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This time for my son, Max, 
who dreams of robots.
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INTRODUCTION

The word robot is commonly defined as a mechanical device capable of per-
forming human tasks, or behaving in a human-like manner. No argument here.
The description certainly fits.

But to the robotics experimenter, “robot” has a completely different meaning.
A robot is a special brew of motors, solenoids, wires, and assorted electronic odds
and ends, a marriage of mechanical and electronic gizmos. Taken together, the
parts make a half-living but wholly personable creature that can vacuum the floor,
serve drinks, protect the family against intruders and fire, entertain, educate, and
lots more. In fact, there’s almost no limit to what a well-designed robot can do.

In just about any science, it is the independent experimenter who first estab-
lishes the pioneering ideas and technologies. Robert Goddard experimented with
liquid-fuel rockets during World War I; his discoveries paved the way for modern-
day space-flight. In the mid-1920s, John Logie Baird experimented with sending
pictures of objects over the airwaves. His original prototypes, which transmitted
nothing more than shadows of images, were a precursor to television and video.

Robotics—like rocketry, television, and countless other technology-based
endeavors—started small. But progress in the field of robots has been painfully
slow. Robotics is still a cottage industry, even considering the special-purpose
automatons now in wide use in automotive manufacturing. What does this mean
for the robotics experimenter? There is plenty of room for growth, with a lot of dis-
coveries yet to be made—perhaps more so than in any other high-tech discipline.

Inside Robot Builder’s Bonanza
Robot Builder’s Bonanza, Second Edition takes an educational but fun approach
to designing working robots. Its modular projects take you from building basic
motorized platforms to giving the machine a brain—and teaching it to walk and
talk and obey commands.

If you are interested in mechanics, electronics, or robotics, you’ll find this
book a treasure chest of information and ideas on making thinking machines. The
projects in Robot Builder’s Bonanza include all the necessary information on how
to construct the essential building blocks of a personal robot. Suggested alterna-
tive approaches, parts lists, and sources of electronic and mechanical components
are also provided where appropriate.

Several good books have been written on how to design and build your own
robot. But most have been aimed at making just one or two fairly sophisticated
automatons, and at a fairly high price. Because of the complexity of the robots
detailed in these other books, they require a fairly high level of expertise and
pocket money on your part.

ix
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Robot Builder’s Bonanza is different. Its modular “cookbook” approach offers
a mountain of practical, easy to follow, and inexpensive robot experiments. Taken
together, the modular projects in Robot Builder’s Bonanza can be combined to
create several different types of highly intelligent and workable robots of all
shapes and sizes—rolling robots, walking robots, talking robots, you name it.
You can mix and match projects as desired.

About the Second Edition
This book is a completely revised edition of Robot Builder’s Bonanza, first pub-
lished in 1987. The first edition of this book has been a perennial bestseller, and
is one of the most widely read books ever published on hobby robotics.

This new edition provides timely updates on the latest technology and adds
many new projects. In the following pages you’ll find updated coverage on
exciting technologies such as robotic sensors, robot construction kits, and
advanced stepper and DC motor control. Plus, you’ll find new information on
microcontrollers such as the Basic Stamp, digital compasses, open- and closed-
loop feedback mechanisms, new and unique forms of “soft touch” sensors
including those using lasers and fiber optics, radio-controlled servo motors, and
much, much more.

Book Updates
Periodic updates to Robot Builder’s Bonanza can be found at http://www.robot-
oid.com. You’ll find new and updated links to Web sites and manufacturer
addresses, a robot product and parts finder, tutorials on robot construction, a
robot builder’s discussion board, and more.

What You Will Learn
In the more than three dozen chapters in this book you will learn about a sweeping
variety of technologies, all aimed at helping you learn robot design, construction,
and application. You’ll learn about:

� Robot-building fundamentals. How a robot is put together using commonly
available parts such as plastic, wood, and aluminum.

� Locomotion engineering. How motors, gears, wheels, and legs are used to pro-
pel your robot over the ground.

� Constructing robotic arms and hands. How to use mechanical linkages to
grasp and pick up objects.

X INTRODUCTION
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� Sensor design. How sensors are used to detect objects, measure distance, and
navigate open space.

� Adding sound capabilities. Giving your robot creation the power of voice and
sound effects so that it can talk to you, and you can talk back.

� Remote control. How to operate and “train” your robot using wired and wire-
less remote control.

� Computer control. How to use and program a computer or microcontroller for
operating a robot.

…plus much more.

How to Use This Book
Robot Builder’s Bonanza is divided into six main sections. Each section covers a
major component of the common personal or hobby (as opposed to commercial
or industrial) robot. The sections are as follows:

� Robot Basics. What you need to get started; setting up shop; how and where to
buy robot parts.

� Robot Construction. Robots made of plastic, wood, and metal; working with
common metal stock; converting toys into robots; using LEGO parts to create
robots; using the LEGO Mindstorms Robotics Invention System.

� Power, Motors, and Locomotion. Using batteries; powering the robot; working
with DC, stepper, and servo motors; gear trains; walking robot systems; spe-
cial robot locomotion systems.

� Practical Robotics Projects. Over a half-dozen step-by-step projects for build-
ing wheels and legged robot platforms; arm systems; gripper design.

� Computers and Electronic Control. “Smart” electronics; robot control via a
computer or microcontroller; infrared remote control; radio links.

� Sensors and Navigation. Speech synthesis and recognition; sound detection;
robot eyes; smoke, flame, and heat detection; collision detection and avoid-
ance; ultrasonic and infrared ranging; infrared beacon systems; track guidance
navigation.

Many chapters present one or more projects that you can duplicate for your
own robot creations. Whenever practical, I designed the components as dis-
crete building blocks, so that you can combine the blocks in just about any
configuration you desire. The robot you create will be uniquely yours, and
yours alone.

I prefer to think of Robot Builder’s Bonanza not as a textbook on how to
build robots but as a treasure map. The trails and paths provided between these
covers lead you on your way to building one or more complete and fully func-
tional robots. You decide how you want your robots to appear and what you
want your robots to do.

INTRODUCTION XI
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Expertise You Need
Robot Builder’s Bonanza doesn’t contain a lot of hard-to-decipher formulas, unre-
alistic assumptions about your level of electronic or mechanical expertise, or
complex designs that only a seasoned professional can tackle. This book was writ-
ten so that just about anyone can enjoy the thrill and excitement of building a
robot. Most of the projects can be duplicated without expensive lab equipment,
precision tools, or specialized materials, and at a cost that won’t contribute to the
national debt!

If you have some experience in electronics, mechanics, or robot building in
general, you can skip around and read only those chapters that provide the infor-
mation you’re looking for. Like the robot designs presented, the chapters are very
much stand-alone modules. This allows you to pick and choose, using your time
to its best advantage.

However, if you’re new to robot building, and the varied disciplines that go
into it, you should take a more pedestrian approach and read as much of the book
as possible. In this way, you’ll get a thorough understanding of how robots tick.
When you finish with the book, you’ll know the kind of robot(s) you’ll want to
make, and how you’ll make them.

Conventions Used in This Book
You need little advance information before you can jump head first into this book,
but you should take note of a few conventions I’ve used in the description of elec-
tronic parts, and the schematic diagrams for the electronic circuits.

TTL integrated circuits are referenced by their standard 74XX number. The
common “LS” or “HC” identifier is assumed. I built most of the circuits using LS
or HC TTL chips, but unless otherwise indicated, the projects should work with
the other TTL families. However, if you use a type of TTL chip other than LS or
HC, you should consider current consumption, fanout, and other design criteria.
These may affect the operation or performance of the circuit.

The chart in Fig. I-1 details the conventions used in the schematic diagrams.
Note that nonconnected wires are shown by a direct cross or lines, or a broken
line. Connected wires are shown by the connecting dot.

Details on the specific parts used in the circuits are provided in the parts list
tables that accompany the schematic. Refer to the parts list for information on
resistor and capacitor type, tolerance, and wattage or voltage rating.

In all full circuit schematics, the parts are referenced by component type 
and number.

� IC# means an integrated circuit (IC).
� R# means a resistor or potentiometer (variable resistor).
� C# means a capacitor.

XII INTRODUCTION
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� D# means a diode, a zener diode, and, sometimes a light-sensitive  photodiode.
� Q# means a transistor and, sometimes, a light-sensitive phototransistor.
� LED# means a light-emitting diode (most any visible LED will do unless the

parts list specifically calls for an infrared or other special purpose LED).
� XTAL# means a crystal or ceramic resonator.
� Finally, S# means a switch; RL# means a relay; SPKR#, a speaker; TR#, a

transducer (usually ultrasonic); and MIC#, a microphone.

Enough talk. Turn the page and begin the journey. The treasure awaits you.

INTRODUCTION XIII

Input

Connected wires

Ground
Digital or computer signal;

TTL compatible

Output

Input

Unless otherwise indicated...

Gate, op-amp,
inverter, etc.

+V Power

Ground

Output

 Resistors
 in K Ohms

Capacitors
 in µF (microFarads) 

R1 C1

Unless otherwise indicated...

Voltage, analog sgnal,
non TTL-compatible

input or output

Unconnected Wires

FIGURE I.1 Schematic diagram conventions used in this book.
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PART1
ROBOT BASICS
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There he sits, as he’s done countless long nights before, alone and deserted in a
dank and musty basement. With each strike of his ball-peen hammer comes an
ear-shattering bong and an echo that seems to ring forever. Slowly, his creation
takes shape and form—it first started as an unrecognizable blob of metal and
plastic, then it was transformed into an eerie silhouette, then…

Brilliant and talented, but perhaps a bit crazed, he is before his time: a social
outcast, a misfit who belongs neither to science nor fiction. He is the robot exper-
imenter, and all he wants to do is make a mechanical creature that serves drinks
at parties and wakes him up in the morning.

Okay, maybe this is a rather dark view of the present-day hobby robotics exper-
imenter. But though you may find a dash of the melodramatic in it, the picture is
not entirely unrealistic. It’s a view held by many outsiders to the robot-building
craft. It’s a view that’s over 100 years old, from the time when the prospects of
building a human-like machine first came within technology’s grasp. It’s a view
that will continue for another 100 years, perhaps beyond.

Like it or not, if you’re a robot experimenter, you are an oddball, an egghead,
and—yes, let’s get it all out—a little on the weird side!

As a robot experimenter, you’re not unlike Victor Frankenstein, the old-
world doctor from Mary Wollstonecraft Shelley’s immortal 1818 horror-
thriller. Instead of robbing graves in the still of night, you “rob” electronic
stores, flea markets, surplus outlets, and other specialty shops in your unre-
lenting quest—your thirst—for all kinds and sizes of motors, batteries, gears,

1
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wires, switches, and other odds and ends. Like Dr. Frankenstein, you galvanize life from
these “dead” parts.

If you have yet to build your f irst robot, you’re in for a wonderful experience.
Watching your creation scoot around the floor or table can be exhilarating. Those
around you may not immediately share your excitement, but you know that
you’ve built something—however humble—with your own hands and ingenuity.

If you’re one of the lucky few who has already assembled a working robot, then you
know of the excitement I refer to. You know how thrilling it is to see your robot obey your
commands, as if it were a trusted dog. You know the time and effort that went into con-
structing your mechanical marvel, and although others may not always appreciate it (espe-
cially when it marks up the kitchen floor with its rubber tires) you are satisfied with the
accomplishment and look forward to the next challenge.

And yet if you have built a robot, you also know of the heartache and frustra-
tion inherent in the process. You know that not every design works and that even
a simple engineering flaw can cost weeks of work, not to mention ruined parts.
This book will help you—beginner and experienced robot maker alike—get the
most out of your robotics hobby.

The Building-block Approach
One of the best ways to experiment with—and learn about—hobby robots is to construct indi-
vidual robot components, then combine the completed modules to make a finished, fully func-
tional machine. For maximum flexibility, these modules should be interchangeable whenever
possible. You should be able to choose locomotion system “A” to work with appendage sys-
tem “B,” and operate the mixture with control system “C”—or any variation thereof.

The robots you create are made from building blocks, so making changes and updates is
relatively simple and straightforward. When designed and constructed properly, the build-
ing blocks, as shown in diagram form in Fig. 1.1, may be shared among a variety of robots.
It’s not unusual to reuse parts as you experiment with new robot designs.

Most of the building-block designs presented in the following chapters are complete,
working subsystems. Some operate without ever being attached to a robot or control com-
puter. The way you interface the modules is up to you and will require some forethought
and attention on your part (I’m not doing all the work, you know!). Feel free to experiment
with each subsystem, altering it and improving upon it as you see fit. When it works the way
you want, incorporate it into your robot, or save it for a future project.

Basic Skills
What skills do you need as a robot experimenter? Certainly, if you are already well versed
in electronics and mechanical design, you are on your way to becoming a robot experi-
menter extraordinaire. But an intimate knowledge of electronics and mechanical design is
not absolutely necessary.

4 THE ROBOT EXPERIMENTER
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All you really need to start yourself in the right direction as a robot experimenter is a
basic familiarity with electronic theory and mechanics (or time and interest to study the
craft). The rest you can learn as you go. If you feel that you’re lacking in either beginning
electronics or mechanics, pick up a book or two on these subjects at the bookstore or
library. See Appendix A, “Further Reading,” for a selected list of suggested books and
magazines. In addition, you may wish to read through the seven chapters in Part 1 of this
book to learn more about the fundamentals of electronics and computer programming.

ELECTRONICS BACKGROUND

Study analog and digital electronic theory, and learn the function of resistors, capacitors,
transistors, and other common electronic components. Your mastery of the subject need not
be extensive, just enough so that you can build and troubleshoot electronic circuits for your
robot. You’ll start out with simple circuits with a minimum of parts, and go from there. As
your skills increase, you’ll be able to design your own circuits from scratch, or at the very
least, customize existing circuits to match your needs.

Schematic diagrams are a kind of recipe for electronic circuits. The designs in this
book, as well as those in most any book that deals with electronics, are in schematic form.
You owe it to yourself to learn how to read a schematic. There are really only a few dozen
common schematic symbols, and memorizing them takes just one evening of concentrated
study. Several books have been written on how to read schematic diagrams, and the basics
are also covered in Chapter 5, “Common Electronic Components.” See also Appendix A
for a list of other suggested books on robotics.

THE BUILDING-BLOCK APPROACH 5

Obstacle
Detectors

Central Computer or
Control Circuitry

Drive Motors
or Legs

Arm

Gripper

Ultrasonic Ranger

Speech Synthesizer
for Voice

Sound Generator:
Music and Effects

Vision System

FIGURE 1.1 The basic building blocks of a fully functional robot, including cen-
tral processor (brain), locomotion (motors), and sensors (switches,
sonar, etc.).
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Sophisticated robots use a computer or microcontroller to manage their actions. In this
book you’ll find plenty of projects, plans, and solutions for connecting the hardware of
your robot to any of several kinds of robot “brains.” Like all computers, the ones for robot
control need to be programmed. If you are new or relatively new to computers and pro-
gramming, start with a beginners’ computer book, then move up to more advanced texts.
Chapter 7, “Programming Concepts—The Fundamentals,” covers programming basics.

MECHANICAL BACKGROUND

Some robot builders are more comfortable with the mechanical side of robot building than
the electronic side—they can see gears meshing and pulleys moving. Regardless of your
comfort level with mechanical design, you do not need to possess an extensive knowledge
of mechanical and engineering theory to build robots. This book provides some mechani-
cal theory as it pertains to robot building, but you may want to supplement your learning
with books or study aids.

There is a wealth of books, articles, and online reading materials on mechanical design
equations, and engineering formulas, so this book will not repeat the information. This
means we will have more room to describe more robotics projects you can experiment with.
Appendix A, “Further Reading,” and Appendix C, “Robot Information on the Internet,”
include a multitude of sources that provide good, solid design equations and formulas.

THE WORKSHOP APTITUDE

To be a successful robot builder, you must be comfortable working with your hands and
thinking problems through from start to finish. You should know how to use common
shop tools, including all safety procedures, and have some basic familiarity with working
with wood, lightweight metals (mostly aluminum), and plastic. Once more, if you feel
your skills aren’t up to par, read up on the subject and try your hand at a simple project
or two first.

You’ll find construction tips and techniques throughout this book, but nothing beats
hands-on shop experience. With experience comes confidence, and with both comes more
professional results. Work at it long enough, and the robots you build may be indistin-
guishable from store-bought models (in appearance, not capability; yours will undoubtedly
be far more sophisticated!).

THE TWO MOST IMPORTANT SKILLS

So far, I’ve talked about basic skills that are desirable for the hobby robotics field. There
are others. Two important skills that you can’t develop from reading books are patience
and the willingness to learn. Both are absolutely essential if you want to build your own
working robots. Give yourself time to experiment with your projects. Don’t rush into
things because you are bound to make mistakes if you do. If a problem continues to nag at
you, put the project aside and let it sit for a few days. Keep a small notebook handy and
jot down your ideas so you won’t forget them.

If trouble persists, perhaps you need to bone up on the subject before you can ade-
quately tackle the problem. Take the time to study, to learn more about the various sciences

6 THE ROBOT EXPERIMENTER
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and disciplines involved. While you are looking for ways to combat your current dilemma,
you are increasing your general robot-building knowledge. Research is never in vain.

Ready-Made, Kits, or Do It Yourself?
This is a wonderful time to be an amateur robot builder. Not only can you construct robots
“from scratch,” you can buy any of several dozen robot kits and assemble them using a
screwdriver and other common tools. If you don’t particularly like the construction aspects
of robotics, you can even purchase ready-made robots—no assembly required. With a
ready-made robot you can spend all your time connecting sensors and other apparatuses to
it and figuring out new and better ways to program it.

Whether you choose to buy a robot in ready-made or kit form, or build your own from
the ground up, it’s important that you match your skills to the project. This is especially
true if you are just starting out. While you may seek the challenge of a complex project, if
it’s beyond your present skills and knowledge level you’ll likely become frustrated and
abandon robotics before you’ve given it a fair chance. If you want to build your own robot,
start with a simple design—a small rover, like those in Chapters 8 through 12. For now,
stay away from the more complex walking and heavy-duty robots.

The Mind of the Robot Experimenter
Robot experimenters have a unique way of looking at things. They take nothing for granted:

� At a restaurant, it’s the robot experimenter who collects the carcasses of lobster and
crabs to learn how these ocean creatures use articulated joints, in which the muscles and
tendons are inside the bone. Perhaps the articulation and structure of a lobster leg can
be duplicated in the design of a robotic arm . . .

� At a county fair, it’s the robot experimenter who studies the way the “egg-beater” ride
works, watching the various gears spin in perfect unison. Perhaps the gear train can be
duplicated in an unusual robot locomotion system  . . .

� At a phone booth, it’s the robot experimenter who listens to the tones emitted when the
buttons are pressed. These tones, the experimenter knows, trigger circuitry at the phone
company office to call a specific telephone out of all the millions in the world. Perhaps
these or similar tones can be used to remotely control a robot . . .

� At work on the computer, it’s the robot experimenter who rightly assumes that if a com-
puter can control a printer or plotter through an interface port, the same computer and
interface can be used to control a robot . . .

� When taking a snapshot at a family gathering, it’s the robot experimenter who studies
the inner workings of the automatic focus system of the camera. The camera uses ultra-
sonic sound waves to measure distance and automatically adjusts its lens to keep things
in focus. The same system should be adaptable to a robot, enabling it to judge distances
and “see” with sound . . .

THE MIND OF THE ROBOT EXPERIMENTER 7
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The list could go on and on. The point? All around us, from nature’s designs to the lat-
est electronic gadgets, are an infinite number of ways to make better and more sophisti-
cated robots. Uncovering these solutions requires extrapolation—figuring out how to
apply one design and make it work in another application, then experimenting with the
contraption until everything works.

From Here
To learn more about . . . Read

Fundamentals of electronics Chapter 5, Common Electronic Components

Basics on how to read a schematic

Electronics construction techniques Chapter 6, Electronic Construction Techniques

Computer programming fundamentals Chapter 7, Programming Concepts—The
Fundamentals

Robot construction using wood, plastic, Chapters 8-10
and metal

Making robots from old toys found in Chapter 11, Constructing High-tech Robots from 
your closet Toys

What your robot should do Chapter 42, Tips, Tricks, and Tidbits for the
Robot Experimenter

Other sources about electronics and mechanics Appendix A, Further Reading
Appendix C, Robot Information on the Internet
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We humans are fortunate. The human body is, all things considered, a nearly
perfect machine: it is (usually) intelligent, it can lift heavy loads, it can move itself
around, and it has built-in protective mechanisms to feed itself when hungry or to
run away when threatened. Other living creatures on this earth possess similar
functions, though not always in the same form.

Robots are often modeled after humans, if not in form then at least in function.
For decades, scientists and experimenters have tried to duplicate the human body,
to create machines with intelligence, strength, mobility, and auto-sensory mech-
anisms. That goal has not yet been realized, but perhaps some day it will.

Nature provides a striking model for robot experimenters to mimic, and it is
up to us to take the challenge. Some, but by no means all, of nature’s mecha-
nisms—human or otherwise—can be duplicated to some extent in the robot shop.
Robots can be built with eyes to see, ears to hear, a mouth to speak, and
appendages and locomotion systems of one kind or another to manipulate the
environment and explore surroundings.

This is fine theory; what about real life? Exactly what constitutes a real hobby
robot? What basic parts must a machine have before it can be given the title
“robot”? Let’s take a close look in this chapter at the anatomy of robots and the
kinds of materials hobbyists use to construct them. For the sake of simplicity, not
every robot subsystem in existence will be covered, just the components that are
most often found in amateur and hobby robots.

2
ANATOMY

OF A ROBOT 

9
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Tethered versus Self-Contained
People like to debate what makes a machine a “real” robot. One side says that a robot is
a completely self-contained, autonomous (self-governed) machine that needs only occa-
sional instructions from its master to set it about its various tasks. A self-contained robot
has its own power system, brain, wheels (or legs or tracks), and manipulating devices such
as claws or hands. This robot does not depend on any other mechanism or system to per-
form its tasks. It’s complete in and of itself.

The other side says that a robot is anything that moves under its own motor power for
the purpose of performing near-human tasks (this is, in fact, the definition of the word
robot in most dictionaries). The mechanism that does the actual task is the robot itself; the
support electronics or components may be separate. The link between the robot and its con-
trol components might be a wire, a beam of infrared light, or a radio signal.

In the experimental robot from 1969 shown in Fig. 2.1, for example, a man sat inside
the mechanism and operated it, almost as if driving a car. The purpose of the four-legged
“lorry” was not to create a self-contained robot but to further the development of cyber-
netic anthropomorphous machines. These were otherwise known as cyborgs, a concept
further popularized by writer Martin Caidin in his 1973 novel Cyborg (which served as the
inspiration for the 1970s television series, The Six Million Dollar Man).

We won’t argue the semantics of robot design here (this book is a treasure map after all,
not a textbook on theory), but it’s still necessary to establish some of the basic character-
istics of robots. What makes a robot a robot and just not another machine? For the pur-
poses of this book, let’s consider a robot as any device that—in one way or another—mim-
ics human or animal functions. The way the robot does this is of no concern; the fact that
it does it at all is enough.

The functions that are of interest to the robot builder run a wide gamut: from listening
to sounds and acting on them, to talking and walking or moving across the floor, to pick-
ing up objects and sensing special conditions such as heat, flames, or light. Therefore,
when we talk about a robot it could very well be a self-contained automaton that takes care
of itself, perhaps even programming its own brain and learning from its surroundings and
environment. Or it could be a small motorized cart operated by a strict set of predeter-
mined instructions that repeats the same task over and over again until its batteries wear
out. Or it could be a radio-controlled arm that you operate manually from a control panel.
Each is no less a robot than the others, though some are more useful and flexible. As you’ll
discover in this chapter and those that follow, how complex your robot creations are is
completely up to you.

Mobile versus Stationary
Not all robots are meant to scoot around the floor. Some are designed to stay put and
manipulate some object placed before them. In fact, outside of the research lab and hob-
byist garage, the most common types of robots, those used in manufacturing, are station-
ary. Such robots assist in making cars, appliances, and even other robots!

10 ANATOMY OF A ROBOT
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FIGURE 2.1 This quadruped from General Electric was
controlled by a human operator who sat
inside it. The robot was developed in the
late 1960s under a contract with the U.S.
government. Photo courtesy of General
Electric.

Other common kinds of stationary robots act as shields between a human oper-
ator or supervisor and some dangerous material, such as radioactive isotopes or
caustic chemicals. Stationary robots are armlike contraptions equipped with grip-
pers or special tools. For example, a robot designed for welding the parts of a car
is equipped with a welding torch on the end of its “arm.” The arm itself moves
into position for the weld, while the car slowly passes in front of the robot on a
conveyor belt.

Conversely, mobile robots are designed to move from one place to another.
Wheels, tracks, or legs allow the robot to traverse a terrain. Mobile robots may also
feature an armlike appendage that allows them to manipulate objects around them.
Of the two—stationary or mobile—the mobile robot is probably the more popular 
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project for hobbyists to build. There’s something endearing about a robot that scampers
across the floor, either chasing or being chased by the cat.

As a serious robot experimenter, you should not overlook the challenge and education
you can gain from building both types of robots. Stationary robots typically require
greater precision, power, and balance, since they are designed to grasp and lift objects—
hopefully not destroying the objects they handle in the process. Likewise, mobile robots
present their own difficulties, such as maneuverability, adequate power supply, and avoid-
ing collisions.

Autonomous versus Teleoperated
Among the first robots ever demonstrated for a live audience were fake “robots” that were
actually machines remotely controlled by a person off stage. No matter. People thrilled at
the concept of the robot, which many anticipated would be an integral part of their near
futures (like flying to work in your own helicopter and colonies on Mars by 1975…yeah,
right!).

These days, the classic view of the robot is a fully autonomous machine, like Robby from
Forbidden Planet, Robot B-9 from Lost in Space, or that R2-D2 thingie from Star Wars.
With these robots (or at least the make-believe fictional versions), there’s no human opera-
tor, no remote control, no “man behind the curtain.” While many actual robots are indeed
fully autonomous, many of the most important robots of the past few decades have been
teleoperated. A teleoperated robot is one that is commanded by a human and operated 
by remote control. The typical “tele-robot” uses a video camera that serves as the eyes for
the human operator. From some distance—perhaps as near as a few feet to as distant as
several million miles—the operator views the scene before the robot and commands it
accordingly.

The teleoperated robot of today is a far cry from the radio-controlled robots of the
world’s fairs of the 1930s and 1940s. Many tele-robots, like the world-famous Mars Rover
Sojourner, the first interplanetary dune buggy, are actually half remote controlled and half
autonomous. The low-level functions of the robot are handled by a microprocessor on the
machine. The human intervenes to give general-purpose commands, such as “go forward
10 feet” or “hide, here comes a Martian!” The robot is able to carry out basic instructions
on its own, freeing the human operator from the need to control every small aspect of the
machine’s behavior.

The notion of tele-robotics is certainly not new—it goes back to at least the 1940s and
the short story “Waldo” by noted science fiction author Robert Heinlein. It was a fantas-
tic idea at the time, but today modern science makes it eminently possible. Stereo video
cameras give a human operator 3-D depth perception. Sensors on motors and robotic arms
provide feedback to the human operator, who can actually “feel” the motion of the machine
or the strain caused by some obstacle. Virtual reality helmets, gloves, and motion platforms
literally put the operator “in the driver’s seat.”

This book doesn’t discuss tele-robotics in any extended way, but if the concept interests
you, read more about it and perhaps construct a simple tele-robot using a radio or infrared
link and a video camera. See Appendix A, “Further Reading,” for more information.
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The Body of the Robot
Like the human body, the body of a robot—at least a self-contained one—holds all its vital
parts. The body is the superstructure that prevents its electronic and electromechanical
“guts” from spilling out. Robot bodies go by many names, including frame and chassis,
but the idea is the same.

SKELETAL STRUCTURES

In nature and in robotics, there are two general types of support frames: endoskeleton and
exoskeleton. Which is better? Both: In nature, the living conditions of the animal and its
eating and survival tactics determine which skeleton is best. The same is true of robots.

� Endoskeleton support frames are the kind found in many critters—including humans,
mammals, reptiles, and most fish. The skeletal structure is on the inside; the organs,
muscles, body tissues, and skin are on the outside of the bones. The endoskeleton is a
characteristic of vertebrates.

� Exoskeleton support frames have the “bones” on the outside of the organs and muscles.
Common exoskeletal creatures are spiders, all shellfish such as lobsters and crabs, and
an endless variety of insects.

FRAME CONSTRUCTION

The main structure of the robot is generally a wood, plastic, or metal frame, which is con-
structed a little like the frame of a house—with a bottom, top, and sides. This gives the
automaton a boxy or cylindrical shape, though any shape is possible. It could even emu-
late the human form, like the “robot” in Fig. 2.2. For a machine, however, the body shape
of men and women is a terribly inefficient one.

Onto the frame of the robot are attached motors, batteries, electronic circuit boards, and
other necessary components. In this design, the main support structure of the robot can be
considered an exoskeleton because it is outside the “major organs.” Further, this design
lacks a central “spine,” a characteristic of endoskeletal systems and one of the first things
most of us think about when we try to model robots after humans. In many cases, a shell
is sometimes placed over these robots, but the “skin” is for looks only (and sometimes the
protection of the internal components), not support. Of course, some robots are designed
with endoskeletal structures, but most such creatures are reserved for high-tech research
and development projects and science fiction films. For the most part, the main bodies of
your robots will have an exoskeleton support structure because they are cheaper to build,
stronger, and less prone to problems.

SIZE AND SHAPE

The size and shape of the robot can vary greatly, and size alone does not determine the
intelligence of the machine nor its capabilities. Homebrew robots are generally the size of
a small dog, although some are as compact as an aquarium turtle and a few as large as
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FIGURE 2.2 The android design of robots is the most
difficult to achieve, not only because of its
bipedal (two-leg) structure, but because it
distributes the weight toward the mid and
top sections of the body. In reality, this
“android” is science fiction writer 
J. Steven York modeling the latest in
casual robot ready-to-wear.
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Arnold Schwarzenegger (if one of these asks you “Are you Sarah Conner?” answer “No!”).
The overall shape of the robot is generally dictated by the internal components that make
up the machine, but most designs fall into one of the following “categories”:

� Turtle. Turtle robots are simple and compact, designed primarily for “tabletop robotics.”
Turtlebots get their name from the fact that their bodies somewhat resemble the shell of
a turtle and also from early programming language, turtle graphics, which was adapted
for robotics use in the 1970s.

� Vehicle. These scooter-type robots are small automatons with wheels. In hobby robot-
ics, they are often built using odds and ends like used compact discs, extra LEGO parts,
or the chassis of a radio-controlled car. The small vehicular robot is also used in sci-
ence and industry: the Rover Sojourner, built by NASA, explored the surface of Mars
in July 1997.

� Rover. Greatly resembling the famous R2-D2 of Star Wars fame, rovers tend to be short
and stout and are typically built with at least some humanlike capabilities, such as fire-
fighting or intruder detection. Some closely resemble a garbage can—in fact, not a few
hobby robots are actually built from metal and plastic trash cans! Despite the
euphemistic title, “garbage can” robots represent an extremely workable design
approach.

� Walker. A walking robot uses legs, not wheels or tracks, to move about. Most walker
‘bots have six legs, like an insect, because they provide excellent support and balance.
However, robots with as few as one leg (“hoppers”) and as many as 8 to 10 legs have
been successfully built and demonstrated.

� Appendage. Appendage designs are used specifically with robotic arms, whether the
arm is attached to a robot or is a stand-alone mechanism.

� Android. Android robots are specifically modeled after the human form and are the 
type most people picture when talk turns to robots. Realistically, android designs are the
most restrictive and least workable, inside or outside the robot lab.

This book provides designs and construction details for at least one robot in every one
of the preceding types except Android. I’ll leave that to another book.

FLESH AND BONE

In the 1926 movie classic Metropolis, an evil scientist, Dr. Rotwang, transforms a cold and
calculating robot into the body of a beautiful woman. This film, generally considered to be
the first science fiction cinema epic, also set the psychological stage for later movies, par-
ticularly those of the 1950s and 1960s. The shallow and stereotypical character of Dr.
Rotwang, shown in the movie still in Fig. 2.3, proved to be a common theme in countless
movies. The shapely robotrix changed form for these other films, but not its evil character.
Robots have often been depicted as metal creatures with hearts as cold as their steel bodies.

Which brings us to an interesting question: Are all “real” robots made of heavy-gauge
steel, stuff so thick that bullets, disinto-ray guns, even atomic bombs can’t penetrate?
Indeed, while metal of one kind or another is a major component of robot bodies, the list of
materials you can use is much larger and diverse. Hobby robots can be easily constructed
from aluminum, steel, tin, wood, plastic, paper, foam, or a combination of them all:
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� Aluminum. Aluminum is the best all-around robot-building material for medium and
large machines because it is exceptionally strong for its weight. Aluminum is easy to
cut and bend using ordinary shop tools. It is commonly available in long lengths of var-
ious shapes, but it is somewhat expensive.

� Steel. Although sometimes used in the structural frame of a robot because of its
strength, steel is difficult to cut and shape without special tools. Stainless steel is some-
times used for precision components, like arms and hands, and also for parts that
require more strength than a lightweight metal (such as aluminum) can provide.
Expensive.

� Tin, iron, and brass. Tin and iron are common hardware metals that are often used to
make angle brackets, sheet metal (various thickness from 1⁄32 inch on up), and (when
galvanized) nail plates for house framing. Brass is often found in decorative trim for
home construction projects and as raw construction material for hobby models. All
three metals are stronger and heavier than aluminum. Cost: fairly cheap.

� Wood. Surprise! Wood is an excellent material for robot bodies, although you may not
want to use it in all your designs. Wood is easy to work with, can be sanded and sawed
to any shape, doesn’t conduct electricity (avoids short circuits), and is available every-
where. Disadvantage: ordinary construction plywood is rather weak for its weight, so
you need fairly large pieces to provide stability. Better yet, use the more dense (and
expensive) multi-ply hardwoods for model airplane and sailboat construction. Common
thicknesses are 1⁄4- to 1⁄2-inch—perfect for most robot projects.

� Plastic. Everything is going plastic these days, including robots. Pound for pound, plas-
tic has more strength than many metals, yet is easier to work with. You can cut it, shape
it, drill it, and even glue it. To use plastic effectively you must have some special tools,
and extruded pieces may be hard to find unless you live near a well-stocked plastic spe-
cialty store. Mail order is an alternative.

� Foamboard. Art supply stores stock what’s known as “foamboard” (or “Foam Core”), a
special construction material typically used for building models. Foamboard is a sand-
wich of paper or plastic glued to both sides of a layer of densely compressed foam. The
material comes in sizes from 1⁄8 inch to over 1⁄2 inch, with 1⁄4 to 1⁄3 inch being fairly com-
mon. The board can be readily cut with a small hobby saw (paper-laminated foamboard
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FIGURE 2.3
The evil Dr. Rotwang
and the robot, from the
classic motion picture
Metropolis.
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can be cut with a sharp knife; plastic-laminated foamboard should be cut with a saw).
Foamboard is especially well suited for small robots where light weight is of extreme
importance.

� Rigid expanded plastic sheet. Expanded sheet plastics are often constructed like a
sandwich, with thin outer sheets on the top and bottom and a thicker expanded (air-
filled) center section. When cut, the expanded center section often has a kind of foam-
like appearance, but the plastic itself is stiff. Rigid expanded plastic sheets are remark-
ably lightweight for their thickness, making them ideal for small robots. These sheets
are known by various trade names such as Sintra and are available at industrial plastics
supply outlets.

Power Systems
We eat food that is processed by the stomach and intestines to make fuel for our muscles,
bones, skin, and the rest of our body. While you could probably design a digestive system
for a robot and feed it hamburgers, french fries, and other semi-radioactive foods, an eas-
ier way to generate the power to make your robot go is to take a trip to the store and buy
a set of dry-cell batteries. Connect the batteries to the robot’s motors, circuits, and other
parts, and you’re all set.

TYPES OF BATTERIES

There are several different types of batteries, and Chapter 15, “All about Batteries and
Robot Power Supplies,” goes into more detail about them. Here are a few quick details to
start you off.

Batteries generate DC current and come in two distinct categories: rechargeable and
nonrechargeable (for now, let’s forget the nondescriptive terms like storage, primary, and
secondary). Nonrechargeable batteries include the standard zinc and alkaline cells you buy
at the supermarket, as well as special-purpose lithium and mercury cells for calculators,
smoke detectors, watches, and hearing aids. A few of these (namely, lithium) have practi-
cal uses in hobby robotics.

Rechargeable batteries include nickel-cadmium (Ni-Cad), gelled electrolyte, sealed
lead-acid cells, and special alkaline. Ni-Cad batteries are a popular choice because they are
relatively easy to find, come in popular household sizes (“D,” “C,” etc.) and can be
recharged many hundreds of times using an inexpensive recharger. Gelled electrolyte
(“Gel-cell”) and lead-acid batteries provide longer-lasting power, but they are heavy and
bulky.

ALTERNATIVE POWER SOURCES

Batteries are required in most fully self-contained mobile robots because the automaton
cannot be connected by power cord to an electrical socket. That doesn’t mean other power
sources, including AC or even solar, can’t be used in some of your robot designs. On the
contrary, stationary robot arms don’t have to be capable of moving around the room; they
are designed to be placed about the perimeter of the workplace and perform within this
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predefined area. The motors and control circuits may very well run off AC power, thus
freeing you from replacing batteries and worrying about operating times and recharging
periods.

This doesn’t mean that AC power is the preferred method. High-voltage AC poses
greater shock hazards. Should you ever decide to make your robot independent, you must
also exchange all the AC motors for DC ones. Electronic circuits ultimately run off DC
power, even when the equipment is plugged into an AC outlet.

One alternative to batteries in an all-DC robot system is to construct an AC-operated
power station that provides your robot with regulated DC juice. The power station converts
the AC to DC and provides a number of different voltage levels for the various components
in your robot, including the motors. This saves you from having to buy new batteries or
recharge the robot’s batteries all the time.

Small robots can be powered by solar energy when they are equipped with suitable solar
cells. Solar-powered robots can tap their motive energy directly from the cells, or the cells
can charge up a battery over time. Solar-powered ‘bots are a favorite of those in the
“BEAM” camp—a type of robot design that stresses simplicity, including the power sup-
ply of the machine.

PRESSURE SYSTEMS

Two other forms of robotic power, which will not be discussed in depth in this book,
are hydraulic and pneumatic. Hydraulic power uses oil or fluid pressure to move link-
ages. You’ve seen hydraulic power at work if you’ve ever watched a bulldozer move dirt
from pile to pile. And while you drive you use it every day when you press down on the
brake pedal. Similarly, pneumatic power uses air pressure to move linkages. Pneumatic
systems are cleaner than hydraulic systems, but all things considered they aren’t as
powerful.

Both hydraulic and pneumatic systems must be pressurized to work, and this pres-
surization is most often performed by a pump. The pump is driven by an electric motor,
so in a way robots that use hydraulics or pneumatics are fundamentally electrical. The
exception to this is when a pressurized tank, like a scuba tank, is used to provide air
pressure in a pneumatic robot system. Eventually, the tank becomes depleted and must
either be recharged using some pump on the robot or removed and filled back up using
a compressor.

Hydraulic and pneumatic systems are rather difficult to implement effectively, but
they provide an extra measure of power in comparison to DC and AC motors. With a few
hundred dollars in surplus pneumatic cylinders, hoses, fittings, solenoid valves, and a
pressure supply (battery-powered pump, air tank, regulator), you could conceivably
build a hobby robot that picks up chairs, bicycles, even people!

Locomotion Systems
As mentioned earlier, some robots aren’t designed to move around. These include robotic
arms, which manipulate objects placed within a work area. But these are exceptions rather
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than the rule for hobby robots, which are typically designed to get around in this world.
They do so in a variety of ways, from using wheels to legs to tank tracks. In each case, the
locomotion system is driven by a motor, which turns a shaft, cam, or lever. This motive
force affects forward or backward movement.

WHEELS

Wheels are the most popular method for providing robots with mobility. There may be no
animals on this earth that use wheels to get around, but for us robot builders it’s the simple
and foolproof choice. Robot wheels can be just about any size, limited only by the dimen-
sions of the robot and your outlandish imagination. Turtle robots usually have small wheels,
less than two or three inches in diameter. Medium-sized rover-type robots use wheels with
diameters up to seven or eight inches. A few unusual designs call for bicycle wheels, which
despite their size are lightweight but very sturdy.

Robots can have just about any number of wheels, although two is the most common.
The robot is balanced on the two wheels by one or two free-rolling casters, or perhaps even
a third swivel wheel. Four- and six-wheel robots are also around. You can read more about
wheel designs in Part 3.

LEGS

A small percentage of robots—particularly the hobby kind—are designed with legs, and
such robots can be conversation pieces all their own. You must overcome many difficulties
to design and construct a legged robot. First, there is the question of the number of legs and
how the legs provide stability when the robot is in motion or when it’s standing still. Then
there is the question of how the legs propel the robot forward or backward—and more dif-
ficult still!—the question of how to turn the robot so it can navigate a corner.

Tough questions, yes, but not insurmountable. Legged robots are a challenge to design
and build, but they provide you with an extra level of mobility that wheeled robots do not.
Wheel-based robots may have a difficult time navigating through rough terrain, but leg-
based robots can easily walk right over small ditches and obstacles.

A few daring robot experimenters have come out with two-legged robots, but the chal-
lenges in assuring balance and control render these designs largely impractical for most
robot hobbyists. Four-legged robots (quadrapods) are easier to balance, but good locomo-
tion and steering can be difficult to achieve. I’ve found that robots with six legs (called
hexapods) are able to walk at brisk speeds without falling and are more than capable of
turning corners, bounding over uneven terrain, and making the neighborhood dogs and cats
run for cover. Leg-based robots are discussed more fully in Chapter 22, “Build a Heavy-
duty, Six-legged Walking Robot,” where you can learn more about the Walkerbot, a
brutish, insectlike ‘bot strong enough to carry a bag of groceries.

TRACKS

The basic design of track-driven robots is pretty simple. Two tracks, one on each side of
the robot, act as giant wheels. The tracks turn, like wheels, and the robot lurches forward
or backward. For maximum traction, each track is about as long as the robot itself.
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Track drive is practical for many reasons, including the fact that it makes it possible to
mow through all sorts of obstacles, like rocks, ditches, and potholes. Given the right track
material, track drive provides excellent traction, even on slippery surfaces like snow, wet
concrete, or a clean kitchen floor. Alas, all is not rosy when it comes to track-based
robots. Unless you plan on using your robot exclusively outdoors, you should probably
stay away from track drive. Making the drive work can be harder than implementing
wheels or even legs.

Arms and Hands
The ability to manipulate objects is a trait that has enabled humans, as well as a few other
creatures in the animal kingdom, to manipulate the environment. Without our arms and
hands, we wouldn’t be able to use tools, and without tools we wouldn’t be able to build
houses, cars, and—hmmm, robots. It makes sense, then, to provide arms and hands to our
robot creations so they can manipulate objects and use tools. A commercial industrial robot
“arm” is shown in Fig. 2.4. Chaps. 24 through 27 in Part 4 of this book are devoted entirely
to robot arms and hands.

You can duplicate human arms in a robot with just a couple of motors, some metal rods,
and a few ball bearings. Add a gripper to the end of the robot arm and you’ve created a
complete arm-hand module. Of course, not all robot arms are modeled after the human
appendage. Some look more like forklifts than arms, and a few use retractable push rods
to move a hand or gripper toward or away from the robot. See Chapter 24, “An Overview
of Arm Systems,” for a more complete discussion of robot arm design. Chaps. 25 and 26
concentrate on how to build several popular types of robot arms using a variety of con-
struction techniques.

STAND-ALONE OR BUILT-ON MANIPULATORS

Some arms are complete robots in themselves. Car manufacturing robots are really arms
that can reach in just about every possible direction with incredible speed and accuracy.
You can build a stand-alone robotic arm trainer, which can be used to manipulate objects
within a defined workspace. Or you can build an arm and attach it to your robot. Some
arm-robot designs concentrate on the arm part much more than the robot part. They are, in
fact, little more than arms on wheels.

GRIPPERS

Robot hands are commonly referred to as grippers or end effectors. We’ll stick with the
simpler sounding “hands” and “grippers” in this book. Robot grippers come in a variety of
styles; few are designed to emulate the human counterpart. A functional robot claw can be
built that has just two fingers. The fingers close like a vise and can exert, if desired, a sur-
prising amount of pressure. See Chapter 27, “Experimenting with Gripper Designs” for
more information.
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Sensory Devices
Imagine a world without sight, sound, touch, smell, or taste. Without these senses, we’d be
nothing more than an inanimate machine, like the family car, the living room television, or
that guy who hosts the Channel 5 late-night movie. Our senses are an integral part of our
lives—if not life itself.

It makes good sense (pardon the pun) to build at least one of these senses into your
robot designs. The more senses a robot has, the more it can interact with its environment.
That capacity for interaction will make the robot better able to go about its business on its
own, which makes possible more sophisticated tasks. Sensitivity to sound is a sensory sys-
tem commonly given to robots. The reason: Sound is easy to detect, and unless you’re try-
ing to listen for a specific kind of sound, circuits for sound detection are simple and
straightforward.

Sensitivity to light is also common, but the kind of light is usually restricted to a slen-
der band of infrared for the purpose of sensing the heat of a fire or navigating through a
room using an invisible infrared light beam.
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FIGURE 2.4.
A robotic arm from
General Electric is
designed for precision
manufacturing. Photo
courtesy General Electric.

Ch02_McComb  8/29/00  8:39 AM  Page 21



Robot eyesight is a completely different matter. The visual scene surrounding the robot
must be electronically rendered into a form the circuits on the robot can accept, and the
machine must be programmed to understand and act on the shapes it sees. A great deal of
experimental work is underway to allow robots to distinguish objects, but true robot vision
is limited to well-funded research teams. Chapter 37, “Robotic Eyes,” provides the basics
on how to give crude sight to a robot.

In robotics, the sense of touch is most often confined to collision switches mounted
around the periphery of the machine. On more sophisticated robots, pressure sensors may
be attached to the tips of fingers in the robot’s hand. The more the fingers of the hand close
in around the object, the greater the pressure detected by the sensors. This pressure infor-
mation is relayed to the robot’s brain, which then decides if the correct amount of pressure
is being exerted. There are a number of commercial products available that register pressure
of one kind or another, but most are expensive. Simple pressure sensors can be constructed
cheaply and quickly, however, and though they aren’t as accurate as commercially
manufactured pressure sensors, they are more than adequate for hobby robotics. See
Chapter 35, “Adding the Sense of Touch,” and Chapter 36, “Collision Avoidance and
Detection,” for details.

The senses of smell and taste aren’t generally implemented in robot systems, though
some security robots designed for industrial use are outfitted with a gas sensor that, in
effect, smells the presence of dangerous toxic gas.

Output Devices
Output devices are components that relay information from the robot to the outside world.
A common output device in computer-controlled robots (discussed in the next section) is
the video screen or (liquid crystal display) panel. As with a personal computer, the robot
communicates with its master by flashing messages on a screen or panel. A more common
output device for hobby robots is the ordinary light-emitting diode, or a seven-segment
numeric display.

Another popular robotic output device is the speech synthesizer. In the 1968 movie
2001: A Space Odyssey, Hal the computer talks to its shipmates in a soothing but electronic
voice. The idea of a talking computer was a rather novel concept at the time of the movie,
but today voice synthesis is commonplace.

Many hobbyists build robots that contain sound and music generators. These generators
are commonly used as warning signals, but by far the most frequent application of speech,
music, and sound is for entertainment purposes. Somehow, a robot that wakes you up to an
electronic rendition of Bach seems a little more human. Projects in robot sound-making
circuits are provided in Chapter 40, “Sound Output and Input.”

Smart versus “Dumb” Robots
There are smart robots and there are dumb robots, but the difference really has nothing to
do with intelligence. Even taking into consideration the science of artificial intelligence,
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all self-contained autonomous robots are fairly unintelligent, no matter how sophisticated
the electronic brain that controls it. Intelligence is not a measurement of computing capac-
ity but the ability to reason, to figure out how to do something by examining all the vari-
ables and choosing the best course of action, perhaps even coming up with a course that is
entirely new.

In this book, the difference between dumb and smart is defined as the ability to take two
or more pieces of data and decide on a preprogrammed course of action. Usually, a smart
robot is one that is controlled by a computer. However, some amazingly sophisticated
actions can be built into an automaton that contains no computer; instead it relies on sim-
ple electronics to provide the robot with some known “behavior” (such is the concept of
BEAM robotics). A dumb robot is one that blindly goes about its task, never taking the
time to analyze its actions and what impact they may have.

Using a computer as the brains of a robot will provide you with a great deal of operat-
ing flexibility. Unlike a control circuit, which is wired according to a schematic plan and
performs a specified task, a computer can be electronically “rewired” using software
instructions—that is, programs. To be effective, the electronics must be connected to all
the control and feedback components of the robot. This includes the drive motors, the
motors that control the arm, the speech synthesizer, the pressure sensors, and so forth.
Connecting a computer to a robot is a demanding task that requires many hours of careful
work. This book presents several computer-based control projects in later chapters.

Note that this book does not tell you how to construct a computer. Rather than tell you
how to build a specially designed computer for your robot, the projects in this book use read-
ily available and inexpensive microcontrollers and single-board computers as well as ready-
built personal computers based on the ubiquitous IBM PC design. You can permanently 
integrate some computers, particularly the portable variety, with your larger robot projects.

The Concept of Robot “Work”
The term robota, from which the common word robot is derived, was first coined by Czech
novelist and playwright Karel Capek in his 1917 short story “Opilec.” The word robota was
used by Capek again in his now-classic play R.U.R. (which stands for “Rossum’s Universal
Robots”), first produced on stage in 1921. R.U.R. is one of many plays written by Capek
that have a utopian theme. And like most fictional utopias, the basic premise of the play’s
“perfect society” is fatally flawed. In R.U.R. the robots are created by humans to take over
all labor, including working on farms and in factories. When a scientist attempts to endow
the robot workforce with human emotions—including pain—the automatons conspire
against their flesh-and-bone masters and kill them.

In Czech, the term robota means “compulsory worker,” a kind of machine slave. In
many other Baltic languages the term simply means “work.” It is the work aspect of robot-
ics that is often forgotten, but it defines a “robot” more than anything else. A robot that is
not meant to do something—for example, one that simply patrols the living room looking
for signs of warm-blooded creatures—is not a robot at all but merely a complicated toy.

That said, designing and building lightweight “demonstrator” robots provides a per-
fectly valid way to learn about the robot-building craft. Still, it should not be the end-all
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of your robot studies. Never lose sight of the fact that a robot is meant to do something—
the more, the better! Once you perfect the little tabletop robot you’ve been working on the
past several months, think of ways to apply your improved robot skills to building a more
substantial robot that actually performs some job. The job does not need to be labor sav-
ing. We’d all like to have a robot maid like Rosie the Robot on the Jetsons cartoon series,
but, realistically, it’s a pretty sophisticated robot that knows the difference between a clean
and dirty pair of socks left on the floor.

From Here
To learn more about… Read

Kinds of batteries for robots Chapter 15, “All about Batteries and Robot
Power Supplies”

Building mobile robots Part 2, “Robot Construction”

Building a robot with legs Chapter 22, “Build a Heavy-duty, Six-legged
Walking Robot”
Chapter 23, “Advanced Locomotion Systems”

More on robot arms Chaps. 24-26

Robotic sensors Part 4, “Practical Robotic Projects”
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Take a long look at the tools in your garage or workshop. You probably already have all
the implements you will need to build your own robots. Unless your robot designs require
a great deal of precision (and most hobby robots don’t), a common assortment of hand
tools is all that’s really required to construct robot bodies, arms, drive systems, and more.
Most of the hardware, parts, and supplies you need are also things you probably already
have, left over from old projects around the house. You can readily purchase the pieces you
don’t have at a hardware store, a few specialty stores around town, or through the mail.

This chapter discusses the basic tools and supplies needed for hobby robot building and
how you might use them. You should consider this chapter only as a guide; suggestions for
tools and supplies are just that—suggestions. By no means should you feel that you must
own each tool or have on hand all the parts and supplies mentioned in this chapter. Once
again, the concept behind this book is to provide you with the know-how to build robots
from discrete modules. In keeping with that open-ended design, you are free to exchange
parts in the modules as you see fit. Some supplies and parts may not be readily available
to you, so it’s up to you to consider alternatives and how to work them into your design.
Ultimately, it will be your task to take a trip to the hardware store, collect the items you
need, and hammer out a unique creation that’s all your own.

3
TOOLS AND SUPPLIES
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Construction Tools
Construction tools are the things you use to fashion the frame and other mechanical parts
of the robot. These include a hammer, a screwdriver, and a saw. We will look at the tools
needed to assemble the electronics later in this chapter.

BASIC TOOLS

No robot workshop is complete without the following:

� Claw hammer. These can be used for just about any purpose you can think of.
� Rubber mallet. For gently bashing together pieces that resist being joined nothing beats

a rubber mallet; it is also useful for forming sheet metal.
� Screwdriver assortment. Have several sizes of flat-head and Philips-head screwdrivers.

It’s also handy to have a few long-blade screwdrivers, as well as a ratchet driver. Get a
screwdriver magnetizer/demagnetizer; it lets you magnetize the blade so it attracts and
holds screws for easier assembly.

� Hacksaw. To cut anything, the hacksaw is the staple of the robot builder. Buy an assort-
ment of blades. Coarse-tooth blades are good for wood and PVC pipe plastic; fine-tooth
blades are good for copper, aluminum, and light-gauge steel.

� Miter box. To cut straight lines, buy a good miter box and attach it to your work table
(avoid wood miter boxes; they don’t last). You’ll also use the box to cut stock at near-
perfect 45° angles, which is helpful when building robot frames.

� Wrenches, all types. Adjustable wrenches are helpful additions to the shop but careless
use can strip nuts. The same goes for long-nosed pliers, which are useful for getting at
hard-to-reach places. One or two pairs of Vise-Grips will help you hold pieces for cut-
ting and sanding. A set of nut drivers will make it easy to attach nuts to bolts.

� Measuring tape. A six- or eight-foot steel measuring tape is a good length to choose. Also
get a cloth tape at a fabric store so you can measure things like chain and cable lengths.

� Square. You’ll need one to make sure that pieces you cut and assemble from wood, plas-
tic, and metal are square.

� File assortment. Files will enable you to smooth the rough edges of cut wood, metal,
and plastic (particularly important when you are working with metal because the sharp,
unfinished edges can cut you).

� Drill motor. Get one that has a variable speed control (reversing is nice but not absolute-
ly necessary). If the drill you have isn’t variable speed, buy a variable speed control for
it. You need to slow the drill when working with metal and plastic. A fast drill motor is
good for wood only. The size of the chuck is not important since most of the drill bits
you’ll be using will fit a standard 1/4-inch chuck.

� Drill bit assortment. Use good sharp ones only. If yours are dull, have them sharpened
(or do it yourself with a drill bit sharpening device), or buy a new set.

� Vise. A vise is essential for holding parts while you drill, nail, and otherwise torment
them. An extra large vise isn’t required, but you should get one that’s big enough to han-
dle the size of the pieces you’ll be working with. A rule of thumb: A vice that can’t close
around a two-inch block of metal or wood is too small.
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� Safety goggles. Wear them when hammering, cutting, and drilling as well as any other
time when flying debris could get in your eyes. Be sure you use the goggles. A shred
of aluminum sprayed from a drill bit while drilling a hole can rip through your eye, per-
manently blinding you. No robot project is worth that.

If you plan to build your robots from wood, you may want to consider adding rasps,
wood files, coping saws, and other woodworking tools to your toolbox. Working with plas-
tic requires a few extra tools as well, including a burnishing wheel to smooth the edges of
the cut plastic (the flame from a cigarette lighter also works but is harder to control), a
strip-heater for bending, and special plastic drill bits. These bits have a modified tip that
isn’t as likely to rip through the plastic material. Small plastic parts can be cut and scored
using a sharp razor knife or razor saw, both of which are available at hobby stores.

OPTIONAL TOOLS

There are a number of other tools you can use to make your time in the robot shop more
productive and less time consuming. A drill press helps you drill better holes because you
have more control over the angle and depth of each hole. Be sure to use a drill press vise
to hold the pieces. Never use your hands! A table saw or circular saw makes it easier to
cut through large pieces of wood and plastic. To ensure a straight cut, use a guide fence or
fashion one out of wood and clamps. Be sure to use a fine-tooth saw blade if you are cut-
ting through plastic. Using a saw designed for general woodcutting will cause the plastic
to shatter.

A motorized hobby tool, such as the model shown in Fig. 3.1, is much like a handheld
router. The bit spins very fast (25,000 rpm and up), and you can attach a variety of wood,
plastic, and metal working bits to it. The better hobby tools, such as those made by Dremel
and Weller, have adjustable speed controls. Use the right bit for the job. For example, don’t
use a wood rasp bit with metal or plastic because the flutes of the rasp will too easily fill
with metal and plastic debris.

A RotoZip tool (that’s its trade name) is a larger, more powerful version of a hobby tool.
It spins at 30,000 rpm and uses a special cutting bit—it looks like a drill bit, but it works
like a saw. The RotoZip is commonly used by drywall installers, but it can be used to cut
through most any material you’d use for a robot (exception: heavy-gauge steel).

Hot-melt glue guns are available at most hardware and hobby stores and come in a vari-
ety of sizes. The gun heats up glue from a stick; press the trigger and the glue oozes out
the tip. The benefit of hot-melt glue is that it sets very fast—usually under a minute. You
can buy glue sticks for normal- or low-temperature guns. I prefer the normal-temperature
sticks and guns as the glue seems to hold better. Exercise caution when using a hot-melt
glue gun: the glue is hot, after all! You’ll know what I’m talking about when a glob of glue
falls on your leg. Use a gun with an appropriate stand; this keeps the melting glue near the
tip and helps protect you from wayward streams of hot glue.

A nibbling tool is a fairly inexpensive accessory (under $20) that lets you “nibble” small
chunks from metal and plastic pieces. The maximum thickness depends on the bite of the
tool, but it’s generally about 1/16 inch. Use the tool to cut channels and enlarge holes. A
tap and die set lets you thread holes and shafts to accept standard-sized nuts and bolts. Buy
a good set. A cheap assortment is more trouble than it’s worth.
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A thread size gauge, made of stainless steel, may be expensive, but it helps you deter-
mine the size of any standard SAE or metric bolt. It’s a great accessory for tapping and
dieing. Most gauges can be used when you are chopping threads off bolts with a hacksaw.
They will provide a cleaner cut.

A brazing tool or small welder lets you spot-weld two metal pieces together. These tools
are designed for small pieces only. They don’t provide enough heat to adequately weld pieces
larger than a few inches in size. Be sure that extra fuel and oxygen cylinders or pellets are
readily available for the brazer or welder you buy. There’s nothing worse than spending $30
to $40 for a home welding set, only to discover that supplies are not available for it. Be sure
to read the instructions that accompany the welder and observe all precautions.

Electronic Tools
Constructing electronic circuit boards or wiring the power system of your robot requires
only a few standard tools. A soldering iron leads the list. For maximum flexibility, invest
in a modular soldering pencil, the kind that lets you change the heating element. For rou-
tine electronic work, you should get a 25- to 30-watt heating element. Anything higher may
damage electronic components. You can use a 40- or 50-watt element for wiring switches,
relays, and power transistors. Stay away from “instant-on” soldering irons. For any appli-
cation other than soldering large-gauge wires they put out far too much heat.
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FIGURE 3.1 A motorized hobby tool is ideal for drilling, sanding, and shaping
small parts.
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Supplement your soldering iron with these accessories:

� Soldering stand. This is useful for keeping the soldering pencil in a safe, upright posi-
tion.

� Soldering tip assortment. Get one or two small tips for intricate printed circuit board
work and a few larger sizes for routine soldering chores.

� Solder. Don’t buy just any kind of solder; get the resin or flux core type. Acid core and
silver solder should never be used on electronic components.

� Sponge. Sponges are useful for cleaning the soldering tip as you use it. Keep the sponge
damp, and wipe the tip clean every few joints.

� Heat sink. Attach the heat sink to sensitive electronic components during soldering. It
draws the excess heat away from the component, so it isn’t damaged. (See Chapter 6.)

� Desoldering vacuum tool. This is useful for soaking up molten solder. Use it to get rid
of excess solder, remove components, or redo a wiring job.

� Dental picks. These are ideal for scraping, cutting, forming, and gouging into the work.
� Resin cleaner. Apply the cleaner after soldering is complete to remove excess resin.
� Solder vise. This vise serves as a “third hand,” holding together pieces to be soldered so

you are free to work the iron and feed the solder.

Read Chapter 6, “Electronic Construction Techniques,” for more information on 
soldering.

Volt-Ohm Meter
A volt-ohm meter, or multitester, is used to test voltage levels and the resistance of circuits.
This moderately priced tool is the basic prerequisite for working with electronic circuits of
any kind. If you don’t already own a volt-ohm meter you should seriously consider buying
one. The cost is small considering the usefulness of the device.

There are many volt-ohm meters on the market today. For robotics work, you don’t want
a cheap model, but you don’t need an expensive one. A meter of intermediate quality is
sufficient and does the job admirably at a price of between $30 and $75 (it tends to be on
the low side of this range). Meters are available at Radio Shack and most electronics out-
lets. Shop around and compare features and prices.

DIGITAL OR ANALOG

There are two general types of volt-ohm meters available today: digital and analog. The
difference is not that one meter is used on digital circuits and the other on analog circuits.
Rather, digital meters employ a numeric display not unlike a digital clock or watch. Analog
meters use the older-fashioned—but still useful—mechanical movement with a needle that
points to a set of graduated scales. Digital meters used to cost a great deal more than the
analog variety, but the price difference has evened out recently. Digital meters, such as 
the one shown in Fig. 3.2, are fast becoming the standard. In fact, it’s hard to find a decent
analog meter these days.
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AUTOMATIC RANGING

Some volt-ohm meters, analog or digital, require you to select the range before it can make
an accurate measurement. For example, if you are measuring the voltage of a 9-volt tran-
sistor battery, you set the range to the setting closest to, but above, 9 volts (with most
meters it is the 20- or 50-volt range). Auto-ranging meters don’t require you to do this, so
they are inherently easier to use. When you want to measure voltage, you set the meter to
volts (either AC or DC) and take the measurement. The meter displays the results in the
readout panel.

ACCURACY

Little of the work you’ll do with robot circuits will require a volt-ohm meter that’s superac-
curate. A meter with average accuracy is more than enough. The accuracy of a meter is the
minimum amount of error that can occur when taking a specific measurement. For example,
the meter may be accurate to 2000 volts, plus or minus 0.8 percent. A 0.8 percent error at the
kinds of voltages used in robots—typically, 5 to 12 volts DC—is only 0.096 volts.

Digital meters have another kind of accuracy. The number of digits in the display deter-
mines the maximum resolution of the measurements. Most digital meters have three and a
half digits, so they can display a value as small as .001 (the half digit is a “1” on the left
side of the display). Anything less than that is not accurately represented; then again,
there’s little cause for accuracy higher than this.
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FIGURE 3.2 A volt-ohm meter (or multitester) checks resistance, voltage, and
current. This model is digital and has a 3 1/2-digit liquid crystal 
display (LCD) readout.
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FUNCTIONS

Digital volt-ohm meters vary greatly in the number and type of functions they provide. At
the very least, all standard meters let you measure AC volts, DC volts, milliamps, and
ohms. Some also test capacitance and opens or shorts in discrete components like diodes
and transistors. These additional functions are not absolutely necessary for building 
general-purpose robot circuits, but they are handy to have when troubleshooting a circuit
that refuses to work.

The maximum ratings of the meter when measuring volts, milliamps, and resistance
also vary. For most applications, the following maximum ratings are more than adequate:

DC volts 1000 volts

AC volts 500 volts

DC current 200 milliamps

Resistance 2 megohms

One exception to this is when you are testing current draw for the entire robot versus
just for motors. Many DC motors draw in excess of 200 milliamps, and the entire robot is
likely to draw 2 or more amps. Obviously, this is far out of the range of most digital meters.
You need to get a good assessment of current draw to anticipate the type and capacity of
batteries, but to do so you’ll need either a meter with a higher DC current rating (digital or
analog) or a special-purpose AC/DC current meter. You can also use a resistor in series
with the motor and apply Ohm’s law to calculate the current draw. The technique is detailed
in Chapter 17, “Choosing the Right Motor for the Job.”

METER SUPPLIES

Volt-ohm meters come with a pair of test leads, one black and one red. Each is equipped
with a needlelike metal probe. The quality of the test leads is usually minimal, so you may
want to purchase a better set. The coiled kind are handy; they stretch out to several feet yet
recoil to a manageable length when not in use.

Standard leads are fine for most routine testing, but some measurements may require
that you use a clip lead. These attach to the end of the regular test leads and have a spring-
loaded clip on the end. You can clip the lead in place so your hands are free to do other
things. The clips are insulated to prevent short circuits.

METER SAFETY AND USE

Most applications of the volt-ohm meter involve testing low voltages and resistance, both
of which are relatively harmless to humans. Sometimes, however, you may need to test
high voltages—like the input to a power supply—and careless use of the meter can cause
serious bodily harm. Even when you’re not actively testing a high-voltage circuit, danger-
ous currents can still be exposed.

The proper procedure for using meters is to set it beside the unit under test, making sure
it is close enough so the leads reach the circuit. Plug in the leads, and test the meter oper-
ation by first selecting the resistance function setting (use the smallest scale if the meter is
not auto-ranging). Touch the leads together: the meter should read 0 ohms. If the meter
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does not respond, check the leads and internal battery and try again. If the display does not
read 0 ohms, double-check the range and function settings, and adjust the meter to read 
0 ohms (not all digital meters have a 0 adjust, but most analog meters do).

Once the meter has checked out, select the desired function and range and apply the
leads to the circuit under test. Usually, the black lead will be connected to ground, and 
the red lead will be connected to the various test points in the circuit.

Logic Probe
Meters are typically used for measuring analog signals. Logic probes test for the presence
or absence of low-voltage DC signals, which represent digital data. The 0s and 1s are usu-
ally electrically defined as 0 and 5 volts, respectively, with TTL integrated circuits (ICs).
In practice, the actual voltages of the 0 and 1 bits depend entirely on the circuit. You can
use a meter to test a logic circuit, but the results aren’t always predictable. Further, many
logic circuits change states (pulse) quickly, and meters cannot track the voltage switches
quickly enough.

Logic probes, such as the model in Fig. 3.3, are designed to give a visual and (usually)
aural signal of the logic state of a particular circuit line. One LED (light emitting diode)
on the probe lights up if the logic is 0 (or LOW); another LED lights up if the logic is 1
(or HIGH). Most probes have a built-in buzzer that has a different tone for the two logic
levels. This prevents you from having to keep glancing at the probe to see the logic level.

32 TOOLS AND SUPPLIES

FIGURE 3.3 The logic probe in use. The probe derives its power from the circuit
under test.
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A third LED or tone may indicate a pulsing signal. A good logic probe can detect that
a circuit line is pulsing at speeds of up to 10 MHz, which is more than fast enough for
robotic applications, even when using computer control. The minimum detectable pulse
width (the time the pulse remains at one level) is 50 nanoseconds, which again is more 
than sufficient.

Although logic probes may sound complex, they are really simple devices, and their
cost reflects this. You can buy a reasonably good logic probe for under $20. Most probes
are not battery operated; rather, they obtain operating voltage from the circuit under test.
You can also make a logic probe on your own if you wish. A number of project books pro-
vide plans.

USING A LOGIC PROBE

The same safety precautions for using a meter apply when you are using a logic probe. Be
cautious when working close to high voltages. Cover them to prevent accidental shock (for
obvious reasons, logic probes are not meant for anything but digital circuits, so never apply
the leads of the probe to an AC line). Logic probes cannot operate with voltages exceed-
ing about 15 volts DC, so if you are unsure of the voltage level of a particular circuit test
it with a meter first.

To use the logic probe successfully you really must have a circuit schematic to refer to.
Keep it handy when troubleshooting your projects. It’s nearly impossible to blindly use the
logic probe on a circuit without knowing what you are testing. And since the probe receives
its power from the circuit under test, you need to know where to pick off suitable power.
To use the probe, connect the probe’s power leads to a voltage source on the board, clip the
black ground wire to circuit ground, and touch the tip of the probe against a pin on an inte-
grated circuit or the lead of some other component. For more information on using your
probe, consult the manufacturer’s instruction sheet.

Logic Pulser
A handy troubleshooting accessory to have when you are working with digital circuits is
the logic pulser. This device puts out a timed pulse, making it possible for you to see the
effect of the pulse on a digital circuit. Normally, you’d use the pulser with a logic probe or
an oscilloscope (discussed in the next section). The pulser can be switched between one
pulse and continuous pulsing.

Most pulsers obtain their power from the circuit under test. It’s important that you
remember this. With digital circuits, it’s generally a bad idea to present an input signal
to a device when it’s greater than the supply voltage for that device. In other words, if
a chip is powered by 5 volts, and you give it a 12-volt pulse, you’ll probably ruin the
chip. Some circuits work with split (�, �, and ground) power supplies (especially cir-
cuits with op amps), so be sure you connect the leads of the pulser to the correct power
points.

Also be sure that you do not pulse a line that has an output but no input. Some inte-
grated circuits are sensitive to unloaded pulses at their output stages, and if the pulse is
applied inappropriately it can destroy the chip.
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Oscilloscope
An oscilloscope is a pricey tool—good ones start at about $350. For really serious work,
however, an oscilloscope is an invaluable tool that will save you hours of time and frustra-
tion. Other test equipment will do some of the things you can do with a scope, but oscil-
loscopes do it all in one box and generally with greater precision. Among the many 
applications of an oscilloscope, you can do the following:

� Test DC or AC voltage levels
� Analyze the waveforms of digital and analog circuits
� Determine the operating frequency of digital, analog, and RF circuits
� Test logic levels
� Visually check the timing of a circuit to see if things are happening in the correct order

and at the prescribed time intervals

The designs provided in this book don’t absolutely require that you use an oscilloscope,
but you’ll probably want one if you design your own circuits or want to develop your elec-
tronic skills. A basic, no-nonsense model is enough, but don’t settle for the cheap, 
single-trace units. A dual-trace (two-channel) scope with a 20- to 25-MHz maximum input
frequency should do the job nicely. The two channels let you monitor two lines at once, so
you can easily compare the input and output signals at the same time. You do not need a
scope with storage or delayed sweep, although if your model has these features you’re sure
to find a use for them sooner or later.

Scopes are not particularly easy to use; they have lots of dials and controls for setting
operation. Thoroughly familiarize yourself with the operation of your oscilloscope before
using it for any construction project or for troubleshooting. Knowing how to set the time-
per-division knob is as important as knowing how to turn the scope on. As usual, exercise
caution when using the scope with or near high voltages.

OF OSCILLOSCOPE BANDWIDTH AND RESOLUTION

One of the most important specifications of an oscilloscope is its bandwidth. If 20 MHz is
too low for your application, you should invest in a more expensive oscilloscope with a
bandwidth of 35, 60, or even 100 MHz. Prices go up considerably as the bandwidth
increases.

The resolution of the scope reveals its sensitivity and accuracy. On an oscilloscope, the
X (horizontal) axis displays time, and the Y (vertical) axis displays voltage. The sweep time
indicates the X-axis resolution, which is generally 0.5 microseconds or faster. The sweep
time is adjustable so you can test signal events that occur over a longer time period, usual-
ly as long as a half a second to a second. Note that signal events faster than 0.5 microsec-
onds can be displayed on the screen, but the signal may appear as a fleeting glitch or volt-
age spike.

The sensitivity indicates the Y-axis resolution. The low-voltage sensitivity of most 
average-priced scopes is about 5 mV to 5 volts. You turn a dial to set the sensitivity you
want. When you set the dial to 5 mV, each tick mark on the face of the scope tube 
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represents a difference of 5 mV. Voltage levels lower than 5 mV may appear, but they can-
not be accurately measured. Most scopes will show very low-level voltages (in the micro-
volt range) as a slight ripple.

ENHANCED FEATURES

Over the years, oscilloscopes have improved dramatically, with many added features and
capabilities. Among the most useful features are the following:

� Delayed sweep. This is helpful when you are analyzing a small portion of a long, com-
plex signal.

� Digital storage. This feature records signals in computerized memory for later recall.
Once signals are in the memory you can expand and analyze specific portions of them.
Digital storage also lets you compare signals, even if you take the measurements at dif-
ferent times.

� Selectable triggering. This feature lets you choose how the scope will trigger on the
input signal. When checking DC signals, no triggering is necessary, but for AC and dig-
ital signals you must select a specific part of the signal so the scope can properly dis-
play the waveform. At the very least, a scope will provide automatic triggering, which
will lock onto most stable AC and digital signals.

USE GOOD SCOPE PROBES

The probes used with oscilloscopes are not just wires with clips on the end of them. To be
effective, the better scope probes use low-capacitance/low-resistance shielded wire and a
capacitive-compensated tip. These ensure better accuracy.

Most scope probes are passive, meaning they employ a simple circuit of capacitors and
resistors to compensate for the effects of capacitive and resistive loading. Many passive
probes can be switched between 1X and 10X. At the 1X setting, the probe passes the sig-
nal without attenuation (weakening). At the 10X setting, the probe reduces the signal
strength by 10 times. This allows you to test a signal that might otherwise overload the
scope’s circuits.

Active probes use operational amplifiers or other powered circuitry to correct for the
effects of capacitive and resistive loading as well as to vary the attenuation of the signal.
Table 3.1 shows the typical specifications of passive and active oscilloscope probes.
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PROBE TYPE FREQUENCY RANGE RESISTIVE LOAD CAPACITIVE LOAD

Passive 1X DC - 5 MHz 1 megohm 30 pF

Passive 10X DC - 50 MHz 10 megohms 5 pF

Active DC - 500 MHz 10 megohms 2 pF

Table 3.1 SPECIFICATIONS FOR TYPICAL OSCILLOSCOPE PROBE
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USING A PC-BASED OSCILLOSCOPE

As an alternative to a stand-alone oscilloscope you may wish to consider a PC-based oscil-
loscope solution. Such oscilloscopes not only cost less but may provide additional features,
such as long-term data storage. A PC-based oscilloscope uses your computer and the soft-
ware running on it as the active testing component.

Most PC-based oscilloscopes are comprised of an interface card or adapter. The card-
adapter connects to your PC via an expansion board or a serial, parallel, or USB port 
(different models connect to the PC in different ways). A test probe then connects to the 
interface. Software running on your PC interprets the data coming through the interface
and displays the results on the monitor.

Prices for low-end PC-based oscilloscopes start at about $100. The price goes up the
more features and bandwidth you seek. For most robotics work, you don’t need the most
fancy-dancy model. PC-based oscilloscopes that connect to the parallel, serial, or USB
port—rather than internally through an expansion card—can be readily used with a
portable computer. This allows you to take your oscilloscope anywhere you happen to be
working on your robot.

Frequency Counter
A frequency counter (or frequency meter) tests the operating frequency of a circuit. Most
models can be used on digital, analog, and RF circuits for a variety of testing chores—from
making sure the crystal in the robot’s computer is working properly to determining the
radio frequency of a transmitter. You need only a basic frequency counter, which represents
a $100 to $200 investment. You can save some money by building a frequency counter kit.
Frequency counters have an upward operating limit, but it’s generally well within the
region applicable to robotics experiments. A frequency counter with a maximum range of
up to 50 MHz is enough.

Breadboard
You should test each of the circuits you want to use in your robot (including the ones in
this book) on a solderless breadboard before you commit it to a permanent circuit.
Solderless breadboards consist of a series of holes with internal contacts spaced one-tenth
of an inch apart, which is just the right spacing for ICs. To create your circuit, you plug in
ICs, resistors, capacitors, transistors, and 20- or 22-gauge wire in the proper contact holes.

Solderless breadboards come in many sizes. For the most flexibility, get a double-
width board that can accommodate at least 10 ICs. A typical double-width model is
shown in Fig. 3.4. You can use smaller boards for simple projects. Circuits with a high
number of components require bigger boards. While you’re buying a breadboard, pur-
chase a set of prestripped wires. These wires come in a variety of lengths and are already
stripped and bent for use in breadboards. The set costs $5 to $7, but you can bet they are
well worth the price.
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Wire-Wrapping Tools
Making a printed circuit board for a one-shot application is time consuming, though it can
be done with the proper kits and supplies. Conventional point-to-point solder wiring is not
an acceptable approach when you are constructing digital circuits, which represent the
lion’s share of electronics you’ll be building for your robots.

The preferred construction method is to use wire-wrapping. Wire-wrapping is a point-
to-point wiring system that uses a special tool and extra-fine 28- or 30-gauge wrapping
wire. When done properly, wire-wrapped circuits are as sturdy as soldered circuits, and
you have the added benefit of being able to go back and make modifications and correc-
tions without the hassle of desoldering and resoldering.

A manual wire-wrapping tool is shown in Fig. 3.5. You insert one end of the stripped
wire into a slot in the tool, and place the tool over a square-shaped wrapping post. Give the
tool five to ten twirls, and the connection is complete. The edges of the post keep the wire
anchored in place. To remove the wire, you use the other end of the tool and undo the 
wrapping.

Several different wire-wrapping tools are available. Some are motorized, and some auto-
matically strip the wire for you, which frees you of this task and of the need to purchase the
more expensive prestripped wire. I recommend that you use the basic manual tool initially.
You can graduate to other tools as you become proficient in wire-wrapping. Wrapping wire
comes in many forms, lengths, and colors, and you need to use special wire-wrapping sock-
ets and posts. See the next section on electronics supplies and components for more details.
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FIGURE 3.4 Solderless breadboards are used to “try out” a circuit before sol-
dering. Some robot makers even use them in their final prototypes.
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A number of companies offer proprietary alternatives for wire-wrapping; some are bet-
ter than others. Which system you choose will depend on your own personal preferences
as well as the availability of parts and supplies in your area. Visit a well-stocked electron-
ics parts store or catalog Web site and examine their offerings.

Hardware Supplies
A robot is about 75 percent hardware and 25 percent electronic and electromechanical
components. Most of your trips for parts for your robots will be to the local hardware store.
The following sections describe some common items you’ll want to have around your
shop.

NUTS AND BOLTS

Number 6, 8, and 10 nuts and pan-head stove bolts (6/32, 8/32, and 10/24, respectively)
are good for all-around construction. Get a variety of bolts in 1/2-, 3/4-, 1-, 1 1/4-,
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FIGURE 3.5 A wire-wrapping tool. The long end is for wrapping the wire around
the post; the short end for unwrapping (should it be necessary).
The blade in the middle is for stripping the insulation off the wire.
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and 1 1/2-inch lengths. You may also want to get some 2- and 3-inch-long bolts for special
applications.

Motor shafts and other heavy-duty applications require 1/4-inch 20 or 5/16-inch hard-
ware. Pan-head stove bolts are the best choice; you don’t need hex-head carriage bolts unless
you have a specific requirement for them. You can use number 6 (6/32) nuts and bolts for
small, lightweight applications. Or for even smaller work, use the miniature hardware avail-
able at hobby stores, where you can get screws in standard 5/56, 4/40, and 2/20 sizes.

WASHERS

While you’re at the store, stock up on flat washers, fender washers (large washers with
small holes), tooth lock washers, and split lock washers. Get an assortment so you have a
variety of nut and bolt sizes. Split lock washers are good for heavy-duty applications
because they provide more compression locking power. You usually use them with bolt
sizes of 1/4 inch and above.

ALL-THREAD ROD

All-thread is two- to three-foot lengths of threaded rod stock. It comes in standard thread
sizes and pitches. All-thread is good for shafts and linear motion actuators. Get one of each
in 8/32, 10/24, and 1/4-inch 20 threads to start. If you need small sizes, hobby stores pro-
vide all-thread rod (typically used for push/pull rods in model airplanes) in a variety of
diameters and threads.

SPECIAL NUTS

Coupling nuts are just like regular nuts except that they have been stretched out. They are
designed to couple two bolts or pieces of all-thread together, end to end. In robotics, you
might use them for everything from linear motion actuators to grippers. Locking nuts have
a piece of nylon built into them that provides a locking bite when they are threaded onto a
bolt. It is preferable to use locking nuts over two nuts tightened together.

Extruded Aluminum
If you’re making metal robots, you can take advantage of a rather common hardware item:
extruded aluminum stock. This stuff, which is designed for such things as building bath-
tub enclosures, picture frames, and other handyman applications, comes in various sizes,
thicknesses, and configurations. The standard length is usually 12 feet, but if you need less
most hardware stores will cut to order (you save when you buy it in full lengths). The stock
is available in plain (dull silver) anodized aluminum and gold anodized aluminum. Get the
plain stuff: it’s 10 to 25 percent cheaper.

Two particularly handy stocks are 41/64-by-1/2-by-1/16-inch channel and 57/64-by-
9/16-by-1/16-inch channel. I use these extensively to make the frames, arms, legs, and
other parts of my robots. Angle stock measuring 1-by-1-by-1/16-inches stock is another
often-used item, which is usually employed to attach crossbars and other structural 
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components. No matter what size you eventually settle on for your own robots, keep sev-
eral feet of extruded aluminum handy at all times. You’ll always use it.

If extruded aluminum is not available, you can use shelving standards, the barlike chan-
nel stock used for wall shelving. It’s most often available in steel, but some hardware stores
carry it in aluminum (silver, gold, and black anodized). Use this as a last resort, however,
because shelving standards can add a considerable amount of weight to your robot.

Angle Brackets
Also ideal for metal robots (and some plastic and wood ones) is an assortment of 3/8-inch
and 1/2-inch galvanized iron brackets. These are used to join the extruded stock or other
parts together. Use 1 1/2-inch by 3/8-inch flat corner irons when joining pieces cut at 45˚
angles to make a frame. Angle irons measuring 1 inch by 3/8 inch and 1 1/2 inch by 3/8
inch are helpful when attaching the stock to baseplates and when securing various compo-
nents to the robot.

Beware of weight! Angle brackets are heavy when you use a lot of them in your robot.
If you find the body of your robot is a few pounds more than it should be, consider sub-
stituting the angle brackets with other mounting techniques, including gluing, brazing (for
metal), or nails (for wood robots).

Electronic Supplies and Components
Most of the electronic projects you’ll assemble for this book, and for other books involving
digital and analog circuits, depend on you having a regular stable of common electronic com-
ponents. If you do any amount of electronic circuit building, you’ll want to stock up on the
following standard components. If you keep spares handy you won’t have to make repeat
trips to the electronics store. If you’re new to electronics, see Chapter 5, “Common Electronic
Components” and refer to Appendix A, “Further Reading,” for more information.

RESISTORS

Get a good assortment of 1/8- and 1/4-watt resistors. Make sure the assortment includes a
variety of common values and that there are several of each value. Supplement the assort-
ment with individual purchases of the following resistor values: 270 ohm, 330 ohm, 1K ohm,
3.3K ohm, 10K ohm, and 100K ohm. The 270- and 330-ohm values are often used with light-
emitting diodes, and the other values are common to TTL and CMOS digital circuits.

VARIABLE RESISTORS

Variable resistors, or potentiometers (pots) as they are also called, are relatively cheap and
are a boon to anyone designing and troubleshooting circuits. Buy an assortment of the
small PC-mount pots (about 80 cents each retail) in the 1-megohm and 2.5K-, 5K-, 10K-,
50K-, 100K-, 500K-, and 250K-ohm values. You’ll find that 500K-ohm and 1-megohm
pots are often used in op amp circuits, so buy a few extra of these.
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CAPACITORS

Like resistors, you’ll find yourself returning to the same standard capacitor values project
after project. For a well-stocked shop, get a dozen or so each of the following inexpensive
ceramic capacitors: 0.1, 0.01, and 0.001 µF (microfarad).

Many circuits use in-between values of 0.47, 0.047, and 0.022 �F. You may want to get
a couple of these as well. Power supply, timing, and audio circuits often use larger polar-
ized electrolytic or tantalum capacitors. Buy a few each of the 1.0-, 2.2-, 4.7-, 10-, and
100-�F values. Some projects call for other values (in the picofarad range and the thou-
sandth of a microfarad range). You can buy these as you need them unless you find your-
self returning to standard values repeatedly.

TRANSISTORS

There are thousands of transistors available, and each one has slightly different character-
istics. Most applications need nothing more than “generic” transistors for simple switch-
ing and amplifying. Common NPN signal transistors are the 2N2222 and the 2N3904
(some transistors are marked with an “MPS” prefix instead of the “2N” prefix; neverthe-
less, they are the same). Both kinds are available in bulk packages of 10 for about $1.
Common PNP signal transistors are the 2N3906 and the 2N2907. (See Chapter 5 for the
difference between NPN and PNP.)

If the circuit you’re building specifies a transistor other than the generic kind, you may
still be able to use one of the generic ones if you first look up the specifications for the
transistor called for in the schematic. A number of cross-reference guides provide the spec-
ifications and replacement-equivalents for popular transistors.

There are common power transistors as well, and these are often used to provide cur-
rent to larger loads, such as motors. The NPN TIP 31 and TIP 41 are familiar to most 
anyone who has dealt with power switching or amplification of up to 1 amp or so. PNP
counterparts are the TIP 32 and TIP 42. These transistors come in the TO-220 style pack-
age (see Fig. 3.6). A common larger-capacity NPN transistor that can switch 10 amps or
more is the 2N3055. It comes in the TO-3 style package and is available everywhere. It
costs between 50 cents and $2, depending on the source.

DIODES

Common diodes are the 1N914, for light-duty signal-switching applications, and the
1N4000 series (1N4001, 1N4002, 1N4003, and 1N4004). Get several of each, and use the
proper size to handle the current in the circuit. Refer to a data book on the voltage- and
power-handling capabilities of these diodes. A special kind of diode is the zener, which is
typically used to regulate voltage (see Chapter 5). Zener diodes are available in a variety
of voltages and wattages.

LEDs

All semiconductors emit light, but light-emitting diodes (LEDs) are designed especially
for the task. LEDs last longer than regular filament lamps and require less operating cur-
rent. They are available in a variety of sizes, shapes, and colors. For general applications,
the medium-sized red LED is perfect. Buy a few dozen and use them as needed.
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Many of the projects in this book call for infrared LEDs. These emit no visible light and
are used in conjunction with an infrared-sensitive phototransistor or photodiode. Use care
when separating your LEDs so you don’t mistake an infrared LED for a regular LED. If
you do, you may try to use the infrared LED, see that it outputs no visible light, and throw
it away. Keep visible-light and infrared LEDs in separate drawers, containers, or plastic
bags. Get into the habit of marking the bags so you don’t forget what’s inside them!

Likewise, if you use light-sensitive diodes in any of your robotics projects keep these
separate as well. These diodes look a lot like LEDs but instead of emitting light they are
designed to sense light falling on them.

INTEGRATED CIRCUITS

Integrated circuits will enable you to construct fairly complex circuits from just a couple
of components. Although there are literally thousands of different ICs, some with exotic
applications, a small handful crops up again and again in hobby projects. You should keep
the following common ICs in ready stock:

� 555 timer. This is, by far, the most popular integrated circuit for hobby electronics. With
just a couple of resistors and capacitors, the 555 can be made to act as a pulser, a timer,
a time delay, a missing pulse detector, and dozens of other useful things. The chip is
usually used as a pulse source for digital circuits. It is available in dual versions as the
556 and in quadruple versions as the 558.
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FIGURE 3.6 An assortment of common power transistors. From left to right, the
transistors are packaged in TO-220, TO-3, and TO-66 cases. All three
can be mounted on a heat sink for enhanced operation.
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� 741 op amp. The 741 comes in second in popularity to the 555. The 741 can be used for
signal amplification, differentiation, integration, sample-and-hold, and a host of other
useful applications. The 741 is available in a dual version, the 1458. The chip comes in
different package configurations. The schematics in this book and in other sources
specify the pins for the common 8-pin DIP package. Note that there are numerous op
amps available and that some have design advantages over the 741.

� TTL logic chips. TTL ICs are common in computer circuits and other digital applica-
tions. There are many types of TTL packages, but you won’t use more than 10 to 15 of
them unless you’re heavily into electronics experimentation. Specifically, the most
common and most useful TTL ICs are the 7400, 7401, 7402, 7404, 7407, 7408, 7414,
7430, 7432, 7473, 7474, 74154, 74193, and 74244.

� CMOS logic chips. Because CMOS ICs require less power to operate than the TTL vari-
ety, you’ll often find them specified for use with low-power robotic and remote control
applications. Like TTL, there is a relatively small number of common packages: 4001,
4011, 4013, 4016, 4017, 4027, 4040, 4041, 4049, 4060, 4066, 4069, 4071, and 4081.

� 339 quad comparator. Comparators are used to compare two voltages. The output of the
comparator changes depending on the voltage levels at its two inputs. The comparator
is similar to the op amp, except that it does not use an external feedback resistor. You
can use an op amp as a comparator, but a better approach is to use something like the
339 chip, which contains four comparators in one package.

WIRE

Solid-conductor, insulated 22-gauge hookup wire can be used in your finished projects as
well as to connect wires in breadboards. Buy a few spools in different colors. Solid-
conductor wire can be crimped sharply, and when excessively twisted and flexed it can
break. If you expect that the wiring in your project may be flexed repeatedly, use strand-
ed wire instead. You must use heavier 12- to 18-gauge hookup wire for connections to
heavy-duty batteries, drive motors, and circuit board power supply lines. Appendix E,
“Reference,” lists the power-handling capabilities of standard wire gauges.

Wire-wrap wire is available in spool or precut and prestripped packages. For ease of
use, buy the more expensive precut stuff unless you have a tool that does it for you. Get
several of each length. The wire-wrapping tool has its own stripper built in (which you
must use instead of a regular wire stripper), so you can always shorten the precut wires as
needed. Some special wire-wrapping tools can only be used with their own wrapping wire.
Check the instructions that came with the tool for details.

Circuit Boards
Simple projects can be built on solder breadboards. These are modeled after the solderless
breadboard (discussed earlier in the chapter). You simply transfer the tested circuit from
the solderless breadboard to the solder board. You can cut the board with a hacksaw or
razor saw if you don’t need all of it.

Larger projects require perforated boards. Get the kind that have solder tabs or solder
traces on them. You’ll be able to secure the components onto the boards with solder. Many
“perf ” boards are designed for wire-wrapping.
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SOCKETS

You should use sockets for ICs whenever possible. Sockets come in sizes ranging from 8-
pin to 40-pin. You should use the sockets with extra-long square leads for wire-wrapping
and when assembling a wire-wrapped project.

You can also use IC sockets to hold discrete components like resistors, capacitors,
diodes, LEDs, and transistors. You can, if you wish, wire-wrap the leads of these com-
ponents. However, because the leads are not square the small wire doesn’t have anything
to bite into, and therefore the connection isn’t very strong. After assembly and testing,
when you are sure the circuit works, apply a dab of solder to the leads to hold the wires
in place.

Setting up Shop
You’ll need a worktable to construct the mechanisms and electronic circuits of your robots.
The garage is an ideal location because it affords you the freedom to cut and drill wood,
metal, and plastic without worrying about getting the pieces in the carpet. Electronic
assembly can be done indoors or out, but I’ve found that when working in a carpeted room,
it’s best to spread another carpet or some protective cover over the floor. When the throw
rug gets filled up with solder bits and little pieces of wire and component leads, I can take
it outside, beat it with a broom handle, and it’s as good as new.

Whatever space you choose to set up your robot lab, make sure all your tools are within
easy reach. Keep special tools and supplies in an inexpensive fishing tackle box. The tack-
le box provides lots of small compartments for screws and other parts. For the best results,
your work space should be an area where the robot-in-progress will not be disturbed if you
have to leave it for several hours or several days, as will usually be the case. The worktable
should also be off limits or inaccessible to young children.

Good lighting is a must. Both mechanical and electronic assembly require detail work,
and you will need good lighting to see everything properly. Supplement overhead lights
with a 60-watt desk lamp. You’ll be crouched over the worktable for hours at a time, so a
comfortable chair or stool is a must. Be sure you adjust the seat for the height of the 
worktable.

From Here
To learn more about... Read

More about electronic components Chapter 5, Understanding Electronic Components

How to solder Chapter 6, Electronic Construction Techniques

Bulding electronic circuits Chapter 6, Electronic Construction Techniques

Building mechanical apparatus Part II, Robot Construction
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Building a robot from scratch can be hard or easy. It’s up to you. Personally, I go for the
easy route; life is too demanding as it is. From experience, I’ve found that the best way to
simplify the construction of a robot is to use standard, off-the-shelf parts, things you can
get at the neighborhood hardware, auto parts, and electronics store.

Exactly where can you find robot parts? The neighborhood robot store would be the
logical place to start—if only such a store existed! Not yet, anyway. Fortunately, other local
retail stores are available to fill in the gaps. Moreover, there’s a veritable world of places
that sell robot junk, thanks to mail order and the Internet.

