ll put in a few words because it is very critical.

Building Autonomous Line Followers with Arduino and PID! Page | 13

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

 Pick a motor with a low voltage rating. This means, just for example, you should pick a 6V motor

over a 24V motor. Motors with lower ratings are generally lighter.

 Some special motors with aluminum parts are available in a few places. They claim to be much

lighter than the standard ones. I’ve never used them, so read up on the web before you buy

them if you decide to.

 Some come with a complete gear assembly, meaning you can change the gear ratios and the

torque of a motor. This can come in handy if you find yourself stuck in a rare situation where

you’re non geared DC motor has insufficient torque or speed.

The disadvantage mentioned above, means you have no way to “map” or remember the arena. This is

not critical for a plain line following robot, but if you need to map the arena and you’re using DC motors,

you’ll need an additional something like optosensors.

The code section assumes you’re using DC motors. You’ll need to modify the code if you want to use

another kind of motor.

Stepper Motors
 Stepper motors have the advantage of precise angular movement. You can tell a motor to rotate by,

say, 45 degrees. Then knowing the diameter of the wheel, you can easily calculate the distance your bot

has moved! All you need to do is to remember the signals you gave to the motor, and your track will be

mapped.

The disadvantage of stepper motors are

 Cost – They’re more expensive than simple DC motors

 Uneven movement – Some motors do not move smoothly, unlike DC motors which have a

constant rotational speed.

 Torque/speed – A stepper motor which has high torque and speed ratings is hard to get, and

will be expensive if available. You might suddenly find out the stepper does not have enough

to power your robot!

Servo Motors

Servo motors are simply DC motors with feedback.

Servo’s can be used to map arenas, and they also come in high torque/speed ratings. They’ve overcome

the defects of DC motors and Steppers, but still remain expensive! It’s rare if they’re as easy to use as DC

motors, like come with a shaft hole to mount a wheel! They’re also more difficult to control!

A Practical Perspective…
There are some online stores which sell a complete drive assembly, including geared motors and wheels.

They’re convenient to use since they’ve been made to be compatible, so you don’t have to worry about

whether they fit each other!

Building Autonomous Line Followers with Arduino and PID! Page | 14

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

There are contradicting opinions about what speed and torque is ideal. True they have an inverse

relationship, but for robotics you can add gears to your motor and make them “high speed and high

torque” as well. This is an important aspect, so read up on speed and torque if you need to. A bit of

advice –High speed is pointless without torque, as the motor will never have enough time to accelerate

to its maximum speed. High torque without much speed is equally pointless!

We’ll be using a concept called PWM (Pulse Width Modulation) to drive our robot using the PID control

algorithm. PWM is a technique where you control the speed of a motor by controlling how long current is

supplied to it. If you power a motor for half the time, it runs at half the speed. Arduino does this with a

single line of code. That’s why it’s easy!

Motor Drivers
Motor Drivers are circuits which allow control of your motors. You need them because you can’t power

a motor with just a microcontroller’s supply. Motor Drivers are available in IC form, implemented in the

form of an “H-Bridge”. They allow you to switch on and off a motor using an output from a

microcontroller, and the best feature is they allow you to run the motor in both forward and reverse!

This means each motor has 2 dedicated inputs

from a microcontroller, one for direction control

and one as an ON-OFF switch. If you’re using

PWM (we are!) you need a pin capable of

producing a PWM output to control the ON-OFF

switch. The direction control can be connected

to any other normal pin.

You need not require the programming of the

motors in reverse. If so, remember not to leave

the direction control pin ‘floating’, and connect

it to ground or high depending on your direction.

Motor Drivers are available in both IC form as

well as a ‘module’ or ‘breakout board’. The

breakout boards are handy, as the pins would have been extracted out for easy access. It’s worth the

little extra to keep the circuit on your bot clean! You can see in the above picture the inputs and outputs

have neat screw holders too!

Motor Drivers get extremely hot sometimes, and proper dissipation is necessary. Notice the large ‘heat

sink’ in the module above.

