
Tetsuya Hoya

Artificial Mind System – Kernel Memory Approach

Studies in Computational Intelligence, Volume 1

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springeronline.com

Vol. 1. Tetsuya Hoya
Artificial Mind System – Kernel Memory
Approach, 2005
ISBN 3-540-26072-2

Tetsuya Hoya

Artificial Mind System
Kernel Memory Approach

ABC

Dr. Tetsuya Hoya
RIKEN Brain Science Institute
Laboratory for Advanced
Brain Signal Processing
2-1 Hirosawa, Wako-Shi
Saitama, 351-0198
Japan
E-mail: hoya@brain.riken.jp

Library of Congress Control Number: 2005926346

ISSN print edition: 1860-949X
ISSN electronic edition: 1860-9503
ISBN-10 3-540-26072-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26072-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com
c© Springer-Verlag Berlin Heidelberg 2005

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package

Printed on acid-free paper SPIN: 10997444 89/TechBooks 5 4 3 2 1 0

To my colleagues, educators, and my family

Preface

This book was written from an engineer’s perspective of mind. So far, although
quite a large amount of literature on the topic of the mind has appeared from
various disciplines; in this research monograph, I have tried to draw a picture
of the holistic model of an artificial mind system and its behaviour, as con-
cretely as possible, within a unified context, which could eventually lead to
practical realisation in terms of hardware or software. With a view that “mind
is a system always evolving”, ideas inspired/motivated from many branches
of studies related to brain science are integrated within the text, i.e. arti-
ficial intelligence, cognitive science/psychology, connectionism, consciousness
studies, general neuroscience, linguistics, pattern recognition/data clustering,
robotics, and signal processing. The intention is then to expose the reader to
a broad spectrum of interesting areas in general brain science/mind-oriented
studies.

I decided to write this monograph partly because now I think is the right
time to reflect at what stage we currently are and then where we should go
towards the development of “brain-style” computers, which is counted as one
of the major directions conducted by the group of “creating the brain” within
the brain science institute, RIKEN.

Although I have done my best, I admit that for some parts of the holistic
model only the frameworks are given and the descriptions may be deemed to
be insufficient. However, I am inclined to say that such parts must be heavily
dependent upon specific purposes and should be developed with careful con-
sideration during the domain-related design process (see also the Statements
to be given next), which is likely to require material outside of the scope of
this book.

Moreover, it is sometimes a matter of dispute whether a proposed ap-
proach/model is biologically plausible or not. However, my stance, as an en-
gineer, is that, although it may be sometimes useful to understand the under-
lying principles and then exploit them for the development of the “artificial”
mind system, only digging into such a dispute will not be so beneficial for
the development, once we set our ultimate goal to construct the mechanisms

VIII Preface

functioning akin to the brain/mind. (Imagine how fruitless it is to argue, for
instance, only about the biological plausibility of an airplane; an artificial ob-
ject that can fly, but not like a bird.) Hence, the primary objective of this
monograph is not to seek such a plausible model but rather to provide a basis
for imitating the functionalities.

On the other hand, it seems that the current trend in general connec-
tionism rather focuses upon more and more sophisticated learning mecha-
nisms or their highly-mathematical justifications without showing a clear di-
rection/evidence of how these are related to imitating such functionalities of
brain/mind, which many times brought me a simple question, “Do we really
need to rely on such highly complex tools, for the pursuit of creating the virtual
brain/mind?” This was also a good reason to decide writing the book.

Nevertheless, I hope that the reader enjoys reading it and believe that
this monograph will give some new research opportunities, ideas, and further
insights in the study of artificial intelligence, connectionism, and the mind.
Then, I believe that the book will provide a ground for the scientific commu-
nications amongst various relevant disciplines.

Acknowledgment

First of all, I am deeply indebted to Professor Andrzej Cichocki, Head of
the Laboratory for Advanced Brain Signal Processing, Brain Science Insti-
tute (BSI), the Institute of Physical and Chemical Research (RIKEN), who
is on leave from Warsaw Institute of Technology and gave me a wonderful
opportunity to work with the colleagues at BSI. He is one of the mentors as
well as the supervisors of my research activities, since I joined the laboratory
in Oct. 2000, and kindly allowed me to spend time writing this monograph.
Without his continuous encouragement and support, this work would never
have been completed. The book is moreover the outcome of the incessant ex-
citement and stimulation gained over the last few years from the congenial
atmosphere within the laboratory at BSI-RIKEN. Therefore, my sincere grat-
itude goes to Professor Shun-Ichi Amari, the director, and Professor Masao
Ito, the former director of BSI-RIKEN whose international standing and pro-
found knowledge gained from various brain science-oriented studies have coal-
ized at BSI-RIKEN, where exciting research activities have been conducted
by maximally exploiting the centre’s marvelous facilities since its foundation
in 1997. I am much indebted to Professor Jonathon Chambers, Cardiff Pro-
fessorial Fellow of Digital Signal Processing, Cardiff School of Engineering,
Cardiff University, who was my former supervisor during my post-doc period
from Sept. 1997 to Aug. 2000, at the Department of Electrical and Elec-
tronic Engineering, Imperial College of Science, Technology, and Medicine,
University of London, for undertaking the laborious proofreading of the en-
tire book written by a non-native English speaker. Remembering the exciting
days in London, I would like to express my gratitude to Professor Anthony G.

Preface IX

Constantinides of Imperial College London, who was the supervisor for my
Ph.D. thesis and gave me excellent direction and inspiration. Many thanks
also go to my colleagues in BSI, collaborators, and many visitors to the ABSP
laboratory, especially Dr. Danilo P. Mandic at Imperial College London, who
has continuously encouraged me in various ways for this monograph writing,
Professor Hajime Asama, the University of Tokyo, Professor Michio Sugeno,
the former Head of the Laboratory for Language-Based Intelligent Systems,
BSI-RIKEN, Dr. Chie Nakatani and Professor Cees V. Leeuwen of the Lab-
oratory for Perceptual Dynamics, BSI-RIKEN, Professor Jianting Cao of the
Saitama Institute of Technology, Dr. Shuxue Ding, at the University of Aizu,
Professor Allan K. Barros, at the University of Maranhão (UFMA), and the
students within the group headed by Professor Yoshihisa Ishida, who was my
former supervisor during my master’s period, at the Department of Electron-
ics and Communication, School of Science and Engineering, Meiji University,
for their advice, fruitful discussions, inspirations, and useful comments.

Finally, I must acknowledge the continuous and invaluable help and en-
couragement of my family and many of my friends during the monograph
writing.

BSI-RIKEN, Saitama
April 2005 Tetsuya Hoya

Statements

Before moving ahead to the contents of the research monograph, there is one
thing to always bear in our mind and then we need to ask ourselves from
time to time, “What if we successfully developed artificial intelligence (AI)
or humanoids that behaves as real mind/humans? Is it really beneficial to
human-kind and also to other species?” In the middle of the last century, the
country Japan unfortunately became a single (and hopefully the last) country
in the world history that actually experienced the aftermath of nuclear bombs.
Then, only a few years later into the new millennium (2000), we are frequently
made aware of the peril of bio-hazard, resulting from the advancement in bi-
ology and genetics, as well as the world-wide environmental problems. The
same could potentially happen if we succeeded the development and thereby
exploited recklessly the intelligent mechanisms functioning quite akin to crea-
tures/humans and eventually may lead to our existence being endangered in
the long run. In 1951, the cartoonist Osamu Tezuka gave birth to the astro-
boy named “Atom” in his works. Now, his cartoons do not remain as a mere
fiction but are like to become reality in the near future. Then, they warn us
how our life can be dramatically changed by having such intelligent robots
within our society; as a summary, in the future we may face to the relevant
issues as raised by Russell and Norvig (2003):

• People might lose their jobs to automation;
• People might have too much (or too little) leisure time;
• People might lose their sense of being unique;
• People might lose some of their privacy rights;
• The use of AI systems might result in a loss of accountability;
• The success of AI might mean the end of the human race.

In a similar context, the well-known novel “Frankenstein” (1818) by Mary
Shelley also predicted such a day to come. These works, therefore, strongly
suggest that it is high time we really needed to start contemplating the (near)

XII Statements

future, where AIs or robots are ubiquitous in the surrounding environment,
what we humans are in such a situation, and what sort of actions are necessary
to be taken by us. I thus hope that the reader also takes these emerging issues
very seriously and proceeds to the contents of the book.

Contents

1 Introduction . 1
1.1 Mind, Brain, and Artificial Interpretation 1
1.2 Multi-Disciplinary Nature of the Research 2
1.3 The Stance to Conquest the Intellectual Giant 3
1.4 The Artificial Mind System Based

Upon Kernel Memory Concept . 4
1.5 The Organisation of the Book . 6

Part I The Neural Foundations

2 From Classical Connectionist Models
to Probabilistic/Generalised Regression Neural
Networks (PNNs/GRNNs) . 11
2.1 Perspective . 11
2.2 Classical Connectionist/Artificial Neural Network Models 12

2.2.1 Multi-Layered Perceptron/Radial Basis Function
Neural Networks, and Self-Organising Feature Maps . . . 12

2.2.2 Associative Memory/Hopfield’s Recurrent Neural
Networks . 12

2.2.3 Variants of RBF-NN Models . 13
2.3 PNNs and GRNNs . 13

2.3.1 Network Configuration of PNNs/GRNNs 15
2.3.2 Example of PNN/GRNN – the Celebrated Exclusive

OR Problem . 17
2.3.3 Capability in Accommodating New Classes

within PNNs/GRNNs (Hoya, 2003a) 19
2.3.4 Necessity of Re-accessing the Stored Data 20
2.3.5 Simulation Example . 20

2.4 Comparison Between Commonly Used Connectionist Models
and PNNs/GRNNs . 25

XIV Contents

2.5 Chapter Summary . 29

3 The Kernel Memory Concept – A Paradigm Shift
from Conventional Connectionism . 31
3.1 Perspective . 31
3.2 The Kernel Memory . 31

3.2.1 Definition of the Kernel Unit . 32
3.2.2 An Alternative Representation of a Kernel Unit 36
3.2.3 Reformation of a PNN/GRNN . 37
3.2.4 Representing the Final Network Outputs

by Kernel Memory . 39
3.3 Topological Variations in Terms of Kernel Memory 41

3.3.1 Kernel Memory Representations
for Multi-Domain Data Processing 41

3.3.2 Kernel Memory Representations
for Temporal Data Processing . 47

3.3.3 Further Modification
of the Final Kernel Memory Network Outputs 49

3.3.4 Representation of the Kernel Unit Activated
by a Specific Directional Flow . 52

3.4 Chapter Summary . 57

4 The Self-Organising Kernel Memory (SOKM) 59
4.1 Perspective . 59
4.2 The Link Weight Update Algorithm (Hoya, 2004a) 60

4.2.1 An Algorithm for Updating Link Weights
Between the Kernels . 60

4.2.2 Introduction of Decay Factors . 61
4.2.3 Updating Link Weights Between (Regular) Kernel

Units and Symbolic Nodes . 62
4.2.4 Construction/Testing Phase of the SOKM 63

4.3 The Celebrated XOR Problem (Revisited) 65
4.4 Simulation Example 1 – Single-Domain Pattern Classification . 67

4.4.1 Parameter Settings . 67
4.4.2 Simulation Results . 68
4.4.3 Impact of the Selection σ Upon the Performance 69
4.4.4 Generalisation Capability of SOKM. 71
4.4.5 Varying the Pattern Presentation Order 72

4.5 Simulation Example 2 – Simultaneous Dual-Domain
Pattern Classification . 73
4.5.1 Parameter Settings . 74
4.5.2 Simulation Results . 74
4.5.3 Presentation of the Class IDs to SOKM 74
4.5.4 Constraints on Formation of the Link Weights 75
4.5.5 A Note on Autonomous Formation of a New Category . 76

Contents XV

4.6 Some Considerations for the Kernel Memory in Terms
of Cognitive/Neurophysiological Context 77

4.7 Chapter Summary . 79

Part II Artificial Mind System

5 The Artificial Mind System (AMS), Modules,
and Their Interactions . 83
5.1 Perspective . 83
5.2 The Artificial Mind System – A Global Picture 84

5.2.1 Classification of the Modules Functioning
With/Without Consciousness . 86

5.2.2 A Descriptive Example . 87
5.3 Chapter Summary . 93

6 Sensation and Perception Modules . 95
6.1 Perspective . 95
6.2 Sensory Inputs (Sensation) . 96

6.2.1 The Sensation Module – Given as a Cascade
of Pre-processing Units . 97

6.2.2 An Example of Pre-processing Mechanism –
Noise Reduction for Stereophonic Speech Signals
(Hoya et al., 2003b; Hoya et al., 2005, 2004c) 98

6.2.3 Simulation Examples . 105
6.2.4 Other Studies Related to Stereophonic Noise Reduction 113

6.3 Perception – Defined as the Secondary Output of the AMS . . . 114
6.3.1 Perception and Pattern Recognition 114

6.4 Chapter Summary . 115

7 Learning in the AMS Context . 117
7.1 Perspective . 117
7.2 The Principle of Learning . 117
7.3 A Descriptive Example of Learning . 119
7.4 Supervised and Unsupervised Learning in Conventional ANNs 121
7.5 Target Responses Given as the Result from Reinforcement 122
7.6 An Example of a Combined Self-Evolutionary

Feature Extraction and Pattern Recognition
Using Self-Organising Kernel Memory . 123
7.6.1 The Feature Extraction Part: Units 1)-3) 124
7.6.2 The Pattern Recognition and Reinforcement Parts:

Units 4) and 5) . 125
7.6.3 The Unit for Performing the Reinforcement Learning:

Unit 5) . 126
7.6.4 Competitive Learning of the Sub-Systems 126

XVI Contents

7.6.5 Initialisation of the Parameters
for Human Auditory Pattern Recognition System 128

7.6.6 Consideration of the Manner
in Varying the Parameters i)-v) . 129

7.6.7 Kernel Representation of Units 2)-4) 130
7.7 Chapter Summary . 131

8 Memory Modules and the Innate Structure 135
8.1 Perspective . 135
8.2 Dichotomy Between Short-Term (STM)

and Long-Term Memory (LTM) Modules 135
8.3 Short-Term/Working Memory Module . 136

8.3.1 Interpretation of Baddeley & Hitch’s Working Memory
Concept in Terms of the AMS . 137

8.3.2 The Interactive Data Processing:
the STM/Working Memory ←→ LTM Modules 139

8.3.3 Perception of the Incoming Sensory Data in Terms
of AMS . 140

8.3.4 Representation of the STM/Working Memory Module
in Terms of Kernel Memory . 141

8.3.5 Representation of the Interactive Data
Processing Between the STM/Working Memory
and Associated Modules . 143

8.3.6 Connections Between the Kernel Units
within the STM/Working Memory, Explicit LTM,
and Implicit LTM Modules . 144

8.3.7 Duration of the Existence of the Kernel Units
within the STM/Working Memory Module 145

8.4 Long-Term Memory Modules . 146
8.4.1 Division Between Explicit and Implicit LTM 146
8.4.2 Implicit (Nondeclarative) LTM Module 147
8.4.3 Explicit (Declarative) LTM Module 148
8.4.4 Semantic Networks/Lexicon Module 149
8.4.5 Relationship Between the Explicit LTM, Implicit

LTM, and Semantic Networks/Lexicon Modules
in Terms of the Kernel Memory . 149

8.4.6 The Notion of Instinct: Innate Structure, Defined
as A Built-in/Preset LTM Module 151

8.4.7 The Relationship Between the Instinct:
Innate Structure and Sensation Module 152

8.4.8 Hierarchical Representation of the LTM
in Terms of Kernel Memory . 153

8.5 Embodiment of Both the Sensation and LTM Modules –
Speech Extraction System Based Upon a Combined Blind
Signal Processing and Neural Memory Approach 155

Contents XVII

8.5.1 Speech Extraction Based Upon a Combined Subband
ICA and Neural Memory (Hoya et al., 2003c) 156

8.5.2 Extension to Convolutive Mixtures (Ding et al., 2004) . . 164
8.5.3 A Further Consideration

of the Blind Speech Extraction Model 167
8.6 Chapter Summary . 168

9 Language and Thinking Modules . 169
9.1 Perspective . 169
9.2 Language Module . 170

9.2.1 An Example of Kernel Memory
Representation – the Lemma and Lexeme
Levels of the Semantic Networks/Lexicon Module 171

9.2.2 Concept Formation . 175
9.2.3 Syntax Representation in Terms of Kernel Memory 176
9.2.4 Formation of the Kernel Units Representing a Concept . 179

9.3 The Principle of Thinking – Preparation for Making Actions . . 183
9.3.1 An Example of Semantic Analysis Performed

via the Thinking Module . 185
9.3.2 The Notion of Nonverbal Thinking 186
9.3.3 Making Actions – As a Cause of the Thinking Process . 186

9.4 Chapter Summary . 186

10 Modelling Abstract Notions Relevant
to the Mind and the Associated Modules 189
10.1 Perspective . 189
10.2 Modelling Attention . 189

10.2.1 The Mutual Data Processing:
Attention ←→ STM/Working Memory Module 190

10.2.2 A Consideration into the Construction
of the Mental Lexicon with the Attention Module 192

10.3 Interpretation of Emotion . 194
10.3.1 Notion of Emotion within the AMS Context 195
10.3.2 Categorisation of the Emotional States 195
10.3.3 Relationship Between the Emotion, Intention,

and STM/Working Memory Modules 198
10.3.4 Implicit Emotional Learning Interpreted

within the AMS Context . 199
10.3.5 Explicit Emotional Learning . 200
10.3.6 Functionality of the Emotion Module 201
10.3.7 Stabilisation of the Internal States 202
10.3.8 Thinking Process to Seek the Solution

to Unknown Problems . 202
10.4 Dealing with Intention . 203

XVIII Contents

10.4.1 The Mutual Data Processing:
Attention ←→ Intention Module . 204

10.5 Interpretation of Intuition . 205
10.6 Embodiment of the Four Modules: Attention,

Intuition, LTM, and STM/Working Memory Module,
Designed for Pattern Recognition Tasks . 206
10.6.1 The Hierarchically Arranged Generalised Regression

Neural Network (HA-GRNN) – A Practical Model
of Exploiting the Four Modules: Attention, Intuition,
LTM, and STM, for Pattern Recognition Systems
(Hoya, 2001b, 2004b) . 207

10.6.2 Architectures of the STM/LTM Networks 208
10.6.3 Evolution of the HA-GRNN . 209
10.6.4 Mechanism of the STM Network . 214
10.6.5 A Model of Intuition by an HA-GRNN 215
10.6.6 Interpreting the Notion of Attention by an HA-GRNN . 217
10.6.7 Simulation Example . 219

10.7 An Extension to the HA-GRNN Model – Implemented
with Both the Emotion and Procedural Memory
within the Implicit LTM Modules . 226
10.7.1 The STM and LTM Parts . 227
10.7.2 The Procedural Memory Part . 230
10.7.3 The Emotion Module and Attentive Kernel Units 230
10.7.4 Learning Strategy of the Emotional State Variables 232

10.8 Chapter Summary . 234

11 Epilogue – Towards Developing A Realistic Sense
of Artificial Intelligence . 237
11.1 Perspective . 237
11.2 Summary of the Modules and Their Mutual Relationships

within the AMS . 237
11.3 A Consideration into the Issues Relevant to Consciousness 240
11.4 A Note on the Brain Mechanism for Intelligent Robots 242

References . 245

Index . 261

List of Abbreviations

ADF ADaptive Filter
AI Artificial Intelligence
ALCOVE Attention Learning COVEring map
ALE Adaptive Line Enhancer
AMS Artificial Mind System
ANN Artificial Neural Network
ARTMAP Adative Resonance Theory MAP
ASE Adaptive Signal Enhancer
BP Back-Propagation
BSE Blind Signal Extraction
BSP Blind Signal Processing
BSS Blind Source Separation
CMOS Complimentary Metal-Oxide Semiconductor
CR Conditioned Response
CS Conditioned Stimuli
DASE Dual Adaptive Signal Enhancer
DFT Discrete Fourier Transform
DOA Direction Of Arrival
ECG ElectroCardioGraphy
EEG ElectroEncephaloGraphy
EGO Emotionally GrOunded
EMG ElectroMyoGraphy
EVD EigenValue Decomposition
FIR Finite Impulse Response
FFT Fast Fourier Transform
fMRI functional Magnetic Resonance Imaging
GCM Generalised Context Model
GMM Gaussian Mixture Model
GRNN Generalised Regression Neural Network
HA-GRNN Hierarchically Arranged Generalised Regression
HMM Hidden Markov Model

XX List of Abbreviations

HRNN Hopfield-type Recurrent Neural Network
ICA Independent Component Analysis
i.i.d. Independent Identically Distributed
KF Kernel Function
KM Kernel Memory
K-Line Knowledge-Line
LAD Language Acquisition Device
LIFO Last-In-Fast-Out
LMS Least Mean Square
LPC Linear Predictive Coding
LTD Long Term Depression
LTM Long Term Memory
MDIMO Multi-Domain Input Multi-Output
MEG MagnetoEncephaloGraphy
MIMO Multi-Input Multi-Output
MLP-NN Multi-Layered Perceptron Neural Network
MORSEL Multiple Object Recognition and Attentional Selection
M-SSP Multi-stage Sliding Subspace Projection
NLMS Normalised Least Mean Square
NM Neural Memory
NN Neural Network
NR Noise Reduction
NSS Nonlinear Spectral Subtraction
PET Positron Emission Tomography
PNN Probabilistic Neural Network
PRS Perceptual Representation System
PSD Power Spectral Density
QMF Quadrature Mirror Filter
RBF Radial Basis Function
SAD Sound Activity Detection
SAIM Selective Attention for Identification Model
SDIMO Single-Domain-Input Single Output
SE Signal Separation
SFS Speech Filing System
SIMO Single-Input Single Output
SLAM SeLective Attention Model
SNR Signal-to-Noise Ratio
SOBI Second-Order Blind Identification
SOFM Self-Organising Feature Map
SOKM Self-Organising Kernel Memory
SPECT Single-Photon Emission Computed Tomography
SRN Simple Recurrent Network
SS Signal Separation
SSP Sliding Subspace Projection
STM Short Term Memory

List of Abbreviations XXI

SVD Singular Value Decomposition
SVM Support Vector Machine
TDNN Time Delay Neural Network
UR Unconditioned Response
US Unconditioned Stimuli
XOR eXclusive OR

10

Modelling Abstract Notions Relevant
to the Mind and the Associated Modules

10.1 Perspective

This chapter is devoted to the remaining four modules within the AMS, i.e.
1) attention, 2) emotion, 3) intention, and 4) intuition module, and their
mutual interactions with the other associated modules. Then, the four modules
so modelled represent the respective abstract notions related to the mind.

10.2 Modelling Attention

In the late nineteenth century, the psychologist William James wrote (James,
1890):

“Everyone knows what attention is. It is the taking possession by the
mind, in clear and vivid form, of one out of what seem several simul-
taneously possible objects or trains of thought. Focalization, concen-
tration, of consciousness are of its essence. It implies withdrawal from
some things in order to deal effectively with others, and is a condition
which has a real opposite in the confused, dazed, scatterbrain state....”

and his general notion of “attention”, after more than one hundred and fifteen
years, is still convincing in various modern studies relevant to general brain
science such as cognitive neuroscience/psychology (Gazzaniga et al., 2002).

In psychology, despite proposals of a variety of (conceptual) connectionist
models for selective attention, such as the “selective attention model” (SLAM)
(Phaf et al., 1990), “multiple object recognition and attentional selection”
(MORSEL) (Mozer, 1991; Mozer and Sitton, 1998) or “selective attention for
identification model” (SAIM) (Heinke and Humphreys, in-press), and for a
survey of such connectionist models (see Heinke and Humphreys, in-press),
little has been reported for the development of concrete models of attention
and their practical aspects.

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 189–235 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

190 10 Modelling Abstract Notions Relevant to the Mind

In the study (Gazzaniga et al., 2002), the function of “attention” is defined
as “a cognitive brain mechanism that enables one to process relevant inputs,
thoughts, or actions, whilst ignoring irrelevant or distracting ones”.

Then, within the AMS context, the notion of attention generally agrees
with that in the aforementioned studies; as indicated in Fig. 5.1 (i.e. by the bi-
directional data flows, on page 84), it is considered that the attention module
primarily operates on the data processing within both the STM/working
memory and intention modules. The attention module is also somewhat
related to the input: sensation module (i.e. this is indicated by the link
between the attention and input: sensation module shown (dashed line) in
Fig. 5.1), since, from another point of view, some pre-processing mechanisms
within the sensation module such as BSE, BSS, DOA, NR, or SAD, can also
be regarded as the respective functionalities dealt within the notion of atten-
tion; for instance, the signal separation part of the blind speech extraction
models, which simulates the human auditory attentional system in the so-
called “cocktail party situations” (as described extensively in Sect. 8.5), can
be treated as a pre-processing mechanism within the sensation module. (In
this sense, the notion of the attention module within the AMS also agrees with
the cognitive/psychological view of the so-called “early-versus late-selection”
due to the study by Broadbent (Broadbent, 1970; Gazzaniga et al., 2002).)

10.2.1 The Mutual Data Processing:
Attention ←→ STM/Working Memory Module

For the data processing represented by the data flow attention −→ STM/
working memory module, it is considered that the attention module func-
tions as a filter which picks out a particular set of data and then holds tem-
porarily its information such as i.e. the activation pattern of some of the kernel
units within the memory space, e.g. due to a subset of the sensory data arriv-
ing from the input: sensation module, amongst the flood of the incoming
data, whilst the rest are bypassed (and transferred to e.g. the implicit LTM
module; in due course, it can then yield the corresponding perceptual out-
puts), the principle of which agrees with that supported in general cognitive
science/psychology (see e.g. Gazzaniga et al., 2002), so that the AMS can
efficiently and intensively perform a further processing based upon the data
set so acquired, i.e. the thinking process.

Thus, in terms of the kernel memory context, the attention module urges
the AMS to set the current focus to some of the kernel units, which fall in a
particular domain(s), amongst those within the STM/working memory mod-
ule as illustrated in Fig. 10.1, (or, in other words, the priority is given to
some (i.e. not all) of the marked kernel units in the entire memory space by
the STM/working memory module; see Sect. 8.2), so that a further memory
search process can be initiated from such “attended” kernel units, e.g. by the
associated modules such as thinking or intention modules, until the cur-
rent focus is switched to another. (In such a situation, the attention module

10.2 Modelling Attention 191

4
K S

1
K S

5
K S ...

1
K L

2
K L

3
K L

...

4
K L

8
K L

9
K L

11
K L

13
K L 14

K L

10
K L

5
K L

STM / Working Memory

Attention Module

2
K S

3
K S

LTM

K L

7

6
K L

12
K L

Fig. 10.1. An illustration of the functionality relevant to the attention module –
focusing upon some of the kernel units (i.e. the “attended” kernel units) within
the STM/working memory and/or LTM modules, in order to urge the AMS to
perform a further data processing relevant to a particular domain(s) selected via the
attention module, e.g. by the associated modules such as thinking or intention
module (see also Fig. 5.1); in the figure, it is assumed that the three activated
kernel units KS

2 , KL
6 , and KL

12 (bold circles) within the STM/working memory (i.e.
the former kernel unit) and LTM modules (i.e. the latter two) are firstly chosen as
the attended kernel units by the attention module. Then, via the link weights (bold
lines), the activations from some of the connected kernel units can subsequently
occur within the LTM modules (Note that, without loss of generality, no specific
directional flows between the kernel units are considered in this figure)

temporarily holds the information about e.g. the locations of the kernel units
so marked.)

More concretely, imagine a situation that now the current focus is set to
the data corresponding to the voiced sound uttered by a specific person and
then that some of the kernel units within the associated memory modules are
activated by the transfer of the incoming data corresponding to the utterances
of the specific person and marked as the attended kernel units. (In Fig. 10.1,
the three kernel units KS

2 , KL
6 , and KL

12 correspond to such attended kernel
units.) Then, although there can be other activated kernel units which are
marked by the STM/working memory module but irrelevant to the utter-
ances, a further data processing can be invoked by the thinking module with
priority; e.g. prior to any other data processing, the data processing related to
the utterances by the specific person, i.e. the grammatical/semantic analysis
via the semantic networks/lexicon, language, and/or thinking module, is
mainly performed, due to the presence of such attended kernel units (i.e. this
is illustrated by the link weight connections (bold lines) in Fig. 10.1). More-
over, it is also possible to consider that the perception of other data (i.e.

192 10 Modelling Abstract Notions Relevant to the Mind

due to the PRS within the implicit LTM) may be intermittently performed in
parallel with the data processing.

In contrast to the effect of the attention module upon the STM/working
memory module, the inverted data flow STM/working memory −→ atten-
tion module indicates that the focus can also be varied due to the indirect
effect from the other associated modules such as the emotion or thinking
modules, via the STM/working memory module. More specifically, it is pos-
sible to consider a situation where, during the memory search process per-
formed by the thinking module, or due to the flood of sensory data that fall
in a particular domain(s) arriving at the STM/working memory module/the
memory recall from the LTM modules, the activated kernel units represent-
ing the other domain(s) may become more dominant than that (those) of the
initially attended kernel units. Then, the current focus can be greatly affected
and eventually switched to another.

Similarly, the current focus can be greatly varied due to the emotion mod-
ule via the STM/working memory module, since the range of the memory
search can also be significantly affected, due to the current emotion states
within the emotion module (to be described in the next section) or the other
internal states of the body.

10.2.2 A Consideration into the Construction
of the Mental Lexicon with the Attention Module

Now, let us consider how the concept of the attention module is exploited for
the construction of the mental lexicon as in Fig. 9.1 (on page 172)1.

As in the figure, the mental lexicon consists of multiple clusters of kernel
units, each cluster of which represents the corresponding data/lexical domain
and, in practice, may be composed by the SOKM principle (i.e. described in
Chap. 4).

Then, imagine a situation where, at the lexeme level, the clusters of the
kernel units representing elementary visual feature patterns or phonemes are
firstly formed within the implicit LTM module (or, already pre-determined, in
respect of the innateness/PRS, though they can be dynamically reconfigured
later during the learning process), but where, at the moment, those for higher
level representations, e.g. the kernel units representing words/concepts, still
are not formed.

Second, as described in Chap. 4, the kernel units for a certain represen-
tation at the higher level (i.e. a cluster of the kernel units representing a
word/concept) are about to be formed from scratch within the correspond-
ing LTM module(s) (i.e. by following the manner of formation in [Summary
of Constructing A Self-Organising Kernel Memory] on page 63) and

1Although the model considered here is limited to both the auditory and visual
modalities, its generalisation to multi-modal data processing is, as aforementioned,
straightforward within the kernel memory context.

10.2 Modelling Attention 193

eventually constitute several kinds of kernel networks, due to the focal change
by the attention module.

Then, as described in Sect. 9.2.2, the concept formation can be represented
based upon the establishment of the link weight(s) between the newly formed
kernel units (at the higher level) and those representing elementary compo-
nents (at the lower level), via the focal change due to the attention module.
(Alternatively, within the kernel memory context, such concept formation can
be represented, without defining explicitly such distinct two levels and then
establishing the link weights between the two levels, but rather by the data
directly transferred from the STM/working memory module; i.e. a single ker-
nel unit is formed and stores [a chunk of] the modality specific data within
the template vector, e.g. representing a whole word at a time.)

Related to the focal change, it may also be useful/necessary to take into
account the construction of a hierarchical memory system for the efficiency
in terms of the computation; as illustrated in Fig. 8.2 (on page 154), the
subsequent pattern recognition (i.e. perception) processes must be quickly
performed, in order to deal with the incessantly varying situation encountered
by the AMS (i.e. this is always performed to seek the rewards or avoid the
obstacles, resulting from the innate structure module). Thus, depending
upon the current situation perceived by the AMS, the attention module will
change the focus. (For this change, not solely the attention module but also
other modules, i.e. the intention, emotion, and/or thinking modules, can
therefore be involved.)

In addition to this, from a linguistic point of view, it may be said that the
memory hierarchy as in Fig. 8.2 may follow the so-called “difference struc-
ture”, due to the great French thinker, Ferdinand-Morgin de Saussure (for a
comprehensive study/concise review of his concepts, cf. e.g. Maruyama, 1981);
e.g. from the sequences of words, “the dog”, “the legs”, “the person” . . ., the
concept of the single word representing the definite article “the” can be de-
tached from the word sequences and formed, with the aid of the attention
module.

More concretely, provided that the auditory data of the sequences of the
words are, for instance, stored in advance within the respective template vec-
tors of kernel units within the LTM, it can be considered that, due to the focal
change by the attention module, the kernel units, i.e. each with the template
vector of shorter length representing the respective utterances of the single
word “the”, can later be formed (in terms of the kernel memory principle).
Then, it is considered that the link weight connections between the kernel
units representing the respective sequences of the words and those represent-
ing the single word “the” are eventually established.

194 10 Modelling Abstract Notions Relevant to the Mind

10.3 Interpretation of Emotion

In general cognitive science, the notion of emotion is regarded as a psychologi-
cal state or process in order to vary the course of action and eventually achieve
certain goals, elicited by evaluating an event as relevant to a goal (Wilson
and Keil, 1999). The study of emotion has its own rich history and even back-
dates to the philosophical periods of time due to Aristotle and Descartes (e.g.
Descartes, 1984-5) to the evolutionary study by Darwin (Darwin, 1872)/the
psychological studies James (James, 1884) and Freud (see e.g. Freud, 1966)
to a modern cognitive scientific insight initiated by Bowlby in the 1950’s (see
e.g. Bowlby, 1971) and then built upon by many more recent researchers (e.g.
Arnold and Gasson, 1954; Schachter and Singer, 1962; Tomkins, 1995).

Then, it is considered that the notion of emotion can be distinguished in
time-wise into 1) affection, 2) mood, and 3) personality traits (Oatley and
Jenkins, 1996; Wilson and Keil, 1999); the first (i.e. affection) is often asso-
ciated with brief (i.e. lasting a few seconds) expressions of face and voice and
with perturbation of the autonomic nervous system, whilst the latter two last
relatively longer, i.e. a mood tends to resist (temporarily) disruption, whereas
the personality traits last for years or a lifetime of the individual.

In psychiatric studies (Papez, 1937; MacLean, 1949, 1952), the limbic sys-
tem, i.e. consisting of the real brain regions including the hypothalamus, an-
terior thalamus, cingulate gyrus, hippocampus, amygdala, orbitofrontal cor-
tex, and portions of the basal ganglia, is considered to play a principal role
in the emotional processing (for a concise review, see e.g. Gazzaniga et al.,
2002), though the validity of their concept has still been under study (Bro-
dal, 1982; Swanson, 1983; Le Doux, 1991; Kotter and Meyer, 1992; Gazzaniga
et al., 2002). Nevertheless, in the present cognitive study, the general notion
is that emotion is not involved in only a single neural circuit or brain sys-
tem but rather is a multifaceted behaviour relevant to multiple brain systems
(Gazzaniga et al., 2002).

In contrast to the aforementioned issues of the brain regions, there has
been another line of studies, i.e. rather than focusing upon specific brain sys-
tems relevant to the emotional processing, investigating how the left and right
hemispheres of the brain mutually interact and eventually contribute to the
emotional experience (Bowers et al., 1993; Gazzaniga et al., 2002). For in-
stance, in the neuropsychological study by Bowers et al. (Bowers et al., 1993;
Gazzaniga et al., 2002), it is suggested that the right hemisphere is more sig-
nificant for communication of emotion than the left hemisphere, the notion of
which has been supported by many neuropsychological studies of the patients
with brain lesions (e.g. Heilman et al., 1975; Borod et al., 1986; Barrett et al.,
1997; Anderson et al., 2000).

10.3 Interpretation of Emotion 195

10.3.1 Notion of Emotion within the AMS Context

As indicated in Fig. 5.1, the emotion module within the AMS functions
in parallel with the three modules, i.e. 1) instinct: innate structure, 2)
explicit/implicit LTM, and 3) primary output module (in Fig. 5.1, all
denoted by the respective links in between, on page 84).

In terms of the relations with the 1) instinct: innate structure and 3) pri-
mary output modules, it is implied that the emotion module exhibits the as-
pect of innateness; the emotion module consists of some state variables which
represent (a subset of) the current internal states related to the AMS/body
and directly reflect e.g. the electrical current flow within the body (thus the
module can also be regarded as one of the primary outputs, simulating the elic-
itation of autonomic responses, such as a change in the heart rate/endocrines,
or releasing the stress hormones in the organism (cf. Rolls, 1999; Gazzaniga
et al., 2002)) in order to keep the balance.

On the other hand, the functionality in parallel with the 2) explicit/implicit
LTM module implies the memory aspect of the emotion module; some of the
kernel units in these LTM modules may also have connections via the link
weights with the state variables within the emotion module. Figure 10.2 illus-
trates the manner of connections between the emotion and memory modules
within the AMS.

In the figure, it is assumed that the state variables E1, E2, . . . , ENe
have

connections with the three kernel units within the memory modules, i.e. KS
5

within the STM/working memory, KL
11 and KL

14 within the LTM module, via
the link weights in between. In such a case, the state variables E1, E2, . . . ,
ENe

may be represented by symbolic kernel units (in Sect. 3.2.1).
Then, as described earlier, the weighting values represent the strengths

between the (regular) kernel units within the memory modules and state vari-
ables, which may directly reflect, e.g. the amount of such current flow to
change the internal states of the body (i.e. representing the endocrine) via
the primary output module.

Alternatively, the kernel unit representation shown in Fig. 10.3 (i.e. mod-
ified from Hoya, 2003d) can be exploited, instead of the ordinary kernel unit
representations in Figs. 3.1 (on page 32) and 3.2 (on page 37); the (emo-
tional) state variables attached to each kernel unit can be used to determine
the current internal states.

10.3.2 Categorisation of the Emotional States

In our daily life, we use the terms such as angry, anxious, disappointed, dis-
gusted, elated, excited, fearful, guilty, happy, infatuated, joyful, pleased, sad,
shameful, smitten, and so forth, to describe the emotional experience. How-
ever, it is generally difficult to translate these into discrete states. In general
cognitive studies, there are two major trends to categorise such emotional ex-
pressions into a finite set (for a concise review, see Gazzaniga et al., 2002);

196 10 Modelling Abstract Notions Relevant to the Mind

1
K L

2
K L

3
K L

...

4
K L

8
K L

9
K L

11
K L

13
K L 14

K L

10
K L

5
K L

4
K S

1
K S

5
K S ...

STM / Working Memory

2
K S

3
K S

2
E

1
E ... E

eN

LTM

K L

7

6
K L

12
K L

(To Primary Output: Endocrine)

Emotion

Fig. 10.2. Illustration of the manner of connections between the emotion and mem-
ory modules within the kernel memory context by exploiting the link weights in
between; in the figure, three kernel units, i.e. KS

5 within the STM/working mem-
ory, KL

11 and KL
14 both within the LTM module, have the connections via the link

weights in between with the state variables E1, E2, . . . , ENe within the emotion mod-
ule (without loss of generality, no specific directional flows are considered between
the kernel units in this figure). Note that such state variables can be even regarded
as symbolic kernel units within the kernel memory context. Then, the changes in
the state variables directly reflect the current internal states of the body via the
primary output module (i.e. endocrine)

one way is to characterise basic emotions by examining the universality of the
facial expressions of humans (Ekman, 1971), whilst the other is the so-called
dimensional approach by describing the emotional states as not discrete but
rather reactions to events in the world that vary along a continuum. For the
former approach, the four (e.g. amusement, anger, grief, and pleasure) (see
e.g. Yamadori, 1998) or six (e.g. those representing anger, fear, disgust, grief,
pleasure, and surprise) (cf. Ekman, 1971) emotional states are normally con-
sidered, whilst the latter is based upon the two factors, i.e. i) valance (i.e.
pleasant-unpleasant or good-bad) and ii) arousal (i.e. how intense is the in-
ternal emotional response, high-low) (Osgood et al., 1957; Russel, 1979), or

10.3 Interpretation of Emotion 197

4) Auxiliary Memory to Store Class ID (Label)η

3) Excitation Counterε

e2

p2p1 N

N

x2

xN

x1

.

.

.

Kernel

1) The Kernel Function

K()

5) Pointers to Other Kernel Units

. . .

e1 . . . e

p

2) Emotional State Variables

p

e

x

Fig. 10.3. The modified kernel unit with the emotional state variables e1, e2, . . . , eNe

(i.e. extended from Hoya, 2003d)

(more cognitive sense of) motivation (i.e. approaching-withdrawal) (Davidson
et al., 1990).

Similar to the dimensional approaches, in (Rolls, 1999), it is proposed that
the emotions should be described and classified according to whether the rein-
forcer is positive or negative; the emotional states are described in terms of the
2D-diagram, where there are two orthogonal axes representing the respective
intensity scales of the emotions associated with the reinforcement contingen-
cies; i.e. the horizontal axis goes in the direction of positive reinforcer (S+ or
S+!) → negative reinforcer (S- or S-!), indicating the omission/termination
level of the reinforcer (e.g. rage, anger/grief, frustration/sadness, and relief),
whilst the vertical axis goes in a similar fashion (i.e. from (S+) to (S-)),
showing the presentation level of the reinforcer (e.g. ecstasy, elation, pleasure,
apprehension, fear, and terror), and the intersection of these two axes repre-
sents the neutral state.

Although so far a number of approaches to define emotions have been pro-
posed, there is no single correct approach (Gazzaniga et al., 2002).

Nevertheless, within the AMS context, it is considered that the emotional
states can be sufficiently represented by exploiting the multiple state variables
as in Figs. 10.2 and 10.3, depending upon the application, since the objec-

198 10 Modelling Abstract Notions Relevant to the Mind

tive here is limited to imitating the emotions of creatures and the resultant
behaviours.

As an example, we may simply assign the two emotional states E1 and E2

in Fig. 10.2 (or the emotional state variables e1 and e2 attached to the kernel
units in Fig. 10.3) to the respective intensity scales representing the emotions
due to Rolls (Rolls, 1999): e.g.

E1(or e1) =

a1 : ecstasy
a2 : elation
a3 : pleasure
a4 : (neutral)
a5 : apprehension
a6 : fear
a7 : terror

(10.1)

where a1 > a2 > . . . > a7, and

E2(or e2) =

b1 : rage
b2 : anger/grief
b3 : frustration/sadness
b4 : (neutral)
b5 : relief

(10.2)

where b1 > b2 > . . . > b5.
Then, the values of E1 (or e1) and E2 (or e2) can be directly transferred

to the primary output module, in order to control e.g. the facial expression
mechanism/the mechanism simulating the endocrines of the body. (Therefore,
in practice, the emotional states may be merely treated as a sort of poten-
tiometer.)

10.3.3 Relationship Between the Emotion, Intention,
and STM/Working Memory Modules

Apart from the aforementioned parallel functionalities of the emotion module,
the module has the bi-directional connections with both the intention and
STM/working memory modules as shown in Fig. 5.1. For both the connec-
tions, the connection type is essentially the same, but the amount/duration
of the effect from/to these modules differs between the connection with the
STM/working memory and that with the intention module:

• Emotion −→ STM/Working Memory Module
Sets the emotional state variables attached to the kernel unit(s)
within the STM/working memory module to the current emotional
states. (Or, alternatively, set the link weights between the kernel
units representing the current emotional states and those within
the STM/working memory.)

10.3 Interpretation of Emotion 199

• Emotion −→ Intention Module
Gives an impact upon the states within the intention module to
a certain extent, which may eventually lead to a long-term effect
upon the tendency for the manner of data processing within the
AMS (and thereby the overall behaviour of the body), via the
intention/thinking module.

• STM/Working Memory −→ Emotion Module
Indicates the temporal (short-term) change in the emotional states,
e.g. due to the memory recall from the LTM modules (and thus
the activation from the corresponding kernel units) by the thinking
process and/or external stimuli given to the AMS.

• Intention −→ Emotion Module
Gives an impact upon a relatively long-lasting tendency in the
emotional states, representing mood or much longer personal traits.

Due to the relation between the emotion and intention module in the
above (i.e. represented by the connections between the two modules), it is
considered that the associated data processing, e.g. the memory search via
the STM/working memory module, can be rather dependent upon the emo-
tional state variables.

Related to the data processing via the aforementioned inter-module rela-
tions, it is considered that both the explicit and implicit emotional learning
(for a concise review, see e.g. Gazzaniga et al., 2002) can also be interpreted
within the context of the relationship between the emotion and memory mod-
ules; for both the learning, the AMS firstly receives the stimuli via the input:
sensation module from the outside world, the binding (or data-fusion; refer
back to Sect. 8.3.1) between multiple sensory data which has arrived at the
STM/working memory module occurs, and the resultant network so formed
is transferred to the explicit/implicit LTM module followed by the corre-
sponding primary/secondary (i.e. perceptual) output. Then, the emotion
module may also come into the data processing; since as in Fig. 5.1 the emo-
tion module can be regarded as a part of the innate structure (as well as
the sensation module), the AMS also takes into account the (emotional) state
variables to a certain degree for the processing of the incoming sensory data
(arrived at the STM/working memory module).

10.3.4 Implicit Emotional Learning Interpreted
within the AMS Context

To be more concrete, imagine a situation where the AMS receives two dif-
ferent kinds of sensory data, i.e. one that can give a significant impact upon
the body (or the one that does harm to the life value), whilst the other does
not by itself; for instance, the pain in the wounded leg suffered in the car
accident in the past (i.e. the information received as certain tactile data via
the sensation module), which directly involves the emotion of “fear”, and

200 10 Modelling Abstract Notions Relevant to the Mind

some sensory information of the specific car (i.e. auditory/visual) that hit the
body correspond respectively to the two such different kinds of sensory data.
In classical conditioning, the car and its hit to the body can be treated re-
spectively as the conditioned stimulus (CS) and unconditioned stimulus (US),
whereas the pain is an unconditioned response (UR). In the AMS context, it
is considered that these two different types of sensory data were firmly bound
(or associated) together and stored as a form of (at least) the two kernel units
representing the respective sensory data and the link weight in between within
the corresponding LTM module(s). Then, these kernel units have/share the
(emotional) state variables representing the fear (i.e. by exploiting the kernel
unit representation with state variables as shown in Fig. 10.3).

Next, even long after the injury is cured, such a situation is considered
that once the AMS receives (only) some sort of the sensory data correspond-
ing to the specific car (i.e. the visual sensory data corresponding to the car
of the same type, such as the shape or colour, but different from the car that
actually hit the body in the past), it could show a fear response, due to the
retrieval of the emotional state variables (i.e. the variables attached to the re-
spective kernel units) that can vary the current state(s) within the emotional
module, the states of which can then be regarded as the conditioned response
(CR), and may even follow some involuntary actions due to the activations
from some other kernel units within the implicit LTM module invoked by the
sensory data (i.e. due to the connections via the link weights in between). In
general cognitive science/psychology, this is referred to as the implicit emo-
tional learning (see e.g. Gazzaniga et al., 2002).

In addition, the duration of which such state variables within the two ker-
nel units are so set and held can, however, be varied, during the later learning
process by the AMS.

10.3.5 Explicit Emotional Learning

In contrast to the implicit emotional learning, it is possible to consider another
scenario; the body was not actually involved in such an accident but acquired
such knowledge of information externally through the relevant sensory data;
i.e. imagine a situation where the AMS had captured the sensory data of the
specific car (i.e. the car of the same type) and later performed the data-fusion
with the fact, i.e. the information about the fact is i) received first as another
sensory data, ii) processed further, and then iii) the outcome is stored within
the LTM, that, e.g. the specific car had some mechanical fault and caused a
traffic accident in the past. Then, similar to the previous scenario (i.e. within
the context of implicit emotional learning), the AMS could vary the current
emotional state by retrieving the emotional state variables (i.e. due to the
memory recall during the interactive data processing amongst the associated
modules) and eventually exhibit a fear response due to the functionality of
the emotion module. This is in contrast referred to as the explicit emotional
learning (see e.g. Gazzaniga et al., 2002).

10.3 Interpretation of Emotion 201

10.3.6 Functionality of the Emotion Module

For both the examples of the explicit and implicit emotional learning as de-
scribed above, the following conditions must, however, be met; the AMS has
already acquired (i.e. due to the instinct/innateness) or learnt the fact that
“one must avoid suffering from any pain for the existence of the body” and
thus that “a fear is (also) associated with a pain”. This is since any pain per-
ceived can be treated as a signal that indicates a break in the body and can
eventually endanger the existence.

In the AMS context, it is considered that such knowledge is pre-set within
the instinct: innate structure module or has been learnt and stored within
the LTM modules during the course of learning. Then, the principal role of
the emotion module is to urge such a learning process (i.e. to initiate the
memory reconfiguration process, where appropriate), in accordance with the
pre-determined/stored knowledge within the instinct: innate structure and/or
LTM modules (i.e. in Fig. 5.1, the links between the emotion and instinct: in-
nate structure/LTM modules imply this functionality). In other words, the
emotional states are considered as another sort of memory and thereby any
single event experienced by the AMS is, in this sense, somewhat associated
with the states of the body. Within the kernel memory principle, it is then
considered that a single event can be eventually transformed into the template
vector(s) of the kernel unit(s) (and the link weight(s) in between), whilst the
emotional states are simultaneously stored within the emotional state vari-
ables attached to them (i.e. in such a case, by exploiting the modified kernel
unit representation shown in Fig. 10.3).

Therefore, it is considered that the current emotional states and/or the
emotional state variables attached to each kernel unit retrieved (i.e. both ob-
tained via the STM/working memory and/or intention module) also play
an essential role in the thinking process (i.e the memory search process) per-
formed by the thinking module, putting aside e.g. the current condition of
the link weight connections between the kernel units within the memory mod-
ules. Thereby, it is considered that the AMS can exhibit a more complicated
manner of behaviours as the cause of such data processing. That is to say, the
memory search process can be initiated/continued, even if the starting kernel
unit does not have the connection with the others but holds similar emotional
state variables to them. (In this sense, it is said that the memory search via the
link weight connections without taking into account any emotional states is
referred to as “rational” reasoning, in contrast to the “emotional” reasoning .)

In the case of the car accident example given previously (i.e. for both the
explicit and implicit emotional learning cases), it is thus considered that the
AMS has established a firm association (i.e. in terms of the link weights and
emotional state variables) between the kernel units representing the informa-
tion about the specific car and the emotional states representing the “fear”,
since the event is crucial to the existence of the body.

202 10 Modelling Abstract Notions Relevant to the Mind

10.3.7 Stabilisation of the Internal States

In the AMS principle, the emotional states within the emotion module are
always kept in such a manner that, ultimately, maximises the duration of the
body, i.e. to maintain the emotional states that represent e.g. a (moderate)
pleasure and relief, in accordance with the scales proposed by Rolls (Rolls,
1999), so that the entire body can maintain its balance (i.e. for the long-lasting
existence of the body). This tendency can be embedded within the AMS, i.e.
due to the instinct: innate structure module. In other words, the emotion
module also functions to “suppress” excessive amount of the activities to be
performed for the protection of the body. Then, in this sense, it is considered
that introducing the emotion module can lead to avoidance of the so-called
frame problem (McCarthy and Hayes, 1969; Dennett, 1984) (this notion also
agrees with the philosophical standpoint. See Shibata, 2001).

In the previous car accident example, it was considered that the AMS
exhibits the emotional states representing a certain level of “fear” after the
implicit/explicit emotional learning of the accident event (in Sects. 10.3.4 and
10.3.5). Then, due to the innateness (i.e. the instinct: innate structure mod-
ule) of the AMS, it is considered that, at a certain point, the stabilisation
process starts to occur, so that the AMS resumes the emotional states rep-
resenting e.g. pleasure and relief for keeping the balance of the entire body.
The stabilisation process involves the associated data processing of the mod-
ules within the AMS; i.e. the thinking module initiates the memory search
within the LTM (or LTM-oriented) modules and retrieves the emotional state
variables from the activated kernel unit(s) within the LTM, in order to vary
the current biased emotional states. This retrieval process can be facilitated
further due to the functionality of the attention module (i.e. it is affected by
way of the intention and/or STM/working memory module), since the
memory search can be limited to only those which have the emotional state
variables representing a “positive” emotion (or, in contrast, the current “neg-
ative” emotion can be maintained/forced, depending upon the situation).

Alternatively, such stabilisation process can, however, be omitted depen-
dent upon the degree of the emotional learning; if the kernel network is formed
as the cause of such learning process but the degree of learning to form such
network is rather low, the network may eventually disappear from the memory
space, or the nodes can be replaced by other kernel units (e.g. sensory data
received).

10.3.8 Thinking Process to Seek the Solution
to Unknown Problems

In other words, the situation where the body was involved in such an accident
may also be regarded as that where the AMS encounters the problem of which
a direct solution is not available.

Then, consider a situation where the AMS faces to the problem of which
any solution still has yet to be found. In such a case, similar to the aforemen-
tioned memory search, the AMS resorts to a heuristic search within the LTM

10.4 Dealing with Intention 203

modules performed mainly via the thinking module, though the manner of
the heuristic search may also depend heavily upon the current internal states
(e.g. the emotion states) of the AMS.

10.4 Dealing with Intention

In general, the notion of “intention” can be alternatively interpreted as the
aim or plan to do something2. In this regard, the concept of thinking is also
closely tied to that of “intention”, and thus it can be considered that both the
concept of thinking and intention can be somewhat complementary to each
other. In a similar context, the notion of “orientation” can be dealt in parallel
with the “intention”, though, according to the classification by Hobson (Hob-
son, 1999), the orientation (direction) is referred to as the spatio-temporal
evocation, whilst the intention is relevant to the aim/plan.

Nevertheless, within the AMS context, the intention module can be re-
garded as the mechanism that holds temporarily the information about the
resultant states so reached during performing the thinking process by the
thinking module (i.e. indicated by the data flow of thinking −→ inten-
tion). In reverse, the states within the intention module can to a certain
extent affect the manner of the thinking process (i.e. the data flow intention
−→ thinking).

Then, the states so held within the intention module greatly (but indi-
rectly) affect the memory search via the STM/working memory module.
In terms of the temporal storage, it is thus said that the intention module also
exhibits the aspect of STM/working memory (as indicated by a dashed line)
by the parallel functionality of the intention module with the STM/working
memory module in Fig. 5.1.

Within the context of kernel memory, such states can be represented by
the locations/addresses of the kernel units so activated together with the emo-
tional state variables attached to them, as well as the manner of connection(s)
(i.e. represented by the kernel network(s) that consists of the kernel units so
activated, where appropriate), during the thinking process. Thus, for a rela-
tively long period of time (i.e. such a period can be varied from seconds to
days or, even to years, depending upon the application/manner of implemen-
tation), the tendency in the memory search via the STM/working memory
can be rather restricted to a particular type(s) of the kernel units within the
LTM modules; for instance, even if the current memory search is directed to
the kernel units which do not match (i.e. to a large extent) the states within
the intention module (i.e. due to the focus temporally set by the attention or
emotion module), once the current (or secondary) memory search is termi-
nated (i.e. due to the thinking module, whilst sending the signals for making

2To deal with the notion “intention” (or “intentionality”) in the strict philosoph-
ical sense is beyond the scope of this book.

204 10 Modelling Abstract Notions Relevant to the Mind

real actions to the primary output module, where there are such memory
accesses within the implicit LTM module), the primary memory search that
follows the states within the intention module can be resumed.

Related to the resumption of the primary memory search due to the inten-
tion module, the small robot developed based upon the so-called “conscious-
ness architecture” (Kitamura et al., 1995; Kitamura, 2000) can continue to
perform not only the ordinary path-finding but also the chasing pursuit of
another robot in a maze that is running ahead, even if e.g. it disappears from
the visibility of the robot. (However, rigorously speaking, the utility of the ter-
minology “consciousness” in their robot seems to be rather restricted in this
sense; a further discussion of consciousness will be given later in Chap. 11.)

10.4.1 The Mutual Data Processing:
Attention ←→ Intention Module

As aforementioned, the intention module can also be regarded as a parallel
functionality with the STM/working memory module, in that the informa-
tion about the activated kernel units (and the kernel networks so formed) for
a further memory search, i.e. during the thinking process performed by the
thinking module, is held temporarily as the corresponding state(s). In this
regard, it may be considered that the functionality is similar to the atten-
tion module. However, as indicated by the bi-directional data flow intention
←→ thinking module in Fig. 5.1, the states within the intention module are
directly affected by the thinking module and thus considered to be more
oriented with the notion of reasoning, in comparison with the attention mod-
ule. Hence, the intention module should be designed in such a way that the
states within it are less susceptible to the incoming data that arrives at the
STM/working memory module than the attention module.

Moreover, it is considered that the duration of keeping such information
within the attention module is shorter than that within the intention module
and hence that the functionalities of both the modules are rather complemen-
tary to each other:

• Intention −→ Attention Module
The state(s) within the intention module normally yields the initial
state(s) within the attention module, i.e. the state(s) represented in
the form of the kernel network(s) e.g. during the thinking process.
Then, even if the current attended kernel unit(s) is the one rep-
resenting a specific domain of the data (i.e. for performing the
secondary memory search) which are not directly relevant to the
primary memory search, the aforementioned resumption of the pri-
mary memory search can take place, due to the state(s) so held
within the intention module, i.e. after the completion of the sec-
ondary memory search (i.e. so judged by the thinking module) or
when the memory space of the STM/working memory becomes
less occupied (or in its “idle” state).

10.5 Interpretation of Intuition 205

• Attention −→ Intention Module
In reverse, in some situations, the attended kernel(s) (i.e. due to
the attention module) can to a certain extent affect the trend,
i.e. a relatively long tendency, of the memory search process(es)
performed later/subsequently by the thinking module, by the ref-
erence to the state(s) within the intention module. For instance,
the memory search can be initiated from (or limited to) the kernel
unit(s) that represents a particular domain of data.

Note that, within the kernel memory principle, in contrast to the relation
of the intention module with the emotion module (see Sect. 10.3.3), the
variation in terms of the memory search process, due to the relation with
the attention module, is not (primarily) dependent upon the emotional state
variables but rather the link weights of the corresponding kernel units (i.e. thus
relevant to the reasoning). Nevertheless, the manner of such implementation
must be ultimately dependent upon the application; for instance, to imitate
the behaviours of the real life, it is possible to design the AMS in such a way
that the memory search depends more upon the emotional state variables
(i.e. more aspects due to the instinct: innate structure module) than upon the
interconnecting link weights.

10.5 Interpretation of Intuition

In general, intuition can be alternatively referred to as instinct or sentience,
whilst there are other relevant notions such as hunch, scent , or the sixth sense.
Amongst these, we here focus upon only the notion of “intuition” and how
it is interpreted within the AMS context, albeit avoiding the strict sense of
philosophical justification (which is beyond the scope of this book).

According to the Oxford Dictionary of English, “intuition” is the ability
to understand something instinctively (which can also imply the close rela-
tionship between the notions of instinct and intuition, as indicated by the
dashed line in between the two oriented modules in Fig. 5.1 (on page 84))
without the need for conscious reasoning. In contrast, as in the Japanese Dic-
tionary (Kenbo et al., 1981), the terminology “intuition” is used to describe
such a functionality based upon experience, whilst the relevant notion such
as “hunch” is sensuous (i.e. not dependent upon any experience or reasoning)
and then more closely related to the “sixth sense”.

Then, as described in Sect. 8.4.6, the notion of intuition can be (partially)
treated within the context of instinct: innate structure module and thus
considered as a constituent of the (long-term) memory which holds the infor-
mation regarding the physical nature of the body. In addition, it is considered
that the element of learning, i.e. the aspect of experience, also comes in to
the notion of intuition, and thus, in the AMS context, the intuition module
must be considered within the principle of the LTM.

206 10 Modelling Abstract Notions Relevant to the Mind

As in Fig. 5.1, similar to that with the aforementioned instinct module, the
intuition module also has the parallel functionality with the implicit LTM
module, since it is considered that a particular set of the data transferred via
the STM/working memory module can activate the kernel units within
the intuition module and yield the corresponding output(s) (i.e. given in the
form of a series of the activations) from the secondary output: perception
module. Thus, the intuition module also consists of multiple kernel units, as
other LTM/LTM-oriented modules (in Chap. 8). Then, similar to the property
of the implicit LTM module, the contents stored within such kernel units are
not directly accessible from the STM/working memory module, but only the
resultant perceptual outputs, i.e. given as the form of the activations from the
perception module, are available. (In other words, this interpretation reflects
the aforementioned notion of understanding without the need for conscious
reasoning).

However, unlike the implicit LTM module, as indicated by the data flow in-
tuition −→ thinking in Fig. 5.1, the activations from the kernel units within
the intuition module may affect directly the thinking process performed by
the thinking module. (As described in Sect. 9.3.2, this is then somewhat
relevant to the notion of nonverbal thinking .) Thus, in practice the degree of
such affect is dependent upon implementation.

In addition, note that, in terms of the design, it is alternatively considered
that the intuition module does not act as a single agent but is merely a collec-
tion of the kernel units within the implicit LTM (or other LTM-oriented) mod-
ules that may directly affect the thinking process. It is then considered that the
kernel units within such a collection are chosen from those which have exhib-
ited relatively strong activations amongst all within the LTM/LTM-oriented
modules for a particular period of time (i.e. representing the experience).

So far in this chapter, we have considered the general framework of the four
remaining modules within the AMS relevant to the abstract notions of mind,
i.e. attention, emotion, intention, and intuition. In the forthcoming sections,
we then consider how the three oriented modules, i.e. attention, emotion, and
intuition module, can be actually designed within the kernel memory principle
and thereby how the data processing can be performed in association with
the other modules within the AMS, by examining through an example of the
application for developing an intelligent pattern recognition system.

10.6 Embodiment of the Four Modules: Attention,
Intuition, LTM, and STM/Working Memory Module,
Designed for Pattern Recognition Tasks

In this section, we consider a practical model of a pattern recognition sys-
tem by exploiting the concept of the four modules within the AMS shown
in Fig. 5.1 (on page 84), i.e. attention, intuition, LTM, and STM/working
memory module. In terms of the model, we will focus upon how the abstract

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 207

notions related to the mind can be interpreted on a basis of an engineering
framework, and thereby, we will consider how an intelligent pattern recogni-
tion system can be developed.

10.6.1 The Hierarchically Arranged Generalised Regression
Neural Network (HA-GRNN) – A Practical Model of Exploiting
the Four Modules: Attention, Intuition, LTM, and STM,
for Pattern Recognition Systems (Hoya, 2001b, 2004b)

In recent work (Hoya, 2001b, 2004b), the author has modelled the four mod-
ules in Fig. 5.1, i.e. attention, intuition, LTM, and STM, as well as their
interactive data processing, within the evolutionary process of a hierarchi-
cally arranged generalised regression neural network (HA-GRNN), the neural
network of which is also proposed by the author in the literature, as shown in
Fig. 10.4.

As the name HA-GRNN stands for, the model in Fig. 10.4 consists of a
multiple of dynamically reconfigurable neural networks arranged in a hierar-
chical order, each of which can be realised by a PNN/GRNN3 (as described
in Sect. 2.3) or modified RBF-NN (i.e. for both LTM Net 1 and STM). (How-
ever, as discussed in Sect. 3.2.3, each network, i.e. for the respective LTM and
STM networks, can also be regarded as the corresponding kernel memory,
since PNNs/GRNNs can be subsumed into the kernel memory concept, and
thus have dynamic and flexible reconfiguration properties4.)

As depicted in Fig. 10.4, an HA-GRNN consists of a multiple of neural
networks and their associated data processing mechanisms:

1) A collection of RBFs and the associated mechanism to generate the
output representing the STM/LTM for yielding the “intuitive output”
(denoted “LTM Net 1” in Fig. 10.4);

2) A multiple of PNNs/GRNNs representing the regular LTM networks
(denoted “LTM Net 2-L” in Fig. 10.4);

3) A decision unit which yields the final pattern recognition result (i.e.
following the so-called “winner-takes-all” strategy).

3The term HA-GRNN was preferably used, since as described in Sect. 2.3, it is
considered that in practice GRNNs generalise the concept of PNNs in terms of the
weight setting between the hidden and output layers.

4Thus, without loss of generality, within the networks of both the model in
Fig. 10.4 and the extended version (which will appear in Sect. 10.7), only the RBFs
(namely, Gaussian kernel functions) are considered as the respective kernel units; for
the HA-GRNN, the structure of PNNs/GRNNs is considered, whereas a collection
of the kernel units arranged in a matrix form is assumed for each LTM network
within the extended model.

Then, both the HA-GRNN model and the extended model (to be described in
Sect. 10.7) can be described within the general concept of the AMS and kernel
memory principle.

208 10 Modelling Abstract Notions Relevant to the Mind

2

1

.

.

.

.

.

.

v 3

v 2

v L

o

o

LTM,2

LTM,3

LTM,L

o
c

o
n

D

i
s
i

U
n
i
t

e

(HA−GRNN
Output)

oNET

v 1

oLTM,1

Input

STM

Direct Paths to

LTM Net 1

x
LTM

LTM

LTM

LTM
Net 1

Net 2

Net 3

Net L

oSTM

(Self−Evolution Process)

(intuitive output)the RBFs in

Fig. 10.4. The hierarchically arranged generalised regression neural network (HA-
GRNN) – modelling the notion of attention, intuition, LTM, and STM within the
evolutionary process of the HA-GRNN. As the name HA-GRNN denotes, the model
consists of a multiple of dynamically reconfigurable neural networks arranged in a
hierarchical order, each of which can be realised by a PNN/GRNN (see Sect. 2.3)
or a collection of the RBFs and the associated mechanism to generate the output
(i.e. for both LTM Net 1 and the STM)

Then, in Fig. 10.4, x denotes the incoming input pattern vector to the
HA-GRNN, oSTM is the STM output vector, oLTM,i (i = 1, 2, . . . , L) are the
LTM network outputs, vi are the respective weighting values for the LTM
network outputs, and oNET is the final output obtained from the HA-GRNN
(i.e. given as the pattern recognition result by 3) above).

The original concept of the HA-GRNN was motivated from various studies
relevant to the memory system in the brain (James, 1890; Hikosaka et al.,
1996; Shigematsu et al., 1996; Osaka, 1997; Taylor et al., 2000; Gazzaniga
et al., 2002).

10.6.2 Architectures of the STM/LTM Networks

As in Fig. 10.4, the LTM networks are subdivided into two types of networks;
one for generating “intuitive outputs” (“LTM Net 1”) and the rest (“LTM
Net 2 to LTM Net L”) for the regular outputs.

For the regular LTM, each LTM Net (2 to L) is the original PNN/GRNN
(and thus has the same structure as shown in the right part of Fig. 2.2, on

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 209

activated RBF

the most

Selection of

.

.

.

h1

STMoh2

hM

x

Fig. 10.5. The architecture of the STM network – consisting of multiple RBFs and
the associated LIFO stack-like mechanism to yield the network output. Note that
the STM network output is given as a vector instead of a scalar value

(winner−take−all

strategy)

Decision Unit

.

.

.

h1

h2

hM

x LTM,1o

Fig. 10.6. The architecture of LTM Net 1 – consisting of multiple RBFs and the
associated mechanism to yield the network output (i.e. by following the “winner-
takes-all” strategy)

page 15), whereas both the STM and LTM Net 1 consist of a set of RBFs and
the associated mechanism to generate the output from the network (alterna-
tively, they can also be seen as modified RBF-NNs) as illustrated in Figs. 10.5
and 10.6, respectively. As described later, the manner of generating outputs
from STM or LTM Net 1 is however different from ordinary PNNs/GRNNs.

Although both the architectures of the STM and LTM Net 1 are similar
to each other, the difference is left within the manner of yielding the network
output; unlike ordinary neural network principle, the network output of the
STM is given as the vector obtained by the associated LIFO stack-like mech-
anism (to be described later in Sect. 10.6.4), whilst that given by LTM Net 1
is a scalar value as in ordinary PNNs/GRNNs.

10.6.3 Evolution of the HA-GRNN

The HA-GRNN is constructed by following the evolutionary schedule which
can be subdivided further into the following five phases:

210 10 Modelling Abstract Notions Relevant to the Mind

[Evolutionary Schedule of HA-GRNN]

Phase 1: The STM and LTM Net 2 formation.
Phase 2: Formation/network growing of LTM Nets (2 to L).
Phase 3: Reconfiguration of LTM Nets (2 to L) (self-evolution).
Phase 4: Formation of LTM Net 1 (for generating intuitive outputs).
Phase 5: Formation of the attentive states.

Phase 1: Formation of the STM Network and LTM Net 2

In Phase 1, the STM network is firstly formed (how the STM network is
actually formed will be described in detail in Sect. 10.6.4), and then LTM Net
2 is constructed by directly assigning the output vectors of the STM network
to the centroid vectors of the RBFs in LTM Net 2. In other words, at the
initial stage of the evolutionary process (i.e. from the very first presentation
of the incoming input pattern vector until LTM Net 2 is filled), since each
LTM network except LTM Net 1 is represented by a PNN/GRNN, the RBFs
within LTM Net 2 are distributed into the respective sub-networks, according
to the class “label” (i.e. the label is set by the target vector consisting of a
series of indicator functions as defined in (2.4); cf. also Fig. 2.2, on page 15)
associated with each centroid vector.

Phase 2: Formation of LTM Nets (2 to L)

The addition of the RBFs in Sub-Net i (i = 1, 2, . . . , Ncl, where Ncl is the
number of classes which is identical to the number of the sub-nets in each
LTM network5) of LTM Net 2 is repeated until the total number of RBFs in
Sub-Net i reaches a maximum MLTM2,i (i.e. the process can be viewed as the
network growing). Otherwise, the least activated RBF in Sub-Net i is moved
to LTM Net 3. Then, this process corresponds to Phase 2 and is summarised
as follows:

[Phase 2: Formation of LTM Nets (2 to L)]

Step 1)
Provided that the output vector from the STM network
falls into Class i, for j = 1 to L−1, perform the following:

If the number of the RBFs in Sub-Net i of LTM
Net j reaches a maximum MLTMj,i

, move the
least activated RBF within Sub-Net i of LTM
Net j to that of LTM Net j + 1.

5Here, without loss of generality, it is assumed that the number of the sub-nets
is unique in each of LTM Nets (2 to L).

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 211

Step 2)
If the number of the RBFs in Sub-Net i of LTM
Net L reaches a maximum MLTML,i

(i.e. all the i-th
sub-networks within LTM Nets (2 to L) are filled), there
is no entry to store the new output vector. Therefore,
perform the following:

Step 2.1) Discard the least activated RBF in Sub-Net
i of LTM Net L.

Step 2.2) Shift one by one all the least activated RBFs
in Sub-Net i of LTM Nets (L-1 to 2) into that of
LTM Nets (L to 3).

Step 2.3) Then, store the new output vector from the
STM network in Sub-Net i of LTM Net 2.
(Thus, it can be seen that the procedure above is
also similar to a last-in-first-out (LIFO) stack; cf.
the similar strategy for the STM/working memory
module described in Sect. 8.3.7.)

