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Every one says something true about the nature of things, and while individually 
they contribute little or nothing to the truth, by the union of all a considerable 
amount is amassed. 

Aristotle, Metaphysics Book 2 
The Complete Works of Aristotle, Princeton University Press, 1984. 



P r e f a c e  

Robots manipulating and navigating in unmodelled environments need robust 

geometric cues to recover scene structure. Vision can provide some of the most 
powerful cues. However, describing and inferring geometric information about 

arbitrarily curved surfaces from visual cues is a difficult problem in computer 

vision. Existing methods of recovering the three-dimensional shape of visible sur- 

faces, e.g. stereo and structure from motion, are inadequate in their t reatment  

of curved surfaces, especially when surface texture is sparse. They also lack ro- 

bustness in the presence of measurement noise or when their design assumptions 

are violated. This book addresses these limitations and shortcomings. 

Firstly novel computational theories relating visual motion arising from viewer 

movements to the differential geometry of visible surfaces are presented. It is 
shown how an active monocular observer, making deliberate exploratory move- 

ments, can recover reliable descriptions of curved surfaces by tracking image 

curves. The deformation of apparent contours (outlines of curved surfaces) un- 

der viewer motion is analysed and it is shown how surface curvature can be 

inferred from the acceleration of image features. The image motion of other 

curves on surfaces is then considered, concentrating on aspects of surface geom- 

etry which can be recovered efficiently and robustly and which are insensitive to 

the exact details of viewer motion. Examples include the recovery of the sign 

of normal curvature from the image motion of inflections and the recovery of 

surface orientation and time to contact from the differential invariants of the 

image velocity field computed at image curves. 

These theories have been implemented and tested using a real-time tracking 

system based on deformable contours (B-spline snakes). Examples are presented 

in which the visually derived geometry of piecewise smooth surfaces is used in a 

variety of tasks including the geometric modelling of objects, obstacle avoidance 

and navigation and object manipulation. 
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Chapter  1 

Introduct ion 

1.1 M o t i v a t i o n  

Robots manipulating and navigating in unmodelled environments need robust 

geometric cues to recover scene structure. V i s i o n  - the process of discovering 

fl'om images what is present in the world and where it is [144] - can provide 

some of the most powerful cues. 

Vision is an extremely complicated sense. Understanding how our visual 

systems recognise familiar objects in a scene as well as describing qualitatively 

the position, orientation and three-dimensional (3D) shape of unfamiliar ones, 

has been the subject of intense curiosity and investigation in subjects as disparate 

as philosophy, psychology, psychophysics, physiology and artificial intelligence 

(AI) for many years. The AI approach is exemplified by computational  theories 

of vision [144]. These analyse vision as a complex information processing task 

and use the precise language and methods of computation to describe, debate 

and test models of visual processing. Their aim is to elucidate the information 

present in visual sensory data and how it should be processed to recover reliable 

three-dimensional descriptions of visible surfaces. 

1 . 1 . 1  D e p t h  c u e s  f r o m  s t e r e o  a n d  s t r u c t u r e  f r o m  m o t i o n  

Although visual images contain cues to surface shape and depth, e.g. perspective 

cues such as vanishing points and texture gradients [86], their interpretation 

is inherently ambiguous. This is attested by the fact that  the human visual 

system is deceived by "trompe d'oeuil" used by artists and visual illusions, e.g. 

the Ames room [110, 89], when shown a single image or viewing a scene from 

a single viewpoint. The ambiguity in interpretation arises because information 

is lost in the projection from the three~dimensional world to two-dimensional 

images. 

Multiple images from different viewpoints can resolve these ambiguities. Vis- 

ible surfaces which yield almost no depth perception cues when viewed from a 

single viewpoint, or when stationary, yield vivid 3D impressions when movement 
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(either of the viewer or object) is introduced. These effects are known as stereop- 
sis (viewing the scene from different viewpoints simultaneously as in binocular 

vision [146]) and kineopsis ( the "kinetic depth" effect due to relative motion 

between the viewer and the scene [86, 206]). In computer vision the respective 

paradigms are stereo vision [14] and structure from motion [201]. 

In stereo vision the processing involved can be decomposed into two parts. 

1. The extraction of disparities (difference in image positions). This involves 

matching image features that correspond to the projection of the same 

scene point. This is referred to as the correspondence problem. It concerns 

which features should be matched and the constraints that can be used to 

help match them [147, 10, 152, 171, 8]. 

. The interpretation of disparities as 3D depths of the scene point. This 

requires knowledge of the camera/eye geometry and the relative positions 

and orientations of the viewpoints (epipolar geometry [10]). This is essen- 

tially triangulation of two visual rays (determined by image measurements 
and camera orientations) and a known baseline (defined by the relative 

positions of the two viewpoints). Their intersection in space determines 

the position of the scene point. 

Structure fl'om motion can be considered in a similar way to stereo but with 

the different viewpoints resulting from (unknown) relative motion of the viewer 

and the scene. The emphasis of structure from motion approach has been to 

determine thc number of (image) points and the number of views needed to 
recover the spatial configuration of thc scene points and the motion compatible 

with the views [201,135]. The processing involved can be decomposed into three 
parts. 

1. 

. 

Tracking fi.'atures (usually 2D image structures such as points or "cor- 

n e l ' s  ~ ) �9 

Interpreting their image motion as arising from a rigid motion in 3D. This 

can be used to estimate the exact details (translation and rotation) of the 

relative motion. 

. Image velocities and viewer motion can then be interpreted in the same 

way as stereo disparities and epipolar geometry (see above). These are used 

to recover the scene structure which is expressed explicitly as quantitative 

depths (up to a speed-scMe ambiguity). 

The computational nature of these problems has been the focus of a signif- 

icant amount of research during the past two decades. Many aspects are well 
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Figure 1.1: Stereo image pair with polyhedral model. 

The Sheffield Tina stereo algorithm [171] uses Canny edge detection [48] and 
accurate camera calibration [195] to extract and match 21) edges in the left (a) 
and right (b) images of a stereo pair. The reconstructed 3D line segments are 
interpreted as the edges of a polyhedral object and used to match the object to a 
model database [179]. The models are shown superimposed on the original image 
(a). Courtesy of I. Reid, University of Oxford. 
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Figure 1.2: Structure from motion. 

(a) Detected image "corners" [97, 208] in the first frame of an image sequence. 
Thc motion of the corners is used to estimate the camera's motion (ego-motion) 
[93]. The integration of image measurements from a large number of viewpoints 
is used to recover the depths of the scene points [96, 49]. (b) The 3D data is 
used to compute a contour map based on a piecewise planar approximation to 
the .~ccne. Courtesy of H. Wang, University of Oxford. 
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understood and AI systems already exist which demonstrate basic competences 

in recovering 3D shape information. The state of the art is highlighted by con- 

sidering two recently developed and successful systems. 

Sheffield stereo system: 
This system relies on accurate camera calibration and feature (edge) de- 

tection to match segments of images edges, permitting recovery 3D line 

segments [171, 173]. These are either interpreted as edges of polyhedra or 

grouped into planar surfaces. This data  has been used to match to models 

in a database [179] (figure 1.1). 

Plessey Droid structure from motion system: 

A camera mounted on a vehicle detects and tracks image "corners" over 

an image sequence. These are used to estimate the camera's motion (ego- 

motion). The integration of image measurements from a large number of 

viewpoints is used to recover the depths of the scene points. Planar facets 

are fitted to neighbouring triplets of the 3D data  points (from Delaunay 

triangulation in the image [33]) and their positions and orientations are 

used to define navigable regions [93, 96, 97, 49, 208] (figure 1.2). 

These systems demonstrate that with accurate calibration and feature de- 

tection (for stereo) or a wide angle of view and a large range of depths (for 

structure from motion) stereo and structure from motion are feasible methods 

of recovering scene structure. In their present form these approaches have se- 
rious limitations and shortcomings. These are listed below. Overcoming these 

limitations and shortcomings - inadequate treatment of curved surfaces and lack 

of robustness - will be the main themes of this thesis. 

1.1.2 Shortcomings 

1. C u r v e d  su r faces  

Attention to mini-worlds, such as a piecewise planar polyhedral world, has 

proved to be restrictive [172] but has continued to exist because of the 
difficulty in interpreting the images of curved surfaces. Theories, repre- 

sentations and methods for the analysis of images of polyhedra have not 

readily generalised to a piecewise smooth world of curved surfaces. 

�9 T h e o r y  

A polyhedral object's line primitives (image edges) are adequate to 

describe its shape because its 3D surface edges are view-independent. 

However, in images of curved surface (especially in man-made envi- 

ronments where surface texture may be sparse) the dominant image 
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. 

line and arc primitives are apparent contours (see below). These do 
not convey a curved surface's shape in the same way. Their con- 
tour generators move and deform over a curved object's surface as 
the viewpoint is changed. These can defeat many stereo and struc- 
ture from motion algorithms since the features (contours) in different 
viewpoints are projections of different scene points. This is effectively 
introducing non-rigidity. 

�9 R e p r e s e n t a t i o n  
Many existing methods make explicit quantitative depths of visible 
points [90, 7, 96]. Surfaces are then reconstructed from these sparse 
data by interpolation or fitting surface models - the plane being a par- 
ticularly common and useful example. For arbitrarily curved, smooth 
surfaces, however, no surface model is available that  is general enough. 

The absence of adequatc surface models and the sparsity of surface fea- 
tures make dcscribing and inferring geometric information about 3D curved 
objects from visual cues a challenging problem in computer vision. Devel- 
oping theories and methods to recover reliable descriptions of arbitrarily 
curw~A smooth smTaces is one of the major themes of this thesis. 

R o b u s t n e s s  
The lack of robustness of computer vision systems compared to biological 
systems has led many to question the suitability of existing computational 
theories [194]. Many existing methods are inadequate or incomplete and 
require development to make then robust and capable of recovering from 

e r r o l ? .  

Existing structure from motion algorithms have proved to be of little or 
no practical use when analysing images in which perspective effects are 
small. Their solutions are often ill-conditioned, and fail in the presence of 
small quantities of image measurement noise; when the field of view and 
the variation of depths in the scene is small; or in the prescnce of small 
degrees of non-rigidity (see Chapter 5 for details). Worst, they often fail 
in particularly graceless fashions [197, 60]. Yet the human visual system 
gains vivid 31) impressions from two views (even orthographic ones) even 
in the presence of non-rigidity []31]. 

Part of the problem lies in the way these problems have been formulated. 
Their formulation is such that the interpretation of point image velocities 
or disparities is embroilcd in camera calibration and making explicit quan- 
titative depths. Reformulating these problems to make them less sensitive 
to measurement error and epipolar geometry is another major theme of 

this thesis. 
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1.2 Approach 

This thesis develops computational theories relating visual motion to the differ- 

ential geometry of visible surfaces. It shows how an active monocular observer 

can make deliberate movements to recover reliable descriptions of visible surface 

geometry. The observer then acts on this information in a number of visually 

guided tasks ranging from navigation to object manipulation. 

The details of our general approach are listed below. Some of these ideas 

have recently gained widespread popularity in the vision research community. 

1.2.1 V i s u a l  m o t i o n  and  d i f f erent ia l  g e o m e t r y  

Attention is restricted to arbitrarily curved, piecewise smooth (at the scale of 
interest) surfaces. Statistically defined shapes such as textures and crumpled 

fractal-like surfaces are avoided. Piecewise planar surfaces are considered as a 

special ease. The mathematics of differential surface geometry [67, 122] and 3D 

shape play a key role in the derivation and exposition of the theories presented. 

The deformation of visual curves arising from viewer motion is related to surface 

geometry. 

1.2.2  A c t i v e  v i s i o n  

The inherent practical difficulties of structure from motion algorithms are avoided 

by allowing the viewer to make deliberate, controlled movements. This has been 

termed active vision [9, 2]. As a consequence, it is assumed that the viewer has at 

least some knowledge of his motions, although this may sometimes be expressed 

qualitatively in terms of uncertainty bounds [106, 186]. Partial knowledge of 

viewer motion, in particular constraints on the viewer's translation, make the 

analysis of visual motion considerably easier and can lead to simple, reliable 

solutions to the structure from motion problem. By controlling the viewpoint, 

we can achieve non-trivial visual tasks without having to solve completely this 

problem. 

A moving active observer can also more robustly make inferences about  the 

geometry of visible surfaces by integrating the information from different view- 
points, e.g. using camera motion to reduce error by making repeated measure- 

ments of the same features [7, 96, 173]. More important,  however, is that  con- 
trolled viewpoint movement can be used to reduce ambiguity in interpretation 
and sparsity of data  by uncovering desired geometric structure. In particular it 

may be possible to generate new data by moving the camera so that a contour is 
generated on a surface patch for which geometrical data is required, thus allow- 

ing the viewer to fill in the gaps of unknown areas of the surface. The judicious 

choice and change of viewpoint can generate valuable data. 
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1.2.3 Shape representation 

Listed below are favourable properties desired in a shape descriptor. 

1. It should be insensitive to changes in viewpoint and illumination, e.g. im 
variant measures such as the principal curvatures of a surface patch. 

2. It should be robust to noise and resistant to surface perturbations, obeying 
the principle of graceful degradation: 

. . .wherever possible, degrading the data  will not prevent 
delivery of at least some of the answer [144]. 

3. It should be computationally efficient, the latter being specified by the 
application. 

Descriptions of surface shape cover a large spectrum varying from quan t i -  
t a t i v e  depth maps (which are committed to a single surface whose depths are 
specified over a dense grid [90]) to a general q u a l i t a t i v e  description (which are 
incomplete specifications such as classifying tile surface locally as either elliptic, 
hyperbolic or planar [20]). Different visual tasks will demand different shape de- 
scriptors within this broad spectrum. The specification is of course determined 
by the application. A universal 3D or 21D sketch [144] is as elusive as a universal 
structure from motion algorithm. 

In our approach we abandon the idea of aiming to produce an explicit surface 
representation such as a depth map from sparse data  [144, 90, 192, 31]. The main 
drawbacks of this approach are that it is computationally difficult and the fine 
grain of the representation is cumbersome. The formulation is also naive in the 
following respects. First, there is no unique surface which is consistent with the 
sparse data delivered by early visual modules. There is no advantage in defining a 
best consistent surface since it is not clear why a visual system would require such 
an explicit representation. Direct properties of the surfaces such as orientation 
or curvature are preferred. Second, the main purpose of surface reconstruction 
should be to make explicit occlusion boundaries and localise discontinuities in 
depth and orientation. These are usually more important shape properties than 
credence on the quality of smoothness. 

Qualitative or partial shape descriptors include the incomplete specification 
of properties of a surface in terms of bounds or constraints; spatial order [213], 
relative depths, orientations and curvatures; and affine 3D shape (Euclidean 
shape without a metric to specify angles and distances [131]). These descriptions 
may superficially seem inferior. They are, however, vital, especially when they 
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can be obtained cheaply and reliably whereas a complete specification of the 

surface may be cumbersome. It will be shown that they can be used successfully 

in a variety of visual tasks. 

Questions of representation of shape and uncertainty should not be treated 

in isolation. The specification depends on what the representation is for, and 

what tasks will be performed with it. Shape descriptions must be useful. 

1 . 2 . 4  T a s k  o r i e n t e d  v i s i o n  

A key part of the approach throughout this thesis is to test the utility, efficiency 
and reliability of the proposed theories, methods and shape representations in 

"real" visual tasks, starting from visual inputs and transforming them into rep- 

resentations upon which reasoning and planning programs act. 1 In this way 

"action" is linked to "perception". In this thesis visual inferences are tested in 

a number of visual tasks, including navigation and object manipulation. 

1.3 T h e m e s  and contr ibut ions  

The two main themes of this thesis are interpreting the images of curved surfaces 

and robustness. 

1 . 3 . 1  C u r v e d  s u r f a c e s  

Visual cues to curved surface shape include outlines (apparent contour [120]), 

silhouettes, specularities (highlights [128]), shading and self-shadows [122], cast 

shadows, texture gradients [216] and the projection of curves lying on sur- 

faces [188]. These have often been analysed in single images from single view- 

points. In combination with visual motion resulting from deliberate viewer mo- 

tions (or similarly considering the deformations between the images in binocular 

vision) some of these cues become very powerful sources of geometric informa- 

tion. Surfaces will be studied by way of the image (projection) of curves on 

surfaces and their deformation under viewer motion. There are two dominant 

sources of curves in images. The first source occurs at the singularity of the 

mapping between a patch on the surface and its projection [215]. The patch 

projects to a smooth piece of contour which we call the apparent contour or out- 

line. This occurs when viewing a surface along its tangent plane. The apparent 
contour is the projection of a fictitious space curve on the surface - the contour 

generator- which separates the surface into visible and occluded parts. Shape 

recovery from these curves will be treated in Chapter 2 and 3. Image curves also 

can arise when the mapping from surface to image is not singular. The visual 

tThis approach is also known as purposive, animate, behavioural or utilitarian vision. 
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image of curves or patches on the surface due to internal surface markings or 

illumination effects is simply a deformed map of the surface patch. This type of 

image curve or patch will be treated in Chapters 4 and 5. 

1 . 3 . 2  R o b u s t n e s s  

This thesis also makes a contribution to achieving reliable descriptions and ro- 

bustness to measurement and ego-motion errors. This is achieved in two ways. 

The first concerns sensitivity to image measurement errors. A small reduction in 

sensitivity can be obtained by only considering features in the image that can be 

reliably detected and extracted. Image curves (edges) and their temporal evolu- 

tion have such a property. Their main advantage over isolated surface markings 

is technological. Reliable and accurate edge detectors are now available which 

localise surface markings to sub-pixel accuracy [48]. The technology for isolated 

point/corner detection is not at such an advanced stage [164]. Furthermore, 

snakes [118] are ideally suited to tracking curves through a sequence of images, 
and thus measuring the curve deformation. Curves have another advantage. 

Unlike points ("corners") which only samples the surface at isolated points - the 

surface could have any shape in between the points - a surface curve conveys 

information, at a particular scale, throughout its path. 

The second aspect of robustness is achieved by overcoming sensitivity to the 

exact details of viewer motion and epipolar geometry. It will be seen later that  

point image velocities consist of two components. The first is due to viewer 

translation and it is this component that encodes scene structure. The other 

component is due to the rotational part of the observer's motion. These rota- 

tions contribute no information about the structure of the scene. This is obvious, 

since rotations about the optical centres leave the rays, and hence the triangu- 

lation, unchanged. The interpretation of point image velocities or disparities as 

quantitative depths, however, is complicated by these rotational terms. In par- 

ticular small errors in rotation (assumed known from calibration or estimated 

from structure from motion) have large effects on the recovered depths. 

Instead of looking at point image velocities and disparities (which are em- 

broiled in epipolar geometry and making quantitative depths explicit), part of 

the solution, it is claimed here, is to look at local, relative image motion. In 

particular this thesis shows that relative image velocities and velocity/disparity 
gradients are valuable cues to surface shape, having the advantage that  they are 

insensitive to the exact details of the viewer's motion. These cues include: 

1. Motion parallax - the relative image motion (both velocities and accel- 

erations) of nearby points (which will be considered in Chapters 2 and 

3). 
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2. The deformation of curves (effectively the relative motion of three nearby 

points) (considered in Chapter 4). 

3. The local distortion of apparent image shapes (represented as an affine 

transformation) (considered in Chapter 5). 

Undesirable global additive errors resulting from uncertainty in viewer motion 

and the contribution of viewer rotational motion can be cancelled out. We 

will also see that it is extremely useful to base our inferences of surface shape 

directly on properties which can be measured in the image. Going through the 

computationally expensive process of making explicit image velocity fields or 

at tempting to invert the imaging process to produce 3D depths will often lead 

to ill-conditioned solutions even with regularisation [t69]. 

1.4 O u t l i n e  o f  b o o k  

C h a p t e r  2 develops new theories relating the visual motion of apparent contours 

to the geometry of the visible surface. First, existing theories are generalised [85] 

to show that  spatio-temporal image derivatives (up to second order) completely 
specify the visible surface in the vicinity of the apparent contour. This is shown 

to be sensitive to the exact details of viewer motion. ' /he  relative motion of 

image curves is shown to provide robust estimates of surface curvature. 

C h a p t e r  3 presents the implementation of these theories and describes re- 

sults with a camera mounted on a moving robot arm. A eomputationally efficient 
method of extracting and tracking image contours based on B-spline snakes is 

presented. Error and sensitivity analysis substantiate the clairns that  parallax 

methods are orders of magnitude less sensitive to the details of the viewer's 

motion than absolute image measurements. The techniques are used to detect 

apparent contours and discriminate them from other fixed image features. They 

are also used to recover the 3D shape of surfaces in the vicinity of their apparent 

contours. We describe the real-time implementations of these algorithms for use 

in tasks involving the active exploration of visible surface geometry. The visually 

derived shape information is successfully used in modelling, navigation and the 

manipulation of piecewise smooth curved objects. 

C h a p t e r  4 describes the constraints placed on surface differential geometry 

by observing a surface curve from a sequence of positions. The emphasis is on 

aspects of surface shape which can be recovered efficiently and robustly and with- 

out tile requirement of the exact knowledge of viewer motion or accurate image 

measurements. Visibility of the curve is shown to constrain surface orientation. 

Further, tracking image curve inflections determines the sign of the normal  cur- 

vature (in the direction of tile surface curve's tangent vector). Examples using 
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this information in real image sequences are included. 
Chap te r  5 presents a novel method to measure the differential invariants 

of the image velocity field robustly by computing average values from the in- 
tegral of norrnal image velocities around closed contours. This avoids having 
to recover a dense image velocity field and taking partial derivatives. Moreover 
integration provides some immunity to image measurement noise. It is shown 
how an active observer making small, deliberate (although imprecise) motions 
can recover precise estimates of the divergence and deformation of the image 
velocity field and can use these estimates to determine the object surface orien- 
tation and time to contact. The results of real-time experiments in which this 
visually derived information is used to guide a robot manipulator in obstacle 
collision avoidance, object manipulation and navigation are presented. This is 
achieved without camera calibration or a complete specification of the epipolar 

geometry. 
A survey of the literature (including background information for this chap- 

ter) highlighting thc shortcomings of many existing approaches, is included in 
Appendix A under bibliographical notes. Each chapter will review relevant ref- 
erences. 



Chapter 2 

Surface Shape from the Deformat ion  of 
Apparent  Contours 

2.1 I n t r o d u c t i o n  

For a smooth arbitrarily curved surface - especially in m a n - m a d e  environments 

where surface texture may be sparse - the dominant  image feature is the apparent 

contour or silhouette (figure 2.1). The apparent contour is the projection of the 

locus of points on the object - the contour generator or cxtremal boundary - 

which separates the visible from the occluded parts of a smooth opaque, curved 

surface. 

The apparent contour and its deformation under viewer motion are poten- 

tially rich sources of geometric information for navigation, object manipulation, 

motion-planning and object recognition. Barrow and Tenenbaum [17] pointed 

out that surface orientation along the apparent contour can be computed di- 

rectly from image data. Koenderink [120] related the curvature of an apparent 

contour to the intrinsic curvature of the surface (Gaussian curvature); the sign 

of Gaussian curvature is equal to the sign of the curvature of the image contour. 

Convexities, concavities and inflections of an apparent contour indicate, respec- 

tively, convex, hyperbolic and parabolic surface points. Giblin and Weiss [85] 

have extended this by adding viewer motions to obtain quantitative estimates 

of surface curvature. A surface (excluding concavities in opaque objects) can 

be reconstructed from the envelope of all its tangent planes, which in turn are 

computed directly from the family of apparent contours/silhouettes of the sur- 

face, obtained under motion of the viewer. By assuming that the viewer follows 

a great circle of viewer directions around the object they restricted the problem 

of analysing the envelope of tangent planes to the less general one of comput-  

ing the envelope of a family of lines in a plane. Their algori thm was tested on 

noise-free, synthetic data  (on the assumption that  extremal boundaries had been 

distinguished from other image contours) demonstrat ing the reconstruction of a 

planar curve under orthographic projection. 

In this chapter this will be extended to the general case of arbi trary non- 

planar, curvilinear viewer motion under perspective projection. The geometry 
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Figure 2.1: A smooth curved surface and its silhouette. 

A single image of a smooth curved surface can provide 31) shape information f~vm 
shading, surface markings and texture cues (a). However, especially in artificial 
environments where surface texture may be sparse, the dominant image feature 
is the outline or apparent contour, shown here as a silhouette (b). The apparent 
contour or silhouette is an extremely rich source of geometric information. The 
special relationship between the ray and the local differential surface 9eometry 
allow the recovery of the surface orientation and the sign of Gaussian curvature 
from a single view. 
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of apparent contours and their deformation under viewer-motion are related to 

the differential geometry of the observed objeet 's surface. In particular it is 

shown how to recover the position, orientation and 3D shape of visible surfaces 

in the vicinity of their contour generators from the deformation of apparent 

contours and known viewer motion. The theory for small, local viewer motions 
is developed to detect extremal boundaries and distinguish them from occlud- 
ing edges (discontinuities in depth or orientation), surface markings or shadow 

boundaries. 

A consequence of the theory concerns the robustness of relative measure- 

ments of surface curvature based on the relative image motion of nearby points 

in the image - parallax based measurements. Intuitively it is relatively difficult 

to judge, moving around a smooth, featureless object, whether its silhouette is 

extremal or not - -  that is, whether curvature along the contour is bounded or 

not. This judgement is much easier to make for objects which have at least a 
few surface features. Under small viewer motions, features are "sucked" over the 

extremal boundary, at a rate which depends on surface curvature. Our theoret- 

ical findings exactly reflect the intuition that the "sucking" effect is a reliable 

indicator of relative curvature, regardless of the exact details of the viewer's mo- 

tion. Relative measurements of curvature across two adjacent points are shown 

to be entirely immune to uncertainties in the viewer's rotational velocity. 

2.2 T h e o r e t i c a l  f ramework 

In this section the theoretical framework for the subsequent analysis of apparent 

contours and their deformation under viewer motion is presented. We begin 

with the properties of apparent contours and their contour generators and then 

relate these first to the descriptions of local 3D shape developed from the differ- 

ential geometry of surfaces and then to the analysis of visual motion of apparent 

contours. 

2 . 2 . 1  T h e  a p p a r e n t  c o n t o u r  a n d  i t s  c o n t o u r  g e n e r a t o r  

Consider a smooth object. For each vantage point all the rays through the van- 

tage point that are tangent to the surface can be constructed. They touch the 

object along a smooth curve on its surface which we call the contour genera- 

tor [143] or alternatively the extremal boundary [16], the rim [120], the fold [21] 
or the critical set of the visual mapping [46, 85] (figure 2.2). 

For generic situations (situations which do not change qualitatively under 

arbitrarily small excursions of the vantage point) the contour generator is part 

of a smooth space curve (not a planar curve) whose direction is not in general 

perpendicular to the ray direction. The contour generator is dependent on the 
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spherical perspective image 

v(t 0) 

apparent contour q (s,to) 

r(so,t) 

contour generator r(S,to) 

Figure 2.2: Surface and viewing geometry. 

P lies on a smooth surface which is parameterised locally by r(s, t). For a given 
vantage point, v(t0), the family of rays emanating from the viewer's optical 
centre (C) that touch the surface defines an s-parameter curve r(s, to) - the 
contour generator from vantage point to. The spherical perspective projection of 
this contour generator - the apparent contour, q(s, to) - determines the direction 
of rays which graze the surface. The distance along each ray, CP, is A. 
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local surface geometry and on the vantage point in a simple way which will be 

elucidated below. Moreover each vantage point will, in general, generate a dif- 

ferent contour generator. Movement of the viewer causes the contour generator 

to "slip" over the visible surface. 

The image of the contour generator - here called the apparent contour but 

elsewhere also known as the occluding contour, profile, outline, silhouette or 

limb - will usually be smooth (figure 2.2). It may however not be continuous 

everywhere. As a consequence of the contour generator being a space curve, 

there may exist a finite number of rays that are tangent not only to the surface 

but also to the contour generator. At these points the apparent contour of a 

transparent object will cusp. For opaque surfaces, however, only one branch of 

the cusp is visible and the contour ends abruptly (see later, figure 2.5) [129, 120]. 

2 . 2 . 2  S u r f a c e  g e o m e t r y  

In the following, descriptions of local 3D shape are developed directly from the 

differential geometry of surfaces [67, 76, 122]. 

Consider a point P on the contour generator of a smooth, curved surface in R 3 

and parameterised locally by a vector valued function r (s , t ) .  The parametric 

representation can be considered as covering the surface with two families of 

curves [134]: r(s, t0) and r(s0,t)  where so or to are fixed for a given curve in 

the family. For the analysis of apparent contours and their deformation with 

viewer motion it is necessary to choose the one-parameter family of views to be 

indexed by a time parameter t, which will also parameterise viewer position for 

a moving observer. The s and t parameters are defined so that the s-parameter 

curve, r(s , t0) ,  is a contour generator from a particular view to (figure 2.2). A 

t-parameter curve r(s0, t) can be thought of as the 3D locus of points grazed by 

a light-ray from the viewer, under viewer motion. Such a locus is not uniquely 

defined. Given a starting point s = so, t = to, the correspondence, as the viewer 

moves, between "successive" (in an infinitesimal sense) contour generators is 

not unique. Hence there is considerable freedom to choose a spatio-temporal 

parameterisation of the surface, r(s,  t). 

The local surface geometry at P is determined by the tangent plane (surface 

normal) and a description of how the tangent plane turns as we move in arbitrary 

directions over the surface (figure 2.3). This can be specified in terms of the basis 

{r~, rt} for the tangent plane (where for convenience r8 and rt denote Or/Os  and 

Or/cgt - the tangents to the s and t-parameter curves respectively) 1; the surface 

1Subscripts denote differentiation with respect to the subscript  parameter .  Superscripts  
will be used as labels. 



18 Chap. 2. Surface Shape from the Deformation of Apparent Contours 

.o~ r 

r 2:to  / 
s-parameter cuive (th~ contour generator) 

Figure 2.3: The tangent plane. 

Local surface geometry can be specified in terms of the basis {rs, rt} for the 
tangent plane (where rs and rt denote the tangents to the s and t-parameter 
curves respectively and are not in general orthogonal) and the surface normal n 
(a unit vector). In differential surface geometry the derivative of these quantities 
with respect to movement over the surface is used to describe surface shape. 
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normal, (a unit vector, n) defined so that 

r~ .n  = 0 (2.1)  

r t . n  - -  0 (2 .2 )  

and the derivatives of these quantities with respect to movement over the surface. 
These are conveniently packaged in the first and second fundamental forms as 
follows. For a tangent plane vector at P,  w, the first fundamental form, I(w, w), 
is used to express the length of any infinitesimal element in the tangent plane 

([67], p.92 ): 
~(w, w) = w.w.  (2.3) 

It can be represented by a matrix of coefficients, G, with respect to the basis 

{r,, rt} where 

G =  [ r~.r~ r~.rt ] . (2.4) 
r t  , r s  r t  . r t  

The second fundamental form, I I ( w , w ) ,  quantifies the "bending away" of 
the surface from the tangent plane. It is defined by ([67], p.141): 

i i ( w ,  w) = - w . L ( w )  (2.5) 

where L(w) is the derivative of the surface orientation, n, in the direction w. 
L is in fact a linear transformation on the tangent plane. It is also called the 
Shape operator [166] or the Weingarten Map [156]. In particular for the basis 

vectors {re, rt}: 

L(r , )  = ns (2.6) 

L(rt) = nt (2.7) 

and the coefficients of the second fundamental are given by matrix D where 

r ts  . n  r t t . n  

The geometry of the surface is completely determined locally up to a rigid 

motion in R a by these two quadratic forms. It is, however, sometimes more 
convenient to characterise the surface by normal  curvatures in specific directions 
in the tangent plane 2. The normal curvature in the direction w, ~n, is defined 
by [76]: 

~n _ I t ( w ,  W) 
I ( w , w )  " (2.9) 

2The normal curvature  is the  curvature  of the  p lanar  sect ion of the  surface t h rough  the  
normal  and t angen t  vector.  
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The maximum and minimum normal curvatures are called the principal curva- 
tures. The corresponding directions are called the principal directions 3 

It will now be shown how to make these quadratic forms explicit from image 
measurable quantities. This requires relating the differential geometry of the 
surface to the analysis of visual motion. 

2 . 2 . 3  I m a g i n g  m o d e l  

A monocular observer can determine the orientation of any ray projected on 
to its imaging surface. The observer cannot however, determine the distance 
along the ray of the object feature which generated it. A general model for 
the imaging device is therefore to consider it as determining the direction of an 
incoming ray which we can chose to represent as a unit vector. This is equivalent 
to considering the imaging device as a spherical pin-hole camera of unit radius 

(figure 2.2). 
The use of spherical projection (rather than planar), which has previously 

proven to be a powerful tool in structure-from-motion [123] [149], makes it fea- 
sible to extend tile theory of Giblin and Weiss [85] to allow for perspective. Its 
simplicity arises from the fact that there are no special points on the image sur- 
face, whereas the origin of the perspective plane is special and the consequent 

loss of symmetry tends to complicate mathematical arguments. 

For perspective projection the direction of a ray to a world point, P, with 
position vector r(s , t ) ,  is a unit vector on the image sphere p(s , t )  defined at 
time t by 

r(s,t) = v(t) q- A(s,t)p(s,t), (2.10) 

where A(s, t) is the distance along the ray to the viewed point P and v(t) is the 
viewer's position (figure 2.2). 

For a given vantage position to, the apparent contour, q(s, to), determines 
a continuous family of rays p(s, to) emanating from the camera's optical centre 
which touch the surface so that  

p .n  = 0 (2.11) 

where n is the surface normal. Equation (2.11) defines both the contour gener- 
ator and the apparent contour. 

3These are in fact the eigenvalues and respective eigenvectors of the matrix G-1D. The 
determinant of this matrix (product of the two principal curvatures) is called the Gaussian 
curvature, K.  It determines qualitatively a surface's shape. A surface patch which is locally 
hyperbolic (saddle-like) has principal curvatures of opposite sign and hence negative Gaussian 
curvature. Elliptic surface patches (concave or convex) have principal curvatures with the 
same sign and hence positive Gaussian curvature. A locally flat surface patch wilt have zero 
Gaussian curvature. 
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The moving monocular observer at position v(t) sees a family of apparent 
contours swept over the imagesphere. These determine a two-parameter family 
of rays in R 3, p(s,t) .  As before with r(s,t),  the parameterisation is under- 
determined but that will be fixed later. 