Another important factor many overlook is the maximum current the motor driver IC allows to pass

through it. It should be high if we need more current to drive our motors. This physical limitation of the

IC can also result in the slow movement of your bot. Remember to allow for ample current in your

Building Autonomous Line Followers with Arduino and PID! Page | 15

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

motors, and select a module/IC which has a motor driver capable of handling that current! Just for

example, a commonly used IC is l293D, which allows for 500mA of current for each motor. The better

option would be its bigger brother the L293DNE, which allows double that.

Power Supply
How you power your robot is important too! You have one of two choices

 Internal or on-board Supply

 External Supply

There is no fixed stipulation (unless specified for a competition) of which one you should use, just a

matter of preference and resources available.

The voltage should be equal to the rating of the motor (which is assumed to be the highest in your

circuit) and should be stepped down to power the other circuit components.

Internal or on-board supply requires batteries, which have to

be rechargeable because you’ll run through alkaline batteries

faster than you know it. If you get rechargeable ones, you’ll

need a charger too. The current capacity, the weight and the

rating of the battery also has to be accounted for. If you’re

using alkaline batteries you can make a pack out of them by

connecting them in series and parallel. New technologies like

Lithium Polymer and old ones like Nickel Metal Hydride are

easily available, though may seem a little expensive.

Remember PWM will make the motors draw currents in

bursts of a few milliseconds apart. Some battery technologies

cannot handle drawing so much current in such little time.

This ‘abuse’ can even damage your battery! Consider all these factors in designing your on-board power

system.

Consider buying or salvaging a battery holder from a gadget like

an old toy car. They are helpful and neat! Check for sizes and

shapes though, as 9v batteries are sometimes more useful than

‘AA’ sized ones and may have higher current ratings.

A voltage regulator IC connected to a 9v battery would look

something like the diagram below.

Building Autonomous Line Followers with Arduino and PID! Page | 16

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

An External supply will consist of an AC to DC adapter. These

come in various current and voltage ratings, and some even

contain a variable regulator. You’ll need to make a long cable to

connect this to your robot, which can be cumbersome at times.

You’ll obviously need a regulator on board because different

components run at different voltages.

A word of caution, do be very careful with voltages in your circuit. You could damage many components

with excessive voltage supply! A Digital Multi-Meter is a handy instrument to help you in this. They are

many excellent YouTube video tutorials on how to use them.

The Code!

All the hardware in the world is pointless without a good algorithm to put it to use. In the next section

we’ll learn how to build the code necessary to run a line follower. You should have completed all

mechanical aspects by now!

Developing the PID algorithm
The PID algorithm uses three constants, Kp, Ki and Kd to function. They are shorthand notations for

proportionality, integral and differential constants respectively. These three constants have to be set by

you after testing, and define how good your control works.

Now let’s look at how to develop a simple PID control algorithm.

Use the Arduino function analogread() to retrieve sensor values. You’ll need an array to store these

variables. Use Serial.print() to display these sensor values and observe them through the serial monitor

in the Arduino IDE.

If you’re using five sensors connected at analog pins 0-4, your code would look somewhat like this:

Building Autonomous Line Followers with Arduino and PID! Page | 17

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

void setup()

{ Serial.begin(9600); //Necessary to set up Serial port

}

void loop()

{ Serial.print(analogRead(0));

Serial.print(' ');

Serial.print(analogRead(1));

Serial.print(' ');

Serial.print(analogRead(2));

Serial.print(' ');

Serial.print(analogRead(3));

Serial.print(' ');

Serial.print(analogRead(4));

Serial.println(' ');

delay(1500); //Set the number to change frequency of readings.

 }

Burn this code onto the Arduino and place your bot over a sample track you’ve made. Move it across the

line and observe the sensor readings. The reading will be a number between 0 and 1023. Find out what

reading comes up for white and black, and any other colors you may want.

Important – The sensors connected from analog pins 0-4 should be in order from left

to right. If you’re using 5 sensors, the leftmost should be connected to pin 0, the

middle one connected to pin 2, and the rightmost one to pin 4.

Now let’s find the ‘set point’. It is the position the robot is stable in, in our case in dead center of the

line. This is the position the control algorithm strives to achieve. Familiarize yourself with the Arduino

language!

We use two new quantities in our algorithm, an average of the sensor readings and sum of the sensor

readings. You’ll understand why we need these two when you move a little further in the algorithm

development.