Hobby and Model Stores
Hobby and model stores are the ideal sources for small parts, including lightweight plas-
tic, brass rod, servo motors for radio control (R/C) cars and airplanes, gears, and 
construction hardware. Most of the products available at hobby stores are designed for
building specific kinds of models and toys. But that shouldn’t stop you from raiding the
place with an eye to converting the parts for robot use.

In my experience many hobby store owners and sales people have little knowledge
about how to use their line of products for anything but their intended purpose. So you’ll
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likely receive little substantive help in solving your robot construction problem. Your best
bet is to browse the store and look for parts that you can put together to build a robot. Some
of the parts, particularly those for R/C models, will be behind a counter, but they should
still be visible enough for you to conceptualize how you might use them. If you don’t have
a well-stocked hobby and model store in your area, there’s always mail order and the
Internet.

Craft Stores
Craft stores sell supplies for home crafts and arts. As a robot builder, you’ll be interested
in just a few of the aisles at most craft stores, but what’s in those aisles will be a veritable
gold mine! Look for these useful items:

� Foam rubber sheets. These come in various colors and thicknesses and can be used for
pads, bumpers, nonslip surfaces, tank treads, and lots more. The foam is very dense; use
a sharp scissors or knife to cut it (I like to use a rotary paper cutter to get a nice, straight
cut).

� Foamboard. Constructed of foam sandwiched between two heavy sheets of paper,
foamboard can be used for small, lightweight robots. Foamboard can be cut with a
hobby knife and glued with paper glue or hot-melt glue. Look for it in different colors
and thicknesses.

� Parts from dolls and teddy bears. These can often be used in robots. Fancier dolls use
“articulations”—movable and adjustable joints—that can be used in your robot cre-
ations. Look also for linkages, bendable posing wire, and eyes (great for building robots
with personality!).

� Electronic light and sound buttons. These are designed to make Christmas ornaments
and custom greeting cards, but they work just as well in robots. The electric light kits
come with low-voltage LEDs or incandescent lights, often in several bright colors.
Some flash at random, some sequentially. Sound buttons have a built-in song that plays
when you depress a switch. Don’t expect high sound quality with these devices. You
could use these buttons as touch sensors, for example, or as a “tummy switch” in an ani-
mal-like robot.

� Plastic crafts construction material. This can be used in lieu of more expensive build-
ing kits, such as LEGO or Erector Set. For example, many stores carry the plastic equiv-
alent of that old favorite, the wooden Popsicle sticks (the wooden variety is also avail-
able, but these aren’t as strong). The plastic sticks have notches in them so they can be
assembled to create frames and structures.

� Model building supplies. Many craft stores have these, sometimes at lower prices than
the average hobby-model store. Look for assortments of wood and metal pieces, adhe-
sives, and construction tools.

There are, of course, many other interesting products of interest at craft stores. Visit one
and take a stroll down its aisles.
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Hardware Stores
Hardware stores and builder’s supply outlets (usually open to the public) are the best
source for the wide variety of tools and parts you will need for robot experimentation.
Items like nuts and bolts are generally available in bulk, so you can save money. As you
tour the hardware stores, keep a notebook handy and jot down the lines each outlet carries.
Then, when you find yourself needing a specific item, you have only to refer to your notes.
Take an idle stroll through your regular hardware store haunts on a regular basis. You’ll
always find something new and laughably useful for robot design each time you visit.

Electronic Stores
Ten or twenty years ago electronic parts stores were plentiful. Even some automotive out-
lets carried a full range of tubes, specialty transistors, and other electronic gadgets. Now,
Radio Shack remains as the only U.S. national electronics store chain. In many towns across
the country, it’s the only thing going.

Radio Shack continues to support electronics experimenters, but they stock only the
very common components. If your needs extend beyond resistors, capacitors, and a few
integrated circuits, you must turn to other sources. Check the local yellow pages under
Electronics-Retail for a list of electronic parts shops near you. Note that Radio Shack
offers a more complete line of electronic components online, which you can purchase via
the Internet or mail order.

Electronics Wholesalers and
Distributors
Most electronic stores carry a limited selection, especially if they serve the consumer or
hobby market. Most larger cities across the United States—and in other countries through-
out the world, for that matter—host one or more electronics wholesalers or distributors.
These companies specialize in providing parts for industry.

Wholesalers and distributors are two different kinds of businesses, and it’s worthwhile
to know how they differ so you can approach them effectively. Wholesalers are accustomed
to providing parts in quantity; they offer attractive discounts because they can make up for
them with higher volume. Unless you are planning to buy components in the hundreds or
thousands, a wholesaler is likely not your best choice.

Distributors may also sell in bulk, but many of them are also set up to sell parts in “one-
sies and twosies.” Cost per item is understandably higher, and not all distributors are 
willing to sell to the general public. Rather, they prefer to establish relationships with com-
panies and organizations that may purchase thousands of dollars worth of parts over the
course of a year. Still, some electronics parts distributors, particularly those with catalogs

ELECTRONICS WHOLESALERS AND DISTRIBUTORS 47

Ch04_McComb  8/23/00  3:33 PM  Page 47



on the Internet (see “Finding Parts on the Internet,” later in this chapter) are more than
happy to work with individuals, though minimum-order requirements may apply. Check
with the companies near you and ask for their “terms of service.”

When buying through a distributor, keep in mind that you are seldom able to browse
their warehouse to look for goodies. Most distributors provide a listing of the parts they
carry. Some only list the “lines” they offer. You are required to know the make, model, and
part number of what you want to order. Fortunately, these days most of the electronics
manufacturers provide free information about their products on the Internet. Many such
Internet sites offer a search tool that allows you to look up parts by function. Once you find
a part you want, jot down its number, and use it to order from the local distributor.

If you belong to a local robotics club or user’s group, you may find it advantageous to
establish a relationship with a local electronics parts distributor through the club.
Assuming the club has enough members to justify the quantities of each part you’ll need
to buy, the same approach can work with electronics wholesalers. You may find that the
buying power of the group gets you better service and lower prices.

Samples from Electronics
Manufacturers
Some electronics manufacturers are willing to send samples—some free, some at a small
surcharge—of their products. Most manufacturers prefer to deal with engineers in the
industry, but a few will respond to requests from individuals. Keep in mind that most man-
ufacturers are not set up to deal directly with the public, and, in fact, many have standing
relationships with wholesalers and distributors that prohibit them from dealing directly
with individuals.

Still, over the years electronics manufacturers have found that the best way to promote
their products is to provide free and low-cost engineering samples. Make sure you stay on
the manufacturer’s mailing list, so you can obtain updates on new technologies that might
become available.

If you belong to a school or a robotics club, send your request (preferably on profes-
sional-looking letterhead) under the auspices of your school or club. Most electronics man-
ufacturers realize that today’s robotics students and hobbyists are tomorrow’s engineers,
and they want to actively foster a good working relationship with them.

Specialty Stores
Specialty stores are outlets open to the general public that sell items you won’t find in a
regular hardware or electronic parts store. They don’t include surplus outlets, which 
are discussed in the next section. What specialty stores are of use to robot builders? 
Consider these:
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� Sewing machine repair shops. Ideal for finding small gears, cams, levers, and other pre-
cision parts. Some shops will sell broken machines to you. Tear the machine to shreds
and use the parts for your robot.

� Auto parts stores. The independent stores tend to stock more goodies than the national
chains, but both kinds offer surprises on every aisle. Keep an eye out for things like
hoses, pumps, and automotive gadgets.

� Used battery depots. These are usually a business run out of the home of someone who
buys old car and motorcycle batteries and refurbishes them. Selling prices are usually
between $15 and $25, or 50 to 75 percent less than a new battery.

� Junkyards. Old cars are good sources for powerful DC motors, which are used to drive
windshield wipers, electric windows, and automatic adjustable seats (though take note:
such motors tend to be terribly inefficient for battery-based ‘bots). Or how about the
hydraulic brake system on a junked 1969 Ford Falcon? Bring tools to salvage the parts
you want. And maybe bring the Falcon home with you too.

� Lawn mower sales-service shops. Lawn mowers use all sorts of nifty control cables,
wheel bearings, and assorted odds and ends. Pick up new or used parts for a current pro-
ject or for your own stock at these shops.

� Bicycle sales-service shops. Not the department store that sells bikes, but a real profes-
sional bicycle shop. Items of interest: control cables, chains, brake calipers, wheels,
sprockets, brake linings, and more.

� Industrial parts outlets. Some places sell gears, bearings, shafts, motors, and other
industrial hardware on a one-piece-at-a-time basis. The penalty: fairly high prices and
often the requirement that you buy a higher quantity of an item than you really need.

Shopping the Surplus Store
Surplus is a wonderful thing, but most people shy away from it. Why? If it’s surplus, the
reasoning goes, it must be worthless junk. That’s simply not true. Surplus is exactly what
its name implies: extra stock. Because the stock is extra, it’s generally priced accordingly—
to move it out the door.

Surplus stores that specialize in new and used mechanical and electronic parts (not to
be confused with surplus clothing, camping, and government equipment stores) are a plea-
sure to find. Most urban areas have at least one such surplus store; some as many as three
or four. Get to know each and compare their prices. Bear in mind that surplus stores don’t
have mass market appeal, so finding them is not always easy. Start by looking in the phone
company’s yellow pages under Electronics and also under Surplus.

MAIL ORDER SURPLUS

Surplus parts are also available through the mail. There a limited number of mail order sur-
plus outfits that cater to the hobbyist, but you can usually find everything you need if you
look carefully enough and are patient. See Appendix B, “Sources,” for more information.
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While surplus is a great way to stock up on DC motors, gears, roller chain, sprockets,
and other odds and ends, you must shop wisely. Just because the company calls the stuff
surplus doesn’t mean that it’s cheap or even reasonably priced. A popular item in a catalog
may sell for top dollar. Always compare the prices of similar items offered by several sur-
plus outlets before buying. Consider all the variables, such as the added cost of insurance,
postage and handling, and COD fees. Be sure that the mail order firm has a lenient return
policy. You should always be able to return the goods if they are not satisfactory to you.

WHAT YOU CAN GET SURPLUS

Shopping surplus—seither mail order or at a store near you—can be a tough proposition
because it’s hard to know what you’ll need before you need it. And when you need it,
there’s only a slight chance that the store will have what you want. Still, certain items are
almost always in demand by the robotics experimenter. If the price is right (especially on
assortments or sets), stock up on the following:

� Gears. Small gears between 1/2 inch and 3 inches in size are extremely useful. Stick
with standard tooth pitches of 24, 32, and 48. Try to get an assortment of sizes with sim-
ilar pitches. Avoid “grab bag” collections of gears because you’ll find no mates. Plastic
and nylon gears are fine for most jobs, but you should use larger metal gears for the
main drive systems of your robots.

� Roller chain and sprockets. Robotics applications generally call for 1/4-inch (#25)
roller chain, which is smaller and lighter than bicycle chain. When you see this stuff,
snatch it up, but make sure you have the master links if the chain isn’t permanently riv-
eted together. Sprockets come in various sizes, which are expressed as the number of
teeth on the outside of the sprocket. Buy a selection. Plastic and nylon roller chain and
sprockets are fine for general use; steel is preferred for main drives.

� Bushings. You can use bushings as a kind of ball bearing or to reduce the hub size of
gears and sprockets so they fit smaller shafts. Common motor shaft sizes are 1/8 inch
for small motors and 1/4 inch for larger motors. Gears and sprockets generally have 3/8-
inch, 1/2-inch, and 5/8-inch hubs. Oil-impregnated Oilite bushings are among the best,
but they cost more than regular bushings.

� Spacers. These are made of aluminum, brass, or stainless steel. The best kind to get have
an inside diameter that accepts 10/32 and 1/4-inch shafts.

� Motors. Particularly useful are the 6-volt and 12-volt DC variety. Most motors turn too
fast for robotics applications. Save yourself some hassle by ordering geared motors.
Final speeds of 20 to 100 rpm at the output of the gear reduction train are ideal. If gear
motors aren’t available, be on the lookout for gearboxes that you can attach to your
motors. Stepper motors are handy too, but make sure you know what you are buying.
Chapters 17 through 20 discuss motors in detail.

� Rechargeable batteries. The sealed lead-acid and gel-cell varieties are common in sur-
plus outlets. Test the battery immediately to make sure it takes a charge and delivers its
full capacity (test it under a load, like a heavy-duty motor). These batteries come in 
6-volt and 12-volt capacities, both of which are ideal for robotics. Surplus nickel-
cadmium and nickel-metal hydride batteries are available too, in either single 1.2-volt
cells or in combination battery packs. Be sure to check these batteries thoroughly.
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Finding Parts on the Internet
The Internet has given a tremendous boost to the art and science of robot building.
Through the Internet—and more specifically the World Wide Web—you can now search
for and find the most elusive part for your robot. Most of the major surplus and electron-
ics mail order companies provide online electronic catalogs. You can visit the retailer at
their Web site and either browse their offerings by category or use a search feature to
quickly locate exactly what you want.

Moreover, with the help of Web search engines—such as Google (www.google.com),
Altavista (www.altavista.com), and HotBot (www.hotbot.com)—you can search for items
of interest from among the millions of Web sites throughout the world. Search engines pro-
vide you with a list of Web pages that may match your search query. You can then visit the
Web pages to see if they offer what you’re looking for.

Of course, don’t limit your use of the Internet and the World Wide Web to just finding
parts. You can also use them to find a plethora of useful information on robot building. See
Appendix B, “Sources,” and Appendix C, “Robot Information on the Internet,” for cate-
gorized lists of useful robotics destinations on the Internet. These lists are periodically
updated at www.robotoid.com.

A number of Web sites offer individuals the ability to buy and sell merchandise. Most
of these sites are set up as auctions: someone posts an item to sell and then waits for peo-
ple to make bids on it. Robotics toys, books, kits, and other products are common finds on
Web auction sites like eBay (www.ebay.com) and Amazon (www.amazon.com). If your
design requires you to pull the guts out of a certain toy that’s no longer made, try finding
a used one at a Web auction site. The price should be reasonable as long as the toy is not
a collector’s item.

Keep in mind that the World Wide Web is indeed worldwide. Some of the sites you find
may not be located in your country. Though many Web businesses ship internationally, not
all will. Check the Web site’s fine print to determine if the company will ship to your coun-
try, and note any specific payment requirements. If they accept checks or money orders,
the denomination of each must be in the company’s native currency.

Scavenging: Making Do with What You
Already Have
You don’t always need to buy new (or used or surplus) to get worthwhile robot parts. In fact,
some of the best parts for hobby robots may already be in your garage or attic. Consider the
typical used VCR, for example. It’ll contain at least one motor (and possibly as many as five),
numerous gears, and other electronic and mechanical odds and ends. Depending on the brand
and when it was made, it could also contain belts and pulleys, infrared receiver modules,
miniature push buttons, infrared light-emitting diodes and detectors, and even wire harnesses
with multipin connectors. Any and all of these can be salvaged to help build your robot. All
told, the typical VCR may have over $50 worth of parts in it.
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Never throw away small appliances or mechanical devices without taking them apart
and scavenging the good stuff. If you don’t have time to disassemble that CD player that’s
skipping on all of your compact discs, throw it into a pile for a rainy day when you do have
a free moment. Ask friends and neighbors to save their discards for you. You’d be amazed
how many people simply toss old VCRs, clock radios, and other items into the trash when
they no longer work.

Likewise, make a point of visiting garage sales and thrift stores from time to time, and
look for parts bonanzas in used—and perhaps nonfunctioning—goods. I regularly scout
the local thrift stores (Goodwill, Disabled American Veterans, Salvation Army, Amvets,
etc.) and for very little money come away with a trunk full of valuable items I can salvage
for parts. Goods that are still in functioning order tend to cost more than the broken stuff,
but for robot building the broken stuff is just as good. Be sure to ask the store personnel if
they have any nonworking items they will sell you at a reasonable cost.

Here is just a short list of the electronic and mechanical items you’ll want to be on the
lookout for and the primary robot-building components they have inside:

� VCRs are perhaps the best single-source for parts, and they are in plentiful supply (hun-
dreds of millions of them have been built since the mid 1970s). As discussed above,
you’ll find motors, switches, LEDs, cable harnesses, and IR receiver modules on many
models.

� CD players have optical systems you can gut out if your robot uses a specialty vision
system. Apart from the laser diode, CD players have focusing lenses, miniature multi-
cell photodiode arrays, diffraction gratings, and beam splitters, as well as micro-minia-
ture motors and a precision lead-screw positioning device (used by the laser system to
read the surface of the CD).

� Fax machines contain numerous motors, gears, miniature leaf switches, and other
mechanical parts. These machines also contain an imaging array (it reads the page to
fax it) that you might be able to adapt for use as robotic sensors.

� Mice, printers, old scanners, disk drives, and other discarded computer peripherals
contain valuable optical and mechanical parts. Mice contain optical encoders that you
can use to count the rotations of your robot’s wheels, printers contain motors and gears,
disk drives contain stepper motors, and scanners contain optics you can use for vision
systems and other sensors on your robot. The old “handheld” scanners popular a few
years ago are ideal for use as image sensors.

� Mechanical toys, especially the motorized variety, can be used either for parts or as a
robot base. When looking at motorized vehicles, favor those that use separate motors
for each drive wheel (as opposed to a single motor for both wheels).

� Smoke alarms have a useful life of about seven years. After that, the active element in
the smoke sensor is depleted to the point where, for safety reasons, the detector should
be replaced. Many homeowners replace their smoke alarms more frequently, and the
sensor within them is still good. You can gut the parts and use them in your “Smokey
the Robot” project.
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From Here
To learn more about... Read

Tools for robot building Chapter 3, “Tools and Supplies”

Description of electronic components Chapter 5, “Common Electronic Components”

Details on batteries and battery types Chapter 15, “All About Batteries and Robot Power
Supplies”

Common motor types used in robotics Chapter 17, “Choosing the Right Motor for the Job”
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Components are the things that make your electronic projects tick. Any given hobby
robot project might contain a dozen or more components of varying types, including resis-
tors, capacitors, integrated circuits, and light-emitting diodes. In this chapter, you’ll read
about the components commonly found in hobby electronic projects and their many spe-
cific varieties.

Fixed Resistors
A fixed resistor supplies a predetermined resistance to a circuit. The standard unit of value
of a resistor is the ohm, represented by the symbol �. The higher the ohm value, the more
resistance the component provides to the circuit. The value on most fixed resistors is iden-
tified by color coding, as shown in Fig. 5.1. The color coding starts near the edge of the
resistor and comprises four, five, and sometimes six bands of different colors. Most off-
the-shelf resistors for hobby projects use standard four-band color coding.

If you are not sure what the resistance is for a particular resistor, use a volt-ohm meter
to check it. Position the test leads on either end of the resistor. If the meter is not auto-
ranging, start at a high range and work down. Be sure you don’t touch the test leads or the
leads of the resistor; if you do, you’ll add the natural resistance of your own body to 
the reading.
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Resistors are also rated by their wattage. The wattage of a resistor indicates the amount
of power it can safely dissipate. Resistors used in high-load applications, like motor con-
trol, require higher wattages than those used in low-current applications. The majority of
resistors you’ll use for hobby electronics will be rated at 1/4 or even 1/8 of a watt. The
wattage of a resistor is not marked on the body of the component; instead, you must infer
it from the size of the resistor.

Variable Resistors
Variable resistors, first introduced in Chapter 3, are more commonly known as poten-
tiometers, let you “dial in” a specific resistance. The actual range of resistance is deter-
mined by the upward value of the potentiometer. Potentiometers are thus marked with this
upward value, such as 10K, 50K, 100K, 1M, and so forth. For example, a 50K poten-
tiometer will let you dial in any resistance from 0 ohms to 50,000 ohms. Note that the
range is approximate only.

Potentiometers are of either the dial or slide type, as shown in Fig. 5.2. The dial type is
the most familiar and is used in such applications as television volume controls and elec-
tric blanket thermostat controls. The rotation of the dial is nearly 360˚, depending on which
potentiometer you use. In one extreme, the resistance through the potentiometer (or “pot”)
is zero; in the other extreme, the resistance is the maximum value of the component.

Some projects require precision potentiometers. These are referred to as multiturn pots
or trimmers. Instead of turning the dial one complete rotation to change the resistance
from, say, 0 to 10,000 ohms, a multiturn pot requires you to rotate the knob three, five, ten,
even fifteen times to span the same range. Most are designed to be mounted directly on the
printed circuit board. If you have to adjust them you will need a screwdriver or plastic tool.

Fixed Capacitors
After resistors, capacitors are the second most common component found in the average
electronic project. Capacitors serve many purposes. They can be used to remove traces of
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alternating current ripple in a power supply, for example, to delay the action of some por-
tion of the circuit, or to remove harmful glitches. All these applications depend on the abil-
ity of the capacitor to hold an electrical charge for a predetermined time.

Capacitors come in many more sizes, shapes, and varieties than resistors, though only
a small handful are truly common. However, most all capacitors are made of the same
basic stuff: a pair of conductive elements separated by an insulating dielectric (see Fig.
5.3). This dielectric can be composed of many materials, including air (in the case of a
variable capacitor, as detailed in the next section), paper, epoxy, plastic, and even oil. Most
capacitors actually have many layers of conducting elements and dielectric. When you
select a capacitor for a particular job, you must generally also indicate the type, such as
ceramic, mica, or Mylar.

Capacitors are rated by their capacitance, in farads, and by the breakdown voltage of
their dielectric. The farad is a rather large unit of measurement, so the bulk of capacitors
available today are rated in microfarads, or a millionth of a farad. An even smaller rating
is the picofarad, or a millionth of a millionth of a farad. The “micro-” in the term micro-
farad is most often represented by the Greek “mu” (µ) character, as in 10 µF. The pico-
farad is simply shortened to pF. The voltage rating is the highest voltage the capacitor can
withstand before the dielectric layers in the component are damaged.

For the most part, capacitors are classified by the dielectric material they use. The most
common dielectric materials are aluminum electrolytic, tantalum electrolytic, ceramic,
mica, polypropylene, polyester (or Mylar), paper, and polystyrene. The dielectric material
used in a capacitor partly determines which applications it should be used for. The larger
electrolytic capacitors, which use an aluminum electrolyte, are suited for such chores as
power supply filtering, where large values are needed. The values for many capacitors are
printed directly on the component. This is especially true with the larger aluminum elec-
trolytic, where the large size of the capacitor provides ample room for printing the capac-
itance and voltage. Smaller capacitors, such as 0.1 or 0.01 µF mica disc capacitors, use a
common three-digit marking system to denote capacitance and tolerance. The numbering
system is easy to use, if you remember it’s based on picofarads, not microfarads. A num-
ber such as 104 means 10, followed by four zeros, as in

100,000

or 100,000 picofarads. Values over 1000 picofarads are most often stated in microfarads.
To make the conversion, move the decimal point to the left six spaces: 0.1 µF. Note that
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values under 1000 picofarads do not use this numbering system. Instead, the actual value,
in picofarads, is listed, such as 10 (for 10 pF).

The tolerance of the capacitor is most often indicated by a single letter code, which is
sometimes placed by itself on the body of the capacitor or after the three-digit mark, such as

104Z

The letter Z donates a tolerance of �80 percent and �20 percent. That means the
capacitor, which is rated at 0.1 µF, might be as much as 80 percent higher or 20 percent
lower. More and more capacitor manufacturers are adopting the EIA (Electronic Industries
Association) marking system for temperature tolerance. The three characters in the mark
indicate the temperate tolerance and maximum variation within the stated temperature
range. For example, a capacitor marked Y5P has the following characteristics:

� �30°C low temperature requirement
� �85°C high temperature requirement
� �/� 10.0 percent variance in capacitance over the -30 to �85°C range

The maximum dielectric breakdown voltage is not always stated on the body of a capac-
itor, but if it is it is almost always indicated by the actual voltage, such as “35” or “35V.”
Sometimes, the letters WV are used after the voltage rating. This indicates the working
voltage (really the maximum dielectric breakdown voltage) of the capacitor. You should
not use the capacitor with voltages that exceed this rating.

One final mark you will find almost exclusively on larger tantalum and aluminum elec-
trolytic is a polarity symbol, typically a minus (�) sign. The polarity symbol indicates the
positive and/or negative lead of a capacitor. If a capacitor is polarized, it is extremely impor-
tant that you follow the proper orientation when you install the capacitor in the circuit. If
you reverse the leads to the capacitor—connecting the � side to the ground rail, for exam-
ple—the capacitor may be ruined. Other components in the circuit could also be damaged.

Variable Capacitors
Variable capacitors are similar to variable resistors in that they allow you to adjust capac-
itance to suit your needs. Unlike potentiometers, however, variable capacitors operate on a
drastically reduced range of values, and seldom do they provide “zero” capacitance.
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The most common type of variable capacitor you will encounter is the air dielectric
type, as found in the tuning control of an AM radio. As you dial the tuning knob, you move
one set of plates within another. Air separates the plates so they don’t touch. Smaller vari-
able capacitors are sometimes used as “trimmers” to adjust the capacitance within a nar-
row band. You will often find trimmers in radio receivers and transmitters as well as in 
circuits that use quartz crystals to gain an accurate reference signal. The value of such trim-
mers is typically in the 5–30 pF range.

Diodes
The diode is the simplest form of semiconductor. They are available in two basic flavors,
germanium and silicon, which indicate the material used to manufacture the active junc-
tion within the diode. Diodes are used in a variety of applications, and there are numerous
subtypes. Here is a list of the most common:

� Rectifier. The “average” diode, it rectifies AC current to provide DC only.
� Zener. It limits voltage to a predetermined level. Zeners are used for low-cost voltage

regulation.
� Light-emitting. These diodes emit infrared of visible light when current is applied.
� Silicon controlled rectifier (SCR). This is a type of high-power switch used to control

AC or DC currents.
� Bridge rectifier. This is a collection of four diodes strung together in sequence; it is

used to rectify an incoming AC current.

Other types of diodes include the diac, triac, bilateral switch, light-activated SCR, and
several other variations. Diodes carry two important ratings: peak inverse voltage (PIV)
and current. The PIV rating roughly indicates the maximum working voltage for the diode.
Similarly, the current rating is the maximum amount of current the diode can withstand.
Assuming a diode is rated for 3 amps, it cannot safely conduct more than 3 amps without
overheating and failing.

All diodes have positive and negative terminals (polarity). The positive terminal is the
anode, and the negative terminal is the cathode. You can readily identify the cathode end
of a diode by looking for a colored stripe near one of the leads. Fig. 5.4 shows a diode that
has a stripe at the cathode end. Note how the stripe corresponds with the heavy line in the
schematic symbol for the diode.
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All semiconductors emit light when an electric current is applied to them. This light is
generally very dim and only in the infrared region of the electromagnetic spectrum. The
light-emitting diode (LED) is a special type of semiconductor that is expressly designed to
emit copious amounts of light. Most LEDs are engineered to produce red, yellow, or green
light, but special-purpose types are designed to emit infrared and blue light.

LEDs carry the same specifications as any other diode. The LED has a PIV rating of
about 100 to 150 volts, with a maximum current rating of under 40 milliamps. Most LEDs
are used in low-power DC circuits and are powered with 12 volts or less. Even though this
voltage is far below the PIV rating of the LED, the component can still be ruthlessly dam-
aged if you expose it to currents exceeding 40 or 50 mA. A resistor is used to limit the cur-
rent to the LED.

Transistors
Transistors were designed as an alternative to the old vacuum tube, and they are used in
similar applications, either to amplify a signal or to switch a signal on and off. At last count
there were several thousand different transistors available. Besides amplifying or switch-
ing a current, transistors are divided into two broad categories:

� Signal. These transistors are used with relatively low current circuits, like radios, tele-
phones, and most other hobby electronics projects.

� Power. These transistors are used with high-current circuits, like motor drivers and
power supplies.

You can usually tell the difference between the two merely by size. The signal transis-
tor is rarely larger than a pea and uses slender wire leads. The power transistor uses a large
metal case to help dissipate heat and heavy spokelike leads.

Transistors are identified by a unique code, such as 2N2222 or MPS6519. Refer to a
data book to ascertain the characteristics and ratings of the particular transistor you are
interested in. Transistors are rated by a number of criteria, which are far too extensive for
the scope of this book. These ratings include collector-to-base voltage, collector-to-
emitter voltage, maximum collector current, maximum device dissipation, and maximum
operating frequency. None of these ratings are printed directly on the transistor.

Signal transistors are available in either plastic or metal cases. The plastic kind is suit-
able for most uses, but some precision applications require the metal variety. Transistors
that use metal cases (or “cans”) are less susceptible to stray radio frequency interference.
They also dissipate heat more readily. Power transistors come in metal cases, though a por-
tion of the case (the back or sides) may be made of plastic. Fig. 5.5a shows the most com-
mon varieties of transistor cases. You’ll often encounter the TO-220 and TO-3 style in your
hobby electronics ventures.

Transistors have three or four wire leads. The leads in the typical three-lead transistor
are base, emitter, and collector, as shown in Fig. 5.5b. A few transistors, most notably 
the field-effect transistor (or FET), have a fourth lead. This is for grounding the case to the
chassis of the circuit.
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Transistors can be either NPN or PNP devices. This nomenclature refers to the sand-
wiching of semiconductor materials inside the device. You can’t tell the difference between
an NPN and PNP transistor just by looking at it. However, the difference is indicated in the
catalog specifications sheet as well as schematically.

Some semiconductor devices look and act like transistors and are actually called tran-
sistors, but in reality they use a different technology. For example, the MOSFET (for
metal-oxide semiconductor field-effect transistor) is often used in circuits that demand
high current and high tolerance. MOSFET transistors don’t use the standard base-emitter-
collector connections. Instead, they call them “gate,” “drain,” and “source.” Note, too, that
the schematic diagram for the MOSFET is different than for the standard transistor.

Integrated Circuits
The integrated circuit forms the backbone of the electronics revolution. The typical inte-
grated circuit comprises many transistors, diodes, resistors, and even capacitors. As its
name implies, the integrated circuit, or IC, is a discrete and wholly functioning circuit in
its own right. ICs are the building blocks of larger circuits. By merely stringing them
together you can form just about any project you envision.

Integrated circuits are most often enclosed in dual in-line packages (DIPs), as shown in
Fig. 5.6. The illustration shows several sizes of DIP ICs, from 8-pin to 40-pin. The most
common are 8-, 14-, and 16-pin. The IC can either be soldered directly into the circuit
board or mounted in a socket. As with transistors, ICs are identified by a unique code, such
as 7400 or 4017. This code indicates the type of device. You can use this code to look up
the specifications and parameters of the IC in a reference book. Many ICs also contain
other written information, including manufacturer catalog number and date code. Do not
confuse the date code or catalog number with the code used to identify the device.

Schematics and Electronic Symbols
Electronics use a specialized road map to tell you what components are being used in a
device and how they are connected together. This pictorial road map is the schematic, 
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a kind of blueprint that tells you just about everything you need to know to build an elec-
tronic circuit. Schematics are composed of special symbols that are connected with inter-
secting lines. The symbols represent individual components and the lines the wires that
connect these components together. The language of schematics, while far from universal,
is intended to enable most anyone to duplicate the construction of a circuit with little more
information than a picture.

The experienced electronics experimenter knows how to read a schematic. This entails
recognizing and understanding the symbols used to represent electronic components and
how these components are connected. All in all, learning to read a schematic is not diffi-
cult.

The following are the most common symbols:
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From Here
To learn about... Read

Finding electronic components Chapter 4, “Buying Parts”

Working with electronic components Chapter 6, “Electronic Construction Techniques”

Using electronic components Chapter 28, “An Overview of Robot ‘Brains’”
with robot control computers
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To operate, all but the simplest robots require an electronic circuit of one type or anoth-
er. The way you construct these circuits will largely determine how well your robot func-
tions and how long it will last. Poor performance and limited life inevitably result when
hobbyists use so-called rat’s nest construction techniques such as soldering together the
loose leads of components.

Using proper construction techniques will ensure that your robot circuits work well and
last as long as you have a use for them. This chapter covers the basics of several types of
construction techniques, including solderless breadboard, breadboard circuit board, point-
to-point wiring, wire-wrapping, and printed circuit board. We will consider only the fun-
damentals. For more details, consult a book on electronic construction techniques. See
Appendix A contains a list of suggested information sources.

Using a Solderless Breadboard
Solderless breadboards are not designed for permanent circuits. Rather, they are engi-
neered to enable you to try out and experiment with a circuit, without the trouble of sol-
dering. Then, when you are assured that the circuit works, you may use one of the other
four construction techniques described in this chapter to make the design permanent. A
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typical solderless breadboard is shown in Fig. 6.1. Breadboards are available in many dif-
ferent sizes and styles, but most provide rows of common tie points that are suitable for
testing ICs, resistors, capacitors, and most other components that have standard lead 
diameters.

I urge you to first test all the circuits you build on a solderless breadboard. You’ll find
that you can often improve the performance of the circuit just by changing a few com-
ponent values. Such changes are easiest to make when you can simply remove one 
component and exchange it for another.

Permanent Circuits on Solder
Breadboards
The breadboard circuit board—also called a universal solder board or experimenters’ PC
board—allows you to make permanent any design you create on a solderless breadboard.
The universal solder board comes pre-etched with the same tie points as the solderless
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FIGURE 6.1 Use solderless breadboards to test out new circuit ideas. When
they work, you can construct a permanent circuit.
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breadboard described in the last section. You simply solder the components into place,
using jumper wires to connect components that can be directly tied together.

The main disadvantage of universal solder boards is that they don’t provide for extremely
efficient use of space. Unless you cram the components onto the board, you are limited to
building circuits with only two or four ICs and a handful of discrete components. I there-
fore recommend that you reserve universal solder boards for small circuits—those that
require only one or two ICs and a few parts. Simply cut the board to the desired size. Drill
new mounting holes to secure the board in whatever enclosure you are using.

Point-to-Point Perforated Board
Construction
Point-to-point perf board construction refers to the process of mounting the components
on a predrilled board and connecting the leads together directly with solder. This technique
was used extensively in the pre-IC days and was even found on commercial products. 
With the proliferation of ICs, transistors, and other high-speed electronics, however, the
point-to-point wiring method has been all but abandoned. Circuits that depend on close
tolerances for timing and amplification cannot tolerate point-to-point wiring. Unless you
are careful and use insulated wire, point-to-point construction invites short circuits and
burnouts.

Wire-Wrapping
When you are working only with low-voltage DC, which is typical of any digital circuit,
you can mount the components on a perf board and connect them using special wire-
wrapping posts and wire. No soldering is involved; you just wrap the wire around the posts
with a tool. The advantage of wire-wrapping is that it’s relatively easy to make changes.
Simply unwrap the wire and reroute to another post.

Wire-wrapping is used most in IC-intensive circuits. You mount each IC in a wire-wrap
socket, which you then cement or solder in place on the board. The sockets use extra-long
posts that can accommodate up to about five wrapped wires. As shown in Fig. 6.2, each
wire is wrapped around the post like the figures on a totem pole. Most designers try to
limit the number of wires on each post to two or three in case they have to make changes
to the circuit. Once the wire is wrapped six to eight times around the post, the connection
is solid and secure as a soldered joint.

Wire-wrap posts are square shaped so they firmly grip the wire. You can wrap the wire
onto rounded posts, but to make the connection solid and permanent add a dab of solder
to the wire. You can use this method to directly connect wires to discrete components, such
as resistors or capacitors.

A better approach is to cement wire-wrap IC sockets to the board and insert the com-
ponents into the sockets. Bend and cut the leads so they fit into the socket. If the compo-
nent is large or wide, use a 24-, 28-, or 40-pin socket. Special component sockets that have
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solder terminals are also available. Unless the board is designed for very rugged use
(where the components may jiggle loose), you don’t need solder terminal sockets.

Successful wire-wrapping takes practice. Before you build your first circuit using wire-
wrapping techniques, first try your hand on a scrap socket and board. Visually inspect the
wrapped connections and look for loose coils, broken wires, and excessive uninsulated wire
at the base of the post. Most wire-wrap tools are designed so one end is used for wrapping
wire and the other end for unwrapping. Undo a connection by inverting the tool and try again.

Wire-wrap wire comes in several lengths and gauges. For most applications, you want
30-gauge wire in either long spools or precut or prestripped packages (I prefer the latter).
When using the spools, you cut the wire to length then strip off the insulation using the
stripper attached to the wrapping tool (a regular wire stripper does a poor job). When you
use the precut or prestripped packages the work is already done for you. Buy a selection
of different lengths, and always try to use the shortest length possible. Precut and pre-
stripped can be expensive ($5 or more for a canister of 200 pieces), but it will save you a
great deal of time and effort.

When you get the hang of manual wire-wrapping, you can try one of the motorized
tools that are available. Some even allow you to use a continuous spool of wire without the
hassle of cutting and stripping. These tools are expensive (over $50), so I do not recom-
mend them for beginners. One tool I like to use is the Vector P184 Slit-N-Wrap. It is a
manual tool that permits easy daisy-chaining—going from one post to the next with the
same length of wire. Like all special wire-wrapping tools, this one takes a while to get used
to but saves time in the long run.
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FIGURE 6.2 Wire-wrapping creates circuits by literally wrapping wire around
metal posts.
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There are a variety of other prototyping systems besides wire-wrap. You may wish to visit
a well-stocked electronics store in your area to see what they have available. Because the
tools and supplies for prototyping systems tend to be expensive, see if you can get a hands-
on demonstration first. That way, you’ll know the system is for you before you invest in it.

Making Your Own Printed Circuit
Boards
The electronic construction technique of choice is the printed circuit board (PCB). PCBs
are made by printing or applying a special resist ink to a piece of copper clad (thin copper
sheet over a plastic, epoxy, or phenolic base). The board is then immersed in etchant fluid,
which removes all the copper except those areas covered with resist. The resist is washed
off, leaving copper traces for the actual circuit. Holes are drilled through the board for
mounting the components.

You’ve probably built a kit or two using a PCB supplied by the manufacturer. You can
also make your own printed circuit boards using your own designs as well as the board lay-
outs found in this book and a number of electronics magazines.

Understanding Wire Gauge
The thickness, or gauge, of the wire determines its current-carrying capabilities. Generally,
the larger the wire, the more current it can pass without overheating and burning up. See
Appendix E, “Reference,” for common wire gauges and the maximum accepted current
capacity, assuming reasonable wire lengths of 5 feet or less. When you are constructing
circuits that carry high currents, be sure to use the proper gauge wire.

Using Headers and Connectors
Robots are often constructed from subsystems that may not be located on the same circuit
board. You must therefore know how to connect together subsystems on different 
circuit boards. Avoid the temptation to directly solder wires between boards. This makes it
much harder to work with your robot, including testing variations of your designs with dif-
ferent subsystems.

Instead, use connectors whenever possible, as shown in Fig. 6.3. In this approach you
connect the various subsystems of your robot together using short lengths of wire. You ter-
minate each wire with a connector of some type or another. The connectors attach to mat-
ing pins on each circuit board.

You don’t need fancy cables and cable connectors for your robots. In fact, these can add
significant weight to your ‘bot. Instead, use ordinary 20- to 26-gauge wire, terminated with
single- or double-row plastic connectors. You can use ribbon cable for the wire or 
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individual insulated strips of wire. Use plastic ties to bundle the wires together. The plas-
tic connectors are made to mate with single- and double-row headers soldered directly on
the circuit board. You can buy connectors and headers that have different numbers of pins
or you can salvage them from old parts (the typical VCR is chock full of them!).

When making interconnecting cables, cut the wires to length so there is a modest
amount of slack between subsystems, but not too much. You don’t want, or need, gobs and
gobs of excess wire. Nor do you want the wire lengths so short that the components are
put under stress when you connect them together.

Eliminating Static Electricity
The ancient Egyptians discovered static electricity when they rubbed animal fur against the
smooth surface of amber. Once the materials were rubbed together, they tended to cling to
one another. Similarly, two pieces of fur that were rubbed against the amber tended to sep-
arate when they were drawn together. While the Egyptians didn’t understand this mysteri-
ous unseen force—better known now as static electricity—they knew it existed.

Today, you can encounter static electricity by doing nothing more than walking across a
carpeted floor. As you walk, your feet rub against the carpet, and your body takes on a sta-
tic charge. Touch a metal object, like a doorknob or a metal sink, and that static is quickly
discharged from your body. You feel the discharge as a shock.

Carpet shock has never been known to kill anyone. The amount of voltage and current
is far too low to cause great bodily harm. But the same isn’t true of electronic circuits.
Considering how your body can develop a 10,000- to 50,000-volt charge when you walk

70 ELECTRONIC CONSTRUCTION TECHNIQUES

FIGURE 6.3 Using connectors makes for more manageable robots. Use connec-
tors on all subsystems of your robot.
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across a carpet, you can imagine what that might do to electrical components rated at just
5 or 15 volts. The sudden crash of static can burn holes right through a sensitive transistor
or integrated circuit, rendering it completely useless.

Many semiconductor devices are not so forgiving. Transistors and integrated circuits
designed around a metal-oxide substrate can be particularly sensitive to high voltages,
regardless of the current level. These components include MOSFET transistors, CMOS
integrated circuits, and most computer microprocessors.

STORING STATIC-SENSITIVE COMPONENTS

Plastic is one of the greatest sources of static electricity. Storage and shipping containers
are often made of plastic, and it’s a great temptation to dump your static-sensitive devices
into these containers. Don’t do it. Invariably, static electricity will develop, and the com-
ponent could be damaged. Unfortunately, there’s no way to tell if a static-sensitive part has
become damaged by electrostatic discharge just by looking at it, so you won’t know things
are amiss until you actually try to use the component. At first, you’ll think the circuit has
gone haywire or that your wiring is at fault. If you’re like most, you won’t blame the tran-
sistors and ICs until well after you’ve torn the rest of the circuit apart.

It’s best to store static-sensitive components using one of the following methods. All
work by grounding the leads of the IC or transistor together, which diminishes the effect
of a strong jolt of static electricity. Note that none of these storage methods is 100 percent
foolproof.

� Antistatic mat. This mat looks like a black sponge, but it’s really conductive foam. You
can (and should) test this by placing the leads of a volt-ohm meter on either side of a
length of the foam. Dial the meter to ohms. You should get a reading instead of an open
circuit. The foam can easily be reused, and large sheets make convenient storage pads
for many components.

� Antistatic pouch or bag. Antistatic pouches are made of a special plastic (which gener-
ates little static) and are coated on the inside with a conductive layer. The bags are avail-
able in a variety of forms. Many are a smoky black or gray color; others are pink or jet
black. As with mats, you should never assume a storage pouch is antistatic just from its
color. Check the coating on the inside with a volt-ohm meter.

� Antistatic tube. The vast majority of chips are shipped and stored in convenient plastic
tubes. These tubes help protect the leads of the IC and are well suited to automatic man-
ufacturing techniques. The construction of the tube is similar to the antistatic pouch:
plastic on the outside, a thin layer of conductive material on the inside.

Remove the chip or transistor from its antistatic storage protection only when you are
installing it in your project. The less time the component is unprotected the better.

TIPS TO REDUCE STATIC

Consider using any and all of the following simple techniques to reduce and eliminate the
risk of electrostatic discharge:

� Wear low-static clothing and shoes. Your choice of clothing can affect the amount of
static buildup in your body. Whenever possible, wear natural fabrics such as cotton or
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wool. Avoid wearing polyester and acetate clothing, as these tend to develop copious
amounts of static.

� Use an antistatic wrist strap. The wrist strap grounds you at all times and prevents sta-
tic buildup. The strap is one of the most effective means for eliminating electrostatic
discharge, and it’s one of the least expensive.

� Ground your soldering iron. If your soldering pencil operates from AC current, it should
be grounded. A grounded iron not only helps prevent damage from electrostatic dis-
charge; it also lessens the chance of your receiving a bad shock should you accidentally
touch a live wire.

� Use component sockets. When you build projects that use ICs install sockets first.
When the entire circuit has been completely wired, you can check your work, then add
the chips. Note that some sockets are polarized so the component will fit into them one
way only. Be sure to observe this polarity when wiring the socket.

Good Design Principles
While building circuits for your robots, observe the good design principles described in the
following sections, even if the schematic diagrams you are working from don’t include
them.

PULL-UP/PULL-DOWN RESISTORS

When a device is unplugged, the state might waver back and forth, which can influence the
proper functioning of your program. Use pull-up or pull-down resistors on all such inputs
(6.8K to 10K should do it). In this way, the input always has a “default” state, even if noth-
ing is connected to it. With a pull-up resistor, the resistor is connected between the input
and the �V supply of the circuit; with a pull-down resistor, the resistor is connected
between the input and ground, as shown in Fig. 6.4.
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TIE UNUSED INPUTS LOW

Unless the instructions for the component you are using specify otherwise, you should tie
unused inputs to ground to keep them from “floating.” This is especially important for
CMOS integrated circuits. A floating input can cause the circuit to go into oscillation, ren-
dering it practically unusable.

USE BYPASS CAPACITORS

Some electronic components, especially fast-acting logic chips, generate a lot of noise
in the power supply lines. You can reduce or eliminate this noise by using bypass capac-
itors. These are capacitors of between 0.1 and 10 µF that are positioned between the �V
and ground terminals of the noisy chip. Some designers like to use a bypass capacitor
on every integrated circuit, while others place them beside every third or fourth chip on
the board.

It’s also a good idea to put bypass (so-called decoupling) capacitors between the �V
and ground rails of any circuit at the point of entry of the power supply wires, as shown in
Fig. 6.5. Many engineering texts suggest the use of 1 to 10 µF tantalum capacitors for this
job. Be sure to orient the capacitor with proper polarization.

KEEP LEAD LENGTHS SHORT

Long leads on components can introduce noise in other parts of a circuit. The long leads
also act as a virtual antenna, picking up stray signals from the circuit, from overhead light-
ing, and even from your own body. When designing and building circuits, strive for the
shortest lead lengths on all components. This means soldering the components close to 
the board and clipping off any excess lead length.

AVOID GROUND LOOPS

A ground loop is when the ground wire of a circuit comes back and meets itself. The � V
and ground of your circuits should always have “dead ends” to them. Ground loops can
cause erratic behavior and excessive noise in the circuit.
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Soldering Tips and Techniques
Few electronic projects can be assembled without soldering wires together. Soldering
sounds and looks simple enough, but there really is a science to it. If you are unfamiliar
with soldering or want a quick refresher course, read the primer on soldering fundamen-
tals provided in the next several sections.

TOOLS AND EQUIPMENT

Good soldering means having the proper tools. If you don’t have them already, you can
purchase them at Radio Shack and most any electronics store. Let’s take a quick look at
the tools you will need.

Soldering iron and tip You’ll need a soldering iron, of course, but not just any old
soldering iron. Get a soldering “pencil” with a low-wattage heating element, such as the
model in Fig. 6.6. For electronics work, the heating element should not be higher than
about 30 watts. Most soldering pencils are designed so you can change the heating ele-
ments as easily as changing a light bulb. Avoid using a soldering iron that is not grounded,
or you will risk damaging sensitive electronic components by subjecting them to electro-
static discharge. Do not use the instant-on type soldering guns favored in the old tube days.
They create far too much unregulated heat.

If your soldering iron has a temperature control and readout, dial it to between 665 
and 680˚ Fahrenheit. This provides maximum heat while posing the minimum danger of 
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FIGURE 6.6 Use  a low-wattage (25 to 30 watts) soldering pencil for all electron-
ics work.
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damage to the electronic components. If your iron has just the control and lacks a heat
readout, set it to low initially. Wait a few minutes for the iron to heat up, then try one or
two test connections. Adjust the heat control so that solder flows onto the connection in
under five seconds. When you are not using your soldering iron, keep it in an insulated
stand. Don’t rest the iron in an ashtray or precariously on the carpet. You or some precious
belonging is sure to be burned.

Which soldering tip you choose is important. For best results, use a fine tip designed
specifically for printed circuit board use (unless you are soldering larger wires; in that
case, use a larger tip). Tips are made to fit certain types and brands of heating elements,
so make sure you get the kind appropriate for your iron.

Sponge Keep a damp sponge (just about any type of kitchen sponge will do) by the sol-
dering station and use it to wipe off extra solder. Do not allow globs of solder to remain
on the tip. The glob may come off while you’re soldering and ruin the connection. The
excess solder can also draw away heat from the tip of the pencil, causing a poor soldering
job. You’ll have to rewet the sponge now and then if you are doing lots of soldering. Never
wipe solder off onto a dry sponge, as the sponge could melt or catch on fire.

Solder You should use only rosin core solder. It comes in different thicknesses; for best
results, use the thin type (0.050 inch) for most electronics work, especially if you’re 
working with printed circuit boards. Never use acid core or silver solder on electronic 
equipment. (Note: certain “silver-bearing” solders are available for specialty electronics
work, and they are acceptable to use.)

Solder should be kept clean and dry. Avoid tossing your spool of solder into your elec-
tronics junk bin. It can collect dust, grime, oil, grease, and other contaminants. Dirty sol-
der requires more heat to melt. In addition, the grime fuses with the solder and melds into
the connection. If your solder becomes dirty, wipe it off with a damp paper towel soaked
in alcohol, and let it dry.

Soldering tools Basic soldering tools include a good pair of small needle-nose pliers,
wire strippers, and wire cutters (sometimes called side or diagonal cutters). The stripper
should have a dial that lets you select the gauge of wire you are using. A pair of “nippy”
cutters, which cut wire leads flush to the surface of the board, are also handy.

A heat sink is used to draw heat away from components during soldering. To use the
heat sink, clip it onto the lead of the component you are soldering. For best results, place
the heat sink as close to the component as possible.

Cleaning supplies It is often necessary to clean up before and after you solder.
Isopropyl alcohol makes a good, all-around soldering cleaner. You can also use contract
cleaner (without lubrication). After soldering, and when the components and board are
cool, you should spray or brush on some rosin flux remover to clean the components and
circuit board.

Solder vacuum A solder vacuum is a suction device used to pick up excess solder. It
is often used when desoldering—that is, removing a wire or component on the board.
Solder can also be removed using a length of copper braid. Most electronics stores sell a
spool of solder vacuum specifically for removing solder.
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BOARD AND COMPONENT LEAD CLEANING

Before soldering, make sure all parts of the connection are clean. If you’re soldering a
component onto a printed circuit board, clean the board first by following these steps:

1. Fill a bowl with lukewarm water.
2. Add just a drop or two or liquid dish detergent. Mix the detergent to produce a small

amount of suds.
3. Dip the board into the bowl and scrub the copper (or tin-plated) traces with a non-

metallic scrubbing pad (such as 3M ScotchBrite). Do not rub too vigorously.
4. Rinse the board under cold water and blot it dry with a paper towel. If desired, use com-

pressed air to drive the trapped water out of the component holes. Let the board dry
completely for 10 to 15 minutes.

When you are ready to solder, wet a cotton ball with isopropyl alcohol (or other clean-
er) and wipe off all the connection points. Wait a few seconds for the alcohol to evaporate,
then commence soldering.

HOW TO SOLDER

The basis of successful soldering is to use the soldering iron to heat up the work, whether
it is a component lead, a wire, or whatever. You then apply the solder to the work. Do not
apply solder directly to the soldering iron. If you take the shortcut of melting the solder on
the iron, you might end up with a “cold” solder joint. A cold joint doesn’t adhere well to
the metal surfaces of the part or board, so electrical connection is impaired.

Once the solder flows around the joint (and some will flow to the tip), remove the iron
and let the joint cool. Avoid disturbing the solder as it cools; a cold joint might be the
result. Do not apply heat any longer than necessary. Prolonged heat can permanently ruin
electronic components. A good rule of thumb is that if the iron is on any one spot for more
than five seconds, it’s too long. If at all possible, you should keep the iron at a 30˚ to 40˚
angle for best results. Most tips have a beveled tip for this purpose.

Apply only as much solder to the joint as is required to coat the lead and circuit board
pad. A heavy-handed soldering job may lead to soldering bridges, which is when one joint
melds with joints around it. At best, solder bridges cause the circuit to cease working; at
worst, they cause short circuits that can burn out the entire board.

When the joint is complete and has cooled, test it to make sure it is secure. Wiggle the
component to see if the joint is solid. If the lead moves within the joint, you’ll have to
resolder it. The cause may be that the joint is dirty, so you may have to remove the old sol-
der first, clean the connection, and try again. When soldering on printed circuit boards,
you’ll need to clip off the excess leads that protrude beyond the solder joint. Use a pair of
diagonal or nippy cutters for this task. Be sure to protect your eyes when cutting the lead;
a bit of metal could fly off and lodge in one of your eyes.

SOLDER TIP MAINTENANCE AND CLEANUP

After soldering, let the iron cool. Loosen the tip from the heating element (use a pair 
of pliers and grip the tip by the shaft). Then store the iron until you need it again. After
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several soldering sessions, you should clean the tip using a soft brush. Don’t file it or sand
it down with emery paper.

After many hours of use, the soldering tip will become old, pitted, and deformed. This
is a good time to replace the tip. Old or damaged tips impair the transfer of heat from the
iron to the connection, and that can lead to poor soldering joints. Be sure to replace the tip
with one made for specifically your soldering iron. Tips are generally not interchangeable
between brands.

SOLDER SAFETY

Keep the following points in mind when soldering:

� A hot soldering iron can seriously burn you. Keep your fingers away from the tip of the
soldering pencil.

� Never touch a solder joint until after it has cooled.
� While using the soldering iron, always place it in a properly designed iron stand.
� While the fumes produced during soldering are not particularly offensive, they are

mildly toxic. Avoid inhaling the fumes for any length of time. Work only in a well-ven-
tilated area.

� Protect your eyes when clipping leads off components. If possible, wear eye protection
such as safety glasses or optically clear goggles.

� Keep a fire extinguisher handy, just in case.

From Here
To learn about... Read

Tools for circuit construction Chapter 3, “Tools and Supplies”

Where to find electronic components Chapter 4, “Buying Parts”
and other parts

Understanding components used Chapter 5, “Common Electronic Components”
in electronic circuitry
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Back in the “olden days,” all you needed to build a robot were a couple of motors, a
switch or relay, a big-o’ battery, and some wire. Today, many robots, including the hobby
variety, are equipped with a computational brain of one type or another that is told what to
do through programming. The brain and programming are typically easier and less expen-
sive to implement than are discrete circuitry, which is one reason why it’s so popular to use
a computer to power a robot.

The nature of the programming depends on what the robot does. If the robot is meant
to play tennis, then its programming is designed to help it recognize tennis balls, move in
all lateral directions, perform a classic backhand, and maybe a special function for jump-
ing over the net when it wins.

But no matter what the robot is supposed to do, all its actions boil down to a relatively
small set of instructions in whatever programming language you are using. If you’re new to
programming or haven’t practiced it in several years, read through this chapter to learn the
basics of programming for controlling your robots. This chapter discusses rudimentary stuff
so you can better understand the more technical material in the chapters that follow. Of
course, if you’re already familiar with programming, feel free to skip this chapter.

Important Programming Concepts
There are 11 important concepts to understanding programming, whether for robots or oth-
erwise. In this chapter, we’ll talk about each of the following in greater detail:

7
PROGRAMMING CONCEPTS:

THE FUNDAMENTALS
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� Flow control
� Subroutines
� Variables
� Expressions
� Strings
� Numerical values
� Conditional statements
� Branching
� Looping
� Inputting data
� Outputting data

GOING WITH THE FLOW

You can create simple one-job programs for robot control without a predefined blueprint
or flowchart. For more complex programs, you may find it helpful to draw a program-
ming flowchart, which includes the basic steps of the program. Each box of the chart
contains a complete step; arrows connect the boxes to indicate the progress or sequence
of steps throughout the program. Flowcharts are particularly handy when you are creat-
ing programs that consist of many self-contained “routines” (see the next section)
because their graphical format helps you visualize the function and flow of your entire
program.

THE BENEFIT OF ROUTINE

One of the first things a programmer does when he or she starts on a project is to map out
the individual segments, or subroutines (sometimes simply called “routines”), that make
up the software. Even the longest, most complex program consists of little more than bite-
sized subroutines. The program progresses from one subroutine to the next in an orderly
and logical fashion.

A subroutine is any self-contained segment of code that performs a basic action. In the
context of robot control programs, a subroutine can be a single command or a much larg-
er action. Suppose your program controls a robot that you want to wander around a room,
reversing its direction whenever it bumps into something. Such a program could be divid-
ed into three distinct subroutines:

� Subroutine 1: Drive forward. This is the default action or behavior of the ‘bot.
� Subroutine 2: Sense bumper collision. This subroutine checks to see if one of the

bumper switches on the robot has been activated.
� Subroutine 3: Reverse direction. This occurs after the robot has smashed into an object,

in response to a bumper collision.

Figure 7.1 shows how this program might be mapped out in a flowchart. While there’s
no absolute need to physically separate these subroutines within a program, it often helps
to think of the program as being composed of these more basic parts. If the program 
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doesn’t work properly, you can more readily analyze the problem if you can narrow it down
to a specific segment of the code.

Note that there are many approaches to writing the actual code that performs these three
actions or subroutines. The two most common approaches are procedural and multitask-
ing. Which of these you use will depend on the capabilities of the programming environ-
ment you’re using. Traditional programming simply starts at the beginning and advances
one step at a time to the end, taking each instruction in turn and acting upon it. This is pro-
cedural programming, and it is common in many robot systems that use either computers
or microcontrollers (a microcontroller is a miniature computer, often contained in just one
integrated circuit).

Since subroutine 2 in our example depends on the robot sensing some external event,
we need a procedural program that constantly “branches off ” to subroutine 2 to test the
activation of the robot’s touch sensor. This is most often done by using a polling loop (we
talk about loops later in this chapter). If the bumper switch is triggered, subroutine 3 is acti-
vated. Fig. 7.2a shows a typical implementation of a procedural program.

In multitasking programming, you set up the routines and their relationships to one
another, then set them all running. An external stimulus of some type triggers a subroutine.
In the case of the robot-wanderer, you would likely combine routines 2 and 3, and collid-
ing into an object would trigger the code in routine 3. After the robot has had a chance to
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back up and get out of the way, routine 1 would take over again. Multitasking program-
ming of the kind shown in Fig. 7.2b is used in the LEGO Mindstorms Robotic Invention
System (as just one example), which enables the robot’s “operating system” to support up
to 10 simultaneous routines (called tasks) at one time.

VARIABLES

A variable is a special holding area for information, a kind of storage box for data. In most
programming languages you can make up the name of the variables as you write the pro-
gram. The contents of the variable is either specified by you or filled in from some source
when the program is run. Since the information is in a variable, it can be used someplace
else in the program as many times as you need.

Variables can hold different kinds of data, depending on the number of bits or bytes that
are needed to store that data. A numeric value from 0 to 255, for example, requires eight
bits, that is, one byte, of storage space. Therefore, the variable for such a value needs to be
at least one byte large, or else the number won’t be stored properly. If you define a vari-
able type that stores fewer than eight bits, its contents will be invalid. If you define a 
variable type that stores more than eight bits, you’ll waste memory space that might oth-
erwise be used for additional programming code.

EXPRESSIONS

An expression is a mathematical or logical “problem” that a program must solve before it
can continue. Expressions are often simple math statements, such as 2 � 2. When you ask
a program to perform some type of calculation or thinking process, you’re asking it to 
evaluate an expression.
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One of the most common expressions is evaluating if a statement is True or False (we’ve
capitalized the words true or false to show that you’re dealing with logical functions).
Here’s a good example of a True/False expression that must be evaluated by a program:

If Number=10 Then End

This expression reads: “If the contents of the Number variable is equal to 10, then end
the program.” Before proceeding, your robot must pause, take a peek inside the Number
variable, and apply it to the logical expression. If the result is True, then the program ends.
If it’s False (Number has a value other than 10), then something else happens.

STRINGS

A common term encountered in programming circles is the string. A string is simply a
sequence of alphabetic or numeric characters. These characters are stored within the com-
puter’s memory one right after the other, like beads on a string. In the context of program-
ming languages, strings are most often used in variables. Once the string is stored in a vari-
able, it can be acted upon by the program. For example, if the string is text, you can com-
pare it with another string to see if the two are the same. Strings are also often used to
allow the robot to communicate with you via a liquid crystal display (LCD) panel.

NUMERICAL VALUES

Computers, and the programs that run on them, are designed from the ground up to work
with numerical values (numbers). As with strings, numerical values are often used in vari-
ables. Numbers differ from strings in one important way, however: the program can per-
form calculations on two numbers and provide you with the result. Math calculations are
not possible with strings because you can’t multiply or divide strings since they usually
consist of text. (Actually, you can perform calculations with the numeric equivalent of a
string character, but this is not typically done.)

Note that many programming languages can store digits as either numbers or as strings.
The way the value is stored will determine what kind of operations you can perform on it.
If the digits 12345 are stored as a number, you can use them in a math calculation. But if
the digits 12345 are stored as a string, you can’t use them in a calculation.

CONDITIONAL STATEMENTS

Programs can be constructed so that they perform certain routines in one instance and
other routines in another. Which routine the program performs depends on specific con-
ditions, set either by the programmer, by some sensor, or by a variable. A conditional
statement is a fork in the road that offers the program a choice of two directions to take,
depending on how it responds to a simple True/False question. The types and styles of
conditional statements differ in robot programming languages, but they all have one 
thing in common: they activate a certain routine (or group of routines) depending on
external data.

The most common conditional statement is built using the If command, which we’ve
already seen in action in our wall-bumping robot example. Here’s an example: “If it’s cold
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outside, I’ll wear my jacket. Otherwise, I’ll leave the jacket at home.” The statement can
be broken down into three segments:

� The condition to be met (if it’s cold)
� The result if the condition is True (wear the jacket)
� The result if the condition is False (leave the jacket at home)

To be useful, a condition is based on input that may differ each time the robot’s program
is run. In the preceding example, the robot uses some sort of sensor to determine if it’s
cold. Based on the results provided by this sensor, the robot will then either put its jacket
on, or leave it and enjoy a brisk roll on the grass.

BRANCHING

Akin to the conditional statement is the branch, where the program can take two or more
paths, depending on external criteria. A good example of a branch is when a robot senses
a collision while moving as in our earlier example (see the section “The Benefit of
Routine”). The robot normally just drives forward, but many times each second it’s pro-
gram branches off to another subroutine that quickly checks to see if a collision sensor
switch has been activated. If the switch has not been activated, nothing special happens,
and the robot continues its forward movement. But if the switch has been activated, the
program branches to a different subroutine and performs a special action to get away from
the obstacle the robot has just struck.

LOOPING

A loop is programming code that repeats two or more times. A typical loop is an “entry
validator” where the program checks to make sure some condition is met, and if it is the
contents of the loop are processed. When the program gets to the bottom of the loop, it
goes back to the top and starts all over again. This process continues until the test condi-
tion is no longer met. At that point, the program skips to the end of the loop and performs
any commands that follow it, as shown in Fig. 7.3.

INPUTTING DATA

When you sit at a computer, you use a keyboard and a mouse to enter data into the
machine. While some robots also have keyboards or keypads (and a few have mice), data
input for automatons tends to be a bit more specialized, involving, for example, touch
switches or a sonar ranging system. In all cases, the program uses the information fed to
it to complete its task.

The reverse-on-collision robot described earlier (see “The Benefit of Routine”) is once
again a good example. The data to be input is simple: it is the state of a bumper switch on
the front of the robot. When the switch is activated, it provides data—“Hey, I hit some-
thing!!” With that data your ‘bot can (for example) back up, get out of the way, and head
toward some other wall.
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OUTPUTTING DATA

In the realm of robot control programs, data output is most often used to turn motors on
and off, to activate a sonar chirp for sensing distance, and to blink a light-emitting diode
on and off to communicate with you in a crude form of Morse code. Data output provides
a means for the robot to either interact with its environment or interact with you, the Robot
Master (RM for short).

On robots equipped with liquid crystal display panels, data output can provide a way for
the machine to display its current condition. Simpler data output is possible with a single
light-emitting diode (LED). If the LED is on, for example, it might mean your robot has
run into trouble and needs your help.

Understanding Data Types
At their most basic level programs manipulate data. Data comes in many forms, including
a funny-looking guy with platinum-colored skin on Star Trek: The Next Generation.
Actually, the kind of data we’re interested in is strictly numbers of one type or another.
Those numbers might represent a value like 1 or 127, the numeric equivalent of a text char-
acter (65 is “A” using the ASCII standard), or binary 00010001, which could mean “turn
on both motors” on your robot.

In a program, data types can take the following common forms:

� Literals. A literal is, literally, a value “hard-coded” into the program. For example, in
the statement MyVariable � 10, the 10 is literal data.

� Variables. We’ve already seen what a variable is: it’s a place where data can be stored
and referenced elsewhere in the program. It’s the MyVariable in the statement
MyVariable � 10.

� Constants. Depending on the design of the programming language, a constant can be
just another name for a literal or it can be a special kind of variable that— once set—is
never meant to be changed.

� Expressions. The result of a math or logical expression can “return” a data type. For
example, the expression 2 � 2 returns the value 4.

No matter what form the data type is in, the programming language expects to see its
data follow predefined types. This is necessary so the data can be properly stored in mem-
ory. The most common data type is the 8-bit integer, so-called because the value stores an
integer (a whole number) using eight bits. With eight bits, the program can work with a
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number from 0 to 255 (or �128 to �127, depending on how it uses the eighth bit). The
basic data types are as follows:

� 8-bit integer, or byte (can hold a number, a True/False value, or a string value)
� 16-bit integer, or word
� 32-bit integer, or long or double word (dword)
� 32-bit floating point, or single (“floating point” means a number with a decimal point)

A few programming languages can manipulate smaller pieces of data, including single
bits at a time or a nibble (four bits). In many cases, the language provides for either or both
signed and unsigned values. The first bit (called the most significant bit, or MSB) is either
0 or 1, which means a positive or negative value. With a 16-bit unsigned integer, for exam-
ple, the program can store values from 0 to 65535. With a 16-bit signed integer, the pro-
gram can store values from �32768 to �32767.

In each case, the number of bits required to store the data is defined in the data type.
Programming languages like Microsoft Visual Basic insulate you from needing to know
the number of bits required to hold any particular kind of data. But as most robot pro-
gramming languages are designed to be more streamlined (read: simpler), you often need
to know how many bits are required to store a piece of information.

A Look at Common Programming
Statements
In this section we discuss seven of the most common statements you’ll encounter in most
any programming language. The examples shown are those for the Basic language, but the
fundamentals are the same for other languages.

COMMENTS

Comments are used by a programmer as remarks on or reminders of what a particular line
of code or subroutine is for. The comments are especially helpful if the program is shared
among many people. When the program is compiled (made ready) for the computer or
microcontroller, the comments are ignored. They only appear in the human-ready source
code of your programs.

To make a comment using Basic, use the ' (apostrophe) character. Any text to the right
is treated as a comment and is ignored by the compiler. For example:

' this is a comment

Note that the symbol used for comments differs between languages. In the C program-
ming language, for instance, the characters // are used (also /* and */ are used to mark a
comment block).
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IF

The If statement is used to build an “if ” or “conditional” expression. It is called a condi-
tional expression because it tests for a specific condition:

� If the expression is True, the program performs the commands following the If state-
ment.

� If the expression is False, the program performs the commands after the Else statement,
if any.

Here’s a sample conditional statement in Basic:

If ExampleVar = 10 Then
Call (Start)

Else
End

End If

The If statement evaluates a condition to determine if it’s True or False. The most com-
mon evaluation is for equality. The � (equals) sign is used to test if one value, such as the
contents of a variable, is equal to another value. However, there are other forms of evalu-
ation the If statement can use, such as “not equal to,” “greater than,” “less than,” and sev-
eral others. See the “Variables, Expressions, and Operators” section later in this chapter for
more information.

SELECT CASE

The Select Case statement is used when you want to test a value (usually in a variable)
against several possibilities. For example, you may want to test if the contents of the MyVar
variable contain the values 1, 2, 3, or 4. The Select Case statement lets you test each num-
ber individually and tell the program specifically what you want to happen should there be
a match.

The basic syntax for the Select Case statement is as follows:

Select Case (TestVar)
Case x

' do if x
Case y

' do if y
Case z

' do if z
End Select

TestVar is the test expression and is almost always a variable. TestVar is evaluated
against each of the Case arguments that follow. If the value in TestVar is equal to x, then
the program performs the action that follows Case x. If the value in TestVar is equal to y,
then the program performs the action following Case y, and so forth.
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CALL

The Call statement tells the program to temporarily branch elsewhere in the program. This
is a subroutine that is identified by name, using a label. The program expects to find a
Return statement at the end of the subroutine. When it encounters the Return statement,
the program jumps back to the Call statement and continues executing the rest of the pro-
gram. A typical Call statement and label looks like this:

Call (Loop)
...
Loop:
' stuff goes here
Return       ' Program goes back to the Call, and continues

The example calls the subroutine that is named Loop. After Loop is run the program
goes back up to the Call statement and executes the other statements that follow it.

GO

The Go statement is used to jump to the specified label. In programming parlance, using
Go to go to a label is called unconditional branching. The Go statement uses one “argu-
ment,” namely, the name of the destination label. For example:

Go (Loop)
...
Loop:

' stuff goes here
' Program doesn’t go back to the Go

FOR/NEXT

The For/Next statement is actually a pair of commands. They repeat other programming
instructions a specified number of times. The For/Next structure is perhaps the most com-
monly used loop. The For portion of the For/Next loop uses an expression that tells the pro-
gram to count from one value to another. For each count, any programming code contained
within the For/Next structure is repeated:

For x = 1 to 10
' ... stuff repeated 10 times

Next

x is a variable that the program uses to keep track of the current loop iteration. The first
time the loop is run, x contains 1. The next time through x contains 2, and so on. When x con-
tains 10, the program knows it has run the loop 10 times and skips to the Next statement.
From there it executes any additional code that may be in the remainder of the program.

WHILE/WEND

The While/Wend statements also form a loop structure. But unlike For/Next, which repeats
a set number of times, the loop of a While/Wend structure repeats while a condition is met.
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When the While condition is no longer met, the loop is broken and the program continues.
Code that falls between the While and the Wend statements is considered part of the loop
that is repeated.

While x
' ... stuff to repeat

Wend

x is an expression that is evaluated each time the loop is repeated. For instance, the
expression might be Switch � 0, which tests to see if the Switch variable contains a 0, sig-
nifying perhaps that some switch has not been activated. When Switch is no longer 0, the
loop breaks.

Note that in many robot control programs the While/Wend loop is set up to run indefi-
nitely. This so-called infinite loop repeats a process over and over again until the power to
the robot is turned off.

Variables, Expressions, and Operators
Earlier in this chapter you read that variables are temporary holders of information. A vari-
able can hold numeric values (“numbers”) or characters. As we learned, another term for
characters is a “string,” so named because each letter follows another, like beads on a
string. Placing numbers and strings in a variable is referred to as assigning or assigning a
value to a variable. When you see a phrase such as “Assign the value of 10 to variable
Num,” you know that it means to store the number 10 in a variable referred to as Num.

ASSIGNING A VALUE TO A VARIABLE

The most common way to assign a value to a variable is to use the assignment operator.
In most programming languages used for robot control, this is done with the � (equals)
symbol (in some languages, such as Pascal, you’d use :�). It is most often necessary (or
at least advisable) to define the data type that will be stored in the variable before assign-
ing a value to it. Here’s an example for the Basic language:

Dim X As Integer
X = 10

Dim stands for “Dimension,” which tells the program that you are defining the type of the
variable you wish to use. X is the name of the variable you wish to assign. Note that many
languages restrict the names you can use. Specifically, the variable name must start with a
letter character and cannot contain spaces or other punctuation. Reserved words—special
identifiers such as If, While, and Select—are also unavailable for use as variable names.
The � (equals) sign is the variable assignment symbol, and 10 is the value you are plac-
ing inside the X variable.

Once you define a variable as containing a certain kind of data it’s important that that
you do not then assign a different type to the variable. For example, all of the following
would be incorrect:
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Dim X As Byte
X = 290       ' data overflow; byte range is 0 to 255

Dim X As String
X = 15        ' 15 is not a string

Dim X As Integer
X = "hello"   ' "hello" is not an integer

Most robot control languages let you assign a variety of values to variables, as long as
the values match the variable type you are using. These values are reviewed in the follow-
ing five sections.

Literal values As mentioned earlier, a literal value is a value you specify when you
write the program. For example:

X = 15        ' X is the variable; 15 is the literal value

Contents of another variable In this value, you can copy the contents of one vari-
able to another. For example:

X = Y         ' X is the newly assigned variable;
' Y contains some value you’re copying

(Careful with this one! In most languages, what gets copied is the contents of the variable,
not the variable itself. If you later change the contents of Y, X stays the same. Some pro-
gramming languages let you specify a “pointer” to a variable, so that if you change Y, X
changes too. Not all languages for robot programming provide for this, however.)

Memory location Many programming languages let you reference specific portions
of physical memory. For example:

X = Peek (1024)             ' read value of data starting at memory
' location 1024

Port reference A port reference is a value maintained by your robot’s hardware. A
good example is the parallel printer port on your PC, which can be used to control robot
parts like motors. For example:

X = Inp (889)               ' read value at port 889

Evaluated expression The evaluated expression variable stores a value that is the
result of an expression. For example:

X = 2 + 2                   ' X holds 4
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COMBINING DATA TYPES IN A VARIABLE

Modern high-level languages such as Visual Basic or JavaScript are designed to take the
drudgery out of mundane programming chores. Visual Basic and JavaScript both support
(at least as an option) weak data typing, which basically means that the language lets you
write programs without requiring that you manage the data types stored in variables. In
Visual Basic, for example, you can just throw all data into a “variant” data type, which
accepts numbers of different sizes, text strings, you name it. Visual Basic takes care of
managing the underlying memory requirements for the data you provide.

The typical robot control language is designed to be small and fast because it’s meant
to be run on a small single-board computer, or an even smaller microcontroller. The Visual
Basic programming environment takes up megabytes of hard disk space; the average robot
control program is under 1 kilobyte in size.

Because of their simplicity, programming languages for robot control require strong
data typing, where you—the programmer—do all the data-typing work yourself. It’s not as
hard as it seems. But if you’re used to languages such as Visual Basic and JavaScript, learn-
ing the requirements of strong data typing may require a period of adjustment. One of the
most difficult aspects of strong data typing is that you cannot directly mix two data types
together in a single variable. The reason?—the result of the mixing probably won’t fit in
the memory space allocated for the variable. If you add a byte and a string together in an
integer variable, the memory will only hold the one byte.

When you try to mix data types the programming environment you’re using will either
display an error or the robot will not function correctly. In fact, it could function erratical-
ly, possibly damaging itself, so exercise care! Here’s an example of two data types that can-
not be mixed when used in a programming environment that requires strong data typing:

Dim X as Byte
Dim Y as Word
Dim Z as Byte

X = 12
Y = 1025
Z = X + Y

Both X and Z are byte-length variables, each of which holds eight-bit values (e.g., 0 to
255). Y is a word-length variable, which can hold a 16-bit value (e.g., 0 to 65535). The
statement Z � X � Y will fail because Z cannot hold the contents of Y. If the program-
ming environment doesn’t catch this error, it’ll create a bug in your robot. (At best, Z will
hold the value 13 and not 1037, as you’d otherwise expect. The value 13 is what’s left of
1037 when that number is stored in a space of only eight bits.)

Just because strong data typing restricts you from mixing and matching different data
types doesn’t mean you can’t do it. The trick is to use the data conversion statements pro-
vided by the programming language. The most common data conversion is between inte-
ger numbers and text. Assuming the programming language you’re using supports them,
use Val to convert a string to a numeric type and Str to convert a numeric into a string:

Dim X as String
Dim Y As Integer

X = "1"
Y = Val (X)
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You must also exercise care when using numeric types of different sizes. Data conver-
sion statements are typically provided in strong data-typing programming languages to
convert 8-, 16-, 32-, and (sometimes) 64-bit numbers from one form to another. If the pro-
gramming language supports “floating-point” numbers (numbers that have digits to the
right of the decimal point), then there will likely be data conversion statements for those
as well.

CREATING EXPRESSIONS

An expression tells the program what you want it to do with information given to it. An
expression consists of two parts:

� One or more values
� An operator that specifies what you want to do with these values

In most programming languages, expressions can be used when you are defining the con-
tents of variables, as in the following:

Test1 = 1 + 1
Test2 = (15 * 2) + 1
Test3 = "This is" & "a test"

The program processes the expression and places the result in the variable.
Expressions can also be part of a more elaborate scheme that uses other program

commands. Used in this way, expressions provide a way for your programs to think 
on their own (although they may seem to be more independent than you’d like them 
to be!).

The following sections present the commonly used operators and how they are used to
construct expressions. Some operators work with numbers only, and some can also be used
with strings. The list is divided into two parts: math operators (which apply to number val-
ues) and relational operators (which work with both numbers and in some programming
languages strings as well). Depending on the language, you can use literal values or vari-
ables for v1 and v2.

Math operators
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OPERATOR FUNCTION

� value Treats the value as a negative number.

v1 � v2 Adds values v1 and v2 together.

v1 - v2 Subtracts value v2 from v1.

v1 * v2 Multiplies values v1 and v2.

v1 / v2 Divides value v1 by v2. Sometimes also expressed as v1 DIV v2.

v1 % v2 Divides value v1 by v2. The result is the floating-point remainder of the
division. Sometimes also given as v1 MOD v2.
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Relational operators
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OPERATOR FUNCTION

Not value Evaluates the logical Not of value. The logical Not is the inverse of an
expression: True becomes False, and vice versa.

v1 And v2 Evaluates the logical And of v1 and v2.

v1 Or v2 Evaluates the logical Or of v1 and v2.

v1 � v2 Tests that v1 and v2 are equal.

v1 <> v2 Tests that v1 and v2 are not equal.

v1 > v2 Tests that v1 is greater than v2.

v1 >� v2 Tests that v1 is greater than or equal to v2.

v1 � v2 Tests that v1 is less than v2.

v1 �� v2 Tests that v1 is less than or equal to v2.

Relational operators are also known as Boolean or True/False operators. Whatever they
test, the answer is either yes (True) or no (False). For example, the expression 2 � 2 would
be True, but the expression 2 � 3 would be False.

Using And and Or Relational Operators

The And and Or operators work with numbers (depending on the language) and expres-
sions that result in a True/False condition. The And operator is used to determine if two val-
ues in an expression are both True (equal to something other than zero). If both A and B
are True, then the result is True. But if A or B is False (equal to 0), then the result of the
And is False.

The Or operator works in a similar way, except that it tests if either of the values in an
expression is True. If at least one of them is True, then the result is True. Only when both
values are False is the result of the Or expression False. It’s often helpful to view the action
of the And and Or operators by using a “truth table” like the two that follow. The tables
show all the possible outcomes given to values in an expression:

AND TRUTH TABLE

0 means False, 1 means True

Val1 Val2 Result

0 0 0

0 1 0

1 0 0

1 1 1
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USING BITWISE OPERATORS

Many programming languages for robot control support unique forms of operators 
that work with numbers only and let you manipulate the individual bits that make up those
numbers. These are called bitwise operators. The following list shows the common 
characters or names used for bitwise operators. Note that some languages
(namely Visual Basic) do not distinguish between bitwise and relational (logical) operators.
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OR TRUTH TABLE

0 means False, 1 means True

Val1 Val2 Result

0 0 0

0 1 1

1 0 1

1 1 1

Let’s use some bitwise operators in an example. Suppose you assign 9 to variable This
and 14 to variable That. If you bitwise And (& symbol) the two together you get 8 as a
result. Here are the binary equivalents of the values 9 and 15 (only four bits are shown
since 9 and 14 can be expressed in just four bits):

OPERATOR SYMBOL NAME FUNCTION

Not or ~ Bitwise Not Reverses the bits in a number; 1s become 
0s and vice versa

And or & Bitwise And Performs And on each bit in a number

Or or | Bitwise Or Performs Or on each bit in a number

Xor or ^ Bitwise Xor Performs Xor on each bit in a number

�� Shift left Shifts the values of the bits 1 or more bits to
the left

�� Shift right Shifts the values of the bits 1 or more bits
to the right

DECIMAL NUMBER BINARY EQUIVALENT

9 1001

14 1110
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Using the And truth table given earlier, manually compute what happens when you bit-
wise And these two numbers together:

1001 � 9

1110 � 14

& ____

1000 � 8

Using the same numbers for a bitwise Or computation, we get:

1001 � 9

1110 � 14

| ____

1111 � 15

Here’s just one example of how this bitwise stuff is handy in robotics: bitwise And and
bitwise Or are commonly used to control the output state of a robot’s computer or micro-
controller data port. The port typically has eight output pins, each of which can be con-
nected to something, like a motor. Suppose the following four bits control the activation of
four motors. When “0” the motor is off; when “1” the motor is on.

0000 all motors off

0010 second motor on

1100 fourth and third motor on

…and so forth. Note that the rightmost bit is motor 1, and the leftmost is motor 4. 

Suppose your program has already turned on motors 1 and 4 at some earlier time, and
you want them to stay on. You also want to turn motor 3 on (motor 2 stays off). All you
have to do is get the current value of the motor port:

1001 motors 1 and 4 on (decimal value equivalent is 9)
You then bitwise Or this result with

0100 motor 3 on (decimal value equivalent is 4)
Here’s how the bitwise Or expression turns out:

1001 � 9

0100 � 4

| ____

1101 � 13

In this example, Or’ing 9 and 4 happens to be the same as adding the decimal values
of the numbers together. This is not always the case. For example, Or’ing 1 and 1 results
in 1, not 2.
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For your reference, the following table shows the binary equivalents of the first 16 binary
digits (counting zero as the first digit and ending with 15). You can count higher by adding
an extra 1 or 0 digit on the left. The extra digit increases the count by a power of two—31,
63, 127, 255, 511, 1023, and so on.
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DECIMAL NUMBER BINARY EQUIVALENT

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

USING OPERATORS WITH STRINGS

Recall that a string is an assortment of text characters. You can’t perform math calculations
with text, but you can compare one string of text against another. The most common use
of operations involving strings is to test if a string is equal, or not equal, to some other
string, as in:

If "MyString" = "StringMy" Then

This results in False because the two strings are not the same. In a working program,
you’d no doubt construct the string comparison to work with variables, as in:

If StringVar1 = StringVar2 Then
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While the � (equals) operator is used extensively when comparing strings, in many pro-
gramming languages you can use ��, �, �, ��, and �� as well.

MULTIPLE OPERATORS AND ORDER OF PRECEDENCE

All but the oldest or very simple programming languages can handle more than one oper-
ator in an expression. This allows you to combine three or more numbers, strings, or vari-
ables together to make complex expressions, such as 5 � 10 / 2 * 7.

This feature of multiple operators comes with a penalty, however. You must be careful
of the order of precedence, that is, the order in which the program evaluates an expression.
Some languages evaluate expressions using a strict left-to-right process, while others fol-
low a specified pattern where certain operators are dealt with first, then others. When the
latter approach is used a common order of precedence is as follows:

ORDER OPERATOR

1 - (unary minus), � (unary plus), ~ (bitwise Not), Not (logical Not)

2 * (multiply), / (divide), % or MOD (mod), DIV (integer divide)

3 � (add), - (subtract)

4 ��(shift left)��(shift right)

5 � (less than), �� (less than or equal to), � (greater than), ��
(greater than or equal to), �� (not equal), � (equal)

6 & (bitwise And), | (bitwise Or), ^ (bitwise Xor)

7 And (logical And), Xor (logical Xor)

8 Or (logical Or)

The programming language usually does not distinguish between operators that are on
the same level or precedence. If it encounters a � for addition and a - for subtraction, it
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STRING 1 STRING 2 RESULT

hello hello Match

Hello hello No Match

HELLO hello No Match

Now the program compares the contents of the two variables and reports True or False
accordingly. Note that string comparisons are almost always case-sensitive:
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will evaluate the expression by using the first operator it encounters, going from left to
right. You can often specify another calculation order by using parentheses. Values and
operators inside the parentheses are evaluated first.

From Here
To learn more about... Read

Programming a robot computer or microcontroller Chapter 28, “An Overview of Robot
‘Brains’”

Programming a PC parallel port for robot interaction Chapter 30, “Computer Control Via PC
Printer Port”

Programming popular high-level language Chapters 31-33

microcontroller chips

Ideas for working with bitwise values for Chapter 29, “Interfacing with 
input/output ports Computers and Microcontrollers”

Programming using infrared remote control Chapter 34, “Remote Control Systems”
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PART2
ROBOT CONSTRUCTION
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It all started with billiard balls. In the old days, billiard balls were made from elephant
tusks. By the 1850s, the supply of tusk ivory was drying up and its cost had skyrocketed.
So, in 1863 Phelan & Collender, a major manufacturer of billiard balls, offered a $10,000
prize for anyone who could come up with a suitable substitute for ivory. A New York printer
named John Wesley Hyatt was among several folks who took up the challenge.

Hyatt didn’t get the $10,000. His innovation, celluloid, was too brittle to be used for bil-
liard balls. But while Hyatt’s name won’t go down in the billiard parlor hall of fame, he
will be remembered as the man who started the plastics revolution. Hyatt’s celluloid was
perfect for such things as gentlemen’s collars, ladies’ combs, containers, and eventually
even motion picture film.

In the more than 100 years since the introduction of celluloid, plastics have taken over
our lives. Plastic is sometimes the object of ridicule—from plastic money to plastic furni-
ture—yet even its critics are quick to point out its many advantages:

� Plastic is cheaper per square inch than wood, metal, and most other construction 
materials.

� Certain plastics are extremely strong, approaching the tensile strength of such light met-
als as copper and aluminum.

� Some plastic is “unbreakable.”

Plastic is an ideal material for use in hobby robotics. Its properties are well suited for
numerous robot designs, from simple frame structures to complete assemblies. Read this
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chapter to learn more about plastic and how to work with it. At the end of the chapter, we’ll
show you how to construct an easy-to-build “turtle robot”—the Minibot—from inexpen-
sive and readily available plastic parts.

Types of Plastics
Plastics represent a large family of products. Plastics often carry a fancy trade name, like
Plexiglas, Lexan, Acrylite, Sintra, or any of a dozen other identifiers. Some plastics are
better suited for certain jobs, so it will benefit you to have a basic understanding of the var-
ious types of plastics. Here’s a short rundown of the plastics you may encounter:

� ABS. Short for “acrylonitrile butadiene styrene,” ABS is most often used in sewer and
wastewater plumbing systems. The large black pipes and fittings you see in the hard-
ware store are made of ABS. ABS is a glossy, translucent plastic that can take on just
about any color and texture. It is tough and hard and yet relatively easy to cut and drill.
Besides plumbing fittings, ABS also comes in rods, sheets, and pipes—and as LEGO
plastic pieces!

� Acrylic. Acrylic is clear and strong, the mainstay of the decorative plastics industry. It
can be easily scratched, but if the scratches aren’t too deep they can be rubbed out.
Acrylic is somewhat tough to cut because it tends to crack, and it must be drilled care-
fully. The material comes mostly in sheets, but it is also available in extruded tubing, in
rods, and in the coating in pour-on plastic laminate.

� Cellulosics. Lightweight and flimsy but surprisingly resilient, cellulosic plastics are
often used as a sheet covering. Their uses in robotics are minor. One useful application,
however, stems from the fact that cellulosics soften at low heat, and thus they can be
slowly formed around an object. These plastics come in sheet or film form.

� Epoxies. Very durable clear plastic, epoxies are often used as the binder in fiberglass.
Epoxies most often come in liquid form, so they can be poured over something or onto
a fiberglass base. The dried material can be cut, drilled, and sanded.

� Nylon. Nylon is tough, slippery, self-lubricating stuff that is most often used as a sub-
stitute for twine. Plastics distributors also supply nylon in rods and sheets. Nylon is
flexible, which makes it moderately hard to cut.

� Phenolics. An original plastic, phenolics are usually black or brown in color, easy to cut
and drill, and smell terrible when heated. The material is usually reinforced with wood
or cotton bits or laminated with paper or cloth. Even with these additives, phenolic plas-
tics are not unbreakable. They come in rods and sheets and as pour-on coatings. The
only application of phenolics in robotics is as circuit board material.

� Polycarbonate. Polycarbonate plastic is a close cousin of acrylic but more durable and
resistant to breakage. Polycarbonate plastics are slightly cloudy in appearance and are
easy to mar and scratch. They come in rods, sheets, and tube form. A common, inex-
pensive window-glazing material, polycarbonates are hard to cut and drill without
breakage.

� Polyethylene. Polyethylene is lightweight and translucent and is often used to make flex-
ible tubing. It also comes in rod, film, sheet, and pipe form. You can reform the 
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material by applying low heat, and when the material is in tube you can cut it with 
a knife.

� Polypropylene. Like polyethylene, polypropylene is harder and more resistant to heat.
� Polystyrene. Polystyrene is a mainstay of the toy industry. This plastic is hard, clear

(though it can be colored with dyes), and cheap. Although often labeled “high-impact”
plastic, polystyrene is brittle and can be damaged by low heat and sunlight. Available in
rods, sheets, and foamboard, polystyrene is moderately hard to cut and drill without
cracking and breaking.

� Polyurethane. These days, polyurethane is most often used as insulation material, but
it’s also available in rod and sheet form. The plastic is durable, flexible, and relatively
easy to cut and drill.

� PVC. Short for polyvinyl chloride, PVC is an extremely versatile plastic best known as
the material used in freshwater plumbing and in outdoor plastic patio furniture. Usually
processed with white pigment, PVC is actually clear and softens in relatively low heat.
PVC is extremely easy to cut and drill and almost impervious to breakage. PVC is sup-
plied in film, sheet, rod, tubing, even nut-and-bolt form in addition to being shaped into
plumbing fixtures and pipes.

� Silicone. Silicone is a large family of plastics all in its own right. Because of their elas-
ticity, silicone plastics are most often used in molding compounds. Silicone is slippery
to the touch and comes in resin form for pouring.

How to Cut Plastic
Soft plastics may be cut with a sharp utility knife. When cutting, place a sheet of cardboard
or artboard on the table. This helps keep the knife from cutting into the table, which could
ruin the tabletop and dull the knife. Use a carpenter’s square or metal rule when you need
to cut a straight line. Prolong the blade’s life by using the rule against the knife holder, not
the blade.

Harder plastics can be cut in a variety of ways. When cutting sheet plastic less than 1/8-
inch thick, use a utility knife and metal carpenter’s square to score a cutting line. If neces-
sary, use clamps to hold down the square. Most sheet plastic comes with a protective peel-
off plastic on both sides. Keep it on when cutting.

Carefully repeat the scoring two or three times to deepen the cut. Place a 1/2-inch or 
1-inch dowel under the plastic so the score line is on the top of the dowel. With your fin-
gers or the palms of your hands, carefully push down on both sides of the score line. If the
sheet is wide, use a piece of 1-by-2 or 2-by-4 lumber to exert even pressure. Breakage and
cracking is most likely to occur on the edges, so press on the edges first, then work your
way toward the center. Don’t force the break. If you can’t get the plastic to break off clean-
ly, deepen the score line with the utility knife.

Thicker sheet plastic, as well as extruded tubes, pipes, and bars, must be cut with a
saw. If you have a table saw, outfit it with a plywood-paneling blade. Among other appli-
cations, this blade can be used to cut plastics. You cut through plastic just as you do with
wood, but the feed rate—the speed at which the material is sawed in two—must be 
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slower. Forcing the plastic or using a dull blade, heats the plastic, causing it to deform
and melt. A band saw is ideal for cutting plastics less than 1/2-inch thick, especially if
you need to cut corners. Keep the protective covering on the plastic while cutting. When
working with a power saw, use fences or pieces of wood held in place by C-clamps to
ensure a straight cut.

You can use a handsaw to cut smaller pieces of plastic. A hacksaw with a medium- or
fine-tooth blade (24 or 32 teeth per inch) is a good choice. You can also use a coping saw
(with a fine-tooth blade) or a razor saw. These are good choices when cutting angles and
corners as well as when doing detail work.

You can use a motorized scroll (or saber) saw to cut plastic, but you must take care to
ensure a straight cut. If possible, use a piece of plywood held in place by C-clamps as a
guide fence. Routers can be used to cut and score plastic, but unless you are an experienced
router user you should not attempt this method.

How to Drill Plastic
Wood drill bits can be used to cut plastics, but I’ve found that bits designed for glass drilling
yield better, safer results. If you use wood bits, you should modify them by blunting the tip
slightly (otherwise the tip may crack the plastic when it exits the other side). Continue the flute
from the cutting lip all the way to the end of the bit (see Fig. 8.1). Blunting the tip of the bit
isn’t hard to do, but grinding the flute is a difficult proposition. The best idea is to invest in a
few glass or plastic bits, which are already engineered for drilling plastic.

Drilling with a power drill provides the best results. The drill should have a variable
speed control. Reduce the speed of the drill to about 500 to 1000 rpm when using twist
bits, and to about 1000 to 2000 rpm when using spade bits. When drilling, always back the
plastic with a wooden block. Without the block, the plastic is almost guaranteed to crack.
When using spade bits or brad-point bits, drill partially through from one side, then 
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Cutting lip
Standard bit Modified bit

FIGURE 8.1 Suggested modifica-
tions for drill bits used
with plastic. The end is
blunted and the flutes
are extended to the end
of the cutting tip.
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complete the hole by drilling from the other side. As with cutting, don’t force the hole and
always use sharp bits. Too much friction causes the plastic to melt.