2 . 2 . 4  V i e w e r  a n d  r e f e r e n c e  c o - o r d i n a t e  s y s t e m s  

Note that p is the direction of the light ray in the fixed reference/world frame for 
R 3. It is determined by a spherical image position vector q (the direction of the 
ray in the camera/viewer co-ordinate system) and the orientation of the camera 
co-ordinate system relative to the reference frame. For a moving observer the 
viewer co-ordinate system is continuously moving with respect to the reference 
frame. The relationship between p and q can be conveniently expressed in terms 
of a rotation operator R(~) [104]: 

p ---- R(t)q. (2.12) 

The frames are defined so that instantaneously, at time t -- 0, they coincide 

p(s, 0) -- q(s, 0) (2.13) 

and have relative translational and rotational velocities of U(t) and f/(t) respec- 

tively: 

U = vt (2.14) 

(F/Aq) = Rtq (2.15) 

The relationship between temporal derivatives of measurements made in the 

camera co-ordinate system and those made in the reference frame is then given 

by (differentiating (2.12)): 

Pt  = qt  -b N A q (2 .16 )  

where (as before) the subscripts denote differentiation with respect to time and 

A denotes a vector product. 

2.3 Geometr ic  propert ies  of  the contour gener- 
ator and its project ion 

We now establish why the contour generator is a rich source of information 
about surface geometry. The physical constraints of tangency (all rays at a 
contour generator are in the surface's tangent plane) and conjugacv (the special 
relationship between the direction of the contour generator and the ray direction) 
provide powerful constraints on the local geometry of the surface being viewed 
and allow the recovery of surface orientation and the sign of Gaussian curvature 
directly from a single image of the contour generator, the apparent contour. 
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2 . 3 . 1  T a n g e n c y  

Both the tangent to the contour generator, rs (obtained by differentiating (2.10)) 

rs = Asp Jr ~Ps  (2.17) 

and the ray, p, must (by definition) lie in the tangent plane of the surface. From 
the tangency conditions 

r s . n  ---- 0 

p . n  = 0 

and (2.17), we see that the tangent to the apparent contour also lies in the 
tangent plane of the surface 

ps.n = 0. (2.18) 

This allows the recovery of the surface orientation n (defined up to a sign) 
directly from a single view p(s, to) using the direction of the ray and the tangent 
to the apparent (image) contour 

p a p s  (2.19) 
n - i p  A ps------ ] .  

This result is also valid for projection on to the plane. It is a trivial general- 
isation to perspective projection of the well-known observation of Barrow and 
Tenenbanm [16, 17]. 

2 . 3 . 2  C o n j u g a t e  d i r e c t i o n  r e l a t i o n s h i p  o f  r a y  a n d  c o n t o u r  
g e n e r a t o r  

The tangency conditions constrain the contour generator to the tangent plane of 
the surface. In which direction does the contour generator run? The direction 
is determined by the second fundamental form and the direction of the ray. In 
particular the ray direction, p, and the tangent to the contour generator, rs, are 
in conjugate directions with respect to the second fundamental form [125, 120]. 
That is, the change in surface normal (orientation of the tangent plane) for an 
infinitesimal movement in the direction of the contour generator is orthogonal to 
the direction of the ray. This is intuitively obvious for orthographic projection 
since the normal will continue to be orthogonal to the line of sight as we move 
along the contour generator. 

This is immediately apparent in the current framework for perspective pro- 
jection sincc the second fundamental form has the property that 

I I (p,  rs) -- -p .L( rs )  

= -p .n8  (2.20) 
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which, by differentiating (2.11) and substituting (2.18), is zero. 

p .n ,  = 0. (2.21) 

The ray direction, p, and the contour generator are not in general perpendicular 

but in conjugate directions 4. 

We will demonstrate the conjugacy relationship by way of a few simple ex- 

amples. Let 0 be the angle between the ray direction p and the tangent rs to 

the extremal contour. In general -7r /2  < 0 < lr/2. 

. 0 = ~r/2 
If the ray p is along a principal direction of the surface at P the contour 

generator will run along the other principal direction. Principal directions 

are mutually conjugate. Similarly at an umbilical non-planar point, e.g. 

any point on a sphere, the contour generator will be perpendicular to the 

ray (figure 2.4a). 

. -7r/2 < 0 < 7r/2 
At a parabolic point of a surface, e.g. any point on a cylinder, the conjugate 
direction of any ray is in the asymptotic direction, e.g. parallel to the axis 

of a cylinder, and the contour generator will then run along this direction 

and have zero normal curvature (figure 2.4b). 

. 0 = 0  
The special case /9 = 0 occurs when the ray p lies along an asymptotic 
direction on the surface. The tangent to the contour generator and the ray 

are parallel - asymptotic directions are self-conjugate. A cusp is generated 

in the projection of the contour generator, seen as an ending of the apparent 

contour for an opaque surface[129] (figure 2.5). 

Conjugacy is an important  relation in differential geometry and vision. As 

well as determining the direction of a contour generator, it also determines the 

direction of a self-shadow boundary in relation to its light source [122]. 

2 . 4  S t a t i c  p r o p e r t i e s  o f  a p p a r e n t  c o n t o u r s  

It is now well established that  static views of extremal boundaries are rich sources 

of surface geometry [17, 120, 36, 85]. The main results are summarised below 

followed a description and simple derivation. 

4 Since, generically, there is only one direct ion conjugate to any o ther  direct ion,  this  p r ope r ty  
means  t ha t  a con tour  generator  will not  intersect  itself.  
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Figure 2.4: In which direction does the contour generator run? 

(a) An example in which the direction of the contour generator is determined by 
the direction of the ray. For any point on a sphere the contour generator will 
run in a perpendicular direction to the ray. 
(b) An example in which the direction of the contour generator is determined by 
the surface shape. For any point on a cylinder viewed fro m a generic viewpoint 
the contour generator will run parallel to the axis and is independent of the 
direction of the ray. 
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(b) 

Figure 2.5: Cusps and contour-endings. 

The tangent to the contour generator and the ray are parallel when viewing along 
an asymptotic direction of the surface. A cusp is generated in the projection of 
the contour generator, seen as an ending of the apparent contour for an opaque 
surface. The ending-contour will always be concave. It is however diI~cult to 
detect and localise in real images. A synthetic image of a torus (a} and its edges 
(b} are shown. The edges were detected by a Marr-Hildreth edge finder [78]. 
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1. The orientation of the tangent plane (surface normal) can be recovered 
directly from a single view of an apparent contour. 

2. The curvature of the apparent contour has the same sign as the normal 
curvature along the contour generator 5 

. For opaque surfaces, convexities, inflections and concavities of the appar- 
ent contour indicate respectively elliptic, parabolic and hyperbolic surface 
points. 

2 . 4 . 1  S u r f a c e  n o r m a l  

Computation of orientation on a textured surface patch would usually require 
(known) viewer motion to obtain depth, followed by spatial differentiation. In 
the case of a contour generator however, the tangency condition (2.11) means 
that surface orientation n(s, t0) can be recovered directly from the apparent 
contour p(s, to ) :  

p a p ,  (2.22) n(s, t0) -- [pAp ,  i. 

The temporal and spatial differentiation that, for the textured patch, would have 
to be computed with attendant problems of numerical conditioning, is done, for 
extremal boundaries, by the physical constraint of tangency. 

Note that the sign of the orientation can only be determined if it is known on 
which side of the apparent contour the surface lies. This information may not be 
reliably available in a single view (figure 2.5b). It is shown below, however, that 
the "sidedness" of the contour generator can be unambiguously determined from 
the deformation of the apparent contour under known viewer-motion. In the 
following we choose the convention that the surface normal is defined to point 
away from the solid surface. This arbitrarily fixes the direction of increasing 
s-parameter of the apparent contours so that {p, p,, n} form a right-handed 
orthogonal frame. 

2 . 4 . 2  S i g n  o f  n o r m a l  c u r v a t u r e  a l o n g  t h e  c o n t o u r  g e n e r a -  
t o r  

The relationship between the curvature of the apparent contour and the cur- 
vature of the contour generator and the viewing geometry is now derived. The 
curvature of the apparent contour, ~P, can be computed as the geodesic curvature 

5Note  the  special  case of  a cusp w h e n  the  apparent  contour  has  inf inite  curvature  whi le  the  
c o n t o u r  generator  has  zero  n o r m a l  curvature .  This  case can  he  cons idered  in the  l imi t .  
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6 of the curve, p(8, to), on the image sphere. By definition: 7 

~ p  pss.n 
iwl2 .  (2.23) 

It is simply related to the normal curvature of the contour generator, gs, by: 

~P (2.24) 
- sin 2 0 

where (as before) 0 is the angle between the ray and the contour generator, 

r~ (2.25) cosO= P' lrsl  

and x ~ is the normal curvature along the contour generator defined by (2.9): 

.n 
r s  . r s  

Since surface depth A must be positive, the sign of ~ must, in fact, be the 

same as the sign of gP. In the special case of viewing a parabolic point, tr s = 0, 

and an inflection is generated in the apparent contour. 

D e r i v a t i o n  2.1 The derivation of equation (2.24)follows directly from the equa- 

tions of perspective projection. Rearranging (2.17) we can derive the mapping 
between the length of a small element of the contour generator its ] and its spher- 

ical perspective projection ]p~ [. 

Iwl 
Ir~l (1-  [ r~ ~2~ 1/2 

_ tp ) ) (2.27) 

= lrs--] sin0. (2.28) 
A 

Note that the mapping from contour generator to apparent contour is singular 
(degenerate) when 0 is zero. The tangent to the contour generator projects to a 
point in the image. As discussed above this is the situation in which a cusp is 
generated in the apparent contour and is seen as a contour-ending (figure 2.5). 

6The geodesic curvature  of a curve on a sphere is somet imes  called the apparent curva ture  
[122]. It  measures  how the curve is curving in the imaging surface. It  is equal to the curva ture  
of the  perspect ive project ion onto a plane defined by the ray direction. 

7The curvature ,  a, and the Frenet -Ser re t  normal,  N,  for a space curve "y(s) are given by 
([76], p103): a N  = ('Ys A "Yss) A "Ys/ ["Is[ 4, The normal  curvature  is the magn i tude  of the 
componen t  of teN in the direction of the surface normal  (here p since p(s ,  to) is a curve on 
the image sphere);  the geodesic curvature  is the magni tude  of the componen t  in a direction 
perpendicular  to the surface normal  and the curve tangent  (in this case Ps). For a curve on a 
sphere  this direction is parallel to the curve normal  (n or apparen t  contours) .  
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Differentiating (2.17) and collecting the components parallel to the surface 
normal gives 

r88.n (2.29) Pss.n - A 

Substituting (2.27) and (2.29) into the definition of apparent curvature (2.23) 
and normal curvature (2.26) we obtain an alternative form of (2.24): 

g P =  [ 1 - ( P . l r - ~ ) 2 ]  " (2.30) 

A similar result was derived for orthographic projection by Brady et al. [36]. 

2 . 4 . 3  S i g n  o f  G a u s s [ a n  c u r v a t u r e  

The sign of the Gauss[an curvature, K, can be inferred from a single view of 

an extremal boundary by the sign of the curvature of the apparent contour. 
Koenderink showed that: 

. . . f r om any vantage point and without any restriction on the 

shape of the rim, a convexity of the contour corresponds to a convex 

patch of surface, a concavity to a saddle-shaped patch. Inflections of 

the contour correspond to flexional curves of the surface [120]. 

In particular he proves Marr wrong: 

In general of course, points of inflection in a contour need have 
no significance for the surface [144]. 

by showing that  inflections of the contour correspond to parabolic points (where 

the Gauss[an curvature is zero) of the surface. 

This follows from a simple relationship between the Gauss[an curvature, K; 

the curvature tr t of the normal section at P containing the ray direction; the 

curvature t~p of the apparent contour (perspective projection) and the depth A 
[120, 122]: 

/,gp/~ t 

K -  A (2.31) 

The sign of tr t is always the same at a contour generator. For P to be visible, the 

normal section must be convex s at a contour generator - a concave surface point 

can never appear on a contour generator of an opaque object. Distance to the 

contour generator, A, is always positive. Hence the sign of gP determines the sign 
of Gaussian curvature. Convexities, concavities and inflections of an apparent 

contour indicate, respectively, convex, hyperbolic and parabolic surface points. 

8If we define the surface normal  as being outwards  from the solid surface, the normal 
curvature  will be negative in any direction for a convex surface patch.  
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Equation (2.31) is derived in section 2.6.4. An alternative proof of the rela- 
tionship between the sign of Gaussian curvature and the sign of nP follows. 

D e r i v a t i o n  2.2 Consider a tangent vector, w,  with components in the basis 

{p, rs} of (a, j3). Let the normal curvature in the direction w be n". From (2.9) 

its sign is given by: 

sign(t~ n) = -s ign(w.L(w))  

= -(a)Usign(g t) - 2aj31rslsign(p.L(rs) ) - (/31rsl)2sign(n s) 

= -(a)2sign(n t) - (/3]rs D2sign(n s) (2.32) 

since by the conjugacy relationship (2.21), p.L(rs) = O. Since the sign of nt 

is known at an apparent contour - it must always be convex - the sign of n ~ 

determines the sign of the Gaussian curvature, If:  

1. I f  n s is convex all normal sections have the same sign of normal curvature 

- convex. The surface is locally elliptic and K > O. 

2. If  n~ is concave the sign of normal curvature changes as we change direc- 

tions in the tangent plane. The surface is locally hyperbolic and K < O. 

3. If  n ~ is zero the sign of normal curvature does not change but the normal 

curvature can become zero. The surface is locally parabolic and K = O. 

Since the sign of n ~ is equal to the sign of n p (2.24), the curvature of the apparent 

contour indicates the sign of Gaussian curvature. 

As before when we considered the surface normal, the ability to determine 
the sign of the Gaussian curvature relies on being able to determine on which 

side of the apparent contour the surface lies. This information is not readily 
available from image contour data. It is however available if it is possible to 
detect a contour-ending since the local surface is then hyperbolic (since the 
surface is being viewed along an asymptotic direction) and the apparent contour 
must be concave at its end-point [129]. Detecting cusps by photometric analysis 
is a non-trivial exercise (figures 2.5). 

2.5 The dynamic analysis of apparent contours 

2.5.1 Spatio-temporal parameterisation 

The previous section showed that static views of apparent contours provide useful 
qualitative constraints on local surface shape. The viewer must however have 
discriminated apparent contours from the images of other surface curves (such as 
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surface markings or discontinuities in surface orientation) and have determined 

on which side of the image contour the surface lies. 

When the viewer executes a known motion then surface depth can, of course, 

be computed from image velocities [34, 103]. This is correct for static space 

curves but it will be shown that it also holds for extremal contour generators 

even though they are not fixed in space. Furthermore, if image accelerations 

are also computed then full surface curvature (local 3D shape) can be computed 

along a contour generator. Giblin and Weiss demonstrated this for orthographic 

projection and planar motion [85] (Appendix B). We now generalise these results 

to arbitrary non-planar, curvilinear viewer motion and perspective projection. 

This requires the choice of a suitable spatio-temporal parameterisation for the 

image, q(s, t), and surface, r(s,  t). 

As the viewer moves the family of apparent contours, q(s , t ) ,  is swept out 

on the image sphere (figure 2.6). However the spatio-temporal parameterisation 

of the family is not uniquc. The mapping between contour generators, and 

hence between apparent contours, at successive instants is under-determined. 

This is essentially the "aperture problem" for contours, considered either on the 

spherical perspective image q(s, t) ,  or on the Gauss sphere n(s , t ) ,  or between 

space curves on the surface r(s,t). The choice is arbitrary since the image 
contours are projections of different 3D space curves. 

2:5.2 Epipolar parameterisatlon 

A natural choice of parameterisation (for both the spatio-temporal image and 

the surface), is the epipolar parameterisation defined by 

rt A p = 0. (2.33) 

The tangent to the t-parameter curve is chosen to be in the direction of the ray, 

p. The physical interpretation is that  the grazing/contact point is chosen to 

"slip" along the ray. The tangent-plane basis vectors, r8 and rt, are therefore in 

conjugate directions. The advantage of the parameterisation is clear later, when 

it leads to a simplified treatment of surface curvature and a unified treatment 

of the projection of rigid space curves and extremal boundaries. 

A natural correspondence between points on successive snapshots of an ap- 

parent contour can now be set up. These are the lines of constant s on the image 

sphere. Differentiating (2.10) with respect to time and enforcing (2.33) leads to 

a "matching" condition 
( U A p )  A p  

Pt - i (2.34) 

The corresponding ray in the next viewpoint (in an infinitesimal sense) 

p(s0 , t  + St), is chosen so that it lies in the plane defined by (U A p) - the 
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spherical perspective image at t 

spherical perspective image at t+St 

~~__ , ...... ~,, , , ~  .... ~ / ' ? : . ~  .,~// 
v (t + 6 t j S ~ / '  "'" 1/ r(s0,t) 

/ ~  { I I  \ ~ t )  

Figure 2.6: Epipolar parameterisation. 

A moving observer at position v(t) sees a family of contour generators r(s,t) 
indexed by the time parameter t. Their spherical perspective projections are 
represented by a two parameter family of apparent contours q(s, t ) .  For the 
epipolar parameterisation t-parameter curves (r(so, t) and q(so,t)) are defined 
by choosing the correspondence between successive contours to be in an epipolar 
plane which is determined by the translational velocity and the direction of the 
ray. 



32 Chap. 2. Surface Shape from the Deformation of Apparent Contours 

epipolar plane. The t-parameter curve on the surface, r(s0, t), will also be in the 
same plane (figure 2.6). 

This is the infinitesimal analogue to epipolar plane matching in stereo [14, 34]. 
For a general motion, however, the epipolar plane structure rotates continuously 
as the direction of translation, U, changes and the space curve, r(s0, t), generated 
by the movement of a contact point will be non-planar. 

Substituting (2.16) into (2.34), the tangents to the t-parameter curves on the 
spatio-temporal image, q(s0, t), are defined by 

(UAq) Aq 
a A q. (2.35) q t - -  

Note that  qt is equal to the image velocity of a point on the projection of a static 
space curve at depth )~ [149]. This is not surprising since instantaneously image 
velocities are dependent only on depth and not surface curvature. Points on 
successive apparent contours are "matched" by searching along epipolar great 
circles on the image sphere (or epipolar lines for planar image geometry) defined 
by the viewer motion, U, ~2 and the image position q. This induces a natural 
correspondence between the contour generators from successive viewpoints on 

the surface. 
The contact point on a contour generator moves/slips along the line of sight 

p with a speed, rt determined by the distance and surface curvature. 

r, (p , .n)  (2.36) 
---- k tgt / P  

where ~t is the normal curvature of the space curve, r(so,t): 

~ t _  rtt .n.  (2.37) 
r t  . r t  

D e r i v a t i o n  2.3 Substituting the matching constraint of (2.3~,) into the time 
derivative of (2.10) we obtain: 

rt = (At + p.U)p.  (2.38) 

Differentiating (2.38) with respect to time and substituting this into (2.37) we 
obtain the relationship between surface curvature and viewer motion. 

~t _ Pt .n 
(At + p .U) '  (2.39) 

Combining (2.39) and (2.38) gives the required result. 

The numerator of (2.36) is analogous to stereo disparity (as appears below in 
the denominator of the depth formula (2.40)) and depends only on the distance 
of the contact point and the "stereo baseline". The denominator is the curvature 
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(normal) of the space curve generated as the viewer moves in time. The speed 

of the contact point is therefore inversely proportional to the surface curvature. 

The contour generator "clings" to points with high curvature and speeds up as 

the curvature is reduced. This property will be used later to distinguish surface 

markings or creases from extremal boundaries. 

2.6 Dynamic  properties of apparent contours 

The choice of a suitable (although arbitrary) spatio-temporal parameterisation 

permits us to make measurements on the spatio-temporal image, q(s , t ) ,  and 

to recover an exact specification of the visible surface. This includes position, 

orientation and 3D shape as well as qualitative cues such as to which side of the 

image contour the occluding surface lies. 

2 . 6 . 1  R e c o v e r y  o f  d e p t h  f r o m  i m a g e  ve loc i t i e s  

Depth A (distance along the ray p - -  see figure 2.2) can be computed from the 

deformation (Pt) of the apparent contour under known viewer motion (transla- 

tional velocity U)[34]: From (2.34) 

V.n 
A = - . (2.40) 

pt.n 

This formula is an infinitesimal analogue of triangulation with stereo cameras 

(figure 2.6). The numerator is analogous to baseline and the denominator to 
disparity. In the infinitesimal limit stereo will, in principle, correctly determine 

the depth of the contour generator. 

Equation (2.40) can also be re-expressed in terms of spherical image position 

q and the normal component of image velocity qt.n: 

U.n 
A = (2.41) 

qt .n  + (a A q).n" 

Clearly absolute depth can only be recovered if rotational velocity Ft is known. 

2 . 6 . 2  S u r f a c e  c u r v a t u r e  f r o m  d e f o r m a t i o n  o f  t h e  apparent  
contour  

Surface curvature (3D shape) is to be expressed in terms of the first and second 
fundamental forms, G and D (2.4 and 2.8), which in the epipolar parameteri- 

sation and for unit basis vectors can be simplified to: 

[ co 0] 
G = cosO 1 
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0 ] (2.43) D = 0 ~t , 

where gt is the normal curvature of tile t-parameter curve r(s0, t) and a s is the 

normal curvature of the contour generator r(s , t0)  at P. Equivalently x t is the 

curvature of the normal section at P in the direction of the ray, p. 

Note that D is diagonal. This is a result of choosing, in the epipolar param- 

eterisation, basis directions, {re,r t}  that  are conjugate. From (2.21) it is easy 

to show that  the off-diagonal components are both equal to zero 

rt~.n = - r t . n~  = - [ r t ]p .n~ = 0. 

Itow, in summary, can the components of G and D be computed from the 

deformation of apparent contours under viewer motion? 

1. Ang le  b e t w e e n  r a y  a n d  c o n t o u r  g e n e r a t o r ,  O(s,to) 

First 0(s, to) can be recovered from the contour generator r(s,  to) which is 

itself obtained from image velocities along the apparent contour via (2.41). 

This requires the numerical differentiation of depths along the contour 

generator. From (2.17) and simple trigonometry: 

t a n 0 -  "~IP.,I A~ (2.44) 

2. N o r m a l  c u r v a t u r e  a long  t h e  c o n t o u r  g e n e r a t o r ,  x ~ 

Then normal curvature along the contour generator, g~, is computed from 

the curvature gP of the apparent contour. Rearranging (2.24): 

~P sin 2 0 
n ~ - - -  ( 2 . 4 5 )  

A 

3. N o r m a l  c u r v a t u r e  a long  t h e  l ine  o f  s ight ,  gt 

Finally the normal curvature gt, along the line of sight, which can be 

recovered from image accelerations, as explained below. 

The normal curvature at P in the direction of the ray p, gt can be computed 

fi'om the rate of deformation of the apparent contour under viewer motion. 

From (2.39) and (2.40) 

U .n  
~t = A(~t + p . U ) "  (2.46) 

Since ~t depends on At, it is clear from (2.41) that x t is a function of 

viewer acceleration (Ut and ~2t) and the second derivative of image posi- 

tion, qtt, that  is, image acceleration. By differentiating (2.41) and substi- 

tuting (2.46) we find that  the normal component of image acceleration at 
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an apparent contour is determined by viewer motion (including transla- 

tional and rotational accelerations) in addition to a dependency on depth 

and surface curvature: 

q t t . n  --  (A)3 - 2 (A)2 A ( a t  A q ) .n  

2 (q .U) (a /x  q) .n  ( a  A U) .n  
+ + (a .n)(a .n)(2 .47)  

A A 

The details of equation (2.47) are not important.  It merely demonstrates 

that the recovery of at requires knowledge of viewer motion (including 

translational and rotational accelerations) together with measurement of 
image accelerations. In section 2.7 it will be shown how to cancel the 

undesirable dependency on viewer accelerations and rotations. 

Note two important  points: 

As a result of the c o n j u g a c y  relationship between the contour generator and 

the ray, surface curvature at a contour generator is completely determined 

by the n o r m a l  curvatures in these two directions and the angle between 

them, 0. Compare this to a general surface point which requires the n o r m a l  

curvatures in three directions. 

Determining surface curvature usually requires the computation of second- 

order spatial derivatives of depth, A. At extremal boundaries, however, 

only first order spatial derivatives, As, and temporal derivatives, At, need 

be computed. One derivative is performed, effectively, by the physical 

system. This is also the case with specularities [26]. 

2 . 6 . 3  S i d e d n e s s  o f  a p p a r e n t  c o n t o u r  a n d  c o n t o u r  g e n e r a t o r  

In the static analysis of the apparent contour it was assumed that the " s i d e d n e s s "  

of the contour generator - on which side of the image contour the obscuring 

surface lies - was known. Up to now in the dynamic analysis of apparent contours 

an arbitrary direction has been chosen for the s-parameter curve (and hence the 

image tangent Ps) and the surface orientation, n, has been recovered up to an 

unknown sign from (2.19). The actual sign can now be determined from the 

deformation of the apparent contour. Equation(2.46) determines both a sign 
and magnitude for normal curvature along the ray, gt. This must, however, 

be convex and so its sign given by equation (2.46) allows us to infer the correct 

orientation of the tangent plane. This is an important  qualitative geometric cue. 

The distinction between free space and solid surface is extremely useful in visual 

navigation and manipulation. 
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2 . 6 . 4  G a u s s i a n  a n d  m e a n  c u r v a t u r e  

Although the first and second fundamental forms completely characterise the 
local 3D shape of the surface, it is sometimes more convenient to express the 
geometry of the surface by its principal curvatures and their geometric and 
arithmetic means: the Gaussian and mean curvature. 

The Gaussian curvature, K,  at a point is given by the product of the two 
principal curvatures [67]. With the epipolar parameterisation, Gaussian curva- 
ture can be expressed as a product of two curvatures: the normal curvature ~t 
and the curvature of the apparent contour, ~P scaled by inverse-depth. 

t~P ~ t 

K -  A (2.48) 

This is the well known result of Koenderink [120, 122] extended here to recover 
the magnitude as well as the sign of Gaussian curvature. 

Derivation 2.4 In general the Gaussian curvature can be determined from the 

determinant of G - 1 D  or equivalently the ratio of the determinants of the ma- 

trices of coefficients of the second and first fundamental forms: 

K -  IDI 
IGl" (2.49) 

From (2.42) and (2.43) it is trivial to show that Gaussian curvature can be 
expressed by 

t~tl~ s 

K - sin~ 0' (2.50) 

Substituting (2.23) for ~'~ allows us to derive the result. 

Tile mean curvature, H, and the principal curvatures t~l,X 2 can similarly be 
expressed by: 

1 [_~ ] 
H = -~ + t~tcosec20 (2.51) 

~1,2 = H 4- X / ~ -  K.  (2.52) 

2.6.5 Degenerate  cases of the epipolar parameterisation 

In the previous section we introduced the epipolar parameterisation and showed 
how to recover the 3D local shape of surfaces from the deformation of apparent 
contours. 

There are two possible cases where degeneracy of the parameterisation arises. 
These occur when {r,, rt} fails to form a basis for the tangent plane. 
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1. r t z 0  

The contour generator does not slip over the surface with viewer motion 

but is fixed. It  is therefore not an extremal boundary but a 3D rigid space 

curve (surface marking or discontinuity in depth or orientation). 

An impor tant  advantage of the epipolar parameterisat ion is its unified 

t reatment  of the image motion of curves. The projections of surface mark-  

ings and creases can be simply be treated as the limiting cases of apparent  

contours of surfaces with infinite curvature, t~ t (from (2.36)). In fact the 

magni tude of the curvature, ~t, can be used to discriminate these image 

curves from apparent contours. The parameterisat ion degrades gracefully 

and hence this condition does not pose any special problems. 

Although the space curve r(s,  to) can still be recovered from image veloci- 

ties via (2.41) the surface orientation is no longer completely defined. The 

tangency conditions ((2.11) and (2.18)) are no longer valid and the surface 

normal is only constrained by (2.17) to be perpendicular to the tangent to 

the space curve, leaving one degree of freedom unknown. 

2. rs Ar t  = 0 and rt • 0 
Not surprisingly, the parameterisat ion degenerates at the singularity of the 

surface-to-image mapping where r :  and rt  are parallel on the surface. From 

(2.27) IP:I = 0 and a cusp is generated in the projection of the contour 

generator. For generic cases the image contour appears to come to a halt  

at isolated points. 

Although the epipolar parameterisat ion and equations (2.19) and (2.40) 

can no longer be used to recover depth and surface orientation at the 

isolated cusp point this in general poses no problems. By tracking the 

contour-ending it is still possible to recover the distance to the surface at 

a cusp point and the surface orientation [84]. 

2.7 M o t i o n  paral lax  and the  robust  e s t i m a t i o n  
of  surface  curvature  

It  has been shown that  although it is feasible to compute surface curvature from 

the observed deformation of an apparent  contour, this requires knowledge of the 

viewer's translational and rotational velocities and accelerations. Moreover the 

computat ion of surface curvature from the deformation of apparent  contours is 

highly sensitive to errors in assumed ego-motion. This may be acceptable for a 

moving camera mounted on a precision robot arm or when a grid is in view so 

that  accurate visual calibration of the camera position and orientation can be 
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Figure 2.7: Mot:ion parallax as a robust cue for surface curvature at apparent  
contours. 

(a) A sample of monocular image sequence showing the image motion of apparenl 
contours with viewer motion. 
(b) Three images of the sequence (magnified window) showing the relative motion 
between the appaw.nt contour and a nearby surface markings when the viewer 
moves from left to right. The relative image accelerations as the features move 
away from the extremal boundary can be used for the robust estimation of surface 
curvature. 
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Figure 2.8: Motion parallax as a robust  cue for surface curvature  at a specularity.  

(a) Sample from a monocular image sequence showing motion of specularities 
(highlights) across the curved surface of a Japanese cup with viewer .~otion (left 
to right). 
(b) Three images of the sequence (magnified window) showing the relative motion 
(parallax) of a point specularity and nearby surface marking. Parallax measure- 
ments can be used to determine the surface curvature and normal along the path 
followed by the specularity as the viewer moves. A more qualitative measure is 
the sign of the epipolar component of the parallax measurement. With viewer 
motion the specularity moves in opposite directions for concave and convex sur- 
faces [220]. In the example the specularity moves with the viewer indicating a 
convex section. 
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~ m e t e r  curve ~ - iiiii', , " ',, \~i(S0,t) 

r (s ,t) 
contour generators 

viewer at time t 
q l(t ~ t/~q 2 (t -~ t) 

viewer at time t+St 

Figure 2.9: Motion parallax. 

Consider the relative displacement between a point on an apparent contour and 
the image of a nearby surfacc fcature (shown as a cross): 5 = q(2) _ qO) The 
rate of change of relative image position - parallax, 6t - has been shown to be 
a robust indicator of relative depth. In this section we show that its temporal 
derivative - the rate of parallax 5tt -- is a robust geometric cue for the recovery 
of surface curvature at extremal boundaries. 



2.7. Motion parallax and the robust estimation of surface curvature 41 

performed [195]. In such cases it is feasible to determine motion to the required 

accuracy of around 1 part  in 1000 (see Chapter  3). However, when only crude 

estimates of motion are available another strategy is called for. In such a case, 

it is sometimes possible to use the crude estimate to boots t rap a more precise 

visual ego-motion computat ion [93]. However this requires an adequate number  

of identifiable corner features, which may  not be available in an unstructured 

environment.  Moreover, if the est imate is too crude the ego-motion computa t ion  

may  fail; it is notoriously ill-conditioned [197]. 

The alternative approach is to seek geometric cues that  are much less sensi- 

tive to error in the motion estimate. In this section it is shown that  est imates 

of surface curvature which are based on the relative image motion of nearby 

points in the image - parallax based measurements - have just  this property. 

Such estimates are stable to perturbations of assumed ego-motion. Intuitively 

it is relatively difficult to judge, moving around a smooth,  featureless object, 

whether its silhouette is extremal or not - -  whether curvature along the con- 

tour is bounded or not. This judgement  is much easier to make for objects 

which have at least a few surface features. Under small viewer motions,  features 

are "sucked" over the extremal boundary, at a rate which depends on surface 

curvature (figure 2.7). 

The theoretical findings of this section exactly reflect the intuition that  the 

"sucking" effect is a reliable indicator of relative curvature, regardless of the 

exact details of the viewer's motion. It is shown that  relative measurements  of 

curvature across two adjacent points are entirely immune to uncertainties in the 

viewer's rotational velocity. This is somewhat  related to earlier results showing 

that  relative measurements of this kind are impor tant  for depth measurement  

from image velocities[123, 138, 121], or stereoscopic disparities [213] and for 

curvature measurements from stereoscopically viewed highlights [26] (figure 2.8). 

Furthermore, it will be shown that,  unlike the interpretation of single-point 

measurements,  differences of measurements at two points are insensitive to errors 

in rotation and in translational acceleration. Only dependence on translat ional  

velocity remains. Typically, the two features might be one point on an extremal  

boundary and one fixed surface point. The surface point has infinite curvature 

and therefore acts simply as a stable reference point for the measurement  of 

curvature at the extremal boundary. The reason for the insensitivity of relative 

curvature measurements is that  global additive errors in motion measurement  

are cancelled out. 

2 . 7 . 1  M o t i o n  p a r a l l a x  

Consider two visual features whose projections on the image sphere (figure 2.9) 

are q(s i , t ) ,  i = 1, 2 (which we will abbreviate to q(i), i = 1, 2) and which have 
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image velocities given by (2.35): 

['] ql i) = [(U A q(i)) A q(i)] ~ _ f~ A q(i). (2.53) 

Clearly depth can only be recovered accurately if rotational velocity ~2 is known. 
The dependence on rotational velocity is removed if, instead of using raw image 
motion qt, the difference of the image motions of a pair of points, q0)q(2) ,  is 
used. This is called parallax [99]. 

The relative image position 6 of the two points is 

5(t) = q(2) _ q0). (2.54) 

Parallax is the temporal derivative of 5, St. [f instantaneously the two points 
project to the same point on the image sphere, so that 

q(1) (0) = q(2 ) (0 )  = q,  

then, from (2.53), the parallax 5t depends only on their relative inverse-depths 
and on viewer velocity. It is independent of (and hence insensitive to errors in) 

angular rotation ~2: 

a, = [ ( u  A q) A q] �9 

The use of "motion parallax" for robust determination of the direction of trans- 
lation U and relative depths from image velocities was described by Longuet- 
ttiggins and Prazdny [138] and Rieger and Lawton [182]. 

2 . 7 . 2  R a t e  o f  p a r a l l a x  

Following from the well-known results about motion parallax, we derive the cen- 
tral result of this section - -  that the rate of parallax is a robust cue for surface 
curvature. The direct formula (2.47) for normal curvature a t in terms of image 
acceleration was sensitive to viewer translational acceleration and rotational ve- 
locity and acceleration. If, instead, differences of image accelerations are used, 

the undesirable sensitivity vanishes. 
The relationship between image acceleration and normal curvature for points 

q(1), (t(2)can be expressed as 

2(U.q(1))(t2 A q(i)).n (fl A U).n  
+ + (fLq(i)) (~2.n) (2.56) )~(i) ~(i) 
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The important  point is that the two copies of this equation for the two positions 

i = 1, 2 can be subtracted, cancelling off the undesirable dependency on ~2, t2t 

and on Ut. 