The above process is performed based on the hypothesis that long-term
memory can be represented by a layered structure, where in the HA-GRNN
context the (regular) long-term memory is represented as a group of LTM Nets
(2 to L), and that each element of memory is represented by the corresponding
RBF and stored in a specific order arranged according to the contribution to
yield the final output of the HA-GRNN.

In Fig. 10.4, the final output from the HA-GRNN oNET is given as
the largest value amongst the weighted LTM network outputs oLTM,i (i =
1, 2, · · · , L):

oNET = max(v1 × oLTM,1, v2 × oLTM,2, . . . , vL × oLTM,L), (10.3)

where

v1 >> v2 > v3 > . . . > vL. (10.4)

Note that the weight value v1 for oLTM,1 must be given relatively larger
than the others v2, v3, . . . , vL. This discrimination then urges the formation
of the intuitive output from the HA-GRNN to be described later.

Phase 3: Reconfiguration of LTM Nets (2 to L) (Self-Evolution)

After the formation of LTM Nets (2 to L), the reconfiguration process of
the LTM networks may be initiated in Phase 3, in order to restructure the
LTM part. This process may be invoked either at a particular (period of)
time or due to the strong excitation of some RBFs in the LTM networks by

212 10 Modelling Abstract Notions Relevant to the Mind

a particular input pattern vector(s)6. During the reconfiguration phase, the
presentation of the incoming input pattern vectors from the outside is not
allowed to process at all, but the centroid vectors obtained from the LTM
networks are used instead as the input vectors to the STM network (hence
the term “self-evolution”). Then, the reconfiguration procedure within the
HA-GRNN context is summarised as follows:

[Phase 3: Reconfiguration of LTM Nets (2 to L)
(Self-Evolution)]

Step 1)
Collect all the centroid vectors within LTM Nets 2 to l
(l ≤ L), then set them as the respective incoming pattern
vectors to the HA-GRNN.

Step 2)
Present them to the HA-GRNN, one by one. This process
is repeated p times. (In Fig. 10.4, this flow is depicted
(dotted line) from the regular LTM networks to the STM
network.)

It is then considered that the above reconfiguration process invoked at a
particular time period is effective for “shaping up” the pattern space spanned
by the RBFs within LTM Nets (2 to L).

In addition, alternative to the above, such a non-hierarchical clustering
method as in (Hoya and Chambers, 2001a) may be considered for the re-
configuration of the LTM networks. The approach in (Hoya and Chambers,
2001a) is, however, not considered to be suitable for the instance-based (or
rather hierarchical clustering) operation as above, since, with the approach
in (Hoya and Chambers, 2001a), a new set of the RBFs for LTM will be ob-
tained by compressing the existing LTM using a clustering technique, which,
as reported, may (sometimes) eventually collapse the pattern space, especially
when the number of representative vectors becomes small.

Phase 4: Formation of LTM Net 1

In Phase 4, a certain number of the RBFs in LTM Nets (2 to L) which keep
relatively strong activation in a certain period of the pattern presentation are
transferred to LTM Net 1. Each RBF newly added in LTM Net 1 then forms
a modified PNN/GRNN and will have a direct connection with the incoming
input vector, instead of the output vector from the STM. The formation of
LTM Net 1 is summarised as follows7:

6In the simulation example given later, the latter case will not be considered due
to the analytical difficulty.

7Here, although the LTM is divided into the regular LTM networks (i.e. LTM
Nets 2 to L) and LTM Net 1 for generating the intuitive outputs, such a division

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 213

[Phase 4: Formation of LTM Net 1]

Step 1)
In Phases 2 and 3 (i.e. during the formation/reconfiguration
of the LTM Nets (2 to L)), given an output vector from the
STM, the most activated RBFs in LTM Nets (2 to L) are
monitored; each RBF has an auxiliary variable which is ini-
tially set to 0 and is incremented, whenever the correspond-
ing RBF is most activated and the class ID of the given
incoming pattern vector matches the sub-network number
to which the RBF belongs.

Step 2)
Then, at a particular time or period (q, say), list up all the
auxiliary variables (or, activation counter) of the RBFs in
LTM Nets (2 to L) and obtain the N RBFs with the N
largest numbers, where the number N can be set as

N <<
∑

i

∑
j MLTMj,i

(j = 2, 3, ..., L).
Step 3)

If the total number of RBFs in LTM Net 1 is currently
less than or equal to MLTM1 − N (i.e. MLTM1 denotes the
maximum number of the RBFs in LTM Net 1, assuming
N ≤ MLTM1), move all the N RBFs to LTM Net 1. Oth-
erwise, retain the original MLTM1 − N RBFs within LTM
Net 1 and fill/replace the remaining RBFs in LTM Net 1
with the N newly obtained RBFs.

Step 4)
Create a direct path to the incoming input pattern vector
for each RBF added in the previous step8. (This data flow is
illustrated (bold line) in Fig. 10.4.) The output of LTM Net
1 is given as a maximum value within all the activations of
the RBFs (i.e. calculated by (3.13) and (3.17)).

Note that, unlike other LTM networks, the radii values of the RBFs in
LTM Net 1 must not be varied during the evolution, since the strong activation

may not be actually necessary in implementation; it is considered that the input
vectors to some of the RBFs within the LTM networks are simply changed from
oSTM to x. Then, the collection of such RBFs represents LTM Net 1.

8In the HA-GRNN shown in Fig. 10.4, the LTM Net 1 corresponds to the in-
tuition module within the AMS context. However, as shown in the figure, a direct
path is created to each RBF without passing through the STM network (i.e. cor-
responding to the STM/working memory module). This is since the STM network
in the HA-GRNN is designed so that it always perform the buffering process to be
described later. However, here the general concept of the STM/working memory
module within the AMS context is still valid in the sense that the intuitive outputs
can be quickly generated without a further data processing within the STM.

214 10 Modelling Abstract Notions Relevant to the Mind

from each RBF (for a particular set of pattern data) is expected to continue
after the transfer with the current radii values.

Up to here, the first four phases within the evolutionary process of HA-
GRNN have been described in detail. Before moving on to the discussion of
how the process in Phase 4 above can be interpreted as the notion of intuition
and the remaining Phase 5, the latter of which is relevant to the other notion,
attention, we next consider the associated data processing within the STM
network in more detail.

10.6.4 Mechanism of the STM Network

As depicted in Fig. 10.5, the STM network consists of multiple RBFs and the
associated mechanism to yield the network output, which selects the max-
imally activated RBF (centroid) and then passes the centroid vector as the
STM network output. (Thus, the manner of generating the STM network out-
puts differs from those of LTM Nets 1-L.) Unlike LTM Nets 1-L, the STM
network itself is not a pattern classifier but rather functions as a sort of buffer-
ing/filtering process of the incoming data by choosing a maximally activated
RBF amongst the RBFs present in the STM, imitating the functionality of
e.g. the hippocampus in the real brain to store the data within the LTM (see
Sect. 8.3.2). Then, it can be seen that the output from the STM network is
given as the filtered version of the incoming input vector x.

Note also that, unlike the regular LTM networks (i.e. LTM Nets 2-L), the
STM network does not have any sub-networks of its own; it is essentially based
upon a single layered structure which is comprised by a collection of RBFs,
where the maximum number of RBFs is fixed to MSTM . (Then, the number
MSTM represents the memory capacity of the STM.) Thus, as LTM Nets (2-
L) described earlier, the STM is also equipped with a mechanism similar to
a last-in-first-out (LIFO) stack queue due to the introduction of the factor
MSTM .

The mechanism of the STM network is then summarised as follows:

[Mechanism of the STM Network]

Step 1)
• If the number of RBFs within the STM network

M < MSTM , add an RBF with activation hi (i.e.
calculated by (2.3)) and its centroid vector ci = x in
the STM network. Then, set the STM network out-
put vector oSTM = x. Terminate.

• Otherwise, go to Step 2).

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 215

Step 2)
• If the activation of the least activated RBF (hj , say)

hj < θSTM , replace it with a new one with the cen-
troid vector cj = x. In such a case, set the STM
network output oSTM = x.

• Otherwise, the network output vector oSTM is given
as the filtered version of the input vector x, i.e:

oSTM = λck + (1 − λ)x (10.5)

where ck is the centroid vector of the most activated
RBF (k-th, say) hk within the STM network and λ
is a smoothing factor (0 ≤ λ ≤ 1).

In Step 2) above, the smoothing factor λ is introduced in order to deter-
mine how fast the STM network is evolved by a new instance (i.e. the new
incoming pattern vector) given to the STM network. In other words, the role
of this factor is to determine how quickly the STM network is responsive to
the new incoming pattern vector and switches its focus to the patterns in
other domains. Thus, this may somewhat pertain to the selective attention of
a particular object/event. For instance, if the factor is set small, the output
oSTM becomes more likely to the input vector x itself. Then, it is considered
that this imitates the situation of “carelessness” by the system. In contrast,
if the factor is set large, the STM network can “cling” to only a particu-
lar domain set of pattern data. Then, it is considered that the introduction
of this mechanism can contribute to the attentional functionality within the
HA-GRNN to be described in Sect. 10.6.6.

10.6.5 A Model of Intuition by an HA-GRNN

In Sect. 10.5, it was described that the notion of intuition can be dealt within
the context of experience and is thus considered that the intuition module can
be designed within the framework of LTM.

Based upon this principle, another form of LTM network, i.e. LTM Net
1, is considered within the HA-GRNN; in Fig. 10.4, there are two paths for
the incoming pattern vector x, and, unlike regular LTM networks (i.e. LTM
Nets 2-L), the input vector x is directly transferred to LTM Net 1 (apart from
the STM network), whilst, in Fig. 5.1, the input data are given to the intu-
ition module via the STM/working memory module. Within the AMS
context, this formation corresponds to the possible situation where, the in-
put data transferred via the STM/working memory module can also activate
some of the kernel units within the intuition module, whilst the input data
(temporarily) stay within the STM/working memory module.

216 10 Modelling Abstract Notions Relevant to the Mind

Then, the following conjecture can be drawn:

Conjecture 1: In the context of HA-GRNN, the notion of intuition
can be interpreted in such a way that, for the incoming input pattern
vectors that fall in a particular domain, there exists a certain set
of the RBFs that keep relatively strong activation amongst all the
RBFs within the LTM networks.

The point of having these two paths within the HA-GRNN is therefore
that for the regular incoming pattern data the final output will be gener-
ated after the associated processing within the two-stage memory, namely the
STM and LTM, whilst a certain set of input patterns may excite the RBFs
within LTM Net 1, which is enough to yield the “intuitive” outputs from the
HA-GRNN. Then, the evidence for referring to the output of LTM Net 1 as
intuitive output is that, as in the description of the evolution of HA-GRNN
in Sect. 10.6.3, LTM Net 1 will be formed after a relatively long and iterative
exposition of incoming pattern vectors, which results in the strong excitation
of (a certain number of) the RBFs in LTM Nets (2 to L). In other words,
the transition of the RBFs from the STM to LTM Nets (2 to L) corresponds
to a regular learning process, whereas, in counter-wise, that from LTM Nets
(2 to L) to LTM Net 1 gives the chances of yielding the “intuitive” outputs
from the HA-GRNN. (Therefore, the former data flow, i.e. the STM network
−→ LTM Nets (2 to L) thus corresponds to the data flow STM/working
memory −→ LTM modules, whereas the latter indicates the reconfiguration
of the LTM, implied by the relationship between the LTM and intuition mod-
ules within the AMS context; see Sects. 8.3.2 and 10.5.)

In practice, this feature is particularly useful, since it is highly expected
that the HA-GRNN can generate faster and simultaneously better pattern
recognition results from LTM Net 1, whilst keeping the entire network size
smaller than e.g. the conventional MLP-NN trained by an iterative algorithm
(such as BP) with a large amount of (or whole) training data, than the ordi-
nary reasoning process, i.e. the reasoning process through the STM + regular
LTM Nets (2 to L).

In contrast, we quite often hear such episodes as, “I have got a flash to a
brilliant idea!” or “Whilst I was asleep, I was suddenly awaken by a horrible
nightmare.” It can also be postulated that all these phenomena occur in the
brain, similar to the data processing of intuition, during the self-evolution
process of memory. Within the context of HA-GRNN, this is relevant to Phase
3 in which, during the reconfiguration (or, reconstruction, in other words)
phase of the LTM, some of the RBFs in LTM are excited enough to exceed a
certain level of activation. Then, these RBFs remain in LTM for a relatively
long period, or even (almost) perpetually, because of such memorable events
to the system (therefore this is also somewhat related to the explicit/implicit
emotional learning; see Sects. 10.3.4 and 10.3.5).

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 217

Moreover, it is said that this interpretation is also somewhat relevant to
the psychological justifications (Hovland, 1951; Kolers, 1976), in which the
authors state that, once one has acquired the behavioral skill (i.e. the notion is
relevant to procedural memory), the person would not forget it for a long time.
Therefore, this view can also support the notion of the parallel functionality
of the intuition module with the implicit LTM module (as implicitly shown
in Fig. 5.1, on page 84).

10.6.6 Interpreting the Notion of Attention by an HA-GRNN

Within the HA-GRNN context, the notion of attention is to focus the HA-
GRNN on a particular set of incoming patterns, e.g. imitating the situation
of paying attention to someone’s voice or the facial image, in order to acquire
further information of interest, in parallel to process other incoming patterns
received by the HA-GRNN, and, as described in Sect. 10.6.4, the STM network
has the role.

Phase 5: Formation of Attentive States

In the model of maze-path finding (Kitamura et al., 1995; Kitamura, 2000),
the movement of the artificial mouse is controlled by a mechanism, i.e. the
so-called “consciousness architecture”9, in order to continue the path-finding
pursuit, by the introduction of a higher layer of memory representing the state
of “being aware” of the path-finding pursuit, whilst the lower part is used for
the actual movement. Then, it is said that the model in (Kitamura et al.,
1995; Kitamura, 2000) exploits a sort of “hierarchical” structure representing
the notion of attention.

In contrast, within the HA-GRNN context, another hierarchy can be
represented by the number of RBFs within the STM network:

Conjecture 2: In the HA-GRNN context, the state of being “at-
tentive” of something is represented in terms of a particular set of
RBFs within the STM network.

Then, it is said that the conjecture above (moderately) agrees with the no-
tion of attention within the AMS context, in that a particular subset of kernel
units within the STM/working memory module contribute to the associated
data processing due to the attention module (refer back to Sect. 10.2.1). (In
addition, the conjecture above is also relevant to the data flow attention −→
STM/working memory module within the AMS.) In the HA-GRNN, the
attentive states can then be formulated during Phase 5:

9Strictly, the utility of the term “awareness” seems to be more appropriate in
the context.

218 10 Modelling Abstract Notions Relevant to the Mind

[Phase 5: Formation of Attentive States]

Step 1)
Collect m(≤ MSTM) RBFs of which the auxiliary vari-
ables are the first m largest amongst all the RBFs within
LTM Nets (1-L), for given particular classes. Each aux-
iliary variable is a counter that is attached to the cor-
responding RBF and reports the number of excitations
from. (In terms of the kernel memory, the variable corre-
sponds to the excitation counter ε, i.e. cf. Fig. 3.1, 3.2, or
10.3.) Then, such a collection forms the attentive states
of the HA-GRNN.

Step 2)
Add the copies of the m RBFs back into the STM net-
work, whilst the MSTM −m most activated RBFs in the
STM network remain intact. The m RBFs so chosen re-
main within the STM for a certain long period, without
updating their centroid vectors (whereas the radii may
be updated).

In the above, it may also be viewed that the data flow of LTM modules
−→ STM/working memory module within the AMS is realised by the
selection process of the RBFs (or generally kernel units) and then copying
them back to the STM network (cf. the memory recall process for the data-
fusion in Sect. 8.3.2). Moreover, it is said that this is in contrast to the regular
learning process (i.e. refer back to Sect. 10.6.5), i.e. the data flow: the STM
network −→ LTM Net 2-L.

Then, in Phase 5, the m RBFs so selected make the HA-GRNN focus upon
a particular (domain) set of incoming input vectors, and, by increasing m, it is
expected that the filtering process in transferring incoming pattern vectors to
the LTM networks becomes more accurate for particular classes. For instance,
if the HA-GRNN is applied to pattern recognition tasks, it is expected that
the system can compensate for the misclassified patterns that fall in to a
certain class(es). In addition, the radii values of the m RBFs so copied may
be updated in due course, since the parameters of the other remaining RBFs
within the STM network can be varied during the course of learning.

Therefore, it is postulated that the ratio between the m RBFs and the
rest of the MSTM − m RBFs in the STM networks determines the “level” of
attention. Thereby, the following conjecture can also be drawn:

Conjecture 3: The level of attention can be determined by the ratio
between the number of m most activated RBFs selected from the
LTM networks and that of the remaining MSTM − m RBFs within
the STM network.

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 219

Thus, Conjecture 3 also suggests that, as in the Baddeley & Hitch’s work-
ing memory (in Sect. 8.3.1), the level of attention can to a large extent af-
fect the consolidation of the LTM during the rehearsal process within the
STM/working memory; in the context of an HA-GRNN, an incoming pattern
vector (or a set of the input pattern vectors) can be compared to the input
information to the brain and is temporarily stored within the STM network
(hence the function of filtering or buffering). Then, during the evolution, the
information represented by the RBFs within the STM network is selectively
transferred to the LTM networks, as in Phases 1–3. In contrast, the RBFs
within the LTM networks may be transferred back to the STM, because the
“attention” of certain classes (or those RBFs) occurs at particular moments.
(This interaction can also be compared to the “learning” process in Hikosaka
et al. (1996).)

Unlike the AMS, in the original HA-GRNN context, since the evolution
process is, strictly speaking, not autonomous, we may want to pre-set the
state of the “attention” in advance, according to the problems encountered
in practical situations. (However, it is still possible to evolve the HA-GRNN
autonomously by appropriately setting the transition operations suited for a
specific application, though such a case is not considered here.) For instance,
in the context of pattern recognition tasks, one may limit the number of the
classes to N < Ncl in such a way that “For a certain period of the pattern
presentations, the HA-GRNN must be attentive to only N classes amongst a
total of Ncl”, in order to reinforce the performance of the HA-GRNN for the
particular N classes.”

10.6.7 Simulation Example

Here, we consider a simulation example of the HA-GRNN applied to the pat-
tern recognition tasks using the data sets extracted from the three databases,
i.e. the SFS (Huckvale, 1996), OptDigit, and PenDigit database (for the de-
scription of the three databases, see also Sect. 2.3.5).

In the simulation, the data set for the SFS consisted of a total of 900
utterances of the digits from /ZERO/ to /NINE/ by nine different English
speakers (including both the female and male speakers). The data set was
then arbitrarily partitioned into two sets; one for constructing an HA-GRNN
(i.e. the incoming pattern/training set) and the other for testing (i.e. unknown
to the HA-GRNN). The incoming pattern set contains a total of 540 feature
patterns, where 54 patterns were chosen for each digit, whilst the testing con-
sists of a total of 360 patterns (i.e. 36 per digit). In both the sets, each pattern
was comprised of a feature vector with a normalised set of 256 data points
obtained by applying the same LPC-Mel-Cepstral analysis (Furui, 1981) as
the one in Sect. 2.3.5. The feature vector was thus used as an input pattern
vector to the HA-GRNN x.

220 10 Modelling Abstract Notions Relevant to the Mind

Table 10.1. Network configuration parameters for the HA-GRNN used in the sim-
ulation example

Parameter SFS OptDigit PenDigit

Max. num. of centroids in STM, MSTM 30 30 30
Total num. of LTM networks, (L + 1) 3 2 4
Max. num. of centroids in LTM Net 1, MLTM1 5 25 15
Num. of sub-networks in LTM Nets 2-L, Ncl 10 10 10
Max. num. of centroids in each subnet, 4 2 4
MLTMj,i (j = 2, 3, . . . , L, i = 1, 2, · · · , 10)

In contrast, both the OptDigit and PenDigit data sets were composed of
1200 and 400 feature vectors for the construction and testing sets, respectively.
As summarised in Table 2.1, each of the feature vectors has 64 data points
for the OptDigit, whereas 16 data points for the PenDigit.

Parameter Setting of the HA-GRNN

In Table 10.1, the network configuration parameters of the HA-GRNN used in
the simulation example are summarised. In the table, MLTM1 ,MLTM2,i

, and
MLTM3,i

(i.e. for the SFS; i = 1, 2, . . . , 10, corresponding to the respective
class IDs, 1, 2, . . . , 10) were arbitrarily chosen, whilst Ncl was fixed to the
number of the classes (i.e. the ten digits). With this setting, the total number
of RBFs in LTM Nets (1 to 3, for the SFS), MLTM,Total is thus calculated as

MLTM,Total = MLTM,1 + Ncl(MLTM,2 + MLTM,3)

which yields i) 85 for the SFS, ii) 65 for the OptDigit, and iii) 175 for the
PenDigit data set, respectively.

The STM Network Setting

For the STM network, both the choices of MSTM (as shown in Table 10.1)
and the unique radius setting θσ = 2 in (2.6) were made a priori so that the
STM network functions as a “buffer” to the LTM networks with sparsely but
reasonably covering all the ten classes during the evolution. Then, the setting
of θSTM = 0.1 (i.e the threshold value of the activation of the RBFs in the
STM network) and the smoothing factor λ = 0.6 in (10.5) were used for all
the three data sets. (In the preliminary simulation, it was empirically found
that the choice of λ = 0.6 yields a reasonable generalisation performance of
the HA-GRNN.)

Parameter Setting of the Regular LTM Networks

For the radii setting of LTM Nets (2 to L), the unique setting of θσ = 0.25 for
both the SFS and OptDigit or θσ = 0.05 in (2.6) for the PenDigit was empir-
ically found to be a choice for maintaining a reasonably good generalisation

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 221

Phase 3

Phase 4

Phase 1 & 2

STM and LTM Net from

Reconfiguration of

2 to L formation

Formation of LTM Net 1

Phase 5

2 311

Attentive States

Formation of the

LTM Net from 2 to L

n n n n
Pattern Presentation
Number

Fig. 10.7. The evolution schedule used for the simulation example

capability during the evolution. Then, to give the “intuitive” outputs from
LTM Net 1, the weighting factor v1 was fixed to 2.0, whilst the remaining vi

(i = 2, 3, . . . , L) were given by the linear decay

vi = 0.8(1 − 0.05(i − 2)) .

The Evolution Schedule

Figure 10.7 shows the evolution schedule used for the simulation example. In
the figure, the index n corresponds to the presentation of the n-th incoming
pattern vector to the HA-GRNN. In the simulation, the setting n2 = n1 + 1
was used, without loss of generality. Note that the formation of LTM Net 1
was scheduled to occur after a relatively long exposition of incoming input
vectors (thus n1 < n2), as described in Sect. 10.6.5. Then, note that, with
this setting, it requires that the RBFs in LTM Net 1 should be effectively
selected from the previously (i.e. the time before n1) spanned pattern space
in the LTM networks. Thus, the self-evolution (in Phase 3) was scheduled to
occur at n1 with p = 2 in the simulation (i.e. the self-evolution was performed
twice at n = n1, and it was empirically found that this setting does not give
any impact upon the generalisation performance).

Table 10.2 summarises the setting of n1 and n3 (which covers all the five
phases) used for the simulation example. Then, the evolution was eventually

222 10 Modelling Abstract Notions Relevant to the Mind

Table 10.2. Parameters for the evolution of the HA-GRNN used for the simulation
example

Parameter SFS OptDigit PenDigit

n1 200 400 400
n3 400 800 800

Table 10.3. Confusion matrix obtained by the HA-GRNN after the evolution –
using the SFS data set

Generalisation
Digit 0 1 2 3 4 5 6 7 8 9 Total Performance

0 29 3 2 1 1 29/36 80.6%
1 31 1 2 2 31/36 86.1%
2 1 28 2 2 1 2 28/36 77.8%
3 32 2 1 1 32/36 88.9%
4 36 36/36 100.0%
5 3 1 27 2 3 27/36 75.0%
6 32 2 2 32/36 88.9%
7 36 36/36 100.0%
8 1 1 34 34/36 94.4%
9 4 10 1 21 21/36 58.3%

Total 306/360 85.0%

stopped when all the incoming pattern vectors in the training set were pre-
sented to the HA-GRNN.

Simulation Results

To evaluate the overall recognition capability of the HA-GRNN, all the testing
patterns were presented one by one to the HA-GRNN, and the generalisation
performance over the testing set was obtained after the evolution from the
decision unit (i.e. given as the final HA-GRNN output oNET in Fig. 10.4).
For the intuitive outputs, the generalisation performance obtained from LTM
Net 1 during testing was also considered.

Table 10.3 shows the confusion matrix obtained by the HA-GRNN after
the evolution using the SFS data set. In this case, no attentive states were
considered at n3.

For comparison of the generalisation capability, Table 10.4 shows the con-
fusion matrix obtained using a conventional PNN with the same number of
RBFs in each subnet (see Fig. 2.2 on page 15) as the HA-GRNN (i.e. a total
of 85 RBFs were used), where the respective RBFs were found by the well-
known MacQueen’s k-means clustering method (MacQueen, 1967). To give
a fair comparison, the RBFs in each subnet were obtained by applying the
k-means clustering to the respective (incoming pattern vector) subsets con-
taining 54 samples per each digit (i.e. from Digit /ZERO/ to /NINE/).

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 223

Table 10.4. Confusion matrix obtained by the conventional PNN using k-means
clustering method – using the SFS data set

Generalisation
Digit 0 1 2 3 4 5 6 7 8 9 Total Performance

0 34 1 1 34/36 94.4%
1 17 19 17/36 47.2%
2 28 8 28/36 77.8%
3 3 22 10 1 22/36 61.1%
4 36 36/36 100.0%
5 36 36/36 100.0%
6 36 36/36 100.0%
7 1 3 2 5 6 19 19/36 52.8%
8 2 1 7 26 26/36 72.2%
9 1 27 8 8/36 22.2%

Total 262/360 72.8%

In comparison with the conventional PNN as in Table 10.4, it is evidently
observed in Table 10.3 that, besides the superiority in the overall generalisa-
tion capability of the HA-GRNN, the generalisation performance in each digit
(except Digit /NINE/) is relatively consistent, whilst the performance with
the conventional PNN varies dramatically from digit to digit as in Table 10.4.
This indicates that the pattern space spanned by the RBFs obtained using
the k-means clustering method is rather biased.

Generation of the Intuitive Outputs

For the SFS data set, the intuitive outputs were generated three times during
the evolution, and all the three patterns were correctly classified for Dig-
its /FOUR/ and /EIGHT/. In contrast, during testing, 13 pattern vectors
amongst 360 yielded the generation of the intuitive outputs from LTM Net
1 in which 12 out of the 13 patterns were correctly classified. It was then
observed that the Euclidean distances between the twelve pattern vectors
and the respective centroid vectors corresponding to their class IDs (i.e. digit
numbers) were relatively small and, for some patterns, close to the minimum
(i.e. the distance between that of Pattern Nos. 77, 88, 104, and 113, and
the RBFs for Digits /SEVEN/, /EIGHT/, /FOUR/, and /THREE/, respec-
tively, in LTM Net 1 were minimal). From this observation, it can therefore
be confirmed that, since intuitive outputs are likely to be generated when the
incoming pattern vectors are rather close to the respective centroid vectors in
LTM Net 1, the centroid vectors correspond to the notion of “experience”.

For the OptDigit, despite the slightly worse generalisation capability by
HA-GRNN (87.0%) compared with that of the PNN with k-means (88.8%),
the generalisation performance for the 174 out of the 360 testing patterns
which yielded the intuitive outputs was better, i.e. 95.1%. This indicates that
the LTM Net 1 was successfully formed and contributed to the improved

224 10 Modelling Abstract Notions Relevant to the Mind

performance. Moreover, as discussed in Sect. 10.6.5, this leads to a faster
decision-making, since the intuitive outputs were generated, e.g. without the
processing within the STM network and the regular LTM Nets.

In contrast, for the PenDigit, whilst overall a better generalisation perfor-
mance was obtained by the HA-GRNN (89.3%) in comparison with that of the
conventional PNN (88.0%), only a single testing pattern yielded the intuitive
output (in which the pattern was correctly classified). Then, by increasing
the maximum number of allowable RBFs in LTM Net 1 (as in Table 10.1,
which was initially fixed to 15), to 100, the simulation was performed again.
As expected, the number of times that intuitive outputs are generated was
increased to 14, in which all the 14 testing patterns were correctly classified.

Simulations on Modelling the Attentive States

In Table 10.3, it is observed that the generalisation performance for Digits
/FIVE/ and /NINE/ is relatively poor. To study the effectiveness of having
the attentive states within the HA-GRNN, the attentive states were consid-
ered for both Digits /FIVE/ and /NINE/.

Then, by following both the conjectures 2 and 3 in Sect. 10.6.6, 10 (20 for
the PenDigit) amongst a total of 30 RBFs within the STM network were fixed
for the respective digits after evolution time n3. In addition, since the poor
generalisation performance for Digits /FIVE/ and /NINE/ was (perhaps) due
to the insufficient number of the RBFs within LTM Nets (2 to 3), the max-
imum number MLTM2,i

and MLTM3,i
(i = 5 and 10), respectively, were also

increased.
Table 10.5 shows the confusion matrix obtained by the HA-GRNN con-

figured with an attentive state of only Digit /NINE/. For this case, a total
of 8 more RBFs in LTM Nets 2 and 3 (i.e. 4 more each in LTM Nets 2 and
3) which correspond to the first 8 (instead of 4) strongest activations were

Table 10.5. Confusion matrix obtained by the HA-GRNN after the evolution –
with an attentive state of Digit 9 – using the SFS data set

Generalisation
Digit 0 1 2 3 4 5 6 7 8 9 Total Performance

0 29 1 3 2 1 29/36 80.6%
1 31 2 2 1 31/36 86.1%
2 1 28 2 2 1 2 28/36 77.8%
3 32 2 1 1 32/36 88.9%
4 36 36/36 100.0%
5 2 1 29 2 2 29/36 80.6%
6 32 2 2 32/36 88.9%
7 36 36/36 100.0%
8 1 1 34 34/36 94.4%
9 2 11 23 23/36 63.9%

Total 310/360 86.1%

10.6 Embodiment of Attention, Intuition, LTM, and STM Modules 225

Table 10.6. Confusion matrix obtained by the HA-GRNN after the evolution –
with an attentive state of Digits 5 and 9 – using the SFS data set

Generalisation
Digit 0 1 2 3 4 5 6 7 8 9 Total Performance

0 29 1 3 2 29/36 80.6%
1 31 2 2 1 31/36 86.1%
2 1 28 2 2 1 2 28/36 77.8%
3 33 2 1 33/36 91.7%
4 36 36/36 100.0%
5 1 1 33 1 33/36 91.7%
6 32 2 2 32/36 88.9%
7 4 36 36/36 100.0%
8 1 1 34 34/36 94.4%
9 3 1 8 24 24/36 66.7%

Total 316/360 87.8%

selected (following Phase 2 in Sect. 10.6.3) and added into Sub-Net 10 within
both the LTM Nets 2 and 3 (i.e. accordingly, the total number of RBFs in
LTM Nets (1 to 3) was increased to 93). As in the table, the generalisation
performance of Digit /NINE/ was improved at 63.9%, in comparison with
that in Table 10.3, whilst preserving the same generalisation performance for
other digits.

In contrast, Table 10.6 shows the confusion matrix obtained with having
the attentive states of both the digits /FIVE/ and /NINE/. Similar to the
case with a single attentive state of Digit /NINE/, a total of 16 such RBFs
for the two digits were respectively added into Sub-Nets 6 and 10 within both
the LTM Nets 2 and 3. (Thus, the total number of RBFs in LTM Nets (1
to 3) was increased to 101.) In comparison with Table 10.3, the generalisa-
tion performance for Digit /FIVE/ was remarkably improved, as well as Digit
/NINE/.

It should be noted that, interestingly, the generalisation performance for
the class(es) other than those with the attentive states was also improved (i.e.
Digit /FIVE/ in Table 10.5 and Digit /THREE/ in Table 10.6). This may be
considered as the “side-effect” of having the attentive states; since the pat-
tern space for the digits with the attentive states was more consolidated, the
coverage of the space for other digits accordingly became more accurate.

From these observations, it is considered that, since the performance im-
provement for Digit /NINE/ in both the cases was not more than expected,
the pattern space for Digit /NINE/ is much harder to cover fully than other
digits.

For both the OptDigit and PenDigit data sets, a similar performance im-
provement to the SFS case was obtained; for the OptDigit, the performance
of Digit /NINE/ was relatively poor (57.5%), then the number of the RBFs
within each of LTM Nets (2 to 3) for Digit /NINE/ was increased from 2

226 10 Modelling Abstract Notions Relevant to the Mind

to 8 (which yields the total number of RBFs in LTM Nets 1 to 3, 77), and
the performance for Digit /NINE/ was remarkably increased at 67.5%, which
resulted in the overall generalisation performance of 87.5% (initially 87.0%).

Similarly, for the PenDigit, a performance improvement of 5.0% (i.e. from
80.0% to 85.0%) for Digit /NINE/ was obtained by increasing the number of
RBFs from 4 to 6 in each LTM Net (2 to 5) for Digit /NINE/ only (then, the
total number of RBFs in LTM Nets (1 to 5) is 183), which yielded the overall
generalisation performance of 89.8% (i.e. initially 89.3%).

10.7 An Extension to the HA-GRNN Model –
Implemented with Both the Emotion and Procedural
Memory within the Implicit LTM Modules

In the previous section, it has been described that the model of HA-GRNN,
which takes into account the concept of the four modules within the AMS, i.e.
attention, intuition, LTM, and STM, can be applied to the intelligent pattern
recognition system and thereby successfully contributed to a performance im-
provement in the pattern recognition context.

In this section, we consider another model (cf. Hoya, 2003d), which can
be regarded as an extension to the HA-GRNN model.

Fig. 10.8 shows the architecture of the extended model. As in the figure,
the two modules within the AMS context, i.e. the emotion and procedural part
of implicit LTM (i.e. indicated by “Procedural Memory” in the figure), are
also considered within the extended model, in comparison with the original
HA-GRNN. It is considered that the ratio between the numbers of attentive
and non-attentive kernel units within the STM is determined by the control
mechanism, one part of which can be represented as (the functionality of) the
attention module (see Sect. 10.2), and that, within the control mechanism,
the perceptual output y is also temporarily stored. (Therefore, the control
mechanism can also be regarded as a part of the STM/working memory
or the associated module, such as intention or thinking (cf. Fig. 5.1 and
see Sects. 8.3, 9.3, and 10.4). In addition, in Fig. 10.8, both the actuators
and emotional expression mechanism can be dealt within the context of the
primary output module of the AMS.)

In the figure, the input matrix Xin = [x1,x2, . . . ,xNs] (NL×Ns) is given as
a collection of the sensory input vectors10, where xi = [xi

1, x
i
2, . . . , x

i
NL

]T (i =
1, 2, . . . , Ns, Ns: number of the sensory inputs) with length NL = max(Ni).
(Thus, for each column in Xin, if Ni < NL a zero-padding operation is, for
instance, performed to fill fully in the column.) Note that, since the STM, as
well as the LTM (i.e. “Kernel Memory” (1 to L) and the procedural mem-
ory in Fig. 10.8) is based upon the kernel memory concept, it can simultane-

10Here, it is assumed that the input data are already acquired after the necessary
pre-processing steps, i.e. via the cascade of pre-processing units in the sensation
module within the AMS context (See Chap 6).

10.7 An Extension to the HA-GRNN Model 227

.

.

.

Mechanism
Expression
Emotional

E i

θ(=N)

θ(=2)

θ

s

E

.

.

.

(=1)

Procedural
Memory

E 1 2

Input

Input

STM Output

Mechanism
Selection

(Attentive Kernels)

Units & A Buffer to Store the

Sequence of Perception (LIFO)

y
L

y
3

y
2

Kernel Mem. 1

Unit
Decision. . . y

(Self-Evolution Process: for the Reconfiguration of Kernel Memory 2 to L)

...

Kernels)
(Non-Attentive

LTM

y
1

X

STM
O

in

Perceptual
Output

Actuators

Input Selection of Attentive Kernel

Emotion Module

Stabilising Mechanism for the Emotion States

Regular LTM

Intuition

(Direct Paths to the Template Vectors in Kernel Memory 1)

STM

E Ne

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .
.

.
.

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .
.

.
.

Kernel Mem. 2
Kernel Mem. 3

.

 .Kernel Mem. L

.
 . .

Fig. 10.8. An extension to the HA-GRNN model, with both the modules represent-
ing emotion (i.e. equipped with Ne emotion states) and procedural memory within
the implicit LTM (i.e. indicated by “Procedural Memory”). Note that “Kernel Mem-
ory” (1 to L) within the extended model correspond respectively to LTM Nets (1
to L) within the original HA-GRNN (cf. Fig. 10.4); each kernel memory can be
formed based upon the kernel memory principle (in Chaps. 3 and 4) and thus shares
more flexible properties than PNNs/GRNNs. (Moreover, in the figure, two different
types of the arrows are used; the arrows filled in black depict the actual data flows,
whereas the ones filled with white indicate the control flows)

ously receive and then process the multi-modal input data Xin and eventually
yields the STM output matrix OSTM (NL × Ns) via the STM output selec-
tion mechanism. Then, the STM output matrix OSTM is presented to the
LTM, resulting in the generation of the output vectors yj = [y1

j , y2
j , . . . , yNs

j]T

(j = 1, 2, . . . , L) from the respective kernel memory (1 to L). Eventually, sim-
ilar to the HA-GRNN (cf. Fig. 10.4), the final output y = [y1, y2, . . . , yNs]
can be obtained from the decision unit (e.g. by following the “winner-takes-
all” scheme) as the perceptual output (i.e. corresponding to the secondary
output within the AMS context).

10.7.1 The STM and LTM Parts

As aforementioned, both the STM and LTM parts can be constructed based
upon the kernel memory concept within the extended model;

228 10 Modelling Abstract Notions Relevant to the Mind

• STM
Is represented by a collection of kernel units and (partially)11 the
associated control mechanism. The kernel units within the STM
are divided into the attentive and non-attentive kernels by the
control mechanism.

• LTM: Kernel Memory (2 to L)
Is considered as regular LTM. In practice, it is considered that
each Kernel Memory (2 to L) is partitioned according to the do-
main/modality specific data. For instance, provided that the kernel
units within Kernel Memory i (i = 2, 3, . . . , L) are arranged in a
matrix as in Fig. 10.9 (on the left hand side), the matrix can be
sub-divided into several data-/modality-dependent areas (or sub-
matrices).

• LTM: Kernel Memory 1 (for Generating the Intuitive
Outputs)
Is essentially the same as Kernel Memory (2 to L), except that
the kernel units have the direct paths to the input matrix Xin and
thereby can yield the intuitive outputs.

In both the STM and LTM parts, the kernel unit representation in Fig. 3.1,
3.2, or 10.3 is alternatively exploited. Then, in Fig. 10.9, provided that the
kernel units within Kernel Memory i (i = 1, 2, . . . , L) are arranged in a matrix
as in Fig. 10.9 (on the left hand side)12, the matrix can be sub-divided into
several data-dependent areas (or sub-matrices). In the figure, each modality
specific area (i.e. auditory, visual, etc) is represented by a column (i.e. the
total number of columns can be equivalent to Ns; the total number of sensory
inputs), and each column/sub-matrix is further sub-divided and responsible
for the corresponding data sub-area, i.e. alphabetic/digit character or voice
recognition (sub-)area, and so forth. (Thus, this somewhat simulates the PRS
within the implicit LTM.)

Then, a total of Ns pattern recognition results can be obtained at a time
from the respective areas of the i-th Kernel Memory (and eventually given as
a vector yi).

Since the formation of both the STM and LTM parts can be followed by
essentially the same evolution schedule as that of the HA-GRNN (i.e. from
Phase 1 to Phase 4; see Sect. 10.6.3), it is expected that from the kernel units

11Compared with Fig. 5.1 (on page 84), it is seen that the control mechanism
within the extended model (in Fig. 10.8) somewhat shares both the aspects of the
two distinct modules, the STM/working memory (i.e. in terms of the temporal
storage of the perceptual output) and attention module (i.e. for determining the
ratio between the attentive and non-attentive kernel units; cf. the attended kernels
in Sect. 10.2.1), within the AMS context. Thus, it is said that the associated control
mechanism is partially related to the STM/working memory module.

12As described in Chap. 3, there is no restriction in the structure of kernel mem-
ory. However, here a matrix representation of the kernel units is considered for
convenience.

10.7 An Extension to the HA-GRNN Model 229

.

.

.

.

.

.

.

.

.

Column
Auditory

Column
Visual

.

.

.

.

.

.

. . .

. . .

. . .

.

.

.

hh

h h h

h

hhh

RBF RBF

RBFRBF RBF

RBF

RBFRBFRBF

i21

i21

i11 i12

i11 i12 i1M

i1M

i2M

i2M

iNM

iNM

iN1 iN2

iN2iN1

i22

i22

[Kernel Memory i] Digit voice
recognition

Digit character

voice recog−

recognition
areaarea

Alphabetic

nition area . . .

. . .

. . .

Alphabetic

nition area
character recog−

y
1

y
2

y

y

k+1

k+2

Fig. 10.9. The i-th Kernel Memory (in Fig. 10.8) arranged in a matrix form (left)
and its division into several data-dependent areas/sub-matrices (right). In the fig-
ure, each modality specific area (i.e. for the auditory, visual, etc) is represented by a
column (i.e. the total number of columns can be equivalent to Ns; the total number
of sensory inputs), and each column/sub-matrix is further sub-divided and respon-
sible for the corresponding data sub-area, i.e. alphabetic/digit character or voice
recognition area, and so forth

within Kernel Memory 113, the pattern recognition results (i.e. provided that
the model is applied to pattern recognition tasks) can be generated faster and
more accurately (as observed in the simulation example of the HA-GRNN in
Sect. 10.6.7).

Moreover, since these memory parts are constructed based upon the ker-
nel memory concept, it is possible to consider that the kernel units are allowed
to have not only the inter-layer (e.g. between the kernel units in Kernel Mem-
ory 2 and 3) but also cross-modality (or cross-domain) connections via the
interconnecting link weights. Then, this can lead to more sophisticated data
processing, e.g. simulating the mental imagery, where the activation(s) from
some kernel units in one modality can occur without the input data but due
to the transfer of the activation(s) from those in other modalities (e.g. the
imagery of an object, via the auditory data → the visual counterpart; see also
the simulation example of the simultaneous dual-domain pattern classification
tasks using the SOKM in Sect. 4.5).

For the STM part, the procedure similar to that in the original HA-GRNN
model (see Sect. 10.6.6), or alternatively, the general strategy of the attention
module within the AMS (described in Sect. 10.2), can be considered for deter-
mining the attentive/non-attentive kernel units. In addition, the perceptual
output y can be temporarily held within the associated control mechanism
for both the attentive and emotion states to affect the determination.

13As described in the HA-GRNN, Kernel Memory 1 (i.e. corresponding to LTM
Net 1) may be merely treated as a collection of the kernel units, instead of a distinct
LTM module/agent, within the LTM part in the actual implementation. For this
issue, see also Sect. 10.5.

230 10 Modelling Abstract Notions Relevant to the Mind

10.7.2 The Procedural Memory Part

As discussed in Sect. 8.4.2, it is considered that some of the kernel units
within Kernel Memory (1 to L) may also have established the connections
(via the interconnecting link weights) with those in the procedural memory;
due to the activation(s) from such kernel units, the kernel units within the
procedural memory can be subsequently activated (via the link weights). Al-
beit dependent upon the manner of implementation, it is considered that each
kernel unit within the procedural memory holds a set of control data which
can eventually cause the corresponding motoric/kinetic actions from the body
(i.e. indicated by the mono-directional link between the procedural memory
and actuators in Fig. 10.8).

Then, the kernel units corresponding to the respective sets of control data
(i.e. represented as a form of the template vector/matrix, e.g. to cause a series
of the motoric/kinetic actions) can be pre-determined and installed within the
procedural memory. In such a case, e.g. a chain of ordinary symbolic nodes
may be sufficiently exploited. However, it is alternatively possible that such a
sequence can be acquired via the learning process between the STM and LTM
parts (i.e. represented by a chain of kernel units/kernel network(s); see also
Chap. 7 and Sect. 8.3.2) and later transformed into the procedural memory
(i.e. by exploiting the symbolic kernel unit representation in (3.11)):

[Formation of Procedural Memory]

Provided that a particular sequence of the motoric/kinetic actions is
still not represented by the corresponding chain of (symbolic) nodes
within the procedural memory, once the learning process is com-
pleted, the kernel network (or chain of kernel units) composed by
(regular) kernel units is converted into a fixed network (or chain) us-
ing the symbolic node representation in (3.11). In practice, this can
be helpful for saving the computation time in the data processing.
However, when the kernel units are transformed into the correspond-
ing symbolic nodes, the data held within the template vectors will
be lost and therefore no longer accessible from the STM part.

Thus, within the extended model, the procedural memory can be viewed
(albeit not limited to) as a collection of the chains of symbolic nodes so ob-
tained.

10.7.3 The Emotion Module and Attentive Kernel Units

As in Fig. 10.8, the emotion module with 1) the emotional states Ei (i =
1, 2, . . . , Ne) and 2) a stabilising mechanism for the emotional states is also
considered within the extended model.

10.7 An Extension to the HA-GRNN Model 231

Then, for determining the attentive/non-attentive kernel units within the
STM of the extended model, the embedded emotion states Ei can be consid-
ered as the criteria; despite that the attentive states (represented by the RBFs)
were manually determined as those within the previous HA-GRNN model (i.e.
see the simulation example in Sect. 10.6.7), the attentive/non-attentive kernel
units can be autonomously set, depending upon the application.

For instance, we may implement the following strategy:

[Selecting the Attentive Kernel Units &
Updating the Emotion States Ei]

Step 1)
Search a kernel unit(s) within the regular LTM part (i.e.
Kernel Memory 2 to L) attached with the emotional state
variables ei (i = 1, 2, . . . , Ne, assuming that the kernel unit
representation in Fig. 10.3 is exploited), the values of which
are similar to the current values of Ei. Then, set the kernel
unit(s) so found as the attentive kernel units (via the control
mechanism) within the STM.

Step 2)
Then, whenever the kernel unit(s) within the LTM (i.e. Ker-
nel Memory 1 to L) is activated by i.e. the incoming data Xin

or transfer of other kernel units via the link weights, the cur-
rent emotion states (at time n) Ei(n) (i = 1, 2, . . . , Ne) are
updated by recalling the emotional state variables attached:

Ei(n + 1) = Ei(n) +
NK∑
j=1

ej
i (n)Kj (10.6)

where NK is the number of kernel units so activated, ej
i cor-

respond to the emotional state variables attached to such a
kernel unit, and Kj is the activation level of the kernel unit.

Step 3)
Continue the search for the kernel unit(s) in order to make
Ei close to the optimal E∗

i
14, i.e.

Ne∑
i=1

|Ei − E∗
i | ≤ θE (10.7)

where θE is a certain constant.

14In this strategy, only a single set of the optimal states E∗
i is considered, without

loss of generality. These optimal states can then be regarded as the pre-set values
defined in the innate structure module within the AMS context.

232 10 Modelling Abstract Notions Relevant to the Mind

As in Step 1), the functionality of the control mechanism for the STM
in Fig. 10.8 is to set the attentive and non-attentive kernel units, whilst it
is considered that the stabilising mechanism for the emotion states plays the
role for both Steps 2) and 3). (In Fig. 10.8, the latter is indicated by the signal
flows between the stabilising mechanism and Kernel Memory 1 to L; see also
Sect. 10.3.7.)

For the representation of the emotion states, the two intensity scales given
in (10.1) and (10.2) can, for instance, be exploited for both E1 and E2 (or e1

and e2, albeit not limited to this representation). Then, the rest may be used
for representing the current internal states of the body, imitating issues such as
boredom, hunger, thirst, etc., depending upon the application. (Accordingly,
the number of the emotional state variables attached to each kernel unit within
the memory parts may be limited to 2.)

The optimal states E∗
i must be carefully chosen in advance dependent

upon the application to achieve the goal; within the AMS context, this is
relevant to the design of the instinct: innate structure module. In practice,
however, it seems rather hard to consider the case where the relation (10.7) is
satisfied, since, when it is active, i) the surrounding environment never stays
still, thereby ii) the external stimuli (i.e. given as the input data Xin within
the extended model) always affect the current emotion states Ei to a certain
extent, and thus iii) (if any) the relation (10.7) does not hold that long.

Therefore, it is considered that the process for the selection of the attentive
kernel units and updating the emotion states Ei will be continued endlessly,
whilst it is active.

10.7.4 Learning Strategy of the Emotional State Variables

For the emotional state variables ei attached to each kernel unit, the values
may be either i) determined (initially) a priori or ii) acquired/varied via the
learning process, depending upon the implementation.

For i), it is considered that the assignment of the variables may be nec-
essary prior to the utility of the extended model; i.e. as indicated by the re-
lationship (or the parallel functionality) between the emotion and instinct:
innate structure module in Fig. 5.1, some of the emotional state variables
must be pre-set according to the design of the instinct: innate structure mod-
ule, whilst others may be dynamically varied, within the AMS context. (For
some applications, this may involve rather laborious tasks by humans; as dis-
cussed in Sect. 8.4.6.)

In contrast, for ii), it is possible to consider that, as described earlier
in terms of the implicit/explicit emotional learning (i.e. in Sects. 10.3.4 and
10.3.5, respectively), although the emotional state variables are initially set
to the neutral states, the variables may be updated by the following strategy:

10.7 An Extension to the HA-GRNN Model 233

[Updating the Emotional State Variables]

For all the activated kernel units, update the emotional state vari-
ables ej

i (i = 1, 2, . . . , Ne):

ej
i ← (1 − λe)e

j
i + λeEi

λe = λ′
e

Ei − Ei,min

Ei,max − Ei,min
(10.8)

where 0 < λ′
e ≤ 1, Ei are the current emotion states of the ex-

tended model, and Ei,max and Ei,min correspond respectively to the
maximum and minimum value of the emotion state.

Then, as described in terms of the evolutionary process of the HA-GRNN
model (i.e. such as the STM ←→ LTM learning process; see Sect. 10.6.3),
such activated kernel units may be eventually transferred/transformed into
the LTM, depending upon the situation. (In particular situations, this can
thus be related to the implicit/explicit emotional learning process as discussed
in Sects. 10.3.4 and 10.3.5, respectively).)

In the late 1990’s, an autonomous quadruped robot (named as “MU-
TANT”) was developed (Fujita and Fukumura, 1996), in which the movement
is controlled by a holistic model somewhat similar to the AMS, equipped with
two sensory data (i.e. both the sound and image data, as well as the process-
ing mechanism of the perceptual data) and the respective modules imitating
such psychological functions as attention, emotion, and instinct. Subsequently,
the emotionally grounded (EGO) architecture (Takagi et al., 2001), in which
the two-stage memory system of STM and LTM is considered together with
the aforementioned three psychologically-oriented modules, was developed for
controlling the behaviour of the humanoid SDR-3X model (see also Ishida
et al., 2001)/ethological robot of AIBO for entertainment (see also Fujita,
1999, 2000; Arkin et al., 2001), which led to a great success in that the robots
were developed by fully exploiting the available (albeit rather limited range
of) technologies and were generally accepted in world wide.

For each EGO or MUTANT, although the architecture is not shown fully
in detail in the literature, it seems that both the models are rather based
upon a conventional symbolic processing system and hence considered to be
rather hard to develop/extend to more dynamic systems; in the MUTANT
(Fujita and Fukumura, 1996), the module “automata” can be compared to
the STM/working memory module (and/or the associated modules such as
intention and thinking) of the AMS. However, it seems that, unlike the the
AMS, the target behaviour of the robot is to a large extent pre-determined
(i.e. not varied by the learning) based only upon the resultant symbol(s)
obtained by applying the well-known Dijkstra’s algorithm (Dijkstra, 1959),
which globally finds the shortest path on a fixed graph (see e.g. Christofides,

234 10 Modelling Abstract Notions Relevant to the Mind

1975) and is thus considered to be rather computationally expensive (espe-
cially when the number of nodes becomes larger). Therefore, it seems rather
hard to acquire new patterns of behaviours through the learning process (since
it seems that a static graph representation is used to bind a situation to a
motion of the robot). Moreover, the attention mechanism also seems to be
pre-determined; by the attention mechanism, the robot can only pay atten-
tion to a pre-determined set of sound or visual target and thereby move the
head.

In contrast, although both the STM and LTM mechanisms are imple-
mented within the EGO architecture, it seems that these memory mechanisms
are not sufficiently plastic, since for the voice recognition, the HMM (see e.g.
Rabiner and Juang, 1993; Juang and Furui, 2000) is employed, or it can suffer
from various numerically-oriented problems, since such conventional ANNs as
associative memory or HRNN (Hopfield, 1982; Hertz et al., 1991; Amit, 1989;
Haykin, 1994) (see also Sect. 2.2.2) are considered within the mechanisms
(Fujita and Takagi, 2003). Therefore, unlike the kernel memory, to adapt
swiftly and at the same time robustly the memory system for time-varying
situations is generally considered to be hard within these models.

10.8 Chapter Summary

In this chapter, we have focused upon the remaining four modules related to
the abstract notions of mind, i.e. attention, emotion, intention, and intuition
module, within the AMS.

Within the AMS context, the functionality of the four modules is sum-
marised as follows:

• Attention Module:
As described in Sect. 10.2.1, the attention module acts as a filter
and/or buffer that picks out a particular set of data and holds
temporarily the information about e.g. the activation pattern of
some of the kernel units within the memory modules (i.e. the STM
working memory or LTM and/or oriented modules), in order
for the AMS to initiate a further memory search process (at an
appropriate time, i.e. by the thinking or intention module) from
the attended kernel units; in other words, a priority will be given
for the memory search process amongst the marked kernel units
by the STM/working memory module.

• Emotion Module:
As described in Sect. 10.3.1, the emotion module has two aspects:
the aspect of i) representing the current internal states of the body
by a total of Ne emotion states within it, due to the relation with
the instinct: innate structure and primary output modules,
and that of ii) memory, i.e. as in Fig. 10.2 (or the alternative

10.8 Chapter Summary 235

kernel unit representation in Fig. 10.3), the kernel units within
the STM/working memory/LTM modules are connected with the
emotion module.

• Intention Module:
Within the AMS, the intention module can be used to hold tem-
porarily the information about the resultant states so reached dur-
ing performing the thinking process by the thinking module. In
reverse, the state(s) within the module can affect the manner of the
thinking process to a certain extent. Although it may be seen that
the functionality can be similar to that of the attention mod-
ule, the duration of holding the state(s) is relatively longer and
less sensitive to the incoming data arrived at the STM/working
memory module than that within the attention module.

• Intuition Module:
As described in Sect. 10.5, the intuition module can be considered
as another implicit LTM module within the AMS, formed based
upon a collection of the kernel units that have exhibited repet-
itively and relatively strong activations within the LTM/LTM-
oriented modules. However, unlike the regular implicit LTM mod-
ule, the activations from such kernel units may affect directly the
thinking process performed by the thinking module.

Then, in the subsequent Sects. 10.6 and 10.7, the five modules within the
AMS, i.e. attention, emotion, intuition, (implicit) LTM, and STM/working
memory module, have been modelled and applied to develop an intelligent
pattern recognition system. Through the simulation examples of HA-GRNN,
it has then been observed that the recognition performance can be improved
by implementing these modules.

11

Epilogue – Towards Developing A Realistic
Sense of Artificial Intelligence

11.1 Perspective

So far, we have considered how the artificial mind system based upon the
holistic model as depicted in Fig. 5.1 (on page 84) works in terms of the
associated modules and their interactive data processing. It has then been
described that most of the modules and the data processing can be represented
in terms of the kernel memory concept. In the closing chapter, a summary of
the modules and their mutual relationships is firstly given. Then, we take
into account the enigmatic and (probably) the most controversial topic of
consciousness within the AMS principle. Finally, we close the book by making
a short note on the brain mechanism for intelligent robotics.

11.2 Summary of the Modules and Their Mutual
Relationships within the AMS

In Chaps. 6–10, we considered in detail i) the respective roles of the 14 mod-
ules within the AMS, ii) how these modules are inter-related to each other,
and iii) how they are represented by means of the kernel memory principle to
perform the data processing, the principle of which has been described exten-
sively in the first part of the book (i.e. in Chaps. 3 and 4).

In Chap. 5, it was described that the holistic model of the AMS (as illus-
trated in Fig. 5.1) can be macroscopically viewed as an input-output system
consisting of i) one single input (i.e. the sensation module), ii) two output
(i.e. the primary output and secondary: perceptual output modules),
and iii) the other 11 modules, each representing the corresponding cogni-
tive/psychological function.

Then, the functionality of the 14 modules within the AMS can be sum-
marised as follows:

1) Input: Sensation Module (Sect. 6.2)
Functions as the input mechanism for the AMS. It receives the sensory

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 237–244 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

238 11 Epilogue – Towards Developing A Realistic Sense of Artificial Intelligence

data from the outside world, converts them into the data which can
be efficiently handled within the AMS, and then sends them to the
STM/working memory module.

2) Attention Module (Sect. 10.2)
Acts as a filter and/or a buffer which picks out a particular set of
data and holds temporarily the information about the activated kernel
units within the memory-oriented modules (i.e. explicit/implicit LTM,
intuition, STM/working memory, and semantic networks/lexicon mod-
ules). Such kernel units are then regarded as attended kernel units and
give priority to initiate a further memory search (at an appropriate
period of time) via the intention/thinking module.

3) Emotion Module (Sect. 10.3)
Inherently exhibits the two aspects, i.e. i) to represent the current
(subset of) internal states of the body (due to the relationship with
the instinct: innate structure/primary output module) and ii) memory
in terms of the connections with the kernel units within the memory
modules (or alternatively represented by the emotional state variables
attached to them as shown in Fig. 10.3, on page 197).

4) Explicit (Declarative) LTM Module (Sect. 8.4.3)
Is the part of the LTM, the contents of which can be accessible from
the STM/working memory module, where required (i.e. the data flow
explicit LTM −→ STM/working memory in Fig. 5.1; hence the
term declarative). The concept of the module is closely tied to that
of the semantic networks/lexicon module. Within the kernel memory
principle, it consists of multiple kernel units.

5) Implicit (Nondeclarative) LTM Module (Sect. 8.4.2)
Is the part of the LTM which may represent the procedural memory,
PRS, or non-associative learning (i.e. habituation and sensitisation).
Unlike the explicit LTM, the contents within the module cannot be
accessible from the STM/working memory module (hence the term
nondeclarative). Within the kernel memory principle, it can be repre-
sented by multiple kernel units with directional data flows (i.e. for the
mono-directional flow STM/working memory −→ implicit LTM;
see also Sect. 3.3.4).

6) Instinct: Innate Structure Module (Sect. 8.4.6)
Can be regarded as a (rather static) part of the LTM; it may be com-
posed by a collection of pre-set values (i.e. also represented by kernel
units) which reflect e.g. the physical limitations/properties of the body
and can be exploited for giving the target responses/reinforcement sig-
nals during the learning process of the AMS. Then, the behaviour of
the AMS can be significantly affected by virtue of the module. In
this respect, the instinct: innate structure module should be carefully
taken into account for the design of the other associated modules such
as emotion, input: sensation, implicit LTM, intuition, and language
module.

11.2 Summary of the Modules andTheir Mutual Relationships within the AMS 239

7) Intention Module (Sect. 10.4)
The functionality of the module can be seen essentially similar to
the attention module; the module can be used to hold temporarily
the information about the resultant states reached by the thinking
module, i.e. represented in terms of the activation pattern(s) of the
kernel units within the memory-oriented modules. However, unlike
the attention module, the state(s) within the intention module can in
reverse affect the manner of the thinking process to a certain extent.
Moreover, the duration of holding such state(s) is relatively longer and
less sensitive to the incoming data which arrives at the STM/working
memory module than the attention module.

8) Intuition Module (Sect. 10.5)
Can be considered as another implicit LTM (as described in Sect.
10.5) within the AMS. In terms of the kernel memory principle, it is
formed based upon a collection of the kernel units that have exhibited
repetitively and relatively strong activations within the LTM/LTM-
oriented modules during the learning. However, unlike the regular
implicit LTM, the activations from such kernel units can affect directly
the manner of the data processing within the thinking module.

9) Language Module (Sect. 9.2)
Functions as a vehicle for the thinking process performed by the think-
ing module. The module can be defined as a built-in but dynamically
reconfigurable learning mechanism, consisting of a set of grammatical
rules represented in terms of the kernel memory principle. Hence, the
module has a close relationship with the semantic networks/lexicon
module.

10) Semantic Networks/Lexicon Module (Sects. 8.4.4 and 9.2)
Is considered as the semantic part of the (explicit) LTM (and hence
is closely related to the explicit LTM and language modules, albeit
depending upon the manner of implementation) within the AMS and,
as other LTM-oriented modules, can be represented by the kernel
memory.

11) STM/Working Memory Module (Sect. 8.3)
Plays the central part for performing various interactive data process-
ing between other associated modules within the AMS. For instance,
the incoming data received from the input: sensation module are tem-
porarily held, converted to the respective kernel units, and may be
eventually transformed into the kernel units within the LTM/LTM-
oriented modules through the learning process (in Chap. 7). The ker-
nel units within the STM/working memory module are also used for
a further memory search/thinking process performed via the inten-
tion/thinking module.

12) Thinking Module (Sect. 9.3)
The module is considered to function in parallel with the STM/working
memory and as a mechanism to organise the data processing (i.e. the

240 11 Epilogue – Towards Developing A Realistic Sense of Artificial Intelligence

memory search process within the memory-oriented modules) with
the three associated modules, i.e. i) intention, ii) intuition, and iii)
semantic networks/lexicon module. As described, one of such data
processing performed via the thinking module is to determine the
correctness of the sentence (e.g. represented by a chain of kernel units
within the kernel memory context) in the semantical sense with the
aid of the language module.

13) Perceptual (Secondary) Output Module (Sect. 6.3)
In the AMS context, the perception module is simply regarded as the
output module that yields the secondary output of the AMS, which
also represents the intermediate data processing occurring within the
AMS, and the pattern recognition results obtained by accessing the
contents of the LTM/LTM-oriented modules (such as the implicit
LTM/intuition module) within the AMS. Thereby, such outputs are
treated rather differently from the primary outputs within the AMS
context.

14) Primary Output Module (Sects. 9.3.3 and 10.3)
Is the module directly connected to the physical devices for causing
real actions, such as motions from the body or the internal activities
i.e. simulating the endocrine system. Similar to the secondary (per-
ceptual) outputs, the state(s) within the primary output module may
be fed back to the STM/working memory module.

As in the above, the kernel memory concept, which was described ex-
tensively in Chaps. 3 and 4, plays a fundamental role to embody all the 14
modules within the AMS.

11.3 A Consideration into the Issues Relevant
to Consciousness

To describe what is consciousness has historically been a matter of debate (see
e.g. Turing, 1950; Terasawa, 1984; Dennett, 1988; Searle, 1992; Greenfield,
1995; Aleksander, 1996; Chalmers, 1996; Osaka, 1997; Pinker, 1997; Hobson,
1999; Shimojo, 1999; Gazzaniga et al., 2002). Although we all can inherently
have the conscious experience, it is hard to define it. It has long been consid-
ered that consciousness is the key concept of so-called “mind-brain” research
(or alternatively called the ontological problem within the philosophical con-
text; see e.g. Gazzaniga et al. (2002)). There is, however, still no satisfactory
understanding of consciousness.

In a cognitive scientific view, Pinker suggested a framework for thinking
about the problem of consciousness (Pinker, 1997). In his theory, the problem
of consciousness can be separated into the following three issues (Pinker, 1997;
Gazzaniga et al., 2002):

11.3 A Consideration into the Issues Relevant to Consciousness 241

• Sentience:
This notion refers to subjective experience, phenomenal awareness,
raw feelings, first person tenses, what it is like to be or do some-
thing. If you have to ask, you will never know.

• Access to information:
The ability to report on the content of mental experience without
the capacity to report on how the content was built up by the
nervous system.

• Self-knowledge:
Amongst the people and objects that an intelligent being can have
accurate information about is the being itself.

Then, according to Gazzaniga et al. (Gazzaniga et al., 2002), the latter
two may be dealt within the cognitive neuroscientific context. However, for
the remaining one, they unanimously share a view that science has little to
say about sentience. Moreover, Searle, a philosopher of our age, also claimed
that the science will never understand the nature of subjective experience
(Searle, 1992; Gazzaniga et al., 2002). The first is thus closely relevant to
the encompassed issue of the so called qualia: why a physical system with a
particular architecture gives rise to such feelings and (thus the term) qualia
(Chalmers, 1996; Wilson and Keil, 1999).

On the other hand, despite these intangible issues, Turing denies that the
question of consciousness has much relevance to the practice of AI, though
he admits that the question of consciousness is a difficult one (Turing, 1950;
Russell and Norvig, 2003): “I do not wish to give the impression that I think
there is no mystery about consciousness ... But I do not think these mysteries
necessarily need to be solved before we can answer the question with which
we are concerned in this paper.” In this regard, the philosopher of our age
Dennett is also supportive (see the interview on pp. 658-659 in Gazzaniga
et al., 2002).

In Chap. 5, albeit putting aside the rigorous justification of the above three
issues pertinent to consciousness, it was proposed that the AMS consists of
a total of 14 modules, each of which roughly corresponds to the element for
describing the consciousness due to Hobson (Hobson, 1999), and the classifi-
cation of the modules within the AMS into those functioning either with or
without consciousness was made in a rather narrow sense; the modules classi-
fied as those functioning with consciousness, i.e. the five modules: attention,
emotion (partially), intention, STM/working memory, and thinking module,
may then be considered to correspond to the latter two issues, i.e. the issues of
access to information and self-knowledge, whilst the other functioning without
consciousness do not.

Then, it seems more appropriate that we will resume the discussion of
consciousness, upon the embodiment and actual implementation of all the 14
modules to construct the entire AMS, which has yet to be done.

242 11 Epilogue – Towards Developing A Realistic Sense of Artificial Intelligence

For this purpose, we may resort to the ordinary thought experiment; sup-
pose that we have built an intelligent being which embodies the whole AMS
(i.e. based upon either hardware or software, or even wetware) and, at the
same time, developed an external device that can trace all data processing
occurring within the AMS and output the results that can be perceived by
us (e.g. visibly, at our desired level of data processing); we can not only ob-
tain the results of e.g. the data processing from the external device but also
change the observation level at the module (i.e. macroscopic) or kernel unit
(i.e. microscopic) level, etc., at any moment. Also, suppose that the intelligent
being is also equipped with a communication device (i.e. the voice generation
mechanism) and thereby can communicate with us and report how it feels or
thinks.

Then, we may be able to handle sufficiently with the two aforementioned
issues ii) and iii), by matching the results obtained from the externally-located
tracing device (i.e. the objective measurement) and the reports simultaneously
obtained from the intelligent being by way of the communication between the
intelligent being and ourselves (in this regard, the latter can be considered as
the subjective measurement).

Nevertheless, for the time being, we may well follow the principle of Turing;
the ultimate goal of this book has been to provide a direction/insight towards
developing the artificial system that can simulate the functionalities of mind
and thereby is implemented in a more realistic sense of AI/robotics. Therefore,
we stop digging into the discussion of consciousness here and leave it to a
further study.

11.4 A Note on the Brain Mechanism
for Intelligent Robots

Before closing the book, we make a brief note on the brain mechanism for
intelligent robots within the AMS principle in this section.

As proposed in the first part of this monograph, the kernel memory con-
cept provides the basis for developing the various modules within the AMS
which have been extensively described in the second part. It is then considered
that the kernel unit represents the most fundamental element to compose the
mechanism for any higher-order functionalities of the AMS. In this sense, the
principle generally agrees with the philosophical view due to Dreyfus (Dreyfus,
1972), since a kernel unit itself can represent a pattern or concept or perform
the operation of the similarity between the input and the data stored, which
can eventually lead to the development of the computer system different from
the currently prevailing Von-Neumann type computers.

Generally, although the holistic model of AMS is versatile and can be ex-
ploited for any kind of robotics/AI applications, it is not considered to be
appropriate for developing from scratch the AI/robots which can imitate any

11.4 A Note on the Brain Mechanism for Intelligent Robots 243

behaviours of highly intelligent creatures or humans in every detail, in terms
of the AMS.

As described earlier (in Sect. 8.4.6), for developing such a highly intelligent
being, possibly the hardest part will then be how to actually design (or ini-
tially define the set of parameters for) the instinct: innate module and many
parts within the associated modules of the AMS, such as the emotion, intu-
ition (or some part of explicit/implicit LTM), language (as well as semantic
networks/lexicon and thinking), and (some part of) sensation module (albeit
depending upon the applications).

This is partly because we still do not know exactly how to divide/specify
the pre-determined part and the part that has to be self-evolved during the ex-
position to the outside world of the AMS and the associated learning process.
Then, for another reason, this is since the amount/choice of such pre-set val-
ues (or “pre-wiring” process) by humans still may be prohibitively large or
complicated, in order to reach such a high level of intelligence.

The former is hence somewhat relevant to the indication by Wiener (see
Section IX: “On Learning and Self-Reproducing Machines” in Wiener, 1948):
“... we must ask for what we really want and not for what we think we
want. The new and real agencies of the learning machine are also literal-
minded ...”, which implies that the designer (i.e. we) must know precisely
in advance/predict how the AI/robot (is expected to) behaves in real situa-
tions, though it is thought that the learning capability inherently equipped
within the AMS can greatly facilitate this and, eventually, even get rid of this
dilemma. (Then, it somewhat reminds us of the considerable time, as well as
the energy, spent so far for the learning then evolution of the real life, i.e.
billions of years in order to adapt to the surrounding environment for the
continuous life and preservation of the species, through countless numbers of
iterations for the heuristic operations.)

On the other hand (and perhaps more crucially), although the above is
only relevant to the issue of AMS, the technology currently available still is far
from that for enabling us to embody the physical body of such autonomous
robotics, which can act like a real creature in any detail with full control-
lability or the computing devices for modelling (conveniently) the respective
functionalities of the AMS, as well as the interfaces to the body.

However, for limited purposes, it may be sufficient to exploit not all but
only some of the modules, each based upon a much simpler architecture, as
we have seen to develop the intelligent pattern recognition agents in Sects.
10.6 and 10.7.

Therefore, we at first should aim for the development of an intelligent
agent that can simulate a limited set of the behaviours of the creatures within
the AMS context, in parallel with the advancement in the technologies to em-
body the physical body (as well as the measurement technology).