To make holes larger than 1/4 inch you should first drill a smaller, pilot hole. If the hole
is large, over 1/4 inch in diameter, start with a small drill and work your way up several
steps. Practice drilling on a piece of scrap until you get the technique right.

How to Bend and Form Plastic
Most rigid and semirigid plastics can be formed by applying low localized heat. A sure way
to bend sheet plastic is to use a strip heater. These are available ready-made at some hard-
ware and plastics supply houses, or you can build your own. A narrow element in the heater
applies a regulated amount of heat to the plastic. When the plastic is soft enough, you can
bend it into just about any angle you want.

There are two important points to remember when using a strip heater. First, be sure that
the plastic is pliable before you try to bend it. Otherwise, you may break it or cause exces-
sive stress at the joint (a stressed joint will looked cracked or crazed). Second, bend the
plastic past the angle that you want. The plastic will “relax” a bit when it cools off, so you
must anticipate this. Knowing how much to overbend will come with experience, and it
will vary depending on the type of plastic and the size of the piece you’re working with.

You can mold thinner sheet plastic around shapes by first heating it up with a hair dryer
or heat gun, then using your fingers to form the plastic. Be careful that you don’t heat up
the plastic too much. You don’t want it to melt, just conform to the underlying shape. You
can soften an entire sheet or piece by placing it into an oven for 10 or so minutes (remove
the protective plastic before baking). Set the thermostat to 300°F and be sure to leave 
the door slightly ajar so any fumes released during the heating can escape. Ventilate the
kitchen and avoid breathing the fumes, as they can be noxious. All plastics release gases
when they heat up, but the fumes can be downright toxic when the plastic actually ignites.
Therefore, avoid heating the plastic so much that it burns. Dripping, molten plastic can
also seriously burn you if it drops on your skin.

How to Polish the Edges of Plastic
Plastic that has been cut or scored usually has rough edges. You can file the edges of cut
PVC and ABS using a wood or metal file. You should polish the edges of higher-density
plastics like acrylics and polycarbonates by sanding, buffing, or burnishing. Try a fine-grit
(200 to 300), wet-dry sandpaper and use it wet. Buy an assortment of sandpapers and try
several until you find the coarseness that works best with the plastic you’re using. You can
apply jeweler’s rouge, available at many hardware stores in large blocks, by using a pol-
ishing wheel. The wheel can be attached to a grinder or drill motor.

Burnishing involves using a very low-temperature flame (a match or lighter will do) to
melt the plastic slightly. You can also use a propane torch kept some distance from the plas-
tic. Be extremely careful when using a flame to burnish plastic. Don’t let the plastic ignite,
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or you’ll end up with an ugly blob that will ruin your project, not to mention filling the
room with poisonous gas.

How to Glue Plastic
Most plastics aren’t really glued together; they are cemented. The cement contains one or
more solvents that actually melt the plastic at the joint. The pieces are then fused together—
that is, made one. Household adhesives can be used for this, of course, but you get better
results when you use specially formulated cements.

Herein lies a problem. The various plastics we have described rarely use the same
cement formulations, so to make your project, er, stick you’ve got to use the right mixture.
That means you have to know the type of plastic used in the material you are working with.
See our earlier discussion in this chapter about the various types of plastics. Also refer to
Table 8.1, which lists the major types of plastics and how they are used in common house-
hold and industrial products. Table 8.2 indicates the adhesives I recommend for cementing
several popular plastics.

When using solvent for PVC or ABS plumbing fixtures, apply the goop in the recom-
mended manner by spreading a thin coat on the pieces to be joined. A cotton applicator is
included in the can of cement. Plastic sheet, bars, and other items require more careful
cementing, especially if you want the end result to look nice.

With the exception of PVC solvent, the cement for plastics is watery thin and can be
applied in a variety of ways. One method is to use a small painter’s brush, with a #0 or #1
tip. Joint the pieces to be fused together and “paint” the cement onto the joint with the
brush. Capillary action will draw the cement into the joint, where it will spread out.
Another method is to fill a special syringe applicator with cement. With the pieces butted
together, squirt a small amount of cement into the joint line.

In all cases, you must be sure that the surfaces at the joint of the two pieces are perfectly
flat and that there are no voids where the cement may not make ample contact. If you are
joining pieces whose edges you cannot make flush, apply a thicker type of glue, such as
contact cement or white household glue. You may find that you can achieve a better bond
by first roughing up the joints to be mated. You can use coarse sandpaper or a file for this
purpose.

After applying the cement, wait at least 15 minutes for the plastic to re-fuse and the
joint to harden. Disturbing the joint before it has a time to set will permanently weaken it.
Remember that you cannot apply cement to plastics that have been painted. If you paint
the pieces before cementing them, scrape off the paint and refinish the edges so they’re
smooth again.

Using Hot Glue with Plastics
Perhaps the fastest way to glue plastic pieces together is to use hot glue. You heat the glue
to a viscous state in a glue gun, then spread it out over the area to be bonded. Hot-melt 
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USING HOT GLUE WITH PLASTICS 107

TABLE 8.1 Plastics in Everyday Household Articles

HOUSEHOLD ARTICLE TYPE OF PLASTIC

Bottles, containers

Clear Polyester, PVC

Translucent or opaque Polyethylene, polypropylene

Buckets, washtubs Polyethylene, polypropylene

Foam cushions Polyurethane foam, PVC foam

Electrical circuit boards Laminated epoxies, phenolics

Fillers

Caulking compounds Polyurethane, silicone, PVAC

Grouts Silicone, PVAC

Patching compounds Polyester, fiberglass

Putties Epoxies, polyester, PVAC

Films

Art film Cellulosics

Audio tape Polyester

Food wrap Polyethylene, polypropylene

Photographic Cellulosics

Glasses (drinking)

Clear, hard Polystyrene

Flexible Polyethylene

Insulated cups Styrofoam (polystyrene foam)

Hoses, garden PVC

Insulation foam Polystyrene, polyurethane

Lubricants Silicones

Plumbing pipes

Fresh water PVC, polyethylene, ABS

Gray water ABS

Siding and paneling PVC

Toys

Flexible Polyethylene, polypropylene

Rigid Polystyrene, ABS

Tubing (clear or translucent) Polyethylene, PVC
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glue and glue guns are available at most hardware, craft, and hobby stores in several dif-
ferent sizes. The glue is available in a “normal” and a low-temperature form. Low-
temperature glue is generally better with most plastics because it avoids the “sagging” or
softening of the plastic sometimes caused by the heat of the glue.

One caveat when working with hot-melt glue and guns (other than the obvious safety
warnings) is that you should always rough up the plastic surfaces before trying to bond
them. Plastics with a smooth surface will not adhere well when you are using hot-melt
glue, and the joint will be brittle and perhaps break off with only minor pressure. By
roughing up the plastic, the glue has more surface area to bond to, resulting in a strong
joint. Roughing up plastic before you join pieces is an important step when you are using
most any glue or cement, but it is particularly important when using hot-melt glue.

How to Paint Plastics
Sheet plastic is available in transparent or opaque colors, and this is the best way to add
color to your robot projects. The colors are impregnated in the plastic and can’t be scraped
or sanded off. However, you can also add a coat of paint to the plastic to add color or to
make it opaque. Most all plastics accept brush or spray painting.

Spray painting is the preferred method for all jobs that don’t require extra-fine detail.
Carefully select the paint before you use it, and always apply a small amount to a scrap
piece of plastic before painting the entire project. Some paints contain solvents that may
soften the plastic.

One of the best all-around paints for plastics are the model and hobby spray cans made
by Testor. These are specially formulated for styrene model plastic, but I’ve found that the
paint adheres well without softening on most all plastics. I’ve used it successfully on ABS,
PVC, acrylic, polycarbonate, and many other plastics. You can purchase this paint in a vari-
ety of colors, in either gloss or flat finish. The same colors are available in bottles with 
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Table 8.2 Plastic Bonding Guide

CEMENTED TO… …OTHER 
PLASTIC ITSELF, USE PLASTIC, USE …METAL, USE

ABS ABS-ABS solvent Rubber adhesive Epoxy cement

Acrylic Acrylic solvent Epoxy cement Contact cement

Cellulosics White glue Rubber adhesive Contact cement

Polystyrene Model glue Epoxy CA glue*

Polystyrene foam White glue Contact cement Contact cement

Polyurethane Rubber adhesive Epoxy, contact Contact cement
cement

PVC PVC-PVC solvent PVC-ABS (to ABS) Contact cement

(*CA stands for cyanoacrylate ester, sometimes known as “Super Glue,” after a popular brand name.)
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self-contained brush applicators. If the plastic is clear, you have the option of painting on
the front or back side (or both for that matter). Painting on the front side will produce 
the paint’s standard finish: gloss colors come out gloss; flat colors come out flat. Flat-
finish paints tend to scrape off easier, however, so exercise care.

Painting on the back side with gloss or flat paint will only produce a glossy appear-
ance because you look through the clear plastic to the paint on the back side. Moreover,
painting imperfections will more or less be hidden, and external scratches won’t mar 
the paint job.

Buying Plastic
Some hardware stores carry plastic, but you’ll be sorely frustrated at their selection. The
best place to look for plastic—in all its styles, shapes, and chemical compositions—is a
plastics specialty store or plastics sign-making shop. Most larger cities have at least one
plastic supply store or sign-making shop that’s open to public. Look in the yellow pages
under Plastics - Retail.

Another useful source is the plastics fabricator. There are actually more of these than
retail plastic stores. They are in business to build merchandise, display racks, and other
plastic items. Although they don’t usually advertise to the general public, most will sell to
you. If the fabricator doesn’t sell new material, ask to buy the leftover scrap.

Plastics around the House
You need not purchase plastic for all your robot needs at a hardware or specialty store. You
may find all the plastic you really need right in your own home. Here are a few good places
to look:

� Used compact discs (CDs). These are a typical denizen of the modern-day landfill. CDs,
made from polycarbonate plastics, are usually just thrown away and not recycled. What a
waste of resources! With careful drilling and cutting, you can adapt them to serve as body
parts and even wheels for your robots. Exercise caution when working with CDs: they can
shatter when you drill and cut them, and the pieces are very sharp and dangerous.

� Used LaserVision discs. These are “grownup” versions of CDs. With the advent of
Digital Versatile Disc (DVD), 12-inch-diameter laser discs are falling out of favor, and
they are often available at garage sales and second-hand stores for just a dollar or two
each. Make sure the movie isn’t a classic, then drill and cut the plastic as needed. As
with CDs, use care to avoid shattering the plastic.

� Old phonograph records. Found in the local thrift store, records—particularly the thick-
er 78-rpm variety—can be used in much the same way as CDs and laser discs. The older
records made from the 1930s through 1950s used a thicker plastic that is very heavy and
durable. Thrift stores are your best bet for old records no one wants anymore (who is
that Montovani guy, anyway?). Note that some old records, like the V-Discs made 

PLASTICS AROUND THE HOUSE 109

Ch08_McComb  8/21/00  3:12 PM  Page 109



during World War II, are collector’s items, so don’t wantonly destroy a record unless
you’re sure it has no value.

� Salad bowls, serving bowls, and plastic knickknacks. They can all be revived as robot
parts. I regularly prowl garage sales and thrift stores looking for such plastic material.

� PVC irrigation pipe. This can be used to construct the frame of a robot. Use the short
lengths of pipe left over from a weekend project. You can secure the pieces with glue or
hardware or use PVC connector pieces (Ts, “ells,” etc.)

Build the Minibot
Now let’s take a hands-on look at how plastic can be used to construct a robot, the Minibot.
You can use a small piece of scrap sheet acrylic to build the foundation and frame of the
Minibot. The robot is about six inches square and scoots around the floor or table on two
small rubber tires. The basic version is meant to be wire-controlled, although in upcoming
chapters you’ll see how to adapt the Minibot to automatic electronic control, even remote
control. The power source is a set of flashlight batteries. I used four AA batteries because
they are small, lightweight, and provide more driving power than 9-volt transistor 
batteries. The parts list for the Minibot can be found in Table 8.3.

FOUNDATION OR BASE

The foundation is clear or colored Plexiglas or some similar acrylic sheet plastic. The
thickness should be at least 1/8 inch, but avoid very thick plastic because of its heavy
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Table 8.3 Minibot Parts List

Minibot:

1 6-inch-by-6-inch acrylic plastic (1/16-inch or 1/8-inch thick)

2 Small hobby motors with gear reduction

2 Model airplane wheels

1 3 1/2-inch (approx.) 10/24 all-thread rod

1 6-inch-diameter (approx.) clear plastic dome

1 Four-cell AA battery holder

Assorted 1/2-inch-by-8/32 bolts, 8/32 nuts, lock washers, 1/2-inch-by-10/24 bolts, 
10/24 nuts, lock washers, capnuts

Motor Control Switch:

1 Small electronic project enclosure

2 Double-pole, double-throw (DPDT) momentary switches, with center-off return

Misc. Hookup wire
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weight. The prototype Minibot used 1/8-inch thick acrylic, so there was minimum stress-
ing caused by bending or flexing.

Cut the plastic as shown in Fig. 8.2. Remember to keep the protective paper cover on the
plastic while you cut. File or sand the edges to smooth the cutting and scoring marks. The cor-
ners are sharp and can cause injury if the robot is handled by small children. You can easily
fix this by rounding off the corners with a file. Find the center and drill a hole with a #10 bit.
Fig. 8.2 also shows the holes for mounting the drive motors. These holes are spaced for a sim-
ple clamp mechanism that secures hobby motors that are commonly available on the market.

MOTOR MOUNT

The small DC motors used in the prototype Minibot were surplus gear motors with an out-
put speed of about 30 rpm. The motors for your Minibot should have a similar speed
because even with fairly large wheels, 30 rpm makes the robot scoot around the floor or a
table at about four to six inches a second. Choose motors small enough so they don’t crowd
the base of the robot and add unnecessary weight. Remember that you have other items to
add, such as batteries and control electronics.
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FIGURE 8.2 The cutting guide for the base of the plastic Minibot. The sets of two holes
on either side are for the motor mount, and they should be spaced accord-
ing to the specific mount you are using. Motors of different sizes and types
will require different mounting holes.
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Use 3/8-inch-wide metal mending braces to secure the motor (the prototype used plas-
tic pieces from an old Fastech toy construction kit; you can use these or something simi-
lar). You may need to add spacers or extra nuts to balance the motor in the brace. Drill
holes for 8/32 bolts (#19 bit), spaced to match the holes in the mending plate. Another
method is to use small U-bolts, available at any hardware store. Drill the holes for the U-
bolts and secure them with a double set of nuts.

Attach the tires to the motor shafts. Tires designed for a radio-controlled airplane or race
car are good choices. The tires are well made, and the hubs are threaded in standard screw
sizes (the threads may be metric, so watch out!). I threaded the motor shaft and attached a
4-40 nut on each side of the wheel. Fig. 8.3 shows a mounted motor with a tire attached.

Installing the counterbalances completes the foundation-base plate. These keep the
robot from tipping backward and forward along its drive axis. You can use small ball 
bearings, tiny casters, or—as I did in the prototype—the head of a 10/24 locknut. The 
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Acrylic

Motor clamp

8/32 hardware

FIGURE 8.3 How the drive motors of the Minibot look when mounted. In the
prototype Minibot the wheels were threaded directly onto the motor
shaft. Note the gear-reduction system built onto the hobby motor.
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locknut is smooth enough to act as a kind of ball bearing and is about the right size for the
job. Attach the locknut with a 10/24-by-1/2-inch bolt (if the bolt you have is too long to fit
in the locknut, add washers or a 10/24 nut as a spacer).

TOP SHELL

The top shell is optional, and you can leave it off if you choose. The prototype used a round
display bowl six inches in diameter that I purchased from a plastics specialty store.
Alternatively, you can use any suitable half sphere for your robot, such as an inverted salad
bowl. Feel free to use colored plastic.

Attach the top by measuring the distance from the foundation to the top of the shell, tak-
ing into consideration the gap that must be present for the motors and other bulky internal
components. Cut a length of 10/24 all-thread rod to size. The length of the prototype shaft was
3 1/2 inches. Secure the center shaft to the base using a pair of 10/24 nuts and a tooth lock
washer. Secure the center shaft to the top shell with a 10/24 nut and a 10/24 locknut. Use a
tooth lock washer on the inside or outside of the shell to keep the shell from spinning loose.

BATTERY HOLDER

You can buy battery holders that hold from one to six dry cells in any of the popular bat-
tery sizes. The Minibot motors, like almost all small hobby motors, run off 1.5 to 6 volts.
A four-cell, AA battery holder does the job nicely. The wiring in the holder connects the
batteries in series, so the output is 6 volts. Secure the battery holder to the base with 8/32
nuts and bolts. Drill holes to accommodate the hardware. Be sure the nuts and bolts don’t
extend too far below the base or they may drag when the robot moves. Likewise, be sure
the hardware doesn’t interfere with the batteries.

WIRING DIAGRAM

The wiring diagram in Fig. 8.4 allows you to control the movement of the Minibot in all
directions. This simple two-switch system, which will be used in many other projects in
this book, uses double-pole, double-throw (DPDT) switches. The switches called for in the
circuit are spring-loaded so they return to a center-off position when you let go of them.

From Here
To learn more about... Read

Wooden robots Chapter 9, “Building a Basic Wooden Platform”

Metal robots Chapter 10, “Building a Metal Platform”

Using batteries Chapter 15, “All About Batteries and Robot 
Power Supplies”

Selecting the right motor Chapter 17, “Choosing the Right Motor for the Job”

Using a computer or microcontroller Chapter 28, “An Overview of Robot ‘Brains’”
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FIGURE 8.4 Use this schematic for wiring the motor control switches
for the Minibot. Note that the switches are double-pole,
double-throw (DTDP), with a spring return to center-off.
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Wood may not be high-tech, but it’s an ideal building material for hobby robots. Wood
is available just about everywhere. It’s relatively inexpensive, it’s easy to work with, and
mistakes can be readily covered up or painted over. In this chapter, we’ll take a look at
using wood in robots and how you can apply simple woodworking skills to construct a
basic wooden robot platform. This platform can then serve as the foundation for a number
of robot designs you may want to explore.

Choosing the Right Wood
There is good wood and there is bad wood. Obviously, you want the good stuff, but you have
to be willing to pay for it. For reasons you’ll soon discover, you should buy only the best stock
you can get your hands on. The better woods are available at specialty wood stores, particu-
larly the ones that sell mostly hardwoods and exotic woods. Your local lumber and hardware
store may have great buys on rough-hewn redwood planking, but it’s hardly the stuff of robots.

PLYWOOD

The best overall wood for robotics use, especially for foundation platforms, is plywood. In
case you are unfamiliar with plywood, this common building material comes in many
grades and is made by laminating thin sheets of wood together. The cheapest plywood is
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called “shop grade,” and it is the kind often used for flooring and projects where looks
aren’t too important. The board is full of knots and knotholes, and there may be consider-
able voids inside the board.

The remaining grades specify the quality of both sides of the plywood. Grade N is the
best and signifies “natural finish” veneer. The surface quality of grade N really isn’t impor-
tant to us, so we can settle for grade A. Since we want both sides of the board to be in good
shape, a plywood with a grade of A-A (grade A on both sides) is desired. Grades B and C
are acceptable, but only if better plywoods aren’t around. Depending on the availability of
these higher grades, you may have to settle for A-C grade plywood (grade A on one side,
grade C on the other).

Most plywoods you purchase at the lumber stores are made of softwoods—usually fir
and pine. You can get hardwood plywood as well through a specialty wood supplier or from
hobby stores. Hardwoods are more desirable because they are denser and less likely to
chip. Don’t confuse hardwood plywood with hardboard. The latter is made of sawdust
epoxied together under high pressure. Hardboard has a smooth finish; its close cousin, 
particleboard, does not. Both types are unsuitable for robotics because they are too heavy
and brittle.

Plywood comes in various thicknesses starting at about 5/16 inch and going up to
over 1 inch. Thinner sheets are acceptable for use in a robotics platform if the plywood
is made from hardwoods. When using construction-grade plywoods (the stuff you get
at the home improvement store), a thickness in the middle of the range—1/2 inch or 3/8
inch—is ideal.

Construction plywood generally comes in 4-by-8-foot panels. Hardwood plywoods,
particularly material for model building, come in smaller sizes, such as 2 feet by 2 feet.
You don’t need a large piece of plywood; the smaller the board, the easier it will be to cut
it to the exact size you need.

PLANKING

An alternative to working with plywood is planking. Use ash, birch, or some other solid
hardwood. Stay away from the less meaty softwoods such as fir, pine, and hemlock.
Most hardwood planks are available in widths of no more than 12 or 15 inches, so you
must take this into consideration when designing the platform. You can butt two smaller
widths together if absolutely necessary. Use a router to fashion a secure joint, or attach
metal mending plates to mate the two pieces together. (This latter option is not recom-
mended; it adds a lot of unnecessary weight to the robot.)

When choosing planked wood, be especially wary of warpage and moisture content.
Take along a carpenter’s square, and check the squareness and levelness of the lumber in
every possible direction. Reject any piece that isn’t perfectly square; you’ll regret it other-
wise. Defects in milled wood go by a variety of colorful names, such as crook, bow, cup,
twist, wane, split, shake, and check, but they all mean “headache” to you.

Wood with excessive moisture may bow and bend as it dries, causing cracks and warpage.
These can be devastating in a robot you’ve just completed and perfected. Buy only seasoned
lumber stored inside the lumberyard, not outside. Watch for green specks or grains—these
indicate trapped moisture. If the wood is marked, look for an “MC” specification. An “MC-
15” rating means that the moisture content doesn’t exceed 15 percent, which is acceptable.
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Good plywoods and hardwood planks meet or exceed this requirement. Don’t get anything
marked MC-20 or higher or marked S-GREEN—bad stuff for robots.

DOWELS

Wood dowels come in every conceivable diameter, from about 1/16 inch to over 11⁄2 inch-
es. Wood dowels are three or four feet in length. Most dowels are made of high-quality
hardwood, such as birch or ash. The dowel is always cut lengthwise with the grain to
increase strength. Other than choosing the proper dimension, there are few considerations
to keep in mind when buying dowels.

You should, however, inspect the dowel to make sure that it is straight. At the store, roll
the dowel on the floor. It should lie flat and roll easily. Warpage is easy to spot. Dowels can
be used either to make the frame of the robot or as supports and uprights.

The Woodcutter’s Art
You’ve cut a piece of wood in two before, haven’t you? Sure you have; everyone has. You
don’t need any special tools or techniques to cut wood for a robot platform. The basic shop
cutting tools will suffice: a handsaw, a backsaw, a circular saw, a jigsaw (if the wood is thin
enough for the blade), a table saw, a radial arm saw, or—you name it.

Whatever cutting tool you use, make sure the blade is the right one for the wood. The
combination blade that probably came with your power saw isn’t the right choice for ply-
wood and hardwood. Outfit the saw with a cutoff blade or a plywood-paneling blade. Both
have many more teeth per inch. Handsaws generally come in two versions: crosscut and
ripsaw. You need the crosscut kind.

Deep Drilling
You can use a hand or motor drill to drill through wood. Electric drills are great and do the
job fast, but I prefer the older-fashioned hand drills for applications that require precision.
Either way, it’s important that you use only sharp drill bits. If your bits are dull, replace
them or have them sharpened.

It’s important that you drill straight holes, or your robot may not go together properly.
If your drill press is large enough, you can use it to drill perfectly straight holes in plywood
and other large stock. Otherwise, use a portable drill stand. These attach to the drill or work
in a number of other ways to guarantee you a straight hole.

Finishing
You can easily shape wood using rasps and files. If the shaping you need to do is extensive—
like creating a circle in the middle of a large plank—you may want to consider getting a rasp
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for your drill motor. They come in various sizes and shapes. You’ll want the shaped wood to
be as smooth as possible, both for appearance’s sake and so it’s easier to attach other wood
pieces or components of the robot to it. A medium-grit sandpaper is fine for the job.

Add a coat of paint to the wood when you’re done. Silver, gloss black, or some other
high-tech opaque color are good choices. The paint also serves to protect the wood against
the effects of moisture and aging.

Building a Wooden Motorized Platform
Figures 9.1 and 9.2 show approaches for constructing a basic square and round motorized
wooden platform, respectively. See Table 9.1 for a list of the parts you’ll need.

To make the square plywood platform shown in Fig. 9.1, cut a piece of 3/8- or 1/2-inch
plywood to 10 by 10 inches (the thinner 3/8-inch material is acceptable if the plywood is
the heavy-duty hardwood variety, such as that used for model ships). Make sure the cut 
is square. Notch the wood as shown to make room for the robot’s wheels. The notch should
be large enough to accommodate the width and diameter of the wheels, with a little
“breathing room” to spare. For example, if the wheels are 6 inches in diameter and 1.5
inches wide, the notch should be about 6.5 by 1.75 inches.

To make a motor control switch for this platform, see the parts list given in Table 8.3 of
in Chap. 8.

Figure 9.2 shows the same 10-inch-square piece of 3/8- or 1/2-inch plywood cut into a
circle. Use a scroll saw and circle attachment for cutting. As you did for the square platform,
make a notch in the center beam of the circle to allow room for the wheels—the larger the
wheel, the larger the notch.
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FIGURE 9.1  Cutting plan for a square plywood base.
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ATTACHING THE MOTORS

The wooden platform you have constructed so far is perfect for a fairly sturdy robot, so the
motor you choose should be too. Use heavy-duty motors, geared down to a top speed of no
more than about 75 rpm; 30 to 40 rpm is even better. Anything faster than 75 rpm will cause
the robot to dash about at speeds exceeding a few miles per hour, which is unacceptable
unless you plan on entering your creation in the Robot Olympics.
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FIGURE 9.2 Cutting plan for a round plywood base.

TABLE 9.1 PARTS LIST FOR WOOD BASE

Robot Base:

1 10-inch-by-10-inch plywood (3/8- or 1/2-inch thickness)

Misc 1-inch-by-10/24 stove bolts, 10/24 nuts, flat washers

Motor/drive:

2 DC gear motors

2 5- to 7-inch rubber wheels

1 1 1/4-inch caster

2 2-by-4-inch lumber (cut to length to fit motor)

1 Four-cell “D” battery holder

Misc 3-inch-by-10/24 stove bolts, 10/24 nuts, flat washers (for motor
mount)

1 1/4-inch-by-8/32 stove bolts, 8/32 nuts, flat washers, lock washers
(for caster mount)
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Note: You can use electronic controls to reduce the speed of the gear motor by 15 or 20
percent without losing much torque, but you should not slow the motor too much, or you’ll
lose power. The closer the motor operates at its rated speed, the better results you’ll have.

If the motors have mounting flanges and holes on them attach them using corner brack-
ets. Some motors do not have mounting holes or hardware, so you must fashion a hold-
down plate for them. You can make an effective hold-down plate, as shown in Fig. 9.3, out
of wood. Round out the plate to match the cylindrical body of the motor casing. Then
secure the plate to the platform. Last, attach the wheels to the motor shafts. You may need
to thread the shafts with a die so you can secure the wheels. Use the proper size nuts and
washers on either side of the hub to keep the wheel in place. You’ll make your life much
easier if you install wheels that have a setscrew. Once they are attached to the shaft, tight-
en the setscrew to screw the wheels in place.
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FIGURE 9.3 One way to secure the motors to the base is to use a
wood block hollowed out to match the shape of the
motor casing. a. Side view; b. Top view.
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STABILIZING CASTER

Using two motors and a centered caster, as depicted in Fig. 9.4, allows you to have full con-
trol over the direction your robot travels. You can make the robot turn by stopping or
reversing one motor while the other continues turning. Attach the caster using four 8/32-
by-1-inch bolts. Secure the caster with tooth lock washers and 8/32 nuts.

Note that the caster must be level with (or a little higher than) the drive motors. You
may, if necessary, use spacers to increase the distance from the baseplate of the caster to
the bottom of the platform. If the caster is already lower than the wheels, you’ll have trou-
ble because the motors won’t adequately touch the ground. You can rectify this problem by
simply using larger-diameter wheels.

BATTERY HOLDER

You can purchase battery holders that contain from one to six dry cells in any of the pop-
ular battery sizes. When using 6-volt motors, you can use a four-cell “D” battery holder.
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FIGURE 9.4 Attaching the caster to the platform. a. Top and bottom view; b. caster hard-
ware assembly detail.
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You can also use a single 6-volt lantern or rechargeable battery. Motors that require 12
volts will need two battery holders, two 6-volt batteries, or one 12-volt battery (the latter
is somewhat hard to find unless you’re looking for a car battery, which you are not). For
the prototype, I used 6-volt motors and a four-cell “D” battery holder.

Secure the battery holder(s) to the base with 8/32 nuts and bolts. Drill holes to accom-
modate the hardware. Be sure the nuts and bolts don’t extend too far below the base or they
may drag when the robot moves. Likewise, be sure the hardware doesn’t interfere with the
batteries.

Wire the batteries and wheels to the DPDT through control switches, as shown in the
Minibot project described at the end of Chapter 8, “Building a Plastic Robot Platform.”
One switch controls the left motor; the other switch controls the right motor.

From Here
To learn more about... Read
Plastic robots Chapter 8, “Building a Plastic Robot Platform”

Metal robots Chapter 10, “Building a Metal Platform”

Using batteries Chapter 15, “All about Batteries and Robot Power Supplies”

Selecting the right motor Chapter 17, “Choosing the Right Motor for the Job”

Using a computer or 
microcontroller Chapter 28, “An Overview of Robot ‘Brains’”
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Metal is perhaps the best all-around material for building robots because if offers extra
strength that other materials, such as plastic and wood, cannot. If you’ve never worked with
metal before, you shouldn’t worry; there is really nothing to it. The designs outlined in this
chapter and the chapters that follow will show you how to construct robots both large and
small out of readily available metal stock, without resorting to welding or custom 
machining.

Metal Stock
Metal stock is available from a variety of sources. Your local hardware store is the best
place to start. However, some stock may only be available at the neighborhood sheet metal
shop. Look around and you’re sure to find what you need.

EXTRUDED ALUMINUM

Extruded stock is made by pushing molten metal out of a shaped orifice. As the metal exits
it cools, retaining the exact shape of the orifice. Extruded aluminum stock is readily 
available at most hardware and home improvement stores. It generally comes in 12-foot
sections, but many hardware stores will let you buy cut pieces if you don’t need all 12 feet.
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Extruded aluminum is available in more than two dozen common styles, from thin bars
to pipes to square posts. Although you can use any of it as you see fit, the following stan-
dard sizes may prove to be particularly beneficial in your robot-building endeavors:

� 1-by-1-by-1/16-inch angle stock
� 57/64-by-9/16-by-1/16-inch channel stock
� 41/64-by-1/2-by-1/16-inch channel stock
� Bar stock, in widths from 1 to 3 inches and thicknesses of 1/16 to 1/4 inch

SHELVING STANDARDS

You’ve no doubt seen those shelving products where you nail two metal rails on the wall
and then attach brackets and shelves to them. The rails are referred to as “standards,” and
in a pinch they are well suited to be girders in robot frames. The standards come in either
aluminum or steel and measure 41/64 by 1/2 by 1/16 inch. The steel stock is cheaper but
considerably heavier, a disadvantage you will want to carefully consider. Limit its use to
structural points in your robot that need extra strength.

Another disadvantage of using shelving standards instead of extruded aluminum are all
the holes and “slots” you’ll find on the standards. The holes are for mounting the standards
to a wall; the slots are for attaching shelving brackets. Both can be troublesome when you
are drilling the metal for bolt holes. The drill can slip into a hole or slot, and as a result the
hole may not end up where you want it. For this reason, use extruded aluminum pieces
when possible. It will yield more professional results.

MENDING PLATES

Galvanized mending plates are designed to strengthen the joint of two or more pieces of
lumber. Most of these plates come preformed in all sorts of weird shapes and so are pret-
ty much unusable for building robots. But flat plates are available in several widths and
lengths. You can use the plates as is or cut them to size. The plates are made of galva-
nized iron and have numerous pre-drilled holes in them to help you hammer in nails. The
material is soft enough so you can drill new holes, but if you do so only use sharp 
drill bits.

Mending plates are available in lengths of about 4, 6, and 12 inches. Widths are not as
standardized, but 2, 4, 6, and 12 inches seem common. You can usually find mending plates
near the rain gutter and roofing section in the hardware store. Note that mending plates are
heavy, so don’t use them for small, lightweight robot designs. Reserve them for medium-
to large-sized robots where the plate can provide added structural support and strength.

RODS AND SQUARES

Most hardware stores carry a limited quantity of short extruded steel or zinc rods and
squares. These are solid and somewhat heavy items and are perfect for use in some
advanced projects, such as robotic arms. Lengths are typically limited to 12 or 24 inches,
and thicknesses range from 1/16 to about 1/2 inch.
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IRON ANGLE BRACKETS

You will need a way to connect all your metal pieces together. The easiest method is to use
galvanized iron brackets. These come in a variety of sizes and shapes and have predrilled
holes to facilitate construction. The 3/8-inch-wide brackets fit easily into the two sizes of
channel stock mentioned at the beginning of the chapter: 57/64 by 9/16 by 1/16 inch and
41/64 by 1/2 by 1/16 inch. You need only drill a corresponding hole in the channel stock
and attach the pieces together with nuts and bolts. The result is a very sturdy and clean-
looking frame. You’ll find the flat corner angle iron, corner angle (“L”), and flat mending
iron to be particularly useful.

Working with Metal
If you have the right tools, working with metal is only slightly harder than working with
wood or plastic. You’ll have better-that-average results if you always use sharpened, well-
made tools. Dull, bargain-basement tools can’t effectively cut through aluminum or steel
stock. Instead of the tool doing most of the work, you do.

CUTTING

To cut metal, use a hacksaw outfitted with a fine-tooth blade, one with 24 or 32 teeth per
inch. Coping saws, keyhole saws, and other handsaws are generally engineered for cutting
wood, and their blades aren’t fine enough for metal work. You can use a power saw, like a
table saw or reciprocating saw, but, again, make sure that you use the right blade.

You’ll probably do most of your cutting by hand. You can help guarantee straight cuts
by using an inexpensive miter box. You don’t need anything fancy, but try to stay away
from the wooden boxes. They wear out too fast. The hardened plastic and metal boxes are
the best buys. Be sure to get a miter box that lets you cut at 45° both vertically and hori-
zontally. Firmly attach the miter box to your workbench using hardware or a large clamp.

DRILLING

Metal requires a slower drilling speed than wood, and you need a power drill that either
runs at a low speed or lets you adjust the speed to match the work. Variable speed power
drills are available for under $30 these days, and they’re a good investment. Be sure to use
only sharp drill bits. If your bits are dull, replace them or have them sharpened. Quite
often, buying a new set is cheaper than professional resharpening. It’s up to you.

You’ll find that when you cut metal the bit will skate all over the surface until the hole
is started. You can eliminate or reduce this skating by using a punch prior to drilling. Use
a hammer to gently tap a small indentation into the metal with the punch. Hold the 
smaller pieces in a vise while you drill.

When it comes to working with metal, particularly channel and pipe stock, you’ll find
a drill press is a godsend. It improves accuracy, and you’ll find the work goes much faster.
Always use a proper vise when working with a drill press. Never hold the work with your
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hands. Especially with metal, the bit can snag as it’s cutting and yank the piece out of your
hands. If you can’t place the work in the vise, use a pair of Vise-Grips or other suitable
locking pliers.

FINISHING

Cutting and drilling often leaves rough edges, called flashing, in the metal. These edges
must be filed down using a medium- or fine-pitch metal file, or else the pieces won’t fit
together properly. Aluminum flash comes off quickly and easily; you need to work a little
harder when removing the flash in steel or zinc stock.

Build the Buggybot
The Buggybot is a small robot built from a single 6-by-12-inch sheet of 1/16-inch thick
aluminum, nuts and bolts, and a few other odds and ends. You can use the Buggybot as the
foundation and running gear for a very sophisticated petlike robot. As with the robots built
with plastic and wood we discussed in the previous two chapters, the basic design of the
all-metal Buggybot can be enhanced just about any way you see fit. This chapter details
the construction of the framework, locomotion, and power systems for a wired remote con-
trol robot. Future chapters will focus on adding more sophisticated features, such as wire-
less remote control, automatic navigation, and collision avoidance and detection. Refer to
Table 10.1 for a list of the parts needed to build the Buggybot.
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TABLE 10.1 PARTS LIST FOR BUGGYBOT

Frame:

1 6-by-12-inch sheet of 1/16-inch thick aluminum

Motor and Mount:

2 Tamiya high-power gearbox motors (from kit); see text

2 3-inch-diameter “Lite Flight” foam wheels

2 5/56 nuts (should be included with the motors)

2 3/16-inch collars with setscrews

1 Two-cell “D” battery holder

Misc 1-inch-by-6/32 stove bolts, nuts, flat washers

Support Caster:

1 1 1/2-inch swivel caster

Misc 1/2-inch-by-6/32 stove bolts, nuts, tooth lock washers, flat washers (as
spacers)

See parts list in Table 8.3 of Chapter 8 for motor control switch
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FRAMEWORK

Build the frame of the Buggybot from a single sheet of 1/16-inch thick aluminum sheet.
This sheet, measuring 6 by 12 inches, is commonly found at hobby stores. As this is a
standard size, there’s no need to cut it. Follow the drill-cutting template shown in 
Fig. 10.1.

After drilling, use a large shop vise or woodblock to bend the aluminum sheet as shown
in Fig. 10.2. Accuracy is not all that important. The angled bends are provided to give the
Buggybot its unique appearance.
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6" by 12"
aluminum

sheet

1 1/2"

1 7/8"

3/8"

(Same)

Drill holes
for caster

plate

5 1/2" 

FIGURE 10.1 Drilling diagram for the Buggybot frame.
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MOTORS AND MOTOR MOUNT

The prototype Buggybot uses two high-power gearbox motor kits from Tamiya, which
come in kit form and are available at many hobby stores (as well as Internet sites, such
as TowerHobbies.com). These motors come with their own gearbox; choose the 1:64.8
gear ratio. An assembled motor is shown in Fig. 10.3. Note that the output shaft of the
motor can be made to protrude a variable distance from the body of the motor. Secure
the shaft (using the Allen setscrew that is included) so that only a small portion of the
opposite end of the shaft sticks out of the gear box on the other side, as shown in 
Fig 10.3.

You should secure the gearboxes and motors to the aluminum frame of the Buggybot as
depicted in Fig. 10.4. Use 6/32 bolts, flat washers, and nuts. Be sure that the motors are
aligned as shown in the figure. Note that the shaft of each motor protrudes from the side
of the Buggybot.

Figure 10.5 illustrates how to attach the wheels to the shafts of the motors. The wheels
used in the prototype were 3-inch-diameter foam “Lite Flight” tires, commonly avail-
able at hobby stores. Secure the wheels in place by first threading a 3/16-inch collar 
(available at hobby stores) over the shaft of the motor. Tighten the collar in place using its
Allen setscrew. Then cinch the wheel onto the shaft by tightening a 5/56 threaded nut to
the end of the motor shaft (the nut should be included with the gearbox motor kit). Be sure
to tighten down on the nut so the wheel won’t slip.

SUPPORT CASTER

The Buggybot uses the two-wheel drive tripod arrangement. You need a caster on the other
end of the frame to balance the robot and provide a steering swivel. The 1 1/2-inch swivel
caster is not driven and doesn’t do the actual steering. Driving and steering are taken care
of by the drive motors. Refer to Fig. 10.6 on p. 131. Attach the caster using two 6/32 by
1/2-inch bolts and nuts.

Note that the mechanical style of the caster, and indeed the diameter of the caster wheel,
is dependent on the diameter of the drive wheels. Larger drive wheels will require either a
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FIGURE 10.2 Bend the aluminum sheet at the approximate angles
shown here.
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different mounting or a larger caster. Small drive wheels will likewise require you to adjust
the caster mounting and possibly use a smaller-diameter caster wheel.

BATTERY HOLDER

The motors require an appreciable amount of current, so the Buggybot really should be
powered by heavy-duty “C”- or “D”-size cells. The prototype Buggybot used a two-cell
“D” battery holder. The holder fits nicely toward the front end of the robot and acts as a
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Nut

Motor and
gearbox

Coupler
(with setscrew)

Output gear
(with setscrew)

Motor shaft

FIGURE 10.3 Secure the output shaft of the motor so that almost all
of the shaft sticks out on one side of the motor.

Nut

Base

1/2" x 6/32 Bolt

Motor gearbox

Mounting flange 

FIGURE 10.4 The gearboxes and motors are attached to the frame
of the Buggybot using ordinary hardware.
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good counterweight. You can secure the battery holder to the robot using double-sided tape
or hook-and-loop (Velcro) fabric.

WIRING DIAGRAM

The basic Buggybot uses a manual wired switch control. The control is the same one used
in the plastic Minibot detailed in Chapter 8, “Building a Plastic Robot Platform.” Refer to
the wiring diagram in Fig. 8.4 of that chapter for information on powering the Buggybot.

To prevent the control wire from interfering with the robot’s operation, attach a piece of
heavy wire (the bottom rail of a coat hanger will do) to the caster plate and lead the 
wire up it. Use nylon wire ties to secure the wire. The completed Buggybot is shown in
Fig. 10.7.

Test Run
You’ll find that the Buggybot is an amazingly agile robot. The distance it needs to turn is
only a little longer than its length, and it has plenty of power to spare. There is room on the
robot’s front and back to mount additional control circuitry. You can also add control cir-
cuits and other enhancements over the battery holder. Just be sure that you can remove the
circuit(s) when it comes time to change or recharge the batteries.
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FIGURE 10.5 Attach the foam wheels (with plastic hubs) for the Buggybot onto
the shafts of the motors.
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Nut
Tooth Lockwasher

Base

Caster

1/2" x 6/32 Bolt

FIGURE 10.6 Mounting the caster to the Buggybot.

FIGURE 10.7 The completed Buggybot.
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From Here
To learn more about... Read

Plastic robots Chapter 8, “Building a Plastic Robot Platform”

Metal robots Chapter 9, “Building a Basic Wooden Platform”

Using batteries Chapter 15, “All about Batteries and Robot 
Power Supplies”

Selecting the right motor Chapter 17, “Choosing the Right Motor for the Job”

Using a computer or microcontroller Chapter 28, “An Overview of Robot ‘Brains’”
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Ready-made toys can be used as the basis for more complex homebrew hobby robots.
The toy industry is robot crazy, and you can buy a basic motorized or unmotorized
robot for parts, building on it and adding sophistication and features. Snap or screw-
together kits, such as the venerable Erector Set, let you use premachined parts for your
own creations. And some kits, like LEGO and Robotix, are even designed to create
futuristic motorized robots and vehicles. You can use the parts in the kits as is or can-
nibalize them, modifying them in any way you see fit. Because the parts already come
in the exact or approximate shape you need, the construction of your own robots is
greatly simplified.

About the only disadvantage to using toys as the basis for more advanced robots is that
the plastic and lightweight metal used in the kits and finished products are not suitable for
a homemade robot of any significant size or strength. You are pretty much confined to
building small Minibot or Scooterbot-type robots from toy parts. Even so, you can some-
times apply toy parts to robot subsystems, such as a light-duty arm-gripper mechanism
installed on a larger automaton.

Let’s take a closer look at using toys in your robot designs in this chapter, and examine
several simple, cost-effective designs using readily available toy construction kits.

11
CONSTRUCTING HIGH-TECH

ROBOTS FROM TOYS
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Erector Set
Erector Set, now sold by Meccano, has been around since the Dawn of Time—or so it
seems. The kits, once made entirely of metal but now commonly including many plas-
tic pieces, come in various sizes and are generally designed to build a number of dif-
ferent projects. Many kits are engineered for a specific design with perhaps provisions
for moderate variations. I’ve found the general-purpose sets to be the best bets. Among
the useful components of the kits are prepunched metal girders, plastic and metal
plates, tires, wheels, shafts, and plastic mounting panels. You can use any as you see fit,
assembling your robots with the hardware supplied with the kit or with 6/32 or 8/32
nuts and bolts.

Several Erector Sets, such as those in the Action Troopers collection, come with wheels,
construction beams, and other assorted parts that you can use to construct a robot base.
Motors are typically not included in these kits, but you can readily supply your own.
Because Erector Set packages regularly come and go, what follows is a general guide to
building a robot base. You’ll need to adapt and reconfigure based on the Erector Set parts
you have on hand.

The prepunched metal girders included in the typical Erector Set make excellent motor
mounts. They are lightweight enough that they can be bent, using a vise, into a U-shaped
motor holder. Bend the girder at the ends to create tabs for the bolts, or use the angle stock
provided in an Erector Set kit. The basic platform is designed for four or more wheels, but
the wheel arrangement makes it difficult to steer the robot. The design presented in Fig.
11.1 uses only two wheels. The platform is stabilized using a miniature swivel caster at one
end. You’ll need to purchase the caster at the hardware store.

Note that the shafts of the motors are not directly linked to the wheels. The shaft of the
wheels connect to the baseplate as originally designed in the kit. The drive motors are
equipped with rollers, which engage against the top of the wheels for traction. You can use
a metal or rubber roller, but rubber is better. The pinch roller from a discarded cassette tape
player is a good choice, as is a 3/8-inch beveled bibb washer, which can be found in the
plumbing section of the hardware store. You can easily mount a battery holder on the top
of the platform. Position the battery holder in the center of the platform, toward the caster
end. This will help distribute the weight of the robot.

The basic platform is now complete. You can attach a dual-switch remote control, as
described in Chapter 8, “Building a Plastic Robot Platform,” or connect automatic control
circuitry as detailed in Part 5 of this book, “Computers and Electronic Control.”

Do note that over the years the Erector Set brand has gone through many owners. Parts
from old Erector Sets are unlikely to fit well with new parts. This includes but is not lim-
ited to differences in the threads used for the nuts and bolts. If you have a very old Erector
Set (such as those made and sold by Gilbert), you’re probably better off keeping them as
collector’s items rather than raiding them for robotic parts. The very old Erector Sets of the
1930s through 1950s fetch top dollar on the collector’s market (when the sets are in good,
complete condition, of course).

Similarly, today’s Meccano sets are only passably compatible with the English-made
Meccano sets sold decades ago. Hole spacing and sizes have varied over the years, and
“mixing and matching” is neither practical nor desirable.
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Robotix
The Robotix kits, originally manufactured by Milton-Bradley and now sold by Learning
Curve, are specially designed to make snap-together walking and rolling robots. Various
kits are available, and many of them include at least one motor (additional motors are avail-
able separately). You control the motors using a central switch pad. Pushing the switch for-
ward turns the motor in one direction; pushing the switch back turns the motor in the other
direction. The output speed of the motors is about six rpm, which makes them a bit slow
for moving a robot across the room but perfect for arm-gripper designs.
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Wheel

Base

Drive motor

Motor clampRubber roller 

Swivel
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FIGURE 11.1 Constructing the motorized base for a robot using Erector Set
(Meccano) parts. a. Attaching the motor and drive roller over the
wheel; b. Drive wheel-caster arrangement.
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The structural components in the Robotix kits are molded from high-impact plastic. You
can connect pieces together to form just about anything. One useful project is to build a
robotic arm using several of the motors and structural components. The arm can be used
by itself as a robotic trainer or attached to a larger robot. It can lift a reasonable eight
ounces or so, and its pincher claw is strong enough to firmly grasp most small objects.

While the Robotix kit allows you to snap the pieces apart when you’re experimenting,
the design presented in this chapter is meant to be permanent. Glue the pieces together
using plastic model cement or contact cement. Cementing is optional, of course, and
you’re free to try other, less permanent methods to secure the parts together, such as small
nuts and bolts, screws, or Allen setscrews.

When cemented, the pieces hold together much better, and the arm is considerably
stronger. Remember that, once cemented, the parts cannot be easily disassembled, so make
sure that your design works properly before you commit to it. When used as a stand-alone
arm, you can plug the shoulder motor into the battery holder or base. You don’t need to
cement this joint.

Refer to Fig. 11.2 as you build the arm. Temporarily attach a motor (we’ll call it “motor
1”) to the Robotix battery holder-baseplate. Position the motor so that the drive spindle points
straight up. Attach a double plug to the drive spindle and the end connector of another motor,
“motor 2.” Position this motor so that the drive spindle is on one side. Next, attach 
another double plug and an elbow to the drive spindle of motor 2. Attach the other end of
the elbow connector to a beam arm.

Connect a third motor, “motor 3,” to the large connector on the opposite end of the
beam arm. Position this motor so the drive spindle is on the other end of the beam arm.
Attach a double plug and an elbow between the drive spindle of motor 3 and the connec-
tor opposite the drive spindle of the fourth motor, “motor 4.” The two claw levers directly
attach to the drive spindle of motor 4.

Motorize the joints by plugging in the yellow power cables between the power switch
box and the motor connectors. Try each joint, and note the various degrees of freedom.
Experiment with picking up various objects with the claw. Make changes now before dis-
assembling the arm and cementing the pieces together.

After the arm is assembled, route the wires around the components, making sure there is
sufficient slack to permit free movement. Attach the wires to the arm using nylon wire ties.

A Variety of Construction Sets
Toy stores are full of plastic put-together kits and ready-made robot toys that seem to beg
you to use them in your own robot designs. Here are some toys you may want to consider
for your next project.

LEGO

LEGO has become the premier construction toy, for both children and adults. The LEGO
Company, parent company of the LEGO brand, has expanded the line as educational
resources, making the ubiquitous LEGO “bricks” common in schools across the country
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and around the world. LEGO also makes the Mindstorms, a series of sophisticated com-
puterized robots. Chapters 12 through 14 detail several LEGO-based robot creations,
including the Mindstorms, as well as describing how you can use LEGO parts to build
custom robots.

CAPSULA

Capsula is a popular snap-together motorized parts kit that uses unusual tube and sphere
shapes. Capsula kits comes in different sizes and have one or more gear motors that can be
attached to various components. The kits contain unique parts that other put-together toys
don’t, such as a plastic chain and chain sprockets or gears. Advanced kits come with
remote control and computer circuits. All the parts from these kits are interchangeable. The
links of the chain snap apart, so you can make any length of chain that you want. Combine
the links from many kits and you can make an impressive drive system for an experimen-
tal lightweight robot.

FISCHERTECHNIK

The Fischertechnik kits, made in Germany and imported into North America by a few edu-
cational companies, are the Rolls-Royces of construction toys. Actually, “toy” isn’t the prop-
er term because the Fischertechnik kits are not just designed for use by small children. In
fact, many of the kits are meant for high school and college industrial engineering students,
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FIGURE 11.2 The robot arm constructed with parts from a Robotix construction
kit.
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and they offer a snap-together approach to making working electromagnetic, hydraulic,
pneumatic, static, and robotic mechanisms.

All the Fischertechnik parts are interchangeable and attach to a common plastic base-
plate. You can extend the lengths of the baseplate to just about any size you want, and the
baseplate can serve as the foundation for your robot, as shown in Fig. 11.3. You can use
the motors supplied with the kits or use your own motors with the parts provided. Because
of the cost of the Fischertechnik kits, you may not want to cannibalize them for robot com-
ponents. But if you are interested in learning more about mechanical theory and design,
the Fischertechnik kits, used as is, provide a thorough and programmed method for jump-
ing in with both feet.

INVENTA

U.K.-based Valiant Technologies offers the Inventa system, a reasonably priced construction
system aimed at the educational market. Inventa is a good source for gears, tracks, wheels,
axles, and many other mechanical parts. The beams used for construction are semiflexible
and can be cut to size. Angles and brackets allow the beams to be connected in a variety of
ways. It is not uncommon—and in fact Valiant encourages it—to find Inventa creations
intermixed with other building materials, including balsa wood, LEGO pieces, you name it.
Inventa isn’t the kind of thing you’ll find at the neighborhood Toys-R-Us. It’s available mail
order and through the Internet; see the Inventa Web site at www.valiant-technology.com.
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K’NEX

K’Nex uses unusual half-round plastic spokes and connector rods (see Fig. 11.4) to build
everything from bridges to Ferris wheels to robots. You can build a robot with just K’Nex
parts or use the parts in a larger, mixed-component robot. For example, the base of a walk-
ing robot may be made from a thin sheet of aluminum, but the legs might be constructed
from various K’Nex pieces.

A number of K’Nex kits are available, from simple starter sets to rather massive spe-
cial-purpose collections (many of which are designed to build robots, dinosaurs, or robot-
dinosaurs). Several of the kits come with small gear motors so you can motorize your cre-
ation. The motors are also available separately.

ZOOB

Zoob (made by Primordial) is a truly unique form of construction toy. A Zoob piece con-
sists of stem with a ball or socket on either end. You can create a wide variety of con-
struction projects by linking the balls and sockets together. The balls are dimpled so they
connect securely within their sockets. One practical application of Zoob is to create “arma-
tures” for human- or animal-like robots. The Zoob pieces work in a way similar to 
bone joints.
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FIGURE 11.4 K’Nex sets let you create physically large robots that weigh very
little. The plastic pieces form very sturdy structures when properly
connected.
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CHAOS

Chaos sets are designed for structural construction projects: bridges, buildings, working
elevator lifts, and the like. The basic Chaos set provides beams and connectors, along with
chutes, pulleys, winches, and other construction pieces. Add-on sets are available that con-
tain parts to build elevators, vortex tubes, and additional beams and connectors.

FASTECH

No longer in production, Fastech construction kits used to offer among the best assort-
ments of parts you could buy. All the parts were plastic, and the kits came with a plastic
temporary riveting system that you probably wouldn’t use in your designs. The plastic
parts were predrilled and came in a variety of shapes and styles. The components can be
used on their own to make a small, light-duty robot frame and body, or they can be used
as parts in a larger robot. Fastech kits may not be manufactured (but who knows, they
could come back), but they can sometimes be found at garage sales, thrift stores, and
online auctions.

OTHER CONSTRUCTION TOYS

There are many other construction toys that you may find handy. Check the nearest well-
stocked toy store or a toy retailer on the Internet for the following:

� Expandagon Construction System (Hoberman)
� Fiddlestix Gearworks (Toys-N-Things)
� Gears! Gears! Gears! (Learning Resources)
� PowerRings (Fun Source)
� Zome System (Zome System)
� Construx (no longer made, but sets may still be available for sale)

Perhaps the most frequently imitated construction set has been the Meccano/Erector Set
line. Try finding these “imitators,” either in new, used, or thrift stores:

� Exacto
� Mek-Struct
� Steel Tec

Specialty Toys for Robot Hacking
Some toys and kits are just made for “hacking” (retrofitting, remodeling) into robots. Some
are already robots, but you may design them to be controlled manually instead of inter-
facing to control electronics. The following sections describe some specialty toys you may
wish to experiment with.
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TAMIYA

Tamiya is a manufacturer of a wide range of radio-controlled models. They also sell a
small selection of gearboxes in kit form that you can use for your robot creations. 
One of the most useful is a dual-gear motor, which consists of two small motors and
independent drive trains. You can connect the long output shafts to wheels, legs, or
tracks.

They also sell a tracked tractor-shovel kit (see Fig. 11.5) that you control via a switch
panel. You can readily substitute the switch panel with computerized control circuitry
(relays make it easy) that will provide for full forward and backward movement of the tank
treads as well as the up and down movement of the shovel.

OWIKITS and MOVITS

The OWIKITS and MOVITS robots are precision-made miniature robots in kit form. A
variety of models are available, including manual (switch) and microprocessor-based ver-
sions. The robots can be used as is, or they can be modified for use with your own elec-
tronic systems. For example, the OWIKIT Robot Arm Trainer (model OWI007) is nor-
mally operated by pressing switches on a wired control pad. With just a bit of work, you
can connect the wires from the arm to a computer interface (with relays, for example) and
operate the arm via software control.
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FIGURE 11.5 The Tamiya Bulldozer kit can be used as a lightweight robot plat-
form. The kit comes with an interesting dual motor that operates
the left and right treads.
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Most of the OWIKITS and MOVITS robots come with preassembled circuit boards;
you are expected to assemble the mechanical parts. Some of the robots use extremely small
parts and require a keen eye and steady hand. The kits are available in three skill levels:
beginner, intermediate, and advanced. If you’re just starting out, try one or two kits in 
the beginner level.

Once (properly) constructed, the OWIKITS and MOVITS robots last a long, long time.
I have several models I built in the mid-1980s, and with just the occasional nut tightening
here and a dab of grease there they have continued to operate flawlessly.

FURBY

The Furby, from Tiger Electronics, is an animatronic creature that appears to have learn-
ing capabilities and even artificial intelligence. Actually, the Furby has neither; it’s a clever
collection of motors, gears, switches, sensors, and an on-board computer, as shown in the
“deconstructed Furby” shown in Fig. 11.6. The Furby interacts with its master, as well as
the environment, and contains thousands of behavioral permutations.
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FIGURE 11.6 The Furby, from Tiger Electronics, is a
marvel of engineering finesse.
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Furby’s on-board computer is a “blob,” or chip-on-board (COB), and inherently not repro-
grammable or hackable. However, you can connect the main Furby motor and its various sen-
sors to a new control circuit, perhaps one made with a Basic Stamp II microcontroller. 

ROKENBOK

Rokenbok toys are radio-controlled vehicles that are available in wheeled and tracked ver-
sions. Despite the European-sounding name, Rokenbok toys are made in the United States
yet can be difficult to find because of their high cost (the basic set costs well over $180).
Each vehicle is controlled by a game controller; all the game controllers are connected to
a centralized radio transmitter station.

The Sony PlayStation-style controllers can be hacked and connected directly to the
input/output (I/O) of a computer or microcontroller. The transmitter station also has a con-
nector for computer control, but as of this writing Rokenbok has not released the specifi-
cations or an interface for this port.

ARMATRON

The Armatron, once a common find at Radio Shack, occasionally reappears at that store,
ready to capture the imagination of anyone who plays with it. The Armatron (see Fig. 11.7)
is a remotely controlled arm that you can use to manipulate small lightweight objects. You
control the Armatron by moving two joysticks.

A rewarding but demanding project is to convert the Armatron to computer control.
Because of the way the Armatron works, using a single motor and clutched drive shafts,
you need to rebuild it with separate motors so a computer can individually control its var-
ious joints. One way to do this might be to connect small 12-volt DC solenoids to the joy-
sticks. Each joystick requires six solenoids: four for the up, down, left, and right movement
of the joystick and two to turn the post of the joystick clockwise or counterclockwise.

Making Robots with Converted Vehicles
Toy cars, trucks, and tractors can make ideal robot platforms—if they are properly
designed. As long as the vehicle has separate drive motors for the left and right drive
wheels, you have a fighting chance of being able to adapt it for use as a robot base.

MOTORIZED VEHICLES

The least expensive radio-controlled cars have a single drive motor and a separate steering
servo or mechanism, which doesn’t lend itself to robot conversion. In many cases, the
steering mechanism is not separately controlled; you “steer” the car by making it go in
reverse. The car drives forward in a straight line but turns in long arcs when reversed.
These are impractical for use as a robot base and should not be considered.

On the other hand, most radio- and wire-controlled tractor vehicles are perfectly suited
for conversion into a robot. Strip off the extra tractor stuff to leave the basic chassis, drive
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motors, and tracks. You can keep the remote control system as is or remove the remote
receiver (or wires, if it’s a wired remote) and replace it with new control circuitry. In the
case of a wired remote, you can substitute relays for the switches in the remote. Of course,
each toy is a little different, so you’ll need to adapt this wiring diagram to suit the con-
struction of the vehicle you are using.

Another option is to use two small motorized vehicles (mini “4-wheel-drive” trucks are
perfect), remove the wheels on opposite sides, and mount them on a robot platform. Your
robot uses the remaining wheels for traction. Each of the vehicles is driven by a single
motor, but since you have two vehicles (see Fig. 11.8), you still gain independent control
of both wheel sides. The trick is to make sure that, whatever vehicles you use, they are the
same exact type. Variations in design (motor, wheel, etc.) will cause your robot to “crab”
to one side as it attempts to travel a straight line. The reason: the motor in one vehicle will
undoubtedly run a little slower or faster than the other, and the speed differential will cause
your robot to veer off course.

MOTORIZING VEHICLES

Not all toy vehicles already have motors. If you find a motorless vehicle that’s neverthe-
less perfect as a robot base, consider adding motors to it. You can cannibalize the motors
(and gear train) from another toy and implant them in your new robot base. Or you can pur-
chase one of the motor kits made by Tamiya (see “Specialty Toys for Robot Hacking,” ear-
lier in this chapter) and retrofit it onto your robot. The dual-motor kit described in Chapter
10 is small enough to be used on most toy vehicles, and it can be readily mounted using
screws, double-sided tape, hook-and-loop (Velcro), or other techniques.
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FIGURE 11.7 The indefatigable Armatron motorized robotic arm, still occasion-
ally available at Radio Shack.
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From Here
To learn more about... Read

Using LEGO to create robots Chapter 12, “Build Custom LEGO-based Robots”

Building robots with the 
LEGO Mindstorms system Chapter 13, “Creating Functionoids with LEGO Mindstorms 

Robotics Invention System”

Brains you can add to robots 
made from toys Chapter 28, “An Overview of Robot ‘Brains’”

Controlling a small robot 
using the IBM PC parallel port Chapter 30, “Computer Control via PC Printer Port”
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Modified motor Removed wheel

FIGURE 11.8 You can build a
motorized robot
platform by can-
nibalizing two
small motorized
toys and using
each “half” of
them.
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Once just a playtime toy for youngsters, LEGO parts are now used in schools to teach
construction and mechanics, even robotics. In fact, LEGO ‘bots are becoming so common
that many schools and libraries around the world host LEGO robot-building races and
competitions. The main benefit of a LEGO-based robot: The snap-together design of
LEGO pieces allows you to build a robot in just an hour or two, with no cutting or drilling
necessary. Changes and improvements are easy to make too, and you can do them “on the
fly” as you experiment with new ideas.

There are plenty of books, magazine articles, and Internet sites that discuss the design
and construction of all-LEGO robots. So, in this chapter we’ll review another approach:
using various LEGO parts as a basis for a robot and then augmenting those parts with other
construction materials. For example, the robot described in this chapter uses modified
hobby servo motors and not the more costly LEGO gear motors. Some gluing and other
so-called hard construction is also called for.

Working with LEGO Parts
There are several dozen varieties of LEGO parts, which come in various sizes (not to men-
tion colors). In your robotics work you’ll likely encounter the primary construction pieces
detailed in the following subsections.
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BUILDING BLOCKS

The three primary building blocks are shown in Figure 12.1.

� Bricks. The basic LEGO building block is the brick. Bricks have one or more raised
“nubs” (or “bumps”) on the top and corresponding sockets on the bottom. The nubs and
sockets mate, allowing you to stack bricks one on top of another.

� Plates. Plates are like bricks but are half their height. Like bricks, plates have one or
more nubs on the top and corresponding sockets on the bottom, and they are made to
be stacked together.

� Beams. Beams are specific to the Technic brand of LEGO parts, such as the LEGO
Mindstorms Robotics Invention System, which is detailed in the next two chapters.
Beams are bricks that have one row of nubs and then holes down their sides. Beam vari-
ations include the L and hooked shape, which can be used for such things as building
robotic grippers.

The arrangement of the nubs on bricks and plates define their size. For example, a “2
by 8” brick or plate has two rows and eight columns of nubs. In some LEGO instruction
books you’ll see the nubs referred to as “units,” such as “2u-by-8u” (the u stands for units).
I’ll stick to this style as a quasi-standard throughout the rest of the chapter.

Building plates are very large versions of plates, which are available in the 8u-by-16u
size. Thin baseplates are also available; these lack sockets underneath.

CONNECTION PIECES

Figure 12.2 shows several common LEGO parts that are used for connecting things,
such as one beam to another or a wheel to a beam. The four most common are as 
follows:

� Connector peg. Connector pegs are typically used with the LEGO Technic line to
attach beams together. Connector pegs are labeled either 1/2, 3/4, or full—the dif-
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FIGURE 12.1 Bricks, plates, and beams are the primary LEGO pieces used for
construction. They are available in various sizes.

FIGURE 12.2 Connection pieces allow
you to snap various LEGO
parts together.
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ference lies in the length of one side of the connector’s middle collar. Some con-
nector pegs are half connector and half axle (we’ll discuss axles at the end of this
list).

� Friction connector. Available in a wide variety of sizes and shapes, friction connectors
are used with both LEGO Technic and standard parts to connect such things as beams
and wheels.

� Bushing. Bushings hold things, such as axles. So-called half bushings are about half the
width of a standard bushing. Some can also be used as miniature pulleys.

PULLEYS, TIRE HUBS, AND GEARS

LEGO parts are replete with a variety of wheels, pulleys, and gears. Several common vari-
eties are shown in Fig. 12.3. In almost all cases, you attach pulleys, tire hubs, and gears
using stud axles and/or friction connectors.

� Wheel hubs. Wheel hubs are used with any of a number of different-sized rubber or
plastic wheels. There are several sizes of wheel hubs.

� Pulleys. Pulleys are used with string, rubber bands, or O-rings to create a kind of belt.
Several sizes of pulleys are available.

� Gears. There are more than a dozen kinds of LEGO gears. All are designated by the
number of teeth they have on their outside circumference. For example, the 8-tooth spur
gear has eight teeth; the 14-tooth bevel (slanted) gear has 14 teeth. All gears of the same
type (e.g., spur or bevel or crown) are made to mesh with another, and you can often
mix one type with another. For example, a spur gear can be effectively used with a
crown gear.

� Stud axle. Stud (or “cross”) axles come in various lengths, which are designated by
number (e.g., 4, 6, 8, etc.). Axles connect to gears, wheels, and other parts. They have
a spine of four studs along their length.

There are also toggle joints, sloped beams, catches, cross blocks, axle connectors, cams,
and a raft of others. Check out any good book on LEGO, or see the LEGO Web site for
more information on LEGO parts.
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FIGURE 12.3 Use LEGO wheels, pulleys, and gears to enable your robot cre-
ations to scoot around the floor.
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Securing Parts
LEGO parts are made to snap together. When properly constructed, the snap-together sys-
tem provides for relatively strong joints. However, the active nature of most robots—
machines that are often in motion and perhaps bumping into things—makes snap-on joints
less than ideal. If you’re not just experimenting with a new, perhaps temporary, design, you
may want to think about using alternative means to secure LEGO parts together. You’ll also
need a different method of securing if you’re combining LEGO and non-LEGO parts.

In the next five subsections we discuss methods for securing LEGO parts together. Take
note: except for cementing, gluing, and hardware (nuts, bolts, and screws) the remaining
methods discussed here—taping, tie wraps, and Velcro—are best used for nonpermanent
constructions. These materials do not provide a long-lasting bond, especially for a robot
that’s always on the go.

CEMENTING AND GLUING

You can cement together nonmovable pieces using ordinary household cement (such as
Duco), epoxy, contact, or CA (cyanoacrylate) glues. If you want a very permanent bond,
use clear ABS plastic solvent (LEGO parts are made of ABS plastic). ABS solvent cement
is available at most home improvement stores, as well as many hobby stores. Another
approach is to use hot-melt glue. You can use either the standard or low-temperature vari-
ety. (See Chapter 8 for more information on bonding plastic.)

When using glue or epoxy, be sure to rough up the surfaces to be joined. This is espe-
cially important when using hot-melt glues. There is less need to rough up the edges when
you are using solvent-type cements since the adhesive actually melts the plastic to form a
strong joint.

TAPING

Temporary constructions can be taped together using black electrical tape or even strap-
ping tape normally used for box packaging. Do note that most tapes leave a sticky residue.
Use acetone to remove the residue.

TIE WRAPS

Tie wraps are used to bundle wires and other loose items. They consist of a single piece of
plastic with a catch on one end. You thread the loose end of the tie through the catch. A
ratchet in the catch keeps the tie in place. Most ties have a one-way ratchet that cannot be
undone; others have a catch “release” so you can reuse the tie. Tie wraps are available in a
variety of lengths, thicknesses, and colors. Get an assortment, and use the size that best
suits the job.

NUTS, SCREWS, AND BOLTS

You can use small hardware to attach LEGO pieces together. In most cases, you’ll need to
drill through the plastic to secure the screw or bolt. You can use self-tapping metal screws
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if the plastic material is thick. When you use self-tapping screws, be sure to use a drill size
slightly smaller than the screw.

VELCRO (HOOK-AND-LOOP)

You can attach non-LEGO things to LEGO pieces with Velcro (otherwise known by the
generic term “hook-and-loop”). Get the kind with self-sticking adhesive backing. Put the
hook material on one piece and the loop on the other. Press them together for a very
strong—but not permanent—bond.

Build the LEGO Pepbot
The Pepbot is a small, two-wheeled robot constructed from an assortment of LEGO parts.
Motive power for the Pepbot comes from two radio-controlled (R/C) servos and two foam
tires, both of which are available at most any hobby store that sells radio-controlled parts
and accessories. The “brain” of the Pepbot is a microcontroller—just about any microcon-
troller will do. In this section, you’ll learn how to construct the Pepbot body using com-
mon LEGO parts and how to attach the servo motors and tires. Apart from some special
modifications you need to make to the servos, constructing the Pepbot consists of snap-
ping together LEGO parts and cementing things in place with epoxy or hot glue.

We’ll also briefly introduce the idea of using the OOPic object-oriented microcontroller
to control the robot. This microcontroller, and others, are covered in more detail in
Chapters  31 through 33.

CONSTRUCTING THE BODY

Begin by building the basic frame for the Pepbot. Use the following steps.

Frame

1. Begin by assembling the frame as shown in Fig. 12.4a. Attach two 16u beams to two
2u-by-12u plates, forming a rectangle.

2. On the underside of the frame attach the two 2u-by-16u plates lengthwise (see Fig. 12.4b).
3. Connect two additional 16u beams down the centerline of the bottom of the frame

(Fig. 12.4c).
4. Attach two 2u-by-12u plates to the top of the frame, as shown in Fig. 12.4d.
5. Attach a 2u-by-6u plate down the centerline to the top of the chassis, as shown in

Fig. 12.4e.
6. Attach a round pad with a 2u-by-2u round brick, then press this assembly into the ends

of the centerline beams, on the bottom of the frame (Fig. 12.4f).

Side blocks

1. Create four sets of three 2u-by-4u bricks, stacked on top of one another (Figure 12.5a)
2. Attach the assembled side blocks to the frame, as shown in Figure 12.5b.
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ATTACHING THE SERVO MOTORS

The Pepbot uses two modified R/C servos for drive motors. In an ordinary servo, rotation
is limited by an internal stop inside the motor. By modifying the servo, you can make the
motor turn continuously. Modifying servos is not a particularly hard task, but the exact
steps will vary depending on the model of servo you are using. See Chapter 20 for details
on how to modify several popular R/C servos. For the rest of this section, we’ll assume
you’ve already modified two servos and are ready to use them on the Pepbot.

Use epoxy or hot-melt glue to affix two 2u-by-6u plates to the side of each servo cas-
ing, as shown in Fig. 12.6. Use only a moderate amount of epoxy or hot-melt glue, as you
may need to remove the plate from the servo casing. For one servo, glue the plate to the
right side (looking at the servo top down, with the output shaft on the top). For the other
servo, glue the plate to the left side. Be careful to align the plates on the servos so they are
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FIGURE 12.4 Pepbot main construction. See text for the con-
struction sequence.
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Side view

Top view
FIGURE 12.5 Construction of Pepbot

side blocks.
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straight, and make sure the plate doesn’t block the seam in the case of the servo (this will
make it easier to disassemble the servo, if you need to for whatever reason).

Hot-melt glue is the preferred construction technique for this task, as the glue sets
quickly—usually in under a minute in normal room temperature. Hold the servo in place
until the glue has set. Again, be absolutely sure that the plate is squarely affixed to the
servo. After the glue has set and dried, you may attach the servos (now on their motor
mounts) to the frame of the robot, as shown in Fig. 12.7, using two 2u-by-12u plates.

ATTACHING THE WHEELS

The wheels of the Pepbot are lightweight foam tires, which are used in model R/C air-
planes. I selected wheels with a 3-inch diameter, which makes the Pepbot travel fairly fast
across the floor (hence the name Pepbot). You can use smaller wheels if you wish, but con-
sider the following:

� The smaller the wheel, the slower the robot. R/C servo motors turn at about 1–2 revo-
lutions per second, depending on the model (some are slower; some are faster). With 3-
inch wheels and a 1.5 rps servo, the Pepbot will travel about 14 inches per second. This
speed is calculated by multiplying the diameter of the wheel (3) by pi (3.14), then mul-
tiplying that number by the speed of the servo (1.5 rps). That is, 3 * 3.14 * 1.5, or
approximately 14. Just as smaller wheels will make Pepbot a little less peppy, larger
wheels will make Pepbot travel faster.

� The smaller the wheel, the less clearance there is between the bottom of the robot and
the floor. Conversely, the larger the wheel, the more clearance there will be. This can be
helpful if you run Pepbot over thick carpet or want it to travel over small bumps, like
the threshold between a carpeted and a tile room.

� The design of the Pepbot will not allow tires smaller than about 2 3/4 inches because of
the position of the servo motor output shafts. You’ll have to redesign Pepbot if you want
to use smaller wheels.
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To attach the wheels, first insert the standard 1-inch servo plate over the output shaft of
the servo. This plate connects firmly to the output shaft using a screw, which is provided
with the servo. Then, use epoxy or hot-melt glue (hot-melt glue is preferred) to secure the
hub of the wheel to the plate that is connected to the servo. Be absolutely sure that the
wheel hub is exactly centered over the servo plate; if it is not, the robot will not travel in a
straight line.

ATTACHING THE DECK

The “deck” is where you place the Pepbot’s batteries and control circuitry. The deck is sim-
ply an 8u-by-16u LEGO building plate. A four-AA battery pack is affixed to the deck
using double-sided foam tape. The microcontroller board (in this case an OOPic) is
attached using small wire tires.

CONSTRUCTING THE INTERFACE BOARD

An interface board allows you to easily connect the microcontroller, batteries, and the two
servos. It also provides adequate room if you want to add to the Pepbot, such as light sen-
sors to detect light and dark, bumper switches to determine if the robot has hit an obstacle,
or a small audio amplifier and speaker to allow the Pepbot to sound off when it wants to.

Construct the interface board by using a small 2-by-3 inch project board, available at
Radio Shack. You can use most any construction technique that you like. I used wire-wrap-
ping for the Pepbot prototype. See Fig. 12.8 for a construction diagram; Fig. 12.9 shows
the schematic you should follow.

Note the 40-pin cable and connector. This cable attaches to the I/O (input/output) port
of the OOPic microcontroller. While the OOPic provides for 31 inputs and outputs, the
Pepbot uses only three of them. As you can see, there is plenty of room to expand 
the Pepbot with sensors, should you wish to do so. See Chapter 29, “Interfacing with
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Computers and Microcontrollers,” for some ideas on creating and interfacing sensors to
robots.

BATTERY POWER

The Pepbot is powered by two separate battery sources, as follows:

� A pack of four AA cells provides power to the two R/C servo motors. You may use 1.5-
volt alkaline cells or 1.2-volt nickel-cadmium or nickel-metal hydride batteries.
However, if you use 1.2-volt cells the servos will run a little slower than under 1.5-volt
cells (4.8 volts for the four batteries, as opposed to 6 volts). Under normal use, this bat-
tery pack will last for about 30–60 minutes of “play” time, so you may wish to use
rechargeable alkalines to save money.

� A 9-volt “transistor” battery provides power to the microcontroller. The microcontroller
consumes little current, so this battery should last for a long time under normal use.

The separate battery supplies serve an important purpose: R/C servo motors consume
a lot of current when they are first turned on, so much, in fact, that the power for the four-
battery pack can dip to under 4.5 volts. The OOPic, like most microcontrollers, employs a
“brownout” circuit that resets the controller when the voltage falls below a certain level.
This prevents the controller from operating in an unstable state. Using the same power
pack for both servos and microcontroller can cause erratic behavior in your programs.

For ease of connection, attach a female connector to the end of the battery leads for both
the four-AA pack and the 9-volt battery. Both connectors should be the common 0.100-
inch pin type. Note that the OOPic microcontroller board already contains a �5 vdc (volts
dc) regulator, so no outboard voltage regulator is required. The R/C servos do not require
regulation. The ground connections of both battery packs should be connected together.

CONNECTING THE PIECES

Thanks to the interface board, connecting the servos, batteries, and microcontroller is a
snap. The steps are as follows:

1. Connect the four-AA battery pack (observe proper polarity!) to the interface board.
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FIGURE 12.9 Schematic for the Pepbot interface
board.
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2. Connect both the right and left servos to their respective connections on the interface
board. Again, observe correct polarity. One or both servos may “jump” slightly when
plugged in, but they should not run.

3. Connect the I/O cable between the OOPic and the interface board.
4. Connect the 9-volt battery to the OOPic microcontroller board.

Figure 12.10 shows the completed Pepbot.

PROGRAMMING THE MICROCONTROLLER

As mentioned earlier, the Pepbot uses an OOPic object-oriented microcontroller—a kind
of computer on a single chip. The OOPic is just one of many microcontrollers you can use.
Chapter 33 describes the OOPic in more detail, so in this section we’ll just briefly outline
the steps for connecting it to the Pepbot. By the way, feel free to use another microcon-
troller, if that’s your wish. The popular Parallax Basic Stamp can also be used with the
Pepbot. Chapter 31 is devoted entirely to using and programming the Basic Stamp.

Listing 12.1 shows the testing program for calibrating the modified servos. Calibration is
required to find the “center position” of the servos. In an unmodified servo, the OOPic con-
trols the position of the servo output shaft by using a number from 0 to 63. Zero turns the out-
put shaft of the servo completely one direction, and 63 turns it completely the other direction.

Since the servos in the Pepbot have been modified for continuous rotation (see Chapter
20 for more detail on this technique), the values of 0 and 63 are used to control the direc-
tion of the motor. It stands to reason, then, that a value of 31 (midway between 0 and 63)
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FIGURE 12.10 The Pepbot, ready for programming.

Ch12_McComb  8/18/00  2:08 PM  Page 156



should stop the motor. This stop point is calibrated to the value of 31. As detailed in
Chapter 20, the modified servo is equipped with an external 5K trimmer potentiometer.

To run the program you must first download it to the OOPic microcontroller. This process
is outlined in Chapter 33, and so won’t be repeated here. Once downloaded, the program will
automatically run, so be sure you have the Pepbot’s wheels raised off the floor or table for
testing. (Important! If the OOPic doesn’t automatically run the program when downloaded,
unplug the programming cable from it. The program should now immediately run.)

With the servos calibrated, load the program as shown as Listing 1. This is a demon-
stration program than runs the Pepbot “through its paces,” making it go forward and back-
ward and in turns. Notice that subroutines such as GoForward and HardLeft are used for
motion control. The Pepbot is able to move in all directions by controlling the right and 
left motors independently—either by turning the motors off or by turning the motors for-
ward or backward. For example, to go forward both motors are told to turn on in the 
forward direction. To make a “hard” left (spin in place toward the left), the left motor goes
in reverse, and the right motor goes forward.

Listing 12.1

Dim S1 As New oServo
Dim S2 As New oServo
Dim CenterPos as New oByte
Dim Button As New oDio1
Dim x as New oByte
Dim y as New oWord

'————————————————————————-
Sub Main()
CenterPos = 31              ' Set centering of servos
Call Setup
Do

If Button = cvPressed Then
' Special program to calibrate servos
S1 = CenterPos
S2 = CenterPos

Else
' Main program (IO line is held low)
Call GoForward
Call LongDelay

Call HardRight
Call LongDelay

Call HardLeft
Call LongDelay

Call GoReverse
Call LongDelay

End If
Loop
End Sub

'————————————————————————-
Sub Setup()
Button.Ioline = 7                   ' Set IO Line 7 for function input
Button.Direction = cvInput          ' Make IO Line 7 input
S1.Ioline = 30                      ' Servo 1 on IO line 30
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S1.Center = CenterPos               ' Set center of Servo 1
S1.Operate = cvTrue                 ' Turn on Servo 1
S2.Ioline = 31                      ' Servo 2 on IO line 31
S2.Center = CenterPos               ' Set center of Servo 2
S2.Operate = cvTrue                 ' Turn on Servo 2
S2.InvertOut = cvTrue               ' Reverse direction of Servo 2
End Sub

'————————————————————————-
Sub LongDelay()

For x = 1 To 200:Next x
End Sub

Sub GoForward()
S1 = 0
S2 = 0
End Sub

Sub GoReverse()
S1 = 63
S2 = 63
End Sub

Sub HardRight()
S1 = 0
S2 = 63
End Sub

Sub HardLeft()
S1 = 63
S2 = 0
End Sub

Save, compile, and download the program in Listing 12.1. You may need to depress the reset
button on the OOPic microcontroller board to prevent the Pepbot from activating prematurely.
Place the robot on the floor, then release the reset button. The Pepbot robot should come to life,
first going forward, then spinning both to the left and right. It should then turn right, then left,
and then finally back up. The program will repeat itself until you disconnect the power.

If you have constructed your Pepbot properly, the robot should trace more or less the same
area of the ground for each iteration through the Do loop of the program in Listing 12.1. If
the Pepbot veers in one direction when it’s not supposed to, it could indicate that either one
or both wheels were not properly attached to the servo plates. Or it could indicate that the
servos are not properly aligned on their mounting plate. Assuming you didn’t apply too much
epoxy or hot-melt glue, you should be able to use moderate force to remove the wheel and/or
mounting plate. Clean off the old epoxy or hot-melt glue, and try again.

Once the Pepbot test program is a success, you can play around with coding your own
actions for the robot. With sensors that you can add to the interface board, you can have
the Pepbot respond to external stimulus, such as light or touch.

From Here
To learn more about... Read

Building and programming robots with the Chapter 13, “Creating Functionoids with LEGO
Mindstorms Robotics System Mindstorms Robotics Invention System”
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Using and modifying R/C servos Chapter 20, “Working with Servo Motors”

Connecting robot motors to a computer, micro- Chapter 29, “Interfacing with Computers and 
controller, or other circuitry Microcontrollers”

Controlling a LEGO robot using the Basic Chapter 31, “Using the Basic Stamp”
Stamp

Controlling a LEGO robot using the OOPic Chapter 33, “Using the OOPic 
microcontroller Microcontroller”
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Say the word LEGO and most adults think of a million tiny plastic pieces strewn across
a floor, waiting to be stepped on with bare feet. Anyone who has ever had one of those lit-
tle angle pieces jab into a tender arch or break the skin on a heel knows how painful own-
ing a LEGO set can be!

Still, apart from that occasional torture of walking over hard plastic, LEGO sets are
wonderful amusements for both young and old. You can build most anything with LEGO
parts. And with the help of your PC and the LEGO Mindstorms Robotics Invention System
you can even create your own functionoids—functional (and sometimes useful!) computer
programmed robots. In this chapter, we’ll look at the popular LEGO Mindstorms Robotics
Invention System, discuss what it has to offer, and give you detailed information on how
the Mindstorms system works.

The LEGO Mindstorms Robotics Invention System comes with a detailed
“Constructapedia” of practical robotic experiments. Moreover, other projects available on
the LEGO Mindstorms Web page—and indeed hundreds of other independent Web
pages—ensure that you’ll have plenty to experiment with. Because of the wealth of printed
project designs available, we won’t get into the general use of the Mindstorms set in this
chapter. Instead, we’ll talk about the internals of the LEGO Mindstorms robot and how to
“hack” it to extend its usefulness.

Be sure to also check out Chapter 14, “Programming the LEGO Mindstorms RCX:
Advanced Methods,” for additional details on programming the Mindstorms robot using
third-party tools and utilities.

13
CREATING FUNCTIONOIDS 

WITH LEGO MINDSTORMS

ROBOTICS INVENTION SYSTEM
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What Makes Up the Mindstorms
System
The LEGO Mindstorms Robotics Invention System (RIS) consists of three major parts:

� The RCX (Robotic Command Explorer) controller. The RCX is otherwise known as a
“brick” or “programmable brick.” The term comes from robotics researchers at the
Massachusetts Institute of Technology, who were the original developers of the concept
behind the RCX. You can attach a collection of motors and sensors to the RCX and cre-
ate a mobile automaton. Because the RCX uses standard LEGO “bumps,” you can
attach regular LEGO parts to it and build your own robot.

� The Mindstorms programming environment, otherwise known as RCX Code, allows you
to create, store, and download programs from your personal computer and into the
RCX. While the Mindstorms programming environment is the standard method for
writing programs for the RCX, it is not the only one. Chapter 14 addresses two popular
alternative programming environments for the LEGO RCX.

� A two-way communications tower for transmitting signals between your computer and
the RCX. The tower uses modulated infrared (IR) light rather than radio signals, so two
or more RCX units can be programmed in the same room (you can adjust the power out-
put of the IR tower to avoid interference).

A Look Inside the RCX
The LEGO Mindstorms RCX contains an Hitachi H8/3292 microcontroller, running at 16
MHz. Hitachi calls its product a “single-chip microcomputer,” but many others in the chip
industry refer to such devices as “microcontrollers.” Microcontrollers are like miniature
computers but are designed for “embedded applications” for controlling hardware. The
main advantage microcontrollers have over full computers is that they are fairly inexpen-
sive—just a few dollars, as opposed to several hundred dollars.

The H8 supports several memory types, including both ROM (read-only memory) and
RAM (random access memory). It also comes with its own built-in timers—three to be
exact, though the RCX splits one of them to create a total of four. It also has eight 10-bit
analog-to-digital converters. In all, it is a highly capable chip, which is one reason why the
RCX can pack so many features in such a small package. (By the way, Chapters 31 through
33 of this book deal with several off-the-shelf microcontrollers, including the venerable
Basic Stamp, that you can use with your robot creations. Be sure to check these chapters
out if you are interested in creating your own version of the LEGO RCX.)

Figure 13.1 shows several different “layers” of the program instruction used in the
RCX. At the bottom is a form of hardware BIOS (basic input/output system). This hard-
ware level is a permanent part of the H8 processor and provides for very low-level func-
tionality, including the downloading of programs. The hardware BIOS is stored in 16K
bytes of ROM. It cannot be changed or erased.
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The firmware layer contains what could be considered the RCX’s operating system.
This operating system can be periodically updated. In fact, when you first install the
Mindstorms system on your computer, part of the setup process involves downloading the
firmware from a file on your computer’s hard disk and into the RCX. Whenever LEGO
releases updates for the RCX you need merely to return to the setup portion of the
Mindstorms program and download the new version of the firmware.

Finally, the data layer contains the actual programs that you run on the RCX. Data pro-
grams are stored in random access memory. The batteries in the RCX continuously apply
a small amount of power to the memory so your programs remain, even when the RCX is
turned off.

Both the firmware and the data are stored in 32K bytes of RAM. Being RAM, the data
cannot only be replaced; it can be erased (including accidentally). The RCX can store up
to five separate programs. There is enough RAM capacity for the firmware and no more
than 1.2K for each of the five programs. Program data is stored in a 6K-byte region; the
rest of the RAM is allocated to the firmware. Compared to your desktop computer, that’s
not very much storage space. However, the RCX needs relatively little RAM to run its pro-
grams. Since there are only five “slots” for programs, once you’ve downloaded a program
into each slot you have to overwrite one of the old programs in order to download a 
new one.

Because data and firmware are held in RAM, all your programs will be wiped out if the
batteries are removed or are allowed to become depleted. When the memory is swept clean
you must also redownload the firmware. This involves running the basic setup section of
the Mindstorms installation program.

Brick Variations
The RCX that comes with the LEGO Mindstorms Robotic Invention System isn’t the only
programmable brick that LEGO makes. The CyberMaster, for example, is a programma-
ble robot designed primarily for use in schools.
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FIGURE 13.1 The Mindstorms RCX uses a hardware BIOS in ROM,
along with firmware and data in RAM.
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Included in the LEGO Mindstorms Robot Discovery Set (RDS) is the Scout, another
programmable brick that supports two motors and two sensors. You can also program the
Scout via a computer (though the original RDS lacked this feature). The official Scout pro-
gramming language from LEGO is PBrick Assembler, which is said to be a common lan-
guage for LEGO’s future products. You can find information on this programming 
language at the LEGO Mindstorms Web site at www.legomindstorms.com. Note that in this
chapter we concentrate on the RCX, but that doesn’t mean you should turn a blind eye
toward the Scout. Feel free to explore the RCX, Scout, or preferably both!

LEGO sells a version of the LEGO Mindstorms Robotics Invention System that has dif-
ferent software than the retail version. The school version uses a programming platform
known as Robolab, while the commercial or home version uses a fully graphical program-
ming environment called RCX Code. The hardware is the same, but the software—the way
to program the robot—is different.

The Origins of the Mindstorms RCX
Thanks to its unusual design and almost limitless potential, there has been much interest
in the genesis of the Mindstorms RCX. The idea of integrating a small computer into a
generic, programmable device goes back some years, and it has been the subject of very
active research at the Massachusetts Institute of Technology. MIT first demonstrated so-
called programmable bricks during the early 1990s, and these prototypes clearly influ-
enced the design of the LEGO Mindstorms RCX. Researchers at MIT are quick to point
out that the internals of the RCX were developed entirely by LEGO designers. Still, a
quick look at http://fredm.www.media.mit.edu/people/fredm/ and other Web pages hosted
by MIT demonstrates the impact of this pioneering work.

An important aspect of the “brick”-based microcontroller is that it extends the pro-
grammability and flexibility of the microcontroller to nontechnical users. As you’ll dis-
cover in later chapters, wiring and programming microcontrollers is not a simple task for
the newcomer. But the RCX, and its MIT ancestors, make working with microcontrollers
much easier.

It is clear that the RCX is but the first of a new kind of universal, consumer-oriented
microcontroller. Many others will follow. Because they are fully programmable, these
microcontroller bricks will be useful in scores of projects, including home automation,
home security, automotive applications, personal care and exercise equipment, toys,
tools—you name it!

Basic Robots
As with most any LEGO assortment you buy, the LEGO Mindstorms RIS comes with a
booklet of suggested project plans, but you’re free to design most anything you want. And
because you can use standard LEGO parts, you can cannibalize other kits to extend your
Mindstorms creations. Figure 13.2 shows the PathFinder 1, the basic Mindstorms robot
built with the RIS. Using two motors and two wheels, the robot vehicle is able to move 
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forward and back, and it can turn in place—that is, it has no turning radius like a car; it
can just spin to turn.

While building the PathFinder is fun in itself, the real enjoyment—and challenge—
comes in programming the thing. Pop the Mindstorms CD-ROM into your computer,
and you can design your own programs to control the RCX. The Mindstorms CD-ROM
comes with a programming tutorial, but the whole technique is so simple and straight-
forward that even nonprogrammers will easily master the basics. To program the RCX
you merely click and drag predefined program blocks, connecting them on the screen
like links of a chain. You can move the blocks around and add additional blocks in
between.

And, of course, you are not limited to building just the standard two-wheel roving robot.
With just the parts included in the Mindstorms RIS kit you can construct a simple robot
arm, or even a walking robot. The RCX has three motor output ports; you can add a third
motor (available separately) to create more complex robot creations.

Robotic Sensors
One light and two touch sensors are included in the Mindstorms RIS box. These allow the
RCX to interact with its environment (without the sensors, all you really have is an 
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FIGURE 13.2 The basic rover robot is equipped with two drive motors and a
light sensor.
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expensive R/C toy). You get two touch sensors—they’re really miniature spring-loaded
momentary switches enclosed in a LEGO block and a light emitter/detector pair that can
control the action of a motor when a change of light occurs. Additional sensor types are
available, and we will discuss them in the following section.

SENSOR PROGRAMMING

You control the sensors of the RCX using the graphical Mindstorms programming envi-
ronment. The programming environment treats the input sensors as “events”: when a sen-
sor event occurs, the RCX can be programmed to take some action. For example, suppose
you’ve created the basic two-wheeled Pathfinder 1 roverbot. Your program starts by acti-
vating both motors so the robot travels in a forward direction. A touch sensor is attached
to the front of the RCX. If the sensor is activated—when the RCX strikes an object—your
program can reverse the motors so the robot travels in the opposite direction.

Similarly, a touch sensor mounted on the back of the RCX can be programmed to make
the robot travel forward again. In a crowded room, the RCX would likely ping-pong back
and forth between objects—fun for a while, but Mindstorms can do more. You can program
your robot with time delays to create sophisticated movements. For instance, instead of just
reversing both motors when a touch sensor is activated, you might activate just one motor
for a brief moment. You can then command both the motors to turn on again in the forward
direction. This would have the effect of turning the robot by an arbitrary amount, so that
its travel around a room is less predictable.

USING THE LIGHT AND TOUCH SENSORS

The light sensor can be used to enable your robot to detect the presence or absence of light.
It is a fun gadget to use when constructing a flashlight-controlled robot. With such a robot,
the RCX can be commanded to stop, turn, or reverse direction when a flashlight is direct-
ed at the sensor. The sensor includes its own light source, so you can also use it to con-
struct a “line tracing” robot. The Mindstorms RIS kit comes with a large white pad with a
black line that you can use as a “course” or track for the RCX to follow. You can draw your
own line-following track on any light-colored surface.