Building Autonomous Line Followers with Arduino and PID! Page | 18

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

The below code displays the sensor average, sensor sum and position via the serial port. Use the serial

monitor to view the readings.

longsensors_average;

intsensors_sum;

int position;

long sensors[] = {0, 0, 0, 0, 0}; // Array used to store 5 readings for 5

sensors.

void setup()

{ Serial.begin(9600);

}

void loop()

{ sensors_average = 0;

sensors_sum = 0;

for (int i = 0; i < 5; i++)

 {sensors[i] = analogRead(i);

sensors_average += sensors[i] * i * 1000; //Calculating the weighted mean

sensors_sum += int(sensors[i]);} //Calculating sum of sensor readings

position = int(sensors_average / sensors_sum);

Serial.print(sensors_average);

Serial.print(' ');

Serial.print(sensors_sum);

Serial.print(' ');

Serial.print(position);

Serial.println();

delay(2000);

 }

I hope you have enough knowledge of mathematics and kinematics to understand the calculations of

the weighted mean and position! It’s not something I can explain really…

Building Autonomous Line Followers with Arduino and PID! Page | 19

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

Now on to finding the set point, place your bot on the dead center of the line. The position or the third

column of the readings above will give you your ‘set point’. Note it down separately. If you have time,

verify the set point before your final run, more on this will come up in the tuning section.

Read up wiki’s page on PID control before you continue. (I really mean it!)

Now we’ll build the complete PID algorithm.

We start with calculation of the sensor sum and average similar to the above code. Note the next few

segments of code are not complete. You’ll have to finish them yourself!

sensors_average = 0;

sensors_sum = 0;

for (int i = 0; i < 5; i++)

 {

sensors[i] = analogRead(i);

sensors_average += sensors[i] * i * 1000; //Calculating the weighted mean of the sensor

readings

sensors_sum += int(sensors[i]); //Calculating sum of sensor readings

 }

voidpid_calc()

{ position = int(sensors_average / sensors_sum);

proportional = position – set_point; // Replace set_point by your set point

integral = integral + proportional;

derivative = proportional - last_proportional;

last_proportional = proportional;

error_value = int(proportional * Kp + integral * Ki + derivative * Kd);

}

The above formula for calculation of error value is the functional definition of PID control. Notice you

have to define the values of Kp, Ki and Kd in the code somewhere. After calculating the value of error,

we need to tell the motor to move such that the error is minimized.

Building Autonomous Line Followers with Arduino and PID! Page | 20

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

voidcalc_turn()

{ //Restricting the error value between +256.

if (error_value< -256)

 {

error_value = -256;

 }

if (error_value> 256)

 {

error_value = 256;

 }

 // If error_value is less than zero calculate right turn speed values

if (error_value< 0)

 {

right_speed = max_speed + error_value;

left_speed = max_speed;

 }

 // Iferror_value is greater than zero calculate left turn values

else

 {

right_speed = max_speed;

left_speed = max_speed - error_value;

 }

}

The above code snippet assumes you’re using the differential drive system, where you execute a left

turn if you reduce the speed of your left motor and a right turn if you reduce the speed of the right

motor. We use a value max_speed that has to be defined by you right in the beginning to control the

Building Autonomous Line Followers with Arduino and PID! Page | 21

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

speed of the motor. The maximum value of this is 256, which corresponds to the maximum output of

the 8 bit DAC converter on the Arduino.

Now we have only one job left to do, to run the motors! So let’s define a function which does exactly

that. ‘motor_right’ and ‘motor_left’ are the pin numbers at which your motors are connected via the

motor driver. Remember to use PWM pins!

voidmotor_drive(intright_speed, intleft_speed)

{ // Drive motors according to the calculated values for a turn

analogWrite(motor_right, right_speed);

analogWrite(motor_left, left_speed);

delay(50); // Optional

}

IMPORTANT – If you’re motors don’t run at the same speed, meaning it veers to a

side even with both motors get the same power, add a line of code to correct it. This

is a rare case, but it may happen nevertheless!

Say your left motor moves faster than your right motor, add this before the analogWrite().

Left_speed = left_speed – 20

The ‘20’ is a random number, and you should set it depending on your motors.Just set the values and do

a test run if its still not approximately same add subtract accordingly till you have a more or less syncd

motors(i.e they run at approx. the same speed).