In conclusion, as is usually the case for general engineering, one of the
pragmatic ways may perhaps be to start developing a relatively small agent
with a limited capacity by exploiting the currently available technology (i.e.

244 11 Epilogue – Towards Developing A Realistic Sense of Artificial Intelligence

both the hardware and software) and thereby embodying a few of the modules
within the AMS for a specific purpose (as in the intelligent pattern recognis-
ers in the previous chapter), unleash it into the real environment, observe,
then analyse its behaviour, and thereafter gradually make it more complex
with adding other functionalities into the agent/robot, within the uniformed
context.

1

Introduction

1.1 Mind, Brain, and Artificial Interpretation

“What is mind?” When you are asked such a question, you may be proba-
bly confused, because you do not exactly know how to answer, though you
frequently use the word “mind” in daily conversation to describe your con-
ditions, experiences, feelings, mental states, and so on. On the other hand,
many people have so far tackled the topic of how science can handle the mind
and its operation.

This monograph is an attempt to deal with the topic of the mind from
the perspective of certain engineering principles, i.e. connectionism and signal
processing studies, whilst weaving a view from cognitive science/psychological
studies (see Gazzaniga et al., 2002) as the supporting background. Hence, as
in the title of the book, the objective of this monograph is primarily to pro-
pose a direction/scope of how an “artificial” mind system can be developed,
based upon these disciplines. Therefore, by the term “artificial”, the aim is
ultimately to develop a mechanical system that imitates the various function-
alities of the mind and is implemented within intelligent robots (thus, the aim
is also relevant to the general purpose of “creating the brain”).

As current mind research is heavily indebted to the dramatic progress in
brain science, in which the brain, a natural being so elaborately organised, as
a consequence of thousands-and-thousands of years of natural evolution, has
been treated as a physical substance and studied by analysing the functional-
ities of the tissues therein. Brain science has therefore been established with
the support of rapid advancement in measurement technology and thereby
yielded better understanding of how the brain works.

The history of mind/brain research backdates to the Aristotle period of
time (i.e. 384–322 B.C.), a Greek philosopher and scientist who first formu-
lated a precise set of laws governing the rational part of the mind, followed
by the birth of philosophy (i.e. 428 B.C.), and then by that of mathematics
(c.800), economics (1776), neuroscience (1861), psychology (1879), computer

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 1–8 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

2 1 Introduction

engineering (1940), control theory and cybernetics (1948), artificial intelli-
gence (AI) and cognitive science (1956), and linguistics (1957) (for a concise
summary, see also Russell and Norvig, 2003), all the disciplines of which are
somewhat relevant to the studies of mind (cf. e.g. Fodor, 1983; Minsky, 1985;
Grossberg, 1988; Dennett, 1988; Edelman, 1992; Anderson, 1993; Crane, 1995;
Greenfield, 1995; Aleksander, 1996; Kawato, 1996; Chalmers, 1996; Kitamura,
2000; Pfeifer and Scheier, 2000; McDermott, 2001; Shibata, 2001). This stream
has led to the recent development of robots which imitate the behaviours of
creatures, or humanoids (albeit still primitive), especially those realised by
several Japanese industries.

In the philosophical context, the topic of the mind has alternatively been
treated as the so-called mind-brain problem, as Descartes (1596-1650) once
gave a clear distinction between mind and body (brain), ontology, or within
the context of consciousness (cf. e.g. Turing, 1950; Terasawa, 1984; Dennett,
1988; Searle, 1992; Greenfield, 1995; Aleksander, 1996; Chalmers, 1996; Os-
aka, 1997; Pinker, 1997; Hobson, 1999; Shimojo, 1999; Gazzaniga et al., 2002).
Then, there are, roughly speaking, two well-known philosophical standpoints
to start discussing the issue of mind – dualism and materialism; Dualism,
as supported by the philosophers such as Descartes and Wittgenstein, is a
standpoint that, unlike animals, the human mind exists by its own and hence
must be separated from the physical substance of the body/brain, whilst the
opponent materialism holds the notion that the mind is nothing more than
the phenomenon of the processing occurring within the brain. Hence, the book
is written, generally within the latter principle.

1.2 Multi-Disciplinary Nature of the Research

Figure 1.1 shows the author’s scope of active studies In the area and their
mutual relationships for the necessity of “creating the brain”; it is considered

4
1

2 3

1

4 Artificial Intelligence ;
Control Theory ;
Optimisation Theory ;
Signal Processing ;
Statistics

3

(In the above, connectionism lies loosely
 across all the four fundamentals.)

2 Animal / Developmental Studies ;
Measurement Studies − EEG /
 MEG / fMRI / PET / SPECT, etc. ;

Computer Science

Robotics
Neuroscience

Linguistics (Language) Biophysics

 relevant to Neuroscience)
Consciousness Studies (partially

Philosophy
Mathematics

Bases):

Sociology
Physics

Biology, Economics

Cognitive Science

Psychology /

Connectionism ;

4 Major Composite Groups):

Fig. 1.1. Creating the brain – a multi-disciplinary area of research

1.3 The Stance to Conquest the Intellectual Giant 3

that the direction towards “creating the brain” consists of (at least) the 12
core studies/scientific bases and other 11 inter-related subjects which respec-
tively fall in to the four major composite groups. Thus, within the author’s
scope, a total of (but not limited to) 23 areas of the studies are simultaneously
taken into account for the pursuit of this challenging topic – i.e. 1) animal
studies, 2) artificial intelligence, 3) biology, 4) biophysics, 5) (general) cogni-
tive science, 6) computer science, 7) connectionism (or, more conventionally,
artificial neural networks), 8) consciousness studies, 9) control theory, 10)
developmental studies, 11) economics, 12) linguistics (language), 13) mathe-
matics (in general), 14) measurement studies relevant to brain waves – such as
electroencephalography (EEG), magnetoencephalography (MEG), functional
magnetic resonance imaging (fMRI), positron-emission tomography (PET), or
single photon emission computed tomography (SPECT) – 15) neuroscience,
16) optimisation theory, 17) philosophy, 18) physics, 19) (various branches
of) psychology, 20) robotics, 21) signal processing, 22) sociology, and finally
23) statistics, all of which are, needless to say, currently quite active areas
of research. It is then considered that the seventh study, i.e. connectionism,
lies (loosely) across all the fundamental studies, i.e. computer science, neuro-
science, cognitive science/psychology, and robotics.

In other words, the topic must be essentially based upon a multi-disciplinary
nature of research. Therefore, to achieve the ultimate goal, it is inevitable that
we do not bury ourselves in a single narrow area of research but always bear
in our mind the global picture as well as the cross-fertilisation of the research
activities.

1.3 The Stance to Conquest the Intellectual Giant

Although it is highly attractive to progress the research of “creating the
brain”, as stated earlier (in the Statements), we should always be rather care-
ful about further advancing the activity in “creating the brain” (since it may
eventually lead to endanger the existence of ourselves).

Then, here, let us limit the necessity of “creating the brain” to the purpose
of “creating the artificial system that behaves or functions as the mind”, or
simply, “create the virtual mind”, since, if we denote “creating the brain”, it
may also imply to develop totally biologically feasible models of brain, the
topic of which has to be extremely carefully treated (see the Statements) and
hence is beyond the scope of this book.

Therefore, the following four major phases should be embraced in order
to conduct the research activities within the context of “creating the virtual
mind”:

Phase 1) Observe the “phenomena” of real brains, by maximally exploiting
the currently available brain-wave measurements (This is hence
rather relevant to the issues of “understanding the brain”), and

4 1 Introduction

the activities of real life (i.e. not limited to humans), as carefully
as possible. (Needless to say, it is also fundamentally significant to
advance such measurement technology, in parallel with this phase.)

Phase 2) Model the brain activities/phenomena, by means of engineering
tools and develop the feasible as well as unified concepts, supported
by the principles from the four core subjects – 1) computer science,
2) neuroscience, 3) cognitive science/psychology, and 4) robotics.

Phase 3) Realise the models in terms of hardware or software (or, even, the
so-called “wetware”, though as aforementioned, this must also be
carefully dealt within the context of humanity or scientific philos-
ophy) and validate if they actually imitate the behaviour of the
brain/mind.

Phase 4) Investigate the results obtained in the third phase amongst the
multiple disciplines (23 in total) given earlier. Return to the first
phase.

Note that, in the above, it is not meant that the four phases should al-
ways be subsequent but rather suggested that the inter-phase activities also
be encouraged.

Hence, the purpose of this book is generally to provide the accounts rele-
vant to both Phases 2) and 3) above.

1.4 The Artificial Mind System Based
Upon Kernel Memory Concept

The concept of the artificial mind system was originally inspired by the so-
called “modularity of mind” principle (Fodor, 1983; Hobson, 1999), i.e. the
functionality of the mind is subdivided into the respective modules, each of
which is responsible for a particular psychological function. (However, note
that here the “module” is not always referred to as merely a distinct “agent”,
as often appeared in the reductionist context.)

Hobson (Hobson, 1999) proposed that consciousness consists of the con-
stituents as tabulated in Table 1.1 (then, it is considered that each constituent
also corresponds to the notion of “module” within the modularity principle of
mind Fodor (1983)). As in the table, the constituents can be subdivided into
three major groups, i.e. i) input sources, ii) assimilating processing, and iii)
output actions.

Therefore, with the supportive studies by Fodor (Fodor, 1983) and Hobson
(Hobson, 1999), the artificial system imitating the various functionalities of
mind can macroscopically be regarded as an input-output system and de-
veloped based upon the modularity principle. Then, the objective here is to
model the respective constituents of mind similar to those in Table 1.1 and
their mutual data processing within the engineering context (i.e. realised in
terms of hardware/software).

1.4 The Artificial Mind System Based Upon Kernel Memory Concept 5

Table 1.1. Constituents of consciousness (adapted from Hobson, 1999)

Input Sources

Sensation Receival of input data
Perception Representation of input data
Attention Selection of input data
Emotion Emotion of the representation
Instinct Innate tendency of the actions

Assimilating Processes

Memory Recall of cumurated evocation
Thinking Response to the evocation
Language Symbolisation of the evocation
Intention Evocation of aim
Orientation Evocation of time, place, and person
Learning Automatic recording of experience

Output Actions

Intentional Behaviour Decision making
Motion Actions and motions

On the other hand, it still seems that the progress in connectionism has not
reached a sufficient level to explain/model the higher-order functionalities of
brain/mind; the current issues, e.g. appeared in many journal/conference pa-
pers, in the field of artificial neural networks (ANNs) are mostly concentrated
around development of more sophisticated algorithms, the performance im-
provement versus the existing models, mostly discussed within the same prob-
lem formulation, or the mathematical analysis/justification of the behaviours
of the models proposed so far (see also e.g. Stork, 1989; Roy, 2000), without
showing a clear/further direction of how these works are related to answer
one of the most fundamentally important problems: how the various func-
tionalities relevant to the real brain/mind can be represented by such models.
This has unfortunately detracted much interest in exploiting the current ANN
models for explaining higher functions of the brain/mind. Moreover, Herbert
Simon, the Nobel prize winner in economics (in 1978), also implied (Simon,
1996) that it is not always necessary to imitate the functionality from the
microscopic level for such a highly complex organisation as the brain. Then,
by following this principle, the kernel memory concept, which will appear in
the first part of this monograph, is here given to (hopefully) cope with the
stalling situation.

The kernel memory is based upon a simple element called the kernel unit,
which can internally hold [a chunk of] data (thus representing “memory”;
stored in the form of template data) and then (essentially) does the pattern
matching between the input and template data, using the similarity measure-
ment given as its kernel function, and its connection(s) to other units. Then,
unlike ordinary ANN models (for a survey, see Haykin, 1994), the connec-
tions simply represent the strengths between the respective kernel units in
order to propagate the activation(s) of the corresponding kernel units, and

6 1 Introduction

the update of the weight values on such connections does not resort to any
gradient-descent type algorithm, whilst holding a number of attractive prop-
erties. Hence, it may also be seen that kernel memory concept can replace
conventional symbol-grounding connectionist models.

In the second part of the book, it will be described how the kernel memory
concept is incorporated into the formation of each module within the artificial
mind system (AMS).

1.5 The Organisation of the Book

As aforementioned, this book is divided into two parts: the first part, i.e. from
Chap. 2 to 4, provides the neural foundation for the development of the AMS
and the modules within it, as well as their mutual data processing, to be de-
scribed in detail in the second part, i.e. from Chap. 5 to 11.

In the following Chap. 2, we briefly review the conventional ANN mod-
els, such as the associative memory, Hopfield’s recurrent neural networks
(HRNNs) (Hopfield, 1982), multi-layered perceptron neural networks (MLP-
NNs), which are normally trained using the so-called back-propagation (BP)
algorithm (Amari, 1967; Bryson and Ho, 1969; Werbos, 1974; Parker, 1985;
Rumelhart et al., 1986), self-organising feature maps (SOFMs) (Kohonen,
1997), and a variant of radial basis function neural networks (RBF-NNs)
(Broomhead and Lowe, 1988; Moody and Darken, 1989; Renals, 1989; Poggio
and Girosi, 1990) (for a concise survey of the ANN models, see also Haykin,
1994). Then, amongst a family of RBF-NNs, we highlight the two models, i.e.
probabilistic neural networks (PNNs) (Specht, 1988, 1990) and generalised re-
gression neural networks (GRNNs) (Specht, 1991), and investigate the useful
properties of these two models.

Chapter 3 gives a basis for a new paradigm of the connectionist model,
namely, the kernel memory concept, which can also be seen as the generalisa-
tion of PNNs/GRNNs, followed by the description of the novel self-organising
kernel memory (SOKM) model in Chap. 4. The weight updating (or learning)
rule for SOKMs is motivated from the original Hebbian postulate between
a pair of cells (Hebb, 1949). In both Chaps. 3 and 4, it will be described
that the kernel memory (KM) not only inherits the attractive properties of
PNNs/GRNNs but also can be exploited to establish the neural basis for
modelling the various functionalities of the mind, which will be extensively
described in the rest of the book.

The opening chapter for the second part firstly proposes a holistic model
of the AMS (i.e. in Chap. 5) and discusses how it is organised within the
principle of modularity of the mind (Fodor, 1983; Hobson, 1999) and the
functionality of each constituent (i.e. module), through a descriptive exam-
ple. It is hence considered that the AMS is composed of a total of 14 modules;
one single input, i.e. the input: sensation module, two output modules, i.e.
the primary and secondary (perceptual) outputs, and remaining 11 modules,

1.5 The Organisation of the Book 7

each of which represents the corresponding cognitive/psychological function:
1) attention, 2) emotion, 3,4) explicit/implicit long-term memory (LTM), 5)
instinct: innate structure, 6), intention, 7) intuition, 8) language, 9) semantic
networks/lexicon, 10) short-term memory (STM)/working memory, and 11)
thinking module, and their interactions. Then, the subsequent Chaps. 6–10
are devoted to the description of the respective modules in detail.

In Chap. 6, the sensation module of the AMS is considered as the mod-
ule responsible for the sensory inputs arriving at the AMS and represented
by a cascade of pre-processing units, e.g. the units performing sound activity
detection (SAD), noise reduction (NR), or signal extraction (SE)/separation
(SS), all of which are active areas of study in signal processing. Then, as a
practical example, we consider the problem of noise reduction for stereophonic
speech signals with an extensive simulation study. Although the noise reduc-
tion model to be described is totally based upon a signal processing approach,
it is thought that the model can be incorporated as a practical noise reduc-
tion part of the mechanism within the sensation module of the AMS. Hence,
it is expected that, for the material in Sect. 6.2.2, as well as for the blind
speech extraction model described in Sect. 8.5, the reader is familiar with sig-
nal processing and thus has the necessary background in linear algebra theory.
Next, within the AMS context, the perception is simply defined as pattern
recognition by accessing the memory contents of the LTM-oriented modules
and treated as the secondary output.

Chapter 7 deals rather in depth with the notion of learning and discusses
the relevant issues, such as supervised/unsupervised learning and target re-
sponses (or interchangeably the “teachers” signals), all of which invariably
appear in ordinary connectionism, within the AMS context. Then, an exam-
ple of a combined self-evolutionary feature extraction and pattern recognition
is considered based upon the model of SOKM in Chap. 4.

Subsequently, in Chap. 8, the memory modules within the AMS, i.e. both
the explicit and implicit LTM, STM/working memory, and the other two
LTM-oriented modules – semantic networks/lexicon and instinct: innate struc-
ture modules – are described in detail in terms of the kernel memory principle.
Then, we consider a speech extraction system, as well as its extension to con-
volutive mixtures, based upon a combined subband independent component
analysis (ICA) and neural memory as the embodiment of both the sensation
and LTM modules.

Chapter 9 focuses upon the two memory-oriented modules of language
and thinking, followed by interpreting the abstract notions related to mind
within the AMS context in Chap. 10. In Chap. 10, the four psychological
function-oriented modules within the AMS, i.e. attention, emotion, intention,
and intuition, will be described, all based upon the kernel memory concept.
In the later part of Chap. 10, we also consider how the four modules of at-
tention, intuition, LTM, and STM/working memory can be embodied and
incorporated to construct an intelligent pattern recognition system, through

8 1 Introduction

a simulation study. Then, the extended model that implements both the no-
tions of emotion and procedural memory is considered.

In Chap. 11, with a brief summary of the modules, we will outline the
enigmatic issue of consciousness within the AMS context, followed by the
provision of a short note on the brain mechanism for intelligent robots. Then,
the book is concluded with a comprehensive bibliography.

Part I

The Neural Foundations

2

From Classical Connectionist Models
to Probabilistic/Generalised Regression Neural
Networks (PNNs/GRNNs)

2.1 Perspective

This chapter begins by briefly summarising some of the well-known classi-
cal connectionist/artificial neural network models such as multi-layered per-
ceptron neural networks (MLP-NNs), radial basis function neural networks
(RBF-NNs), self-organising feature maps (SOFMs), associative memory, and
Hopfield-type recurrent neural networks (HRNNs). These models are shown
to normally require iterative and/or complex parameter approximation proce-
dures, and it is highlighted why these approaches have in general lost interest
in modelling the psychological functions and developing artificial intelligence
(in a more realistic sense).

Probabilistic neural networks (PNNs) (Specht, 1988) and generalised re-
gression neural networks (GRNNs) (Specht, 1991) are discussed next. These
two networks are often regarded as variants of RBF-NNs (Broomhead and
Lowe, 1988; Moody and Darken, 1989; Renals, 1989; Poggio and Girosi, 1990),
but, unlike ordinary RBF-NNs, have several inherent and useful properties,
i.e. 1) straightforward network configuration (Hoya and Chambers, 2001a;
Hoya, 2004b), 2) robust classification performance, and 3) capability in ac-
commodating new classes (Hoya, 2003a).

These properties are not only desirable for on-line data processing but also
inevitable for modelling psychological functions (Hoya, 2004b), which even-
tually leads to the development of kernel memory concept to be described in
the subsequent chapters.

Finally, to emphasise the attractive properties of PNNs/GRNNs, a more
informative description by means of the comparison with some common con-
nectionist models and PNNs/GRNNs is given.

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 11–29 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

12 2 From Classical Connectionist Models to PNNs/GRNNs

2.2 Classical Connectionist/Artificial
Neural Network Models

In the last few decades, the rapid advancements of computer technology have
enabled studies in artificial neural networks or, in a more general terminology,
connectionism, to flourish. Utility in various real world situations has been
demonstrated, whilst the theoretical aspects of the studies had been provided
long before the period.

2.2.1 Multi-Layered Perceptron/Radial Basis Function Neural
Networks, and Self-Organising Feature Maps

In the artificial neural network field, multi-layered perceptron neural net-
works (MLP-NNs), which were pioneered around the early 1960’s (Rosenblatt,
1958, 1962; Widrow, 1962), have played a central role in pattern recognition
tasks (Bishop, 1996). In MLP-NNs, sigmoidal (or, often colloquially termed
“squash”, from the shape of the envelope) functions are used for the nonlin-
earity, and the network parameters, such as the weight vectors between the
input and hidden layers and those between hidden and output layers, are usu-
ally adjusted by the back-propagation (BP) algorithm (Amari (1967); Bryson
and Ho (1969); Werbos (1974); Parker (1985); Rumelhart et al. (1986), for the
detail, see e.g. Haykin (1994)). However, it is now well-known that in practice
the learning of the MLP-NN parameters by BP type algorithms quite often
suffers from becoming stuck in a local minimum and requiring long period
of learning in order to encode the training patterns, both of which are good
reason for avoiding such networks in on-line processing.

This account also holds for training the ordinary radial basis function type
networks (see e.g. Haykin, 1994) or self-organising feature maps (SOFMs)
(Kohonen, 1997), since the network parameters tuning method resorts to a
gradient-descent type algorithm, which normally requires iterative and long
training (albeit some claims for the biological plausibility for SOFMs). A
particular weakness of such networks is that when new training data arrives
in on-line applications, an iterative learning algorithm must be reapplied to
train the network from scratch using a combined the previous training and
new data; i.e. incremental learning is generally quite hard.

2.2.2 Associative Memory/Hopfield’s Recurrent Neural Networks

Associative memory has gained a great deal of interest for its structural re-
semblance to the cortical areas of the brain. In implementation, associative
memory is quite often alternatively represented as a correlation matrix , since
each neuron can be interpreted as an element of matrix. The data are stored
in terms of a distributed representation, such as in MLP-NNs, and both the

2.3 PNNs and GRNNs 13

stimulus (key) and the response (the data) are required to form an associative
memory.

In contrast, recurrent networks known as Hopfield-type recurrent neural
networks (HRNNs) (Hopfield, 1982) are rooted in statistical physics and, as
the name stands, have feedback connections. However, despite their capability
to retrieve a stored pattern by giving only a reasonable subset of patterns,
they also often suffer from becoming stuck in the so-called “spurious” states
(Amit, 1989; Hertz et al., 1991; Haykin, 1994).

Both the associative memory and HRNNs have, from the mathematical
view point, attracted great interest in terms of their dynamical behaviours.
However, the actual implementation is quite often hindered in practice, due
to the considerable amount of computation compared to feedforward artifi-
cial neural networks (Looney, 1997). Moreover, it is theoretically known that
there is a storage limit, in which a Hopfield network cannot store more than
0.138N (N : total number of neurons in the network) random patterns, when
it is used as a content-addressable memory (Haykin, 1994). In general, as for
MLP-NNs, dynamic re-configuration of such networks is not possible, e.g. in-
cremental learning when new data is arrived (Ritter et al., 1992).

In summary, conventional associative memory, HRNNs, MLP-NNs (see
also Stork, 1989), RBF-NNs, and SOFMs are not that appealing as the can-
didates for modelling the learning mechanism of the brain (Roy, 2000).

2.2.3 Variants of RBF-NN Models

In relation to RBF-NNs, in disciplines other than artificial neural networks,
a number of different models such as the generalised context model (GCM)
(Nosofsky, 1986), the extended model called attention learning covering map
(ALCOVE) (Kruschke, 1992) (both the GCM and ALCOVE were proposed
in the psychological context), and Gaussian mixture model (GMM) (see e.g.
Hastie et al., 2001) have been proposed by exploiting the property of a
Gaussian response function. Interestingly, although these models all stemmed
from disparate disciplines, the underlying concept is similar to that of the
original RBF-NNs. Thus, within these models, the notion of weights between
the nodes is still identical to RBF-NNs and rather arduous approximation of
the weight parameters is thus involved.

2.3 PNNs and GRNNs

In the early 1990’s, Specht rediscovered the effectiveness of kernel discriminant
analysis (Hand, 1984) within the context of artificial neural networks. This
led him to define the notion of a probabilistic neural network (PNN) (Specht,
1988, 1990). Subsequently, Nadaraya-Watson kernel regression (Nadaraya,
1964; Watson, 1964) was reformulated as a generalised regression neural net-
work (GRNN) (Specht, 1991) (for a concise review of PNNs/GRNNs, see also

14 2 From Classical Connectionist Models to PNNs/GRNNs

−3 −2 −1 0 1 2 3

x

y(
x)

- σ σ

0

0.2

0.4

0.6

0.8

1

Fig. 2.1. A Gaussian response function: y(x) = exp(−x2/2)

(Sarle, 2001)). In the neural network context, both PNNs and GRNNs have
layered structures as in MLP-NNs and can be categorised into a family of
RBF-NNs (Wasserman, 1993; Orr, 1996) in which a hidden neuron is repre-
sented by a Gaussian response function.

Figure 2.1 shows a Gaussian response function:

y(x) = exp
(
− x2

2σ2

)
(2.1)

where σ = 1.
From the statistical point of view, the PNN/GRNN approach can also

be regarded as a special case of a Parzen window (Parzen, 1962), as well as
RBF-NNs (Duda et al., 2001).

In addition, regardless of minor exceptions, it is intuitively considered
that the selection of a Gaussian response function is reasonable for the global
description of the real-world data, as represented by the consequence from the
central limit theorem in the statistical context (see e.g. Garcia, 1994).

Whilst the roots of PNNs and GRNNs differ from each other, in practice,
the only difference between PNNs and GRNNs (in the strict sense) is confined
to their implementation; for PNNs the weights between the RBFs and the
output neuron(s) (which are identical to the target values for both PNNs and
GRNNs) are normally fixed to binary (0/1) values, whereas GRNNs generally
do not hold such restriction in the weight settings.

2.3 PNNs and GRNNs 15

Layer

Layer

Layer Layer

. . .

. . .

. . .

. . .

1 0 0

Input Input

Decision Unit

. . .

1 1 1

1 11

1 11

Output

Hidden

xN i
xN i

oNo

hNh

x x

h h

o1 o2

x 1 x 2

Net2
Sub−
Net11 2

1 2

Sub−
Net N

Sub−
o

Fig. 2.2. Illustration of topological equivalence between the three-layered
PNN/GRNN with Nh hidden and No output units and the assembly of the No

distinct sub-networks

2.3.1 Network Configuration of PNNs/GRNNs

The left part in Fig. 2.2 shows a three-layered PNN (or GRNN with the
binary weight coefficients between RBFs and output units) with Ni inputs, Nh

RBFs, and No output units. In the figure, each input unit xi (i = 1, 2, . . . , Ni)
corresponds to the element in the input vector x = [x1, x2, . . . , xNi

]T (T :
vector transpose), hj (j = 1, 2, . . . , Nh) is the j-th RBF (note that Nh is
varied), ‖ . . . ‖2

2 denotes the squared L2 norm, and the output of each neuron
ok (k = 1, 2, . . . , No) is calculated as1

ok =
1
ξ

Nh∑
j=1

wj,khj , (2.2)

where

ξ =
No∑
k=1

Nh∑
j=1

wj,khj ,

wj = [wj,1, wj,2, . . . , wj,No
]T ,

hj = f(x, cj , σj) = exp

(
−‖x − cj‖2

2

σ2
j

)
. (2.3)

1In (2.2), the factor ξ is, in practice, used to normalise the resulting output
values. Then, the manner given in (2.2) does not match the form derived originally
from the conditionally probabilistic approach (Specht, 1990, 1991). However, in the
original GRNN approach, the range of the output values depends upon the weight
factor wj,k and is not always bounded within a certain range, which may not be
convenient in the case of e.g. hardware representation. Therefore, the definition as
in (2.2) is adopted in this book, since the relative values of the output neurons are
given, instead of the original one.

16 2 From Classical Connectionist Models to PNNs/GRNNs

In the above, cj is called the centroid vector, σj is the radius, and wj

denotes the weight vector between the j-th RBF and the output neurons. In
the case of a PNN, the weight vector wj is given as a binary (0 or 1) sequence,
which is identical to the target vector.

As in the left part of Fig. 2.2, the structure of a PNN/GRNN, at first
examination, is similar to the well-known multilayered perceptron neural net-
work (MLP-NN) except that RBFs are used in the hidden layer and linear
functions in the output layer.

In comparison with the conventional RBF-NNs, the GRNNs have a special
property, namely that no iterative training of the weight vectors is required
(Wasserman, 1993). That is, as for other RBF-NNs, any input-output map-
ping is possible, by simply assigning the input vectors to the centroid vectors
and fixing the weight vectors between the RBFs and outputs identical to the
corresponding target vectors. This is quite attractive, since, as stated ear-
lier, conventional MLP-NNs with back-propagation type weight adaptation
involve long and iterative training, and there even may be a danger of becom-
ing stuck in a local minimum (this is serious as the size of the training set
becomes large).

Moreover, the special property of PNNs/GRNNs enables us to flexibly
configure the network depending upon the tasks given, which is considered
to be beneficial to real hardware implementation, with only two parameters,
cj and σj , to be adjusted. The only disadvantage of PNNs/GRNNs in com-
parison with MLP-NNs seems to be, due to the memory-based architecture,
the need for storing all the centroid vectors into memory space, which can
be sometimes excessive for on-line data processing, and hence, the operation
is slow in the reference mode (i.e. the testing phase). Nevertheless, with the
flexible configuration property, PNNs/GRNNs can be exploited for interpre-
tation of the notions relevant to the actual brain.

In Fig. 2.2, when the target vector t(x) corresponding to the input pattern
vector x is given as a vector of indicator functions

t(x) = (δ1, δ2, . . . , δNo
) ,

δj =

1 ; if x belongs to the class
; corresponding to ok

0 ; otherwise.
(2.4)

and when the RBF hj is assigned for x, with utilising the special property of a
PNN/GRNN, wj = t(x), the entire network becomes topologically equivalent
to the network with a decision unit and No sub-networks as in the right part
in Fig. 2.2.

In summary, the network configuration2 by means of a PNN/GRNN is
simply achieved as in the following:

2In the neural networks community, this configuration is often referred to as
“learning”. Strictly speaking, the usage of the terminology is, however, rather

2.3 PNNs and GRNNs 17

[Summary of PNN/GRNN Network Configuration]

Network Growing : Set cj = x and fix σj , then add the term
wjkhj in (2.3).
For pattern classification tasks, the target vector t(x) is thus
used as a “class label”, indicating the sub-network number to
which the RBF belongs. (Namely, this operation is equivalent to
add the j-th RBF in the corresponding (i.e. the k-th) Sub-Net
in the left part in Fig. 2.2.)

Network Shrinking : Delete the term wjkhj from (2.3).

In addition, by comparing a PNN with GRNN, it is considered that the
weight setting of GRNNs may be exploited for a more flexible utility, e.g.
in pattern classification problems, the fractional weight values can represent
the “certainty” (i.e. the weights between the RBFs and output neurons are
varied between zero to one, in accordance with the certainty of the RBF, by
introducing a (sort of) fuzzy-logic decision scheme, by exploiting the a priori
knowledge of the problem) that the RBF belongs to a particular class.

2.3.2 Example of PNN/GRNN – the Celebrated Exclusive
OR Problem

As an example using a PNN/GRNN, let us consider the celebrated pattern
classification problem of exclusive-or (XOR). This problem has quite often
been treated as a benchmark for a pattern classifier, especially since Minsky
and Papert (Minsky and Papert, 1969) proved the computational limitation
of the simple Rosenblatt’s perceptron model (Rosenblatt, 1958), which later
led to the extension of the model to an MLP-NN; a perceptron cannot solve
the XOR problem, since a perceptron essentially represents only a single sep-
arating line in the hyperplane, whilst for the solution to the XOR problem,
(at least) two such lines are required.

Figure 2.3 shows the PNN/GRNN which gives a solution to the well-known
exclusive-or (XOR) problem. In general, even to achieve the input-output re-
lation of the simple XOR problem involves iterative tuning of the network
node parameters by means of MLP-NNs, there is virtually no such iterative
tuning involved in PNNs/GRNNs; in the case of an MLP-NN, two lines are
needed to separate the circles filled with black (i.e. y = 1) from the other two
(y = 0), as in Fig. 2.4 (a). In terms of an MLP-NN, it is equivalent that the
properties of the two lines (i.e. both the slopes and y-intercepts) are tuned to
provide such separation during the training. (Thus, it is evident that a single

limited, since the network is grown/shrunk by fixing the network parameters for
a particular set of patterns other than tuning them, e.g. by repetitive adjustment of
the weight vectors as in the ordinary back-propagation algorithm.

18 2 From Classical Connectionist Models to PNNs/GRNNs

11 0.10.1

1 11 1

11

1 1

y

Layer

Layer

Layer

Output

Input

Hidden h3

x 1 x 2

h1

o1

h4h2

Fig. 2.3. A PNN/GRNN for the solution to the exclusive-or (XOR) problem – 1) the
four units in the hidden layer (i.e. RBFs) hi (i = 1, 2, 3, 4) are assigned with fixing
both the centroid vectors, c1 = [0, 0]T , c2 = [0, 1]T , c3 = [1, 0]T , and c4 = [1, 1]T ,
and (reasonably small values of) the radii and 2) the weights between the hidden and
output layer are simply set to the four (values close to) target values, respectively,
i.e. w11 = 0.1, w12 = 1.0, w13 = 1.0, and w14 = 0.1

perceptron cannot simultaneously provide two such separating lines.) On the
other hand, as in Fig. 2.4 (b), when 1) the four hidden (or RBF) neurons hi

(i = 1, 2, 3, 4) are assigned with fixing both the centroid vectors, c1 = [0, 0]T ,
c2 = [0, 1]T , c3 = [1, 0]T , and c4 = [1, 1]T , and (reasonably small values of)
the radii and 2) the weights are simply set to the four (values close to) target
values, respectively, i.e. w11 = 0.1, w12 = 1.0, w13 = 1.0, and, w14 = 0.13, the
network tuning is completed (thus “one-pass” or “one-shot” training).

In the preliminary simulation study, the XOR problem was also solved
by a three-layered perceptron NN; the network consists of only two nodes
for both the input and hidden layers and one single output node. Then, the
network was trained by the BP algorithm (Amari, 1967; Bryson and Ho,
1969; Werbos, 1974; Parker, 1985; Rumelhart et al., 1986) with a momentum
term update scheme (Nakano et al., 1989) and tested using the same four
patterns as aforementioned. However, as reported in (Nakano et al., 1989), it
was empirically confirmed that the training of the MLP-NN requires (at least)
some ten times of iterative weight adjustment, though the parameters were
carefully chosen by trial and error, and thus that the “one-shot” training such

3Here, both the weight values w11 = 0.1 and w14 = 0.1 are considered, rather
than w11 = 0 and w14 = 0, in order to keep the explicit network structure for the
XOR problem.

2.3 PNNs and GRNNs 19

x
1

x
2

10

1

y

y
= 1

= 0

x
1

x
2

10

1

y

y
= 1

= 0

Fig. 2.4. Comparison of decision boundaries for (a) an MLP-NN and (b)
PNN/GRNN for the solution to the XOR – in the case of an MLP-NN, two lines
are needed to separate the circles (i.e. y = 1 filled with black) from the other two
(y = 0), whilst the decision boundaries for a PNN/GRNN are determined by the
four RBFs

as PNNs/GRNNs can never be achieved using the MLP-NN, even for this
small task.

2.3.3 Capability in Accommodating New Classes
within PNNs/GRNNs (Hoya, 2003a)

In Hoya (2003a), it is reported that a PNN exhibits a capability to accommo-
date new classes, whilst maintaining a reasonably high generalisation capabil-
ity. In essence, this feature is particularly important and desirable for pattern
classification tasks.

In a recent study (Polikar et al., 2001), a new guideline for the incremental
learning paradigm in pattern classification has been given in accordance with
the four criteria:

1) The pattern classifier(s) should be able to learn additional in-
formation from the new data;

2) They should not require access to the original data used to
train the existing classifier;

3) They should preserve previously acquired knowledge (that is,
they should not suffer from catastrophic forgetting);

4) They should be able to accommodate new classes that may be
introduced within the new data.

20 2 From Classical Connectionist Models to PNNs/GRNNs

It is then obvious that the network growing phase within the network configu-
ration rule given earlier suffices the criterion 1) above, since a newly incoming
pattern vector can be readily assigned to the centroid vector of a new RBF
and thereby since a new local pattern space is formed within the entire space
already given. Then, it is intuitively said that Criterion 3) above can also be
satisfied, unless the local pattern space so formed does not seriously pervade
(but may moderately overlap) other local spaces.

Thus, from the structural point of view, accommodating new classes is
nothing more than simply adding a cluster of RBF(s) or, in other words, new
subnets within the PNN/GRNN. However, this is possible, under the assump-
tion that one pattern space spanned by a subnet is reasonably separated from
the others.

Accordingly, Criterion 4) above can be satisfied in terms of PNNs/GRNNs,
which will be justified in the simulation examples given later.

2.3.4 Necessity of Re-accessing the Stored Data

Up to now, what remains is Criterion 2), regarding the requirement of access-
ing the original data to train the existing classifier.

In Polikar et al. (2001), the authors pointed out that supervised networks
such as adaptive resonance theory maps (ARTMAPs) (Carpenter, 1991) suffer
from poor generalisation capability due to over-fitting, at the expense of no
access to the previously seen data. To overcome this drawback, it is generally
necessary to involve either the a priori knowledge (e.g. data distributions) or
a sort of ad hoc parameter adjustment scheme. A similar principle also applies
to the case of a PNN; in order to maintain the good generalisation capability,
the internal access to the stored data is necessary so as to update the radii val-
ues. However, one of the key advantages using the PNN is that, since a PNN
represents a memory-based architecture, it does not require storage of entire
original data besides the memory space for the PNN itself. In other words,
(some of) the original data are directly accessible via the internally stored
data, i.e. the centroid vectors cj . In practice, Criterion 2) above is therefore
too strict and hence re-accessing the original data is still unavoidable. How-
ever, as described later in this book, this could also be circumvented in terms
of the modular architecture (albeit different from conventional modular neural
networks) approach, within the kernel memory principle.

2.3.5 Simulation Example

In Hoya (2003a), a simulation example using four benchmark datasets for
pattern classification is given to show the capability in accommodating new
classes within a PNN; the speech filing system (SFS) (Huckvale, 1996) for
digit voice classification (i.e. /ZERO/, /ONE/, . . ., /NINE/, in English) and
the three UCI data sets, which are chosen from “UCI Machine Learning

2.3 PNNs and GRNNs 21

Repository” of the University of California4, namely the OptDigit, PenDigit,
and ISOLET data set are employed. For the SFS data set, each utterance
was firstly encoded by the commonly used linear predictive coding (LPC) mel-
cepstral analysis(see e.g. Deller et al., 1993; Furui, 1981) for speech coding5

and given as a feature vector with 256 data points. For the three UCI data
sets, the first two are used for digit character recognition tasks, whilst the
latter is for isolated letter speech recognition tasks, all of which are ready for
performing the pattern classification. The description of the data sets used is
summarised in Table 2.1.

Table 2.1. Data sets used to show the capability in accommodating new classes
within a PNN

Length of Total Num. of Total Num. of Num.
Each Pattern Patterns in the Patterns in the of

Data Set Vector Training Set Testing Sets Classes

SFS 256 599 400 10
OptDigit 64 3823 1797 10
PenDigit 16 7494 3498 10
ISOLET 617 1040 520 26

Performance Measurement

To investigate the capability of accommodating new classes within a PNN, the
measurement in terms of deterioration rate d, which is given as the difference
in the number of correctly classified patterns between the initially configured
PNN and its grown version with new classes, is introduced as

d =
ci − cg

N
(2.5)

4The original datasets, OptDigit, PenDigit, and ISOLET, were downloaded
from UCI Machine Learning Repository at: http://www.ics.uci.edu/mlearn/
MLRepository.html

5More specifically, the original utterances in the SFS dataset were sampled at
20 kHz and each utterance was firstly pre-processed using a seventh-order adaptive
inverse filter (Nakajima et al., 1978). Second, the entire sample sequence was con-
verted into 16 uniformly allocated frames (overlapping or distinct, depending upon
both the lengths of an analysis window frame and the whole sequence). Then, each
frame data was transformed into the power-spectrum domain by applying the LPC
mel-cepstral analysis (Furui, 1981) with 14 coefficients. The power-spectrum domain
data (or the power spectral density, PSD) points (per frame) were further converted
into 16 data points by smoothing the power-spectrum (i.e. applying a low-pass filter
operation). Finally, for each utterance, a total of 256(= 16 frames × 16 points) data
points were obtained and used as the feature vector of the pattern classifier.

22 2 From Classical Connectionist Models to PNNs/GRNNs

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

Number of New Classes Accommodated

D
et

er
io

ra
tio

n
R

at
e

(%
)

Digit 1 only (solid line (1))
Digit 1−3
Digit 1−5
Digit 1−7 (solid line (2))

(2)

(1)

Fig. 2.5. Transition of the deterioration rate with varying the number of new classes
accommodated – SFS data set

where

ci: number of correctly classified patterns with the initial configuration;
cg: number of correctly classified patterns with the grown network;
N : total number of testing patterns.

Note that, for the computation of (2.5), to give a fair comparison, the
total number of testing patterns N was also varied according to the number
of initially accommodated classes (digits/letters).

Simulation Results

In Figs. 2.5–2.8, each of the four lines shows the transition of the deterioration
rate (defined in (2.5)) obtained by varying the number of new classes (dig-
its/letters) accommodated within the original PNN. In each figure, the label
“Digit i-j” (or “Letter i-j” for ISOLET) indicates that the PNN was initially
configured with the pattern vectors for only the classes from Digit/Letter i
to j. For all the data sets, the overall generalisation performance (using the
testing set) with the initial configuration remained satisfactory, i.e. within the
range from 90.4% to 100.0%.

2.3 PNNs and GRNNs 23

1 2 3 4 5 6 7 8 9
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Number of New Classes Accommodated

D
et

er
io

ra
tio

n
R

at
e

(%
)

Digit 1−2 (solid line (1))
Digit 1−4
Digit 1−6
Digit 1−7 (solid line (2))

(1)

(2)

Fig. 2.6. Transition of the deterioration rate with varying the number of new classes
accommodated – OptDigit data set

Discussion

For all the cases, a similar tendency was observed; as the number of new classes
is increased, the generalisation performance deteriorates. This naturally fol-
lows, since the number of degrees of freedom is also increased by adding new
classes to be classified. However, as in Figs. 2.5–2.8, this is also dependent
upon the length of the pattern vectors and was confirmed by another set of
simulations; with identical numbers of the patterns in both the training and
testing sets (i.e. 200 for training and 300 for testing) for the three data sets,
the SFS, OptDigit, and PenDigit (of which the number of classes is also iden-
tical), the overall deterioration rate of PenDigit was less than that of the SFS.
In other words, this observation indicates that the coverage of pattern space
by the RBFs is accordingly broadened as the dimensionality is decreased.

In addition, for the PenDigit case (i.e. using the original large data set of
PenDigit), a deterioration rate of around 14% was observed for “Digit 1–2”,
by increasing the number of classes to three. In such a case, it can be said
that “over-training” may have occurred, due to the excessive amount of the
training data, by taking into account the length of each pattern vector (i.e.
16). This indicates that, as for other neural based pattern classifiers, pruning

24 2 From Classical Connectionist Models to PNNs/GRNNs

1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

Number of New Classes Accommodated

D
et

er
io

ra
tio

n
R

at
e

(%
)

Digit 1 only (solid line (1))
Digit 1−4
Digit 1−6
Digit 1−7 (solid line (2))

(1)

(2)

Fig. 2.7. Transition of the deterioration rate with varying the number of new classes
accommodated – PenDigit data set

of the training data in advance is important for the training (or constructing)
of a PNN (for a further discussion of this, see e.g. Hoya, 1998).

Then, as shown (solid lines) in Figs. 2.5–2.8, the deterioration rate of the
initial configuration with the smaller number of classes (i.e. trained only with
either one or two classes) was, as expected, the highest for the three data
sets, i.e. SFS, PenDigit, and ISOLET. This can be interpreted such that the
separation of the pattern space with a smaller number of classes is rather
broad and thus is easily eroded by adding new classes. This erosion was no-
ticeable in the case of ISOLET. However, it can also be said that the degree
of erosion is more or less bounded. In other words, the spread of the RBFs is
limited, since, as shown in Figs. 2.5–2.8, the deterioration rate remained the
same when the number of classes was increased. In this regard, it is considered
that the structure of the training data set for OptDigit is most well-balanced
amongst the four, since the deterioration rate was low (which was less than
0.3%), whereas the generalisation performance was relatively high, i.e. around
99.0% for all the initial conditions. In contrast, for SFS, the deterioration rate
was rather steadily increased as the number of new classes for all the initial
configurations (except the case “Digit 1 only”) was increased, in comparison

2.4 Comparison Between Commonly Used Connectionist Models 25

5 10 15 20 25

0

2

4

6

8

10

12

14

16

Number of New Classes Accommodated

D
et

er
io

ra
tio

n
R

at
e

(%
)

Letter 1−2 (solid line (1))
Letter 1−4
Letter 1−8
Letter 1−16 (solid line (2))

(1)

(2)

Fig. 2.8. Transition of the deterioration rate with varying the number of new classes
accommodated – ISOLET data set

with the other three data sets. This is perhaps due to the insufficient number
of pattern vectors and thereby the weak coverage of the pattern space.

Nevertheless, it is stated that, by exploiting the flexible configuration prop-
erty of a PNN, the separation of pattern space can be kept sufficiently well
for each class even when adding new classes, as long as the amount of the
training data is not excessive for each class. Then, as discussed above, this is
supported by the empirical fact that the generalisation performance was not
seriously deteriorated for almost all the cases.

It can therefore be concluded that any “catastrophic” forgetting of the
previously stored data due to accommodation of new classes did not occur,
which meets Criterion 4).

2.4 Comparison Between Commonly
Used Connectionist Models and PNNs/GRNNs

In practice, the advantage of PNNs/GRNNs is that they are essentially free
from the “baby-sitting” required for e.g. MLP-NNs or SOFMs, i.e. the neces-
sity to tune a number of network parameters to obtain a good convergence
rate or worry about any numerical instability such as local minima or long

26 2 From Classical Connectionist Models to PNNs/GRNNs

and iterative training of the network parameters. As described earlier, by ex-
ploiting the property of PNNs/GRNNs, simple and quick incremental learning
is possible due to their inherently memory-based architecture6, whereby the
network growing/shrinking is straightforwardly performed (Hoya and Cham-
bers, 2001a; Hoya, 2004b).

In terms of the generalisation capability within the pattern classification
context, PNNs/GRNNs normally exhibit similar capability as compared with
MLP-NNs; in Hoya (1998), such a comparison using the SFS dataset is made,
and it is reported that a PNN/GRNN with the same number of hidden neu-
rons as an MLP-NN yields almost identical classification performance. Related
to this observation, in Mak et al. (1994), Mak et al. also compared the classi-
fication accuracy of an RBF-NN with an MLP-NN in terms of speaker identi-
fication and concluded that an RBF-NN with appropriate parameter settings
could even surpass the classification performance obtained by an MLP-NN.

Moreover, as described, by virtue of the flexible network configuration
property, adding new classes can be straightforwardly performed, under the
assumption that one pattern space spanned by a subnet is reasonably sepa-
rated from the others. This principle is particularly applicable to PNNs and
GRNNs; the training data for other widely-used layered networks such as
MLP-NNs trained by a back-propagation algorithm (BP) or ordinary RBF-
NNs is encoded and stored within the network after the iterative learning.
On the other hand, in MLP-NNs, the encoded data are then distributed over
the weight vectors (i.e. sparse representation of the data) between the input
and hidden layers and those between hidden and output layers (and hence not
directly accessible).

Therefore, it is generally considered that, not to mention the accommoda-
tion of new classes, to achieve a flexible network configuration by an MLP-NN
similar to that by a PNN/GRNN (that is, the quick network growing and
shrinking) is very hard. This is because even a small adjustment of the weight
parameters will cause a dramatic change in the pattern space constructed,
which may eventually lead to a catastrophic corruption of the pattern space
(Polikar et al., 2001). For the network reconfiguration of MLP-NNs, it is thus
normally necessary for the iterative training to start from scratch. From an-
other point of view, by MLP-NNs, the separation of the pattern space is
represented in terms of the hyperplanes so formed, whilst that performed by
PNNs and GRNNs is based upon the location and spread of the RBFs in
the pattern space. In PNNs/GRNNs, it is therefore considered that, since a
single class is essentially represented by a cluster of RBFs, a small change in a
particular cluster does not have any serious impact upon other classes, unless
the spread of the RBFs pervades the neighbour clusters.

6In general, the original RBF-NN scheme has already exhibited a similar prop-
erty; in Poggio and Edelman (1990), it is stated that a reasonable initial performance
can be obtained by merely setting the centres (i.e. the centroid vectors) to a subset
of the examples.

2.4 Comparison Between Commonly Used Connectionist Models 27

Table 2.2. Comparison of symbol-grounding approaches and feedforward type net-
works – GRNNs, MLP-NNs, PNNs, and RBF-NNs

Generalised Multilayered
Regression Neural Perceptron

Symbol Networks Neural Networks
Processing (GRNN)/ (MLP-NN)/Radial
Approaches Probabilistic Basic Function

Neural Networks Neural Networks
(PNN) (RBF-NN)

Data Not Encoded Not Encoded Encoded
Representation

Straightforward
Network Growing/ Yes Yes No
Shrinking (Yes for RBF-NN)

Numerical No No Yes
Instability

Memory Space Huge Relatively Moderately
Required Large Large

Capability in
Accommodating Yes Yes No
New Classes

In Table 2.2, a comparison of commonly used layered type artificial neural
networks and symbol-based connectionist models is given, i.e. symbol process-
ing approaches as in traditional artificial intelligence (see e.g. Newell and
Simon, 1997) (where each node simply consists of the pattern and symbol
(label) and no further processing between the respective nodes is involved)
and layered type artificial neural networks, i.e. GRNNs, MLP-NNs, PNNs,
and RBF-NNs.

As in Table 2.2 and the study (Hoya, 2003a), the disadvantageous points
of PNNs may, in turn, reside in 1) the necessity for relatively large space in
storing the network parameters, i.e. the centroid vectors, 2) intensive access
to the stored data within the PNNs in the reference (i.e. testing) mode, 3) de-
termination of the radii parameters, which is relevant to 2), and 4) how to
determine the size of the PNN (i.e. the number of hidden nodes to be used).

In respect of 1), MLP-NNs seem to have an advantage in that the distrib-
uted (or sparse) data representation obtained after the learning may yield a
more compact memory space than that required for PNN/GRNN, albeit at
the expense of iterative learning and the possibility of the aforementioned nu-
merical problems, which can be serious, especially when the size of the training
set is large. However, this does not seem to give any further advantage, since,
as in the pattern classification application (Hoya, 1998), an RBF-NN (GRNN)
with the same size of MLP-NN may yield a similar performance.

For 3), although some iterative tuning methods have been proposed and
investigated (see e.g. Bishop, 1996; Wasserman, 1993), in Hoya and Chambers

28 2 From Classical Connectionist Models to PNNs/GRNNs

(2001a); Hoya (2003a, 2004b), it is reported that a unique setting of the radii
for all the RBFs, which can also be regarded as the modified version suggested
in (Haykin, 1994), still yields a reasonable performance:

σj = σ = θσ × dmax , (2.6)

where dmax is maximum Euclidean distance between all the centroid vectors
within a PNN/GRNN, i.e. dmax = max(‖cl − cm‖2

2), (l �= m), and θσ is a
suitably chosen constant (for all the simulation results given in Sect. 2.3.5,
the setting θσ = 0.1 was employed.) Therefore, this is not considered to be
crucial.

Point 4) still remains an open issue related to pruning of the data points
to be stored within the network (Wasserman, 1993). However, the selection of
data points, i.e. the determination of the network size, is not an issue limited
to the GRNNs and PNNs. MacQueen’s k-means method (MacQueen, 1967)
or, alternatively, graph theoretic data-pruning methods (Hoya, 1998) could
be potentially used for clustering in a number of practical situations. These
methods have been found to provide reasonable generalisation performance
(Hoya and Chambers, 2001a). Alternatively, this can be achieved by means of
an intelligent approach, i.e. within the context of the evolutionary process of
a hierarchically arranged GRNN (HA-GRNN) (to be described in Chap. 10),
since, as in Hoya (2004b), the performance of the sufficiently evolved HA-
GRNN is superior to an ordinary GRNN with exactly the same size using
MacQueen’s k-means clustering method. (The issues related to HA-GRNNs
will be given in more detail later in this book.)

Thus, the most outstanding issue pertaining to a PNN/GRNN seems to
be 2). However, as described later (in Chap. 4), in the context of the self-
organising kernel memory concept, this may not be such an issue, since, during
the training phase, just one-pass presentation of the input data is sufficient
to self-organise the network structure. In addition, by means of the modular
architecture (to be discussed in Chap. 8; the hierarchically layered long-term
memory (LTM) networks concept), the problem of intensive access, i.e. to
update the radii values, could also be solved.

In addition, with a supportive argument regarding the RBF units in Vetter
et al. (1995), the approach in terms of RBFs (or, in a more general term,
the kernels) can also be biologically appealing. It is then fair to say that
the functionality of an RBF unit somewhat represents that of the so-called
“grand-mother’ cells (Gross et al., 1972; Perrett et al., 1982)7. (We will return
to this issue in Chap. 4.)

7However, at the neuro-anatomical level, whether or not such cells actually exist
in a real brain is still an open issue and beyond the scope of this book. Here, the
author simply intends to highlight the importance of the neurophysiological evidence
that some cells (or the column structures) may represent the functionality of the
“grandmother” cells which exhibit such generalisation capability.

2.5 Chapter Summary 29

2.5 Chapter Summary

In this chapter, a number of artificial neural network models that stemmed
from various disciplines of connectionism have firstly been reviewed. It has
then been described that the three inherent properties of the PNNs/GRNNs:

• Straightforward network (re-)configuration (i.e. both network grow-
ing and shrinking) and thus the utility in time-varying situations;

• Capability in accommodating new classes (categories);
• Robust classification performance which can be comparable to/exceed

that of MLP-NNs (Mak et al., 1994; Hoya, 1998)

are quite useful for general pattern classification tasks. These properties
have been justified with extensive simulation examples and compared with
commonly-used connectionist models.

The attractive properties of PNNs/GRNNs have given a basis for model-
ing psychological functions (Hoya, 2004b), in which the psychological notion
of memory dichotomy (James, 1890) (to be described later in Chap. 8), i.e.
the neuropsychological speculation that conceptually the memory should be
divided into short- and long-term memory, depending upon the latency, is
exploited for the evolution of a hierarchically arranged generalised regres-
sion neural network (HA-GRNN) consisting of a multiple of modified gener-
alised regression neural networks and the associated learning mechanisms (in
Chap. 10), namely a framework for the development of brain-like computers
(cf. Matsumoto et al., 1995) or, in a more realistic sense of, “artificial intel-
ligence”. The model and the dynamical behaviour of an HA-GRNN will be
more informatively described later in this book.

In summary, on the basis of the remarks in Matsumoto et al. (1995), it is
considered that the aforementioned features of PNNs/GRNNs are fundamen-
tals to the development of brain-like computers.

3

The Kernel Memory Concept – A Paradigm
Shift from Conventional Connectionism

3.1 Perspective

In this chapter, the general concept of kernel memory (KM) is described,
which is given as the basis for not only representing the general notion of
“memory” but also modelling the psychological functions related to the arti-
ficial mind system developed in later chapters.

As discussed in the previous chapter, one of the fundamental reasons for
the numerical instability problem within most of conventional artificial neural
networks lies in the fact that the data are encoded within the weights between
the network nodes. This particularly hinders the application to on-line data
processing, as is inevitable for developing more realistic brain-like information
systems.

In the KM concept, as in the conventional connectionist models, the net-
work structure is based upon the network nodes (i.e. called the kernels) and
their connections. For representing such nodes, any function that yields the
output value can be applied and defined as the kernel function. In a situation,
each kernel is defined and functions as a similarity measurement between
the data given to the kernel and memory stored within. Then, unlike con-
ventional neural network architectures, the “weight” (alternatively called link
weight) between a pair of nodes is redefined to simply represent the strength
of the connection between the nodes. This concept was originally motivated
from a neuropsychological perspective by Hebb (Hebb, 1949), and, since the
actual data are encoded not within the weight parameter space but within
the template vectors of the kernel functions (KFs), the tuning of the weight
parameters does not dramatically affect the performance.

3.2 The Kernel Memory

In the kernel memory context, the most elementary unit is called a single
kernel unit that represents the local memory space. The term kernel denotes

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 31–58 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

32 3 The Kernel Memory Concept

p2p1 Np

x2

xN

x1

.

.

.

Kernel

1) The Kernel Function

3) Auxiliary Memory to Store Class ID (Label)

2) Excitation Counter

4) Pointers to Other Kernel Units

. . .

K()

η

ε

p

x

Fig. 3.1. The kernel unit – consisting of four elements; given the inputs x =
[x1, x2, . . . , xN] 1) the kernel function K(x), 2) an excitation counter ε, 3) auxil-
iary memory to store the class ID (label) η, and 4) pointers to other kernel units pi

(i = 1, 2, . . . , Np)

a kernel function, the name of which originates from integral operator theory
(see Christianini and Taylor, 2000). Then, the term is used in a similar context
within kernel discriminant analysis (Hand, 1984) or kernel density estimation
(Rosenblatt, 1956; Jutten, 1997), also known as Parzen windows (Parzen,
1962), to describe a certain distance metric between a pair of vectors. Recently,
the name kernel has frequently appeared in the literature, essentially on the
same basis, especially in the literature relevant to support vector machines
(SVMs) (Vapnik, 1995; Hearst, 1998; Christianini and Taylor, 2000).

Hereafter in this book, the terminology kernel 1 is then frequently referred
to as (but not limited to) the kernel function K(a,b) which merely represents
a certain distance metric between two vectors a and b.

3.2.1 Definition of the Kernel Unit

Figure 3.1 depicts the kernel unit used in the kernel memory concept. As
in the figure, a single kernel unit is composed of 1) the kernel function, 2)

1In this book, the term kernel sometimes interchangeably represents “kernel
unit”.

3.2 The Kernel Memory 33

excitation counter, 3) auxiliary memory to store the class ID (label), and 4)
pointers to the other kernel units.

In the figure, the first element, i.e. the kernel function K(x) is formally
defined:

K(x) = f(x) = f(x1, x2, . . . , xN) (3.1)

where f(·) is a certain function, or, if it is used as a similarity measurement
in a specific situation:

K(x) = K(x, t) = D(x, t) (3.2)

where x = [x1, x2, . . . , xN]T is the input vector to the new memory element
(i.e. a kernel unit), t is the template vector of the kernel unit, with the same
dimension as x (i.e. t = [t1, t2, . . . , tN]T), and the function D(·) gives a certain
metric between the vector x and t.

Then, a number of such kernels as defined by (3.2) can be considered. The
simplest of which is the form that utilises the Euclidean distance metric:

K(x, t) = ‖x − t‖n
2 (n > 0) , (3.3)

or, alternatively, we could exploit a variant of the basic form (3.3) as in the
following table (see e.g. Hastie et al., 2001):

Table 3.1. Some of the commonly used kernel functions

Inner product:

K(x) = K(x, t) = x · t (3.4)

Gaussian:

K(x) = K(x, t) = exp(−‖x − t‖2

σ2
) (3.5)

Epanechnikov quadratic:

K(x) = K(z) =

{
3
4
(1 − z2) if |z| < 1;

0 otherwise
(3.6)

Tri-cube:

K(x) = K(z) =

{
(1 − |z|3)3 if |z| < 1;
0 otherwise

(3.7)

where z = ‖x − t‖n (n > 0).

34 3 The Kernel Memory Concept

The Gaussian Kernel

In (3.2), if a Gaussian response function is chosen for a kernel unit, the output
of the kernel function K(x) is given as2

K(x) = K(x, c) = exp
(
−‖x − c‖2

σ2

)
. (3.8)

In the above, the template vector t is replaced by the centroid vector c which
is specific to a Gaussian response function.

Then, the kernel function represented in terms of the Gaussian response
function exhibits the following properties:

1) The distance metric between the two vectors x and c is given as the
squared value of the Euclidean distance (i.e. the L2 norm).

2) The spread of the output value (or, the width of the kernel) is determined
by the factor (radius) σ.

3) The output value obtained by calculating K(x) is strictly bounded within
the range from 0 to 1.

4) In terms of the Taylor series expansion, the exponential part within the
Gaussian response function can be approximated by the polynomial

exp(−z) ≈
N∑

n=0

(−1)nzn

n!

= 1 − z +
1
2
z2 − 1

3!
z3 + · · · (3.9)

where N is finite and reasonably large in practice. Exploiting this may
facilitate hardware representation3. Along with this line, it is reported in
(Platt, 1991) that the following approximation is empirically found to be
reasonable:

exp(− z

σ2
) ≈

{
(1 − (z

qσ2)2)2 if z < qσ2;
0 otherwise

(3.10)

where q = 2.67.
5) The real world data can be moderately but reasonably well-represented

in many situations in terms of the Gaussian response function, i.e. as a
consequence of the central limit theorem in the statistical sense (see e.g.

2In some literature, the factor σ2 within the denominator of the exponential
function in (3.8) is multiplied by 2, due to the derivation of the original form.
However, there is essentially no difference in practice, since we may rewrite (3.8)
with σ =

√
2σ́, where σ́ is then regarded as the radius.

3For the realisation of the Gaussian response function (or RBF) in terms of
hardware, the complimentary metal-oxide semiconductor (CMOS) inverters have
been exploited (for the detail, see Anderson et al., 1993; Theogarajan and Akers,
1996, 1997; Yamasaki and Shibata, 2003).

3.2 The Kernel Memory 35

Garcia, 1994) (as described in Sect. 2.3). Nevertheless, within the kernel
memory context, it is also possible to use a mixture of kernel represen-
tations rather than resorting to a single representation, depending upon
situations.

In 1) above, a single Gaussian kernel is already a pattern classifier in
the sense that calculating the Euclidean distance between x and c is equiva-
lent to performing pattern matching and then the score indicating how similar
the input vector x is to the stored pattern c is given as the value obtained
from the exponential function (according to 3) above); if the value becomes
asymptotically close to 1 (or, if the value is above a certain threshold), this
indicates that the input vector x given matches the template vector c to a
great extent and can be classified as the same category as that of c. Otherwise,
the pattern x belongs to another category4.

Thus, since the value obtained from the similarity measurement in (3.8) is
bounded (or, in other words, normalised), due to the existence of the exponen-
tial function, the uniformity in terms of the classification score is retained. In
practice, this property is quite useful, especially when considering the utility
of a multiple of Gaussian kernels, as used in the family of RBF-NNs. In this
context, the Gaussian metric is advantageous in comparison with the original
Euclidean metric given by (3.3).

Kernel Function Representing a General Symbolic Node

In addition, a single kernel can also be regarded as a new entity in place
of the conventional memory element, as well as a symbolic node in general
symbolism by simply assigning the kernel function as

K(x) =

θs ; if the activation from the other kernel
unit(s) is transferred to this kernel
unit via the link weight(s)

0 ; otherwise

(3.11)

where θs is a certain constant.
This view then allows us to subsume the concept of symbolic connectionist

models such as Minsky’s knowledge-line (K-Line) (Minsky, 1985). Moreover,
the kernel memory can replace the ordinary symbolism in that each node (i.e.
represented by a single kernel unit) can have a generalisation capability which
could, to a greater extent, mitigate the “curse-of-dimensionality”, in which,
practically speaking, the exponentially growing number of data points soon
exhausts the entire memory space.

4In fact, the utility of Gaussian distribution function as a similarity measurement
between two vectors is one of the common techniques, e.g. the psychological model
of GCM (Nosofsky, 1986), which can be viewed as one of the twins of RBF-NNs,
or the application to continuous speech recognition (Lee et al., 1990; Rabiner and
Juang, 1993).

36 3 The Kernel Memory Concept

The Excitation Counter

Returning to Fig. 3.1, the second element of the kernel unit ε is the excitation
counter. The excitation counter can be used to count how many times the
kernel unit is repeatedly excited (e.g. the value of the kernel function K(x) is
above a given threshold) in a certain period of time (if so defined), i.e. when
the kernel function satisfies the relation

K(x) ≥ θK (3.12)

where θK is the given threshold.
Initially, the value ε is set to 0 and incremented whenever the kernel unit

is excited, though the value may be reset to 0, where necessary.

The Auxiliary Memory

The third element in Fig. 3.1 is the auxiliary memory η to store the class
ID (label) indicating that the kernel unit belongs to a particular class (or
category). Unlike the conventional pattern classification context, the timing
to fix the class ID η is flexibly determined, which is dependent upon the
learning algorithm for the kernel memory, as described later.

The Pointers to Other Kernel Units

Finally, the fourth element in Fig. 3.1 is the pointer(s) pi (i = 1, 2, . . . , Np) to
the other kernel unit(s). Then, by exploiting these pointers, the link weight,
which lies between a pair of kernel units with a weighting factor to represent
the strength of the connection in between, is given.

Note that this manner of connection then allows us to re-
alise a different form of network configuration from the con-
ventional neural network architectures, since the output of
the kernel function K(x) is not always directly transferred
to the other nodes via the “weights”, e.g. those between
the hidden and output layers, as in PNNs/GRNNs.

3.2.2 An Alternative Representation of a Kernel Unit

It is also possible to design the kernel memory in such a way that, instead of
introducing the class label η attached to each kernel unit, the kernel units are
connected to the unit(s) which represents a class label (as the output node in
PNNs/GRNNs or conventional symbolic networks), whilst keeping the same
functionality as a memory element. (Then, this also implies that the kernel
units representing class IDs/labels can be formed, or dynamically varied, dur-
ing the course of the learning, as described in Chap. 7.) In such a case, the

3.2 The Kernel Memory 37

p2p1 Np

x2

xN

x1

.

.

.

Kernel

1) The Kernel Function

2) Excitation Counter

K(x)

ε

3) Pointers to Other Kernel Units

. . .
p

Fig. 3.2. A representation of a kernel unit (without the auxiliary memory) alter-
native to that in Fig. 3.1

kernel unit representation depicted in Fig. 3.2 can be more appropriate, in-
stead of that in Fig. 3.1. (In the figure, note that the auxiliary memory for η
is removed.)

Then, a single kernel unit is allowed to belong to multiple classes/categories
at a time (Greenfield, 1995) by having kernels indicating the respective cate-
gories (or classes) and exploiting the pointers to other kernels in order to make
connections in between. For instance, this allows a kernel unit to represent
the word “penguin” both classified as English and Japanese.

In addition, the alternative kernel representation as shown in Fig. 3.2 can
be more flexible; provided that a kernel representing a class ID is given and
that the class ID is varied from the original, it is sufficient to change only the
parameters of the kernel representing the class ID, which can in practice be
more efficient. Thus, for this case, there is no need to alter the content of the
auxiliary memory η for all the kernels that belong to the same class. (Then,
the extension to the case of multiple class IDs is straightforward.)

3.2.3 Reformation of a PNN/GRNN

By exploiting the three elements within the kernel unit as illustrated in
Fig. 3.1, i.e. 1) the kernel function, 2) the auxiliary memory to store the class
ID of the kernel, and 3) the pointers to other kernel units, the PNNs/GRNNs
can be reformulated as special cases of kernel memory with the three con-
straints on the network structure, namely, 1) only a single layer of Gaussian
kernels is used but no lateral connections in a layer are allowed, 2) another
layer for giving the results is provided, and 3) the two (i.e. the hidden and out-
put) layers are fully-connected (allowing fractional weight values in the case of

38 3 The Kernel Memory Concept

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

Σ

Σ

Σ

Σ

Nh

Nh

η

η

Nh

w

w

w

w

Nh
w

Nh
w

No
w

No
w

NoNh

s

s

sNo

o

o

oNo

Kernel

Kernel

x
1

x
Ni

Kernel

x
2

K ()

K ()

η

w

K ()

.

.

.

.

.

.

.

.

.

1/δ

1/δ

1/δ

1

2

11

12

21

22

1

2

1

2

1

2

1

2

Gauss.

Gauss.

Gauss.

2

1

x
2

x

Kernel Functions

x
1

h

h

h

Output Operations (i.e. Represented by a Set of Linear Operators)

Fig. 3.3. A PNN/GRNN represented in terms of a set of the Gaussian kernels Kh
i

(h: “hidden” layer, i = 1, 2, . . . , Nh, with the auxiliary memory ηi to store the class
ID but devoid of both the excitation counters and pointers to the other kernel units)
and linear operators eventually yielding the outputs

GRNNs). In this context, a three-layered PNN/GRNN, which has previously
been defined in the form (2.2) and (2.3) in Sect. 2.3.1, is equivalent to the
kernel memory structure with multiple Gaussian kernels and the kernels with
linear operations, the latter of which represent the respective output units.

First of all, as depicted in Fig. 3.3, a PNN/GRNN can be divided into two
parts within the kernel memory concept; 1) a collection of Gaussian kernel
units Kh

i (h: the kernels in the “hidden” layer, i = 1, 2, . . . , Nh, with the auxil-
iary memory ηi but devoid of both the excitation counters and pointers to the
other kernel units, e.g. for the lateral connections) and 2) (post-)linear output
operations. Then, the former converts the input space into another domain in
terms of the Gaussian kernel functions and the conversion is nonlinear, whilst
the latter is based upon the linear operations in terms of both scaling and
summation.

In Fig. 3.3, the scaling factor (or link weight) wij between the i-th Gaussian
kernel and the j-th summation operator sj with the activation Kh

i (x)

Kh
i (x) = exp

(
−‖x − ci‖2

σ2
i

)
, (3.13)

where x = [x1, x2, . . . , xNi
]T , is identical to the corresponding element of the

target vector, as described in Sect. 2.3.1. Then, the output value from the

3.2 The Kernel Memory 39

neuron oj is given as a normalised linear sum:

sj =
Nh∑
i=1

wijK
h
i (x)

oj = f1(x) =
1
ξ
sj (3.14)

where ξ is a constant for normalising the output values and may be given as
that in (2.3).

In PNNs/GRNNs, however, since it is evident that all the Gaussian kernels
are eventually connected to the linear sum operators without any other lateral
connections, the third elements, i.e. the pointers to other kernels, are omitted
from the figure5.

In general, if a multiple of output neurons oj (j = 1, 2, . . . , No) are defined
for pattern classification tasks, the final result will be obtained by choosing
the output neuron with a maximum activation, which is the so-called “winner-
takes-all” strategy, namely

{Final Result} = arg(max(oj)) (j = 1, 2, . . . , No) . (3.15)

Then, the index number of the maximally activated output neuron generally
indicates the final result.

3.2.4 Representing the Final Network Outputs
by Kernel Memory

In both the cases of PNNs and GRNNs, unlike the general kernel memory
concept, the activation of each Gaussian kernel in the hidden layer is directly
transferred to the output neurons. However, in the kernel memory, this notion
can also be altered, where appropriate, by modifying the manner of generating
the activation values from the output neurons. (In the case of PNNs, from
the structural point of view, this is already implied in terms of the topological
equivalence property, as shown in the right part of Fig. 2.2.) This modification
is possible, since, within the kernel memory context, the manner in calculating
the network outputs is detached from the weight parameter tuning, unlike the
conventional neural network principles. Thus, essentially, any function can be
used to describe the network outputs, virtually with no numerical effect upon
the memory storage. Moreover, such network outputs can even be forcibly
represented by kernel units within the kernel memory concept. For instance,
the output neurons within a PNN/GRNN oj (j = 1, 2, . . . , No) in Fig. 3.3 can
be represented in terms of the kernel units with a linear operation:

5In PNNs/GRNNs, the linear sum operators as defined in (3.14) may also be
regarded as special forms of the kernel functions, where the inputs are the weighted
version of Ki(x).