OPTIONAL SENSORS

Additional sensors are available from LEGO that you can connect directly to the RCX.
These include the following:

� Temperature. These sensors sense differences in temperature, such as operating indoors
or outdoors or the direct touch of a human hand.

� Rotation. Used with the drive motors, these sensors sense the actual number of rotations
of the motor shaft, allowing you to position of the RCX robot more accurately.

In addition to LEGO-made sensors for the RCX, you can also construct your own.
See the section “Making Your Own RCX Sensors” later in this chapter for more 
information.
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Downloading Programs
One noteworthy feature of the Mindstorms is that the RCX is a nontethered controller. By
not being connected to a PC, the RCX robot appears much more like an autonomous
machine, even though you use your PC as a programming station. There is no control wire
for the RCX to get tangled with. This is actually typical of most microcontrollers used in
robotics; read more about microcontrollers in Part 5.

You download the programs you create on your PC to the RCX via a two-way
infrared (IR) transceiver. The IR communications tower sends program code to the
RCX, and the RCX responds to indicate a proper download. For optimum performance,
you should place the IR tower no more than about a foot from the RCX, though I’ve
successfully used the tower to download programs to an RCX that was four to five feet
across the room.

When you think you have a working program, you place the RCX near the infrared
transmitter and click the “Download” button in the Mindstorms programming screen.
Most programs download in less than 10 seconds. When downloading is complete, you
merely depress the “Run” button on the RCX unit and watch your robot creation come
to life.

If your robot doesn’t behave quite like you expected, you can reexamine your program,
make changes, and download the revised code. Once you’ve built a program you like, you
can save it for future reference. The RCX can store five programs internally at a time, but
you can keep hundreds or even thousands of programs on your computer’s hard disk drive.
Just download them again into any of the RCX’s five program slots when you want to 
run them.

Remote Control
An optional accessory for the RCX is a handheld infrared remote. This remote lets you
operate the RCX from up to 20 feet away. You can individually control the forward or
reverse direction of any of the three motor outputs (A, B, or C). You can also start and stop
any of the five programs stored in the RCX’s internal memory as well as send sequences
of RCX code to override the internal programs.

Hacking the Mindstorms
Not long after LEGO introduced the first Mindstorms kit, folks found ways to hack into
the RCX and programming software. Among the first hacks on the scene were various
Microsoft ActiveX and programming components for coding the RCX using Microsoft
Visual Basic. LEGO itself now offers (but does not actively support) an RCX software
developer’s kit (SDK) using Visual Basic. You can download the free documentation and
software for it at the LEGO Mindstorms Web page (www.legomindstorms.com).
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The LEGO Visual Basic SDK works with both the RCX brick included with the RIS
and the CyberMaster brick that accompanies the LEGO Technic CyberMaster, a product
designed for classroom use. (Note: the Mindstorms Scout, used in the Robotics Discovery
Set, has a separate SDK of its own.)

The SDK requires a special ActiveX (also called OCX) component, spirit.ocx, that
serves as an interface between the Visual Basic programming platform and your PC’s hard-
ware. From there, you need only a copy of Visual Basic 5.0 or higher. In actuality, you can
use most any programming platform that can interface to ActiveX modules with the SDK.
However, the programming examples in the SDK are provided in Visual Basic, so if you
use another language you’ll need to do the language conversion yourself. Chapter 14,
“Programming the LEGO Mindstorms RCX: Advanced Methods,” discusses how to use
Visual Basic with the Mindstorms robot.

Other RIS programming hacks are available as well. At http://www.enteract.com/~dbaum/,
for instance, you can download NQC (Not Quite C), a development language that uses
a C-like syntax for programming the LEGO RCX brick. Versions are available for use
under Linux, Windows, and the Macintosh. The NQC language is provided using the
“Mozilla Public License,” a kind of open source license. NQC is discussed in detail in
Chapter 14.

Making Your Own RCX Sensors
As we’ve mentioned, LEGO provides a number of sensors you can use with the
Mindstorms RCX, including sensors for light, touch (simple switch), temperature, and
wheel rotation. Several of these sensors—namely, the light sensor and the wheel rotation
sensor—are powered; they require operating juice from the RCX to operate. At first
glance, this may seem an impossibility: each input on the RCX has just two connections
(there are four contact points on the connector brick, but each pair is wired together, so you
can attach the connector with any orientation).

However, the RCX uses an interesting circuit connection to its sensor inputs so that a
single pair of wires can serve both as outgoing power to run the circuit and as an input.
The RCX’s approach is to toggle the power to its sensors on and off very rapidly. During
the on power times, the sensor receives current to operate. During the off times the sen-
sor value is read. A capacitor in the sensor serves as a kind of voltage reservoir during the
off times.

The RCX directs power and input to their particular portions of the sensor circuit by
using a diode bridge, shown in Fig. 13.3. Connect your circuit as shown, being sure to add
a 33 to 47 µF capacitor across the �V and ground rails; the capacitor is required to keep
voltage applied to the circuit during the periods when the RCX is reading the value at 
the input.

You can, of course, also create your own unpowered contact-type sensors. These are
easily connected to the inputs, as shown in Fig. 13.4. You simply wire a 470-ohm resis-
tor in series with the switch. The resistor is used because the terminals of each RCX 
output are powered at 5 volts continuous. The resistor prevents a dead short across the
terminals.
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There are countless examples of homebrew RCX sensors on the Internet. Rather than
repeat these excellent designs, I’ve provided a few quick samples here, and I refer you to sev-
eral worthwhile pages on the Internet in Appendix C, “Robot Information on the Internet.”

REPLACEMENT TOUCH SENSOR

Figure 13.5 shows a replacement whisker-type touch sensor for the RCX that is made from
a surplus leaf switch (often called a “Microswitch,” after the brand name that made 
this kind of switch popular). Use the schematic in Fig. 13.4 to connect the switch to the
RCX input.

SENSOR INPUT TECHNICAL DETAILS

Here are some useful technical details about the RCX inputs:

� You must set the sensor type in the software before a sensor can be used. This is done
with the RCX Code software that comes with the RCX unit or through a substitute pro-
grammer, such as Not Quite C.
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RCX input Analog input

Ground

FIGURE 13.3 The basic bridge diode network for
RCX active sensors supplies power
to the sensor electronics while pro-
viding the output signal back to 
the RCX.

RCX input

SPST switch

470Ω

FIGURE 13.4 Nonactive sensors such
as switches can be con-
nected to the RCX via a
470-ohm resistor.
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� When used with a nonpowered sensor (e.g., a touch switch), the sensor outputs 5 volts
and can drive up to 10 milliamps (mA).

� When used with a powered sensor (e.g., a light sensor), the sensor nominally outputs
7.5 to 9 volts (depending on battery capacity), with an “on/off ” square wave. The square
wave has a period of 2.8 milliseconds; the off period is 0.1 milliseconds in duration
(meaning the RCX applies power for a much longer time than it detects the sensor read-
ing). Note that the “off ” voltage is 5 volts, not 0 volts.

Using Alternative Motors and Output
Devices
Caution! What follows should be considered for experimental use only. Connecting non-
LEGO devices to your RCX can damage the RCX, and possibly the device you’ve attached
to it. Proceed at your own risk!

Like many microcontroller-based electronics, the LEGO Mindstorms RCX uses motor
driver circuitry to boost the current-handling capabilities required to drive motors. There
are a number of ways to do this, including using bipolar transistors, power MOSFET tran-
sistors, and specially made H-bridge motor drivers (all of these technologies are fully
explored in Part 3).

As of this writing (this kind of thing can change now and then), the RCX uses a trio of
MLX10402 motor driver circuits, made by Melexis Microelectronic Integrated Systems, a
company that specializes in automotive sensors and control. The MLX10402 includes
overload protection against temperature and current extremes and has a maximum rating
of about 500 mA, at 9 volts. The chip can handle motor voltages of 5 to 12 volts (with an
absolute maximum of 16 volts), though it is designed to be controlled by �5 vdc, which
is typical of computers and microcontrollers. Because the device is designed for use in
automotive applications, it has excellent thermal ratings: a storage temperature of �55°C
to 125°C and a maximum die operating temperature of �150°C. The chip goes into pro-
tective fail-safe mode at temperatures exceeding this.

You control the motor attached to the MLX10402 by altering just two input lines (set
Mode to HIGH), according to the following truth table, which gives you an idea of the
capabilities of the RCX:
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Figure 13.5 A leaf switch and small diame-
ter wire (“piano wire” or “music wire”)
makes for a good whisker-type bump sen-
sor for the LEGO RCX.
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HARDWARE HACKING WITH THE MLX10402 CHIP

While the RCX, or more specifically the MLX10402 chip, is primarily designed for oper-
ating a motor, it can also control a number of other devices, including relays and solenoids.
And, of course, you can control other kinds of DC motors, not just the ones that come with
the Mindstorms set. The factors to keep in mind are as follows:

� The RCX provides 9-vdc power to the three motor outputs, so the motors you use
should be rated for 9-volt operation, “more or less.” Many 6- or 12-volt DC motors will
run at 9 volts; 6 vdc motors will run fast, and 12 vdc motors will run slow. Damage
could result to a 6-vdc motor that is operated at 9 vdc for long periods of time. If you
are using relays or solenoids, look for 5–6 vdc units that will work acceptably. You can
use diodes or resistors to drop the 9 volts from the RCX to the 5 or 6 volts expected by
the relay coil.

� The MLX10402 can provide up to 500 mA to each motor (this is the specification rat-
ing of the MLX10402; a more conservative rating you should go by is 400 mA). The
standard 9 vdc motors that come with the LEGO Mindstorms consume no more than
about 320 mA each, at 9 vdc. (This rating was determined by stalling the motor—
clamping its output shaft so it will not move—and measuring the current draw when
powered by 9 vdc.) Assuming the RX was designed to adequately handle up to three
motors at a time (960 mA total), then the motors, relays, solenoids, and other devices
you attach to the RCX should consume no more than about 960 mA total, worst case.
If you are using motors, the “worst case” is the current rating of the motors when they
are stalled (i.e., their shafts locked tight so they won’t turn).

� When you are using a reduced power mode, the voltage to the outputs is “chopped” at
a frequency of 8 milliseconds between pulses, as shown in Fig. 13.6. The ratio of on-
time versus off-time determines the power delivered through the output. Note that the
output has two modes: float and on/off, as shown in Fig 13.6. When in float mode, the
output ramps from full voltage to 0 volts. In on/off mode, the output toggles from HIGH
to LOW with no ramping.

More and More LEGO
The LEGO Mindstorms community is a rather large one, and it’s growing. LEGO actively
sponsors Mindstorms experimenters and hackers. The LEGO Mindstorms Web page, at
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IN1 IN2 FUNCTION DESCRIPTION

1 0 Forward Turning

0 1 Backward Turning opposite

1 1 Brake Motor is shorted (fast stop)

0 0 Off Motor is disabled (coast)
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/www.legomindstorms.com,provides links for message boards, contests, tips and tricks, and
a LEGO community called “First LEGO League,” for 9- through 14-year-olds interested
in exploring robotics.

There are several Web forums devoted to LEGO that contain special sections for using
and programming the Mindstorms RCX. Check out Lugnet at www.lugnet.comThis non-
commercial Web forum is divided into several dozen discussion groups. Find the group
that’s of interest to you and read through the postings by other visitors. Feel free to post
your own message if you have a question or comment.

From Here
To learn more about… Read

Constructing custom robots using standard Chapter 12, “Build Custom LEGO-based
LEGO parts Robots”

Additional ways to program the LEGO RCX brick Chapter 14, “Programming the LEGO
Mindstorms RCX: Advanced Methods”

Using a microcontroller for the brains of a robot Chapters 31–33

Using stepper motors Chapter 19, “Working with Stepper
Motors”

Constructing sound sensors Chapter 40, “Sound Output and Input”
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Ramped (output float)

Non-ramped (output off/on)

FIGURE 13.6 The RCX uses pulse-width modulation to vary the
power level of its three outputs. The pulses can be
steep square waves, or they can be ramped.
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The LEGO Mindstorms Robotic Invention System has become a watershed for hobby
robotics. The Mindstorms set allows both child and adult alike to experiment with robot-
ics, without the usual requirements of constructing a frame and body or soldering elec-
tronic circuits. As such, Mindstorms provides a quick and simple introduction to robotics,
and especially the programming behind it.

Yet the robots you can build with the Mindstorms go far beyond simple automated toys.
There is a surprising amount of power under the yellow plastic of the Mindstorms robot
module (the RCX). Much of this power is either not easily recognizable in the standard
programming environment that comes on the Mindstorms CD-ROM or is not available, for
whatever technical reasons.

Fortunately, you can tap the full potential of the Mindstorms robotics system by using
alternative programming environments. This chapter discusses two popular alternative
environments, including one that works with Microsoft Visual Basic.

Using Visual Basic to Program the RCX
Microsoft Visual Basic provides a convenient method for programming the LEGO
Mindstorms RCX. You don’t even need the full Visual Basic package (some $250 or more
retail). You can also use any program that supports Visual Basic for Applications—such as
Microsoft Word 97 or Corel WordPerfect 9 or later versions.

14
PROGRAMMING THE LEGO

MINDSTORMS RCX

Advanced Methods
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The text that follows will work equally well when using Visual Basic 5.0 or later or
Visual Basic for Applications. However, some menu commands may be different between
the two products as well as between different versions. For the sake of brevity, from here
on we’ll refer to Visual Basic as “VB” and Visual Basic for Applications as “VBA.”

Note: by necessity, this chapter does not discuss programming with VB or VBA. It is
assumed that you are already familiar with at least the basics of VB or VBA and that you know
how to create and work with user forms and code modules. If VB and/or VBA are new to you,
pick up a good introductory book on the subject at your library or neighborhood bookstore.

Before attempting to program in VB/VBA visit the main LEGO Mindstorms Web page
(www.mindstorms.com) and look for the Software Developer’s Kit page. Download the infor-
mational document on the “PBrick” programming syntax for the spirit.ocx ActiveX control.
As of this writing, the document is available only in Adobe Acrobat format, so you will need
a copy of the Adobe Acrobat reader to view the file. The Acrobat reader is available free at
www.adobe.com and many other places; see the link on the LEGO Mindstorms page to down-
load this software. You may also wish to download the sample VB program for later review.

When you use RCX with Visual Basic, you program the RCX by using a “middleware”
component. This component is spirit.ocx, a Windows file that serves as an interface
between the programming environment (VB or VBA) and the RCX itself. Spirit.ocx comes
with the LEGO Mindstorms installation CD and is placed on your computer when you
install the software. Keep this in mind: you will not be able to perform any programming
until the Mindstorms software has been loaded. If you haven’t done so already, use the
standard Mindstorms programmer software to run the RCX through a couple of its basic
paces. Once you know the RCX works with the standard programmer software you’re
ready to forge ahead with VB!

RUNNING THE TEST PROGRAM

To begin, start Visual Basic in the usual way. If you are using VBA, start the Visual Basic
Editor (for example, in Word 97 and later you would choose Tools, Macro, Visual Basic
Editor). Once you are in the Editor, follow these steps:

1. Create a new form by choosing Insert, UserForm.
2. Add the spirit.ocx component by choosing Tools, Additional Controls. Locate the “Spirit

Control” and click on it to add a checkmark beside it. Choose OK to close 
the Additional Controls dialog box. (Note: this step need only be done once; thereafter the
spirit.ocx control will be registered with VB/VBA for use in other projects.)

3. A new LEGO icon should appear in the Toolbox (choose View, Toolbox, if the Toolbox
is not visible).

4. Click on the LEGO icon (this is the Spirit Control) and drag anywhere over the user
form you created in step 1.

5. For ease of use, make the LEGO icon about a quarter-inch square and place it in the
lower-right corner, as shown in Fig. 14.1.

6. Verify the proper settings of the Spirit Control by clicking on it and examining its properties
in the Properties box. Specifically, check that the serial communications port is set properly
(usually either COM1 or COM2), that the LinkType is Infrared (assuming you’re using the stan-
dard infrared tower that comes with the Mindstorms set), and that the PBrick type is RCX.
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7. Change the name of the Spirit Control you’ve added to PBrickCtrl. (This step is optional;
however, it conveniently conforms to the examples provided in the PBrick documenta-
tion provided by LEGO.)

8. Click on any blank area of the form, and change the name of the form (in the Properties
box) to RCXFrm. While you can choose any name for the form, the sample programs that
follow later in this chapter use the name RCXFrm to reference the PBrickCtrl control.

Adding the Spirit Control (spirit.ocx) component to the form allows you to write VB
code so as to interface with the RCX. You are now ready to begin programming:

1. Create a new code module by choosing Insert, Module.
2. Type the BasicTest code shown below. Be on the lookout for typographical errors.

Sub BasicTest()
RCXFrm.PBrickCtrl.InitComm
RCXFrm.PBrickCtrl.PlaySystemSound (2)
End Sub

3. Verify that your RCX is on and that it is positioned no more than about a foot from the
infrared tower.

4. In VB/VBA, run the BasicText program (choose Run, Run Sub, or press F5). (Note: you
do not need to depress the Run button on the RCX in order to execute the BasicTest code.)

If all is working properly, the RCX should emit a short tone. If you get an error or
the tone doesn’t sound, recheck that the RCX is operating properly. Verify that the IR
tower is functioning by verifying that the dim green light is on when the BasicTest pro-
gram is being downloaded. This light will extinguish a few seconds after downloading
is complete.

PROGRAMMING MOTOR ACTIONS

Sounding tones is hardly the life’s work of the LEGO RCX unit, so let’s try some more
advanced programming techniques, including running two motors. For the following test, we’ll
assume that your RCX robot has two motors, attached to outputs A and C. Type the following
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code, either in the same module in which you created BasicTest earlier or in a new module.
Again, be watchful for typographical errors. We’ll discuss what the code does in a bit.

Listing 14.1 Testmotors
Option Explicit

Public Const SWEEP_DOWN_SOUND = 2
Public Const SWEEP_UP_SOUND = 3
Public Const SWEEP_FAST_SOUND = 5

Sub TestMotors()
With RCXFrm.PBrickCtrl
.InitComm
.SelectPrgm 0
.BeginOfTask 0
.Wait 2, 30
.SetPower "02", 2, 7
.SetFwd "02"
.On "02"
.Wait 2, 50
.SetRwd "02"
.Wait 2, 50
.Off "02"
.PlaySystemSound SWEEP_FAST_SOUND
.EndOfTask
End With
MsgBox "Download complete"
End Sub

Running the TestMotors program When you are done typing, run the TestMotors
program in VB/VBA. A message box appears when downloading is complete. For this test,
you must select program 1 on the RCX, using the Pgm button. Press Run when you’re
ready to run the program. The RCX should spin its motors forward and reverse for a short
burst each way. When done, the RCX will emit its “up-sweep” tone to tell you it’s finished.

Examining the TestMotors program The TestMotors program is actually straight-
forward. You may want to increase your understanding of what the program does by
reviewing the PBrick documentation (described earlier in this chapter) from LEGO. Here
is the first line of the program:

With RCXFrm.PBrickCtrl

The With statement is a standard VB/VBA command. It allows you to reference an
object—in this case, RCXFrm.PBrickCtrl—using a shorthand syntax. Refer to the
VB/VBA documentation for additional information on using With. All of the statements
that follow, except for MsgBox, are commands built into the spirit.ocx component:

.InitComm

.InitComm (note the period prefix) sets up communications between the IR tower and the
RCX. You must always include this statement before sending other commands to the RCX.

.SelectPrgm 0

.BeginOfTask 0
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The .SelectPrgm 0 statement selects program 1 in the RCX (e.g., press the Pgm button
until program 1 appears in the RCX’s LCD display). Much of the programming with spir-
it.ocx involves zero-based values, so SelectPrgm 0 is program 1, SelectPrgm 1 is program
2, and so forth. Recall that you can store up to five programs in the RCX at any one time.

As a point of reference, the 0 after the .SelectPrgm statement is known as a parameter.
Many of the statements used to program the RCX with the spirit.ocx component require
that you use of one or more parameters.

The .BeginOfTask 0 statement tells the RCX that the code that follows is its main task.
This functionality will occur when you press the Run button on the RCX. Each program
can have up to 10 tasks. The RCX is designed to run each task simultaneously, which
allows your programs to be multithreaded. For example, you might have your RCX play a
tune while driving a zigzag course. Each of these actions is contained in its own task in one
program.

.Wait 2, 30

The .Wait statement tells the RCX to wait a brief period of time. Wait uses two para-
meters: the 2 tells the RCX that the parameter that follows is a literal “constant”. The 30
indicates 30/100s of a second, or about a third of a second. Other Wait statements in the
remainder of the program perform a similar function.

.SetPower "02", 2, 7

.SetFwd "02"

.On "02"

These three statements set up the drive motors and turn them on. .SetPower sets the
power to motors 0 and 2 (labeled A and C on the RCX) to full. The 2 indicates a literal
constant, and the 7 indicates the value (1 is slow, 7 is fast, and there are several speeds
in between). Similarly, .SetFwd sets the direction of motors 0 and 2, and .On turns 
them on.

.SetRwd "02"

Similar to .SetFwd, .SetRwd sets the direction of motors 0 and 2 in reverse.

.Off "02"

.PlaySystemSound SWEEP_FAST_SOUND

The .Off statement turns motors 0 and 2 off. The .PlaySystemSound statement, previ-
ously used in the BasicTest program earlier in this chapter, sounds a tone. Note the use of
the SWEEP_FAST_SOUND constant variable, which is defined at the top of the program
(a constant is a variable whose value does not change throughout the execution of the pro-
gram). You can—and should—get into the habit of using constants instead of literal numer-
ic values. It’s a lot easier to see what PlaySystemSound(SWEEP_FAST_SOUND) means
than PlaySystemSound(5), though both do exactly the same thing.

Consult the documentation for VB/VBA if you’re new to the concept of using constants.

.EndOfTask
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The .EndOfTask statement tells the RCX that the task begun earlier is now complete.

CLOSING THE COMMUNICATIONS PORT

In the program examples given in the previous section, the communications port, such as
COM1 or COM2, is opened so the spirit.ocx component can send signals out of the
Mindstorm’s IR tower. This is done with the .InitComm statement. In each of the program
examples we just examined, the communications port is left open. This is to simplify down-
load timing, but in general it’s not an advisable practice because it leaves the communications
port opened, and therefore locked against use by other programs on your computer.

Use the .CloseComm statement to close the communications port. You can integrate this
statement with your programs—for example, as the last command sent to the RCX.
However, you must be careful not to close the communications port before downloading is
complete or else your program will not function properly. One way to get around this is to
use a waiting loop in VB; another is to use the DownloadDone event, which is a signal sent
by the RCX when it has received all of its programming. The PBrick documentation from
LEGO explains how to use the DownloadDone event.

Yet another approach is to specifically run a small program that closes the communica-
tions port. Here’s all the code you really need for the job:

Sub CloseComm()
RCXFrm.PBrickCtrl.CloseComm
End Sub

GOING FURTHER

There are many more things you can do with the spirit.ocx component and VB/VBA,
including reading sensor values (this is done with the Poll statement), adjusting the power
output of the IR tower, even turning the RCX off remotely. Sadly, we don’t have the room
to delve into these subjects in more detail.

Fortunately, you can turn to the PBrick documentation provided by LEGO on the
Mindstorms Web site (www.mindstorms.com) for additional information. Be sure to also
check out the additional examples and resources on RCX programming at the support site
for this book, www.robotoid.com.

Using Not Quite C (NQC) to Program
the RCX
At last count, there were over a dozen programming alternatives for the LEGO Mindstorms
RCX. One of the first, and still one of the most popular, is NQC—the letters stand for “Not
Quite C.” NQC is a stand-alone, text-based programming environment for the RCX. It is
capable of performing the same basic programming functions as the Visual Basic
approach, described earlier, but the programming language is radically different.

NQC is a freely distributed program available at http://www.enteract.com/~dbaum/nqc/.
Versions of NQC are available for Windows-based systems, as well as the Apple Macintosh
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and Linux. Fetch the version you want, and place the NQC files in their own directory on
your computer’s hard disk drive. Assuming the IR tower is properly connected to your
computer and the Mindstorms software has been previously installed, you’re ready to go!

Note that the following steps assume you’re using a Windows-based PC. Consult the
documentation that comes with NQC if you are using a different computer.

CREATING A NQC PROGRAM

As its name suggests, Not Quite C uses a C-language syntax for programming. For those
unfamiliar with C, the syntax can look daunting. However, with just a little bit of study,
you’ll find NQC is not difficult to use. If anything, it’s often easier to interact with the
RCX using NQC than with Visual Basic.

You may use any text editor to prepare an NQC file. In Windows, for example, you
can use the Notepad program. You should store your NQC program files in the same
directory as the nqc.exe program itself. Listing 14.2 shows a simple NQC program that
does an amazing amount of computational work. Run this program on an RCX with two
motors attached to the A and C outputs and with a light sensor connected to Input 1 and
pointing forward. When you do, the RCX will seek out any bright light in the room.
Aim a flashlight at the light sensor, for example, and the robot will come toward 
the light.

Figure 14.2 shows the prototypical RCX “rover” robot, set up for the sample programs
in this section.

Listing 14.2 photophile.nqc.
#define LIGHT   SENSOR_1
#define MOTOR  OUT_A+OUT_C

task main()
{

SetPower(MOTOR, 7);
SetDirection (MOTOR, OUT_REV);
SetSensorType(LIGHT, SENSOR_TYPE_LIGHT);
while(true) {

if(LIGHT > 60)
On(MOTOR);

else
Off(MOTOR);

}
}

If you key in this program in order to try it out, name it photophile.nqc (photophile means
“lover of light”). Be on guard for typographical errors, and do not omit any of the brace char-
acters! As with most C-based languages, capitalization is important. For example, while is cor-
rect, but not While.

EXAMINING THE NCQ PROGRAM

Let’s take a closer look at this program. The first two lines:

#define LIGHT SENSOR_1
#define MOTOR OUT_A+OUT_C
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These two statements define constants (unchanging variables) used elsewhere in the
program. Constants are defined by using the #define keyword followed by the name of 
the constant and finally by the value of that constant. Note that the value of the constants
LIGHT and MOTOR are themselves constants! In this case, the constants SENSOR_1,
OUT_A, and OUT_B are built-in constants, with values already defined by NQC. We use
our own constants to make working with the RCX even easier. See Table 14.1 for a list of
the most commonly used built-in constants.

You will note that the MOTOR constant refers to two outputs, both A and C
(OUT_A�OUT_C). This allows us to operate both motors together, which will make it a
little easier to command the robot to go forward or backward. The next two lines of the
program are:

task main()
{

Each NQC program can have up to 10 tasks. Each task can be run simultaneously. The
task that is run when you press the Run button on the RCX is called main. You can create
your own names for other tasks you add in your program, but main always refers to the,
well, “main” task that the RCX automatically runs.

Note the open brace (the “{” character) that follows the task main() statement. In NQC,
as in C, multiple program statements are defined in blocks or compound statements. For
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TABLE 14.1 NQC STANDARD CONSTANTS

CONSTANT NAME FUNCTION EQUIVALENT VALUE

SetSensor

SENSOR_1 Input 1 0

SENSOR_2 Input 2 1

SENSOR_3 Input 3 2

SetSensorMode

SENSOR_MODE_RAW Raw value from sensor hex 0x00
(0 to 1023)

SENSOR_MODE_BOOL Return Boolean (0 or 1) value hex 0x20

SENSOR_MODE_EDGE Count number of rising/ hex 0x40
falling edges

SENSOR_MODE_PULSE Count number of pulses hex 0x60

SENSOR_MODE_PERCENT Show value as percentage hex 0x80

SENSOR_MODE_CELSIUS Temperature sensor Celsius hex 0xa0
reading

SENSOR_MODE_FAHRENHEIT Temperature sensor Fahrenheit hex 0xc0
reading

SENSOR_MODE_ROTATION Rotation encoder hex 0xe0

SENSOR_TYPE_TOUCH Pushbutton switch 1

SENSOR_TYPE_TEMPERATURE Temperature sensor 2

SENSOR_TYPE_LIGHT Powered light detector 3

SENSOR_TYPE_ROTATION Rotation encoder 4

Outputs

OUT_A Select motor A 1 << 0

OUT_B Select motor B 1 << 1

OUT_C Select motor C 1 << 2

Output modes

OUT_FLOAT Let motors coast 0

OUT_OFF Stop motors hex 0x40

OUT_ON Run motors hex 0x80

Output directions

OUT_REV Motors in reverse 0

OUT_TOGGLE Motors change direction 0x40

OUT_FWD Motors forward 0x80
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each { character there must always be a } character, indicating the end of the block. You
will use blocks in if, while, and other statements. The one thing you need to remember
about blocks and the brace characters that define them, is this: always make sure you have
a close brace for every open brace. The next two lines of the program are as follows:

SetPower(MOTOR, 7);
SetDirection (MOTOR, OUT_REV);

The SetPower statement sets the power to the motors. The 7 means full power; use 1 for
low power or other values in between. SetDirection sets the direction of the outputs, in this
case reverse. This will make the robot move toward the light.

SetSensorType(LIGHT, SENSOR_TYPE_LIGHT);

A single light sensor, connected to input 1, is used for the robot. The SetSensorType
statement sets the input—specified here as LIGHT—to accept a powered light.

while(true) {
if(LIGHT > 60)

On(MOTOR);
else

Off(MOTOR);
}

The main body of the program is a while loop, which thanks to the true expression repeats
the program until you depress the Run button on the RCX a second time or turn the RCX off.
The important part of the program is the if statement, which reads (in “human” terms):
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TABLE 14.1 NQC STANDARD CONSTANTS (Continued)

CONSTANT NAME FUNCTION EQUIVALENT VALUE

Output power levels

OUT_LOW Motors at low speed 0

OUT_HALF Motors at medium speed 3

OUT_FULL Motors at full speed 7

Sounds for PlaySound

SOUND_CLICK Short beep 0

SOUND_DOUBLE_BEEP Two beeps 1

SOUND_DOWN Tone scale down 2

SOUND_UP Tone scale up 3

SOUND_LOW_BEEP “Error” beep 4
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“if the output of the light sensor is greater than 60, turn the motors on;

otherwise

turn the motors off”

Light sensors on the RCX return a value of 0 to 100, with 0 being absolute darkness
and 100 being fairly bright light. The value of 60 was selected as a kind of threshold. If
you operate the RCX in dim room light, pointing a flashlight at the sensor will cause the
motors to run. Turning the flashlight off will cause the motors to stop.

DOWNLOADING THE NQC PROGRAM

Now that the program has been written (and saved), you can download it to the RCX by
using the main nqc.exe program. This program does two things: it compiles your text pro-
grams into a form that is suitable for the RCX, and it transfers the code to the RCX via the
Mindstorms’ IR tower.

NQC is a command-line program. To use it, open a new MS-DOS window by choosing
Start, Programs, MS-DOS Prompt. (Note: if you don’t have this option, choose Start, select
Run, type command.com, and then press OK.) If necessary, switch to the NQC program
directory using the CD (change directory) command, such as:

cd \nqc

This assumes that nqc.exe and your programs are in a directory named NQC. Then com-
pile and download your program with the following command:

nqc -d program.nqc

where program.nqc is the actual program name you want to use. If you saved the sample
program as photophile.nqc, for example, type the following:

nqc -d photophile.nqc

and press the Enter key. NQC will then compile the program and download it to the
RCX. If there are syntax errors in your program, NQC will alert you of them and dis-
play the approximate line where the error occurs (usually the actual error is a line or
two above). Assuming the program compiles correctly, NQC displays “Downloading
program…” and then finally “Complete” when downloading is finished. Run the down-
loaded program by pressing the Run button on the RCX. 

Note: Unless you tell it otherwise, NQC assumes that the IR tower is connected to
COM1 of your computer. Use the set command in DOS to set a different communica-
tions port, such as: 

set RCX_PORT=COM2
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This tells NQC to use COM2 instead. Valid values are COM1, COM2, COM3, and COM4.
If you type one of these in the DOS window you have opened for NQC, the value will
remain only until you close the window. If you want to make the setting permanent, edit
the autoexec.bat file (it’s in the root of the C drive) and add the set command there. It will
take effect the next time you start your computer.

ALTERING THE BEHAVIOR OF THE ROBOT

It’s easy to alter the behavior of your NQC-controlled robot creations. One small change
you can make is to have the motors turn the other way when the light shines on the sensor.
This has the effect of creating a “photophobic” robot—a robot that appears to run away
from the light. The complete code example is shown in Listing 14.3. If you retype this pro-
gram, name it photophobe.nqc.

Listing 14.3 photophobe.nqc.
#define LIGHT        SENSOR_1
#define MOTOR        OUT_A+OUT_C

task main()
{

SetPower(MOTOR, 7);
SetDirection (MOTOR,OUT_FWD);
SetSensorType(BUTTON, SENSOR_TYPE_LIGHT);
while(true) {

if(LIGHT > 60)
On(MOTOR);

else
Off(MOTOR);

}
}

CREATING A MULTITASKING CONTROL PROGRAM

One of the most important capabilities of the RCX is that it is a multitasking device. You
can run up to 10 tasks “simultaneously” in one program. The microcontroller in the RCX
divvies up a little bit of its processing time to each task, so in human terms things appear
to happen simultaneously. Of course, in microcontroller terms it’s handling one instruction
at a time, but at very fast speeds.

The following program is a rudimentary but fully functional example of an RCX pro-
gram with multiple concurrent tasks. The program is based on the photophobe.ncq exam-
ple in the previous section. We have added separate tasks, one to play a little song (the first
notes of something that sounds like “Mary Had a Little Lamb”) and another to reverse the
motors and spin if a touch sensor is activated.

When the program is run, the robot exhibits three events (sometimes called “behaviors”
in modern robot artificial intelligence efforts):

Event 1. A song is played every few seconds. This event is free running, and no other
event in the program affects it.

Event 2. When a strong enough light strikes the light sensor, the robot backs away
from the light source (of course, “backs away” depends on how the motors and light sen-
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sor are mounted on the RCX, but you get the idea). The motors will continue to run as
long as enough light strikes the sensor.

Event 3. When the touch sensor—mounted on the side of the RCX opposite the light
sensor—is activated, Event 2 is suspended (“subsumed”). The robot reverses direction
for a brief moment, then spins on its axis. Finally, it stops moving, and it is more than
likely no longer facing in the same direction. At this time, Event 2 is reactivated so that
the robot will “run away” from any light that shines into the light sensor.

See Listing 14.4 (let’s call it multitask.ncq), which contains short comments that are
indicated by the double slash (“//”) characters. These comments serve to describe the main
functionality of the program.

Listing 14.4 multitask.ncq.
// Constants definitions
#define LIGHT        SENSOR_1
#define SWITCH       SENSOR_2
#define MOTOR        OUT_A+OUT_C

// Main task; run when Run button is pressed on RCX
// starts all tasks
task main()
{

start play_song;
start run_from_light;
start timed_backup;

}

// Task for running away from the light (same as photophobe.ncq,
// except that motors run a little slower)
task run_from_light()
{

while (true) {
SetPower(MOTOR, 3);
SetDirection (MOTOR, OUT_FWD);
SetSensorType(LIGHT, SENSOR_TYPE_LIGHT);
if(LIGHT > 60)

On(MOTOR);
else

Off(MOTOR);
}

}

// Task for backing up and spinning in response to switch touch
task timed_backup()
{

while (true) {
SetPower(MOTOR, 3);
SetSensor(SWITCH, SENSOR_TOUCH);
if (SWITCH == 1) {

stop run_from_light;      // disallow run_from_light task
SetDirection (MOTOR, OUT_REV);
On(MOTOR);
Wait (50);
SetDirection (OUT_A, OUT_FWD);
Wait (150);
SetDirection (MOTOR, OUT_FWD);
Off(MOTOR);
start run_from_light;      // allow run_from_light task
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}
}

}

// Task for playing a little tune
task play_song()
{

while (true) {
PlayTone(392,25);
PlayTone(349,25);
PlayTone(330,25);
PlayTone(349,25);
PlayTone(392,25);
PlayTone(0,2);
PlayTone(392,25);
PlayTone(0,2);
PlayTone(392,25);
PlayTone(0,2);
Wait (500);

}
}

Feel free to experiment with the code for multitask.ncq. The only real caveat is that if
you want a task to continue it should have its own loop. The While statement is one method
for doing this, but NQC provides other looping statements you may wish to try. Also,
remember that the RCX supports up to 10 tasks.

GOING FURTHER

Of course, there’s far more to Not Quite C than we have discussed here. The NQC down-
load includes complete documentation on its capabilities. For example, NQC supports a
wide variety of programming statements, loops, variable assignments, conditional expres-
sions, and more. With NQC you can develop highly sophisticated programs for the RCX
robot, and with a surprisingly small amount of code. Look for additional NQC samples and
resources at the support site for this book, www.robotoid.com.

From Here
To learn more about… Read

Introduction to programming concepts Chapter 7, “Programming Concepts—The
Fundamentals”

Using LEGO parts to create Chapter 12, “Build Custom LEGO-based Robots”
custom robots

Using the LEGO Mindstorms Chapter 13, “Creating Functionoids with the LEGO
Robotics Invention System Mindstorms Robotics Invention System”

Computer control of robots Part 5, Chapters. 28–34
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PART3
POWER, MOTORS, AND

LOCOMOTION
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The robots in science fiction films are seldom like the robots in real life. Take the robot
power supply. In the movies, robots almost always have some type of advanced nuclear
drive or perhaps a space-age solar cell that can soak up the sun’s energy, then slowly
release it over two or three days. Nuclear power supplies are out of the question, except in
some top-secret robotic experiment conducted by the Army. And solar cells don’t provide
enough power for the typical motorized robot, and as yet they have no power storage 
capabilities.

Most self-contained real-life robots are powered by batteries, the same kind of batteries
used to provide juice to a flashlight, cassette radio, portable television, or other electrical
device. Batteries are an integral part of robot design, as important as the frame, motor, and
electronic brain—those components we most often think of when the discussion turns to
robots. To robots, batteries are the elixir of life, and without them, robots cease to 
function.

While great strides have been made in electronics during the past 20 years—including
entire computers that fit on a chip—battery technology is behind the times. On the whole,
today’s batteries don’t pack much wallop for their size and weight, and the rechargeable
ones take hours to come back to life. The high-tech batteries you may have heard about
exist, but they are largely confined to the laboratories and a few high-priced applications,
such as space or medical science. That leaves us with the old, run-of-the-mill batteries used
in everyday applications.
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With judicious planning and use, however, combined with some instruction in how to
make do with the limitations, these common everyday batteries can provide more than ade-
quate power to all of your robot creations.

Types of Batteries
There are seven main types of batteries, which come in a variety of shapes, sizes, and con-
figurations.

ZINC

Zinc batteries are the staple of the battery industry and are often referred to simply as
“flashlight” cells. The chemical makeup of zinc batteries takes two forms: carbon zinc
and zinc chloride. Carbon zinc, or “regular-duty,” batteries die out the quickest and are
unsuited to robotic applications. Zinc chloride, or “heavy-duty,” batteries provide a lit-
tle more power than regular carbon zinc cells and last 25 to 50 percent longer. Despite
the added energy, zinc chloride batteries are also unsuitable for most robotics 
applications.

Both carbon zinc and zinc chloride batteries can be “rejuvenated” a few times after
being drained. See the section “Battery Recharging” later in the chapter for more infor-
mation on recharging batteries. Zinc batteries are available in all the standard flashlight (D,
C, A, AA, and AAA) and lantern battery sizes.

ALKALINE

Alkaline cells use a special alkaline manganese dioxide formula that lasts up to 800 per-
cent longer than carbon zinc batteries. The actual increase in life expectancy ranges from
about 300 percent to 800 percent, depending on the application. In robotics, where the bat-
teries are driving motors, solenoids, and electronics, the average increase is a reasonable
450 to 550 percent.

Alkaline cells, which come in all the standard sizes (as well as 6- and 12-volt lantern
cells), cost about twice as much as zinc batteries. But the increase in power and service
life is worth the cost. Unlike zinc batteries, however, ordinary alkaline batteries cannot
be rejuvenated by recharging without risking fire (though some people try it just the
same). During recharging, alkaline batteries generate considerable internal heat, which
can cause them to explode or catch fire. So when these batteries are dead, just throw
them away.

Recently, however, a new rechargeable alkaline cell has reached the market. These provide
many of the benefits of ordinary alkaline cells but with the added advantage of being 
rechargeable. A special low-current recharger is required (don’t use the recharger on another 
battery type or you may damage the recharger or the batteries). While rechargeable alka-
lines cost more than ordinary alkaline cells, over time your savings from reusing the 
batteries can be considerable.
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NICKEL-CADMIUM

When you think “rechargeable battery,” you undoubtedly think nickel-cadmium—or 
“Ni-Cad” for short. Ni-Cads aren’t the only battery specifically engineered to be
recharged, but they are among the least expensive and easiest to get. Ni-Cads are ideal for
most all robotics applications.

The Ni-Cad cells are available in all standard sizes, plus special-purpose “sub” sizes for
use in sealed battery packs (as in rechargeable handheld vacuum cleaners, photoflash
equipment, and so forth). Most sub-size batteries have solder tabs, so you can attach wires
directly to the battery instead of placing the cells in a battery holder. Ni-Cads don’t last
nearly as long as zinc or alkaline batteries, but you can easily recharge them when they
wear out. Most battery manufacturers claim their Ni-Cad cells last for 500 or more
recharges.

A new, higher capacity Ni-Cad battery is available that offers two to three times the ser-
vice life of regular Ni-Cads. More importantly, these high-capacity cells provide consider-
ably more power and are ideally suited for robotics work. Of course, they cost more.

Note that Ni-Cads can suffer from “memory effect” whereby the useful capacity of the
battery is reduced if the cell is not fully discharged before it is recharged. To be fair, newer
Ni-Cad batteries don’t exhibit this memory effect nearly as much as the older kind (and
some Ni-Cad makers insist memory effect is no longer an issue). Read more about mem-
ory effect and other problems with Ni-Cad batteries in “Ni-Cad Disadvantages,” later in
this chapter.

NICKEL METAL HYDRIDE

Nickel metal hydride (NiMH) batteries represent one of the best of the affordable recharge-
able battery technologies. NiMH batteries can be recharged 400 or more times and have a
low internal resistance, so they can deliver high amounts of current (read more about 
internal resistance and current in “Battery Ratings,” later in the chapter). Nickel metal
hydride batteries are about the same size and weight as Ni-Cads, but they deliver about 50
percent more operating juice than Ni-Cads. In fact, NiMH batteries work best when they
are used in very high current situations. Unlike Ni-Cads, NiMH batteries do not exhibit
any memory effect, nor do they contain cadmium, a highly toxic material.

While NiMH batteries are discharging, especially at high currents, they can get quite
hot. You should consider this when you place the batteries in your robot. If the NiMH pack
will be pressed into high-current service, be sure it is located away from any components
that may be affected by the heat. This includes any control circuitry or the microcontroller.

NiMH batteries should be recharged using a recharger specially built for them.
According to NiMH battery makers, NiMH batteries should be charged at an aggressive
rate. A by-product of this kind of high-current recharging is that NiMH can be recycled
back into service more quickly than Ni-Cads. You can deplete your NiMH battery pack,
put it under charge for an hour or two, and be back in business.

One disadvantage of NiMH relative to other rechargeable battery technologies is that
the battery does not hold the charge well. That is, over time (weeks, even days) the charge
in the battery is depleted, even while the battery is in storage. For this reason, it’s always a
good idea to put NiMH batteries on the recharger at regular intervals, even when they
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haven’t been used. Because NiMHs don’t exhibit a memory effect, however, this disad-
vantage will not cause a change in the discharge curve of the batteries.

LITHIUM AND LITHIUM-ION

Lithium and rechargeable lithium-ion batteries are popular in laptop computers. They are
best used at a steady discharge rate and tend to be expensive. Lithium batteries of various
types provide the highest “energy density” of most any other commercially available bat-
tery, and they retain their charge for months, even years. Like other rechargeable battery
types, rechargeable lithium-ion batteries require their own special recharging circuitry, or
overheating and even fire could result.

LEAD-ACID

The battery in your car is a lead-acid battery. It is made up of not much more than lead
plates crammed in a container that’s filled with an acid-based electrolyte. These brutes
pack a wallop and have an admirable between-charge life. When the battery goes dead,
recharge it, just like a Ni-Cad.

Not all lead-acid batteries are as big as the one in your car. You can also get—new or
surplus—6-volt lead-acid batteries that are about the size of a small radio. The battery is
sealed, so the acid doesn’t spill out (most automotive batteries are now sealed as well).
The sealing isn’t complete though: during charging gases develop inside the battery and
are vented out through very small pores. Without proper venting, the battery would be
ruined after discharging and recharging. These batteries are often referred to as sealed
lead-acid, or SLA.

Lead-acid batteries typically come in self-contained packs. Six-volt packs are the most
common, but you can also get 12- and 24-volt packs. The packs are actually made by
combining several smaller cells. The cells are wired together to provide the rated voltage
of the entire pack. Each cell typically provides 2.0 volts, so three cells are required to
make a 6-volt pack. You can, if you wish, take the pack apart, unsolder the cells, and use
them separately.

Although lead-acid batteries are powerful, they are heavy. A single 6-volt pack can
weigh four or five pounds. Lead-acid batteries are often used as a backup or emergency
power supply for computers, lights, and telephone equipment. The cells are commonly
available on the surplus market, and although used they still have many more years of pro-
ductive life. The retail price of new lead-acid cells is about $25 for a 6-volt pack. Surplus
prices are 50 to 80 percent lower.

Motorcycle batteries make good power cells for robots. They are easy to get, compact,
and relatively lightweight. The batteries come in various amp-hour capacities (discussed
later in this chapter), so you can choose the best one for your application. Motorcycle bat-
teries are somewhat pricey, however. You can also use car batteries, as long as your robot is
large and sturdy enough to support it. It’s not unusual for a car battery to weigh 20 pounds.

Gelled electrolyte batteries (commonly called “gel-cell,” after a popular trade name) use
a special gelled electrolyte and are the most common form of SLA batteries. They are
rechargeable and provide high current for a reasonable time, which makes them perfect for
robots. Fig. 15.1 shows a typical sealed lead-acid battery.
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Battery Ratings
Batteries carry all sorts of ratings and specifications. The two most important specifica-
tions are per-cell voltage and amp-hour current. We will discuss these and others in the 
following sections.

VOLTAGE

The voltage rating of a battery is fairly straightforward. If the cell is rated for 1.5 volts, it
puts out 1.5 volts, give or take. That “give or take” is more important than you may think
because few batteries actually deliver their rated voltage throughout their life span. Most
rechargeable batteries are recharged 20 to 30 percent higher than their specified rating. For
example, the 12-volt battery in your car, a type of lead-acid battery, is charged to about
13.8 volts.

Standard zinc and alkaline flashlight batteries are rated at 1.5 volts per cell. Assuming
you have a well-made battery in the first place, the voltage may actually be 1.65 volts when
the cell is fresh, and dropping to 1.3 volts or less, at which point the battery is considered
“dead.” The circuit or motor you are powering with the battery must be able to operate suf-
ficiently throughout this range.

Most batteries are considered dead when their power level reaches 80 percent of their
rated voltage. That is, if the cell is rated at 6 volts, it’s considered dead when it puts out
only 4.8 volts. Some equipment may still function at levels below 80 percent, but the effi-
ciency of the battery is greatly diminished. Below the 80 percent mark, the battery no
longer provides the rated current (discussed later), and if it is the rechargeable type, the cell
is likely to be damaged and unable to take a new charge. When experimenting with your
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robot systems, keep a volt-ohm meter handy and periodically test the output of the batter-
ies. Perform the test while the battery is in use. The test results may be erroneous if you do
not test the battery under load.

It is often helpful to know the battery’s condition when the robot is in use. Using a volt-
ohm meter to periodically test the robot’s power plant is inconvenient. But you can build a
number of “battery monitors” into your robot that will sense voltage level. The output of
the monitor can be a light-emitting diode (LED), which will allow you to see the relative
voltage level, or you can connect the output to a circuit that instructs the robot to seek a
recharge or turn off. Several monitor circuits are discussed later in this chapter.

If your robot has an on-board computer, you want to avoid running out of juice midway
through some task. Not only will you lose the operating program and have to rekey or
reload it, but the robot may damage itself or its surroundings if the power to the computer
is suddenly turned off.

CAPACITY

The capacity of a battery is rated as amp-hour current. This is the amount of power, in
amps or milliamps, the battery can deliver over a specified period of time. The amp-hour
current rating is a little like the current rating of an AC power line, but with a twist. AC
power is considered to be never ending, available night and day, always in the same quan-
tity. But a battery can only store so much energy before it poops out, so the useful service
life must be taken into account. The current rating of a battery is at least as important as
the voltage rating because a battery that can’t provide enough juice won’t be able to turn a
motor or sufficiently power all the electronic junk you’ve stuck onto your robot.

What exactly does the term amp-hour mean? Basically, the battery will be able to pro-
vide the rated current for one hour before failing. If a battery has a rating of 5 amp-hours
(expressed as “AH”), it can provide up to five amps continuously for one hour, one amp
for five hours, and so forth, as shown in Fig. 15.2. So far, so good, but the amp-hour rat-
ing is not that simple. The 5 AH rating is actually taken at a 10- or 20-hour discharge inter-
val. That is, the battery is used for 10 or 20 hours, at a low or medium discharge rate. After
the specified time, the battery is tested to see how much juice it has left. The rating of the
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battery is then calculated taking the difference between the discharge rate and the reserve
power and multiplying it by the number of hours under test.

What all this means is that it’s an unusual battery that provides the stated amps in the
one-hour period. The battery is much more likely to fail after 30 or 45 minutes of heavy-
duty use and won’t be able to supply the specified current for more than about 15 to 20
minutes. Discharging at or above the amp-hour rating may actually cause damage to the
battery. This is especially true of Ni-Cad cells.

The lesson to be learned is that you should always choose a battery that has an amp-hour
rating 20 to 40 percent more than what you need to power your robot. Figuring the desired
capacity is nearly impossible until the entire robot is designed and built (or unless you are very
good at computing current consumption). The best advice is to design the robot with the
largest battery you think practical. If you find that the battery is way too large for the appli-
cation, you can always swap it out for a smaller one. It’s not so easy to do the reverse.

Note that some components in your robot may draw excessive current when they are
first switched on, then settle down to a more reasonable level. Motors are a good example
of this. A motor that draws one amp under load may actually require several amps at start
up. The period is very brief, on the order of 100 to 200 milliseconds. No matter; the bat-
tery should be able to accommodate the surge. This means that the 20 to 40 percent over-
head in using the larger battery is a necessity, not just a design suggestion. A rough com-
parison of the discharge curve at various discharge times is shown in Fig. 15.3.

RECHARGE RATE

Most (but not all) batteries are recharged slowly, over a 12- to 24-hour period. The battery
can’t take on too much current without breaking down and destroying itself, so the current
from the battery charger must be kept at a safe level.

A good rule of thumb to follow when recharging any battery is to limit the recharging
level to one tenth the amp-hour rating of the cell. For a 5 AH battery, then, a safe recharge
level is 500 milliamps. Limiting current is extremely important when recharging Ni-Cads,
which can be permanently damaged if charged too quickly. Lead-acid and gel-cell batter-
ies can take an occasional “fast-charge”—a quickie at 25 to 50 percent of the rated amp-
hour capacity of the battery. However, repeated quick-charging will warp the plates and
disturb the electrolyte action in the battery, and is not recommended.

The recharge period, the number of hours the battery is recharged, varies depending on
the type of cell. A recharge interval of 2 to 10 times the discharge rate is recommended.
Fig. 15-4 shows a typical discharge/recharge curve for a lead-acid or gel-cell battery.

Most manufacturers specify the recharge time for their batteries. If no recharge time is
specified, assume a three- or four-to-one discharge/recharge ratio and place the battery
under charge for that period of time. Continue experimenting until you find an optimum
recharge interval.

NOMINAL CELL VOLTAGE

Each battery type generates different nominal (normal, average) output voltages. The tradi-
tional rating for zinc, alkaline, and similar nonrechargeable batteries is 1.5 volts per cell. The
actual voltage delivered by the cell can vary from a high of around 1.7 volts (fresh and fully
charged) to around 1.2 or 1.3 volts (“dead”). Other battery types, most notably 
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Ni-Cads, provide different nominal cell voltages. Specifically, Ni-Cad and nickel metal
hydride batteries provide 1.2 volts per cell, and lead-acid batteries provide 2.0 volts per cell.

To achieve higher voltages, you can link cells internally or externally (see the next 
section, “Increasing Battery Ratings,” for more information). By internally linking 
together six 1.5-volt cells, for example, the battery will output 9 volts.

Nominal cell voltage is important when you are designing the battery power supplies
for your robots. If you are using 1.5-volt cells, a four-cell battery pack will nominally
deliver 6 volts, an eight-cell pack will nominally deliver 12 volts, and so forth. Conversely,
if you are using 1.2-volt cells, a four-cell battery pack will nominally deliver 4.8 volts and
an eight-cell pack will nominally deliver 9.6 volts. The lower voltage will have an effect
on various robotic subsystems. For example, many microcontrollers used with robots (see
Part 5 of this book) are made to operate at 5 volts and will reset—restart their program-
ming—at 4.5 volts. A battery pack that delivers only 4.8 volts will likely cause problems
with the microcontroller. You either need to add more cells or change the battery type to a
kind that provides a higher per-cell voltage.

196 ALL ABOUT BATTERIES AND ROBOT POWER SUPPLIES

Discharge (in hours)
0               1              3               4               5             6

1AH battery at:  

3 hours 5 hours 7 hours

Volts per
cell

1.2

1.6

1.4

FIGURE 15.3 Discharge curves of a 1-AH battery at three-, five-, and
seven-hour rates.

Charge

Discharge

Volts per
cell

1.2

1.6

1.4

FIGURE 15.4 The charge/discharge curves of a typical rechargeable
battery. Note that the charge time is longer than the dis-
charge time.

Ch15_McComb  8/29/00  8:37 AM  Page 196



INTERNAL RESISTANCE

The internal resistance of a battery determines the maximum rate at which power can be
drawn from the cells. A lower internal resistance means more power can be drawn out in
less time. Lead-acid and nickel metal hydride cells are good examples of batteries that have
a very low internal resistance.

When comparing batteries, you don’t really need to know the actual internal resistance
of the cells you use. Rather, you’ll be more concerned with the discharge curve and the
maximum amp-hour ratings of the battery. Still, knowing that the battery’s internal resis-
tance dictates the discharge curve and capacity of the battery will help you to design power
packs for your robots.

Increasing the Battery Ratings
You can obtain higher voltages and current by connecting several cells together, as shown
in Fig. 15.5. There are two basic approaches:

� To increase voltage, connect the batteries in series. The resultant voltage is the sum of
the voltage outputs of all the cells combined.

� To increase current, connect the batteries in parallel. The resultant current is the sum of
the current capacities of all the cells combined.

Take note that when you connect cells together not all cells may be discharged or
recharged at the same rate. This is particularly true if you combine two half-used batteries
with two new ones. The new ones will do the lion’s share of the work and won’t last as
long. Therefore, you should always replace or recharge all the cells at once. Similarly, if
one or more of the cells in a battery pack is permanently damaged and can’t deliver or take
on a charge like the others, you should replace it.

Battery Recharging
Most lead-acid and gel-cell batteries can be recharged using a 200- to 800-mA battery
charger. The charger can even be a DC adapter for a video game or other electronics.
Standard Ni-Cad batteries can’t withstand recharge rates exceeding 50 to 100 mA, and if
you use a charger that supplies too much current you will destroy the cell. Use only a bat-
tery charger designed for Ni-Cads. High-capacity Ni-Cad batteries can be charged at 
higher rates, and there are rechargers designed specially for them.

Nickel metal hydride, rechargeable alkalines, and rechargeable lithium-ion batteries all
require special rechargers. Avoid substituting the wrong charger for the battery type you
are using, or you run the risk of damaging the charger and/or the battery (and perhaps caus-
ing a fire).

You can rejuvenate zinc batteries by placing them in a recharger for a few hours. The
process is not true recharging since the battery is not restored to its original power or 
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voltage level. The rejuvenated battery lasts about 20 to 30 percent as long as it did during
its initial use. Most well-built zinc batteries can be rejuvenated two or three times before
they are completely depleted.

Rechargeable batteries should be periodically recharged whether they need it or not.
Batteries not in regular use should be recharged every two to four months, more frequently
for NiMH batteries. Always observe polarity when recharging batteries. Inserting the cells
backward in the recharger will destroy the batteries and possibly damage the recharger.

You can purchase ready-made battery chargers for the kind of battery you are using or
build your own. The task of building your own is fairly easy because several manufactur-
ers make specialized integrated circuits just for recharging batteries. These ICs provide all
the necessary voltage and current protective mechanisms to ensure that the battery is prop-
erly charged. For example, you can use the Unitrode UC/2906 and UC/3906 from Texas
Instruments to build an affordable charger for sealed lead-acid and gelled electrolyte bat-
teries. Similarly, the MAX712 from Maxim lets you construct a flexible fast recharger for
NiMH batteries. These and other specialty ICs are not always widely available, so you may
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need to check several sources before you find them. However, the search is well worth the
time because of the cost and construction advantages these chips can provide.

Ni-Cad Disadvantages
Despite their numerous advantages, Ni-Cad batteries have a few peculiarities you’ll want to
consider when designing your robot power system. The most annoying problem is the “mem-
ory effect” we discussed earlier in this chapter. Not all battery experts agree that Ni-Cads still
suffer from this problem, but most anyone who has tried to use Ni-Cads has experienced it
in one form or another. For various reasons we won’t get into, the discharge curve of Ni-Cad
batteries is sometimes altered. The net effect is that the battery won’t last as long on a full
charge as it should. This so-called memory effect can be altered in two ways:

� The dangerous way. Short the battery until it’s dead. Recharge it as usual. Some batter-
ies may be permanently damaged by this technique.

� The safe way. Use the battery in a low-current circuit, like a flashlight, until it is dead.
Recharge the battery as usual. You must repeat this process a few times until the mem-
ory effect is gone.

The best way to combat memory effect is to avoid it in the first place. Always fully dis-
charge Ni-Cad batteries before charging them. If you don’t have a flashlight handy, build
yourself a discharge circuit using a battery holder and a flashlight bulb. The bulb acts as a
“discharge” indicator. When it goes out, the batteries are fully discharged.

The other disadvantage is that the polarity of Ni-Cads can change—positive becomes
negative and vice versa—under certain circumstances. Polarity reversal is common if the
battery is left discharged for too long or if it is discharged below 75 or 80 percent 
capacity. Excessive discharging can occur if one or more cells in a battery pack wears out.
The adjacent cells must work overtime to compensate, and discharge themselves too fast
and too far.

You can test for polarity reversal by hooking the battery to a volt-ohm meter (remove it from
the pack if necessary). If you get a negative reading when the leads are connected properly, the
polarity of the cell is reversed. You can sometimes correct polarity reversal by fully charging
the battery (connecting it in the recharger in reverse), then shorting it out. Repeat the process a
couple of times if necessary. There is about a fifty-fifty chance that the battery will survive this.
The alternative is to throw the battery out, so you actually stand to lose very little.

Recharging the Robot
You’ll probably want to recharge the batteries while they are inside the robot. This is no
problem as long as you install a connector for the charger terminals on the outside of the
robot. When the robot is ready for a charge, connect it to the charger.

Ideally, the robot should be turned off during the charge period, or the batteries may
never recharge. However, turning off the robot during recharging may not be desirable, as
this will end any program currently running in the robot. There are several schemes you
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can employ that will continue to supply current to the electronics of the robot yet allow the
batteries to charge. One way is to use a relay switchout. In this system, the external power
plug on your robot consists of four terminals: two for the battery and two for the electron-
ics. When the recharger is plugged in, the batteries are disconnected from the robot. You
can use relays to control the changeover or heavy-duty open-circuit jacks and plugs (the
ones for audio applications may work). While the batteries are switched out and being
recharged, a separate power supply provides operating juice to the robot.

Battery Care
Batteries are rather sturdy little creatures, but you should follow some simple guidelines
when using them. You’ll find that your batteries will last much longer, and you’ll save
yourself some money.

� Store new batteries in the fresh food compartment of your refrigerator (not the freezer).
Put them in a plastic bag so if they leak they won’t contaminate the food. Remove them
from the refrigerator for several hours before using them.

� Avoid using or storing batteries in temperatures above 75°F or 80°F. The life of the bat-
tery will be severely shortened otherwise. Using a battery above 100°F to 125°F caus-
es rapid deterioration.

� Unless you’re repairing a misbehaving Ni-Cad, avoid shorting out the terminals of the
battery. Besides possibly igniting fumes exhausted by the battery, the sudden and
intense current output shortens the life of the cell.

� Keep rechargeable batteries charged. Make a note when the battery was last charged.
� Fully discharge Ni-Cads before charging them again. This prevents memory effect.

Other rechargeable battery types (nickel metal hydride, rechargeable alkaline, lead-acid,
etc.) don’t exhibit a memory effect and can be recharged at your convenience.

� Given the right circumstances all batteries will leak, even the “sealed” variety. When
they are not in use, keep batteries in a safe place where leaked electrolyte will not cause
damage. Remove batteries from their holder when they are not being used.

Power Distribution
Now that you know about batteries, you can start using them in your robot designs. The
most simple and straightforward arrangement is to use a commercial-made battery holder.
Holders are available that contain from two to eight AA, C, or D batteries. The wiring in
these holders connects the batteries in series, so a four-cell holder puts out 6 volts (1.5
times 4). You attach the leads of the holder (red for positive and black for ground or nega-
tive) to the main power supply rail in your robot. If you are using a gel-cell or lead-acid
battery you would follow a similar procedure.

FUSE PROTECTION

Flashlight batteries don’t deliver extraordinary current, so fuse protection is not required
on the most basic robot designs. Gel-cell, lead-acid, and high-capacity Ni-Cad batteries
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can deliver a most shocking amount of current. In fact, if the leads of the battery acciden-
tally touch each other or there is a short in the circuit the wires may melt and a fire could
erupt.

Fuse protection helps eliminate the calamity of a short circuit or power overload in your
robot. As illustrated in Fig. 15.6, connect the fuse in line with the positive rail of the 
battery, as near to the battery as possible. You can purchase fuse holders that connect
directly to the wire or that mount on a panel or printed circuit board.

Choosing the right value of fuse can be a little tricky, but it is not impossible. It does
require that you know how much current your robot draws from the battery during normal
and stalled motor operation. You can determine the value of the fuse by adding up the 
current draw of each separate subsystem, then tack on 20 to 25 percent overhead.

Let’s say that the two drive motors in the robot draw 2 amps each, the main circuit
board draws 1 amp, and the other small motors draw 0.5 amp each (for a total of, perhaps,
2 amps). Add all these up and you get 7 amps. Installing a fuse with a rating of at least 7
amps at 125 volts will help assure that the fuse won’t burn out prematurely during normal
operation. Adding that 20 to 25 percent margin calls for an 8- to 10-amp fuse.

Recall from earlier in this chapter that motors draw excessive current when they are
first started. You can still use that 8- to 10-amp fuse, but make sure it is the slow-blow type.
Otherwise, the fuse will burn out every time one of the heavy-duty motors kick in.

Fuses don’t come in every conceivable size. For the sake of standardization, choose the
regular 1 1/4-inch-long-by-1/4-inch-diameter bus fuses. You’ll have an easier job finding
fuse holders for them and a greater selection of values. Even with a standard fuse size,
there is not much to choose from past 8 amps, other than 10, 15, and 20 amps. For values
over 8 amps, you may have to go with ceramic fuses, which are used mainly for microwave
ovens and kitchen appliances.

MULTIPLE VOLTAGE REQUIREMENTS

Some advanced robot designs require several voltages if they are to operate properly. The
drive motors may require 12 volts, at perhaps two to four amps, whereas the electronics
require �5, and perhaps even �5 volts. Multiple voltages can be handled in several ways.
The easiest and most straightforward is to use a different set of batteries for each main 
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FIGURE 15.6 How to install a fuse in line with the battery and the
robot electronics or motor.
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subsection. The motors operate off one set of large lead-acid or gel-cell batteries; the elec-
tronics are driven by smaller capacity Ni-Cads.

This approach is actually desirable when the motors used in the robot draw a lot of cur-
rent. Motors naturally distribute a lot of electrical noise throughout the power lines, noise
that electronic circuitry is extremely sensitive to. The electrical isolation that is provided
when you use different batteries nearly eliminates problems caused by noise (the remain-
der of the noise problems occur when the motor commutators arc, causing RF interfer-
ence). In addition, when the motors are first started the excessive current draw from the
motors may zap all the juice from the electronics. This “sag” can cause failed or erratic
behavior, and it could cause your robot to lose control.

The other approach to handling multiple voltages is to use one main battery source and
“step” it down (sometimes up) so it can be used with the various components in the sys-
tem. This is called DC-DC conversion, and you can accomplish it by using circuits of your
own design or by purchasing specialty integrated circuit chips that make the job easier.
One 12-volt battery can be regulated (see “Voltage Regulation” later in this chapter) to just
about any voltage under 12 volts. The battery can directly drive the 12-volt motors and,
with proper regulation, supply the �5-volt power to the circuit boards.

Connecting the batteries judiciously can also yield multiple voltage outputs. By con-
necting two 6-volt batteries in series, as shown in Fig. 15.7, you get �12 volts, �6 volts,
and �6 volts. This system isn’t nearly as foolproof as it seems, however. More than likely,
the two batteries will not be discharged at the same rate. This causes extra current to be
drawn from one to the other, and the batteries may not last as long as they might otherwise.

If all of the subsystems in your robot use the same batteries, be sure to add sufficient
filtering capacitors across the positive and negative power rails. The capacitors help soak
up excessive current spikes and noise, which are most often contributed by motors. Place
the capacitors as near to the batteries and the noise source as possible. Exact values are not
critical, but they should be over 100 µF—even better is 1000 to 3000 µF. Be certain the
capacitors you use are rated at the proper voltage (25 to 35 volts is fine). Using an under-
rated capacitor will burn it out and possibly cause a short circuit.

You should place smaller value capacitors, such as 0.1 µF, across the positive and neg-
ative power rails wherever power enters or exits a circuit board. As a general rule, you
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FIGURE 15.7 Various voltage tap-offs from two 6-volt batteries. This is
not an ideal approach (the batteries will discharge at dif-
ferent rates), but it works in a pinch.
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should add these “decoupling” capacitors beside clocked logic ICs, particularly flip-flops
and counters. A few linear ICs, such as the 555 timer, need decoupling capacitors, or the
noise they generate through the power lines can ripple through to other circuits. If many
ICs are on the board, you can usually get by with adding one 0.1 µF decoupling capacitor
for every three or four chips.

SEPARATE BATTERY SUPPLIES

Most hobby robots now contain computer-based control electronics of some type. The
computer requires a specific voltage (called regulation, discussed in the next section), and
it expects the voltage to be “clean” and free of noise and other glitches. A common prob-
lem in robotic systems is that the motors cause so-called sags and noise in the power 
supply system, which can affect the operation of the control electronics. You can largely
remedy this by using separate battery supplies for the motors and the electronics. Simply
join the ground connection for the supplies together.

With this setup, the motors have one unregulated power supply, and the control elec-
tronics have their own regulated power supply. Even if the motors turn on and off very
rapidly this approach will minimize sags and noise on the electronics side. It’s not always
possible to have separate battery supplies, of course. In these cases, use the capacitor fil-
tering techniques described in the earlier “Multiple Voltage Requirements” section. The
large capacitors that are needed to achieve good filtering between the electronics and
motor sections will increase the size of your robot. A 2200 µF capacitor, for example, may
measure 3/4 inch in diameter by over an inch in height. You should plan for this in your
design.

Voltage Regulation
Many types of electronic circuits require a precise voltage or they may be damaged or act
erratically. Generally, you provide voltage regulation only to those components and circuit
boards in your robot that require it. It is impractical to regulate the voltage for the entire
robot as it exits the battery. You can easily add solid-state voltage regulators to all your
electronic circuits. They are easy to obtain, and you can choose from among several styles
and output capacities. Two of the most popular voltage regulators, the 7805 and 7812, pro-
vide �5 volts and �12 volts, respectively. You connect them to the “�” and “�” (ground)
rails of your robot, as shown in Fig. 15.8 (refer to the parts list in Table 15.1).

Other 7800 series power regulators are designed for �15, �18, �20, and �24 volts.
The 7900 series provide negative power supply voltages in similar increments. The current
capacity of the 7800 and 7900 series that come in the TO-220 style transistor packages
(these can often be identified as they have no suffix or use a “T” suffix in their part num-
ber), is limited to less than one amp. As a result, you must use them in circuits that do not
draw in excess of this amount.

Other regulators are available in a more traditional TO-3-style transistor package (“K”
suffix) that offers current output to several amps. The “L” series regulators come in the
small TO-92 transistor packages and are designed for applications that require less than
about 500 mA. Other regulators of interest:
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� The 328K provides an adjustable output to 5 volts, with a maximum current of 5A
(amperes).

� The 78H05K offers a 5-volt output at 5A.
� The 78H12K offers a 12-volt output at 5A.
� The 78P05K delivers 5 volts at 10 amps.

SWITCHING VOLTAGE REGULATION

All of the regulators described in the last section are the linear variety. They basically take
an incoming voltage and clamp it to some specific value. Linear regulation isn’t very effi-
cient; a lot of energy is wasted in heat from the regulator. This inefficiency is particularly
notable in battery-powered systems, where the current capacity and the battery life are 
limited.

An alternative to linear regulators is to use a switching (or switching-mode) voltage
regulator, which exhibits better efficiencies. Most high-tech electronics equipment now
use switching power supplies, especially since single-IC switching voltage regulators are
now so common and inexpensive. Maxim, Texas Instruments, Dallas Semiconductor,
and many other companies are actively involved in the design and sale of switching 
voltage regulators. See Appendix B, “Sources,” and Appendix C, “Robot Information on
the Internet,” for more information on these and other companies offering power supply
ICs and circuits.

A good example of a switching voltage regulator is the MAX638, from Maxim. With
just a few added parts (a typical circuit, taken from the MAX638’s data sheet, is shown
in Fig. 15.9; refer to the parts list in Table 15.2), you can build a simple, compact, inex-
pensive, and efficient voltage regulator. The chip can also be used as a low-battery 
detector. See “Battery Monitors” later in this chapter for more information on low-
battery detection.
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FIGURE 15.8 Three-terminal linear voltage regulators, like the 7805, 
can be used to provide stable voltages for battery-pow-
ered robots. The capacitors help filter (smooth out) the
voltage.

TABLE 15.1 PARTS LIST FOR �5-VOLT BATTERY REGULATOR.

IC1 7805 linear voltage regulator

C1 100 �F electrolytic capacitor

C2, C3 0.1 �F tantalum capacitor
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ZENER VOLTAGE REGULATION

A quick and inexpensive method for providing a semiregulated voltage is to use zener
diodes, as shown in Fig. 15.10. With a zener diode, current does not begin to flow through
the device until the voltage exceeds a certain level (called the breakdown voltage). Voltage
over this level is then “shunted” through the zener diode, effectively limiting the voltage to
the rest of the circuit. Zener diodes are available in a variety of voltages, such as 3.3 volts,
5.1 volts, 6.2 volts, and others.

Zener diodes are also rated by their tolerance (1 percent and 5 percent are common) and
their power rating, in watts. For low-current applications, a 0.3- or 0.5-watt zener should
be sufficient; higher currents require larger 1-, 5-, and even 10-watt zeners. Note the 
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FIGURE 15.9 The Maxim MAX638 is among several high-efficiency voltage regu-
lators available. The MAX638 is most commonly used to provide
regulated �5 volts, but it can also be adjusted using external com-
ponents to provide other voltages.

TABLE 15.2 PARTS LIST FOR MAXIM MAX638 SWITCHING POWER SUPPLY.

IC1 MAX 638 (Maxim)

R1 120K resistor

R2 47K–100K resistor

C1 0.1 �F ceramic capacitor

C2 100 �F electrolytic capacitor

D1 1N4148 diode

L1 220 �H inductor

All resistors have 5 or 10 percent tolerance, 1/4-watt.
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resistor R1 in the schematic shown in Fig. 15.10. This resistor limits the current through
the zener, and its value (and wattage) is determined by the current draw from the load, as
well as the input and output voltages.

POWER DISTRIBUTION

You may choose to place all or most of your robot’s electronic components on a single
board. You can mount the regulator(s) directly on the board. You can also have several
smaller boards share one regulator as long as the boards together don’t pull power in excess
of what the regulator can supply. Fig. 15.11 shows how to distribute the power from a sin-
gle battery source to many separate circuit boards. The individual regulators provide power
for one or two large boards or to a half dozen or so smaller ones.

Voltage regulators are great devices, but they are somewhat “wasteful.” To work prop-
erly, the regulator must be provided with several volts more than the desired output volt-
age. For example, the 7812 �12-volt regulator needs 13 to 15 volts to deliver the full 
voltage and current specified for the device. Well-regulated 12-volt robotic systems may
require you to use an 18-volt supply.

Voltage Double and Inverters
If your robot is equipped with 12-volt motors and uses circuitry that requires only �5
and/or �12 volts, then your work is made easy for you. But if you require negative supply
voltages for some of the circuits, you’re faced with a design dilemma. Do you add more
batteries to provide the negative supply? That’s one solution, and it may be the only one
available to you if the current demand of the circuits is moderate to high.

Another approach is to use a polarity-reversal circuit, such as the one in Fig. 15.12
(refer to the parts list in Table 15.3). The current at the output is limited to less than 200
mA, but this is often enough for devices like op amps, CMOS analog switches, and 
other small devices that require a �5 or �12 vdc voltage. The negative output voltage is 
proportional to the positive output voltage. So, �12 volts in means roughly �12 volts out.
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FIGURE 15.10 A zener diode and resistor can
make a simple and inexpensive
voltage regulator. Be sure to
select the proper wattage for
the zener and the proper
wattage and resistance for 
the resistor.
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Some computer components require voltages above the normal supply. An example are
the “high-side” power MOSFET transistors in an H-bridge driver circuit. You can use the
circuit shown in Fig. 15.13 (refer to the parts list in Table 15.4) to double the supply volt-
age to provide the desired voltage. The current level at the output is very low, but it should
be enough to be used as a high-voltage pulse.

The circuits described in the previous sections of this chapter are quickly and inex-
pensively built, but because of their simplicity they can leave a lot to be desired. If you
need more precise power supplies, the power management ICs from Maxim, Texas
Instruments, and others are probably the better bet. See Appendix B, “Sources,” for more
information.

Battery Monitors
Quick! What’s the condition of the battery in your robot? With a battery monitor, you’d
know in a flash. A battery monitor continually samples the output voltage of the battery
during operation of the robot (the best time to test the battery) and provides a visual or
logic output. In this section we’ll profile the most common types.

BATTERY MONITORS 207

Unregulated
vdc in

10A
slow-blow fuse

IN OUT

GND
100µF 0.1µF

Voltage Regulator

To electronics

Board #1 

+
0.1µF

IN OUT

GND
100µF 0.1µF

Voltage Regulator

To electronics

Board #2 

+
0.1µF

IN OUT

GND
100µF 0.1µF

Voltage Regulator

To electronics

Board #3 

+
0.1µF

FIGURE 15.11 Parallel connection of circuit boards from a single power source.
Each board has its own voltage regulator.
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4.3-VOLT ZENER BATTERY MONITOR

Figure 15.14 (refer to the parts list inTable 15.5) shows a simple battery monitor using a
4.3-volt quarter-watt zener diode. R1 sets the trip point. When in operation, the LED winks
off when the voltage drops below the setpoint. To use the monitor, set R1 (which should
be a precision potentiometer, 1 or 3 turn) when the batteries to your robot are low. Adjust
the pot carefully until the LED just winks off. Recharge the batteries. The LED should now
light. Another, more “scientific” way to adjust R1 is to power the circuit using an
adjustable power supply. While watching the voltage output on a meter, set the voltage at
the trip point (e.g., for a 12-volt robot, set it to about 10 volts).

ZENER/COMPARATOR BATTERY MONITOR

A microprocessor-compatible battery monitor is shown in Fig. 15.15 (refer to the parts list
in Table 15.6). This monitor uses a 5.1-volt quarter-watt zener as a voltage reference for a
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TABLE 15.3 PARTS LIST FOR POLARITY INVERTER.

IC1 555 timer IC

R1 56K resistor

R2 10K resistor

R3 10K resistor

C1 0.033 �F ceramic capacitor

C2 220 �F electrolytic capacitor

C3 10 �F electrolytic capacitor

D1,D2 1N4148 diode

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance.
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FIGURE 15.12 A polarity inverter circuit. Current output is low but
enough for a few op amps.
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339 quad comparator IC. Only one of the comparator circuits in the IC is used; you are free
to use any of the remaining three for other applications. The circuit is set to trip when the
voltage sags below the (approximate) 5-volt threshold of the zener (in my test circuit 
the comparator tripped when the supply voltage dipped to under 4.5 volts). When this hap-
pens, the output of the comparator immediately drops to 0 volts. One advantage of this cir-
cuit is that the voltage drop at the output of the comparator is fairly steep (see Fig. 15.16).

USING A BATTERY MONITOR WITH A MICROPROCESSOR

You can usually connect battery monitors to a microprocessor or microcontroller input. When
in operation, the microprocessor is signaled by the interrupt when the LED is triggered.
Software running on the computer interprets the interrupt as “low battery; quick get a
recharge.” The robot can then place itself into nest mode, where it seeks out its own battery
charger. If the charger terminals are constructed properly, it’s possible for the robot to plug itself
in. Fig. 15.17 shows a simplified flow chart illustrating how this kind of behavior might work.
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FIGURE 15.13 A voltage doubler. The voltage at the V Source terminal is
roughly double the voltage applied to the Vcc terminal.

TABLE 15.4 PARTS LIST FOR VOLTAGE DOUBLER

IC1 555 timer IC

R1 2.2K resistor

R2 15K resistor

C1 0.01 �F ceramic capacitor

C2,C3 220 �F electrolytic capacitor

C4 470 �F electrolytic capacitor

C5 220 �F electrolytic capacitor

D1,D2 1N4148 diode

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance.
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Build a Robot Testing Power Supply
Using a battery while testing or experimenting with new robot designs is both inconvenient
and counter productive. Just when you get a circuit perfected, the battery goes dead and
must be recharged. A stand-alone power supply, which operates off of 117 VAC house cur-
rent, can supply your robot designs with regulated DC power, without requiring you to
install, replace, or recharge batteries. You can buy a ready-made power supply (they are
common in the surplus market) or make your own.

One easy-to-use and inexpensive power supply is the DC wall transformer, or “wall-
wart.” Wall-warts convert AC power into low-voltage DC, usually 6–18 volts (note:
some wall-warts only reduce the voltage, but do not convert it from AC to DC—don’t
use these!). Wall-warts have no voltage regulation, and most cannot provide more than
a few hundred milliamps of current. Use them only when you don’t need regulation 
(or when it is provided elsewhere in your circuit) and for nondemanding current 
applications.
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FIGURE 15.14 Battery monitor using 4.3-volt zener
diode. This circuit is designed to be used
with a 12-volt battery.

TABLE 15.5 PARTS LIST FOR 4.3-VOLT ZENER BATTERY MONITOR.

R1 10K potentiometer

R2,R3 1K resistor

D1 4.3-volt zener diode (1/4-watt)

Q1 2N3904 NPN transistor

LED1 Light-emitting diode

All resistors have 5 or 10 percent tolerance, 1/4-watt.
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FIGURE 15.15 A zener diode and 339 com-
parator can be used to con-
struct a fairly accurate 5-volt
battery monitor.

TABLE 15.6 PARTS LIST FOR 339 COMPARATOR BATTERY MONITOR.

IC1 339 comparator IC

R1,R2 10K resistor

D1 5.1-volt zener diode (1/4- or 1/2-watt)

All resistors have 5 or 10 percent tolerance, 1/4-watt.
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FIGURE 15.16 The output of a 339 comparator has a sharp cutoff as the voltage
goes above or below the setpoint. The voltages shown here are
representative only.
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FIGURE 15.17 Software can be used to command the robot to return
to its battery recharger nest should the battery exceed
a certain low point.
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BUILDING THE POWER SUPPLY

Refer to Fig. 15.18 for the schematic of the 5-volt regulated power supply (refer to the parts
list in Table 15.7). For safety reasons, you must enclose the power supply in a plastic or
metal chassis (plastic is better because there is less chance of a short circuit). Use a perfo-
rated board to secure the components, and solder them together using 18- or 16-gauge
insulated wire. Alternatively, you can make your own circuit board using a home etching
kit. Before constructing the board, collect all the parts and design the board to fit the spe-
cific parts you have. There is little size standardization when it comes to power supply
components and large value electrolytic capacitors, so presizing is a must.

HOW THE CIRCUIT WORKS

Here’s how the circuit works. The incoming AC is routed to the AC terminals of the trans-
former. The “hot” side of the AC is connected through a 2-amp slow-blow fuse and a sin-
gle-pole, single-throw (SPST) toggle switch. With the switch in the off (open) position, the
transformer receives no power so the supply is off.

The 117 VAC is stepped down to the secondary voltage of the transformer (12 to 18
volts, depending on the exact voltage of the transformer you use). The transformer speci-
fied here is rated at 2 amps, which is sufficient for the task at hand. Remember that the
power supply is limited to delivering the capacity of the transformer (and later the voltage
regulator), no more. A bridge rectifier, BR1 (shown schematically in the box in Fig. 15.18),
converts the AC to DC. You can also construct the rectifier using discrete diodes, and con-
nect them as shown within the dotted box.

When using the bridge rectifier, be sure to connect the leads to the proper terminals.
The two terminals marked with a “~” connect to the transformer. The “�” and “�” ter-
minals are the output and must connect as shown in the schematic in Fig. 15.18. Use a
5-volt, 1-amp regulator—a 7805—to maintain the voltage output at a steady 
5 volts.
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FIGURE 15.18 Five-volt regulated power supply using 117 VAC input.
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Note that the transformer supplies a great deal more voltage than is needed. There are
two reasons for this. First, lower-voltage 6.3- or 9-volt transformers are available, but most
do not deliver more than 0.5 amps. It is far easier to find 12- or 18-volt transformers that
deliver sufficient power. Second, to operate properly the regulator requires a few extra
volts as “overhead.”

The 7805 regulator comes in different styles. The 7805T, which comes in a TO-220-
style transistor case, delivers up to 1 amp of current. You can increase the current rating,
as long as the transformer will comply, with a 7805K regulator. This regulator comes in a
TO-3-style transistor case, and mounted on a heat sink it can deliver in excess of 3 amps.
Unless you plan to use the power supply to test only small circuits, why not opt for the larg-
er-capacity regulator. You never know when the extra current will come in handy.

Capacitors C1 and C2 filter the ripple that is inherent in the rectified DC found at the
outputs of the bridge rectifier. With the capacitors installed as shown in the schematic (note
the polarity), the ripple at the output of the power supply is negligible. LED1 and R1 form
a simple indicator. The LED will glow when the power supply is on. Remember the 220-
ohm resistor. The LED will burn up without it.

The output terminals are insulated binding posts. Don’t leave the output wires bare. The
wires may accidentally touch one another and short the supply. Solder the output wires to
the lug on the binding posts, and attach the posts to the front of the power supply chassis.
The posts accept bare wires, alligator clips, even banana plugs.

REMEMBER: SAFETY FIRST!

This circuit is the only one in the book that requires you to work with 117 VAC current.
Be extra careful when wiring the power supply circuits and triple-check your work. Never
operate the supply when the top of the cabinet is off, unless you are testing it. Even then,
stay away from the incoming AC. Touching it can cause a serious shock, and depending on
the circumstances it could kill you. Be extra certain that no wires touch the chassis or front
panel. Use an all-plastic enclosure whenever possible.
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TABLE 15.7 PARTS LIST FOR 5-VOLT POWER SUPPLY

IC1 LM7805 �5 vdc voltage regulator

BR1 4 amp bridge rectifier

T1 12 to 18 volt, 2 amp AC transformer

R1 330 ohm resistor

C1 3000 �F electrolytic capacitor, 35 volt min.

C2 100 �F electrolytic capacitor, 35 volt min.

LED1 Light-emitting diode

F1 2 amp slow—blow fuse

S1 SPST toggle switch

Misc Fuse holder, heat sink for U1, binding posts, AC cord with plug, chassis

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance.
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Do not operate the power supply if it has gotten wet, has been dropped, or shows signs
of visible damage. Fix any problems before plugging it in. Do not assemble the supply
without a fuse, and don’t use a fuse rated much higher than 2 amps. Defeating the fuse pro-
tection diminishes or eliminates the only true safety net in the circuit.

From Here
To learn more about… Read

Understanding motor current ratings Chapter 17, “Choosing the Right
Motor for the Job”

Other power systems (e.g., hydraulic) Chapter 24, “An Overview of Arm
Systems”

Power requirements for computers and microcontrollers Chapter 28, “An Overview of Robot
‘Brains’”
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As you graduate to building larger mobile robots, you should consider the physical prop-
erties of your creations, including their size, weight, and mode of transport. A robot that is
too heavy for its frame, or a locomotion mechanism that doesn’t provide sufficient stabil-
ity, will greatly hinder the usefulness of your mechanical invention.

In this chapter you’ll find a collection of assorted tips, suggestions, and caveats for
designing the locomotion systems for your robots. Because the locomotion system is inti-
mately related to the frame of the robot, we’ll cover frames a little bit as well, including their
weight and weight distribution. Of course, there’s more to the art and science of robot loco-
motion than we can possibly cover here, but what follows will serve as a good introduction.

First Things First: Weight
“He ain’t heavy; he’s my robot.…” Okay, so the old song lyrics don’t quite apply to robots,
but the sentiment has some merit. Most personal robots weight under 20 pounds, and a
high percentage of those weigh under 10 pounds. Weight is one of the most important fac-
tors affecting the mobility of a robot. A heavy robot requires larger motors and higher-
capacity batteries—both of which add even more pounds to the machine. At some point,
the robot becomes too heavy to even move.

On the other hand, robots designed for heavy-duty work often need some girth and
weight. Your own design may call for a robot that needs to weigh a particular amount in
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order for it to do the work you have envisioned. The parts of a robot that contribute the
most to its weight are the following, in (typical) descending order:

� Batteries
� Drive motors
� Frame

A 12-volt battery pack can weigh one pound; larger-capacity sealed lead-acid batteries
can weigh five to eight pounds. Heavier-duty motors will be needed to move that battery
ballast. But bigger and stronger motors weigh more because they must be made of metal
and use heavier-duty bushings. And they cost more. Suddenly, your “little robot” is not so
little anymore; it has become overweight and expensive.

TIPS FOR REDUCING WEIGHT

If you find that your robot is becoming too heavy, consider putting it on a diet, starting
with the batteries. Nickel-cadmium and nickel metal hydride batteries weigh less, volt for
volt, than their lead-acid counterparts. While nickel-cadmium and nickel metal hydride
batteries may not deliver the amp-hour capacity that a large sealed lead-acid battery will,
your robot will weigh less and therefore may not require the same stringent battery ratings
as you had originally thought.

If your robot must use a lead-acid battery, consider carefully whether you truly need the
capacity of the battery or batteries you have chosen. You may be able to install a smaller bat-
tery with a lower amp-hour rating. The battery will weigh less, but, understandably, it will need
to be recharged more often. An in-use time of 60 to 120 minutes is reasonable (that is, the
robot’s batteries must be recharged after an hour or two of continual use).

If you require longer operational times but still need to keep the weight down, consid-
er a replaceable battery system. Mount the battery where it can be easily removed. When
the charge on the battery goes down, take it out and replace it with a fully charged one.
Place the previously used battery in the recharger. The good news is that smaller, lower-
capacity batteries tend to be significantly less expensive than their larger cousins, so you
can probably buy two or three smaller batteries for the price of a single big one.

Drive motors are most often selected because of their availability and cost, not because
of their weight or construction. In fact, many robots are designed around the requirements
of the drive motor. The motors are selected (often they’re purchased surplus), and from
these the frame of the robot is designed and appropriate batteries are added. Still, it’s
important to give more thought to the selection of the motors for the robot that you have
in mind. Avoid motors that are obviously overpowered in relation to the robot in which they
are being used. Motors that are grossly oversized will add unnecessary weight, and 
they will require larger (and therefore heavier and more expensive) batteries to operate.

BEWARE OF THE HEAVY FRAME

The frame of the robot can add a surprising amount of weight. An 18-inch square, 2-foot
high robot constructed from extruded aluminum and plastic panels might weigh in excess
of 20 or 30 pounds, without motors and batteries. The same robot in wood (of sufficient
strength and quality) could weigh even more.
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Consider ways to lighten your heavy robots, but without sacrificing strength. This can
be done by selecting a different construction material and/or by using different construc-
tion techniques. For example, instead of building the base of your robot using solid 1/8-
inch (or thicker) aluminum sheet, consider an aluminum frame with crossbar members for
added stability. If you need a surface on which to mount components (the batteries and
motors will be mounted to the aluminum frame pieces), add a 1/16-inch acrylic plastic
sheet as a “skin” over the frame. The plastic is strong enough to mount circuit boards, sen-
sors, and other lightweight components on it.

Aluminum and acrylic plastic aren’t your only choices for frame materials. Other metals
are available as well, but they have a higher weight-to-size ratio. Both steel and brass weigh
several times more per square inch than aluminum. Brass sheets, rods, and tubes (both round
and square) are commonly available at hobby stores. Unless your robot requires the added
strength that brass provides, you may wish to avoid it because of its heavier weight.

Ordinary acrylic plastic is rather dense and therefore fairly heavy, considering its size.
Lighter-weight plastics are available but not always easy to find. For example, ABS and
PVC plastic—popular for plumbing pipes—can be purchased from larger plastics distrib-
utors in rod, tube, and sheet form. There are many special-purpose plastics available that
boast both structural strength and light weight. Look for Sintra plastic, for example, which
has an expanded core and smooth sides and is therefore lighter than most other plastics.
Check the availability of glues and cements before you purchase or order any material.
(See Chapter 8 for more on these and other plastics.)

CONSTRUCTING ROBOTS WITH MULTIPLE “DECKS”

For robots that have additional “decks,” like the ‘bot shown in Fig. 16.1, select construc-
tion materials that will provide rigidity but the lowest possible weight. One technique,
shown in the figure, is to use 1/2-inch thin-wall (Schedule 125) PVC pipe for uprights and
attach the “decks” using 8/32 or 10/24 all-thread rod. The PVC pipe encloses the all-
thread; both act as a strong support column. You need three such columns for a circular
robot, four columns for a square robot.

Unless your robot is heavy, be sure to use the thinner-walled Schedule 125 PVC pipe.
Schedule 80 pipe, commonly used for irrigation systems, has a heavier wall and may not be
needed. Note that PVC pipe is always the same diameter outside, no matter how thick its plas-
tic walls. The thicker the wall, the smaller the inside diameter of the pipe. You can readily cut
PVC pipe to length using a PVC pipe cutter or a hacksaw, and you can paint it if you don’t
like the white color. Use Testor model paints for best results, and be sure to spray lightly. For
a bright white look, you can remove the blue marking ink on the outside of the PVC pipe with
acetone, which is available in the paint department of your local home improvement store.

FRAME SAGGING CAUSED BY WEIGHT

A critical issue in robot frame design is excessive weight that causes the frame to “sag” in
the middle. In a typical robot, a special problem arises when the frame sags: the wheels on
either side pivot on the frame and are no longer perpendicular to the ground. Instead, they
bow out at the bottom and in at the top (this is called “negative camber”). Depending on
which robot tires you use, this can cause traction errors because the contact area of the
wheel is no longer consistent. As even more weight is added, the robot may have a ten-
dency to veer off to one side or the other.
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There are three general fixes for this problem: reduce the weight, strengthen the frame,
or add cross braces to prevent the wheels from cambering. Strengthening the frame usual-
ly involves adding even more weight. So if you can, strive for the first solution instead—
reduce the weight.

If you can’t reduce weight, look for ways to add support beams or braces to prevent the
sagging. An extra cross brace along the wheelbase (perhaps stretched between the two
motors) may be all that’s required to prevent the problem. The cross-brace can be made of
lightweight aluminum tubing or even from a wooden dowel. The tubing or dowel does not
need to support any weight; it simply needs to act as a brace to prevent compression when
the frame sags and the wheels camber.

Yet another method is to apply extreme camber to the wheels, as shown in Fig. 16.2.
This minimizes the negative effects of any sagging, and if the tires have a high frictional
surface traction is not diminished. However, don’t do this with smooth, hard plastic wheels
as they don’t provide sufficient traction. You can camber the wheels outward or inward.
Inward (negative) camber was used in the old Topo and Bob robots made by Nolan
Bushnell’s failed Androbot company of the mid-1980s. The heavy-duty robot in Fig. 16.2
uses outward (positive) camber. The robot can easily support over 20 pounds in addition to
its own weight, which is about 10 pounds, with battery, which is slung under the frame
using industrial-strength hook-and-loop (Velcro or similar) fasteners.