Put the functions together, and use this statement in the loop section.

void loop()

{ sensors_read(); //Reads sensor values and computes sensor sum and weighted average

pid_calc(); //Calculates position[set point] and computes Kp,Ki and Kd

calc_turn(); //Computes the error to be corrected

Building Autonomous Line Followers with Arduino and PID! Page | 22

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

motor_drive(right_speed, left_speed); //Sends PWM signals to the motors

 }

That’s it! You’ve built your PID algorithm for your line follower! You’ve yet to complete the code with

the definitions of all the variables and the setup() segment.

The Next Steps…

Tuning
The most important parts of your algorithm are the three PID constants, Kp, Ki and Kd. They control the

calculation of error and therefore affect the speed of the motors. PID is widely used industrially, and

there are many techniques to tune PID. Here we’ll use the trial and error method, though painstaking, is

the easiest to use.

We need to manually set the values of the PID constants, so double check your robot and make sure

everything is working and your batteries are charged. Your bot has a lot of track to cover!

1. Set all three constants to zero. Run the robot and see how it handles.

2. Vary the values of Kp, Ki and Kd in that order, one at a time and test your robot.

3. Do step 2 over and over again to get your bot perfectly tuned. (duh!)

This also involves burning the code into the Arduino many, many times! I’ve tried to send values to the

Arduino while the bot is running via the serial port. I’d even asked for help in the forums, but I could not

implement it in the short time I had. If you do manage a simpler method please let me know!

Fast tuning is important because each track may require different PID constants, and to tune it

differently each time is lengthy. You may not even get the time needed if you’re competing in a

competition. What I finally managed to implement was a push-button entry system and a LCD display to

help faster tuning.

Here’s the segment of code responsible for this. This runs only once in the beginning because I called the

function in the setup(). Pressing the reset button on the Arduino will call this again. Read up the Arduino

tutorial on LCD display integration first. This uses some functions for display manipulations you need to

understand.

The LCD will need many digital output pins. You can use any of the ones, leaving 2 PWM pins for motor

control and 2 digital pins for direction control (if you’re using it).

Building Autonomous Line Followers with Arduino and PID! Page | 23

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

#include <LiquidCrystal.h> // Built in library for LCD operation

void setup()

{ lcd.begin(16, 2); // Set cursor to the bottom line of the LCD display

lcd.print("WHADDUP???");

delay(3000);

 // Setup input pushbutton pins

pinMode(select_switch,INPUT); // replace the first parameters by the pins you’re using

pinMode(up_switch,INPUT);

pinMode(down_switch,INPUT);

push_button_set(); // calling the function to set values of constants

 }

void loop()

{ if (start==true) // start is a flag which is set on completion of input

 {sensors_read(); //Reads sensor values and computes sensor sum and weighted average

pid_calc(); //Calculates position[set point] and computes Kp,Ki and Kd

calc_turn(); //Computes the error to be corrected

motor_drive(right_speed, left_speed);

 }

else

motor_drive(0,0); }

float set(float a)

{ delay(100);

Building Autonomous Line Followers with Arduino and PID! Page | 24

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

lcd.setCursor(0,1);

lcd.print(a);

while(digitalRead(select_switch)==LOW) //LCD print KI or KP or KD on one line

//dependant on select_count and display current value

 { delay(100);

if(digitalRead(up_switch)==HIGH) //If the button has been pressed

{ delay(100);

a*=10; // increment by .1 you can change this if you need to.

a++;

a/=10;

lcd.setCursor(0,1);

lcd.print(a);

 }

if(digitalRead(down_switch)==HIGH)

{ delay(100);

a*=10;

 a--;

a/=10;

lcd.setCursor(0,1);

lcd.print(a);

 }

delay(70);// Delay to prevent debounce

 }

delay(100);

return(a);

Building Autonomous Line Followers with Arduino and PID! Page | 25

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

}

voidpush_button_set() //This is for changing the values of Ki,kp and kd

{

 ++select_count;

if (select_count==1)

{ lcd.clear();

lcd.print("Set Kp - ");

Kp=set(Kp);

 ++select_count;

 }

delay(100);

if(select_count==2)