40 3 The Kernel Memory Concept

oj = Ko
j (y) =

1
ξ
wT

j y (3.16)

where wj = [w1j , w2j , . . . , wNh,j]T , ξ is a normalisation constant (given as
that in (2.2) and (2.3)), and the vector comprising of the activations of the
kernel units in the hidden layer y = [Kh

1 (x),Kh
2 (x), . . . ,Kh

Nh
(x)]T is now

regarded as the input to the kernel unit Ko
j . As in the above, this principle

can be applied to any modification of network outputs given hereafter.
Then, for the PNNs, the following simple modification to (3.14) can be

alternatively made within the context of the topological equivalence property
(see in Sect. 2.3):

oj = f2(x) = max(Kh
i (x)) (3.17)

where the output (kernel) oj is regarded as the j-th sub-network output and
the index i (i = 1, 2, . . . , Nj , Nj : num. of kernels in Sub-network j) denotes
the Gaussian kernel within the j-th sub-network.

However, unlike the case (3.14), since the above modification (3.17) is
based upon only the local representation of the pattern space, it can be more
effective to exploit both the global (i.e. (3.14)) and local (i.e. (3.17)) activa-
tions:

oj = f3(x) = g(f1(x), f2(x)) (3.18)

where g(·) is a certain function to yield a combination of the two factors, e.g.
the convex mixture

g(x, y) = (1 − λ)x + λy (3.19)

with 0 ≤ λ ≤ 1. The factor λ may be determined a priori depending upon
the application.

Similarly, we can also exploit the same strategy as in the k-nearest neigh-
bours approach (see e.g. Duda et al., 2001), which may lead to a more con-
sistent/robust result compared to the one given by (3.17); suppose that we
have collected a total of K kernel units with maximal activations, the final
result in (3.15) can be modified by taking a voting scheme amongst the first
K kernel units:

1) Given the input vector x, find the K kernel units with maximal activa-
tions Ǩi (i = 1, 2, . . . ,K), amongst all the kernel units within the kernel
memory. Initialise the variables ρj = 0 (j = 1, 2, . . . , No).

2) Then, for i = 1 to K do:
3) If η̌i = j (i.e. the pattern data stored within the kernel unit Ǩi falls in

to Class j), update

ρj = ρj + 1 . (3.20)

3.3 Topological Variations in Terms of Kernel Memory 41

o

x
K ()

K ()

K ()
oN

K ()

K ()

K () o

o

h

ow

.

.

.
.
.
.

2

2
y

1
y

y

1

2

x

x

x

1

N

N

h

o

oh

o

h

(Input) (Output)

ij

Fig. 3.4. A PNN/GRNN and its generalisation represented in terms of the kernel
memory concept by using only kernel units; in the figure, the kernel functions Kh

i (x)
(i = 1, 2, . . . , Nh, x: the input vector) in the first (or hidden) layer are e.g. all
Gaussian given by (3.13), whereas in the second (output) layer, the functions Ko

j (y)
(j = 1, 2, . . . , No, y = [Kh

1 (x), Kh
2 (x), . . . , Kh

Nh
(x)]T) can be alternatively given

by exploiting the representation such as (3.16) (i.e. for an ordinary PNN/GRNN),
(3.17), (3.18), or (3.21)

4) Finally, the result is obtained by simply taking a maximum and is used
as the output oj :

oj = {Final Result} = max(ρj) (j = 1, 2, . . . , No) . (3.21)

Note that all the modifications, i.e. (3.17), (3.18), and (3.21) given in the
above can also be uniformly represented by kernel units as in (3.16) and can
be eventually reduce to a simple kernel memory representation as shown in
Fig. 3.4.

3.3 Topological Variations in Terms of Kernel Memory

In the previous section, it was described that both the neural network GRNN
and PNN can be subsumed into the kernel memory concept, where only a
layer of Gaussian kernels and a set of the kernels, each with a linear operator,
are used, as shown in Fig. 3.4. However, within the kernel context, there
essentially exist no such structural restrictions, and any topological form of
the kernel memory representation is possible.

Here, we consider some topological variations in terms of the kernel
memory.

3.3.1 Kernel Memory Representations
for Multi-Domain Data Processing

The kernel memory in Fig. 3.3 or 3.4 can be regarded as a single-input multi-
output (SIMO) (more appropriately, a single-domain-input multi-output

42 3 The Kernel Memory Concept

(SDIMO) system) in that only a single (domain) input vector (x) and multiple
outputs (i.e. No outputs) are used.

In contrast, the kernel memory shown in Fig. 3.56 can be viewed as
a multi-input multi-output (MIMO)7 (i.e. a three-input three-output) sys-
tem, since, in this example, three different domain input vectors xm =
[xm(1), xm(2), . . . , xm(Nm)]T (m = 1, 2, 3, and the length Nm of the input
vector xm can be varied) and the three output kernel units are used.

In the figure, Km
i (xm) denotes the i-th kernel which is responsible for

the m-th domain input vector xm and the mono-directional connections be-
tween the kernel units and output kernels (or, unlike the original PNN/GRNN,
the bi-directional connections between the kernels) represent the link weights
wij . Note that, as well as for clarity (see the footnote6), the three output
kernel units, Ko

1 (y), Ko
2 (y), and Ko

3 (y), the respective kernel functions of
which are defined as the final network outputs, are considered. As the out-
put kernel units for the PNN/GRNN in Fig. 3.4, the input vector y of the
output kernel Ko

j (j = 1, 2, 3) in Fig. 3.5 is given by a certain function which
takes into account e.g. the transfers of the activation from the respective
kernel units so connected in the previous layer, i.e. Km

i (xm), via the link
weights wij .

Note also that, hereafter, in order to distinguish the two
types of connections (or the links) between the nodes within
the network structure in terms of the kernel memory con-
cept, two different colours will be used as in Fig. 3.5; the
connection in grey line denotes the ordinary “link weight”
(i.e. the link with a weighting factor), whereas that in grey
indicates either the input to or activation from the kernel
unit (i.e. output, due to the kernel function) which is nor-
mally represented without such weighting factor.

Two Ways of Forwarding Data to a Kernel Unit

Then, as in the structures in Figs. 3.4 and 3.5, it is considered that there are
two manners of forwarding the data to a single kernel in terms of the kernel
unit representation shown in Fig. 3.1/3.2:

6The kernel memory structure depicted in Fig.3.5 exploits the modified kernel
unit representation shown in Fig. 3.2, instead of the original as in Fig. 3.1. In Fig. 3.5,
the three output kernels, Ko

1 , Ko
2 , and Ko

3 , thus represent the nodes indicating class
labels. As discussed in Sect. 3.2.2, this representation can be more convenient to
depict the topological structure.

7Alternatively, this can be called as a multi-domain-input multi-output
(MDIMO) system.

3.3 Topological Variations in Terms of Kernel Memory 43

(Output)(Input)

ij
{w }

x1

x3

x2

x2
1 1K ()

x1
2 2K ()

1
o

2
o

o
3

3 y
o

K ()

2 y
o

K ()

1 y
o

K ()

1
1x1

x1
3 3K ()

K ()

Fig. 3.5. Example 1 – a multi-input multi-output (MIMO) (or, a three-input
three-output) system in terms of kernel memory; in the figure, it is considered
that there are three modality-dependent inputs xm = [xm(1), xm(2), . . . , xm(Nm)],
(m = 1, 2, 3) to the MIMO system and that four kernel units Km

i (i = 1, 2) to
process the modality-dependent inputs and three output kernels Ko

1 , Ko
2 , and Ko

3 .
Note that, as in this example, it is possible that the network structure is not nec-
essarily fully-connected, whilst allowing the lateral connections between the kernel
units, within the kernel memory principle

The input data giving as

1. The data input to the kernel itself;
2. The transfer of the activation from other connected kernel(s) via

the link weight(s) wij , by exploiting the pointers to other kernel
units so attached pj (j = 1, 2, . . . , Np)

For example, the kernel units such as K1
1 (x1) and K2

1 (x2) in Fig. 3.5 have both
the two types of the input data, whilst the kernel units Ko

j (y) representing the
respective final network outputs can be only activated by transfer of the acti-
vation from the other non-output kernels. (Note that the former case always
yields mono-directional connections.) In the early part of the next chapter,
we will consider how actually the two ways of activation from a single kernel
unit as in the above can be modelled.

Now, to see how the MIMO system in Fig. 3.5 works, consider the situation
where the input vector x1 is given as the feature vector obtained from the voice
sound uttered by a specific person which activates the kernel K1

1 . Then, since
the kernel K1

1 is connected to K3
1 via the bi-directional link weight in between,

it is possible to design the system such that, without the direct excitation by
the feature vector x3 obtained from, say, the facial image of the corresponding
person, the kernel K3

1 can be subsequently activated, due to the transfer of
the activation from the kernel unit K1

1 . However, these subsequent activations
can occur, only when K1

1 is excited, not by the activation of the kernel in the
same domain K1

2 , since K3
1 is not linked to K1

2 , as in Fig. 3.5.

44 3 The Kernel Memory Concept

Comparison with Conventional Modular Approaches

In general, it is said that the network structure in Fig. 3.5 acts as an integrated
pattern classifier and can process the input patterns in different domains si-
multaneously/ in parallel; even without having the input in a particular do-
main, the kernel can be excited by transfer of the activations from other kernel
units. Moreover, within the kernel memory concept, it is possible for the struc-
ture of the kernel memory not always to be fully-connected. These features
have not generally been considered within the traditional neural network con-
text.

In addition, such features cannot be easily realised by simply considering
a mixture of the pattern classifiers (or agents), each of which is responsible for
the classification task in a particular domain, as in typical modular approaches
(see e.g. Haykin, 1994). This is since they normally exploit conventional neural
network architectures (for the applications to sensor fusion, see e.g. Wolff et
al., 1993; Colla et al., 1998), in which all the nodes are usually fully-connected
(without allowing the lateral (but not necessarily for all the nodes) connections
between different domains), and function (only) when all the input data are
presented (at a time) to the hybrid system. Moreover, in respect to conven-
tional neural architectures, the kernel memory is more advantageous in that

1) The structure of each network in the modular approach is usually
more complex than a single kernel unit;

2) Long iterative training is generally needed to make each agent work
properly (and therefore time consuming);

3) The question as to how to control such agents in a uniform and/or
efficient manner remains (typically, another network must be trained,
which is often called a “gating” network (see e.g. Haykin, 1994)).

Representing Directional Links

In the previous topological representation as shown in Fig. 3.5, it has been
described that the way of transferring data amongst kernel units can be clas-
sified into two types. In this subsection, before moving on to other topologies,
we consider a little further the directed links, i.e. bi-/mono-directional data
transmissions.

As in Fig. 3.5, the connection such as that between K1
1 (x1) and K2

1 (x2)
is established via a bi-directional link, whilst that between K1

1 (x1) and the
kernel Ko

1 is via a mono-directional link. Then, it is considered that a mono-
directional link can be the representation of an excitatory/inhibitory synapse8,
in the neurophysiological context (see e.g. Koch, 1999), and implemented by
means of electronic devices such as diodes or transistors.

8In this book, unlike ordinary neural network schemes, both the excitatory and
inhibitory synapses are considered to be represented in terms of directed graphs.
However, it is straightforward to return from such directed graphs to ordinary
schemes (i.e. the excitatory synapses are represented by positive weighted values,
whilst the inhibitory are by the negative values).

3.3 Topological Variations in Terms of Kernel Memory 45

Thus, each bi-directional link in Fig. 3.5 may be composed of a pair of
mono-directional links in which the directions are opposite to each other,
with a different weighting setting in between. However, for convenience, we
hereafter regard the notation of the link weight between a pair of kernel units
KA and KB wAB as simply the unique weight value in between, i.e.

wAB = wBA (3.22)

unless denoted otherwise; only the arrow(s) represents the directional
flow(s)9.

A Bi-directional Representation

Figure 3.6 illustrates another example, where there are only three kernels10

but their roles are all different; kernel K1 is responsible for sound input,
whereas K2 is for image input, as in the previous example, and both K1 and
K2 are connected to K3, the kernel of which integrates i.e. the transfer of the
activation from both K1 and K2.
In this example, it is considered that either i) the input vector x of the kernel
unit K3 is given as x = [w13 w23]T , instead of the feature vector obtained
from the ordinary input, or ii) there is no input vector directly given to K3

but, rather, the kernel K3 can be activated by transfer via the link weights
i.e. w13 and/or w23 (then, apparently, the representation in Fig. 3.6 implies
the latter case).

Note that in this example there are no explicit output kernels given as in
Fig. 3.5, since the functionality of this kernel memory is different: consider
the case where a particular feature given by x1 activates the kernel K1 and
where K2 is simultaneously/in parallel activated by x2. This is similar to the
situation where both auditory and visual information are simultaneously given
to the memory. Then, provided that we choose a Gaussian kernel function for
all the three kernel units and that the input vector x is sufficiently close to
the centroid vector to excite the kernel Ki (i = 1, 2, 3), we can make this
kernel memory network also eventually output the centroid vector ci, apart
from the ordinary output values obtained as the activation of the respective
kernel functions, and, eventually, the activation of the kernel K3 is furtherly
transferred to other kernel(s) via the link weight w3k (k �= 1, 2, 3). In such
a situation, it is considered that the kernel K3 integrates the information
transferred from both K1 and K2 and hence imitates the concept or “Gestalt”

9As the directed graphs in general graph theory (see e.g. Christofides, 1975),
where appropriate, we may alternatively consider both the link weights wAB and
wBA, in order to differentiate the weight value with respect to the direction. More-
over, hereafter, the link connections without arrows represent bi-directional flows,
which satisfy the relation in (3.22), unless denoted otherwise.

10In the figure, both the superscripts for the input vectors x indicating the domain
numbers and the input argument of the kernel units are omitted for clarity.

46 3 The Kernel Memory Concept

(Sound)

w
23

13
w

3k
w

(Image)

c

c
2

x1

c
3

2

3

K

K

1

K1

x2

Fig. 3.6. Example 2 – a bi-directional MIMO system represented by kernel memory;
in the figure, each of the three kernel units receives and yields the outputs, represent-
ing the bi-directional flows. For instance, when both the two modality-dependent
inputs x1 and x2 are simultaneously presented to the kernel units K1 and K2, re-
spectively, K3 may be subsequently activated via the transfer of the activations from
K1 and K2, due to the link weight connections in between (thus, feedforward). In re-
verse, the excitation of the kernel unit K3 can cause the subsequent activations from
K1 and K2 via the link weights w12 and w13 (i.e. feedback). Note that, instead of
ordinary outputs, each kernel is considered to output its template (centroid) vector
in the figure

formation (i.e. related to the concept formation; to be described in Chap. 9).
Thus, the information flow in this case is feedforward :

x1,x2 → K1,K2 → K3 .

In contrast, if such a “Gestalt” kernel K3 is (somehow) activated by the
other kernel(s) via w3k and the activation is transferred back to both kernels
K1 and K2 via the respective links w13 and w23, the information flow is, in
turn, feedback , since

w3k → K3 → K1,K2 .

Therefore, the kernel memory as in Fig. 3.6 represents a bi-directional MIMO
system.

As a result, it is also possible to design the kernel memory in such a way
that the kernels K1 and K2 eventually output the centroid vector c1 and c2,
respectively, and if the appropriate decoding mechanisms for c1 and c2 are
given (as external devices), we could even restore the complete information
(i.e. in this example, this imitates the mental process to remember both the
sound and facial image of a specific person at once).

Note that both the MIMO systems in Figs. 3.5 and 3.6 can in principle
be viewed as graph theoretic networks (see e.g. Christofides, 1975) and the

3.3 Topological Variations in Terms of Kernel Memory 47

(Input) . . .

. . .

(Output)

. . .

.

.

.

x1

2x

x3

.

.

.

1
o

2
o

1 y
o

K ()

2 y
o

K ()

No

No

x1
2

x1
1

x1
2

K2K ()

K ()

c
2 c

1

c
1

c

1
1

2

3

2

1
K ()

x1
3K ()

1

3

1

o
y

o
K ()

xM

Fig. 3.7. Example 3 – a tree-like representation in terms of a MIMO kernel memory
system; in the figure, it can be considered that the kernel unit K2 plays a role for the
concept formation, since the kernel does not have any modality-dependent inputs

detailed discussion of how such directional flows can be realised in terms of
kernel memory is left to the later subsection “3) Variation in Generating Out-
puts from Kernel Memory: Regulating the Duration of Kernel Activations”
(in Sect. 3.3.3).

Other Representations

The bi-directional representation as in Fig. 3.6 can be regarded as a simple
model of concept formation (to be described in Chap. 9), since it can be
seen that the kernel network is an integrated incoming data processor as well
as a composite (or associative) memory. Thus, by exploiting this scheme,
more sophisticated structures such as the tree-like representation in Fig. 3.7,
which could be used to construct the systems in place of the conventional
symbol-based database, or lattice-like representation in Fig. 3.8, which could
model the functionality of the retina, are possible. (Note that, the kernel
K2 illustrated around in the centre of Fig. 3.7, does not have the ordinary
modality-dependent inputs, i.e. xi (i = 1, 2, . . . , M), as this kernel plays a role
for the concept formation (in Chap. 9), similar to the kernel K3 in Fig. 3.6.)

3.3.2 Kernel Memory Representations
for Temporal Data Processing

In the previous subsection a variant of network representations in terms of
kernel memory has been given. However, this has not taken into account the

48 3 The Kernel Memory Concept

.

.

.

.

.

.

(Input) (Output)

. . .

. . .

. . .

x2

1x

xM

1
o

2
o

1 y
o

K ()

2 y
o

K ()

M
o

x1
1 x1

2

x1
2 x2

2 x2

xx2x1

N

N
MM M

.

.

.

.

.

.

.

.

.

y
o

K ()
M

M
K ()

M M
K () K ()

2 2
K ()K ()

2
K ()

1
K ()

1
K () x1

N

1
K ()

Fig. 3.8. Example 4 – a lattice-like representation in terms of MIMO kernel memory
system

functionality of temporal data processing. Here, we consider another variation
of the kernel memory model within the context of temporal data processing.

In general, the connectionist architectures as used in pattern classification
tasks take only static data into consideration, whereas the time delay neural
network (TDNN) (Lang and Hinton, 1988; Waibel, 1989) or, in a wider sense
of connectionist models, the adaptive filters (ADFs) (see e.g. Haykin, 1996)
concern the situations where both the input pattern and corresponding output
are varying in time. However, since they still resort to a gradient-descent type
algorithm such as least mean square (LMS) or BP for parameter estimation, a
flexible reconfiguration of the network structure is normally very hard, unlike
the kernel memory approach.

Now, let us turn back to temporal data processing in terms of kernel mem-
ory: suppose that we have collected a set of single domain inputs11 obtained
during the period of (discrete) time P (written in a matrix form):

X(n) = [x(n),x(n − 1), . . . ,x(n − P + 1)]T (3.23)

where x(n) = [x1(n), x2(n), . . . , xN (n)]T . Then, considering the temporal vari-
ations, we may use a matrix form, instead of vector, within the template data

11The extension to multi-domain inputs is straightforward.

3.3 Topological Variations in Terms of Kernel Memory 49

stored in each kernel, and, if we choose a Gaussian kernel , it is normally
convenient to regard the template data in the form of a template matrix (or
centroid matrix in the case of a Gaussian response function) T ∈ 	N×P ,
which covers the period of time P :

T =

t1

t2

...
tN

 =

t1(1) t1(2) . . . t1(P)
t2(1) t2(2) . . . t2(P)

...
...

. . .
...

tN (1) tN (2) . . . tN (P)

 (3.24)

where the column vectors contain the temporal data at the respective time
instances up to the period P .

Then, it is straightforward to generalise the kernel memory that employs
both the properties of temporal and multi-domain data processing.

3.3.3 Further Modification
of the Final Kernel Memory Network Outputs

With the modifications of the temporal data processing as described in
Sect. 3.3.2, we may accordingly redefine the final outputs from kernel mem-
ory. Although many such variations can be devised, we consider three final
output representations which are considered to be helpful in practice and can
be exploited e.g. for describing the notions related to mind in later chapters.

1) Variation in Generating Outputs from Kernel Memory:
Temporal Vector Representation

One of the final output representations can be given as a time sequence of the
outputs:

oj(n) = [oj(n), oj(n − 1), . . . , oj(n − P̌ + 1)]T (3.25)

where each output is now given in a vector form as oj(n) (j = 1, 2, . . . , No)
(instead of the scalar output as in Sect. 3.2.4) and P̌ ≤ P . This representa-
tion implies that not all the output values obtained during the period P are
necessarily used, but partially, and that the output generation(s) can be asyn-
chronous (in time) to the presentation of the inputs to the kernel memory. In
other words, unlike conventional neural network architectures, the timing of
the final output generation from kernel memory may differ from that of the
input presentation, within the kernel memory context.

Then, each element in the output vector oj(n) can be given, e.g.

oj(n) = sort(max(θij(n))) (3.26)

where the function sort(·) returns the multiple values given to the function
sorted in a descending order, i denotes the indices of all the kernels within a
specific region(s)/the entire kernel memory, and

50 3 The Kernel Memory Concept

θij(n) = wijKi(x(n)) . (3.27)

The above variation in (3.26) does not follow the ordinary “winner-takes-
all” strategy but rather yields multiple output candidates which could, for
example, be exploited for some more sophisticated decision-making processing
(i.e. this is also related to the topic of thinking ; to be described later in Chaps.
7 and 9).

2) Variation in Generating Outputs from Kernel Memory:
Sigmoidal Representation

In contrast to the vector form in (3.25), the following scalar output oj can
also be alternatively used within the kernel memory context:

oj(n) = f(θij(n)) (3.28)

where the activations of the kernels within a certain region(s)/the entire mem-
ory θij(n) = [θij(n), θij(n−1), . . . , θij(n−P+1)]T and the cumulative function
f(·) is given in a sigmoidal (or “squash”) form, i.e.

f(θij(n)) =
1

1 + exp(−b
∑P−1

k=0 θij(n − k))
(3.29)

where the coefficient b determines the steepness of the sigmoidal slope.

An Illustrative Example of Temporal Processing – Representation
of Spike Trains in Terms of Kernel Memory

Note that, by exploiting the output variations given in (3.25) or (3.29), it is
possible to realise the kernel memory which can be alternative to the TDNN
(Lang and Hinton, 1988; Waibel, 1989) or the pulsed neural network (Dayhoff
and Gerstein, 1983) models, with much more straightforward and flexible re-
configuration property of the memory/network structures.

As an illustrative example, consider the case where a sparse template ma-
trix T of the form (3.24) is used with the size of (13 × 2), where the two
column vectors t1 and t2 are given as

t1 = [2 0 0 0 0.5 0 0 0 1 0 0 0 1]
t2 = [2 1 2 0 0 0 0 0 1 0.5 1 0 0] ,

i.e. the sequential values in the two vectors depicted in Fig. 3.9 can be used
to represent the situation where a cellular structure gathers for the period of
time P (= 13) and then stores the patterns of spike trains coming from other
neurons (or cells) with different firing rates (see e.g. Koch, 1999).

Then, for instance, if we choose a Gaussian kernel and the overall synap-
tic inputs arriving at the kernel memory match the stored spike pattern to

3.3 Topological Variations in Terms of Kernel Memory 51

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

:
1

t

:
2

t

Fig. 3.9. An illustrative example: representing the spike trains in terms of the sparse
template matrix of a kernel unit for temporal data processing (where each of the
two vectors in the template matrix contains a total of 13 spikes)

a certain extent (i.e. determined by both the threshold θK and radius σ, as
described earlier), the overall excitation of the cellular structure (in terms of
the activation from a kernel unit) can occur due to the stimulus and subse-
quently emit a spike (or train) from itself.

Thus, the pattern matching process of the spike trains can be modelled
using a sliding window approach as in Fig. 3.10; the spike trains stored within
a kernel unit in terms of a sparse template (centroid) matrix are compared
with the input patterns X(n) = [x1(n) x2(n)] at each time instance n.

3) Variation in Generating Outputs from Kernel Memory:
Regulating the Duration of Kernel Activations

The third variation in generating the outputs from kernel memory is due to
the introduction of the decaying factor for the duration of kernel excitations.
For the output generation of the i-th kernel, the following modification can
be considered:

Ki(x, ni) = exp(−κini)Ki(x) (3.30)

where ni
12 denotes the time index for describing the decaying activation of Ki

and the duration of the i-th kernel output is regulated by the newly introduced
factor κi, which is hereafter called activation regularisation factor . (Note that
the time index ni is used independent of the kernels, instead of the unique
index n, for clarity.) Then, the variation in (3.30) indicates that the activation
of the kernel output can be decayed in time.

In (3.30), the time index ni is reset to zero, when the kernel Ki is activated
after a certain interval from the last series of activations, i.e. the period of time
when the following relation is satisfied (i.e. the counter relation in (3.12)):

Ki(xi, ni) < θK (3.31)
12Without loss of generality, here the time index ni is again assumed to be discrete;

the extension to continuous time representation is straightforward.

52 3 The Kernel Memory Concept

:
2

x

:
1

x

:
1

t

:
2

t

n−12

n−12

n−1 n

nn−1

Input Data to Kernel Unit (Sliding Window)

. . .

. . .

(Pattern Matching)

Template Matrix

Fig. 3.10. Illustration of the pattern matching process in terms of a sliding window
approach. The spike trains stored within a kernel unit in terms of a sparse template
matrix are compared with the current input patterns X(n) = [x1(n) x2(n)] at each
time instance n

3.3.4 Representation of the Kernel Unit Activated
by a Specific Directional Flow

In the previous examples of the MIMO systems as shown in Figs. 3.5–3.8, some
of the kernel units have (mono-/bi-)directional connections in between. Here,
we consider the kernel unit that can be activated when a specific directional
flow occurs between a pair of kernel units, by exploiting both the notation
of the template matrix as given in (3.24) and modified output in (3.30) (the
fundamental principle of which is motivated by the idea in Kinoshita (1996)).

3.3 Topological Variations in Terms of Kernel Memory 53

KBKA

(A B)

KBKA

(A B)

KAB

(B A)

KBKA

(A B)

KB

(A B)
KA

xA(n) xB(n) xA(n) xB(n)

xA(n) xB(n)xB(n)xA(n)

KBAKAB

Fig. 3.11. Illustration of both the mono- (on the left hand side) and bi-directional
connections (on the right hand side) between a pair of kernel units KA and KB (cf.
the representation in Kinoshita (1996) on page 97); in the lower part of the figure,
two additional kernel units KAB and KBA are introduced to represent the respective
directional flows (i.e. the kernel units that detect the transfer of the activation from
one kernel unit to the other): KA → KB and KB → KA

Fig. 3.11 depicts both the mono- (on the left hand side) and bi-directional
connections (on the right hand side) between a pair of kernel units KA and
KB (cf. the representation in Kinoshita (1996) on page 97).

In the lower part of the figure, two additional kernel units KAB and KBA

are introduced to represent the respective directional flows (i.e. the kernel
units that detect the transfer of the activation from one kernel unit to the
other): KA → KB and KB → KA.

Now, let us firstly consider the case where the template matrix of both the
kernel units KAB and KBA is composed by the series of activations from the
two kernel units KA and KB , i.e.:

TAB/BA =
[

tA(1) tA(2) . . . tA(p)
tB(1) tB(2) . . . tB(p)

]
(3.32)

54 3 The Kernel Memory Concept

where p represents the number of the activation status from time n to n−p+1
to be stored in the template matrix and the element ti(j) (i: A or B, j =
1, 2, . . . , p) can be represented using the modified output given in (3.30) as13

ti(j) = Ki(xi, n − j + 1) , (3.33)

or, alternatively, the indicator function

ti(j) =
{

1 ; if Ki(xi, n − j + 1) ≥ θK

0 ; otherwise (3.34)

(which can also represent a collection of the spike trains from two neurons.)
Second, let us consider the situation where the activation regularisation

factor of one kernel unit KA, say, κA satisfies the relation:

κA < κB (3.35)

so that, at time n, the kernel KB is not activated, whereas the activation of
KA is still maintained. Namely, the following relations can be drawn in such
a situation:

KA(xA(n − pd + 1)) , KB(xB(n − pd + 1)) ≥ θK

KA(xA(n)) ≥ θK

KB(xB(n)) < θK (3.36)

where pd is a positive value. (Nevertheless, due to the relation (3.35) above, it
is considered that the decay in the activation of both the kernel units KA and
KB starts to occur at time n, given the input data.) Figure 3.12 illustrates an
example of the regularisation factor setting of the two kernel units KA and
KB as in the above and the time-wise decaying curves. (In the figure, it is
assumed that pd = 4 and θK = 0.7.)

Then, if pd < p, and, using the representation of the indicator function
given by (3.34), for instance, the matrix

TAB =
[

0 1 1 1 1 0
0 0 1 1 1 1

]
(3.37)

can represent the template matrix for the kernel unit KAB (i.e. in this case,
p = 6 and pd = 4) and hence the directional flow of KA → KB , since the
matrix representation describes the following asynchronous activation pattern
between KA and KB :

1) At time n − 5, neither KA nor KB is activated;
2) At time n − 4, the kernel unit KA is activated (but not KB);

13Here, for convenience, a unique time index n is considered for all the kernels in
Fig. 3.11, without loss of generality.

3.3 Topological Variations in Terms of Kernel Memory 55

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

n

K
A
 (

n)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

n

K
B
 (

n)

θ
K
 θ

K

Fig. 3.12. Illustration of the decaying curves exp(−κi×n) (i: A or B) for modelling
the time-wise decaying activation of the kernel units KA and KB ; κA = 0.03, κB =
0.2, pd = 4, and θK = 0.7

3) At time n − 3, the kernel unit KB is then activated;
4) The activation of both the kernel units KA and KB lasts till the time

n − 1;
5) Eventually, due to the presence of the decaying factor κB , the kernel

unit KB is not activated at time n.

In contrast to (3.37), the matrix (with inverting the two row vectors in
(3.37))

TBA =
[

0 0 1 1 1 1
0 1 1 1 1 0

]
(3.38)

represents the directional flow of KB → KA and thus the template matrix of
KBA.

Therefore, provided a Gaussian response function (with appropriately
given the radius, as defined in (3.8)) is selected for either the kernel unit
KAB or KBA, if the kernel unit receives a series of the lasting activations
from KA and KB as the inputs (i.e. represented in spiky trains), and the
activation patterns are close to those stored as in (3.37) or (3.38), the kernel
units can represent the respective directional flows.

A Learning Strategy to Obtain the Template Matrix
for Temporal Representation

When the asynchronous activation between KA and KB occurs and provided
that p = 3 (i.e. for the kernel unit KAB/KBA), one of the following patterns

56 3 The Kernel Memory Concept

can be obtained using the indicator function representation of the spike trains
by (3.34):

KA(xA(n)): · · · 0 1 0 0 0 0 0 · · ·
KB(xB(n)): · · · 0 0 0 0 0 1 0 · · ·

In the above, it is not sufficient to represent the asynchronous activation
pattern by KAB (or KBA).

It is then considered that there are two alternative ways to adjust the
template matrix for the kernel unit KAB (or KBA) that can represent the
asynchronous activation pattern between the kernel units KA and KB :

1. Adjust the size of the template matrix TAB (i.e. varying the factor
p; in this case, assuming that κi = κinit (∀i)) ;

2. Update the activation regularisation factors for both the kernel
units KA and KB

For the former, if we increase the number of columns of the template ma-
trix p, until the activation from KA and KB appears in both the rows (i.e.
p = 5):

KA(xA(n)): · · · 0 1 0 0 0 0 0 · · ·
KB(xB(n)): · · · 0 0 0 0 0 1 0 · · ·

the asynchronous activation pattern can be represented by the template ma-
trix, i.e.

TAB =
[

1 0 0 0 0
0 0 0 0 1

]
(3.39)

An Alternative Learning Scheme – Updating
the Activation Regularisation Factors

Alternatively, the asynchronous activation pattern between KA and KB can
be represented by updating the activation regularisation factors for both the
kernel unit KA and KB , without varying p: provided that the regularisation
factor for all the kernel units are initially set as κi = κinit (where κinit is a
certain positive constant), we update the activation regularisation factors for
both the kernel unit KA and KB , i.e. κA and κB. Then, we may resort to the
following updating rule:

3.4 Chapter Summary 57

[Updating Rule for the Activation Regularisation
Factor κi]

1) Initially, set κi = κinit (∀i).
2)
• For a certain period of time, if the kernel unit Ki has

activated repetitively, update its regularisation factor
κi as:

κi =
{

κi − δκ1 ; if κi > κmin

κmin ; otherwise (3.40)

• In contrast, for a certain period of time, if there is no
activation from Ki, increase the value of κi:

κi = κi + δκ2 (3.41)

in the above where κmin(≥ 0) is the minimum value for the regularisation
factor, and δκ1 and δκ2 are its decremental and incremental adjustment factor,
respectively.

For instance, if the duration of activation from KA becomes longer and,
accordingly, if we successfully obtain the following pattern using the scheme
similar to the above

KA(xA(n)): · · · 0 1 1 1 0 0 0 · · ·
KB(xB(n)): · · · 0 0 0 0 0 1 0 · · ·

the template matrix (i.e. p = 3)

TAB =
[

1 0 0
0 0 1

]
(3.42)

can represent the asynchronous activation of KA → KB .
The above scheme can be applied, under the assumption that the duration

of activation KA can be different from that of KB by varying κA/κB .
Nevertheless, the directed conections also have to be established within

the context of general learning (to be described in Chap. 7). In later chap-
ters, it will then be discussed how the principle of the directed connections
between the kernel units is exploited further and can significantly enhance the
utility for modelling various notions related to artificial mind system, e.g. the
thinking, language, and the semantic networks/lexicon module.

3.4 Chapter Summary

In this chapter, a novel kernel memory concept has been described, which can
subsume conventional connectionist principles.

58 3 The Kernel Memory Concept

The fundamental principle of kernel memory concept is pretty simple;
the kernel memory comprises of multiple kernel units and their link weights
which only represent the strengths of the connections in between. Within the
kernel memory principle, the following three types of kernel units have been
considered:

1) A kernel unit which has both the input and template vector (i.e. the
centroid vector in the case of a Gaussian kernel function) and generates
the output, according to the similarity of the two vectors. (However, as
described in the next chapter, it is also possible to consider the case where
the activation can be due to the transfer of the activations from other
kernel units connected via the link weights, as given by (4.3) or (4.4), to
be described later).

2) A kernel unit functioning similar to the above, except that the input vector
is merely composed of the activations from other kernel units (i.e. as the
neurons in the conventional ANNs). (However, for this type, it still is
possible that the input vector consists of both the activations from other
kernels and the regular input data.)

3) A kernel unit which represents a symbolic node (as in the conventional
connectionist model, or the one with a kernel function given by (3.11)).
This sort of kernel unit is useful in practice, e.g. to investigate the in-
termediate / internal states of the kernel memory. In pattern recognition
problems, for instance, these nodes are exploited to tell us the recognition
results. This issue will be furtherly discussed within a more global context
of target responses in Chap. 7 (Sect. 7.5).

Then, within the kernel memory concept, any rule can be developed to
establish the link weight connections between a pair of kernel units, without
directly affecting the contents of the memory.

In the next chapter, as a pragmatic example, the properties of the kernel
memory concept are exploited to develop a self-organising network model, and
we will see how such a kernel network behaves.

4

The Self-Organising Kernel Memory (SOKM)

4.1 Perspective

In the previous chapter, various topological representations in terms of the
kernel memory concept have been discussed together with some illustrative
examples. In this chapter, a novel unsupervised algorithm to train the link
weights between the KFs is given by extending the original Hebb’s neuropsy-
chological concept, whereby the self-organising kernel memory (SOKM)1 is
proposed.

The link weight adjustment algorithm does not involve any gradient-
descent type numerical approximation (or the so-called “delta rule”) as in the
conventional approaches, but simply varies the strength of the connections
between KFs according to their activations. Thus, in terms of the SOKM, any
topological representation of the data structure is possible, without suffering
from any numerical instability problems. Moreover, the activation of a partic-
ular node (i.e. the KF) is conveyed to the other nodes (if any) via such connec-
tions. Then, this manner of data transfer represents more life-like/cybernetic
memory. In the SOKM context, each kernel unit is thus regarded as a new
memory element, which can at the same time exhibit the generalisation ca-
pability, instead of the ordinary node as used in conventional connectionist
models.

1Here, unlike the ordinary self-organising maps (SOFMs) (Kohonen, 1997), the
utility of the term “self-organising” also implies “construction” in the sense that the
kernel memory is constructed from scratch (i.e. without any nodes; from a blank
slate (Platt, 1991)). In the SOFMs, the utility is rather limited; all the nodes are
already located in a fixed two-dimensional space and the clusters of nodes are formed
in a self-organising manner within the fixed map, whilst both the size/shape of the
entire network (i.e. the number of nodes) and the number/manner of connections
are dynamically changed within the SOKM principle.

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 59–80 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

60 4 The Self-Organising Kernel Memory (SOKM)

4.2 The Link Weight Update Algorithm (Hoya, 2004a)

In Hebb (1949) (p.62), Hebb postulated, “When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.”

In the SOKM, the “link weights” (or simply, “weights”) between the ker-
nels are defined in this neuropsychological context. Namely, the following con-
jecture can be firstly drawn:

Conjecture 1: When a pair of kernels Ki and Kj (i �= j, i, j ∈ {all
indices of the kernels}) in the SOKM are excited repeatedly, a new
link weight wij between Ki and Kj is formed. Then, if this occurs
intermittently, the value of the link weight wij is increased.

In the above, Hebb’s original postulate for the adjacent locations of cell
A and B is not considered; since, in actual hardware implementation of the
proposed scheme (e.g. within the memory system of a robot), it may not
always be crucial for such place adjustment of the kernels. Secondly, Hebb’s
postulate implies that the excitation of cell A may occur due to the transfer
of activations from other cells via the synaptic connections. This can lead to
the following conjecture:

Conjecture 2: When a kernel Ki is excited and one of the link
weights is connected to the kernel Kj , the excitation of Ki is trans-
ferred to Kj via the link weight wij . However, the amount of excita-
tion depends upon the (current) value of the link weight.

4.2.1 An Algorithm for Updating Link Weights
Between the Kernels

Based upon Conjectures 1 and 2 above, the following algorithm for updat-
ing the link weights between the kernels is given:

[The Link Weight Update Algorithm]

1) If the link weight wij is already established, decrease the
value according to:

wij = wij × exp(−ξij) (4.1)

4.2 The Link Weight Update Algorithm (Hoya, 2004a) 61

2) If the simultaneous excitation of a pair of kernels Ki and
Kj (i �= j) occurs (i.e. when the activation is above a given
threshold as in (3.12); Ki ≥ θK) and is repeated p times, the
link weight wij is updated as

wij =

winit ; if wij does not exist
wmax ; else if wij > wmax

wij + δ ; otherwise.
(4.2)

3) If the activation of the kernel Ki unit does not occur dur-
ing a certain period p1, the kernel unit Ki and all the link
weights connected to the kernel unit wi(= [wi1, wi2, . . .]) are
removed from the SOKM (thus, representing the extinction
of a kernel).

where ξij , winit, wmax, and δ are all positive constants. In 2) above, after the
weight update, the excitation counters for both Ki and Kj , i.e. εi and εj ,
may be reset to 0, where appropriate. Then, both conditions 1) and 2) in the
algorithm above also moderately agree with the rephrasing of Hebb’s principle
(Stent, 1973; Changeux and Danchin, 1976):

1. If two neurons on either side of a synapse are activated asynchronously,
then that synapse is selectively weakened or eliminated2.

2. If two neurons on either side of a synapse (connection) are activated si-
multaneously (i.e. synchronously), then the strength of that synapse is
selectively increased.

4.2.2 Introduction of Decay Factors

Note that, to meet the second rephrasing above, a decaying factor is intro-
duced within the link weight update algorithm (in Condition 1), to simulate
the synaptic elimination (or decay). In the SOKM context, the second rephras-
ing is extended and interpreted such that i) the decay can always occur in time
(though the amount of such decay is relatively small in a (very) short period
of time) and ii) the synaptic decay can also be caused when the other kernel(s)
is/are activated via the transmission of the activation of the kernel. In terms
of the link weight decay within the SOKM, the former is represented by the
factor ξij , whereas the latter is under the assumption that the potential of
the other end may be (slightly) lower than the one.

At the neuro-anatomical level, it is known that a similar situation to this
occurs, due to the changes in the transmission rate of the spikes (Hebb, 1949;
Gazzaniga et al., 2002) or the decay represented by e.g. long-term depression

2To realise the kernel unit connections representing the directional flows as de-
scribed in Sect. 3.3.4, this rephrasing may slightly be violated.

62 4 The Self-Organising Kernel Memory (SOKM)

(LTD) (Dudek and Bear, 1992). These can lead to modification of the above
rephrasing and the following conjecture can also be drawn:

Conjecture 3: When kernel Ki is excited by input x and Ki also
has connection to kernel Kj via the link weight wij , the activation
of Kj is computed by the relation

Kj = γwijKi(x) (4.3)

or

Kj = γwijIi (4.4)

where γ (0 << γ ≤ 1) is the decay factor, and Ii is defined as an
indicator function

Ii =
{

1 ; if the kernel Ki(x) is excited (i.e. when Ki(x) ≥ θK)
0 ; otherwise. (4.5)

In the above, the indicator function Ii is sufficient to imitate the situation
where an impulsive spike (or action potential) generated from one neuron is
transmitted to the other via the synaptic connection (for a thorough discus-
sion, see e.g. Gazzaniga et al., 2002), due to the excitation of the kernel Ki in
the context of modelling the SOKM. The above also indicates that, apart from
the regular input vector x, the kernel can be excited by the secondary input,
i.e. the transfer of the activations from other nodes, unlike conventional neural
architectures. Thus, this principle can be exploited further for multi-domain
data processing (in Sect. 3.3.1) by SOKMs, where the kernel can be excited
by the transfer of the activations from other kernels so connected, without
having such regular inputs.

In addition, note that another decay factor γ is introduced. This decay
factor can then be exploited to represent a loss during the transmission.

4.2.3 Updating Link Weights Between (Regular) Kernel Units
and Symbolic Nodes

In Figs. 3.4, 3.5, 3.7, and 3.8, various topological representations in terms of
kernel memory have been described. Within these representations, the final
network output kernel units are newly defined and used, in addition to regular
kernel units, and it has been described that these output kernel units can
be defined in various manners as in (3.16), (3.17), (3.18), (3.25), (3.28), or
(3.30), without directly affecting the contents of the memory within each
kernel unit. Such output units can thus be regarded as symbolic nodes (as
in conventional connectionist models) representing the intermediary/internal
states of the kernel memory and, in practice, exploited for various purposes,

4.2 The Link Weight Update Algorithm (Hoya, 2004a) 63

e.g. to obtain the pattern classification result(s) in a series of cognitive tasks
(for a further discussion, see also Sects. 4.6 and 7.2).

Then, within the context of SOKM, the link weights between normal kernel
units and such symbolic nodes as those representing the final network outputs
can be either fixed or updated by [The Link Weight Update Algorithm]
given earlier, depending upon the applications. In such situations, it will be
sufficient to define the evaluation of the activation from such symbolic nodes
in a similar manner to that in (3.12).

Thus, it is also said that the conventional PNN/GRNN architecture can
be subsumed and evolved within the context of SOKM.

4.2.4 Construction/Testing Phase of the SOKM

Consequently, both the construction of an SOKM (or the training phase) and
the manner of testing the SOKM are summarised as follows:

[Summary of Constructing A Self-Organising Kernel
Memory]

Step 1)
• Initially (cnt = 1), there is only a single kernel in the

SOKM, with the template vector identical to the first
input vector presented, namely, t1 = x(1) (or, for the
Gaussian kernel, c1 = x(1)).

• If a Gaussian kernel is chosen, a unique setting of the
radius σ may be used and determined a priori (Hoya,
2003a).

Step 2)
For cnt = 2 to {num. of input data to be presented}, do the
following:

Step 2.1)
• Calculate all the activations of the kernels

Ki (∀i) in the SOKM by the input data
x(cnt), (e.g. for the Gaussian case, it is
given as (3.8)).

• Then, if Ki(x(cnt)) ≥ θK (as in (3.12)),
the kernel Ki is excited.

• Check the excitation of kernels via the link
weights wi, by following the principle in
Conjecture 3.

• Mark all the excited kernels.
Step 2.2)

If there is no kernel excited by the input vector
x(cnt), add a new kernel into the SOKM by setting
its template vector to x(cnt).

64 4 The Self-Organising Kernel Memory (SOKM)

Step 2.3)
Update all the link weights by following [The
Link Weight Update Algorithm] given
above.

In Step 1 above, initially there is no link weight but a single kernel in
the SOKM and, later in Step 2.3, a new link weight may be formed, where
appropriate.

Note also that Step 2.2 above can implicitly prevent us from generating
an exponentially growing number of kernels, which is not taken into con-
sideration by the original PNN/GRNN approaches. In another respect, the
above construction algorithm can be seen as the extension/generalisation of
the resource-allocating (or constructive) network (Platt, 1991), in the sense
that 1) the SOKM can be formed to deal with multi-domain data simulta-
neously (in Sect. 3.3.1), which can potentially lead to more versatile applica-
tions, and 2) lateral connections are also allowed between the nodes within
the sub-SOKMs responsible for the respective domains.

[Summary of Testing the Self-Organising Kernel Memory]

Step 1)
• Present input data x to the SOKM, and compute all

the kernel activations (e.g. for the Gaussian case, this
is given by (3.8)) within the SOKM.

• Check also the activations via the link weights wi, by
following the principle in the aforementioned Con-
jecture 3.

• Mark all the excited kernels.
Step 2)

• Obtain the maximally activated kernel Kmax (for
instance, this is defined in (3.17)) amongst all the
marked kernels within the SOKM.

• Then, if performing a classification task is the objec-
tive, the classification result can be obtained by sim-
ply restoring the class label ηmax from the auxiliary
memory attached to the corresponding kernel (or, by
checking the activation of the kernel unit indicating
the class label, in terms of the alternative kernel unit
representation in Fig. 3.2).

4.3 The Celebrated XOR Problem (Revisited) 65

As in the above, it is also said that the testing phase of the SOKM can take
a similar step to constructing a Parzen window (Parzen, 1962; Duda et al.,
2001)3.

4.3 The Celebrated XOR Problem (Revisited)

In Sect. 2.3.2, the XOR problem as a benchmark test for general pattern clas-
sifiers has been solved in terms of a PNN/GRNN. Here, to see how an SOKM
is actually constructed, we here firstly consider solving the same problem by
means of an SOKM, as a straightforward pattern classification task.

Now, as in Sect. 2.3.2, let us consider the case where 1) Gaussian kernels
with the unique radius setting of σ = 1.0 are chosen for the SOKM (with the
ordinary kernel unit representation as in Fig. 3.1), 2) the activation thresh-
old θK = 0.7, and 3) the four input vectors to the SOKM consist of a pair
of elements, i.e. x(1) = [0.1, 0.1]T , x(2) = [0.1, 1.0]T , x(3) = [1.0, 0.1]T , and
x(4) = [1.0, 1.0]T . Then, by following the mechanism [Summary of Con-
structing A Self-Organising Kernel Memory] given earlier, the SOKM
capable of classifying the four XOR patterns is constructed4:

[Constructing an SOKM for Solving the XOR Problem]

Step 1) (cnt=1:)
Initialise σ = 1.0 and θK = 0.7 .
Then, fix the centroid (template) vector of the first kernel K1:

c1 = x(1) = [0.1, 0.1]T and the class label η1 = 0 .
Step 2)
cnt=2:

Present x(2) to the SOKM (up to now, there is only a single
kernel K1 within the SOKM).

K1 =exp(−‖x(2) − c1‖2
2/σ2) = 0.4449 .

Thus, since K1(x(2)) < θK , add a new kernel K2 with setting
c2 = x(2) and the class label η2 = 1 .

3However, to give a theoretical account for the multi-modal data processing
aspect of SOKMs is beyond the scope of this book and thus must be an open
issue, since the conventional approaches are mostly based upon a single domain
pattern space (or hyper-plane); it does not seem to be sufficient to consider a simple
extension of the single domain data representation to multiple domain situations,
since in general the data points in the respective planes can be strongly correlated
with each other.

4Needless to say, this is based upon a “one-shot” training scheme, as in
PNNs/GRNNs.

66 4 The Self-Organising Kernel Memory (SOKM)

cnt=3:
K1 = exp(−‖x(3) − c1‖2

2/σ2) = 0.4449 (< θK) ,
K2 = exp(−‖x(3) − c2‖2

2/σ2) = 0.1979 (< θK) .

Thus, since there is no kernel excited by the input x(3),
add a new kernel K3, with c3 = x(3) and η3 = 1 .

cnt=4:
K1 = exp(−‖x(4) − c1‖2

2/σ2) = 0.1979 (< θK) ,
K2 = exp(−‖x(4) − c2‖2

2/σ2) = 0.4449 (< θK) ,
K3 = exp(−‖x(4) − c3‖2

2/σ2) = 0.4449 (< θK) .

Thus, again, since there is no kernel excited by x(4), add
a new kernel K4 with c4 = x(4) and η4 = 0 .

(Terminated.)

Then, it is straightforward that the above four input patterns can be cor-
rectly classified by following the procedure in [Summary of Testing the
Self-Organising Kernel Memory] given earlier.

In the above, on first examination, constructing the SOKM takes similar
steps for a PNN/GRNN, since there are four identical Gaussian kernels (or,
RBFs) in a single network structure, as described in Sect. 2.3.2, and by re-
garding ηi (i = 1, 2, 3, 4) as the target values. (Therefore, it is also said that
PNNs/GRNNs are subclasses of the SOKM.)

However, consider the situation where another set of input data, which,
again, represent the XOR patterns, i.e. x(5) = [0.2, 0.2]T , x(6) = [0.2, 0.8]T ,
x(7) = [0.8, 0.2], and x(8) = [0.8, 0.8]T , is subsequently presented, during the
construction of the SOKM. Then, despite all these patterns also being stored
in general training schemes of PNNs/GRNNs, such redundant addition of ker-
nels does not occur during the SOKM construction phase; these four patterns
excite only the respective nearest kernels (due to the criterion (3.12)), all of
which nevertheless yield the correct pattern classification results, and thus
there are no further additional kernels. (In other words, this excitation eval-
uating process is viewed as testing of the SOKM.)

Therefore, from this observation, it is considered that by exploiting the
local memory representation the SOKM acts as a pattern classifier which can
simultaneously perform data pruning (or clustering), with proper parameter
settings. In the next couple of simulation examples, the issue of the actual
parameter setting for the SOKM is discussed further.

4.4 Simulation Example 1 – Single-Domain Pattern Classification 67

4.4 Simulation Example 1 – Single-Domain
Pattern Classification

For the XOR problem, it has been discussed that the SOKM can be easily
constructed to perform efficiently pattern classification of the XOR patterns.
However, in that case, there were no link weights formed between the kernels.

In order to see how the SOKM is self-organised in a more realistic situ-
ation and how the activation via the link weights affects the performance of
the SOKM, we then consider an ordinary single-domain pattern classification
problem, namely, performing pattern classification tasks using several single-
domain data sets, all of which are extracted from public databases.

For the choice of the kernel function in the SOKMs, a widely-used Gaussian
kernel given in the form (3.8) is considered in the next two simulation exam-
ples, without loss of generality. Moreover, to simplify the problem for the
purpose of tracking the behaviour of the SOKM, the third condition in [The
Link Weight Update Algorithm] given in Sect. 4.2.1 (i.e. the kernel unit
removal) is not considered in the simulation examples.

4.4.1 Parameter Settings

In the simulation examples, the three different domain datasets extracted from
the original SFS (Huckvale, 1996), OptDigit, and PenDigit databases of “UCI
Machine Learning Repository” at the University of California, were used as
in Sect. 2.3.5. Thus, this yields three independent datasets for performing the
classification tasks. The description of the datasets is summarised in Table
4.1. For the SFS dataset, the same encoding procedure as that in Sect. 2.3.5
was applied in advance to obtain the pattern vectors for the classification
tasks.

Table 4.1. Data sets used for the simulation examples

Length of Total Num. of Total Num. of
Each Pattern Patterns in the Patterns in the Num. of

Data Set Vector Training Set Testing Sets Classes

SFS 256 540 360 10
OptDigit 64 1200 400 10
PenDigit 16 1200 400 10

Then, the parameters were arbitrarily chosen as summarised in Table 4.2
(in the left part). (As in Table 4.2, the combination of the parameters was
chosen as uniquely as possible for all the three datasets, in order to perform
the simulations in a similar condition.) During the construction phase of the
SOKM, the settings σi = σ (∀i) and θK = 0.7 were used for evaluating the
excitation in (3.12). In addition, without loss of generality, the excitation of
the kernels via the link weights was restricted only to the nearest neighbours
(i.e. 1-nn) in the simulation examples.

68 4 The Self-Organising Kernel Memory (SOKM)

Table 4.2. Parameters chosen for the simulation examples

Data Set
For Dual-Domain

For Single-Domain Pattern
Parameter Pattern Classification Classification

SFS OptDigit PenDigit (SFS+PenDigit)

Decaying Factor 0.95 0.95 0.95 0.95
for Excitation γ

Unique Radius for 8.0 5.0 2.0 8.0 (SFS)
Gaussian Kernel σ 2.0 (PenDigit)

Link Weight
Adjustment 0.02 0.02 0.02 0.02
Constant δ

Synaptic Decaying 0.001 0.001 0.1 0.001
Factor ξi,j (∀i, j)

Threshold Value for
Establishing Link 5 5 5 5
Weights p

Initializing Value
for Link Weights 0.7 0.7 0.6 0.75
winit

Maximum Value
for Link Weights 1.0 1.0 0.9 1.0
wmax

4.4.2 Simulation Results

Figures 4.1 and 4.2 show respectively the variations in the monotonically grow-
ing number of the kernels and link weights formed within the SOKM during
the construction phase. To check the relative growing numbers for the three
different domain datasets, a normalised scale of the pattern presentation num-
ber is used (in the x-axis). In the figures, each number x(i) (i = 1, 2, . . . , 10)
in the x-axis thus corresponds to the relative number of the pattern presen-
tation, i.e. x(i) = i × {the total number of patterns in the training set}/10.

From the observation in Figs. 4.1 and 4.2, it can be said that the data
structure of the PenDigit dataset is relatively simple, compared to the other
two, since the number of kernels so generated is always the smallest, whereas
that of link weights is the largest. On the other hand, this is naturally con-
sidered by the evidence that, since the length of each pattern vector (i.e. 16)
as in Table 4.1 is the shortest amongst the three, the pattern space can be
constructed with a smaller number of data points in the PenDigit dataset
than the other datasets.

4.4 Simulation Example 1 – Single-Domain Pattern Classification 69

1 2 3 4 5 6 7 8 9 10

Pattern Presentation No. (with Scale Adjustment)

N
um

. o
f

K
er

ne
ls

 G
en

er
at

ed

SFS
OptDigit
PenDigit

0

50

100

150

200

250

300

350

400

Fig. 4.1. Simulation results of single-domain pattern classification tasks – number
of kernels generated during the construction phase of SOKM

4.4.3 Impact of the Selection σ Upon the Performance

It has been empirically confirmed that, as for the PNNs/GRNNs (Hoya and
Chambers, 2001a; Hoya, 2003a, 2004b), a unique setting of the radii value
within the SOKM gives a reasonable trade-off between the generalisation per-
formance and the computational complexity. (Thus, during the construction
phase of the SOKM, as described in Sect. 4.2.4, the parameter setting σi = σ
(∀i) was chosen.)

However, as in PNNs/GRNNs, the selection of the radii σi still yields a
significant impact upon the generalisation capability of SOKMs, amongst all
the parameters. To investigate this further, the value σ is varied from the min-
imum Euclidean distance, calculated between all the pairs of pattern vectors
in the training data set, to the maximum. For the three datasets, SFS, Opt-
Digit, and PenDigit, both the maximum and minimum values so computed
are tabulated in Table 4.3.

As in Figs. 4.3 and 4.4, the number of kernels generated as well as the
overall generalisation capability of the SOKM is dramatically varied, accord-
ing to the value σ; when σ is close to the minimum distance, the number of
kernels is almost the same as the number of patterns in the dataset. In other
words, almost all the training data are exhausted during the construction of

70 4 The Self-Organising Kernel Memory (SOKM)

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

Pattern Presentation No. (with Scale Adjustment)

N
um

. o
f

L
in

k
W

ei
gh

ts
 F

or
m

ed

SFS
OptDigit
PenDigit

Fig. 4.2. Simulation results of single-domain pattern classification tasks – number
of links formed during the construction phase of SOKM

Table 4.3. Minimum and maximum Euclidean distances computed amongst a pair
of all the pattern vectors in the datasets

Minimum Maximum
Euclidean Euclidean
Distance Distance

SFS 2.4 11.4
OptDigit 1.0 9.3
PenDigit 0.1 5.7

the SOKM for such cases, which is computationally expensive. However, both
Figs. 4.3 and 4.4 indicate that the decrease in the number of kernels does
not always correspond to the relative degradation in terms of the generali-
sation performance. This tendency can also be confirmed by examining the
number of correctly connected link weights (i.e. the number of link weights
which establish connections between the kernels with identical class labels) as
in Fig. 4.5:

Comparing Fig. 4.5 with Fig. 4.4, we observe that, for each data set, as the
number of correctly connected link weights starts decreasing from the peak,
the generalisation performance (as in Fig. 4.4) degrades sharply. From this
observation, it can be justified that the values σ for the respective datasets
in Table 4.2 were reasonably chosen. It can also be confirmed that with these

4.4 Simulation Example 1 – Single-Domain Pattern Classification 71

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

Pattern Presentation No. (with Scale Adjustment)

N
um

. o
f

L
in

k
W

ei
gh

ts
 F

or
m

ed

SFS
OptDigit
PenDigit

Fig. 4.3. Simulation results of single-domain pattern classification tasks – variations
in the number of kernels generated with varying σ

values the ratio of the correctly connected link weights generated versus the
wrong ones can be sufficiently high (i.e. the actual ratios were 2.1 and 7.3 for
the SFS and OptDigit datasets, respectively, whereas the number of wrong
link weights was zero for the PenDigit case).

4.4.4 Generalisation Capability of SOKM

Table 4.4 summarises the performance comparison between the SOKM so
constructed (i.e. the SOKM of which all the pattern presentations for the
construction is finished) using the parameters given in Table 4.2 and a PNN
with the centroids found by the well-known MacQueen’s k-means clustering
algorithm. Then, the numbers of RBFs in the PNN responsible for the respec-
tive classes were fixed to those of the kernels within the SOKM.

As shown in Table 4.4, for the three datasets the overall generalisation
performance of the SOKM is almost the same as/slightly better than the
PNN + k-means approach, which verifies that the SOKM functions satisfac-
torily as a pattern classifier. However, it should be noted that, unlike ordinary
clustering schemes, the number of kernels can be automatically determined
by the unsupervised algorithm described in Sect. 4.2.1, and thus in this sense
the manner of constructing the SOKM is more dynamic.

72 4 The Self-Organising Kernel Memory (SOKM)

0 2 4 6 8 10 12 14

Radius σ

G
en

er
al

iz
at

io
n

Pe
rf

or
m

an
ce

 (
%

)

SFS
OptDigit
PenDigit

0

10

20

30

40

50

60

70

80

90

100

Fig. 4.4. Simulation results of single-domain pattern classification tasks – variations
in the generalisation performance of the SOKM with varying σ

Table 4.4. Comparison of generalisation performance between the SOKM and a
PNN using the k-means clustering algorithm

Total Num. Generalisation Generalisation
of Kernels Generated Performance Performance of
within SOKM of SOKM PNN with k-means

SFS 184 91.9% 88.9%
OptDigit 370 94.5% 94.8%
PenDigit 122 90.8% 88.0%

4.4.5 Varying the Pattern Presentation Order

In the SOKM context, instead of the normal (or “well-balanced”) pattern
presentation (i.e. Pattern #1 of Digit /ZERO/, #1 of Digit /ONE/, . . ., #1
of /NINE/, then Pattern #2 of Digit /ZERO/, #2 of Digit /ONE/, . . ., etc),
the manner of which is typical for constructing pattern classifiers, the order of
pattern presentation can be varied 1) randomly or 2) as that for accommodat-
ing new classes (Hoya, 2003a) (i.e. Pattern #1 of Digit /ZERO/, #2 of Digit
/ZERO/, . . . , the last pattern of Digit /ZERO/, then Pattern #1 of Digit
/ONE/, #2 of Digit /ONE/ . . ., etc), since the construction is pattern-based.
However, it has been empirically confirmed that these alternations do not af-
fect either the number of kernels/link weights generated or the generalisation

4.5 Simulation Example 2 – Simultaneous Dual-DomainPattern Classification 73

0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

Radius σ

N
um

. o
f

C
or

re
ct

ly
 C

on
ne

ct
ed

 L
in

ks

SFS
OptDigit
PenDigit

Fig. 4.5. Simulation results of single-domain pattern classification tasks – variations
in the number of correctly connected links with varying σ

capability (Hoya, 2004a). This indicates that the self-organising architecture
not only has the capability of accommodating new classes as PNNs (Hoya,
2003a) but also is robust to the varying conditions.

4.5 Simulation Example 2 – Simultaneous Dual-Domain
Pattern Classification

In the previous example, it has been described that, within the context of
pattern classification tasks, the SOKM yields a similar/slightly better gener-
alisation performance, in comparison with a PNN/GRNN. However, it only
reveals one of the potential benefits of the SOKM concept.

Here, we consider another practical example of multi-domain pattern clas-
sification task, in order to investigate further the behaviour of the SOKM,
namely, a simultaneous dual-domain pattern classification in terms of the
SOKM, which has not been considered in the conventional neural network
studies, as stated earlier.

In the simulation example, an integrated SOKM consisting of two sub-
SOKMs is designed to imitate the situation where a specific voice sound in-
put to a particular area (i.e. the area responsible for auditory modality) of
memory excites not only the auditory area but in parallel or simultaneously
the visual (thus the term “simultaneous dual-domain pattern classification”),

74 4 The Self-Organising Kernel Memory (SOKM)

on the ground that the appropriate built-in feature extraction mechanisms for
the respective modalities are provided within the system. This is thus some-
what relevant to the issues of modelling the “associations” between different
cognitive modalities, or, in a more general context, the “concept formation”
(Hebb, 1949; Wilson and Keil, 1999) or mental imagery, in which several
perceptual processes are concurrent and, in due course, united together (i.e.
“data-fusion”), in which the integrated notion or, what is called, Gestalt (see
Section 9.2.2) formation occurs.

4.5.1 Parameter Settings

Then, for the actual simulation, we consider the case using both the SFS
(for digit voice recognition) and PenDigit (for digit character recognition)
datasets (Hoya, 2004a), each of which constitutes a sub-SOKM responsible
for the corresponding specific domain data, and the cross-domain link weights
(or, the associative links) between a certain number of kernels within both
the sub-SOKMs are formed by the link weight algorithm given in Sect. 4.2.1.
(Then, an artificial data-fusion of both the datasets is thereby considered.)
The parameters for updating the link weights to perform the dual-domain
task are summarised in the last column of Table 4.2. For the formation of the
associative links between the two sub-SOKMs, the same values as those for
the ordinary links (i.e. the link weights within the sub-SOKM) given in Table
4.2 were chosen (except the synaptic decay factor ξij = ξ = 0.0005 (∀i, j)).

In addition, for modelling such a cross-modality situation, it is natural
to consider that the order of presentation may also affect the formation of
the associative links. However, without loss of generality, the patterns were
presented alternatively across the two training data sets (viz., the pattern
vector SFS #1, PenDigit #1, SFS #2, PenDigit #2, . . .) in the simulation.

4.5.2 Simulation Results

In Table 4.5 (in both the second and fourth columns), the overall generalisa-
tion performance of the dual-domain pattern classification task is summarised.
In the table, the item “Sub-SOKM(i) → Sub-SOKM(j)” (i.e. Sub-SOKM(1)
indicates a single sub-SOKM responsible for the SFS data set, whereas Sub-
SOKM(2) for the PenDigit) denotes the overall generalisation performance
obtained by excitations of the kernels within Sub-SOKM(j), due to the trans-
fer of the excitations in Sub-SOKM(i) via the associative links from the kernels
within Sub-SOKM(i).

4.5.3 Presentation of the Class IDs to SOKM

In the three simulation examples given so far, the auxiliary parameter ηi to
store the class ID was given whenever a new kernel is added in to the SOKM

4.5 Simulation Example 2 – Simultaneous Dual-DomainPattern Classification 75

Table 4.5. Generalisation performance of the dual-domain pattern classification
task

Generalisation Performance (GP)/Num. Excited
Kernels via the Associative Links (NEKAL)

Without Constraint With Constraints on Links
GP NEKAL GP NEKAL

SFS 86.7% N/A 91.4% N/A
PenDigit 89.3% N/A 89.0% N/A
Sub-SOKM(1) → (2) 62.4% 141 73.4% 109
Sub-SOKM(2) → (1) 88.0% 125 97.8% 93

and fixed to the same value as that of the current input data. However, unlike
ordinary connectionist schemes, within the SOKM context it is not always
necessary to set the parameter ηi at the same time as the input pattern is
presented. Then, it is also possible to set ηi asynchronously where appropriate.
In Chap. 7, this principle will be justified within a more general context of
“reinforcement learning” (Turing, 1950; Minsky, 1954; Samuel, 1959; Mendel
and McLaren, 1970).

Within this principle, we next consider a slight modification to the link
weight updating algorithm, in which the class ID ηi is used to regulate the
generation of the link weights, and show that such a modification can yield
the performance improvement in terms of generalisation capability.

4.5.4 Constraints on Formation of the Link Weights

As described above, within the SOKM context, the class IDs can be given
at any time, dependent upon applications. Then, we here consider the case
where the information about the class IDs is known a priori, which is also not
untypical in practice (though this modification may violate the strict sense of
“unsupervised-ness”), and see how such a modification gives an impact upon
the performance of the SOKM.

In this principle, the link weight update algorithm given in Sect. 4.2.1
is modified by taking the constraints on the link weights into account (the
modified part is underlined below):

[The Modified Link Weight Update Algorithm]

1) if the link weight wij is already established, decrease the
value according to:

wij = wij × exp(−ξij) (4.6)

76 4 The Self-Organising Kernel Memory (SOKM)

2) If the subsequent excitation of a pair of kernels Ki

and Kj (i �= j) occurs (the excitation is judged
by (3.12)) and repeated for p times and if the class
IDs of both the kernels Ki and Kj are identical, the link
weight wij is updated as

wij =

winit ; if wij does not exist
wmax ; else if wij > wmax

wij + δ ; otherwise.
(4.7)

3) If the activation of the kernel Ki unit does not occur dur-
ing a certain period p1, the kernel unit Ki and all the link
weights wi are removed from the SOKM (representing the
“extinction” of the kernel).

Simulation Results

With the modification above, the overall generalisation performance of the
SOKM can be improved as in Table 4.5 (in the fourth column).

Moreover, Fig. 4.6 compares the number of links generated for both the
cases of the SOKM grown by the link weight update algorithm with/without
the constraints on the class IDs. As in the figure, for all the types of the link
weights (i.e. SFS only, PenDigit, and the associative link weights in between
the two datasets), it is observed that the number of links with the constraints
above is smaller than that without them. This is considered simply because
the “wrong” connections of the kernels (i.e. the links which connect the kernels
with different class IDs) were avoided during the construction phase (Never-
theless, in a wider sense, this sort of constraints must be dealt within the
general context of learning (to be described in Chap. 7).)

4.5.5 A Note on Autonomous Formation of a New Category

In Sect. 4.5.3, it has been described that the class IDs can be given at any
time, and the actual setting of the parameter ηi (or making connections to
the kernels indicating class IDs, by exploiting the modified kernel unit repre-
sentation shown in Fig. 3.2) depends upon the application. If we reinterpret
this description in terms of the modified kernel unit in Fig. 3.2, it is consid-
ered that the autonomous formation of new categories can occur during the
construction phase of the SOKM, in terms of the following principle:

1) A new kernel unit is created within the SOKM. (At this point,
there is no link weight(s) generated for this new kernel.)

2) At some point later, a new category is given, as a new kernel
within the SOKM.

3) Then, the new kernel unit is connected to the kernel indicating
the category by the link weight.

4.6 Some Considerations for the Kernel Memory 77

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

40

45

50

Pattern Presentation No. (with Scale Adjustment)

N
um

. o
f

L
in

k
W

ei
gh

ts
 F

or
m

ed

(1) SFS (without constraint)
(2) PenDigit (without constraint)
(3) SFS (with constraint)
(4) PenDigit (with constraint)
(5) Associative (without constraint)
(6) Associative (with constraint)

(5)

(6)
(2)

(4)

(1)

(3)

Fig. 4.6. Simulation results of dual-domain pattern classification tasks – number
of links formed during the construction phase

In 3) above, it is considered that the new kernel given at 1) has already
been connected to the kernel(s) which either does or does not indicate other
categories/classes. However, it is also considered that, in terms of the link
weight update algorithm given in Sect. 4.2.1, only the link weights (or those
with maximum values) which survived during the construction phase even-
tually represent the actual categories/classes, whilst the remaining relatively
weaker link weights are not effective enough to describe the categories/classes
(or extinct from the SOKM). In this principle, it is thus evident that binding
the kernels with too many classes/categories can be automatically avoided.
We will turn back to the issue of category (or concept) formation in Chap. 9
(Sect. 9.2.2).

4.6 Some Considerations for the Kernel Memory
in Terms of Cognitive/Neurophysiological Context

As described so far, the kernel memory concept is based upon a simple con-
nection mechanism of multiple kernel units. The connection rule between the
kernel units such as given in Sect. 4.2 for SOKMs is followed by the original
neuropsychological principle of Hebbian learning (Hebb, 1949), in which when
a kernel A is excited and one of the link weights is connected to kernel B, the

78 4 The Self-Organising Kernel Memory (SOKM)

excitation of kernel A is transferred to kernel B via the link weight (in Con-
jecture 2 in Sect. 4.2). To date, Hebb’s principle (Hebb, 1949) has still been
influential in the areas not limited to computational but general neuroscience.
(His speculations which appeared in (Hebb, 1949), are really remarkable, con-
sidering that the examination of real brain tissues was then very difficult.)