Horizontal Center of Balance
Your robot’s horizontal center of balance (think of it as a balance scale) indicates how well
the weight of the robot is distributed on its base. If all the weight of a robot is to one side,
for example, then the base will have a lopsided horizontal center of balance. The result is
an unstable robot: the robot may not travel in a straight line and it might even tip over.

Ideally, the horizontal center of balance of a robot should be the center of its base (see
Fig. 16.3a). Some variation of this theme is allowable, depending on the construction of
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FIGURE 16.1 “Decked” robots provide extra space for batteries
and electronics, but they can also add considerably
to the weight. Use lightweight construction materials
to avoid unduly increasing the weight of the robot.

Ch16_McComb   8/18/00  2:14 PM  Page 220



the robot. For a robot with a single balancing caster, as shown in Fig. 16.3b, it is usually
acceptable to place more weight over the drive wheels and less on the caster. This increases
traction, and as long as the horizontal center of balance isn’t extreme there is no risk that
the robot will tip over.

Unequal weight distribution is the most troublesome result if the horizontal center of
balance favors one wheel or track over the other—the right side versus the left side, for
example. This can cause the robot to continually “crab” toward the heavier side. Since the
heavier side has more weight, traction is improved, but motor speed may be impaired
because of the extra load.

Vertical Center of Gravity
City skyscrapers must be rooted firmly in the ground or else there is a risk they will top-
ple over in the slightest wind. The taller an object is, the higher its center of gravity. Of
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FIGURE 16.2 This “Tee-Bot” (so named because it employs the T-braces used
for home construction) uses extreme camber to avoid the frame
sagging that results from too much weight.
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critical importance to vertical center of gravity is the “footprint” or base area of the
object—that is, the amount of area contacting the ground. The ratio between the vertical
center of gravity and the area of the base determines how likely it is that the object will fall
over. A robot with a small base but high vertical center of gravity risks toppling over. You
can correct such a design in either of two ways:

� Reduce the height of the robot to better match the area of the base, or
� Increase the area of the base to compensate for the height of the robot.

(There is also a third method called dynamic balance. Here, mechanical weight is
dynamically repositioned to keep the robot on even kilter. These systems are difficult to
engineer and, in any event, are beyond the scope of this book.)

Which method you choose will largely depend on what you plan to use your robot for.
For example, a robot that must interact with people should be at least toddler height. For a
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FIGURE 16.3 The distribution of weight on a robot
affects its stability and traction. a.
Centering the weight down the middle in a
robot with two balancing casters; b.
Sliding the center of balance toward the
drive wheel in a single-caster ‘bot.
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“pet-size” robot you’ll probably not want to reduce the height, but rather increase the base
area to prevent the robot from tipping over.

Locomotion Issues
The way your robot gets from point A to point B is called locomotion. Robot locomotion
takes many forms, but wheels and tracks are the most common. Legged robots are also
popular, especially among hobbyists, as designing them represents a challenge both in con-
struction and weight-balance dynamics.

WHEELS AND TRACKS

Wheels, and to a lesser extent tracks, are the most common means chosen to scoot robots
around. However, some wheels are better for mobile robots than others. Some of the design
considerations you may want keep in mind include the following:

� The wider the wheels, the more the robot will tend to stay on course. With very narrow
wheels, the robot may have a tendency to favor one side or the other and will trace a
slow curve instead of a straight line. Conversely, if the wheels are too wide, the friction
created by the excess wheel area contacting the ground may hinder the robot’s ability to
make smooth turns.

� Two driven wheels positioned on either side of the robot (and balanced by one or two
casters on either end) can provide full mobility. This is the most common drive wheel
arrangement.

� Tracks turn by skidding or slipping, and they are best used on surfaces such as dirt that
readily allow low-friction steering.

� Four or more driven wheels, mounted in sets on each side, will function much like
tracks. In tight turns, the wheels will experience significant skidding, and they will
therefore create friction over any running surface. If you choose this design, position the
wheel sets close together.

� You should select wheel and track material to reflect the surface the robot will be used
on. Rubber and foam are common choices; both provide adequate grip for most kinds
of surfaces. Foam tires are lighter in weight, but they don’t skid well on hard surfaces
(such as hardwood or tile floors).

LEGS

Thanks to the ready availability of smart microcontrollers, along with the low cost of
R/C (radio-controlled) servos, legged automatons are becoming a popular alternative
for robot builders. Robots with legs require more precise construction than the average
wheeled robot. They also tend to be more expensive. Even a “basic” six-legged walk-
ing robot requires a minimum of 2 or 3 servos, with some six- and eight-leg designs
requiring 12 or more motors. At about $12 per servo (more for higher-quality ones), the
cost can add up quickly!
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Obviously, the first design decision is the number of legs. Robots with one leg (“hop-
pers”) or two legs are the most difficult to build because of balance issues, and we will not
address them here. Robots with four and six legs are more common. Six legs offer a static
balance that ensures that the robot won’t easily fall over. At any one time, a minimum of
three legs touch the ground, forming a stable tripod.

In a four-legged robot, either the robot must move one leg at a time—keeping the other
three on the ground for stability—or else employ some kind of dynamic balance when only
two of its legs are on the ground at any given time. Dynamic balance is often accomplished
by repositioning the robot’s center of gravity, typically by moving a weight (such as the
robot’s head or tail, if it has one). This momentarily redistributes the center of balance to
prevent the robot from falling over. The algorithms and mechanisms for achieving dynamic
balance are not trivial. Four-legged robots are difficult to steer, unless you add additional
degrees of freedom for each leg or articulate the body of the beast like those weird seg-
mented city buses you occasionally see.

The movement of the legs with respect to the robot’s body is often neglected in the
design of legged robots. The typical six-legged (hexapod) robot uses six identical legs. Yet
the crawling insect a hexapod robot attempts to mimic is designed with legs of different
lengths and proportions—the legs are made to do different things. The back legs of an
insect, for example, are often longer and are positioned near the back for pushing (this is
particularly true of insects that burrow through dirt). The front legs may be similarly con-
structed for digging, carrying food, fighting, and walking. You may wish to replicate this
design, or something similar, for your own robots. Watch some documentaries on insects
and study how they walk and how their legs are articulated. Remember that the cockroach
has been around for over a million years and represents a very advanced form of biologi-
cal engineering!

Motor Drives
Next to the batteries, the drive motors are probably the heaviest component in your robot.
You’ll want to carefully consider where the drive motor(s) are located and how the weight
is distributed throughout the base.

One of the most popular mobile robot designs uses two identical motors to spin two
wheels on opposite sides of the base. These wheels provide forward and backward loco-
motion, as shown in Fig. 16.4, as well as left and right steering. If you stop the left motor,
the robot turns to the left. By reversing the motors relative to one another, the robot turns
by spinning on its wheel axis (“turns in place”). You use this forward-reverse movement to
make “hard” or sharp right and left turns.

CENTER-LINE DRIVE MOTOR MOUNT

You can place the wheels—and hence the motors—just about anywhere along the length of
the platform. If they are placed in the middle, as shown in Fig. 16.5, you should add two
casters to either end of the platform to provide stability. Since the motors are in the center
of the platform, the weight is more evenly distributed across it. You can place the battery or
batteries above the center line of the wheel axis, which will maintain the even distribution.
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A benefit of center-line mounting is that the robot has no “front” or “back,” at least as
far as the drive system is concerned. Therefore, you can create a kind of multidirectional
robot that can move forward and backward with the same ease. Of course, this approach
also complicates the sensor arrangement of your robot. Instead of having bump switches
only in the front of your robot, you’ll need to add additional ones in the back in case the
robot is reversing direction when it strikes an object.
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Forward Reverse

Right turn Left turn

Hard right turnHard left turn

FIGURE 16.4 Two motors mounted on either side of the
robot can power two wheels. Casters pro-
vide balance. The robot steers by changing
the speed and direction of each motor.

Ch16_McComb   8/18/00  2:14 PM  Page 225



FRONT-DRIVE MOTOR MOUNT

You can also position the wheels on one end of the platform. In this case, you add one caster
on the other end to provide stability and a pivot for turning, as shown in Fig. 16.6. Obviously,
the weight is now concentrated more on the motor side of the platform. You should place more
weight over the drive wheels, but avoid putting all the weight there since maneuverability and
stability may be diminished.

One advantage of front-drive mounting is that it simplifies the construction of the robot.
Its “steering circle,” the diameter of the circle in which the robot can be steered, is still the
same diameter as the center-line drive robot. However, it extends beyond the front/back
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Caster

Caster

FIGURE 16.5 A robot with a centerline motor mount uses
two casters (very occasionally one) for bal-
ance. When using one caster, you may need to
shift the balance of weight toward the caster
end to avoid having the robot tip over.

Caster

FIGURE 16.6 A robot with a front-drive motor mount uses a
single opposing caster for balance. Steering is
accomplished using the same technique as a
centerline motor mount.
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dimension of the robot (see Fig. 16.7). This may or may not be a problem, depending on
the overall size of your robot and how you plan to use it. Any given front-drive robot may
be smaller than its centerline drive cousin. Because of the difference in their physical size,
the diameter of the steering circle for both may be about the same.

CASTER CHOICES

As we mentioned earlier, most robots employing the two motor drive system use at least
one unpowered caster, which provides support and balance. Two casters are common in
robots that use center-line drive-wheel mounting. Each caster is positioned at opposite
ends of the robot. When selecting casters it is important to consider the following factors:

� The size of the caster wheel should be in proportion to the drive wheels (see Fig. 16.8).
When the robot is on the ground the drive motors must firmly touch terra firma. If the
caster wheels are too large, the drive motors may not make adequate contact, and poor
traction will result. You might also consider using a suspension system of your own
design on the casters to compensate for uneven terrain.
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Steering circle for
center-line robot

Steering circle for
front-drive robot

FIGURE 16.7 The steering circle of a robot with cen-
terline and front-drive mounted motors.
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� The casters should spin and swivel freely. A caster that doesn’t spin freely will impede
the robot’s movement.

� In most cases, since the caster is provided only for support and not traction you should
construct the caster from a hard material to reduce friction. A caster made of soft rub-
ber will introduce more friction, and it may affect a robot’s movements.

� Consider using “ball casters” (also called “ball transfers”), which are primarily
designed to be used in materials processing (conveyor chutes and the like). Ball casters
(see Fig. 16.9) are made of a single ball—either metal or rubber—held captive in a
housing, and they function as omnidirectional casters for your robot. The size of the ball
varies from about 11/16 inch to over 3 inches in diameter. Look for ball casters at
mechanical surplus stores and also at industrial supply outlets, such as Grainger and
McMaster-Carr.

Steering Methods
A variety of methods are available to steer your robot. The following sections describe sev-
eral of the more common approaches.
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FIGURE 16.8 The height of the caster with respect to the drive
wheels will greatly influence the robot’s traction and
maneuverability. A spring-loaded caster (a kind of sus-
pension) can improve functionality of the robot on
semirough terrain.

Ch16_McComb   8/18/00  2:14 PM  Page 228



DIFFERENTIAL

For wheeled and tracked robots, differential steering is the most common method for getting
the machine to go in a different direction. The technique is exactly the same as steering a mil-
itary tank: one side of wheels or treads stops or reverses direction while the other side keeps
going. The result is that the robot turns in the direction of the stopped or reversed wheel or tread.
Because of friction effects, differential steering is most practical with two-wheel-drive systems.
Additional sets of wheels, as well as rubber treads, can increase friction during steering.

� If you are using multiple wheels (“dually”), position the wheels close together, as shown
in Fig. 16.10. The robot will pivot at a virtual point midway between the two wheels on
each side.
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FIGURE 16.9 Ball casters (or ball transfers) are omnidirectional. For
medium- to large-sized robots consider using them
instead of wheeled casters.

Base

"Dually" drive wheels  

FIGURE 16.10 “Dually” wheels should be placed close to one
another. If they are spaced farther apart the robot
cannot steer as easily.
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� If you are using treads, select a relatively low-friction material such as cloth or hard
plastic. Very soft rubber treads will not steer well on smooth surfaces. If this cannot
be helped, one approach is to always steer by reversing the tread directions. This will
reduce the friction.

CAR-TYPE

Pivoting the wheels in the front is yet another method for steering a robot (see Fig. 16.11).
Robots with car-type steering are not as maneuverable as differentially steered robots, but
they are better suited for outdoor uses, especially over rough terrain. You can obtain some-
what better traction and steering accuracy if the wheel on the inside of the turn pivots more
than the wheel on the outside. This technique is called Ackerman steering and is found on
most cars but not on as many robots.

TRICYCLE

One of the greatest drawbacks of the differentially steered robot is that the robot will veer
off course if one motor is even a wee bit slow. You can compensate for this by monitoring
the speed of both motors and ensuring that they operate at the same rpm. This typically
requires a control computer, as well as added electronics and mechanical parts for sensing
the speed of the wheels.

Car-type steering, described in the last section, is one method for avoiding the problem
of “crabbing” as a result of differences in motor speed simply because the robot is driven
by just one motor. But car-type steering makes for fairly cumbersome indoor mobile
robots. A better approach is to use a single drive motor powering two rear wheels and a sin-
gle steering wheel in the front. This arrangement is just like a child’s tricycle, as shown in
Fig. 16.12. The robot can be steered in a circle just slightly larger than the width of the
machine. Be careful about the wheelbase of the robot (distance from the back wheels to
the front steering wheel). A short base will cause instability in turns, and the robot will tip
over opposite the direction of the turn.

Tricycle-steered robots must have a very accurate steering motor in the front. The
motor must be able to position the front wheel with subdegree accuracy. Otherwise, there
is no guarantee the robot will be able to travel a straight line. Most often, the steering
wheel is controlled by a servo motor. Servo motors use a “closed-loop feedback” system
that provides a high degree of positional accuracy (depending on the quality of the
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FIGURE 16.11 Car-type steer-
ing offers a workable alternative
for an outdoors robot, but it is
less useful indoors or in places
where there are many obstruc-
tions that must be steered around.
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motor, of course). Read more about servo motors in Chapter 20, “Working with Servo
Motors.”

OMNIDIRECTIONAL

To have the highest tech of all robots, you may want omnidirectional drive. It uses steer-
able drive wheels, usually at least three, as shown in Fig. 16.13. The wheels are operated
by two motors: one for locomotion and one for steering. In the usual arrangement, the
drive/steering wheels are “ganged” together using gears, rollers, chains, or pulleys.
Omnidirectional robots exhibit excellent maneuverability and steering accuracy, but they
are technically more difficult to construct.

Calculating the Speed of Robot Travel
The speed of the drive motors is one of two elements that determines the travel speed of
your robot. The other is the diameter of the wheels. For most applications, the speed of the
drive motors should be under 130 rpm (under load). With wheels of average size, the resul-
tant travel speed will be approximately four feet per second. That’s actually pretty fast. A
better travel speed is one to two feet per second (approximately 65 rpm), which requires
smaller diameter wheels, a slower motor, or both.

How do you calculate the travel speed of your robot? Follow these steps:

1. Divide the rpm speed of the motor by 60. The result is the revolutions of the motor per
second (rps). A 100-rpm motor runs at 1.66 rps.

2. Multiply the diameter of the drive wheel by pi, or approximately 3.14. This yields the cir-
cumference of the wheel. A 7-inch wheel has a circumference of about 21.98 inches.

3. Multiply the speed of the motor (in rps) by the circumference of the wheel. The result
is the number of linear inches covered by the wheel in one second.

With a 100-rpm motor and 7-inch wheel, the robot will travel at a top speed of 35.168
inches per second, or just under three feet. That’s about two miles per hour! You can read-
ily see that you can slow down a robot by decreasing the size of the wheel. By reducing
the wheel to 5 inches instead of 8, the same 100-rpm motor will propel the robot at about
25 inches per second. By reducing the motor speed to, say, 75 rpm, the travel speed falls
even more, to 19.625 inches per second. Now that’s more reasonable.
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Steering
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Drive
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FIGURE 16.12 In tricycle steer-
ing, one drive motor powers the
robot; a single wheel in front
steers the robot. Be wary of short
wheelbases as this can introduce
tipping when the robot turns.
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Bear in mind that the actual travel speed once the robot is all put together may be lower
than this. The heavier the robot, the larger the load on the motors, so the slower they will turn.

Round Robots or Square?
Robots can’t locomote where they can’t fit. Obviously, a robot that’s too large to fit through
doorways and halls will have a hard time of it. In addition, the overall shape of a robot will
also dictate how maneuverable it is, especially indoors. If you want to navigate your robot
in tight areas, you should consider its basic shape: round or square.

� A round robot is generally able to pass through smaller openings, no matter what its ori-
entation when going through the opening (see Fig. 16.14). To make a round robot, you
must either buy or make a rounded base or frame. Whether you’re working with metal,
steel, or wood, a round base or frame is not as easy to construct as a square one.

� A square robot must orient itself so that it passes through openings straight ahead rather
than at an angle. Square-shaped robot bases and frames are easier to construct than
round ones.

While you’re deciding whether to build a round- or square-shaped robot, consider that
a circle of a given diameter has less surface area than a square of the same width. For
example, a 10-inch circle has a surface area of about 78 square inches. Moreover, because
the surface of the base is circular, less of it will be useful for your robot (unless your print-
ed circuit boards are also circular). Conversely, a 10-inch-by-10-inch square robot has a
surface area of 100 inches. Such a robot could be reduced to about 8.5 inches square, and
it would have about the same surface area as a 10-inch round robot, and its surface area
would be generally more usable.
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Steering and
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FIGURE 16.13 An omnidirectional robot uses the
same wheels for drive and steering.

Ch16_McComb   8/18/00  2:14 PM  Page 232



ROUND ROBOTS OR SQUARE? 233

Path of
robot

Path of
robot

Path of
robot
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FIGURE 16.14 A round robot versus a square robot. All
things being equal, a round robot is better
able to navigate through small openings.
However, rounded robots also have less
usable surface area, so a square-shaped
robot can be made smaller and still support
the same onboard “real estate.”

Ch16_McComb   8/18/00  2:14 PM  Page 233



From Here
To learn more about… Read

Selecting wood, plastic, or metal to Chapter 8–10
construct your robot

Choosing a battery for your robot Chapter 15, “All about Batteries and Robot Power
Supplies”

Selecting motors Chapter 17, “Choosing the Right Motor for the Job”

Building a walking robot Chapter 22, “Build a Heavy-duty, Six-legged Walking
Robot”

Constructing a treaded robot Chapter 23, “Advanced Locomotion Systems”

Controlling the speed of a two-
motor-driven robot Chapter 38, “Navigating through Space”
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Motors are the muscles of robots. Attach a motor to a set of wheels and your robot
can scoot around the floor. Attach a motor to a lever, and the shoulder joint for your
robot can move up and down. Attach a motor to a roller, and the head of your robot
can turn back and forth, scanning its environment. There are many kinds of motors;
however, only a select few are truly suitable for homebrew robotics. In this chapter,
we’ll examine the various types of motors and how they are used.

AC or DC?
Direct current—DC—dominates the field of robotics, either mobile or stationary.
DC is used as the main power source for operating the onboard electronics, for
opening and closing solenoids, and, yes, for running motors. Few robots use
motors designed to operate from AC, even those automatons used in factories.
Such robots convert the AC power to DC, then distribute the DC to various sub-
systems of the machine.

DC motors may be the motors of choice, but that doesn’t mean you should use
just any DC motor in your robot designs. When looking for suitable motors, be sure
the ones you buy are reversible. Few robotic applications call for just unidirectional
(one-direction) motors. You must be able to operate the motor in one direction, stop
it, and change its direction. DC motors are inherently bidirectional, but some design
limitations may prevent reversibility.

17
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The most important factor is the commutator brushes. If the brushes are slanted, the
motor probably can’t be reversed. In addition, the internal wiring of some DC motors pre-
vents them from going in any but one direction. Spotting the unusual wiring scheme by
just looking at the exterior or the motor is difficult, at best, even for a seasoned motor user.

The best and easiest test is to try the motor with a suitable battery or DC power supply.
Apply the power leads from the motor to the terminals of the battery or supply. Note the
direction of rotation of the motor shaft. Now, reverse the power leads from the motor. The
motor shaft should rotate in reverse.

Continuous or Stepping
DC motors can be either continuous or stepping. Here is the difference: with a continuous
motor, like the ones in Fig. 17.1, the application of power causes the shaft to rotate con-
tinually. The shaft stops only when the power is removed or if the motor is stalled because
it can no longer drive the load attached to it.

With stepping motors, shown in Fig. 17.2, the application of power causes the shaft to
rotate a few degrees, then stop. Continuous rotation of the shaft requires that the power be
pulsed to the motor. As with continuous DC motors, there are subtypes of stepping motors.
Permanent magnet steppers are the ones you’re likely to encounter, and they are also the
easiest to use.

The design differences between continuous and stepping DC motors need to be
addressed in detail. Chapter 18, “Working with DC Motors,” focuses entirely on continu-
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FIGURE 17.1 An assortment of DC motors.
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ous motors. Chapter 19, “Working with Stepper Motors,” focuses entirely on the stepping
variety. Although these two chapters focus on the main drive motors of your robot, you can
apply the information to motors used for other purposes as well.

Servo Motors
A special “subset” of continuous motors is the servo motor, which in typical cases com-
bines a continuous DC motor with a “feedback loop” to ensure the accurate positioning of
the motor. A common form of servo motor is the kind used in model and hobby radio-con-
trolled (R/C) cars and planes.

R/C servos are in plentiful supply, and their cost is reasonable (about $10–12 for basic
units). Though R/C servos are continuous DC motors at heart, we will devote a separate
chapter just to them. See Chapter 20, “Working with Servo Motors,” for more information
on using R/C servo motors not only to drive your robot creations across the floor but to
operate robot legs, arms, hands, heads, and just about any other appendage.

Other Motor Types
There are many other types of motors, some of which may be useful in your hobby robot,
some of which will not. DC, stepper, and servo motors are the most common, but you may
also see references to some of the following:
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FIGURE 17.2 An assortment of stepper motors.
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� Brushless DC. This is a kind of DC motor that has no brushes. It is controlled elec-
tronically. Brushless DC motors are commonly used in fans inside computers and for
motors in VCRs and videodisc players.

� Switched reluctance. This is a DC motor without permanent magnets.
� Synchronous. Also known as brushless AC, this motor operates synchronously with the

phase of the power supply current. These motors function much like stepper motors,
which will be discussed in Chapter 19.

� Synchro. These motors are considered distinct from the synchronous variety, described
above. Synchro motors are commonly designed to be used in pairs, where a “master”
motor electrically controls a “slave” motor. Rotation of the master causes an equal
amount of rotation in the slave.

� AC induction. This is the ordinary AC motor used in fans, kitchen mixers, and many
other applications.

� Sel-Syn. This is a brand name, often used to refer to synchronous AC motors.

Note that AC motors aren’t always operated at 50/60 Hz, which is common for house-
hold current. Motors for 400-Hz operation, for example, are common in surplus stores and
are used for both aircraft and industrial applications.

Motor Specifications
Motors come with extensive specifications. The meaning and purpose of some of the specifi-
cations are obvious; others aren’t. Let’s take a look at the primary specifications of motors—
voltage, current draw, speed, and torque—and see how they relate to your robot designs.

OPERATING VOLTAGE

All motors are rated by their operating voltage. With small DC “hobby” motors, the rating
is actually a range, usually 1.5 to 6 volts. Some high-quality DC motors are designed for
a specific voltage, such as 12 or 24 volts. The kinds of motors of most interest to robot
builders are the low-voltage variety—those that operate at 1.5 to 12 volts.

Most motors can be operated satisfactorily at voltages higher or lower than those spec-
ified. A 12-volt motor is likely to run at 8 volts, but it may not be as powerful as it could
be, and it will run slower (an exception to this is stepper motors; see Chapter 19, “Working
with Stepper Motors,” for details). You’ll find that most motors will refuse to run, or will
not run well, at voltages under 50 percent of the specified rating.

Similarly, a 12-volt motor is likely to run at 16 volts. As you may expect, the speed of
the shaft rotation increases, and the motor will exhibit greater power. I do not recommend
that you run a motor continuously at more than 30 or 40 percent its rated voltage, however.
The windings may overheat, which may cause permanent damage. Motors designed for
high-speed operation may turn faster than their ball-bearing construction allows.

If you don’t know the voltage rating of a motor, you can take a guess at it by trying var-
ious voltages and seeing which one provides the greatest power with the least amount of
heat dissipated through the windings (and felt on the outside of the case). You can also lis-
ten to the motor. It should not seem as if it is straining under the stress of high speeds.
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CURRENT DRAW

Current draw is the amount of current, in milliamps or amps, that the motor requires from
the power supply. Current draw is more important when the specification describes motor
loading, that is, when the motor is turning something or doing some work. The current draw
of a free-running (no-load) motor can be quite low. But have that same motor spin a wheel,
which in turn moves a robot across the floor, and the current draw jumps 300, 500, even
1000 percent.

With most permanent magnet motors (the most popular kind), current draw increases with
load. You can see this visually in Fig. 17.3. The more the motor has to work to turn the shaft,
the more current is required. The load used by the manufacturer when testing the motor isn’t
standardized, so in your application the current draw may be more or less than that specified.

A point is reached when the motor does all the work it can do, and no more current will
flow through it. The shaft stops rotating; the motor has “stalled.” Some motors, but not
many, are rated (by the manufacturer) by the amount of current they draw when stalled.
This is considered the worse-case condition. The motor will never draw more than this cur-
rent unless it is shorted out, so if the system is designed to handle the stall current it can
handle anything. Motors rated by their stall current will be labeled as such. Motors
designed for the military, available through surplus stores, are typically rated by their 
stall current. When providing motors for your robots, you should always know the approx-
imate current draw under load. Most volt-ohm meters can test current. Some special-pur-
pose amp meters are made just for the job.

Be aware that some volt-ohm meters can’t handle the kind of current pulled through a
motor. Most digital meters (discussed more completely in Chapter 3, “Tools and Supplies”)
can’t deal with more than 200 to 400 milliamps of current. Even small hobby motors can
draw in excess of this. Be sure your meter can accommodate current up to 5 or 10 amps.

If your meter cannot register this high without popping fuses or burning up, insert a
1- to 10-ohm power resistor (10 to 20 watts) between one of the motor terminals and the
positive supply rail, as shown in Fig. 17.4. With the meter set on DC voltage, measure
the voltage developed across the resistor.

A bit of Ohm’s law, I � E/R (I is current, E is voltage, R is resistance) reveals the cur-
rent draw through the motor. For example, if the resistance is 10 ohms and the voltage is
2.86 volts, the current draw is 286 mA. You can watch the voltage go up (and therefore the
current too) by loading the shaft of the motor.
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FIGURE 17.3 The current draw of a motor increases in
proportion to the load on the motor shaft.
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SPEED

The rotational speed of a motor is given in revolutions per minute (rpm). Most continuous
DC motors have a normal operating speed of 4000 to 7000 rpm. However, some special-
purpose motors, such as those used in tape recorders and computer disk drives, operate as
slow as 2000 to 3000 rpm. For just about all robotic applications, these speeds are much
too high. You must reduce the speed to no more than 150 rpm (even less for motors dri-
ving arms and grippers) by using a gear train. You can obtain some reduction by using elec-
tronic control, as described in Part 5 of this book, “Computers and Electronic Control.”
However, such control is designed to make fine-tuned speed adjustments, not reduce the
rotation of the motor from 5000 rpm to 50 rpm. See the later sections of this chapter for
more details on gear trains and how they are used.

Note that the speed of stepping motors is not rated in rpm but in steps (or pulses) per
second. The speed of a stepper motor is a function of the number of steps that are required
to make one full revolution plus the number of steps applied to the motor each second. As
a comparison, the majority of light- and medium-duty stepper motors operate at the
equivalent of 100 to 140 rpm. See Chapter 19, “Working with Stepper Motors,” for more
information.

TORQUE

Torque is the force the motor exerts upon its load. The higher the torque, the larger the load
can be and the faster the motor will spin under that load. Reduce the torque, and the motor
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FIGURE 17.4 How to test the current draw of a motor by measuring the
voltage developed across an in-line resistor. The actual
value of the resistor can vary, but it should be under about
20 ohms. Be sure the resistor is a high-wattage type.
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slows down, straining under the workload. Reduce the torque even more, and the load may
prove too demanding for the motor. The motor will stall to a grinding halt, and in doing so
eat up current (and put out a lot of heat).

Torque is perhaps the most confusing design aspect of motors. This is not because there
is anything inherently difficult about it but because motor manufacturers have yet to settle
on a standard means of measurement. Motors made for industry are rated one way, motors
for the military another.

At its most basic level, torque is measured by attaching a lever to the end of the motor
shaft and a weight or gauge on the end of that lever, as depicted in Fig. 17.5. The lever can
be any number of lengths: one centimeter, one inch, or one foot. Remember this because
it plays an important role in torque measurement. The weight can either be a hunk of lead
or, more commonly, a spring-loaded scale (as shown in the figure). Turn the motor on and
it turns the lever. The amount of weight it lifts is the torque of the motor. There is more to
motor testing than this, of course, but it’ll do for the moment.

Now for the ratings game. Remember the length of the lever? That length is used in the
torque specification. If the lever is one inch long, and the weight successfully lifted is two
ounces, then the motor is said to have a torque of two ounce-inches, or oz-in. (Some peo-
ple reverse the “ounce” and “inches” and come up with “inch-ounces.”)

The unit of length for the lever usually depends on the unit of measurement given for the
weight. When the weight is in grams, the lever is in centimeters (gm-cm). When the weight
is in ounces, as already seen, the lever used is in inches (oz-in). Finally, when the weight is
in pounds, the lever used is commonly in feet (lb-ft). Like the ounce-inch measurement,
gram-centimeter and pound-foot specifications can be reversed—“centimeter-gram” or
“foot-pound.” Note that these easy-to-follow conventions aren’t always used. Some motors
may be rated by a mixture of the standards—ounces and feet or pounds and inches.
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FIGURE 17.5 The torque of a motor is measured by attach-
ing a weight or scale to the end of a lever and
mounting the lever of the motor shaft.
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STALL OR RUNNING TORQUE

Most motors are rated by their running torque, or the force they exert as long as the
shaft continues to rotate. For robotic applications, it’s the most important rating
because it determines how large the load can be and still guarantee that the motor
turns. How running torque tests are conducted varies from one motor manufacturer to
another, so results can differ. The tests are impractical to duplicate in the home shop,
unless you have an elaborate slip-clutch test stand, precision scale, and sundry other
test jigs.

If the motor(s) you are looking at don’t have running torque ratings, you must esti-
mate their relative strength. This can be done by mounting them on a makeshift wood or
metal platform, attaching wheels to them, and having them scoot around the floor. If the
motor supports the platform, start piling on weights. If the motor continues to operate
with, say, 40 or 50 pounds of junk on the platform, you’ve got an excellent motor for dri-
ving your robot.

Some motors you may test aren’t designed for hauling heavy loads, but they may be
suitable for operating arms, grippers, and other mechanical components. You can test the
relative strength of these motors by securing them in a vise, then attaching a large pair of
Vise-Grips or other lockable pliers to them. Use your own hand as a test jig, or rig one up
with fishing weights. Determine the rotational power of the motor by applying juice to the
motor and seeing how many weights it can successfully handle.

Such crude tests make more sense if you have a “standard” by which to judge oth-
ers. If you’ve designed a robotic arm before, for example, and are making another one,
test the motors that you successfully used in your prototype. If subsequent motors fail
to match or exceed the test results of the standard, you know they are unsuitable for 
the test.

Another torque specification, stall torque, is sometimes provided by the manufacturer
instead of or in addition to running torque (this is especially true of stepping motors). Stall
torque is the force exerted by the motor when the shaft is clamped tight. There is an indi-
rect relationship between stall torque and running torque, and although it varies from
motor to motor you can use the stall torque rating when you select candidate motors for
your robot designs.

Gears and Gear Reduction
We’ve already discussed the fact that the normal running speed of motors is far too fast for
most robotics applications. Locomotion systems need motors with running speeds of 75 to
150 rpm. Any faster than this, and the robot will skim across the floor and bash into walls
and people. Arms, gripper mechanisms, and most other mechanical subsystems need even
slower motors. The motor for positioning the shoulder joint of an arm needs to have a
speed of less than 20 rpm; 5 to 8 rpm is even better.

There are two general ways to decrease motor speed significantly: build a bigger
motor (impractical) or add gear reduction. Gear reduction is used in your car, on your
bicycle, in the washing machine and dryer, and in countless other motor-operated
mechanisms.
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GEARS 101

Gears perform two important duties. First, they can make the number of revolutions
applied to one gear greater or lesser than the number of revolutions of another gear that is
connected to it. They also increase or decrease power, depending on how the gears are ori-
ented. Gears can also serve to simply transfer force from one place to another.

Gears are actually round levers, and it may help to explain how gears function by first
examining the basic mechanical lever. Place a lever on a fulcrum so the majority of the
lever is on one side. Push up on the long side, and the short side moves in proportion.
Although you may move the lever several feet, the short side is moved only a few inches.
Also note that the force available on the short end is proportionately larger than the force
applied on the long end. You use this wonderful fact of physics when you dig a rock out of
the ground with your shovel or jack up your car to replace a tire.

Now back to gears. Attach a small gear to a large gear, as shown in Fig. 17.6. The small
gear is directly driven by a motor. For each revolution of the small gear, the large gear turns
one half a revolution. Expressed another way, if the motor and small gear turn at 1000 rpm,
the large gear turns at 500 rpm. The gear ratio is said to be 2:1.

Note that another important thing happens, just as it did with the lever and fulcrum.
Decreasing the speed of the motor also increases its torque. The power output is approxi-
mately twice the input. Some power is lost in the reduction process due to the friction of
the gears. If the drive and driven gears are the same size, the rotation speed is neither
increased nor decreased, and the torque is not affected (apart from small frictional losses).
You can use same-size gears in robotics design to transfer motive power from one shaft to
another, such as driving a set of wheels at the same speed and in the same direction.

ESTABLISHING GEAR REDUCTION

Gears are an old invention, going back to ancient Greece. Today’s gears are more refined,
and they are available in all sorts of styles and materials. However, they are still based on
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FIGURE 17.6 A representation of a 2:1
gear reduction ratio.
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the old Greek design in which the teeth from the two mating gears mesh with each other.
The teeth provide an active physical connection between the two gears, and the force is
transferred from one gear to another.

Gears with the same size teeth are usually characterized not by their physical size but
by the number of teeth around their circumference. In the example in Fig. 17.6, the small
gear contains 15 teeth, the large gear 30 teeth. And, you can string together a number of
gears one after the other, all with varying numbers of teeth (see Fig. 17.7). Attach a
tachometer to the hub of each gear, and you can measure its speed. You’ll discover the fol-
lowing two facts:

� The speed always decreases when going from a small to a large gear.
� The speed always increases when going from a large to a small gear.

There are plenty of times when you need to reduce the speed of a motor from 5000 rpm
to 50 rpm. That kind of speed reduction requires a reduction ratio of 100:1. To accomplish
that with just two gears you would need, as an example, a drive gear that has 10 teeth and
a driven gear that has 1000 teeth. That 1000-tooth gear would be quite large, bigger than
the drive motor itself.

You can reduce the speed of a motor in steps by using the arrangement shown in Fig. 17.8.
Here, the driver gear turns a larger “hub” gear, which in turn has a smaller gear permanent-
ly attached to its shaft. The small hub gear turns the driven gear to produce the final output
speed, in this case 50 rpm. You can repeat this process over and over again until the 
output speed is but a tiny fraction of the input speed. This is the arrangement most often
used in motor gear reduction systems.

USING MOTORS WITH GEAR REDUCTION

It’s always easiest to use DC motors that already have a gear reduction box built onto them,
such as the motor in Fig. 17.9. R/C servo motors already incorporate gear reduction, and
stepper motors may not require it. This fact saves you from having to find a gear reducer
that fits the motor and application and attach it yourself. When selecting gear motors,
you’ll be most interested in the output speed of the gearbox, not the actual running speed
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FIGURE 17.7 Gears driven by the 20-tooth gear on the left rotate at different
speeds, depending on their diameter.

Ch17_McComb   8/29/00  8:36 AM  Page 244



of the motor. Note as well that the running and stall torque of the motor will be greatly
increased. Make sure that the torque specification on the motor is for the output of the
gearbox, not the motor itself.

With most gear reduction systems, the output shaft is opposite the input shaft (but usu-
ally off center). With other boxes, the output and input are on the same side of the box.
When the shafts are at 90 degrees from one another, the reduction box is said to be a “right-
angle drive.” If you have the option of choosing, select the kind of gear reduction that best
suits the design of your robot. I have found that the “shafts on opposite sides” is the all-
around best choice. Right-angle drives also come in handy, but they usually carry high
price tags.

When using motors without built-in gear reduction, you’ll need to add reduction boxes,
such as the model shown in Fig. 17.10, or make your own. Although it is possible to do
both of these yourself, there are many pitfalls:

� Shaft diameters of motors and ready-made gearboxes may differ, so you must be sure
that the motor and gearbox mate.

� Separate gear reduction boxes are hard to find. Most must be cannibalized from salvage
motors. Old AC motors are one source of surplus boxes.

� When designing your own gear reduction box, you must take care to ensure that all the
gears have the same hub size and that meshing gears exactly match each other.

� Machining the gearbox requires precision, since even a small error can cause the gears
to mesh improperly.

ANATOMY OF A GEAR

Gears consist of teeth, but these teeth can come in any number of styles, sizes, and orien-
tations. Spur gears are the most common type. The teeth surround the outside edge of the
gear, as shown in Fig. 17.11. Spur gears are used when the drive and driven shafts are par-
allel. Bevel gears have teeth on the surface of the circle rather than the edge. They are used
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FIGURE 17.9 A motor with an enclosed gearbox. These are ideal for robotics use.

FIGURE 17.10 A gear reduction box, originally removed from an open-frame
AC motor. On this unit, the input and output shafts are on the
same side.
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to transmit power to perpendicular shafts. Miter gears serve a similar function but are
designed so that no reduction takes place. Spur, bevel, and miter gears are reversible. That
is, unless the gear ratio is very large, you can drive the gears from either end of the gear
system, thus increasing or decreasing the input speed.

Worm gears transmit power perpendicularly, like bevel and miter gears, but their design
is unique. The worm (or lead screw) resembles a threaded rod. The rod provides the power.
As it turns, the threads engage a modified spur gear (the modification takes into consider-
ation the cylindrical shape of the worm).

Worm gear systems are specifically designed for large-scale reduction. The gearing is
not usually reversible; you can’t drive the worm by turning the spur gear. This is an impor-
tant point because it gives worm gear systems a kind of automatic locking capability. Work
gears are particularly well suited for arm mechanisms in which you want the joints to
remain where they are. With a traditional gear system, the arm may droop or sink back due
to gravity once the power from the drive motor is removed.

Rack gears are like spur gears unrolled into a flat rod. They are primarily intended to
transmit rotational motion to linear motion. Racks have a kind of self-locking characteris-
tic as well, but it’s not as strong as that found in worm gears.

The size of gear teeth is expressed as pitch, which is roughly calculated by counting the
number of teeth on the gear and dividing it by the diameter of the gear. For example, a gear
that measures two inches and has 48 teeth has a tooth pitch of about 24. Common pitches
are 12 (large), 24, 32, and 48. Some gears have extra-fine 64-pitch teeth, but these are 
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FIGURE 17.11 Spur gears. These particular gears are made of nylon and have
aluminum hubs. It’s better to use metal hubs in which the gear is
secured to the shaft with a setscrew.
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usually confined to miniature mechanical systems, such as radio-controlled models. Odd-
sized pitches exist, of course, as do metric sizes, so you must be careful when matching
gears that the pitches are exactly the same. Otherwise, the gears will not mesh properly and
may cause excessive wear.

The degree of slope of the face of each tooth is called the pressure angle. The most
common pressure angle is 20°, although some gears, particularly high-quality worms and
racks, have a 14 1/2° pressure angle. Textbooks claim that you should not mix two gears
with different pressure angles even if the pitch is the same, but it can be done. Some exces-
sive wear may result because the teeth aren’t meshing fully.

The orientation of the teeth on the gear can differ. The teeth on most spur gears are per-
pendicular to the edges of the gear. But the teeth can also be angled, as shown in Fig. 17.12,
in which case it is called a helical gear.

A number of other unusual tooth geometries are in use. These include double-teeth,
where two rows of teeth offset one another, and herringbone, where there are two sets of
helical gears at opposite angles. These gears are designed to reduce the backlash phenom-
enon. The space (or “play”) between the teeth when meshing can cause the gears to rock
back and forth.

Pulleys, Belts, Sprockets, and Roller
Chain
Akin to the gear are pulleys, belts, sprockets, and roller chains. Pulleys are used with belts,
and sprockets are used with roller chain. The pulley and sprocket are functionally identi-
cal to the gear. The only difference is that pulleys and sprockets use belts and roller chain,
respectively, to transfer power. With gears, power is transferred directly.

A benefit of using pulleys-belts or sprockets-chain is that you don’t need to be as con-
cerned with the absolute alignment of the mechanical parts of your robot. When using
gears you must mount them with high precision. Accuracies to the hundredths of an inch
are desirable to avoid “slop” in the gears as well as the inverse—binding caused by gears
that are meshing too tightly. Belts and roller chain are designed to allow for slack; in fact,
if there’s no slack you run the risk of breaking the pulley or chain!
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Helical gear

Standard tooth spur gear

FIGURE 17.12 Standard spur gear
versus diagonal helical spur gear. The
latter is used to decrease backlash—the
play inherent when two gears mesh.
Some helical gears are also made for
diverting the motion at right angles.
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MORE ABOUT PULLEYS AND BELTS

Pulleys come in a variety of shapes and sizes. You’re probably familiar with the pulleys and
belts used in automotive applications. These are likely to be too bulky and heavy to be used
with a robot. Instead, look for smaller and lighter pulleys and belts used for copiers, fax
machines, VCRs, and other electronic equipment. These are available for salvage from
whole units or in bits and pieces from surplus outlets.

Pulleys can be either the V type (the pulley wheel has a V-shaped groove in it) or the
cog type. Cog pulleys require matching belts. You need to ensure that the belt is not only
the proper width for the pulley you are using but also has the same cog pitch.

MORE ABOUT SPROCKETS AND ROLLER CHAIN

Sprockets and roller chain are preferred when you want to ensure synchronism. For large
robots you can use 3/8-inch bicycle chain. Most smaller robots will do fine with 1/4-inch
roller chain, which can frequently be found in surplus stores. Metal roller chain is com-
monly available in preset lengths, though you can sometimes shorten or lengthen the chain
by adding or removing links. Plastic roller chain, while not as strong, can be adjusted more
easily by using snap-on links.

Mounting the Motor
Every motor requires a different mounting arrangement. It’s easier for you when the motor
has its own mounting hardware or holes; you can use these to mount the motor in your
robot. Remember that Japanese- and European-made motors often have metric threads, so
be sure to use the proper-sized bolt.

Other motors may not be as cooperative. Either the mounting holes are in a position
where they don’t do you much good, or the motor is completely devoid of any means for
securing it to your robot. You can still mount these motors successfully by using an assort-
ment of clamps, brackets, woodblocks, and homemade angles.

For example, to secure the motor shown in Fig. 17.13, mounting brackets were fash-
ioned using six-inch galvanized iron mending “T” plates. A large hole was drilled for the
drive shaft and gear to poke through, and the two halves of the mounting bracket were
joined together with nuts, bolts, and spacers. The bracket was then attached to the frame
of the robot using angle irons and standard hardware. This motor arrangement was made
a little more difficult by the addition of a drive gear and sprocket. Construction time for
each motor bracket was about 90 minutes. You can read more about this particular design
in Chapter 22, “Build a Heavy-duty, Six-legged Walking Robot.”

Another example is shown in Fig. 17.14. Here, the motor has mounting holes on the end
by the shaft, but these holes are in the wrong position for the design of the robot. Two com-
monly available flat corner irons were used to mount the motor. This is just one approach;
a number of other mounting schemes might have worked satisfactorily as well. This design
is more thoroughly discussed in Chapter 25, “Build a Revolute Coordinate Arm.”

You can also fashion your own mounting brackets using metal or plastic. Cut the bracket
to the size you need, and drill mounting holes. This technique works well when you are
using servo motors for model radio-controlled cars and airplanes.
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FIGURE 17.13 One approach to mounting a large motor in a robot. The motor is
sandwiched inside two large hardware plates and is secured to
the frame of the motor with angle irons.

FIGURE 17.14 Another approach to mounting a motor to a robot. Flat cor-
ner irons secure the motor flange to the frame.
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If the motor lacks mounting holes, you can to use clamps to hold it in place. U-bolts,
available at the hardware store, are excellent solutions. Choose a U-bolt that is large
enough to fit around the motor. The rounded shape of the bolt is perfect for motors with
round casings. If desired, you can make a holding block out of plastic or wood to keep the
bottom of the motor from sliding. Cut the plastic or wood to size, and round it out with a
router, rasp, or file so it matches the shape of the motor casing.

Connecting to the Motor Shaft
Connecting the shaft of the motor to a gear, wheel, lever, or other mechanical part is prob-
ably the most difficult task of all. There is one exception to this, however: R/C servomo-
tors are easier to mount, which is one reason they are so popular in hobby robotics. Motor
shafts come in many different sizes, and because most—if not all—of the motors you’ll
use will come from surplus outlets, the shaft may be peculiar to the specific application
for which the motor was designed.

Common shaft sizes are 1/16- and 1/8-inch for small hobby motors and 1/4-, 3/8-, or 5/16-
inch for larger motors and gearboxes. Gear hubs are generally 1/4-, 1/2-, or 5/8-inch, so
you’ll need to find reducing bushings at an industrial supply store. Surplus is also a good
source. The same goes for wheels, sprockets (for roller chain and timing pulleys), and bear-
ings.

To attach things like gears and sprockets the gear or sprocket must usually be physical-
ly secured to the shaft by way of a setscrew, as depicted in Fig. 17.15. Sometimes a “press
fit” is all that’s required. Most better-made gears and sprockets have the setscrews in them
or have provisions for inserting them. If the gear or sprocket has no setscrew and there is
no hole for one, you’ll have to drill and tap the hole for the screw.

There are two common alternatives if you can’t use a setscrew. The first method is to
add a spline, or key, to secure the gear or sprocket to the shaft. This requires some careful
machining, as you must make a slot for the spline in the shaft as well as for the hub of the
gear or sprocket. Another method is to thread the gear shaft, and mount the gear or sprock-
et using nuts and split lock washers (the split in the washer provides compression that
keeps the assembly from working loose). Shaft threading is also sometimes necessary
when you are attaching wheels. I’ve successfully used both methods, but I have found that
threading the shaft is easier. Threading requires you to lock the shaft so it won’t turn, which
can be a problem with some motors. Also, be careful that the shavings from the threading
die do not fall into the motor.

Attaching two shafts to one another is a common, but not insurmountable, problem. The
best approach is to use a coupler. You tighten the coupler to the shaft using setscrews.
Couplers are available from industrial supply houses and can be expensive, so shop care-
fully. Some couplers are flexible; that is, they give if the two shafts aren’t perfectly aligned.
These are the best, considering the not-too-close tolerances inherent in home-built robots.
Some couplers are available that accept two shafts of different sizes.

Finally, there are dozens of other methods for attaching wheels, gears, and other objects
to motor shafts. Several of these will be detailed in context in the chapters to come.
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From Here
To learn more about… Read

Learn more about robot locomotion systems Chapter 16, “Robot Locomotion Principles”

All about DC motors Chapter 18, “Working with DC Motors”

All about stepper motors Chapter 19, “Working with Stepper Motors”

All about servo motors Chapter 20, “Working with Servo Motors”

Operating motors by computer Chapter 28, “An Overview of Robot ‘Brains’”

Interfacing motors to electronic circuitry Chapter 29, “Interfacing with Computers and
Microcontrollers”
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Gear

Shaft

Set screw

FIGURE 17.15 Use a setscrew to secure the gear to the shaft.
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DC motors are the mainstay of robotics. A surprisingly small motor, when connected to
wheels through a gear reduction system, can power a 25-, 50-, even 100-pound robot seem-
ingly with ease. A flick of a switch, a click of a relay, or a tick of a transistor, and the motor
stops in its tracks and turns the other way. A simple electronic circuit enables you to gain
quick and easy control over speed—from a slow crawl to a fast sprint.

This chapter shows you how to apply open-loop continuous DC motors (as opposed to
stepping or servo DC motors) to power your robots. The emphasis is on using motors 
to propel a robot across your living room floor, but you can use the same control tech-
niques for any motor application, including gripper closure, elbow flexion, and sensor 
positioning.

The Fundamentals of DC Motors
There are a many ways to build a DC motor. By their nature, all DC motors are powered
by direct current—hence the name DC—rather than the alternating current (AC) used by
most motorized household appliances. By and large, AC motors are less expensive to man-
ufacture than DC motors, and because their construction is simpler they tend to last longer
than DC motors.

18
WORKING WITH DC MOTORS
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Perhaps the most common form of DC motor is the permanent magnet type, so called
because it uses two or more permanent magnet pole pieces (called the stator). The turning
shaft of the motor, or the rotor, is composed of windings that are connected to a mechani-
cal commutator. Internally, metal brushes (which can wear out!) supply the contact point
for the current that turns the motor.

Other types of DC motors exist as well, including the series wound (or universal) and
the shunt wound DC motors. These differ from the permanent magnet motor in that no
magnets are used. Instead, the stator is composed of windings that, when supplied with
current, become electromagnets.

One of the prime benefits of most, but not all, DC motors is that they are inherently
reversible. Apply current in one direction (the � and � on the battery terminals, for exam-
ple), and the motor may spin clockwise. Apply current in the other direction, and the motor
spins counterclockwise. This capability makes DC motors well suited for robotics, where
it is often desirable to have the motors reverse direction, such as to back a robot away from
an obstacle or to raise or lower a mechanical arm.

Not all DC motors are reversible, and those that are typically exhibit better perfor-
mance (though often just slightly better) in one direction over the other. For example, the
motor may turn a few revolutions per minute faster in one direction. Normally, this is not
observable in the typical motor application, but robotics isn’t typical. In a robot with the
common two-motor drive (see Chapter 16, “Robot Locomotion Principles”), the motors
will be facing opposite directions, so one will turn clockwise while the other turns coun-
terclockwise. If one motor is slightly faster than the other, it can cause the robot to steer
off course. Fortunately, this effect isn’t usually seen when the robot just travels short dis-
tances, and in any case, it can often be corrected by the control circuitry used in the robot.

Reviewing DC Motor Ratings
Motor ratings, such as voltage and current, were introduced in Chapter 17, “Choosing the
Right Motor for the Job.” Here are some things to keep in mind when considering a DC
motor for your robot:

� DC motors can often be effectively operated at voltages above and below their specified
rating. If the motor is rated for 12 volts, and you run it at 6 volts, the odds are the motor
will still turn but at reduced speed and torque. Conversely, if the motor is run at 18 to
24 volts, the motor will turn faster and will have increased torque. This does not mean
that you should intentionally under- or overdrive the motors you use. Significantly over-
driving a motor may cause it to wear out much faster than normal. However, it’s usual-
ly fairly safe to run a 10-volt motor at 12 volts or a 6-volt motor at 5 volts.

� DC motors draw the most current when they are “stalled.” Stalling occurs if the motor
is supplied current, but the shaft does not rotate. Any battery, control electronics, or
drive circuitry you use with the motor must be able to deliver the current at stall, 
or major problems could result.

� DC motors vary greatly in efficiency. Many of the least expensive motors you may find
are meant to be used in applications (such as automotive) where brute strength, rather
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than the conservation of electricity, is the most important factor. Since the typical
mobile robot is powered by a battery, strive for the most efficient motors you can get.
It’s best to stay away from automotive starter, windshield wiper, power window, and
power seat motors since these are notoriously inefficient.

� The rotational speed of a DC motor is usually too fast to be directly applied in a robot.
Gear reduction of some type is necessary to slow down the speed of the motor shaft.
Gearing down the output speed has the positive side effect of increasing torque.

Direction Control
As we noted earlier, it’s fairly easy to change the rotational direction of a DC motor.
Simply switch the power lead connections to the battery, and the motor turns in reverse.
The small robots discussed in earlier chapters performed this feat by using a double-pole,
double-throw (DPDT) switch. Two such switches were used, one for each of the drive
motors. The wiring diagram for these robot motors is duplicated in Fig. 18.1 for your con-
venience. The DPDT switches used here have a center-off position. When they are in the
center position, the motors receive no power so the robot does not move.

You can use the direction control switch for experimenting, but you’ll soon want to
graduate to more automatic control of your robot. There are a number of ways to accom-
plish the electronic or electrically assisted direction control of motors. All have their
advantages and disadvantages. We’ll see what they are in the sections to follow.

RELAY CONTROL

Perhaps the most straightforward approach to the automatic control of DC motors is to use
relays. It may seem rather daft to install something as old-fashioned and cumbersome as
relays in a high-tech robot, but it is still a useful technique. You’ll find that while relays
may wear out in time (after a few hundred thousand switchings), they are fairly inexpen-
sive and easy to use.

You can accomplish basic on/off motor control with a single-pole relay. Rig up the relay
so that current is broken when the relay is not activated. Turn on the relay, and the switch
closes, thus completing the electrical circuit. The motor turns.

How you activate the relay is something you’ll want to consider carefully. You could
control it with a pushbutton switch, but that’s no better than the manual switch method just
described. Relays can easily be driven by digital signals. Fig. 18.2 shows the complete dri-
ver circuit for a relay-controller motor. Logical 0 (LOW) turns the relay off; logical 1
(HIGH) turns it on (refer to the parts list in Table 18.1). The relay can be operated from
any digital gate, including a computer or microprocessor port. The chapters in Part 5 deal
more extensively with using a computer for external control. Use the wiring diagram in
Fig. 18.2 to prepare yourself for these later chapters.

Controlling the direction of the motor is only a little more difficult. This requires a dou-
ble-pole, double-throw (DPDT) relay, wired in series after the on/off relay just described
(see Fig. 18.3; refer to the parts list in Table 18.2). With the contacts in the relay in one
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position, the motor turns clockwise. Activate the relay, and the contacts change positions,
turning the motor counterclockwise. Again, you can easily control the direction relay with
digital signals. Logical 0 makes the motor turn in one direction (let’s say forward), and log-
ical 1 makes the motor turn in the other direction. Both on/off and direction relay controls
are shown combined in Fig. 18.4.

You can quickly see how to control the operation and direction of a motor using just two
data bits from a computer. Since most robot designs incorporate two drive motors, you can
control the movement and direction of your robot with just four data bits. When selecting
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FIGURE 18.1 The basic wiring diagram for con-
trolling twin robot drive motors.
Note that the switches are DPDT
and the spring return is set to 
center-off.
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relays, make sure the contacts are rated for the motors you are using. All relays carry con-
tact ratings, and they vary from a low of about 0.5 amp to over 10 amps, at 125 volts.
Higher-capacity relays are larger and may require bigger transistors to trigger them (the
very small reed relays can often be triggered by digital control without adding the transis-
tor). For most applications, you don’t need a relay rated higher than two or three amps.

BIPOLAR TRANSISTOR CONTROL

Bipolar transistors provide true solid-state control of motors. For the purpose of motor
control, you use the bipolar transistor as a simple switch. By the way, note that when I refer
to a “transistor” in this section I’m referring to a bipolar transistor. There are many kinds
of transistors you can use, including the field effect transistor, or FET. In fact, we’ll talk
about FETs in the next section.

There are two common ways to implement the transistor control of motors. One way is
shown in Fig. 18.5 (see the parts list in Table 18.3). Here, two transistors do all the work.
The motor is connected so that when one transistor is switched on, the shaft turns clock-
wise. When the other transistor is turned on, the shaft turns counterclockwise. When both
transistors are off, the motor stops turning. Notice that this setup requires a dual-polarity
power supply. The schematic calls for a 6-volt motor and a �6-volt and �6-volt power
source. This is known as a split power supply.
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FIGURE 18.2 Using a relay to turn a motor on and off. The input sig-
nal is TTL/microprocessor compatible.

TABLE 18.1 PARTS LIST FOR ON-OFF RELAY CONTROL.

RL1 SPDT relay, 5 volt coil, contacts rated 2 amps or more

Q1 2N2222 NPN transistor

R1 1K resistor

D1 1N4003 diode

All resistors have 5 or 10 percent tolerance, 1/4-watt.
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Perhaps the most common way to control DC motors is to use the H-bridge network, as
shown in Fig. 18.6 (see the parts list in Table 18.4). The figure shows a simplified H-bridge;
some designs get quite complicated. However, this one will do for most hobby robot appli-
cations. The H-bridge is wired in such a way that only two transistors are on at a time. When
transistor 1 and 4 are on, the motor turns in one direction. When transistor 2 and 3 are on,
the motor spins the other way. When all transistors are off, the motor remains still.

Note that the resistor is used to bias the base of each transistor. These are necessary to pre-
vent the transistor from pulling excessive current from the gate controlling it (computer port,
logic gate, whatever). Without the resistor, the gate would overheat and be destroyed. The
actual value of the bias resistor depends on the voltage and current draw of the motor, as well
as the characteristics of the particular transistors used. For ballpark computations, the resis-
tor is usually in the 1K- to 3K-ohm range. You can calculate the exact value of the resistor
using Ohm’s law, taking into account the gain and current output of the transistor, or you can
experiment until you find a resistor value that works. Start high and work down, noting when
the controlling electronics seem to get too hot. Don’t go below 1K.
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FIGURE 18.3 Using a relay to control the direction of a motor. The
input signal is TTL /microprocessor compatible.

TABLE 18.2 PARTS LIST FOR DIRECTION RELAY CONTROL

RL1 DPDT relay, 5 volt coil, contacts rated 2 amps or more

Q1 2N2222 NPN transistor

R1 1K resistor

D1 1N4003 diode

All resistors have 5 or 10 percent tolerance, 1/4-watt.
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FIGURE 18.4 Both on/off and direction relay controls in one.

+V

e
b

c

e

b
c

TIP32
Q2

R2
1-3K

-V

D1
1N4002

Q1
TIP31

D2
1N4002

M1

R1
1-3K

Direction
control

FIGURE 18.5 Using a complementary pair of transistors to con-
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FIGURE 18.6 Four NPN transistors connected in an “H” pattern can be
used to control the direction of a motor. The power sup-
ply is single ended.

TABLE 18.4 PARTS LIST FOR H-BRIDGE BIPOLAR TRANSISTOR MOTOR
DIRECTION CONTROL.

Q1–Q4 TIP41 NPN power transistor

R1–R4 1–3K resistor

D1–D4 1N4002 diode

Misc. Heat sinks for transistors

All resistors have 5 or 10 percent tolerance, 1/4-watt.

TABLE 18.3 PARTS LIST FOR TWO-TRANSISTOR MOTOR DIRECTION CONTROL.

Q1 TIP31 NPN power transistor

Q2 TIP32 PNP power transistor

R1, R2 1–3K resistor

D1, D2 1N4002 diode

Misc. Heat sinks for transistors

All resistors have 5 or 10 percent tolerance, 1/4-watt.
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The transistors you choose should comply with some general guidelines. First, they
must be capable of handing the current draw demanded by the motors, but which specific
transistor you finally choose will largely depend on your application and your design pref-
erence. Most large drive motors draw about one to three amps continuously, so the tran-
sistors you choose should be able to handle this. This immediately rules out the small-
signal transistors, which are rated for no more than a few hundred milliamps.

A good NPN transistor for medium-duty applications is the TIP31, which comes in a
TO-220 style case. Its PNP counterpart is the TIP32. Both of these transistors are uni-
versally available. Use them with suitable heat sinks. For high-power jobs, the NPN tran-
sistor that’s almost universally used is the 2N3055 (get the version in the TO-3 case; it
handles more power). Its close PNP counterpart is the MJ2955 (or 2N2955). Both tran-
sistors can handle up to 10 amps (115 watts), when used with a heat sink, such as the
one in Fig. 18.7.

Another popular transistor to use in H-bridges is the TIP120, which is known as a
Darlington transistor. Internally, it’s actually two transistors: a smaller “booster” transistor
and a larger power transistor. The TIP120 is preferred because it’s often easier to interface
it with control electronics. Some transistors, like the 2N3055, require a hefty amount of
current in order to switch, and not all computer ports can supply this current. If you’re not
using a Darlington like the TIP120, it’s sometimes necessary to use small-signal transistors
(the 2N2222 is common) between the computer port and the power transistor.

The driving transistors should be located off the main circuit board—ideally directly on
a large heat sink or at least on a heavy board with clip-on or bolt-on heat sinks attached to
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FIGURE 18.7 Power transistors mounted on a heat sink.
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the transistors. Use the proper mounting hardware when attaching transistors to 
heat sinks.

Remember that with most power transistors, the case is the collector terminal. This is
particularly important when there is more than one transistor on a common heat sink and
they aren’t supposed to have their collectors connected together. It’s also important when
that heat sink is connected to the grounded metal frame of the robot. You can avoid any
extra hassle by using the insulating washer provided in most transistor mounting kits.

The power leads from the battery and to the motor should be 12- to 16-gauge wire. Use
solder lugs or crimp-on connectors to attach the wire to the terminals of T0-3-style tran-
sistors. Don’t tap off power from the electronics for the driver transistors; get it directly
from the battery or main power distribution rail. See Chapter 15, “All about Batteries and
Robot Power Supplies,” for more details about robot power distribution systems.

POWER MOSFET CONTROL

Wouldn’t it be nice if you could use a transistor without bothering with bias resistors? Well,
you can as long as you use a special brand of transistor, the power MOSFET. The MOS-
FET part stands for “metal oxide semiconductor field effect transistor.” The “power” part
means you can use them for motor control without worrying about them or the controlling
circuitry going up in smoke.

Physically, MOSFETs look a lot like transistors, but there are a few important differ-
ences. First, like CMOS ICs, it is entirely possible to damage a MOSFET device by zap-
ping it with static electricity. When handling it, always keep the protective foam around the
terminals. Further, the names of the terminals are different than transistors. Instead of
base, emitter, and collector, MOSFETs have a gate, source, and drain. You can easily dam-
age a MOSFET by connecting it in the circuit improperly. Always refer to the pin-out dia-
gram before wiring the circuit, and double-check your work.

A commonly available power MOSFET is the IRF-5xx series (such as the IRF-520,
IRF-530, etc.), from International Rectifier, one of the world’s leading manufacturers of
power MOSFET components. These N-channel MOSFETs come in a T0-220-style tran-
sistor case and can control several amps of current (when on a suitable heat sink). A basic,
semi-useful circuit that uses MOSFETs is shown in Fig. 18.8 (see the parts list in Table
18.5). Note the similarity between this design and the transistor design on Fig. 18.6.

An even better H-bridge with power MOSFETs uses two N-channel MOSFETs for the
“low side” of the bridge and two complementary P-channel MOSFETs for the “high side.” I
won’t get into the details about why this is better (the subject is adequately addressed in many
books and Web sites). Suffice it to say that the use of complementary MOSFETs allows all
four transistors in the H-bridge to turn completely on, thereby supplying the motor with full
voltage. Fig. 18.9 shows a revised schematic (refer to the parts list in Table 18.6).

In both circuits, logic gates provide positive-action control. When the control signal is
LOW, the motor turns clockwise. When the control signal is HIGH, the motor turns coun-
terclockwise.

MOTOR BRIDGE CONTROL

The control of motors is big business, and it shouldn’t come as a surprise that dozens of
companies offer all-in-one solutions for controlling motors through fully electronic means.
These products range from inexpensive $2 integrated circuits to sophisticated modules
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costing tens of thousands of dollars. Of course, we’ll confine our discussion to the low end
of this scale!

The basic motor control is an H-bridge, as discussed earlier, an all-in-one integrated circuit
package. Bridges for high-current motors tend to be physically large, and they may come with
heat fins or have connections to a heat sink. A good example of a motor bridge is the Allegro
Microsystems 3952, which provides in one single package a much improved version of the
circuit shown in Fig. 18.9. A typical working circuit using the 3952 is shown in Fig. 18.10.

Motor control bridges have two or more pins on them for connection to control elec-
tronics. Typical functions for the pins are:

� Motor enable. When enabled, the motor turns on. When disabled, the motor turns off.
Some bridges let the motor “float” when disabled; that is, the motor coasts to a stop. On
other bridges disabling the motor causes a full or partial short across the motor termi-
nals, which acts as a brake to stop the motor very quickly.
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FIGURE 18.8 Four N-channel power MOSFET transistors in an “H”
pattern can be used to control the direction of a motor.
In a circuit application such as this, MOSFET devices do
not strictly require biasing resistors, as do standard
transistors.

TABLE 18.5 PARTS LIST FOR N-CHANNEL POWER MOSFET MOTOR 
CONTROL BRIDGE.

IC1 4011 CMOS Quad NAND Gate IC

Q1–Q4 IRF-5xx series (e.g., IRF-530 or equiv.) power MOSFET

D1–D4 1N4002 diode

Misc. Heat sinks for transistors
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� Direction. Setting the direction pin changes the direction of the motor.
� Brake. On bridges that allow the motor to float when the enable pin is disengaged, a sep-

arate brake input is used to specifically control the braking action of the motor.
� PWM. Most H-bridge motor control ICs are used not only to control the direction and

power of the motor, but its speed as well. The typical means used to vary the speed of
a motor is with pulse width modulation, or PWM. This topic is described more fully in
the next section.

The better motor control bridges incorporate overcurrent protection circuitry, which
prevents them from being damaged if the motor pulls too much current and overheats the
chip. Some even provide for current sense, an output that can be fed back to the control
electronics in order to monitor the amount of current being drawn from the motor. This
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to increase the voltage flowing to the motors. The MOSFETs
should be “complementary pairs” (made to work with one anoth-
er) that share the same voltage and current ratings. Most makers
of MOSFET transistors provide complementary N- and P-channel
products.

TABLE 18.6 PARTS LIST FOR COMPLEMENTARY N- AND P-CHANNEL
POWER MOSFET MOTOR CONTROL BRIDGE.

IC1 4009 CMOS hex inverter IC

Q1, Q3 IRF-9530 (or equiv.) P-channel power MOSFET

Q2, Q4 IRF-530 (or equiv.) N-channel power MOSFET

D1–D4 1N4002 diode

Misc. Heat sinks for transistors
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can be useful when you need to determine if the robot has become stuck. Recall from ear-
lier in this chapter that DC motors will draw the most current when they are stalled. If the
robot gets caught on something and can’t budge, the motors will stop, and the current
draw will increase.

Because motor control bridges are so easy to use, and cost relatively little, we’ll gravi-
tate toward using them in the projects we describe rather than the “discrete” methods dis-
cussed in the previous sections. Of course, you’re free to use whatever motor control 
methods you wish.

Some of the available motor control bridges include the L293D and L298N from SGS-
Thomson; the 754410, an improved version of the L293 from Texas Instruments; and the
LM18293 from National Semiconductor. Be sure to also check the listings in Appendix B,
“Sources,” and Appendix C, “Robot Information on the Internet,” for additional sources of
information on motor control bridges.

Motor Speed Control
There will be plenty of times when you’ll want the motors in your robot to go a little slow-
er, or perhaps track at a predefined speed. Speed control with continuous DC motors is a
science in its own, and there are literally dozens of ways to do it. We’ll cover some of the
more popular methods in this and later chapters.
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NOT THE WAY TO DO IT

Before exploring the right ways to control the speed of motors, let’s examine how not to
do it. Many robot experimenters first attempt to vary the speed of a motor by using a
potentiometer. While this scheme certainly works, it wastes a lot of energy. Turning up the
resistance of the pot decreases the speed of the motor, but it also causes excess current to
flow through the pot. That current creates heat and draws off precious battery power.

Another similar approach is shown in Fig. 18.11. Here, a transistor is added to the basic
circuit, but again, excess current flows through the transistor, and the energy is dissipated
as lost heat. There are, fortunately, far better ways of doing it. Read on.

BASIC SPEED CONTROL

Figure 18.12 shows a schematic that is a variation of the MOSFET circuit shown in Fig.
18.8, above. This circuit provides rudimentary speed control. The 4011 NAND gate acts as
an astable multivibrator, a pulse generator. By varying the value of R3, you increase or
decrease the duration of the pulses emitted by the gates of the 4011. The longer the dura-
tion of the pulses, the faster the motor because it is getting full power for a longer period
of time. The shorter the duration of the pulses, the slower the motor.

Notice that the power or voltage delivered to the motor does not change, as it does with
the pot-only or pot-transistor scheme described earlier. The only thing that changes is the
amount of time the motor is provided with full power. Incidentally, this technique is called
duty cycle or pulse width modulation (PWM), and is the basis of most popular motor speed
control circuits. There are a number of ways of providing PWM; this is just one of dozens.
Fig. 18.13 shows a timing diagram of the PWM technique, from 100 percent duty cycle
(100 percent on) to 0 percent duty cycle (0 percent on).

It is important to note that the frequency of the pulses does not change, just the relative
on/off times. PWM frequencies of 2 kHz to over 25 kHz are commonly employed, depend-
ing on the motor. Unless you have a specification sheet from the manufacturer of the motor,
you may have to do some experimentation to arrive at the “ideal” pulse frequency to use.
You want to select the frequency that offers maximum power with minimum current draw.
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Excessively high PWM frequencies may negate the speed control aspect, whereas exces-
sively low frequencies may cause significant current draw and motor heating.

In the circuit shown in Fig. 18.12, R3 is shown surrounded by a dotted box. You can
substitute R3 with a fixed resistor if you want to always use a certain speed, or you can use
the circuit shown in Fig. 18.14. This circuit employs a 4066 CMOS analog switch IC. The
4066 allows you to select any of up to four speeds by computer or electronic control.

You connect resistors of various values to one side of the switches; the other side of the
switches are collectively connected to the 4011. To modify the speed of the motor, activate
one of the switches by bringing its control input to HIGH. The resistor connected to that
switch is then brought into the circuit. You can omit the 3.3K pull-down resistors on the
control inputs if your control circuitry is always activated and connected.

The 4066 is just one of several CMOS analog switches. There are other versions of this
IC with different features and capabilities. We chose the 4066 here because it adds very 
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little resistance of its own when the switches are on. Note that the 4066 specifications sheet
says that only one switch should be closed at a time.

PROCESSOR-BASED SPEED CONTROL

Using 4066 analog switches and individual resistors limits the number of speed choices
you have. You may want to go from 90 percent to 88 percent duty cycle to control your
motor, but the selection of resistors that you’ve used only provide for 90 percent and 80
percent, with no other values between. If you plan on controlling your robot via a computer
or microcontroller (see Part 5 for more information on these topics), you can use software
to provide any duty cycle you darn well please.

The computer or microcontroller cannot directly control a motor because the motor draws
too much current. Instead, you connect the output of the computer or microcontroller to the
control pin of an H-bridge or motor bridge IC, as shown in Fig. 18.15. Later chapters in Part
5 will detail the specific software you can use to vary the speed of a DC motor.
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Odometry: Measuring Distance 
of Travel
Shaft encoders allow you to measure not only the distance of travel of the motors, but their
velocity. By counting the number of transitions provided by the shaft encoder, the robot’s
control circuits can keep track of the revolutions of the drive wheels.

ANATOMY OF A SHAFT ENCODER

The typical shaft encoder is a disc that has numerous holes or slots along its outside edge.
An infrared LED is placed on one side of the disc, so that its light shines through the holes.
The number of holes or slots is not a consideration here, but for increased speed resolu-
tion, there should be as many holes around the outer edge of the disc as possible. An
infrared-sensitive phototransistor is positioned directly opposite the LED (see Fig. 18.16)
so that when the motor and disc turn, the holes pass the light intermittently. The result, as
seen by the phototransistor, is a series of flashing light.

Instead of mounting the shaft encoders on the motor shafts, mount them on the wheel
shafts (if they are different). The number of slots in the disk determines the maximum
accuracy of the travel circuit. The more slots, the better the accuracy.

Let’s say the encoder disc has 50 slots around its circumference. That represents a min-
imum sensing angle of 7.2°. As the wheel rotates, it provides a signal to the counting cir-
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FIGURE 18.16 An optical shaft encoder attached to a motor. Alternatively,
you can place a series of reflective strips on a black disc
and bounce the LED light into the phototransistor.
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cuit every 7.2°. Stated another way, if the robot is outfitted with a 7-inch wheel (circum-
ference � 21.98 inches), the maximum travel resolution is approximately 0.44 linear inch-
es. Not bad at all! This figure was calculated by taking the circumference of the wheel and
dividing it by the number of slots in the shaft encoder.

The outputs of the phototransistor are conditioned by Schmitt triggers. This smooths out
the wave shape of the light pulses so only voltage inputs above or below a specific thresh-
old are accepted (this helps prevent spurious triggers). The output of the triggers is applied
to the control circuitry of the robot.

THE DISTANCE COUNTER

The pulses from a shaft encoder do not in themselves carry distance measurement. The
pulses must be counted and the count converted to distance. Counting and conversion are
ideal tasks for a computer. Most single-chip computers and microprocessors, or their inter-
face adapters, are equipped with counters. If your robot lacks a computer or microproces-
sor with a timer, you can add one using a 4040 12-stage binary ripple counter (see Fig.
18.17). This CMOS chip has 12 binary weighted outputs and can count to 4096. You’d
probably use just the first eight outputs to count to 256.

Any counter with a binary or BCD output can be used with a 7485 magnitude com-
parator. A pinout of this versatile chip is shown in Fig. 18.18 and a basic hookup diagram
in Fig. 18.19. In operation, the chip will compare the binary weighted number at its “A”
and “B” inputs. One of the three LEDs will then light up, depending on the result of the
difference between the two numbers. In a practical circuit, you’d replace the DIP switches
(in the dotted box) with a computer port.

You can cascade comparators to count to just about any number. If counting in BCD,
three packages can be used to count to 999, which should be enough for most distance
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recording purposes. Using a disc with 25 slots in it and a 7-inch drive wheel, the travel
resolution is 0.84 linear inches. Therefore, the counter system will stop the robot within
0.84 inches of the desired distance (allowing for coasting and slip between the wheels and
ground) up to a maximum working range of 69.93 feet. You can increase the distance 
by building a counter with more BCD stages or decreasing the number of slots in the
encoder disc.

MAKING THE SHAFT ENCODER

By far, the hardest part about odometry is making or adapting the shaft encoders. (You
can also buy shaft encoders ready-made.) The shaft encoder you make may not have the
fine resolution of a commercially made disc, which often have 256 or 360 slots in them,
but the home-made versions will be more than adequate. You may even be able to find
already machined parts that closely fit the bill, such as the encoder wheels in a discard-
ed mouse (the computer kind, not the live rodent kind). Fig. 18.20 shows the encoder
wheels from a surplus $5 mouse. The mouse contains two encoders, one for each wheel
of the robot.

You can also make your own shaft encoder by taking a 1- to 2-inch disc of plastic or
metal and drilling holes in it. Remember that the disc material must be opaque to
infrared light. Some things that may look opaque to you may actually pass infrared light.
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FIGURE 18.20 The typical PC mouse contains two shaft encoder discs. They
are about perfect for the average small-or-medium-size robot.
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When in doubt, add a coat or two of flat black or dark blue paint. That should block stray
infrared light from reaching the phototransistor. Mark the disc for at least 20 holes, with
a minimum size of about 1/16 inch. The more holes the better. Use a compass to scribe
an exact circle for drilling. The infrared light will only pass through holes that are on this
scribe line.

MOUNTING THE HARDWARE

Secure the shaft encoder to the shaft of the drive motor or wheel. Using brackets, attach the
LED so that it fits snugly on the back side of the disc. You can bend the lead of the LED a
bit to line it up with the holes. Do the same for the phototransistor. You must mask the pho-
totransistor so it doesn’t pick up stray light or reflected light from the LED, as shown in Fig.
18.21. You can increase the effectiveness of the phototransistor placing an infrared filter (a
dark red filter will do in a pinch) between the lens of the phototransistor and the disc. You
can also use the type of phototransistor that has its own built-in infrared filter.

If you find that the circuit isn’t sensitive enough, check whether stray light is hitting the
phototransistor. Baffle it with a piece of black construction paper if necessary. Or, if you
prefer, you can use a “striped” disc of alternating white and black spokes as well as a
reflectance IR emitter and detector. Reflectance discs are best used when you can control
or limit the amount of ambient light that falls on the detector.

QUADRATURE ENCODING

So far we’ve investigated shaft encoders that have just one output. This output pulses
as the shaft encoder turns. By using two LEDs and phototransistors, positioned 90° out
of phase (see Fig. 18.22), you can construct a system that not only tells you the amount
of travel, but the direction as well. This can be useful if the wheels of your robot may
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FIGURE 18.21 How to mount an infrared LED and phototransis-
tor on a circuit board for use with an optical
shaft encoder disc.
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slip. You can determine if the wheels are moving when they aren’t supposed to be, and
you can determine the direction of travel. This so-called two-channel system uses quad-
rature encoding—the channels are out of phase by 90° (one quarter of a circle).

Use the flip-flop circuit in Fig. 18.23 to “separate” the distance pulses from the direc-
tion pulses. Note that this circuit will only work when you are using quadrature encoding,
where the pulses are in the following format:

off/off

on/off
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FIGURE 18.22 LEDs and phototransistors mounted
on a two-channel optical disc. a. The
LEDs and phototransistors can be
placed anywhere about the circum-
ference of the disc; b. The two LEDs
and phototransistors must be 90° out
of phase.
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on/on

off/on

(… and repeat.)

From Here
To learn more about… Read

Selecting the right motors for your robot Chapter 17, “Choosing the Right Motor for the Job”

Using stepper motors Chapter 19, “Working with Stepper Motors”

Interfacing motors to computers and Chapter 29, “Interfacing with Computers and 
microcontrollers Microcontrollers”

More on odometry and measuring the Chapter 38, “Navigating through Space”
distance of travel of a robot
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In past chapters we’ve looked at powering robots using everyday continuous DC motors.
DC motors are cheap, deliver a lot of torque for their size, and are easily adaptable to a
variety of robot designs. By their nature, however, the common DC motor is rather impre-
cise. Without a servo feedback mechanism or tachometer, there’s no telling how fast a DC
motor is turning. Furthermore, it’s difficult to command the motor to turn a specific num-
ber of revolutions, let alone a fraction of a revolution. Yet this is exactly the kind of preci-
sion robotics work, particularly arm designs, often requires.

Enter the stepper motor. Stepper motors are, in effect, DC motors with a twist. Instead
of being powered by a continuous flow of current, as with regular DC motors, they are dri-
ven by pulses of electricity. Each pulse drives the shaft of the motor a little bit. The more
pulses that are fed to the motor, the more the shaft turns. As such, stepper motors are inher-
ently “digital” devices, a fact that will come in handy when you want to control your robot
by computer. By the way, there are AC stepper motors as well, but they aren’t really suit-
able for robotics work and so won’t be discussed here.

Stepper motors aren’t as easy to use as standard DC motors, however, and they’re both
harder to get and more expensive. But for the applications that require them, stepper
motors can solve a lot of problems with a minimum of fuss. Let’s take a closer look at step-
pers and learn how to apply them to your robot designs.

19
WORKING WITH STEPPER MOTORS
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Inside a Stepper Motor
There are several designs of stepper motors. For the time being, we’ll concentrate on
the most popular variety, the four-phase unipolar stepper, like the one in Fig. 19.1. A
unipolar stepper motor is really two motors sandwiched together, as shown in Fig. 19.2.
Each motor is composed of two windings. Wires connect to each of the four windings
of the motor pair, so there are eight wires coming from the motor. The commons from
the windings are often ganged together, which reduces the wire count to five or six
instead of eight (see Fig. 19.3).

WAVE STEP SEQUENCE

In operation, the common wires of a unipolar stepper are attached to the positive (some-
times the negative) side of the power supply. Each winding is then energized in turn by
grounding it to the power supply for a short time. The motor shaft turns a fraction of a rev-
olution each time a winding is energized. For the shaft to turn properly, the windings must
be energized in sequence. For example, energize wires 1, 2, 3, and 4 in sequence and the
motor turns clockwise. Reverse the sequence, and the motor turns the other way.

FOUR-STEP SEQUENCE

The wave step sequence is the basic actuation technique of unipolar stepper motors.
Another, and far better, approach actuates two windings at once in an on-on/off-off four-
step sequence, as shown in Fig. 19.4. This enhanced actuation sequence increases the dri-
ving power of the motor and provides greater shaft rotation precision.

There are other varieties of stepper motors, and they are actuated in different ways. One
you may encounter is bipolar. It has four wires and is pulsed by reversing the polarity of
the power supply for each of the four steps. We will discuss the actuation technique for
these motors later in this chapter.

Design Considerations of Stepper
Motors
Stepping motors differ in their design characteristics over continuous DC motors. The
following section discusses the most important design specifications for stepper
motors.

STEPPER PHASING

A unipolar stepper requires that a sequence of four pulses be applied to its various wind-
ings for it to rotate properly. By their nature, all stepper motors are at least two-phase.
Many are four-phase; some are six-phase. Usually, but not always, the more phases in a
motor, the more accurate it is.
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STEP ANGLE

Stepper motors vary in the amount of rotation of the shaft each time a winding is energized.
The amount or rotation is called the step angle and can vary from as small as 0.9° (1.8° is more
common) to 90°. The step angle determines the number of steps per revolution. A stepper with
a 1.8° step angle, for example, must be pulsed 200 times for the shaft to turn one complete rev-
olution. A stepper with a 7.5° step angle must be pulsed 48 times for one revolution, and so on.
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FIGURE 19.1 A typical unipolar stepper motor.

Rotor (shaft) 

Stator cup

Stator cup 2

Coil

Coil

FIGURE 19.2 Inside a unipolar stepper motor. Note the two sets
of coils and stators. The unipolar stepper is really
two motors sandwiched together.
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PULSE RATE

Obviously, the smaller the step angle is, the more accurate the motor. But the number of
pulses stepper motors can accept per second has an upper limit. Heavy-duty steppers usu-
ally have a maximum pulse rate (or step rate) of 200 or 300 steps per second, so they have
an effective top speed of one to three revolutions per second (60 to 180 rpm). Some small-
er steppers can accept a thousand or more pulses per second, but they don’t usually pro-
vide very much torque and aren’t suitable as driving or steering motors.

Note that stepper motors can’t be motivated to run at their top speeds immediately from
a dead stop. Applying too many pulses right off the bat simply causes the motor to freeze
up. To achieve top speeds, you must gradually accelerate the motor. The acceleration can
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Phase 1

Phase 2

Phase 3

Phase 4

Ground

Ground

STEP         PHASE  1        PHASE  2        PHASE   3        PHASE  4

1

2

3

4

ONOFF

CounterclockwiseClockwise

FIGURE 19.3 The wiring diagram of the unipolar stepper.
The common connections can be separate or
combined.

FIGURE 19.4 The enhanced on-on/off-off four-step sequence
of a unipolar stepper motor.
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be quite swift in human terms. The speed can be one-third for the first few milliseconds,
two thirds for the next few milliseconds, then full blast after that.

RUNNING TORQUE

Steppers can’t deliver as much running torque as standard DC motors of the same size and
weight. A typical 12-volt, medium-sized stepper motor may have a running torque of only
25 oz-in. The same 12-volt, medium-sized standard DC motor may have a running torque
that is three or four times more.

However, steppers are at their best when they are turning slowly. With the typical stepper,
the slower the motor revolves, the higher the torque. The reverse is usually true of continuous
DC motors. Fig. 19.5 shows a graph of the running torque of a medium-duty, unipolar 12-volt
stepper. This unit has a top running speed of 550 pulses per second. Since the motor has a step
angle of 1.8°, that results in a top speed of 2.75 revolutions per second (165 rpm).

BRAKING EFFECT

Actuating one of the windings in a stepper motor advances the shaft. If you continue to
apply current to the winding the motor won’t turn any more. In fact, the shaft will be
locked, as if you’ve applied brakes. As a result of this interesting locking effect, you never
need to add a braking circuit to a stepper motor because it has its own brakes built in.

The amount of braking power a stepper motor has is expressed as holding torque. Small
stepper motors have a holding torque of a few oz-in. Larger, heavier-duty models have
holding torque exceeding 400 oz-in.

VOLTAGE, CURRENT RATINGS

Like DC motors, stepper motors vary in their voltage and current ratings. Steppers for 5-,
6-, and 12-volt operation are not uncommon. But unlike DC motors, if you use a higher
voltage than specified for a stepper motor you don’t gain faster operation, but more running
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Stepper Continuous Brush DC Motor

FIGURE 19.5 With a stepper motor, torque increases as the
speed of the motor is reduced.
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and holding torque. Overpowering a stepper by more than 80 to 100 percent above the rated
voltage may eventually burn up the motor.

The current rating of a stepper is expressed in amps (or milliamps) per phase. The
power supply driving the motor needs to deliver at least as much as the per-phase specifi-
cation, preferably more if the motor is driving a heavy load. The four-step actuation
sequence powers two phases at a time, which means the power supply must deliver at least
twice as much current as the per-phase specification. If, for example, the current per phase
is 0.25 amps, the power requirement at any one time is 0.50 amps.

Controlling a Stepper Motor
Steppers have been around for a long time. In the old days, stepper motors were actuated
by a mechanical switch, a solenoid-driven device that pulsed each of the windings of the
motor in the proper sequence. Now, stepper motors are invariably controlled by electronic
means. Basic actuation can be accomplished via computer control by pulsing each of the
four windings in turn. The computer can’t directly power the motor, so transistors must be
added to each winding, as shown in Fig. 19.6.

USING A STEPPER MOTOR CONTROLLER CHIP

In the absence of direct computer control, the easiest way to provide the proper sequence of
actuation pulses is to use a custom stepper motor chip, such as the Allegro Microsystems
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+12VDC

Phase 1 Control

Phase 2 Control

Phase 3 Control

Phase 4 Control

R1-R4
1K

e

b
c

Q1-Q4
2N3055

FIGURE 19.6 The basic hookup connection to drive a stepper motor from a computer
or other electronic interface. The phasing sequence is provided by soft-
ware or other means through a port following a four-bit binary sequence:
1010, 0110, 0101, 1001 (reverse the sequence to reverse the motor).
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UCN5804. This chip is designed expressly for use with the common unipolar stepper motor
and provides a four-step actuation sequence. Stepper motor translator chips tend to be mod-
estly priced, at about $5 to $10, depending on their features and where you buy them.

Figure 19.7 (refer to the parts list in Table 19.1) shows a typical schematic of the UCN5804.
Heavier duty motors (more than about 1A per phase) can be driven by adding power transis-
tors to the four outputs of the chips, as shown in the manufacturer’s application notes. Note
the Direction pin. Pulling this pin high or low reverses the rotation of the motor.

Using logic gates to control stepper motors

Another approach to operating unipolar stepper motors is to use discrete gates and clock
ICs. You can assemble a stepper motor translator circuit using just two IC packages. The
circuit can be constructed using TTL or CMOS chips.

The TTL version is shown in Fig. 19.8 (refer to the parts list in Table 19.2). Four
Exclusive OR gates from a single 7486 IC provide the steering logic. You set the direction
by pulling pin 12 HIGH or LOW. The stepping actuation is controlled by a 7476, which
contains two JK flip-flops. The Q and ‘Q outputs of the flip-flops control the phasing of
the motor. Stepping is accomplished by triggering the clock inputs of both flip-flops.

The 7476 can’t directly power a stepper motor. You must use power transistors or
MOSFETs to drive the windings of the motor. See the section titled “Translator
Enhancements” for a complete power driving schematic as well as other options you can
add to this circuit.

The CMOS version, shown in Fig. 19.9 (refer to the parts list in Table 19.3), is identical to
the TTL version, except that a 4070 chip is used for the Exclusive OR gates and a 4027 is used
for the flip-flops. The pinouts are slightly different, so follow the correct schematic for the type
of chips you use. Note that another CMOS Exclusive OR package, the 4030, is also available.
Don’t use this chip; it behaved erratically in this, as well as other pulsed, circuits.

In both the TTL and CMOS circuits, the stepper motor itself can be operated from a
supply voltage that is wholly different than the voltage supplied to the ICs.

TRANSLATOR ENHANCEMENTS

Four NPN power transistors, four resistors, and a handful of diodes are all the translator
circuits described in the last section need to provide driving power. (You can also use this
scheme to increase the driving power of the UCN5804, detailed earlier). The schematic for
the circuit is shown in Fig. 19.10 (refer to the parts list in Table 19.4). Note that you can
substitute the bipolar transistors and resistors with power MOSFETs. See Chapter 17,
“Choosing the Right Motor for the Job,” for more information on using power MOSFETs.

You can use just about any NPN power transistor that will handle the motor. The TIP31
is a good choice for applications that require up to one amp of current. Use the 2N3055
for heavier-duty motors. Mount the drive transistors on a suitable heat sink.

You must insert a bias resistor in series between the outputs of the translation circuit and
the base of the transistors. Values between about 1K and 3K should work with most motors
and most transistors. Experiment until you find the value that works without causing the
flip-flop chips to overheat. You can also apply Ohm’s law, figuring in the current draw of
the motor and the gain of the transistor, to accurately find the correct value of the resistor.
If this is new to you, see Appendix A, “Further Reading,” for a list of books on electronic
design and theory.
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It is sometimes helpful to see a visual representation of the stepping sequence.
Adding an LED and current-limiting resistor in parallel with the outputs provides just
such a visual indication. See Fig. 19.11 for a wiring diagram (refer to the parts list in
Table 19.5). Note the special wiring to the flip-flop outputs. This provides a better visu-
al indication of the stepping action than hooking up the LEDs in the same order as the
motor phases.

Figure 19.12 shows two stepper motor translator boards. The small board controls up to
two stepper motors and is designed using TTL chips. The LED option is used to provide a
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TABLE 19.1 PARTS LIST FOR UCN5804 STEPPER MOTOR TRANSLATOR/DRIVER.

IC1 Allegro UCN5804 Stepper Motor Translator IC

R1, R2 1–2K resistor, 2–5 watts

D1–D4 1N4002 diode

M1 Unipolar stepper motor

Misc SPDT switch, heat sinks for UCN5804 (as needed)
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9
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16

+5V
+5V

+5V +5V

Step

Direction

CW

CCW
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K

J

K
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CLOCK
1

6

Q

Q

__
Q

__
Q

15
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11

10

Phase 1

Phase 2

Phase 3

Phase 4

5

4

7486 (1/4)
7486 (1/4)

7486 (1/4)
7486 (1/4)

7476 (1/2)

7576 (1/2)

13

To
motor

FIGURE 19.8 Using a pair of commonly available TTL ICs to construct your own
stepper motor translator circuit.

TABLE 19.2 PARTS LIST FOR TTL STEPPER MOTOR TRANSLATOR

IC1 7486 Quad Exclusive OR Gate IC

U2 7476 Dual “JK” flip-flop IC
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visual reference of the step sequence. The large board uses CMOS chips and can accom-
modate up to four motors. The boards were wire-wrapped; the driving transistors are
placed on a separate board and heat sink.

TRIGGERING THE TRANSLATOR CIRCUITS

You need a square wave generator to provide the triggering pulses for the motors. You
can use the 555 timer wired as an astable multivibrator, or make use of a control line in
your computer or microcontroller. When using the 555, remember to add the 0.1 µF
capacitor across the power pins of the chip. The 555 puts a lot of noise into the power
supply, and this noise regularly disturbs the counting logic in the Exclusive OR and
flip-flop chips. If you are getting erratic results from your circuit, this is probably 
the cause.

USING BIPOLAR STEPPER MOTORS

As detailed earlier in the chapter, unipolar stepper motors contain four coils in which
two of the coils are joined to make a center tap. This center tap is the “common” 
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FIGURE 19.9 Using a pair of commonly available CMOS ICs to construct your
own stepper motor translator circuit.

TABLE 19.3 PARTS LIST FOR CMOS STEPPER MOTOR TRANSLATOR.

IC1 4070 Quad Exclusive OR Gate IC

IC2 4037 Dual “JK” flip-flop IC
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connection for the motor. Bipolar stepper motors contain two coils, do not use a com-
mon connection, and are generally less expensive because they are easier to manufac-
ture. A bipolar stepper motor has four external connection points. An old method for
operating a bipolar stepper motor was to use relays to reverse the polarity of a DC volt-
age to two coils. This caused the motor to inch forward or backward, depending on the
phasing sequence.

Today, the more common method for operating a bipolar stepper motor is to use a spe-
cialty stepper motor translator, such as the SGS-Thompson L297D (the L297D can also
be used to drive unipolar stepper motors). To add more current driving capacity to the
L297D you can add a dual H-bridge driver, such as the L298N, which is available from
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+5 or +12V

D1

D2

D3

D4

Q1

Q2

Q3

Q4 Note: See text for values
of diodes and transistors.

R4

R3

R2

R1

From flip-flop
outputs

Stepper motor coils

Stepper motor coils

FIGURE 19.10 Add four transistors and resistors to provide a power
output stage for the TTL or CMOS stepper motor trans-
lator circuits.

TABLE 19.4 PARTS LIST FOR STEPPER MOTOR DRIVER.

Q1–Q4 Under 1 amp draw per phase: TIP32 NPN transistor

1 to 3 amp draw per phase: TIP120 NPN Darlington transistor

R1–R4 1K resistor, 1 watt

D1–D4 1N4004 diode

Misc Heat sinks for transistors
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the same company. The truth table for the typical driving sequence of a bipolar stepper
motor is shown in Fig. 19.13 (see p. 292).