Think of the two points as being the projection of extremal contour genera- 
tots, which trace out curves with (normal) curvatures ~tl and Et2 as the viewer 

moves. Let us define the relative inverse curvature, AR, of the feature pair by 

1 1 
AR = ~t2 ~t l '  (2.57) 

Note that it is simply the difference of the radii of curvature of the normal 

sections. 
Rt i 1 xt i i 1,2. (2.58) 

Consider the two features to be instantaneously spatially coincident, that 

is, initially, q(sl ,  0) = q(s2,0). Moreover assume they lie at a common depth 
A, and hence, instantaneously, q~l) _- -~t"(2). In practice, of course, the feature 

pair will only coincide exactly if one of the points is a surface marking which 

is instantaneously on the extremal boundary (figure 2.9). The effect of a small 

separation is analysed below. Now, taking the difference of equation (2.56) for 
i = 1, 2 leads to the following relation between the two relative quantities 6tt 

and AR: 

5tt.n - (U'n)2 AR. (2.59t 
Aa 

From this equation we can obtain relative inverse curvature, AR, as a function of 

depth 3,, viewer velocity U, and the second temporal derivative of 5. Dependence 

on v iewer  mot ion is now l imited to the velocity U. There is no dependence 

on viewer acceleration or rotational velocity. Hence the relative measurement 

should be much more robust. (Computationally higher derivatives are generally 

far more sensitive to noise.) 

In the case that q0)  is known to be a fixed surface reference point, with 
1/t~ tl = 0, then AR = 1/t~ t2 so that the relative curvature AR constitutes an 

estimate, now much more robust, of the normal curvature ~t2 at the extremal 

boundary point q(~). Of course this can now be used in equations (2.311, (2.42) 

and (2.43) to obtain robust estimates of surface curvature. This is confirmed by 

the experiments of Chapter 3. 

Note that  the use of the epipolar parameterisation is not important  in the 

above analysis. It can be shown that the normal component of the relative 

image acceleration 5tt.n between a distinct feature and an apparent contour is 

independent of viewer motion and can be determined completely from spatio- 

temporal measurements on the image (Appendix C). 
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2 . 7 . 3  D e g r a d a t i o n  o f  s e n s i t i v i t y  w i t h  s e p a r a t i o n  o f  p o i n t s  

The theory above relating relative curvature to the rate of parallax assumed 
that  the two points q(1) and q(2) were instantaneously coincident in the image 

and at the same depth, A (1) : A (2). In practice, point pairs used as features 

will not coincide exactly and an error limit on curvature (or, more conveniently, 

its inverse) must be computed to allow for this. The relative curvature can be 
computed from the rate of parallax by taking into account an error, 

R t(2) - R t(i) = AR + R err~ (2.6o) 

where (as before) 
Aa 

~XR= (U.n)~ 5tt.n. (2.61 / 

Tile error in inverse normal curvature, R e ' ' ~  consists of errors due to the 

difference in depths of the two features, AA; the finite separation in the image, 

Aq  and the differences in tangent planes of the two features An. The magnitude 

of these effects can be easily compute(] from the difference of equation (2.56) for 

the two points (Appendix D). For nearby points that are on the same surface 

and for fixation (U = At2 A q) the dominant error can be conveniently expressed 

as:  

3 latl v t . n  (2.62) !Re'r~ 9Alal +A" t S l ~  + AIAAt (U.----n-y u. 

ParMlax-based measurements of curvature will be accurate and insensitive to 

errors in viewer motion if the separation between points oil nearby contours 

satisfes At{ 

151 << 9--Y (2.63) 

Equation (2.62) can also be used to predict the residual sensitivity to trans- 

lational and rotational accelerations. The important  point to notice is that  sen- 

sitivity to viewer motion is still reduced. As an example consider the sensitivity 

of absolute measurements of surface curvature along the ray to error in viewer 

position. Think of this as adding an unknown translational acceleration, Ut.  

For absolute measurements (2.56) the effect of this unknown error is amplified 

by a factor of A=/(U.n) 2 when estimating surface curvature. From Appendix 

D and (2.62) we see that for parallax-based measurements the sensitivity is re- 

duced to a factor of 2AA/A of the original sensitivity. This sensitivity vanishes, 
of course, when the features are at the same depth. A similar effect is observed 

for rotational velocities and accelerations. 

The residual error and sensitivity analysis can be used to provide an error 

interval for computed curvature. This is also useful as a threshold for the test 

(see below) for labelling extremM boundaries - -  that is, to tell how close to zero 



2.8. Summary 45 

the inverse normal curvature  1/~; t must lie to be considered to be on a surface 

marking or a crease edge rather than an extremal boundary. 

2 . 7 . 4  Q u a l i t a t i v e  s h a p e  

Further robustness can be obtained by considering the ratio of relative curva- 
tures. More precisely this is the ratio of differences in radii of curvature. Ratios 

of pairs of parallax based measurements can, in theory, be completely insensitive 

to viewer motion. This is because the normal component of the relative image 

acceleration 5tt.n can be shown to be independent of the viewer motion and 

can be determined from spatio-temporal measurements on the image for a dis- 

tinct point and apparent contour pair (Appendix C). This is surprising because 

the epipolar parameterisation has a hidden dependence on viewer velocity in 

the "matching" condition (equation(2.34)). This result is important  because it 

demonstrates the possibility of obtaining robust inferences of surface geometry 
which are independent of any assumption of viewer motion. 

In particular if we consider the ratio of relative curvature measurements for 

two different point-pairs at similar depths, terms depending on absolute depth 

A and velocity U are cancelled out in equation (2.59). This result corresponds 

to the following intuitive idea. The rate at which surface features rush towards 

or away from an extremal boundary is inversely proportional to the (normal) 
curvature there. The constant of proportionality is some function of viewer 

motion and depth; it can be eliminated by considering only ratios of curvatures. 

2.8 Summary 

This chapter has: 

Related the geometry of apparent contours to the differential geometry of 

the visible surface and to the analysis of visual motion. 

Shown how the geometric properties of tangency and conjugacy allow the 
recovery of qualitative properties of the surface shape from a single view. 

These include surface orientation and the sign of Gaussian curvature. 

Shown how a moving monocular observer can recover an exact and com- 

plete description of the visible surface in the vicinity of a contour generator 
from the deformation of apparent contours. This requires the computat ion 

of spatio-temporal derivatives (up to second order) of the image and known 

viewer motion. The epipolar parameterisation of the spatio-temporal im- 

age and surface was introduced. Its advantages include that  it allows all 

image contours to be analysed in the same framework. Image velocities 
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allow the recovery of the contour generator while image accelerations allow 

the computat ion of surface curvature. A consequence of this is that  the 

visual motion of curves can be used to detect extremal boundaries and 

distinguish them from rigid contour generators such as surface markings, 

shadows or creases. 

�9 Shown how the relative motion of image curves (parallax-based measure- 

mcnts) can be used to provide robust estimates of surface curvature which 

are independent (and hence insensitive tO) the exact details of the viewer's 

motion. 



C h a p t e r  3 

D e f o r m a t i o n  o f  A p p a r e n t  C o n t o u r s  - 

I m p l e m e n t a t i o n  

3.1 I n t r o d u c t i o n  

In the previous chapter a computational theory for the recovery of 3D shape 

from the deformation of apparent contours was presented. The implementation 

of this theory and the results of experiments performed with a camera mounted 

on a moving robot arm (figure 3.1) are now described. In particular this chapter 

presents: 

1. A simple, computationally efficient method for accurately extracting image 

curves from real images and tracking their temporal evolution. This is 

an extension of tracking with snakes [118] - -  energy minimising splines 

guided by "image forces" - -  which avoids computing the internal energies 

by representing sections of curves as cubic B-splines. Moreover real-time 

processing (15 frames per second) is achieved by windowing and avoiding 
Gaussian smoothing. 

2. The implementation of the epipolar parameterisation to measure image 

velocities and accelerations. This requires knowledge of the camera motion. 

Two approaches are presented. The first considers the continuous case and 

analyses a dense image sequence. Simple linear camera motions and the 

analysis of epipolar plane slices of the spatio-temporal images are used to 

estimate the depth and surface curvatures at a point. In the second method 

we analyse the case of extended discrete displacements and arbitrary known 

rotations of the viewer. Experiments show that  with adequate viewer 

motion calibration and careful localisation of image contours it is possible 
to obtain 3D shape measurements of useful accuracy. 

. The analysis of the effect of errors in the knowledge of assumed viewer 

motion (camera position and orientation) and in the localisation of im- 

age contours on the estimates of depth and curvature. Uncertainty and 

sensitivity analysis is important  for two reasons. First, it is useful to 
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4. 

. 

compute bounds on the estimates of surface curvature. This is critical in 

discriminating fixed features from extremal boundaries - deciding whether 

curvature along the ray is bounded or not - since with noisy measurements 

and poorly calibrated viewer motions, we must test by error analysis the 

hypothesis that  the curvature is unbounded at a fixed feature. Second, 

sensitivity analysis is used to substantiate the claim that  parallax methods 

- using the relative image motion of nearby contours - allow the robust 

recovery of surface curvature. It is shown that  estimates of curvature 

based on absolute measurements of image position are extremely sensitive 

to motion calibration, requiring accuracies of the order of 1 part  in 1000. 

Estimates of curvature based on relative measurements prove to be or- 

ders of magnitude less sensitive to errors in robot position and orientation. 

The sensitivity to image ]ocalisation remains, however, but  is reduced by 

integrating measurements from a large number of viewpoints. 

As an illustration of their power, these motion analysis techniques are used 

to achieve something which has so far eluded analysis based on photometr ic  

measurements alone: namely reliable discrimination between fixed surface 

features and points on extremal boundaries. On which side of the image 

contour the obscuring surface lies can also be determined. As well as using 

these methods to detect and label extremal boundaries it is shown how 

they can recover strips of surfaces in the vicinity of extremal  boundaries. 

The real-time implementat ion of these algorithms for use in tasks involv- 

ing the active exploration of the 3D geometry of visible surfaces. This 

demonstrates the utility and reliability of the proposed theories and meth- 

ods. It  is shown that  the deformation of apparent contours under viewer 

motion is a rich source of geometric information which is extremely useful 

for visual navigation, motion planning and object manipulation.  In these 

experiments a CCD camera mounted on the wrist joint of a 5-axis Adept 1 

SCARA arm has been used (figure 3.1). Examples exploiting the visually 

derived shape for navigation around and the manipulat ion of piccewise 

smooth curved objects are presented. 

3.2 Tracking image contours with B-spline snakes 

Image contours can be localised and tracked using a variant of the well-known 

"snake" of Kass, Witkin and Terzopoulos [118]. The snake is a computat ional  

construct, a dynamic curve able to track moving, deforming image features. 

Since many  snakes can be active at once, each tracking its feature contour as 
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Figure 3.1: Active exploration of the 3D geometry of visible surfaces. 

In the experiments described in this chapter a single CCD camera mounted on 
the wrist joint of a 5-axis Adept 1 SCARA arm and controlled by a Sun 3/260 
workstation is used to actively recover the gcomctry of visible surfaces. This in- 
formation is used in a variety of tasks including 3D objcct modelling, navigation 
and manipulation. 
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a background process, they constitute a versatile mechanism for direction and 
focus of attention. 

3 . 2 . 1  A c t i v e  c o n t o u r s  - s n a k e s  

Energy-minimising active contour models (snakes) were proposed by Kass et 
al. [118] as a top-down mechanism for locating features of interest in images and 
tracking their iinage motion, provided the feature does not move too fast. The 
behaviour of a snake is controlled by internal and external "forces" 1. The inter- 

nal forces enforce smoothness and the external forces guide the active contour 
towards the image feature. In their implementation for image curve localisation 
and tracking, these forces are derived by differentiating internal and external 

energies respectively. 

�9 I n t e r n a l  e n e r g y  
The internal energy (per unit length), Ei~t~r,~al, at a point on the snake, 
x(s ) :  

o~lx~ 12 +/~[x~ I ~ (3.1) 
Einternal : 2 

is composed of first and second-order terms, forcing the active contour to 
act like a string/membrane (avoiding gaps) or a thin rod/plate (avoiding 
high curvatures) respectively. These effects are controlled by the relative 
values of a and/3. The internal energy serves to maintain smoothness of 
the curve under changing external influences. 

�9 E x t e r n a l  e n e r g y  
The external force is computed from the image intensity data  I(x(s)), 
where the position of the snake is represented by x(s), by differentiating 
an external energy (per unit length) E~xt~r~al: 

: (3.2)  

which is computed after convolution of the image with the derivative of 
a Gaussian kernel, VG(~r), of size (scale) o. Gaussian smoothing extends 
the search range of the snake by smearing out image edge features. 

The goal is to find the snake (contour) that  minimises the total energy. This 
is achieved by the numerical solution of the elastic problem using techniques 
from variational calculus. The main step is the solution of a linear equation 
involving a banded matrix, typically in several hundred variables [118]. 

Kass et al. [118] describe experiments with snakes in an interactive human 
machine environment, with the user supplying an initial estimate of the feature 

1The forces are  der ived  from an  a r b i t r a r y  field. They  are  not  n a t u r a l  forccs. 
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and with the snake accurately localising and tracking it. Amini et al. [3] have 

discussed the problems with the approach. These include instability and a ten- 

dency for points to bunch up on strong portions of an edge. They present an 

implementat ion based on dynamic programming instead of variational methods 

which allows the inclusion of hard constraints (which may  not be violated) as 

well as the original smoothness constraints (which do not have to be satisfied 

exactly). Their approach uses points on a discrete grid and is numerically stable. 

Hard constraints also allow the distance between points on the snake to be fixed 

and hence can avoid bunching. However the main drawback is that  the method 

is slow since it depends on the number of the sample points and the cube of the 

search space. 

3.2.2 The B-spl ine snake 

A more economical realisation can be obtained by using far fewer state variables 

[184]. In [50] cubic B-splines [76] were proposed. These are deformable curves 

represented by four or more state variables (control points). The curves may  be 

open or closed as required. The flexibility of the curve increases as more control 

points are added; each additional control point allows either one more inflection 

in the curve or, when multiple knots are used [18], reduced continuity at one 

point. 

B-spline snakes are ideally suited for representing, detecting and tracking 

image curves. Their main advantages include: 

�9 Local control - -  modifying the position of a data-point  or control point 

causes only a small part  of the curve to change; 

�9 Continuity control - -  B-splines are defined with continuity properties at 

each point; 

�9 Compact  representation - -  the number of variables to be est imated is 

reduced to the number of control-points [154]. 

The B-spline is a curve in the image plane (figure 3.2) 

x(s) = ~ f i ( s ) q ,  (3.3) 
i 

where fi are the spline basis functions and Qi are the coefficients or control 

points. These are positioned so that  the curve locates the desired image contour. 

In the original implementat ion the "external force" on a point x(s j )  was chosen 

to be 

F(s j )  = V IVG(~) * I (x (s j ) ) l  (3.4) 
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control points 
q 

q. 

F(  s - - - -~  " - -  - -  x(s j )  

~ Q 4  

Figure 3.2: The B-spline snake. 

The B-spline snake can be used for image contour localisation and representation. 
A cubic B-spline can be represented by a minimum of 4 control points, Qi, and 
these arc positioned so as to locate a nearby contour. The snake moves under 
the influence of external forces, F(s/), which guide it towards the image feature. 
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so that,  at equilibrium (when image forces vanish), the B-spline, x(s),  stabilised 

close to a high-contrast contour. 

In this section two major  simplifications are introduced. The first concerns 

the control of spatial scale for tracking. The other simplification is that  there 

are no internal forces since the B-spline representation maintains smoothness via 

hard constraints implicit in the representation. 

E x t e r n a l  fo rces  a n d  c o n t r o l  o f  sca le  

The "force" is chosen to depend on the distance between the feature of interest 

(an edge) and the approximation by the B-spline. For each sample point the 

"force" on the snake is found by a coarse-to-fine strategy. This is done by 

inspecting intensity gradients on either side of the snake (either along the normal  

or along a direction determined by hard constraints, e.g. scan-lines). Control of 

scale is achieved by inspecting gradients nearer to or further from the snake itself. 

Each point chooses to move in the direction of the largest intensity gradient 

(hence towards a contrast edge). If the intensity gradients either side of the 

contour have opposite signs the scale is halved. This is repeated until the edge 

has been localised to the nearest pixel. 

The gradient is estimated by finite differences. Gaussian smoothing is not 

used 2. Image noise is not, as might be thought, problematic in the unblurred 

image since CCD cameras have relatively low signal-to-noise. Moreover, gradi- 

ents are sampled at several places along the spline, and those samples combined 

to compute motions for the spline control points (described below, (3.5) and 

(3.10)). The combination of those samples itself has an adequate averaging, 

noise-defeating effect. 

P o s i t i o n i n g  t h e  c o n t r o l  p o i n t s  

External forces are sampled at N points, 

x(s j ) ,  j = 1,. .N, 

along the curve - typically N > 20 has been adequate in our experiments.  

External forces are applied to the curve itself but for iterative adjus tment  of 

displacement it is necessary to compute the force t ransmit ted to each control 

point. This can be done in one of two ways. 

In the first method this is achieved via the principle of virtual work. At each 

2Small amounts of smoothing can be achieved economically by defocusing the image until 
the desired degree of blur is achieved. Whilst this worked satisfactorily, it was found that the 
tracker continued to operate just as well when the lens was sharply focused. 
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iteration the movement of the control points, Aqi is given by 

~ q i  = ~ E f i (s j )F(sj)  (3.5) 
J 

where ~, the compliance constant, is chosen so that, in practice, the maximum 
movement at any iteration always lies within scale of interest. Note that  the 
number of variables to be estimated is reduced to the number of control points. 

D e r i v a t i o n  3.1 If the control points are displaced by AQi , a point on the curve 
at x(sj) is displaced by Ax(sj)  and the work done, AE,  is approximately: 

N 
: - 

j=0 

Substituting for the derivative of the equation of the B-spline (3.3) 

A E  = - ~(~ f~(sj)AQ,).F(sj) 
j i 

= - ~ AQi.Pi  
i 

where~ 

(3.6) 

(3.7) 

Pi = E f i (s j)F(sj)  (3.8) 
J 

is the effective force orb the i th control point. The potential energy of the system 

is minimised by moving the control points parallel to Pi and so their motion is 

given by (3.5). 

An alternative method is to position the B-spline so that  it minimises the 
sum of the square of the distances between the discrete data points of the feature 
and the approximation by the B-splinc. Effectively, each snake point is attached 
to a feature by an elastic membrane so that its potential energy is proportional 
to the distance squared. This technique has been used to represent image curves 

[155]. 

D e r i v a t i o n  3.2 If the desired feature position is given by y(sj )  for a point on 
the B-spline, X ( S j ) ,  w e  wish to minimise the potential energy: 

( E \y(sj- (3.9) 
j i 

The new positions of the control points, Qi, are chosen by solving (the least 

squares solution): 

E Qi E f i f k  : E f k y ( s J ,  (3.10) 
j J 

where k has the same range of values as the control points, i. 
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Figure 3.3: Tracking image contours with B-spline snakes. 

A single span B-spline snake "hangs" in the image until it is swept by the motion 
of the camera into the vicinity of a high contrast edge (top left). The snake then 
tracks the deforming image contour as the camera is moved vertically upwards by 
the robot. Four samples of an image sequence are shown in which the robot moves 
with a speed of 20minis, Tracking speeds of 15Hz have been achieved without 
special purpose hardware by windowing and avoiding Gaussian smoothing. 
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Figure 3.4: Localising and tracking image contours. 

Ten multi-span B-spline snakes were initialised by hand in thc first frame near 
image contours of interest. After localising the contours they were able to track 
them automatically over the image sequence. 
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As the snake approaches the image contour it "locks on" and the scale is 

reduced to enable accurate contour localisation. Since accurate measurements 

are required to compute image accelerations, care has been taken over sub-pixel 

resolution. At earlier stages of tracking, when coarse blurring (large scale) is 

used, the capture range of the snake is large but localisation is poor - the snake 

may lag behind the contour. Once the snake has converged on to the contour, 

standard edge-detection techniques such as smoothing for sub-pixel resolution 

[48] are used to obtain accurate localisation. 

The snakes were initialised by hand in the first frame near images contours 

of interest after which they track the image contour automatically. Experiments 

in which the snakes wait in the image until they are swept by the motion of the 
camera over a feature for which they have an affinity have also been successful. 

Tracking is maintained provided the contour does not move too quickly. Exam- 
ples are shown in figures 3.3 and 3.4. The contour tracker can run at 15Hz on a 

SUN4/260. 

Current work at Oxford is developing a real-time tracking system with com- 

puter control of focus, zoom and camera motion. Curwen et al. [59] show how 

interframe constraints can be used to enhance the tracking capability of the 

B-spline snake by simulating inertia (so that the snake prefers to move in a con- 

tinuous fashion) and damping (to avoid oscillations). Their work demonstrates 

that  the inclusion of dynamic properties greatly enhances tracking performance. 

Using a parallel MIMD architecture (based on Transputers) they have achieved 

panning velocities of 180~ and accelerations as high as 240~ 2. 

Snakes as long as 10 spans can run in real-time on a 9-Transputer system. 

In the following section B-spline snakes are used to represent and measure 

velocities and accelerations at image contours. In later chapters (see Chapters 4 

and 5) the real-time B-spline snake will be used for tracking and in the analysis 

of visual motion. 

3.3 The epipolar parameterisation 

In the epipolar parameterisation of the spatio-temporal image and surface, a 

point on an apparent contour in the first image is "matched" to a point in suc- 

cessive images (in an infinitesimal sense) by searching along the corresponding 

epipolar lines. This allows us to extract a t-parameter curve from the spatio- 

temporal image. As shown in the previous chapter, depth and surface curvature 
are then computed from first and second-order temporal derivatives of this t- 

parameter image curve by equations (2.40) and (2.47). This is a non-trivial 

practical problem since the epipolar structure is continuously changing for arbi- 

t rary viewer motions. It requires a dense image sequence and knowledge of the 
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geometrical and optical characteristics of the camera (tile intrinsic parameters - 
e.g. image centre, pixel size and focal length [75, 82, 199]) as well as the camera 

motion. 

Estimates of the camera motion are either determined directly from the po- 
sition and orientation of the gripper and its relationship with the camera centre 
[198] or are obtained by visual calibration techniques [195]. Extraction of the 
t-parameter curve can bc done in a number of ways. We present two simple 
methods. The first is an extension of epipolar plane image analysis [34, 218] 
and allows the recovery of depth and surface curvature at a point. The second 
method analyses the case of extended displacements and arbitrary rotations of 
the viewer to recover constraints on surface curvature. 

3 . 3 . 1  E p i p o l a r  p l a n e  i m a g e  a n a l y s i s  

The epipolar parametcrisation of the image is greatly simplified for simple mo- 
tions. In particular if we consider linear viewer motion perpcndicular to the 

optical axis, epipolar lines are simply corresponding raster lines of subsequent 
images. Figure (3.5) shows the spatio-temporal image formed by taking a se- 
quence of images in rapid succession and stacking these sequentially in time. For 
linear motions of the viewer, the t-parameter image curves are trajectories lying 
in horizontal slices of the spatio-temporal image. Each horizontal slice corre- 
sponds to a different epipolar plane. The trajectories of the image positions of 
points on an apparent contour (A) and a nearby surface marking (B) are shown 
as a function of time in the spatio-temporal cross-section of figure 3.5 and plot- 
ted in figure 3.6. Note that this is a simple extension of epipolar plane image 
analysis in which the trajectories of fixed, rigid features appear as straight lines 
in the spatio-temporal cross-section image with a gradient that  is proportional 
to inverse depth [34]. For apparent contours however, the trajectories are no 
longer straight. It shown below that the gradient of the trajectory still encodes 

depth. The curvature determines the curvature of the surface in the epipolar 

plane. 

E s t i m a t i o n  of  d e p t h  a n d  surface  c u r v a t u r e  

For motion perpendicular to the optical axis and for an apparent contour which 
at time t is instantaneously aligned with the optical axis (image position in mm 
X(0) = 0) it is easy to show (from (2.35) and (2.47)) that the image velocity, 
Xt (0), and acceleration, Xtt (0), along the scan-line are given by 

fU 
X , ( 0 )  - A (3 .11)  
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Figure 3.5: 3D spatio-temporal image. 

(a) The first and last image from an image sequence taken from a camera 
mounted on a robot arm and moving horizontally from left to right without ro- 
tation. 
(b) The 3D spatio-temporal image formed from the image sequence piled up se- 
quentially with time. The top of the first image and the bottom of the last image 
are shown along with the spatio-temporal cross-section corresponding to the same 
epipolar plane. For simple viewer motions consisting of camera translations per- 
pendicular to the optical axis the spatio-temporal cross-section image is formed 
by storing the scan-lines (epipolar lines) for a given epipolar plane sequentially 
in order of time. 
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fU2R  
Xtt(O) - ~3 , (3.12) 

where U is the component of viewer translational velocity perpendicular to the 

optical axis and parallel to the scan line; f is the focal length of the CCD 

camera lens and R is the radius of curvature of the t-parameter curve lying in 

the epipolar plane. The radius of curvature is related to the curvature of the 

normal section by Meusnier's formula [67]. The normal curvature along the ray 

is given by 
1 

a t = ~ cosr (3.13) 

where cos r is the angle between the surface normal and the epipolar plane. In 
this case, it is simply equal to the angle between the image curve normal and 

the horizontal scan line. 

The estimates of depth and surface curvature follow directly from the first and 

second temporal derivatives of the t-parameter curve, X(t) .  Due to measurement 

noise and vibrations of the robot arm, the trajectory may not be smooth and so 

these derivatives are computed from the coefficients of a parabola fitted locally 
to the data  by least squares estimation. The uncertainty due to random image 

localisation and ego-motion errors can be derived from analysis of the residual 

errors. 

D e r i v a t i o n  3.3 Consider L measurements of image position Xi  at times t i. 

Assume these can be approximated by 

Xi = ao + boti + cot~ + ci, (3.14) 

where ci is a measurement error. Writing this for L points (where L is greater 
than 3) the coefficients of the parabola can be obtained by solving the following 

system of linear equations 

In~ 1 [1,tl,t~] bo + [ei] = [Xi] (3.15) 
CO 

or in matrix form 

+ ,! = b (3 .16)  

where a is the vector of parameters to be estimated (the coefficients of the 
parabola), ~ is the vector of errors and b is the vector of measurements (image 
positions). If [AT A] is non-singular, the least squares estimate of the parameter 

vector, 5 is: 
& = [ATA]-IATb.  (3.17) 
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The variance-covariancc of the parameter vector is given by 

Vat (5 )  = fATAl -10 -2, (3.18) 

where 0.2 is the variance of the measurement error. Since 0.2 is not known a 

priori it must bc estimated from the residual errors 

V 2 =[[ A ~ -  b []2. (3.19) 

An unbiased estimalor for it, &2, is given by [178] 

V 2 
~2 _ (r~ - 3-----5" (3.20) 

Equations (3.11, 3.12) and the coeflicients of the parabola  are used to esti- 

mate  the depth, A and radius of curvature, R. The variance--covariance mat r ix  

of the parameter  vector can be used to compute uncertainty bounds on these 

estimates. 

In practice the viewer will not execute simple translational motions perpen- 

dicular to the optical axis but will rotate to fixate on an object of interest. For 

linear translational viewer motions with known camera rotations the analysis of 

c.pipolar plane images is still appropriate if we rectify the detected image curves. 

Rectification (:an bc performed by a 3 x 3 rolation matr ix  relating measurements  

in the rotated co-ordinate frame to the standard parallel geometry frame. 

For arbi trary curvilinear motions the t -parameter  curves are no longer con- 

strained to a single cross-section of the spat io- temporal  image. Each tinw, instant 

requires a different epipolar structure and so extracting the t -parameter  curve 

from ~he spat io- lemporal  image poses a more difficult practical problem. 

E x p e r i m e n t a l  re su l t s  - c u r v a t u r e  f r o m  t h e  s p a t i o - t e m p o r a l  i m a g e  

Figure 3.6 shows the t -parameter  trajectories for both a feature on an apparent  

contour (A) and a nearby surface marking (B). The trajectories are both  ap- 

proximately linear with a gradient that  determines the distance to the feature. 

Depth can be estimated to an accuracy of 1 part  in 1000 (table 3.1). 

The effect due to surface curvature is very difficult to discern. This is easily 

seen however if we look at the deviation of image position away from the straight 

line trajectory of a feature at a fixed depth (figure 3.7). Notice that  the image 

position is noisy due to perturbations in the robot position. Typically the robot 

vibrations have amplitudes between 0 .1mm and 0.2mm. From (2.47) we see 

that  these vibrations are amplified by a factor depending on the square of the 

distance to the feature, and that  this results in a large uncertainty in the es t imate  

of surface curvature. Equations (3.11) and (3.12) are used to est imate the depth 
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Figure 3.6: Spatio-temporal cross-section image trajectories. 

For linear motion and epipolar parameterisation the t-parameter surface curves 
lie in the epipolar plane. The t-parameter spatio-temporal image trajectory is 
also planar. The gradient and curvaturc of this trajectory encode depth to the 
contour generator and curvature in the epipolar plane respectively. 



3.3. The epipolar parameterisation 63 
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Figure 3.7: Deviation from the straight line trajectory. 

The curvature of the spatio-temporal trajectories is used to estimate the curvature 
of the epipoIar section. The trajectories are not smooth due to vibrations of  
the robot manipulator (amplitude 0.2ram). Their effect on the estimation of 
curvature is reduced by a least squares fit to the data. The surface curvatures at 
A and t? are estimated as 51.4 4- 8.2rnrn and 11.8 4- 7.3ram respectively. B is 
not on an extremal boundary but is on a fixed curve. This is a degenerate case 
of the parameterisation and should ideally have zero "radius of curvature", i.e. 
the spatio-temporal trajectory should be a straight line. 
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measured measured actual 
depth curvature curvature 

extremal  boundary, A 424.3 + 0.5mm 51.4 4- 8.2mm 37 4- 2ram 
surface marking, B 393.9 4- 0.4ram 11.8 4- 7.3mm 0 
parallax measurement (A) ~ 424.3 -• 0 .5mm 39.6 + 2ram 37 + 2ram 

Table 3.1: Radius of curvature of the epipolar section estimated from the spatio- 
temporal  trajectory for a point on an extremal boundary (A) and on a surface 
marking (B). 

and curvature for a point on the extremal  boundary of the vase (A) by fitting 

a parabola  to the spatio-temporal  trajectory. The method is repeated for a 

point which is not on an extremal boundary but is on a nearby surface marking 

(B). This is a degenerate case of the parameterisation.  A surface marking can be 

considered as the limiting case of a point with infinite curvature and hence ideally 

will have zero "radius of curvature".  The estimates of depth and curvature 

are shown in table 3.1. The veridical values of curvature were measured using 

calipers. Note that  there is a systematic error, not explained by the random 

errors in the data.  This is possibly due to an error in the assumed ego-motion 

of the robot or focal length. 

Figure 3.8 plots the relative image position between A and B against robot 

position (time). The curvature of this parabola  also encodes the surface cur- 

vature at A. The parabola  is considerably smoother  since the effects of robot 

"wobble" are at tenuated when making relative measurements.  This is because 

the amplification of robot vibrations is redfaced by an order of magnitude.  The 

exact factor depends on the difference of depths between the two features, as pre- 

d ic ted  by (2.62). In this experiment this corresponds to an order of magnitude.  

This results in a greatly reduced uncertainty in the est imate of relative inverse 

curvature. Better still, the estimate of surface curvature based on relative mea- 

surements is also more accurate. As predicted by the theory, the nearby point 

B acts as a stable reference point. Global additive errors in the robot motion 

effect both the visual motion of both A and B and hence (:an be cancelled out 

when the differences of positions are used. 

3 . 3 . 2  D i s c r e t e  v i e w p o i n t  a n a l y s i s  

The previous method required a dense (continuous) image sequence. The infor- 

mat ion available from extended displacements (and arbitrary rotations) of the 

viewer is now analysed. We will show that  from three discrete views it is pos- 

sible to determine whether or not a contour is extremal.  For a surface marking 
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Figure 3.8: Relative image positions. 

The effect of robot vibrations is greatly reduced if  relative image positions are 
used instead. 

Figure 3.9: Estimating surface curvatures from three discrete views. 

Points are selected on image contours in the first view (to), indicated by crosses A 
and B for points on an extremal boundary and surface marking respectively. For 
epipolar parameterisation of the surface corresponding features lie on epipolar 
lines in the second and third view (tl and t2). Measurement of the three rays 
lying in an epipolar plane can be used to estimate surface curvatures (figure 
3.10). 
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osculating circle (radius R) 
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Figure 3.10: The epipolar plane. 

Each view defines a tangent to r(so,t). For linear camera motion and epipolar 
parameterisat ion the rays and r(so, t) lie in a plane. I f  r(so,t) can be approx- 
imated locally as a circle, it can be uniquely determined f rom measurements  in 
three views. 
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or crease (discontinuity in surface orientation) the three rays should intersect at 
point in space for a static scene. For an extremal boundary, however, the contact 

point slips along a curve, r(s0, t) and the three rays will not intersect (figure 3.9 

and 3.10). 

For linear motions we develop a simple numerical method for estimating 

depth and surface curvatures from a minimum of three discrete views, by de- 

termining the osculating circle in each epipolar plane. The error and sensitivity 

analysis is greatly simplified with this formulation. Of course this introduces a 

tradeoff between the scale at which curvature is measured (truncation error) and 

measurement error. We are no longer computing surface curvature at a point 

but bounds on surface curvature. However the computation allows the use of 

longer "stereo baselines" and is less sensitive to edge localisation. 

N u m e r i c a l  m e t h o d  for  d e p t h  a n d  c u r v a t u r e  e s t i m a t i o n  

Consider three views taken at times to, t l ,  and t2 from camera positions v(t0), 

v( t l )  and v(t2) respectively (figure 3.9). Let us select a point on an image 

contour in the first view, say p(s0, to). For linear motion and epipolar parame- 

terisation the corresponding ray directions and the contact point locus, r(s0, t), 

lie in a plane - the epipolar plane. Analogous to stereo matching corresponding 
features are found by searching along epipolar lines in the subsequent views. 
The three rays are tangents to r(s0, t). They do not, in general, define a unique 

curve (figure 3.10). They may, however, constrain its curvature. By assuming 

that  the curvature of the curve r(s0, t) is locally constant it can be approximated 
as part of a circle (in the limit the osculating circle) of radius R (the reciprocal 

of curvature) and with centre at P0 such that (figure 3.10): 

r(s0, t) = Po + RN(so, t) (3.21) 

where N is the Frenet-Serret curve normal in each view. N is perpendicular 

to the ray direction and, in the case of epipolar parameterisation, lies in the 

epipolar plane (the osculating plane). It is defined by two components in this 

plane. 