Followed by the neurophysiological findings of the existence of the so-
called “hand-cells” within the inferior temporal cortex of macaque (Gross et
al., 1972), Desimone et al. (Desimone et al., 1984) carefully examined the be-
haviour of these cells and reported that such cells selectively respond to the
visual stimuli of hand images but not to other complex ones such as facial or
comb-like images (cf. Hubel and Wiesel, 1977).

It is therefore natural to consider that the memory-based pattern recog-
nition approach of the KM principle sufficiently matches the aforementioned
neurophysiological findings; a single (or multiple) kernel unit(s) represents the
cells that selectively respond to particular objects.

In the cognitive scientific context, such cells are quite often referred to
as the so-called “gnostic units” (or grand-mother cells) to represent higher
perceptual functions (Gazzaniga et al., 2002), which have appeared in the
controversial issue of how the object perception is actually performed. In the
concept of grand-mother cells, it is assumed that only a single cell placed on
the top of hierarchical coding system is responsible for the perception of an
object.

It has then been argued that the concept of grand-mother cells (or the
hierarchical coding scheme) cannot explain the situation 1) if a gnostic unit
dies, a sudden loss for the particular object is experienced, which is neither
intuitively nor naturally considered to happen, and 2) how to perceive novel
objects. In contrast to the grand-mother cell concept, the ensemble coding
scheme (for a general description, see e.g. Gazzaniga et al., 2002) has also
been considered amongst the cognitive science community, in which the acti-
vation of multiple (i.e. not single) higher-order neurons are involved in parallel
in order to perceive an object. (This is hence related to the issue of concept
formation. We will revisit this issue in Chap. 9 (Sect. 9.2.2).) In a recent
study (Tsunoda et al., 2001), the neuroscientific finding which supports the
principle of ensemble coding is reported.

Nevertheless, as described so far in both the present and previous chapters,
it is considered that the KM concept can still suffice the aforementioned con-
ditions required for both the hierarchical and ensemble coding schemes and
be exploited to provide the models/practical examples. Note that, throughout
this book, the KM concept is not treated as the basis for describing precisely
various neuro-anatomical phenomena which occur within the real brain, as in
the conventional artificial neural network principle (cf. Kohonen, 1997), but
rather exploited for the (limited) utility in modelling behavioral/higher-order
functions related to the mind.

4.7 Chapter Summary 79

4.7 Chapter Summary

In this chapter, the kernel memory concept described in the previous chapter
has been exploited to develop a constructive network architecture, namely,
the self-organising kernel memory (SOKM). The behaviours of SOKM have
been discussed through some simulation examples given in the context of
pattern classification tasks. In the simulation examples, the SOKMs have been
compared with the existing connectionist models.

Then, in the description, it has been revealed that the SOKM exhibits the
following seven main features:

• A single kernel unit can be ultimately regarded as the smallest memory
element that simultaneously performs pattern classification (cf. the neu-
ropsychological basis on RBFs made by Poggio and Edelman, 1990).

• The architecture of the kernel memory is intuitive and straightforward:
The parameter tuning algorithm can be relatively simple, without suf-
fering from numerical instability, unlike the conventional neural network
architectures. Moreover, within the SOKM principle, the manner of con-
struction (or self-organisation)/testing within the network can be fully
traced, where required. In addition, there is no clear cut between the con-
struction (or training) and testing phase of the SOKM.

• Flexible network configuration – straightforward and robust incremen-
tal training/network forgetting and accommodation of new classes (Hoya,
2003a), inherited from the properties of PNNs/GRNNs. Moreover, unlike
conventional artificial neural network schemes, an instance (represented
by a kernel unit) is allowed to belong simultaneously to multiple classes.

• Unlike the original PNN/GRNN approaches, the SOKM itself can exhibit
capability in data pruning.

• There exist essentially no topological constraints within the KM concept
(unlike conventional neural architectures, such as MLP-NNs or SOFMs).
However, a number of useful fixed topological representations depending
upon applications are also possible within a single learning principle, where
appropriate, which has not been taken into account within the original
PNNs/GRNN context.

• Related to the above, the SOKM can itself process multiple domain (i.e.
“data-fusion”) or temporal data, simultaneously/in parallel, both of which
are considered to be significant for modelling the complex data processing
as performed by real brain. In this respect, the SOKM can also be seen
as the extension/generalisation to the resource-allocating network (Platt,
1991). However, these features, as well as the aforementioned flexible net-
work configuration property, are not usually treated within the context of
conventional artificial neural networks; even within the modern approaches
as SVMs these aspects have been considered little, whilst a great number of
theoretically related/performance improvement issues have been reported
(see e.g. Vapnik, 1995; Hearst, 1998; Christianini and Taylor, 2000).

80 4 The Self-Organising Kernel Memory (SOKM)

• By means of the kernel memory concept, the dynamic memory architecture
(or self-evolutionary system) can be designed to provide both the distrib-
uted and local representation of memory, depending upon the application.

In the subsequent chapters, the concept of kernel memory will be given as a
foundation for modelling various psychological functions which are postulated
as the keys to constitute eventually the artificial mind system.

Part II

Artificial Mind System

5

The Artificial Mind System (AMS), Modules,
and Their Interactions

5.1 Perspective

The previous two chapters have been devoted to establishing the novel ar-
tificial neural network concept, namely the kernel memory concept, for the
foundation of the artificial mind system (AMS).

In this chapter, a global picture of the artificial mind system, which can
be seen as a multi-input multi-output system, is presented. It is seen that
the artificial system consists of a total of fourteen modules and their inter-
actions, each of which plays a central role to model the corresponding cogni-
tive/psychological function of the mind. The concept of modules to represent
the respective functionalities in the AMS is originally motivated/inspired from
psychological studies (Fodor, 1983; Hobson, 1999).

In the subsequent Chaps. 6–10, more general accounts of the respective
modules (as those implemented within the two exemplar models) and their
mutual interactions within the AMS, as well as the justifications from other
studies, are given in detail.

Thus, the content of the present chapter (and the later chapters) often
and essentially differs from those in the previous three chapters, in that the
issues treated hereafter will be sometimes more macroscopic accounts of the
artificial mind system, rather than only ending up with minor engineering jus-
tifications of the artificial neural substrate established in the previous three
chapters, though the kernel memory concept described in the last two chap-
ters remains important in the general model of the AMS.

In Chap. 10 (Sects. 10.6 and 10.7), a couple of models exploiting the several
modules within the AMS will also be given, with a practical implementation
to construct intelligent pattern classification systems.

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 83–94 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

84 5 The Artificial Mind System (AMS)

Memory
3) STM/Working

2) Intuition

5) Language

2) Attention

2) Intention
1,4,6) Input:

Sensation

(Nondeclarative)

(Declarative)

Functioning Without Consciousness

2) Emotion

3) Explicit LTM

3) Implicit LTM

Output:
Perception

1,2) Secondary
5) Semantic

Networks / Lexicon

Recognition)

4) Thinking
(Action Planning)

(Pattern

Structure
4,6) Instinct: Innate

(Normally) Functioning
With Consciousness

Artificial Mind System (AMS)

Behaviour,
Output:

1,4,6) Primary

Motion,
(Endocrine)

Fig. 5.1. A schematic diagram of the artificial mind system (AMS) – as a multi-
input multi-output (MIMO) system consisting of 14 “modules”; one single input,
two output modules, and the remaining 11 modules, each of which represents the
corresponding cognitive/psychological function, and their mutual interactions

Table 5.1. The background studies to provide the accounts for the respective mod-
ules within the AMS shown in Fig. 5.1. Each number indicates the categories/main
studies to provide the notions of the respective modules

1) Input/Outputs of the Artificial Mind System
2) Psychology & Cognitive Neuroscience
3) Memory (Connectionism & Psychology)
4) Artificial Intelligence, Signal Processing, Robotics (Mechanics),

& Optimisation (Control Theory)
5) Linguistics (Language), Connectionism, & Optimisation

(e.g. Graph Theory)
6) Innate Structure: Developmental Studies, Ecology, Genetics, etc.

5.2 The Artificial Mind System – A Global Picture

As shown in Fig. 5.1, the artificial mind system can be macroscopically re-
garded as a multi-input multi-output (MIMO) system, consisting of 14 mod-
ules, i.e. one single input, two outputs, and the remaining 11 modules repre-
senting the respective cognitive/psychological functions.

As in Table 5.2, it is considered that the four modules, attention, intention,
STM/working memory, and thinking, normally function with consciousness,
whilst the other six, i.e. instinct, intuition, language, both the explicit and

5.2 The Artificial Mind System – A Global Picture 85

Table 5.2. Classification of the modules within the AMS in terms of the func-
tionality with consciousness/without consciousness; it is considered that a total of
five modules function with consciousness, whereas the seven operate without con-
sciousness. The emotion module can have both consciousness and subconsciousness
states

(Normally) Functioning Functioning
with Consciousness without Consciousness

(1) Attention (1) Emotion
(2) Emotion (2) Instinct
(3) Intention (3) Intuition
(4) STM/Working Memory (4) Language
(5) Thinking (Action Planning) (5) Explicit LTM

(6) Implicit LTM
(7) Semantic Networks/Lexicon

implicit LTM, and semantic networks/lexicon, function without conscious-
ness (or, subconsciously).

The LTM can be divided into two types of modules, i.e. the explicit and
implicit (or the declarative and nondeclarative) LTM modules as in Fig. 5.11.
In contrast, the module “emotion” can be exceptionally regarded as a mod-

ule functioning either with or without consciousness, depending upon situa-
tions. Moreover, as in Table 5.2, it is considered that the module “language”
lies in/functions in parallel to the semantic networks/lexicon. From the LTM
aspect, the language module also appears as a built-in (but still dynamic)
structure (i.e. such as the learning mechanism of grammar) which is closely
tied to the module representing semantic networks/lexicon (to be described
in Chaps. 8 and 9).

The number(s) shown in each module indicates the corresponding rele-
vant disciplines/categories (as shown in Table 5.1) in order to give the concrete
accounts/notions for the functionalities, e.g. the functionality of the module
“intention” takes into account of (at least) the principles within psychology.

As in Fig. 5.1, the “input” represents sensation and the output from the
AMS can be classified into two types of “outputs”; i) the primary outputs
which represent actual behaviour, endocrine, motion, or determine the direc-
tion, and ii) the secondary outputs obtained as a cause of perception. The
perceptual activities in the latter generally involve pattern recognition of the
internal feedbacks/external stimulus-oriented inputs arriving at the working/
short-term memory (STM).

In Fig. 5.1, the modules are connected to the others via the links, rep-
resenting the interactions (or, more appropriately, some form of information
transmission) in between. As depicted in Fig. 5.1, there are three types of
links denoted in 1) solid lines with and 2) without mono- and bi-directional

1Unless denoted otherwise, hereafter the mere “LTM” denotes both the explicit
and implicit LTM modules.

86 5 The Artificial Mind System (AMS)

Concept
3) Kernel Memory STM / Working Memory,

Semantic Nets / Lexicon

3,5) Explicit / Implicit LTM

Fig. 5.2. The kernel memory concept (in Chaps. 3 and 4) – especially, as the
foundation of the memory-oriented modules within the AMS, i.e. both the explicit
and implicit LTM, STM/working memory, and semantic networks/lexicon modules

arrows, and 3) dashed lines, which respectively indicate the modules involving
the (mono-/bi-)directional information transmission, those functioning essen-
tially in parallel, and the modules indirectly interrelated.

Then, as indicated in Fig. 5.2, to represent the memory modules within
the AMS – the two types of LTM, STM, and semantic networks/lexicon – the
kernel memory (KM) concept, which has been proposed as a new form of ar-
tificial neural network/connectionist model in Chaps. 3 and 4, plays a crucial
role (to be discussed further in Chap. 8), though as described later, for the
other modules such as emotion, input: sensation, intuition, and so forth, the
KM concept also underlies.

The overall structure of the AMS in Fig. 5.1 is thus closely tied to the
psychological concept in terms of modularity of mind, which is originally mo-
tivated/inspired from the psychological studies (Fodor, 1983; Hobson, 1999).

Then, it is seen that the modules within the AMS generally agree with
the principle of Hobson (Hobson, 1999), i.e. the respective constituents for
describing consciousness in Table 1.1 (on page 5), except that the constituent
“orientation” can also be dealt within the framework of the intention module
in the AMS context (to be described later in Chap. 10).

In addition, it is stressed that, since the stance for developing an artificial
mind system in this book is based upon the speculation from the behaviour of
human-beings/phenomena occurred in brain, it does not necessarily involve
the controversial place-adjustment, within the neuroscientific context, between
the regions in real brain and the respective psychological functions, in order
to imitate and realise their functionalities by means of substances other than
real brain tissue or cells.

5.2.1 Classification of the Modules Functioning
With/Without Consciousness

As discussed earlier, the four modules in the AMS, i.e. attention, intention,
STM/working memory, and thinking, normally function with consciousness,
whilst the other six, i.e. instinct, intuition, both the explicit and implicit LTM,
language, and semantic networks/lexicon, are considered to function without

5.2 The Artificial Mind System – A Global Picture 87

consciousness2. The remaining module, i.e. emotion, is the cross-over module
between consciousness and subconsciousness.

In the AMS, it is intuitively considered that those functioning consciously
are meant to be such modules that the functionalities, where necessary, can
be (almost) fully controlled and their behaviours can be monitored in any
detail (if required) by other consciously functioning module(s). However, this
sometimes may be violated, depending upon situations (or, more specifically,
the resultant data transmissions as the cause of the data processing within
themselves/mutual interactions in between), i.e. some modules may well be
considered to function with consciousness (though the judgement of conscious-
ness/subconsciousness may often differ from one way of view to another3).
In such irregular cases, some data can be easily lost from those functioning
consciously or the leakage within the information transmission between the
modules can occur in due course.

For instance, the emotion module functions with consciousness, when the
attention mechanism is largely affected by the incoming inputs (arriving at
the STM/working memory module), but the module can be affected subcon-
sciously, depending upon the overall internal states of the AMS. In such a
situation, the current environment/condition for the AMS can even be said
to abnormal, e.g. the energy left is low, or, the temperature surrounding the
robot is no longer tolerable (though this is not explicitly shown in Fig. 5.1).

In a real implementation, it could be helpful to attach the respective con-
sciousness/subconsciousness states to the modules, the status of which can
also be counted as the internal state within the AMS.

5.2.2 A Descriptive Example

Now, we consider a descriptive example to determine what kind of processing
of the modules within the AMS is involved and how their mutual interactions
occur for a specific task.

It is evident that one single example is not sufficient to explain fully how
the AMS works in Fig. 5.1, however, in general, there can be countless numbers
of scenarios to compose for validating the AMS completely, and it is virtually
impossible to cover all the scenarios in the context. Hence, we limit ourselves

2As will be discussed later in Chap. 8, though the explicit LTM module itself is
considered to work subconsciously, the access to the contents from the STM module
is performed consciously.

3In the author’s view, the terminology of consciousness/subconsciousness has
been established from various psychological studies, which are largely based upon
the interpretation/translation of the phenomena occurring in the brain by human-
beings; ultimately speaking, no definitive manner has been found to determine
whether it is functioning with or without consciousness, and thus, the judgement
is not objective but rather subjective. In this book, we do not go further into the
discussion of this issue.

88 5 The Artificial Mind System (AMS)

to consider how we can interpret the following simple story in terms of the
AMS:

“At the concert last night, I was listening to my favourite tune, Rach-
maninoff’s Piano Concerto No. 2, so as to let my hair down. But, I
became a bit angry when my friend suddenly interrupted my listening
by her whispering in my right ear and thus I immediately responded
with a ‘shush’ to her ...”

Q.) How do we interpret the above scenario in terms of the artificial
mind system (AMS) shown in Fig. 5.1?

The answer to the above question can be described as follows:

A.) Overall, this can be interpreted in such a way that, by the sudden stimulus
input (friend’s voice sound), 1) the attention module was affected (this is then
related to selective attention), 2) hence the emotional states of the AMS were
suddenly varied, and, as a consequence, 3) vocalised the word “shush” to stop
her whispering. More specifically, it is considered that the following four steps
are involved:

Step 1) Prerequisite (initial formation)
Step 2) (Regular) incoming data processing
Step 3) Interruption of the processing in Step 2)
Step 4) Making real actions

Now, let us consider each of the steps above in more detail:

Step 1) Prerequisite (initial formation)

Step 1.1) Within the LTM (i.e. the episodic/semantic part of the
memory) of the AMS, the tune of Rachmaninoff’s Piano Concerto
No. 2 has already been stored4 so that the pattern recognition can
be straightforwardly performed and the corresponding kernels can
be excited by the (encoded) orchestral sound.

Step 1.2) Then, the subsequent pattern recognition result of each
phrase that can be represented by a kernel unit (without loss of
generality, provided that the whole tune can be divided into mul-
tiple phrases which have already been stored within the LTM) is

4In terms of the kernel memory, it is considered that the tune can be stored in
the form of e.g. “a chain of kernel units”, where each kernel unit represents some
form of musical elementary unit (such as a phrase or note, etc) obtained by the
associated feature extraction mechanism. Such chain can be constructed within the
principles of kernel memory concept described in Chaps. 3 and 4. In a more general
sense, the construction of such kernel-chains can be seen as the “learning” process
(to be described at full length in Chap. 7).

5.2 The Artificial Mind System – A Global Picture 89

considered as a series of the secondary (or perceptual) out-
put(s) of the AMS (as in Fig. 5.1), which will also be subsequently
fed back to the STM/working memory and eventually control
the emotional states.

Step 1.3) The module emotion consists of some (i.e. a multiple num-
ber of) potentiometers (four, say, to describe 1) pleasure, 2) anger,
3) grief, and 4) joy). The corresponding kernel units representing
the respective phrases are synaptically connected to the first &
fourth potentiometers (i.e., the potentiometers representing plea-
sure and joy, through the learning process). Thus, if the subse-
quent excitation of such kernel units is a result of the external
stimuli (i.e. by listening to the orchestral playing), the excitation
can also be transferred to the potentiometers and in due course
cause the changes in the potentials.

Step 1.4) Moreover, as indicated in Fig. 5.1, the values of the emo-
tional states are directly transferred to/connected with the pri-
mary outputs (to cause real actions, such as resting the arms,
smiling on the face, or other parts of the body, endocrine, and so
forth).

Step 1.5) In addition, the input: sensation module may involve
preprocessing; specifically, such as sound activity detection (SAD),
feature extraction, where appropriate, or blind signal/source sep-
aration (BSS) (see e.g. Cichocki and Amari, 2002) mechanisms.
In Sect. 8.5, an example of such preprocessing mechanisms, i.e. a
combined neural memory, which exploits PNNs, and blind signal
processing (BSP) for extracting the specified speech signal from
the mixture of simultaneously uttered voice sounds is given.

Step 2) (Regular) incoming data processing

Just before the friend’s voice arrives at the input module (sensa-
tion), the incoming input is processed (with first priority) within the
STM/working memory, which is the sound (or the feature data)
coming from the orchestra, due to the attention module. Then, this
had maintained the two out of four potentials (representing pleasure
and joy) being positive (and relatively higher compared to the rest)
within the module emotion.

Therefore, a total of seven modules in the AMS (i.e. in the descriptions
above, the contexts related to the corresponding seven modules are denoted
in bold) and their mutual interactions are considered to be involved for Steps
1) and 2) as in the below:

90 5 The Artificial Mind System (AMS)

Modules involved in Steps 1-2)

1) Attention 5) Primary Outputs
2) Emotion 6) Secondary Output
3) Input: Sensation 7) STM/Working Memory
4) LTM (Explicit/Implicit)

Mutual interactions occurring in Steps 1-2)

• Input: Sensation −→ STM/Working Memory:
Arrival of the orchestral sound.

• STM/Working Memory −→ LTM:
Accessing the episodic/semantic or declarative memory
of the orchestral sound.

• Implicit/Explicit LTM −→ Secondary (Percep-
tual) Output:
Perception/pattern recognition of the orchestral sound.

• Secondary (Perceptual) Output −→ STM/Work-
ing Memory:
The feedback input (where appropriate); the pattern
recognition results of the orchestral sound.

• STM/Working Memory −→ Attention:
Arrival of the orchestral sound.

• Attention −→ STM/Working Memory −→ Emo-
tion:
Maintaining the current emotional states due to the sub-
sequent orchestral sound inputs.

• Emotion – Primary Outputs (Endocrine)
• Emotion −→ STM/Working Memory −→ Implicit

LTM −→ Primary Outputs (Motions):
Making real actions, such as resting the arms, endocrine,
etc.

Step 3) Interruption of the processing in Step 2)

When the friend’s whispering arrived at the STM/working mem-
ory, with a relatively higher volume/duration sufficient to affect the
attention module (or, as in the prerequisite in Step 1) above, the
feedback inputs to the STM/working memory, after the (subsequent)
perception of her voice), the emotional states were greatly affected.
This is since, in such a situation, the friend’s voice varied the selec-
tive attention, which could no longer maintain the current positive
potentials within the two emotional states, thereby causing the drop
in these values, and eventually the value of the second potentiometer
(anger) may have become positive.

5.2 The Artificial Mind System – A Global Picture 91

Modules involved in Step 3)

1) Attention 4) LTM (Explicit/Implicit)
2) Emotion 5) Secondary output
3) Input: Sensation 6) STM/Working Memory

Mutual interactions occurring in Step 3)

• Input: Sensation −→ STM/Working Memory:
Arrival of the friend’s whispering sound.

• STM/Working Memory −→ LTM and
• Implicit/Explicit LTM −→ Secondary (Percep-

tual) Output:
Perception, pattern recognition of the friend’s voice.

• Secondary (Perceptual) Output −→ STM/Work-
ing Memory:
The feedback input; the pattern recognition results from
the friend’s voice.

• STM/Working Memory −→ Attention:
Effect upon the selective attentional activity due to the
arrival of the friend’s voice.

• Attention −→ STM/Working Memory −→ Emo-
tion:
Varying the current emotional states as the cause of the
sudden friend’s voice.

As in the above, it is considered that a total of six modules are involved
and mutually interacted for Step 3). In the above, albeit denoted explicitly, the
sixth data flow attention −→ STM/working memory −→ emotion also
indicates a possible situation that the emotional states are varied due to the
intention module as a cause of the thinking process performed via the thinking
module, since the thinking module is considered to function in parallel with
the STM/working memory. In such a case, the emotional states are varied e.g.
after some semantic analysis of her voice and its access to the declarative (or
explicit) LTM, representing the reasoning process of the interruption.

Step 4) Making real actions

Step 4.1) In many situations, it is considered that, as aforemen-
tioned, Step 3) above also involves the process within the think-
ing module (functioning in parallel with the STM/working
memory), regardless of its consciousness state.

Step 4.2) Then, the AMS performed the decision-making to issue
the command to “increase” the value of the second emotional

92 5 The Artificial Mind System (AMS)

state (anger) via the STM/working memory and eventually vo-
calise the sound “shush” to her, due to the episodic content of
memory (acquired by learning or experience) e.g. that represents
the general notions, “whilst music playing, one has to be quiet till
the end/interval” and “to stop one’s talking, making the sound
“shush” is often effective” (this is under the condition that the
word can be understood (in English), i.e. the module language is
involved), the context of which can also be interpreted by the ref-
erences to the LTM or the semantic networks/lexicon (both
of which are considered to function in parallel).

Step 4.3) The action of vocalising the word involves the processes
(mainly) within the STM/working memory invoked by the inten-
tional activity (“to make the sound”) and the primary output.

Step 4.4) Moreover, provided that the action of vocalising is (recog-
nised as) effective (due to both the thinking and perception mod-
ules), i.e. to successfully stop her whispering, this indicates that
the action taken (due to the accesses to the implicit LTM) had
been successful to resume the previous emotional states (repre-
sented by the emotion module, i.e. the two relatively higher po-
tentials representing “pleasure” and “joy” than the other two, with
paying attention to the incoming orchestral sound).

Modules involved in Step 4)

1) Attention 6) Primary Outputs
2) Emotion 7) Secondary Output
3) Intention 8) Semantic Networks/Lexicon
4) Language 9) STM/Working Memory
5) LTM (Explicit/Implicit) 10) Thinking

Mutual interactions occurring in Step 4)

• STM/Working Memory – Thinking Module:
These two modules are normally functioning in parallel,
for the decision-making process to deal with the sudden
changes in the emotional states.

• STM/Working Memory −→ LTM or Semantic
Networks/Lexicon:
Accessing the verbal sound “shush”, the language mod-
ule is also involved to recognise the word in English.

5.3 Chapter Summary 93

• Intention and STM/Working Memory −→ Im-
plicit LTM −→ Primary Outputs:
Vocalising the word “shush”.

• STM/Working memory −→ LTM −→ Secondary
(Perceptual) Output:
Perception/pattern recognition of the friend’s responses.

• Secondary (Perceptual) Output −→ STM/Work-
ing Memory:
The feedback input (where appropriate); the pattern
recognition results of the friend’s stopping her whisper-
ing.

• STM/Working Memory and Thinking −→ Im-
plicit LTM (Procedural Memory):
The processing was invoked after the perception that the
vocalising “shush” was effective via the pattern recogni-
tion results of her responses.

• Implicit LTM – Emotion:
Varying the emotional states which represent the previ-
ous states.

• Emotion −→ STM/Working Memory −→ Atten-
tion:
Maintaining the current emotional states by paying again
attention to the orchestral sound.

For Step 4), a total of ten modules and their mutual interactions are there-
fore considered to be involved, as in the above.

As in the scenario example examined above, it is evident that a total of
12 modules (indicated in boldfaces) and their mutual interactions, which con-
stitutes most of the AMS in Fig. 5.1, are involved even within this simple
scenario.

The four subsequent Chaps. 6–10 are then devoted to the detailed de-
scriptions of the modules within the AMS. The detailed accounts of the two
unattended modules in this example, instinct and intuition, are thus left to
the later Chaps. 8 and 10 (i.e. in Sects. 8.4.6 and 10.5, respectively).

Moreover, a concrete model for pattern classification tasks, which exploits
the four modules representing attention, intuition, LTM, and STM, and the
extended model will appear in Chap. 10.

5.3 Chapter Summary

This chapter have firstly provided a global picture of the artificial mind sys-
tem. The AMS has been shown to consist of a total of 14 modules, each

94 5 The Artificial Mind System (AMS)

of which is responsible for specific cognitive/psychological function, and in-
volves their mutual interactions. The modular approach is originally in-
spired/motivated from the psychological studies in Fodor (1983); Hobson
(1999). Then, the behaviour of the AMS and how the associated modules
interact with each other have been analysed by examining a simple scenario.

It has also been proposed that the kernel memory concept established in
the last three chapters plays a key role, especially for consolidating the mem-
ory mechanisms within the AMS.

In the five succeeding Chaps. 6–10, the discussion is moved to the more
detailed accounts of the respective modules and their mutual interactions.

6

Sensation and Perception Modules

6.1 Perspective

In any kind of creature, both the mechanisms of sensation and perception
are indispensable for continuous living, e.g. to find edible plants/fruits in
the forest, or to protect themselves from attack by approaching enemies. To
fulfill these aims, there are considered to be two different kinds of information
processes occurring in the brain: 1) extraction of useful features amongst
the flood of information coming from the sensory organs equipped and 2)
perception of the current surroundings based upon the features so detected in
1) for planning the next actions to be taken. Namely, the sensation mechanism
is responsible for the former, whereas the latter is the role of the perception
mechanism.

In this chapter, we highlight the two modules within the AMS, i.e. the
sensation and perception modules within the sensory inputs area. In the
AMS, it is considered that the sensation module receives information from
the outside world and then converts it into the data which can be efficiently
handled within the AMS, whilst the perception module plays a central role
to represent what is currently occurring in the AMS and generally yields the
pattern recognition results by accesses to the memory modules, which can be
used for further data processing.

It is considered that the sensation module can consist of multiple pre-
processing units. As aforementioned, one of the important aspects of the sen-
sation module is how to detect useful information in noisy situations. More
specifically, this topic is related to noise reduction in the signal processing
field. In this context, we will consider a practical example of noise reduction
based totally upon a signal processing application, namely the reduction of
noise in stereophonic speech signals, in which the binaural data processing
of humans is modelled and evaluated through extensive simulation examples
in Sect. 6.2.2. As will be described later, the functionality of the perception
module is closely related to the memory modules in Chap. 8. In Sect. 8.5,
we will also consider another example relevant to noise reduction, i.e. speech

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 95–116 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

96 6 Sensation and Perception Modules

extraction in cocktail party situations, which exploits both the concept of pre-
processing units within the sensation module and memory modules.

It will also be described further in the next chapter (Chap. 7) that the
functionality, as well as the formation, of both the two modules, sensation
and perception, are closely interrelated with each other via the concept of
general learning.

6.2 Sensory Inputs (Sensation)

As described in the previous chapter, the artificial mind system shown in
Fig. 5.1 (on page 84) can be macroscopically viewed as an input-output sys-
tem. In the figure, the module sensory inputs: sensation functions as the
receiver for the sensory input data arriving at the AMS. Then, the role of
the sensation module is also to pre-process/encode the raw data received into
the feature data (where appropriate) that can be efficiently handled with the
other modules within the AMS.

As in Fig. 5.1, the data processed within the sensation module are all fed
forward to the STM/working memory module.

In general, it is considered that humans are inherently equipped with five
sensors to interact with the outside world, i.e. sensors for visual, auditory,
gustatory (taste), olfactory, and tactile input1.

For developing artificial intelligence or real robots, such sensors as those
detecting e.g. infra-red, radioactivity, or other specific rays, depending upon
situations, can be considered (as those alternative to visual sensory inputs),
in addition to the aforementioned five sensors. Note that, within the AMS in
Fig. 5.1, though the number of sensory inputs arriving at the AMS may be
varied, it is considered that it does not essentially affect the overall layout of
the modules within the AMS2.

Within the AMS, it is assumed that the input data received by the sen-
sation module are either raw sensory or pre-coded data (or the data obtained
via a certain process of feature extraction). Then, the sensation module is

1However, it is said that the role of an actual sensory organ of humans is not
always restricted to acquire only a single sensory mode but rather to process multi-
modal data in parallel (i.e. data-fusion). For instance, the biological mechanism
of the human ears exploits the tactile information which is received as the sound
pressure by ear drum, converted into electrical activities, and eventually transferred
via the auditory nerve to the auditory cortex (for more details, see e.g. Gazzaniga
et al., 2002), or the tongue can sense not only the taste but simultaneously the weight
or temperature of objects. Moreover, it is considered that many of the sensory organs
also function as actuators.

2However, we should bear in our mind that sensor combinations different from
those of humans (i.e. other than the five sensors) could completely vary the structure
within the respective modules of the AMS, as the cause of the learning/evolution
process. This issue is then related to the so-called “Mind-Body” problem.

6.2 Sensory Inputs (Sensation) 97

Raw Sensory Input Data

Pre-processing

Unit 1

Pre-processing

Unit 2

. . .

u1 1x

Pre-processing

Unit 1

Pre-processing

Unit 2

. . .

u2 2x
Pre-processing

Unit N 2

(t) (t)

.

.

.
.
.
.

.

.

.

Pre-processing

Unit 1

Pre-processing

Unit 2
. . .

MxuM

(t) (t)

Input Data for Modules in AMS

Pre-processing

Unit N 1

Pre-processing

Unit N M

(t) (t)

Fig. 6.1. An illustrative diagram of the sensory inputs (sensation) module – defined
as a cascade of pre-processing units. Note that the boxes in dotted line indicate the
necessity (i.e. in signal processing wise) of the utility of multi-sensory input data,
rather than single, for some particular pre-processing

also responsible for converting the raw sensory into pre-coded data by means
of feature detecting mechanisms, where appropriate, in order to reduce the
redundancy and process efficiently within the modules of the AMS.

6.2.1 The Sensation Module – Given as a Cascade
of Pre-processing Units

As illustrated in Fig. 6.1, it is considered that the sensation module is com-
posed of several submodules, each representing a specific pre-processing mech-
anism.

In Fig. 6.1, ui(t) (i = 1, 2, . . . ,M) denotes the i-th raw sensory input data
measurement to the sensation module arriving at time instance t and xi(t) are
the corresponding feature data signals obtained after a series of pre-processing
stages. In Fig. 6.1, the i-th sensation module can be (approximately) repre-
sented in a cascading form of Ni pre-processing submodules (or units), each
of which transforms the raw data into other useful representation, where ap-
propriate.

For instance, for the processing of auditory signals, such pre-processing
as source localisation/direction of arrival (DOA) estimation (see e.g. Hudson,
1981), sound activity detection (SAD), noise reduction (NR) (see e.g. Davis,
2002), or (blind) signal extraction (BSE)/separation (BSS) (see e.g. Cichocki
and Amari, 2002), all of which are active areas of study in signal processing,
may be involved. (In Fig. 6.1, note that the boxes in dotted line indicate the
necessity (in signal processing wise) of the utility of multi-sensory input data,
rather than single, for some particular pre-processing.)

98 6 Sensation and Perception Modules

In the cognitive scientific context, it is generally considered that the
cochlea of a human ear plays a central role to pre-process the auditory in-
formation in a similar fashion to spatio-temporal coding mechanism (Barros
et al., 2000; Rutkowski et al., 2000; Barros et al., 2002), whilst for the vi-
sual information both the retinal and the V1-V4 areas of the brain contribute
to the feature extraction (see e.g. Gazzaniga et al., 2002), which can also
be in a wider sense regarded as a spatio-temporal coding mechanism. In re-
cent studies, the spatio-temporal scheme has also been exploited for olfactory
recognition tasks (White et al., 1998; Hoshino et al, 1998; Lysetskiy et al.,
2002).

Then, it appears interesting, since the spatio-temporal scheme (i.e., rep-
resented by a subband structure) can be ultimately considered as one of the
universal pre-processing mechanisms for the sensory information acquired.

In the next section 6.2.2, a signal processing based example of stereophonic
noise reduction in speech signals is described. Moreover, later in Sect. 8.5, an
example showing how to exploit a combined blind signal extraction technique
with the aid of neural memory (thus related to the memory modules) for the
extraction of speech signals in cocktail party situations will also be given.

In addition, although the actual pre-processing mechanisms e.g. BSE
(Cichocki and Amari, 2002), NR, or SAD can be realised by means of exploit-
ing the existing signal processing/pattern recognition techniques, the principle
of hierarchy similar to Neocognitron developed by Fukushima (Fukushima,
1975) may be exploited, and thereby a more biologically plausible neural-
based model (Brian et al., 2001) could be devised. We will revisit this issue
in Chap. 7.2.

6.2.2 An Example of Pre-processing Mechanism – Noise
Reduction for Stereophonic Speech Signals (Hoya et al., 2003b;
Hoya et al., 2005, 2004c)

Here, we consider a practical example of the pre-processing mechanism based
upon a signal processing application – noise reduction for stereophonic speech
signals by a combined cascaded subspace analysis and adaptive signal en-
hancement (ASE) approach (Hoya et al., 2003b; Hoya et al., 2005). The sub-
space analysis (see e.g. Oja, 1983) is a well-known approach for various esti-
mation problems, whilst adaptive signal enhancement has long been a topic of
great interest in the adaptive signal processing area of study (see e.g. Haykin,
1996).

In this example, a multi-stage sliding subspace projection (M-SSP) is
firstly used, which operates as a sliding-windowed subspace noise reduction
processor, in order to extract the source signals for the post-processors, i.e. a
bank of adaptive signal enhancers. Thus, the role of the M-SSP is to extract
the (monaural) source signal. In each stage of M-SSP, a subspace decomposi-
tion algorithm such as eigenvalue decomposition (EVD) can be employed.

Then, for the actual signal enhancement, a bank of modified adaptive sig-
nal (line) enhancers is used. For each channel, the enhanced signal obtained

6.2 Sensory Inputs (Sensation) 99

.

.

.
.
.
.

.

.

.

Z
− l0

Z
− l0

Z
− l0

.

.

.

2
x (k)

−

+

−

+

^

1
s (k)

2

^
s (k)

M

^
s (k)

−

+

ADF2

2
e (k)

1
e (k)

ADF1

ADFM

c1

cM

c2

1
y (k)

y (k)
2

y (k)
M

M
e (k)

11
x (k)

M
x (k)

SSP

Multi−Stage

Fig. 6.2. Block diagram of the proposed multichannel noise reduction system
(Hoya et al., 2003b; Hoya et al., 2005, 2004c) – a combined multi-stage sliding sub-
space projection (M-SSP) and adaptive signal enhancement (ASE) approach; the
role of M-SSP is to reduce the amount of noise on a stage-by-stage basis, whereas
the adaptive filters (denoted ADFi) compensate for the spatio-temporal information
at the respective channels, e.g. in two-channel situations (i.e. M = 2), to recover the
stereophonic image

from the M-SSP is given to the adaptive filter as the source signal for the com-
pensation of the stereophonic image. The principle of this approach is that
the quality of the outputs of the M-SSP will be improved by the adaptive
filters (ADFs).

In the general case of an array of sensors, the M-channel observed sensor
signals xi(k) (i = 1, 2, ...,M) can be represented by

xi(k) = si(k) + ni(k), (i = 1, 2, . . . ,M) (6.1)

where si(k) and ni(k) are respectively the target and noise components within
the observations xi(k).

Figure 6.2 illustrates the block diagram of the proposed multichannel noise
reduction system, where yi(k) denotes the i-th signal obtained from the M-
SSP, and ŝi(k) is the i-th enhanced version of the target signal si(k).

Here, we assume that the target signals si(k) are speech signals arriv-
ing at the respective sensors, that the noise process is zero-mean, additive,
and uncorrelated with the speech signals, and that M = 2. Thus, under the
assumption that si(k) are all generated from one single speaker, it can be con-
sidered that the speech signals si(k) are strongly correlated with each other

100 6 Sensation and Perception Modules

and thus that we can exploit the property of the strong correlation for noise
reduction by a subspace method.

In other words, we can reduce the additive noise by projecting the ob-
served signal onto the subspace of which the energy of the signal is mostly
concentrated. The problem here, however, is that, since speech signals are
usually non-stationary processes, the correlation matrix can be time-variant.
Moreover, it is considered that the subspace projection reduces the dimen-
sionality of the signal space, e.g. a stereophonic signal pair can be reduced to
a monaural signal.

Noise Reduction by Subspace Analysis

The subspace projection of a given signal data matrix contains information
about the signal energy, the noise level, and the number of sources. By using a
subspace projection, it is thus possible to divide approximately the observed
noisy data into the subspaces of the signal of interest and the noise (Sadasivan
et al., 1996; Cichocki et al., 2001; Cichocki and Amari, 2002).

Let X be the available data in the form of an L × M matrix

X = [x1,x2, . . . ,xM] , (6.2)

where the column vector xi (i = 1, 2, . . . ,M) is written as

xi = [xi(0), xi(1), . . . , xi(L − 1)]T (T : transpose) . (6.3)

Then, the EVD of the autocorrelation matrix of X (for M < L) is given by

XT X = VΣVT , (6.4)

where the matrix V = [v1,v2, . . . ,vM] ∈ �M×M is orthogonal such that
VT V = IM and Σ = diag(σ1, σ2, . . . , σM) ∈ �M×M , with eigenvalues
σ1 ≥ σ2 ≥ . . . ≥ σM ≥ 0. The columns in V are the eigenvectors of XT X.
The eigenvalues in Σ contain some information about the number of signals,
signal energy, and the noise level. It is well known that if the signal-to-noise
ratio (SNR) is sufficiently high (see e.g. Kobayashi and Kuriki, 1999), the
eigenvalues can be ordered in such a manner as

σ1 > σ2 > · · · > σs >> σs+1 > σs+2 · · · > σM (6.5)

and the autocorrelation matrix XT X can be decomposed as

XT X = [Vs Vn]
[
Σs O
O Σn

]
[Vs Vn]T , (6.6)

where Σs contains the s largest eigenvalues associated with s signals with
the highest energy (i.e., σ1, σ2, . . . , σs) and Σn contains (M − s) eigenvalues
(σs+1, σs+2, . . . , σM). It is then considered that Vs contains s eigenvectors

6.2 Sensory Inputs (Sensation) 101

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.(1st) (2nd)

. . .

. . .

. . .

(Nth)

(2)

(2)

(2)

(N−1)

(N−1)

(N−1)

(1)

(1)

(1)

2
x (k)

11
x (k)

M
x (k)

11
x (k)

2
x (k)

M
x (k)

11
x (k)

2
x (k)

M
x (k)

SSP SSP SSP

11
x (k)

M
x (k)

2
x (k)

M
y (k)

2
y (k)

11
y (k)

Fig. 6.3. Block diagram of the multi-stage SSP (up to the N -th stage) using M -
channel observations xi(k) (i = 1, 2, . . . , M); for noise reduction, it is considered
the amount of noise after the j-th SSP is smaller than that after the j − 1-th SSP
operation

associated with the signal part, whereas Vn contains (M −s) eigenvectors as-
sociated with the noise. The subspace spanned by the columns of Vs is thus
referred to as the signal subspace, whereas that spanned by the columns of
Vn corresponds to the noise subspace.

Then, the signal and noise subspaces are mutually orthogonal, and or-
thonormally projecting the observed noisy data onto the signal subspace
leads to noise reduction. The data matrix after the noise reduction Y =
[y1,y2, . . . ,yM], where yi = [yi(0), yi(1), . . . , yi(L − 1)]T , is given by

Y = XVsVT
s (6.7)

which describes the orthonormal projection onto the signal space.
This approach is quite beneficial to practical situations, since we do not

need to assume/know in advance the locations of the noise sources. For in-
stance, in stereophonic situations, since both the speech components s1 and
s2 are strongly correlated with each other, even if the rank is reduced to one
for the noise reduction purpose (i.e., by taking only the eigenvector corre-
sponding to the eigenvalue with the highest energy σ1), it is still possible to
recover si from yi by using adaptive filters (denoted ADFi in Fig. 6.2) as the
post-processors.

The Sliding Subspace Projection

In many applications, the subspace projection above is employed in a batch
mode. Here, we instead consider on-line batch algorithms for adaptively esti-
mating the subspaces which are operated in a cascade form.

Figure 6.3 shows a block diagram for the N -stage SSP. As in the figure,
the observed signals xi(k) are processed through multiple stages of SSP.

The concept of the multi-stage structure was motivated from the work of
Douglas and Cichocki (Douglas and Cichocki, 1997), in which natural gradi-
ent type algorithms (Cichocki and Amari, 2002) are used in a cascading form
for blind decorrelation/source separation.

102 6 Sensation and Perception Modules

L L

0 1 L−1 L L+1 2L−1 . . .2L

0 1 L−1 L L+1 2L−1 . . .2L

L

L

L

. . .

0 1 L−1 L L+1 2L−1 . . .2L

L

L

L

. . .

0 1 L−1 L L+1 2L−1 . . .2L

L

L

L

. . .

. . .
x

(N)

x

x(1)

(1)

(2)

x

Conventional frame−based subspace analysis

Multi−stage sliding subspace projection operation

Fig. 6.4. Illustration of the multi-stage SSP operation (with the data-reusing scheme
in (6.8)); as on the top, in conventional subspace approaches, the analysis window (or
frame) is always distinct, whereas an overlapping window (of length L) is introduced
at each stage for the M-SSP

Within the scheme, note that since the SSP acts as a sliding-window noise
reduction block and thus that M-SSP can be viewed as an N -cascaded version
of the block. To illustrate the difference between the M-SSP and the conven-
tional frame-based operation (e.g. Sadasivan et al., 1996), Fig. 6.4 is given.
In the figure, x(j) denotes a sequence of the M -channel output vectors from
the j-th stage SSP operation, i.e., x(j)(0),x(j)(1),x(j)(2), . . . (j = 1, 2, . . . , N),
where x(j)(k) = [x(j)

1 (k), x(j)
2 (k), . . . , x

(j)
M (k)] (k = 0, 1, 2, . . .). As in the figure,

the SSP operation is applied to a small fraction of data (i.e. the sequence of L
samples) using the original input at time instance k in each stage and outputs
only the signal counterpart for the next stage. This operation is repeated at
the subsequent time instances k + 1, k + 2, . . ., and thus the name “sliding”.

6.2 Sensory Inputs (Sensation) 103

The Multi-Stage SSP

Then, given the previous L past samples for each channel at time instance k
(≥ L) and using (6.7), the input matrix to the j-th stage SSP X(j)(k) (L×M)
can be given:

1) The Scheme With Data-Reusing (Hoya et al., 2003b; Hoya
et al., 2005)

X(j)(k) =
[
PX(j)(k − 1)V(j)

s (k − 1)V(j)
s (k − 1)T

x(j−1)(k)

]
,

P = [0(L−1)×1; IL−1] (L − 1 × L) (6.8)

2) The Scheme Without Data-Reusing (Hoya et al., 2004c)

X(j)(k) = X(j−1)(k)V(j−1)
s (k)V(j−1)

s (k)T (6.9)

where V(j)
s denotes the signal subspace matrix obtained at the j-th stage and

x(0)(k) = x(k),

X(j)(0) =
[
0(L−1)×M

x(j−1)(0)

]
.

In (6.8) (i.e. the operation with the data-reusing scheme), note that, in
contrast to (6.9), the first (L − 1) rows of X(j)(k) are obtained from the
previous SSP operation in the same (i.e. the j-th) stage, whereas the last row
is taken from the data obtained from the original observation (j = 0)/the data
obtained in the previous (i.e. the (j − 1)-th) stage. Then, at this point, as in
Fig. 6.4, the new data contained in the last row vector x(j−1)(k) (i.e. the data
from the previous stage) always remains intact, whereas the first (L− 1) row
vectors, i.e. those obtained by the product PX(j)(k−1)V(j)

s (k−1)V(j)
s (k−1)T

will be replaced by the subsequent subspace projection operations. It is thus
considered that this recursive operation is similar to the concept of data-
reusing (Apolinario et al., 1997) or fixed point iteration (Forsyth et al., 1999)
in which the input data at the same data point is repeatedly used for improving
the convergence rate in adaptive algorithms.

Then, the first row of the new input matrix X(j)(k) given in (6.8) or
(6.9) corresponds to the M -channel signals after the j-th stage SSP operation
x(j)(k) = [x(j)

1 (k), x(j)
2 (k), . . . , x(j)

M (k)]T :

x(j)(k) = X(j)(k)T q ,

q = [1, 0, 0, . . . , 0]T (L × 1) . (6.10)

Thus, the output from the N -th stage SSP y(k) = [y1(k), y2(k), . . . , yM (k)]T

yields:

104 6 Sensation and Perception Modules

y(k) = x(N)(k) . (6.11)

In (6.8) or (6.9), since the input data used for the j-th stage SSP are
different from those at the j − 1-th stage, it is expected that the subspace
spanned by Vs can contain less noise than that obtained at the previous
stage.

In addition, we can intuitively justify the effectiveness of using M-SSP as
follows: for large noise variance and very limited numbers of samples (this
choice must, of course, relate to the stationarity of the noise), a single stage
SSP may perform only rough or approximate decomposition to both the signal
and noise subspace. In other words, we are not able to ideally decompose the
noisy sensor vector space into a signal subspace and its noise counterpart with
a single stage SSP. In the single stage, we rather perform decomposition into
a signal-plus-noise subspace and a noise subspace (Ephraim and Trees, 1995).
For this reason, applying M-SSP gradually reduces the noise level. Eventually,
the outputs obtained after the N -th stage SSP, yi(k), are considered to be less
noisy than the respective inputs xi(k) and sufficient to be used for the input
signal to the signal enhancers.

As described, the orthonormal projection of each observation xi(k) onto
the estimated signal subspace by the M-SSP leads to reduction of the noise
in each channel. However, since the projection is essentially performed using
only a single orthonormal vector which corresponds to the speech source, this
may cause the distortion of the stereophonic image in the extracted signals
y1(k) and y2(k). In other words, the M-SSP is performed only to recover the
single speech source from the two observations xi(k).

Related to the subspace-based noise reduction as a sliding window opera-
tion, it has been shown that a truncated singular value decomposition (SVD)
operation is identical to an array of analysis-synthesis finite impulse response
(FIR) filter pairs connected in parallel (Hansen and Jensen, 1998). It is then
expected that this approach still works when the number of the sensors M is
small, as in ordinary stereophonic situations (i.e. M = 2).

Two-Channel Adaptive Signal Enhancement

Without loss of generality, we here consider a two-channel adaptive signal
enhancer (ASE, or alternatively, dual adaptive signal enhancer, DASE) in
order to compensate for the stereophonic image from the extracted signals
y1(k) and y2(k) by M-SSP.

As in Fig. 6.2, since the observations xi(k) are true stereophonic signals
(albeit noisy), it is considered that applying adaptive signal enhancers to the
extracted signals by M-SSP can lead to the recovery of the stereophonic image
in ŝi(k) by exploiting the stereophonic information contained in the error
signals ei(k), since the extracted signal counterparts are strongly correlated
with the corresponding signal of interest. The adaptive filters then function to
adjust both the delay and amplitude of the signal in the respective channels.

6.2 Sensory Inputs (Sensation) 105

Note that, in Fig. 6.2, the delay elements are inserted to delay the reference
signals xi(k) by half the length of the adaptive filters Lf :

l0 =
Lf − 1

2
. (6.12)

This is to shift the centre lag of the reference signals to the centre of the
adaptive filters, i.e. to allow not only the positive but also negative direction
of time by the adaptive filters.

This scheme is then somewhat related to direction of arrival (DOA) estima-
tion using adaptive filters (Ko and Siddharth, 1999) and similar to ordinary
adaptive line enhancers (ALEs) (see e.g. Haykin, 1996). However, unlike a
conventional ALE, the reference signal in each channel is not taken from the
original input but the observation xi(k). Moreover, in the context of stereo-
phonic noise reduction, the role of the adaptive filters is considered to be
deviated from the original DOA, as described above.

In addition, in Fig. 6.2, ci are arbitrarily chosen constants and used to
adjust the scaling of the corresponding input signals to the adaptive filters.
These scaling factors are normally necessary, since the choice will affect the
initial tracking ability of the adaptive algorithms in terms of stereophonic
compensation and may be determined a priori with keeping a good-trade off
between the initial tracking performance and the signal distortion. Finally, as
in Fig. 6.2, the enhanced signals ŝi(k) are obtained simply from the respective
filter outputs, where for the two channel case ŝi (i = 1, 2) represent the signals
after the stereophonic noise reduction.

6.2.3 Simulation Examples

Here, we consider some simulation examples with the following observations
representing a stereophonic environment:

x1(k) = a × s1(k) + n1(k),
x2(k) = a × s2(k) + n2(k), (6.13)

where s1(k) and s2(k) correspond respectively to the left and right channel
speech signal arriving at the respective microphones, n1(k) and n2(k) are the
noise components, and the constant “a” controls the input SNR. In stereo-
phonic situations, the two channel speech components s1(k) and s2(k) are
strongly correlated with each other and approximated by:

s1(k) = hT
1 (k)s(k),

s2(k) = hT
2 (k)s(k), (6.14)

where hi(k) = [hi(0), hi(1), . . . , hi(Ls−1)]T (i = 1, 2) are the impulse response
vectors of the acoustic transfer functions between the signal (speech) source
and the microphones with length Ls, and s(k) = [s(k), s(k−1), . . . , s(k−Ls +
1)]T is the speech source signal vector.

106 6 Sensation and Perception Modules

Therefore, it is considered that the respective stereophonic speech compo-
nents si(k) (i = 1, 2) are generated from one speech source using two (suf-
ficiently long) filters hi and, in reality, the stereophonic speech components
si(k) are strongly correlated with each other.

Then, the objective here is to eliminate both the noise components n1(k)
and n2(k) from the corresponding observation x1(k) and x2(k).

For the simulation examples given here, the length of the analysis matrix
was fixed to 32 for an SSP, whilst, for the DASE, the standard normalised
least mean square (NLMS) algorithm (see e.g. Haykin, 1996) was used to
adjust the adaptive filter coefficients. For each adaptive filter, the learning
constant was chosen as 0.5, and the filter lengths were 51, the latter selection
of which neither precedence effect (or, alternatively, the Haas effect) nor echo
effect was not considered to occur (Hugonnet and Walder, 1998). Moreover,
the scalar constants ci were empirically adjusted to 0.1, which moderately
suppressed the distortion and satisfied a good trade-off between a reasonable
stereophonic image compensation and signal distortion.

Figure 6.5 (a) shows the left and right channel signals of a real speech
of the sentence “Pleasant zoos are rarely reached by efficient transportation”
uttered (in English) by a male speaker, (b) the noisy speech (assuming the
input SNR=3(dB)), (c) the enhanced speech obtained from nonlinear spectral
subtraction (NSS) algorithm (Martin, 1994; Xie and Van Compernolle, 1996;
Gustafsson et al., 1999; Martin, 2001; Gustafsson et al., 2003), which is one
of the classical and most commonly used methods for (single-channel) noise
reduction, applied independently to each channel, (d) the enhanced speech by
a single stage SSP (with the data-reusing scheme given in (6.8) (Hoya et al.,
2003b; Hoya et al., 2005)), and (e) the enhanced speech by the combined SSP
and DASE method, respectively.

For the simulation example shown in Fig. 6.5, the noise components n1(k)
and n2(k) are assumed to be two i.i.d. random variables generated from the
Normal distribution.

In Fig. 6.6, another example is shown, using real speech from the same
sentence as in Fig. 6.5 but uttered by a different male speaker. In contrast to
the results in Fig. 6.5, the number of stages for the M-SSP was increased to
eight and the SSP without data-reusing scheme given in (6.9) was applied for
the results in Fig. 6.6. In Fig. 6.6 (e), it is shown that the amount of the noise
components is greatly reduced, in comparison with Fig. 6.6 (e). This indicates
the effectiveness of applying the multi-stage SSP.

As shown in Figs. 6.5 (d,e) and 6.6 (e,f), the overall shape of the speech
buried in noise is mostly recovered, whilst some voiced parts are eliminated
or greatly changed in shape in the enhanced speech by NSS in Figs. 6.5 and
6.6 (c). This can be confirmed by listening; the enhanced speech obtained
from the NSS sounds “hollow” besides the annoying additive musical tonal
noise. In contrast, the enhanced speech by the methods based upon SSP and
DASE does not have such artifacts or distortion. It can also be confirmed that

6.2 Sensory Inputs (Sensation) 107

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

x 104Sample No. (Left Channel) x 104Sample No. (Left Channel)

−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de

−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de

−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de

−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3

x 104Sample No. (Right Channel)

0 0.5 1 1.5 2 2.5 3

x 104Sample No. (Right Channel)

A
m

pl
itu

de

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3

Sample No. (Left Channel) x 104

0 0.5 1 1.5 2 2.5 3

Sample No. (Right Channel) x 104

0 0.5 1 1.5 2 2.5 3

Sample No. (Left Channel) x 104

0 0.5 1 1.5 2 2.5 3

Sample No. (Right Channel) x 104

0 0.5 1 1.5 2 2.5 3

Sample No. Right Channel) x 104

0 0.5 1 1.5 2 2.5 3

Sample No. (Left Channel) x 104

−5

0

5

10

A
m

pl
itu

de

−5

0

5

10

−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de

−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de

−6
−4
−2

0
2
4
6
8

A
m

pl
itu

de

−6
−4
−2

0
2
4
6
8

Fig. 6.5. A simulation example of stereophonic noise reduction – using a real stereo-
phonic speech for the sentence (in English) “Pleasant zoos are rarely reached by
efficient transportation” uttered by a male speaker – using the data-reusing scheme
in (6.8)

108 6 Sensation and Perception Modules

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Left Channel)

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Left Channel)

0 0.5 0 0.5

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Left Channel)

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Left Channel)

0 0.5 0 0.5

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Right Channel)

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Right Channel)

0 0.5 0 0.5

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Right Channel)

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Right Channel)

0 0.5 0 0.5

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Left Channel)

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Left Channel)

0 0.5 0 0.5

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Right Channel)

1 1.5 2 2.5

A
m

pl
itu

de

−10

−5

0

5

10

x 104Sample No. (Right Channel)

0 0.5 0 0.5

Fig. 6.6. Another simulation example – using the speech data of the same sentence
as Fig. 6.5 uttered by a different male speaker – using (6.9), i.e. the scheme without
the data-reusing, instead of (6.8)

6.2 Sensory Inputs (Sensation) 109

the two-channel signals obtained from the M-SSP sound rather dual-mono, as
described earlier, or that the spatial image is gone, whilst the stereophonic
image is recovered by the post-processing of DASE.

Next, to further confirm the aforementioned effectiveness of the combined
noise reduction scheme, we consider two objective measurements, the segmen-
tal gain3 and cepstral distance, both of which are commonly used measure-
ments for evaluating the quality in speech enhancement (see e.g. Deller et al.,
1993; Le Bouquin-Jennes et al., 1997).

Then, the segmental gain in SNR (dB) is defined as

Segmental Gain (dB) = Segmental SNR (Output)
− Segmental SNR (Input)

=
1

Mp1

M∑
i=1

p1∑
j=1

{
10 log10

‖si‖2
2

‖si − ŝi‖2
2

− 10 log10

‖si‖2
2

‖ni‖2
2

}
,

=
1

Mp1

M∑
i=1

p1∑
j=1

10 log10

‖ni‖2
2

‖si − ŝi‖2
2

, (6.15)

where M = 2 (i.e. representing the stereophonic situations), si = [si(k), si(k+
1), . . . , si(k + Nf − 1)]T , ŝi = [ŝi(k), ŝi(k + 1), . . . , ŝi(k + Nf − 1)]T , ni =
[ni(k), ni(k+1), . . . , ni(k+Nf −1)]T , (k = (j−1)Nf , (j−1)Nf +1, . . . , jNf −
1, j = 1, 2, . . . , p1) are respectively the clean speech, enhanced speech, and
the noise signal vector, and where Nf is the number of the samples in each
frame and p1 is the number of the frames.

The averaged cepstral distance dcep is given by

dcep =
1
M

M∑
i=1

1
p2,i

p2,i∑
j=1

2q∑
k=1

(ci,k(j) − c′i,k(j))2, (6.16)

where ci,k(j) and c′i,k(j) are the cepstral coefficients corresponding to the
clean and the enhanced signal at left/right channel, respectively. The para-
meter q is the order of the model, and p2,i (i = 1, 2) is the number of frames
where speech is present. The determination of speech presence was achieved

3Imagine the situation where both the input and output SNRs are high (at 10dB
and 22dB for the input and output SNR, respectively). Then, the conventional seg-
mental SNR cannot fully explain how much noise reduction we actually gain, if the
input SNR varies greatly (from 5dB to 20dB, say). Hence, we instead consider the
segmental gain in SNR as a measurement for noise reduction, since this measurement
is also dependent upon the input SNR. (However, in real situations, we normally
cannot know both the input and output SNRs.) Nevertheless, in general, the quality
of speech enhancement does not always match the subjective evaluation (i.e. the lis-
tening tests) and thus, how to evaluate objectively the enhancement quality remains
still an open issue (see e.g. Deller et al., 1993).

110 6 Sensation and Perception Modules

by manual inspection of the clean speech signals. (Note that normally the
numbers of the frames p1 �= p2,i.)

Figure 6.7 (a) shows a comparison of the segmental gain (given by (6.15))
versus input SNR, for the single stage SSP (with the data-reusing scheme de-
fined in (6.8))4. (For the case without the data-reusing scheme, similar results
to Fig. 6.7 were obtained. See Hoya et al. (2003b); Hoya et al. (2005) for the
detail.)

The results shown in Fig. 6.7 are those averaged over three different speech
samples (collected from the corresponding number of speakers, including both
the female and male native speakers) of the same sentence used for the simula-
tion examples given so far. In the figure, the performance of the three different
noise reduction algorithms, i.e. 1) SSP (using only an SSP), 2) SSP+DASE
(i.e. the combination of an SSP and DASE), and 3) NSS algorithm, is com-
pared. For the NSS algorithm, since the performance dramatically varies with
the parameter setting (i.e. the NSS algorithms generally have a large degree of
freedom in the parameter setting, as described later), three different parame-
ter settings were attempted (indicated as NSS1, NSS2, and NSS3 in Fig. 6.7).

In the figure, at lower SNRs, the performance with NSS is better than
the other two, whilst at higher SNRs the SSP+DASE algorithm is the best.
However, at lower SNRs, as in Fig. 6.7 (a), the performance in terms of cepstral
distance with NSS (for all the three parameter settings) is poorest amongst
the three. As in Fig. 6.7 (a), at around SNR > 5(dB), it is clearly seen
that the combination of the SSP and DASE yields performance improvement
of more than 3(dB) over the case using only the SSP. As the performance
improvement of SSP together with the DASE approach observed in Figs. 6.7
(a) and (b) compared to that of only using a single stage SSP, the enhanced
signal obtained after the DASE is much closer to the original stereophonic
speech signal than that after the SSP.

To see intuitively how the stereophonic image in the enhanced signals by
SSP+DASE can be recovered, the scatter plots are shown in Fig. 6.8, where
the parameter settings are all the same as those for Fig. 6.5.

In Fig. 6.8(e) (in the figure the labels “ss1” and “ss2” correspond to ŝ1

and ŝ2, respectively, whereas those “nss1” and “nss2” correspond respectively
to the enhanced signals obtained by the NSS method), it is observed that
the pattern of the scatter plot for the enhanced speech after the SSP+DASE
somewhat approaches that of the original stereophonic speech as in Fig. 6.8(a),
in comparison with that for the speech obtained by applying only the (single
stage) SSP shown in Fig. 6.8(d) is considered as rather monaural (which
also agreed with the informal listening tests), since the distribution of the
data points are more concentrated around the line s1 = s2 than the case of
SSP+DASE.

4For the computation of segmental gain given in (6.15), the setting Nf = 256
was used, whereas q = 8 for the cepstral distance in (6.16). Note that the number
of frames p1 and p2,i normally varies with the speech data.

6.2 Sensory Inputs (Sensation) 111

−10 −5 0 5 10 15 20

Input SNR [dB]

(a) Comparison of the segmental gain

Se
gm

en
ta

l G
ai

n
[d

B
]

SSP
SSP+DASE
NSS1
NSS2
NSS3

SSP+DASE
SSP

NSS3

−2

0

2

4

6

8

10

12

−10 −5 0 5 10 15 20
Input SNR [dB]

(b) Comparison of the cepstral distance

C
ep

st
ra

l D
is

ta
nc

e

SSP
SSP+DASE
NSS1
NSS2
NSS3

NSS3

SSP+DASE

SSP

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 6.7. Performance comparison using the two objective measurements, segmental
gain and cepstral distance – averaged over the results using three different speech
samples (obtained by applying the data-reusing scheme in (6.8))

112 6 Sensation and Perception Modules

s 2 x 2

−8 −6 −4 −2 0 2 4 6 8 10

−6 −4 −2 0 2 4 6

ns
s 2

nss2

−6

−4

−2

0

2

4

6

8

−8

−6

−4

−2

0

2

4

6

8

10

−6 −4 −2 0 2 4 6

s2 x2

−4

−3

−2

−1

0

1

2

3

4

5

y1

y 2

ss
2

−8

−6

−4

−2

0

2

4

6

8

−6

−4

−2

0

2

4

6

8

10

−8 −6 −4 −2 0 2 4 6 8

ss1

−8 −6 −4 −2 0 2 4 6 8

Fig. 6.8. The scatter plots obtained using the same speech data and algorithms as
in Fig. 6.5

In Fig. 6.8(c), it is also observed that some data points in the original
signals are lost (especially at lower-left corner) and that the shape of the
cluster is somewhat altered in the enhanced signal by the NSS. This coincides
with the empirical fact that the enhanced speech by the NSS can be greatly
changed in shape.

6.2 Sensory Inputs (Sensation) 113

6.2.4 Other Studies Related to Stereophonic Noise Reduction

As described earlier, noise reduction has been an active area of research in
speech enhancement in the last few decades.

In widely used NSS methods (Martin, 1994; Xie and Van Compernolle,
1996; Gustafsson et al., 1999; Martin, 2001; Gustafsson et al., 2003), both
the speech and noise spectra of the noisy speech data are independently esti-
mated by using sample statistics obtained over some number of frames, and
then noise reduction is performed by subtracting the spectrum of the noise
from that of the observed data. Due to the block processing based approach,
however, it is well known that such methods introduce the undesirable musical
tonal noise in the enhanced speech, as observed in the simulation examples. As
observed in Figs. 6.5 and 6.6, such methods also remove some speech compo-
nents in the spectra which are fundamental to the intelligibility of the speech
in many cases. This is a particular problem at lower SNRs. Moreover, the
performance is also quite dependent on the choice of many parameters, such
as spectral subtraction floor, over-subtraction factors, or over-subtraction cor-
ner frequency parameters. To find the optimal choice of these parameters in
practice is therefore very difficult.

Recently, in the study of blind signal processing, one of the most active
and potential application areas has been speech separation (Haykin, 2000),
and a number of methods for blind separation/deconvolution of speech have
been developed (Jutten and Herault, 1991; Nguyen Thi and Jutten, 1995;
Torkkola, 1996; Cichocki and Amari, 2002). These methods work quite well,
as long as each sensor is located close to each source. However, separation of
the speech from noise is still difficult when all the sensors are located close to
one dominant source but far from the others, as in cocktail party situations.
This sensor configuration is typically employed in practice, for example, as in
stereo conferencing systems; two microphones being placed in parallel to each
other in front of the speaker at a reasonable distance. Moreover, the existing
blind separation/deconvolution methods quite often fail to work where there
are more sources than sensors.

In contrast, in the study of biomedical engineering, it has been reported
that the utility of the subspace method implemented using the singular value
decomposition (SVD) is to successfully enhance nonaveraged data (see e.g.
Karjalainen et al., 1999; Kobayashi and Kuriki, 1999). In the technique, the
space of the observed data is partitioned into both the signal and noise sub-
spaces. Elimination of the noise is thereby achieved by orthonormal projection
of the observed signal onto the signal subspace, with the assumption that the
signal and noise subspaces are orthogonal.

In recent studies, a number of SVD based methods have also been de-
veloped for speech enhancement (Dendrinos et al., 1991; Ephraim and Trees,
1995; Jensen et al., 1995; Hansen, 1997; Asano et al., 2000; Doclo and Moo-
nen, 2000, 2002). For instance, a Toeplitz (or Hankel) structured data matrix
representation is employed within the subspace decomposition operation, and

114 6 Sensation and Perception Modules

thereby the data matrix is decomposed into signal-plus-noise subspace and
a noise subspace rather than signal and noise subspaces (see Ephraim and
Trees, 1995; Jensen et al., 1995; Doclo and Moonen, 2002). However, little
attention has generally been paid to the extension to multichannel outputs.

As described so far, the combined multi-stage SSP and ASE method
works even with the small number of sensors M = 2, whilst the conven-
tional approaches such as adaptive beamforming (Howells (1976), see also
Haykin (1994) and Hudson (1981)) normally require many number of sen-
sors to function robustly. Moreover, similar to the aforementioned blind sep-
aration/deconvolution methods, the traditional adaptive noise cancelling ap-
proaches (Widrow et al. (1975), see also Haykin (1994)) have the constraint
that one of the sensors must be located close to the noise (or, the reference
signal) source. In the scheme described above, such constraint does not exist.

The drawbacks of the combined noise reduction scheme described so far
may be the computational complexity required for the SSP part with the
order O(L3/3) (L: length of the analysis matrix), due to the Cholesky’s de-
composition, which is normally used for the computation of EVD (for more
information, see e.g. Golub and Van Loan, 1996), and thus how to efficiently
estimate the subspaces still remains an open issue. Nevertheless, this could be
relaxed by exploiting on-line subspace estimation approaches (see e.g. Badeau
et al., 2004).

6.3 Perception – Defined as the Secondary Output
of the AMS

As in Fig. 5.1 (on page 84), the perception module is defined as the secondary
output of the AMS and differed from the primary outputs. This is since the
perceptual outputs are considered to be intermediate representation of the
processes occurred within the AMS, whilst the primary outputs are all re-
lated to real actions, which can physically affect the surrounding environment
and/or vary the conditions of the body.

6.3.1 Perception and Pattern Recognition

In the AMS, the utility of the term perception is limited in the sense that
the AMS performs various pattern recognition tasks when required from the
other modules (thus to give the detailed accounts/justifications in terms of
philosophical context is beyond the scope), and, therefore, to internally rep-
resent the recognition results for a further data processing within the AMS is
meant to be “perception”.

As in Fig. 5.1 (on page 84), the pattern recognition results are considered
to be obtained by accessing the contents of the various LTM/LTM-oriented
modules, or the instinct: innate structure module via the other modules,
where necessary. Then, the pattern recognition results are fed back to the

6.4 Chapter Summary 115

STM/working memory module, for a further data processing (for the de-
tail, see Sect. 8.3). Therefore, the perception module is closely interrelated to
the memory modules described in Chap. 8.

In practice, it is more than desirable that the data processing from the
LTM/innate structure modules to perception (i.e. the secondary output)
module is quickly done within the AMS; e.g. as soon as the AMS receives the
sensory data (or the feedbacks from other modules) by the sensation module
and sends them to the STM/working memory, it is possible that the AMS can
immediately yield the intermediary perceptual outputs, which in general may
be represented in the form of a series of pattern recognition results. However,
within the AMS context, how actually the sensory data are treated is quite
dependent upon the internal states of the STM/working memory and/or the
other associated modules, as will be described in later chapters; the sensory
data used for further data processing may be differed from the original by
such modules, even if the same sensory data are given to the AMS. Thereby,
it is also possible that the timing to yield the perceptual outputs may be
desynchronised with receiving the sensory data.

In addition, it is also considered that in practice the outputs from the
perception module (i.e. the module responsible for yielding the pattern recog-
nition results) are not necessarily visible from the external observers for the
AMS to actually function. Nevertheless, by having such visible perceptual
outputs, it will be convenient for the external observers (e.g. us) to know the
internal representations, e.g. for the purpose of tracing the processes occurring
within the AMS and investigating the behaviour, which can be quite helpful,
e.g. at the developmental stage of AI.

6.4 Chapter Summary

In this chapter, the two modules of sensation and perception within the
AMS have been described.

As described, the sensation module can be regarded as the input module
of the AMS, which interacts with the outside world, receives, and eventually
encodes the data into those efficiently processed by the other modules within
the AMS. In the description of the sensation module, a practical example of
pre-processing mechanism, namely the stereophonic noise reduction, in which
the humans binaural data processing is modelled, has been focused through
extensive simulation examples and the analyses on the results. The topic of
noise reduction is considered to be one of the important and fundamental parts
of sensation. Although the noise reduction approach given in this chapter has
been considered rather within only the scope of pure signal processing, we will
soon return to the issue related to the noise reduction within a more general
principle of learning in the next chapter.

116 6 Sensation and Perception Modules

On the other hand, within the AMS principle, the perception module has
been defined as the module which generates a series of pattern recognition
results and feeds it back to the STM/working memory module for a further
data processing amongst the other modules. Then, in Chap. 8, we will focus
upon various memory modules within the AMS, which is closely related to
both the sensation and perception modules given in this chapter.