BUYING AND TESTING A STEPPER MOTOR

Spend some time with a stepper motor and you’ll invariably come to admire its design and
be able to think up all sorts of ways to make it work for you in your robot designs. But to
use a stepper, you have to get one. That in itself is not always easy. Then after you have
obtained it and taken it home, there’s the question of figuring out where all the wires go!
Let’s take each problem one at a time.

SOURCES FOR STEPPER MOTORS

Despite their many advantages, stepper motors aren’t nearly as common as the trusty DC
motor, so they are harder to find. And when you do find them, they’re expensive when new.
The surplus market is by far the best source for stepper motors for hobby robotics. See
Appendix B, “Sources,” for a list of selected mail order surplus companies that regularly
carry a variety of stepper motors. They carry most of the “name brand” steppers:
Thompson-Airpax, Molon, Haydon, and Superior Electric. The cost of surplus steppers is
often a quarter or fifth of the original list price.

The disadvantage of buying surplus is that you don’t always get a hookup diagram
or adequate specifications. Purchasing surplus stepper motors is largely a hit-or-miss
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 To Flip-Flop Outputs

R1 R2 R4R3
All Resistors:

330Ω

LED (X4)

FIGURE 19.11 Add four LEDs and
resistors to pro-
vide a visual indi-
cation of the step-
ping action.

TABLE 19.5 PARTS LIST FOR UCN5804 STEPPER MOTOR TRANSLATOR/DRIVER.

R1–R4 300-ohm resistor

LED1–4 Light-emitting diode

All resistors have 5 or 10 percent tolerance, 1/4-watt.
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affair, but most outlets let you return the goods if they aren’t what you need. If you like
the motor, yet it still lacks a hookup diagram, read the following section on how to
decode the wiring.

WIRING DIAGRAM

The internal wiring diagram of both a bipolar and unipolar stepper motor is shown in Fig.
19.14. The wiring in a bipolar stepper is actually easy to decode. You use a volt-ohm meter
to do the job right. You can be fairly sure the motor is two-phase if it has only four wires
leading to it. You can identify the phases by connecting the leads of the meter to each wire
and noting the resistance. Wire pairs that give an open reading (infinite ohms) represent
two different coils (phases). You can readily identify mating phases when there is a small
resistance through the wire pair.

Unipolar steppers behave the same, but with a slight twist. Let’s say, for argument’s
sake, that the motor has eight wires leading to it. Each winding, then, has a pair of wires.
Connect your meter to each wire in turn to identify the mating pairs. As illustrated in Fig.
19.15, no reading (infinite ohms) signifies that the wires do not lead to the same winding;
a reading indicates a winding.

If the motor has six wires, then four of the leads go to one side of the windings. The
other two are commons and connect to the other side of the windings (see Fig. 19.16).
Decoding this wiring scheme takes some patience, but it can be done. First, separate all
those wires where you get an open reading. At the end of your test, there should be two
three-wire sets that provide some reading among each of the leads.
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FIGURE 19.12 Two finished stepper motor translator boards, with indicator
LEDs. The board on the left controls two stepper motors; the
board on the right controls four stepper motors.
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STEP        PHASE  1        PHASE  2

1

2

3

4

ONOFF

Counter ClockwiseClockwise

FIGURE 19.13 The phasing sequence for a bipolar stepper motor.

Phase 1
Phase 2

Phase 3
Phase 4

Phase 1 Phase 2 

FIGURE 19.14 Pictorial diagrams of the coils
in a bipolar and unipolar step-
per motor.
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R Open

Meter connections

Open

FIGURE 19.15 Connection points and possible readings on an 8-wire
unipolar stepper motor.

Possible connections

Phase
input

FIGURE 19.16 Common connections may reduce the wire count of the step-
per motor to five or six, instead of eight.
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R

Meter connections

2X

FIGURE 19.17 Connection points and possible readings on a 5- or 6-wire
unipolar stepper motor.
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Locate the common wire by following these steps. Take a measurement of each combi-
nation of the wires and note the results. You should end up with three measurements: wires
1 and 2, wires 2 and 3, and wires 1 and 3. The meter readings will be the same for two of
the sets. For the third set, the resistance should be roughly doubled. These two wires are
the main windings. The remaining wire is the common.

Decoding a five-wire motor is the most straightforward procedure. Measure each wire
combination, noting the results of each. When you test the leads to one winding, the result
will be a specified resistance (let’s call it “R”). When you test the leads to two of the wind-
ings, the resistance will be double the value of “R,” as shown in Fig. 19.17. Isolate this
common wire with further testing and you’ve successfully decoded the wiring.

From Here
To learn more about… Read

Driving a robot Chapter 16, “Robot Locomotion Principles”

Selecting a motor for your robot Chapter 17, “Choosing the Right Motor for the Job”

Connecting motors to computers, Chapter 29, “Interfacing with Computers
microcontrollers, and other and Microcontrollers”
electronic circuitry
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DC and stepper motors are inherently “open feedback” systems—you give them juice,
and they spin. How much they spin is not always known, not even for a stepper motor,
which turns by finite degrees based on the number of pulses it gets. Should something
impede the rotation of the motor it may not turn at all, but there’s no easy, built-in way that
the control electronics would know that.

Servo motors, on the other hand, are designed for “closed feedback” systems. The out-
put of the motor is coupled to a control circuit; as the motor turns, its speed and/or posi-
tion are relayed to the control circuit. If the rotation of the motor is impeded for whatever
reason, the feedback mechanism senses that the output of the motor is not yet in the desired
location. The control circuit continues to correct the error until the motor finally reaches
its proper point.

Servo motors come in various shapes and sizes. Some are smaller than a walnut, while
others are large enough to take up their own seat in your car. They’re used for everything
from controlling computer-operated lathes to copy machines to model airplanes and cars.
It’s the last application that is of most interest to hobby robot builders: the same servo
motors used with model airplanes and cars can readily be used with your robot.

These servo motors are designed to be operated via a radio-controlled link and so are
commonly referred to as radio-controlled (or R/C) servos. But in fact the servo motor itself
is not what is radio-controlled; it is merely connected to a radio receiver on the plane or
car. The servo takes its signals from the receiver. This means you don’t have to control your
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robot via radio signals just to use an R/C servo—unless you want to, of course. You can
control a servo with your PC, a microcontroller such as the Basic Stamp, or even a simple
circuit designed around the familiar 555 timer integrated circuit.

In this chapter we’ll review what R/C servos are, and how they can be put to use in a
robot. We will limit the discussion to R/C servos. While there are other types of servo
motors, it is the R/C type that is commonly available and reasonably affordable. For sim-
plicity’s sake, when you see the term servo in the text that follows understand that it specif-
ically means an R/C servo motor, even though there are other types.

How Servos Work
Figure 20.1 shows a typical standard-sized R/C servo motor, which is used with model fly-
able airplanes and model racing cars. The size and mounting of a standard servo is the
same regardless of the manufacturer, which means that you have your pick of a variety of
makers. There are other common sizes of servo motors besides that shown in Fig. 20.1,
however. We’ll discuss these in a bit.

Inside the servo is a motor, a series of gears to reduce the speed of the motor, a control
board, and a potentiometer (see Fig. 20.2). The motor and potentiometer are connected to
the control board, all three of which form a closed feedback loop. Both control board and
motor are powered by a constant DC voltage (usually between 4.8 and 7.2 volts).

To turn the motor, a digital signal is sent to the control board. This activates the motor,
which, through a series of gears, is connected to the potentiometer. The position of the
potentiometer’s shaft indicates the position of the output shaft of the servo. When the
potentiometer has reached the desired position, the control board shuts down the motor.

As you can surmise, servo motors are designed for limited rotation rather than for con-
tinuous rotation like a DC or stepper motor. While it is possible to modify an R/C servo to
rotate continuously (see later in this chapter), the primary use of the R/C servo is to achieve
accurate rotational positioning over a range of 90° or 180°. While this may not sound like
much, in actuality such control can be used to steer a robot, move legs up and down, rotate
a sensor to scan the room, and more. The precise angular rotation of a servo in response 
to a specific digital signal has enormous uses in all fields of robotics.

Servos and Pulse Width Modulation
The motor shaft of an R/C servo is positioned by using a technique called pulse width mod-
ulation (PWM). In this system, the servo responds to the duration of a steady stream of
digital pulses. Specifically, the control board responds to a digital signal whose pulses vary
from about 1 millisecond (one thousandth of a second, or ms) to about 2 ms. These pulses
are sent some 50 times per second. The exact length of the pulse, in fractions of a mil-
lisecond, determines the position of the servo. Note that it is not the number of pulses per
second that controls the servo, but the duration of the pulses that matters. The servo
requires about 30 to 60 of these pulses per second. This is referred to as the refresh rate; if
the refresh rate is too low, the accuracy and holding power of the servo is reduced.
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FIGURE 20.1 The typical radio-controlled (R/C) servo motor.

FIGURE 20.2 The internals of an R/C servo. The servo consists of a motor, a
gear train, a potentiometer, and a control circuit.
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At a duration of 1 ms, the servo is commanded to turn all the way in one direction (let’s
say counterclockwise, as shown in Fig. 20.3). At 2 ms, the servo is commanded to turn all
the way in the other direction. Therefore, at 1.5 ms, the servo is commanded to turn to its
center (or neutral) position. As mentioned earlier, the angular position of the servo is deter-
mined by the width (more precisely, the duration) of the pulse. This technique has gone by
many names over the years. One you may have heard is digital proportional—the move-
ment of the servo is proportional to the digital signal being fed into it.

The power delivered to the motor inside the servo is also proportional to the difference
between where the output shaft is and where it’s supposed to be. If the servo has only a lit-
tle way to move to its new location, then the motor is driven at a fairly low speed. This
ensures that the motor doesn’t “overshoot” its intended position. But if the servo has a long
way to move to its new location, then it’s driven at full speed in order to get it there as fast
as possible. As the output of the servo approaches its desired new position, the motor slows
down. What seems like a complicated process actually happens in a very short period of
time—the average servo can rotate a full 60° in a quarter to half second.

The actual length of the pulses varies between servo brands, and sometimes even
between different models by the same manufacturer. The 1–2 ms range is typical but is by
no means set in stone. When you are purchasing a servo brand for a model airplane or car,
you should typically mate it with a radio receiver made by the same company to ensure
compatibility. Since you’re not likely to use a radio receiver with the R/C servos in your
robot, you’ll need to do some experimenting to find the optimum pulse width ranges for
the servos you use. This is just part of what makes robot experimenting so fun!

298 WORKING WITH SERVO MOTORS

1.5 ms

2.0 ms

1.0 ms

Same period for
all signals

Length of pulse
changes to control
position of servo

Servo
position

FIGURE 20.3 Pulse width modulation is used to control the posi-
tion of the output shaft of the servo motor.
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The Role of the Potentiometer
The potentiometer of the servo plays a key role in allowing the motor to set the position
of its output shaft. The potentiometer is physically attached to the output shaft (and in
some servo models, the potentiometer is the output shaft). In this way, the position of the
potentiometer very accurately reflects the position of the output shaft of the servo.
Recall that a potentiometer works by providing a varying voltage to a control circuit, as
shown in Fig. 20.4. As the wiper inside the potentiometer moves, the voltage changes.

The control circuit in the servo correlates this voltage with the timing of the incoming
digital pulses and generates an “error signal” if the voltage is wrong. This error signal is
proportional to the difference between the position of the potentiometer and the timing of
the incoming signal. To compensate, the control board applies the error signal to turn the
motor. When the voltage from the potentiometer and the timing of the digital pulses match,
the error signal is removed, and the motor stops.

Rotational Limits
Servos also vary by the amount of rotation they will perform for the 1–2 ms (or whatever)
signal they are provided. Most standard servos are designed to rotate back and forth by 90°
to 180°, given the full range of timing pulses. You’ll find the majority of servos will be
able to turn a full 180°, or very nearly so.

Should you attempt to command a servo beyond its mechanical limits, the output shaft of
the motor will hit an internal stop. This causes the gears of the servo to grind or chatter. If left
this way for more than a few seconds the gears of the motor may be permanently damaged.

ROTATIONAL LIMITS 299

+5 vdc +5 vdc +5 vdc

+2.5 vdc
+5 vdc

0 vdc

FIGURE 20.4 A potentiometer is often used
as a variable voltage divider.
As the potentiometer turns,
its wiper travels the length of
a resistive element. The out-
put of the potentiometer is a
varying voltage, from 0 to the
�V of the circuit.
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Therefore, when experimenting with servomotors exercise care to avoid pushing them beyond
their natural limits.

Special-Purpose Servo Types and Sizes
While the standard-sized servo is the one most commonly used in both robotics and radio-
controlled models, other R/C servo types, styles, and sizes exist as well.

� Quarter-scale (or large-scale) servos are about twice the size of standard servos and are
significantly more powerful. Quarter-scale servos are designed to be used in large
model airplanes, but they also make perfect power motors for a robot.

� Mini-micro servos are about half the size (and smaller!) of standard servos and are
designed to be used in tight spaces in a model airplane or car. They aren’t as strong as
standard servos, however.

� Sail winch servos are designed with maximum strength in mind, and are primarily
intended to move the jib and mainsail sheets on a model sailboat.

� Landing-gear retraction servos are made to retract the landing gear of medium- and
large-sized model airplanes. The design of the landing gear often requires the servo to
guarantee at least 170° degree rotation, if not more (i.e., up to and exceeding 360° of
motion). It is not uncommon for retraction servos to have a slimmer profile than the
standard variety because of the limited space on model airplanes.

Gear Trains and Power Drives
The motor inside an R/C servo turns at several thousand RPMs. This is too fast to be used
directly on model airplanes and cars, or on robots. All servos employ a gear train that
reduces the output of the motor to the equivalent of about 50–100 RPM. Servo gears can
be made of plastic, nylon, or metal (usually brass or aluminum).

Metal gears last the longest, but they significantly raise the cost of the servo.
Replacement gear sets are available for many servos, particularly the medium- to high-
priced ones ($20�). Should one or more gears fail, the servo can be disassembled and the
gears replaced. In some cases, you can “upgrade” the plastic gears in a less expensive
servo to higher-quality metal ones.

Besides the drive gears, the output shaft of the servo receives the most wear and tear.
On the least expensive servos this shaft is supported by a plastic “bearing,” which obvi-
ously can wear out very quickly if the servo is used heavily. Actually, this piece is not a
bearing at all but a bushing, a sleeve or collar that supports the shaft against the casing of
the servo. Metal bushings, typically made from lubricant-impregnated brass, last longer
but add to the cost of the servo. The best (and most expensive) servos come equipped with
ball bearings, which provide longest life. Ball bearing “upgrades” are available for some
servo models.
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Typical Servo Specs
R/C servo motors enjoy some standardization. This sameness applies primarily to standard-
sized servos, which measure approximately 1.6 inches by 0.8 inch by 1.4 inches. For other servo
types the size varies somewhat between makers, as these are designed for specialized tasks.

Table 20.1 outlines typical specifications for several types of servos, including dimen-
sions, weight, torque, and transit time. Of course, except for the size of standard servos,
these specifications can vary between brand and model. A few of the terms used in the
specs require extra discussion. As explained in Chapter 17, “Choosing the Right Motor for
the Job,” the torque of the motor is the amount of force it exerts. The standard torque unit
of measure for R/C servos is expressed in ounce-inches—or the number of ounces the
servo can lift when the weight is extended one inch from the shaft of the motor. Servos
exhibit very high torque thanks to their speed reduction gear trains.

The transit time (also called slew rate) is the approximate time it takes for the servo to
rotate the shaft X° (usually specified as 60°). Small servos turn at about a quarter of a sec-
ond per 60°, while larger servos tend to be a bit slower. The faster the transit time, the
“faster acting” the servo will be.

You can calculate equivalent RPM by multiplying the 60° transit time by 6 (to get full
360° rotation), then dividing the result into 60. For example, if a servo motor has a 60°
transit time of 0.20 seconds, that’s one revolution in 1.2 seconds (.2 	 6 � 1.2), or 50 RPM
(60 / 1.2 � 50).

Bear in mind that there are variations on the standard themes for all R/C servo classes.
For example, standard servos are available in more expensive high-speed and high-torque
versions. Servo manufacturers list the specifications for each model, so you can compare
and make the best choice based on your particular needs.

Many R/C servos are designed for use in special applications, and these applications
can be adapted to robots. For example, a servo engineered to be used with a model sail-
boat will be water resistant and therefore useful on a robot that works in or around
water.
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TABLE 20.1 TYPICAL SERVO SPECIFICATIONS

SERVO TYPE LENGTH WIDTH HEIGHT WEIGHT TORQUE TRANSIT TIME

Standard 1.6¨ 0.8¨ 1.4¨ 1.3 oz 42 oz-in 0.23 sec/60°

1/4-scale 2.3¨ 1.1¨ 2.0¨ 3.4 oz 130 oz-in 0.21 sec/60°

Mini-micro 0.85¨ 0.4¨ 0.8¨ 0.3 oz 15 oz-in 0.11 sec/60°

Low profile 1.6¨ 0.8¨ 1.0¨ 1.6 oz 60 oz-in. 0.16 sec/60°

Sail winch 1.8¨ 1.0¨ 1.7¨ 2.9 oz 135 oz-in 0.16 sec/60°
small 1 sec/360°

Sail winch 2.3¨ 1.1¨ 2.0 3.8 oz 195 oz-in 0.22 sec/60°
large 1.3 sec/360°
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Connector Styles and Wiring
While many aspects of servos are standardized, there is much variety between manufac-
turers in the shape and electrical contacts of the connectors used to attach the servo to a
receiver. While your robot probably won’t use a radio receiver, you may still want to match
up the servo with a properly mated connector on your controller board or computer. Or,
you may decide the connector issue isn’t worth the hassle, and just cut it off from the servo,
hardwiring it to your electronics. This is an acceptable alternative, but hardwiring makes
it more difficult to replace the servo should it ever fail.

CONNECTOR TYPE

There are three primary connector types found on R/C servos:

� ”J” or Futaba style
� ”A” or Airtronics style
� ”S” or Hitec/JR style

Servos made by the principle servo manufacturers—Futaba, Airtronics, Hitec, and
JR—employ the connector style popularized by that manufacturer. In addition, servos
made by competing manufacturers are usually available in a variety of connector styles,
and connector adapters are available.

PINOUT

The physical shape of the connector is just one consideration. The wiring of the connectors
(called the pinout) is also critical. Fortunately, all but the “old-style” Airtronics servos (and
the occasional oddball four-wire servo) use the same pinout, as shown in Fig. 20.5. With very
few exceptions, R/C servo connectors use three wires, providing DC power, ground, and sig-
nal (or control). Table 20.2 lists the pinouts for several popular brands of servos.

COLOR CODING

Most servos use color coding to indicate the function of each connection wire, but the actu-
al colors used for the wires vary between servo makers. Table 20.3 lists the most common
colors used in several popular brands.

USING SNAP-OFF HEADERS FOR MATED CONNECTORS

The female connectors on most R/C servos are designed to mate with pins placed 0.100
inch apart. As luck would have it, this is the most common pin spacing used in electron-
ics, and suitable pin headers are in ready supply. The “snap-off ” variety of header is per-
haps the most useful, as you can buy a long strip and literally snap off just the number of
pins you want. For a servo, snap off three pins, then solder them to your circuit board, as
shown in Fig. 20.6.
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1 2 3

Signal

+V

Ground FIGURE 20.5 The standard pinout of servos is pin 1 for sig-
nal, pin 2 for �V, and pin 3 for ground. In this
configuration damage will not usually occur if
you accidentally reverse the connector.

TABLE 20.3 COLOR CODING OF POPULAR SERVO BRANDS

SERVO +V GND SIGNAL

Airtronics Red Black White

Red stripe Blue
Brown

Cirrus Red Brown Orange

Daehwah Red Black White

Fleet Red Black White

Futaba Red Black White

Hitec Red Black Yellow

JR Red Brown Orange

KO Red Black Blue

Kraft Red (4.8 v) Black Orange
White (2.4 v) Yellow

Sanwa Red stripe Black Black
(in center)

TABLE 20.2 CONNECTOR PINOUTS OF POPULAR SERVO BRANDS

BRAND PIN 1 (LEFT) PIN 2 (CENTER) PIN 3 (RIGHT)

Airtronics (“new” style) Signal �V Gnd

Airtronics (“old” style) Signal Gnd �V

Futaba Signal �V Gnd

Hitec Signal �V Gnd

JR Signal �V Gnd
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You’ll want to mark how the servo connector should attach to the header, as it’s easy to
reverse the connector and plug it in backward. Fortunately, this probably won’t cause any
damage to either the servo or electronics, since reversing the connector merely exchanges
the signal and ground wires. This is not true of the “old-style” Airtronics connector: if you
reverse the connector, the signal and �V lines are swapped. In this case, both servo and
control electronics can be irreparably damaged.

Circuits for Controlling a Servo
Unlike a DC motor, which runs if you simply attach battery power to its leads, a servo
motor requires proper interface electronics in order to rotate its output shaft. While the
need for interface electronics may complicate to some degree your use of servos, the elec-
tronics are actually rather simple. And if you plan on operating your servos with a PC or
microcontroller (such as the Basic Stamp), all you need for the job is a few lines of 
software.

A DC motor typically needs power transistors, MOSFETs, or relays if it is interfaced to
a computer. A servo on the other hand can be directly coupled to a PC or microcontroller
with no additional electronics. All of the power-handling needs are taken care of by the
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FIGURE 20.6 You can construct your own servo connectors using snap-off
headers soldered to your robot control board.
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control board in the servo, saving you the hassle. This is one of the key benefits of using
servos with computer-controlled robots.

CONTROLLING A SERVO VIA A 555 TIMER

You don’t need a computer to control a servo. You can use the venerable 555 timer IC to
provide the required pulses to a servo. Fig. 20.7 shows one common approach to using the
555 to control a servo.

In operation, the 555 produces a signal pulse of varying duty cycle, which controls the
operation of the servo. Adjust the potentiometer to position the servo. Since the 555 can eas-
ily produce pulses of very short and very long duration, there is a good chance that the servo
may be commanded to operate outside its normal position extremes. If the servo hits its stop
and begins chattering remove power immediately! If you don’t, the gears inside the servo will
eventually strip out, and you’ll need to either throw the servo away or replace its gears.

CONTROLLING A SERVO VIA A BASIC STAMP

The Basic Stamp II is a popular microcontroller used to interface with various robotic
parts, including servos. The Stamp, which is discussed in more detail in Chapter 31, can
directly control one or more servos. However, the more servos the more processing time is
required to send pulses to each one (at least, not without resorting to some higher-level
programming which we’ll leave to the Stamp-specific books).

Fig. 20.8 shows the hookup diagram for connecting a standard servo to the Basic Stamp
II. Note that the power to the servo does not come from the Basic Stamp II, or any proto-
typing board it is on. Servos require more current than the Stamp can provide. A pack of
four AA batteries is sufficient to power the servo. For proper operation ensure that the
grounds are connected between the Stamp and the battery pack. Use a 33–47 µF capacitor
between the �V and ground of the AA pack to help kill any noise that may be induced into
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FIGURE 20.7 A 555 timer IC can be used to provide a control signal
to a servo.
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the electronics when the servo turns on and off. See Chapter 31 for suitable code that you
can use to command a servo using a Basic Stamp II.

USING A DEDICATED CONTROLLER

R/C receivers are designed with a maximum of eight servos in mind. The receiver gets a
digital pulse train from the transmitter, beginning with a long sync pulse, followed by as
many as eight servo pulses. Each pulse is meant for a given servo attached to the receiver:
pulse 1 goes to servo 1, pulse 2 goes to servo 2, and so on. The eight pulses plus the sync
pulse take about 20 ms. This means the pulse train can be repeated 50 times each second,
which we earlier referred to as the refresh rate. As the refresh rate gets slower the servos
aren’t updated as quickly and can “throb” or lose position as a result.

Unless the control electronics you are using can simultaneously supply pulses to multiple
servos at a time (multitasking), the control circuitry can no longer effectively send the refresh
pulses (the continuous train of pulses) fast enough. For these applications, you can use a ded-
icated servo controller, which is available from a number of sources, including Scott Edwards
Electronics and NetMedia (see Appendix B, “Sources,” for addresses and Web sites).
Dedicated servo controllers can operate five, eight, or even more servos autonomously, which
reduces the program overhead of the microcontroller or computer you are using.

The main benefit of dedicated servo controllers is that a great number of servos can be
commanded simultaneously, even if your computer, microcontroller, or other circuitry is not
multitasking. For example, suppose your robot requires 24 servos. Say it’s an eight-legged spi-
der, and each leg has three servos on them; each servo controls a different “degree of freedom”
of the leg. One approach would be to divide the work among three servo controllers, each
capable of handling eight servos. Each controller would be responsible for a given degree of
freedom. One might handle the rotation of all eight legs; another might handle the “flexion”
of the legs; and the third might be for the rotation of the bottom leg segment.

Dedicated servo controllers must be used with a computer or microcontroller, as they
need to be provided with real-time data in order to operate the servos. This data is 
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servo to a Basic Stamp II
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commonly sent in a serial data format. A sequence of bytes sent from the computer or
microcontroller is decoded by the servo controller, with each byte corresponding to a servo
attached to it. Servo controllers typically come with application notes and sample pro-
grams for popular computers and microcontrollers, but to make sure things work it’s very
helpful to have a knowledge of programming and serial communications.

USING GREATER THAN 7.2 VOLTS

Servos are designed to be used with rechargeable model R/C battery packs, which put out
from 4.8 to 7.2 volts, depending on the number of cells they have. Servos allow a fairly
wide latitude in input voltage, and 6 volts from a four-pack of AAs provides more than
enough juice. As the batteries drain, however, the voltage will drop, and you will notice
your servos won’t be as fast as they used to be. Somewhere below about 4.0 or 4.5 volts
the servos will be too slow to do you much good, and they may not even function.

But what about going beyond the voltage of typical rechargeable batteries used for R/C
models? Indeed, many servos can be operated in an intermittent fashion with up to about
12 volts, with few or no bad aftereffects. However, most servos will begin to overheat with
more than 9 or 10 volts, and they may not like operating for long periods of time without
a “cooling off ” period.

Unless you need the extra torque or speed, it’s best to keep the supply voltage to your
servos at no more than 9 volts, and preferably between the rated 4.8- to 7.2-volts range. Of
course, check the data sheet that comes with the servos you are using and note any special
voltage requirements.

WORKING WITH AND AVOIDING THE “DEAD BAND”

References to the Grateful Dead notwithstanding, all servos exhibit what’s known as a
dead band. The dead band of a servo is the maximum time differential between the incom-
ing control signal and the internal reference signal produced by the position of the poten-
tiometer. If the time difference equates to less than the dead band—say, five or six
microseconds—the servo will not bother trying to nudge the motor to correct for the error.

Without the dead band, the servo would constantly “hunt” back and forth to find the
exact match between the incoming signal and its own internal reference signal. The dead
band allows the servo to minimize this hunting so it will settle down to a position close to,
though maybe not exactly, where it’s supposed to be.

Dead band varies between servos and is often listed as part of the servo’s specifications.
A typical dead band is 5 microseconds (µs). If the servo has a full travel of 180° over a
1000 µs (1–2 ms) range, then the 5 µs dead band equates to one part in 200. You probably
won’t even notice the effects of dead band if your control circuitry has a resolution lower
than the dead band.

However, if your control circuitry has a resolution higher than the dead band— which
is the case with a microcontroller such as the Basic Stamp II or the Motorola
MC68HC11—then small changes in the pulse width values may not produce any effect.
For instance, if the controller has a resolution of 2 µs and if the servo has a dead band of
5 µs, then a change of just one or even two values—equal to a change of 2 or 4 µs in the
pulse width—may not have an effect on the servo.
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The bottom line: choose a servo that has a narrow dead band if you need accuracy and
if your control circuitry or programming environment has sufficient resolution. Otherwise,
ignore dead band since it probably won’t matter one way or another. The trade-off here is
that with a narrow dead band the servo will be more prone to hunt to its position and may
even buzz after it has gotten there. (Hint: the way to minimize this is to stop the stream of
pulses to the servo, assuming this is practical for your application.)

GOING BEYOND THE 1–2 MILLISECOND PULSE RANGE

You’ve already read that the “typical” servo responds to signals from 1 to 2 ms. While this
is true in theory, in actual practice many servos can be fed higher and lower pulse values
in order to maximize their rotational limits. The 1–2 ms range may indeed turn a servo one
direction or another, but it may not turn it all the way in both directions. However, you
won’t know the absolute minimums and maximums for a given servo until you experiment
with it. But take fair warning: Performing this experiment can be risky because operating
a servo to its extremes can cause the mechanism to hit its internal stops. If left in this state
for any period of time, the gears of the servo can become damaged.

If you just must have maximum rotation from your servo, connect it to your choice of
control circuitry. Start by varying the pulse width in small increments below 1 ms (1000
µs), say in 10 µs chunks. After each additional increment, have your control program
swing the servo back to its center or neutral position. When during your testing you hear
the servo hit its internal stop (the servo will “chatter” as the gears slip), you’ve found the
absolute lower-bound value for that servo. Repeat the process for the upper bound. It’s not
unusual for some servos to have a lower bound of perhaps 250 µs and an upper bound of
over 2200 µs. Yet other servos may be so restricted that they cannot even operate over the
“normal” 1–2 ms range.

Keep a notebook of the upper and lower operating bounds for each servo in your robot or
parts storehouse. Since there can be mechanical differences between servos of the same brand
and model, number your servos so you can tell them apart. When it comes time to program
them, you can refer to your notes for the lower and upper bounds for that particular servo.

Modifying a Servo for Continuous
Rotation
Many brands and models of R/C servos can be readily modified to allow them to rotate
continuously, like a regular DC motor. Such modified servos can be used as drive motors
for your robot. Modified servos can be easier to use than regular DC motors since they
already have the power drive electronics built in, they come already geared down, and they
are easy to mount on your robot.

BASIC MODIFICATION INSTRUCTIONS

Servo modification varies somewhat between makes and models, but the basic steps are
the same:
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1. Remove the case of the servo to expose the gear train, motor, and potentiometer. This
is accomplished by removing the four screws on the back of the servo case and sepa-
rating the top and bottom.

2. File or cut off the nub on the underside of the output gear that prevents full rotation.
This typically means removing one or more gears, so you should be careful not to mis-
place any parts. If necessary, make a drawing of the gear layout so you can replace
things in their proper location!

3. Remove the potentiometer and replace it with two 2.7K-ohm 1 percent tolerance (“pre-
cision”) resistors, wired as shown in Fig. 20.9. This fools the servo into thinking it’s
always in the “center” position. An even better approach is to relocate the potentiome-
ter to the outside of the servo case, so that you can make fine-tune adjustments to the
center position. Alternatively, you can attach a new 5K- or 10K-ohm potentiometer to
the circuit board outside the servo, as shown in Fig. 20.10.

4. Reassemble the case.

In the following two sections we provide more detailed modification instructions for
two popular R/C servos, the Futaba S-148, and the Hitec HS-300. While there are certain-
ly many more brands and models of servos to choose from, these two represent a good
cross-section of the internal designs used with low- and medium-priced servos. With minor
variations, the steps that follow can be applied to similarly designed servos.

STEPS FOR MODIFYING A FUTABA S-148 SERVO

The Futaba S-148 is among the most common servos used for hobby robotics. The S-148
uses a brass bushing on its output gear. See the previous section, “Basic Modification
Instructions,” for the generic steps for disassembling the servo.

1. Note the arrangement of all the gears, then remove them and set them aside. Try not to
handle the gears too much, as this will remove the grease that was applied to the gears
at the factory.
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FIGURE 20.9 To modify a servo you must
replace the internal poten-
tiometer with two 2.7K resis-
tors, wired as shown here.
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2. Locate and remove the two screws near the motor shaft. With these two screws removed
you can separate the top of the case from the drive motor.

3. Press down on the metal output shaft (it is actually the shaft of the potentiometer) to
remove the circuit board. You may need to work the circuit board loose by using a small
screwdriver to pry it out by its four corners.

4. Snip the potentiometer off near where the leads connect to the circuit board.
5. If using fixed resistors, solder them in place as shown in Fig. 20.9. If using a 5K

potentiometer, follow the additional steps provided in “Basic Modifications
Instructions,” earlier in the chapter.

6. Clip off the nub on the bottom of the output gear, as described in “Basic Modifications
Instructions.”

You may now reassemble the servo:

1. Insert the circuit board back into the top casing.
2. Attach the two small screws that secure the top casing to the motor.
3. Reassemble the gears in the proper sequence. The output gear will fit snugly over the

brass bushing.
4. Reassemble the bottom casing, with screws.

The S-148 is representative of servos that are constructed with metal bushings or
ball bearings for the output shaft. With minor variations, you can use these steps with
other servos of similar design. For example, with only minor variations the same steps
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FIGURE 20.10 For greater control and accuracy, use an external 5K or 10K pot
to replace the one removed from the servo.
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apply to the Hitec HS-422, another popular servo. Like the S-148, the Hitec HS-422
uses a brass bushing to support the output gear. The major difference between the S-
148 and HS-422 is that the HS-422 lacks the two screws holding the top casing to 
the motor.

If you are modifying a servo with metal gears, you will not be able to easily clip off the
mechanical stop that is located on the bottom of the output gear. For these you will need
to use a file or small rotary grinder to remove the stop. You can use a Dremel or other
motorized hobby tool to make short work of this task.

STEPS FOR MODIFYING A HITEC HS-300 SERVO

The HS-300 is an economical alternative to the S-148 and other servos with brass bushings
or ball bearings. The output gear of the HS-300 is mounted directly to the potentiometer, and
no bushing or bearing is used. This means that if you remove the potentiometer, you also
remove the structure on which the output gear is attached. Therefore, the steps for modify-
ing an HS-300 are different than those for the S-148. See “Basic Modification Instructions,”
earlier in the chapter for the generic steps to disassemble the servo.

1. Remove the center gear and the output gear. All the other gears can remain. If needed,
place a small piece of electrical tape on the gears to hold them in place while you work
(don’t get any grease on the tape or it won’t stick!).

2. Remove the control board from the bottom of the case.
3. Clip off the three wires leading to the potentiometer.
4. With a small flat-head screwdriver, pry off the three “fingers” holding the bottom of

the potentiometer to its casing. Discard this part.
5. Using a small pair of needle-noise pliers, remove the small disc inside the potentiome-

ter. Take care not to pull the shaft of the potentiometer out. It should remain held in
place by a small retainer. Discard this part once it has been removed.

6. If using fixed resistors, solder them in place as shown in Fig. 20.9. If using a 5K poten-
tiometer, follow the additional steps provided in “Basic Modifications Instructions,”
earlier in the chapter.

7. Clip off the nub on the bottom of the output gear, as described in “Basic Modifications
Instructions.”

An alternative to steps 4 and 5 is to ream or drill out the underside of the output gear so
that it rotates freely around the potentiometer shaft. Be sure not to ream or drill out too
much or you’ll ruin the gear. At the same time, be sure you remove enough material so
that the gear rotates freely, without any binding. You will still want to clip off the leads of
the potentiometer so that it is no longer in circuit with the control board.

You may now reassemble the servo:

1. Insert the circuit board back into the top casing.
2. Replace the output gear onto the shaft of the modified potentiometer. Replace the cen-

ter gear and make sure all the gears properly mesh.
3. Reassemble the bottom casing with screws.
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The HS-300 is representative of servos that are constructed without metal bushings or
ball bearings for the output shaft. With minor variations, you can use these steps with other
servos of similar design.

APPLYING NEW GREASE

The gears in a servo are lubricated with a white or clear grease. As you remove and replace
the gears during your modification surgery it’s inevitable that some of the grease will come
off on your fingers. If you feel too much of the grease has come off, you’ll want to apply
more. Most any viscous synthetic grease suitable for electronics equipment will work,
though you can also splurge and buy a small tube of grease especially made for servo gears
and other mechanical parts in model cars and airplanes.

When applying grease be sure to spread it around so that it gets onto all the mechani-
cal parts of the servo that mesh or rub. However, avoid getting any of it inside the motor
or on the electrical parts. Wipe off any excess.

While it may be tempting, don’t apply petroleum-based oil to the gears, such as three-
in-one oil or a spray lubricant like WD-40. Some oils may not be compatible with the plas-
tics used in the servo, and spray lubricants aren’t permanent enough.

TESTING THE MODIFIED SERVO

After reassembly but before connecting the servo to a control circuit, you’ll want to test
your handiwork to make sure the output shaft of the servo rotates smoothly. Do this by
attaching a control disc or control horn to the output shaft of the servo. Slowly and care-
fully rotate the disc or horn and note any snags. Don’t spin too quickly, as this will put
undo stress on the gears.

If you notice any binding while you’re turning the disc or horn, it could mean you didn’t
remove enough of the mechanical stop on the output gear. Disassemble the servo just
enough to gain access to the output gear and clip or file off some more.

A CAUTION ON MODIFYING SERVOS

Modifying a servo typically entails removing or “gutting” the potentiometer and clipping
off any mechanical stops or nubs on the output gear. For all practical purposes, this ren-
ders the servo unusable for its intended use, that is, to precisely control the angular posi-
tion of its output shaft. So, before modifying a servo, be sure it’s what you want to do. It’ll
be difficult to reverse the process.

Several sources of robotics parts provide premodified servos, which are a practical alter-
native if you don’t care to do the modification yourself. The price is just a little higher than
unmodified servos of the same brand and make.

SOFTWARE FOR RUNNING MODIFIED SERVOS

Even though a servo has been modified for continuous rotation, the same digital puls-
es are used to control the motor. Keep the following points in mind when using to run
modified servos:
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� If you’ve used fixed resistors in place of the original potentiometer inside the servo,
sending a pulse of about 1.5 ms will stop the motor. Decreasing the pulse width will
turn the motor in one direction; increasing the pulse width will turn the motor in the
other direction. You will need to experiment with the exact pulse width to find the value
that will cause the motor to stop.

� If you’ve used a replacement 5K potentiometer in place of the original that was inside
the servo, you have the ability to set the precise “center point” that will cause the motor
to stop. In your software, you can send a precise 1.5 ms pulse, then adjust the poten-
tiometer until the servo stops. As with fixed resistors, values higher or lower than 1.5
ms will cause the motor to turn one way or another.

Specific software examples for running servos are provided in Part 5 of this book.

LIMITATIONS OF MODIFIED SERVOS

Modifying a servo for continual rotation carries with it a few limitations, exceptions, and
“gotchas” that you’ll want to keep in mind:

� The average servo is not engineered for lots and lots of continual use. The mechanics
of the servo are likely to wear out after perhaps as little as 25 hours (that’s elapsed time),
depending on the amount of load on the servos. Models with metal gears and/or brass
bushing or ball bearings will last longer.

� The control electronics of a servo are made for intermittent duty. Servos used to power a
robot across the floor may be used minutes or even hours at a time, and they tend to be under
additional mechanical stress because of the weight of the robot. Though this is not exactly
common, it is possible to burn out the control circuitry in the servo by overdriving it.

� Standard-sized servos are not particularly strong in comparison to many other DC
motors with gear heads. Don’t expect a servo to move a 5- or 10-pound robot. If your
robot is heavy, consider using either larger, higher-output servos (such as 1/4-scale or
sail winch), or DC motors with built-in gear heads.

� Last and certainly not least, remember that modifying a servo voids its warranty. You’ll
want to test the servo before you modify it to ensure that it works.

MODIFYING BY REMOVING THE SERVO CONTROL BOARD

Another way to modify a servo for continuous rotation is to follow the steps outlined ear-
lier and also remove the control circuit board. Your robot then connects directly to the servo
motor. You’d use this approach if you don’t want to bother with the pulse width schema.
You get a nice, compact DC motor with gearbox attached.

However, since you’ve removed the control board, you will also need to provide ade-
quate power output circuitry to drive the motor. Your PC or microcontroller will likely not
be able to provide adequate current; in fact, trying to control a “gutted” servo motor direct-
ly will probably damage your PC or microcontroller.

A servo modified by removing its control board is essentially the same as an ordinary
DC motor, and the control circuitry is exactly the same. See Chapter 18 for more infor-
mation on working with DC motors.
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Attaching Mechanical Linkages to
Servos
One of the benefits of using R/C servos with robots is the variety of ways it offers you to
connect stuff to the servos. In model airplane and car applications, servos are typically
connected to a push/pull linkage of some type. For example, in a plane, a servo for con-
trolling the rudder would connect to a push/pull linkage directly attached to the rudder. As
the servo rotates, the linkage draws back and forth, as shown in Fig. 20.11. The rudder is
attached to the body of the plane using a hinge, so when the linkage moves, the rudder
flaps back and forth.

You can use the exact same hardware designed for model cars and airplanes with your servo-
equipped robots. Visit the neighborhood hobby store and scout for possible parts you can use.
Collect and read through Web sites and catalogs of companies that manufacture and sell servo
linkages and other mechanics. Appendix B, “Sources,” lists several such companies.

Attaching Wheels to Servos
Servos reengineered for full rotation are most often used for robot locomotion and are out-
fitted with wheels. Since servos are best suited for small- to medium-sized robots (under
about three pounds), the wheels for the robot should ideally be between 2 and 5 inches in
diameter. Larger-diameter wheels make the robot travel faster, but they can weigh more.
You won’t want to put extra large 7- or 10-inch wheels on your robot if each wheel weighs
1.5 pounds. There’s your three-pound practical limit right there.

The general approach for attaching wheels to servos is to use the round control disc that
comes with the servo (see Fig. 20.12). The underside of the disc fits snugly over the out-
put shaft of the servo. You can glue or screw the wheel to the front of the disc. Here are
some ideas:

� Large LEGO “balloon” tires have a recessed hub that exactly fits the control disc
included with Hitec and many other servos. You can simply glue the disc into the rim of
the tire.

� Lightweight foam tires, popular with model airplanes, can be glued or screwed to the
control disc. The tires are available in a variety of diameters. If you wish, you can grind
down the hub of the tire so it fits smoothly against the control disc.
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Shaft attached
to servo disc Servo disc

FIGURE 20.11 Servos can be used to
transform rotational
motion to linear motion.
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� A gear glued or screwed into the control disc can be used as an ersatz wheel or as a gear
that drives a wheel mounted on another shaft.

In all these cases, it’s important to maintain access to the screw used to secure the
control disc to the servo. When you are attaching a wheel or tire be sure not to block
the screw hole. If necessary, insert the screw into the control disc first, then glue or oth-
erwise attach the tire. Make sure the hub of the wheel is large enough to accept the
diameter of your screwdriver, so you can tighten the screw over the output shaft of the
servo.

Mounting Servos on the Body of the
Robot
Servos should be securely mounted to the robot so the motors don’t fall off while the robot
is in motion. In my experience, the following methods do not work well, though they are
commonly used:

� Duct tape or electrical tape. The “goo” on the tape is elastic, and eventually the servo
works itself lose. The tape can also leave a sticky residue.
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FIGURE 20.12 Attaching a round control disc to the hub of a wheel.
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� Hook-and-loop, otherwise known as Velcro. Accurate alignment of the hook-and-loop
halves can be tricky, meaning that every time you remove and replace the servos the
wheels are at a slightly different angle with respect to the body of the robot. This makes
it harder to program repeatable actions.

� Tie-wraps. You must cinch the tie-wrap tightly in order to adequately hold the servo in
place. Unless your robot is made of metal or strong plastic, you’re bound to distort
whatever part of the robot you’ve cinched the wrap against.

Over the years, I’ve found “hard mounting”—gluing, screwing, or bolting—the servos
onto the robot body to be the best overall solution, and it greatly reduces the frustration
level of hobby robotics.

ATTACHING SERVOS WITH GLUE

Gluing is a quick and easy way to mount servos on most any robot body material, includ-
ing heavy cardboard and plastic. Use only a strong glue, such as two-part epoxy or hot-
melt glue. I prefer hot-melt glue because it doesn’t emit the fumes that epoxy does, and it
sets much faster (about a minute in normal room temperatures versus a minimum of five
minutes for fast-setting epoxy).

When gluing it is important that all surfaces be clean. Rough up the surfaces with a file
or heavy-duty sandpaper for better adhesion. If you’re gluing servos to LEGO parts, apply
a generous amount so the extra adequately fills between the “nubs.” LEGO plastic is hard
and smooth, so be sure to rough it up first.

ATTACHING SERVOS WITH SCREWS OR BOLTS

A disadvantage of mounting servos with glue is that it’s more or less permanent (and,
according to Murphy’s Law, more permanent than you’d like if you want to remove the
servo, less permanent if you want the servo to stay in place!). For the greatest measure of
flexibility, use screws or bolts to mount your servos to your robot body. All servos have
mounting holes in their cases; it’s simply a matter of finding or drilling matching holes in
the body of your robot.

Servo mounts are included in many R/C radio transmitters and separately available
servo sets. You can also buy them separately from the better-stocked hobby stores. The
servo mount has space for one, two, or three servos. The mount has additional mounting
holes that you can use to secure it to the side or bottom of your robot. Most servo mounts
are made of plastic, so if you need to make additional mounting holes they are easy to drill.

You can also construct your own servo mounting brackets using 1/8-inch thick aluminum
or plastic. A template is shown in Fig. 20.13. (Note: the template is not to scale, so don’t trace
it to make your mount. Use the dimensions to fashion your mount to the proper size.)

The first step in constructing your own servo mounting brackets is to cut and drill the
aluminum or plastic, as shown in Fig. 20.13. Use a small hobby file to smooth off the edges
and corners. The mounting hole centers provided in the template are designed to line up
with the holes in LEGO Technic beams. This allows you to directly attach the servo mounts
to LEGO pieces. Use 3/32 or 4/40 nuts and bolts, or 4/40 self-tapping screws, to attach the
servo mount to the LEGO beam.
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Figure 20.14 shows a servo mounted on a bracket and attached to a LEGO beam. If nec-
essary, the servos can be easily removed for repair or replacement.
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 2 1/8”

 1 5/8”

 1 1/4”

3/16”

9/16”

(Note: Not to scale)

FIGURE 20.13 Use this template to construct a servo mount-
ing bracket. The template may not be repro-
duced in 1:1 size, so be sure to measure
before cutting your metal or plastic.

FIGURE 20.14 A servo mounted on a homemade servo bracket.

Ch20_McComb   8/18/00  2:22 PM  Page 317



From Here
To learn more about… Read

Using batteries to power your robot Chapter 15, “All about Batteries and Robot Power
Supplies”

Fundamentals of robot locomotion Chapter 16, “Robot Locomotion Principles”

Choosing the best motor for your robot Chapter 17, “Choosing the Right Motor for the Job”

Ways to implement computers and Chapter 28, “An Overview of Robot ‘Brains’”
microcontrollers to your robots

Interfacing servos and other motors Chapter 29, “Interfacing with Computers and 
to control circuitry Microcontrollers”
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Imagine a robot that can vacuum the floor for you, relieving you of that time-consuming
household drudgery and freeing you to do other, more dignified tasks. Imagine a robot that
patrols your house, inside or out, listening and watching for the slightest trouble and
sounding the alarm if anything goes amiss. Imagine a robot that knows how to look for
fire, and when it finds one, puts it out. Impossible? A dream?

Think again. The compact and versatile Roverbot introduced in this chapter can serve
as the foundation for building any of these more advanced robots. You can easily add a
small DC-operated vacuum cleaner to the robot, then set it free in your living room. Only
the sophistication of the control circuit or computer running the robot limits its effective-
ness at actually cleaning the rug.

You can attach light and sound sensors to the robot, providing it with eyes that help it
detect potential problems. These sensors, as it turns out, can be the same kind used in
household burglar alarm systems. Your only job is to connect them to the robot’s other cir-
cuits. Similar sensors can be added so your Roverbot actively roams the house, barn,
office, or other enclosed area looking for the heat, light, and smoke of fire. An electroni-
cally actuated fire extinguisher containing Halon is used to put out the fire.

The Roverbot described on the following pages represents the base model only. The
other chapters in this book will show you how to add onto the basic framework to create a
more sophisticated automaton. The Roverbot borrows from techniques described in
Chapter 10, “Building a Metal Platform.” If you haven’t yet read that chapter, do so now.
It will help you get more out of this one.

21
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Building the Base
Construct the base of the Roverbot using shelving standards or extruded aluminum chan-
nel stock. The prototype Roverbot for this book used aluminum shelving standards because
aluminum minimized the weight of the robot. The size of the machine didn’t require the
heavier-duty steel shelving standards.

The base measures 12 5/8 inches by 9 1/8 inches. These unusual dimensions make it pos-
sible to accommodate the galvanized nailing (mending) plates, which are discussed later in
this chapter. Cut two pieces each of 12 5/8-inch stock, with 45° miter edges on both sides,
as shown in Fig. 21.1 (refer to the parts list in Table 21.1). Do the same with the 
9 1/8-inch stock. Assemble the pieces using 1 1/4-by-3/8-inch flat corner irons and 8/32 by
1/2-inch nuts and bolts. Be sure the dimensions are as precise as possible and that the cuts
are straight and even. Because you are using the mending plates as a platform, it’s doubly
important with this design that you have a perfectly square frame. Don’t bother to tighten
the nuts and bolts at this point.
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125/8"

91/8"

FIGURE 21.1 Cutting diagram for the Roverbot.
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Attach one 4 3/16-inch-by-9-inch mending plate to the left third of the base.
Temporarily undo the nuts and bolts on the corners to accommodate the plate. Drill new
holes for the bolts in the plate if necessary. Repeat the process for the center and left mend-
ing plate. When the three plates are in place, tighten all the hardware. Make sure the plates
are secure on the frame by drilling additional holes near the inside corners (don’t bother if
the corner already has a bolt securing it to the frame). Use 8/32 by 1/2-inch bolts and nuts
to attach the plates into place. The finished frame should look something like the one
depicted in Fig. 21.2. The underside should look like Fig. 21.3.

Motors
The Roverbot uses two drive motors for propulsion and steering. These motors, shown in Fig.
21.4, are attached in the center of the frame. The center of the robot was chosen to help dis-
tribute the weight evenly across the platform. The robot is less likely to tip over if you keep
the center of gravity as close as possible to the center column of the robot.
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TABLE 21.1 PARTS LIST FOR ROVERBOT.

FRAME

2 12 5/8-inch length aluminum or steel shelving standard

2 9 1/8-inch length aluminum or steel shelving standard

3 4 3/16- by 9-inch galvanized nailing (mending) plate

4 1 1/4- by 3/8-inch flat corner iron

RISER

4 15-inch length aluminum or steel shelving standard

2 7-inch length aluminum or steel shelving standard

2 10 1/2-inch length aluminum or steel shelving standard

4 1- by 3/8-inch corner angle iron

MOTORS AND CASTER

2 Gear reduced output 6 or 12 volt DC motors

4 2 1/2- by 3/8-inch corner angle iron

2 5- to 7-inch diameter rubber wheels

2 1 1/4-inch swivel caster

Misc Nuts, bolts, fender washers, tooth lock washers, etc. (see text)

POWER

2 6 or 12 volt, 1 or 2 amp hour batteries (voltage depending on motor)

2 Battery clamps
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The 12-volt motors used in the prototype were found surplus, and you can use just
about any other motor you find as a substitute. The motors used in the prototype
Roverbot come with a built-in gearbox that reduces the speed to about 38 rpm. The
shafts are 1/4 inch. Each shaft was threaded using a 1/4-inch 20 die to secure the 
6-inch-diameter lawn mower wheels in place. You can skip the threading if the wheels
you use have a setscrew or can be drilled to accept a setscrew. Either way, make sure
that the wheels aren’t too thick for the shaft. The wheels used in the prototype where 1
1/2 inches wide, perfect for the 2-inch-long motor shafts.

Mount the motors using two 2 1/2-inch-by-3/8-inch corner irons, as illustrated in
Fig. 21.5. Cut about one inch off one leg of the iron so it will fit against the frame 
of the motor. Secure the irons to the motor using 8/32 by 1/2-inch bolts (yes, these
motors have pretapped mounting holes!). Finally, secure the motors in the center of the
platform using 8/32 by 1/2-inch bolts and matching nuts. Be sure that the shafts of 
the motors are perpendicular to the side of the frame. If either motor is on crooked, 
the robot will crab to one side when it rolls on the floor. There is generally 
enough play in the mounting holes on the frame to adjust the motors for proper 
alignment.
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Top view

FIGURE 21.2 The top view of the Roverbot, with three galvanized mending
plates added (holes in the plates not shown).
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Now attach the wheels. Use reducing bushings if the hub of the wheel is too large for
the shaft. If the shaft has been threaded, twist a 1/4-inch 20 nut onto it, all the way to the
base. Install the wheel using the hardware shown in Fig. 21.6. Be sure to use the tooth lock
washer. The wheels may loosen and work themselves free otherwise. Repeat the process
for the other motor.

Support Casters
The ends of the Roverbot must be supported by swivel casters. Use a two-inch-diameter
ball-bearing swivel caster, available at the hardware store. Attach the caster by marking
holes for drilling on the bottom of the left and right mending plate. You can use the base-
plate of the caster as a drilling guide. Attach the casters using 8/32 by 1/2-inch bolts and
8/32 nuts (see Fig. 21.7). You may need to add a few washers between the caster baseplate
and the mending plate to bring the caster level with the drive wheels (the prototype used a
5/16-inch spacer). Do the same for the opposite caster.

If you use different motors or drive wheels, you’ll probably need to choose a different
size caster to match. Otherwise, the four wheels may not touch the ground all at once as
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Bottom view 

FIGURE 21.3 Hardware detail for the frame of the Roverbot (bottom view).
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FIGURE 21.4 One of the drive motors, with wheel, attached to the base of the
Roverbot.

End view

Frame

8/32 x 1/2" bolt

Tooth lockwasher
8/32 nut

Motor gearbox
(pre-tapped holes)

21/2" x 3/8"
Corner angle iron   

FIGURE 21.5 Hardware detail for the motor mount. Cut the
angle iron, if necessary, to accommodate the
motor.
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they should. Before purchasing the casters, mount the motors and drive wheels, then mea-
sure the distance from the bottom of the mending plate to the ground. Buy casters to
match. Again, add washers to increase the depth, if necessary.

Batteries
Each of the drive motors in the Roverbot consumes one-half amp (500 mA) of contin-
uous current with a moderate load. The batteries chosen for the robot, then, need to eas-
ily deliver two amps for a reasonable length of time, say one or two hours of continu-
ous use of the motors. A set of high-capacity Ni-Cads would fit the bill. But the
Roverbot is designed so that subsystems can be added to it. Those subsystems haven’t
been planned yet, so it’s impossible to know how much current they will consume. The
best approach to take is to overspecify the batteries, allowing for more current than is
probably necessary.

Six- and eight-amp-hour lead-acid batteries are somewhat common on the surplus mar-
ket. As it happens, six or eight amps are about the capacity that would handle intermittent use
of the drive motors. (The various electronic subsystems, such as an on-board computer and
alarm sensors, should use their own battery.) These heavy-duty batteries are typically 
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Wheel

1/4"-20 nut 

Tooth lockwasher

Fender washerMotor

FIGURE 21.6 Hardware detail for attaching the
wheels to the motor shafts. The
wheels can be secured by thread-
ing the shaft and using 1/4-inch 20
hardware, as shown, or secured to
the shaft using a setscrew or collar.
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available in six-volt packs, so two are required to supply the 12 volts needed by the motors.
Supplementary power, for some of the linear ICs, like op amps, can come from separate
batteries, such as a Ni-Cad pack. A set of “C” Ni-Cads don’t take up much room, but it’s
a good idea to leave space for them now, instead of redesigning the robot later on to accom-
modate them.

The main batteries are rechargeable, so they don’t need to be immediately accessible in
order to be replaced. But you’ll want to use a mounting system that allows you to remove
the batteries should the need arise. The clamps shown in Fig. 21.8 allow such accessibili-
ty. The clamps are made from 1 1/4-inch wide galvanized mending plate, bent to match the
contours of the battery. Rubber weather strip is used on the inside of the clamp to hold the
battery firmly in place.

The batteries are positioned off to either side of the drive wheel axis, as shown in Fig.
21.9. This arrangement maintains the center of gravity to the inside center of the robot.
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Plate

Nut
Tooth lockwasher

Caster

Spacer washers
(as needed)

1/2" x 8/32
stove bolt

A

B

FIGURE 21.7 Adding the casters to the Roverbot. There is one caster
on each end, and both must match the depth of the drive
wheels (a little short is even better). a. Hardware detail;
b. Caster mounted on mending plate. 
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The gap also allows for the placement of one or two four-cell “C” battery packs, should
they be necessary.

Riser Frame
The riser frame extends the height of the robot by approximately 15 inches. Attached to
this frame will be the sundry circuit boards and support electronics, sensors, fire 
extinguisher, vacuum cleaner motor, or anything else you care to add. The dimensions are
large enough to assure easy placement of at least a couple of full-size circuit boards, a 
2 1/2-pound fire extinguisher, and a Black & Decker DustBuster. You can alter the dimen-
sions of the frame, if desired, to accommodate other add-ons.

Make the riser by cutting four 15-inch lengths of channel stock. One end of each length
should be cut at 90°, the other end at 45°. Cut the mitered corners to make pairs, as shown
in Fig. 21.10. Make the crosspiece by cutting a length of channel stock to exactly seven
inches. Miter the ends as shown in the figure.

Connect the two sidepieces and crosspiece using a 1 1/2-inch-by-3/8-inch flat angle
iron. Secure the angle iron by drilling matching holes in the channel stock. Attach the
stock to the angle iron by using 8/32 by 1/2-inch bolts on the crosspieces and 8/32 by 
1 1/2-inch bolts on the riser pieces. Don’t tighten the screws yet. Repeat the process for
the other riser.

Construct two beams by cutting the angle stock to 10 1/2 inches, as illustrated in Fig.
21.11. Do not miter the ends. Secure the beams to the top corners of the risers by using 
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Battery Clamp

Rubber weather
stripping

FIGURE 21.8 A battery clamp made from a strip of gal-
vanized plate, bent to the contours of the
battery. Line up the metal with weather
stripping for a positive grip.
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1-inch-by-3/8-inch corner angle irons. Use 8/32 by 1/2-inch bolts to attach the iron to the
beam. Connect the angle irons to the risers using the 8/32 by 1 1/2-inch bolts installed ear-
lier. Add a spacer between the inside of the channel stock and the angle iron if necessary,
as shown in Fig. 21.12. Use 8/32 nuts to tighten everything in place.

Attach the riser to the baseplate of the robot using 1-inch-by-3/8-inch corner angle
irons. As usual, use 8/32 by 1/2-inch bolts and nuts to secure the riser into place. The fin-
ished Roverbot body and frame should look at least something like the one in Fig. 21.13.

Street Test
You can test the operation of the robot by connecting the motors and battery to a tempo-
rary control switch. See Chapter 8, “Building a Plastic Robot Platform,” for a wiring dia-
gram. With the components listed in Table 21.1, the robot should travel at a speed of about
one foot per second. The actual speed will probably be under that because of the weight of
the robot. Fully loaded, the Roverbot will probably travel at a moderate speed of about
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Batteries
(in holders)

FIGURE 21.9 Top view of the Roverbot, showing the mounted motors
and batteries. Note the even distribution of weight
across the drive axis. This promotes stability and keeps
the robot from tipping over. The wide wheelbase also
helps.
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eight or nine inches per second. That’s just right for a robot that vacuums the floor, roams
the house for fires, and protects against burglaries. If you need your Roverbot to go a bit
faster, the easiest (and cheapest) solution is to use larger wheels. Using eight-inch wheels
will make the robot travel at a top speed of 15 inches per second.

One problem with using larger wheels, however, is that they raise the center of grav-
ity of the robot. Right now, the center of gravity is kept rather low, thanks to the low
position of the two heaviest objects, the batteries and motors. Jacking up the robot using
larger wheels puts the center of gravity higher, so there is a slightly greater chance of the
robot tipping over. You can minimize any instability by making sure that subsystems are
added to the robot from the bottom of the riser and that the heaviest parts are positioned
closest to the base. You can also mount the motor on the bottom of the frame instead of
on top.
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 7"

15"

FIGURE 21.10 Cutting diagram for the Roverbot riser pieces (two
sets).
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101/2" 

Risers

Side view

Top view

Top
Riser

Top
Riser

Cross beam

Cross beam

A

B

FIGURE 21.11 Construction details for the top of the riser. a. Side view
showing the crosspiece joining the two riser sides; b.
Top view showing the cross beams and the tops of the
risers.

Fasterner detail

Riser

Cross beam

1/2" x 3/8 bolt
1" x 3/8" corner
angle iron

11/2" x 3/8 bolt

FIGURE 21.12 Hardware detail for attaching the ris-
ers to the cross beams.
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From Here
To learn more about… Read

Constructing robots using metal parts and pieces Chapter 10, “Building a Metal Platform”

Powering your robot using batteries Chapter 15, “All about Batteries and Robot
Power Supplies”

Selecting a motor for your robot Chapter 17, “Choosing the Right Motor for
the Job”

Operating your robot with a computer Chapter 28, “An Overview of Robot 
or microcontroller ‘Brains’”
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FIGURE 21.13 The finished Roverbot (minus the 
batteries), ready for just about any
enhancement you see fit.
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Let’s be honest with each other. Do you like challenges? Do you like being faced with
problems that demand decisive action on your part? Do you like spending many long
hours tinkering in the garage or workshop? Do you like the idea of building the ultimate
robot, one that will amaze you and your friends? If the answer is yes to all these ques-
tions, then maybe you’re ready to build the Walkerbot, which we will describe in depth in
this chapter.

This strange and unique contraption walks on six legs and turns corners with an ease
and grace that belies its rather simple design. The basic Walkerbot frame and running gear
can be used to make other types of robots as well. In Chapter 23, “Advanced Locomotion
Systems,” you’ll see how to convert the Walkerbot to tracked or wheeled drive. The con-
version is simple and straightforward. In fact, you can switch back and forth between drive
systems.

The Walkerbot design described in this chapter is for the basic frame, motor, battery
system, running gear, and legs. You can embellish the robot with additional components,
such as arms, a head, computer control, you name it. The frame is oversized (in fact, it’s
too large to fit through some inside doors!), and there’s plenty of room to add new sub-
systems. The only requirement is that that weight doesn’t exceed the driving capacity of
the motors and batteries and that the legs and axles don’t bend. The prototype Walkerbot
weighs about 50 pounds. It moves along swiftly and no structural problems have yet
occurred. Another 10 or 15 pounds could be added without worry.
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Frame
The completed Walkerbot frame measures 18 inches wide by 24 inches long by 12 inches
deep. Construction is all aluminum, using a combination of 41/64-inch-by-1/2-inch-by-
1/16-inch channel stock and 1-inch-by-1-inch-by-1/16-inch angle stock.

Build the bottom of the frame by cutting two 18-inch lengths of channel stock and two
24-inch lengths of channel stock, as shown in Fig. 22.1 (refer to the parts list in Table 22.1).
Miter the ends. Attach the four pieces using 1 1/2-inch-by-3/8-inch flat angle irons and
secure them with  3-by-1/2-inch bolts and nuts. For added strength, use four bolts on each
corner.

In the prototype Walkerbot, I replaced many of the nuts and bolts with aluminum pop riv-
ets in order to reduce the weight. Until the entire frame is assembled, however, use the bolts
as temporary fasteners. Then, when the frame is assembled, square it up and replace the bolts
and nuts with rivets one at a time. Construct the top of the frame in the same manner.
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 24"

18"

FIGURE 22.1 Cutting diagram for the frame of the Walkerbot
(two sets).

TABLE 22-1 PARTS LIST FOR WALKERBOT FRAME.

4 24-inch lengths 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

4 18-inch lengths 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

4 12-inch lengths 1-inch-by-1-inch-by-1/16-inch aluminum angle stock

8 1 1/2-inch-by-3/8-inch flat angle iron

4 24-inch lengths 1-inch-by-1-inch-by-1/16-inch aluminum angle stock

2 17 5/8-inch lengths 1-inch-by-1-inch-by-1/16-inch aluminum angle stock

Misc 8/32 stove bolts, nuts, tooth lock washers, as needed
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Connect the two halves with four 12-inch lengths of angle stock, as shown in Fig. 22.2.
Secure the angle stock to the frame pieces by drilling holes at the corners. Use 8/32 by 1/2-
inch bolts and nuts initially; exchange for pop rivets after the frame is complete. The fin-
ished frame should look like the one diagrammed in Fig. 22.3.

Complete the basic frame by adding the running gear mounting rails. Cut four 24-inch
lengths of 1-inch-by-1-inch-by-1/16-inch angle stock and two 17 5/8-inch lengths of the same
angle stock. Drill 1/4-inch holes in four long pieces as shown in Fig. 22.4. The spacing between
the sets of holes is important. If the spacing is incorrect, the U-bolts won’t fit properly.

Refer to Fig. 22.5. When the holes are drilled, mount two of the long lengths of angle stock
as shown. The holes should point up, with the side of the angle stock flush against the frame
of the robot. Mount the two short lengths on the ends. Tuck the short lengths immediately
under the two long pieces of angle stock you just secured. Use 8/32 by 1/2-inch bolts and nuts
to secure the pieces together. Dimensions, drilling, and placement are critical with these com-
ponents. Put the remaining two long lengths of drilled angle stock aside for the time being.

Legs
You’re now ready to construct and attach the legs. This is probably the hardest part of the
project, so take you time and measure everything twice to assure accuracy. Cut six 14-inch
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Bottom view

1" x 1" x1/16"
angle stock

1/2" x 8/32 bolt
Nut

Tooth lockwasher

FIGURE 22.2 Hardware detail for securing the angle stock to the top and bot-
tom frame pieces.
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lengths of 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock. Do not miter
the ends. Drill a hole with a #19 bit 1/2 inch from one end (the “top”); drill a 1/4-inch hole
4 3/4 inches from the top (see Fig. 22.6; refer to the parts list in Table 22.2). Make sure the
holes are in the center of the channel stock.

With a 1/4-inch bit, drill out the center of six 4 5/8-inch-diameter circular electric recep-
tacle plate covers. The plate cover should have a notched hole near the outside, which is
used to secure it to the receptacle box. If the cover doesn’t have the hole, drill one with a
1/4-inch bit 3/8 inch from the outside edge. The finished plate cover becomes a cam for
operating the up and down movement of the legs.

Assemble four legs as follows: Attach the 14-inch-long leg piece to the cam using a 1/2-
inch length of 1/2 Schedule 40 PVC pipe and hardware, as shown in Fig. 22.7. Be sure the
ends of the pipe are filed clean and that the cut is as square as possible. The bolt should be
tightened against the cam but should freely rotate within the leg hole.

Assemble the remaining two legs in a similar fashion, but use a 2-inch length of PVC
pipe and a 3-inch stove bolt. These two legs will be placed in the center of the robot and
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12"

FIGURE 22.3 How the Walkerbot frame should look so far.

Front

1 3/4"
 11 1/4"

 20 3/4"

1 1/2"

 24"

FIGURE 22.4 Cutting and drilling guide for the motor mount rails (four).
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will stick out from the others. This allows the legs to cross one another without interfering
with the gait of the robot. The “bearings” used in the prototype were 1/2-inch-diameter
closet door rollers.

Now refer to Fig. 22.8. Thread a 5-inch-by-1/4-inch 20 carriage bolt through the center
of the cam, using the hardware shown. Next, install the wheel bearings to the shafts, 1-inch
from the cam. The 1 1/4-inch-diameter bearings are the kind commonly used in lawn mow-
ers and are readily available. The bearings used in the prototype had 1/2-inch hubs. A 1/2-
inch-to-1/4-inch reducing bushing was used to make the bearings compatible with the
diameter of the shaft.

Install 3 1/2-inch-diameter 30 tooth #25 chain sprocket (another size will also do, as
long as all the leg mechanism sprockets in the robot are the same size). Like the bearings,
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A

24" x 1" x 1" x
1/16" angle stock

2 1/2"

Side view

17 5/8" x 1" x 1" x 1/16"
angle stock

2 5/8"

B

FIGURE 22.5 The motor mount rails secured to the robot. a. The long rail
mounts 2 1/2 inches from the bottom of the frame (the holes
drilled earlier point up); b. The short end crosspiece rail
mounts 2 5/8 inches from the bottom of the frame.
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FIGURE 22.6 Cutting and
drilling guide for
the six legs.

14" x 57/64" x 9/16" x 1/16"
channel stock

1/2"

 4 3/4"

Side view

TABLE 22.2 PARTS LIST FOR WALKERBOT LEGS

6 14-inch lengths 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock

6 6-inch lengths 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

6 Roller bearings

6 Steel electrical covers (4 5/8-inch diameter)

6 5-inch hex-head carriage bolt

6 2-inch-by-3/8-inch flat mending iron

6 1 1/4-inch 45° “Ell” Schedule 40 PCV pipe fitting

Misc 10/24 and 8/32 stove bolts, nuts, tooth lock washers, locking nuts, flat wash-
ers, as needed. 1/2-inch Schedule 40 PVC cut to length (see text)
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Leg

Slip

Cam

Bearing rotates
against inside

of leg

A

B

Washer

Cam

Nut
1/2" PVC

Bearing

Nut

Tooth
lockwasher

1 3/4" x 10/24
bolt

Locking
nut

FIGURE 22.7 Hardware detail for the leg cam. a. Complete
cam and leg; b. Exploded view. Note that
two of the legs use a 2-inch piece of PVC
and a 3-inch bolt.
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a reducing bushing was used to make the 1/2-inch I.D. hubs of the sprockets fit on the
shaft. The exact positioning of the sprockets on the shaft is not important at this time, but
follow the spacing diagram shown in Fig. 22.9 as a guide. You’ll have to “fine-tune” the
sprockets on the shaft as a final alignment procedure anyway.

Once all the legs are complete, install them on the robot using U-bolts. The 1 1/2-inch-
wide-by-2 1/2-inch-long-by-1/4-inch 20 thread U-bolts fit over the bearings perfectly. Secure
the U-bolts using the 1/4-inch 20 nuts supplied.

Refer to Fig. 22.10 for the next step. Cut six 6-inch lengths of 41/64-inch-by-1/2-inch-
by-1/16-inch aluminum channel stock. With a #19 bit, drill holes 3/8 inch from the top and
bottom of the rail. With a nibbler tool, cut a 3 1/2-inch slot in the center of each rail. The
slot should start 1/2 inch from one end.

Alternatively, you can use a router, motorized rasp, or other tool to cut the slot. In any
case, make sure the slot is perfectly straight. Once cut, polish the edges with a piece of
300 grit wet-dry Emory paper, used wet. Use your fingers to find any rough edges. There
can be none. This is a difficult task to do properly, and you may want to take this portion
to a sheet metal shop and have them do it for you (it’ll save you an hour or two of blister-
producing nibbling!). An alternative method, which requires no slot cutting, is shown in
Fig. 22.11. Be sure to mount the double rails exactly parallel to one another.

Mount the rails using 8/32 by 2-inch bolts and 8/32 nuts. Make sure the rails are directly
above the shaft of each leg or the legs may not operate properly. You’ll have to drill through
both walls of the channel in the top of the frame.

The rails serve to keep the legs aligned for the up-and-down pistonlike stroke of the
legs. Attach the legs to the rails using 3/8-inch-by-1 1/2-inch bolts. Use nuts and locking
nuts fasteners as shown in Fig. 22.12. This finished leg mechanism should look like the
one depicted in Fig. 22.13. Use grease or light oil to lubricate the slot. Be sure that there
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5" x 1/4"-20 carriage bolt

Nut

Split lockwasher

Sprocket

Split lockwasher

Split lockwasher

Bearing

Nut

Nut

Split lockwasher

FIGURE 22.8 Hardware detail of the leg shafts.
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FIGURE 22.9 The leg shafts attached to the motor
mount rails (left side shown only).

3/8"

3/8"1/2"

 3 1/2"

 6"

Slot

4 1/64" x 1/2" x 1/16"
channel stock

FIGURE 22.10 Cutting and drilling guide for the
cam sliders (six required).
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1 1/4" x 10/24 bolt
(center legs have 3" bolts)

Flat washer

Slider rail

Flat washer

Locking nut

Split lockwasher
Nut

Nut

Flat washer

Leg

Flat washer

Locking nutGap Gap

A B

FIGURE 22.12 Cam slider hardware detail. a. Complete
assembly; b. Exploded view. Note that the 
center legs have 2-inch bolts.

Top view

Frame of robot

Cam sliders

Side view

FIGURE 22.11 An alternative approach to the slotted cam sliders.
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is sufficient play between the slot and the bolt stem. The play cannot be excessive, how-
ever, or the leg may bind as the bolt moves up and down inside the slot. Adjust the sliding
bolt on all six legs for proper clearance.

Drill small pilot holes in the side of six 45° 1 1/4-inch PVC pipe elbows. These serve as
the feet of the legs. Paint the feet at the point if you wish. Using #10 wood screws, attach a
2-inch-by-3/8-inch flat mending iron to each of the elbow feet. Drill 1/4-inch holes 1 1/4
inches from the bottom of the leg. Secure the feet onto the legs using 1/2-inch-by-1/4-inch
20 machine bolts, nuts, and lock washers. Apply a 3-inch length of rubber weather strip to
the bottom of each foot for better traction. The leg should look like the one in Fig. 22.14. The
legs should look like the one in Fig. 22.15. A close-up of the cam mechanism is shown in
Fig. 22.16.

Motors
The motors used in the prototype Walkerbot were surplus finds originally intended as the dri-
ving motors in a child’s motorized bike or go-cart. The motors have a fairly high torque at 12
volts DC and a speed of about 600 rpm. A one-step reduction gear was added to bring the
speed down to about 230 rpm. The output speed is further reduced to about 138 rpm by using
a drive sprocket. For a walking machine, that’s about right, although it could stand to be a bit
slower. Electronic speed reduction can be used to slow the motor output down to about 100
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FIGURE 22.13 The slider cam and hardware. The slot must be smooth and free
of burrs, or the leg will snag.
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FIGURE 22.14 PVC plumbing fittings used as feet. The feet use a flat mending
iron. Add pads or rubber to the bottom of the feet as desired.

FIGURE 22.15 One of six legs,
completed (shown
already attached
to the robot).
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rpm. You can use other motors and other driving techniques as long as the motors have a (pre-
reduced) torque of at least 6 lb-ft. and a speed that can be reduced to 140 rpm or so.

Mount the motors inside two 6 1/2-inch-by-1 1/2-inch mending plate Ts. Drill a
large hole, if necessary, for the shaft of the motor to stick through, as shown in Fig.
22.17 (refer to the parts list in Table 22.3). The motors used in the prototype came
with a 12-pitch 12-tooth nylon gear. The gear was not removed for assembly, so 
the hole had to be large enough for it to pass through. The 30-tooth 12-pitch metal
gear and 18-tooth 1/4-inch chain sprocket were also sandwiched between the mend-
ing plates.

The 1/4-inch shaft of the driven gear and sprocket is free running. You can install a bear-
ing on each plate, if you wish, or have the shaft freely rotate in oversize holes. The sprock-
et and gear have 1/2-inch I.D. hubs, so reducing bushings were used. The sprocket and gear
are held in place with compression. Don’t forget the split washers. They provide the nec-
essary compression to keep things from working loose.

Before attaching the two mending plates together, thread a 28 1/2-inch length of #25
roller chain over the sprocket. The exact length can be one or two links off; you can cor-
rect for any variance later on. Assemble the two plates using 8/32 by 3-inch bolts and 8/32
nuts and lock washers. Separate the plates using 2-inch spacers.

Attach the two 17 7/8-inch lengths of angle bracket on the robot, as shown in Fig. 22.18.
The stock mounts directly under the two end pieces. Use 1/2-inch-by-8/32 
bolts and nuts to secure the crosspieces in place. Secure the leg shafts using 1 1/4-inch bear-
ings and U-bolts.

Mount the motor to the newly added inner mounting rails using 3-inch-by-1/2-inch
mending plate Ts. Fasten the plates onto the motor mount, as shown in Fig. 22.19, with

MOTORS 347

FIGURE 22.16 A close-up detail of the leg cam.
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8/32 by 1/2-inch bolts and nuts. Position the shaft of the motor approximately 7 inches
from the back of the robot (you can make any end of the shaft the back; it doesn’t matter).
Thread the roller chain over the center sprocket and the end sprocket. Position the motor
until the roller chain is taut. Mark holes and drill. Secure the motor and mount to the frame
using 8/32 by 1/2-inch bolts and nuts. Repeat the process for the opposite motor. The final
assembly should look like Fig. 22.20.

Thread a 28 1/2-inch length of #25 roller chain around sprockets of the center and front
legs. Attach an idler sprocket 7 1/2 inches from the front of the robot in line with the leg
mounts. Use a diameter as close to 2 inches as possible for the idler; otherwise, you may
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Holes for
spacer mounting

6 1/2" mending "T"

2" spacer

2 1/2" bolt

Motor
Driver gear

Driven gear

1/2" x 8/32

Mounting flange
(on motor)

Hole for motor shaft/
drive gear

A

B

FIGURE 22.17 Motor mount details. a. Drilling guide for the mending
T; b. The motor and drive gear-sprocket mounted with
two mending Ts.
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need to shorten or lengthen the roller chain. Thread the roller chain around the sprocket,
and find a position along the rail until the roller chain is taut (but not overly tight). Make
a mark using the center of the sprocket as a guide and drill a 1/4-inch hole in the rail.
Attach the sprocket to the robot. Figs. 22.21 through 22.23 show the motor mount, idler
sprocket, and roller chain locations.
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Frame

Top view
 3 3/8"

Inner mounting rail
(attached to end cross

pieces) 

FIGURE 22.18 Mounting location of the inner rails.

TABLE 22-3 PARTS LIST FOR WALKERBOT MOUNT-DRIVE SYSTEM

4 6 1/2-inch galvanized mending plate T

4 3-inch galvanized mending plate T

2 Heavy-duty gear-reduction DC motors

12 3 1/2-inch-diameter 30-tooth #15 chain sprocket

4 28 1/2-inch-length #25 roller chain

12 2 1/2-inch-by-1 1/2-inch-by-1/4-inch 20 U-bolts, with nuts and tooth 
lock washers

12 1 1/2-inch O.D. 1/4-inch-to-1/2-inch ID bearing

Misc Reducing bushings (see text)
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FIGURE 22.19 One of the drive motors mounted on the robot using smaller
galvanized mending Ts.

FIGURE 22.20 Drive motor attached to the Walkerbot, with drive chain joining
the motor to the leg shafts.
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Batteries
The Walkerbot is not a lightweight robot, and its walking design requires at least 30 per-
cent more power than a wheeled robot. The batteries for the Walkerbot are not trivial. You
have a number of alternatives. One workable approach is to use two 6-volt motorcycle bat-
teries, each rated at about 30 ampere-hours (AH). The two batteries together equal a
slimmed-down version of a car battery in size and weight.
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Chain
Loop 1 Loop 2

Motor mount

Side view

Cam

Idler
(mounted

2" "T")

FIGURE 22.21 Mounting locations for idler sprocket.

FIGURE 22.22 A view of the mounted motor, with chain drive.
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You can also use a 12-volt motorcycle or dune buggy battery, rated at more than 20 AH.
The prototype Walkerbot used 12-AH 6-volt gel cell batteries. The amp-hour capacity is a
bit on the low side, considering the two-amp draw from each motor, and the planned heavy
use of electronics and support circuits. In tests, the 12-AH batteries provided about two
hours of use before requiring a recharge.

There is plenty of room to mount the batteries. A good spot is slightly behind the center
legs. By offsetting the batteries a bit in relation to the drive motors, you restore the center of
gravity to the center of the robot. Of course, other components you add to the robot can throw
the center of gravity off. Add one or two articulated arms to the robot, and the weight suddenly
shifts toward the front. For flexibility, why not mount the batteries on a sliding rail, which will
allow you to shift their position forward or back depending on the other weight you add to the
Walkerbot.

The complete Walkerbot, minus the batteries, is shown in Fig. 22.24. Some additional
hardware and holes are apparent on this version. Pay no attention to them. These were
either my mistakes (!), or were made for components removed for the illustration.
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FIGURE 22.23 Left and right motors attached to the
robot.
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Testing and Alignment
You can test the operation of the Walkerbot by temporarily installing a wired control box.
The box consists of two DPDT switches wired to control the forward and backward motion
of the two legs. See Chapter 8, “Robots of Plastic,” for more details and a wiring diagram.

But before you test the Walkerbot, you need to align its legs. The legs on each side
should be positioned so that either the center leg touches the ground or the front and back
leg touch the ground. When the two sets of legs are working in tandem, the walking gait
should be as shown in Fig. 22.25. This gait is the same as an insect’s and provides a great
deal of stability. To turn, one set of legs stops (or reverses) while the other set continues.
During this time, the “tripod” arrangement of the gait will be lost, but the robot will still
be supported by at least three legs.

An easy way to align the legs is to loosen the chain sprockets (so you can move the legs
independently) and position the middle leg all the way forward and the front and back legs
all the way back. Retighten the sprockets, and look out for misalignment of the roller chain
and sprockets. If a chain bends to mesh with a sprocket, it is likely to pop off when the
robot is in motion.

During testing, be on the lookout for things that rub, squeak, and work loose. Keep your
wrench handy and adjust gaps and tighten bolts as necessary. Add a dab of oil to those
parts that seem to be binding. You may find that a sprocket or gear doesn’t stay tightened
on a shaft. Look for ways to better secure the component to the shaft, such as by using a
setscrew or another split lock washer. It may take several hours of “tuning up” to get the
robot working at top efficiency.
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FIGURE 22.24 The completed Walkerbot.
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Once the robot is aligned, run it through its paces by having it walk over level ground,
step over small rocks and ditches, and navigate tight corners. Keep an eye on your watch
to see how long the batteries provide power. You may need to upgrade the batteries if they
cannot provide more than an hour of fun and games.

The Walkerbot is ideally suited for expansion. Fig. 22.26 shows an arm attached to the
front side of the robot. You can add a second arm on the other side for more complete dex-
terity. Attach a dome on the top of the robot, and you’ve added a “head” on which you can
attach a video camera, ultrasonic “ears” and “eyes,” and lots more. Additional panels can
be added to the front and back ends; attach them using hook-and-loop (such as Velcro)
strips. That way, you can easily remove the panels should you need quick access to the
inside of the robot.
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A

B

= Contact on ground

Movement

FIGURE 22.25 The walking gait. a. The alternating tripod walking style of the
Walkerbot, shared with thousands of crawling insects; b. The
positioning of the legs for proper walking (front and back legs in
synchrony; middle leg 180 degrees out of sync). The middle leg
doesn’t hit either the front or back leg because it is further from
the body of the robot.
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From Here
To learn more about… Read

Working with metal Chapter 10, “Building a Metal Platform”

Robot locomotion styles, including 
wheels, treads, and legs Chapter 16, “Robot Locomotion Principles”

Using DC motors Chapter 18, “Working with DC Motors”

Additional locomotion systems 
based on the Walkerbot frame Chapter 23, “Advanced Locomotion Systems”

Constructing an arm for 
the Walkerbot Chapter 25, “Build a Revolute Coordinate Arm”
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FIGURE 22.26 An arm attached to the front side of the Walkerbot.
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Two drive wheels aren’t the only way to move a robot across the living room or work-
shop floor. If you read Chapter 22, you learned how to build a six-legged walking robot.
Here, in this chapter, you’ll learn the basics of applying some other unique drive systems
to propel your robot designs, including a stair-climbing robot, an outdoor tracked robot,
and even a six-wheeled “Buggybot.”

Track o’ My Robot
There is something exciting about seeing a tank climb embankments, bounding over huge
boulders as if they were tiny dirt clods. A robot with tracked drive is a perfect contender
for an automaton that’s designed for outdoor use. Where a wheeled or legged robot can’t
go, the tracked robot can roll in with relative ease. Experimental tracked robots, using
metal tracks just like tanks, have been designed for the U.S. Navy and U.S. Army and are
even used by many police and fire departments. Everyone has liked what they’ve seen so
far; development of tracked autonomous vehicles continues still.

Using a heavy metal track for your personal robot is decidedly a bad idea. The track is
too heavy and much too hard to fabricate. For a homebrew robot, a rubber track is more
than adequate. You can use a large timing belt, even an automotive fan belt, for the track.
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Another alternative I’ve used with some success is rubber wetsuit material. Most diving
shops have long strips of the rubber lying around that they’ll sell or give to you. You can
mend the rubber using a special waterproof adhesive. You can glue the strip together to
make a band, then glue small rubber cleats on to the band. Fig. 23.1 shows the basic idea.

The drive train for a tracked robot must be specifically engineered or modified for the
task of driving a track. The Walkerbot described in Chapter 22 makes a good base for a
tracked robot. Remove the legs and install three small drive pulleys, as diagrammed in Fig.
23.2. The track fits inside the groove of the pulleys, so it won’t easily slip out. You must
add rollers to the bottom of the carriage against which the track passes. Unless the track is
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FIGURE 23.1 A wetsuit drive
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FIGURE 23.2 Two ways to add track drive to the
Walkerbot presented in Chapter
22. a. Track roller arrangement for
good traction and stability but rel-
atively poor turning radius. b.
Track roller arrangement for good
turning radius, but hindered trac-
tion and stability.
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thick there can be no groove in the rollers. Otherwise, the track would ride inside the
rollers, instead of outside. Wide rubber tires make good rollers.

With this design, the track may pop off the rollers and drive wheels under certain cir-
cumstances. To help minimize the chances of throwing the track every few minutes, add a
guide roller to the bottom of the carriage, as diagrammed in Fig. 23.3. The track rides
inside a groove (or flange) in the small guide roller, and prevents the track from popping
out of place.

To propel the robot, you activate both motors so the tracks move in the same direction
and at the same speed. To steer, you simply stop or reverse one side. For example, to turn
left, stop the left track. To make a hard left turn, reverse the left track. The Walkerbot has
six driven wheels. The three wheels on each side are linked together, so they all provide
power to the track. But you don’t need a three-wheel drive system. In fact, you can usual-
ly get by with just one driver wheel on each side of the robot.

Steering Wheel Systems
Using dual motors to effect propulsion and steering is just one method for getting your
robot around. Another approach is to use a pivoting wheel to steer the robot. The same
wheel can provide power, or power can come from two wheels in the rear (the latter is
much more common). The arrangement is not unlike golf carts, where the two rear wheels
provide power and a single wheel in the front provides steering. See Fig. 23.4 for a dia-
gram of a typical steering-wheel robot. Fig. 23.5 shows a detail of the steering mechanism.

The advantage of a steering-wheel robot is that you need only one powerful drive motor.
The motor can power both rear wheels at once. The steering wheel motor needn’t be as
powerful since all it has to do is swivel the wheel back and forth a few degrees. The biggest
disadvantage of steering-wheel systems is the steering! You must build stops into the steer-
ing mechanisms (either mechanical or electronic) to prevent the wheel from turning more
than 50° or 60° to either side. Angles greater than about 60° cause the robot to suddenly
steer in the other direction. They may even cause the robot to lurch to a sudden stop
because the front wheel is at a right angle to the rear wheels.
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FIGURE 23.3 A close-up view of the flanged roller used to prevent the track from
popping off the drive.
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The servomechanism that controls the steering wheel must “know” when the wheel is
pointing forward. The wheel must return to this exact spot when the robot is commanded
to forge straight ahead. Not all servomechanisms are this accurate. The motor may stop one
or more degrees off the center point, and the robot may never actually travel in a straight
line. A good steering motor, and a more sophisticated servomechanism, can reduce this
limitation.

A number of robot designs with steering-wheel mechanisms have been described in
other robot books and on various Web pages. Check out Appendix A, “Further Reading,”
and Appendix C, “Robot Information on the Internet,” for more information.

Six-Wheeled Robot Cart
You can also modify the Walkerbot described in Chapter 22 into a six-wheeled rugged ter-
rain cart, or Buggybot. Simply remove the legs and attach wheels, as diagrammed in Fig.
23.6. The larger the wheels the better, as long as they aren’t over about nine inches (the
centerline diameter between each drive shaft).
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FIGURE 23.4 A basic arrangement for a robot using one drive motor
and steering wheel.
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Steering gear

Steering motor

Steering wheel

Drive gear

FIGURE 23.5 The steering gear up close.

FIGURE 23.6 Converting the Walkerbot (from Chapter 22)
into a six-wheeled, all-terrain Buggybot.
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Pneumatic wheels are the best choice because they provide more “bounce” and handle
rough ground better than hard rubber tires. Most hardware stores carry a full assortment
of pneumatic tires. Most are designed for things like wheelbarrows and hand dollies. Cost
can be high, so you may want to check out the surplus or used industrial supply houses.
Just be sure the tire doesn’t have a flat!

Steering is accomplished as with a two-wheeled robot. The series of three wheels on
each side act as a kind of track tread, so the vehicle behaves much like a tracked vehicle.
The maneuverability isn’t as good as with a two-wheeled robot, but you can still turn the
robot in a radius a little longer than its length. Sharp turns require you to reverse one set
of wheels while applying forward motion to the other.

Tri-Star Wheels
In the science fiction film Damnation Alley, starring Jan-Michael Vincent and George
Peppard, the earth has been decimated by an atomic war, and the heroes must trek across
the county amid radioactive storms, marauders, and other postwar denizens. To help them
get there in one piece, they use an incredible 35-foot-long steel vehicle called the
“Landmaster.” This thing crashes through walls, hops over large ditches as if they were
nothing but potholes, even swims across the water (see the movie production still in Fig.
23.7). The drive system used by the Landmaster is an unusual tri-star arrangement that’s
perfectly suited for robotic tasks such as climbing stairs, maneuvering through rough ter-
rain, and, yes, even going through water.

The Landmaster was built by Dean Jeffries Automotive Styling, of Hollywood,
California. The full-size vehicle can still be seen parked in the lot of his workshop off
Cahuenga Boulevard. Jeffries modeled the wheel arrangement of the Landmaster after a
design patented (but never actively used) by Lockheed Aircraft for an all-terrain vehicle.
Each of the four “wheels” on the vehicle is actually a set of three smaller wheels, clustered
in a triangle, as shown in Fig. 23.8.

All three tires continually rotate, driven by a central shaft, but in normal operation
only two of them are touching the ground. When the vehicle encounters an obstacle or
hole, the wheel gang flips and rotates the wheels into a new position, as diagrammed in
Fig. 23.9. You have to either see the movie or build your own robot based on this design
to believe it.

All four wheel gangs are powered by a central motor. Steering is accomplished by
bending the midsection of the robot. In the Landmaster vehicle, this is accomplished by
using hydraulic rams, but for a homebrew robot you’d probably use a servo or stepping
motor. Fig. 23.10 shows how such a robot might be constructed. One large motor, which
rests in one of the robot halves, drives the four wheel gangs. Since the robot is made in
two parts and the midsection bends, the wheels in the other half of the robot are driven
via a flexible cable, the same kind used with handheld electric drills. To balance the
robot, the batteries are placed in the second half. A wiring harness connects the two
halves together.
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FIGURE 23.7 The “Landmaster,” from the motion picture Damnation Alley.
Photo courtesy 20th Century Fox.

FIGURE 23.8 A close-up of the tri-star wheels used in the Landmaster.
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Building Robots with Shape-memory
Alloy
A metal that has a memory? You bet. As early as 1938, scientists observed that certain
metal alloys, once bent into odd shapes, returned to the original form when heated. This
property was considered little more than a laboratory curiosity because the metal alloys
were weak, were difficult and expensive to manufacture, and broke apart after just a cou-
ple of heating/cooling cycles.

Research into metals with memory took off in 1961, when William Beuhler and his
team of researchers at the U.S. Naval Ordnance Laboratory developed a titanium-nickel
alloy that repeatedly displayed the memory effect. Beuhler and his cohorts developed the
first commercially viable shape-memory alloy, or SMA. They called the stuff Nitinol, a
fancy-sounding name derived from Nickel Titanium Naval Ordnance Laboratory.

Since its introduction, Nitinol has been used in a number of commercial products—
but not many. For example, several Nitinol engines have been developed that operate
with only hot and cold water. In operation, the metal contracts when exposed to hot
water and relaxes when exposed to cold water. Combined with various assemblies of
springs and cams, the contraction and relaxation (similar to a human muscle) causes the
engine to move.

Other commercial applications of Nitinol include pipe fittings that automatically seal
when cooled, large antenna arrays that can be bent (using hot water) into most any shape
desired, sunglass frames that spring back to their original shape after being bent, and a
novel antiscald device that shuts off water flow in a shower should the water temperature
exceed a certain limit.

Regular Nitinol contracts and relaxes in heat (in air, water, or other liquid). That limits
the effectiveness of the metal in many applications where local heat can’t be applied.
Researchers have attempted to heat the Nitinol metal using electrical current in an 
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FIGURE 23.9 How the wheel gang “flips” when it encounters a hole or obstacle.
The same basic motion can be used to climb stairs.
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effort to exactly control the contraction and relaxation. But because of the molecular 
construction of Nitinol, hot spots develop along the length of the metal, causing early
fatigue and breakage.