Since the rays p(s0, t) are tangent to the curve we can express (3.21) in terms 

of image measurables, N(s0, t), and unknown quantities P0 and R: 

( r ( s o , t ) -  v(t)).N(so,t) = 0 

( P 0 + R N ( s 0 , t ) - v ( t ) ) . N ( s 0 , t )  = 0. (3.22) 

These quantities can be uniquely determined from measurements in three 

distinct views. For convenience we use subscripts to label the measurements 
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made for each view (discrete time). 

p o . N o + R  = v l .No  

p o . N I + R  = v2.N1 

po.N2 + R = v3.N2. (3.23) 

Equations (3.23) are linear equations in three unknowns (two components of 

P0 in the epipolar plane and the radius of curvature, R) and can be solved by 

standard techniques. If more than three views are processed the over-determined 

system of linear equations of the form of (3.23) can be solved by least squares. 

For a general motion in R 3 the camera centres will not be collinear and the 

epipolar structure will change continuously. The three rays will not in general lie 

in a common epipolar plane (the osculating plane) since the space curve r(s0,  t) 

now has torsion. The first two viewpoints, however, define an epipolar plane 

which we assume is the osculating plane of r(s0, t). Projecting the third ray on 

to this plane allows us to recover an approximation for the osculating circle and 

hence R, which is correct in the limit as the spacing between viewpoints becomes 

infinitesimal. This approximation is used by Vaillant and Faugeras [203, 204] 

in est imating surface shape from trinocular stereo with cameras whose optical 

centres are not collinear. 

E x p e r i m e n t a l  r e s u l t s  - c u r v a t u r e  f r o m  t h r e e  d i s c r e t e  v i ews  

The three views shown in figure 3.9 are from a sequence of a scene taken from 

a camera mounted on a moving robot-arm whose position and orientation have 

been accurately calibrated from visual da ta  for each viewpoint [195]. The image 

contours are tracked automatically (figure 3.4) and equations (3.23) are used to 

est imate the radius of curvature of the epipolar section, R, for a point A on an 

extremal  boundary of the vase. The method is repeated for a point which is not 

on an extremal boundary but is on a nearby surface marking, B. As before this 

is a degenerate case of the parameterisation. 

The radius of curvature at A was estimated as 42 :k 15mm. It  was measured 

using calipers as 45 q- 2ram. For the marking, B, the radius of curvature was 

est imated as 3 :k 15mm. The estimated curvatures agree with the actual curva- 

tures. However, the results are very sensitive to perturbations in the assumed 

values of the motion and to errors in image contour localisation (figure 3.11). 

3.4 Error and sens i t iv i ty  analysis  

The est imate of curvature is affected by errors in image localisation and uncer- 

tainties in ego-motion calibration in a non-linear way. The effect of small errors 
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in the assumed ego-motion is computed below. 

The radius of curvature R can be expressed as a function g of m variables 

W i  : 

1~ -~- g ( W l ,  W 2 ,  . . . ?-Urn) (3.24) 

where typically wi will include image positions (q(so, to), q(so, t l) ,  q(so, t2)); 

camera orientations (R(to), R( t l ) ,  R(t2)); camera positions (v(to), v( t l ) ,  v(t2)); 
and the intrinsic camera parameters. The effect on the estimate of the radius of 

curvature, 5R, of small systematic errors or biases, 5wi, can be easily computed, 

by first-order perturbation analysis. 

(3.25) 
i 

The propagation of uncertainties in the measurements to uncertainties of the es- 

timates can be similarly derived. Let the variance (r 2 represent the uncertainty w i  

of the measurement wi. We can propagate the effect of these uncertainties to 

compute the uncertainty in the estimate of R [69]. The simplest case is to con- 

sider the error sources to be statistically independent and uncorrelated. The 

uncertainty in R is then 

( Og ~2 (3.26) 

These expressions will now be used to analyse the sensitivity to viewer ego- 
motion of absolute and parallax-based measurements of surface curvature. They 

will be used in the next section in the hypothesis test to determine whether the 

image contour is the projection of a fixed feature or is extremal. That  is, to test 

whether the radius of curvature is zero or not. 

E x p e r i m e n t a l  r e s u l t s  - s e n s i t i v i t y  a n a l y s i s  

The previous section showed that the visual motion of apparent contours can be 

used to estimate surface curvatures of a useful accuracy if the viewer ego-motion 

is known. However, the estimate of curvature is very sensitive to perturbations 

in the motion parameters. The effect of small errors in the assumed ego-motion 

- position and orientation of the camera - is given by (3.25) and are plotted in 

figure 3.12a and 3.12b (curves labelled I). Accuracies of 1 part in 1000 in the 

measurement of ego-motion are essential for surface curvature estimation. 
Parallax based methods measuring surface curvature are in principle based 

on measuring the relative image motion of nearby points on different contours 

(2.59). In practice this is equivalent (equation(2.57)) to computing the difference 

of radii of curvature at the two points, say A and B (figure 3.9). The radius of 



70 Chap. 3. Deformation of Apparent  Contours - Implementa t ion  

Estimated radius of curvature (mm) 

90 

70 -~ 

50-" 

4 0  ~ 

:ils -1.o -o.s 0:s 1.o 1.8 

Error in edge Iocalisation (pixels) -10 

Figure 3.11: Sensitivity of curvature estimate to errors in image contour locali- 
sation. 

curvature measured at a surface marking is determined by errors in image mea- 

surement and ego-motion. (For a precisely known viewer motion and for exact 

contour localisation the radius of curvature would be zero at a fixed feature.) 

It  can be used as a reference point to subtract  the global additive errors due to 

imprecise motion when estimating the curvature at the point on the extremal  

boundary. Figures 3.12a and 3.12b (curves labelled II) show that  the sensitivity 

of the relative inverse curvature, AR, to error in position and rotation computed 

between points A and B (two nearby points at similar depths) is reduced by an 

order of magnitude.  This is a striking decrease in sensitivity even though the 

features do not coincide exactly as the theory required. 

3.5 D e t e c t i n g  ex tremal  boundar ies  and recov- 
ering surface shape 

3 . 5 . 1  D i s c r i m i n a t i n g  b e t w e e n  f i x e d  f e a t u r e s  a n d  e x t r e m a l  

b o u n d a r i e s  

The magnitude of R can be used to determine whether a point on an image 

contour lies on an apparent contour or on the projection of a fixed surface feature 

such as a crease, shadow or surface marking. 

With noisy image measurements or poorly calibrated motion we must  test 
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Figure 3.12: Sensitivity of curvature estimated from absolute meeusurelnents and 
parallax to errors in motion. 

(a) The radius of curvature (R = 1/t~ t) for a point on the extremal boundary (A) 
is plotted as a function of crrors in the camera position (a) and orientation (b). 
Curvature estimation is highly sensitive to errors in egomotion. Curve I shows 
that a perturbation of 1ram in position (in a translation of lOOmm) produces an 
error of 155Uo in the estimated radius of curvature. A perturbation of lmrad 
in rotation about an axis defined by the cpipolar plane (in a total rotation of 
200mrad) produces an error of 100~. 

(b) However, if  parallax-based measurements are used the estimation of curvature 
is much more robust to errors in egomotion. Curve II shows the difference in 
radii of curvature between a point on the extremal boundary (A) and the nearby 
surface marking (B) plotted against error in the position (a) and orientation (b). 
The sensitivity is reduced by an order of magnitude, to 19Uo per mm error and 
12~ per mrad error respectively. 
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Figure 3.13: Detecting and labelling extremM boundaries. 

Thc magnitude of the radius of curvature (1/~ t, computed from 3 views) can be 
used to classify image curves as either the projection of extremal boundaries or 
fixed features (surface markings, occluding edges or orientation discontinuities). 
The sign of ~t determines on which side of the image contour lies the surface. 
NOTE: a x label indicates a fixed feature. A ~ label indicates an apparent 
contour. The surface lies to the right as one moves in the direction of the twin 
arrows [141]. The sign of Gaussian curvature can then be inferred directly from 
thc sign of the curvature of the apparent contour. 
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Figure 3.14: Recovery of surface strip in vicinity of extremM boundary. 
From a minimum of three views of a curved surface it is possible to recover the 
3D geometry of the surface in the vicinity of ext~vmal boundary. The surface 
is recovered as a family of s-parameter curves - the contour generators - and 
t-parameter curves - portions of the osculating circles measured in each epipolar 
plane. The strip is shown projected into the image of the scene from a different 
viewpoint 
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Figure 3.15: Reconstructed surface. 

Reconstructed surface obtained by extrapolation of computed surface curvatures 
in the vicinity of the extrcmal boundary (A) of the vase, shown here from a new 
viewpoint. 
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by error analysis the hypothesis that  R is not equal to zero for an extremal  

boundary. We have seen how to compute the effects of small errors in image 

measurement,  and ego-motion. These are conveniently represented by the co- 

variance of the est imated curvature. The estimate of the radius of curvature 

and its uncertainty is then used to test the hypothesis of an entremal  boundary.  

In particular if we assume that  the error in the estimate of the radius has a 

Normal  distribution (as an approximation to the Student- t  distribution [178]), 

the image contour is assumed to be the projection of a fixed feature (within a 

confidence interval of 95%) if: 

- 1.96crn < R < 1.96~rn. (3.27) 

Using absolute measurements, however, the discrimination between fixed and 

extremal  features is limited by the uncertainties in robot motion. For the image 

sequence of figure 3.9 it is only possible to discriminate between fixed features 

and points on extremal boundaries with inverse curvatures greater than 15ram. 

High curvature points (R < 1.96~R) cannot be distinguished from fixed features 

and will be incorrectly labelled. 
By using relative measurements the discrimination is greatly improved and 

is limited by the finite separation between the points as predicted by (2.62). 

For the example of figure 3.9 this limit corresponds to a relative curvature of 

approximately 3ram. This, however, requires that  we have available a fixed 

nearby reference point. 

Suppose now that  no known surface feature has been identified in advance. 

Can the robust relative measurements be made to boots t rap themselves without 

an independent surface reference? It is possible by relative (two-point) curvature 

measurements  obtained for a small set of nearby points to determine pairs which 

are fixed features. They will have zero relative radii of curvature. Once a fixed 

feature is detected it can act as stable reference for estimating the curvature at 

extremal  boundaries. 

In detecting an apparent  contour we have also determined on which side the 

surface lies and so can compute the sign of Gaussian curvature from the curvature 

of the image contour. Figure 4.13 shows a selected number  of contours which 

have been automatical ly tracked and are correctly labelled by testing for the 

sign and magnitude of R. 

3 . 5 . 2  R e c o n s t r u c t i o n  o f  s u r f a c e s  

In the vicinity of the extremal boundary we can recover the two families of para- 

metric curves. These constitute a conjugate grid of surface curves: s -parameter  

curves (three extremal  contour generators from the different viewpoints) and 

t -parameter  curves (the intersection of a pencil of epipolar planes defined by the 
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first two viewpoints and the surface). The recovered strip of surface is shown in 

figure 3.14 projected into the image from a fourth viewpoint. The reconstructed 

surface obtained by extrapolation of the computed surface curvatures at the 

extremal  boundary A of the vase is shown from a new viewpoint in figure 3.15. 

3.6 Real-time experiments exploiting visually 
derived shape information 

Preliminary results for three tasks involving a CCD camera mounted on the 

wrist joint; of a robot-arm are now described. In the previous section it was 

shown how a camera mounted on a robot manipulator  can be moved around an 

unknown object, detect the extremal contours and incrementally construct a 3D 

geometric model of the object from their deformation (figure 3.15). 

In a second task it is shown how surface curvature is used to aid pa th  planning 

around curved objects. The camera makes deliberate movements  and tracks 

image contours. Estimates of distance and curvature are used to map  out a safe, 

obstacle-free path  around the object. Successful inference and reasoning about  

3D shape are demonstrated by executing the motion. 

In a third task the power of robust parallax-based estimates of surface cur- 

vature is demonstrated in an experiment in which the relative motion of two 

nearby contours is used to refine the estimates of surface curvatures of an un- 

known object. This information is used to plan an appropriate grasping strategy 

and then grasp and manipulate the object. 

3 . 6 . 1  V i s u a l  n a v i g a t i o n  a r o u n d  c u r v e d  objects 

In this section results are presented showing how a moving robot manipula tor  

can exploit the visually derived 3I) shape information to plan a smooth,  safe pa th  

around an obstacle placed in its path. The scenario of this work is that  the s tar t  

and goal position for a mobile camera are fixed and the robot is instructed to 

reach the goal from the start  position, skirting around any curved obstacles that  

would be encountered on a straight line path from the current position to the 

goal. The camera first localises an apparent  contour and makes a small sideways 

motion to generate visual motion. This allows it to compute the distance to 

the contour generator and more impor tant ly  the curvature of the visible surface 

in the epipolar plane. A safe pa th  around the curved object is then planned 

by extrapolat ing the computed curvatures with a correction to allow for the 

uncertainty so as to ensure safe clearances. The robot then steers the camera  

around the obstacle with a clearance of a few millimetres. Examples running 

with single image contours arc shown in figures 3.16 and 3.17. 
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Figure 3.16: Visually guided navigation around curved obstacles. 

The visual motion of an apparent contour under known viewer motion is used to 
estimate the position, orientation, and surface curvature of the visible surface. 
In addition to this quantitative information the visual motion of the apparent 
contour can also determine which side of the contour is free space. This qual- 
itative and quantitative information is used to map out a safe path around the 
unmodelled obstacle. The sequence of images shows the robot manipulator's safe 
execution of the planned path, seen from two viewpoints. 
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Figure 3.17: Visually guided navigation over undulating surface. 

After  detecting a horizontal image contour, the image motion due to a small local 
vertical viewer motion is used to estimate the distance to the contour generator. 
A larger cxtended motion is then used to estimate the surface curvature at the 
contour generator. This is uscd to map out and execute a safe path over the 
obstacle, shown in this sequence of images. 



3.6. Real-time experiments exploiting visually derived shape information 79 

The path planning algorithms for navigating around curved surfaces are fur- 

ther developed in Blake et al. [24]. They show that minimal paths are smooth 

splines composed of geodesics [67] and straight lines in free space. Computat ion 

of the geodesics, in general, requires the complete 3D surface. In the case where 

geometric information is imperfect, in that surface shape is not known a priori, 

they show that it is possible to compute a helical approximation to the sought 

geodesic, based only on the visible part of the surface near the extremal bound- 

ary. The information required for the helical approximation can be computed 

directly from the deformation of the apparent contour. 

3.6.2 Manipulation of curved objects 

Surface curvature recovered directly from the deformation of the apparent con- 

tour (instead of dense depth maps) yields useful information for path planning. 

This information is also important  for grasping curved objects. 
Reliable estimates of surface curvature can be used to determine grasping 

points. Figure 3.18 shows an example of a scene with a vase placed approximately 

l m  away from a robot manipulator and suction gripper. Estimates of surface 

curvature at the extremal boundary are used to position a suction gripper for 

manipulation. The robot initialises a snake which localises a nearby high contrast 

edge. In the example shown the snake initially finds the edge of the cardboard 

box (B). The robot then makes a small local motion of a few centimetres to 

estimate the depth of the feature. It uses this information so that it can then 

track the contrast edge over a larger baseline while fixating (keeping the edge 
in the centre of the image). Before executing the larger motion of 15cm the 

first snake (parent) spawns a child snake which finds a second nearby edge (A). 

The two edges are then tracked together, allowing the accurate estimation of 

surface curvature by reducing the sensitivity to robot "wobble" and systematic 

errors in the robot motion (see figures 3.7 and 3.8). The estimates of curvature 

are accurate to a few millimetres. This is in contrast to estimates of curvature 

based on the absolute motion of an apparent contour which deliver curvature 

estimates which are only correct to the nearest centimetre. The extrapolation of 

these surface curvatures allows the the robot to plan a grasping position which 

is then successfully executed (figure 3.18). 
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Figure 3.18: Visually guided manipulation of piccewise curved objects. 

The manipulation of curved objects requires precise 3i) shape (curvature) in- 
formation. The accuracy of measu~vments of surface curvature based on the 
deformation of a single apparent contour is limited by uncertainty in the viewer 
motion. The effect of errors in viewer motion is greatly reduced and the accuracy 
of surface curvature estimates consequently greatly improved by using the rela- 
tive motion of nearby image contours. In the example shown the relative motion 
between the image of the projection of the crease of lhe box and the apparent 
contour of thc vase is used to estimate surface curvature to the nearest 5mm 
(of a measurement of ~Omm) and the contour generator position to the nearest 
1ram (at a distance of lm). This information is used to guide the manwula- 
tot and suction gripper to a convenient location on the surface of the vase for 
manipulation. 



Chapter 4 

Qualitative Shape from Images 
Surface Curves 

of 

4.1  I n t r o d u c t i o n  

Imagine we have several views of a curve lying on a surface. If  the motion 

between the views and the camera calibration are known then in principle it is 

possible to reconstruct this space curve from its projections. It  is also possible in 

principle to determine the curve's tangent and curvature. In practice this might  

require the precise calibration of the epipolar geometry and sub-pixel accuracy 

for edge localisation and/or  integrating information over many views in order to 

reduce discrelisalion errors. 

However, even if perfect reconstruction could be achieved, the end result 

would only be a space curve. This delimits the surface, but places only a weak 

constraint on the surface orientation and shape along the curve (via the visibility 

and tangent constraints - see later). Ideally, rather than simply a space curve 

we would like a surface strip [122] along which we know the surface orientation. 

Better still wouht be knowledge of how the surface normal varied not only along 

the curve but also in arbitrary directions away from the curve. This determines 

the principal curvatures and direction of the principal axes along the strip. This  

information is sufficient to completely specify the surface shape locally. Knowl- 

edge of this type helps to infer surface behaviour away from the curves, and thus 

enables grouping of the curves into coherent surfaces. 

For certain surface curves and tracked points the information content is not 

so bleak. It was shown in Chapter 2 that  the surface normal is known along the 

apparent  contour (the image of the points where the viewing direction lies in the 

tangent plane) [17]. Further, the curvature of the apparent  contour in a single 

view determines the sign of the Gaussian curvature of the surface projecting 

to the contour [120, 36]. From the deformation of the apparent  contour under 

viewer motion a surface patch (first and second fundamental  forms) can be re- 

covered [85, 27]. The deformation of image curves due to viewer motion, also 

allows us to discriminate the image of surface curves from apparent  contours. 

A self-shadow (where the illuminant direction lies in the tangent plane) can be 
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Figure 4.1: Qualitative shape from the deformation of image curves. 

A single CCD camera mounted on the wrist joint of a 5-axis Adept 1 S C A R A  
arm (shown on right) is used to recover qualitative aspects of the geometry of 
visible surfaces from a sequence of views of surface curves. 
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exploited in a similar manner if the illuminant position is known [122]. Track- 

ing specular points [220] gives a surface strip along which the surface normal is 

known. 

In this chapter we analyse the images of surface curves (contour generators 

which arise because of internal surface markings or illumination effects) and 

investigate the surface geometric information available from the temporal  evo- 

lution of the image under viewer motion (figure 4.1). 

Surface curves have three advantages over isolated surface markings: 

1. Sampl ing-  Isolated texture only "samples" the surface at isolated points 

- the surface could have any shape in between the points. Conversely, 

a surface curve conveys information, at a particular scale, throughout its 

path. 

2. Curves, unlike points, have well-defined tangents which constrain surface 

orientation. 

3. Technological - There are now available reliable, accurate edge detectors 

which localise surface markings to sub-pixel accuracy [48]. The technology 

for isolated point detection is not at such an advanced stage. Furthermore, 

snakes [118] are ideally suited to tracking curves through a sequence of 

images, and thus measuring the curve deformation (Chapter 3). 

This chapter is divided into three parts. First, in section 4.2, the geometry 

of space curves is reviewed and related to the perspective image. In particular, 

a simple expression for the curvature of the image contour is derived. Second, in 

section 4.3, the information available from the deformation of the image curve 

under viewer motion is investigated, making explicit the constraints that  this 

imposes on the geometry of the space curve. Third, in section 4.4, the aspects 

of the differential geometry of the surface that can be gleaned by knowing that  

the curve lies on the surface are discussed. 

The main contribution concerns the recovery of aspects of qualitative shape. 

Tha t  is, information that can be recovered efficiently and robustly, without 

requiring exact knowledge of viewer motion or accurate image measurements. 

The description is, however, incomplete. It is shown that  visibility of points on 

the curve places a weak constraint on the surface normal. This constraint is 

tightened by including the restriction imposed by the surface curve's tangent. 

Furthermore, certain 'events' (inflections, transverse curve crossings) are richer 

still in geometric information. In particular it is shown that  tracking image 

curve inflections determines the sign of the normal curvature in the direction 

of the surface curve's tangent vector. This is a generalisation to surface curves 

of Weinshall's [212] result for surface texture. Examples are included for real 

image sequences. 
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In addition to the information that  surface curves provide about surface 

shape, the deformation also provides constraints on the viewer (or object) mo- 

tion. This approach was introduced by Faugeras [71] and is developed in sec- 

tion 4.5. 

4 .2  T h e  p e r s p e c t i v e  p r o j e c t i o n  o f  s p a c e  c u r v e s  

4 . 2 . 1  R e v i e w  o f  s p a c e  c u r v e  g e o m e t r y  

Consider a point P on a regular differentiable space curve r(s) in R a (figure 4.2a). 
The local geometry of the curve is uniquely determined in the neighbourhood 

of P by the basis of unit vectors {T, N, B}, the curvature, ~, and torsion, r,  of 

the space curve [67]. For an arbitrary parameterisation of the curve, r(s),  these 

quantit ies are defined in terms of the derivatives (up to third order) of the curve 

with respect to the parameter s. The first-order derivative ("velocity") is used 

to define the tangent to the space curve, T,  a unit vector given by 

T =  r ,  (4.1) 
Ir~l 

The second-order derivative - in particular the component perpendicular to the 

tangent ("centripetal acceleration") - i s  used to define the curvature, g (the 

magnitude) and the curve normal, N (the direction): 

~ N -  ( T A r s s )  A T  
Ir~l 2 (4.2) 

The plane spanned by T and N is called the osculating plane. This is the plane 

which r(s) is closest to lying in (and does lie in if the curve has no torsion). 

These two vectors define a natural frame for describing the geometry of the 

space curve. A third vector, the binormal B, is chosen to form a right-handed 

set: 
B = T A N.  (4.3) 

This leaves only the torsion of the curve, defined in terms of deviation of the 

curve out of the osculating plane: 

rsss.B 
r -  alr~l a. (4.4) 

The relationship between these quantities and their derivatives for movements 

along the curve can be conveniently packaged by the Frenet-Serret equations 
[67] which for an arbitrary parameterisation are given by: 

T8 = Ir, l~N (4.5) 

N~ = Ir, l ( - ~ T  + r B )  (4.6) 

Be = - I r s l r N .  (4.7) 
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a) Space curve and Frenet trihedron at P 

~,B 

e) Projection onto the Osculating plane 
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b) Projection onto B-T plane 
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d) Projection onto the B-N plane 
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Figure 4.2: Space curve geometry and local forms of its projection. 

The local geometry of a space curve can be completely specified by the Frenet 
trihedron of vectors {T, N, B}, the curvature, n, and torsion, 7, of the curve. 
Projection of the space curve onto planes perpendicular to these vectors ( the 
local canonical forms [67]) provides insight into how the apparent shape of a 
space curve changes with different viewpoints. 
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The influence of curvature and torsion on the shape of a curve are clearly demon- 

strated in the Taylor series expansion by arc length about a point uo on the 

curve. 
u 2 ?s 

r(u) = r(u0) + urn(u0) + -~-r~(u0)  + - ~ - r ~ ( u 0 )  . . .  (4.8) 

where u is an arc length parameter of the curve. An approximation for the curve 

with the lowest order in u along each basis vector is given by [122]: 

U 2 U 3 
r(u)  = r(u0) + (u + ...)T + (~- . . . )nN + (-6- + . . . )nrB (4.9) 

The zero-order tcrm is simply the fiducial point itself; the first-order term is a 

straight line along the tangent direction; the second-order term is a parabolic arc 

in the osculating plane; and the third-order term describes the deviation from 

the osculating plane. Projection on to planes perpendicular to T,  N, B give the 

local forms shown in figure 4.2. It is easy to see from (4~9) that  the orthographic 

projection on to the T - N plane (osculating plane) is just  a parabolic arc; on 

the T - B plane you see an inflection; and the projection on the N - B plane is 

a cusped curve. If ~ or v are zero then higher order terms are important  and the 

local forms must be modified. These local forms provide some insight into how 

the apparent shape of a space curve changes with different viewpoint. The exact 

relationship between the space curve geometry and its image under perspective 

projection will now be derived. 

4 . 2 . 2  S p h e r i c a l  c a m e r a  n o t a t i o n  

As in Chapter 2, consider perspective projection on to a sphere of unit radius. 

The advantage of this approach is that formulae under perspective are often as 

simple as (or identical to) those under orthographic projection [149]. 

The image of a world point, P,  with.position vector, r(s),  is a unit vector 
p(s , t )  such that  1 

r(s) = v(t) + ,k(s,t)p(s,t) (4.10) 

where s is a parameter along the image curve; t is chosen to index the view 

(corresponding to time or viewer position) A(s,t) is the distance along the ray 

to P; and v(t)  is the viewer position (centre of spherical pin-hole camera) at 
t ime t (figure 4.3). A moving observer at position v(t) sees a family of views of 

the curve indexed by time, q(s, t) (figure 4.4). 

]The space curve r(s) is fixed on the surface and is view independent. This is the only 
difference between (4.10) and (2.10). 
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spherical perspective image 

v(t o) 
C ~  

q (s,to) 
image contour at time t o 

surface curve r (s) 

Figure 4.3: Viewing and surface geometry. 

The image defines the direction of a ray, (unit vector p )  to a point, P, on a 
surface curve, r(s). The distance from the viewer (centre of projection sphere) 
to P is ~. 
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4 . 2 . 3  R e l a t i n g  i m a g e  a n d  s p a c e  c u r v e  g e o m e t r y  

Equation (4.10) gives the relationship between a point on the curve r(s),  and its 
spherical perspective projection, p(s,  t), for a view indexed by time t. It can be 

used to relate the space curve geometry (T, N, B, g, v) to the image and viewing 

geometry. The relationship between the orientation of the curve and its image 

tangent and the curvature of the space curve and its projection are now derived. 

Image  curve  tangent  and  normal  

At the projection of P,  the tangent to the spherical image curve, t p, is related 

to the space curve tangent T and the viewing geometry by: 

T -  (p .T )p  (4.11) 
tv = (1 - (p.T)2)l/2" 

D e r i v a t i o n  4.1 Differentiating (4.10) with respect to s, 

r~ = A~p + Ap, (4.12) 

and rearranging we derive the following relationships: 

p A (rs A p) 
Ps - -  A (4.13) 

(4.14) 

Note that the mapping from space curve to the image contour is singular (de- 

generate) when the ray and curve tangent are aligned. The tangent to the space 

curve projects to a point in the image and a cusp is generated in the image 

contour. 

By expressing (4.13) in terms of unit tangent vectors, t p and T:  

ps 
tp - 

IPs[ 
p A (T A p) 

(1 - (p.T)2)U 2" 

The direction of the ray, p, and the image curve tangent t p determine the ori- 
entation of the image curve normal riP: 

n p = p A t p. (4.15) 

Note, this is not the same as the projection of the surface normal, n. However, 

it is shown below that the image curve normal n v constrains the surface normal. 
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C u r v a t u r e  o f  p r o j e c t i o n  

A simple relationship between the shape of the image and space curves and the 
viewing geometry is now investigated. In particular, the relationship between 
the curvature of the image curve, x p (defined as the geodesic curvature 2 of the 
spherical curve, p(s, t)) is derived: 

t~p P ss'np 
IPs] 2 (4.16) 

and the space curve curvature, x: 

xp = Ax[1 [p ,T ,N]  (4.17) 
- (p.T)213/2' 

where [p, T, N] represents the triple scalar product. The numerator depends on 
the angle between the ray and the osculating plane. The denominator depends 
on the angle between the ray and the curve tangent. 

D e r i v a t i o n  4.2 Differentiating (4.12) with respect to s and collecting the com- 

ponents parallel to the image curve normal gives 

P s s . n  p - -  r s s . n P  A (4.18) 

Substituting this and (4.14) into the expression for the curvature of the image 

curve (4.16) 

r s s . n  v 
Aip~12 (4.19) 

N.n v 
Ax (1 - (p.T):)"  (4.20) 

t~P - -  

Substituting (4.15) and (4.11)for  nP: 

tr p = Ate 

= Ate 

N.(p A T) (4.21) 
( 1  - (p.T)2) 3/2 

B.p  (4.22) 
( 1  - (p.T)2) 3/2" 

A similar result is described in [122]. Under orthographic projection the ex- 
pression is the same apart from the scaling factor of A. As expected, the image 
curvature scales linearly with distance and is proportional to the space curve 
curvature ~. More importantly, the sign of the curvature of the projection de- 
pends on which side of the osculating plane the ray, p lies, i.e. the sign of the 

2 T h e  geodesic c u r v a t u r e  o f  a s p a c e  c u r v e  h a s  a w e l l - d e f i n e d  s i g n .  I t  is,  o f  c o u r s e  m e a n i n g l e s s  

t o  r e f e r  t o  t h e  s i g n  o f  c u r v a t u r e  o f  a s p a c e  c u r v e .  
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scalar product B.p.  That  is easily seen to be true by viewing a curve drawn 

on a sheet of paper from both sides. The case in which the vantage point is in 

the osculating plane corresponds to a zero of curvature in the projection. From 

(4.17) (see also [205]) the projected curvature will be zero if and only if: 

I. ~ = 0  
The curvature of the space curve is zero. This does not occur for generic 

curves [41]. Although the projected curvature is zero, this may be a zero 

touching rather than a zero crossing of curvature. 

2. [p, T,  N] = 0 with p . T  # 0 
The view direction lies in the osculating plane, but not along the tangent 

to the curve (if the curve is projected along the tangent the image is, in 

general, a cusp). Provided the torsion is not zero, r(s) crosses its osculating 

plane, seen in the image as a zero crossing. 

Inflections will occur generically in any view of a curve, but cusps only become 
generic in a one-parameter family of views [41]. 3 Inflections in image curves 

are therefore more likely to be consequences of the viewing geometry (condition 

2 above) than zeros of the space curve curvature (condition 1). Contrary to 

popular opinion [205] the power of inflections of image curves as invariants of 

perspective projection of space curves is therefore limited. 

4.3 D e f o r m a t i o n  due  to  v i e w e r  m o v e m e n t s  

As the viewer moves the image of r(s) will deform. The deformation is charac- 

terised by a change in image position (image velocities), a change in image curve 

orientation and a change in the curvature of the projection. Below we derive 

expressions relating the deformation of the image curve to the space curve ge- 

ometry and then show how to recover the latter from simple measurements on 

the spatio-temporal image. 

Note that for a moving observer the viewer (camera) co-ordinate is continu- 

ously changing with respect to the fixed co-0rdinate system used to describe R 3 

(see section 2.2.4). The relationship between temporal derivatives of measure- 

ments made in the camera co-ordinate system and those made in the reference 

3An informal way to see this is to consider or thographic  project ion with the view direction 
defining a point  p on the Gaussian sphere.  The tangent  at  each point  on the space curve also 
defines a point  on the Gauss ian  sphere, and so T G ( s )  traces a curve. For a cusp, p mus t  lie on 
T G ( s )  and this will not  occur in general. However, a one pa ramete r  family of views p( t )  also 
defines a curve on the Gaussian sphere. Provided these cross ( transversely) the intersection will 
be stable to pe r tu rba t ions  in r ( s )  (and hence T o ( s ) )  and p( t ) .  A similar a rgument  establishes 
the inflection case. 
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spherical perspective image at t 

~wherical perspective image at t+ ~t 

v (t-I-~~ p 

Figure 4.4: Epipolar geometry. 

A moving observer at position v(t) sees a one-parameter family of image curves, 
p(s,t)  - the spherical perspective projections of a space curve, r(s), indexed 
by time. Knowledge of the viewer's motion (camera centre and orientation) is 
sufficient to determine the corresponding image point (and hence the direction 
of the ray) in successive images. These are found by searching along epipolar 
great-circles. The space curve can then be recovered by triangulation of the viewer 
positions and the ray directions from a minimum of two views. 
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frame is obtained by differentiating (2.12) and (2.13). In particular the tempo- 
ral derivative of the ray, the image curve tangent and the image curve normal, 
{p, t v, riP}, are related to temporal derivatives of the image curve measured in 
the viewer co-ordinate system, {q,tP, ~v}, by 

Pt = qt+f~( t )  Aq (4.23) 
(4.24) 
(4.25) 

For a static space curve (not an extremal boundary of a curved surface) a 
point P on the curve, r(s), does not change with time: 

rt = 0. (4.26) 

This can be used to derive the relationship between the images of the point P in 
the sequence of views. Differentiating (4.10) with respect to t and substituting 
the condition (4.26) gives an infinitesimal analogue of the epipolar constraint in 
which the ray is constrained to lie in the epipolar plane defined by the ray in 
the first view p and the viewer translation U (figure 4.4): 

(U A p) A p (4.27) 
P t - - -  A 

In terms of measurements on the image sphere: 

(UAq)  Aq 
12 A q, (4.28) q t - -  A 

where qt is the image velocity of a point on the space curve at a distance A. Equa- 
tion (4.28) is the well known equation of structure from motion [149]. Points on 
successive image curves are "matched" by searching along epipolar great circles 
on the image sphere (or epipolar lines for planar image geometry) defined by the 
viewer motion, U, ~t and the image position q. Note also that the image ve- 

locity consists of two components. One component is determined purely by the 
viewer's rotational velocity about camera centre and is independent of the struc- 
ture of the scene ()~). The other component is determined by the translational 

velocity of the viewer. 

4 .3 .1  D e p t h  f r o m  i m a g e  v e l o c i t i e s  

As with apparent contours, depth A (distance along the ray p) can be computed 
from the deformation (Pt) of the image contour under known viewer motion. 

From (4.27): 
U.nV 

A _ . (4.29) 
Pt.nV 
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This formula is an infinitesimal analogue of tr iangulation with stereo cameras.  

The numerator  is analogous to baseline and the denominator  to disparity. 

Equation (4.29) can also be re-expressed in terms of spherical image position 

q and the normal component  of image velocity qt.nP: 

U . n  p 
= - (4.30) 

qt .np -]- (~-~ A q).nP" 

These equations are equivalent to those derived for an apparent  contour. It  

is impossible to discriminate an apparent  contour from a surface curve from 

instantaneous image velocities alone. 