7

Learning in the AMS Context

7.1 Perspective

In this chapter, we dig further into the notion of “learning” within the AMS
context. In conventional connectionist models, the term “learning” is almost
always referred to as merely establishing the input-output relations via the
parametric changes within such models, and the parameter tuning is typically
performed by a certain iterative algorithm, given a finite (and mostly static)
set of variables (i.e. both the training patterns and target signals). However,
this interpretation is rather microscopic and hence still quite distant from the
general notion of learning, since it only ends up with such parameter tuning,
without giving any clear notions or clues to describe it at a macroscopic level,
e.g. to explain the higher-order functions/phenomena occurring within the
brain (see e.g. Roy, 2000).

Thus, we firstly begin with the consideration of how the general notion of
learning can be interpreted in terms of the interactive processes between the
various modules within the AMS and outside the world.

Then, it is described that the learning process is referred to as outcome of
the interactive processes between the various modules within the AMS and can
be eventually ascribed to both the parametric and structural changes within
the associated modules. Amongst all such modules, the memory modules play
the central role, the modules of which will be described at full length in the
next chapter.

7.2 The Principle of Learning

In real life, it is intuitively/naturally considered that not only the sensational
and perceptual mechanisms but also other functionalities have been evolved
in structure, through generations by generations, in order to adapt them-
selves and survive in the surrounding environment and varying situations
for the continuous existence of the species. Thus, this always involves the

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 117–133 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

118 7 Learning in the AMS Context

Other
Modules
in AMS

Sensory

Memory
Modules

Inputs

C

Pattern
Recognition

ResultsSensation
Module Module

Perception

Reinforcement Signals

(Error)

Fig. 7.1. A macroscopic representation of the general evolutionary process in terms
of sensation, memory, perception, and other modules within the AMS

interaction between the individuals and the outside world. (In this respect, the
concept of learning agrees with the general “feedback” principle (see Wiener,
1948; Simon, 1996).) For instance, it is generally acknowledged that, as a
consequence of the adaptation, we human-beings are equipped with five sen-
sors to acquire and process auditory, gustatory, olfactory, tactile, and visual
information, so as to interact with the world.

In the previous chapter, it has been described that the sensation module
in AMS can be regarded as a combination of multiple sensors and a cascade of
the pre-processing units. It is then considered that some of the pre-processing
units within the sensation module, as well as the memory modules, must also
be evolved, according to the incessantly varying conditions. In this principle,
a macroscopic representation of this general evolutionary process for both the
sensation and perception modules can be illustrated in Fig. 7.1.

As in Fig. 7.1, after that the AMS receives the sensory inputs from the
sensation module, the memory modules process the (encoded) data, which are
obtained from a certain number of pre-processing stages within the sensation
module, and the perception module eventually yields the pattern recognition
results as the secondary outputs of the AMS. Along with this regular data
processing, the AMS also performs its self-adaptation to the current situa-
tions; in Fig. 7.1, the “C” in the circle denotes a comparator between the
perceptual outputs (i.e. pattern recognition results) and reinforcement signals
(or target responses) and yields the “error” sequence. This error sequence is
then used to re-structure both the sensation and memory modules. (In ad-
dition, albeit not explicitly shown in Fig. 7.1, it is implied that, besides the
sensation and perception, other modules can be re-structured by the interac-
tive processes with the memory modules. Later in the present chapter, this
will be discussed further.)

Therefore, it is said that the macroscopic representation in Fig. 7.1 de-
scribes the general concept of “reinforcement learning” (Turing, 1950; Minsky,
1954; Samuel, 1959; Mendel and McLaren, 1970). Within the AMS context,
the notion of learning is accordingly defined, in such a way that the whole
system is evolved according to the reinforcement (or, rewards). As depicted in
Fig. 7.1, the signals for the reinforcement are then regarded as the outcomes

7.3 A Descriptive Example of Learning 119

of the interactive processes between the memory and/or other modules within
the AMS and eventually used to self-evolve the entire system.

In Fig. 7.1, the directional flow from the memory modules to the com-
parator indicates some possibility that the reinforcement signals for evolving
some parts of the memory modules can be given from the others; i.e. imagine
a situation that a certain SOKM is responsible for a particular domain of
the auditory sensory (or the encoded) data, the reinforcement signals for the
SOKM can be eventually given from, say, the other SOKM(s) responsible for,
e.g. the corresponding visual counterpart.

7.3 A Descriptive Example of Learning

Now, in order to see more in detail what processes in terms of learning can
be involved within the AMS, let us examine a simple example of general
learning, imitating a situation that a child is about to learn how to pitch
a ball to the targeted point (e.g. a catcher sitting moderately far in front);
intuitively, within the AMS context, the following five major steps are then
considered to be involved:

Step 1) Perception of the targeted position.
Step 2) Motion planning (or thinking) – for pitching a ball

to the targeted position.
Step 3) Performing real (motoric) actions – to actually

pitch a ball.
Step 4) Perception of the success/failure.

• If the AMS recognises it as a success, go to Step
5).

• Otherwise, go back to Step 2).
Step 5) Updating the contents of (long-term) memory (i.e.

“learning by heart”).

As depicted in Fig. 7.1, Step 1) in the above involves the following three
minor steps: 1) the data processing within the sensation module (i.e. per-
forming a series of pre-processing actions to encode the incoming raw data,
e.g. encoding the visual sensory data of the targeted position for a further
processing within the AMS); 2) the interactive processes with using the en-
coded data obtained in 1) between the memory modules and other associated
modules within the AMS; and eventually 3) the data processing to yield subse-
quently the perceptual outputs obtained from the perception (or secondary
output) module by accessing the (long-term) memory modules (where ap-
propriate). As described in the previous chapter, the perceptual outputs are
generally given in the form of pattern classification results within the AMS
context.

120 7 Learning in the AMS Context

Then, in Step 2), motion planning is (mainly) performed via the think-
ing module, in order to pitch a ball so that it reaches the exact position of
the target established in Step 1). This planning is mainly carried out on the
basis of the three factors: 1) the perceptual outputs of the targeted position
obtained in Step 1); 2) the perception (or “recall”) of the physical limitations
given by the innate structure; and 3) the interactive data processing with
the other modules attached/functioning in parallel, i.e. the STM/working
memory, attention, emotion, or intuition module.

Once the planning is completed, in Step 3), the AMS activates the kernel
units within the specific areas of the implicit LTM (e.g. such as procedural
memory, to be described in Sect. 8.4.2), the kernel units of which are directly
connected to the primary output module, by following (one by one) the
planning procedure so established in Step 2) (which can be temporarily rep-
resented e.g. as a form of the kernel network within the STM/working memory
module), in order to actually perform a series of the motoric actions and pitch
a ball towards the target.

In Step 4), it is considered that the perception of success/failure falls in
either of the two cases: perception of the success or failure i) during perform-
ing the motoric actions in Step 3); and ii) after that the ball is released from
the body. For the former, it is implied that the actual motoric actions being
performed are also (somewhat) monitored via the feedback inputs, i.e. the
connection between the STM/working memory and primary output modules,
as in Fig. 5.1. Then, by comparing, one by one, these feedbacks and a sequence
of the planned (or, imagined) tasks during the performance, the AMS can per-
form the perception of the success/failure. In contrast, the latter implies the
perception, if the ball so released can reach/has reached the target, via the
sensory data (i.e. the visual/auditory sensory data) so processed. Thus, the
manner of perception in both the cases i) and ii) can be a similar one to that
performed in Step 1). Nevertheless, it is said that, for both cases, the percep-
tion of success/failure therefore strongly depends upon the outcomes of the
interactive processes within the STM/working memory and other associated
modules.

Lastly, Step 5) involves restructuring/updating the contents of the memory
modules to complete the learning process; the resultant perceptual processes
performed in Steps 1, 2, and 4) not only yield the sequential activations from
a particular set of kernel units but also (temporarily) leave the “trace” of
such activations within the STM/working memory module. In other words,
some “outstanding” events to the AMS (e.g. the result of the failure in the
first trial) occurred during the learning process in Steps 1–4) will remain
in the memory for a certain period of time, under the assumption that not
all but some events are left within the memory. This is considered, due to
e.g. the memory capacity of the STM/working memory or, eventually, even
the innate structure (as well as emotion, since it is considered to function
in parallel to the innate structure: instinct module) module to influence the
“importance” of the events. In the AMS context, such memory trace can

7.4 Supervised and Unsupervised Learning in Conventional ANNs 121

then be represented by both the kernel units and their link weights remaining
within the STM/working memory and, later, may be eventually transferred
to the LTM modules (or, in other words, the events are “imprinted” within
the LTM). As will be explained in detail in Sect. 8.3, this involves the inter-
active data processes between the STM/working memory and explicit LTM
module.

In summary, the major Steps 1–5) in the above show an example of gen-
eral learning within the AMS context, whilst Step 5), which results in the
formation/restructuring of the LTM modules, can be referred to as (in a nar-
rower sense of) “learning” in terms of the memory context (for a thorough
psychological justification, cf. Anderson, 2000).

7.4 Supervised and Unsupervised Learning
in Conventional ANNs

In conventional ANNs, the manner of “learning” can be classified into two cat-
egories, i.e., supervised and unsupervised learning. In the supervised learning
scheme, the target response (or, the teacher signal) is normally required, and
in practice such response is artificially given/pre-determined and only used to
establish the input-output mappings (e.g. the mappings between the training
and target responses data given) by such networks. Thus, the learning is, in
a strict sense, not autonomous at all, since the target values are normally
pre-determined by humans, and hence the utility of the term “learning” is
restricted. In contrast, within the unsupervised scheme, though this sort of
target responses is not necessary, the manner of the mapping construction us-
ing ANNs is usually quite dependent upon the statically-given training data
set (i.e. in the statistical context, and also, the order of presenting the train-
ing patterns often affects the performance in e.g. constructive approaches).
Moreover, within the ordinary learning schemes in the ANN context, the dis-
tinction between the data used and those not desirable for the training, such
as the so-called “noisy” data or “outliers”, is normally made only in a strict
statistical sense.

However, it is considered that such distinction would be only effective to
e.g. achieve a (statistical) function approximation or construct a static pat-
tern classifier, but ineffective to develop a more dynamic scheme; at some
time, the data can be regarded as simple noise, but some other time(s), even
they are treated oppositely, i.e. as the information of interest for an intelligent
mechanism. Then, the decision must be quite dependent upon e.g. the internal
states/innateness of the whole system (e.g. due to the emotion module, to be
described in Chap. 10). For instance, imagine a situation that we would like
to realise the mechanism, as in the descriptive example in Sect. 5.2.2, that a
specific voiced input, i.e. the (encoded) auditory data of a friend’s whisper-
ing, can be regarded as simple noise, whilst we are attentive to the orchestral
sound data (see also (in p.7) Minsky, 1979).

122 7 Learning in the AMS Context

7.5 Target Responses Given as the Result
from Reinforcement

As described above, in conventional ANNs, the target responses within the
supervised learning scheme are in practice given by humans.

In contrast, these externally given or “straightforwardly provided” target
values are generally not considered within the AMS context; even if the (so-
called) target responses are presented to the AMS (e.g. by humans), such
responses are firstly received by the sensation module, then the perceptual
outputs are fed back to the STM/working memory module via the LTM mod-
ules, processed by the associated modules, and eventually used for performing
the evolutionary process (or, in other words, the “self-evolutionary” process
by the AMS) as illustrated in Fig. 7.1. Thus, it is not always true, as we hu-
mans, that these “target” responses given externally are processed and used
in the original forms within the AMS; the responses may be “coordinated” (or
modified) by some associated modules (and in due course even the outcome
may be completely different from those originally presented to the AMS), e.g.
due to the strong influence by the innate structure (or the “instinct” module)
of the AMS (to be described in Sect. 8.4.6) which defines the “life values” (or
the preset values e.g. inherent to the physical limitation of the system). Then,
it is said that how to deal with the target responses given externally depends
upon the resultant internal processes occurring within the AMS, unlike con-
ventional ANN schemes. (In this principle, the term “reinforcement” is more
appropriate within the AMS than the “target responses”.)

In conventional GRNNs/PNNs, to “learn” adds/removes the RBFs from
the network and then simply assigns the target values to the corresponding
weights between the neurons in the hidden and output layers (as described
in Sect. 2.3.1). In this sense, it is also seen that the latter sense of learn-
ing, i.e. the assignment of the target values is equivalent to establishing the
connections between the two distinct layers. Then, generalising this leads to
learning in the AMS context1; in kernel memory, since lateral connections are
allowed, such distinct layers do not exist, and, ultimately speaking, “learning”
is attributed to establishing the connections between the kernel units (as well
as adding/removing kernel units, where appropriate) and set the link weight
values in between, after the interactive processes between various modules.

In general pattern classification tasks, the learning is hence meant to be
the establishment of the connections between the kernel units representing
the objects and those representing the target values. For the kernel units rep-
resenting such target values, either ordinary or symbolic kernel units (i.e. the
latter with the kernel function given as (3.11)) may be exploited.

Then, it is intuitively considered that such target value (or teacher/the re-
inforcement signal) can be given from the kernel unit(s) which has successfully

1Note that, as described in Chap. 3, there are no strict sense of layers defined
within the kernel memory concept, unlike in ordinary GRNNs/PNNs, and that the
connections between the kernel units and those representing the output nodes can

7.6 An Example of a Combined Self-Evolutionary Feature Extraction 123

remained, e.g. within a certain SOKM for a relatively long period of time (i.e.
LTM), yields consistently the proper activations by the appropriate stimuli,
and thus may have more connections (or associations via the link weights with
other kernel units) than the newly added kernel unit(s). (Thus, this notion
somewhat resembles a scenario that a “teacher” provides students some di-
rections, in order to give them the opportunities to expand their knowledge,
or “associate”/“link” their already acquired knowledge with other matters).

In other words, during the learning process of memory modules, though
initially the SOKMs responsible for the respective domains/modalities are
formed rather in an unsupervised manner, they in contrast can be consolidated
rather in a supervised manner in the later process, due to e.g. the reinforce-
ment signal(s) given from a cluster of the kernel units (and/or the (symbolic)
kernels representing the class labels) formerly formed in other modalities.

7.6 An Example of a Combined Self-Evolutionary
Feature Extraction and Pattern Recognition
Using Self-Organising Kernel Memory

In conventional approaches, the topics of feature extraction and pattern recog-
nition have normally been dealt with separately from each other. In feature
extraction, the raw data received by sensors are generally encoded into some
other forms (or “patterns”) to be relatively conveniently handled by the post-
processors. In contrast, in pattern recognition, classification of the patterns
obtained after the feature extraction process is actually performed by the
(so-called) post-processors; i.e. the “pattern classifiers”.

Here, as an example of the reinforcement learning, we consider a model of
combined feature extraction and pattern classification using the self-organising
kernel memory (in Chaps. 3 and 4) that can self-evolve according to the time-
varying situations. Without loss of generality, we here limit ourselves to con-
sider that the reinforcement signals are already given.

Figure 7.2 shows the block diagram of a combined self-evolutionary fea-
ture extraction and pattern recognition system. As in Fig. 7.2, the system
consists of the five units; i.e. 1) the sampling unit2; 2) the subband coding
unit; 3) the unit to form the input data for SOKMs; 4) that consisting of
the SOKMs; and 5) that generating the reinforcement signals (or target re-
sponses) to restructure (or perform the reinforcement learning of) the units
1)-4), with respect to the error between the pattern recognition results and

be varied without affecting the contents of the memory (stored as a form of the
template vectors) within the kernel functions.

2In Fig. 7.2, without loss of generality, a digital system is assumed, with the
principle that normally in practice the data can be more conveniently/efficiently
handled by the current digital systems than analog ones. However, it can also be
possible to generalise this diagram for analog systems.

124 7 Learning in the AMS Context

Unit

Sampling
C

Target Response /

Subband

Subband

Subband
1

2

N

M

Unit 3) Unit 4)

Recognition

Unit 5)

Kernel Memory

Self−Organising
Error

Reinforcement

Unit 2)Unit 1)

Results
Inputs

Sensory

...

...

Fig. 7.2. Block diagram of a combined self-evolutionary feature extraction and
pattern recognition system – consisting of the five units: 1) the sampling unit; 2)
the subband coding unit; 3) the unit to form the input data for SOKMs; 4) that
consisting of the SOKMs; and 5) that generating the reinforcement signals (or target
responses) to restructure the units 1)-4), with respect to the error between the
pattern recognition results and the target values obtained from the comparator
(denoted in “C” in the circle)

the target values obtained from the comparator (denoted by “C” in the circle,
corresponding to that in Fig. 7.1 (on page 118)). Then, the first four units
1)-4) will be evolved in their structure by the reinforcement learning.

In the AMS context, it can be seen that the units 1)-3) belong to the sen-
sation module, whereas the units 4) and 5) involve the memory modules (as
well as the innate: instinct module) and both the primary and secondary:
perceptual output modules.

Now, we consider each of the five units in more detail in the following three
subsections.

7.6.1 The Feature Extraction Part: Units 1)-3)

In Fig. 7.2, it is considered that the subband unit 2) can be represented by a
bank of bandpass filters (e.g. realised by the approach using quadrature mir-
ror filters (QMFs)) (see e.g. Crochiere and Rabiner, 1983; Deller et al., 1993)
or the time-frequency analysis with the utility of wavelets (see e.g. Mallat,
1999)3, etc. For the feature extraction part in Fig. 7.2, it is assumed that the
sampling rate in Unit 1) and both the number of subbands and parameters
for the respective filter banks (i.e. the filter coefficients to determine e.g. the
pass, transition, or stop-band) in Unit 2) can be varied.

Note that, as aforementioned in Sect. 6.2.1, a subband structure can in
general be regarded as the pre-processing mechanism, which is universal to

3In the case of exploiting a time-frequency analysis, both Units 2) and 3) can be
represented at a time.

7.6 An Example of a Combined Self-Evolutionary Feature Extraction 125

the sensory modality in humans such as auditory, visual, or olfactory, and
thus that the feature extraction part in Fig. 7.2 could also be universal to de-
scribe the models for the other two modalities: gustatory and somatosensory.
In a more engineering context, we even may (and in practice we do) exploit
further the subband structure to the pre-processing of both the biomedical
data, e.g. electrocardiography (ECG), electromyography (EMG), or the brain
wave related representations, such as electroencephalography (EEG), func-
tional magnetic resonance imaging (fMRI), magnetoencephalography (MEG),
positron emission tomography (PET), or single-photon emission computed to-
mography (SPECT), and non-biomedical signals, e.g. communication, radar,
seismic, or sonar sensory signals.

In Unit 3), the subband data obtained from Unit 2) will be collected (in
time-wise or, in other words, in the form of “frames”) data and eventually
sent to Unit 4) as the feature data for the post pattern classifiers. Thus, dur-
ing the reinforcement learning process performed by Unit 5), the parameter
which determines the number of frames (and, if appropriate, those in some
other functions to form the feature data) can also be varied.

7.6.2 The Pattern Recognition and Reinforcement Parts:
Units 4) and 5)

In contrast to Units 1)-3), Unit 4) actually performs the pattern recogni-
tion, consisting of several (sub-)SOKMs, the structure of which will be varied,
during the reinforcement learning process, and eventually sends the pattern
recognition results obtained from such sub-SOKMs to Unit 5).

Now, let the subband data obtained from Unit 2) at time index n (i.e. for
a single frame) be

x(n) = [x1(n), x2(n), . . . , xN (n)]T , (7.1)

then, after the data arrangement in Unit 3), the input data to the sub-SOKMs
Y(n) can be written (in a matrix form):

Y(n) = f([x(n),x(n − 1), . . . ,x(n − M + 1)]) , (7.2)

where the function f(·) can be given 1) to smooth the envelope further at
each frame (i.e. in a row-wise operation), 2) to quantise the data further in
time-wise (i.e. in a column-wise operation), and/or 3) to normalise the values
of the data (i.e. in both the row and column-wise operation), e.g., as afore-
mentioned, for keeping a “well-balanced” set of data points for the pattern
space. Thus, the size of the data matrix Y (n) can also be varied to (N ′×M ′),
where N ′ ≤ N and M ′ ≤ M .

In Unit 4), it is considered that, although the sub-SOKMs in Fig. 7.2 are
considered to be responsible for a single modality (e.g. a certain auditory
sensory data), they can be configured differently from each other; i.e. each
sub-SOKM consisting of the kernel units (and the connections via the link

126 7 Learning in the AMS Context

weights) with having their template vectors (defined in a different dimension-
ality) to represent other modality.

Then, during the learning process, the respective sub-SOKMs can be re-
configured within the so-called competitive learning principle (for the general
notion, see von der Malsburg, 1973)4, to be described later.

7.6.3 The Unit for Performing the Reinforcement Learning:
Unit 5)

As aforementioned, Unit 5) sends the reinforcement signals to reconfigure the
units 1)-4). In this example, for simplicity, it is assumed that the reinforce-
ment signals are given, i.e. based upon the statistics of the errors between the
pattern recognition results and externally provided (or pre-determined) target
responses, as in ordinary ANN approaches. (In such a case, the comparator
denoted by “C” in the circle in Fig. 7.2 can be replaced with a simple operator
that yields the error.) However, within a more general context of reinforce-
ment learning as described in Sect. 7.5, the target responses (or reinforcement
signals) can be given as the outcome from the interactive processes between
the modules within the AMS.

7.6.4 Competitive Learning of the Sub-Systems

Without loss of generality5, as shown in Fig. 7.3, consider that the combined
self-evolutionary feature extraction and pattern recognition system, which is
responsible for a particular domain of sensory data (i.e. for a single cate-
gory/modality), consists of the two (partially distinct) sub-systems A and B.

Then, suppose that the respective feature extraction (i.e. Units 1)-3))
and pattern classification parts (i.e. Unit 4) are configured with two distinct
parameter sets A and B; i.e. both feature extraction A and sub-SOKM A
have been configured with parameter set A during a certain period of time
p1, whereas both feature extraction B and sub-SOKM B have been formed
with parameter set B during the period p2, and that both the sub-systems
are working in parallel.

Based upon the error generated from the comparator C1 (attached to both
the sub-SOKMs A and B), the comparator C2 within Unit 5) yields the sig-
nals to perform the competitive learning for sub-system A and B; i.e. firstly,
after the formation of the two sub-systems in the initial periods p1 and p2,

4Note that, unlike in ordinary ANNs context (e.g. Rumelhart and Zisper, 1985),
here the terminology “competitive learning” is used in the sense that the competitive
learning can be performed at not only neuronal (i.e. kernel unit) but also system
levels within AMS.

5The generalisation for the cases where there are more than two sub-systems is
straightforward.

7.6 An Example of a Combined Self-Evolutionary Feature Extraction 127

A
Feature Extraction

B
Feature Extraction

A
Sub−SOKM

B
Sub−SOKM

C 1

C 1

C 2

Units 1−3) Unit 4) Unit 5)

Inputs

Sensory

Fig. 7.3. An example of competitive learning within the self-evolutionary feature
extraction and pattern recognition system – two (partially distinct) sub-systems A
and B reside in the system

the statistics of the error between the reinforcement signals (target responses)
given and pattern classification results for both the sub-systems A and B
will be taken during a certain period p3. Then, on the basis of the statistics
taken during the period p3, if the error rates obtained from sub-system A are
higher than those from sub-system B, for instance, only sub-system A can
be intensively evolved (i.e. some of the parameters within the units 1)-4) of
sub-system A can be varied greatly), whilst sub-system B is (almost) fixed,
with only allowing some small changes in the parameter settings which do
not give a significant impact upon the overall performance6, during the sub-
sequent period of time p4. Similarly, this process is repeated endlessly, or e.g.
until reasonable pattern classification rates are obtained by either of the two
sub-systems. Figure 7.4 illustrates an example of the time-course representa-
tion of this repetitive process.

Moreover, it is also considered that, if either of the two does not func-
tion well (e.g. the classification rates have been below or the number of kernel
units activated has not reached a certain threshold for several periods of time),
the complete sub-system(s) can be eventually removed from the system (i.e.
representing “extinction” of the sub-system).

6For instance, suppose that the sub-SOKM in Unit 4) has a sufficient number
of kernel units to span a pattern space for a particular class, a small change in
the number of kernel units would not cause a serious degradation in terms of the
generalisation capability (see Chaps 2 and 4, for more practical justifications).

128 7 Learning in the AMS Context

Error
Statistics of

A and B
Sub−Systems

A or B
Sub−System

Error
Statistics of Sub−System

A or B

p
1

p
2

p
3

p
6

p
5

p
4

Taking theFormation of Evolution of Taking the Evolution of n

Sub−System B

Sub−System A

Competitive Learning

Fig. 7.4. An example of the time-course representation of the competitive learning
process – here, it is assumed that the system has two sub-systems A and B, config-
ured respectively with distinct parameter sets A and B. Then, after the formation of
both the sub-systems (during the period p1 for sub-system A and p2 for sub-system
B), the competitive learning starts; during the period p3 (p5), the statistics of the
error between the reinforcement signals (or target responses) and pattern classifica-
tion results (due to the comparators in Unit 5) are taken for both the sub-systems
A and B, then, according to the error rates, either of the two sub-systems will be
intensively evolved during the next period p4 (p6). This is repeatedly performed
during the competitive learning

7.6.5 Initialisation of the Parameters
for Human Auditory Pattern Recognition System

In Units 1)-3), it is considered that the following five parameters can be varied:

i) Sampling frequency: fs (in Unit 1)
ii) Number of subbands: N (in Unit 2)
iii) Parameters for designing the respective filter banks (in Unit 2)
iv) Number of frames: M (in Unit 3)
v) Function: f(·) (in Unit 3) and (if appropriate) the internal parameter(s)

for f(·)
whereas the parameters for the sub-SOKMs in Unit 4), as given in Table 4.2,
can also be varied, during the self-evolutionary (or the reinforcement learning)
process for the system.

Then, if we consider an application of the self-evolutionary model described
earlier to develop a self-evolutionary human auditory pattern recognition sys-
tem, the initialisation of the parameters can be done, by following the neuro-
physiological/psychological justifications of human auditory perception (Ra-
biner and Juang, 1993; Warren, 1999), and thereby the degrees of freedom can,
to a great extent, be reduced in the parameter settings and/or the competitive
learning process can be accelerated.

7.6 An Example of a Combined Self-Evolutionary Feature Extraction 129

For instance, by simulating both the lower and upper limit of the frequency
range (normally) perceived by humans, i.e. the range from 20 to 20,000Hz,
the first three parameters, i.e. i) fs (the sampling frequency in Unit 1)), ii) N
(the number of subbands), and iii) the parameters for designing the respective
filter banks in Unit 2), can be determined a priori.

For iii), a uniform filter bank (Rabiner and Juang, 1993) can be exploited,
for instance. Alternatively, the utility of nonuniform filter banks with mel or
bark scale can immediately specify the parameters ii) and iii) in Unit 2), in
which the spacings of filters are given on the basis of perceptual studies, and
can be generally effective in speech processing, i.e. to improve the classifica-
tion rates in speech recognition tasks.

On the other hand, the fourth parameter, i.e. the number of frames, M
may be set, with respect to e.g. the retention of memory in the STM, which
has been well-studied in psychology (Anderson, 2000).

In general speech recognition tasks, the fifth f(·) can be appropriately
given as a combined smoothing envelope and normalisation function. For rep-
resenting the former function, a further quantisation of data is performed (i.e.
resulting in smoothing the envelope in each subband e.g. by applying a low-
pass filter operation), whilst the latter is normally used in conventional ANN
schemes, in order to maintain the well-spanned data points of a feature vector
in the pattern space (by the ANNs).

In the self-evolutionary pattern recognition system, such settings as in the
above can be effectively used to initialise all the five parameters i)-v), and,
where appropriate, some of those in i)-v) can be reset, according to the vary-
ing situations. This can thus lead to a significant reduction in computation to
reach a “steady state” of the system, as well as decrease in the degrees of free-
dom within the initial parameter settings, for performing the self-evolutionary
process.

In a similar fashion to the above, the initialisation of the parameters i)-v)
can be achieved for other modalities.

7.6.6 Consideration of the Manner in Varying the Parameters i)-v)

As described in the above, the degrees of freedom in the combined self-
evolutionary feature extraction and pattern recognition system can be large.
Here, we consider how the system can be efficiently evolved during the learn-
ing process, from the aspect of varying the parameters.

It is intuitively considered that the feature extraction mechanism, i.e. that
corresponding to the subband coding in Unit 2) or the formation of the input
data to the sub-SOKMs by Unit 3) as in Fig. 7.2, can be (almost) seen as a
static mechanism (or, if any, may be evolved in a extremely “slow” pace, i.e.
evolved through generations by generations), within both the principles in hu-
man auditory perception (see e.g. Warren, 1999) and the retention of memory
in STM (Anderson, 2000). In contrast, the pattern classification mechanism
can be rather regarded as more “plastic” and thus evolve faster than the

130 7 Learning in the AMS Context

feature extraction counterpart.
From these postulates, it may therefore be said that in practice varying the

parameters i)-iv) can give more impact upon the evolutionary process (as well
as the overall performance) than those by the other parameters in relation to
the pattern classifiers (i.e. the sub-SOKMs).

Within this principle, the parameters inherent to the self-evolutionary sys-
tem could be varied, according to the following periods of time:

In period q1): Varying the parameters with respect to the sub-SOKMs
(Unit 4)

In period q2): Varying (if appropriate) the internal parameters for f(·)
(Unit 3)

In period q3): Varying the number of frames M (Unit 3)
In period q4): Varying the number of subbands N and the designing

parameters for the filter banks (Unit 2)
In period q5): Varying the sampling frequency fs (Unit 1)

where q1 < q2 < . . . < q5.
Then, where appropriate, the parameters may be updated by e.g. the fol-

lowing simple strategy:

v =

vmin ; if v < vmin ,
vmax ; else if v > vmax ,
v + δv ; otherwise ,

(7.3)

where v corresponds to one of the parameters related to the self-evolutionary
system, vmin and vmax denote the lower and upper bound, respectively, which
may be determined a priori, by taking into account e.g. the physical limita-
tions inherent in each constituent of the system, and δv is either a negative
or positive constant.

7.6.7 Kernel Representation of Units 2)-4)

As aforementioned, in Unit 2) (and Unit 3), a subband coding can be per-
formed by “transforming” the raw data into another domain (e.g. time-
frequency representation) for conveniently dealing with the data by the post
processors/modules within the AMS. As postulated in the neurophysiological
study (Warren, 1999), processing the sound data in human auditory system
begins with the subband coding similar to the Fourier analysis for which both
the basilar membrane and inner/outer cells within the cochlea of both the
ears are responsible.

We here consider that the subband coding processing can also be repre-
sented within the kernel memory principle:

The first half of the discrete Fourier transform (DFT) of a signal sequence
x = [x1, x2, . . . , xL] (i.e. with finite length L = 2N) Xi (i = 1, 2, . . . , N) is
given by (see Oppenheim and Schafer, 1975)

7.7 Chapter Summary 131

Xi =
L−1∑
k=0

xkW ik
L

WL = exp
(
−j

2π

L

)
(7.4)

where WL is a Fourier basis.
Now, using the inner product representation of the kernel function in (3.4),

the Fourier transform in (7.4) can be redefined as a cluster of N kernel units
with the respective kernel functions Kφ

i (i = 1, 2, . . . , N)7:

Kφ
i (x) = x · ti (7.5)

where each template vector ti is given as a collection of the Fourier bases:

ti = [ti1, t
i
2, . . . , t

i
L]T ,

tik = W
i(k−1)
L (k = 1, 2, . . . , L) . (7.6)

Note that, with the representation in (7.5), each kernel unit Kφ
i can be

seen as a distance metric for the i-th frequency bin, by comparing the input
data with its template vector given by (7.6).

Then, Fig. 7.58 shows another representation of Units 2)-4) within only
the kernel memory principle. As in the figure, alternative to the subband
representation in (7.2) for Unit 3), the matrix

Y(n) = f([y(n),y(n − 1), . . . ,y(n − M + 1)]) (∈ 	N ′×M ′
)

y(n) = [Kφ
1 (x(n)),Kφ

2 (x(n)), . . . ,Kφ
N (x(n))]T (7.7)

can be given as the input to the kernel units within sub-SOKMs A-Z, where
the function f(·) is the same one used in (7.2).

Note that the representation for other transform(s), such as discrete
sine/cosine or wavelet transform, can be straightforwardly made within the
kernel memory principle.

7.7 Chapter Summary

This chapter has focused upon the concept of learning and its redefinition
within the AMS context. As described in this chapter, the term “learning”

7Here, it is assumed that the kernel function can deal with complex values, which
can be straightforwardly derived from the expression in (3.2). Nevertheless, since the
activation of such kernel unit can always be represented by a real value(s), this does
not affect other kernel units connected via the link weights at all.

8In Fig. 7.5, each sub-SOKM in Unit 4) is labeled with the superscripts from A
to Z and arranged in an alphabetic order for convenience. However, this manner of
notation does not imply that the maximum number of sub-SOKMs is limited to 26
(i.e. the total number of the alphabets A-Z).

132 7 Learning in the AMS Context

...

...
...

1
K Z

2
K Z

3
K Z

4
K Z

2
K B

1
K B

3
K B

4
K B

...

...

1
K A

2
K A

3
K A

4
K A

(Reinforcement
Learning)

(Reinforcement
Learning)

(Consisting of N
Fourier Kernels)

2
K Φ

ΦK
1

N
K Φ

Unit 2)

Y(n)

Sub-SOKM B

K

Sub-SOKM Z

K Z

B

Sub-SOKM A

K

To Unit 5)

To Unit 5)

To Unit 5)

N

A

A

NB

NZ

(From Unit 1)

Input Data

x(n)

Unit 4)

M Frames)

Unit 3)

Learning)
(Reinforcement

(Collecting

Fig. 7.5. An alternative representation of Units 2)-4) within only the kernel memory
principle; Units 2)-4) consist of both N Fourier kernel units (in Units 2) and 3)) and
the sub-SOKMs (A-Z) (in Unit 4). Eventually, the output from each sub-SOKM is
fed into Unit 5) for the reinforcement learning process

appeared in most conventional connectionist models merely specifies the pa-
rameter tuning to achieve the input-output mapping, given both the training
patterns and target responses, and hence, the utility of the term is quite
limited. Moreover, in such models, the target responses are usually pre-
determined by humans.

In contrast, within the AMS context, a more general notion of learning
and the target responses has been redefined, by examining a simple exam-
ple of learning. For performing the learning process by AMS, it has been
described that various modules within the AMS, i.e. attention, emotion, in-
nate structure, the memory modules, i.e. the STM/working memory and
explicit/implicit LTM, perception, primary output, sensation, and thinking
module, are involved.

Then, an example of how to construct a self-evolutionary feature extrac-
tion and pattern recognition model in terms of the AMS has been given. In
practice, such a combined approach can be applied to the so-called “data-
mining”, in which some useful components can be automatically extracted

7.7 Chapter Summary 133

from the raw data (though, in such a situation, the performance is considered
to be heavily dependent upon the sensory part of the mechanism). On the
other hand, it is considered that the appropriate initialisation of the para-
meters, i.e. for the sensation mechanism, can greatly facilitate the evolution
processing. For this, the a priori knowledge of the human sensory system and
how to implement it during the design stage of the self-evolutionary model can
be of fundamental significance. In addition, it has been described that some
parts within the self-evolutionary model can be alternatively represented by
the kernel memory.

In the following chapter, the memory modules within the AMS, which are
closely tied to the notion of learning, will be described in more detail.

8

Memory Modules and the Innate Structure

8.1 Perspective

As the philosopher Miguel de Umamuno (1864-1936) once said,

“We live in memory and memory, and our spiritual life is at bottom
simply the effort of our memory to persist, to transform itself into
hope . . . into our future.”

from “Tragic Sense of Life” (Unamuno, 1978),

the “memory” is an indispensable item for the description of the mind. In
psychological study (Squire, 1987), the notion of “learning” is defined as the
process of acquiring new information, whereas “memory” is referred to as the
persistence of learning in a state that can be revealed at a later time (see also
Gazzaniga et al., 2002) and the outcome of learning. Thus, both the principles
of learning, as described in the previous chapter, and memory within the AMS
context are closely tied to each other.

In this chapter, we focus upon various memory and memory-oriented mod-
ules in detail, namely the 1) STM/working memory, both 2) explicit
(declarative) and 3) implicit (nondeclarative) LTM modules, 4) se-
mantic networks/lexicon, and 5) the innate structure (i.e. pre-defined
architecture) within the AMS, as well as their associated interactive data
processing with the other modules. It is then described that most of the
memory-oriented modules within the AMS can be realised within a single
framework of the kernel memory given in the previous Chaps. 3 and 4.

8.2 Dichotomy Between Short-Term (STM)
and Long-Term Memory (LTM) Modules

As in Fig. 5.1 (on page 84), the memory modules within the AMS are roughly
divided into two types; the short-term/working and long-term memory mod-
ules, depending upon the i) retention, ii) capacity to store the information (in

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 135–168 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

136 8 Memory Modules and the Innate Structure

the form of encoded data) within the kernel units, and iii) the functionality, the
division of which directly follows the cognitive scientific/psychological memory
dichotomy (James, 1890). In the AMS context, the STM/working memory is
considered to function normally with consciousness (but at some other times
subconsciously), whereas the LTM modules work without consciousness. As
described previously (in Sect. 5.2.1), the STM/working memory can be nor-
mally regarded as the module functioning consciously in that, where necessary,
any of the data processing within the STM/working memory can be mostly
directly accessible/monitored from other (consciously) functioning modules.

This notion of memory dichotomy between the STM/working memory and
LTM is already represented in terms of the memory system in today’s Von-
Neumann type computers; the main memory within the central processing
unit (CPU) resembles the STM/working memory in that a necessary chunk
of data stored in the auxiliary memory devices, which generally has much
more capacity than the main memory and can thus be regarded as the LTM,
are loaded at a time and (temporarily) stay there, for a while, until a certain
data processing is completed.

Turning back to the AMS, in practice, the actual (or geometrical) parti-
tioning of the entire memory space, which can be composed by multiple kernel
units, into the corresponding STM/working memory and LTM parts, is, how-
ever, not always necessary, since it may be sufficient to simply mark and hold
temporarily the absolute locations/addresses of the kernel units within the
memory space, the kernel units of which are activated by the data processing
within the STM/working memory, e.g. due to the incoming sensory data ar-
rived from the sensation module. From the structural point of view, the kernel
units with a relatively shorter duration of existence can be regarded as those
within the STM/working memory module, whereas the kernel units with a
longer (or nearly perpetual) duration can be considered as those within the
LTM modules. Then, the STM/working memory module also contains e.g. a
list relevant to the information about the absolute locations (i.e. the absolute
addresses) of the activated kernel units within the entire memory space.

At any rate, for the purpose of simulating the functionality of STM/working
memory, it is considered that the issue of which representation is confined to
the implementation and thus is not considered to be crucial, within the AMS
context.

8.3 Short-Term/Working Memory Module

The STM/working memory module plays the central part for performing the
interactive processes between other associated modules within the AMS. In
cognitive scientific/psychological studies, it is generally acknowledged that the
STM (or working memory) is the “seat” for describing consciousness. (Further
discussion of consciousness is left until Chap. 11).

8.3 Short-Term/Working Memory Module 137

In AMS, since both the functionalities of STM and working memory are
rather considered to be complementary to each other, both the notions of STM
and working memory can be treated within a single module; the term STM
implies relatively short duration of retaining the information, in contrast to
the LTM modules; whereas, under the name “working memory”, such infor-
mation can be dealt, or even coordinated/deviated from the original, within
the “working memory”, due to the interactive processes with the associated
modules. Hence, the name “STM/working memory”.

Moreover, with respect to the short-term retention of information in mem-
ory, it is considered in some studies in cognitive science/psychology (cf. Atkin-
son and Shiffrin, 1968; Gazzaniga et al., 2002) that the notion of sensory mem-
ory is also taken into account besides the STM. In the AMS context, however,
whether such a further distinction is necessary or not may, again, be merely
confined within the issue of implementation, as it can be seen that the no-
tion of sensory memory in the structural sense is subsumed under the concept
of the STM/working memory module and/or is already implemented within
the sensation module; for instance, the length of the feature data in each
pre-processing unit in Fig. 6.1 may be closely tied to the capacity of sensory
memory. (The issue of implementation within the kernel memory concept will
also be discussed later in Sect. 8.3.4.)

Although the full account/justifications for the functionality of the STM/
working memory in a cognitive scientific/psychological view point cannot be
given in this book, we next consider one of the most influential working mem-
ory models describing the “phonological loop” concept, which was originally
developed by Baddeley and Hitch (Baddeley and Hitch, 1974), and how such
a model can be interpreted within the AMS context.

8.3.1 Interpretation of Baddeley & Hitch’s Working Memory
Concept in Terms of the AMS

In the psychological study (Baddeley and Hitch, 1974), Baddeley and Hitch
proposed the model of working memory which extends the concept of STM
such as the one in (Atkinson and Shiffrin, 1968), by introducing the concept
of the so-called “phonological loop”, with some supportive neuropsychological
arguments by the studies of patients with specific brain lesions (for the detail,
see e.g. Gazzaniga et al., 2002). Their working memory is divided into three
parts, i.e. a central executive mechanism and the two subordinate systems,
namely, the phonological loop and visuospatial sketchpad, the latter two of
which are controlled by the central executive system. Then, they explained
both the forgetting mechanism of STM and the relation between the STM
and LTM, e.g. the notion of how the transfer of memory from the STM to
LTM can be performed, in terms of their working memory model. As the
name “phonological loop” implies, the subordinate system is a mechanism for
acoustically (or verbally) coding the information (i.e. sound inputs) in work-
ing memory and is considered to perform the coding by subvocally rehearsing

138 8 Memory Modules and the Innate Structure

the items to be remembered over the short-term. In contrast, the “visuospa-
tial sketchpad” functions separately from (but in parallel to) the phonological
loop and performs the coding of the pure visual (or visuospatial) counterpart
of the information within the working memory.

Moreover, it is anatomically considered that, apart from the well-known
Brodmann’s area 40 (Brodmann, 1909), the rehearsal process in the phonolog-
ical loop involves a region in the left premotor region (area 44), i.e. both the
lateral frontal and inferior parietal lobes, whilst for the visuospatial sketchpad
the parieto-occipital regions of both the left and right hemispheres of brain
are the keys (for a concise review, cf. Gazzaniga et al., 2002)1.

As in Fig. 5.1 (on page 84), the STM/working memory module has the
bi-directional connections with the three modules, i.e. 1) attention, 2) emo-
tion, and 3) explicit LTM module, whilst the sensation, implicit LTM
module, and the two output modules, i.e. both the primary output and
perception (i.e. secondary output) modules, are all connected with mono-
directional data flows. The latter two represent the feedback inputs to the
STM/working memory module. Moreover, the two modules, i.e. 1) thinking
and 2) intention module, are considered to function in parallel.

Hence, it is considered that the model of the aforementioned STM/working
memory concept (Atkinson and Shiffrin, 1968; Baddeley and Hitch, 1974;
Gazzaniga et al., 2002) is directly relevant to the interactive data process-
ing between the STM/working memory and LTM (and/or the LTM oriented)
modules, within the AMS context.

Then, it is considered that the model of working memory proposed by
Baddeley and Hitch (Baddeley and Hitch, 1974; Baddeley, 1986) involves the
following two data processes:

1) The data-fusion of both the auditory and visual sensory data within
the STM/working memory module ;

2) The transfer of the outcome within the STM/working memory to
the LTM module.

In the AMS context, the two processes in the above can be justified within
the interactive data processing between the STM/working memory and LTM
modules, as described next.

1In general AI, it is considered that, although such an anatomical placement for
each functionality as described in the above is not always a crucial matter for mod-
elling various cognitive/psychological functionalities, specifying the area/region for
a certain function (i.e. the phonological loop/visuospatial sketchpad in the working
memory) can greatly facilitate in “understanding” of such function. However, since
not only a real brain is a totally complex system but the measurements currently
available are limited in the capacity, to elucidate precisely the functionalities, such
area/regional specification still remains a hard task. Nevertheless, where appropri-
ate, we consider this sort of anatomical place justifications in this book.

8.3 Short-Term/Working Memory Module 139

8.3.2 The Interactive Data Processing:
the STM/Working Memory ←→ LTM Modules

In the data process 1) above, it is firstly considered that both the auditory and
visual sensory data, which are received from the perception module and/or
recalled from the LTM modules (i.e. due to the requests from other associated
modules such as attention or emotion), reside within the STM/working
memory module over a certain (short) period of time. Imagine a situation
e.g. that the STM/working memory module receives the auditory sensory
(encoded) data from the sensation module, which has not yet been stored
within a specific area of the LTM, whilst the visual data corresponding to
the auditory counterpart have already been stored in advance (by the prior
learning process; see Chap. 7) and recalled from the (modality-specific area of)
LTM within the STM/working memory. (Thus, the former process represents
the data flow; sensation → STM/working memory module, whereas the
latter; LTM → STM/working memory module)

Then, a reinforcement (or target) signal is given (in a certain manner,
i.e. by the interactive processes between the memory modules, as described
in the previous chapter) to associate the auditory data received from the
sensation module with the visual counterpart via the learning process. In the
sequel, this can cause the “data-fusion” of both the auditory and visual data.
In terms of the kernel memory, this data-fusion process can be ultimately
interpreted as (merely) establishing a connection between one kernel unit
with the template vector set to the auditory data and another with the visual
counterpart, within the STM/working memory module. For representing this
establishment, the principle of SOKM (in Chap. 4), in which the simultaneous
activation of the kernel units can eventually lead to the formation of the link
weight(s) in between, can be exploited. Hence, it is also said that this process
simulates a general notion of learning, e.g. the situation where a child is about
to learn/associates the visual part of a new word (“learnt by heart” in advance)
with the auditory counter part.

Next, for the data process 2) above, the data transfer, which represents
the data flow, i.e. STM/working memory → LTM module(s), can occur,
if (as in the aforementioned phonological loop concept) the outcome of the
data-fusion, which can be given in the form of a kernel network consisting
of multiple kernel units within the STM/working memory, resides within the
STM/working memory for a certain (sufficiently long) period of time. In this
regard, it is said that the data transfer, i.e. the STM/working memory →
LTM modules, simulates the role of the hippocampus in the neurophysiological
context (for a concise review of the studies, see e.g. Gazzaniga et al., 2002).

Therefore, in summary, by examining the two data processes 1) and 2)
above, the following three data flows between the three modules, i.e. the
STM/working memory, LTM, and the input: sensation modules, can be drawn,
as depicted in Fig. 5.1:

140 8 Memory Modules and the Innate Structure

• Sensation −→ STM/Working Memory Module
Represents the receipt of the (encoded) data from the sensation
module; the sensory data will be used for the data-fusion within
the STM/working memory module.

• STM/Working Memory −→ LTM Modules
Represents the transfer of the transient data or consolidation of
the kernel networks (i.e. composed by multiple kernel units and the
link weights in between), which have survived after a sufficiently
long period of time, within the STM/working memory module to
the LTM module(s). In addition, this sort of transfer/consolidation
can be occurred intermittently.

• LTM Modules −→ STM/Working Memory Module
Represents the memory recall of the data stored within the LTM
module(s); as in the first data flow: sensation −→ STM/working
memory module, the recalled data will also be used for the data-
fusion within the STM/working memory module, where necessary.

Although the description of the three data flows in the above is limited to
the case of the data-fusion where both the auditory and visual data are only
considered, within the AMS context, this can be generalised to any combina-
tion of the sensory data, without loss of generality.

8.3.3 Perception of the Incoming Sensory Data in Terms of AMS

In AMS, it is considered that, once sensory data are received by the AMS, the
perception is (normally) performed via the STM/working memory module;
after receiving the sensory data from the sensation module, the data are
directly transformed into the respective kernel units within the STM/working
memory module and also sent to the corresponding modality-specific area
of the implicit LTM module. Then, the data transfer to the implicit LTM
module immediately yields (a series of) the perceptual outputs obtained as
the pattern recognition results from the perception module (as described in
Chap. 6. Hence, in such a case, it can also be seen that the STM/working
memory acts as the sensory memory). Eventually, the recognition results are
fed back to the STM/working memory module; the perceptual outputs which
are given as the feedback inputs to the STM/working memory module may
be alternatively represented by the symbolic kernel units (with the kernel
function given as (3.11)).

Therefore, performing the perception of the sensory data in terms of AMS
involves the following four data flows:

1) Sensation −→ STM/Working Memory
2) STM/Working Memory −→ Implicit LTM
3) Implicit LTM −→ Perception
4) Perception −→ STM/Working Memory

8.3 Short-Term/Working Memory Module 141

Normally, it is considered that the perception of the incoming data in
1–4) above can be immediately performed. However, how rapidly/correctly
the data processing within 1) and 2) can be performed also depends upon
the current states of the STM/working memory and the associated modules
(i.e. attention, emotion, intention, and/or thinking module), as described
later.

Although the descriptions of the data flows between the STM/working
memory and other associated modules, such as attention or emotion, are left to
the later chapters, we are now ready to consider modelling the STM/working
memory module in terms of the kernel memory, as described in the next
subsection.

8.3.4 Representation of the STM/Working Memory Module
in Terms of Kernel Memory

Figure 8.1 shows an illustration of the STM/working memory module in terms
of the kernel memory representation and the relationship between a total of
the nine associated modules, i.e. 1) attention, 2) emotion, 3,4) both explicit
and implicit LTM, 5) intention, 6,7) both primary and secondary (per-
ceptual) outputs, 8) sensation, and 9) thinking module (also, compare
Fig. 8.1 with Fig. 5.1 on page 84).

As in the figure, the STM/working memory module consists of multiple
kernel units, as well as the explicit/implicit LTM modules, and is (partially)
connected to both the LTM modules, by means of the link weights between the
kernel units KS

i (i = 1, 2, . . . , NS)2 and KE
j and/or KI

k (j = 1, 2, . . . , NE , k =
1, 2, . . . , NI), where, in each memory module, the number of kernel units is
(in practice) assumed to be upper limited, i.e. NS ≤ NS,max, NE ≤ NE,max,
and NI ≤ NI,max.

In Fig. 8.1, as indicated by the corresponding data flows, the STM/working
memory also receives the feedback inputs from both the primary and sec-
ondary (i.e. perceptual) outputs (albeit not explicitly shown for the latter in
Fig. 8.1), apart from the sensory inputs; in practice, the STM/working mem-
ory module is initially considered as an empty kernel memory space, and,
whenever either the incoming data from the sensation module or the feedback
inputs from the primary/secondary (i.e. perceptual) output modules are given
to the STM/working memory, we may i) create new kernel units one by one
or ii) replace some existing ones (i.e. by taking into account the factor Ns).

2For convenience, in Fig. 8.1, the kernel units with the superscript “S” stands
for those within the “STM/working memory”, whereas the superscripts “E” and
“I” denote respectively the “explicit LTM” and “implicit LTM”. In addition, note
that, as aforementioned, since here both the sensory memory and STM are treated
within a single module in the AMS context, the maximum number of the kernel
units NS,max may be set to a relatively large value, by taking into account the large
capacity of sensory memory compared to the STM (for this argument, see p.305 of
Gazzaniga et al., 2002).

142 8 Memory Modules and the Innate Structure

...
4

K S

1
K S

Primary
Output:

Behaviour,
Motion,
Direction,
Endocrine

...

2
K I

3
K I

1
K I

4
K I

...

...

...

...
...

...
...

...

2
K E

1
K E

4
K E

3
K E

3
K S2

K S

Implicit LTM

Modules Functioning in Parallel
Interactive Modules /

Output

Inputs
Sensory STM / Working Memory

K I

Input: Sensation

K S

NS NI

Explicit LTM

K E

NE

Secondary
(Perceptual)

4) Thinking Module

3) Intention Module

2) Emotion Module

1) Attention Module

Fig. 8.1. An illustration of the STM/working memory module in terms of the kernel
memory, consisting of multiple kernel units, and the relationship between the nine
associated modules, i.e. 1) attention, 2) emotion, 3,4) both explicit and implicit
LTM, 5) intention, 6,7) both primary and secondary (perceptual) outputs,
8) sensation, and 9) thinking module

For both the cases i) and ii), such kernel units are formed, with the tem-
plate vectors (or matrices) identical to those incoming data/feedback inputs
within the STM/working memory module. Then, the data, which are stored in
the form of the template vectors within the kernel units so formed, will be im-
mediately sent to the areas corresponding to the respective modality-specific
areas of the kernel units within the LTM modules. Thus, in the case of pre-
senting them to the implicit LTM, we may obtain (a series of) the perceptual
outputs (e.g. of a particular object(s)) from the secondary output module,
which can be given as the cause of the activations of the kernel units within
such areas of the implicit LTM module.

For the feedback inputs, it is also possible that they can be (alternatively)
represented in terms of symbolic kernel units, instead of exploiting the regular
kernel units.

8.3 Short-Term/Working Memory Module 143

8.3.5 Representation of the Interactive Data Processing Between
the STM/Working Memory and Associated Modules

In the later part in Sect. 8.3.2, the three data flows relevant to the STM/
working memory module; i.e. 1) sensation −→ STM/working memory;
2) STM/working memory −→ LTM modules; and 3) LTM modules
−→ STM/working memory, were established, by examining Baddeley and
Hitch’s working memory concept. In this subsection, we consider how these
processes can be actually represented within the kernel memory principle.

1) Data flow: Sensation −→ STM/Working Memory

In Fig. 8.1, the data processing 1) sensation −→ STM/working mem-
ory is represented by the data flow from the sensation module (which con-
sists of a cascade of the pre-processing units, as described in Chap. 6) to the
STM/working memory module; the encoded data obtained through a series of
the pre-processing units are directly i) given as the input to or ii) used as the
respective template vectors to form the kernel units within the STM/working
memory. (For the former i), if we consider a Gaussian kernel unit as given
by (3.8), the input vector x corresponds to such encoded data. For either the
case i) or ii), we may consider the principle similar to the construction of the
SOKM given in Sect. 4.2.4.

2) Data flow: STM/Working Memory −→ LTM

Then, for representing the data flow 2) STM/working memory −→ LTM
modules, it is considered that there are the two types of processing involved;
i) generation of the perceptual outputs via the LTM modules, due to the
activations of the kernel units within the STM/working memory module as
aforementioned in the previous subsections, i.e. by the incoming sensory data
or thinking process, and ii) the transfer (or transition) of the kernel units
from the STM/working memory to the LTM modules (as in the Baddeley
and Hitch’s working memory described in Sect. 8.3.1).

For ii), a condition must be given to the STM/working memory module;
the kernel units swiftly disappear from the STM/working memory module3,
or are replaced by those with different parameter settings, as aforementioned,
unless they are transferred to the LTM modules within a certain period of
time.

3In the case of hardware representation, it does not imply that such “disappear-
ance” of the kernel units can actually occur, but rather, the parameters of some
kernel units, i.e. the template vectors, link weights, etc, can be reset/become com-
pletely different, e.g. when new incoming data arrive at the STM/working memory
module.

144 8 Memory Modules and the Innate Structure

3) Data flow: LTM −→ STM/Working Memory

Thirdly, the data flow 3) LTM modules −→ STM/working memory de-
picts the recall of the data stored within the LTM modules, due to e.g. the
request by the other associated modules.

However, as aforementioned in Sect. 8.2, the third data flow does not al-
ways imply that the kernel units are actually transferred back (or copied)
from the LTM to the STM/working memory module, but, rather, the acti-
vated kernel units within the LTM modules are just monitored by marking
them and then holding the information of the absolute locations, etc, within
the auxiliary memory space4 that may alternatively represent the STM part
of the STM/working memory module. In the AMS context, it is also possible
to consider that such auxiliary memory can be represented within the inten-
tion and thinking modules, both of which are considered to work in parallel
with the STM/working memory module. (We will then return to this issue in
Chaps. 9 (Sect. 9.3) and 10 (Sect. 10.4)).

Within a similar context as above, both the two feedback inputs, i.e. the
data flow primary output −→ STM/working memory and that sec-
ondary output −→ STM/working memory, are depicted (dashed lines)
in both Figs. 5.1 (on page 84) and 8.1 (i.e. for the former only, as described ear-
lier), since these feedbacks are already represented by the monitoring process
of the activations from the kernel units within the LTM modules, the process
of which is performed by the STM/working memory module.

8.3.6 Connections Between the Kernel Units
within the STM/Working Memory, Explicit LTM,
and Implicit LTM Modules

Now, consider a situation where there are multiple kernel units KS
i (i =

1, 2, . . . , Ns) formed within the STM/working memory, as in Fig. 8.1, and each
kernel unit KS

i is represented in either form depicted in Fig. 3.1 (on page 32)
or Fig. 3.2 (on page 37). Then, as illustrated in Fig. 8.1, it is considered that
there can be the following five types of the connections between the kernel
units (via the link weights):

i) Connection between KS
i and KS

j (i �= j) ;
ii) Connection between KS

i and KE
j or KI

k ;
iii) Connection between KE

i and KE
j (i �= j) ;

iv) Connection between KE
i and KI

j ;
v) Connection between KI

i and KI
j (i �= j)

The establishment of the connections as in the above can be achieved by
e.g. following the Hebbian learning principle as in the SOKM (in Chap. 4);

4Here, the notion of auxiliary memory is different from that of a kernel unit.

8.3 Short-Term/Working Memory Module 145

i.e. “when a pair of kernel units A and B are excited5 simultaneously and
repeatedly (during a certain period of time), a new link weight wAB between
the two kernels will be formed, or, if there already exists wAB, the value is
increased; otherwise, if such repetitive excitation does not occur for a certain
period of time, the value of the link weight wAB is decreased, or such link is
eventually removed”.

In the above, it is also implied that, for all the five connection types, the
data-fusion between different modalities can occur, since, within the kernel
memory concept, any connections between a pair of kernel units are allowed.

In particular, as discussed in Sect. 8.3.2, the connection type ii) can yield
the data-fusion as in Baddeley’s working memory concept; if the kernel unit
KS

i is formed using particular auditory sensory data, whereas KI
j represents

the visual counterpart within a specific area of the (implicit) LTM module,
and if these two are simultaneously (and repeatedly) excited by the given sen-
sory data, the establishment of the link weight between the two kernel units
can be regarded as the data-fusion.

Then, the principle similar to this can be immediately applied to the five
connection types in the above. However, for the connection types iii-v), little
care must be taken; since the kernels KE

j and KI
k reside within the explicit and

implicit LTM modules, respectively, they are considered to reside far longer
than KS

i within the STM/working memory module. For instance, by exploit-
ing [the Link Weight Update Algorithm], which was given in Sect. 4.2.1
(on page 60), both the decrement ξij and increment δ must be set sufficiently
smaller than those for i) and ii) above.

8.3.7 Duration of the Existence of the Kernel Units
within the STM/Working Memory Module

Next, it is also possible to introduce an extended rule within the STM/working
memory module; if there is a kernel unit without having any such connec-
tion/being excited for a certain period of time, the kernel unit will be even-
tually and completely removed from the memory space (or replaced with the
one with a totally different configuration). As discussed earlier, whether the
removal or replacement is more appropriate is, however, dependent upon the
manner of actual implementation within the AMS context.

In respect to the replacement of the kernel units, the structure similar to
a last-in-fast-out (LIFO) data stack can be exploited (Hoya, 2004b):

• If the number of the kernel units Ns ≤ Ns,max within the
STM/working memory, add a new kernel unit in to it;

• Otherwise, replace the least excited kernel unit with the new one.

For evaluating such excitation, the excitation counter ε attached to each
kernel unit and/or the modification of the kernel output by (3.30) can be

5The excitation of such kernel units can be evaluated by (3.12).

146 8 Memory Modules and the Innate Structure

exploited; for instance, if the excitation counter εS
i stays below a certain

threshold for a certain period of time, the kernel unit KS
i is replaced/removed

from the STM/working memory module, where appropriate.
In Chap. 10, an example of the STM/working memory model to construct

an intelligent pattern recognition system will be given, with implementing the
aforementioned simple LIFO-like mechanism.

Then, the duration of the existence of the kernel units is quite dependent
upon the four associated modules, i.e. attention, emotion, intention, and
thinking, to be described in the subsequent chapters.

In the following section, we then have a closer look at various LTM modules
in the AMS.

8.4 Long-Term Memory Modules

As in Fig. 5.1 (on page 84), there are six long-term memory-oriented modules
within the AMS:

1) Explicit LTM
2) Implicit LTM
3) Instinct: Innate Structure
4) Intuition
5) Language
6) Semantic Networks/Lexicon

As shown, all the six modules in the above are (normally) considered to
function in parallel without consciousness (i.e. the formation or control of
these modules is not consciously performed, given the sensory data. We also
consider the general issue of consciousness in Chap. 11).

In this section, we consider only the four LTM-oriented modules, i.e.
both the explicit and implicit LTM modules, instinct, and semantic net-
works/lexicon module, since these are descriptive mainly from the memory
aspect. The two remaining modules, i.e. the intuition and language modules,
remain to be discussed in later chapters, as they need more justifications apart
from the memory perspective.

8.4.1 Division Between Explicit and Implicit LTM

In general cognitive science/psychology, it is thought that LTM can be roughly
subdivided into two types, i.e. the explicit and implicit LTM. The former LTM
is alternatively called as declarative, whereas the latter is interchangeably re-
ferred to as “nondeclarative” memory. This division has been considered, since
the memory contents of LTM are found to be either consciously accessible or
not (see e.g. Gazzaniga et al., 2002), supported by psychological justifications
obtained by studying the cases of amnesic patients, and to date the concept
still has widely been acknowledged.

8.4 Long-Term Memory Modules 147

As shown in Fig. 5.1, the explicit LTM module within the AMS has a
bi-directional connection with the STM/working memory module, which re-
flects the notion that only the (conscious) access to the explicit LTM module
from the STM/working memory module is allowed, whilst the implicit LTM
is connected via a mono-directional link; only the data flow STM/working
memory −→ implicit LTM module (see also Sect. 8.3.5) is considered, and
hence the (conscious) memory retrieval via the STM/working memory from
the implicit LTM is not allowed.

In respect of the AMS, the division of the LTM into explicit and im-
plicit counterparts can be reasonable, in that, at some situations, the memory
retrieval of a series/chunk of the stored data at a time is necessary, with-
out the data processing via the STM/working memory (that is, without con-
sciousness), in order to make a quick action/response e.g. to external stimuli,
whereas any bit of information must be directly (or consciously) accessible
via the STM/working memory, where required, e.g. to investigate the sur-
rounding situation strategically (i.e. involving the thinking process) by the
currently available (multi-domain) sensory data and the reference to the pre-
viously acknowledged/preset data and eventually to take necessary actions
(i.e. by accessing then activating some of the kernel units within the implicit
LTM (or the procedural memory part) e.g. to invoke the relevant motoric ac-
tions).

However, as described later in this chapter, the actual manner in the di-
vision of the LTM modules still depends upon the implementation.

8.4.2 Implicit (Nondeclarative) LTM Module

In the cognitive scientific study (Gazzaniga et al., 2002), it is shown that the
implicit LTM is subdivided into four memory systems; 1) procedural memory,
2) perceptual representation system (PRS)6, 3) non-associative learning (i.e.
habituation and sensitisation), and 4) classical conditioning.

In the AMS, although the above four memory systems 1-4) can be taken
into account within the same framework of the implicit LTM module, it is
considered that the last two systems 3) i.e. habituation and sensitisation, and
4) classical conditioning, may also be dealt in conjunction with the instinct:
innate structure module, since in some situations these two seem to be em-
bedded not only due to the learning by the AMS (or the repetitive exposures
of the AMS to the surrounding environment) but also dependent upon the

6In the AMS context, however, it is considered that the role of the perceptual
representation system is not only dependent upon the implicit but also explicit
LTM module. This view also agrees with the notion of general cognitive scien-
tific/psychological study of memory; as described earlier, the data processing be-
tween the explicit and implicit LTM modules is represented by the connections
between the kernels KE

i and KI
j in Fig. 8.1 (on page 142), which can justify the

psychological argument by Squire (Squire, 1987), in that the priming effects (i.e. due
to the PRS) are driven not only perceptually but also conceptually or semantically.

148 8 Memory Modules and the Innate Structure

innate structure/instinct, e.g. modelling the situation where in creatures the
innate structure of offsprings is inherited from their parents/ancestors; for
instance, imagine a situation that an infant can show her/his fear when they
look at a picture of dinosaurs, without really experiencing them.

As indicated in Fig. 5.1, the contents stored within the implicit LTM mod-
ule are not directly (or consciously) accessible from the STM/working memory
module, but, oppositely, the data stored in the form of the template vectors
of the kernel units within the STM/working memory module are transferred
to the implicit LTM module, and, unlike the explicit LTM module, the ac-
tivations (or excitations) of the kernel units within the implicit LTM are
transferred further to either/both the primary output and/or secondary
(perceptual) output.

For representing the transfer to the primary output module, some patterns
of the activations can directly contribute to e.g. cause a series of motoric ac-
tions (i.e. movements) by the body, whilst the latter (partly) represents the
activity of the PRS.

Then, within the kernel memory principle, it is considered that, due to the
corresponding series of the activations from the kernel units within the im-
plicit LTM module, caused by the data processing amongst the other memory-
oriented modules (i.e. the explicit LTM or the STM/working memory module),
such actions can be eventually carried out. In other words, the activation of
the kernel units within e.g. the explicit LTM module is firstly transferred and
caused the activation of those in the implicit LTM module via the link weights
established in between. Then, such actions can be performed, if (some of) the
kernel units so activated in the implicit LTM module are directly connected,
or responsible for e.g. controlling the physical mechanism(s) imitating the real
(skeletal) muscles or the PRS.

As stated earlier, such a series of activations, however, cannot be mon-
itored in full detail (or with consciousness) by the STM/working memory
module but only via the feedback input(s) given from the primary/secondary
(perceptual) output.

8.4.3 Explicit (Declarative) LTM Module

Within the explicit LTM, it is generally considered that there are two types of
explicit memory, i.e. episodic and semantic memory, where the former repre-
sents the autobiographic memory (i.e. the memory related to specific personal
events/experiences), whilst the latter involves the general world knowledge/
facts (Tulving, 1972; Gazzaniga et al., 2002), both of which can be retrieved
consciously, though such distinction still remains a controversial issue in the
psychological study of memory (Squire, 1987).

In the AMS, it may, however, be sometimes useful to separate the seman-
tic counterpart from the regular explicit LTM, where appropriate, since, as
shown in Fig. 5.1, the semantic networks/lexicon are more closely oriented
with the language module from the structural point of view (to be described

8.4 Long-Term Memory Modules 149

later in the following subsection and Chap. 9), and thus the treatment may
be differed in the actual design.

Note that, although, as aforementioned, there has been a further distinc-
tion between the episodic and semantic memory in the explicit LTM within
the general cognitive science/psychology context, there in practice seems no
significant difference in terms of the representation by kernel units from the
memory point of view. This is since, within the context of AMS, these two
types of memory can be described in a single framework of the kernel memory;
each memory entity, regardless of episodic and semantic, can be represented
by a single kernel unit and/or the associations (or the link weights) formed
between multiple kernel units.

8.4.4 Semantic Networks/Lexicon Module

As stated earlier, since the semantic networks/lexicon module is also closely
related to the language module, it can be useful in practice to consider that the
kernel memory of each entity is rather based upon a symbolic representation.
Nevertheless, the kernel memory principle still holds, since the units (or nodes)
within the semantic networks/lexicon module have to be connected with the
kernel units formed within the other associated modules, and such connections
must be weighted (and the values of the weights/manners of connections can
also be dynamically varied), e.g. via the learning process of the AMS.

We will return to a further discussion of the semantic networks/lexicon
module in Chap. 9, since, as aforementioned, the module is intimately related
to the language module. Before proceeding next, however, we review how
the three LTM modules, i.e. the explicit LTM, implicit LTM, and semantic
networks/lexicon, are mutually related within the AMS context, by examining
a simple example of learning a new word by the AMS.

8.4.5 Relationship Between the Explicit LTM, Implicit LTM,
and Semantic Networks/Lexicon Modules in Terms
of the Kernel Memory

As described earlier and illustrated in Fig. 8.1 (on page 142), each of the three
LTM modules, explicit LTM, implicit LTM, and semantic networks/lexicon,
can be composed by multiple kernel units in terms of the kernel memory
concept.

Then, let us consider a situation where specific sensory data (auditory,
say, obtained after the process via the STM/working memory module) are
firstly stored in the form of a single kernel unit, with the template vector
identical to the feature vector of an utterance of a new word, in a particular
modality-dependent area of the LTM. In this manner, a cluster of kernel units
will be formed to represent other utterances (or samples) of the same word.
As a cause of the learning performed by the AMS (in Chap. 7), a kernel
network (i.e. represented as a sub-SOKM; see Chap. 4) may be formed within
the LTM, which generalises these utterances and can respond to such sound

150 8 Memory Modules and the Innate Structure

patterns (i.e. to yield the activations from some of the kernel units within
the sub-SOKM), when the sensory inputs are given to the AMS. It is thus
considered that the activations/excitations of the respective kernel units may
eventually contribute to the pattern recognition results within the secondary
output module, as shown in Fig. 5.1 (on page 84).

From another point of view, it is considered that the formation of the sub-
SOKM responsible for the auditory part of the new word is related to both
the explicit and implicit LTM modules; for representing the explicit part, the
formation is based upon a particular set of the utterances presented to the
AMS. In other words, the sub-SOKM so formed stores the auditory informa-
tion of the new word which is acquired through the learning, or the exposition
of the AMS to a set of several utterances (i.e. each given sequentially time-
wise). Hence, this can represent the notion of episodic memory, i.e. one of
the constituents of the explicit LTM, as acknowledged in general cognitive
science/psychology.

In contrast to the explicit LTM aspect, it is considered that the implicit
counterpart is also related to the learning process of the new word; as de-
scribed in Sect. 8.4.2, the PRS part of the implicit LTM may firstly respond
to the fragments (or the respective phonemes) of the new word, instead of
the whole sound, and then, after the learning process within the AMS, the
sub-SOKM responsible for the new word is formed, e.g. by establishing con-
nections between the kernel units representing the corresponding phonemes
within the implicit LTM module (and/or the kernel representing the series of
the phonemes within the explicit LTM module. This is then somewhat related
to the issue of gnostic cells versus ensemble coding in Sect. 4.6 and the concept
formation to be described in the next chapter.).

In a similar fashion (and parallel to) the auditory part, another cluster of
kernel units representing, e.g. the spelling (i.e. the visual counterpart) of the
new word, will be formed within the explicit/implicit LTM module.

Then, during the course of the further learning process, it is considered
that, when the data-fusion of the two modalities within the explicit and/or
implicit LTM module, i.e. both the auditory and visual counterparts of the
new word, occurs and thereby a (symbolic) kernel unit, which can also trans-
fer the activation(s) for one part (i.e. the kernel units within the sub-SOKMs
responsible for either the auditory or visual part) to the other, is formed, this
implies the concept formation within the semantic networks/lexicon module
(to be described in the next chapter).