In 1985, a Japanese company, Toki Corp., unveiled a new type of shape-memory alloy
specially designed to be activated by electrical current. Toki’s unique SMA material, trade-
named BioMetal, offers all of the versatility of the original Nitinol, with the added bene-
fit of near instant electrical actuation. BioMetal and materials like it—Muscle Wire from
Mondo-Tronics or Flexinol from Dynalloy—have many uses in robotics, including novel
locomotive actuation. From here on out we’ll refer to this family of materials generically
as shape-memory alloy, or simply SMA.
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FIGURE 23.10 A preliminary design for a robot based on the tri-star wheel arrangement.
a. Side view of the robot; b. Top view of the robot showing the one drive
motor and the central steering motor.
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BASICS OF SMA

At its most basic level, SMA is a strand of nickel titanium alloy wire. Though the material
may be very thin (a typical thickness is 0.15 mm—slightly wider than a strand of human
hair) it is exceptionally strong. In fact, the tensile strength of SMA rivals that of stainless
steel: the breaking point of the slender wire is a whopping six pounds. Even under this
much weight, SMA stretches little. In addition to its strength, SMA also shares the corro-
sion-resistance of stainless steel.

Shape memory alloys change their internal crystal structure when exposed to certain
higher-than-normal temperatures (this includes the induced temperatures caused by pass-
ing an electrical current through the wire). The structure changes again when the alloy is
allowed to cool. More specifically, during manufacture the SMA wire is heated to a very
high temperature, which embosses or “memorizes” a certain crystal structure. The wire is
then cooled and stretched to its practical limits. When the wire is reheated, it contracts
because it is returning to the memorized state.

Although most SMA strands are straight, the material can also be manufactured in spring
form, usually as an expansion spring. In its normal state, the spring exerts minimum tension,
but when current is applied the spring stiffens, exerting greater tension. Used in this fashion,
SMAs become an “active spring” that can adjust itself to a particular load, pressure, or weight.

Shape memory alloys have an electrical resistance of about one ohm per inch. That’s
more than ordinary hookup wire, so SMAs will heat up more rapidly when an electrical
current is passed through them. The more current passes through, the hotter the wire
becomes and the more contracted the strand. Under normal conditions, a two- to three-inch
length of SMA is actuated with a current of about 450 milliamps. That creates an inter-
nally generated temperature of about 100–130°C; 90°C is required to achieve the shape-
memory change. Most SMAs can be manufactured to change shape at most any tempera-
ture, but 90°C is the standard value for off-the-shelf material.

Excessive current should be avoided. Why? Extra current causes the wire to overheat,
which can greatly degrade its shape-memory characteristics. For best results, current
should be as low as necessary to achieve the contraction desired. Shape memory alloys will
contract by 2 to 4 percent of their length, depending on the amount of current applied. The
maximum contraction of typical SMA material is 8 percent, but that requires heavy cur-
rent that can, over a period of just a few seconds, damage the wire.

USING SMA

Shape memory alloys need little support paraphernalia. Besides the wire itself, you need
some type of terminating system, a bias force, and an actuating circuit. We’ll discuss each
of these in the following sections.

Terminating system The terminators attach the ends of the SMA wires to the support
structure or mechanism you are moving. Because SMAs expand as they contract, using
glue or other adhesive will not secure the wire to the mechanism. Ordinary soldering is not
recommended as the extreme heat of the soldering can permanently damage the wire. The
best approach is to use a crimp-on terminator. These and other crimp terminators are 
available from companies that sell shape memory alloy wire (either in the experimenter’s
kit or separately).
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You can make your own crimp-on connectors using 18-gauge or smaller solderless
crimp connectors (the smaller the better). Although these connectors are rather large 
for the thin 0.15 mm SMA, you can achieve a fairly secure termination by folding the
wire in the connector and pressing firmly with a suitable crimp tool. Be sure to com-
pletely flatten the connector. If necessary, place the connector in a vise to flatten it 
all the way.

Bias force Apply current to the ends of an SMA wire and it just contracts in air. To be
useful, the wire must be attached to one end of the moving mechanism and biased (as
shown in Fig. 23.11) at the other end. Besides offering physical support, the bias offers the
counteracting force that returns the SMA wire to its limber condition once current is
removed from the strand.

Actuating circuit SMAs can be actuated with a 1.5-volt penlight battery. Because the
circuit through the SMA wire is almost a dead short, the battery delivers almost its maxi-
mum current capacity. But the average 1.5-volt alkaline penlight battery has a maximum
current output of only a few hundred milliamps, so the current is limited through the wire.
You can connect a simple on/off switch in line with the battery, as detailed in Fig. 23.12,
to contract or relax the SMA wire.

The problem with this setup is that it wastes battery power, and if the power switch is
left on for too long, it can do some damage to the SMA strand. A more sophisticated
approach uses a 555 timer IC that automatically shuts off the current after a short time. The
schematic in Fig. 23.13 shows one way of connecting a 555 timer IC to control a length of
SMA. Table 23.1 provides a parts list for the 555 SMA circuit.

BUILDING ROBOTS WITH SHAPE-MEMORY ALLOY 367

Crimp
terminator

SMA wire

Indicator

Bias spring
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FIGURE 23.12 A simple
switch in series with a 1.5-
volt penlight battery forms a
simple SMA driving circuit.
The low current delivered by
the penlight battery prevents
damage to the SMA wire.
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FIGURE 23.13 A 555 timer IC is at the heart of an ideal driving cir-
cuit for SMA wire. The 555 removes the current shortly after you release
activating switch S1.

TABLE 23.1 PARTS LIST FOR 555 SMA DRIVER.

IC1 555 timer

Q1 2N2222 NPN transistor

R1 47K resistor

R2 27K resistor

R3 1K resistor

C1 3.3 �F polarized electrolytic capacitor

Misc Momentary SPST switch, SMA wire

All resistors are 5 to 10 percent tolerance, 1/4 watt. All capacitors are 10 to 20 percent tolerance,
rated at 35 volts or more.
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In operation, when you press momentary switch S1 it activates the wire and it contracts.
Release S1 immediately, and the SMA stays contracted for an extra fraction of a second,
then releases as the 555 timer shuts off. Since the total ON time of the 555 depends on how
long you hold S1 down, plus the 1/10-of-a-second delay, you should depress the switch
only momentarily.

SHAPE MEMORY ALLOY MECHANISMS

With the SMA properly terminated and actuated, it’s up to you and your own imagination
to think of ways to use it in your robots. Fig. 23.14 shows a typical application using an
SMA wire in a pulley configuration. Apply current to the wire and the pulley turns, giv-
ing you rotational motion. A large-diameter pulley will turn very little when the SMA tens-
es up, but a small-diameter one will turn an appreciable distance.

Fig. 23.15 shows a length of SMA wire used in a lever arrangement. Here, the metal
strand is attached to one end of a bell crank. On the opposite end is a bias 
spring. Applying juice to the wire causes the bell crank to move. The spot where you
attach the drive arm dictates the amount of movement you will obtain when the SMA
contracts.

SMA wire is tiny stuff, and you will find that the miniature hardware designed 
for model R/C airplanes is most useful for constructing mechanisms. Most any 
well-stocked hobby store will stock a full variety of bell cranks, levers, pulleys, 
wheels, gears, springs, and other odds and ends to make your work with SMA more
enjoyable.
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FIGURE 23.14 Concept of using SMA wire
with a mechanical pulley.
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From Here
To learn more about… Read

Selecting a motor for driving a robot Chapter 17, “Choosing the Right Motor for the Job”

Using DC motors for robot locomotion Chapter 18, “Working with DC Motors”

Building Walkerbot, a large six-legged Chapter 22, “Build a Heavy-duty, Six-legged Walking
walking robot Robot”
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FIGURE 23.15 The bell crank
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Robots without arms are limited to rolling or walking about, perhaps noting things that
occur around them, but little else. The robot can’t, as the slogan goes, “reach out and touch
someone,” and it certainly can’t manipulate its world.

The more sophisticated robots in science, industry, and research and development have
at least one arm to grasp, reorient, or move objects. Arms extend the reach of robots and
make them more like humans. For all the extra capabilities arms provide a robot, it’s inter-
esting that they aren’t at all difficult to build. Your arm designs can be used for factory-
style, stationary “pick-and-place” robots, or they can be attached to a mobile robot as an
appendage.

This chapter deals with the concept and design theory of robotic arms. Specific arm
projects are presented in Chapters 25 and 26. Incidentally, when we speak of arms, we will
usually mean just the arm mechanism minus the hand (also called the gripper). Chapter 27,
“Experimenting with Gripper Designs,” talks about how to construct robotic hands and
how you can add them to arms to make a complete, functioning appendage.

The Human Arm
Take a close look at your own arms for a moment. You’ll quickly notice a number of impor-
tant points. First, your arms are amazingly adept mechanisms, no doubt about it. They are
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capable of being maneuvered into just about any position you want. Your arm has two
major joints: the shoulder and the elbow (the wrist, as far as robotics is concerned, is usu-
ally considered part of the gripper mechanism). Your shoulder can move in two planes,
both up and down and back and forth. Move your shoulder muscles up, and your entire arm
is raised away from your body. Move your shoulder muscles forward, and your entire 
arm moves forward. The elbow joint is capable of moving in two planes as well: back and
forth and up and down.

The joints in your arm, and your ability to move them, are called degrees of freedom.
Your shoulder provides two degrees of freedom in itself: shoulder rotation and shoulder
flexion. The elbow joint adds a third and fourth degree of freedom: elbow flexion and
elbow rotation.

Robotic arms also have degrees of freedom. But instead of muscles, tendons, ball and
socket joints, and bones, robot arms are made from metal, plastic, wood, motors, solenoids,
gears, pulleys, and a variety of other mechanical components. Some robot arms provide
but one degree of freedom; others provide three, four, and even five separate degrees of
freedom.

Arm Types
Robot arms are classified by the shape of the area that the end of the arm (where the grip-
per is) can reach. This accessible area is called the work envelope. For simplicity’s sake, the
work envelope does not take into consideration motion by the robot’s body, just the arm
mechanics.

The human arm has a nearly spherical work envelope. We can reach just about anything,
as long as it is within arm’s length, within the inside of about three-quarters of a sphere.
Imagine being inside a hollowed-out orange. You stand by one edge. When you reach out,
you can touch the inside walls of about three-quarters of the orange peel.

In a robot, such a robot arm would be said to have revolute coordinates. The three other
main robot arm designs are polar coordinate, cylindrical coordinate, and Cartesian coor-
dinate. You’ll note that there are three degrees of freedom in all four basic types of arm
designs. Let’s take a closer look at each one.

REVOLUTE COORDINATE

Revolute coordinate arms, such as the one depicted in Fig. 24.1, are modeled after the
human arm, so they have many of the same capabilities. The typical robotic design is
somewhat different, however, because of the complexity of the human shoulder joint.

The shoulder joint of the robotic arm is really two different mechanisms. Shoulder rota-
tion is accomplished by spinning the arm at its base, almost as if the arm were mounted on
a record player turntable. Shoulder flexion is accomplished by tilting the upper arm mem-
ber backward and forward. Elbow flexion works just it does in the human arm. It moves
the forearm up and down. Revolute coordinate arms are a favorite design choice for hobby
robots. They provide a great deal of flexibility, and, besides, they actually look like arms.
For details on how to construct a revolute coordinate arm, see Chapter 25.
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POLAR COORDINATE

The work envelope of the polar coordinate arm is the shape of a half sphere. Next to the
revolute coordinate design, polar coordinate arms are the most flexible in terms of the 
ability to grasp a variety of objects scattered about the robot. Fig. 24.2 shows a polar coor-
dinate arm and its various degrees of freedom.

A turntable rotates the entire arm, just as it does in a revolute coordinate arm. This func-
tion is akin to shoulder rotation. The polar coordinate arm lacks a means for flexing or bend-
ing its shoulder, however. The second degree of freedom is the elbow joint, which moves the
forearm up and down. The third degree of freedom is accomplished by varying the reach of
the forearm. An “inner” forearm extends or retracts to bring the gripper closer to or farther
away from the robot. Without the inner forearm, the arm would only be able to grasp
objects laid out in a finite two-dimensional circle in front of it. Not very helpful.

The polar coordinate arm is often used in factory robots and finds its greatest application
as a stationary device. It can, however, be mounted to a mobile robot for increased flexibility.
Chap. 26 shows you how to build a rather useful stationary polar coordinate arm.

CYLINDRICAL COORDINATE

The cylindrical coordinate arm looks a little like a robotic forklift. Its work envelope resem-
bles a thick cylinder, hence its name. Shoulder rotation is accomplished by a revolving base,
as in revolute and polar coordinate arms. The forearm is attached to an elevatorlike lift mech-
anism, as depicted in Fig. 24.3. The forearm moves up and down this column to grasp objects
at various heights. To allow the arm to reach objects in three-dimensional space, the forearm
is outfitted with an extension mechanism, similar to the one found in a polar coordinate arm.

CARTESIAN COORDINATE

The work envelope of a Cartesian coordinate arm (Fig. 24.4) resembles a box. It is the arm
most unlike the human arm and least resembles the other three arm types. It has no 
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FIGURE 24.1 A revolute coordinate
arm.
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rotating parts. The base consists of a conveyer belt-like track. The track moves the eleva-
tor column (like the one in a cylindrical coordinate arm) back and forth. The forearm
moves up and down the column and has an inner arm that extends the reach closer to or
farther away from the robot.

Activation Techniques
There are three general ways to move the joints in a robot arm:

� Electrical
� Hydraulic
� Pneumatic

Electrical actuation is done with motors, solenoids, and other electromechanical
devices. It is the most common and easiest to implement. The motors for elbow flexion, as
well as the motors for the gripper mechanism, can be placed in or near the base. Cables,
chains, or belts connect the motors to the joints they serve.

Electrical activation doesn’t always have to be via an electromechanical device such as
a motor or solenoid. Other types of electrically induced activation are possible using a 
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FIGURE 24.2 A polar coordinate
arm.

FIGURE 24.3 A cylindrical coordi-
nate arm.
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variety of technologies. One of particular interest to hobby robot builders is shape memo-
ry alloy, or SMA, as discussed in Chapter 23. SMA material goes by a number of trade
names, such as BioMetal, Dynalloy, Nitinol, and Muscle Wire.

The construction of SMA material differs from manufacturer to manufacturer, but the
activation technique is about the same: when heat is applied to the metal, it contracts to a
predefined state. Heat can be applied directly, through a flame or with hot water, or by
passing an electrical current through the material. The electrical activation is the technique
most commonly used in robotics.

A disadvantage of SMA is its slow expansion rate: the metal must cool before it relax-
es and returns to its preheated shape and size. The larger the piece of metal is, the longer
it takes to cool, so the slower the “muscle” returns to its noncontracted state. As a result,
most of the shape memory alloy material you’ll see available, such as Muscle Wire from
Mondo-Tronics, is hair-thin. Don’t let the small diameter of the wire fool you, however:
Muscle Wire and many other SMA materials can bear considerable weight—several
pounds in both the contracted and noncontracted state. See Chapter 23 for a full discussion
of shape memory alloy.

Hydraulic actuation uses oil-reservoir pressure cylinders, similar to the kind used in
earth-moving equipment and automobile brake systems. The fluid is noncorrosive and
inhibits rust: both are the immediate ruin of any hydraulic system. Though water can be
used in a hydraulic system, if the parts are made of metal they will no doubt eventually suf-
fer from rust, corrosion, or damage by water deposits. For a simple homebrew robot, how-
ever, a water-based hydraulic system using plastic parts is a viable alternative.

Pneumatic actuation is similar to hydraulic, except that pressurized air is used instead
of oil or fluid (the air often has a small amount of oil mixed in it for lubrication purposes).
Both hydraulic and pneumatic systems provide greater power than electrical actuation, but
they are more difficult to use. In addition to the actuation cylinders themselves, such as the
one shown in Fig. 24.5, a pump is required to pressurize the air or oil, and values are used
to control the retraction or extension of the cylinders. For the best results, you need a hold-
ing tank to stabilize the pressurization.

An interesting variation on pneumatic actuation is the “Air Muscle,” an ingenious com-
bination of a small rubber tube and black plastic mesh. The rubber tube acts as an expand-
able bladder, and the plastic mesh forces the tube to inflate in a controllable manner. Air
Muscle is available premade in various sizes; it is activated by pumping air into the tube.
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FIGURE 24.4 A Cartesian coordi-
nate arm.
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When filled with air, the tube expands its width but contracts its length (by 25 percent).
The result is that the tube and mesh act as a kind of mechanical muscle. The Air Muscle is
said to be more efficient than the standard pneumatic cylinder, and according to its mak-
ers it has about a 400:1 power-to-weight ratio.

From Here
To learn more about… Read

Building a robotic revolute coordinate arm Chapter 25, “Build a Revolute Coordinate
Arm”

Building a robotic stationary polar coordinate arm Chapter 26, “Build a Polar Coordinate Arm”

Creating hands for robot arms Chapter 27, “Experimenting with Gripper
Designs”

Endowing robot arms and hands with the Chapter 35, “Adding the Sense of Touch”
sense of touch
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FIGURE 24.5 One of hundreds of available sizes and styles of pneumatic cylin-
ders. This one has a bore of about 1/2 inch and a stroke of three
inches.
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The revolute coordinate arm design provides a great deal of flexibility, yet requires few
components. The arm described in this chapter enjoys only two degrees of freedom. You’ll
find, however, that even with two degrees of freedom, the arm can do many things. It can
be used by itself as a stationary pick-and-place robot, or it can be attached to a mobile plat-
form. The construction details given here are for a left hand; to build a right hand, simply
make it a mirror image of the left.

You’ll note that the arm lacks a hand—a gripper. You can use just about any type of
gripper. In fact, you can design the forearm so it accepts many different grippers inter-
changeably. See Chapter 27, “Experimenting with Gripper Designs,” for more information
on robot hands.

Design Overview
The design of the revolute coordinate arm is modeled after the human arm. A shaft-mounted
shoulder joint provides shoulder rotation (degree of freedom #1). A simple swing-arm
rotating joint provides the elbow flexion (degree of freedom #2).

You could add a third degree of freedom, shoulder flexion, by providing another joint
immediately after the shoulder. In tests, however, I found that this basic two-degree-of-
freedom arm is quite sufficient for most tasks. It is best used, however, on a mobile 
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platform where the robot can move closer to or farther away from the object it’s grasping.
That’s cheating, in a way, but it’s a lot simpler than adding another joint.

Shoulder Joint and Upper Arm
The shoulder joint is a shaft that connects to a bearing mounted on the arm base or in the
robot. Attached to the shaft is the drive motor for moving the shoulder up and down. The
motor is connected by a single-stage gear system, as shown in Fig. 25.1 (refer to the parts
list in Table 25.1). In the prototype arm for this book, the output of the motor was approx-
imately 22 rpm, or roughly one-third of a revolution per second.

For a shoulder joint, 22 rpm is a little on the fast side. I chose a gear ratio of 3:1 to
decrease the speed by a factor of three (and increase the torque of the motor roughly by a
factor of three). With the gear system, the shoulder joint moves at about one revolution
every eight seconds. That may seem slow, but remember that the shoulder joint swings in
an arc of a little less than 50°, or roughly one-seventh of a complete circle. Thus, the shoul-
der will go from one extreme to the other in under two seconds.

Refer to Fig. 25.2. The upper arm is constructed from a 10-inch length of 57/64-inch-by-
9/16-inch-by-1/16-inch aluminum channel stock and a matching 10-inch length of 41/64-
inch-by-1/2-inch-by-1/16-inch aluminum channel stock. Sandwich the two stocks together to
make a bar. Drill a 1/4-inch hole 1/2 inch from the end of the channel stock pieces. Cut a piece
of 1/4-inch 20 all-thread rod to a length of seven inches (this measurement depends largely on
the shoulder motor arrangement, but seven inches gives you room to make changes). Thread
a 1/4-inch 20 nut, flat washer, and locking washer onto one end of the rod. Leave a little
extra—about 1/8 inch to 1/4 inch—on the outside of the nut. You’ll need the room in a bit.

Drill a 1/4-inch hole in the center of a 3 3/4-inch-diameter metal electrical receptacle
cover plate. Insert the rod through it and the hole of the larger channel aluminum. Thread
two 1/4-inch 20 nuts onto the rod to act as spacers, then attach the smaller channel 
aluminum. Lock the pieces together using a flat washer, tooth washer, and 1/4-inch 20 nut.
The shoulder is now complete.
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Shoulder motor

Shoulder
(1/4"-20 all-thread rod)

Spur gears
(3:1 reduction)

FIGURE 25.1 The gear transfer system used to actuate the shoul-
der of the revolute arm. You can also use a motor
with a built-in reduction gear if the output of the
motor is not slow enough for the arm.
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Elbow and Forearm
The forearm attaches to the end of the upper arm. The joint there serves as the elbow. The
forearm is constructed much like the upper arm: cut the small and large pieces of channel
aluminum to eight inches instead of ten inches. Construct the elbow joint as shown in Figs.
25.3 and 25.4, using two 1 1/2-inch-by-3/8-inch flat corner angles, 1/2-inch spacers, and
10/24 hardware. The 3/4-inch timing belt sprocket (5 lugs per inch) is used to convey
power from the elbow motor, which is mounted at the shoulder. The completed joint is
shown in Fig. 25.5.

You can actually use just about any size of timing belt or sprocket. When using the size
of sprockets specified in Table 25.1, the timing belt is 20 1/2 inches. If you use another
size sprocket for the elbow or the motor, you may need to choose another length. You can
adjust for some slack by mounting the elbow joint closer or farther to the end of the upper
arm.

You may also use #25 roller chain to power the elbow. Use a sprocket on the elbow and
a sprocket on the motor shaft. Connect the two with a #25 roller chain. You’ll need to
experiment based on the size of sprockets you use to come up with the exact length for the
roller chain.

When the elbow and forearm are complete, mount the motor on the shoulder, directly
on the plate cover. The motor we chose for the prototype revolute coordinate arm was a
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Table 25.1 PARTS LIST FOR REVOLUTE ARM.

1 10-inch length 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock

1 10-inch length 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

1 8-inch length 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock

1 8-inch length 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

1 7-inch length 1/4-inch 20 all-thread rod

2 1 3/4-inch-by-10/24 stove bolt

2 1 1/2-inch-by-3/8-inch flat corner iron

1 3-inch-by-3/4-inch mending plate “T” (for motor mounting)

2 1/2-inch aluminum spacer

1 1/4-inch aluminum spacer

2 3/4-inch-diameter, 5-lugs-per-inch timing belt sprocket

1 20 1/2-inch-length timing belt (5 lugs per inch)

2 Stepper motors (see text)

1 3:1 gear reduction system (such as one 20-tooth 24-pitch spur gear and one
60-tooth 24-pitch spur gear)

Misc 6/32, 10/24, and 1/4-inch 20 nuts, washers, tooth lock washers, fishing tackle
weights
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one-amp medium-duty stepper motor. Predrilled holes on the face of the motor made it
easier to mount the arm. A 3-inch-by-3/4-inch mending plate T was used to secure the
motor to the plate, as illustrated in Fig. 25.6. New holes were drilled in the plate to match
the holes in the motor (1 7/8-inch spacing), and the “T” was bent at the cross.

Unscrew the nut holding the cover plate and upper arm to the shaft, place the “T” on it,
and retighten. Make sure the motor is perpendicular to the arm. Then, using the other hole in
the “T” as a guide, drill a hole through the cover plate. Secure the T in place with an 8/32 by
1/2-inch bolt and nut. The finished arm, with a gripper attached, is shown in Fig. 25.7.

Refinements
As it is, the arm is unbalanced, and the shoulder motor must work harder to position the
arm. You can help to rebalance the arm by relocating the shoulder rotation shaft and by
adding counterweights or springs. Before you do anything hasty, however, you may want
to attach a gripper to the end of the forearm. Any attempts to balance the arm now will be

380 BUILD A REVOLUTE COORDINATE ARM

All 1/4"-20 hardware

Nut

Large channel stock
Small channel stock

Nut

Flat washer
Tooth lockwasher

7" length
1/4"-20 all-thread rod

Nut(X2)
(as spacers)

A

B

FIGURE 25.2 Shoulder shaft detail. a. Completed shaft; b. Exploded view. 
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severely thwarted when you add the gripper.
The center of gravity for the whole arm, with the elbow drive motor included, is

approximately midway along the length of the upper arm (at least this is true of the pro-
totype arm; your arm may be different). Remove the long shaft from the present shoul-
der joint, and replace it with a short 1 1/2-inch- or 2-inch-long 1/4-inch 20 bolt. Drill a
new 1/4-inch hole through the upper arm at the approximate center of gravity, and
thread the shoulder shaft through it. Attach it as before, using 1/4-inch 20 nuts, flat
washers, and toothed lock washers.

The forearm is also out of balance, and you can correct it in a similar manner, by attach-
ing the shoulder joint nearer to the center of the arm. This has the unfortunate side effect,
however, of shortening the reach of the forearm. One solution is to make the arm longer to
compensate. In effect, you’ll be keeping the elbow joint where it is, just adding extra length
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1 3/4" x 10/24 bolt

1/2" aluminum spacer

Upper arm piece

Nut

Tooth lockwasher

Nut

1 1/2" x 3/8"
Flat corner angle 

A

B

FIGURE 25.3 Upper arm elbow joint detail. a. Complete joint; 
b. Exploded view.
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3" x 10/24 bolt

10/24 locking nut

Tooth lockwasher

Belt sprocket

5/16" flat washer

Tooth lockwasher

1/4" aluminum

Nut

10/24 locking nut

Flat washer

Forearm

Tooth lockwasher

Nut

1 1/2" x 3/8"
Flat corner angle

1 1/2" x 3/8"
Flat corner angle

Gap

Gap

A

B

FIGURE 25.4 Forearm elbow joint detail. a. Complete joint; b.
Exploded view.
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behind it.
This may interfere with the operation of the arm or robot, however, so you may want to

opt for counterweights attached to the end of the arm. I successfully used two four-ounce
fishing tackle weights attached to the arm with a 2-inch-by-3/4-inch corner angle bracket
(see Fig. 25.8).

Position Control
The stepper motors used for the shoulder and elbow joints of the prototype provide a nat-
ural control over the position of the arm. Under electronic control, the motors can be com-
manded to rotate a specific number of steps, which in turn moves the upper arm and 
forearm a specified amount.

You should supplement the open-loop servo system with limit switches. These switch-
es provide an indication when the arm joints have moved to their extreme positions. The
most common limit switches are small leaf switches. You can also construct optical switch-
es using photo-interrupters. A small patch of plastic or metal interrupts the flow of light
between an LED and phototransistor, thus signaling the limit of movement. You can build
these interrupters by mounting an infrared LED and phototransistor on a small perforated
board or purchase ready-made modules (they are common surplus finds).

When using continuous DC motors, you need to provide some type of feedback to
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FIGURE 25.5 A close-up view of the elbow joint.
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FIGURE 25.6 The motor mounted on the shoulder.

FIGURE 25.7 The completed arm, with gripper (hand) attached.
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report the position of the arm. Otherwise, the control electronics (almost always a 
computer) will never know where the arm is or how far it has moved. There are several
ways you can provide this feedback. The most popular methods are a potentiometer and an
incremental shaft encoder.

POTENTIOMETER

Attach the shaft of a potentiometer to the shoulder or elbow joint or motor (see Fig. 25.9),
and the varying resistance of the pot serves as an indication of the position of the arm. Just
about any pot will do, as long as it has a travel rotation the same as or greater than the trav-
el rotation of the joints in the arm. Otherwise, the arm will go past the internal stops of the
potentiometer. Travel rotation is usually not a problem in arm systems, where joints sel-
dom move more than 40° or 50°. If your arm design moves more than about 270°, use a
multiturn pot. A three-turn pot should suffice.

Another method is to use a slider-pot. You operate a slider-pot by moving the wiper
up and down, rather than by turning a shaft. Slider-pots are ideal when you want to
measure linear distance, like the amount of travel (distance) of a chain or belt. 
Fig. 25.10 shows a slider-pot mounted to a cleat in the timing belt used to operate the 
elbow joint.

The value of the pot is a function of the control electronics you have hooked up to it,
but 10K to 100K potentiometers usually work well with most any circuit. The potentiome-
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FIGURE 25.8 Counterbalance weights attached to the end of the forearm help
redistribute the weight. You can also use springs, which will help
reduce the overall weight of the arm.
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Motor

Potentiometer

FIGURE 25.9 Using a potentiometer as a
position feedback device.
Mount the potentiometer on a
drive motor or on a joint of
the arm.

 Movement of Drive

Slide potentiometer

FIGURE 25.10 Using a slide potentiometer to register position
feedback. The wiper of the pot can be linked to
any mechanical device, like a chain or belt, that
moves laterally.
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ter may provide a relative measurement of the position of the arm, but the information 
is in analog form, as a resistance or voltage, neither of which can be directly interpreted
by a computer.

By connecting the pot as shown in Fig. 25.11, you gain an output that is a voltage
between 0 and the positive supply voltage (usually 5 or 12 volts). The wiper of the pot can
be connected to the input of an analog-to-digital converter (ADC), which translates volt-
age levels into bytes.

Now, before you go off screaming about the complexity of ADCs, you should really try
one first. The latest chips are relatively inexpensive (under $5) and require a very mini-
mum number of external components to operate. The best part about ADC chips is that
most have provisions for connecting eight or more analog signals. You select which signal
input you want to convert into digital data. That means you can use one $5 ADC for all of
the joints in a two-arm robot system.

To be useful, the ADC should be connected to a microprocessor or computer. You can
also use your personal computer as the controlling electronics for your robot. Read
Chapter 29, “Interfacing with Computers and Microcontrollers,” for more information
about ADCs and computer control.

Also note that some microcontrollers have their own ADCs built in. For example, the
BasicX-24 from NetMedia sports eight ADC inputs; the OOPic microcontroller offers a
pair of ADC inputs. Neither of these microcontrollers requires any external components to
be connected to the ADC inputs. See Chaps. 32 and 33, respectively, for more information
on the BasicX and OOPic microcontroller chips.

INCREMENTAL SHAFT ENCODER

The incremental shaft encoder was first introduced in Chapter 18, “Working with DC
Motors.” The shaft encoder is a disc that has many small holes or slots near its outside cir-
cumference. You attach the disc to a motor shaft or the shoulder or elbow joint. See Chapter
18 for more information on using shaft encoders. To review, shaft encoders are typically
composed of a circuit connected to the phototransistor (the latter of which is baffled to
block off ambient light). The phototransistor counts the number of on/off flashes and then
converts that number into distance traveled. For example, one on/off flash may equal a 2°
movement of the joint. Two flashes may equal a 4° movement, and so forth.

The advantage of the incremental shaft encoder is that its output is inherently digital.
You can use a computer, or even a simple counter circuit, to simply count the number of
on/off flashes. The result, when the movement ends, is the new position of the arm.
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V+

Wiper connects to
circuit or ADC

FIGURE 25.11 The basic electrical
hookup for providing a
varying voltage from a
potentiometer.
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From Here
To learn more about… Read

Using DC motors and shaft encoders Chapter 18, “Working with DC Motors”

Using stepper motors to drive robot parts Chapter 19, “Working with Stepper Motors”

Different robotic arm systems and assemblies Chapter 24, “An Overview of Arm Systems”

Attaching hands to robotic arms Chapter 27, “Experimenting with Gripper
Designs”

Interfacing feedback sensors to computers Chapter 29, “Interfacing with Computers and
and microcontrollers Microcontrollers”
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Polar coordinate arms are ideal for use in a stand-alone robotic manipulator. They are
fairly inexpensive and easy to build, and they can be adapted to a number of useful appli-
cations, especially robotic training. The design described in this chapter is a three-degree-
of-freedom polar coordinate arm that is mounted on a stationary base. You can, if you wish,
attach the arm to a mobile base or, for an even more outrageous project, add wheels or
track to the base itself and make a giant rolling arm.

The arm design presented here has no gripper, or hand, mechanism. You can attach any
number of different grippers to the end of the arm. Choose the gripper based on the appli-
cation you have in mind. Read more about robotic grippers in Chapter 27, “Experimenting
with Gripper Designs.”

Constructing the Base
The base measures 10 inches by 12 inches by 4 inches. The prototype for this book was
made from aluminum shelving standards. Refer to Fig.26.1.You can also use 41/64-inch-
by-1/2-inch-by-1/16-inch aluminum channel stock, which is recommended. Construct the
base by cutting four 10-inch and four 12-inch lengths. Cut each end at a 45° angle. Cut
four 2 1/2-inch riser pieces. Do not miter the ends of these lengths. Assemble the top and
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bottom frames using 1 1/2-inch-by-3/8-inch flat corner angles. Secure the stock to the cor-
ner angles with 8/32 by 1/2-inch bolts and 8/32 nuts.

Refer to Fig. 26.2. Attach a 1-inch-by-1/2-inch corner angle bracket using 8/32 by 1/2-
inch bolts and nuts to each one of the short riser pieces. Attach 2-inch-by-1/2-inch flat
mending plates to the top of the riser pieces. Connect the top and bottom frames with the
risers spaced 2 3/4 inches from the corners. Use 8/32 by 1/2-inch bolts and 8/32 nuts.

Shoulder Rotation Mechanism
The shoulder rotation mechanism consists of a motor, a turntable, and a roller chain gear
system. Start by adding a cross brace to the top of the base. Cut a 10 5/8-inch length of
57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock. Mount it lengthwise in
the center base using two 2 1/2-inch-by-1/2-inch flat mending iron Ts. Use 8/32 by 1/2-
inch bolts and 8/32 nuts to secure the Ts and cross brace into place.

Drill a 3/8-inch hole in the center of the cross brace. Position one 3-inch-diameter ball-bear-
ing turntable (lazy Susan) over the hole. Using the mounting holes on the baseplate of the
turntable as a guide, mark corresponding mounting holes in the cross brace. Drill for 6/32 bolts
(#28 bit) and attach the turntable using two 6/32 by 1/2-inch bolts and 6/32 nuts (see Fig. 26.3).

Construct the center shaft of the arm with a 3-inch-by-10/24 pan-head stove bolt. Place
a 1/2-inch-diameter bearing on either side of the channel stock. Be sure the center (rotat-
ing part) of the bearings rest over the hole, or they won’t turn properly, and that the head
of the bolt is positioned over the inner wheel of the bearing. Add a 1/4-inch spacer and lock
the assembly into place with a 10/24 nut.

On to the drive mechanics. The drive sprocket (35 teeth, 3-inch diameter, #25 roller
chain) is sandwiched between two plastic spacers, as shown in Fig. 26.3. These spacers are
actually closet pole holders. They already have holes drilled in the center; so you can just
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23/4" Frame top

Frame bottom

Riser

Frame top

Frame bottom

Riser

1" x 1/2"
Corner
angle iron

2" x 1/2"
Flat mending iron 

FIGURE 26.1 Cutting and assembly for the polar arm base risers. a. Riser
placement; b. Hardware assembly detail.
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21/2" x 1/2" "T"

Frame top

Top view

Turntable

FIGURE 26.2 Cutting and assembly detail for crosspiece and turntable.

TABLE 26-1 PARTS LIST FOR POLAR COORDINATE ARM.

Frame/BASE

4 12-inch lengths 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

4 10-inch lengths 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

4 2 1/2-inch lengths 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel stock

4 2-inch-by-1/2-inch flat mending iron

4 1-inch-by-1/2-inch corner angle iron

8 1 1/2-inch-by-3/8-inch flat corner angle iron

Misc 8/32 stove bolts, nuts, tooth lock washers

Shoulder Base

1 10 5/8-inch length 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock

1 9-inch length 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock
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TABLE 26.1 PARTS LIST FOR POLAR COORDINATE ARM. (Continued)

Shoulder Base

2 7-inch length 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock

2 2 1/2-inch mending plate “T”

2 1 1/4-inch-by-5/8-inch corner angle iron

1 3-inch-diameter ball-bearing turntable

1 3-inch-by-10/24 stove bolt, nuts, flat washers, tooth lock washers

2 Plastic closet pole holders

2 1/2-inch bearings

1 1/2-inch aluminum spacer

1 3-inch-diameter 35-tooth chain sprocket (#25 chain)

1 Stepper motor

1 1 3/4-inch-diameter 20-tooth chain sprocket (#25 chain)

1 17-inch-long (nominal) #25 roller chain

Misc 1/2-inch-by-8/32 stove bolts, nuts, tooth lock washers

Elbow

2 6-inch lengths 57/64-inch-by-9/16-inch-by-1/16-inch aluminum channel stock

2 3 1/2-inch lengths 1-inch-by-1-inch-by-1/16-inch aluminum angle stock

1 2 1/2-inch length 1-inch-by-1-inch-by-1/16-inch aluminum angle stock

1 7 1/2-inch length 1/4-inch 20 all-thread rod, nuts, locking nuts, flat washers, tooth
lock washers

2 1 3/4-inch-diameter 20-tooth chain sprocket (#25 chain)

1 17-inch-long #25 roller chain

1 Stepper motor

Misc 1/2-inch-by-8/32 stove bolts, nuts, tooth lock washers

Forearm

1 16-inch-long (nominal) drawer rail

2 1-inch-to-1 1/2-inch-diameter spur gears, with setscrew recessed in hub

1 3 1/2-inch length 1-inch-by-1-inch-by-1/16-inch aluminum angle stock

1 18-inch length (approx.) 1/16-inch diameter steel aircraft cable

2 14–16 gauge wire lug

1 Stepper motor

Misc 8/32 stove bolts, nuts, tooth lock washers
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plop them onto the shaft. The drive sprocket should be approximately one inch above the
cross brace. Use a 10/24 bolt and tooth lock washer and a flat washer to clamp the drive
mechanism into place.

Attach a 20-tooth 1 3/4-inch diameter #25 chain sprocket to the shaft of the motor, as
shown in Fig. 26.4. The prototype arm used a medium-duty stepper motor with a 1/4-inch
shaft. The 1/2-inch I.D. hub of the sprocket was reduced to 1/4-inch with reducing bush-
ings. If you use a similar motor (they are common on the new and surplus market) and the
same-size sprockets, the roller chain length should be a nominal 17 inches. You can use a
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FIGURE 26.3 Hardware assembly detail for central shoulder shaft. a. Assembled

shaft; b. Exploded view.
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slightly longer or shorter length of roller chain because you can position the motor any-
where along the length of the frame to compensate.

Choose a mounting location with the roller chain in place. Move the motor along the
edge of the frame until the chain is taut (but not overly tight), and mark the mounting loca-
tion. At the mark, attach the motor to the frame using two 1 1/2-inch-by-3/8-inch flat cor-
ner braces. Elevate the braces using 1/2-inch spacers. Use 6/32 by 1/2-inch bolts and nuts
to secure the motor to the braces and 8/32 by 1/2-inch bolts and nuts to secure the braces
to the frame.

Construct the arm column using two 7-inch lengths of 57/64-inch-by-9/16-inch-by-1/16-
inch aluminum channel stock and one 9-inch length of the same. Mount a 7-inch length flush
to one end of the 9-inch member. Use 1 1/4-inch-by-5/8-inch corner angle brackets and 8/32
by 1/2-inch bolts and nuts to secure the pieces in place. Mount the other 7-inch length 3 inch-
es from the opposite end of the 9-inch member (see Fig. 26.5 for details). Likewise, secure
it using an angle bracket. Drill a 1/4-inch hole in the center of the 9-inch piece, and mount
the assembly on the shoulder rotation shaft, as shown in the figure.

Building the Elbow Mechanism
The elbow mechanism consists of a platform driven by a stepper motor. To distribute the
weight, mount the motor on the 9-inch shoulder member. Refer to Fig. 26.6. Construct the
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FIGURE 26.4 The mounted shoulder motor, with chain sprocket and roller
chain.
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 9"

 7"

 3"

Arm column base  

Arm column
(one of two)

11/4" x 5/8"
Corner angle iron 

A

B
FIGURE 26.5 Cutting and assembly for the arm column. a. Dimensions

of pieces; b. Hardware assembly detail.
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elbow platform by cutting two 6-inch lengths of 57/64-inch-by-9/16-inch-by-1/16-inch
aluminum channel stock. Couple them together with two 3 1/2-inch lengths of 1-inch-by-
1-inch-by-1/16-inch aluminum angle stock. Connect the pieces using 1/2-inch-
by-8/32 bolts and 8/32 nuts.

Drill a 1/4-inch hole in the center of each angle stock for the elbow rotation shaft. Cut
a 7 1/2-inch length of 1/4-inch 20 all-thread rod and attach a locking nut to one end. Drill
a 1/4-inch hole 1/2-inch down from the top of each 7-inch arm column piece. Thread the
elbow rotation shaft through the pieces, using the hardware noted in Fig. 26.7. Secure a 20-
tooth, 1 1/2-inch diameter #25 chain sprocket to the end.

Mount a matching 20-tooth #25 chain sprocket on the shaft of the elbow stepper
motor (it is the same type as the one used for shoulder rotation). Attach a 17-inch length
of #25 roller chain between the two sprockets, and mount the motor to the end of a 9-
inch shoulder cross brace using a 2 1/2-inch length of 1-inch-by-1-inch-by-1/16-inch
aluminum angle stock. Use 6/32 by 1/2-inch bolts and nuts to secure the motor to the
angle stock. The angle stock is riveted to the cross brace (the head of a machine bolt is
too thick). The motor, as attached, should look like the one in Fig. 26.8.
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31/2" 

6"
57/64" x 9/16" x 1/16"
channel stock

1" x 1" x 1/16"
angle stock

FIGURE 26.6 Cutting detail for the elbow shaft.
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Building the Forearm
The retractable forearm is a rather simple mechanism, but you must exercise some patience
when constructing it. The forearm uses commonly available parts, and to make your job
easier you may want to stick with the parts specified in this chapter. No sense in both of
us sweating this one out.

The retractable forearm is constructed using a metal drawer rail. The rail, shown in Fig.
26.9, is composed of two pieces: an 11-inch “base” and a 16 3/4-inch long retracting rail.
The rail rides within the base on a set of ball bearings. If you add a little bit of grease, the
rail slides smoothly along the length of the rail without trouble. The drawer rail used in 
the prototype required no modification, but some rails have stops and locks that you may
want to defeat. Usually, this involves nothing more than filing down a piece of metal or
drilling out the offending stop.

Drill mounting holes in the rail to match the bolts already in place on the elbow plat-
form (you may need to remove the inner rail to get to some portions of the base). Unfasten
the bolts on the side opposite the sprocket, and attach the rail. Retighten the bolts.

Mount the rail motor directly in the center of the elbow platform. Cut another 3 1/2-inch
length of 1-inch-by-1-inch-by-1/16-inch aluminum angle stock and attach it to the plat-
form using 8/32 by 1/2-inch bolts and nuts. Secure the motor using the mounting technique
that is best suited for it. The stepper motor used in the prototype arm already had threaded
mounting holes on the shaft end. These were used to secure the motor in place.

Attach two 1 1/2-inch-diameter gears to the motor shaft. Position the gears so the hubs
face each other. The idea is to create a spool-like shaft for the forearm cable (see Fig.
26.10). Alternatively, you can use sprockets or fashion a real spool out of metal or wood.
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Gap Gap

Sideview 

A
FIGURE 26.7 Assembly detail for the elbow shaft. a. Assembled shaft. (See p.

398 for an exploded view.)
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Locking nut

Flat washer

Nut

Tooth lockwasher

Nut

Nut
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Chain sprocket
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Flat washer

Tooth lockwasher

Flat washer

Flat washer

Tooth lockwasher

Nut

Tooth lockwasher

Tooth lockwasher

End Piece
(1" x 1" x 1/16" angle stock)

End Piece
(1" x 1" x 1/16" angle stock)

B
FIGURE 26.7 b. Exploded view.
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FIGURE 26.8 Mounted elbow motor with chain sprocket and roller chain.

FIGURE 26.9 The recommended mounting location for the drawer rail.
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The main design consideration is that the inside of the spool must be flush. Setscrews that
bulge out will tangle with the cable.

Cut a length of 1/16-inch-round steel aircraft cable to a length of approximately 18
inches. On both ends, clamp a 14-to-16-gauge wire lug using a pair of pliers or clamping
tool (see Fig. 26.11). Secure one lug to the back end of the rail using 6/32 by 1/2-inch bolts
and nuts (there may already be a hole for the hardware; if not, drill your own).

Loop the cable once around the spool shaft and pull it tight to the other end. Remove as
much slack as possible and make a mounting mark using the wire lug as a guide. Drill the
hole and secure the lug using 6/32 by 1/2-inch bolts and 6/32 nuts. The assembly should
look similar to Fig. 26.12.

You may find that when you using metal or plastic gears or sprockets for the spool, the
cable slops around and doesn’t have much traction. One solution is to line the spool shaft
with a couple of layers of masking tape. This approach has proved satisfactory for the pro-
totype arm, even after several years of use. Alternatively, you can rough up the shaft using
coarse sandpaper.

The finished polar coordinate arm is shown in Fig. 26.13. Note that the shoulder is able
to rotate continuously in a 360° circle and will keep on rotating indefinitely like a wheel.
In actual use, the wires to the motors will prevent the shoulder from rotating more than one
complete turn.

When the forearm is completely extended, its reach is not quite to the ground (but it is
to the arm’s own base). This reach is just about right as as most gripper designs will add at
least five or six inches to the length of the arm. The robot should be able to pick up small
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FIGURE 26.10 The rail motor mounted in place.
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Cable eyeletCable eyelet

Cable  (Crimp-on)

FIGURE 26.11 A length of aircraft cable terminated with crimp-on electrical
lugs. The 14-to-16-gauge wire seems to work with 1/16-inch-
diameter steel cable.

Cable eyeletCable eyelet

Motor

Cable

Drawer rail

Movement

Spindle

FIGURE 26.12 Threading detail for the drawer cable assembly.

FIGURE 26.13 The finished polar coordinate arm.
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objects placed a half-foot or more from the base. You can increase the reach by making the
base thinner or by using a longer drawer rail.

Going Further
There is room to improve this basic design for a polar coordinate arm. One improvement
you can make quite easily is to add crosspieces to support the turntable used for shoulder
rotation. As it is, there is a great deal of side-to-side slop, and additional braces would
largely eliminate it.

Arm systems need a great deal of position control if the robot is to manipulate objects with-
out direct intervention from you, its human master. See Chapter 25, “Build a Revolute
Coordinate Arm,” for more complete details on adding position control to the joints of arms.

From Here
To learn more about… Read

Using DC motors and shaft encoders Chapter 18, “Working with DC Motors”

Using stepper motors to drive robot parts Chapter 19, “Working with Stepper Motors”

Different robotic arm systems and assemblies Chapter 24, “An Overview of Arm Systems”

Attaching hands to robotic arms Chapter 27, “Experimenting with Gripper
Designs”

Interfacing feedback sensors to computers Chapter 29, “Interfacing with Computers and
and microcontrollers”

402 BUILD A POLAR COORDINATE ARM

Ch26_McComb  8/21/00  4:01 PM  Page 402



The arm systems detailed in Chapters 25 through 26 aren’t much good without hands. In
the robotics world, hands are usually called grippers (also end effectors) because the word
more closely describes their function. Few robotic hands can manipulate objects with the
fine motor control of a human hand; they simply grasp or grip the object, hence the name
gripper. Never sticklers for semantics, we’ll use the terms hands and grippers inter-
changeably.

Gripper designs are numerous, and no single design is ideal for all applications. Each
gripper technique has unique advantages over the others, and you must fit the gripper to
the application at, er, hand. This chapter outlines a number of useful gripper designs you
can use for your robots. Most are fairly easy to build; some even make use of inexpensive
plastic toys. The gripper designs encompass just the finger or grasping mechanisms. The
last section of this chapter details how to add wrist rotation to any of the gripper designs.

The Clapper
The “clapper” gripper is a popular design, favored because of its easy construction and
simple mechanics. You can build the clapper using metal, plastic, or wood, or a combina-
tion of all three. The details given in Table 27.1 are for a metal and plastic clapper.

27
EXPERIMENTING WITH 

GRIPPER DESIGNS

403

Ch27_McComb  8/29/00  8:35 AM  Page 403

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



The clapper consists of a wrist joint (which, for the time being, we’ll assume is perma-
nently attached to the forearm of the robot). Connected to the wrist are two plastic plates.
The bottom plate is secured to the wrist; the top plate is hinged. A small spring-loaded
solenoid is positioned inside, between the two plates. When the solenoid is not activated,
the spring pushes the two flaps out, and the gripper is open. When the solenoid is activat-
ed, the plunger pulls in, and the gripper closes. The amount of movement at the end of the
gripper is minimal—about 1/2 inch with most solenoids. However, that is enough for gen-
eral gripping tasks.

Cut two 1/16-inch-thick acrylic plastic pieces to 1 1/2 inches by 2 1/3 inches. Attach the
lower flap to two 1-inch-by-3/8-inch corner angle brackets. Place the brackets approxi-
mately 1/8 inch from either side of the flap. Secure the pieces using 6/32 by 1/2-inch bolts
and 6/32 nuts. Cut a 1 1/2-inch length of 1 1/2-inch-by-1/8-inch aluminum bar stock.
Mount the two brackets to the bottom of the stock as shown in the figure. Attach the top
flap to a 1 1/2-inch-by-1-inch (approximately) brass or aluminum miniature hinge. Drill
out the holes in the hinge with a #28 drill to accept 6/32 bolts. Secure the hinge using 6/32
bolts and nuts.

The choice of solenoid is important because it must be small enough to fit within the
two flaps and it must have a flat bottom to facilitate mounting. It must also operate with
the voltage used in your robot, usually 6 or 12 volts. Some solenoids have mounting
flanges opposite the plunger. If yours does, use the flange to secure the solenoid to the bot-
tom flap. Otherwise, mount the solenoid in the center of the bottom flap, approximately
1/2 inch from the back end (nearest the brackets), with a large glob of household cement.
Let it stand to dry.

Align the top flap over the solenoid. Make a mark at the point where the plunger con-
tacts the plastic. Drill a hole just large enough for the plunger; you want a tight fit. Insert
the plunger through the hole and push down so that the plunger starts to peek through.
Align the top and bottom flaps so they are parallel to one another.

Using the mounting holes in the hinges as a guide, mark corresponding holes in the alu-
minum bar. Drill holes and mount the hinge using 1/2-inch-by-6/32 bolts and nuts. The fin-
ished clapper should look like Fig. 27.1.

Test the operation of the clapper by activating the solenoid. If the plunger works loose,
apply some household cement to keep it in place. You may want to add a short piece of rub-
ber weather stripping to the inside ends of the clappers so they can grasp objects easier.
You can also use stick-on rubber feet squares, available at most hardware and electronics
stores.
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TABLE 27.1 PARTS LIST FOR THE CLAPPER.

2 1 1/2-inch-by-2 1/2-inch-by-1/16-inch thick acrylic plastic sheet

2 1-inch-by-3/8-inch corner angle bracket

1 1 1/2-inch-by-1-inch brass or aluminum hinge

1 Small 6- or 12-vdc spring-loaded solenoid

8 1/2-inch-by-6/32 stove bolts, nuts
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Two-Pincher Gripper
The two-pincher gripper consists of two movable fingers, somewhat like the claw of a lob-
ster. The steps for constructing a basic and two advanced models are described in this 
section.

BASIC MODEL

For ease of construction, the basic two-pincher gripper is made from extra Erector Set parts
(the components from a similar construction kit toy may also be used). Cut two metal gird-
ers to 4 1/2 inches (since this is a standard Erector Set size, you may not have to do any
cutting). Cut a length of angle girder to 3 1/2 inches, as shown in Fig. 27.2 (refer to the
parts list in Table 27.2). Use 6/32 by 1/2-inch bolts and nuts to make two pivoting joints.
Cut two 3-inch lengths and mount them (see Fig. 27.3). Nibble the corner off both pieces
to prevent the two from touching one another. Nibble or cut through two or three holes on
one end to make a slot. As illustrated in Fig. 27.4, use 6/32 by 1/2-inch bolts and nuts to
make pivoting joints in the fingers.

The basic gripper is finished. You can actuate it in a number of ways. One way is to
mount a small eyelet between the two pivot joints on the angle girder. Thread two small
cables or wire through the eyelet and attach the cables. Connect the other end of the cables
to a solenoid or a motor shaft. Use a light compression spring to force the fingers apart
when the solenoid or motor is not actuated.

TWO-PINCHER GRIPPER 405

Top view

Hinge

Solenoid

Angle bracket

Top flap

Bottom flap

Aluminum flat stock

Spring

A

B

FIGURE 27.1 The clapper gripper. a. Assembly detail; b. Top view.
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You can add pads to the fingers by using the corner braces included in most Erector Set
kits and then attaching weather stripping or rubber feet to the brace. The finished gripper
should look like the one depicted in Fig. 27.5.

ADVANCED MODEL NUMBER 1

You can use a readily available plastic toy and convert it into a useful two-pincher gripper
for your robot arm. The toy is a plastic “extension arm” with the pincher claw on one end
and a hand gripper on the other (see Fig. 27.6). To close the pincher, you pull on the hand
gripper. The contraption is inexpensive—usually under $10—and it is available at many
toy stores.
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FIGURE 27.2 An assortment of girders from an Erector Set toy construction kit.

TABLE 27.2 PARTS LIST FOR TWO-FINGER ERECTOR SET GRIPPER.

2 4 1/2-inch Erector Set girder

1 3 1/2-inch-length Erector Set girder

4 1/2-inch-by-6/32 stove bolts, fender washer, tooth lock washer, nuts

Misc 14- to 16-gauge insulated wire ring lugs, aircraft cable, rubber tabs, 1/2 by
1/2-inch corner angle brackets (galvanized or from Erector Set)
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Chop off the gripper three inches below the wrist. You’ll cut through an aluminum
cable. Now cut off another 1 1/2 inches of tubing—just the arm, but not the cable. File off
the arm tube until it’s straight, then fashion a 1 1/2-inch length of 3/4-inch-diameter dowel
to fit into the rectangular arm. Drill a hole for the cable to go through. The cable is off-
centered because it attaches to the pull mechanism in the gripper, so allow for this in the
hole. Place the cable through the hole, push the dowel at least 1/2 inch into the arm, and
then drill two small mounting holes to keep the dowel in place (see Fig. 27.7). Use 6/32 by
3/4-inch bolts and nuts to secure the pieces.

You can now use the dowel to mount the gripper on an arm assembly. You can use a
small 3/4-inch U-bolt or flatten one end of the dowel and attach it directly to the arm. The
gripper opens and closes with only a 7/16-inch pull. Attach the end of the cable to a heavy-
duty solenoid that has a stroke of at least 7/16 inch. You can also attach the gripper cable
to a 1/8-inch round aircraft cable. Use a crimp-on connector designed for 14- to 16-gauge
electrical wire to connect them end to end, as shown in Fig. 27.8. Attach the aircraft cable
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 4 1/2"

3 1/2"

 3"

Pivot bar
Finger

FIGURE 27.3 Construction detail of the basic two-pincher
gripper, made with Erector set parts.

1/2" x 6/32 bolt

Fender washer

Pivot bar
Finger

Tooth lock washer
Nut

Gap between
finger and
pivot bar

A

B
FIGURE 27.4 Hardware assembly detail of the pivot bar and fingers of

the two-pincher gripper. a. Assembled sliding joint; 
b. Exploded view.
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to a motor or rotary solenoid shaft and activate the motor or solenoid to pull the gripper
closed. The spring built into the toy arm opens the gripper when power is removed from
the solenoid or motor.

ADVANCED MODEL NUMBER 2

This gripper design uses a novel worm gear approach, without requiring a hard-to-find
(and expensive) worm gear. The worm is a length of 1/4-inch 20 bolt; the gears are 
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 3"

FIGURE 27.5 The finished two-pincher gripper, with fin-
gertip pads and actuating cables.

FIGURE 27.6 A commercially available plastic two-pincher robot arm and claw
toy. The gripper can be salvaged for use in your own designs.
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standard 1-inch-diameter 64-pitch aluminum spur gears (hobby stores have these for about
$1 apiece). Turning the bolt opens and closes the two fingers of the gripper. Refer to the
parts list in Table 27.3.

Construct the gripper by cutting two 3-inch lengths of 41/64-inch-by-1/2-inch-by-1/16-
inch aluminum channel stock. Using a 3-inch flat mending “T” plate as a base,  attach the
fingers and gears to the “T” as shown in Fig. 27.9. The distance of the holes is critical and
depends entirely on the diameter of the gears you have. You may have to experiment with
different spacing if you use another gear diameter. Be sure the fingers rotate freely on the
base but that the play is not excessive. Too much play will cause the gear mechanism to
bind or skip.

Secure the shaft using a 1 1/2-inch-by-1/2-inch corner angle bracket. Mount it to the
stem of the “T” using an 8/32 by 1-inch bolt and nut. Add a #10 flat washer between the
“T” and the bracket to increase the height of the bolt shaft. Mount a 3 1/2-inch-long 1/4-
inch 20 machine bolt through the bracket. Use double nuts or locking nuts to form a free-
spinning shaft. Reduce the play as much as possible without locking the bolt to the 
bracket. Align the finger gears to the bolt so they open and close at the same angle.
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Arm tube

Dowel

Set screw

Hole for cable

End view

FIGURE 27.7 Assembly detail for the claw gripper and
wooden dowel. Drill a hole for the actuat-
ing cable to pass through.

CouplingCable to claw
(spring loaded inside claw)

Steel aircraft
cable

Motor spindle

FIGURE 27.8 One method for actuating the gripper: Attach the solid
aluminum cable from the claw to a length of flexible
steel aircraft cable. Anchor the cable to a motor or
rotary solenoid. Actuate the motor or solenoid and the
gripper closes. The spring in the gripper opens the
claw when power to the motor or solenoid is removed.
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To actuate the fingers, attach a motor to the base of the bolt shaft. The prototype gripper
used a 1/2-inch-diameter 48-pitch spur gear and a matching 1-inch 48-pitch spur gear on the
drive motor. Operate the motor in one direction and the fingers close. Operate the motor in
the other direction and the fingers open. Apply small rubber feet pads to the inside ends of
the grippers to facilitate grasping objects. The finished gripper is shown in Fig. 27.10.

Figs. 27.11 through 27.14 show another approach to constructing two-pincher grippers.
By adding a second rail to the fingers and allowing a pivot for both, the fingertips remain
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TABLE 27.3 PARTS LIST FOR WORM DRIVE GRIPPER.

2 3-inch lengths 41/64-inch-by-1/2-inch-by-1/16-inch aluminum channel

2 1-inch-diameter 64-pitch plastic or aluminum spur gear

1 2-inch flat mending “T”

1 1 1/2-inch-by-1/2-inch corner angle iron

1 3 1/2-inch-by-1/4-inch 20 stove bolt

2 1/4-inch 20 locking nuts, nuts, washers, tooth lock washers

2 1/2-inch-by-8/32 stove bolts, nuts, washers

1 1-inch-diameter 48-pitch spur gear (to mate with gear on driving motor shaft)

11/2" x 1/2"   
corner angle iron

Locking nut

NutNut

Tooth lock washer

31/2" x 1/4"-20 bolt

48 pitch
spur gear

 3" "T"

Gears
 3"

A

B

FIGURE 27.9 A two-pincher gripper based on a homemade work drive system. a.
Assembled gripper; b. Worm shaft assembly detail.
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FIGURE 27.10 The finished two-pincher worm drive gripper.

FIGURE 27.11 Adding a second rail to the
fingers and allowing the
points to freely pivot caus-
es the fingertips to remain
parallel to one another.
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Pivot points

Palm Gripper

FIGURE 27.12 Close-up detail of the dual-rail fin-
ger system. Note the pivot points.

Pull cables to close

FIGURE 27.13 A way to actuate the
gripper. Attach cables to
the fingers and pull the
cables with a motor or
solenoid. Fit a torsion
spring along the fingers
and palm to open the fin-
gers when power is
removed from the motor
or solenoid.
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parallel to one another as the fingers open and close. You can employ several actuation
techniques with such a gripper. Fig. 27.15 shows the gripping mechanism of the still-
popular Radio Shack/Tomy Armatron. Note that it uses double rails to effect parallel clo-
sure of the fingers. You can model your own gripper using the design of the Armatron or
amputate an Armatron and use its gripper for your own robot.

Flexible Finger Grippers
Clapper and two-pincher grippers are not like human fingers. One thing they lack is a com-
pliant grip: the capacity to contour the grasp to match the object. The digits in our fingers
can wrap around just about any oddly shaped object, which is one of the reasons we are
able to use tools successfully.

You can approximate the compliant grip by making articulated fingers for your robot.
At least one toy is available that uses this technique; you can use it as a design base. The
plastic toy arm described earlier is available with a handlike gripper instead of a claw grip-
per. Pulling on the handgrip causes the four fingers to close around an object, as shown in
Fig. 27.16. The opposing thumb is not articulated, but you can make a thumb that moves
in a compliant gripper of your own design.
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FIGURE 27.15 A close-up view of the Armatron toy gripper. Note the use of the
dual-rail finger system to keep the fingertips parallel. The gripper
is moderately adaptable to your own designs.
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Make the fingers from hollow tube stock cut at the knuckles. The mitered cuts allow the
fingers to fold inward. The fingers are hinged by the remaining plastic on the topside of
the tube. Inside the tube fingers is semiflexible plastic, which is attached to the fingertips.
Pulling on the handgrip exerts inward force on the fingertips. The result? the fingers col-
lapse at the cut joints.

You can use the ready-made plastic hand for your projects. Mount it as detailed in the
previous section on the two-pincher claw arm. You can make your own fingers from a vari-
ety of materials. One approach is to use the plastic pieces from some of the toy construc-
tion kits. Cut notches into the plastic to make the joints. Attach a length of 20- or 22-gauge
stove wire to the fingertip and keep it pressed against the finger using nylon wire ties. Do
not make the ties too tight, or the wire won’t be able to move. An experimental plastic fin-
ger is shown in Fig. 27.17.

You can mount three of four such fingers on a plastic or metal “palm” and connect all
the cables from the fingers to a central pull rod. The pull rod is activated by a solenoid or
motor. Note that it takes a considerable pull to close the fingers, so the actuating solenoid
or motor should be fairly powerful.

The finger opens again when the wire is pushed back out as well as by the natural spring
action of the plastic. This springiness may not last forever, and it may vary if you use other
materials. One way to guarantee that the fingers open is to attach an expansion spring, or
a strip of flexible spring metal, to the tip and base of the finger, on the back side. The
spring should give under the inward force of the solenoid or motor, but adequately return
the finger to the open position when power is cut.

Wrist Rotation
The human wrist has three degrees of freedom: it can twist on the forearm, it can rock up and
down, and it can rock from side to side. You can add some or all of these degrees of freedom
to a robotic hand. A basic schematic of a three-degree-of-freedom wrist is shown in Fig. 27.18.
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FIGURE 27.16 Commercially available plastic robotic arm and hand toy. The
gripper can be salvaged for use in your own designs. The
opposing thumb is not articulated, but the fingers have a semi-
compliant grip.
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With most arm designs, you’ll just want to rotate the gripper at the wrist. Wrist rotation
is usually performed by a motor attached at the end of the arm or at the base. When the
motor is connected at the base (for weight considerations), a cable or chain joins the motor
shaft to the wrist. The gripper and motor shaft are outfitted with mating spur gears. You
can also use chains (miniature or #25) or timing belts to link the gripper to the drive motor.
Fig. 27.19 shows the wrist rotation scheme used to add a gripper to the revolute coordinate
arm described in Chapter 25.

You can also use a worm gear on the motor shaft. Remember that worm gears introduce
a great deal of gear reduction, so take this into account when planning your robot. The
wrist should not turn too quickly or too slowly.

416 EXPERIMENTING WITH GRIPPER DESIGNS

Digits

Pull cable

Set screw

Cable eyelet

Wire tie (1 of 5)
Grommet
fingertip

FIGURE 27.17 A design for an experimental compliant finger. Make the finger
spring-loaded by attaching a spring to the back of the finger (a
strip of lightweight spring metal also works).

FIGURE 27.18 The three basic degrees of free-
dom in a human or robotic wrist
(wrist rotation in the human arm
is actually accomplished by rotat-
ing the bones in the forearm).
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Another approach is to use a rotary solenoid. These special-purpose solenoids have a
plate that turns 30° to 50° in one direction when power is applied. The plate is spring-
loaded, so it returns to its normal position when the power is removed. Mount the solenoid
on the arm and attach the plate to the wrist of the gripper.

From Here
To learn more about… Read

Using DC motors and shaft encoders Chapter 18, “Working with DC Motors”

Using stepper motors to drive robot parts Chapter 19, “Working with Stepper Motors”

Different robotic arm systems and assemblies Chapter 24, “An Overview of Arm Systems”

Building a robotic revolute coordinate arm Chapter 25, “Build a Revolute Coordinate Arm”

Building a robotic stationary polar Chapter 26, “Build a Polar Coordinate Arm”
coordinate arm

Interfacing feedback sensors to computers Chapter 29, “Interfacing with Computers and
and microcontrollers Microcontrollers”
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FIGURE 27.19 A two-pincher gripper (from the plastic toy robotic arm detailed
earlier in the chapter), attached to the revolute arm described in
Chapter 25. A small stepper motor and gear system provide
wrist rotation.
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PART5
COMPUTERS AND ELECTRONIC

CONTROL 

Ch28_McComb   8/21/00  4:04 PM  Page 419

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



This page intentionally left blank.



“Brain, brain, what is brain?” If you’re a Trekker, you know this is a line from one of the
original Star Trek episodes of the 1960s, entitled “Spock’s Brain.” The quality of the story
notwithstanding, the episode was about how Spock’s brain was surgically removed by a race
of women who needed it to run their air conditioning system. Dr. McCoy rigged up 
a gizmo to operate Spock’s brainless body by remote control. Clearly, without his brain
Spock wasn’t much good to anyone, least of all to Dr. McCoy, who never got the hang of
the buttons he needed to push to start Spock walking.

“Brains” are what differentiate robots from simple automated machines—brainless
Spocks who might as easily crash into walls as move in a straight line. The brains of a robot
process outside influences, like sonar sensors or bumper switches; then based on the pro-
gramming or wiring, they determine the proper course of action. Without a brain of some
type, a robot is really nothing more than just a motorized toy, repeating the same actions
over and over again, oblivious to anything around it.

A computer of one type or another is the most common brain found on a robot. A robot
control computer is seldom like the PC on your desk, though robots can certainly be operat-
ed by most any personal computer. And of course not all robot brains are computerized. A
simple assortment of electronic components—a few transistors, resistors, and capacitors—
are all that’s really needed to make a rather intelligent robot. Hey, it worked for Mr. Spock!

In this chapter we’ll review the different kinds of “brains” found on the typical hobby
or amateur robot, including the latest microcontrollers—computers that are specially made
to interact with (control) hardware. Endowing your robot with smarts is a big topic, so
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additional material is provided in Chapters 29 through 33, including individual discussions
on using several popular microcontrollers, such as the Basic Stamp II.

Brains from Discrete Components
You can use the wiring from discrete components (transistors, resistors, etc.) to control a
robot. This book contains numerous examples of this type of brain, such as the line-trac-
ing robot circuits in Chapter 38, “Navigating through Space.” The line-tracing functional-
ity is provided by just a few common integrated logic circuits and a small assortment of
transistors and resistors. Light falling on either or both of two photodetectors causes motor
relays to turn on or off. The light is reflected from a piece of tape placed on the ground.

Fig. 28.1 shows another common form of robot brain made from discrete component
parts. This brain makes the robot reverse direction when it sees a bright light. The circuit
is simple, as is the functionality of the robot: light shining on the photodetector turns on a
relay. Variations of this circuit could make the robot stop when it sees a bright light. By
using two sensors, each connected to separate motors (much like the line-tracers of
Chapter 38), you could make the robot follow a bright light source as it moves. By simply
reversing the sensor connections to the motors, you can make the robot behave in the oppo-
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FIGURE 28.1 Only a few electronic components are needed
to control a robot using the stimulus of a
sensor.
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site manner as shown in Fig. 28.1, such as steering away from the light source, instead of
driving toward it. See Fig. 28.2 for an example.

You could add additional simple circuitry to extend the functionality of robots that use dis-
crete components for brains. For instance, you could use a 555 timer as a time delay: trigger
the timer and it runs for five or six seconds, then stops. You could wire the 555 to a relay so
it applies juice only for a specific amount of time. In a two-motor robot, using two 555 timers
with different time delays could make the thing steer around walls and other obstacles.

Brains from Computers and
Microcontrollers
Perhaps the biggest downside of making robot brains from discrete components is that
because the brains are hardwired as circuitry, changing the behavior of the machine
requires additional work. You either need to change the wires around or add and remove
components. Using an experimenter’s breadboard (Chapter 3) makes it easier to try out dif-
ferent designs simply by plugging components and wiring into the board. But this soon
gets tiresome and can lead to errors because parts can work loose from the board.
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FIGURE 28.2 By connecting the sensors and control elec-
tronics differently, a robot can be made to
“behave” in different ways.
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You can “rewire” a robot controlled by a computer simply by changing the software run-
ning on the computer. For example, if your robot has two light sensors and two motors, you
don’t need to do much more than change a few lines of programming code to make the
robot come toward a light source, rather than move away from it. No changes in hardware
are required. In fact, this exact program functionality was demonstrated in Chapter 14,
which discussed how to use the LEGO Mindstorms RCX robot with the Not Quite C pro-
gramming language.

Types of Computers for Robots
An almost endless variety of computers can be used as a robot’s brain. The three most com-
mon are as follows:

� Microcontroller. These are programmed either in assembly language or a high-level
language such as Basic or C. The LEGO Mindstorms RCX is a good example of a
robot run from a microcontroller.

� Single-board computer. These are also programmed either in assembly language or a
high-level language, but they generally offer more processing power than a microcon-
troller.

� Personal computer. Examples include an IBM PC compatible or an Apple Macintosh,
or even an older model such as the venerable Commodore 64.

MICROCONTROLLERS

Microcontrollers are fast becoming a favorite method for endowing a robot with 
smarts. Microcontrollers are inexpensive, have simple power requirements (usually just
�5 volts), and most can be programmed using software on your PC. Once programmed,
the microcontroller is disconnected from the PC and operates on its own.

Microcontrollers are available in two basic flavors: low-level programmable and embedded-
language programmable. These loosely defined terms relate to the programming of the con-
troller. Both kinds of microcontroller are fully programmable, but one contains a kind of operat-
ing system that allows it to be programmed with a higher-level language, such as Basic.

Microcontrollers are available in 4-, 8-, 16-, and 32-bit versions (plus a few others, used
for special purposes). While PCs have long since “graduated” to 16-bit and higher archi-
tectures, most applications for microcontrollers do not require more than 8 bits; hence, the
8-bit controller is still very popular.

Low-level programmable Microcontrollers are, in effect, programmable integrated
circuits in which you define how the innards of the chip are connected and how the vari-
ous connections interact with one another. Following the cues of your program, the micro-
controller accepts input, analyzes it in one way or another, and outputs some value. This is
fundamentally the same as any computer, except that a microcontroller is primarily
designed to operate things (motors, relays, lamps, etc.) rather than interact with people
through a keyboard and display monitor.
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The traditional way to program a microcontroller is with assembly language, using your
PC as a host development system. Assembler appears somewhat arcane to newcomers.
However, because microcontrollers use a limited set of instructions, with adequate study it
is not overly difficult to master.

The exact format and contents of an assembly-language microcontroller program vary
between manufacturers. The popular PIC microcontrollers from Microchip follow one lan-
guage convention. Microcontrollers from Intel, Atmel, Motorola, NEC, Texas Instruments,
Philips, Hitachi, Holtek, and other companies may follow a different convention. While the
basic functionality of microcontrollers from these different companies is similar, learning
to use each one involves a learning curve. As a result, microcontroller developers tend to
fixate on one brand, and even one model, since learning a new language syntax can entail
a lot of extra work.

Assembly language is a common method for programming microcontrollers, but it is by
no means the only method. A number of compilers are available that convert the syntax of
a higher-level language—such as Basic, C, or Pascal—into a language the controller can
use. In one approach, the compiler transforms your Basic, C, or other program into the
machine code required by the microcontroller. Once compiled the program is downloaded
from the PC to the controller

Popular microcontrollers commonly used in robot control include those listed in the fol-
lowing table.

Embedded-language programmable In this popular microcontroller “flavor,” the
microcontroller contains a high-level language interpreter that is permanently stored on the
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PART NAME MANUFACTURER

PIC16F84* Microchip

68HC05 Motorola

68HC11 Motorola, Toshiba

8051 Intel and various**

AVR Atmel

H8/3292*** Hitachi

Z8 Zilog

80186,80188 Intel
80386 EX

Notes: *PIC16F84 is just one of several dozen microcontrollers in the PICMicro line of microcon-
trollers from Microchip. The PIC controllers vary by internal architecture (e.g., 8- or 16-bit), number
of inputs, and special I/O features such as built-in analog-to-digital converters.

**The 8051 has become an industry-standard microcontroller design and is available from a num-
ber of companies, which include (as of this writing) Intel, Atmel, Philips, Dallas Semiconductor, and
several others. As such, the functionality and capabilities of the 8051 systems can vary.

*** The “H8” is the microcontroller used in the popular LEGO Mindstorms RCX robot.
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chip. For lack of a better term, we’ll refer to these as embedded-language programmable.
With this system, the compiler on your computer converts your program into an interme-
diate “tokenized” language. The interpreter in the microcontroller finishes the job of trans-
lating the tokens to the low-level machine code needed by the chip.

Among the most popular embedded-language programmable microcontrollers for
hobby robots is the Basic Stamp. Over the past few years, a number of competitors to the
Basic Stamp have appeared, including the OOPic from Savage Industries and the BasicX
from NetMedia. These use Basic or a Basic-like syntax to save you from having to pro-
gram the microcontroller in assembler. Basic Stamp, BasicX, and OOPic are discussed in
much more detail in Chapter 31, 32, and 33, respectively.

Standard and semistandard variants of the Basic programming language permeate
microcontrollers. For example, a number of microcontrollers use Basic-52 (as found on
the Micromint 80C52, for example), a fast and efficient version of Basic that fits in about
8K of memory space. Basic-52 provides additional command statements to support direct
interfacing with the hardware of the chip. This includes interfacing with the chip’s real-
time clock, hardware interrupts, assembly language routines (when speed is required),
and more.

Another popular flavor of Basic, currently available for the 8051 and Atmel AVR micro-
controllers, is BASCOM, from MCS Electronics, based in Holland. BASCOM is a develop-
ment environment in which you write code in Basic, then compile the result in machine-read-
able code, which is then sent to the microcontroller. Users of BASCOM enjoy the easier Basic
development language, while still being able to take advantage of all the microcontroller’s
hardware, including timers and interrupts.

A microprocessor with built-in I/O A key benefit of microcontrollers is that they
combine a microprocessor component with various inputs/outputs (I/O) that are typically
needed to interface with the real world. For example, the 8051 controller sports the fol-
lowing features, many of which are fairly standard among microcontrollers:

� Central processing unit (CPU)
� Hardware interrupts
� Built-in timer or counter
� Programmable full-duplex serial port
� 32 I/O lines (four 8-bit ports)
� RAM and ROM/EPROM in some models

Some microcontrollers will have greater or fewer I/O lines, and not all have hardware
interrupt inputs. Some will have special-purpose I/O (see the section “Of Inputs and
Outputs” later in this chapter) for such things as voltage comparison or analog-to-digital
conversion. Just as there is no one car that’s perfect for everyone, each microcontroller’s
design will make it more suitable for one application than for another.

Microcontrollers and program or data storage One potential downside to
microcontrollers is that they have somewhat limited memory space for programs. The typ-
ical low-cost microcontroller may have only a few thousand bytes of program storage.
While this may seem terribly confining, in reality most microcontrollers are programmed
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to do a single job. This one job may not require more than a few dozen lines of program
code. If a human-readable display is used, it’s typically limited to a small 2-by-16 charac-
ter LCD, not entire screens of color graphics and text.

By using external addressing, advanced microcontrollers may handle more storage—
8K or 32K are not uncommon, and a few can support well over a megabyte. Compared to
what you may be used to on your personal computer, this may still not be a lot of space.
Fortunately, most robot control programs don’t take up nearly as much room as the aver-
age Windows application! However, keep the program storage limitations in mind when
you’re planning which brain to get for your robot.

Harvard versus Princeton Some microcontrollers—and computers for that 
matter—stuff programs and data into one lump area and have a single data bus for
fetching both program instructions and data. These are said to use the “Princeton,” or
more commonly Von-Neumann, architecture. This is the architecture common to the
IBM PC compatible and many desktop computers, but it is not as commonly found in
microcontrollers. Rather, most microcontrollers use the Harvard architecture, where
programs are stored in one place and data in another. Two busses are used: one for pro-
gram instructions and one for data.

The difference is not trivial. A microprocessor using the Harvard architecture can run
faster because it can keep track of its current program location while handling all of the
data needs. When using the Von Neumann architecture, the processor must constantly
switch between going to a data location and a program location on the same bus.

Because of the clear delineation in program and data space in the Harvard architecture,
such microcontrollers have two separate memory areas: ROM (read-only memory) for pro-
gram space and RAM (random access memory) for holding data used while the program
runs. For this reason you will often see two data storage specifications for microcon-
trollers. The data storage space is typically quite small—perhaps 256 bytes or less. The
program storage space can be 1K and over, depending on the controller. And as mentioned
earlier, some microcontrollers also support external addressing, which allows you to
expand the amount of memory available to the controller.

Erasing and starting over Since microcontrollers are meant to be programmed (and
sometimes reprogrammed many times over), the ROM is often designed to be erasable using
any of several techniques. One of the oldest techniques, still used, is to erase the contents of
the ROM program area using ultraviolet (UV) light. The microcontroller has a clear plastic
or glass “window” that exposes the semiconductor die within. By leaving the controller out
in full sunlight for several hours or exposing it to a special UV light source made for the job,
the old contents of the ROM are erased and it is made ready to accept a new program. These
controllers are said to use EPROM, or erasable programmable read-only memory.

A more convenient method uses electrically erasable ROM (called EEPROM), or even
static RAM memory with a built-in 5- to 10-year battery. With EEPROM, an electrical sig-
nal erases the old contents of the ROM so that new bits can be written to it. EEPROM tends
to be slow, and there is a limit to the number of times the ROM can be erased (something
in the 100,000� range). Both battery-backed static RAM as well as the latest Flash mem-
ory are faster than EEPROM. Flash memory can only be erased and rewritten about a thou-
sand times; battery-backed static RAM can be erased an indefinite number of times.
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In-field programming and reprogramming A key benefit of microcontrollers
with EEPROM or Flash memory is that they can be programmed and reprogrammed “in
the field” (or “in circuit”). This has enormous potential for use in your programmable
robot. With in-field programming there is no need to remove the microcontroller chip from
its circuit in your robot to reprogram it. Instead, you merely connect a cable from your PC
and download the new program. Of course, this requires that the microcontroller have an
on-board connector so it can be attached to your PC cable. Most ready-made controllers
for robotics (the Basic Stamp, the BasicX-24, etc.) come with, or have options for pur-
chasing, a “carrier board” that has the proper cable connections.

One-time programmable Not all microcontrollers are meant to be reprogrammed. In
fact, the reprogrammable controllers (with EEPROM or Flash memory) are among the
most expensive of the lot. Less costly alternatives are made to be programmed only once
and are intended for permanent installations. These one-time programmable (OTP) micro-
controllers are popular in consumer goods and automotive applications. In quantity, an 8-
bit OTP microcontroller might cost just a dollar, or even less.

For hobby robotics applications, the OTP is useful for dedicated processes, such as con-
trolling servos or triggering and detecting a sonar ping from an ultrasonic distance mea-
surement system. You’ll find that a number of the ready-made hobby robotic solutions on
the market today have, at their heart, an OTP microcontroller. The microcontroller takes
the place of more complex circuitry that uses individual integrated circuits.

An OTP microcontroller requires a special “burner” programmer module that accepts
the download from your PC. The burner is not complicated for the low- and medium-end
microcontrollers that are programmed via a serial connection. A number of mail order 
and electronics firms sell inexpensive programmers (under $30) for use with both one-time
and in-field programmable microcontrollers.

SINGLE-BOARD COMPUTERS

Single-board computers (SBCs) are a lot like “junior PCs,” but on a single circuit board.
In fact, many SBCs are IBM PC-compatible and use Intel microprocessors that are capa-
ble of running any Intel-based program, including the MS-DOS operating system. SBCs
are full-blown computers in every way, except that all the necessary components are on one
board. This includes the CPU, input/output, and timers. Because of their architecture,
SBCs can support many kilobytes, and even megabytes, of program and data storage.
Whether you need a lot of storage depends on your application, but it’s nice to know the
SBC can support it if you do.

Like microcontrollers, an SBC can be programmed in either assembly language or in
a high-level language such as Basic or C. SBCs that are based on Intel microprocessors
can often run MS-DOS and programs designed to be used on a PC-compatible machine
(some can even run Windows). The DOS or Windows operating system is typically
loaded in read-only memory (ROM) so it doesn’t take up program storage space. In an
SBC that supports DOS, for example, you can write programs on your personal com-
puter and test them out. When they’re perfected, you can download them (via a cable) to
the SBC, where they will reside. The program will remain until erased if the SBC is
equipped with Flash memory or EEPROM.
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SBC form factors Single-board computers come in a variety of shapes and forms. A
standard form factor that is supported by several hundred manufacturers is the PC/104,
which measures just four inches square. This is an ideal size for most any medium- or
large-sized robot project—and some small ones, too! PC/104 gets its name from “Personal
Computer” (originally of IBM fame) and the number of pins (104) used to connect two or
more PC/104-compatible boards together.

SBC kits To handle different kinds of jobs, SBCs are available in larger or smaller sizes
than the four-by-four-inch PC/104. And while most SBCs are available in ready-made
form, they are also popular as kits. For example, the BotBoard series of single-board com-
puters, designed by robot enthusiast Marvin Green, combine a Motorola 68HC11 micro-
controller with outboard interfacing electronics (the HC11 has its own interfacing capa-
bility as well, though many robot engineers like to add more). The Miniboard and
HandyBoard, designed by instructors at MIT, are other single-board computers based on
the HC11; both are provided in kit and ready-made form from various sources.

PERSONAL COMPUTERS

Having your personal computer control your robot is a good use of available resources
because you already have the computer to do the job (you do have a computer, right?!). Of
course, it also means that your automaton is constantly tethered to your PC, either with a
wire or with a radio frequency or infrared link. (Chapter 30 discusses how to use the stan-
dard IBM PC-compatible parallel port to interface with robot circuitry.)

Just because the average PC is deskbound doesn’t mean you can’t mount it on your
robot and use it in a portable environment. Whether you’d want to is another matter.
Certain PCs are more suited for conversion to mobile robot use than others. Here are the
qualities to look for if you plan on using your PC as the brains in an untethered robot:

� Small size. In this case, small means that the computer can fit in or on your robot. A
computer small enough for one robot may be a King Kong to another. Generally speak-
ing, however, a computer larger than about 12 by 12 inches is too big for any reason-
ably sized ‘bot.

� Standard power supply requirements. Some computers need only a few power supply
voltages, most often �5 and sometimes �12. A few, like the IBM PC compatible,
require negative reference voltages of -12 and -5. (However, some IBM PC-compatible
motherboards will still function if the -12 and -5 voltages are absent.)

� Accessibility to the microprocessor system bus or an input/output port. The computer
won’t do you much good if you can’t access the data, address, and control lines. The
IBM PC architecture provides for ready expansion using “daughter” cards that connect
to the motherboard. It also supports a variety of standard I/O ports, including parallel
and serial.

� Uni- or bidirectional parallel port. If the computer lacks access to the system bus, or if you
elect not to use that bus, you should have a built-in parallel port. This allows you to use 8-
bit data to control the functionality of your robot. The Commodore 64, no longer made but
still available in the used market, supports a fully bidirectional parallel port.

� Programmability. You must be able to program the computer using either assembly lan-
guage or a higher-level language such as Basic, C, Logo, or Pascal.
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� Mass storage capability. You need a way to store the programs you write for your robot,
or every time the power is removed from the computer you’ll have to rekey the program
back in. (Recall that microcontrollers and SBCs equipped with Flash or EEPROM
memory retain their programs even when power is removed.) Floppy disks or small,
low-power hard disk drives are possible contenders here.

� Availability of technical details. You can’t tinker with a computer unless you have a full
technical reference manual. The reference manual should include full schematics or, at
the very least, a pinout of all the ports and expansion slots. Some manufacturers do not
publish technical details on their computers, but the information is usually available
from independent book publishers. Visit the library or a bookstore to find a reference
manual for your computer.

IBM PC compatible motherboard The IBM PC or PC compatible may seem an
unlikely computer for robot control, but it offers many worthwhile advantages: expansion
slots, large software base, and readily available technical information. Another advantage
is that these machines are plentiful on the used market—$20 at some thrift stores. As soft-
ware for PCs has become more and more sophisticated, older models have to be junked to
make room for faster processors and larger memories.

You don’t want to put the entire PC on your mobile robot; it would be too heavy. Instead,
remove the motherboard from inside the PC, and install that on your ‘bot. How successful
you are doing this will depend on the design of the motherboard you are using. The sup-
ply requirements of older PC-compatible motherboards are rather hefty: you need one or
more large batteries to provide power and tight voltage regulation.

Later models of motherboards (those made after about 1990) used large-scale integra-
tion chips that dramatically cut down on the number of individual integrated circuits. This
reduces the power consumption of the motherboard. Favor these “newer” motherboards
(sometimes referred to as “green” motherboards, for their energy-saving qualities), as they
will save you the pain and expense of providing extra battery power.

As mentioned earlier, PC motherboards “require” four different operating voltages:

� �5 volts, for the main circuit board logic. The �5 vdc is high-current demand; some
early PC motherboards may draw an amp or more.

� �12 and �12 volts, used for powering disk drives and, in the case of �12 volts, for RS-
232 serial communications. For serial communications the current demand for the ±12
volts is low: 100 mA or less. Additional current capacity is needed for the �12 volt
source if you use a floppy or hard disk.

� �5 volts, used as a reference voltage in some applications. Current demand is low at
100 mA or less.

Note that some motherboards may run fine with just �5 vdc, especially if you do not
use their serial ports. (If your ‘bot motherboard uses a hard disk drive or floppy disk drive,
it may need �12 volts for its drive motors. You should account for this in your power sup-
ply requirements.) Others will not even turn on unless all four voltages are present. Only
testing will determine this.

You can build a suitable power supply for an IBM PC-compatible motherboard using
linear or switching voltage regulators and voltage inverters. Maxim makes several easy-to-
use and affordable integrated circuits for these applications. You can also sometimes find
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power supplies for battery-powered laptop computers that provide the four voltage taps.
The power supply will likely have modest current ratings, so use it only with a newer,
lower-amperage motherboard.

If you’re buying a motherboard, new or used, make sure it comes with a BIOS chip
(Basic Input/Output System). The motherboard can’t work without it. The motherboard
should also have its CPU and some memory; otherwise, you’ll need to purchase these sep-
arately, at additional cost. Take note of the I/O ports that are part of the motherboard and
those that must be added separately. Most PC-compatible motherboards will have one or
more expansion slots, so you can add your own I/O ports. Keep in mind that every expan-
sion board you add will increase the current consumption of the motherboard.

The keyboard is separate and connects to the motherboard by way of a small connector.
The BIOS in some motherboards allow you to turn the keyboard detection off. You want
this feature. Without it, the motherboard won’t boot the operating system, and you’ll need
to either keep a keyboard connected to the motherboard or rig up some kind of “dummy”
keyboard adapter. The same goes for the video display. Make sure you can operate the
motherboard without the display.

IBM PC compatible laptop Motherboards from desktop IBM PC-compatible comput-
ers can be a pain to use because of the power supply requirements. An old laptop, though
harder to find and more expensive on the used market, makes for an ideal robot-control
computer. A perfect PC-compatible laptop is the older monochrome liquid crystal display
variety. Battery consumption was reasonable, and the switch to all-color displays a few
years back made the used black-and-white models more affordable. Check online auction
sites such as eBay, a used computer store, or your local classified ads.

You can probably use the laptop as is, without removing its parts and mounting them on
the robot. That way, you can still access the keyboard and display. Use the parallel and/or
serial ports on the laptop to connect to the robot. While these ports don’t provide the same
flexibility as a direct connection to the motherboard’s system bus, they should function
admirably for most robotic applications.

You can use the unit’s standard batteries to power the laptop or use external batteries to
provide operating juice. Note that most laptops use rechargeable batteries, where the per-
cell voltage is lower than in traditional batteries (1.2 volts versus 1.5 volts per cell). Note
the voltage of a freshly charged battery, and duplicate that using any external power source
you may provide. If the laptop is equipped with a DC input for a car lighter adapter or AC
adapter, use it rather than directly wiring an external power source to the battery terminals.

Commodore 64 The Commodore 64 was first introduced in 1982 and became one of
best-selling computers ever. Some 20 to 25 million people owned a Commodore 64, partly
because of the wide variety of software and peripherals for it, but mostly because it was so
inexpensive. In its day, the Commodore 64 was routinely discounted to under $150. Add a
TV set and you had a computer you could use immediately. Some programs (mostly games)
came in cartridge form; the cartridges plugged into the back of the computer.

The Commodore 64 is no longer manufactured, but it can still be found at swap meets and
other used markets. The keyboard enclosure of the Commodore 64 holds the computer. The
power supply for the Commodore 64 is external to the computer. You’ll want to replace it with
regulated power from your robot, using a 6- to 12-volt battery source. The power supply also
provides an odd 9-volt AC source, which you’ll need to supply using an adapter circuit.
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The Commodore 64 does not offer direct access to the microprocessor system bus, but
it does have a unique “user port” that can be used for most robotic applications. The user
port is primarily a parallel printer port with a twist: it allows bidirectional data transfer
between the computer and the external device. Using the Basic programming language
built into the Commodore 64, you can make some of the eight data line inputs and some
outputs. There can always be two-way communication between the computer and your
robot. The computer also has a serial port.

Of Inputs and Outputs
The architecture of robots requires inputs, for such things as mode setting or sensors, as
well as outputs, for things like motor control or speech. The basic input and output of a
computer or microcontroller is a two-state binary voltage level (off and on), usually 0 and
5 volts. For example, to place an output of a computer or microcontroller to HIGH, the
voltage on that output is brought, under software control, to �5 volts.

In addition to standard LOW/HIGH inputs and outputs, there are several other forms
of I/O found on single-board computers and microcontrollers. The more common are
listed in the following sections, organized by type. Several of these are discussed in more
detail in Chapter 29.

SERIAL COMMUNICATIONS

The most common types of serial communications include the following:

I2C (inter-integrated circuit). This is a two-wire serial network protocol used by Philips
to allow integrated circuits to communicate with one another. With I2C you can install
two or more microcontrollers in a robot and have them communicate with one another.
One I2C-equipped microcontroller may be the “master,” while the others are used for
special tasks, such as interrogating sensors or operating the motors.

Microwire. This is a serial synchronous communications protocol used in National
Semiconductor products and popular for use with the PICMicro line of microcontrollers
from Microchip Technologies. Most Microwire-compatible components are used for
interfacing with microcontroller or microprocessor support electronics, such as memory
and analog-to-digital converters.

SCI (serial communications interface). This is an enhanced version of the UART, which
is detailed later in this list.

SPI (serial peripheral interface). This is a standard used by Motorola and others to com-
municate between devices. Like Microwire, SPI is most often used to interface with micro-
controller or microprocessor support electronics, especially outboard EEPROM memory.

Synchronous serial port. In this technology, data is transmitted one bit at a time, using
two wires. One wire contains the transmitted data, and the other wire contains a clock
signal. The clock serves as a timing reference for the transmitted data. Note that this is
different from asynchronous serial communication (discussed next), which does not use
a separate clock signal.
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UART (universal asynchronous receiver transmitter). This is used for serial communi-
cations between devices, such as your PC and the robot’s computer or microcontroller.
Asynchronous means that there is no separate synchronizing system for the data.
Instead, the data itself is embedded with special bits (called start and stop bits) to ensure
proper flow. The USART (Universal Synchronous/Asynchronous Receiver Transmitter)
can be used in either asynchronous or synchronous mode, thus making possible faster
throughput of data.

DATA CONVERSION

There are two principle types of data conversion:

ADC. Analog-to-digital conversion transforms analog (linear) voltage changes to bina-
ry (digital). ADCs can be outboard, contained in a single integrated circuit, or included
as part of a microcontroller. Multiple inputs on an ADC chip allow a single IC to be used
with several inputs (4-, 8-, and 16-input ADCs are common).

DAC. Digital-to-analog conversion transforms binary (digital) signals to analog (linear)
voltage levels. DACs are not as commonly employed in robots; rather, they are com-
monly found on such devices as compact disc players.

PULSE AND FREQUENCY MANAGEMENT

The three major types of pulse and frequency management are the following:

Input capture. This is an input to a timer that determines the frequency of an incoming
digital signal. With this information, for example, a robot could differentiate between
inputs, such as two different locator beacons in a room. Input capture is similar in con-
cept to a tunable radio.