4 . 3 . 2  C u r v e  t a n g e n t  f r o m  r a t e  o f  c h a n g e  o f  o r i e n t a t i o n  o f  

i m a g e  t a n g e n t  

Having recovered the depth of each point on the space curve it is possible to 

recover the geometry of the space curve by numerical differentiation. Here, an 

alternative method is presented. This recovers the curve tangent and normal  

directly from image measurables without first explicitly recovering the space 

curve. The space curve tangent, T can be recovered from the temporal  derivative 

of the image curve tangent tP as follows. 

D e r i v a t i o n  4.3 Rearranging (4.11) we see that the space curve tangent only 
has components parallel to the ray and image tangent. Namely 

T = [1 - (p.T)2]z/~t v + (p .T )p .  (4.31) 

By differentiating 4.31 and looking at the normal components it is straightforward 
to show that the following relationship exists between the derivative of the image 

tangent and the space curve tangent: 

(p .T)  (4.32) ttP'nP = [1 - (p.T)2]U ipt'np" 

This equation can be used to recover the coefficients of t p and p in (4.31) and 
hence allows the recovery of the curve tangent. Alternatively it is easy to see 

from (3.31) that the following simple condition must hold: 

T . n  v = 0. (4.33) 

Differentiating (3.33) with respect to time t gives 

T.nP = 0 (4.34) 
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since the space curve is assumed static and does not change with time. Equations 

(4.33) and (4.34) allow the recovery of the space curve tangent up to an arbitrary 

sign. In terms of measurements on the image .sphere: 

tip A (fit p + n A fly) (4.35) 
T = i~ p A (~7 + ~ /X  ~P)I" 

The orientation of the space curve tangent is recovered from the change in the 

image curve normal  and knowledge of the viewer's rotational velocity. A similar 

expression to (4.35) was derived by Faugeras et al. [161] for the image motion of 

straight lines. 

4 . 3 . 3  C u r v a t u r e  a n d  c u r v e  n o r m a l  

We now show how to recover the space curve's curvature, n and normal,  N, 

directly from measurements on the spat io- temporal  image and known viewer 

motion. 

To simplify the derivation we choose a frame aligned with the curve normal  

with basis vectors {n p,nt; , T}.  (It is easy to see from (4.33) and (4.34) that  

these three vectors are orthogonal, nt v is not necessarily a unit vector.) In this 

frame a N  can be expressed as: 

a N  = a n ;  + fin~ + G'T. (4.36) 

From the definition of a space curve normal,  "), must  be zero. The other two 

orthogonal components of aN,  n N . n  p and a N . n  p, can be recovered f rom the 

curvature in the image (4.20) and its temporal  derivative as follows. 

D e r i v a t i o n  4.4 By rearranging (4.20) we can solve for a: 

N . n  p 

(1 - (p.m)~) 
a p 

a ----- - ~ - ( 1 -  (p.m)2). (4.37) 

Differentiating (4.20) and rearranging we can recover the other component, /3: 

at p ---- - 2 n  - - ~  ( 1 - ( p . m ) 2 ) ' / 2 ]  - - ( p . m )  2) 

p U . p ]  U. t  p 

The space curve normal and curvature can be recovered directly from measure- 

ments in the image and known viewer motion. 
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For the analysis of the next section a simpler expression for the temporal 

derivative of the image eurve's curvature is introduced. This is obtained by 

differentiating (4.17) and substituting (4.27) and (4.17): 

x B . U  3rip [(P 'T)(U' tP)]  (4.40) 
ntP= ( 1 - ( p . T ) 2 ) 3 / 2  - A ( 1 - ( p . T ) 2 ) I / 2 '  

In the special ease of viewing a section of curve which projects to an inflection, 

i.e. n p = 0, or of the viewer nmving in a direction which is perpendicular to the 

image curve's tangent, i . e . U . t  p = 0, the second term is zero and 

x B . U  

ntP= (1 -- (p.T)2)3/2 (4.41) 

i.e. lhe sign of the deformation of the image curve encodes the sign of B . U  (since 

n and the denominator are always positive). This is sufficient to determine what 

the curve normal is doing qualitatively, i.e. whether the curve is bending towards 

or away from the viewer. This information is used in section 4.4.3 to recover 

qualitative properties of the underlying surface's shape. 

If lhe image curve at time t has a zero of curvature at p(s0, t) because p lies 

in tim osculating plane, the inflection at so will not disappear in general under 
viewer molion but will move along the curve (see later, figure 4.9). Generically 

inflections can only be created or annihilated in pairs [42]. 

4.4 Surface geometry  

4.4.1 Visibil ity constraint 

Since the curve is visible the angle between the surface normal and the line of 

sight must be less than or equal to 90 ~ (otherwise the local tangent plane would 

occlude the curve). If the angle is 90 ~ then the image curve is coincident with 

the apparent contour of the surface. 

Tile visibility constraint can be utilised to constrain surface orientation. 

Since, 

- 1 _< p .n  < 0, (4.42) 

if p is taken as the south pole of the Gaussian sphere, then the surface normal 

must lie on the northern hemisphere 4. Each position of the viewer generates 

a fresh constraint hemisphere (see figure 4.5a). For known viewer movements 
these hemispheres can be intersected and the resultant patch on the Gaussian 

4 T h e  conven t ion  used is t h a t  t he  surface  n o r m a l  is def ined as be ing  ou twa rds  f rom the  solid 
surface.  
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(a) (b) 

f 
viewer motion 

Figure 4.5: The visibility constraint. 
(a) The visibility constraint restricts the surface normal n to lie on a hemisphere 
of the (Gauss map) Gaussian sphere. (b) By intersecting these constraint regions 
for known viewer motions a tighter constraint is placed on the normal. 

(a) 

space curve tangent 

constraint on surface normal n 

(b) 

Figure 4.6: The tangency constraint. 

(a) The tangcnt constraint restricts the surface normal to lie on a great circle 
of the Gaussian sphere. (b) By intersecting this curve with the constraint patch 
from the visibility constraint, the surface normal is further restricted to an arc 
of a great circle. 
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sphere places a tighter constraint on n (figure 4.5b). Clearly, motion which 

rotates by 180 ~ about the object determines the surface normal,  provided, of 

course, the point is always visible. The point will not be visible if another part  

of the surface occludes it, or if it has reached the extremal boundary (the back 

projection of the apparent  contour in the image). However, when it reaches the 

extremal  boundary the normal is fully determined [17]. 

The viewer motion must be accurately known in order to fully utilise the 

visibility constraint over a sequence of views. Uncertainty in mot ion could be 

included in a primitive fashion by intersecting regions larger than a hemisphere. 

The excess over a hemisphere would be bounded by estimates of error in viewer 

motion. 

The constraint on the normal provided by the visibility constraint is applica- 

ble to texture points as well as smooth curves. The following constraint exploits 

the continuity of the curve. 

4 . 4 . 2  T a n g e n c y  c o n s t r a i n t  

The space curve tangent lies in the surface tangent plane and this constrains the 

surface normal n: 

T . n  = 0. (4.43) 

This orthogonality condition generates a constraint curve which is a great circle 

on the Gaussian sphere (figure 4.6a) [23]. If the curve tangent could be deter- 

mined exactly, then intersecting the great circle with the constraint patch from 

the visibility constraint would restrict the normal to an arc of a great circle (fig- 

ure 4.6b). In practice there will be errors in the tangent so the constraint region 

will be a band rather than a curve. Combining information from many views will 

more accurately determine the tangent (and hence the constraint band). How- 

ever, no "new" information is generated in each view as it is using the visibility 

constraint. 

4 . 4 . 3  S i g n  o f  n o r m a l  c u r v a t u r e  a t  i n f l e c t i o n s  

Even if the curvature and Frenet f rame of a space curve lying on a surface are 

known, no constraint is placed on the surface curvature because the relation 

of the surface normal to the curve's osculating plane is unknown and arbitrary.  

However, it is shown below that  at an inflection in the image curve, the sign of the 

normal curvature along the curve can be determined without first determining 

the surface normal.  Moreover it can be determined without having to recover 

the space curve. It is shown that  by following the inflection through a sequence 

of images, the sign of the normal curvature is determined along the curve. This  

can be done with incomplete, qualitative knowledge of viewer motion.  The 
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(a) The image plane 

image  contour  at  t ime t a t 2 image contour  at  t ime t 3 

tP n p 

~P = 0 ~  

direction o f  v iewer  translation 
P 

U p 

(b) The image plane 

image contour  a t  t ime t 1 

0 

t 2 image  contour  at  t ime t 3 

t p 

n p 

P B 

P<O 

direction o f  v iewer  translation 
i t  

U p 

Figure 4.7: Orientation of the space curve from the deformation at inflections. 

I f  the viewer crosses the  osculating plane of the surface curve the curvaturc of 
the image will change sign - projecting to an inflection when the viewer lies in 
osculating plane (time t2). Two possible cases arc shown. 
(a) I f  N . p > 0 the space curve is bending away from the viewer (figure 7a) and 
the image curve changes locally from an arc with negative image curvature via 
an inflection to art arc with positive image curvature, i.e. ~Pt > O. 
(b) I f  N . p < 0 the space curve is bending towards the viewer (figure ~.8b) and 
the opposite transition is seen in the image, i.e. ~Pt < O. 
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(a) 

(b) 

Figure 4.8: Sign of normal curvature from osculating plane geometry 

The component of the surface normal in the osculating plane (n*) is constrained 
to lie within 90 ~ of the ray, p by the visibility constraint (n.p ~ O, shown shaded) 
and must be perpendicular to the surface curve tangent, T by the tangency con- 
straint (T .  n = 0). The component of the surface normal in the osculating plane 
will therefore be parallel to the curve normal 1N - either in opposite directions 
(a) i f N  .p  > O, or (b) in the same direction i f N  .p  < O. The sign of the normal 
curvature in the direction of the curve tangent is determined by the sign of N . p 
which is obtained by noting the transition in image curvature at an inflection 
(fgure 4.7). 
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only requirement is to know whether the viewer is translating to the left or 

right of the image contour. This result is a generalisation to surface curves of 

Weinshall 's [212] result for surface texture. 

T h e o r e m  4.1 (S ign  o f  n o r m a l  c u r v a t u r e s  a t  i n f l e c t i o n s )  Consider two 

views of a curve lying on a smooth surface. I f  a point P on the curve projects 

to an inflection in one view, but not in the other, then the normal curvature (in 

the direction of the curve's tangent) at P is convex 5 (concave) i f  the image of 

the curve at P has positive (negative) image curvature, n p, in the second view. 

The parameterisation of the curve is chosen so that U p . n p > O, where U p is 

the projection in the image of the translational velocity of the viewer. With this 

parameterisation sign(n n) = - s ign (n  p) where n s is the normal curvature and gv t 

the time derivative of image curvature at the inflection. 

']?he proof below is in three stages. First, the viewing geometry is established 

(curve viewed in osculating plane, so it may be thought of as a plane curve). 

This determines B = •  and hence constrains N. Second, the sign of N �9 p is 

determined from the t ime derivative of image curvature (this determines whether 

the curve bends towards or away from the viewing direction), see figure 4.7. 

Third, the visibility constraint is utilised to relate space curve curvature (the 

bending) to surface normal curvature, see figure 4.8. 

P a r a m e t e r i s a t l o n  The directions of the tangent vectors T,  t v and the im- 

age curve normal,  n v, are arbitrarily defined by choosing the parameter isat ion 

direction for the image curve. A convenient parameterisat ion is to choose the 

direction of the curve normal so that  it is on the same side of the image contour 

as the projection of the translational velocity, i.e. U p �9 n p > 0. This is always 

a good choice since it only fails when U p �9 n p = 0 in which case the viewer is 

moving in the osculating plane and both views contain an inflection for the same 

point on the space curve. Since {p, t p, n p} form an or thonormal  right-handed 

system (with p into the image plane), fixing the direction of the curve normal  

n p also fixes t p and hence T and the sign of ~v. 

P r o o f  

We first establish a relation between N �9 p and B - np. From (4.11): 

T = a t  e + 3 p ,  with a > 0  . (4.44) 

5If we define the surface normal  as being outwards  from the solid surface, the normal 
curvature  will be negative in any direction for a convex surface patch.  
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Then 

N . p  = p . ( B A T )  

= B . ( T A p )  

=  B.(tPAp) 

: - a B  �9 n p 

The last steps following from (4.44) and (4.15), and since a > 0 

s ign(N-  p) = - s i g n ( B .  n p) 

1. O s c u l a t i n g  p l a n e  c o n s t r a i n t s  

. 

(4.45) 

(4.46) 

If a point on a surface curve projects to an inflection in one view, but not 

in another then (from section 4.2.3) the ray in the first view must  lie in 

the osculating plane and from (4.17) 

B - p  = 0 (4.47) 

Since B �9 T = 0 we have from (4.44) 

B . t  p = 0 (4.48) 

Thus, using the orthogonal triad {p, t v, n v} 

B = + (p  A tP) (4.49) 

= -4-n p (4.50) 

S i g n  o f  N �9 p 

The transition in image curvature at P from a point of inflection in the 

first view (~P = 0) to an arc with positive or negative image curvature, ~P, 

in the second view determines the sign of N . p  (figure 4.7). 

We can express U in the orthogonal triad: {p, t p, n p} 

U = T n  p + S t  p + c p ,  with 7 > 0 ;  (4.51) 

the sign of 7 follows from the parameterisat ion choice that  U p �9 n p > 0. 

Using (4.47) and (4.48) gives: 

B -  U = 7 U ' n  p (4.52) 

and hence from (4.41) (noting that  t~ and the denominator  are positive): 

sign(~t p) = - s i g n ( B . U )  

= - s i g n ( B  . n  p) 

= s i g n ( N . p )  (4.53) 

the last step following from (4.46). This result determines the orientation 

of the curve normal,  N, relative to the line of sight (figure 4.8). 
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. Sign of  ~n 
We express the surface normal n in the orthogonal triad {T, N, B) :  

n = &N +/}B (4.54) 

since from (4.43) T . n  = 0. Hence, p . n  = & N - p  since from (4.47) 

B �9 p = 0. The visibility constraint restricts the sign as p �9 n < 0, and 

hence s ign(N,  p) = -sign(&). The sign of the normal curvature n~ then 

follows from the above and (4.53): 

sign(n n) = s i g n ( N . n )  

= sign(&) 

= - s i g n ( N . p )  

= -sign(nP)rq (4.55) 

Note that the test is only valid if the inflection in the first view moves along 

the image curve in the next since an inflection corresponding to the same point 
on the surface curve in both views Can result from either zero normal curvature 

or motion in the osculating plane. Two views of a surface curve are then suf- 

ficient to determine the sign of the normal curvature. However, because of the 

numerical difficulties in determining a zero of curvature, the test can be applied 

with greater confidence if a transition from (say) negative to zero (an inflection) 

to positive image curvature is observed. The component of viewer translation 

parallel to the image plane is only used to determine the direction of the curve 

parameterisation. No knowledge of viewer rotations are required. The theo- 

rem is robust in that only partial knowledge (or inaccurate knowledge but with 

bounded errors) of translational velocity will suffice. This can be estimated from 

image measurements by motion parallax [138, 182] or is readily available in the 
case of binocular vision (where the camera or eye positions are constrained). 

A p p l i c a t i o n s  

Figures 4.9 - 4.11 show examples of the application of this result to real 

images. 

1. D e t e r m i n i n g  t h e  s ign o f  n o r m a l  c u r v a t u r e  b y  t r a c k i n g  in f l ec t ions  

Figure 4.9 shows a sequence of images taken by a CCD camera mounted 

on an Adept robot arm rotating around a vase (figure 4.1). Two image 

curves are selected - the projection of surface curves on the neck (hyper- 

bolic patch) and body (elliptic patch) of the vase respectively. These image 

curves are automatically tracked using B-spline snakes [50]. Crosses mark 

inflection points. As the viewer moves from left to right the inflections 
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Figure 4.9: Tracking inflections to determine the sign of normal curvature. 
Four images are shown from an image sequence taken by a camera moving (from 
left to right with fixation) around a smooth surface (a vase). The image con- 
tours are tracked by using B-spline snakes. Inflections (marked by a cross) are 
generated for points whose osculating plane contains the vantage point. Under 
viewer motion the preimage of the inflection moves along the surface curve. The 
change in the sign image curvature is sufficient to determine the sign of the 
normal curvature along the curve. For the top part of the curve on the neck of 
the vase the transition in image curvature is from positive to negative indicating 
concave normal sections along the curve. For the bottom part of the curve on 
the body of the vase the transition is the opposite indicating convex normal sec- 
tions. This information is consistent with the neck of the vase being hyperbolic 
and the body convex elliptic. Note that this classification has been achieved with 
partial knowledge of the viewer motion. The only knowledge required is whether 
the component of viewer translation parallel to the image plane is to the left or 
right of the image contours. 
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Figure 4.10: Qualitative information for grasping. 

The left and right images of a Japanese tea cup are shown. The simple test 
can be used for the Chinese characters painted in the indentations created by the 
potter's thumb imprints. The transition in the sign of image curvature indicates 
a concave section. These thumb imprints are created to aid in grasping the tea 
cup. 
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Figure 4.11: Qualitative interpretation of rangefinder images. 

These images were formed by the projection of planes of light onto the workspace 
and viewing the scene with a camera whose centre is displaced to the left of the 
light plane. The surface is covered artificially with a set of planar curves. If these 
surface curves were viewed in their respective osculating plane (the light planes) 
their images would simply be straight lines (degenerate case of an inflection). 
The sign of the image curvature in the images shown is consistent with the sign 
of the normal curvatures along the curve. Positive, negative and zero image 
curvature indicate respectively convex, concave and flat sections. 
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moves smoothly along each curve. For the curve on the hyperbolic section 

of the vase the transition in image curvature is from positive to negative 

indicating a concave normal section. For the curve on tile elliptic sec- 

tion the transition is the reverse indicating a convex normal  section. The 

main advantage is that  provided the position of the inflection in one view 

can be identified with a convex or concave arc in the second - say by a 

nearby texture point - then only partial  knowledge of the viewer motion 

is needed. In the case shown the only knowledge required is whether the 

viewer translation is to the left or right of the image contours. 

2. C o n v e x i t y / C o n c a v i t y  t e s t  o f  s u r f a c e  

The test directly rules out certain types of surfaces as follows. If  the normal  

curvature is negative then the surface could be convex or hyperbolic - it 

cannot be concave. Similarly, a positive normal curvature rules out a 

convex surface. Thus the result can be used as a test for non-convexity or 

non-concavity. This is similar to the information available from the motion 

of a specularity when the light source position is not known [220]. 

3. C o m b i n a t i o n  w i t h  o t h e r  cues  

The test is most powerful when combined with other cues. Extremal  

boundaries, for example, are an extremely rich source of surface shape 

information. Unfortunately they cannot provide information on concave 

surface patches since these will never appear  as extremal  boundaries. The 

information available from the deformation of other curves is therefore ex- 

tremely important  even though it is not as powerful a cue as the image of 

the extremal  boundary. For example at an extremal  boundary the Gaus- 

sian curvature of the surface is known from the sign of the curvature of 

the apparent contour in the image. Consider an elliptic region (this must  

be convex to appear on the extremal contour), if there is a point P inside 

the extremal  boundary with concave (positive) normal curvature (deter- 

mined using the test above), then there must  be a t least one parabolic 

curve between P and the boundary. 

This information can be used, for example, to indicate the presence of 

concavities for grasping. Figure 4.10 shows an example of a Japanese tea 

cup. The application of the test to the image contours of the Chinese 

characters in the two indentations indicate the presence of concavities. 

These concavities ( thumb imprints) are deliberately placed by Japanese 

potters when making tea cups since they are good for grasping the cup. 

4. I n t e r p r e t i n g  s ing le  i m a g e s  o f  p l a n a r  c u r v e s  

It is well known that  by making certain assumptions about the nature of 
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the surface curves humans can interpret the shape of visible surfaces from 
single images of surface curves. Typically this has been used to infer the 

orientation of planar surfaces. Stevens [188] has shown how the assump- 

tions of parallel contour generators (with the implicit assumption that  the 

curvature perpendicular to the contour is a principal curvature with zero 

curvature) can be used to recover the shape of curved surfaces. The result 

described above can be used to make precise the intuition of Stevens that  

the appearance of planar surface curves is sufficient to tell us a lot about 

the shape of the surface. This is highlighted with a simple example based 

on the qualitative interpretation of range finder images. Figure 4.11 shows 

two images taken with a rangefinder system [29]. The images are formed 

by the projection of planes of light on to the workspace and viewing this 

scene with another camera whose centre is displaced away from the light 

plane. The effect is to cover the untextured surface with planar surface 

curves. The osculating plane of these curves is simply the light plane. If 

the camera is placed in the osculating plane the light stripes would appear 
as straight lines. (The straight line is simply a degenerate case of an inflec- 

tion.) By taking an image with the camera on one side of the osculating 

plane (the light plane) the straight lines deform in a way determined ex- 
actly as predicted by the test above. The sign of the image curvature is 

consistently related to the sign of the normal curvature along the curve. In 

the examples of figure 4.11 the camera is displaced to the right of the light 

plane projector and so convexities (negative image curvature), concavities 

(positive image curvature) and inflections (zero image curvature) indicate 

respectively convex, concave and zero normal curvatures. The cue is ex- 

tremely powerful, giving a strong sense of the shape of the visible surfaces 

without the need for accurate image measurements, exact epipolar geom- 

etry and triangulation which are required in the established, quantitat ive 

approach for interpreting rangefinder images. 

4 . 4 . 4  S u r f a c e  c u r v a t u r e  a t  c u r v e  i n t e r s e c t i o n s  

If surface curves cross transversely, or the curve's tangent is discontinuous, more 

constraints can be placed on the surface geometry. In principle from two views it 

is possible to reconstruct both space curves and hence determine their tangents 

and curvatures at the intersection. (Equations (4.29), (4.31), (4.37) and (4.39) 
show how these can be estimated directly from {p, t p, n p} and their temporal  

derivatives under known viewer motion.) From these the normal curvatures 

g~(1), ~.(2) along the two tangent directions can be determined 

t~ n(1) : t~(t) N (1) .n (4.56) 
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n ~(2) = n(2)N(2).n (4.57) 

where n is the surface normal 

T(1) A T (2) 
n -- [[T(~) A T(~)[[ (4.58) 

and ~(i), T(i), N(0 i = 1, 2 are the curvature, tangent and normals of the space 

curves at the intersection. An intersection of the two curves ensures sufficient 

information to recover the surface normal. It has the added advantage that the 

exact epipolar geometry is not required to match points in the two images since 

the intersection can be tracked. It also has the advantage that  the surface normal 

can be computed by measuring the change in image curve normals and knowledge 

of camera rotation alone. This is done by applying (4.35) to recover both space 

curve tangents and taking their vector product to determine the surface normal 

(4.58). However, the recovery of two normal curvatures is not sufficient in general 

to determine the Gaussian curvature of the surface. (There are many convex and 

concave directions on a hyperbolic patch.) It can only constrain its sign. The 

problem is that although the angle between the tangent vectors is known, the 
relation between the tangent pair and the principle directions is unknown. From 

Eulcr's formula [67] we have 

tr ~(1) = al sin 2 t~ + ~2 cos 2 t~ (4.59) 

~n(2) ~_~ ~I sin2( ~ 4- Of) -b ~2 COS2( ~ 4- O~) (4.60) 

where a is the angle between the tangents in the tangent plane; 0 is the (un- 

known) angle between the tangent, T0), and principal direction; tr and g2 are 

the principal curvatures. There are three unknowns, gl, t~2, 8, and only two con- 

straints. If there is a triple crossing or higher there are sufficient constraints to 

uniquely determine the three unknowns. This is less likely to occur. However, 

we can catalogue the surface by the sign of the Gaussian curvature. 

Sign of ~n(1) and gn(2) Surface 
both negative not concave 
both positive not convex 
one negative, one positive hyperbolic 

Furthermore, it is easy to show that there is a lower bound on the difference of 

the principle curvatures, namely 

~ ( 1 )  _ ~ . ( 2 )  i 
(4.61) 

where a is the angle between the tangents in the tangent plane and ~ ( i )  are 

measured normal curvatures. 
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D e r i v a t i o n  4 .5  Subtracting the two copies of (4.59) for the curvatures of the 
two curves and from trigonometry: 

~ ( 1 ) _  ~ ( 2 ) =  (~1 - tc2)(sin a sin ( a  + 20)). (4.62) 

Rearranging and inspecting the magnitude of both sides gives the required result. 

This  is s imp ly  repackaging  the i n fo rma t ion  con ta ined  in the  n o r m a l  cu rva tu res  

and  the  angle  between tangents .  However,  in this  fo rm it  is be t t e r  su i t ed  to  a 

first f i l ter on a mode l  d a t a  base. For  examp le  if  i t  were known t h a t  the  m o d e l  was 

convex a nega t ive  sign test  would reject  it .  S imi l a r ly  if  the  pr inc ip le  cu rva tu res  

were known not  to exceed cer ta in  l imi ts ,  then  the lower bound  tes t  migh t  exc lude  

it. 

4.5 E g o - m o t i o n  from the  image m o t i o n  of  curves  

We have seen t ha t  under  the  a s sumpt ion  of  known viewer m o t i o n  cons t r a in t s  on 

surface shape  can be der ived f rom the  de fo rma t ion  of  image  curves.  I t  is now 

shown tha t  despi te  the  ape r tu re  p rob l em the  image  m o t i o n  of curves can p rov ide  

cons t ra in t s  on ego-mot ion .  

E q u a t i o n  (4.28) re la tes  the  image  veloci ty  of  a po in t  on a curve in space to  the  

v iewer ' s  mot ion .  In pr inciple  m e a s u r e m e n t  of  image  veloci t ies  a t  a f ini te  n u m b e r  

of  d iscre te  po in ts  can be used to solve for the  viewer 's  ego -mot ion  [175, 138, 

159, 149, 150] - the five unknowns include the three  c ompone n t s  of  r o t a t i o n a l  

veloci ty  t2 and the d i rec t ion  of  t r ans l a t i on  U / I U  I. Once the  ego -mot ion  has  

been recovered i t  is then  possible  to recover the  s t ruc tu re  (dep th  of  each po in t )  

of the  scene. Th is  is the  well known s t ruc tu re  f rom m o t i o n  p rob lem.  6 

The  s t ruc tu re  f rom mot ion  p rob l em relies on the ab i l i ty  to measu re  the  i m a g e  

veloci t ies  of  a number  of points .  A l t h o u g h  this  is poss ible  for d i s t inc t ,  d iscre te  

po in t s  - "corner features"  - this  is imposs ib le  for a po in t  on an image  curve f rom 

pure ly  local  measurement s .  Measur ing  the  (real) image  veloci ty  qt  for a po in t  

on an image  curve requires knowledge of  the  viewer mo t ion  - equa t ion  (4.28). 

Only  the  n o r m a l  componen t  of image  veloci ty  (vernier  veloci ty)  can be o b t a i n e d  

d i rec t ly  f rom local  measu remen t s  a t  a curve - the  aperture problem [201]. 

6In practice this is an extremely difficult and ill-conditioned problem. Apart from the 
obvious speed-scale ambiguity which makes it impossible to recover the magnitude of the 
translational velocity (and hence to recover absolute depth) there is a problem with the bas- 
relief ambiguity. This is the problem of differentiating between a deeply indented surface 
rotating through a small angle, and a shallowly indented surface rotating through a larger 
angle. That is, not all of the variables to be estimated will be well conditioned. Despite 
these drawbacks some attempts at the problem of structure from motion problem have been 
extremely successful. An excellent example is the system developed by Harris and colleagues 
[93, 96, 49] which tracks image corner features over time to solve for the ego-motion and to 
reconstruct the scene. 
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image contour at time t trajectory of fixed point P on 
~ ~ ( s s t a n t ) ,  . . . .  

/ ~ t-parameter curve 
J ~ 1 ('s = constant) 

/ /  
q (~o,0 I 

image contour at time t + St 

Figure 4.12: Spatio-temporal parameterisations of the image. 

p is the projection of a point P (r(so)) on a space curve, r(s). Under viewer 
motion the image of P follows a trajectory q(so, t) in the spatio-temporal image. 
The tangent to this trajectory is the instantaneous image velocity, qt - shown as 
a vector ppt. The image velocity can be decomposed into two orthogonal compo- 
nents: the normal component perpendicular to the image contour (vector pptt) 
and the tangential component parallel to the image tangent (vector pttpt). From 
local image measurements and without knowledge of viewer motion it is impossi- 
ble to measure the real image velocity. It is only possible to measure the normal 
component. An alternative parameterisation is to define the t-parameter curves 
to be orthogonal to the image contours. Such a parameterisation can always be 
set up in the spatio-temporal image and it is independent of viewer motion. 
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Knowledge of the normal component of image velocity alone is insufficient 
to solve for tile ego-motion of the viewer. By assuming no (or knowledge of) 
rotational velocity qualitative constraints can be recovered [106, 186]. By making 
certain assumptions about tile surface being viewed a solution may sometimes 
be possible. Murray and Buxton [158] show, for example, how to recover ego- 
motion and structure from a minimum of eight vernier velocities from the same 
planar patch. 

In the following we show that it is also possible to recover ego-motion without 
segmentation or making any assumption about surface shape. The only assump- 
tion made is that of a static scene. The only information used is derived from the 
spatio-temporal image of an image curve under viewer motion. This is achieved 
by deriving an additional constraint from image accelerations. This approach 
was motivated by the work of Faugeras [71] which investigated the relationship 
between optical flow and the geometry of the spatio-temporal image. In the 
following analysis a similar result is derived independently. Unlike Faugeras's 
approach the techniques of differential geometry are not applied to the spatio- 
temporal image surface. Instead the result is derived directly from the equations 
of the image velocity and acceleration of a point on a curve by expressing these 
in terms of quantities which can be measured from the spatio-temporal image. 
The derivation follows. 

The image velocity of a point on a fixed space curve is related to the viewer 
motion and depth of the point by (4.28): 

( U A q )  Aq a A q .  
q t - -  )~ 

By differentiating with rcspect to time and substituting the r i g i d i t y  constraint 7 

At + q.U = 0 (4.63) 

the normal component of acceleration can be expressed in terms of the viewer's 
motion, (U, Ut, Ft, f~t), and the 3D geometry of the space curve (A) s, 

U t . n  p (U.q) (qt.n v ) (q.U) (U.n v ) 
q t t . ~ l  p - -  _ _  q- 

+ ( a t  .tP) + ((~2.q) + (ft.fi p) (4.64) 

Note that  because of the apcrture problem neither the image velocity qt nor the 
image acceleration q t t . r l P  c a n  be measured directly from the spatio-temporal im- 

7 O b t a i n e d  by d i f fe rent ia t ing  (4.10) and  u s i n g  the  cond i t ion  (4.26) t h a t  for a f ixed space  
curve ,  r t  ~ 0. 

SThis  is equiva len t  to equa t ion  (2.47) der ived for the  image  accelera t ion  a t  an  a p p a r e n t  
c o n t o u r  where  because  we are  cons ider ing  a rigid space-curve ,  1 / n  t = 0. 
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age. Only the normal component of the image velocity, qt.~ p, (vernier velocity) 
can be directly measured. 

Image velocities and accelerations are now expressed in terms of measure- 
ments on the spatio-temporal image. This is achieved by re-parameterising the 
image so that  it is independent of knowledge of viewer motion. In the epipolar 
parameterisation of the spatio-temporal image, q(s, t), the s-parameter curves 
were defined to be the image contours while the t-parameter curves were de- 
fined by equation (4.28) to be the trajectory of the image of a fixed point on 
the space curve. At any instant the magnitude and direction of the tangent to a 

t-parameter curve is equal to the (real) image velocity, qt - more precisely ~ t  8" 

Note that this parameter curve is the trajectory in the spatio-temporal image of 
a fixed point on the space curve if such a point could be distinguished. 

A parameterisation can be chosen which is completely independent of knowl- 
edge of viewer motion, q(~,t), where ~ = ~(s,t). Consider, for example, a 

parameterisation where the t-parameter curves (with tangent -~t .1~) are 
I 

chosen 

to be orthogonal to the ~-parameter curves (with tangent -~  t) - the image 

contours. Equivalently the t-parameter curves are defined to be parallel to the 

curve normal ~P, 

O~ =/3~v (4.65) 
g 

where/3 is the magnitude of the normal component of the (real) image velocity. 
The advantage of such a parameterisation is that  it can always, in principle, be 
set up in the image without any knowledge of viewer motion. 9 The (real) image 
velocities can now be expressed in terms of the new parameterisation (see figure 

4.12). 

q t -  O-~s (4.66) 

- -~8~-~_ t + ~  . (4.67) 

Equation (4.67) is simply resolving the (real) image velocity qt into a tangential 
05  component which depends on (-O-7]s) (and is not directly available from the 

spatio-temporal image) and the normal component of image velocity/3 which 

can be be measured. 

O~ s [ Oq t "~p +/3~p. (4.68) qt ---- -~" 

9Faugeras [71] chooses a parameterisation which preserves image contour arc length. He 
calls the tangent to this curve the apparent image velocity and he conjectures that this is 
related to the image velocity computed by many techniques that aim to recover the image 
velocity field at closed contours [100]. The tangent to the t-parameter curve defined in our 
derivation has an exact physical interpretation. It is the (real) normal image velocity. 
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The (real) image acceleration can be similarly expressed in terms of the new 
parameterisation. 

CO2q (4.69) 
qt t  -~ CO2t 8 

02S 2 02q 02t 8 coq _~ss t-l- (0_~___7~ s] ",~ / c92q CO COq 

(COS)2CO2q CO~8 0 ( C O q )  .~V CO2q .~P(4.70) 
qtt. ap = O-ts ~ '~ t '~v- t -2  ~ -~-~ t .1. - ~  

Apart from (~ [~) which we have seen determines the magnitude of the tan- 
gential component of image curve velocity (and is not measurable) the other 
quantities in the right-hand side of the (4.70) are directly measurable from the 
spatio-temporal image. They are determined by the curvature of the image con- 
tour, ~v; the variation of the normal component of image velocity along the 
contour, ; and the variation of the normal component of image velocity 

perpendicular to the image contour respectively, ~ . 

In equation (4.64) the normal component of image acceleration is expressed 
in terms of the viewer's motion, (U, Us, fL g~t), and the 3D geometry of the 
space-curve. Substituting for A, 

U.~V 
A = (4.71) 

qt  .rlP "1" ( ~."tP ) 

the right hand side of equation (4.64) can be expressed completely in terms of 
the unknown parameters of the viewer's ego-motion. 