It is also considered that both the explicit LTM and semantic net-
works/lexicon modules can be rather represented by multiple symbolic ker-
nel units (as in conventional symbolism) that are mutually connected to the
kernel units within the three LTM-oriented modules: explicit LTM, implicit
LTM, and semantic nets/lexicon, as shown in Fig. 8.1. Then, the difference be-
tween the explicit LTM and semantic networks/lexicon may appear in terms
of the connections; for the semantic nets/lexicon module, it is considered
that the manner of connection is rather well-ordered to describe logically the

8.4 Long-Term Memory Modules 151

facts/world knowledge, whereas, for the explicit (or episodic) LTM, the con-
nections are formed, strongly dependent upon, e.g. the manner of the sensory
data presentation to the AMS and the internal states at the time of such pre-
sentation, and thus is not considered to be always well-ordered.

For the latter (i.e. the episodic part), the connections between the kernel
units within the implicit LTM can, therefore, play a more significant role to
describe the episodic aspect.

This also implies the possibility of the occurrence of the transition from the
explicit (i.e. episodic) LTM to the semantic nets/lexicon, in that such well-
ordered structure within the semantic nets/lexicon can be formed through
a further learning process (or the repetitive experience) of the facts/world
knowledge (i.e. due to the reinforcement, as described in Chap. 7), or, in a
more macroscopic sense, due to the reconfiguration of the explicit LTM.

8.4.6 The Notion of Instinct: Innate Structure, Defined
as A Built-in/Preset LTM Module

For actually designing/developing the AMS, it seems useful to consider the
(rather) static part of LTM, besides the aforementioned three LTM modules;
as described earlier, the three LTM modules, i.e. the explicit LTM, implicit
LTM, and the semantic networks/lexicon, can be reconfigured dynamically
during the learning process (in Chap. 7), whereas the instinct module (rather)
remains intact during such process.

Provided that we already have sufficient knowledge/information about the
properties of the materials/substances for developing e.g. a robot or humanoid,
imagine a situation that we are ready to utilise them for developing such a
system. Then, it can be useful/necessary to preset the values, representing the
constraints or properties of such constituents within some specific area of the
LTM of the AMS. This is since such information can be directly/indirectly ac-
cessible during the interactive processes amongst the modules within the AMS,
be taken into consideration during the action planning (i.e. by the thinking
module) or exploited for giving the target response (i.e. reinforcement signals)
during the learning process (see Chap. 7), and can eventually help to suppress
excessive amount of data processes, or, ultimately, prevent serious damage to
the system; for instance, such information can be represented by our feeling
of pain, e.g. if we try to stretch left arm beyond its length (and is therefore
also related to the so-called “body versus mind” (or mind-body) issue).

This is the reason why we take another (rather static) LTM module, i.e.
instinct: the innate structure, into consideration. Thus, we treat the notion of
“instinct” as a (mostly) static and parameterised set of values, which provides
the information relevant to the physical nature of the body, within the AMS
context. The representation of the instinct: innate structure module can,
however, still be treated within the kernel memory concept.

As shown in Fig. 5.1, it is considered that the innate structure module
can greatly influence the internal states of the AMS, such as those within the

152 8 Memory Modules and the Innate Structure

intention or emotion module, e.g. via the procedural memory part of the
implicit LTM module (i.e. in Fig. 5.1, the parallel functionality between in-
stinct and emotion module is considered, in order to represent the indirect
influence), which may cause a significant impact upon the data processing via
the STM/working memory module amongst the other associated modules
and, eventually, dramatic changes in the overall behaviours of the AMS.

In real life, it is commonly acknowledged that there are several types of
instinct are considered, viz. hunger, thirst, sexual behaviour, sleepiness, etc,
all related to the continuous existence of the life/preservation of the species
(for a further discussion, see e.g. Rolls, 1999).

In developing any system of artificial life (i.e. such as a humanoid or robot),
however, the design of this module is considered to be (or, at least, must be)
the most difficult part, though, during the development, it should not be al-
ways necessary to simulate every instinctive behaviour that all human-beings
share; since such artificial objects are not developed as the cause of natural
consequences but, rather, designed so as to meet the demands of human-
beings. (As declared in the Statements in the early part of this book, we
should however need to take into account, at least, the Asimov’s three princi-
ples, (Asimov, 1950) at stage of the actual development.) Besides such ethical
issues, to determine such preset values one by one may not be a straightfor-
ward task, since the amount of such task can be prohibitively huge.

Therefore, to relax this, determining the boundary between the regular
LTM and instinct: innate structure modules and how to store the contents,
i.e. to classify the memory contents to be stored into those for the explicit
LTM, implicit LTM, semantic networks/lexicon, and the built-in instinct: in-
nate structure module, becomes crucial. Nevertheless, such classification in
practice also seems to become harder, depending upon how much degree the
system to be developed is complex.

In terms of the memory aspect, the innate structure can be hence regarded
as one part of the implicit LTM module (i.e. suggesting the parallel function-
ality between the instinct: innate structure and implicit LTM module, albeit
not shown explicitly in Fig. 5.1) where the memory contents can be less al-
tered and remain almost intact (or slowly varied), during the course of the
learning process (in Chap. 7), compared to the regular implicit LTM.

8.4.7 The Relationship Between the Instinct:
Innate Structure and Sensation Module

As described in Sect. 8.3, the STM/working memory module plays the central
role for the interactive processes between other associated modules within the
AMS. Then, within the example of general evolutionary process as shown in
Fig. 7.1 (on page 118), it is considered that the error signal is also fed back
to the sensation module, in order to perform the self-evolutionary process
(or the reinforcement learning). However, it is intuitively considered that this
feedback data flow can be ultimately ascribed to the relationship between the

8.4 Long-Term Memory Modules 153

sensation and the innate structure module, with the notion that such data
flow can occur without consciousness (though this is not explicitly shown in
Fig. 5.1).

8.4.8 Hierarchical Representation of the LTM
in Terms of Kernel Memory

Here, we consider how the LTM modules can be structured by means of the
kernel memory concept in a more practical view point. As described in Chaps.
3 and 4, if the Gaussian response function (given in (3.8)) is chosen, the
selection of the factor (or the radius) σ can give a significant impact upon the
generalisation capability of the kernel memory, and, as seen in the simulation
study of the SOKM in Sects. 4.4 and 4.5, a unique setting of this factor is
reasonable to yield a satisfactory generalisation performance. However, similar
to the case of the PNN/GRNN as described in Sect. 2.3.4, as the size of the
kernel network (or sub-SOKM) responsible for a particular category/class
becomes large, the computation time required for both updating the radii
values and accessing the kernel units in the reference (or testing; cf. Polikar
et al. (2001) and Hoya (2003a)) mode may become problematic.

This is hence crucial for the actual design of the memory/memory-oriented
modules within the AMS (especially, this is so, if we consider the amount of
data to be stored within the LTM modules).

Now, let us consider how to organise the auditory part of the LTM (albeit
here putting aside the issue of the sub-structures described earlier, i.e. the
explicit LTM, implicit LTM, semantic networks/lexicon, or the innate struc-
ture), in order to perform efficiently the auditory data classification tasks by
means of the kernel memory representation.

Fig. 8.2 illustrates an example of the tree-like representation of the LTM
responsible for auditory data in terms of the kernel memory. (Note that, not
limited to the one in Fig. 8.2, any hierarchy can be possible in terms of the
kernel memory concept; e.g. the structure taking into account multiple lan-
guages can also be considered.)

In the figure, provided that the auditory data (i.e. stored in the form of
the template vector of a single kernel unit) is sent from the STM/working
memory module, (approximate) classification of the auditory data given is
firstly performed, i.e. whether the sound data given from the STM/working
memory module corresponds to a human voice, music, noise, and so forth (at
Level 1). By the term “approximate”, it is meant that the classification within
each sub-SOKM is quickly performed, instead of using the original data, for
the efficiency in the computation of searching the huge memory space of the
LTM; for instance, by lowering temporarily the resolution in time and/or fre-
quency wise (e.g. with applying a low-pass filter/resampling), such a quick
classification can be achieved, since the size of the data becomes smaller than
that of the originally given sound data.

154 8 Memory Modules and the Innate Structure

Module
Memory
Working

Template

from STM /
Vector

x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(Music Identification)

Sub−SOKM 22

(Noise Identification)

Sub−SOKM 23

.

.

.

.

.

.
.
.
.

.

.

.

. . .
. . .

(To Classify Human
Voice / Others)

Sub−SOKM 11

Level 2) Level 3)Level 1)

Sub−SOKM 31

Sub−SOKM 32

Sub−SOKM 33

Sub−SOKM 21
(Speaker Identification)

(Word / Phrase 1

(Word / Phrase 2

(Word / Phrase 1

Uttered by Speaker A)

Uttered by Speaker A)

Uttered by Speaker B)

Sound Pattern Identification Word / Phrase Recognition

Fig. 8.2. Illustration of an example of the LTM responsible for the auditory data in
terms of the hierarchical kernel memory representation – a tree like representation;
in this example, at Level 1), the sound data given from the STM/working memory
module will be roughly classified, i.e. whether the data corresponds to human voice
or another type of source. Then, the subsequent classification of the sound data will
be performed; e.g. if the data are found to be a human voice by the pattern matching
in Sub-SOKM 11, the speaker identification, then the word/phrase recognition, and
so forth. Or, otherwise, whether the data corresponds to music or noise, and so
forth ensues. The level of pattern recognition process to be performed depends upon
either the current states of the STM/working memory module or the interactive
data processing between the associated modules within the AMS

Then, in a similar context, the classification is subsequently performed (e.g.
the classification at word level, phonemes, and so forth, due to the transfer of
the activations of the kernel units via the link weights across the sub-SOKMs
ij; i: the level number, j: the sub-SOKM number), up to the level (of classi-
fication) in which some of the kernel units at the corresponding sub-SOKM
are found to be activated by the auditory data/required for the further data
processing between the other associated modules within the AMS (such as
thinking or intention) via the STM/working memory module.

Moreover, by means of such hierarchical structure, it is also considered that
the exhaustive search can be avoided; during the construction/reconfiguration

8.5 Embodiment of Both the Sensation and LTM Modules 155

(or the learning) of the LTM, to update i.e. the radii value σ for each Gaussian
kernel unit based upon the unique radii setting scheme as in (2.6), the com-
putational load to find the maximal distance can be greatly reduced, since the
search will be limited to those within the corresponding sub-SOKM only.

In practice, to construct such hierarchical structure via the learning process
of the AMS, we may either pre-determine the hierarchy of the LTM or leave
it to the autonomous construction/reconfiguration of the SOKM), depending
upon the application. For the latter, however, the hierarchical structure to be
formed may be totally different from the one what we expect, e.g. some other
form of sub-SOKMs may be constructed to achieve reasonable performance
for the auditory data classification tasks. It is then considered that the hierar-
chical structure within the LTM is quite dependent upon the situation where
the AMS is applied (e.g. the manner in the presentation of the auditory data).

8.5 Embodiment of Both the Sensation
and LTM Modules – Speech Extraction System
Based Upon a Combined Blind Signal Processing
and Neural Memory Approach

In this section, we consider the embodiment of the two modules within the
AMS described earlier, i.e. the sensation and LTM modules7, and the prac-
tical application to speech extraction in cocktail party situations.

In a cloud of people, we humans still can easily recognise and then be
attentive to the voice of a particular person(s) we know, but how can we
simulate this ability by machines? This is referred to as the so-called cocktail
party problem. In the last decade, with the advancements in the algorithms for
blind signal processing, i.e. the independent component analysis (ICA) (see
e.g. Cichocki and Amari, 2002), the cocktail party problem has been tackled
by a number of researchers (see e.g. Haykin, 2000).

In the recent studies (Barros et al., 2000; Rutkowski et al., 2000; Barros
et al., 2002), a variant of subband blind extraction methods based upon the
ICA approach has been proposed. As reported, these methods work well to
extract the speech component with the highest energy. However, the enhanced
speech obtained using these methods can be greatly deteriorated, mainly due
to the incomplete reconstruction of the signal. This results from both the
scale misadjustment and permutation ambiguity at each subband, which are
fundamentally inherent to the ICA. We then incorporate the concept of the
LTM modules, which can be represented within the kernel memory princi-
ple (in Chap. 3), into the original speech extractor based upon the subband

7Throughout this section, however, without loss of generality, the aforementioned
subdivision of the LTM into the four constituents, i.e. explicit LTM, implicit LTM,
semantic networks/lexicon, or instinct: innate structure, is not considered.

156 8 Memory Modules and the Innate Structure

ICA, in order to compensate for these two problems and thereby achieve the
performance improvement in terms of the speech extraction.

In cocktail party situations, it is assumed that there are M source sig-
nals (or M simultaneously uttered voiced speech signals), i.e. si(k) (i =
1, 2, . . . ,M , at discrete time k). Then, provided that (without loss of gen-
erality) we have two microphones (or sensors), the observed signals u(k) =
[u1(k), u2(k)]T can be defined as an under-determined linear convolutive
model:

ui(k) =
∞∑

n=−∞
H(n)s(k − n) (8.1)

where the source signals (represented in vector form) s(k) = [s1(k), s2(k), . . . ,
sM (k)]T and H (∈ �2×M) defines the mixture represented by a linear filter
operator. In a real acoustic environment, since H is generally a non-minimum
phase low-pass filter (see e.g. Gold and Morgan, 2000), extraction of the orig-
inal speech signal is very hard.

8.5.1 Speech Extraction Based Upon a Combined Subband ICA
and Neural Memory (Hoya et al., 2003c)

Figure 8.3 illustrates the block diagram of the speech extraction system based
upon the combined subband ICA and neural memory (Hoya et al., 2003c).

In Fig. 8.3, we firstly obtain the two observations u1(k) and u2(k) (both
can be given in (8.1)) from the two microphones, and the batch of the data, i.e.
ui(k) = [ui(k), ui(k−1), . . . , ui(k−L+1)]T (L: the analysis window length), is
transferred to the respective subband decomposition units 1 to N . After the
subband decomposition (Barros et al., 2002), two types of subband signals
are obtained: 1) the subband signals Bj (j = 1, 2, . . . , N , for convenience,
we here omit the time instance k.) and 2) amplitude envelope signals Cj . For
both the signals Bj and Cj , we then perform ICA to separate the components.
Next, we select either the signal component lj1 or lj2 and adjust the amplitude
of the signal at each subband by multiplying the factor dj , based upon the
pattern recognition results, i.e. by performing twice the pattern recognition
with presenting (one by one) the signal rj1 and rj2 (both of which are obtained
from the j-th ICA unit) to the neural memory unit at the j-th subband (i.e.
denoted NM j in Fig. 8.3).

Eventually, the extracted (or reconstructed) target speech ŝ1 (suppose that
we want to extract the first source; given the batch data ui) can be obtained
as

ŝ1 =
N∑

j=1

djljp (8.2)

where p = 1 or 2 and is determined by the reference to the neural memory.

8.5 Embodiment of Both the Sensation and LTM Modules 157

1

D
e
c
i
s
i
o
n

M
e
c
h
a
n
i
s
m

N

2

2

N N

1 1

2

Σ

ICA

.

.

..
.

.

.

.

.

.

.

.

s

Decomposi−
tion 1

tion 2

Subband

Decomposi−
tion N

ICA

ICA

Decomposi−

Subband

Subband

s

2

s
M

u

ICA’

ICA’

1

2

1

C

r

r

r

o

o

oN1

21

11
1

2

N

l

l

l

11

21

N1

N2
l

22
l

12

1

N

d 2

d

22
r

r
12

N2
r

ICA’

d
l

s1
^

u
B

B

B

C

C

1

1

2

N

2

N

NM

NM

NM

Fig. 8.3. Block diagram of the speech extractor based upon a combined subband
ICA and neural memory; the two observations u1 and u2 are firstly decomposed into
N subband signals Bj (j = 1, 2, . . . , N) and converted into the respective amplitude
envelopes Cj , by applying the subband decomposition mechanism (Barros et al.,
2002). Second, the separated components obtained from the ICA of the amplitude
envelopes Cj are used to identify the signal of interest by the neural memory (NM
j). Then, by taking the statistics of the pattern matching obtained from NM j,
the subband signal of interest at each subband (i.e. either lj1 or lj2) is determined
and thereby the scaling adjustment factors dj corresponding to the signal of inter-
est are extracted from the auxiliary memory. Finally, the signal of interest will be
reconstructed by applying (8.2)

As described in Sect. 6.2, the subband decomposition within the speech
extractor can be regarded as one of the fundamental parts within the sensa-
tion module of the AMS, whereas the neural memory units correspond to the
LTM modules. Next, we focus upon the subband ICA mechanism and neural
memory in more detail.

The Subband ICA Mechanism

In subband blind extraction approaches, it is considered that the effectiveness
resides in the property that narrow band signals are less prone to the convo-
lutive effects in comparison with the original fullband signal (Barros et al.,
2002). The subband coding scheme (Barros et al., 2002) used in Fig. 8.3 was

158 8 Memory Modules and the Innate Structure

then developed by exploiting the harmonicity of the voiced sounds, as in some
models of computational auditory scene analysis (Weintraub, 1985).

In summary, the coding mechanism (Barros et al., 2002) involves the fol-
lowing two steps:

Step 1) Extraction of the fundamental frequencies, obtained by applying
both the wavelet (see e.g. Mallat, 1999) and Hilbert transforms
(see e.g. Proakis and Manolakis, 1992).

Step 2) Processing the signal with the bank of adaptive bandpass filters
centered at the fundamental frequency f0, given in Step 1), and
its harmonics.

As stated earlier, in the scheme shown in Fig. 8.3, both the two-channel
subband signals Bj (�L×2, j = 1, 2, · · · , N , denoted in block form) and (in-
stantaneous) amplitude envelope signals Cj (�L′×2), which can be obtained
as the intermediary signals in Step 2) above, are exploited.

Then, for the separation of both Bj and Cj , the ICA algorithm such as
second-order blind extraction (SOBI) algorithm (Belouchrani et al., 1993) can
be exploited. In brief, the SOBI algorithm is based upon joint diagonalisation
of correlation matrices and known to be robust for nonstationary signals such
as speech. (In a noisy environment, the robust form of the SOBI (Cichocki
and Amari, 2002) can be alternatively exploited.)

As in Fig. 8.3, the SOBI algorithm is independently applied to the sep-
aration of Bj (i.e. ICA j) and Cj (i.e. ICA’ j). Then, it is considered that,
due to the statistical invariance between the subband signal Bj and the am-
plitude envelope Cj , there is no permutation problem between the respective
separated signals ljp and rjp (p = 1, 2), i.e. both ljp and rjp correspond to
the same source signal. Although the rigorous and theoretical justification is
still under investigation, this was empirically confirmed by the preliminary
simulation study.

The Neural Memory

For representing the neural memory, the probabilistic neural networks (PNNs,
as described in Sect. 2.3), which can be subsumed within the kernel memory
principle (in Sect. 3.2.3), are utilised. (Not to mention, the hierarchical kernel
memory representation in Sect. 8.4.8 can be alternatively exploited to con-
struct the neural memory part of the blind speech extractor.)

As aforementioned, the role of the neural memory is to determine:

1) Which subband signal ljp should be used ;
2) The scale adjustment factors dj for the re-construction of the speech

ŝ1

and therefore, the neural memory part must be constructed (or trained), be-
fore performing the blind speech extraction.

8.5 Embodiment of Both the Sensation and LTM Modules 159

Input Vector to the PNN

Then, the pattern recognition by the reference to the neural memory is per-
formed using the amplitude envelope signals Cj , instead of the subband sig-
nals Bj , since, for one reason, the size of the matrix Cj can be smaller than
that of Bj ; the length L′ is less than that of each column vector in Bj (i.e.
L′ ≤ L; the length L′ is proportion to 1/N , N : the number of subbands), and,
for the other, sufficient information about the original signal for the speech
extraction is retained in Cj . Thereby, the pattern recognition process can be
more efficiently performed than that based upon the subband signals Bj .

During the construction phase of the neural memory, a total of N new
RBF units per pattern data will be concurrently created, within the respec-
tive PNNs, with each Cj being stored as the centroid vector/matrix of the
corresponding RBF. Then, the class ID represents the ID of the (target) speech
signal. In addition to this, we also store the values obtained by calculating the
standard deviation of Bj (i.e. from noise-free speech) as the scale adjustment
factor dj in the auxiliary memory8, during the construction phase.

For the reference to/construction of the neural memory, there is, however,
one thing that we need to take into account: since the length of the ampli-
tude rjp (and the size of the centroid vectors/matrices so formed) may be
varied from one utterance to the other, the input vector to the PNN must
be normalised not only in amplitude but also time wise; to adjust the length
of the input vector, we can generally consider applying a simple resampling
mechanism with both anti-aliasing low-pass filters and zero-padding, where
necessary (see e.g. Proakis and Manolakis, 1992).

i) Determination of the Subband Signals for the Reconstruction
of Speech Signal of Interest

For the purpose i) above, the determination is thus performed based upon the
pattern recognition (or signal identification) result of each blindly separated
(and normalised) amplitude envelope rjp given to the neural memory; at the
j-th subband, the two separated components rj1 and rj2, both of which are
obtained from the separation of the amplitude envelope Cj by the j-th ICA
unit, are individually given as the input vectors of the PNN and yield the re-
spective pattern recognition results. Then, either of the two components ljp is
chosen for the reconstruction of the target speech ŝ1, based upon the pattern
recognition result; i.e. if rj1 is recognised as the amplitude envelope signal of
the target speech, the component lj1 is chosen for the reconstruction, other-
wise lj2. In this manner, we obtain a total of N pattern recognition results
for all the N subbands.

Alternatively, we can introduce a simple scoring scheme (Hoya et al.,
2003c): if Channel p (p = 1 or 2) is more often recognised as the component

8Here, the notion of auxiliary memory is different from that of a kernel unit.

160 8 Memory Modules and the Innate Structure

of the target speech than the other for all the N subbands, regard Channel
p as the component corresponding to the target speech and choose uniquely
the subband signals ljp (∀j) for the reconstruction. Although the theoretical
justification is yet to be given, this simple scheme also works satisfactorily
(Hoya et al., 2003c).

Nevertheless, the permutation problem inherent to ICA can be solved by
the pattern recognition based scheme in the above.

ii) Scale Adjustment in Each Subband for the Reconstruction

For the second purpose ii), since we know which subband signal should be
chosen for the reconstruction of the target speech at each subband in i) above,
we simply recall a set of the corresponding scale adjustment values dj (j =
1, 2, . . . , N) from the auxiliary memory (i.e. stored during the construction
phase of the neural memory, together with the amplitude envelope). Finally,
we obtain the reconstructed speech by (8.2) by applying these values.

Simulation Examples

We here consider some simulation examples by applying the speech extrac-
tion scheme shown in Fig. 8.3. In the simulation example, we consider the
two types of two-channel mixture; 1) the instantaneous and 2) (time) delayed
mixture. For the delayed mixture 2), we assume the situation where there
is only one (or two) dominant speech signal(s) with no time delay and the
other background signals with delays and less amplitudes than the dominant
speech.

For the simulation examples given here, the number of subbands N = 64,
and the speech data set consisting of a total of 16 speech utterances spoken
in both Portuguese (i.e. a total of 3 × 4 = 12 utterances) and Polish (i.e.
4 × 1 = 4 utterances), recorded at 8(kHz) sampling rate, was used; the Por-
tuguese utterances were the three digits /NOVE/, /OITO/, and /QUATRO/,
each uttered four times by a male and two native female speakers (i.e. each
of the three speaker uttered the corresponding digit), whilst the four Polish
utterances were /JEDEN/, /ANONIM/, /NAZYWAM SIE/, and /KOWAL-
SKI/, each uttered (once) by two male and female native speakers. Then, in
the simulation, the task was to extract only the female utterance, i.e. the digit
uttered in Portuguese /NOVE/.

For the neural memory, amongst a total of the 12 utterances in Portuguese,
the three utterances (out of four) for each digit, i.e. /NOVE/, /OITO/, and
/QUATRO/, (hence. a total of nine utterances), were used for constructing
(or training) the respective PNNs and auxiliary memory, and the remaining
one for each digit was used for generating the mixtures (i.e. for the utility in
the reference/testing mode). This is hence to simulate the LTM responsible
for a single language (i.e. the Portuguese) by the neural memory. Then, the
length of both the input and centroid vectors within the PNNs was fixed to

8.5 Embodiment of Both the Sensation and LTM Modules 161

64, after the aforementioned normalisation (i.e. in both amplitude and time-
wise).

To obtain a single set of the scale adjustment factors dj for the auxiliary
memory, the averaged values over the three utterances data for each digit (i.e.
used for the training data set) were computed and stored as the respective
values of dj , since, during the simulation, it was confirmed that each Por-
tuguese digit was uttered by a single speaker with almost no variance in the
pronunciation during the recording session.

Simulation Example 1) – the Instantaneous Mixture Case

Figure 8.4 shows the simulation result of the instantaneous mixture, where
there are assumed the five simultaneous voices (i.e. mingled with the two
languages: the three Portuguese digits s1-s3 and two Polish utterances s4

(/JADEN/) and s5 (/ANONIM/)):

u1(k) = 0.8s1(k) + 0.4s2(k) + 0.2s3(k) + 0.1s4(k) + 0.3s5(k) ;
u2(k) = 0.6s1(k) + 0.8s2(k) + 0.3s3(k) + 0.2s4(k) + 0.1s5(k) .

In the mixture model above, it was also assumed that two Portuguese
speakers (i.e. s1 and s2) are dominant and the remaining three are the back-
ground signals.

In Fig. 8.4, the performance is compared with the three different ap-
proaches: 1) the original subband approach (Barros et al., 2002) with the
SOBI algorithm (Belouchrani et al., 1993) (i.e. the signal z1), 2) the fullband
SOBI scheme (i.e. applying the SOBI algorithm directly to the two observa-
tions u1 and u2 without the subband decomposition), and 3) the combined
subband SOBI with the neural memory approach.

In the simulation, for 3), Channel 1 was recognised as the voice correspond-
ing to the Portuguese digit /NOVE/ (i.e. applying the aforementioned scoring
scheme in Hoya et al. (2003c)) and the speech signal ŝ1(k) was reconstructed,
according to this recognition result.

Simulation Example 2) – the Delayed Mixture Case

For the delayed mixture case, the following mixture model consisting of the
three simultaneous voices (i.e. the three Portuguese digits: s1-s3) was assumed:

u1(k) = 0.8s1(k) + 0.2s2(k − 120) + 0.3s3(k − 180) ;
u2(k) = 0.6s1(k) + 0.2s2(k − 125) + 0.3s3(k − 190) .

Figure 8.5 then shows the simulation result. For the combined approach
3), similar to the instantaneous mixture case, Channel 1 was recognised as
the corresponding target speech /NOVE/, for the delayed mixture case.

162 8 Memory Modules and the Innate Structure

1

0 1000 2000 3000 4000 5000 6000 7000 8000

z 3
z 2

z 1
u 2

u 1
s 5

s 4
s 3

s 2
s 1

Sample No.

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

−1

0

1

−1

0

1

−1

0

1

Fig. 8.4. A simulation example of blind speech extraction – the instantaneous mix-
ture case where five simultaneous voices are assumed; i.e. mingled with the two lan-
guages: the three Portuguese digits s1-s3 and two Polish utterances s4 (/JADEN/)
and s5 (/ANONIM/); uk (k = 1, 2): the two instantaneous mixtures, the extracted
target speech z1: original subband SOBI, z2: fullband SOBI, and z3: the combined
subband SOBI with the neural memory approach

Objective Measurement: the Energy in Difference

In both Figs. 8.4 and 8.5, it is observed that the extraction (or separation)
performance of the combined approach 3) (i.e. z3) is better than the other
two, i.e. 1) the original subband SOBI (z1) and 2) fullband SOBI (z2). How-
ever, during the (informal) listening tests, it was sometimes not noticeable
that the combined approach 3) yields consistently better performance than
the fullband SOBI approach, especially when the number of simultaneous

8.5 Embodiment of Both the Sensation and LTM Modules 163

0 1000 2000 3000 4000 5000 6000 7000 8000

z 3
z 2

z 1
u 2

u 1
s 3

s 2
s 1

Sample No.

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Fig. 8.5. A simulation example of blind speech extraction – the delayed mixture
case where three simultaneous voices of a single language are assumed: the three
Portuguese digits s1-s3; uk (k = 1, 2): the two time delayed mixtures, the extracted
target speech z1: original subband SOBI, z2: fullband SOBI, and z3: the combined
subband SOBI with the neural memory approach

speech signals was increased for both the instantaneous and delayed mixture
cases. Then, in order to confirm this observation and evaluate the performance
objectively, we consider the energy in difference, Ediff :

Ediff =
1
q

q∑
i=1

(
ŝ1

std(̂s1)
− si

std(si)

)2

(8.3)

164 8 Memory Modules and the Innate Structure

2 3 4 5 6 7

Number of Simultaneous Voices

E
ne

rg
y

in
 D

iff
er

en
ce

Subband SOBI

Fullband SOBI

Combined SOBI + Neural Memory
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Fig. 8.6. Comparison of Ediff – the instantaneous mixture case; as a function of
the number of the simultaneous voices in the mixture from two to seven

where q is the number of simultaneous speech signals in the mixture (i.e.
known a priori), std(·) denotes the standard deviation, ŝ1 is the extracted
signal corresponding to the target speech, and si are the speech signals. Thus,
the quality of the extraction performance improves as Ediff becomes small.

Figures 8.6 and 8.7 show respectively the comparisons of Ediff (defined in
(8.3)) for both the instantaneous and delayed mixture cases, with varying the
number of simultaneous voices from two to seven within the mixture. In both
the cases, it is evident that the performance with the combined subband SOBI
with the neural memory approach 3) (i.e. depicted in solid lines) is almost
consistently superior to the other two. This is particularly remarkable for the
instantaneous mixture case.

8.5.2 Extension to Convolutive Mixtures (Ding et al., 2004)

In the study (Ding et al., 2004), the concept of the neural memory was also
incorporated to another blind speech/sound extraction scheme for convolutive
mixtures based upon complex ICA in the time-frequency domain, which can
then replace the subband SOBI part in Fig. 8.3; in the approach, the subband
coding is represented by the ordinary fast Fourier transform (FFT, see e.g.
Proakis and Manolakis (1992)), instead of applying a bank of bandpass filters,

8.5 Embodiment of Both the Sensation and LTM Modules 165

2 3 4 5 6 7

Number of Simultaneous Voices

E
ne

rg
y

in
 D

iff
er

en
ce

Subband SOBI

Fullband SOBI

Combined SOBI + Neural Memory

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Fig. 8.7. Comparison of Ediff – the delayed mixture case; as a function of the
number of the simultaneous voices in the mixture from two to seven

and then the complex signals are processed via the respective complex ICA
units, whereas the neural memory is, again, realised by the PNNs.

In the simulation, unlike the previous two examples, the task was to extract
two out of the three sound sources, i.e. s1: a female’s solo singing voice, s2:
a solo-violin, s3: a speech utterance in English by a male speaker (i.e. all the
three sources were sampled at 8(kHz)), from the two convolutive mixtures u1

and u2 with the room impulse responses with the length 64:

u1(k) =
64∑

p=1

a11(p)s1(k − p + 1) +
64∑

p=1

a12(p)s2(k − p + 1) ,

u2(k) =
64∑

p=1

a21(p)s1(k − p + 1) +
64∑

p=1

a22(p)s2(k − p + 1) (8.4)

where the impulse responses aij (i, j = 1, 2) were originally the four distinct
paths measured for the two different sound emission positions (i.e. i = 1, 2)
and two microphones (i.e. j = 1, 2), sampled at 24(kHz) in a room of 3.5(m)
× 7(m) × 3(m), and down-sampled to a total of 64 coefficients. In the room,
each sound emission point was situated with a distance of 0.8(m) in between
and away from the two microphones at 1.2(m). Then, the two microphones
were located with a distance of 0.58(m) in between.

166 8 Memory Modules and the Innate Structure

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

z 2
z 1

y 2
y 1

u 2
u 1

s 3
s 2

s 1

Sample No.

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Fig. 8.8. A simulation example of the combined complex ICA in the time-frequency
domain and the neural memory for blind sound extraction – the convolutive mixture
case (i.e. convolved with real room impulse responses) where a single voice and two
simultaneous music sources are assumed: s1: a female’s solo singing voice, s2: a
solo-violin, s3: a speech utterance in English by a male speaker, uk (k = 1, 2): the
two convolutive mixtures, the two sounds extracted yk: conventional approach in
(Murata et al., 2001), and zk: the combined complex ICA with the neural memory
approach

Figure 8.8 shows a simulation example of the combined complex ICA in
the time-frequency domain with the neural memory approach. In the figure,
the two sounds extracted were the female’s vocal singing s1 (i.e. obtained
from Channel 1) and the speech utterance s3 (i.e. Channel 2). As shown in

8.5 Embodiment of Both the Sensation and LTM Modules 167

Fig. 8.8, the performance of the combined complex ICA with the neural mem-
ory approach (i.e. zθ, θ = 1, 2) was compared to that of the conventional blind
speech separation scheme (Murata et al., 2001) (i.e. the plot shown by yθ).

As confirmed by the listening tests, it is shown that the combined complex
ICA with the neural memory approach yields a better performance, in com-
parison with the conventional approach; in Fig. 8.8, it is remarkable e.g. by
examining the segments of y1 and z1 between the sample numbers at around
15000 and 30000.

8.5.3 A Further Consideration
of the Blind Speech Extraction Model

As described, the neural memory within the blind speech extraction model
as shown in Fig. 8.3 can compensate for the problems of permutation and
scaling ambiguity, both of which are inherent to ICA. In the AMS context,
the subband ICA can be viewed as one of the pre-processing units within
the sensory module to perform the speech extraction/separation, whilst the
neural memory realised by the PNNs represents the LTM.

Although a great number of approaches have been developed based upon
the blind signal processing techniques such as ICA (see e.g. Cichocki and
Amari, 2002) to solve the cocktail party problems, the study by Sagi et al.
(Sagi et al., 2001) treats this problem rather differently, i.e. within the con-
text similar to pattern recognition/identification. In the study, they exploited
sparse binary associative memories (Hecht-Nielsen, 1998) (or, what they call,
“cortronic” neural networks), which simulate the functionality of the cerebral
cortex and are trained by a Hebbian type learning algorithm (albeit differ-
ent from the one used in Chap. 4), and their model requires only a single
microphone, unlike most of the ICA approaches.

Similar to the pattern recognition context as implied in (Sagi et al., 2001),
another model of (blind) speech extraction can be considered by exploiting
the concept of learning (in Chap. 7) and the LTM modules within the AMS
context; suppose that, within a certain area(s) of the LTM modules, some
kernel units are already formed and can be excited by the (fragments of)
voice uttered by a specific person, these kernel units can be activated di-
rectly/indirectly (i.e. via the link weight(s) from the other connected kernel
units), due to the auditory data arrived at the STM/working memory module.
Then, as the cause of the interactive processes between the associated modules
within the AMS, the state(s) within the attention module (to be described
in Chap. 10) is varied, the AMS may become attentive to the particular set of
auditory incoming data which corresponds to that specific person. Thus, this
approach is, in a wider sense, also referred to as the auditory data processing
in the cocktail party situations. We will extend this principle to a part of the
language processing mechanism within AMS in the next chapter.

168 8 Memory Modules and the Innate Structure

8.6 Chapter Summary

This chapter has been devoted to the five memory/memory-oriented mod-
ules within the AMS, i.e. 1,2) both the explicit and implicit LTM, 3)
STM/working memory, 4) semantic networks/lexicon, and the 5) in-
stinct modules, and their mutual relationship, which gives a basis for describ-
ing various data processes within the AMS.

As described in Sect. 8.3, the STM/working memory module plays a cen-
tral part for the interactive data processing between the other associated
modules within the AMS.

Within the AMS context, the semantic networks/lexicon module is con-
sidered as the part of explicit (declarative) LTM and more closely related
to the language module than the regular (or episodic) explicit LTM. It is
described that, although this notion agrees with the general cognitive sci-
entific/psychological point of view (see e.g. Squire, 1987; Gazzaniga et al.,
2002), the division between the explicit LTM and semantic networks/lexicon
depends upon the actual implementation within the kernel memory context.
In a similar context, the instinct: innate structure module consists of a set
of the preset values (or those slowly varying, represented within the kernel
memory principle) representing the constraints/properties of the constituents
of the system and thus can be regarded as a rather static part of the implicit
LTM. However, as described, the division between the instinct and implicit
LTM module is, again, dependent upon the implementation.

In cognitive science-oriented studies (for a concise review, see Gazzaniga
et al., 2002), whilst it is considered that the hippocampus plays a significant
role for the data transfer from the STM/working memory to LTM (Baddeley
and Hitch, 1974; Baddeley, 1986) (as described in Sect. 8.3.1), it is thought
that the medial temporal lobe/prefrontal cortex corresponds to the explicit
(i.e. both the episodic and semantic parts) LTM, whereas, the three areas, i.e.
1) the basal ganglia and cerebellum, 2) perceptual and association neocortex,
and 3) skeletal muscle, are the respective candidates for the procedural mem-
ory, PRS, and classical conditioning (see e.g. p.349 of Gazzaniga et al., 2002)
within the implicit LTM. Although it is considered that this sort of anatomi-
cal place adjustment is not crucial, it can give further insights for the division
of the memory/memory-oriented modules within the AMS at the stage of the
actual implementation.

9

Language and Thinking Modules

9.1 Perspective

In this chapter, we focus upon the two modules which are closely tied to the
concept of “action planning”, i.e. the 1) language and 2) thinking modules.

In contrast to the other modules within the AMS, the two modules will be
treated rather differently, in that both the language and thinking modules are
considered as the built-in mechanisms/the modules which consist only of a
set of rules and manage the data processing between the associated modules.

For the former, in terms of the modularity principle of mind, whether
the language aspect of mental activities should be dealt within a single mod-
ule or a monolithic general-purpose cognitive system has long been a matter
of debate (Wilson and Keil, 1999). Related to the modularity of language,
the study by Broca performed in 1861 indicates that the third frontal gyrus
(now well-known as “Broca’s area”) of the language dominant hemisphere
(i.e. the left hemisphere of the brain for right-handed individuals) as an im-
portant language area (Wilson and Keil, 1999). The postulate was later (at
least, partially) supported by the study of working memory using modern
neuroimaging techniques (Smith and Jonides, 1997; Wilson and Keil, 1999),
though the overall picture of language representation is still far from clear,
and the issues today are focused not upon identifying the specific areas of
brain that are responsible for language but rather how the areas of language
processing are distributed and organised within the brain (Wilson and Keil,
1999).

Nevertheless, as we will see next, the language module within the AMS
context is regarded as a mechanism that consists of a set of grammatical rules
and functions as a vehicle for the thinking process performed by the thinking
module (Sakai, 2002). On the other hand, within the AMS context, the latter
module can be regarded as a mechanism that mainly performs the memory
search amongst the LTM and LTM-oriented modules and the data process-
ing with the associated modules such as the STM/working memory and
intention modules.

Tetsuya Hoya: Artificial Mind System – Kernel Memory Approach, Studies in Computational
Intelligence (SCI) 1, 169–187 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

170 9 Language and Thinking Modules

As in Fig. 5.1 (on page 84), it is then considered that both the modules
of language and thinking work in parallel, and, as discussed in the previous
chapter, the two modules are closely tied to the concept of memory within the
AMS context; it is considered that the language module is also closely oriented
with the semantic networks/lexicon module and hence the explicit/implicit
LTM modules, whilst the thinking module also functions in parallel with the
STM/working memory module.

9.2 Language Module

Although the concept of language and how to deal with the notion for the
description of mind may vary from one discipline to another (see also Sakai,
2002), within the AMS context, the module of language is defined not as
a built-in and completely fixed device without allowing any changes in the
structure but as a dynamically reconfigured learning mechanism (cf. the link
between the innate structure and language module shown in Fig. 5.1 and
the description in Sect. 8.4.6), consisting of a set of grammatical rules, and
functions as a vehicle for the thinking process performed by the thinking
module (Sakai, 2002) (thus, the parallel functionality between the language
and thinking module is considered within the AMS context, as indicated by
the link in between in Fig. 5.1). In respect to the innateness in this wider
sense, the notion of the language module within the AMS context coincides
with the general concept proposed by Chomsky (Chomsky, 1957; Sakai, 2002),
though some principle within his concept, e.g. the universal language theory,
has raised considerably certain controversial issues amongst various disciplines
(for a concise review, see e.g. Wilson and Keil, 1999)1. In contrast, in some
recent studies, it is, however, considered that Chomsky’s deep thought about
language has often been misinterpreted (e.g. Taylor, 1995; Kawato et al., 2000;
Sakai, 2002).

Nevertheless, we here do not dig further into such disputes, i.e. those which
are related to the justification/validation of Chomsky’s concept, but consider,
only from the structural point view and for the purpose of designing the AMS,
that the language module itself is not completely fixed, but rather, the lan-
guage module can also be dynamically evolved in nature during the learning
process. (For the detail, see Sakai (2002)).

From the linguistic view (Sakai, 2002), it is also considered that the ac-
quisition of the grammatical structure2 in a language is related to the role of

1The issue of how to divide actually the language module into the mechanism
that is considered to be dependent upon the innate structure and reconfigurable
counterpart is beyond the scope of this book. Nevertheless, within the AMS context,
it seems appropriate to consider that the language module has the relationship with
the instinct: innate structure module (as indicated by the link in between in Fig. 5.1).

2With respect to the acquisition of the grammatical structure (and implementa-
tion within the AMS), the research is still open (Sakai, 2002); i.e. more studies in

9.2 Language Module 171

the procedural memory within the implicit LTM, whilst the explicit LTM (or
the declarative memory) corresponds to the learning of “meaning” (or the se-
mantic sense of LTM). (For the latter, the notion then agrees with the general
principle in cognitive science/psychology, as described in Chap. 8).

More specifically, the learning mechanism represented by the language
module within the kernel memory principle is also responsible for the reconfig-
uration of the semantic networks/lexicon module, and thus for the forma-
tion of the link weights between the kernel units within the other LTM/LTM-
oriented modules and those within the semantic networks/lexicon (as de-
scribed in the previous chapter) module, so that e.g. the concept formation
(to be described later in this section) is performed. However, the manner of
such reconfiguration/formation of the link weights can be strongly depen-
dent upon the innate structure of the AMS. (For the general principle of the
learning within the AMS context, also refer back to Chap. 7.) In the sense of
the innateness, it is said that Chomsky’s idea of language acquisition device
(LAD) (Chomsky, 1957) can moderately or partially agree with the learning
principle of the language module within the kernel memory context.

We next consider how the semantic networks/lexicon module can be actu-
ally designed in terms of the kernel memory principle, by examining through
an example of the kernel memory representation.

9.2.1 An Example of Kernel Memory Representation – the Lemma
and Lexeme Levels of the Semantic Networks/Lexicon Module

In the study by Levelt (Levelt, 1989; Gazzaniga et al., 2002), it is thought
that the organisation of the mental lexicon in humans can be represented by
a hierarchical structure with three different levels, i.e. the 1) conceptual, 2)
lemma, and 3) lexeme (sound) levels.

In contrast, the kernel memory representation of the mental lexicon can
be considered to consist essentially of only two levels, i.e. the 1) conceptual
(lemma) and 2) lexeme levels, as illustrated in Fig. 9.1, though the underlying
principle fundamentally follows that by Levelt (Levelt, 1989; Gazzaniga et al.,
2002).

In terms of the kernel memory representation, it is considered that both
the lemma and lexeme levels are composed of multiple clusters of the kernel
units, as shown in Fig. 9.1.

In Fig. 9.1, without loss of generality, only two modalities, i.e. auditory
and visual, are considered at the lexeme level. As shown in the figure, for
the visual modality of a single language (i.e. English)3, three types of the
clusters are considered; the clusters of kernel units representing i) words in

developmental psychology as found in (Hirsh-Pasek and Golinkoff, 1996) are consid-
ered to be beneficial.

3In terms of the kernel memory principle, the extension to multiple languages is
straightforward.

172 9 Language and Thinking Modules

/i/ /t/

. . ./ae/

/itt/
/i:t/

/dog/ . . .

Clusters of kernel units
representing phonemes

DOG
IT

EAT

THE

THIS

HAVE

Clusters of kernel
units representing
basic visual
feature patterns

units representing
Clusters of kernel

words in auditory
form

Clusters of
kernel units
representing
roman
characters
in visual form

Clusters of
kernel units
representing
words in
visual form

. . .

‘T’

‘E’

‘I’

. . .

‘IT’

‘DOG’

‘EAT’

. . .

Visual Modality Auditory Modality

PRONOUN

NOUN

VERB

Lexeme Level

Level

(Lemma)

Conceptual

Fig. 9.1. An illustration of the mental lexicon in terms of the kernel memory rep-
resentation – the fragment of a lexical network can be represented by a hierarchical
structure consisting of only two levels: the 1) conceptual/lemma and 2) lexeme lev-
els. Then, each cluster of the kernel units at the lexeme level is responsible for
representing a particular lexeme of the lemma and contains multiple kernel units
to generalise it. (Note that, without loss of generality, no specific directional flows
between the kernel units are considered in this figure)

visual form (i.e. image patterns), ii) Roman characters, which constitute the
words in i), and iii) basic visual feature patterns, such as segments, curves,
etc, whereas the auditory counterpart contains the two types of the clusters,
i.e. those representing iv) words (i.e. sound patterns) and v) phonemes. (Re-
member that, as described in Chaps. 3 and 4, such cross-modality link weight

9.2 Language Module 173

connections between the respective kernel units are allowed within the kernel
memory concept, unlike the conventional ANN approaches.)

For the cluster iii), the well-known neurophysiological study of the cells in
the primary visual cortex by Hubel and Wiesel (Hubel and Wiesel, 1977) also
suggests this sort of organisation. Then, each cluster in i)-v)4 is responsible
for representing a particular lexeme relevant to the lemma and contains mul-
tiple kernel units that generalise it and, in practice, can be formed within the
SOKM principle (in Chap. 4).

Figure 9.2 shows an example of the cluster of kernel units representing
the sound pattern /i:t/ (/EAT/). (Note that, as defined in Sect. 3.3.1, in
both Figs. 9.1 and 9.2, the connections in grey lines represent the link weight
connections between pairs of the kernel units, whereas those in black lines
denote the regular inputs to the kernel units, i.e. the data transferred from
the STM/working memory module as described in Chap. 8.)

In the figure, it is considered that each kernel unit, except the symbolic
one on the top, has the template vector that can by itself perform the tem-
plate matching between the input (i.e. given from the STM/working memory
module) and template vector representing the sound pattern /i:t/ (i.e. the fea-
ture vector obtained after the sensory data processing within the sensation
module(in Chap. 6)). It is then considered that each kernel unit represents

4At the lexeme level, although the original view of the three visual modality
parts i)-iii) agrees with that of the connectionist model by McClelland and Rumel-
hart (McClelland and Rumelhart, 1981), the auditory counterpart on the other
hand corresponds to the so-called TRACE model (McClelland and Elman, 1986),
the formation of the former model is fixed, i.e. the structure is not dynamically
reconfigurable unlike the one realised by the SOKM (see Chap. 4), and the model is
trained via a gradient type method (and hence requires iterative training schemes),
whilst the latter (i.e. TRACE) is a rather predefined one (Christiansen and Chater,
1999), i.e. without any learning mechanism equipped to (re-)configure the network.
Then, the later connectionist models such as the so-called “simple recurrent net-
works (SRNs)” (Elman, 1990) (for a general issue of recurrent neural networks, see
Mandic and Chambers, 2001) still resort to gradient type algorithms or conventional
MLP-NNs (for a survey of the recent models, see Christiansen and Chater, 1999),
unlike the models given here.

Related to this, the auditory part of the lexicon has been commonly realised in
terms of the hidden Markov models (HMMs) (for a concise review of HMMs for
speech applications, see e.g. Rabiner and Juang, 1993; Juang and Furui, 2000).
Although it has been reported in many studies that the language processing mecha-
nism modelled by HMMs, e.g. the application to speech recognition, can achieve high
recognition accuracy, both the training and testing mostly resort to rather compu-
tationally and mathematically complex search (i.e. optimisation) algorithms such as
the so-called Viterbi algorithm (Viterbi, 1967; Forney, 1973). Moreover, such higher
recognition rates can also be achieved by PNNs (Low and Togneri, 1998). Neverthe-
less, by means of HMM models, to construct a dynamically reconfigurable system
or extend them to multi-modal data processing as realised by the SOKM (in Sect.
4.5) is considered to be very hard.

174 9 Language and Thinking Modules

K ()x
1

K ()x
3

K ()x
2

Module
Memory
Working
STM /
Input from

Kernel unit representing
the sound /EAT/ (symbolic)

A cluster of kernel units
representing some different
sound patterns of /i:t/ (regular)

. . .

.
.

.

x

/i:t/

Fig. 9.2. An example of representing the cluster of kernel units for the mental
lexicon model – multiple regular kernel units and a symbolic kernel unit representing
(or generalising) the sound pattern /i:t/ (/EAT/); it is considered that each kernel
unit in the cluster has the template vector that can perform the template matching
between the input (i.e. given from the STM/working memory module) and template
vector of the sound pattern /i:t/ (Note that, without loss of generality, no specific
directional flows between the kernel units are considered in this figure)

and thus generalises to a certain extent a particular sort of sound pattern. In
other words, several utterances of a specific speaker could be generalised by a
single kernel unit.

In practice, the utility of the symbolic kernel units e.g. the one repre-
senting (or generalising) the sound pattern /i:t/ (as depicted on the top in
Fig. 9.2) may be dependent upon the manner of implementation; for some ap-
plications, it may be convenient to analyse/investigate (by humans) how the
data processing within the lexical network actually occurs via the activations
by observing the activation states of such symbolic kernel units. (However, in
such implementation, it may not be always necessary to introduce actually
such symbolic kernel units. In this respect, the same scenario applies to the
symbolic kernel units at the conceptual (lemma) level; the concept formation
can be simply ascribed to the associations (or the link weights) between the
kernel units at the lexeme level.)

Alternatively, it is also considered that the kernel unit on the top of the
cluster can be used as the output (or gating) node to generalise the activations
from the regular kernel units within the cluster, with the activation function,
e.g. the linear output given by (3.14), as in the output nodes of PNNs/GRNNs,
or the nonlinear one such as the sigmoidal output in (3.29), depending upon
the application. Eventually, the transfer of activations can be sent to other
domains (or clusters) via such a gating node.

Next, we consider how the data processing within the lexical network as
shown in Fig. 9.1 can be actually performed: suppose a situation where a

9.2 Language Module 175

modality-specific data vector, for instance, i.e. the data representing a sound
pattern of the word /EAT/, is transferred from the STM/working memory
module (i.e. due to the receipt of the auditory sensory data after the feature
extraction process within the AMS).

Then, as in Fig. 9.1, some of the kernel units within the cluster repre-
senting (or generalising) the respective sound patterns (i.e. several different
utterances) of the word /i:t/ (/EAT/) can be firstly activated, as well as
some of the kernel units within the other clusters, i.e. the clusters of the ker-
nel units representing the respective phonemes /i/, /t/, etc, i.e. depending
upon the values of the link weights in between, at the lexeme level.

Second, since some of the kernel units at the lexeme level may have also
already established the link weights across different modalities (i.e. due to the
data-fusion of the auditory part and that corresponding to the visual modal-
ity, occurred during the learning process between the STM/working memory
and LTM-oriented modules, as described in Chaps. 7 and 8), the subsequent
(or simultaneous) activations from the kernel units in different modalities (i.e.
auditory → visual) can also occur (in Chap. 4, we have already seen how such
activations can occur via the simulation example of the simultaneous dual-
domain (i.e. both the auditory and visual domains) pattern classification tasks
by the SOKM).

Then, in the sense that such subsequent activations can occur without
actually giving the input of the corresponding modality but due only to the
transfer of the activations from the kernel units in other modalities, this sim-
ulates the data processing of mental imagery .

9.2.2 Concept Formation

Third, this data-fusion can lead to the concept formation at the conceptual
(lemma) level, as shown in Fig. 9.1; the emergence of the concept “EAT” can
be represented by the activation from the symbolic kernel “EAT”at the lemma
level, as well as the subsequent activations from the associated kernel units at
both the lemma and lexeme levels, due to the transfer of the activation from
the two (symbolic) kernels (or, alternatively, the activations from some of the
kernel units at the lexeme level).

For representing the kernel unit “EAT” at the lemma level, it is also con-
sidered that, instead of the symbolic kernel unit, a regular kernel unit can be
employed, with the input vector x“EAT” given as

x“EAT” = [K‘EAT’ K/i:t/]T (9.1)

where K‘EAT’ (note that here the symbol(s) (i.e. the word(s)) with the expres-
sion ‘·’ denotes the image pattern, whereas that in “·” represents the concept)
and K/i:t/ denote the activation from the kernel unit representing the visual
and auditory part of the word “EAT”, respectively.

176 9 Language and Thinking Modules

Subsequently, the transfer of the activation from the kernel unit “EAT” can
cause other concept formation at the lemma level, e.g. “EAT” → “VERB”
and/or “NOUN” . . . (needless to say, this also depends upon the strength
of the connection, i.e. the current values of the link weights in between),
which can eventually lead to the representation of a sentence to be described
next. However, to what extent such transfer of the activation is continued
depends upon not only the data processing amongst other modules within the
AMS but also the current condition of the link weights; in Fig. 9.1, imagine a
situation where the kernel unit representing “EAT” at the lemma level is firstly
activated (i.e. by the transfer from the lower level kernel unit representing the
image pattern ‘EAT’ K‘EAT’, say, due to the input data x given), then, using
(4.3), the activation from the kernel unit representing the concept “HAVE”
K“HAVE” can be expressed by the transfer of the subsequent activations:

K“HAVE” = γw{“HAVE”,“VERB”} × K“VERB” ×
γw{“VERB”,“EAT”} × K“EAT” ×
γw{“EAT”,‘EAT’} × K‘EAT’(x) . (9.2)

Thus, depending upon the current values of link weights wij , a certain
situation in that the above does not satisfy the relation K“HAVE” ≥ θK (as
defined in (3.12)) can be considered, since the subsequent activations from
one to another kernel unit are decaying due to the factor γ (see Sect. 4.2.2).

9.2.3 Syntax Representation in Terms of Kernel Memory

For describing the concept formation in the previous subsection, it sometimes
seems to be rather convenient and sufficient that we only consider the upper
level, i.e. the conceptual (lemma) level, without loss of generality; as illustrated
in Fig. 9.1, the kernel units at the lemma level can be mostly represented by
symbolic nodes rather than regular kernel units. This account also holds for
the description of syntax representation. Thus, to describe the syntax repre-
sentation, or, more generally, language data processing, conventional symbolic
approaches are considered to be useful. However, it is seen that, in order to
embody such symbolic representation related to the language data processing
and eventually incorporate into the design of the AMS, the kernel memory
principle can still play the central role. (For instance, various lexical networks
based upon conventional symbolism as found in (Kinoshita, 1996) can also be
interpreted within the kernel memory principle.)

Then, we here consider how the syntax representation can be achieved in
terms of the kernel memory principle described so far. Although to give a full
account of the syntax representation is beyond the scope of this book, in this
subsection, we see how the principle of kernel memory can be incorporated
for the syntax representation.

Now, let us examine a simple sentence, “The dog runs.”, by means of the
kernel memory representation of the mental lexicon as illustrated in Fig. 9.1:

9.2 Language Module 177

THE

RUNDOG

RUNS

NOUN VERB’’

PRONOUN

NOUN VERB

NOUN’’

NOUN’’

‘‘PRONOUN

‘‘SINGULAR

’’NOUN VERB’’

‘‘SINGULAR

NOUN’’

‘‘SINGULAR

Fig. 9.3. An example of the mental lexicon representing the simple sentence “THE
DOG RUNS.” in terms of the kernel memory representation.

as in Fig. 9.1, it is firstly considered that the three kernel units representing
the respective concepts “THE”, “DOG”, and “RUN” all reside at the lemma
level and can be subsequently activated by the transfer of activations from
the kernel unit(s) at the lower (i.e the lexeme) level.

Second, the word order “DOG” then “RUN” can be determined, due to
the kernel unit representing the directional flow “NOUN” → “VERB”, given
the activations from both the (symbolic) kernel units for “DOG” and “RUN”
as the input elements (i.e. defined in (9.1)) to the kernel unit, as illustrated in
Fig. 9.3 (i.e. since the kernel units for “DOG” and “RUN” have the connection
via the link weight with “NOUN” and “VERB”, respectively). Similarly, the
word order “THE” then “DOG” can be established due to the kernel unit rep-
resenting the directional flow (or the association in between) “PRONOUN” →
“NOUN”. (For actually modelling the kernel units that represent such (mono-
)directional flows, refer back to Sect. 3.3.4.) Here, it is assumed that these two
directional flows, i.e. the flows “NOUN” → “VERB” and “PRONOUN” →
“NOUN”, have already been acquired through the learning process of the lan-
guage module within the AMS.

Then, it may be seen that the determination of the word order in the
above is due to the higher-level concepts such as those represented by the data
flow “NOUN” → “VERB” or “PRONOUN” → “NOUN”. In other words, the
word sequence “THE” → “DOG” → “RUN” follows due to the higher-level

178 9 Language and Thinking Modules

concepts formed (in advance) within the lexicon by means of the language
module.

However, in contrast to the aforementioned manner of determination,
within the context of the learning by the AMS, it is also possible to con-
sider that this has been learnt from the examples; i.e. firstly the concept
formation of the words “DOG”, “RUNS”, “THE”, etc, as well as the word
sequence, occurs through multiple presentations of such word sequences to the
AMS and the associated learning process of the memory modules (see Chaps. 7
and 8). Then, the higher-level concept (i.e. to “generalise” the word sequence)
is formed later by a further learning process (e.g. with reinforcement).

Third, similar to the rule of the aforementioned directional flows, it is
considered that the rule in which “since the noun “DOG” is a singular noun
of the third person, the following verb must have “S” to indicate this in the
present simple form and thus “RUNS”, instead of the original “RUN”, in
English” has also been acquired through the learning process of the language
module (i.e., similar to the higher-level concept of the word sequence, it can
be ultimately considered that even this complex rule has been acquired in the
aforementioned “learning through examples” principle). This is represented
by the sequences of the activations:

1) “THE” → “PRONOUN”, “DOG” → “NOUN”, and “RUN” →
“VERB”;

2) The flows in 1) → “SINGULAR NOUN”;
3) The flows in 1,2) → “VERB” → “SINGULAR NOUN → VERB”

→ “RUNS”

Therefore, it can be considered that, within the kernel memory principle,
the language module is composed of a set of the grammatical rules which
generalises a chain of concepts (i.e. represented by a chain of the kernel units
responsible for the corresponding concepts, due to the link weights in between
with directional flows), e.g. “NOUN” → “VERB”, “DOG” → “SINGULAR
NOUN” → . . . “RUNS” . . ., and so forth.

Moreover, in (Ullman, 2001; Sakai, 2002), it is considered that the acqui-
sition of the grammatical rules involves the procedural memory, whereas the
learning of words is due to the declarative (explicit) LTM. We will return to
a further issue of the grammatical rules in terms of the data processing due
to the thinking module in the next section.

In addition, the utility of the pronoun such as “THE” requires the notion
not merely related to the syntactical rules but also (some sort of) the spatial
information about the AMS (and hence the memory to store it temporarily),
i.e. to describe the dog actually exists e.g. in front of the body (thus, the
dog is “spatially” away and perceived via the input: sensation module), or
to remember (shortly) the concept of the “dog” that specifies a certain dog
appeared previously in the context (thus, the requirement for the temporal
memory). Therefore, it is considered that the notion of the pronouns such as

9.2 Language Module 179

xc

xA

x
K

K

KA

B

B

C

Fig. 9.4. A kernel (sub-)network consisting of the three kernel units KA, KB , and
KC

“IT”, “THAT”,“THIS”, etc, also involves the data processing within other
modules (such as the memory /innate structure modules) of the AMS.

Before moving on to the discussion of the thinking module, we revisit the
issue of how the concept formation can be realised within the kernel memory
context in the next subsection, which is also closely related to the implemen-
tation of the syntax representation described so far.

9.2.4 Formation of the Kernel Units Representing a Concept

In Sect. 3.3.4, it was described how a kernel unit can represent the directional
flow between a pair of kernel units. In a similar context, we here consider
how the kernel units representing a concept can be formed within the SOKM
principle (in Chap. 4).

Now, let us consider the following scenario:

i) A kernel unit KA is added into the memory space, at time index
n = n1 (i.e. by following the [Summary of Constructing A Self-
Organising Kernel Memory] on page 63)

ii) Another kernel unit KB is then added, at n = n2;
iii) Next, the kernel unit KC representing a certain concept that can be

related to the two added kernel units KA and KB is added, at n = n3;
iv) The links between the kernel units KC and KA/KB are formed at n =

n4 (i.e. n1 < n2 < n3 < n4).

Thus, at time n = n4, it is considered that the kernel (sub-)network as
shown in Fig. 9.4 is formed. (In the figure, note that the respective inputs to
the three kernel units xA, xB , and xC are not necessarily those belonging to
the same domain.) In Fig. 9.4, it is possible to consider such a situation that
(during the early stage of the memory construction) the link weight between
KA and KB is formed at n > n2. Then, the (sub-)network structure in Fig. 9.4
is tournament , in the sense that each node is connected by bi-directional links
between all the three kernels and can be simultaneously activated due to the
transfer of the activation from any kernel(s).

180 9 Language and Thinking Modules

The Kernel Unit Representing a Directional Flow

Now, consider a situation where the kernel unit KC represents a certain con-
cept that can be activated by the sequential activation of KA and KB , i.e.
representing the directional flow KA → KB as in Sect. 3.3.4. In such a situa-
tion, it is considered that, although initially the link weight between KA and
KB was formed, the link weight wAB may eventually disappear, i.e. according
to [The Link Weight Update Algorithm] (on page 60) followed by Con-
jecture 1 (on page 60) within the SOKM principle; unless the simultaneous
excitation of KA and KB occurs periodically, the value of the link weight in
between will be decreased in time (i.e. denoted by the grey-coloured link in
between in Fig. 9.4). Instead, by extending Conjecture 1 within the SOKM
context and exploiting the template matrix for the temporal representation
as in (3.32), we may draw the following conjecture:

Conjecture 4: When a pair of kernels Ki and Kj (i �= j) in the
SOKM are asynchronously and repeatedly excited, a new kernel unit
Knew representing the asynchronous excitation between Ki and Kj

may be formed, where appropriate, with its input

Xnew(n) =
[

Ki(n) Ki(n − 1) . . . Ki(n − pnew + 1)
Kj(n) Kj(n − 1) . . . Kj(n − pnew + 1)

]
, (9.3)

where Ki/j(n) denotes the activation of the kernel unit Ki/j at time
n, and the template matrix:

Tnew =
[

ti(1) ti(2) . . . ti(pnew)
tj(1) tj(2) . . . tj(pnew)

]
. (9.4)

where the element ti/j(k) (k = 1, 2, . . . , pnew) may be alternatively
given by (3.33) or (3.34) and pnew is a positive constant.

Note that Conjecture 4 may be seen as an alternative representation of the
directional flow between a pair of kernel units that is useful to know the exact
timing of occurring such a directional data flow in between, where required for
further data processing (thus, to justify the biological plausibility is beyond
the scope of this book).

Then, we exploit Conjecture 4 in the above for the formation of a new
kernel unit KAB , as shown in Fig. 9.5; in the figure, the new kernel unit KAB

is formed (at n > n4) with the input

XAB(n) =
[

KA(n) KA(n − 1) . . . KB(n − pAB + 1)
KB(n) KB(n − 1) . . . KB(n − pAB + 1)

]
. (9.5)

Note that, at this point, since the connections between the kernel units
KAB and KA/KB are represented in terms of the input vector to the kernel

9.2 Language Module 181

xA

xc

KC (A B)

x
K

KA

B

B

KAB

Fig. 9.5. Formation of a new kernel unit KAB which represents the directional
flow between the two kernel units KA → KB within the (sub-)network (formed at
n = n4)

KAB , rather than the ordinary (bi-directional) link weights, the data flow in
reverse, i.e. KAB → KA,KB , is not allowed.

Accordingly, the template matrix for the kernel unit KAB is represented
as in (9.4):

TAB =
[

tA(1) tA(2) . . . tA(pAB)
tB(1) tB(2) . . . tB(pAB)

]
. (9.6)

It is then considered that, as described in Sect. 3.3.4, the kernel unit KAB

can eventually represent the directional flow of KA → KB by varying (due to
the associated learning process) either the number of columns pAB (see page
55) or the regularisation factor κA/κB (see page 56).

Establishment of the Link Weight Between KAB

and KC – the Concept Formation

As described in the previous subsection, after a certain learning process of the
kernel KAB to represent the directional flow KA → KB , KAB can be activated
if the pattern matching between an asynchronous activation pattern of KA

and KB and the template matrix TAB is successfully done (see Sect. 3.3.4).
In such a situation, it is considered that both the kernels KAB and KC

can be subsequently (or simultaneously) activated, if the link between these
two kernels is already established (i.e. during the associated learning process).

Figure 9.6 shows the case where the bi-directional link between KAB and
KC is established within the sub-network shown in Fig. 9.5. Then, the follow-
ing two cases of the activation for KAB and KC are considered:

1) The kernel unit KAB is firstly activated due to the asynchronous
activation between KA and KB (i.e. given as the input to KAB),
and then the activation from KAB is transferred, which causes the
subsequent activation from the kernel KC .

2) In reverse, the kernel unit KC is firstly activated by its input xc

or the transfer via the link weight(s) from the kernel unit(s) other

182 9 Language and Thinking Modules

xA

(A B)

xc

x
K

KA

B

B

KAB

KC

Fig. 9.6. Establishment of the bi-directional link between KAB and KC within the
(sub-)network

than those within the sub-network, and then the activation from
KAB subsequently occurs.

In both the cases above, it is also possible that both the kernels KA and
KB can be eventually activated due to the subsequent transfer of the acti-
vation from KC , which may be exploited further for simulating the imagery
task, e.g. to recover the constituents of the concept.

Nevertheless, it is macroscopically viewed that the transfer of activation
occurring at the sub-network is related to the concept formation that repre-
sents the directional flow KA → KB within the SOKM context.

Extension to the Case for More Than Two Constituent Kernel
Units Involved

In the previous case as shown in Fig. 9.6, only two kernel units were involved
for the concept formation. Here, we consider how this principle can be gener-
alised to the case where more than two constituent kernel units are involved.

Figures 9.7 and 9.8 show the two possible situations where the kernel units
K1,K2, . . . ,KN are the constituents to form the concept that is represented
by the kernel KN

C . In Fig. 9.7, it is considered that the kernel unit KN
C repre-

sents the flow of K1 → K2 → . . . → KN at a time; the template matrix has
the size (N × pCN). In contrast, the network structure in Fig. 9.8 shows the
case where each kernel unit Ki

C (i = 2, 3, . . . , N) represents the subsequent
directional flow, i.e. K2

C : K1 → K2, K3
C : K1 → K2 → K3, and, eventually,

the kernel unit KN
C represents the directional flow of K1 → K2 → . . . → KN ,

all with the template matrix of size (2 × pCi).
In this section, so far a framework of how the language and semantic net-

works/lexicon modules can be represented has been given based upon the ker-
nel memory principle. However, the description has been rather restricted to
the structural sense of these language-oriented modules. In the following sec-
tion, we consider the thinking module, which incorporates with the other as-
sociated modules within the AMS, and see how the interactive data processing

9.3 The Principle of Thinking – Preparation for Making Actions 183

x1

K 2

xc

KC

K N

(1 2 N). . .

x2

xN

K 1

CK
N

.

.

.

Fig. 9.7. Concept formation involving more than two constituent kernel units – the
kernel unit KN

C represents the directional flow of K1 → K2 → . . . → KN , at a time

amongst such modules also involves and then contributes to reconfigure the
language-oriented modules.

9.3 The Principle of Thinking – Preparation
for Making Actions

In Sect. 9.2.3, it has been described how each lexeme can be organised to form
eventually a sentence in terms of the kernel memory principle by examining
through the example of the simple sentence “The dog runs.”. Then, consider
another example similar to the previous, i.e. “Dog flies.” According to the
principle of the word sequence described earlier, this sentence can be found to
be grammatically correct. However, the correctness in the sense of “meaning”
(or the semantic sense) of this sentence depends upon the context/situation
in which the sentence is used. Therefore, it is considered that one of the roles
for the thinking module is to judge the correctness in the semantical sense.

As shown in Fig. 5.1, the thinking module within the AMS is considered
to function in parallel with the STM/working memory module (i.e. the
connection between the two modules is depicted (solid line) without arrows
in Fig. 5.1) and as a mechanism to organise the data processing with the
four associated modules, i.e. 1) intention, 2) intuition, and 3) semantic
networks/lexicon module.

Then, provided that the subsequent activations from the kernel units
corresponding to the sentence, “Dog flies.”, occur within the semantic net-
works/lexicon module, e.g. given appropriate stimuli(us) to the AMS, it is

184 9 Language and Thinking Modules

x1

K 2

x2

K 3

x3

K N

xN

CK
N

xc

KC

(1 2 3)

(1 2 N). . .

CK
2

CK
3

K 1

(1 2)

.

.

.

Fig. 9.8. Concept formation involving more than two constituent kernel units –
each kernel unit Ki

C (i = 2, 3, . . . , N) represents the directional flow subsequently;
i.e. K2

C : K1 → K2, K3
C : K1 → K2 → K3, and, eventually, the kernel unit KN

C

represents the directional flow of K1 → K2 → . . . → KN

considered that the interactive data processing amongst these four modules
and the STM/working memory module occurs, in order to determine whether
the sentence is semantically correct or not.

More concretely, provided that the AMS has already acquired the fact that
“Dog runs but does not fly in reality” (i.e. in terms of the explicit LTM) during
the learning process; i.e. during the exposition of the AMS to the surrounding
environment, the AMS must have not encountered any situation in which the
dog flies in reality, or due to the reinforcement given (e.g. the teacher’s signal)
during its learning process (in Chap. 7). Then, it can be considered that the
corresponding association process (i.e. the data-fusion) between the concepts
“DOG” and “FLY” did not occur.

However, it still is possible to consider such a situation where the sen-
tence, “Dog flies.”, can appear in virtual reality e.g. in a fantasy novel, and
the AMS acquired such knowledge (in terms of the kernel memory repre-
sentation) through the associated learning process. In such a situation, it is
considered that the thinking module within the AMS performs the memory
search to a certain extent and eventually, for instance, contributes to accom-
plish the following sequence: “VIRTUAL WORLD” → “DOG” → “FLIES”,
by accessing the (episodic) contents of the LTM.