{ lcd.clear();

lcd.print("Set Ki - ");

 Ki=set(Ki);

 ++select_count;

 }

delay(100);

if(select_count==3)

{ lcd.clear();

lcd.print("Set Kd - ");

Kd=set(Kd);

 ++select_count;

 }

delay(100);

Building Autonomous Line Followers with Arduino and PID! Page | 26

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

if(select_count>3)

 {start=true;

lcd.clear();

lcd.print("BRING IT ON!!!");

delay(3000);

 }//LCD write push start button to start

}

I came across a funny problem when pins 0 and 1 dedicated to TX and RX on the Arduino were used. The

Arduino Software would not allow me to burn code while these pins were connected to some hardware,

and give me an error. This was solved when I removed the connections to these pins. I still don’t know

why this happened, but if you face a similar problem you can try this and hopefully you’ll get past it!

Pushbutton switches are susceptible to this problem called de-bounce, where the output voltage spikes

because of improper contact. You can eliminate this by introducing a delay, but remember you have to

hold the switch in position for a longer time for the code to register this as a change. It’s always good to

add some delay in the code, but make sure it’s not too less or too much to slow down process.

Sensor Thresholds
Another way you can achieve better control of your robot is to introduce a threshold value. Now say you

measured the reading on black to be about 500. Accounting for a little noise, you can assume any

reading in the range of 480 to 520 as black. The rest of the readings will be assumed as noise, and set to

zero. A code to implement this can run like this:

voidsensors_read()

{ sensors_average = 0;

sensors_sum = 0;

for (int i = 0; i < 5; i++)

 {

sensors[i] = analogRead(i);

 // Readings less than threshold are filtered out for noise

Building Autonomous Line Followers with Arduino and PID! Page | 27

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

if (sensors[i] < threshold)

sensors[i] = 0;

sensors_average += sensors[i] * i * 1000; //Calculating the weighted mean of the sensor

readings

sensors_sum += int(sensors[i]); //Calculating sum of sensor readings

}

}

The sensors[i]<threshold can be modified to sensors[i]<high_threshold&&sensors[i]>low_threshold.

This threshold concept may help if your sensors do not give consistent readings. If you implement this

and find your bot does not work, vary the acceptable range a little. This is useful only if your robot

moves on a track of the same color throughout.

Detecting Discontinuities
Sometimes you may need to count the number of color discontinuities in the track. For example, a black

track with red breaks.

To count this, first note down the sensor readings when the bot is over red. This is an important

calibration step. Add a little threshold if you wish, and use flags to detect a transition. The code can run

like this :

if (sensors[i] <red_threshold+threshold_offset&& sensors[i]>red_threshold-threshold_offset)

//setting flags for counting

previous_red=true;

else

present_red=false;

if(previous_red== true &&present_red== false) //When the bot has moved from red to black,

count increments.

{ red_count++; digitalWrite(13,HIGH);

delay(50);

 }

digitalWrite(13,LOW);

prev_red=pres_red;

Building Autonomous Line Followers with Arduino and PID! Page | 28

\Aneesh Vartakavi/ \m/. .\m/ P. Shrikrishna

}

Here we count the number of times the bot has moved from red to black. Counting the number of times

the bot moves from black to red requires a simple manipulation. I’ve included an LED attached at pin 13

to flash whenever the transition is made. Once you test your robot and see this flash properly, you can

add a count variable and display it on the LCD panel if you used one.

Thinking Ahead
There are still things to do after you’ve come this far. Things like right angle turns, discontinuities and

intersections are still left to be done! You can also use the bi-directional motor control feature too.

Maybe your current hardware is not enough to handle these, but that’s for you to find out! You can re-

orient the sensors and make a wall-follower or maze solver robot too!

We hope you’ve enjoyed learning, and found all this useful! This took much longer than we expected to

write out, and we don’t know if we’ll be writing more stuff like this again.

Contact Us!

We hope you like this, and would really like your feedback! We’d love to know if you used some of this

and scaled greater heights or even if you really liked it! It’s a good feeling to know a hell lot of work has

been appreciated! ;-)

 Do mail us at barahir.bregor@gmail.com

And yeah…do keep your questions to the forums, and don’t bombard us with them! ;-)

Peace!!!