In equation (4.70) the normal component of image acceleration is expressed in 
terms of measurements on the spatio-temporal image and the unknown quantity 
~ l s  which determines the magnitude of the tangential velocity. This is not, 
however, an independent parameter since from (4.28),(4.30) and (4.67) it can be 
expressed in terms of viewer motion: 

0q 
qt. 0~ t (4.72) 05 

0-/8 -- 
~  

F U.i  
'-1 

_ 1 - / .  
~q / I U (4.73) 

The right hand side of equation (4.70) can therefore also be expressed in terms of 
the unknown parameters of the viewer motion only. Combining equations (4.64) 

o g  and (4.70) and substituting for ~-~ I~ and A we can obtain a polynomial equation 



114 Chap. 4. Qualitative Shape from Images of Surface Curves 

in terms of the unknown parameters  of the viewer's motion (U, Ut,  ~ ,  gtt) with 

coefficients which are determined by measurements on the spat io- temporal  image 

- {q, tP,fiP},gP,fl ,  ~ t and ~ t  ~" A similar equation can be written at each 

point on any image curve and if these equations can be solved it may  be possible, 

in principle, to determine the viewer's ego-motion and the structure of the visible 

curves. 

Recent experimental  results by Arbogast  [4] and Faugeras and Papadopoulo [74] 

validate this approach. Questions of the uniqueness and robustness of the solu- 

tion remain to be investigated. These were our prime reasons for not a t t empt ing  

to implement  the method presented. The result is included principally for its 

theoretical interest - representing a solution for the viewer ego-motion from the 

image motion of curves. In the Chapter  5 we see that  instead of solving the 

structure from motion problem completely, reliable and useful information can 

be efficiently obtained from qualitative constraints. 

4.6 Summary 

In this chapter the information available from an image curve and its deformation 

under viewer motion has been investigated. It  was shown how to recover the 

differential geometry of the space curve and described the constraints placed on 

the differential geometry of the surface. It was also shown how the deformation 

of image curves can be used, in principle, to recover the viewer's ego-motion. 

Surprisingly - even with exact epipolar geometry and accurate image mea- 

surements - very little quanti tat ive information about local surface shape is 

recoverable. This is in sharp contrast to the extremal boundaries of curved sur- 

faces in which a single image can provide strong constraints on surface shape 

while a sequence of views allows the complete specification of the surface. How- 

ever the apparent contours cannot directly indicate the presence of concavities. 

The image of surface curves is therefore an important  cue. 

The information available from image curves is better  expressed in terms of 

incomplete, qualitative constraints on surface shape. It  has been shown tha t  

visibility of the curve constrains surface orientation and moreover tha t  this con- 

straint improves with viewer motion. Furthermore, tracking image curve inflec- 

tions determines the sign of normal curvature along the surface curve's tangent.  

This can also be used to interpret the images of planar curves on surfaces 

making precise Stevens' intuition that  we can recover surface shape from the 

deformed image of a planar curve. This information is robust in that  it does not 

require accurate measurements or the exact details of viewer motion. 

These ideas are developed in the Chapter  5 where it is shown that  it is 

possible to recover useful shape and motion information directly from simple 
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properties of the image without going through the computationally difficult and 

error sensitive process of measuring the exact image velocities or disparities and 

trying to recover the exact surface shape and 3D viewer motion. 



Chapter  5 

Orientat ion and T ime  to Contact  from 
Image Divergence  and Deformat ion  

5.1 I n t r o d u c t i o n  

Relative motion between an observer and a scene induces deformation in im- 

age detail and shape. If these changes are smooth they can be economically 

described locally by the first order differential invariants of the image velocity 

field [123] - t h e  curl (vorticity), divergence (dilatation), and shear (deforma- 

tion) components. The virtue of these invariants is that  they have geometrical 
meaning which does not depend on the particular choice of co-ordinate system. 

Moreover they are related to the three dimensional structure of the scene and 

the viewer's motion - in particular the surface orientation and the t ime to con- 

tact 1 _ in a simple geometrically intuitive way. Better still, the divergence and 

deformation components of the image velocity field are unaffected by arbitrary 

viewer rotations about the viewer centre. They therefore provide an efficient, 

reliable way of recovering these parameters. 

Although the analysis of the differential invariants of the image velocity field 

has attracted considerable attention [123, 116] their application to real tasks 

requiring visual inferences has been disappointingly limited [163, 81]. This is 

because existing methods have failed to deliver reliable estimates of the differen- 

tial invariants when applied to real images. They have at tempted the recovery 

of dense image velocity fields [47] or the accurate extraction of points or corner 

features [116]. Both methods have at tendant problems concerning accuracy and 

numerical stability. An additional problem concerns the domain of applications 

to which estimates of differential invariants can be usefully applied. First order 

invariants of the image velocity field at a single point in the image cannot be 

used to provide a complete description of shape and motion as a t tempted in 

numerous structure from motion algorithms [201]. This in fact requires second 

order spatial derivatives of the image velocity field [138, 210]. Their  power lies 
in their ability to efficiently recover reliable but incomplete (partial) solutions to 

1The t ime dura t ion  before the  observer  and  objec t  collide if they  cont inue wi th  the  same 
relative t rans la t ional  mot ion  [86, 133] 
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the structure from motion problem. They are especially suited to the domain 

of active vision, where the viewer makes deliberate (although sometimes impre- 

cise) motions, or in stereo vision, where the relative positions of the two cameras 

(eyes) are constrained while the cameras (eyes) are free to make arbitrary rota- 

tions (eye movements). This study shows that  in many cases the extraction of 

the differential invariants of the image velocity field when augmented with other 

information or constraints is sufficient to accomplish useful visual tasks. 

This chapter begins with a criticism of existing structure from motion algo- 

rithms. This motivates the use of partial, incomplete but more reliable solutions 

to the structure from motion problem. The extraction of the differential in- 

variants of the image velocity field by an active observer is proposed under this 

framework. Invariants and their relationship to viewer motion and surface shape 

are then reviewed in detail in sections 5.3.1 and 5.3.2. 

The original contribution of this chapter is then introduced in section 5.4 
where a novel method to measure the differential invariants of the image velocity 

field robustly by computing average values from the integral of simple functions 

of the normal image velocities around image contours is described. This avoids 

having to recover a dense image velocity field and taking partial derivatives. 

It also does not require point or line correspondences. Moreover integration 

provides some immunity to image measurement noise. 

In section 5.5 it is shown how an active observer making small, deliberate 

motions can use the estimates of the divergence and deformation of the image 

velocity field to determine the object surface orientation and time to impact. 

The results of preliminary real-time experiments in which arbitrary image shapes 

are tracked using B-spline snakes (introduced in Chapter 3) are presented. The 

invariants are computed efficiently as closed-form functions of the B-spline snake 

control points. This information is used to guide a robot manipulator in obstacle 
collision avoidance, object manipulation and navigation. 

5.2 S tructure  from m o t i o n  

5 . 2 . 1  B a c k g r o u n d  

The way appearances change in the image due to relative motion between the 

viewer and the scene is a well known cue for the perception of 3D shape and 

motion. Psychophysical investigations in the study of the human visual system 
have shown that  visual motion can give vivid 3D impressions. It is called the 

kinetic depth effect or kineopsis [86, 206]. 

The computational nature of the problem has at tracted considerable atten- 

tion [201]. Attempts to quantify the perception of 3D shape have determined 

the number of points and the number of views nccdcd to recover the spatial con- 
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figuration of the points and the motion compatible with the views. Ullman, in 

his well-known structure from motion theorem [201], showed that  a minimum of 

three distinct orthographic views of four non-planar points in a rigid configura- 

tion allow the structure and motion to be completely determined. If perspective 

projection is assumed two views are, in principle, sufficient. In fact two views of 

eight points allow the problem to be solved with linear methods [135] while five 

points from two views give a finite number of solutions [73]. 2 

5 . 2 . 2  P r o b l e m s  w i t h  t h i s  a p p r o a c h  

The emphasis of these algorithms and the numerous similar approaches that  

these spawned was to look at point image velocities (or disparities in the dis- 

crete motion case) at a number of points in the image, assume rigidity, and write 

out a set of equations relating image velocities to viewer motion. The problem 

is then mathematically tractable, having been reduced in this way to the solu- 

tion of a set of equations. Problems of uniqueness and minimum numbers of 

views and configurations have consequently received a lot of attention in the 

literature [136, 73]. This structure from motion approach is however deceiv- 
ingly simple. Although it has been successfully applied in photogrammetry and 

some robotics systems [93] when a wide field of view, a large range in depths 

and a large number of accurately measured image data  points are assured, these 

algorithms have been of little or no practical use in analysing imagery in which 

the object of interest occupies a small part of the field of view or is distant. 

This is because tile effects due to perspective are often small in practice. As a 

consequence, the solutions to the perspective structure from motion algorithms 

are extremely ill-conditioned, often failing in a graceless fashion [197, 214, 60] in 

the presence of image measurement noise when the conditions listed above are 

violated. In such cases the effects in the image of viewer translations parallel to 

the image plane are very difficult to discern from rotations about axes parallel 

to the image plane. 

Another related problem is the bas-relief ambiguity [95] in interpreting im- 

age velocities when perspective effects are small. In addition to the speed-scale 
ambiguity 3, more subtle effects such as the bas-relief problem are not imme- 

2 Although these results were publieised in the computer  vision l i terature by Ullman (1979), 
Longuet-Higgins (1981) and Faugeras and Maybank (1989) they were in fact well known to 
projective geometers and photogrammetris ts  in the last century. In particular,  solutions were 
proposed by Chasle (1855); Hesse (1863) (who derived a similar algori thm to Longuet-Higgins 's  
8-point algori thm);  S turm (1869) (who analysed the case of 5 to 7 points in 2 views); Finster-  
walder (1897) and Kruppa  (1913) (who applied the techniques to photographs for surveying 
purposes, showed how to recover the geometry of a scene with 5 points and investigated the  
finite number  of solutions) See [43, 151] for references. 

3This is obvious from the formulations described above since translat ional  velocities and  
depths  appear  together  in all terms in the s t ructure  from motion equations. 
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diately evident in these formulations. The bas-relief ambiguity concerns the 

difficulty of distinguishing between a "shallow" structure close to the viewer and 

"deep" structures further away. Note that this concerns surface orientation and 
its effect - unlike the speed-scale ambiguity - is to distort the shape. People 

experience the same difficulty. We are rather poor at distinguishing a relief 
copy from the same sculpture in the round unless allowed to take a sideways 

look [121]. 

Finally these approaches place a lot of emphasis on global rigidity. Despite 

this it is well known that two (even orthographic) views give vivid 3D impressions 

even in the presence of a degree of non-rigidity such as the class of smooth 

transformations e.g. bending transformations which are locally rigid [131]. 

5.2.3 The advantages of partial solutions 

The complete solution to the structure from motion problem aims to make ex- 

plicit quantitative values of the viewer motion (translation and rotation) and 

then to reconstruct a Euclidean copy of the scene. If these algorithms were 

made to work successfully, this information could of course be used in a variety 

of tasks that demand visual information including shape description, obstacle 

and collision avoidance, object manipulation, navigation and image stabilisation. 

Complete solutions to the structure from motion problem are often, in prac- 

tice, extremely difficult, cumbersome and numerically ill-conditioned. The latter 

arises because many configurations lead to families of solutions,e.g, the bas-relief 

problem when perspective effects are small. Also it is not evident that making 

explicit viewer motion (in particular viewer rotations which give no shape in- 

formation) and exact quantitative depths leads to useful representations when 

we consider the purpose of the computation (examples listed above). Not all 

visual knowledge needs to be of such a precise, quantitative nature. It is possi- 

ble to accomplish many visual tasks with only partial solutions to the structure 

from motion problem, expressing shape in terms of more qualitative descriptions 

of shape such as spatial order (relative depths) and aJ]ine structure (Euclidean 

shape up to an arbitrary affine transformation or "shear" [130, 131]). The latter 

are sometimes sufficient, especially if they can be obtained quickly, cheaply and 

reliably or if they can be augmented with other partial solutions. 

In structure from motion two major contributions to this approach have been 

made in the literature. These include the pioneering work of Koenderink and van 

Doom [123, 130], who showed that  by looking at the local variation of velocities 

- rather than point image velocities - useful shape information can be inferred. 

Although a complete solution can be obtained from second-order derivatives, 

a more reliable, partial solution can be obtained from certain combinations of 

first-order derivatives - the divergence and deformation. 
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More recently, alternative approaches to structure from motion algorithms 

have been proposed by Koenderink and Van Doorn [131] and Sparr and Nielsen [187]. 

In the Koenderink and Van Doom approach, a weak perspective projection model 
and the image motion of three points are used to completely define the affine 

transformation between the images of the plane defined by the three points. 

The deviation of a fourth point from this affine transformation specifies shape. 

Again this is different to the 3D Euclidean shape output  by conventional meth- 

ods. Koenderink shows that it is, however, related to the latter by a relief 
transformation. They show how additional information from extra views can 

augment this partial solution into a complete solution. This is related to an ear- 

lier result by Longuet-Higgins [137], which showed how the velocity of a fourth 

point relative to the triangle formed by another three provides a useful constraint 

on translational motion and hence shape. This is also part of a recurrent theme 

in this thesis that relative local velocity or disparity measurements are reliable 

geometric cues to shape and motion. 

In summary, the emphasis of these methods is to present partial, incom- 

plete but geometrically intuitive solutions to shape recovery from structure from 

motion. 

5.3 Differential  invariants of the image ve loc i ty  
field 

Differential invariants of the image velocity field have been treated by a number 

of authors. Sections 5.3.1 and 5.3.2 review the main results which were pre- 

sented originally by Koenderink and Van Doom [123, 124, 121] in the context of 

computational  vision and the analysis of visual motion. This serves to introduce 

the notation required for later sections and to clarify some of the ideas presented 

in the literature. 

5.3 .1  R e v i e w  

The image velocity of a point in space due to relative motion between the ob- 

server and the scene is given by 

( U A q )  A q  a A q .  (5.1) q t - -  )~ 

where U is the translational velocity, ~ is the rotational velocity around the 
viewer centre and ,k is the distance to the point. The image velocity consists 

of two components. The first component is determined by relative translational 

velocity and encodes the structure of the scene, ,~. The second component de- 

pends only on rotational motion about the viewer centre (eye movements). It 
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a) 2D rotation (curl) 

c) Shear (deformation) 

b) Isotropic expansion (divergence) 

d) Shear (deformation) 

.t..  i 

Figure 5.1: Differential invariants of the image velocity field. 

To first order the image velocity field can be decomposed into curl (vorticity), 
divergence (dilation) and pure shear (deformation) components. The curl, di- 
vergence and the magnitude of the deformation are differential invariants and 
do not depend on the choice of image co-ordinate system. Their effect on appar- 
ent image shape can be described by four independent components of an affine 
transformation. These are: (a) a 21) rotation; (b) an isotropic expansion (scal- 
ing); (c) and (d) two deformation components. The latter two are both pure 
shears about different axes. Any deformation can be conveniently decomposed 
into these two components. Each component is dependent on an arbitrary choice 
of co-ordinate system and is not a differential invariants. 
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gives no useful information about the depth of the point or the shape of the visi- 

ble surface. It is this rotational component which complicates the interpretation 

of visual motion. The effects of rotation are hard to extricate however, although 

numerous solutions have been proposed [150]. As a consequence, point image 

velocities and disparities do not encode shape in a simple efficient way since the 

rotational component is often arbitrarily chosen to shift attention and gaze by 

('amera rotations or eye movements. 

We now look at the local variation of image velocities in the vicinity of the ray 

q. Consider an arbitrary co-ordinate system (the final results will be invariant 

to this choice) with the x - y plane spanning the image plane (tangent plane of 

projection sphere at q) and the z-axis aligned with the ray. In this co-ordinate 

system the translational velocity has components {U1, Us, U3} and the angular 

velocity has components {~l,l't2, ~3}. Let the image velocity field at a point 

(x, y) in the vicinity of q tie represented as a 21) vector field, "7(x, y) with x and 

y components (u, v). 

For a suiliciently small field of view or for a small neighbourhood (defined 

more precisely below), the image velocity field can be described by a transla- 

tion in the image (u0, v0) and by the first-order partial derivatives of the image 

velocity (u~, Uy, v~:, Vy), where [210, 150]: 

U1 
UO - -  

A 
U2 

YO - -  A 

Ux 

Uy 

V x 

Vy 

(5.2) 

+ (5.3) 

U3 U1 A~ 
+ - -  (5.4) 

A A 2 

U1Ay (5.5) 
+~3 + A----- V- 

(5.6) - ~ 3  + A--5--- 
U3 U2Ay 

+ - -  (5.7) 
A A 2 

and where the x and y subscripts represent differentiation with respect to these 

spatial parameters. Note that there are six equations in terms of the eight 

unknowns of viewer motion and surface orientation. The system of equations is 

thus under-constrained. 

An image feature or shape will experience a transformation as a result of the 

image velocity field. The transformation from a shape at t ime t to the deformed 

shape at a small instant of time later, at t + St, can also be approximated by 

a linear transformation - an affine transformation. In fact, any arbitrary small 

smooth transformation is linear in the limit and well approximated by the first 

derivative in a sufficiently small region. 
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To first order the image velocity field at a point (x, y) in the neighbourhood 
of q can be approximated by: 

u ~o + + O(x ~, xy, ~ )  (5.s)  
V V 0 V x Vy y 

where O(x 2, xy, y2) represents non-linear terms which are neglected in this anal- 
ysis. The first term is a vector [u0, v0] representing a pure translation while the 
second term is a 2 • 2 tensor - t h e  velocity gradient tensor - and represents the 
distortion of the image shape. 

We can dccompose the velocity gradient tensor into three components, where 
each term has a simple geometric significance invariant under the transforma- 
tion of the image co-ordinate system. 4 These components are the first-order 
differential invariants of the image velocity field - the vorticity (curl) , dilatation 
(divergence) and pure shear (deformation) components. 

v~, vy - --77- 1 0 + T 0 1 + 

2 sin it cos It 0 - 1 - sin It cos It 

curl'7 [ 0 - 1  ] div-7[ 1 0 ]  de f~7[cos2 i t  s i n 2 # ]  
- 2 1 0 + T  0 1 + 7 -  sin2it - c o s 2 #  

where curl'S, div~ and def~7 represent the curl, divergence and deformation com- 
ponents and where It specifies the orientation of the axis of expansion (maximum 
extension). 5 These quantities are defined by: 

dive7 = (u~ + vy) (5.10) 

curl'7 = - ( u v  - v~) (5.11) 

(def~)  cos 2it = (u~ - vy) (5.12) 

(deh7)s in2 i t  = (u v + v~). (5.13) 

These can be derived in terms of differential invariants [116] or can be simply 
considered as combinations of the partial derivatives of the image velocity field 
with simple geometric meanings. The curl, divergence and the magnitude of the 
deformation are scalar invariants and do not depend on the particular choice 
of co-ordinate system. The axes of maximum extension and contraction rotate 
with rotations of the image plane axes. 

4Th@ decomposition is known in applied mechanics as the Cauchy-Stokes decomposition 
thcorem [5]. 

5(cos tt, sin #) is the eigcnvector of the traccless and symmetric  component  of the velocity 
tensor. It corresponds the positive eigenvMue with magni tude defV. The other eigenvector 
specifies the axis of contraction and is orthogonM. It corresponds to the negative eigenvalue 
with magn i tude -de fV .  
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Consider the effect of these components on the transformation of apparent 

image shapes (figure 5.1). The curl component that  measures the 2D rigid 

rotation or change in orientation of patches in the image. The divergence term 

specifies scale or size changes. The deformation term specifies the distortion of 

the image shape ms a shear (expansion in a specified direction with contraction in 

a perpendicular direction in such a way that area is unchanged). It is specified by 

an axis of expansion and a magnitude (the size of the change in this direction). 

It will be seen below that the main advantage of considering the differential 

invariants of the image velocity field is that  the deformation component effi- 

ciently encodes the orientation of the surface while the divergence component 

can be used to provide an estimate of the time to contact or collision. 

Before looking at the 3[) interpretation of these invariants, it is important  

to make explicit under which conditions it is reasonable to consider the image 

velocity field to be well approximated by its first order terms. This requires 

that  the transformation is locally equivalent to an affine transformation. For 

example, parMlel lines must remain parallel or equivalently the transformation 

from a plane in the world to the image plane must also be described by an a n n e  
mapping. This is known as weak perspective. By inspecting the quadratic terms 

in the equation of the image velocity in the vicinity of a point in the image (5.1) 

it is easy to show that we require in the field of interest: 

AA 
-~-  << 1 (5.14) 

t2.5 
<< 1 (5.15) ~l.q 

where 8 is a difference between two ray directions and defines the field of view in 

radians and A)~ is the depth of the relief in the field of view. A useful empirical 

result is that if the distance to the object is greater than the depth of the relief 

by an order of magnitude [193] then the assumption of weak perspective is a 

good approximation to perspective projection. 

At close distances "looming" or "fanning" effects will become noticeable and 

the affine transformation is insufficient to describe the changes in the image. In 

many practical cases, however, it is possible to restrict attention to small fields 

of view in which the weak perspective model is valid. 

5 . 3 . 2  R e l a t i o n  t o  3 D  s h a p e  a n d  v i e w e r  e g o - m o t i o n  

The relationships between the observed differential invariants and the three- 

dimensional configuration and the viewer motion are given. In particular the dif- 

ferential invariants are expressed in terms of the viewer translation (U1/,~, U2/,~, U3/A) 
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and the surface orientat ion (A~/A, Ay/A). From (5.2) to (5.13) we have: 

U1 
U0 - -  ~-~2 

A 
U2 

v0 - + f~1 
A 

curl~ = - 2 ~ 3  + ( - V l A y  + U2A~) (5.16) 
A2 

U3 U1A~ + U~Ay 
diw7 = 2-~- + A2 (5.17) 

(UtA~ - U2Ay) (5.18) (def~7) cos 2# = %2 

(def~7) s in2#  = (Ul,~y + U2A~) A2 (5.19) 

Note  tha t  the average image t ranslat ion (uo, vo) c a n  always be cancelled out  by 

appropr ia te  camera  rotat ions (eye movements)  (~1, ~2). Also note  tha t  diver- 

gencc and deformat ion are unaffected by viewer rotat ions such as panning  or 

t i l t ing of the camera  or eye movements  whereas these could lead to considerable 

changes in point  image velocities or disparities. 

The differential invariants depend on the viewer mot ion,  depth  and surface 

orientat ion.  We can express them in a co-ordinate free manner  by in t roducing 

two 2D vector quantit ies:  tile component  of  t ranslat ional  velocity parallel to  the 

image plane scaled by depth,  s A where: 

_ U- (V.q)q (5.20) 
A 

and the depth gradienl scaled by depth 6, F, to represent the surface orientation 
and which we define in terms of the 2D vector gradient: 7 

grad% 
- A ( 5 . 2 2 )  

6Koenderlnk [121] defines F as a "nearness gradient" - grad(log(1/A)). In this section F 
is defined as a scaled depth gradient. These two quantities differ by a sign. 

7There are three simple ways to represent surface orientation: components of a unit vector, 
n; gradient space representation (p, q) and the spherical co-ordlnates (a, r). Changing from 
one representation to another is trivial and is listed here for completeness. 

tan (7 = ~p2 + q2 
q 

t a n  T = - 
P 

n = ( s i n  c~ cos  ~-, s i n  a s i n  r ,  cos  q ) .  
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The magnitude of the depth gradient determines the tangent of the slant of the 

surface (angle between the surface normal and the visual direction). It vanishes 

for a frontal view and is infinite when the viewer is in the tangent plane of the 

surface. Its direction specifies the direction in the image of increasing distance. 

This is equal to the tilt of the surface tangent plane, r .  The exact relationship 

between the magnitude and direction of F and the slant and tilt of the surface 

(o-, r) is given by: 

IF I = tanc~ (5.23) 

ZF = T (5.24) 

With this new notation equations (5.16, 5.17, 5.]8 and 5.19) can be re-written 

to show the relation between the differential invariants, the motion parameters 

and the sin'face position and orientation: 

eurlq = - - 2 t 2 . q + F A  A (5.25) 

diw7 - 2U.q + F .A (5.26) 

debt  = IFIIAI (5.27) 

where # (which specifies the axis of maximum extension) bisects A and F: 

LA + / F  
# - 2 (5.2s) 

The geometric significance of these equations is easily seen with a few examples 

(see below). Note that this formulation clearly exposes both the speed-scale 

ambiguity - translational velocities appear scaled by depth making it impossible 
to determine whether the effects are due to a nearby object moving slowly or 

a far-away object moving quickly - and the bas-relief ambiguity. The latter 

manifests itself ill the appearance of surface orientation, F, with A. Increasing 

the slant of the surface F while scaling the movement by the same amount  will 

leave the local image velocity field unchanged. Thus, from two weak perspective 

views and with no knowledge of the viewer translation, it is impossible to deter- 

mine whether the deformation in the image is due to a large IAI (large "turn" 

of the object or "vergence angle" ) and a small slant or a large slant and a small 

rotation around the object. Equivalently a nearby "shallow" object will produce 

the same effect as a far away "deep" structure. We can only recover the depth 

gradient F up to an unknown scale. These ambiguities are clearly exposed with 
this analysis whereas this insight is sometimes lost in the purely algorithmic 

approaches to solving the equations of motion from the observed point image 

velocities. 

It is interesting to note the similarity between the equations of motion paral- 

lax (introduced in Chapter 2 and listed below for the convenience of comparison) 
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which relate the relative image velocity between two nearby points, q(2) _ q(1), 

to their relative inverse depths: 

,(2) __ q}l) : [ (U/~  q) A q] )~C2 ) )~ )" (5.29) "It 

and tile equation relating image deformation to surface orientation: 

d e h 7 = I ( U A q )  Aq, [grad(I)] I. (5.30) 

The results are essentially the same, relating local measurements of relative 

image velocities to scene structure in a simple way which is uncorrupted by the 

rotational image velocity component. In the first case (5.29), the depths  are 

discontinuous and differences of discrete velocities are related to the diKerence 

of inverse depths. In the latter case, (5.30), the surface is assumed smooth and 

continuous and derivatives of image velocities are related to derivatives of inverse 

depth. 

Some examples on real image sequences are considered. These highlight the 
effect of viewer motion and surface orientation on the observed image deforma- 

tions. 

1. Panning and tilting (~1,~2) of the camera has no effect locally on the 

differential invariants (5.2). They just shift the image. At any moment 

eye movements can locally cancel the effect of the mean translation. This 

is the purpose of fixation. 

2. A rotation about the line of sight leads to an opposite rotation in the image 

(curl, (5.25)). This is simply a 2D rigid rotation. 

3. A translation towards the surface patch (figure 5.2a and b) leads to a 

uniform expausion in the image, i.e. a positive divergence. This encodes 

distance in temporal units, i.e. as a time to contact or collision. Both 

rotations about the ray and translations along the ray produce no defor- 

mation in image detail and hence contain no information about the surface 

orientation. 

4. Deformation arises for translational motion perpendicular to the visual 

direction. The magnitude and axes of the deformation depend on the ori- 

entation of the surface and the direction of translation. Figure 5.2 shows 
a surface slanted away from the viewer but with zero tilt, i.e. the depth 

increases as we move horizontally from left to right. Figure 5.2c shows 

the image after a sideways movement to the left with a camera rotation to 

keep the target in the centre of the field of view. The divergence and defor- 

mation components are immediately evident. The contour shape extends 
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Figure 5.2: Distortions in apparent shape due to viewer motion. 

(a) The image of a planar contour (zero tilt and positive slant, i.e. the direction 
of increasing depth, F, is horizontal and from left to right). The image contour 
is localised automatically by a B-spline snake initialised in the centre of the field 
of view. (b) The effect on apparent shape of a viewer translation towards the 
target. The shape undergoes an isotropic expansion (positive divergence). (c) 
The effect on apparent shape when the viewer translates to the left while fixating 
on the target (i.e. A is horizontal, right to left). The apparent shape undergoes 
an isotropie contraction (negative divergence which reduces the area) and a de- 
formation in which the axis of expansion is vertical. These effects are predicted 
by equations (5.25, 5.26, 5.27 and 5.28) since the bisector of the direction of 
translation and the depth gradient is the vertical. (d) The opposite effect when 
the viewer translates to the right. The axes of contraction and expansion are 
reversed. The divergence is positive. Again the curl component vanishes. 
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Figure 5.3: Image deformations and rotations due to viewer motion. 

(a) The image of a planar contour (90 ~ tilt and positive slant - i.e. the direction 
of increasing depth, F, is vertical, bottom to top). (b) The effect on apparent 
shape of a viewer translation to the left. The contour undergoes a deformation 
with the axis of expansion at 135 ~ to the horizontal. The area of the contour is 
conserved (vanishing divergence). The net rotation is however non-zero. This 
is difficult to see from the contour alone. It is obvious, however, by inspection 
of the sides of the box, that there has been a net clockwise rotation. (c) These 
effects are reversed when the viewer translates to the right. 
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. 

along the vertical axis and contracts along the horizontal as predicted by 

equations (5.28). This is followed by a reduction in apparent size due to 

the foreshortening effect as predicted by (5.26). This result is intuitively 

obvious since a movement to the left makes the object appear in a less 

frontal view. From (5.25) we sec that  the curl component vanishes. There 

is no rotation of the image shape. Movement to the right (figure 5.2d) 

reverses these effects. 

For sideways motion with a surface with non-zero tilt relative to direction 

of translation, the axis of contraction and expansion are no longer aligned 

with the image axes. Figure 5.3 shows a surface whose tilt is 90 ~ (depth 
increases as we move vertically in the image). A movement to the left with 

fixation causes a deformation. The vertical velocity gradient is immediately 

apparent. The axis of expansion of the deformation is at 135 ~ to the left-  

right horizontal axis, again bisecting F and A. There is no change in the 

area of the shape (zero divergence) but a clockwise rotation. Tile evidence 

for the latter is that the horizontal edges have remained horizontal. A 

pure deformation alone would have changed these orientations. The curl 

component has the effect of hulling the net rotation. If the direction of 

motion is reversed the axis of expansion moves to 45 ~ as predicted. Again 

the basic equations of (5.25, 5.26, 5.27 and 5.28) adequately describe these 

effects. 

5 . 3 . 3  A p p l i c a t i o n s  

Applications of estimates of the differential invariants of the image velocity field 

are summarised below. It has already been noted that  measurement of the 

differential invariants in a single neighbourhood is insufficient to completely solve 

for the structure and motion since we have six equations in the eight unknowns 

of scene structure and motion. In a single neighbourhood a complete solution 

would require the computation of second order derivatives [138, 210] to generate 

sufficient equations to solve for the unknowns. Even then solution of the resulting 

set of non-linear equations is non-trivial. 

In the following, the information available from the first-order differential 

invariants alone is investigated. It will be seen that the differential invariants are 

usually sufficient to perform useful visual tasks with the added benefit of being 

geometrically intuitive. Useful applications include providing information which 

is used by pilots when landing aircraft [86], estimating t ime to contact in braking 

reactions [133] and in the recovery of 3D shape up to a relief transformation [130, 

131]. 
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1. W i t h  k n o w l e d g e  o f  t r a n s l a t i o n  b u t  a r b i t r a r y  r o t a t i o n  

An estimate of the direction of translation is usually available when the 

viewer is making  deliberate movements (in the case of active vision) or 

in the ease of binocular vision (where the camera or eye positions are 

constrained). It can also be estimated from image measurements by motion 

parallax [138, 182]. 

If the viewer translation is known, equations (5.27), (5.28) and (5.26) are 

sufficient to unambiguously recover the surface orientation and the distance 

to the object in temporal units. Due to the speed-.scale ambiguity the 

latter is expressed as a time to contact. A solution can be obtained in tim 

following way. 

�9 The axis of expansion (#) of the deformation component and the 

projection in the image of the direction of translation ( / A )  allow the 

recovery of the tilt of the surface (5.28). 

�9 We can then subtract the contribution due to the surface orientation 

and viewer translation parallel to the image axis from the image di- 

vergence (5.26). This is equal to ]def~7[ cos(r - ZA). The remaining 

component of divergence is due to movement towards or away from 
tile object. This can be used to recover the time to contact, t~': 

t o = . (5.31) 
U.q  

This has been recovered despite the fact that the viewer translation 

may not be parallel to the visual direction. 

�9 The time to contact fixes the viewer translation in temporal units. It 

allows the specification of the magnitude of the translation parallel 

to the image plane (up to the same speed-scale ambiguity), A. The 
magnitude of the deformation can then be used to recover the slant, 

z, of the surface from (5.27). 
The advantage of this formulation is that  camera rotations do not affect 

the estimation of shape and distance. The effects of errors in the direc- 

tion of translation are clearly evident as scMings in depth or by a relief 

transformation [121]. 

2. W i t h  f i x a t i o n  

If the cameras or eyes rotate to keep the object of interest in the middle 
of the image (null the effect of image translation) the eight unknowns are 

reduccd to six. The magnitude of the rotations needed to bring the object 

back to the centre of the image determines A and hence allows us to solve 

for these unknowns, as above. Again the major  effect of any error in the 

estimate of rotation is to scale depth and orientations. 
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3. W i t h  n o  a d d i t i o n a l  i n f o r m a t i o n  - c o n s t r a i n t s  o n  m o t i o n  

Even without any additional assumptions it is still possible to obtain useful 

information from the first-order differential invariants. The information 

obtained is best expressed as bounds. For example inspection of equation 

(5.26) and (5.27) shows that the time to contact must lie in an interval 

given by: 
1 dive7 deh7 
tc - + --{- (5.32) 

The upper bound on time to contact occurs when the component of viewer 

translation parallel to the image plane is in the opposite direction to the 

depth gradient. The lower bound occurs when the translation is parallel to 

the depth gradient. The upper and lower estimates of time to contact are 

equal when there is no deformation component. This is the case in which 

the viewer translation is along the ray or when viewing a fronto-parallel 

surface (zero depth gradient locally). The estimate of time to contact 

is then exact. A similar equation was recently described by Subbarao 

[189]. He describes the other obvious result that knowledge of the curl and 

deformation components can be used to estimate bounds on the rotational 

component about the ray, 

eurl~7 deh7 
a.q _ + --{- (5.33) 

4. W i t h  n o  a d d i t i o n a l  i n f o r m a t i o n  - t h e  c o n s t r a i n t s  on  3D s h a p e  

Koenderink and Van Doorn [130] showed that  surface shape information 

can be obtained by considering the variation of the deformation component  

alone in small field of view when weak perspective is a valid approximat ion.  

This allows the recovery of 3D shape up to a scale and relief t ransformation.  

Tha t  is they effectively recover the axis of rotation of the object but not 

the magnitude of the turn. This yields a family of solution depending on 

the magnitude of the turn. Fixing the latter determines the slants and 

tilts of the surface. This has recently been extended in the affine structure 

from motion theorem [131, 187]. 