9.3 The Principle of Thinking – Preparation for Making Actions 185

Thus, it is said that the principal role of the thinking module is to per-
form the memory search multiple times (i.e. within the kernel memory so
constructed) and that the manner of such search processes is quite depen-
dent upon the current states of the other modules associated with both the
thinking and STM/working memory modules (i.e. since both the two modules
function in parallel) such as emotion, intention, and/or intuition module.

9.3.1 An Example of Semantic Analysis Performed
via the Thinking Module

Now, to be more concrete, let us have a closer look at the simple example of
lexical analysis of the sentence, “Dog flies.”, performed via the thinking mod-
ule: as described earlier, suppose first that the AMS successfully processes
the sensory data (i.e. the utterance spoken by a human through the micro-
phone(s)) and then that the sequence of the two words is found to be gram-
matically correct by the AMS, i.e. by accessing the kernel units within the
semantic networks/lexicon module (for the detail, refer back to Sects. 9.2.1
and 9.2.2).

Second, the semantic analysis can be performed via the thinking mod-
ule; e.g. by the STM/working memory module, the activated kernel units
corresponding to the word sequence (i.e. the kernel units both/either at the
lemma and/or at the lexeme level) are marked, and the states of such ac-
tivations are preserved within the STM/working memory or the intention
module for a certain (short) period of time. (At this point, it is also possible
to consider that there are other kernel units within the STM/working memory
that are irrelevant to the word sequence, e.g. other incoming sensory data.)
Then, with the current states in both the attention and emotion modules,
the semantic analysis starts by accessing (several times) the episodic contents
of the LTM modules (e.g. searching the kernel unit(s) storing the image(s) of
“dog flies”) or the intuition module (i.e. the latter module will be described
later). (Note that this analysis can also involve the memory search within the
semantic networks/lexicon module, due to the link weight connections in
between.)

Third, during the search process within the episodic memory, if the sub-
sequent activations from the kernel units representing the three concepts
“DOG”, “FLIES”, and “VIRTUAL WORLD” eventually occur (repetitively
or consistently), such kernel units together with the link weight connections
formed temporarily can remain within the STM/working memory module.
Then, if the activations from such kernel units last and are marked by the
STM/working memory module for a sufficiently long period of time, the kernel
network representing the subsequent concept formation may eventually turn
to the network of the corresponding LTM module(s) (even though it is also
possible to consider that such formation of the kernel network representing the
subsequent concepts may be later altered or disappear completely from the
LTM modules due to the further learning process, i.e. by the reinforcement).

186 9 Language and Thinking Modules

Moreover, it is possible that, a new/further search is triggered from such ker-
nel units to represent other concepts and starts a new thinking process via
the thinking module.

In the next chapter, the four modules associated with the abstract notions
1) attention, 2) emotion, 3) intention, and 4) intuition module, all of which
have appeared in the example above, will be described in detail.

9.3.2 The Notion of Nonverbal Thinking

In the previous subsection, one of the fundamental roles of the thinking mod-
ule, namely the semantic analysis of the sequence of words via the language
module and the associated LTM structures, has been described. However, it
is generally considered (albeit dependent upon the manner of interpretation)
that the thinking process is performed not only verbally but also nonverbally
(cf. e.g. Sakai, 2002).

In the AMS context, it can be seen that the verbal thinking process corre-
sponds to such a process as in the previous example of the semantic analysis,
whereas the nonverbal thinking is the process in which the kernel units not at
the lemma level but at the lexeme level significantly contribute to the mem-
ory search by the thinking module. In this sense, such memory search is also
related to describe the notion of intuition to be discussed in the next chapter.

9.3.3 Making Actions – As a Cause of the Thinking Process

Regardless of verbal or nonverbal thinking processes, it is considered that
the activations from some of the kernel units within the LTM/LTM-oriented
modules can induce the subsequent activations (i.e. due to the link weight
connections) from those which are directly connected to control the respective
mechanisms in the body via the primary outputs module. (In Fig. 5.1, this
is indicated by the mono-directional flow from the implicit LTM to the
primary output module.)

It is also considered that, as shown in Fig. 5.1 (on page 84), the internal
states due to the procedural memory part of the implicit LTM module can be
varied, during the memory search process via the thinking module.

9.4 Chapter Summary

In this chapter, it has been described that both the language and thinking
modules are closely tied to each other within the AMS context. Then, a frame-
work for designing both the language and thinking modules has been given,
by examining through several examples based upon the kernel memory prin-
ciple. As described earlier, although to obtain a complete picture of these two
modules still requires a further study in relevant disciplines, such as linguistics

9.4 Chapter Summary 187

or developmental psychology, as well as more design-oriented studies e.g. in
AI or robotics, the kernel memory representations have been demonstrated
still to play the central role in the actual design of the two modules.

As described, it can be seen that the language module consists of a set
of grammatical rules and incorporates with the thinking module to form
the sentences, whilst the thinking module functions in parallel with the
STM/working memory and plays the role in the interactive data processing
amongst the three associated modules, i.e. 1) intention, 2) intuition, and 3)
semantic networks/lexicon module, with/without the language-oriented
data processing (i.e. corresponding to the verbal/nonverbal thinking). It is
considered that the thinking process (i.e. regardless of the verbal or nonver-
bal processes) may eventually invoke real actions by the body via the primary
output module. As shown in Fig. 5.1, this can happen due to the accesses
and thereby the subsequent activations within the implicit LTM module,
during the memory search process, via the thinking module.

In the next chapter, we move on to the discussion of the remaining four
modules associated with the abstract notions related to the mind, namely, the
attention, emotion, intention, and intuition modules.

References

Aleksander, I. (1996). Impossible Minds: My Neurons and My Consciousness.
London: Imperial College Press.

Amari, S. (1967). Theory of adaptive pattern classifiers. IEEE Trans. Elec-
tronic Computers, EC-16, 299-307.

Amit, D. J. (1989). Modeling Brain Function: The World of Attractor Neural
Networks. New York: Cambridge Univ. Press.

Anderson, A. K., Spencer, D. D., Fulbright, R. K., & Phelps, E. A. (2000).
Contribution of the anteromedial temporal lobes to the evaluation of facial
emotion. Neuropsychology, 14, 526-536.

Anderson, J., Platt, J. C., & Kirk, D. B. (1993). An analog VLSI chip for
radial basis functions. in S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.)
Advances in Neural Information Processing Systems, 5, 765-772.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ:Eribaum.
Anderson, J. R. (2000). Learning and Memory. New York: John Wiley & Sons,

Inc.
Apolinario, J. A., de Campos, M. L. R., & Diniz, P. S. R. (1997). Convergence

analysis of the binormalized data-reusing LMS algorithm. Proc. of the Eu-
ropean Conf. Circuit Theory and Design, Budapest, Hungary, 972-977.

Arkin, R. C., Fujita, M., Takagi, T., & Hasegawa, R. (2001). Ethological
modeling and architecture for an entertainment robot. Proc. of 2001 IEEE
Int. Conf. Robotics & Automation, 453-458, Seoul, Korea.

Arnold, M. B. & Gasson, J. (1954). Feelings and emotions as dynamic fac-
tors in personality integration. In M. B. Arnold and J. Gasson (Eds.). The
Human Person. New York: Ronald, 294-313.

Asano, F., Hayamizu, S., Yamada, T., & Nakamura, S. (2000). Speech en-
hancement based on the subspace method. IEEE Trans. Speech, Audio
Processing, 8-5, 497-507.

Asimov, I. (1950). I, Robot. New York: Doubleday, Garden City.
Atkinson, R. C. & Shiffrin, R. M. (1968). Human memory: a proposed system

and its control processes. In K. W. Spence and J. T. Spence (Eds.), The

246 References

Psychology of Learning and Motivation, 2, 89-115, New York: Academic
Press.

Badeau, R., Richard, G., & David, B. (2004). Sliding window adaptive SVD
algorithms. IEEE Trans. Signal Processing, 52-1, 1-10.

Baddeley, A. D. & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.),
The Psychology of Learning and Motivation, 8, 47-89. New York: Academic
Press.

Baddeley, A. D. (1986). Working Memory. Oxford: Oxford Univ. Press.
Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as

a language learning device. Psychological Review, 105-1, 158-173.
Barrett, A. M., Crucian, G. P., Raymer, A. M., & Heilman, K. M. (1997).

Spared comprehension of emotional prosody in a patient with global apha-
sia. J. Int. Neuropsychol. Soc., 3, 57.

Barros, A. K., Kawahara, H., Cichocki, A., Kajita, S., Rutkowski, T., &
Ohnishi, N. (2000). Enhancement of a speech signal embedded in noisy
environment using two microphones. Proc. of Int. Conf. Independent Com-
ponent Analysis and Blind Signal Separation, 423-428.

Barros, A. K., Rutkowski, T., Itakura, F., & Ohnishi, N. (2002). Estimation of
speech embedded in a reverberant and noisy environment by independent
component analysis and wavelets. IEEE Trans. Neural Networks, 13-4, 888-
893.

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., & Moulines, E. (1993).
Second-order blind separation of temporally correlated sources. Proc. of
Int. Conf. Digital Signal Processing, Cyprus, 346-351.

Bishop, C. M. (1996). Neural Networks for Pattern Recognition. Oxford: Ox-
ford Univ. Press.

Borod, J. C., Koff, E., Perlman Lorch, M., & Nicholas, M. (1986). The ex-
pression and perception of facial emotion in brain damaged patients. Neu-
ropsychologia, 24, 169-180.

Bowers, D., Bauer, R. M., & Heilman, K. (1993). The nonverbal affect lexicon:
Theoretical perspectives from neuropsychological studies of affect percep-
tion. Neuropsychology, 7, 433-444.

Bowlby, J. (1971). Attachment and Loss, Vol. 1: Attachment. London:
Hogarth.

Brian, S., Syrus, C. N., Rex, K., Raja, H., & Robert, H. N. (2001). A biologi-
cally motivated solution to the cocktail party problem. Neural Computation,
13-7, 1575-1602.

Broadbent, D. A. (1970). Stimulus set and response set: two kinds of selective
attention. In D. I. Motofsky (Ed.). Attention: Contemporary Theory and
Analysis. 51-60. New York: Appleton-Century-Crofts.

Brodal, A. (1982). Neurological Anatomy. New York: Oxford Univ. Press.
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in

ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J. A. Barth.
In G. von Bonin, Some Papers on the Cerebral Cortex. 201-230. Translated

References 247

as, On the Comparative Localization of the Cortex. Springfield, IL: Charles
C. Thomas, 1960.

Broomhead, D. S. & Lowe, D. (1988). Multivariable functional interpolation
and adaptive networks. Complex Systems, 2, 321-355.

Bryson, A. E. & Ho, Y.-C. (1969). Applied Optimal Control. New York: Blais-
dell.

Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). ARTMAP: Su-
pervised real-time learning and classification of nonstationary data by a
self-organizing neural network. Neural Networks, 4-5, 565-588.

Chalmers, D. (1996). The Conscious Mind: In Search of a Fundamental The-
ory. Oxford: Oxford Univ. Press.

Changeux, J. P. & Danchin, A. (1976). Selective stabilization of developing
synapses as a mechanism for the specification of neural networks. Nature,
264, 705-712.

Chomsky, N. (1957). Syntactic Structures. Mouton.
Christianini, N. & Taylor, J. S. (2000). An Introduction to Support Vector Ma-

chines and Other Kernel-Based Learning Methods, Cambridge: Cambridge
Univ. Press.

Christiansen, M. H. & Chater, N. (1999). Connectionist natural language
processing: the state of the art. Cognitive Sci. 23-4, 417-437.

Christofides, N. (1975). Graph Theory: An Algorithmic Approach. Academic
Press.

Cichocki, A., Gharieb, R. R., & Hoya, T. (2001). Efficient extraction of evoked
potentials by combination of Wiener filtering and subspace methods. Proc.
of IEEE Int. Conf. Acoust. Speech, Signal Processing (ICASSP-2001), 5,
3117-3120.

Cichocki, A. & Amari, S. (2002) Adaptive Blind Signal and Image Processing –
Learning Algorithms and Applications, John Wiley & Sons.

Colla, V., Sgarbi, M., Reyneri, L. M., & Sabatini, A. M. (1998). A neural
approach to a sensor fusion problem. Proc. of European Symp. Artificial
Neural Networks (ESANN 1998), 357-362, Belgium.

Crane, T. (1995). The Mechanical Mind: A Philosophical Introduction to
Minds, Machines, and Mental Representation. Penguin Books. Japanese
translation: Tokyo: Keisou, Publishing, Co. Ltd.

Crochiere, R. E. & Rabiner, L. R. (1983). Multirate Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall.

Darwin, C. (1872). The Expressions of the Emotions in Man and Animals.
London: Murray.

Davis, G. M. (2002). Noise Reduction in Speech Applications. Florida: CRC
Press.

Davidson, R. J., Ekman, P., Saron, C., Senulis, J., & Friesen, W. V. (1990).
Approach/withdrawal and cerebral asymmetry: emotional expression and
brain physiology. J. Pers. Soc. Psychol., 38L, 330-341.

Dayhoff, J. E. & Gerstein, G. L. (1983). Favored patterns in nerve spike
trains – I. Detection. J. Neurophys.. 49 (6), 1334-1348.

248 References

Deller, Jr. J. R., Proakis, J. G., & Hansen, J. H. L. (1993). Discrete-Time
Processing of Speech Signals. New York: Macmillan.

Dendrinos, M., Bakamidis, S., & Carayannis, G. (1991). Speech enhancement
from noise: a regenerative approach. Speech Communication, 10, 45-57.

Dennett, D. C. (1984). Cognitive wheels: the frame problem of AI. In C.
Hookway (Ed.), Minds, Machines, and Evolution: Philosophical Studies.
129-151, Cambridge: Cambridge Univ. Press.

Dennett, D. C. (1988). Consciousness Explained. Boston: Little Brown.
Descartes, R. (1984-5). Philosophical Writings. 3 vols. Trans. J. Cottingham,

R. Stoothoff, and D. Murdoch. Cambridge: Cambridge Univ. Press.
Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-

selective properties of inferior temporal neurons in the macaque. J. Neu-
rosci., 4, 2051-2062.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs.
Numerische Mathematik, 1, 269.

Ding, S., Hoya, T., Zhu, X., Barros, A. K., Daming, W., & Cichocki, A. (2004).
Convolutive blind source separation of acoustic signals based on complex
independent component analysis in the time-frequency domain and neural
memory, in prepration for publication.

Doclo, S. & Moonen, M. (2000). Multi-microphone noise reduction using
GSVD-based optimal filtering with ANC postprocessing stage. Proc. of 9th
IEEE Digital Signal Processing Workshop, Hunt TX, USA.

Doclo, S. & Moonen, M. (2002). GSVD-based optimal filtering for single and
multimicrophone speech enhancement. IEEE Trans. Signal Processing, 50-
9, 2230-2244.

Douglas, S. & Cichocki, A. (1997). Neural networks for blind decorrelation of
signals. IEEE Trans. Signal Processing, 45-11, 2829-2842.

Dreyfus, H. L. (1972). What Computers Can’t Do – the Limits of Artificial In-
telligence. Harper & Row, Publishers, Inc. Japanese Translation: Computer-
Niwa-Naniga-Dekinai-Ka?. Sangyo-Tosho, Publishing, Co. Ltd.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification. 2nd
Ed., New York: Wiley.

Dudek, S. M. & Bear, M. F. (1992). Homosynaptic long-term depression in
area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor
blockade. Proc. of Natl. Acad. Sci. USA, 89: 4363-4367.

Edelman, G. M. (1992). Bright Air, Brilliant Fire. Basic Books, Inc.
Ekman, P. (1971). Universals and cultural differences in facial expression. In

J. K. Cole (Ed.), Nebraska Symp. and Motivation, 207-284. Licoln, NE:
Univ. Nebraska Press.

Elman, J. L. (1990). Finding structure in time. Cognitive Sci. 14, 179-211.
Ephraim, Y. & Trees, H. L. V. (1995). A signal subspace approach for speech

enhancement. IEEE Trans. Speech, Audio Processing, 3-4, 251-266.
Fodor, J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology.

Cambridge: The MIT Press.
Forney, G. D. (1973). The Viterbi algorithm. Proc. of IEEE, 61, 268-278.

References 249

Forsyth, N., Chambers, J. A., & Naylor, P. A. (1999). A noise robust al-
ternating fixed-point algorithm for stereophonic acoustic echo cancellation.
Electronics Letters, 35-21, 1812-1813.

Freud, S. (1966). Project for a scientific psychology. Preliminary communica-
tion (to Studies in Hysteria, with (Josef Brauer). Three essays on sexual-
ity. The unconscious, instincts, and their vicissitudes. The ego and the Id.
All can be found in The Complete Psychological Works of Sigmund Freud.
James Strachey. (Ed.24), vol. London: The Hogarth Press.

Fujita, M. & Fukumura, N. (1996). ROBOT entertainment. Proc. of 6th Sony
Research Forum, 234-239 (in Japanese).

Fujita, M. (1999). Emotional expressions of a pet-type robot. J. Robotics Soc.
Japan, 17-7, 947-951 (in Japanese).

Fujita, M. (2000). Digital creatures for future entertainment robotics. Proc. of
2000 IEEE Int. Conf. Robotic & Automation, 801-806, San Francisco, CA.

Fujita, M. & Takagi, T. (2003). Patent Application No. 2003-334785, Japan.
Furui, S. (1981). Cepstral analysis technique for automatic speaker verifica-

tion. IEEE Trans. Acoustic Speech and Signal Processing, 29, 254-272.
Fukushima, K. (1975). Neocognitron: a self-organizing multilayered neural

network. Biological Cybernetics, 20, 121-136.
Garcia, A. L. (1994). Probability and Random Processes for Electrical Engi-

neering. 2nd Ed., Reading: Addison-Wesley.
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive Neuro-

science – the Biology of the Mind, 2nd Ed., New York: W. W. Norton &
Company.

Gold, B. & Morgan, N. (2000). Speech and Audio Signal Processing. John
Wiley & Sons.

Golub, G. H. & Van Loan, C. F. (1996). Matrix Computations. 3rd Ed., Johns
Hopkins Univ. Press.

Greenfield, S. A. (1995). Journey to the Centers of Mind, New York: W. H.
Freeman and Company.

Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties
of neurons in inferotemporal cortex of the macaque. Journal of Neurophys-
iology, 35, 96-111.

Grossberg, S. (1988). Neural Networks and Natural Intelligence. Cambridge,
MA: The MIT Press.

Gustafsson, H., Nordholm, S., & Claesson, I. (1999). Spectral subtraction
using dual microphones. Proc. of Int. Workshop on Acoustic Echo and Noise
Control, 60-63, Pennsylvania, U.S.A.

Gustafsson, H. et al.. (2003). System and method for dual microphone signal
noise reduction using spectral subtraction. U.S.A. Patent 6549586, Apr.
2003.

Hand, D. J. (1984). Kernel Discriminant Analysis. Research Studies Press.
Hansen, P. C. & Jensen, S. H. (1998). FIR filter representation of reduced-rank

noise reduction. IEEE Trans. Signal Processing, 46-6, 1737-1741.

250 References

Hansen, P. S. K. (1997). Signal subspace methods for speech enhancement.
Ph.D. Thesis, Technical Univ. of Denmark, Lyngby, Denmark.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical
Learning. New York: Springer-Verlag.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York:
Macmillan.

Haykin, S. (1996). Adaptive Filter Theory. Prentice-Hall, Inc.
Haykin, S. (2000). Unsupervised Adaptive Filtering. vol. I & II. John Wiley &

Sons, Inc.
Hearst, M. A., Scholkopf, B., Dumais, S., Osuna, E., & J. Platt., J. (1998).

Trends and controversies – support vector machines, IEEE Intelligent Sys-
tems, 13-4, 18-28.

Hebb, D. O. (1949). Organization of Behavior. New York: Wiley.
Hecht-Nielsen, R. (1998). A theory of the cerebral cortex. Proc. of Int. Conf.

Neural Info. Process. (ICONIP’98), 1459-1464. Burke, VA:IOS Press.
Heilman, K. M., Scholes, R., & Watson, R. T. (1975). Auditory affective

agnosia: Disturbed comprehension of affective speech. J. Neuro. Neurosurg.
Psychiatry, 38, 69-72.

Heinke, D. & Humphreys, G. W. (in press). Computational models of visual
selective attention: A review. In G. Houghton (Ed.). Connectionist Models
in Psychology, London: Psychology Press.

Heinke, D. & Humphreys, G. W. (in press). Attention, spatial representa-
tion and visual neglect: Simulating emergent attentional processes in the
selective attention for identification model (SIAM). Psychological Review.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the Theory of
Neural Computation. Reading, MA: Addison-Wesley.

Hikosaka, O., Miyachi, S. Miyashita, K., & Rand, M. K. (1996). Procedural
learning in monkeys – possible roles of the basal ganglia. In Perception,
Memory and Emotion: Frontiers in Neuroscience, eds. T. Ono, B. L. Mc-
Naughton, S. Molotchnikoff, E. T. Rolls, and H. Nishijo, Elsevier, 403-420.

Hirsh-Pasek, K. & Golinkoff, R. M. (1996). The Origins of Grammar: Evidence
from Early Language Comprehension. The MIT Press.

Hobson, J. A. (1999). Ishiki-To-Nou (Consciousness and Brain). Tokyo:
Tuttle-Mori Agency, Inc. & New York: W. H. Freeman and Company.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. of National Academy of Sciences of
the U.S.A. 81, 3088-3092.

Hoshino, O., Kashimori, Y., & Kambara, T. (1998). An olfactory recognition
model based on spatio-temporal encoding of odor quality in the olfactory
bulb. Biological Cybernetics, 79, 109-120.

Hovland, C. I. (1951). Human learning and retention. In S. S. Stevens (Ed.),
Handbook of Experimental Psychology, 613-689, New York: John Wiley &
Sons.

Hoya, T. (1998). Graph theoretic techniques for pruning data and their ap-
plications. IEEE Trans. Signal Processing, 46-9, 2574-2579.

References 251

Hoya, T. & Chambers, J. A. (2001a). Heuristic pattern correction scheme us-
ing adaptively trained generalized regression neural networks. IEEE Trans.
Neural Networks, 12-1, 91-100.

Hoya, T. (2001b). Modeling the notions of intuition and consciousness by hi-
erarchically arranged generalised regression neural networks. Proc. of 2001
Int. Symp. Nonlinear Theory and Its Applications (NOLTA2001), 2, 403-
406, Zao, Japan.

Hoya, T. (2003a). On the capability of accommodating new classes within
probabilistic neural networks. IEEE Trans. Neural Networks, 14-2, 450-453.

Hoya, T., Cichocki, A., Tanaka, T., Hori, G., Murakami, T., & Chambers,
J. A. (2003b). A combined cascading subspace methods and adaptive signal
enhancement for stereophonic noise reduction. Proc. of Fourth Int. Symp.
Independent Component Analysis and Blind Signal Separation (ICA2003),
573-578, Nara, Japan.

Hoya, T., Barros, A. K., Rutkowski, T., & Cichocki, A. (2003c). Speech ex-
traction based upon a combined subband independent component analysis
and neural memory. Proc. of Fourth Int. Symp. Independent Component
Analysis and Blind Signal Separation (ICA2003), 355-360, Nara, Japan.

Hoya, T. (2003d). A kernel based neural memory concept and representation
of procedural memory and emotion. Proc. of 8th Int. Symp. Artificial Life
and Robotics (AROB’03), 373-376, Oita, Japan.

Hoya, T. (2004a). Self-organising associative kernel memory for multi-domain
pattern classification. Proc. of IFAC Workshop on Adaptation and Learn-
ing in Control and Signal Processing (ALCOSP2004), 735-740, Yokohama,
Japan.

Hoya, T. (2004b). Notions of intuition and attention modeled by a hierarchi-
cally arranged generalized regression neural network. IEEE Trans. Systems,
Man, and Cybernetics – Part B: Cybernetics, 34-1, 200-209.

Hoya, T., Tanaka, T., Murakami, T., & Cichocki, A. (2004c). Stereophonic
noise reduction by a combined multi-stage sliding subspace projection and
adaptive signal enhancement. Proc. of IFAC Workshop on Adaptation and
Learning in Control and Signal Processing (ALCOSP2004), 421-426, Yoko-
hama, Japan.

Hoya, T., Tanaka, T., Cichocki, A., Murakami, T., Hori, G., & Chambers, J. A.
(2005). Stereophonic noise reduction using a combined sliding subspace pro-
jection and adaptive signal enhancement. IEEE Trans. Speech and Audio
Processing, 13-3, 309-320.

Howells, P. W. (1976). Explorations in fixed and adaptive resolution at GE and
SURC. IEEE Trans. Antennas Propag., AP-24, Special Issue on Adaptive
Antennas, 575-584.

Hubel, D. H. & Wiesel, T. N. (1977). The Ferrier lecture: functional architec-
ture of macaque monkey visual cortex. Proc. of R. Acad. Lond., Series B
198, 1-59.

Huckvale, M. (1996). Speech Filing System Vs3.0 – Computer Tools For Speech
Research, London: University College.

252 References

Hudson, J. E. (1981). Adaptive Array Principles. Stevenage, U.K.: Peter Pere-
grinus.

Hugonnet, C. & Walder, P. (1998). Stereophonic Sound Recording – Theory
and Practice. John Wiley & Sons.

Ishida, T., Kuroki, Y., Yamaguchi, J., Fujita, M., & Doi, T. (2001). Motion
entertainment by a small humanoid robot based on OPEN-R. Proc. of 2001
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1079-1086, Hawaii.

James, W. (1884). What is an emotion? Mind, 9, 188-205.
James, W. (1890). The Principles of Psychology, New York: Holt, Rinehart

and Winston.
Jensen, S. H., Hansen, P. C., Hansen, S. D., & Sorensen, J. A. (1995). Re-

duction of broad-band noise in speech by truncated QSVD. IEEE Trans.
Speech, Audio Processing, 3, 439-448, 1995.

Juang, B.-H. & Furui, S. (2000). Automatic recognition and understanding of
spoken language – A first step toward natural human-machine communica-
tion. Proc. of IEEE, 88-8, 1142-1165.

Jutten, C. & Herault, J. (1991). Blind separation of sources, part I: an adap-
tive algorithm based on neuromimetic architecture. Signal Processing, 24-1,
1-10.

Jutten, C. (1997). Supervised composite networks. In E. Fiesler and R. Beale
(Eds.), Handbook of Neural Computation, Chapter C1.6, New York: IOP
Publishing and Oxford Univ. Press.

Karjalainen, P. A., Kaipio, J. P., Koistinen, A. S., & Vuhkonen, M. (1999).
Subspace regularization method for the single-trial estimation of evoked
potentials. IEEE Trans. Biomed. Eng., 46-7, 849-860.

Kawato, M. (1996). Nou-no Keisan Riron (Computational Theory of Brain).
Tokyo: Sangyo-Tosho, Co. Ltd.

Kawato, M., Doya, K., & Haruno, M. (2000). Gengo-Ni-Semaru-Tameno-
Joken (Conditions towards language). Kagaku, 70, 381-387 (in Japanese).

Kenbo, H., Kindaichi, H., Shibata, T., Yamada, T., & Kindaichi, K. (Eds.)
(1981). The Japanese Dictionary: 3rd Edition. Sanseido, Co. Ltd.

Kinoshita, J. (1996). Neural-Network-to Gengo-Bunpoh (Neural Network and
Language Grammar). Japan:Kiku-chu, Publishing, Co. Ltd. (in Japanese)

Ko, C. C. & Siddharth, C. S. (1999). Rejection and tracking of an unknown
broadband source in a two-element array through least square approxima-
tion of inter-element delay. IEEE Signal Processing Let.. 6-5, 122-125.

Kitamura, T., Otsuka, Y., & Nakao, T. (1995). Imitation of animal behavior
with use of a model of consciousness – behavior relation for a small robot.
Proc. of 4th. IEEE Int. Workshop on Robot and Human Communication,
313-316, Tokyo.

Kitamura, T. (2000). Robot-Wa-Kokoro-Wo-Motsuka? (Can Robots Have the
Mind?). Tokyo: Kyoritsu Publishing, Co. Ltd.

Kobayashi, T. & Kuriki, S. (1999). Principal component elimination method
for the improvement of S/N in evoked neuromagnetic field measurements.
IEEE Trans. Biomed. Eng. 46, 951-958.

References 253

Koch, C. (1999). Biophysics of Computation. Oxford Univ. Press.
Kohonen, T. (1997). Self-Organizing Maps. Berlin: Springer-Verlag.
Kolers, P. A. (1976). Reading a year later. J. Exper. Psychol.: Human Learn.

Memory, 2, 554-565.
Kotter, R. & Meyer, N. (1992). The limbic system: A review of its empirical

foundation. Behav. Brain Res., 52, 105-127.
Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of

category learning. Psychological Review, 99-1, 22-44.
Lang, K. J. & Hinton, G. E. (1988). The development of the time-delay neural

network. Technical Report CMU-CS-88-152, Carnegie-Mellon Univ.
R. Le Bouquin-Jennes, R., Akbari Azirani, A., & Faucon, G. (1997). En-

hancement of speech degraded by coherent and incoherent noise using a
cross-spectral estimator. IEEE Trans. Speech, Audio Processing, 5-5, 484-
487.

Lee, C. H., Rabiner, L. R., Pieraccini, R., & Wilpon, J. G. (1990). Acoustic
modeling for large vocabulary speech recognition. Computer Speech and
Language, 4, 1237-65.

Le Doux, J. E. (1991). Emotion and the limbic system concept. Concepts
Neurosci., 2, 169-199.

Levelt, W. J. M. (1989). Speaking: From Intention to Articulation. Cambridge,
MA: The MIT Press.

Looney, C. G. (1997). Pattern Recognition Using Neural Networks – Theory
and Algorithms for Engineers and Scientists. New York: Oxford Univ. Press.

Low, R. & Togneri, R. (1998). Speech recognition using the probabilistic
neural network. Proc. of Int. Conf. Spoken Language Processing, Paper No.
645, Sydney, Australia.

Lysetskiy, M., Lozowski, A., & Zurada, J. M. (2002). Invariant recognition of
spatio-temporal patterns in the olfactory system model. Neural Processing
Letters, 15, 225-234.

MacLean, P. D. (1949). Psychosomatic disease and the “visceral brain”: Re-
cent developments bearing on the Papez theory of emotion. Psychosom.
Med., 11,338-353.

MacLean, P. D. (1952). Some psychiatric implications of physiological stud-
ies on frontotemporal portion of limbic system (visceral brain). Electroen-
cephalogr. Clin. Neurophysiol., 4, 407-418.

MacQueen, J. B. (1967). Some methods for classification and analysis of multi-
variate observations. In Proc. of Symp. Matho. Stat. Prob., 5th ed. Berkeley,
CA:Univ. of Calif. Press, 1, 281-297.

Mak, M. W., Allen, W. G., & Sexton, G. G. (1994). Speaker identification
using multilayer perceptron and radial basis function networks. Neurocom-
puting, 6, 99-117.

Mallat, S. (1999). A Wavelet Tour of Signal Processing. Academic Press.
Mandic, D. P. & Chambers, J. A. (2001). Recurrent Neural Networks for

Prediction: Learning Algorithms, Architectures, and Stability. Chichester:
John Wiley & Sons.

254 References

Martin, R. (1994). Spectral subtraction based on minimum statistics. Proc.
of EUSIPCO-94, 1182-1185, Edinburgh.

Martin, R. (2001). Noise power spectral density estimation based on optimal
smoothing and minimum statistics. IEEE Trans. Speech, Audio Processing,
9-5, 504-512.

Maruyama, K. (1981). Saussure-No-Shiso (The Thought of Saussure). Tokyo:
Iwanami Publishing, Co. Ltd. (in Japanese).

Matsumoto, G., Shigematsu, Y., & Ichikawa, M. (1995). The brain as a com-
puter. In Proc. of Int. Conf. Brain Processes, Theories & Models, Cam-
bridge, MA: The MIT Press.

McCarthy, J. & Hayes, P. J. (1969). Philosophical problems from the stand-
point of artificial intelligence. Machine Intelligence, 4, 463-502.

McClelland, J. L. & Rumelhart, D. E. (1981). An interactive activation model
of context effects in letter perception: Part I. An account of the basic find-
ings. Psychol. Rev. 88, 375-407.

McClelland, J. L. & Elman, J. L. (1986). Interactive processes in speech per-
ception: The TRACE model. In J. L. McClelland and D. E. Rumelhart
(Eds.), Parallel Distributed Processing, 2, 58-121, Cambridge, MA: The MIT
Press.

McDermott, D. V. (2001). Mind and Mechanism. Cambridge, MA: The MIT
Press.

Mendel, J. M. & McLaren, R. W. (1970). Reinforcement learning control and
pattern recognition systems, in Adaptive Learning and Pattern Recognition
Systems: Theory and Applications (J. M. Mendel and K. S. Fu, Eds.), 287-
318, New York: Academic Press.

Minsky, M. L. (1954). Theory of neural-analog reinforcement systems and its
application to the brain-model problem, Ph.D. Thesis, Princeton Univ.

Minsky, M. L. & Papert, S. A. (1969). Perceptrons. Cambridge, MA: The MIT
Press.

Minsky, M. (1979). K-lines: a theory of memory. A.I. Memo: Massachusetts
Institute of Technology.

Minsky, M. (1985). The Society of Mind, New York: Simon & Schuster.
Moody, J. E. & Darken, C. J. (1989). Learning algorithms and networks of

neurons. In The Computing Neuron, R. Durbin, C. Miall, and G. Michison,
eds., 35-53, Reading, MA: Addison-Wesley.

Mozer, M. C. (1991). The Perception of Multiple Objects: A Connectionist
Approach. The MIT Press.

Mozer, M. C. & Sitton, M. (1998). Computational modeling of spatial atten-
tion. In H. Pashler (Ed.). Attention, 341-393. London: Psychology Press.

Murata, N., Ikeda, S., & Ziche, A. (2001). An approach to blind source sep-
aration based on temporal structure of speech signals. Neurocomputing,
41-1(4), 1-24.

Nadaraya, E. A. (1964). On estimating regression. Theory Probab. Applic., 10,
186-190.

References 255

Nakajima, T., Suzuki, T., Ohmura, H., Ishizaki, S., & Tanaka, K. (1978). Esti-
mation of vocal tract area function by adaptive deconvolution and adaptive
speech analysis system. J. Acoustical Soc. of Japan 34-3, 157 (in Japanese).

Nakano, K., Iinuma, K., et al. (1989). Neurocomputer. Gijutsu-Hyoron, Pub-
lishing Co. Ltd.

Newell, A. & Simon, H. (1997). Computer science as empirical inquiry: sym-
bols and search. In J. Haugeland (Ed.), Mind Design II, Cambridge, MA:
The MIT Press, (pp.81-110).

Nguyen Thi, H. L. & Jutten, C. (1995). Blind source separation for convolutive
mixtures. Signal Processing, 45-2, 209-229.

Nosofsky, R. M. (1986). Attention, similarity and the identification-
categorization relationship. J. Experimental Psychology: General, 115, 39-
57.

Oatley, K. & Jenkins, J. M. (1996). Understanding Emotions. Cambridge,
MA: Blackwell.

Oja, E. (1983). Subspace Methods of Pattern Recognition. England: Research
Studies Press (Japanese translation: Sangyo-Tosho, 1986).

Oppenheim, A. V. & Schafer, R. W. (1975). Digital Signal Processing. London:
Prentice Hall Int.

Orr, M. J. L. (1996). Introduction to radial basis function networks. [Online]
Available www.cns.ed.ac.uk.

Osaka, N. (1997). Nou-To-Ishiki (Brain and Consciousness). Asakura-Shoten
(in Japanese).

Osgood, C. E., Suci, G. J., & Tannengaum, P. H. (1957). The Measurement
of Meaning. Urbana, IL: Univ. Illinois Press.

Papez, J. W. (1937). A proposed mechanism of emotion. Arch. Neurol. Psy-
chiatry, 79, 217-224.

Parker, D. B. (1985). Learning logic: Technical Report TR-47, Center for Com-
putational Research in Economics and Management Science, Massachusetts
Institute of Technology, Cambridge, Mass.

Parzen, E. (1962). On estimation of a probability density function and mode.
Annals of Mathematical Statistics, 33(3), 1065-1076.

Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurons responsive
to faces in the monkey temporal cortex. Experimental Brain Research, 47,
329-342.

Pfeifer, R. & Scheier, C. (2000). Understanding Intelligence. Cambridge, MA:
The MIT Press.

Phaf, H. R., Van Der Heijden, A., & Hudson, P. (1990). SLAM: A connec-
tionist model for attention in visual selection tasks. Cognitive Psychology,
22, 273-341.

Pinker, S. (1997). How the Mind Works. New York: W. W. Norton & Com-
pany.

Platt, J. (1991). A resource-allocating network for function interpolation.
Neural Computation, 3-2, 213-225.

256 References

Poggio, T. & Edelman, S. (1990). A network that learns to recognize three-
dimensional objects. Nature, 343-18, 263-266.

Poggio, T. & Girosi, F. (1990). Networks for approximation and learning.
Proc. of IEEE, 78, 1481-1497.

Polikar, R., Udpa, L., Udpa, S. S., & Honavar, V. (2001). Learn++: an in-
cremental learning algorithm for supervised neural networks. IEEE Trans.
Systems, Man, and Cybernetics – Part C: Applications and Reviews, 31-4,
497-508.

Proakis, J. G. & Manolakis, D. G. (1992). Digital Signal Processing: Princi-
ples, Algorithms, and Applications. 2nd. Ed. New York: Macmillan.

Rabiner, L. R. & Juang, B.-H. (1993). Fundamentals of Speech Recognition.
Prentice Hall, Inc.

Renals, S. (1989). Radial basis function network for speech pattern classifica-
tion. Electronics Letters, 25, 437-439.

Ritter, H., Martinetz, T., & Schulten, K. (1992). Neural Computation and
Self-Organizing Maps – An Introduction. Reading: Addison Wesley.

Rolls, E. T. (1999). The Brain and Emotion. New York: Oxford Univ. Press.
Rosenblatt, M. (1956). Remarks on some non-parametric estimates of a den-

sity. Ann. Math. Stat., 27, 832-7.
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological Review, 65, 386-408.
Rosenblatt, F. (1962). Principles of neurodynamics. Washington, DC:Spartan

Books. * Rosenbleuth, A., Wiener, N., Pitts, W. & Garcia Ramos, J. (1949).
A statistical analysis of synaptic excitation. J. Cellular and Comparative
Physiology, 34, 173-205.

Roy, A. (2000). Artificial neural networks – a science in trouble. SIGKDD
Explorations, 1(2), 33-38.

Rumelhart, D.E. Hinton, G. E., & Williams, R. J. (1986). Learning inter-
nal representations by error propagation. In D. E. Rumelhart and J. L.
McClelland (Eds.), Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, 1, Chap. 8, Cambridge, MA: The MIT Press.

Rumelhart, D. E. & Zisper, D. (1985). Feature discovery by competitive learn-
ing. Cognitive Science, 9, 75-112.

Russel, J. A. (1979). Affective space is bipolar. J. Pers. Soc. Psychol. 37,
345-356.

Russel, S. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach,
2nd Ed. London: Prentice Hall.

Rutkowski, T., Cichocki, A., & Barros, A. K. (2000). Speech extraction from
interferences in real environment using bank of filters and blind source sep-
aration. Proc. of Workshop on Signal Processing Applications.

Sadasivan, P. & Dutt, D. N. (1996). SVD based technique for noise reduction
in electroencephalographic signals. Signal Processing, 55-2, 179-189.

Sagi, B., Nemat-Nasser, C. S., Kerr, R., Downing, R. H. C., & Hecht-Nielsen,
R. (2001). A biologically motivated solution to the cocktail party problem.
Neural Computation, 13-7, 1575-1602.

References 257

Sakai, K. (2002). Gengo-No-Nou-kagaku (Language in Brain Science). Tokyo:
Chu-Ko, Co. Ltd. (in Japanese).

Samuel, A. L. (1959). Some studies in machine learning using the game of
checkers. IBM J. Res. Dev., 3:210-229. Reprinted in (1963). Computers and
Thought (E. A. Feigenbaum and J. Feldman, Eds.), 406-450, New York:
McGraw-Hill.

Sarle, W. S. (2001). [Online] comp.ai.neural-nets FAQ. Part 2 of 7: Learning.
Schachter, S. & Singer, J. (1962). Cognitive, social and physiological determi-

nants of emotional state. Psychological Review, 69, 379-399.
Searle, J. (1992). The Rediscovery of Mind. Cambridge, MA: The MIT Press.
Shibata, M. (2001). Robot-No-Kokoro, Nanatsu-No-Tetsugaku-Monogatari

(The Mind of Robots: Seven Philosophical Stories). Tokyo: Koudan-Sha,
Co. Ltd. (in Japanese).

Shigematsu, Y., Ichikawa, M., & Matsumoto, G. (1996). Reconstitution stud-
ies on brain computing with the neural network engineering. In Perception,
Memory and Emotion: Frontiers in Neuroscience, eds. T. Ono, B. L. Mc-
Naughton, S. Molotchnikoff, E. T. Rolls, and H. Nishijo, Elsevier, 581-599.

Shimojo, S. (1999). Ishiki-Toha-Nandaroh-Ka? (What Is Consciousness?).
Koudan-Sha, Publishing, Co. Ltd.

Simon, H. A. (1996). The Sciences of the Artificial. Cambridge, MA: The MIT
Press. (Japanese translation: Tokyo: Tuttle-Mori Agency, Inc.)

Smith, E. E. & Jonides, J. (1997). Working memory: a view from neuroimag-
ing. Cognitive Psychology, 33, 5-42.

Specht, D. F. (1988). Probabilistic neural networks for classification mapping,
or associative memory. Proc. Int. Conf. on Neural Networks, 1, 525-532.

Specht, D. F. (1991). A generalized regression neural network. IEEE Trans.
Neural Networks, 2-6, 568-576.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3, 109-
118.

Squire, L. R. (1987). Memory and Brain. New York: Oxford Univ. Press.
Stent, G. S. (1973). A physiological mechanism for Hebb’s postulate of learn-

ing. Proc. of National Academy of Sciences of the U.S.A., 70, 997-1001.
Stork, D. G. (1989). Is backpropagation biologically plausible? Proc. of Int.

Joint Conf. Neural Networks, II, 241-246, Washington, D.C.
Swanson, L. W. (1983). The hippocampus and the concept of the limbic sys-

tem. In W. Seifert (Ed.) Neurobiology for the Hippocampus, 3-19, London:
Academic Press.

Takagi, T., Fujita, M., Hasegawa, R., Shimomura, H. Yokono, J., Costa, G.,
& Di Profio, U. (2001). Behavior control architecture of small humanoid
robot for entertainment application. Proc. of 11th Sony Research Forum,
100-101 (in Japanese).

Taylor, J. R. (1995). Linguistic Categorization: Prototypes in Linguistic The-
ory, 2nd Edition, Oxford Univ. Press.

Taylor, J. G., Horwitz, B., Shah, N. J., Fellenz, W. A., Mueller-Gaertner, H.-
W., & Krause, J. B. (2000). Decomposing memory: functional assignments

258 References

and brain traffic in paired word associate learning. Neural Networks, 13-8
& 9, 923-940.

Terasawa, T. (1984). Ishiki-Ron (The Theory of Consciousness). Otsuki, Pub-
lishing, Co. Ltd. (in Japanese).

Theogarajan, L. & Akers, L. A. (1996). A multi-dimensional analog gaussian
radial basis circuit. presented at the IEEE Int. Symp. Circuits and Systems,
Atlanta, GA.

Theogarajan, L. & Akers, L. A. (1997). A scalable low voltage analog gaussian
radial basis circuit. IEEE Trans. Circuits and Systems II, 44-11, 977-979.

Tomkins, S. S. (2004). Exploring Affect: Selected Writings of Sylvan S.
Tomkins. E. V. Demos., Ed. New York: Cambridge Univ. Press.

Torkkola, K. (1996). Blind separation of delayed sources based on information
maximization. Proc. of IEEE Int. Conf. Acoust. Speech, Signal Processing
(ICASSP-96), 5, 3509-3512.

Tsunoda, K., Yamane, Y., Nishizaki, M., & Tanifuji, M. (2001). Complex ob-
jects are represented in macaque inferotemporal cortex by the combination
of feature columns. Nature Neuroscience, 4-8, 832-838.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433-
460. Reprinted in (1963). Computers and Thought (E. A. Feigenbaum and
J. Feldman, Eds.), 11-35, New York: McGraw-Hill.

Tulving, E. (1972). Episodic and semantic memory. in Organization of Mem-
ory, E. Tulving & W. Donaldson (Eds.) Academic Press.

Ullman, M. T. (2001). A neurocognitive perspective on language: The declar-
ative/procedural model. Nature Reviews Neurosci. 2, 717-726.

Unamuno, M. (1978). Tragic Sense of Men and Nations – Selected Works of
Miguel de Unamuno. Princeton Univ. Press.

Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer Verlag.
Vetter, T., Hurlbert, A., & Poggio, T. (1995). View-based models of 3D object

recognition: invariance to imaging transformations. Cerebral Cortex, 5-3,
261-269.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptoti-
cally optimal decoding algorithm. IEEE Trans. Information Theory, IT-13:
260-269.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in
the striate cortex. Kybernetik, 14, 85-100.

Warren, R. M. (1999). Auditory Perception – A New Analysis and Synthesis.
Cambridge: Cambridge Univ. Press.

Wasserman, P. D. (1993). Advanced Methods in Neural Computing. In Chap.
8, Radial basis-function networks (pp.147-176). New York: Van Nostrand
Reinhold.

Watson, G. S. (1964). Smooth Regression Analysis. Sankhy, Series A, 26, 359-
372.

Waibel, A. T., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J.
(1989). Phoneme recognition using time-delay neural networks. IEEE
Trans. Acoustics, Speech, and Signal Processing, ASSP-37, 328-339.

References 259

Weintraub, M. (1985). A theory and computational model of auditory monau-
ral sound separation. Ph.D. dissertation, Stanford University.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis
in the behavioral sciences. Ph.D dissertation, Harvard University.

White, J., Dickinson, T. A., Walt, D. R., & Kauer, J. S. (1998). An olfac-
tory neuronal network for vapor recognition in an artificial nose. Biological
Cybernetics, 78, 245-251.

Widrow, B. (1962). Generalization and information storage in networks of
adaline “neurons”. In M. C. Yovitz, G. T. Jacobi, & G. D. Goldstein (Eds.),
Self-Organizing Systems, 435-461, Washington, D.C.: Sparta.

Widrow B., et al. (1975). Adaptive noise cancelling: principles and applica-
tions. Proc. of IEEE, 63, 1692-1716.

Wiener, N. (1948). Cybernetics. Cambridge, MA: The MIT Press.
Wilson, R. A. & Keil, F. C. (Eds.) (1999). The MIT Encyclopedia of the

Cognitive Sciences, Cambridge, MA: The MIT Press.
Wolff, G. J., Prasad, K. V., Stork, D. G., & Hennecke, M. (1993). Lipreading

by neural networks: visual preprocessing, learning and sensory integration.
Proc. of Neural Information Processing Systems (NIPS’93), 1027-1034.

Xie, F. & Van Compernolle, D. (1996). Speech enhancement by spectral mag-
nitude estimation – a unifying approach. Speech Communication, 19-2, 89-
104.

Yamadori, A, (1998). Hito-Wa-Naze-Kotoba-Wo-Tsukaeruka (Why Can Hu-
mans Use Language?). Tokyo: Kodan-Sha, Co. Ltd. (in Japanese).

Yamasaki, T. & Shibata, T. (2003). Analog soft-pattern-matching classifier
using float-gate MOS technology. IEEE Trans. Neural Networks, 14-5, 1257-
1265.

Index

Action potential 62

Activation regularisation factor see
kernel unit

Adaptive beamforming 114

Adaptive Filter (ADF) 48, 99

Adaptive Line Enhancer (ALE) see
adaptive signal enhancer

Adaptive noise cancelling 114

Adaptive Resonance Theory MAP
(ARTMAP) 20

Adaptive Signal Enhancement (ASE)
98

Adaptive signal enhancer

a bank of 98

dual see dual adaptive signal
enhancer

Agent 4, 206, 229

AIBO model 233

Amplitude envelope 156

Amygdala 194

Anterior thalamus 194

Aristotle 1, 194

Artificial Intelligence (AI) XI, 2, 11,
29, 96, 241, 242

Artificial Mind System (AMS) VII, 1,
83–94

internal states 195

regarded as a multi-input multi-
output system 84

Artificial Neural Network (ANN) see
neural network

Associative memory 12

sparse binary 167

Asynchronous
output generation from kernel units

49
Attention

level of 218
Attention Learning CoVEring map

(ALCOVE) 13
variant of RBF-NN model 13

Attention module 84, 138, 139, 141,
146, 167, 189–193, 203, 226, 229

←→ STM/working memory module
190–192, 217

−→ intention module 205
functions as a filter 190
the relation with the input: sensation

module 190
Autobiographic memory see explicit

LTM module
Autocorrelation matrix 100
Automata 233
Autonomic response 195
Auxiliary memory see kernel unit

Back-Propagation (BP) algorithm 12,
48

local minimum 12
momentum term update scheme 18

Baddeley, A. D. 137, 219
Bandpass filter 164
Bandpass filters 124
Basal ganglia 168, 194
Blind deconvolution 113
Blind Signal Extraction (BSE) 97

262 Index

as a function of attention module
190

Blind Signal Processing (BSP) 89
Blind Signal/Source Separation (BSS)

89, 97
as a function of attention module

190
Blind speech extraction 155
Bowers, D. 194
Bowlby, J. 194
Brain-style computers VII, 29
Broadbent, D. A. 190
Broca’s area 169
Broca, P. P. 169
Brodmann’s area 138
Brodmann, K. 138

Central executive mechanism see
working memory

Central limit theorem 14
Centroid matrix see template matrix
Centroid vector see GRNN, PNN, and

RBF-NN
Cepstral distance 109
Cerebellum 168
Cerebral cortex 167
Cholesky’s decomposition 114
Chomsky, N. 170
Cichocki, A. 101
Cingulate gyrus 194
Classical conditioning 147
Clustering

hierarchical 212
non-hierarchical 212

Cocktail party problem 98, 155
Competitive learning see learning
Complex ICA 165
Complimentary Metal-Oxide Semi-

conductor (CMOS) inverter
34

Computational auditory scene analysis
158

Concept formation 46, 47, 78, 150, 171,
175–176, 193

Conditioned Response (CR) 200
Conditioned Stimulus (CS) 200
Connectionism see neural net-

work/artificial neural network
Consciousness 2, 87, 204, 240–242

constituents of 5
subconsciousness 87
subjective experience 241

Consciousness architecture 204, 217
Correlation matrix see associative

memory, 100
Cortronic neural networks 167
Curse-of-dimensionality problem 35

Darwin, C. R. 194
Data-fusion 74, 79, 138, 150, 184, 199,

200
Data-mining 132
Data-reusing scheme 103
Decaying factor 51
Declarative LTM module see explicit

LTM module
Declarative memory see explicit LTM

module
Dennett, D. C. 241
Descartes, R. 2, see mind-body issue,

194
Desimone, R. 78
Deterioration rate 21
Dijkstra, E. W. 233
Direction see orientation
Direction Of Arrival (DOA) 97

as a function of attention module
190

Discrete Fourier Transform (DFT)
130

Douglas, S. 101
Down-sampling 165
Dreyfus, H. L. 242
Dual Adaptive Signal Enhancer (DASE)

104
Dualism 2

EigenValue Decomposition (EVD) 98
ElectroCardioGraphy (ECG) 125
ElectroEncephaloGraphy (EEG) 3,

125
ElectroMyoGraphy (EMG) 125
Emotion

dimensional approach 196
facial expressions 196
intensity scales 197

Emotion module 85, 138, 139, 141,
146, 152, 185, 192, 194–203, 226

Index 263

−→ STM/working memory module
198

−→ intention module 199
functioning either with or without

consciousness 85
the parallel functionality with the

instinct: innate structure module
152, 195, 232

the parallel functionality with the
LTM modules 195

the parallel functionality with the
primary output module 195

Emotional state variable 195, 203, 205,
231

Emotionally GrOunded (EGO)
architecture 233

Endocrine 85, 195
Energy in difference 163
Ensemble coding scheme 78, 150
Episodic memory see explicit LTM

module
Error sequence 118
Euclidean distance metric 33
Excitation counter see kernel unit
eXclusive-OR (XOR) problem

the solution by a PNN/GRNN 17
the solution by an MLP-NN 18
the solution by an SOKM 65–66

Explicit LTM module 85, 138, 141,
148–149, 170, 184, 195, 199

←→ STM/working memory module
147

−→ secondary (perceptual) output
module 150

Extinction
of the sub-system 127

Fast Fourier Transform (FFT) 164
Feature extraction

self-evolutionary model of 123–131
Feedforward ANNs 13
Filter bank

nonuniform 129
uniform 129

Finite Impulse Response (FIR)
an array of analysis-synthesis 104

Firing rate 50
Fixed point iteration scheme 103
Fodor, J. A. 4, see modularity of mind

Frame problem 202
Freud, S. 194
Fukushima, K.

Neocognitron 98
Functional Magnetic Resonance

Imaging (fMRI) 3, 125
Fundamental frequency 158

Gating node 174
Gaussian kernel 34, 35, 37, 38, 40, 45,

49, 50
Gaussian metric 35

versus Euclidean metric 35
Gaussian Mixture Model (GMM) 13

variant of RBF-NN model 13
Gaussian response function see radial

basis function
Gazzaniga, M. S. 241
Generalised Context Model (GCM) 13

variant of RBF-NN model 13
Generalised Regression Neural Network

(GRNN) 13–25, 207
capability in accommodating new

classes 19–20
categorised into a special case of

RBF-NNs 14
comparison between other connec-

tionist models 25–28
memory-based architecture 16, 20
network configuration of 15–17
network growing of 17
network shrinking of 17
normalisation factor 15, 40
pattern classification 17
reformation in terms of kernel

memory representation 37–39
the solution to the XOR problem 17
the target vector 16
the topological equivalence property

16
weight settings 14

Gestalt 74
Gnostic units see grand-mother cell
Gradient-descent type algorithm 12,

48, 59
Grand-mother cell 28, 78, 150

Habituation see non-associative
learning

264 Index

Hankel matrix see Toeplitz structure
Hebb, D. O. 60, 77

the neuropsychological postulate of a
pair of cells 60

Hebbian learning 77, 144
Hidden Markov Model (HMM) 173,

234
Hierarchical coding scheme 78
Hierarchically Arranged Generalised

Regression Neural Network
(HA-GRNN) 28, 207–226

evolution schedule 209
evolutionary process of 207
extended model 226–234

attentive kernel units 226
emotion module 230–234
emotional state variable see

emotional state variable
intensity scale 232
non-attentive kernel units 226
procedural memory 230

formation of the attentive states
217

formation of the LTM Net 1 for
yielding the intuitive outputs
212

formation of the regular LTM
networks 210

instance-based operation 212
intuitive output 207, 212
mechanism of the STM network 214
model of attention 217
model of intuition 215
reconfiguration of the regular LTM

networks 211
regular LTM networks 207
selective attention 215
self-evolution 211
smoothing factor 215
STM output vector 208
weighting values for the LTM network

outputs 208
Hilbert transform 158
Hippocampus 139, 194
Hitch, G. 137, 219
Hobson, J. A. 4, see modularity of

mind, 86, 203
Hopfield’s Recurrent Neural Network

(HRNN) 13, 234

content-addressable memory 13
spurious states 13

Hopfield, J. J. 13
Hunch see intuition
Hypothalamus 194

Imagery 182, 229
Implicit LTM module 85, 138, 140,

141, 147–148, 152, 170, 190, 195,
199, 204, 206, 217, 226, 228

←− STM/working memory module
147

−→ primary output module 148,
186

−→ secondary (perceptual) output
module 148

the parallel functionality with the
instinct: innate structure module
152

the parallel functionality with the
intuition module 205

Incremental learning 12, 13
PNNs/GRNNs 26
SOKM 79
the paradigm 19

Independent Component Analysis
(ICA) 155

permutation ambiguity 155
scale misadjustment 155

Independent Identically Distributed
(IID)

random variables 106
Input: sensation module 85, 96–114,

137, 138, 140, 141, 143, 155, 157,
190, 199, 226

−→ STM/working memory module
140, 143

the parallel functionality with the
instinct: innate structure module
152

the relation with the attention
module 190

Instinct: innate structure module 84,
147, 151–152, 179, 193, 195, 205,
232

the parallel functionality with the
emotion module 152, 195, 232

the parallel functionality with the
implicit LTM module 152

Index 265

the parallel functionality with the
input: sensation module 152

the parallel functionality with the
intuition module 205

the parallel functionality with the
language module 170

Intention module 84, 86, 91, 138, 141,
144, 146, 152, 154, 169, 183, 190,
191, 203–205, 226

←→ thinking module 203
−→ attention module 204
−→ emotion module 199
orientation 86
the parallel functionality with the

STM/ working memory module
203

Intentionality 203
Intuition

hunch 205
scent 205
sentience 205
sixth sense 205
the aspect of experience 205

Intuition module 84, 183, 205–206
−→ thinking module 206
the parallel functionality with the

implicit LTM module 205
the parallel functionality with the

instinct: innate structure module
205

Intuitive output see hierarchically
arranged generalised regression
neural network

ISOLET database 21

James, W. 189, 194

K-means clustering method
MacQueen’s algorithm 28, 222

K-nearest neighbours 40
Kernel 31

‘Gestalt” 46
Kernel density estimation 32
Kernel discriminant analysis 13, 32
Kernel Function (KF) 31, 32

as a certain distance metric 32
commonly used forms 33
representing a general symbolic node

35

the definition 33
Kernel Memory (KM) 31

as a new form of artificial neural
network/connectionist model 86

bi-directional representation 45
comparison with modular approaches

44
feedback data transfer 46
feedforward data transfer 46
link weight 31

an update algorithm 60–63
modification of the final network

output representation 49–51
representation for multi-domain data

processing 41–47
representation of directional links

44
representation of final network

outputs 39–41
‘winner-takes-all” strategy 39
utility of sigmoidal function 50

representations for temporal data
processing 47–49

represented in a matrix form 228
representing a cellular structure 50
the concept of 31–80

Kernel network
in a tournament representation 179

Kernel unit 31
activated by a specific directional

flow 52–55
activation regularisation factor 51

an updating scheme 56–57
alternative representation 36
arranged in a matrix representation

228
asynchronous activation 180

between a pair of kernel units 55
pattern 54, 56

attended 190, 191
auxiliary memory 36
bi-directional connections between a

pair of kernel units 42
decaying factor 51, 176
excitation counter 36, 218
excitation of 36
kernel function 32
mono-directional connections between

a pair of kernel units 42

266 Index

pointers to other kernel units 36
representation for Fourier transform

131
representation of extinction 61
symbolic 35, 122, 142, 195, 230

Kinoshita, J. 53
Knowledge-Line (K-Line) 35

Language Acquisition Device (LAD)
171

Language module 84, 149, 167,
170–183, 191

modularity principle of mind 169
the parallel functionality with the

instinct: innate structure module
170

the parallel functionality with the
semantic networks/lexicon module
148

the parallel functionality with the
thinking module 170

Last-In-Fast-Out (LIFO) stack 145,
146

regular LTM networks 211
the STM network within HA-GRNN

214
Learning 88, 96, 149, 152, 167, 171,

181, 192, 205, 216, 230
competitive 126
explicit emotional 199, 200, 216, 232
feature extraction 124
implicit emotional 199, 216, 232
supervised 20
the AMS context of 117–133
the feedback principle 118
unsupervised 59

Learning process 151
Least Mean Square (LMS) algorithm

48
learning constant 106
normalised see normalised least

mean square algorithm
Lemma 171, 185
Levelt, W. J. M. 171
Lexeme 171, 185
Lexical network 174
Limbic system 194
Linear convolutive model

under-determined 156

Linear Predictive Coding (LPC) 21
mel-cepstral analysis 21, 219

Link weight see kernel memory
cross-domain (or associative) 74,

229
inter-layer 229

Long-Term Depression (LTD) 62
Long-Term Memory (LTM) modules

139, 146–155, 157, 191
←− STM/working memory module

143
←→ STM/ working memory module

139–140
−→ STM/working memory module

144, 218
the parallel functionality with the

emotion module 195
Low-pass filter 21, 153

anti-aliasing 159
non-minimum phase 156

LTM modules 169

MacQueen, J. B. see K-means
clustering method

MagnetoEncephaloGraphy (MEG) 3,
125

Mak, M. W. 26
Materialism 2
Matsumoto, G. 29
McClelland, J. L. 173
Medial temporal lobe 168
Mel-scale 129
Memory

primary search 204
secondary search 203
sparse (distributed) versus local

representation 80
Memory modules 95, 135–168, 179,

195
dichotomy between the STM and

LTM modules 135–136
Mental imagery see imagery
Mental lexicon 176
Mind 1

modularity of 4
Mind-body issue 96, 151
Mind-brain problem 2, 240
Minsky, M. 17

Knowledge-line (K-Line) 35

Index 267

Mixture
(time) delayed 160
instantaneous 160

Modular neural networks see neural
networks

comparison with kernel memory 44
Module

consciousness/subconsciousness
states of 87

defined as a unit describing the
corresponding psychological
functionality 4

functioning normally with conscious-
ness 84

functioning without conscious-
ness/subconsciously 85

Multi-Domain-Input Multi-Output
(MDIMO) system 42

Multi-Input Multi-Output (MIMO)
system 42

Multi-Layered Perceptron Neural
Network (MLP-NN) 12, see
back-propagation (BP) algorithm

comparison between other connec-
tionist models 25–28

the solution to the XOR problem 18
Multi-stage Sliding Subspace Projection

(M-SSP) 98
the scheme with data-reusing 103
the scheme without data-reusing

103
Multichannel noise reduction 98–112
Multiple Object Recognition and

attentional SELection (MORSEL)
189

MUTANT
autonomous quadruped robot 233

Nadaraya, E. A. 13
Nadaraya-Watson kernel regression 13
Neocognitron see Fukushima, K.
Neural Memory (NM) 157
Neural Network (NN) 5

modular approaches 20
pulsed 50

Noise Reduction (NR) 95, 97, see
stereophonic noise reduction

a practical model for stereophonic
speech signals 98–112

as a function of attention module
190

Non-associative learning 147
Non-stationary process 100
Nondeclarative LTM module see

implicit LTM module
Nondeclarative memory see implicit

LTM module
Nonlinear Spectral Subtraction (NSS)

algorithm 106
musical tonal noise 106
over-subtraction corner frequency

113
over-subtraction factors 113
spectral subtraction floor 113

Normalisation
amplitude 159
in time wise 159

Normalised Least Mean Square (NLMS)
algorithm 106

On-line batch algorithms 101
Ontology 2, 240
OptDigit database 21, 67, 219
Orbitofrontal cortex 194
Orientation 86

as spatio-temporal evocation 203
notion of 203

Orthonormal/orthogonal projection
101

Papert, S. A. 17
Parzen window 14, 32, 65
Parzen, E. 14, 32
Pattern matching

sliding window approach 51
Pattern recognition see perception

by PNNs, GRNNs 17–28
self-evolutionary model of 123–131

PenDigit database 21, 67, 219
Perception 191

object 78
pattern recognition 114

Perception module see secondary
(perceptual) output module

Perceptual and association neocortex
168

Perceptual output 190, 206, 226
intermediate representation 114

268 Index

Perceptual Representation System
(PRS) 147, 192, 228

Phonological loop see working
memory

Pinker, S. 240
Pointers see kernel unit
Polikar, R. 20
Positron-Emission Tomography (PET)

3, 125
Power Spectral Density (PSD) 21

power-spectrum 21
Prefrontal cortex 168
Primary output module 85, 138, 141,

195, 204, 226
←− implicit LTM module 148, 186
−→ STM/working memory module

144
the parallel functionality with the

emotion module 195
Probabilistic Neural Network (PNN)

13–25, 158, 207
capability in accommodating new

classes 19–20
categorised into a special case of

RBF-NNs 14
comparison between other connec-

tionist models 25–28
memory-based architecture 16, 20
network configuration of 15–17
network growing of 17
network shrinking of 17
normalisation factor 15, 40
pattern classification 17
reformation in terms of kernel

memory representation 37–39
the solution to the XOR problem 17
the target vector 16
the topological equivalence property

16
weight settings 14

Procedural memory 147, 171, 186, 217,
226

Quadrature Mirror Filter (QMF)
subband decomposition 124

Qualia 241

Radial Basis Function (RBF) 14, 207

representing a local pattern space
20

Radial Basis Function Neural Network
(RBF-NN) 11

comparison between other connec-
tionist models 25–28

variants of 13
Radius see GRNN, PNN, and

RBF-NN
a unique setting of the values 28

Reasoning 91, 204, 216
conscious 205
emotional 201
rational 201

Reductionism 4
Reference signal 105, 114
Reinforcement 122, 185

learning 75, 118, 152
comparator 124

signals 118, 123
Resampling 153, 159
Resource-allocating network 64
Rewards see reinforcement learning
Rolls, E. T. 198, 202
Rosenblatt, F. 17
Rumelhart, D. E. 173

Sagi, B. 167
Sampling

feature extraction 124
frequency (or rate) 128

Saussure, F.-M. de
difference structure 193

Scale adjustment factors 158
Scatter plot 110
Scent see intuition
SDR-3X model 233
Searle, J. 241
Second-Order Blind Extraction (SOBI)

algorithm 158
Secondary (perceptual) output module

85, 114–116, 138–141, 199, 206, 226
←− explicit LTM module 150
←− implicit LTM module 148
−→ STM/ working memory module

144
Segmental gain 109

in SNR (dB) 109
Selective attention 88, 189

Index 269

Selective Attention for Identification
Model (SAIM) 189

SeLective Attention Model (SLAM)
189

Self-evolutionary

process 152

process of the AMS 122

system 80

Self-knowledge 241

Self-Organising Feature Map (SOFM)
12

Self-Organising Kernel Memory
(SOKM) 59–80

a unique setting of the radius for
Gaussian kernel units 63

applied to simultaneous dual-domain
pattern classification tasks 73–77

applied to single-domain pattern
classification tasks 67–73

autonomous formation of a new
category 76–77

construction (training)/ testing phase
of 63–65

decaying factor 61–62

multi-domain data processing 62

the capability in accommodating new
classes 79

the property of incremental learning
79

Semantic analysis 91, 185

Semantic memory see explicit LTM
module

Semantic networks/lexicon 85

Semantic networks/lexicon module
149, 170, 183, 185, 191

the parallel functionality with the
language module 148

Sensation module see input: sensation
module

Sensitisation see non-associative
learning

Sensory memory 137

Sentience see intuition, 241

Shelley, M. XI

Short-Term Memory (STM)

the retention of 129, 137

Short-Term Memory (STM)/working
memory module 84, 136–146,

152, 154, 169, 184, 190, 203, 206,
226

←− LTM modules 144, 218
←− input: sensation module 140,

143
←− primary output module 144
←− secondary (perceptual) output

module 144
←→ LTM modules 139–140
←→ attention module 190–192
←→ explicit LTM module 147
−→ LTM modules 143, 216
−→ emotion module 199
−→ implicit LTM module 147
the parallel functionality with the

intention module 203
the parallel functionality with the

thinking module 183
Shortest-path

Dijkstra’s algorithm 233
Sigmoidal function

exploited in kernel memory 50
in MLP-NNs 12

Signal Extraction (SE) 7, see blind
signal extraction

Signal identification 159
Signal Separation (SS) 7, see blind

signal/source separation
Signal-to-Noise Ratio (SNR) 100
Simon, Herbert A. 5
Simple Recurrent Network (SRN) 173
Single Photon Emission Computed

Tomography (SPECT) 3, 125
Single-Domain-Input Multi-Output

(SDIMO) system 42
Single-Input Multi-Input (SIMO)

system 41
Singular Value Decomposition (SVD)

truncated 104
Sixth sense see intuition
Skeletal muscle 168
Sliding Subspace Projection (SSP)

see multi-stage sliding subspace
projection

Sound Activity Detection (SAD) 89,
97

as a function of attention module
190

Sparse representation

270 Index

in MLP-NNs 26
Spatial information 178
Spatio-temporal coding system

as a universal pre-processing
mechanism 98

Specht, D. F. 13
Speech enhancement 109
Speech Filing System (SFS) database

20, 67, 219
Spike train 50
Squire, L. R. 147
Stereophonic noise reduction 98–112
Stress hormone 195
Subband coding 123

feature extraction 124
Subband ICA 156
Subspace analysis 98
Support Vector Machine (SVM) 32,

79
Symbol processing architecture 27
Symbolic kernel unit see kernel unit
Synaptic decay see synaptic elimina-

tion
Synaptic elimination 61

Target response 58, 118, 151
Template

matrix 49
a learning strategy for temporal

representation 55–56
representing spike trains 50

sparse matrix representation 50
vector 31

Tezuka, O XI
Thinking 50

nonverbal 206
process 91

Thinking module 84, 91, 138, 141, 144,
146, 151, 154, 170, 178, 183–186,
190, 201, 203, 206, 226

←− intuition module 206
←→ intention module 203
the parallel functionality with the

language module 170
the parallel functionality with the

STM/ working memory module
183

Third frontal gyrus 169
Time Delay Neural Network (TDNN)

48
Time-frequency analysis 124
Time-variant system 100
Toeplitz structure 113
TRACE model 173
Training

iterative 12
one-pass/one-shot 18

Turing, A. M. 241

Umamuno, Miguel de 135
Unconditioned Response (UR) 200
Unconditioned Stimulus (US) 200

Visuospatial sketchpad see working
memory

Viterbi algorithm 173
Viterbi, A. J. 173
Von-Neumann type computers 158,

242

Watson, G. S. 13
Wavelet transform see time-frequency

analysis, 131
Wiener, N. 243
Winner-takes-all strategy 39, 207
Wittgenstein, L. J.-J. 2
Working memory

Baddeley & Hitch’s model 137–138

Zero-padding 159

	front-matter
	10Modelling Abstract Notions Relevant to the Mind and the Associated Modules
	11Epilogue – Towards Developing A Realistic Sense of Artificial Intelligence
	1Introduction
	2From Classical Connectionist Models to Probabilistic-Generalised Regression Neural Networks (PNNs-GRNNs)
	3The Kernel Memory Concept – A Paradigm Shift from Conventional Connectionism
	4The Self-Organising Kernel Memory (SOKM)
	5The Artificial Mind System (AMS), Modules, and Their Interactions
	6Sensation and Perception Modules
	7Learning in the AMS Context
	8Memory Modules and the Innate Structure
	9Language and Thinking Modules
	back-matter