The invariants of the image velocity field encode the relations between shape 

and motion in a concise, geometrically appealing way. Their measurement  and 

application to real examples requiring action on visual inferences will now be 

discussed. 

5 . 3 . 4  E x t r a c t i o n  o f  d i f f e r e n t i a l  i n v a r i a n t s  

The analysis above treated the differential invariants as observables of the image. 

There are a number of ways of extracting the differential invariants f rom the 
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image. These are summarised below and a novel method based on the moments 
of areas enclosed by closed curves is presented. 

. Partial derivative of  image velocity f ield 

This is the most commonly stressed approach. It is based on recovering a 
dense field of image velocities and computing the partial derivatives using 
discrete approximation to derivatives [126] or a least squares estimation of 
the affine transformation parameters from the image velocities estimated 

by spatio-tcmporal methods [163, 47]. The recovery of the image velocity 
field is usually computationally expensive and ill-conditioned. 

. Point velocities in a small ne ighbourhood 

The image velocities of a minimum of three points in a small neighbour- 
hood are sufficient, in principle, to estimate the components of the affine 
transformation and hence the differential invariants [116, 130]. In fact it 
is only necessary to measure the change in area of the triangle formed 
by the three points and the orientations of its sides. However this is the 
minimum information. There is no redundancy in the data and hence 
this requires very accurate image positions and velocities. In [53] this is 
attempted by tracking large numbers of "corner" features [97, 208] and us- 
ing Delaunay triangulation [33] in the image to approximate the physical 

world by planar facets. Preliminary results showed that  the localisation of 
"corner" features was insufficient for reliable estimation of the differential 

invariants. 

. Relative orientation of  line segments 

Koenderink [121] showed how tcmporal texture density changes can yield 
estimates of the divergence. He also presented a method for recovering 
the curl and shear components that  employs the orientations of texture 

elements. 

From (5.10) it is easy to show that  the change in orientation (clockwise), 
Ar of an element with orientation r is given to first order by [124] 

A r  curlq 1 
T + def~Tsin2(r (5.34) 

Orientations arc not affected by the divergence term. They are only af- 
fected by the curl and deformation components. In particular the curl 
component changes all the orientations by the same amount. It does not 
affect the angles between the image edges. These are only affected by the 
deformation component. The relative changes in orientation can be used to 
recover deformation in a simple way since thc effects of the curl component 
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are cancelled out. By taking the difference of (5.34) for two orientations, 

r and r it is easy to show (using simple trigonometric relations) that  

the relative change in orientation specifies both the magnitude, def~7, and 

axis of expansion of the shear, it, as shown below. 

= dof  [sio,   01, os  /] 2 P " (5.30) 

Measurement at three oriented line segments is sufficient to completely 

specify the deformation components. Note that  the recovery of deforma- 

tion can be done without any explicit co-ordinate system and even without 

a reference orientation. The main advantage is that  point velocities or par- 

tial derivatives are not required. Koenderink proposes this method as being 

well suited for implementation in a physiological setting [121]. 

4. C u r v e s  a n d  c losed  c o n t o u r s  

We have seen how to estimate the differential invariants from point and line 

correspondences. Sometimes these are not available or are poorly localised. 

Often we can only reliably extract portions of curves (although we can not 

always rely on the end points) or closed contours. 

Image shapes or contours only "sample" the image velocity field. At con- 

tour edges it is only possible to measure the normal component of image 

velocity. This information can in certain cases be used to recover the im- 

age velocity field. Waxman and Wohn [211] showed how to recover the 

full velocity field from the normal components of image contours. In prin- 

ciple, measurement of eight normal velocities around a contour allow the 

characterisation of the full velocity field for a planar surface. Kanatani  

[115] also relates line integrals of image velocities around closed contours 

to the motion and orientation parameters of a planar contour. We will 

not a t tempt  to solve for these parameters directly but only to recover the 

divergence and deformation. 

In the next section, we analyse the changing shape of a closed contour 

(not just  samples of normal velocities) to recover the differential invariants. 

Integral theorems exist which express the average value of the differential 

invariants in terms of integrals of velocity around boundaries of regions. 

They deal with averages and not point properties and will potentially have 

better immunity to noise. Another advantage of closed curves is that  point 

or line correspondences are not required. Only the correspondence of image 

shapes. 
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5.4 Recovery  of  differential  invariants from closed 
contours 

It has been shown that  the differential invariants of the image velocity field 

conveniently characterise the changes in apparent shape due to relative motion 

between the viewer and scene. Contours in the image sample this image velocity 

field. It is usually only possible, however, to recover the normal image velocity 

component from local measurements at a curve [202, 100]. It is now shown that  

this information is often suffmient to estimate the differential invariants within 

closed curves. Moreover, since we are using the integration of normal image 

velocities around closed contours to compute average values of the differential 

invariants, this method has a noise-defeating effect leading to reliable estimates. 

The approach is based on relating the temporal derivative of the area of a 

closed contour and its moments to the invariants of the image velocity field. This 

is a generalisation of the result derived by Maybank [148], in which the rate of 

chang(; of area scaled by area is used to estimate the divergence of the image 

velocity field. 

The advantage is that  it is not necessary to track point features in the image. 

Only the correspondence between shapes is required. The computationally diffi- 

cult, ill-conditioned and poorly defined process of making explicit the full image 

velocity field [100] is avoided. Moreover , areas can be estimated accurately, even 
when the full set of first order derivatives can not be obtained. 

The moments of area of a contour are defined in terms of an area integral 

with boundaries defined by the contour in the image plane (figure 5.4); 

f~ fdxdy (5.36) I] = (0 

where a(t) is the area of a contour of interest at t ime t and f is a scalar function 

of image position (x, y) that  defines the moment of interest. For instance setting 

f = 1 gives the zero order moment of area (which we label I0). This is simply 

the area of tile contour. Setting f = x or f = y gives the first-order moments 

about the image x and y axes respectively. 

The moments of area can be measured directly from the image (see below 

for a novel method involving the control points of the B-spline snake). Better 

still, their temporal derivatives can also be measured. Differentiating (5.36) with 
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Figure 5.4: The temporal evolution of image contours. 
For small fields of view the distortion in image shape can be described locally 
by an afJine transformation. The components of the aJfine transformation can 
be expressed in terms of contour integrals of normal image velocities. More 
conveniently the temporal derivatives of the area and its moments can be used to 
characterise the distortion in apparent shape and the affine transformation. 
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respect to time and using a result from calculus [61] it can be shown that  s 

d d [f~ fdxdy] (5.37) 
d U ( b )  - dt (t) 

= ~ [fq.nP]ds (5.38) 
dc (t) 

where q.n p is the normal component of the image velocity "7 at a point on the 

contour. Note that  the temporal derivatives of moments of area are simply 

equivalent to integrating the normal image velocities at the contour weighted by 

a scalar f (x,  y). 
By Green's theorem, an integral over the contour c(t), can be re-expressed 

as an integral over the area enclose(] by the contour, a(t). The right-hand side 

of (5.38) can be re-expressed as: 

d-td (Iy) = J~(t)[div(fxT)]dxdy (5.39) 

= [ [ fd iv ,7+(q .g rad f ) ]dxdy  (5.40) 
Ja (t) 

= [ [fdiv~7 + fxU + fyv]dxdy (5.41) 
Ja (t) 

Assuming that the image velocities can be represented by (5.8) in the area of 

interest, i.e. by constant partial derivatives: 

d-t (If) = uo [f~ldxdy + u~ [xf, + f]dxdy + uy [yf~ldxdy (5.42) 
(t) (t) (t) 

(0 (t) (t) 

The left hand side is the temporal derivative of the moment of area described by 

f .  The integrals on the right-hand side are simply moments of area (which are 

directly measurable). The coefficients of each term are the required parameters 

of the affine transformation. Tile equations are geometrically intuitive. The 
image velocity field deforms the shape of contours in the image. Shape can be 

described by moments of area. Hence measuring the change in the moments of 

area is an alternative to describing the transformation. In this way the change 

in the moments of area have been expressed in terms of the parameters of the 

affine transformation. 

8This  equa t i on  can  be  der ived by cons ider ing  t he  flux l ink ing  the  a r ea  of the  con tour .  T h i s  
changes  wi th  tim(; s ince the  con tou r  is carr ied by the  veloci ty  field. T h e  flux field in our  
e x a m p l e  does  no t  change  wi th  t ime.  Similar  in tegra ls  a p p e a r  in fluid mechan ics ,  e.g. t he  flux 
transport theorem [61]. 
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If we initially set up the x - y co-ordinate system at the centroid of the 

image contour of interest so that the first moments are zero, equation (5.42) 

with f = x and f -- y shows that the centroid of the deformed shape specifics 

the mean translation [u0, v0]. Setting f = 1 leads to the extremely simple and 

powerflfl result that  the divergence of the image velocity field can be estimated 

as the derivative of area scaled by area. 

dIo 
dt = Io(u~ + vy) (5.43) 

da(t) _ a(t)div~7. (5.44) 
dt 

Increasing the order of the moments, i.e. different values of f (x,  y), generates 

new equations and additional constraints. In principle, if it is possible to find 

six linearly independent equations, we can solve for the affine transformation 

parameters and combine the co-efficients to recover the differential invariants. 

The validity of the affine approximation can be checked by looking at the error 

between the transformed and observed image contours. The choice of which 

moments to use is a sul)jcct for further work. Listed below are some of the 

simplest equations which have been useful in the experiments presented here. 

lo 0 
/~ Io 

d • = 0 
dt I~ 2I~ 

Iv2 0 

0 Io 0 0 Io 
0 2I~ Iy 0 I~ 
Io i~ o i~ 2i~ 
0 3I~ 2I~ v 0 t ~  

I~  4I~u 31~,~v: I~  2[~u 

?.t o 

V0 

Ux 
~y 

Vx 
Vy 

�9 (5.45) 

(Note that  in this equation subscripts are used to label the moments of area. 

The left-hand side represents the temporal derivative of the moments in the 

column vector.) In practice certain contours may lead to equations which are 

not independent or ill-conditioned. The interpretation of this is that  the normal 

components of image velocity are insutlicicnt to recover the true image velocity 

field globally, e.g. a fronto-parallel circle rotating about the optical axis. This 

was termed the "aperture problem in the large" by Waxman and Wohn [211] 

and investigated by Berghom and Carlsson [19]. Note however, that  it is always 

possible to recover the divergence from a closed contour. 

5.5 I m p l e m e n t a t i o n  and  e x p e r i m e n t a l  r e s u l t s  

5.5.1 Tracking closed loop contours 

The implementation and results follow�9 Multi-span closed loop B-spline snakes 

(introduced in Chapter 3) are used to localise and track closed image contours. 
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The B-spline is a curve in the image plane 

x(s) = ~ f~(s)q,  (5.46) 
i 

where fi are the spline basis functions with coefficients Qi (control points of the 

curve) and s is a curve parameter (not necessarily arc length). The snakes are 

initialised as points in the centre of the image and are forced to expand radially 

outwards until they were in the vicinity of an edge where image "forces" make 

the snake stabilise close to a high contrast closed contour. Subsequent image 

motion is automatically tracked by the snake. 
B-spline snakes have useful properties such as local control and continuity. 

They also compactly represent image curves. In our applications they have the 

additional advantage that  the area enclosed is a simple function of the control 

points. This also applies to the other area moments. 

From Green's theorem in the plane it is easy to show that  the area enclosed 
by a curve with parameterisation x(s) and y(s) is given by: 

f.N a = x ( s ) y ' ( 8 ) e s  (5.47) 
0 

where x(s) and y(s) are the image plane components of the B-spline and y'(s) 

is the derivative with respect to the curve parameter s. 

For a B-spline, substituting (5/t6) and its derivative: 

f sN a(t) = E E(Qx'QyJ)fifJ ds (5.48) 
o i j 

= ~ ( Q x ~ Q y J )  ~sN fif~ds. (5.49) 
i j so 

Note that  for each span of the B-splinc and at each time instant the basis func- 

tions remain unchanged. The integrals can thus be computed off-line in closed 

form. (At most 16 coefficients need be stored. In fact due to symmetry there are 

only 10 possible values for a cubic B-splinc). At each time instant multiplication 

with the control point positions gives the area enclosed by the contour. This 

is extremely efficient, giving the exact area enclosed by the contour. The same 

method can be used for higher moments of area as well. 

5 . 5 . 2  R e c o v e r y  o f  t i m e  t o  c o n t a c t  a n d  s u r f a c e  o r i e n t a t i o n  

Here we present the results of a preliminary implementation of the theory. The 

examples are based on a camera mounted on a robot arm whose translations 

are deliberate while the rotations around the camera centre are performed to 
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keep the target of interest in the centre of its field of view. The camera intrinsic 

parameters (image centre, scaling factors and focal length) and orientation are 

unknown. The direction of translation is assumed known and expressed with 

bounds due to uncertainty. 

Figures 5.5 to 5.10 show the results of these techniques applied to real image 

sequences from the Adept robot workspace, as well as other laboratory and 

outdoor scenes. 

Col l i s ion  a v o i d a n c e  

It is well known that image divergence can be used in obstacle collision avoidance. 

Nelson and Aloimonos [163] demonstrated a robotics system which computed di- 

vergence by spatio-temporal  techniques applied to the images of highly textured 

visible surfaces. We describe a real-time implementation based on image con- 
tours and "act" on the visually derived information. 

Figure 5.5a shows a camera mounted on an Adept robot manipulator and 

pointing in the direction of a target contour - the lens of a pair of glasses on 

a mannequin. (We hope to extend this so that the robot initially searches by 

rotation for a contour of interest. In the present implementation, however, the 

target object is placed in the centre of the field of view.) 

The closed contour is then localised automatically by initialising a closed 
loop B-spline snake in the centre of the image. The snake "explodes" outwards 

and deforms under the influence of image forces which cause it to be at t racted 

to high contrast edges (figure 5.5b). 

The robot manipulator then makes a deliberate motion towards the target. 

Tracking the area of the contour (figure 5.5c) and computing its rate of change 

allows us to estimate the divergence. For motion along the visual ray this is 

sufficient information to estimate the time to contact or impact. The estimate 

of time to contact - decreased by the uncertainty in the measurement and any 

image deformation (5.32) - is used to guide the manipulator so that  it stops 

just before collision (figure 5.5d). The manipulator in fact, travels "blindly" 

after its sensing actions (above) and at a uniform speed for the t ime remaining 

until contact. In repeated trials image divergences measured at distances of 

0.5m to 1.0m were estimated accurately to the nearest half of a t ime unit. This  

corresponds to a positional accuracy of 20mm for a manipulator translational 

velocity of 40mm/s.  

The affine transformation approximation breaks down at close proximity to 

the target. This may lead to a degradation in the estimate of time to contact 

when very close to the target. 
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Figure 5.5: Using image divergence for collision avoidance. 

A CCD camera mounted on a robot manipulator (a) fixates on the lens of a 
pair of glasses worn by a mannequin (b). The contour is localised by a B-spline 
snake which "expands" out from a point in the centre of the image and deforms 
to the shape of a high contrast, closed contour (the rim of the lens). The robot 
then executes a deliberate motion towards the target. The image undergoes an 
isotropic expansion (divergence)(c) which can be estimated by tracking the closed 
loop snake and monitoring the rate of change of the area of the image contour. 
This determines the time to contact - a mcasure of the distance to the target in 
units of time. This is used to guide the manipulator safely to the target so that 
it stops before collision (d). 
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Figure 5.6: Using image divergence to estimate time to contact. 

Four samples of a video sequence taken from a moving observer approaching a 
stationary car at a uniform velocity (approximately lm per time unit). A B- 
spline snake automatically tracks the area of the rear windscreen (figure 5.7). 
The image divergence is used to estimate the time to contact (figure 5.8). The 
next image in the sequence corresponds to collision! 
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Figure 5.7: Apparent area of windscreen for approaching observer. 
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Figure 5.8: Estimated time to contact for approaching observer. 
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Braking 

Figure 5.6 shows a sequence of images taken by a moving observer approaching 

the rear windscreen of a stationary car in front. In the first frame (time t = 0) 

the relative distance between the two cars is approximately 7m. The velocity of 

approach is uniform and approximately l m / t i m e  unit. 

A B-spline snake is initialised in the centre of the windscreen, and expands 

out until it localises the closed contour of the edge of the windscreen. The snake 
can then automatically track the windscreen over the sequence. Figure 5.7 plots 

the apparent area, a(t) (relative to the initial area, a(0)) as a function of time, t. 

For uniform translation along the optical axis the relationship between area and 

time is given (from (5.26) and (5.44)) by solving the first-order partial differential 

equation: 

d(a(t))= ( ~ - ~ ) a ( t ) .  (5.50) 

Its solution is given by: 

a(t) - a(O) (5.51) 

where to(0) is the initial estimate of the time to contact: 

to(0 / = A(0) (5.52/ 
U .q  

This is in close agreement with the data. This is more easily seen if we look at 

the variation of the time to contact with time. For uniform motion this should 

decrease linearly. The experimental results are plotted in Figure 5.8. These are 

obtained by dividing the area of the contour at a given time by its temporal  

derivative (estimated by finite differences), 

tc( t)-  2a(t) (5.53) 
at(t)" 

Their  variation is linear, as predicted. These results are of useful accuracy, 

predicting the collision time to the nearest half t ime unit (corresponding to 

50cm in this example). 

For non-uniform motion the profile of the time to contact as a function of t ime 

is a very important  cue for braking and landing reactions. Lee [133] describes 

experiments in which he shows that humans and animals can use this information 

in number of useful visual tasks. He showed that a driver must brake so that  

the rate of decrease of the time to contact does not exceed 0.5. 

d (tc(t)) > -0 .5 .  (5.54) 
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The derivation of this result is straightforward. This will ensure that  the vehicle 

can decelerate uniformly and safely to avoid a collision. As before, neither 

distance nor velocity appear explicitly in this expression. More surprisingly the 

driver needs no knowledge of the magnitude of his deceleration. Monitoring the 

divergence of the image velocity field affords sufficient information to control 

braking reactions. In the example of tigure 5.6 we have shown that  this can be 

done extremely accurately and reliably by montitoring apparent areas. 

Landing reactions and object manipulation 

If the translational motion has a component parallel to the image plane, the 
image divergence is composed of two components. The first is the component 

which determines immediacy or time to contact. The other term is due to image 
foreshortening when the surface has a non-zero slant. The two effects can be 

separately computed by measuring the deformation. The deformation also allows 

us to recover the surface orientation. 

Note that unlike stereo vision, the magnitude of the translation is not needed. 

Nor are the camera parameters (focal length; aspect ratio is not needed for 

divergence) known or calibrated. Nor are the magnitudes and directions of 

the camera rotations needed to keep the target in the field of view. Simple 

measurements of area and its moments - obtained in closed form as a function 

of the B-spline snake control points - were used to estimate divergence and 

deformation. The only assumption was of uniform motion and known direction 

of translation. 

Figures 5.9 show two examples in which a robot manipulator uses these esti- 

mates of time to contact and surface orientation in a number of tasks including 

landing (approaching perpendicular to object surface) and manipulation. The 

tracked image contours are shown in figure 5.2. These show the effect of di- 

vergence (figure 5.2a and b) when the viewer moves towards the target, and 

deformation (figures 5.2c and d) due to the sideways component of translation. 

Qualitative visual navigation 

Existing techniques for visual navigation have typically used stereo or the anal- 

ysis of image sequences to determine the camera ego-motion and then the 3D 

positions of feature points. The 3D data  are then analysed to determine, for 
example, navigable regions, obstacles or doors. An example of an alternative 

approach is presented. This computes qualitative information about the orien- 

tation of surfaces and times to contact from estimates of image divergence and 

deformation. The only requirement is that  the viewer can make deliberate move- 

ments or has stereoscopic vision. Figure 5.10a shows the image of a door and 
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Figure 5.9: Visually guided landing and object manipulation. 

Figures 5.9 shows two examples in which a robot manipulator uses the estimates 
of time to contact and surface orientation in a number of tasks including landing 
(approaching perpendicular to object surface) and manipulation. The tracked 
image contours used to estimate image divergence and deformation are shown 
in figure 5.2. 
In (a) and (b) the estimate of the time to contact and surface orientation is used 
to guide the manipulator so that it comes to rest perpendicular to the surface 
with a pre-determined clearance. Estimates of divergence and deformation made 
approximately lm away were sufficient to estimate the target object position and 
orientation to the nearest 2cm in position and 1 ~ in orientation. 
In the second example, figures (c) and (d), this information is used to position a 
suction gripper in the vicinity of the surface. A contact sensor and small probing 
motions can then be used to refine the estimate of position and guide the suction 
gripper before manipulation. An accurate estimate of the surface orientation is 
essential. The successful execution is shown in (c) and (d). 
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Figure 5.10: Qualitative visual navigation using image divergence and deforma- 
tion. 

(a) The image of a door and an object of interest, a pallet. (b) Movement towards 
the door and pallet produces a deformation in the image seen as an expansion 
in the apparent area of the door and pallet. This can be used to determine the 
distancc to these objects, expressed as a time to contact - the time needed for the 
viewer to reach the object if  it continued with the same speed. (c) A movement 
to the left produces combinations of image deformation, divergence and rota- 
tion. This is immediately evident from both the door (positive deformation and 
a shear with a horizontal axis of expansion) and the pallet (clockwise rotation 
with shear with diagonal axis of expansion). These effects, combined with the 
knowledge that the movement between the images, are consistent with the door 
having zero tilt, i.e. horizontal direction of increasing depth, while the pallet has 
a tilt of approximately 90 ~ i.e. vertical dircction of increasing depth. They are 
sufficient to determine the orientation of thc surface qualitatively (d). This has 
been done with no knowledge of the intrinsic properties of the camera (camera 
calibration), its orientations or the translational velocities. Estimation of diver- 
gence and deformation can also be recovered by comparison of apparent areas 
and the orientation of edge segments. 
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an object of interest, a pallet. Movement towards the door and pallet produce a 

deformation in the image. This is seen as an expansion in the apparent area of 

the door and pallet in figure 5.10b. This can be used to determine the distance 

to these objects, expressed as a time to contact - the time needed for the viewer 

to reach the object if the viewer continued with the same speed. The image 

deformation is not significant. Any component of deformation can, anyhow, be 

absorbed by (5.32) as a bound on the time to contact. A movement to the left 

(figure 5.10c) produces image deformation, divergence and rotation. This is im- 

mediately evident from both the door (positive deformation and a shear with 

a horizontal axis of expansion) and the pallet (clockwise rotation with shear 

with diagonal axis of expansion). These effects with the knowledge of the di- 

rection of translation between the images taken at figure 5.10a and 5.10c are 
consistent with the door having zero tilt, i.e. horizontal direction of increasing 

depth, while the pallet has a tilt of approximately 90 ~ i.e. vertical direction 

of increasing depth. These are the effects predicted by (5.25, 5.26, 5.27 and 

5.28) even though there are also strong perspective effects in the images. They 

are sufficient to determine the orientation of the surface qualitatively (Figure 

5.10d). This has been done without knowledge of the intrinsic properties of the 

cameras (camera calibration), the orientations of the cameras, their rotations or 

translational velocities. No knowledge of epipolar geometry is used to determine 

exact image velocities or disparities. The solution is incomplete. It can, however, 
be easily augmented into a complete solution by adding additional information. 

Knowing the magnitude of the sideways translational velocity, for example, can 

determine the exact quantitative orientations of the visible surfaces. 
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Conclusions  

6.1 Summary 

This thesis has presented theoretical and practical solutions to the problem of 

recovering reliable descriptions of curved surface shape. These have been de- 

veloped from the analysis of visual motion and differential surface geometry. 

Emphasis has been placed on computational methods with built-in robustness 

to errors in the measurements and viewer motion. 

It has been demonstrated that practical, efficient solutions to robotic prob- 

lems using visual inferences can be obtained by: 

1. Formulating visual problems in the precise language of mathematics and 

the methods of computation. 

2. Using geometric cues such as the relative image motion of curves and the 

deformation of image shapes which have a resilience to and the ability to 

recover from errors in image measurements and viewer motion. 

3. Allowing the viewer to make small, local controlled movements - active 

vision. 

4. Taking advantage of partial, incomplete solutions which can be obtained 

efficiently and reliably when exact quantitative solutions are cumbersome 

or ill-conditioned. 

These theories have been implemented and tested using a novel real-time 

tracking system based on B-spline snakes. The implementations of these theories 

are preliminary, requiring considerable effort and research to convert them into 

working systems. 
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6.2 F u t u r e  w o r k  

The research presented in this thesis has since been extended. In conclusion we 

identify the directions of future work. 

Singular apparent contours 

In Chapter 2 the epipolar parameterisation was introduced as the natu- 

ral parameterisation for image curves and to recover surface curvature. 

However the epipolar parameterisation is degenerate at singular appar- 

ent contours - the viewing ray is tangent to the contour generator (i.e an 

asymptotic direction of a hyperbolic surface patch) and hence the ray and 

contour generator do not form a basis for the tangent plane. The epipolar 

parameterisation can not be used to recover surface shape. Giblin and 

Soares [84] have shown how for orthographic projection and planar mo- 

tion it is still possible to recover the surface by tracking cusp under known 
viewer motion. The geometric framework presented in Chapter 2 can be 

used to extended this result to arbitrary viewer motion and perspective 

projection. 

Structure and motion of curved surfaces 
This thesis has concentrated on the recovery of surface shape from known 

viewer motion. Can the deformation of apparent contours be used to 

solve for unknown viewer motion? This has been considered a difficult 

problem since each viewpoint generates a different contour generator with 

the contour generators "slipping" over the visible surface under viewer 

motion. Egomotion recovery requires a set of corresponding features visible 

in each view. Porril and Pollard [174] have shown how epipolar tangency 

points - the points on the surface where the epipolar plane is tangent to 

the surface - are distinct points that  are visible in both views. Rieger [181] 

showed how in principle these points can be used to est imate viewer motion 

under orthographic projection and known rotation. This result can be 

generalised to arbitrary motion and perspective projection. 

Global descriptions of shape 

The work described in this thesis has recovered local descriptions of surface 

shape based on differential surface geometry. Combining these local cues 

and organising them into coherent groups or surfaces requires the applica- 
tion of more global techniques. Assembling fragments of curves and strips 

of surfaces into a 3D sketch must also be investigated. 

�9 Task-directed sensor planning 

The techniques presented recover properties of a scene by looking at it from 
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different viewpoints. The strategies that  should be used to choose the next 

viewpoint so as to incrementally describe the scene or accomplish a task 

requiring visual information must also be investigated. This requires being 

able to quantify the utility of exploratory movements so that  they can be 

traded off against their cost. These  ideas will be applicable to both visual 

navigation, path planning and grasping strategies. 

Visual attention and geometric invariants 

In the implementations presented in this thesis the object of interest has 

been placed in an uncluttered scene to allow the snake tracker to extract 

and follow the contour of interest. In less structured environments the 

system itself must find objects or areas of interest to which it can divert 

its own visual attention. We are presently investigating how to recognise 

target contours under arbitrary viewpoints. In principle it should be pos- 

sible to recognise planar contours and to group the apparent contours of 

surfaces of revolution viewed under weak perspective by affine differential 

and integral invariants. 

Visual tracking 

Finally the B-spline snake and the availability of parallel processing hard- 
ware, e.g. the Transputer, are ripe for application to real-time visual track- 

ing problems. The automatic initialisation of B-spline snakes on image 

edges, the adaptive choice of the number and position of the control points 

and the control of the feature search are current areas of research. B-spline 
snakes with reduced degrees of freedom, for example B-splines which can 

only deform by an affine transformation, will offer some resilience to track- 

ing against background clutter. 



Appendix A 

Bibliographical Notes  

A.1 Stereo  v is ion 

As a consequence of the inherent ambiguity of the perspective imaging process 
an object feature's 3D position cannot readily be inferred from a single view. 
Human vision overcomes this problem in part by using multiple images of the 
scene obtained from different viewpoints in space. This is called stereopsis [168, 

152]. In computer vision the respective paradigm is "shape from stereo" [146, 
147, 152, 10, 165, 171, 8]. 

Binocular stereo is the most generally applicable passive method of deter- 
mining the 3D structure of a scene. The basis of stereo algorithms is that  the 
distance to a point in the scene can be computed from the relative difference in 
position of the projection of that point in the two images. It requires images of 
surfaces with sufficient texture so that distinguishing features can be identified; 
calibration of viewpoints; and it can only be used for features visible in both 
viewpoints. 

The processing involved in stereopsis includes matching features that  corre- 
spond to the projection of the same scene point (the correspondence problem); 
extracting disparity (the difference in image position) and then using knowledge 
of the camera geometry to recover the 3D structure of the objects in the scene. 
The most difficult part of the computation is the correspondence problem: w h a t  
to m a t c h  (pixel intensities [177], zero crossings [147, 90], edge pixels [171], line 
segments [8], complete high level primitives such as boundaries of closed contours 
[191]) and how to  m a t c h  i t  [147, 10, 152, 171, 165, 8]. 

Constraints that can be used by stereo algorithms include: 

1. Epipolar constraint: This is a constraint derived from the imaging ge- 
ometry. The line connecting the focal points of the camera systems is called 
the stereo baseline. Any plane containing the stereo baseline is called an 
epipolar plane.The intersection of an epipolar plane with an image plane 
is called an epipolar line. The projection of a point P must lie on the 
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intersection of the plane that  contains the stereo baseline and the point P 

and the image planes. Every point on a given epipolar line in one image 

must correspond to a point on the corresponding epipolar line in the other 

image (figure 2.6, 3.9 and 3.10). This constraint reduces the search space 

from two dimensions to one. 

. C o n t i n u i t y  o f  sur faces :  Most surfaces in the real world are smooth 

in the sense that local variations in the surface are small compared with 

the overall distance from the viewer. Disparities vary smoothly except at 

object boundaries [146, 147, 90]. 

3. U n i q u e n e s s :  Each matching primitive should match at most one primi- 

tive from the other image [146, 147]. 

4. O r d e r i n g  C o n s t r a i n t :  In a continuous surface edges must be ordered in 

the same way along corresponding epipolar lines unless one object lies in 

front of another or is transparent [10]. 

. F i g u r a l  C o n t i n u i t y :  Edges along a contour should match edges along 

a similar contour in the other image, i.e. surface structure is preserved. 

Along matched contours, disparity should vary smoothly [152]. 

. D i s p a r i t y  G r a d i e n t  L imi t :  Nearby matches m u s th av e  similar dispar- 

ities while more distant matches can have a greater disparity difference 

[171, 176]. 

The correspondence problem has dominated many computat ional  and psy- 

chophysical investigations. The correspondence problem is particularly difficult 

in the presence of occluding boundaries (since features are then only visible to 

one eye/camera) and semi-transparent surfaces such as fences or windows (since 

the ordering constraint may not be obeyed and a disparity gradient of two is pos- 

sible along epipolar lines [101] ). Correspondence methods are often disrupted 

by viewpoint dependent features such as extremal boundaries or specularities 

(highlights) [38]. The eyes do not see the same physical feature and the stereo 

output  will be incorrect. 

Area-based (correlation) algorithms are not robust since the photometric 

properties of a scene are not in general invariant to viewing position as the 

technique assumes. Although for lambertian surfaces the shading pattern is ef- 

fectively stuck to the surface and independent of view, a surface region which is 

tilted relative to the baseline and projected into one image will in general have 

a different image area to the same region projected in the other image (per- 

spective compression of matching window or "foreshortening"). Small baseline 
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stereo Mgorithms employing these techniques have however been successful with 

lambertian surfaces [177, 13]. 

Traditionally stereo has been considered as a module independent of other 

early vision processes/modules. The input to the stereo process may however be 

ambiguous and it may be preferable to use stereo models that  use information 

from other vision processes. 

Jenkin and Tsotsos [112],Waxman and Duncan [209] and Cipolla and Ya- 

mamoto  [54] have at tempted to unify stereo and motion analysis in a manner 

which helps to ow;rcome the others shortcomings and by having motion as an 

additional cue in stereo matching. 

Some researchers have also used knowledge about the proposed surface to 

resolve ambiguity in the stereo matching problem - integrating matching and 

surface interpolation [101, 170, 153]. 

A . 2  S u r f a c e  r e c o n s t r u c t i o n  

It is widely believed that vision applications demand a dense array of depth 

estimates. Edge based stereo methods cannot provide this because the features 

are usually sparsely and irregularly distributed over the image. PsychophysicM 

experiments with the interpretation of random-dot stereograms have shown that 

even with sparse data  the human visual system arrives at unique interpretations 

of surface shape - the perception of dense and coherent surfaces in depth [113]. 

The visual system must invoke implicit assumptions (which reflect the general 

expectations about the properties of surfaces) to provide additional constraints. 

Surface reconstruction is the generation of an explicit representation of a 

visibh; surface consistent with information derived from various modules (using 

each process as an independent source of partial information: motion and stereo 

for local depth and monocular cues of texture, contours and shading for local 

orientation). Mart [144] describes an intermediate view-centred visible surface 
representation - a 2 1/2 D sketch - which can be used for matching to vol- 

umetric, object centred representations. This has been pursued by a number 

of researchers with visual surface reconstruction being required to perform in- 

terpolation between sparse data; constraint integration and the specification of 

depth discontinuities (occluding contours) and orientation discontinuities (sur- 

face creases). 

From sparse data, however, it is impossible to determine a unique solution 

surface. It is necessary to invoke additional constraints. The general approach to 

surface reconstruction is to trade off errors in the data  to obtain the smoothest  
surface that  passes near the data. The plausibility of possible surfaces are ranked 

in terms of smoothness. 
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Grimson [90] used the techniques of variational calculus to fit a surface which 

maximises a measure of "smoothness" - -  a regularisation term which encour- 

ages the surface to be smooth. He chose a regulariser known as the quadratic 

variation (formally, a Sobolev semi-norm [35]). Grimson's argument in favour 

of quadratic variation involves two steps. First in a Surface Consistency theory 

(p130, [90]) he states that  for surfaces with constant albedo and isotropic re- 
flectance the absence of zero-crossings in the laplacian of the Gaussian (v2G)  

image means that  it is unlikely that  the surface has a high variation. He calls 

this constraint "No news is good news" because the absence of information is 

used as a smoothness constraint for the underlying surface. In the second step 

he aims to enforce this by minimising the quadratic variation in areas in which 

there are no zero-crossings. The derivation is not rigorous however. Minimis- 

ing the surface's quadratic variation in an area is an a t tempt  to minimise the 

probability of a surface inflection occurring whereas the interpretation of the 

surface consistency theory is that the surface has at most one surface inflection 

in the absence of zero-crossings [32]. The implementation of the "no news is 

good news" constraint is too restrictive and as with most methods whose Mm is 

explicit surface reconstruction it suffers from over-commitment to a particular 

surface in the absence of sufficient information. Blake and Zisserman [31] also 

show that  the reconstructed surface is viewpoint dependent and would "wob- 

ble" as the viewpoint is changed even though the surfaces are unchanged. This 

severely limits the usefulness of this and similar approaches. The success of the 

quadratic variation term arises from the pleasing appearance of reconstructed 

surfaces. This is because it is physically analogous to the energy of a thin plate. 

Grimson's methods presupposed the segmentation into different surfaces since 

it can not localise discontinuities. Arguably the most important  use of surface 

reconstruction from sparse data  is to provide information for the segmentation 
process. Other researchers have extended variational techniques to localise dis- 

continuities [192, 30]. The problem has also been formulated in terms of prob- 

abilities [83, 185]. These methods are all computationally expensive; consider 

deviations to be a consequence of noise only (and hence do not allow other 
uncertainties due to insufficient information to be represented) and suffer from 

over-commitment. Blake and Zisserman [31] argue that surface reconstruction 

methods that  Mm to include discontinuities suffer from the gradient limit in 

which smooth but  slanted surfaces are considered less coherent than some sur- 

faces with discontinuities. 

An alternative approach to surface reconstruction by variational methods is 

to iit parameterised geometric models to the sparse depth array after clustering 

to find the subsets of points in three-dimensional space corresponding to sig- 

nificant structures in the scene. Surface models have including anything from 
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planes via quadrics to superquadrics. All the elements in a coherent set lie on 

some surface in a family within some tolerance to allow for noise [57, 20, 101]. 

No surface model is however general enough not to break down sometimes. 

A.3 S tructure  from m o t i o n  

Interpreting motion in space by a monocular sensor and reconstructing the depth 

dimension from images of different viewpoints are fundamental features of the 

human visual system. This is called the kinetic depth effect [206] or kineopsis 

[160]. In computer vision the respective paradigm is shape from monocular 

motion or structure from motion [201, 138]. 

Monocular image sequence analysis to determine motion and structure is 

based on the assumption of rigid body motion and can be broadly divided into 

2 approaches: continuous and discrete. The optic flow approach relates im- 

age position and optic flow (2D velocity field that arises from the projection of 

moving objects on to image surface) to the underlying 3D structure and mo- 

tion. These methods e i t h e r  require image velocities of points on the same 

3D surface (continuous flow fields : for example [105],[1]) or  accurate estima- 

tion of image velocity and its 1st and 2nd order spatial derivatives (local flow 

fields: for example [123, 138, 210]). Another approach for larger discrete mo- 

tions extracts tokens from images in a sequence and matches them from image 

to image to recover the motion and structure of the environment (for example : 

[135, 159, 196, 197, 219, 72, 93, 214]). 

Inherent difficulties include: 

�9 T h e  t e m p o r a l  c o r r e s p o n d e n c e  p r o b l e m :  There is an aperture prob- 

lem in obtaining optical flow locally [201], [105] and a correspondence 

problem in matching tokens in discrete views. 

�9 T h e  s p e e d - s c a l e  a m b i g u i t y :  It is impossible to determine 3D structure 

and motion in absolute terms for a monocular observer viewing unfamiliar 
objects. Both are only discernible up to a scale factor, i.e. the image mo- 

tion due to a nearby object moving slowly cannot be distinguished from 

far-away object moving quickly. Thus it is only possible to compute dis- 

tance dimensionless quantities such as the time to contact [189] or infer 

qualitative information, e.g. looming [202]. 

�9 b a s - r e l i e f  a m b i g u i t y :  In addition to the speed-scale ambiguity a more 
subtle ambiguity arises when perspective effects in images are small. The 

bas-relief ambiguity concerns the difficulty of distinguishing between a 

"shallow" structure close to the viewer and "deep" structures further away 

[95, 94]. Note that  this concerns surface orientation and its effect, unlike 
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the speed-scale ambiguity (which leaves the structure undistorted), is to 
distort the structure. 

�9 Deal ing wi th  mul t ip le  moving objects:  This require segmentation of 

images into objects with the same rigid body motion [1]. 

Assumpt ion  of  r igidity:  Most theories cannot cope with multiple in- 
dependent motion; with non-rigidity (and hence cxtremal boundaries or 
specularities) and large amounts of noise [194]. Unfortunately the out- 
put of most existing algorithms does not degrade gracefully when these 

assumptions are not fully met. 

Existing methods perform poorly with respect to accuracy,  sensitivity to 
noise, and robus tness  in the face of errors. This is because it is difficult 

to estimate optic flow accurately [15], or extract the position of feature points 
such as corners in the image [164, 93]. Features cannot lie on a plane (or on a 
quadric through the two viewpoints) since these configurations of points lead to 

a degenerate system of equations [136, 150]. 

A.4 M e a s u r e m e n t  and analysis  of  v isual  m o t i o n  

The computation of visual motion can be carried out at the level of points, edges, 
regions or whole objects. Three basic approaches have been developed based on 
difference techniques, spati0-temporal gradient analysis and matching of tokens 

or features from image to image. 

A . 4 . 1  D i f f e r e n c e  t e c h n i q u e s  

In many visual tracking problems not all the image is changing. It is often de- 
sirable to eliminate the stationary components and focus attention on the areas 
of the image which are changing. The most obvious and efficient approach is to 
look at difference images in which one image is subtracted from the other (pixel 
by pixel, or in groups of pixels) and the result is thresholded to indicate signif- 
icant changes. Clusters of points with differences above threshold are assumed 
to correspond to portions of moving surfaces [111]. 

Although difference techniques are good at detecting temporal change they 
do not produce good velocity estimates. They are also only useful when dealing 
with moving objects with a stationary observer. They are however extremely 

fast and easy to implement. 
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A . 4 . 2  S p a t i o - t e m p o r a l  g r a d i e n t  t e c h n i q u e s  

These methods are based on the relation between the spatial and temporal gra- 

dients of intensity at a given point. The s p a t i o - t e m p o r a l  g r a d i e n t  approach 

aims to estimate the motion of each pixel from one frame to the next based 

on the fact that for a moving object the image spatial and temporal  changes 

are related. Consider the xy plane as the image plane of the camera and the z 
axis be the optical axis. The image sequence can be considered a time function 

with the intensity of a point (x, y) at time t given by I(x, y, t). If the intensity 

distribution near (x, y) is approximated by a plane with gradients (Ix, Iu) and 

if this distribution is translated by u in the x-direction and v in the y-direction 

then 

Ixu + Iyv + I~ = 0 (A.1) 

where Ix,Iy,It are the spatial and temporal gradients 

This is the Motion Constraint equation [45, 77, 105]. By measuring the spa- 
tial and temporal gradients at a point it is possible to obtain a constraint on the 

image velocity of the point - namely it is possible to to compute the component 

of velocity in the direction of the spatial gradient. This equation assumes that  

the temporal change at a pixel is due to a translation of the intensity pattern.  

This model is only an approximation. The apparent motion of an intensity pat- 

tern may not be equivalent to the motion of 3D scene points projected into the 

image plane. These assumptions are usually satisfied at strong gradients of im- 

age intensity (the edges) in images and hence image velocity can be computed 

at edge points. It is only possible locally to determine the component of ve- 

locity perpendicular to the orientation of the edge. This is called the aperture 

Problem. 

Spatio-temporal methods have had widespread use in visual motion measure- 

ment and applications because they do not involve an explicit correspondence 

stage - deciding what to match and how to match it. These methods have 

also been implemented using special purpose vision hardware - the Datacube 

[11, 39, 162] and even with purpose built VLSI chips [108]. 

A . 4 . 3  T o k e n  m a t c h i n g  

Token matching techniques establish the correspondence of spatial image fea- 
tures - tokens - across frames of an image sequence. These methods have played 

a very important  role in schemes to obtain 3D shape from image velocities (see 

below). 

Tokens are usually based on local intensity structures, especially significant 

points (corners) or edges (lines and curves). 
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1. C o r n e r  d e t e c t i o n  

Initial a t tempts  at corner detection a t tempted  to characterise images by 

smooth intensity functions. Corners are defined to be positions in the im- 

age in which both the magnitude of the intensity gradient is large as well 

as the rate of change of gradient direction. This requires the computa t ion  

of second order spatial derivatives in order to be able to compute  a "cur- 

vature" in a direction perpendicular to the intensity gradient. A corner is 

defined as a position which maximises [68, 119, 164]: 

(i.2) 
I ~  + I y  v 

The computat ion of second order differentials is however very sensitive to 

noise and consequently the probabili ty of false corner detection is high. A 

parallel implementat ion of this type of corner detector has been successfully 

developed at Oxford [208]. The detector uses a Datacube processor and 

an array of 32 T800 Transputers (320 MIPS) and a Sun workstation. For 

accurate corner localisation the directional derivatives are computed on 

raw intensities and avoid smoothing. The corner detector and tracker can 

track up to 400 corners at 7Hz. 

An alternative approach to corner detection is by "interest operators" [157, 

97] The underlying assumption is that  tokens are associated with the max-  

ima of the local autocorrelation function. Moravec's corner detector (in- 

terest operator) functions by considering a local window in the image and 

determining the average changes of image intensity that  result f rom shift- 

ing the window by a small amount  in various directions. If  the windowed 

patch is a corner or isolated point then all shifts will result in a large 

change .  This was used to detect corners. The Moravec operator  suffered 

from a number  of problems, for instance that  it responds to edges as well 

as corners. 

Harris and Stephens [97] have reformulated the Moravec operator and suc- 

cessfully implemented a corner detector based on the local autocorrelation 

at each point in the image. These are expressed in terms of Gaussian 

smoothed first order spatial derivatives. A high value of autocorrelation 

indicates the inability to translate a patch of the image in arbi trary direc- 

tions without experiencing a change in tile underlying intensities. Hence 

the value of autocorrelation can be used to indicate the presence of local- 

isable features. 
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2. T ime varying edge de tec t ion  

Although corners (having 2D image structure) and the intersection of edges 
carry a high information content (no aperture problem) the technology for 
detecting these features is not as advanced or accurate as that for detecting 
edges (with 1D image structure) in images. 

Contrast edges in images are sudden intensity changes which give rise to 
maxima or minima in the first spatial derivative and hence a zero-crossing 
(passing from positive to negative) in the second derivative. Mart and 
tlildreth [145] proposed finding edges in images by the zero-crossings in 

the Laplacian of a Gaussian filtered image. An approximation to this filter 
(:an be obtained by using the difference of two Gaussians (DOG). The 
importance of the technique is that it proposed finding edges at different 
resolutions. 

Canny [48] formulated finding edges in images in terms of good detection 
(low probability of failing to mark real edges in the presence of image 
noise), good localisation (marked edges should be as close as possible to 
true edges) and a single response to an edge. Using a precise formulation 
in terms of detection and localisation and the calculus of variations Canny 
argued that, for step edges, the optimal detector was well approximated 
by a convolution with a symmetric Gaussian and directional second spatial 
derivatives to locate edges. This is equivalent to looking for zeros of the 
second derivative in direction perpendicular to the edge. The width of the 
Gaussian filter is chosen as a compromise between good noise suppression 
and localisation. The Canny e(lgc detector has found widespread use in 
Computer Vision. Unfortunately real-time implementations have been re- 
stricted by the "hysteresis" stage of the algorithm in which weak edges are 
revived if they connect with strong edges and in which edges are thinned. 
Convolutions have also been computationally expensive. Recently it has 
been possible to produce version of the Canny edge finder operating at 

5Hz using a Datacube [65]. 

3. Spa t io - tempora l  filters 
If we consider the image sequence to be a 3D image with time (frame 
number) as the third dimension, an edge in a frame will appear as a plane 
in tile 3D image. The output of a 3D edge ope ra to r  will thus give 
the relative magnitudes of the spatial and temporal gradients Buxton and 
Buxton [44] developed such a spatio-temporal filter. Heeger [98] extracts 
image velocities from the output of a set of spatio-temporal filters. A bank 
of 24 spatio-temporal Gabor filters runs continuously in each neighbour- 
hood of a time-varying image. Each of the filters is tuned for a different 
spatial frequency and range of velocities. The output of the bank of filters 
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. 

is interpreted by a least-squares filter in terms of a single moving edge of 

variable orientation. Fahle and Poggio [70] have shown that  the ability of 

human vision to interpolate visual motion - -  that  is to see jerky motion as 

smooth ones, as in cinema film - -  is well explained in terms of such filter 

banks, tteegcr gives an impressive display of performance of the method. 

An image sequence (a flight through Yosemite valley!) is processed by 

the filter bank to compute image velocities at all points. Then the time- 

varying motion field is applied to the first image frame of the sequence, 

causing the image to "evolve" over time. The result turns out to be a 

good reconstruction of the image sequence. This "proves" the quality of 

the recovered motion field. 

C r o s s - c o r r e l a t i o n  

Cross-correlation techniques assume that  portions of the image move as 

a whole between frames. The image distortions induced by unrestricted 

motion of objects in space pose difficult problems for these techniques 

[139, 167]. 

A . 4 . 4  K a l m a n  f i l t e r i n g  

Kalman filtering is a statistical approach to linearly and recursively estimating 

a time-varying set of parameters ( a state vector) fl'om noisy measurements . 

The Kalman filter relates a dynamic system model and the statistics of error 
in that  model to a linear measurement model with measurement error. It has 

been applied to tracking problems in vision, mostly where the system model 

is trivial but  the measurement model may be more complex [7, 92, 66]. For 

example edge segments in motion may be unbiased measures of the positions of 

underlying scene edges, but with a complex noise process which is compounded 

from simpler underlying pixel measurements. The Kalman filter maintains a 

dynamic compromise between absorbing new measurements as they are made 

and maintaining a memory of previous measurements. The next effect is that  (in 

a simple filter) the filter has a memory of length A seconds so that  measurements 

t seconds previous are given a negatively exponential exp(- t / ,~)  weighting. The 

memory-length parameter ), is essentially the ratio of measurement noise to 

system noise. In practice, in a multivariate filter, the memory mechanism is 

more complex, with many exponential t ime constants running simultaneously. 

The full potential of the Kalman filter is not as yet exploited in vision. There 

is an opportunity to include non-trivial system models, as is common in other 

applications. For example if a moving body is being tracked, any knowledge of 

the possible motions of that  body should be incorporated in the system model. 

The ballistics of a thrown projectile can be expressed as a multivariate linear 
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differential equation. Similarly planar and linear motions can be expressed as 

plant models. 

A . 4 . 5  D e t e c t i o n  o f  i n d e p e n d e n t  m o t i o n  

The ability to detect moving objects is universal in animate systems because 

moving objects require special attention - -  predator or prey? Detecting move- 

ment is also important  in robotic systems. Autonomous vehicles must avoid 

objects that  wander into their paths and surveillance systems must detect in- 

truders. 

For a stationary observer the simple approach (above) of difference images 

can be used to direct more sophisticated processing. For a moving observer 

the problem is more difficult since everything in the image may be undergoing 

apparent motion. The pattern of image velocities may also be quite complex. 

This problem is addressed by Nelson [162]. He presents a qualitative approach 

based on the fact that if the viewer motion is known the 2D image velocity of 

any stationary point in the scene must be constrained to lie on a 1-D locus in 

velocity - equivalent to the Epipolar constraint in stereo vision. The projected 

motion for an independently moving object is however unconstrained and is 

unlikely to fall on this locus. Nelson develops this constraint in the case of 

partial, inexact knowledge of the viewer's motion. In such cases he classifies 
the image velocity field as being one of a number of canonical motion fields - -  

for example, translational image velocities due to observer translation parallel 

to the image plane. An independent moving object will be detected if it has 

image velocities with a component in the opposite direction of the dominant  

motion. Another example is that of image velocities expanding from the centre 

due to a viewer motion in the direction of gaze. Components of image velocity 

towards the origin would then indicate an independently moving object. These 

algorithms have been implemented using Datacube image processing boards. It 

processes 512 x 512 images, sub-sampled to 64 x 64 at 10Hz. Normal components 

of image velocity are computed using the spatial- temporal  gradient approach. 

These velocities are then used characterise the image velocity field as being one 

of the canonical forms. The canonical form then determines a filter to detect 

independently moving objects. 

A . 4 . 6  V i s u a l  a t t e n t i o n  

Animate vision systems employ gaze control systems to control the position of 

the head and eyes to to acquire, fixate and stabilise images. The main types of 

visual skills performed by the gaze controllers are: 
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Saccadic mot ions  to shift attention quickly to a new area of interest without 
doing any visual processing; 

Foveal f ixat ion to put the target on the fovea and hence help to remove 
motion blur; 

Vergence to keep both eyes fixated on an object of interest and hence reduce 
tile disparities between the images as well as giving an estimate of the 

depth of the object; 

Smooth  pursu i t  to track an object of interest; 

Vest ibulo-ocular  reflex (VOR) to stabilise the image when the head is 
moving by using knowledge of the head motion; 

Opto-kinet ic  reflex using image velocities to stabilise the images. 

A number of laboratories have attempted to duplicate these dynamic visual 
skills by building head-eye systems with head and gaze controllers as well as 

focus and zoom control of the cameras [58, 132, 39, 11]. 

A . 5  M o n o c u l a r  s h a p e  c u e s  

A . 5 . 1  S h a p e  f r o m  s h a d i n g  

Shape from shading is concerned with finding ways of deducing surface orienta- 
tion from image intensity values [102, 109, 217, 103]. However image intensity 
values do not only depend on surface orientation alone but they also depend 
On how the surface is illuminated and on the surface reflectance function. Algo- 
rithms for reconstructing surfaces from shading information aim to reconstruct a 
surface which is everywhere consistent with observed image intensities. With as- 
sumptions of a known reflectance map, constant albedo and known illumination 
Horn [102] showed how differential equations relating image intensity to surfacc 
orientation could be solved. 

The most tenuous of tile necessary assumptions is that of known illumination. 
Mutual illumination effects (light bouncing off one surface and on to another be- 
fore entering the eyes) are almost impossible to treat analytically when interested 

in recovering shape [79, 80]. 
As a consequence it is unlikely that shape from shading can be used to give 

robust quantitative information. It may still be possible however, to obtain 
incomplete but robust descriptions. Koenderink and van Doom [128] have sug- 
gested that even with varying illumination local extrema in intensity "cling" to 
parabolic lines. They show that a fixed feature of the field of isophotes is the di- 
rection of the isophotes at the parabolic lines. Alternatively this can be expressed 
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as the direction of the intensity gradient is invariant at the parabolic lines. This 

can be used to detect parabolic points [32]. This invariant relationship to solid 

shape is an important  partial descriptor of visible surfaces. Description is in- 
complete or partial but robust since it is insensitive to illumination model. It is 

a qualitative shape descriptor. 

A.5.2 Interpreting line drawings 

There are a number of different things that can give rise to intensity changes: 

shadows and other illumination effects; surface markings; discontinuities in sur- 

face orientation; and discontinuities in depth. From a single image it is very 

difficult to tell from which of these 4 things an edge is due. An important  key to 

the 3D interpretation of images is to make explicit these edges and to separate 

their causes. 

Interpreting line drawings of polyhedra is a well-researched subject, having 

been investigated since 1965 [183, 91]. The analyses and resulting algorithms are 

mathematically rigorous. Interpreting line drawings of curved surfaces, however, 

still remains an open problem. 

The analysis of line drawings consists of 2 components: assignment of quali- 
tative line and junction labels and quantitative methods to describe the relative 

depths of various points. 

Geometric edges of an image can be labelled as convex, concave or occluding. 

All possible trihedral junctions can be catalogued and labelled as one of 12 types 

[107, 56]. Each line can only be assigned one label along its length. A constraint 

propagation algorithm [207] (similar to relaxation labelling [63]) is used to assign 

a set of consistent labels which may not, however, be unique if the drawing is 

ambiguous, e.g. necker reversal [89]. 

Even though line drawings may have legal labellings they may nonetheless be 

uninterpretable as drawings of polyhedra because they violate such conditions as 
planarity of edges of a face. Quantitative information such as the orientation of 

lines and planes is needed. Two approaches exist. Mackworth [140] presented a 

geometric approach using gradient space (image to plane orientation dual space) 

to derive a mutual constraint on the gradients of planes which intersect. Sugihara 

[190] reduced the line drawing after line labelling to a system of linear equations 

and inequalities and the interpretation of 3D structures is given as the solution 

of a linear programming problem. 

With curved objects other labels can occur and unlike a line generated by 

an edge of a polyhedral object (which has just one label along its entire length) 

curved surface labels can change midway. Turner [200] catalogued these line la- 
bels and their possible transformations for a restricted set of curved surfaces and 

found an overwhelming number of junction types even without including surface 
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markings and lines due to shadows and specularities. His junction catalogue was 

too large to make it practical. 

Malik with the same [141] exclusions at tempted to label lines as being discon- 

timfities in depth (extremal boundaries (limbs) or tangent plane discontinuities) 

or discontinuities in orientation (convex or concave). He clearly expounded some 

of the geometric constraints. 

As with other methods the output of line interpretation analysis is always in- 

complete. A major limitation is the multiplicity of solutions. The pre-processing 

to determine whether a line is a surface marking has not been developed. For 

real images with spurious and missing lines many junctions would be incorrectly 

classified. The algorithms however assume a 100% confidence in the junction 

labels. This is particularly severe for line drawings of curved surfaces which 

require the accurate detection of junctions. It is, for example, difficult to detect 

the difference between a L junction and a curvature-L junction in which one 

section is an cxtremal boundary. Their lack of robustness in the face of errors 

and noise and the presence of multiple/ambiguous solutions limit their use in 

real visual applications. 

A.5.3 Shape from contour 

Shape from contour methods at tempt  to infer 3D surface orientation information 

from the 2D image contour in a single view. Shape from contour methods differ 

in the assumptions they make about the underlying surfaces and surface contours 

to allow them to recover 3D surface orientation information from a single view. 

These include: 

* Isotropy of surface contour tangent directions [216]: the distribution of 

tangents in the image of an irregularly shaped planar curve can be used to 

determine the orientation of the plane. 

�9 Extremal boundary [17]: If the object is smooth and its extremal boundary 

segmented the orientation of the surface at the extremal boundary can be 

determined. 

�9 Planar skewed symmetries [114]: Skewed symmetries of the image contour 

are interpreted as projections of real orientated symmetries to give a one- 

parameter family of possible planar surface orientations. 

�9 Compactness of surface [37]: The extremum principle expresses the pref- 

erence for symmetric or compact 3D planar surfaces. 

�9 Curved skewed symmetries and parallelism [188]: Parallel curves and the 

projection of lines of curvature on a surface can be used to determine 

surface orientation. 
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�9 Generalised cylinders [144]: the occluding contour of objects made of gen- 

eralised cylinders can be used to determine the sign of curvature of the 

surface. 

The disadvantages of these methods is that they are restricted to a particular 

surface and surface contour and that they are required to make a commitment 

on insufficient information. They do not allow for the inherent uncertainty. In 

the absence of high-level model driven processes, however, it is impossible to 

make such unique quantitative inferences. 

A . 5 . 4  S h a p e  f r o m  t e x t u r e  

Shape from texture methods aim to recover surface orientation from single 

images of textured surfaces. This is achieved by making strong assumptions 

about the surface texture. These include homogeneity (uniform density distri- 

bution of texture elements - texels) or isotropy (uniform distribution of orien- 

tations) [86, 216, 117, 62, 28, 142]. Density gradients or the distribution of 

orientations of texture elements in the image are then interpreted as cues to 

surface shape. 

A.6 Curved  surfaces 

A.6.1 Aspect graph and s i n g u l a r i t y  t h e o r y  

For polyhedral objects it is possible to partit ion a view sphere of all possible 

views into cells or regions/volumes with identical aspects [127], i.e. the topology 

of the line drawing does not change. A typical/generic view is associated with 
an open cell on the viewing sphere. For orthographic projection the cells are 

bounded surfaces on the view sphere. For perspective projection the cells are 

3D volumes of viewing space. In general, for small movements of the vantage 

point the qualitative description of the view (aspect) does not change. If a 

boundary is crossed the view can undergo a sudden, substantial change. 

The viewing sphere can be decomposed into cells by boundary lines which 

label the transitions between views. Two aspects are said to be connected by 

an event and the set of all aspects has a structure of a connected graph. This 

is called the aspect graph [127]. The boundaries are directly related to the 

geometry of the polyhedral object: namely they correspond to the directions in 

which planes disappear or reappear. Gigus and Canny [87] have a t tempted to 

compute the aspect graphs of polyhedral objects. 

For a general smooth object there are an infinite number of possible views. 

To make the problem tractable it is necessary to restrict attention to generic 
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situations - situations which are stable under small deformations. This is equiv- 

alent in the context of vision to meaning views from a general viewpoint that  

are stable to small excursions in vantage. 

A large body of mathematics - -  singularity theory - -  exists concerning the 

class of mappings from 2D manifolds to 2D manifolds and the singularities of the 

mapping [215, 88, 6] (see [64] for summary of major theories). T h e  projection 

of a smooth surface is an example of such a surface to surface mapping. The 
singularities of the mapping for a smooth, featureless surface constitute the 

apparent contour or view. Whitney [215] showed that  from a generic/general 

viewpoint these singularities can be of two types only: folds (a smooth one- 

dimensional sub-manifold) or cusps (isolated points). 

As with the analysis of polyhedra it is possible to parti t ion the view sphere 

into cells whose views are qualitatively similar. The boundaries separating the 

cells are the view directions along which a transition in views occurs as a result 

of the creation or elimination of cusps. Koenderink and others [125, 40, 46, 

180] have taken the results of singularity theory to classify all possible generic 

transitions which can occur in the projected contour. These are either local ( 

swallowtail transition, beak to beak and lip) or multi-local transitions (triple 
point, cusp crossing, or tangent crossing). Callahan has related these transitions 

and the decomposition of the view sphere to the geometry of the object 's surfaces 

- -  in particular the surface's parabolic and flecnodal curves. 

The aspect graph represents in a concise way any visual experience an ob- 

server can obtain by looking at the object when traversing any orbit through 

space. This representation is, however, very difficult to compute and few at- 

tempts have been made at computing it for typical objects. It may be possible 

to simplify the aspect graph by introducing the effects of scale and excluding 

events that  can not be detected. 

The manner in which singularities change over time can provide constraints 

for determining an object 's structure and conveying qualitative solid shape in- 

formation. If in addition it is augmented with quantitative information such as 

surface curvatures it may prove to be a useful representation. 

A . 6 . 2  S h a p e  f r o m  s p e c u l a r i t i e s  

Specularities (highlights or brilliant points) are reflected, distorted images of a 
light source obtained from surfaces with a specular component of reflectance. 

Although they may disrupt stereo processing the behaviour of specularities 

under viewer motion contain valuable surface geometry cues. Koenderink and 

Van Doorn [128] elegantly expound the qualitative behaviour of specularities as 

the vantage point is moved. In particular they show that  specularities travel 

freely in elliptic or hyperbolic regions and speed up near parabolic lines. They 
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are created or annihilated in pairs at the parabolic lines and just before creation 

or destruction they move transversely to such lines. They travel most slowly in 

regions of high curvature and hence, for a given static view are most likely to be 

found in regions of high curvature. 

Blake and Brelstaff [22, 25, 38] describe the detection of specularities and 

how to obtain local geometric information from two views provided the position 

of the light source is known. In particular, they show that the measurement 

of the stereo disparity of a specularity near a surface marking constrains the 

principal curvatures of the underlying surface to lie on a hyperbolic constraint 

curve. They show that the monocular appearance of a specularity can provide 

an additional constraint when it is elongated for then its axis is approximately 

the projection of a line of least curvature if the light source is compact.  

Zisserman et al. [220] show that  for a known viewer motion and without 

knowing the light source direction it is possible to disambiguate concave and 

convex surfaces. They also show that if the light source position is known, the 

continuous tracking of the image position of a specularity can be used to recover 

the locus of the reflecting points if the 3D position of at least one point is known. 
The required point can be found when the curve crosses an edge whose position 

is known from binocular stereo. 
Specularities provide a powerful cue to surface geometry. However, they are 

usually sparsely distributed. 



A p p e n d i x  B 

O r t h o g r a p h i c  p r o j e c t i o n  a n d  p l a n a r  

m o t i o n  

A simplified derivation of the analysis of Giblin and Weiss [85] is presented. This 

shows how surface curvature can be recovered from image accelerations at an 
apparent contour. The analysis presented is valid for orthographic projection 

and planar viewer motion. 

We wish to recover the planar contour r(0) from its orthographic projection 

w(0) where 0 is the orientation of the image plane (see figure B.1). In particular 

we would like to recover the distance to the contour, A, and the curvature, n. 

From elementary differential geometry [76] and figure B. 1 these are given by: 

-- r . T  (B.1) 
1 

-- ro .T (B.2) 

and the orthographic projection w is given by: 

w = r .N  (B.3) 

where T and N are the curve tangent and normal. Differentiating (B.3) with 

respect to O: 

WO = re .N + r.No (B.4) 

= r.T (u.5) 
(B.6) 

since the curve tangent re is of course perpendicular to the curve normal and 

the derivative of the normal with respect to 0 is the tangent. The reconstructed 

curve is then given by: 

r = wN + weT. (B.7) 

Differentiating again with respect to 0 we see that  

~o = (w + we0)T (B.8) 



App. B Orthographic projection 173 

I' 

r (e: 

depth s 

..... 

\ 

;.-% e ..-" do~ 
. . . . . .  ~. . . . . . . . . . . . . . . . . . . . . .  . . - .  ~ #  

. ' ' "  Of'~ ,'~0 E' 

\ i  r # 

Figure B.I: A smooth contour and its orthographic projection. 
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and the curvature (from (B.2)) is therefore 

1 
- (w + woo)" (B.9) 

Depth and curvature are obtained from first and second-order derivatives of the 

image with respect to viewer orientation. 



Appendix C 

Determining 5tt.n from the 
spatio-temporal image q(s, t) 

If the surface marking is a discrete point (image position q*) it is possible in 

principle to measure the image velocity, q~ and acceleration, q~'t, directly from 

the image without any assumption about viewer motion. This is impossible 

for a point on an image curve. Measuring the (real) image velocity qt (and 

acceleration q t t )  for a point on an image curve requires knowledge of the viewer 

motion - equation (2.35). Only the normal component of image velocity can be 

obtained from local measurements at a curve. It is shown below however that  

for a discrete point-curve pair, , ~ t t . n  - the normal component of the relative 
image acceleration - is completely determined from measurements on the spatio- 

temporal  image. This result is important  because it demonstrates the possibility 

of obtaining robust inferences of surface geometry which are independent of any 

assumption of viewer motion. 

The proof depends on re-parameterising the spatio-temporal image so that  it 

is independent of knowledge of viewer motion. In the epipolar parameterisation 

of the spatio-temporal image, q(s , t ) ,  the s-parameter curves were defined to 

be the image contours while the t-parameter curves were defined by equation 
(2.35) so that  at any instant the magnitude and direction of the tangent to a 

t-parameter curve is equal to the (real) image velocity, qt - more precisely ). 

A parameterisation which is completely independent of knowledge of viewer 

motion, q(g, t), where g(s,t) can be chosen. Consider, for example, a parame- 

terisation where the t-parameter curves (with tangent ~qt ) are chosen to be 

orthogonal to the ~-parameter curves (with tangent - ~  ) - the image contours. 
t 

Equivalently the t-parameter curves are defined to be parallel to the curve nor- 

mal n, 

O~ �9 = ~n (C.1) 

where ~ is the magnitude of the normal component of the (real) image velocity. 

Such a parameterisation can always be set up in the image. It is now possible 
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to express the (real) 
parameterisation. 

image velocities and accelerations in terms of the new 

Oq s (C.2) qt = cq-t- 

cq2q s (C.4) qtt -- 02 t 

Cq2$ ~tt_[_ (Cqg[ ~ c~2q COg 0 (~t e) t_l_ 02 q 

(C3g ~ 2 02q O~t s 0 (cOq) t .n+ C32q ~ (C.5) qtt.n = \(-~-Is] - ~  t " n + 2  ~ -~- e - ~ -  .n. 

0g From (C.3) we see that (NI8) determines the magnitude of the tangential 
component of image curve velocity and is not directly available from the spatio- 
temporal image. The other quantities in the right-hand side of the (C.5) are 
directly measurable from the spatio-temporal image. They are determined by 
the curvature of the image contour, the variation of the normal component of 
image velocity along the contour and the variation of the normal component of 
image velocity perpendicular to the image contour respectively. 

However the discrete point (with image position q*) which is instantaneously 
aligned with the extremal boundary has the same image velocity, q~, as the point 
on the apparent contour. Fl'om (2.35): 

q = q* (C.6) 

qt = q;. (C.7) 

Since q2 is measurable it allows us to determine the tangential component of 
the image velocity 

0___q 

=O~t s qt .  Or t (C.8) 
- ~__q$ t 2 

and hence qtt.n and ~t t .n  from spatio-temporal image measurements. 



A p p e n d i x  D 

Correct ion  for paral lax based  
m e a s u r e m e n t s  w h e n  image  points  

not co inc ident  
are 

The theory relating relative inverse curvatures to the rate of paral lax assumed 

that  the two points q(L) and q(2) were actually coincident in the image, and that  

the underlying surface points were also coincident and hence at the same depth 

A(1) = A(2). In practice, point pairs used as features will not coincide exactly. 

We analyse below the effects of a finite separation in image positions Aq,  and a 

difference in depths of the 2 features, AA. 

(1 (2) = q 

q(1) _- -  q + Aq 

A (2) = A 

A (1) = A + AA 

q(2).n = 0 

q(1).n = Aq .n  

(D.1) 

If the relative inverse curvature is computed from (2.59) , 

A R =  (U'n)2 1 
A 3 5 t t . n '  (D.2) 

an error is introduced into the est imate of surface curvature due to the fact tha t  

the features are not instantaneously aligned nor at the same depth nor in the 

same tangent plane. 

R (2) - R (1) = A R  + R ~ ~  

where R er~~ consists of errors due to the 3 effects mentioned above. 

(D.3) 

R ~'r~ = R A:' + R ~ q  -{- R n (D.4) 
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These are easily computed by looking at the differences of equation (2.56) f o r  
the 2 points. Only first-order errors are listed. 

3 4U.q b U t . h i  
R ~  = ~ ~ + ~ + ( u . ~ ) ~ J  

[2A(U.q) (n  A q).n (D.5) 
+ ~  i (v..)~ 

RAq 
U.n  

~(U^n).n]  
+ (U.n)~ J 

2A2(U.(f)(~2 A q).n 

A2Ut.q 
R n = 6.n L(U.n)2 

(U.n) 2 (U.n) 2 

2~,~(C.q)(n ̂  a).I~ :,~(n.a)(n.n) + 
(U.n)~ (U.~)~ 

~lVl 2 (V.q) 1 2A(U.q)2.] 
(U.n) 2 + U.--n ~;t2 + (U.n)2 J 

[ ~2~-A q)'U :~ln12 ] (D.7) 
-a.n i (v.n)2 + (u.~)---~ 

(D.6) 
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