PMW. Pulse width modulator is a digital output that has a square wave of varying duty
cycle (e.g., the “on” time for the waveform is longer or shorter than the “off ” time).
PMW is often used with a simple resistor and capacitor to approximate digital-to-ana-
log conversion, to create sound output, and to control the speed of a DC motor.

Pulse accumulator. This is an automatic counter that counts the number of pulses
received on an input over X period of time. The pulse accumulator is part of the archi-
tecture of the microprocessor or microcontroller and can be programmed autonomously.
That is, the accumulator can be collecting data even when the rest of the microprocessor
or microcontroller is busy running some other program.

SPECIAL FUNCTIONS

Hardware interrupts. Interrupts are special input that provides a means to get the attention
of a microprocessor or microcontroller. When the interrupt is triggered, the microprocessor
can temporarily suspend normal program execution and run a special subprogram.

Comparator. This is an input that can compare a voltage level against a reference. The
value of the input is then lower (0) or higher (1) than the reference. Comparators are most
often used as simple analog-to-digital converters where HIGH and LOW are represented
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by something other than the normal voltage levels (which can vary, depending on the
kind of logic circuit used). For example, a comparator may trigger HIGH at 2.7 volts.
Normally, a digital circuit will treat any voltage over about 0.5 or 1 volt as HIGH; any-
thing else is considered LOW.

Analog/mixed-signal (A/MS). These are inputs (and often outputs) that can handle analog
or digital signals, under software guidance. Many microcontrollers are designed to han-
dle both analog and digital signals on the same chip and even mix and match analog/dig-
ital on the same pins of the device.

External reset. This is an input that resets the computer or microcontroller so it clears
any data in RAM and restarts its program (the program stored in EEPROM or elsewhere
is not erased).

Switch debouncer. This cleans up the signal transition when a mechanical switch (push
button, mercury, magnetic reed, etc.) opens or closes. Without a debouncer, the control
electronics may see numerous signal transitions and could interpret each one as a sepa-
rate switch state. With the debouncer the control electronics sees just a single transition.

Input pullup. Pullup resistors (5–10K) are required for many kinds of inputs to control
electronics. If the source of the input is not actively generating a signal, the input could
“float” and therefore confuse the robot’s brain. The pullup resistors, which can be built
into a microcontroller and activated via software, prevent this floating from occurring.

From Here
To learn more about… Read

Connecting computers and other Chapter 29, “Interfacing with Computers and 
control circuits to the outside world Microcontrollers”

Creating a robot controlled by Chapter 30, “Computer Control via PC Parallel Port”
the parallel port on an IBM PC-
compatible computer

Using the Basic Stamp microcontroller Chapter 31, “Using the Basic Stamp”

Using the BasicX microcontroller Chapter 32, “Using the BasicX Microcontroller”

Using the OOPic microcontroller Chapter 33, “Using the OOPic Microcontroller”
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The brains of a robot don’t operate in a vacuum. They need to be connected to motors to
make the robot move and to sensors to make the robot perceive its surroundings. In most
cases, these outside devices cannot be directly connected to the computer or microcon-
troller of a robot. Instead, it is usually necessary to condition these inputs so they can be
adequately used by the robot’s brain.

In this chapter we discuss the most common and practical methods for interfacing real-
world devices to computers and microcontrollers. For your convenience, some of the
material presented in this chapter is replicated, in context, in other chapters of the book.

Sensors as Inputs
By far the most common use for inputs in robotics is sensors. There are a variety of sen-
sors, from the super simple to the amazingly complex. All share a single goal: provid-
ing the robot with data it can use to make intelligent decisions. A temperature sensor,
for example, might help a robot determine if it’s too hot to continue a certain operation.
Or an “energy watch” robot might record the temperature as it strolls throughout the
house, looking for locations where the temperature varies widely (indicating a possible
energy leak).
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TYPES OF SENSORS

Broadly speaking, there are two types of sensors, shown in Fig. 29.1:

� Digital sensors provide on/off or true/false results. A switch is a good example of a dig-
ital sensor: either the switch is open or it’s closed.

� Analog sensors provide a range of values, usually a voltage. In many cases, the sensor
itself provides a varying resistance or current, which is then converted by an external
circuit into a voltage. For example, when exposed to light the resistance of a CdS (cad-
mium sulfide) cell changes dramatically. In a simple circuit with a fixed resistor, this
resistance is used to output a voltage.

In both digital and analog sensors, the result is a voltage level that can be fed to a
computer, microcontroller, or other electronic device. In the case of a digital sensor, the
robot electronics are only interested in whether the voltage is a logical LOW (usually 0
volts) or a logical HIGH (usually 5 volts). As such, digital sensors can often be directly
connected to a robot control computer without any additional interfacing electronics.

In the case of an analog sensor, you need additional robot electronics to convert the
varying voltage levels into a form that a control computer can use. This typically involves
using an analog-to-digital converter, which is discussed later in this chapter.

EXAMPLES OF SENSORS

One of the joys of building robots is figuring out new ways of having them react to changes
in the environment. This is readily done with the wide variety of affordable sensors now
available. New sensors are constantly being introduced, and it pays to stay abreast of the
latest developments. Not all new sensors are affordable for the hobby robot builder, of
course—you’ll just have to dream about getting that $10,000 vision system. But there are
plenty of other sensors that cost much, much less; many are just a few dollars.
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FIGURE 29.1 The two major sensor types:
digital and analog.
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Part 6 of this book discusses many different types of sensors commonly available today
that are suitable for robotic work. Here is just a short laundry list to whet your appetite:

� Sonar range finder. Reflected sound waves are used to judge distances. Its effective use
is typically from about a foot to 30–40 feet.

� Sonar proximity or movement. Reflected sound waves are used to determine if the robot
is close to an object (this is called “proximity detection”). Movement (a person, dog,
whatever) changes the reflected sound waves and can likewise be detected. Its range is
from 0 inches to 20–30 feet.

� Infrared range finder or proximity. Reflected infrared light is used to determine distance
and proximity. The detected range is typically from 0 inches to two or three feet.

� Light sensors. Various light sensors detect the presence or absence of light. Light sen-
sors can detect patterns when used in groups (called “arrays”). A sensor with an array
of thousands of light-sensitive elements, like a CCD video camera, can be used to con-
struct eyes for a robot.

� Pyroelectric infrared. A pyroelectric infrared sensor detects changes in heat patterns and is
often used in motion detectors. The detected range is from 0 to 30 feet and beyond.

� Speech input or recognition. Your own voice and speech patterns can be used to com-
mand the robot.

� Sound. Sound sources can be detected by the robot. You can tune the robot to listen to
only certain sound wavelengths or to those sounds above a certain volume level.

� Contact switches. Used as “touch sensors,” when activated these switches indicate that
the robot has made contact with some object.

� Accelerometer. Used to detect changes in speed and/or the pull of the earth’s gravity,
accelerometers can be used to determine the traveling speed of a robot or whether it’s
tilted dangerously from center.

� Gas or smoke. Gas and smoke sensors detect dangerous levels of noxious or toxic fumes
and smoke.

� Temperature. A temperature sensor can detect ambient or applied heat. Ambient heat is
the heat of the room or air; applied heat is some heat (or cold) source directly applied
to the sensor.

Motors and Other Outputs
A robot uses outputs to take some physical action. Most often, one or more motors are
attached to the outputs of a robot to allow the machine to move. On a mobile robot, the
motors serve to drive wheels, which scoot the ‘bot around the floor. On a stationary robot,
the motors are attached to arm and gripper mechanisms, allowing the robot to grasp and
manipulate objects.

Motors aren’t the only ways to provide motility to a robot. Your robot may use sole-
noids to “hop” around a table or pumps and valves to power pneumatic or hydraulic pres-
sure systems. No matter what system the robot uses, the basic concepts are the same: the
robot’s control circuitry (e.g., a computer) provides a voltage to the output, which turns
the motor, solenoid, or pump on. When voltage is removed, the motor, et al, stops.
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OTHER COMMON TYPES OF OUTPUTS

Other types of outputs are used for the following purposes:

� Sound. The robot may use sound to warn you of some impending danger (“Danger, Will
Robinson, danger!”) or to scare away intruders. If you’ve built an R2-D2 like robot
(from Star Wars fame), your robot might use chirps and bleeps to communicate with
you. Hopefully, you’ll know what “bebop, pureeep!” means.

� Voice. Either synthesized or recorded, a voice lets your robot communicate in more
human terms.

� Visual indication. Using light-emitting diodes (LEDs), numeric displays, or liquid crystal
displays (LCDs), visual indicators help the robot communicate with you in direct ways.

CONSIDERING POWER-HANDLING REQUIREMENTS

Outputs typically drive heavy loads: motors, solenoids, pumps, and even high-volume
sound demand lots of current. The typical robotic control computer cannot provide more
than 15–22 mA (milliamps) of current on any output. That’s enough to power one or two
LEDs, but not much else.

To use an output to drive a load, you need to add a power element that provides ade-
quate current. This can be as simple as one transistor, or it can be a ready-made power dri-
ver circuit capable of running large, multi-horsepower motors. One common power driver
is the H-bridge, so called because the transistors used inside it are in a “H” pattern around
the motor or other load (see Chapter 18, “Working with DC Motors,” for more informa-
tion on H-bridges). The H-bridge can connect directly to the control computer of the robot
and provides adequate voltage and current to the load.

Input and Output Architectures
The architecture of robots requires inputs, for such things as mode settings or sensors, as
well as outputs, such as motor control or speech. As we’ve already seen, the basic input
and output of a computer or microcontroller are a two-state binary voltage level (off and
on), usually between 0 and 5 volts. Two types of interfaces are used to transfer these
HIGH/LOW digital signals to the robot’s control computer: parallel and serial.

PARALLEL INTERFACING

In a parallel interface, multiple bits of data are transferred at one time using (typically)
eight separate wires. Parallel interfaces enjoy high speed because more information can be
shuttled about in less time. A typical parallel interface is the computer port on your per-
sonal computer. It sends data an entire byte (eight bits) at a time. When printing text, each
byte represents a different character, like an A or an 8. Such characters can be represented
by different combinations of the eight-bit data.
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SERIAL INTERFACING

The downside to parallel interfaces is that they consume input/output lines on the robot
computer or microcontroller. There are only a limited number of wires (I/O lines) on the
control computer; typically 16 or even fewer. If the robot uses two 8-bit parallel ports, that
leaves no I/O lines for anything else.

Serial interfaces, on the other hand, conserve I/O lines because they send data on a sin-
gle wire. They do this by separating a byte of information into its constituent bits, then
sending each bit down the wire at a time, in single-file fashion. There are a variety of ser-
ial interface schemes, using one, two, three, or four I/O lines. Additional I/O lines are used
for such things as timing and coordinating between the data sender and the data recipient.

A number of the sensors you may use with your robot have serial interfaces, and on the
surface it may appear they are a tad harder to interface than parallel connections. But, in
fact, they aren’t if you use the right combination of hardware and software. Before you can
use the serial data from the sensor, you have to “clock out” all of the bits and assemble
them into 8- or 16-bit data, which is used to represent some meaningful value (such as dis-
tance between the sensor and some object, for example). The task of reconstructing serial
data is made easier when you use a computer or microcontroller because software on the
control computer does all the work for you. The Basic Stamp II, for example, provides a
single command that does just this job. You can read more about computers and other elec-
tronic control for your robot in the remaining chapters of this section of the book.

Interfacing Outputs
As mentioned previously, most output circuits require more voltage and current than the
control electronics (computer, microprocessor, microcontroller) of your robot can provide.
Therefore, you need some type of power driver to convert the 0–5 volt (off/on) signals pro-
vided by the control circuitry into the current and/or voltage levels required by the output.

Figs. 29.2 through 29.7 show various approaches for doing this, including relay,
transistor, power MOSFET, discrete component H-bridge, single-package H-bridge,
and buffer circuits. All have their advantages and disadvantages, and they are described
in context throughout this book. See especially Chapter 18, “Working with DC
Motors,” and Chapter 19, “Working with Stepper Motors,” for more information on
these power drive techniques.
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Interfacing Digital Inputs
The following sections describe common ways to connect digital inputs to the control
electronics (microprocessor, computer, or microcontroller) of your robot.

BASIC INTERFACE CONCEPTS

Switches and other strictly digital (on/off) sensors can be readily connected to control elec-
tronics. Figs. 29.8 through 29.10 show a variety of techniques, including direct connection
of a switch sensor, interface via a switch debouncer, and interface via a buffer. The buffer
is recommended to help you isolate the source of the input from the control electronics.

INTERFACING FROM DIFFERENT VOLTAGE LEVELS

Some digital input devices may operate a voltage that differs from the control electronics.
Erratic behavior and even damage to the input device or control electronics could result if
you connected components with disparate voltage sources together. So-called logic trans-
lation circuits are needed for these kinds of interfaces. Several integrated circuits provide
these functions in off-the-shelf solutions. You can create most of the interfaces you need
using standard CMOS and TTL logic chips.

440 INTERFACING WITH COMPUTERS AND MICROCONTROLLERS

Output

e
b

c1K

Input

10K

V+

e
b

c1K

Output

10K

V+

Input

FIGURE 29.3 Bipolar transistor 
interface.

Ch29_McComb  8/18/00  2:16 PM  Page 440



Q1

4011
(1/4)

V+

1

2 3
g

d

s
7

14

Control

Control

Load

Q1

4011
(1/4)

V1+

1

2 3
g

d

s
7

14

  

Load

V2+

FIGURE 29.4 Power MOSFET inter-
face.

+V

Q1

Q2

Q3

Q4

4011
(1/4)

+12V

1

2 3

4

5

6

g

g

d d

g

d

s

s

s
7

14
0.1
C1

0
1Forward

Reverse

Direction
control

g

d

s

M1

4011
(1/4)

D1 D3

D2 D4

D1-D4: 1N4002
Q1-Q4: n-channel MOSFET

FIGURE 29.5 Discrete component H-bridge interface.

Ch29_McComb  8/18/00  2:16 PM  Page 441



V+

M1

Enable/PWM

Direction

Brake

FIGURE 29.6 Packaged H-bridge
interface.

V+

4

6
2

3

7

Input

Output

+

-
741

FIGURE 29.7 Non-inverting buffer
follower interface.

S1
Microprocessor/
microcontroller
input

FIGURE 29.8 Direct connection
of switch/digital
input.

555

120K

S1

0.1

+V

6
7

2

3

10K

Microprocessor/
microcontroller

input

FIGURE 29.9 Switch debouncer input.

Ch29_McComb  8/18/00  2:16 PM  Page 442



Fig. 29.11 shows how to interface TTL (5 volt) to CMOS circuits that use different power
sources (use this circuit even if both circuits run under �5 vdc). Fig. 29.12 shows the same
concept, but for translating CMOS circuits to TTL circuits that use different power sources.

USING OPTO-ISOLATORS

Note that in both circuits the ground connection is shared. You may wish to keep the power
supplies of the inputs and control electronics totally separate. This is most easily done
using opto-isolators, which are readily available in IC-like packages. Fig. 29.13 shows the
basic concept of the opto-isolator: the source controls a light-emitting diode. The input of
the control electronics is connected to a photodetector of the opto-isolator.

Note that since each “side” of the opto-isolator is governed by its own power supply,
you can use these devices for simple level shifting, for example, changing a �5 vdc sig-
nal to �12 vdc, or vice versa.

ZENER DIODE INPUT PROTECTION

If a signal source may exceed the operating voltage level of the control electronics, you can
use a zener diode to “clamp” the voltage to the input. Zener diodes act like valves that turn
on only when a certain voltage level is applied to them. As shown in Fig. 29.14, by putting
a zener diode across the �V and ground of an input, you can basically shunt any excess
voltage and prevent it from reaching the control electronics.
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Zener diodes are available in different voltages; the 4.7- or 5.1-volt zeners are ideal for
interfacing to inputs. Use the resistor to limit the current through the zener. The wattage
rating of the zener diode you use depends on the maximum voltage presented to the input
as well as the current drawn by the input. For most applications where the source signal is
no more than 12–15 volts, a quarter-watt zener should easily suffice. Use a higher wattage
resistor for higher current draws.
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Interfacing Analog Input
In most cases, the varying nature of analog inputs means they can’t be directly connected to
the control circuitry of your robot. If you want to quantify the values from the input you need
to use some form of analog-to-digital conversion (see the section “Using Analog-to-Digital
Conversion” later in this chapter for more information).

Additionally, you may need to condition the analog input so its value can be reliably mea-
sured. This may include amplifying and buffering the input, as detailed later in this section.

VOLTAGE COMPARATOR

The voltage comparator takes a linear, analog voltage and outputs a simple on/off
(LOW/HIGH) signal to the control electronics of your robot. The comparator is handy
when you’re not interested in knowing the many possible levels of the input, but you want
to know when the level exceeds a certain threshold.

Fig. 29.15 shows the voltage comparator circuit. The potentiometer is used to determine
the “trip point” of the comparator. To set the potentiometer, apply the voltage level you
want to use as the trip point to the input of the comparator. Adjust the potentiometer so the
output of the comparator just changes state. Note that the pullup resistor is used on the out-
put of the comparator chip (LM339) used in the circuit. The LM339 uses an open collec-
tor output, which means that it can pull the output LOW, but it cannot pull it HIGH. The
pullup resistor allows the output of the LM339 to pull HIGH.

SIGNAL AMPLIFICATION

Many analog inputs provide on and off signals but not at a voltage high enough to be use-
ful to the control electronics of your robot. In these instances you must amplify the signal,
which can be done by using a transistor or an operational amplifier. The op-amp method
is the easiest in most cases, and the LM741 is probably the most commonly used op-amp.
Fig. 29.16 shows the basic op-amp as an amplifier. R1 sets the input impedance of the
amplifier; R2 sets the gain.
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SIGNAL BUFFERING

The control electronics of your robot may “load down” the input sources that you use. This
is usually caused by a low impedance on the input of the control electronics. When this
happens, the electrical characteristics of the sources change, and erratic results can occur.
By buffering the input you can control the amount of loading and reduce or eliminate any
unwanted side effects.

The op-amp, as shown in Fig. 29.17, is but one common way of providing high-imped-
ance buffering for inputs to control electronics. R1 sets the input impedance. Note that
there is no R2, as in Fig. 29.18. In this case, the op-amp is being used in unity gain mode,
where it does not amplify the signal.

OTHER SIGNAL TECHNIQUES FOR OP-AMPS

There are many other ways to use op-amps for input signal conditioning, and they are too
numerous to mention here. A good source for simple, understandable circuits is the
Engineer’s Mini-Notebook: Op-Amp Circuits, by Forrest M. Mims III, which is available
through Radio Shack. No robotics lab should be without Forrest’s books.

COMMON INPUT INTERFACES

Figs. 29.18 and 29.19 show common interfaces for analog inputs. These can be connected
to analog-to-digital converters (ADC), comparators, buffers, and the like. The most com-
mon interfaces are as follows:

� CdS (cadmium-sulfide) cells are, in essence, variable resistors. By putting a CdS cell in
series with another resistor between the �V and ground of the circuit, a varying volt-
age is provided that can be read directly into an ADC or comparator. No amplification
is typically necessary.

� A potentiometer forms a voltage divider when connected as shown in Fig. 29-19. The
voltage varies from ground and �V. No amplification is necessary.

� The output of a phototransistor is a varying current that can be converted to a voltage
by using a resistor. (The higher the resistance is, the higher the sensitivity of the device.)
The output of a phototransistor is typically ground to close to �V, and therefore no fur-
ther amplification is necessary.
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� Like a phototransistor, the output of a photodiode is a varying current. This output can
also be converted into a voltage by using a resistor (see Fig. 29.18). (The higher the
resistance, the higher the sensitivity of the device.) This output tends to be fairly weak—
on the order of millivolts instead of volts. Therefore, amplification is usually required.

Using Analog-to-Digital Conversion
Computers are binary devices: their digital data is composed of strings of 0s and 1s, strung
together to construct meaningful information. But the real world is analog, where data can
be most any value, with literally millions of values between “none” and “lots”!

Analog-to-digital conversion is a system that takes analog information and translates it
into a digital, or more precisely binary, format suitable for your robot. Many of the sensors
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you will connect to the robot are analog in nature. These include temperature sen-
sors, microphones and other audio transducers, variable output tactile feedback (touch) 
sensors, position potentiometers (the angle of an elbow joint, for example), light detectors,
and more. With analog-to-digital conversion you can connect any of them to your robot.

HOW ANALOG-TO-DIGITAL CONVERSION WORKS

Analog-to-digital conversion (ADC) works by converting analog values into their binary
equivalents. In most cases, low analog values (like a weak light striking a photodetector)
might have a low binary equivalent, such as “1” or “2.” But a high analog value might have
a high binary equivalent, such as “255” or even higher. The ADC circuit will convert small
changes in analog values into slightly different binary numbers. The smaller the change in
the analog signal required to produce a different binary number, the higher the “resolution”
of the ADC circuit. The resolution of the conversion depends on both the voltage span (0–5
volts is most common) and the number of bits used for the binary value.

Suppose the signal spans 10 volts and 8 bits (or a byte) are used to represent various lev-
els of that voltage. There are 256 possible combinations of 8 bits, which means the span of
10 volts will be represented by 256 different values. Given 10 volts and 8 bits of conversion,
the ADC system will have a resolution of 0.039 volts (39 millivolts) per step. Obviously, the
resolution of the conversion will be finer the smaller the span or the higher the number of
bits. With a 10-bit conversion, for instance, there are 1024 possible combination of bits, or
roughly 0.009 volts (9 millivolts) per step.

INSIDE THE SUCCESSIVE APPROXIMATION ADC

There are a number of ways to construct an analog-to-digital converter, including succes-
sive approximation, single slope, delta-sigma, and flash. Perhaps the most commonly used
is the successive approximation approach, which is a form of systematized “20 questions.”
The ADC arrives at the digital equivalent of any input voltage within the expected range by
successively dividing the voltage ranges by two, narrowing the possible result each time.
Comparator circuits within the ADC determine if the input value is higher or lower than a
built-in reference value. If higher, the ADC “branches” toward one set of binary values; if
lower, the ADC branches to another set.

While this sounds like a roundabout way, the entire process takes just a few microsec-
onds. One disadvantage of successive approximation (and some other ADC schemes) is
that the result may be inaccurate if the input value changes before the conversion is com-
plete. For this reason, most modern analog-to-digital converters employ a built-in “sample
and hold” circuit (usually a precision capacitor and resistor) that temporarily stores the
value until conversion is complete.

ANALOG-TO-DIGITAL CONVERSION ICS

You can construct analog-to-digital converter circuits using discrete logic chips—basically
a string of comparators strung together. But an easier approach is a special-purpose ADC
integrated circuit. These chips come in a variety of forms besides conversion method (e.g.,
successive approximation, discussed in the last section):
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� Single or multiplexed input. Single-input ADC chips, such as the ADC0804, can accept
only one analog input. Multiplexed-input ADC chips, like the ADC0809 or the
ADC0817, can accept more than one analog input (usually 4, 8, or 16). The control cir-
cuitry on the ADC chip allows you to select the input you wish to convert.

� Bit resolution. The basic ADC chip has an 8-bit resolution (the ADC08xx ICs discussed
earlier are all 8 bits). Finer resolution can be achieved with 10- and 12-bit chips. A few
16-bit analog-to-digital ICs are available, but these are not widely used in robotics. One
of the most popular 12-bit ADC chips is the LTC1298, which can transform an input
voltage (usually 0–5 volts) into 4096 steps.

� Parallel or serial output. ADCs with parallel outputs provide separate data lines for
each bit. (10- and 12-bit converters may still only have eight data lines; the converted
data must be read in two passes.) Serial output ADCs have a single output, and the data
is sent 1 bit at a time. Serial output ADCs are handy when used with microcontrollers
and single-board computers, where input/output lines can be scarce. In the most com-
mon scheme, a program running on the microcontroller or computer “clocks in” the
data bits one by one in order to reassemble the converted value. The ADC08xx chips
have parallel outputs; the 12-bit LTC1298 has a serial output.

INTEGRATED MICROCONTROLLER ADCS

Many microcontrollers and single-board computers come equipped with one or more
analog-to-digital converters built in. This saves you the time, trouble, and expense of
connecting a stand-alone ADC chip to your robot. You need not worry whether the ADC
chip provides data in serial or parallel form since all the data manipulation is done
internally. You just tell the system to fetch an analog input, and it tells you the result-
ing digital value.

On the downside, the ADCs on most microcontrollers are typically more limited than
the stand-alone variety. For example, with most stand-alone ADCs you can set a particular
span of voltages, say from 2 volts to 4.5 volts, rather than the usual 0 to 5 volts. The full
bit range (8, 10, 12 bits, etc.) then applies to this narrow span. The result is better overall
resolution since the same number of bits is used with a smaller voltage range. Most ADCs
built into microcontrollers and computers have no way to set the span, which makes lim-
ited-range conversions less accurate. Additionally, you’re stuck with the ADC resolution
that is built into the microcontroller or computer. If the chip uses 8-bit resolution and you
need 10 or 12, you’ll have to add an outboard converter.

SAMPLE CIRCUITS

Fig. 29.20 shows a basic circuit for using the ADC0809, which provides eight analog
inputs and an 8-bit conversion resolution. The input you want to test is selected using a 3-
bit control sequence—000 for input 1, 001 for input 2, and so on. Note the ~500 kHz time
base, which can come from a ceramic resonator or other clock source or from a
resistor/capacitor (RC) time constant. If you need precise analog-to-digital conversion, you
should use a more accurate clock than an RC circuit.

Fig. 29.21 shows the pinout diagram for the popular ADC0804, an 8-bit successive
approximation analog-to-digital conversion IC with one analog input.
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EXPANDING AVAILABLE I/O LINES 451

Using Digital-to-Analog Conversion
Digital-to-analog conversion (DAC) is the inverse of analog-to-digital conversion. With a
DAC, a digital signal is converted to a varying analog voltage. DACs are common in some
types of products, such as audio compact discs, where the digital signal impressed upon
the disc is converted into a melody pleasing to the human ear.

At least in the robotics world, however, DACs are not as commonly used as ADCs, and
when they are, simpler “approximation” circuits are all that’s usually necessary. A common
technique is to use a capacitor and resistor to form a traditional RC time-constant circuit.
A digital device sends periodic pulses through the RC circuit. The capacitor discharges at
a more or less specified rate. The more pulses there are during a specific period of time,
the higher the voltage that will get stored in the capacitor.

The speed of DC motors is commonly set using a kind of digital-to-analog conversion.
Rather than vary the voltage to a motor directly, the most common approach is to use pulse
width modulation (PWM), in which a circuit applies a continuous train of pulses to the motor.
The longer the pulses are “on,” the faster the motor will go. This works because motors tend
to “integrate” out the pulses to an average voltage level; no separate digital-to-analog conver-
sion is required. See Chapter 18 for additional information on PWM with DC motors.

You can accomplish digital-to-analog conversion using integrated circuits specially
designed for the task. The DAC08, for example, is an inexpensive eight-bit digital-to-ana-
log converter IC that converts an eight-bit digital signal into an analog voltage.

Expanding Available I/O Lines
A bane of the microcontroller- and computer-controlled robot is the shortage of input/out-
put pins. It always seems that your robot needs one more I/O pin than the computer or
microcontroller has. As a result, you think you either need to drop a feature or two from
the robot or else add a second computer or microcontroller.

Fortunately, there are alternatives. Perhaps the easiest is to use a data demultiplexer, a
handy device that allows you to turn a few I/O lines into many. Demultiplexers are avail-
able in a variety of types; a common component offers three input lines and eight output
lines. You can individually activate any one of the eight output lines by applying a binary
control signal on the three inputs. The following table shows which input control signals
correspond to which selected outputs.

INPUT CONTROL SELECTED OUTPUT

000 1

001 2

010 3

011 4
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The demultiplexer includes the venerable 74138 chip, which is designed to bring the
selected line LOW, while all the others stay HIGH. One caveat regarding demultiplexers is
that only one output can be active at any one time. As soon as you change the input control,
the old selected output is deselected, and the new one is selected in its place.

One way around this is to use an addressable latch such as the 74259; another way is to
use a serial-to-parallel shift register, such as the 74595. The 74595 chip uses three inputs
(and optionally a fourth, but for our purposes it can be ignored) and provides eight outputs.
You set the outputs you want to activate by sending the 74595 an eight-bit serial word. For
example,

…and so on. Fig. 29.22 shows how to interface to the 74595. In operation, software on
your robot’s computer or microcontroller sends eight clock pulses to the Clock line. At
each clock pulse, the Data line is sent one bit of the serial word you want to use. When
all eight pulses have been received, the Latch line is activated. The outputs of the
74595 remain active until you change them (or power to the chip is removed, 
of course).

If this seems like a lot of effort to expend just to turn three I/O lines into eight, many
microcontrollers (and some computers) used for robotics include a “Shiftout” com-
mand that does all the work for you. This is the case, for example, with the Basic Stamp
II (but not the Basic Stamp I), the BasicX-24, and several others. To use the Shiftout
command, you indicate the data you want to send and the I/O pins of the microcon-
troller that are connected to the 74595. You then send a short pulse to the Latch line,
and you’re done! A key benefit of the 74595 is that you can “cascade” them to expand
the I/O options even more.

There are still other ways to expand I/O lines, including serial peripheral interface
(SPI), the Dallas 1-Wire protocol, and others. We briefly introduced several of the more
commonly used systems earlier in this chapter. If your computer or microcontroller sup-
ports one or more of these systems you may wish to investigate using these systems in case
you find you are running out of I/O lines for your robot.
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INPUT CONTROL SELECTED OUTPUT (CONTINUED)

100 5

101 6

110 7

111 8

SERIAL WORD SELECTED OUTPUT(S)

00000001 1

00001001 1 and 4

01000110 2, 3, and 7
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Bitwise Port Programming
Controlling a robot typically involves manipulating one or more input/output lines (“bits”)
on a port attached to a computer or built into a microcontroller. A common layout for an
I/O port is eight bits, comprising eight individual connection pins. This is the same general
layout as the parallel port found on IBM PC-compatible computers, which provides eight
data lines for sending characters to a printer or other device (along with a few additional
input and output lines used for control and status).

The design of the typical microcontroller or computer, as well as the usual program
tools for it, doesn’t make it easy to directly manipulate the individual bits of a port.
Rather, you must manipulate the whole port all at once and, in doing so, hopefully alter
only the desired bits. The alternative is to send a whole value—from 0 to 255 for an eight-
bit port, and 0 to 15 for a four-bit port—to the port at the same time. This value corre-
sponds to the bits you want to control. For example, given an eight-bit port, the number
54 in binary is 00110110.

Fortunately, with a little bit of programming it’s not hard to convert numeric values into
their corresponding bits, and vice versa. Each programming language provides a different
mechanism for these procedures, and what follows in the next few sections are simple
approaches using Visual Basic. Other languages, such as C, offer more robust bit-handling
operators that you can take advantage of. The sample code that follows is meant more to
teach you the fundamentals than to be applied directly with a robot. Take the ideas and
adapt them to your particular case.
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DETERMINING BITS FROM A STRING PRESENTED IN
BINARY FORMAT

Binary digits expressed as strings are a convenient way to represent a nibble or a byte of
information. For example, the string “0010” is a nibble that represents the number 2:

Another example: The number 11 is expressed as a four-bit binary string as “1011”:

There are a number of programming approaches for determining the individual bits of
a binary-format string. For instance, you may want to determine which bits are 0 and which
are 1 given any four-bit value from 0 to 15. You could create a lookup table that matches
all 16 strings to their binary equivalents, but there are several other methods you may want
to use instead, depending on the commands and statements provided in the programming
language you are using.

One approach is to use the Mid statement, as shown here, to “parse” through a string
and return the value of each character. This code is Visual Basic-compatible and places the
bit value (0 or 1) into a four-element array, Bit(0) to Bit (3). While this example shows only
4-bit binary strings being used, the same technique can be used with 8- or 16-bit strings:

Sub BitArray()
Dim Count As Integer, BitString As String
Dim Bits(4) As Integer   ' Use Bits(8) or Bits(16) as appropriate
BitString = "0110"       ' Sample binary-format string
For Count = 0 To Len(BitString) - 1
Bits(Count) = Val(Mid(BitString, Count + 1, 1))
Next Count
MsgBox Bits(3)           ' Example: peek into element 3
End Sub

The working part of this code is the For loop. It, along with the Mid statement, sepa-
rates each character of the string—in this case, “0110”—into the four elements of the
array. The Val statement converts the isolated string character into a numeric digit.

CONVERTING A VALUE INTO A BINARY-FORMAT STRING

Numeric values can be readily converted into strings once made into a string of 0s and 1s.
Here’s one approach:

Sub MakeBitString()
Dim Temp As String, Count As Integer, X As Integer
X = 9              ' Example value
Temp = ""
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Bit Weight 8 4 2 1

Value 0 0 1 0 � 2

Bit Weight 8 4 2 1

Value 1 0 1 1 � 11
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For Count = 0 To 3
If (X And (2 ^ Count)) = 0 Then
Temp = "0" & Temp

Else
Temp = "1" & Temp

End If
Next Count
MsgBox Temp
End Sub

X is the value you want to convert into a string, in this case 9. The message box displays
the binary equivalent in string format (which is “1001”).

DETERMINING BITS FROM A DECIMAL VALUE

You can determine each bit of a decimal value by using the bitwise And operator, first
introduced in Chapter 7, “Programming Concepts: The Fundamentals.” The use of the And
operator is straightforward:

X � Value And BitWeight

where Value is the value you want to test (0 to 15 for a four-bit number), and BitWeight is
the binary digit you wish to determine. The bit weights for a value between 0 and 15 are
1, 2, 4, and 8. For example:

X = 7 And 4

This tests to see if the third bit (bit weight of 4) is 0 or 1 for the number 7. Expressed in
binary form, 7 is 0111:

So, for this example, X would contain a nonzero result (4 in this case). But suppose you
want to test for bit weight 8:

X = 7 And 8

Now, X contains zero because the fourth bit is not part of the value 7.
The following is a quick demonstration routine, suitable for use in Visual Basic and

other compatible programming environments. Bits are counted 0 to 3. The message box
displays the result of the And’ing expression. Change X to different values; change the If
expression to experiment with different bit weights:
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Bit Weight 8 4 2 1

Value 0 1 1 1 � 7

X And 1—bit 0

X And 2—bit 1

X And 4—bit 2

X And 8—bit 3
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Sub DefBit()
Dim X As Integer
X = 8                      ' Experiment with values 0 thru 15
If (X And 8) <> 0 Then     ' Bit weight = 8
MsgBox "Bit 3 is 1"
Else
MsgBox "Bit 3 is 0"
End If
End Sub

SUMMING BITS INTO A DECIMAL VALUE

You will have plenty of occasions to convert a set of binary digits into a decimal value.
This can be done with simple addition and multiplication, as shown in the Visual Basic-
compatible code that follows. Here, values for four bits have been specified and named D0
through D3. The message box displays the numeric equivalent of the bits you specify. For
example, the bits

1001

result in 9.

Sub SumBits()
Dim X As Integer
Dim D0 As Integer, D1 As Integer, D2 As Integer, D3 As Integer
D0 = 1
D1 = 0
D2 = 0
D3 = 1
X = (D3 * 8) + (D2 * 4) + (D1 * 2) + D0
MsgBox X
End Sub

MASKING VALUES BY OR ’ING

It is not uncommon to manipulate the individual bits of a computer or microcontroller port.
Quite often, however, it is not possible or practical to address each individual bit. Rather,
you must control the bits in sets of four or eight. As we’ve already seen, in binary notation
bits have different bit weights, so a number like 12 is actually composed of these bits:

Imagine you have a four-bit port on your computer or microcontroller. You control the
setting of each bit by using a value from 0 to 15, with 0 representing the bits 0000, and 15
representing the bits 1111. You need a way to control each bit separately, without chang-
ing the state of the other bits. This is done by using an Or mask, and it’s painfully simple:

X � CurrentValue Or BitToTurnOn
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Bit Weight 8 4 2 1

Value 1 1 0 0 � 12
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where CurrentValue is the current binary value of the four bits (which you can often deter-
mine by querying the value of the port, such as with the Inp statement in QBasic), and
BitToTurnOn is the bit(s) you want to turn on (make 1). For instance, suppose
CurrentValue is 7 (0111) and you want to turn on bit 3 (bit weight 8) as well:

X = 7 Or 8

X is 15, or 1111.

In many cases, but not all, the result of Or’ing will be the same as if you just added the
numbers. This isn’t always true, however, so don’t get into the habit of just adding 
the numbers.

The following is Visual Basic-compatible code that demonstrates the use of Or mask-
ing to turn on specific bits, without changing the others. Assume X is the CurrentValue you
previously obtained from the port, and Mask is the BitToTurnOn value from above:

Sub MaskValues()
Dim X As Integer, Mask As Integer, Result As Integer
X = 3        ' 0011
Mask = 2     ' 0010
Result = X Or Mask
MsgBox Result
End Sub

With the values specified (X � 3, Mask� 2), the result is still 3 because the bit for a
“2” is already set 1. For practice, change X to another value, say 4 (binary 0100). The result
is now 6, which represents binary (0110).

You can readily turn off a bit by using the Xor operator, as shown here:

Result = (X Or Mask) Xor Mask

The following table shows some sample results from using Xor masking:

To understand how Xor works consult this truth table:

X MASK RESULT

2 1 3 (binary 0011)

7 3 4 (binary 0100)

10 2 8 (binary 1000)

3 8 11 (binary 1011)
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From Here
To learn more about… Read

Motor specifications Chapter 17, “Choosing the Right Motor for the Job”

Interfacing circuitry to DC Chapter 18, “Working with DC Motors”
motor loads

Computers and microcontrollers Chapter 28, “An Overview of Robot ‘Brains’”
for robotic control

Input and output using an IBM PC- Chapter 30, “Computer Control via PC Parallel Port”
compatible parallel port

Interfacing sensors Part 6, “Sensors and Navigation”
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VALUE 1 VALUE 2 OUTPUT
0 0 1
0 1 0
1 0 1
1 1 1

Ch29_McComb  8/18/00  2:16 PM  Page 458



In the “Wizard of Oz,” the Scarecrow laments “If I only had a brain.” He imagines the
wondrous things he could do and how important he’d be if he had more than straw filling
his noggin! In a way, your robot is just like the Scarecrow. Without a computer to control
it, your robot can only be so smart. Hardwiring functions into the robot is a suitable alter-
native to computer control, and you should always look to simpler approaches than imme-
diately connecting all the parts of your robot to a super Cray-2 computer.

Yet there are plenty of applications that cry out for computer control; some tasks, like
image and voice recognition, require a computer. One of the easiest ways to connect a
robot to a computer is to use an IBM PC compatible. You can readily wire up your robot
to the PC’s parallel port. The parallel port is intended primarily for connecting the com-
puter to printers, plotters, and some other computer peripherals. With a few ICs and some
rudimentary programming, it can also be used to directly control your robots. If your com-
puter has several parallel ports, you can use them together to make a very sophisticated
control system.

Despite the many advantages of the computer’s parallel port, using it involves some dis-
advantages too. You are limited to controlling only a handful of functions on your robot
because the parallel port has only so many input and output lines—although with some
creative design work you can effectively increase that number. Also, most parallel ports are
designed primarily to get data out of the computer, not into it, though many parallel ports
are bidirectional under low-level software control. The average parallel port also has a

30
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PRINTER PORT
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number of input-specific lines for directly communicating with a printer or other periph-
eral, though the number of input lines is small.

This chapter deals primarily with how to use the parallel port on an IBM PC compati-
ble. Why the PC? It’s a common computer—hundreds of millions of them are in use today.
While the PC comes in many styles, shapes, and sizes, they all do basically the same thing
and provide the same specifications for both software and parallel port output. If you don’t
want to use your main PC for your robot work, you can probably find a secondhand
machine for under $100.

460 COMPUTER CONTROL VIA PC PRINTER PORT

The text that follows pertains to the parallel port on an IBM PC compatible used in stan-
dard mode, and not in enhanced, bidirectional mode. On some computers, you may
need to modify the system BIOS settings to turn off enhanced and/or bidirectional set-
tings. Otherwise, the port may not behave the way you want it to. You can modify the
BIOS settings by restarting your computer and following the “Setup” instructions shown
on the screen as the PC boots.

The Fundamental Approach
In the original design of the IBM PC, system input and output—such as the parallel port,
serial port, and video display—were handled by “daughter boards” that were plugged into
the computer’s main motherboard. This design practice continues, though today the aver-
age PC compatible comes with features such as parallel and serial port, video display,
modem, and even a sound card already built into the motherboard. Whether these features
are built into the motherboard or added by plugging in a daughter board, all of are
input/output (I/O) ports of one type or another.

The PC accesses its various I/O ports by using an address code. Each device or board
in the computer has an address that is unique to itself, just as you have a home address that
no one else in the world shares with you. Very old IBM PCs and compatibles used a mono-
chrome display adapter board, which included its own parallel port. The printer port on this
board used a starting address of 956. This address is in decimal, or base-10 numbering
form. You may also see PC system addresses specified in hexadecimal, or base-16, form.
In hex, the starting address is 3BCH (the address is really 3BC; the H means that the num-
ber is in hex). By convention, the parallel port contained on an I/O expansion board, or
built into the motherboard, has a decimal address of 888 (or 378H hex) or 632 (278H).

Parallel ports in the PC are given the logical names LPT1:, LPT2:, and LPT3:. Every
time the system is powered up or reset, the ROM BIOS (Basic Input/Output System) chip
on the computer motherboard automatically looks for parallel ports at these I/O addresses,
3BCH, 378H, and 278H, in that order. (It skips 3BCH if you don’t have a monochrome
card or printer port installed, which you probably don’t unless your machine is ancient!).
The logical names are assigned to these ports as they are found.

Table 30.1 shows the port addresses for the parallel ports in the PC. Applications software
often use the logical port names instead of the actual addresses, but in attaching a robot to
the computer we’ll need to rely on the actual address—hence the need to go into these details.
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The PC parallel port is a 25-pin connector, which is referred to as a DB-25 connector.
Cables and mating connectors are in abundant supply, which makes it easy for you to wire
up your own peripherals. You can buy connectors that crimp onto 25-conductor ribbon
cable or connectors that are designed for direct soldering. Fig. 30.1 shows the pinout des-
ignations for the connector (shown with the end of the connector facing you). Note that
only a little more than half of the pins are in use. The others are either not connected inside
the computer or are grounded to the chassis. Table 30.2 shows the meaning of the pins.

Notice that not one address is given, but three. The so-called starting address is used for
data output register. The data output register is comprised of eight binary weighted bits,
something on the order of 01101000 (see Fig. 30.2). There are 256 possible combinations
of the eight bits. In a printer application, this means that the computer can send specific
code for up to 256 different characters. The data output pins are numbered 2 through 9.
The bit positions and their weights are shown in Table 30.3.

The other two registers of the parallel port, have different addresses (base address of the
port, plus either one or two). These registers are for status and control. The most commonly
used status and control bits (for a printing application, anyway) are shown in Fig. 30.3 on
page 464. The function of the status and control bits is shown in Table 30.4 on page 465.

To a printer, one of the most important control pins is pin number 1. This is the
STROBE line, which is used to tell the peripheral (printer, robot) that the parallel data on
lines 2 through 9 is ready to be read. The STROBE line is used because all the data may
not arrive at their outputs at the same time. It is also used to signal a change in state. The
output lines are latched, meaning that whatever data you place on them stays there until
you change it or turn off the computer. During printing, the STROBE line toggles HIGH
to LOW and then HIGH again. You don’t have to use the STROBE line when command-
ing your robot, but it’s a good idea if you do.

Other control lines you may find on parallel printer ports include the following (some
of these lines aren’t always implemented):

� Auto form feed
� Select/deselect printer
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TABLE 30.1 ADDRESSES OF PARALLEL PORTS.

ADAPTER DATA STATUS CONTROL

Parallel port on 3BCH, 956D 3BDH, 957D 3BEH, 958D
monochrome 
display card 

PC/XT/AT 378H, 888D 379H, 889D 37AH, 890D
printer adapter

Secondary LPTx card 278H, 632D 279H, 633D 27AH, 634D
(as LPT2:)

“H” Suffix � Hex

“D” Suffix 5 Decimal
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1

14

13

25

Busy

Select

PE Strobe
Data lines 

Ground

FIGURE 30.1 Pinout of the DB25 parallel port
connector, as used on IBM PC-
compatible computers.

TABLE 30.2 PARALLEL PORT PINOUT FUNCTIONS.

PIN FUNCTION (PRINTER APPLICATION)

1 Strobe

2 Data bit 0

3 Data bit 1

4 Data bit 2

5 Data bit 3

6 Data bit 4

7 Data bit 5

8 Data bit 6

9 Data bit 7

10 Acknowledge

11 Busy

12 OE (out of paper, or empty)

13 Printer online

14 Auto line feed after carriage return

15 Printer error

16 Initialize printer

17 Select/deselect printer

18–25 Unused or grounded
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� Initialize printer
� Printer interrupt

Traditionally, the status lines are the only ones that feed back into the computer (as
mentioned earlier, most parallel printer ports are now bidirectional, but this is not a feature
we’ll get into this time around). There are five status lines, and not all parallel ports sup-
port every one. They are as follows:

� Printer error
� Printer not selected
� Paper error
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FIGURE 30.2 The parallel port outputs eight bits at a
time.

TABLE 30.3 BIT POSITION WEIGHTS.

BIT POSITION WEIGHT

D7 � 128

D6 � 64

D5 � 32

D4 � 16

D3 � 8

D2 � 4

D1 � 2

D0 � 1
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� Acknowledge
� Busy

The acknowledge and busy lines are commonly used for the same thing in a printer
application. However, depending on the design of the port in your computer, you can use
the two separately in your own programs. (One helpful tidbit: for a printing application
when the BUSY line is LOW, the ACK line is HIGH.)

Robot Experimenter’s Interface
It’s not generally a good idea to connect robot parts directly to a parallel port because
wiring mistakes in the robot could damage the circuitry in your PC. Moreover, the par-
allel port in your PC may not have the drive current needed to directly operate relays,
solenoids, and power transistors. By using an interface, discussed later in this chapter,
you can help protect the circuitry inside your computer and provide more drive current
for operating robotic control devices. This interface, called the Robot Experimenter’s
Interface for lack of a better name, lets your PC control up to 12 robotic functions (such
as motors) and read the values of up to four robotic switches or other digital sensing
devices.

464 COMPUTER CONTROL VIA PC PRINTER PORT

0

1

2

3

4

5

6

7

Strobe

Busy

Parallel
computer port

Printer Error 

Select

Inputs (from device)

Data outputs

Data ready

FIGURE 30.3 The minimum parallel port: eight data out-
puts, a STROBE (Data Ready) line, and
inputs from the printer, including Select,
Printer Error, and Busy.
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CONSTRUCTING THE INTERFACE

The schematic diagram for the Robot Experimenter’s Interface is shown in Fig. 30.4. You
can build it in under an hour, and it requires very few components. The interface uses a
solderless experimenter’s breadboard so you can create circuits right on the interface. The
input and output buffering is provided by the 74367 hex buffer driver. Three such chips are
used to provide 18 buffered lines, which is more than enough.

You may wish to build the interface in an enclosure that is large enough to hold the
breadboard and the wire-wrapping socket. Make or buy a cable using a male DB-25 con-
nector and a four- or five-foot length of 25-connector ribbon cable. Solder the data output,
status, and control line conductors to the proper pins of the 74367 ICs. Route the outputs
to the bottom of the wire-wrap socket. A finished interface should look something like the
one in Fig. 30.5. Using the interface requires you to provide a �5 vdc source. Do not try
to power the interface from the parallel port! Use a length of 22 AWG solid 
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TABLE 30.4 PARALLEL PORT STATUS AND CONTROL BITS.

CONTROL BITS

BIT FUNCTION

0 LOW � normal; HIGH � output of byte of data

1 LOW � normal; HIGH � auto linefeed after carriage return

2 LOW � initialize printer; HIGH � normal

3 LOW � deselect printer; HIGH � select printer

4 LOW � printer interrupt disables; HIGH � enabled

5–7 Unused

STATUS BITS

BIT FUNCTION

0–2 Unused

3 LOW � printer error; HIGH � no error

4 LOW � printer not on line; HIGH � printer on line

5 LOW � printer has paper; HIGH � out of paper

6 LOW � printer acknowledges data sent; HIGH � normal

7 LOW � printer busy: HIGH � out of paperH

Any time you mess around with a computer there is a risk of damaging it, and this goes
for the circuit presented next. This is not a project you should consider if you’re new to
electronics and aren’t sure what you’re doing.
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FIGURE 30.4 Schematic for the Robot Experimenter’s Interface.
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conductor wire to connect the signals at the wire-wrap socket to whatever points on the
breadboard you desire.

TESTING THE INTERFACE

The first order of business is to connect the Robot Experimenter’s Interface as shown in
Fig. 30.6. Connect the cable to the parallel port of your computer (some of the LEDs will
light). Use a DOS-based Basic interpreter program to manipulate the three registers (data,
control, and status) of the parallel port. Most older PCs will have a Basic interpreter either
built into the BIOS (as was the case with the original IBM PC) or provided as a separate
.com or .exe executable file. If your PC has MS-DOS 5.0 or later, look for QBasic, an
updated version of the venerable Microsoft Basic from the late 1970s. All of the program
examples in this chapter assume you’re using QBasic, or a similar updated Basic variant.

Note that if you’re using Microsoft Windows 95 or later, QBasic probably isn’t installed
on your computer, but it is provided on the Windows CD-ROM. Look for the qbasic.exe
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TABLE 30.5 PARTS LIST FOR THE ROBOT EXPERIMENTER’S INTERFACE.

IC1–IC3 74367 TTL Hex Inverter/Buffer IC

Misc 18-pin wire-wrap socket, solderless experimenter’s board, binding posts
(for power connection), enclosure

V Vgn

74367 74367 74367

18-pin socket

Power

Solderless breadboard

Wire-wrap board
(for mounting components)

FIGURE 30.5 The completed Robot Experimenter’s Interface. Mount the bread-
board, wire-wrap socket, ICs, and power terminals on a perf
board, and secure the board into a project case.
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program file in the OtherOldmsdos directory, or visit Microsoft’s Web page at
www.microsoft.com for additional information.

Type the program shown in Listing 30.1. The program assumes you’re using the stan-
dard LPT1: port, which has an address of 888 decimal (378 hex). If you’re using a differ-
ent parallel port, change the BaseAddress as required. Refer to Table 30.1 earlier in this
chapter. You’re now ready to run the program (in QBasic, press Shift�F5).

LISTING 30.1.

BaseAddress = 888          ' Base address of parallel port
DataPort = BaseAddress     ' Address of data register

FOR Count = 0 TO 255
OUT DataPort, Count

FOR x = 1 TO 500: NEXT x
NEXT Count

The LEDs connected to each of the data lines should flash on and off very rapidly. Some
of the LEDs will flash more than the others; this is normal. When the program finishes all
of the LEDs should stay lit. If the LEDs do not flash, recheck your wiring and make sure
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V Vgn

FIGURE 30.6 Component arrangement for testing
the Robot Experimenter’s Interface.
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the program has been typed correctly. The LEDs that are on represent a logic 1 state; those
that are off represent a logic 0 state.

Fig. 30.7 is a blank dotted-line version of the Robot Experimenter’s Interface. Feel free
to use it to sketch out your own designs.

Using the Port to Operate a Robot: 
The Basics
The 74367 used in the Robot Experimenter’s Interface cannot sink or source more than
about 20 mA of current per output, and as you would expect you can’t operate a motor
directly from it. However, it can drive a low-power relay, transistor, or H-bridge. See
Chapter 18, “Working with DC Motors,” for some popular ways to bridge the low-level
output of the interface to control a real-world robot.

The simplest way to operate your robot via computer is to connect each of the data out-
put lines to a suitable transistor, small relay, or H-bridge input. You can control the on/off
state of up to eight motors or other devices using just the eight data lines of the parallel
port (you can actually control even more devices; more on this in a bit).

Let’s say that you only have three motors connected to the interface and that you are
using lines 0, 1, and 2 (pins 2, 3, and 4, respectively). To turn on motor 1, you must 
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V Vgn

FIGURE 30.7 A blank Robot Experimenter’s
Interface layout. Feel free to copy it
and use it to make your own designs.
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activate the bit for line 0, that is, make it HIGH. To do this, output a bit pattern number to
the port using the BASIC OUT command. The OUT command is used to send data to an
I/O port. The command is used with two parameters: port address and value. The two are
separated by a comma. For port address, use the base address of the parallel port; for data,
use the value you want to send to the port. Here’s an example:

OUT 888, 10

(Note: In the test code you used variables, BaseAddress and DataPort, instead of “hard-
wired” literal values for the port address. It’s a better practice to use variables because
that makes it easier to change your program. For right now, however, I’ll use literal val-
ues such as 888 for short examples, but revert back to using variables in the larger ready-
to-go program code.)

The base address is 888, and the value is decimal 10. Table 30.6 shows the first 16 bina-
ry numbers and the bit pattern that constitutes them.

For most robotic applications where you use the parallel port to control motors, you’ll
need two data lines for each motor: one to turn the motor on and off and another to con-

470 COMPUTER CONTROL VIA PC PRINTER PORT

TABLE 30.6 DECIMAL AND BINARY EQUIVALENTS (0–15 ONLY).

DECIMAL BINARY

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111
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trol its direction. You can use the four bits in Table 30.6 to control the on/off state of the
motors as well as their direction. For this you might use data lines 0, 1, 2, and 3 (pins 2, 3,
4, and 5, respectively, of the interface). 

Table 30.7 lists all the possible bit patterns for data lines 0–3. You can connect the motor
relays to the pins in any order, but the table assumes the following:

� Data line 0 (bit 1) controls the On/Off relay for motor 1
� Data line 1 (bit 2) controls the On/Off relay for motor 2
� Data line 2 (bit 3) controls the Direction relay for motor 1
� Data line 3 (bit 4) controls the Direction relay for motor 2

You should get into the habit of initializing the port at the beginning of the program by
outputting decimal 0. That prevents the motors from energizing at random. The line of
code for this is as follows:
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TABLE 30.7 DATA BITS FOR CONTROLLING TWO MOTORS.

MOTOR1 MOTOR 2

BINARY DECIMAL CONTROL DIRECTION CONTROL DIRECTION
VALUE (BIT 1) (BIT 3) (BIT 2) (BIT 4)

0000 0 Off Forward Off Forward

0001 1 On Forward Off Forward

0010 2 Off Forward On Forward

0011 3 On Forward On Forward

0100 4 Off Reverse Off Forward

0101 5 On Reverse Off Forward

0110 6 Off Reverse On Forward

0111 7 On Reverse On Forward

1000 8 Off Forward Off Reverse

1001 9 On Forward Off Reverse

1010 10 Off Forward On Reverse

1011 11 On Forward On Reverse

1100 12 Off Reverse Off Reverse

1101 13 On Reverse Off Reverse

1110 14 Off Reverse On Reverse

1111 15 On Reverse On Reverse
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OUT 888, 0

To activate just motor 1, choose a decimal number where only the first bit changes.
There is only one number that meets that criterion: it is decimal 1, or 0001 (we will ignore
bits 5 through 8 for this discussion since they are not in use). So type:

OUT 888, 1

Run this program; motor 1 turns on. To turn it off, send a decimal 0 to the port, as described
earlier. You use the same technique to turn on motor 2 or both motors 1 and 2 at the same time.
To turn on both motors at the same time, for example, look for the binary bit pattern where
the first and second bits are 1 (it’s decimal 3), and output this value to the port.

Controlling a Two-wheel Robot
Controlling the common two-wheeled robot is a simple matter of sending the right bit pat-
terns to the parallel port. Note that binary 0000 (decimal 0) turns off both motors, so the
robot stops. Changing the binary bit pattern activates the right or left motor and controls
its direction. Table 30.8 lists the most common bit patterns you will use.

When writing the control program for your robot you may find it necessary to insert
short pauses between each state change (motor 1 forward and reverse, for example). You
can create simple pauses in Basic with “do nothing” FOR…NEXT loops as shown in the
testing program in Listing 30.2. The program first resets all bits to 0, then sleeps (waits)
one second. The program then goes through a timed routine turning on different motors
and reversing their direction: forward, reverse.

Note that do-nothing FOR…NEXT loops are processor-speed dependent. Adjust the
value of one or both loops to control the actual delay for your computer. You may also wish
to use the SLEEP statement, which inserts a delay for the number of seconds you specify.
Other versions of Basic provide for additional time-delay commands. Most Basic pro-
gramming environments, such as Microsoft QBasic (QuickBasic), allow you to terminate
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TABLE 30.8 COMMON BIT PATTERNS FOR CONTROLLING TWO MOTORS.

BINARY DECIMAL FUNCTION

0000 0 All stop

0011 3 Forward

1111 15 Reverse

0010 2 Right turn

0001 1 Left turn

0111 7 Hard right turn (clockwise spin)

1011 11 Hard left turn (counterclockwise spin)
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the program at any time by pressing Ctrl�Break (break is the Pause/Break key, usually
located near the numeric keypad).

LISTING 30.2.

DECLARE SUB DelaySub ()
BaseAddress = 888                 ' Base address of parallel port 
DataPort = BaseAddress            ' Address of data register

OUT DataPort, 0
SLEEP 1
OUT DataPort, 3
DelaySub
OUT DataPort, 15
DelaySub
OUT DataPort, 2
DelaySub
OUT DataPort, 1 
SLEEP         2 
OUT DataPort, 0  

SUB DelaySub
' adjust delay as necessary 
FOR DELAY = 1 TO 100000: NEXT DELAY
END SUB 

Controlling More Than Eight Data Lines
As shown in the previous examples each motor requires two bits. Therefore, one parallel
port can control the action and direction of four motors. However, you can actually control
more motors (or other devices) by using a number of simple schemes and without resort-
ing to using additional parallel ports.

The most straightforward method for expanding a single parallel port is to make use of
some or all of the data lines of the control register. You send bits to these control lines in
exactly the same way as you send bits to the data output lines, except that you use a dif-
ferent address. For the standard LPT1: port at decimal 888, the decimal address for the
control lines is 890. Only the first five bits of the address are used in the port, which means
the decimal numbers you use will be between 0 and 31.

Let’s say you are using bit 2 of the control address (in a printer application, bit 2 is used
to initialize the printer). You turn that bit on—and no others—by entering the following
program line:

OUT 890, 4

Note that you can output a binary pattern to address 890, and it will not affect the data
output lines.

USING EXPANDED IO

Another way of increasing the number of controlled devices is to use a data demulti-
plexer. There are several types in both the TTL and CMOS IC families. A popular data
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demultiplexer (or “demux”) is the 74154. This chip takes four binary weighted input lines (1,
2, 4, 8) and provides 16 outputs. Only one output can be on at a time. See the schematic in
Fig. 30.8 to see how to hook it up. The IC is shown connected to the first four data output
lines of the parallel port. You can actually connect it to any four, and you don’t even have to
use all four lines. With just three lines, the demux allows you to control up to eight devices.

To select the device connected to the number 3 output of the demux, for example, you
apply a binary 3 (0011) to its input lines. Write the line as follows:

OUT 888, 3

A limitation of the demux is that you can’t control more than one device connected to it at
any one time. You can’t, for example, attach both drive motors to the demux outputs and have
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them on at the same time. There will be many times, however, when your robot will only be
doing one thing (such as triggering an ultrasonic ranger). In these cases, the demux is perfect.

EXTERNAL ADDRESSING

As mentioned earlier in this chapter, all sorts of data and control lines are inside the com-
puter, on the microprocessor bus. There is also a set of special-purpose lines, the address
lines, that are used to pass data to specific devices and expansion boards. For example, you
address the data output lines of the parallel port by sending out the address 888.

The address for the parallel port triggers just the parallel port, but with some ingenuity
(and no extra components) you can wire up a “subaddress” scheme so the one parallel port
can fully control a very large number of devices. This is the third and most sophisticated
way to sap all the power out of the parallel port.

You can disable the 74367 hex buffer IC, which is used to link the port to the outside
world. In the Robot Experimenter’s Interface, the ENABLE lines of the chip, pins 1 and
15, are held LOW by tying them to the ground, so data is passed from the input to the out-
put. When the ENABLE pins are brought HIGH, the outputs are driven to a high-imped-
ance state and no longer pass digital data. In this way, the 74367 acts as a kind of valve.
The two ENABLE lines control different input/output pairs, as shown in Fig. 30.9. The
high-impedance disabled state is engineered so that many 74367 chips can be paralleled
on the same data lines, without loading the rest of the circuit.

You can use the ENABLE pins of the 74367 and a few of the unused control lines in the
parallel port to make yourself an electronic data selector switch. In operation, you output
a binary word onto the data output lines. You then send the word to the desired device by
addressing it with the control lines.

Here is an example: Let’s say that you have connected three subaddress ports to the par-
allel printer port, as shown in Fig. 30.10. Control lines 1, 2, and 3 are connected to the
ENABLE pins of the 74367. The inputs of the three 74367s are connected together. The
outputs of each feed to the specific device.

To turn on bits 0 and 1 on device 2, enter the following lines into Basic and run the pro-
gram:

OUT 888, 3
OUT 890, 2

The first line of the program outputs a decimal 3 to the data output register. That places
the binary bit pattern 00000011 on the parallel port data output lines. The next line enables
device 2 because it turns on the second 74367.

Inputting Data
Recall that a parallel port has a third and final input register for providing status. Most par-
allel ports support four or five status lines, which you can use to input data back into the
computer. The Robot Experimenter’s Interface uses the four status lines you are likely to
find in any parallel port. To read data from the port, you use the Basic INP statement (INP
for input). The input command is used as follows:
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Y=INP(x)

In place of x you put the decimal address of the port you want to read. In the case of the
main printer port at starting address 888, the address of the status register is 889. The Y is a
variable used to store the return value for future use in the program. For testing, you can PRINT
the value of Y, which shows the decimal equivalent of the binary bit pattern on the screen.

Listing 30.3 is a sample program that displays the current values of the four inputs con-
nected to the Robot Experimenter’s Interface. The values are shown as 0 (“false”) and -1
(“true”). Bear in mind that the Busy and Online lines are active-low; therefore their logic
is the reverse of the others. The code in the test program “compensates” for the active-low
condition by reversing the logic in the If expressions.

Also note the less-than-straightforward method for determining if pins 15 and 12 are
triggered exclusively. These extra If tests are needed because the parallel port (most, any-
way) will automatically bring pin 12 HIGH if pin 15 is brought HIGH. Weirdness is also
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encountered if pin 15 is brought HIGH while trying to read the values of pins 10 and 11.
The port reads pins 10 and 11 as LOW, even though they may be HIGH on the interface.
Again, this is the action of pin 15 (printer error), and for this reason, it’s usually a good
idea to limit its use or to ensure that the values of other inputs are ignored whenever pin
15 is HIGH.

LISTING 30.3.

DIM BaseAddress AS INTEGER, StatusPort AS INTEGER 
DIM DataPort AS INTEGER, ControlPort AS INTEGER 
DIM x AS INTEGER, Count 
AS INTEGER  
BaseAddress = 888 
DataPort = BaseAddress
StatusPort = BaseAddress + 1
ControlPort = BaseAddress + 2

WHILE (1)
x = INP(StatusPort) + 1
IF (x AND 64) = 64 THEN

PRINT "Pin 10: 1"
ELSE

PRINT "Pin 10: 0"
END IF
IF (x AND 128) <> 128 THEN

PRINT "Pin 11: 1"
ELSE
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PRINT "Pin 11: 0"
END IF
IF ((x AND 16) = 0) AND ((x AND 8) = 0) THEN

PRINT "Pin 12: 1"
ELSE

PRINT "Pin 12: 0"
END IF
IF ((x AND 32) = 32) AND (x AND 8) = 8 AND (x AND 16) = 16 THEN

PRINT "Pin 15: 1"
ELSE

IF ((x AND 32) = 0) AND (x AND 8) = 0 THEN
PRINT "Pin 15: 1"

ELSE
PRINT "Pin 15: 0"

END IF
END IF
PRINT "": PRINT ""
FOR Count = 1 TO 10000: NEXT Count
CLS

WEND

Before moving on, notice the use of the DIM keyword in the program shown in Listing
30.3. The DIM (for “dimension”) keyword tells Basic what kind of variables are used in
the program. While using DIM is not absolutely mandatory (in QBasic and later), you’ll
find that adopting it in your programs will not only help reduce errors and bugs. Most of
all, it will make your programs run much faster. Without the DIM keyword, the Basic inter-
preter creates an all-purpose “variant” variable type that can hold numbers of different
sizes, as well as strings. Every use of the variable requires Basic to rethink the best way to
store the variable contents, and this takes time.

A Practical Application of the Parallel
Port Input Lines
You can use the status bits for the robot’s various sensors, like whiskers, line-tracing detec-
tors, heat and flame detectors, and so forth. The simple on/off nature of these sensors
makes them ideal for use with the parallel port. Listing 30.4 shows a simple demonstrator
program that turns two drive motors forward until either switch located on the front of the
robot is activated. Upon activation of either switch, the robot will back up for one second,
spin on its axis for two seconds, then go forward again.

The demonstrator program is an amalgam of techniques discussed previously in this
chapter. The program assumes you have a two-wheel robot of the type described earlier in
the chapter, with the motors controlled according to the definitions in Table 30.8. Whisker
or bumper switches are attached to pins 10 and 11.

LISTING 30.4.

DECLARE SUB GetAway ()
DIM BaseAddress AS INTEGER, StatusPort AS INTEGER
DIM SHARED DataPort AS INTEGER
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DIM ControlPort AS INTEGER
DIM x AS INTEGER, Count AS INTEGER

BaseAddress = 888
DataPort = BaseAddress
StatusPort = BaseAddress + 1
ControlPort = BaseAddress + 2

CLS
PRINT "Press Ctrl+Break to end program..."

WHILE (1)
OUT DataPort, 3             ' drive forward
x = INP(StatusPort) + 1     ' read sensors
IF (x AND 64) = 64 THEN     ' if sensor 1 active

GetAway
END IF
IF (x AND 128) <> 128 THEN  ' if sensor 2 active

GetAway
END IF
FOR Count = 1 TO 500: NEXT Count

WEND
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SUB GetAway
OUT DataPort, 15      ' back up
SLEEP 1               ' wait one second
OUT DataPort, 7       ' hard left turn
SLEEP 2               ' wait two seconds
END SUB

Expanding the Number of Inputs
Normally, you can have up to five sensors attached to the parallel port (though many ports
only support three or four inputs, depending on their specific design). However, by using
the ENABLE pins of the buffers in the 74367 chips, it is possible to select the input from
a wide number of sensors. For example, using just four control lines with a 74150 data
selector means you can route up to 16 sensors to the parallel port. See Fig. 30.11, above,
for a pinout diagram of the 74150.

From Here
To learn more about… Read

Computers and microcontrollers for robots Chapter 28, “An Overview of Robot
‘Brains’”

Connecting computers and microcontrollers Chapter 29, “Interfacing with Computers
to “real-world” devices such as motors and sensors and Microcontrollers”

Using remote control to activate your robot Chapter 34, “Remote Control Systems”

Using sensors to aid in robot navigation Part 6, “Sensors and Navigation”
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Since its inception, the Basic Stamp, from Parallax, Inc., has provided the “on-board
brains” for countless robotics projects. This thumbprint-sized microcontroller uses Basic-
language commands for instructions and is popular among robot enthusiasts, electronics
and computer science instructors, and even design engineers looking for an inexpensive
alternative to microprocessor-based systems. The original Basic Stamp has been greatly
enhanced, and new models sport faster speeds, more memory capacity, easier software
programming, and additional data lines for interfacing with motors, switches, and other
robot parts.

In this chapter, you’ll learn the fundamentals of the Basic Stamp and how to use it in
your robotics projects. You will also want to read Chapters 32 and 33, which provide full
coverage of the BasicX and the OOPic, two other microcontrollers that use an embedded
high-level language for programming.

Inside the Basic Stamp
The Basic Stamp is really an off-the-shelf PIC from Microchip Technologies (“PIC” stands
for “programmable integrated circuit,” though other definitions are also commonly cited,
including “peripheral interface controller” and “programmable interface controller”).
Embedded in this PIC is a proprietary Basic-like language interpreter called PBasic. The
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chip stores commands downloaded from a PC or other development environment. When
you run the program, the language interpreter built inside the Stamp converts the instruc-
tions into code the chip can use. Common instructions involve such things as assigning a
given data line as an input or output or toggling an output line from high to low in typical
computer-control fashion.

The net result is that the Basic Stamp acts like a programmable electronic circuit, with
the added benefit of intelligent control—but without the complexity and circuitry over-
head of a dedicated microprocessor. Instead of building a logic circuit out of numerous
inverters, AND gates, flip-flops, and other hardware, you can use just the Basic Stamp
module to provide the same functionality and doing everything in software. (To be truth-
ful, the Stamp often requires that at least some external components interface with real-
world devices.) Nor do you need to construct a microprocessor-based board for your robot
followed by the contortions of programming the thing in some arcane machine language.

Because the Stamp accepts input from the outside world, you can write programs that
interact with that input. For instance, it’s a slam dunk to activate an output line—say, one
connected to a motor—when some other input (like a switch) changes logic states. You
could use this scheme, for instance, to program your robot to reverse its motors if a
bumper switch is activated. Since this is done under program control and not as hardwired
circuitry, it’s easier to change and enhance your robot as you experiment with it.

As of this writing there are several versions of the Basic Stamp, including the original
Basic Stamp Rev D, the Basic Stamp I (“BSI”), the Basic Stamp II (“BSII”), and the Basic
Stamp II-SX. Though in their day they were useful, the Rev D and BSI products are of lim-
ited use in most robotics applications, which leaves the BSII and BSII-SX as the serious
contenders. The BSII and BSII-SX share many of the same features, though the latter is
faster. In this chapter, I’ll concentrate on the BSII, but in most cases the specifications and
command sets apply to the BSII-SX as well. You should expect continued development of
the Basic Stamp, with new and updated versions. Be sure to check the Parallax Web site at
www.parallaxinc.com for news.

The microcontroller of the Basic Stamp uses two kinds of memory: PROM (program-
mable read-only memory) and RAM. The PROM memory is used to store the PBasic inter-
preter; the RAM is used to store data while a PBasic program is running. Memory for the
programs that you download from your computer is housed in a separate chip (but is still
part of the Basic Stamp itself; see the description of the BSII module in the next section).
This memory is EEPROM, for “electrically erasable programmable read-only memory”
(the “read-only” part is a misnomer, since it can be written to as well).

In operation, your PBasic program is written on a PC, then downloaded—via a serial
connection—to the Basic Stamp, where it is stored in EEPROM, as shown in Fig. 31.1.
The program in the EEPROM is in the form of “tokens”; special instructions that are read,
one at a time, by the PBasic interpreter stored in the Basic Stamp’s PROM memory. During
program execution, temporary data is kept in RAM. Note that the EEPROM memory of
the Basic Stamp is nonvolatile—remove the power and its contents remain. The same is not
true of the RAM. Remove the power from the Basic Stamp and any data stored in the RAM
is gone. Also note that the PBasic interpreter, which is stored in the PROM memory of the
microcontroller, is not replaceable.

As a modern microcontroller, the Basic Stamp II is a little tight when it comes to
available memory space. The chip sports only 2K of EEPROM and just 32 bytes of
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RAM. Of those 32 bytes, 6 are reserved for storing the settings information of the
input/output pins of the Basic Stamp, leaving only 26 bytes for data. For many robotics
applications, the 2K EEPROM (program storage) and 26-byte RAM (for data storage)
are sufficient. However, for complex designs you may need to use a second Basic
Stamp or select a microcontroller—such as the Basic Stamp II-SX—that provides 
more memory.

Stamp Alone or Developer’s Kit
The Basic Stamp is available directly from its manufacturer or from a variety of dealers the
world over. The prices from most sources are about the same. In addition to the BSI, BSII,
and BSII-SX variations mentioned earlier, you’ll find that the Basic Stamp is available in
several different premade kits as well as a stand-alone product.

� BSII Module. The Basic Stamp module (see Fig. 31.2) contains the actual microcon-
troller chip as well as other support circuitry. All are mounted on a small printed circuit
board that is the same general shape as a 24-pin IC. In fact, the BSII is designed to plug
into a 24-pin IC socket. The BSII module contains the microcontroller that holds the
PBasic interpreter, a 5-volt regulator, a resonator (required for the microcontroller), and
a serial EEPROM chip.

� BSII Starter Kit. The starter kit is ideal for those just, well, starting out. It includes a
BSII module, a carrier board, a programming cable, a power adapter, and software on
CD-ROM. The carrier board, shown in Fig. 31.3, has a 24-pin socket for the BSII mod-
ule, a connector for the programming cable, a power adapter jack, and a prototype area
for designing your own interface circuitry.

� Basic Stamp Activity Board. The Activity Board, which is typically sold without a BSII
module, offers you a convenient way to experiment with the Basic Stamp. It contains
four LEDs, four switches, a modular jack for experimenting with X-10 remote control
modules, a speaker, and two sockets so you easily interface such things as serial ana-
log-to-digital converters (ADCs).
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FIGURE 31.2 The Basic Stamp II module, containing microcon-
troller, voltage regulator, resonator, and EEPROM.

FIGURE 31.3 The Basic Stamp carrier board, ideal for experiment-
ing with the BSII. Sockets are provided for both the
BSI and BSII.
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� Growbot and BOE Bot. The Growbot and BOE Bot products are small mobile robot kits
that are designed to use the Basic Stamp microcontroller. The robots are similar (the
BOE Bot is a little larger and heavier) and are able to accommodate more experiments.
A BSII module is generally not included with either robot kit.

� Basic Stamp Bug II. Another robot kit, the Basic Stamp Bug II, is a six-legged walking
robot. The Bug is meant to be controlled with a BSI microcontroller, though you could
refit it to use the BSII. The Basic Stamp module is extra.

Physical Layout of the BSII
The Basic Stamp II is a 24-pin device; 16 of the pins are input/output (I/O) lines that you can
use to connect with your robot. For example, you can use I/O pins to operate a radio-controlled
(R/C) servo. Or you can use a stepper motor or a regular DC motor, when you use them with
the appropriate power interface circuitry. As outputs, each pin can source (that is, output 5
volts) 20mA of current or sink (output 0 volts) about 25 mA. However, the entire BSII should
not source or sink more than about 80-100mA for all pins. You can readily operate a series of
LEDs, without needing external buffer circuitry to increase the power-handling capability.

Or you can connect the BSII to a Polaroid sonar range-finding module (see Chapter 38,
“Navigating through Space”), various bumper switches, and other sensors. The “direction”
of each I/O pin can be individually set, so some pins can be used for outputs and others for
inputs. You can dynamically configure the direction of I/O pins during program execution.
This allows you to use one pin as both an input and an output, should this be called for.

Fig. 31.4 shows the pin layout of the BSII. The Basic Stamp II supports three ports,
referred to as A, B, and C. Port A is used for internal connections, namely, the serial lines
to the outboard EEPROM chip, as well as the RS-232 serial connections to and from the
PC that is used for programming. This leaves two full 8-bit ports, B and C, for use as I/O
lines. Through PBasic commands, you can control all eight bits of the each port together
or each pin individually.
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Understanding and Using PBasic
As you’ve read earlier in this chapter, at the heart of the Basic Stamp is PBasic, which is
the language used to program the Basic Stamp device. PBasic has undergone changes dur-
ing the life of the Basic Stamp products, and the syntax and the commands between PBasic
for the Basic Stamp I (known as PBasic1) and PBasic for the Basic Stamp II (PBasic2) are
different. What follows is strictly PBasic2 for the Basic Stamp II.

PBasic programs for the Basic Stamp are developed in the Basic Stamp Editor, an appli-
cation that comes with the Starter Kit (and is also available for free download at the
Parallax Web site). The Editor lets you write, edit, save, and open Basic Stamp programs.
It also allows you to compile and download your finished programs to a Basic Stamp. The
download step requires that your Basic Stamp be connected to a carrier board or other cir-
cuit board attached to a download cable. The download cable is connected to your PC via
one of its serial ports. Fig. 31.5 shows the Basic Stamp Editor.

Like any language, PBasic is composed of a series of statements that are strung togeth-
er in a logical syntax. A statement forms an instruction that the BSII is to carry out. For
example, one statement may tell the chip to fetch a value on one of its I/O pins, while
another may tell it to wait a certain period of time. The majority of PBasic statements can
be categorized into three broadly defined groups: variable and pin or port definitions,
flow control, and special function. We’ll cover each of these next.

VARIABLE AND PIN/PORT DEFINITIONS

As with any programming language, PBasic uses variables to store bits and pieces of infor-
mation during program execution. Variables can be of several different sizes; you should
always strive to choose the smallest variable size that will accommodate the data you wish
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to store. In this way you will conserve precious RAM space (remember, you only have 26
bytes of RAM to work with!).

PBasic provides the following four variable types:

� Bit—1 bit (one eighth of a byte)
� Nibble—4 bits (4 bits)
� Byte—1 byte (8 bits)
� Word—2 bytes (16 bits)

Variables must be declared in a PBasic program before they can be used. This is done
using the var statement, as follows:

VarName       var VarType

where VarName is the name (or symbol) of the variable, and VarType is one of the variable
types just listed. Here’s an example:

Red                 var                   bit
Blue                var                   byte

Red is a bit, and Blue is a byte. Note that capitalization does not matter in a PBasic pro-
gram. The following has the same result:

Red                 Var                   Bit
BLUE                VAR                   BYTE

Once declared, variables can be used throughout a program. The most rudimentary use
for variables is with the � (equals) assignment operator, as in

Red � 1

Blue � 12

Variables can also be assigned as the result of a math expression (2 � 2) or as the value of
an input pin. For example, suppose an input pin is connected to a mechanical switch.
Ordinarily, the switch is open, and the value at the pin is LOW (0). Suppose a variable,
called Switch, stores the current value of the pin. The Switch variable would contain 0 as
long as the switch is opened. If the switch is closed, the Switch variable then stores 1 (or
logical HIGH). More about I/O pins in a bit.

Variables store values that are expected to change as the program runs. PBasic also sup-
ports constants, which are used as a convenience for the programmer. Constants are
declared much as variables are, using the con statement:

MyConstant           con           5

MyConstant is the name of the constant, and its value is 5. Constants do not consume any
RAM and are typically used to make it easier to modify the program later on.

The Basic Stamp treats its 16 I/O pins like additional memory. The instantaneous value
of an I/O pin functions exactly like a one-bit variable: the value is either 0 or 1. If the I/O
pin is an input, then the value of that input will be 0 or 1, depending on the condition of
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the circuit on the outside of the Basic Stamp. The mechanical switch is a good example 
of this: depending on whether the switch is opened or closed, the value of the input pin is
0 (open) or 1 (closed).

When I/O pins are used as outputs, their logical state is changed using the high, low,
and toggle statements. In each case, the number of the pin (0 through 15) is given to tell
the Basic Stamp which I/O you want to change:

� High brings the I/O pin HIGH (1)
� Low brings the I/O pin LOW (0)
� Toggle changes the state of the I/O pin from 0 to 1, or vice versa, depending on its pre-

vious value.

Here’s an example (using the traditional ' character for comments):

high 1                   ' put I/O pin 1 (RB1) high
low 12                   ' put I/O pin 12 (RC4) low
toggle 5                 ' change I/O pin � (RB5) opposite to its

previous value

There are many ways to determine the current value of an I/O pin that is used as an
input. Most are used with special functions, which are outlined later in this chapter. You
can also directly reference the value of an input by using the Inx statement, where x is a
number from 0 to 15. For instance, to read the value of pin 3 and put it into a variable, you’d
use the following:

SomeVar � In3

FLOW CONTROL

Flow control statements tell your program what to do next. A commonly used flow control
statement is if, which is used in conditional expressions that execute one part of the pro-
gram if condition A exists and another part of the program if condition B exists. Two other
flow control statements are goto and gosub, which are used to unilaterally jump from one
part of a program, and the for statement, which is used to repeat a block of code a specif-
ic number of times. Let’s look first at the if statement.

The if statement, which is always used in conjunction with the then statement, condition-
ally branches execution depending on the outcome of an expression. The syntax is as follows:

if Expression then Label

Expression is the condition that must resolve to a True or False statement, and Label is an iden-
tified label elsewhere in the program that the execution is to jump to. An example of a typical
Expression is checking the value of a variable or input pin against an expected value:

if MyVar=1 then Flash

If the contents of MyVar is equal to 1 (the expression is True), then the program is
expected to jump to the Flash label. This label is identified by the label name, followed
by a colon, as in:
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Flash:
...rest of the code goes here

The if expression can use a number of logical operators:

� equal to

�� not equal to

� greater than

� less than

�� greater than or equal to

�� less than or equal to

The if statement is a little funky compared to other modern programming languages, in
that the result of the expression branches execution to a label. Note that there is no explic-
it else keyword in PBasic, that is, an action to be taken if the expression is False. As cited
in the Basic Stamp manual, you must write if statements that have a True and False com-
ponent along these lines:

if aNumber < 100 then isLess
debug "greater than or equal to 100"
stop

isLess:
debug "less than 100"
stop

Notice how this bit of programming works: Should aNumber be less than 100, then the
program jumps to the isLess label, and the debug statement (which prints text in the debug
window of the Basic Stamp programming environment on your PC) prints “less than 100.”
However, if aNumber is 100 or higher, the jump to isLess is ignored, and the program sim-
ply executes the next line, which is yet another debug statement (“greater than or equal to
100”). Note the introduction of another flow control statement: stop. The stop statement
stops program execution.

The goto and gosub statements are used with labels to divert execution to another part
of the program. Goto is most often used to create endless loops, as shown here:

high 1
RepeatCode:

pause 100
toggle 1
goto RepeatCode

In this program, I/O pin 1 is set to 1 (HIGH). The program then pauses for 100 millisec-
onds (one-tenth of a second) and then toggles I/O pin 1 to its opposite state. The goto state-
ment makes the program jump back to the RepeatCode label. With each trip through the
code, I/O pin 1 is toggled HIGH or LOW. If the pin is connected to an LED, for example,
it would flash on and off rapidly 10 times each second.

Gosub is similar to goto, except that when the code at the label is done, the program
returns to the statement immediately after gosub. Here’s an example:
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high 1
low 2
gosub FlashLED
'... some other code here
stop

FlashLED:
toggle 1
toggle 2
pause 100
return

The program begins by setting I/O pin 1 to HIGH and I/O pin 2 to LOW. It then “calls” the
FlashLED routine, using the gosub statement. The code in the FlashLED routine toggles
I/O pins 1 and 2 from their previous state, waits one-tenth of a second (100 milliseconds),
and then returns with the return flow control statement. Note the stop statement used
before the FlashLED label. It prevents the code from re-executing the FlashLED routine
when it is not intended.

The for statement is used with the to and next statements. All form a controlled counter
that is used to repeat the code a set number of times. The syntax for the for statement is:

for Variable = StartValue to EndValue [more statements] next

Variable is a variable that is used to contain the current count of the for loop. StartValue is
the initial value applied to Variable. Conversely, EndValue marks the maximum value that
will be applied to Variable. The loop breaks out—and the rest of the program continues to
execute—when the Variable exceeds EndValue. For example, if you use the following,

for VarName = 1 to 10

the loop starts with 1 in VarName and counts to 10. The for loop is repeated 10 times. You
don’t have to start with 1, and you can use an optional step keyword to tell the for loop that
you want to count by 2s, 3s, or some other value:

for VarName = 5 to 7               ' counts from 5 to 7
for VarName = 1 to 100 step 10     ' counts from 1 to 100, but steps by 10

For loops are used to execute whatever programming lies between the for and next state-
ments. Here’s a simple example:

high 1
for VarName = 1 to 10

toggle 1
pause 100

next

This program repeats the for loop a total of 10 times. At each iteration through the loop,
I/O pin 1 is toggled (HIGH to LOW, and back again).

The Basic Stamp supports additional flow control statements, all of which are detailed
in the Basic Stamp manual. These include Branch and End.
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SPECIAL FUNCTIONS

The PBasic language supports several dozen special functions that are used to control
some activity of the chip, including ones to sound tones through an I/O pin or to wait for
a change of state on an input. I’ll briefly review here the special functions most useful for
robotics. You’ll want to study these statements more fully in the Basic Stamp manual
(available for free download from Parallax and also included in the Starter Kit as a print-
ed book).

� button. The button statement momentarily checks the value of an input and then branch-
es to another part of the program if the button is in a LOW (0) or HIGH (1) state. The
button statement lets you choose which I/O pin to examine, the “target state” you are
looking for (either 0 or 1), and the delay and rate parameters that can be used for such
things as switch debouncing. The button statement doesn’t stop program execution,
which allows you to monitor a number of I/O pins at once.

� debug. The Basic Stamp Editor has a built-in terminal that displays the result of bytes
sent from the Basic Stamp back to the PC. The debug statement “echoes” numbers or
text to the screen and is highly useful during testing. For example, you can have the
debug statement display the current state of an I/O pin, so you can visually determine
whether or not the program is working properly.

� freqout. The freqout statement is used to generate tones primarily intended for audio
reproduction. You can set the I/O pin, duration, and frequency (in Hertz) using the fre-
qout statement. An interesting feature of freqout is that you can apply a second frequen-
cy, which intermixes with the first. For example, you can combine a straight middle A
(440 Hz) with a middle C (523 Hz) to create a kind of chord. Don’t expect a symphon-
ic sound, but it works for simple tunes. When freqout is used to drive a speaker you
should connect capacitors (and resistors, as required) to build a filter.

� input.The input statement makes the specified I/O pin an input. As an input, the value
of the pin can be read in the program. Many of the special function statements, such as
button and pulsin, automatically set an I/O pin as an input, so the input statement is not
needed for these. See the next section, “Interfacing Switches and Other Digital Inputs,”
for additional information on the input statement.

� pause. The pause statement is used to delay execution by a set amount of time. To use
pause you specify the number of milliseconds (thousandths of a second) to wait. For
example, pause 1000 pauses for one second.

� pulsin. The pulsin statement measures the width of a single pulse with a resolution of
two microseconds (2 µs). You can specify which I/O pin to use, whether you’re looking
for a 0-to-1 or 1-to-0 transition, as well as the variable you want to store the result in.
Pulsin is handy for measuring time delays in circuits, such as the return “ping” of an
ultrasonic sonar.

� pulsout. Pulsout is the inverse of pulsin: with pulsout you can create a finely measured
pulse with a duration of between 2 µs and 131 milliseconds (ms). The pulsout statement
is ideal when you need to provide highly accurate waveforms.

� rctime. The rctime statement measures the time it takes for an RC (resistor/capacitor)
network to discharge to an opposite logical state. The rctime statement is often used to
indirectly measure the capacitance or resistance of a circuit, or simply as a kind of sim-
plified analog-to-digital circuit. Fig. 31.6 shows a sample circuit.
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� serin and serout. Serin and serout are used to send and receive asynchronous serial
communications. They represent one method for communicating with other devices,
even other Basic Stamps, all connected together. Both commands require that you
set the particulars of the serial communications, such as data (baud) rate, and the
number of data bits for each received word. One application of serout is to interface
a liquid crystal display (LCD) to the Basic Stamp. You use serout to send commands
and text to the LCD.

� shiftin and shiftout The serin and serout statements are used in one-wire asynchro-
nous serial communications. The shiftin and shiftout statements are used in two- or
three-wire synchronous serial communications. The main difference is that with
shiftin/shiftout a separate pin is used for clocking the data between its source and des-
tination. If you’re only sending or receiving data, you can use just two pins: one for
data and one for clock. If you’re both sending and receiving, your best bet is to use
three pins: data in, data out, and clock. These statements are useful when communi-
cating with a variety of external hardware, including serial-to-parallel shift registers
and serial analog-to-digital converters.

Interfacing Switches and Other Digital
Inputs
You can easily connect switches, either for control or for “bump” or other contact sensors,
to the Basic Stamp using either of the approaches shown in Fig. 31.7. You can use the but-
ton statement, described briefly earlier in the chapter, to determine the current value of the
switch. You can watch for a transition from 0 (LOW) to 1 (HIGH), or vice versa. The but-
ton statement also includes a built-in debounce feature, so the Basic Stamp will ignore the
typical “noise” that occurs when a mechanical switch closes. Without debounce, if you
press a switch it may cause a number of button trigger events in the code—as many as
10–20, depending on the switch and whether there’s other code in the program.

To use the button statement you must define a variable in which to store the switch clo-
sure result and then set up a repeating loop to test if or when the button is closed. The full
syntax of button is as follows:
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button Pin, Downstate, Delay, Rate, ByteVariable, TargetState, Label

� Pin is the pin you wish to test, from 0 to 15.
� Downstate specifies the logical state when the button is pressed. Use 0 for an active-

low switch connection, 1 for an active-high switch connection.
� Delay specifies how long the button must be pressed before the auto-repeat feature

starts. Valid values are 0 to 255, with 255 denoting that you wish to use the debounce
feature.

� Rate specifies the number of cycles between auto-repeat. Valid values are 0 to 255.
� ByteVariable is a temporary variable used to store the value of the button. You need to

clear it to 0 (zero) before the button statement is called the first time.
� TargetState specifies which state the button should be in (0 or 1) for a branch to occur.
� Label is the name of the label to branch to when the button is in its target state.

In the following example, the code notes when the button closes and produces a 0
(LOW) on input pin 1. The following code uses the debounce feature of the button state-
ment in order to trigger just once when the button is pressed.

Bttn        var        byte      ' defines workspace variable for button
Bttn = 0                         ' initializes
Loop:

button 1,0,255,250,Bttn,0,NotPressed
debug "Button pressed! "

NotPressed: goto Loop            ' repeat forever

Note that the button statement does not pause the program. The loop is required to keep
the Basic Stamp continually scanning pin 1 in anticipation of the switch changing state
from 1 to 0. You can use this to your advantage to watch for any number of buttons on dif-
ferent pins.

You can use the button statement for any kind of input, not just switches. Button can be
used with any digital input, whether the input changes from 0 to 1 or 1 to 0. You can also use
the Inx statement (x is a number from 0 to 15 that denotes a pin) to watch for a change in pin
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states. You should not use this method with mechanical switches since there is no built-in
debounce software to eliminate multiple triggers. Like button, you can put multiple Inx
statements in a loop in order to scan one or more pins at a time. You can place other code in
the loop as well should you need the Basic Stamp to process other parts of the program. The
syntax is relatively simple:

IOPin3        var        bit
IOPin5        var        bit
Loop:

IOPin3 = In3
IOPin5 = In5
. . .some other code here
goto Loop

You can add additional code to determine what should happen if the IOPin3 and/or
IOPin5 variables are a given state. For instance, if you want to execute some code when
both pins are 1 (HIGH), you might use the following:

if IOPin3 = 1 And IOPin5 = 1 then

Interfacing DC Motors to the Basic
Stamp
The Basic Stamp is ideal for controlling a DC motor that is connected to an H-bridge cir-
cuit (see Chapter 18, “Working with DC Motors”). In the typical H-bridge for a single
motor, the Basic Stamp controls the on/off operation of the motor using one pin and 
the direction using another pin. By using the high and low statements, you can control the
motor easily, turning it on and off and reversing its direction.

The Basic Stamp code for controlling a DC motor is relatively straightforward: use the
high or low statements and indicate which I/O pins you wish to use. For example, suppose
your motor H-bridge is connected to pins 0 and 1, with pin 0 used for on/off control and
pin 1 used for direction. Note that when pin 0 is low (0), the motor is off and therefore the
setting of pin 1 doesn’t matter.

Here is an example:
low 1                        ' set direction to forward
high 0                           ' turn on motor
pause 2000                       ' wait two seconds
low 0                            ' turn off motor
pause 100                        ' wait 1/10 second
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high 1                            ' set direction to reverse
high 0                            ' turn on motor
pause 2000                        ' wait two seconds
low 0                             ' turn off motor

By using labeled routines and the gosub statement you can define common actions and
develop more compact programs:

gosub motorOnFwd
gosub waitLong
gosub motorOff
pause 1
gosub motorOnRev
gosub waitShort
gosub motorOff
end

motorOnFwd:
low 1
high 0
return

motorOnRev:
high 1
high 0
return

motorOff:
low 0
return

waitLong:
pause 5000
return

waitShort:
pause 1000
return

Interfacing RC Servo motors to the
Basic Stamp
Servo motors for radio-controlled (R/C) cars and airplanes can be easily connected to and
controlled with a Basic Stamp. In fact, the code required for operating a servo motor is sur-
prisingly simple, which is one of the aspects of the Basic Stamp that has so endeared it to
robot experimenters.

Hobby servo motors contain their own interface circuitry, so you don’t need an H-bridge
or power driver. You may connect any I/O pin of the Basic Stamp directly to the signal input
of the servo (see Chapter 20, “Working with Servo Motors,” for more information on servo-
motors, how they work, and their electronic connections). Keep in mind that the Basic Stamp
cannot provide operating power to the servo motor; you must use a separate battery or power
supply for it. Otherwise, you run the risk of damaging the Basic Stamp or, at the least, having
a program malfunction as the Basic Stamp continually resets itself because of the power sag.

Fig. 31.8 shows a good approach for connecting a common RC servo to the Basic
Stamp by using a separate battery supply for the servo. Note that the ground connections
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of the power supplies for both the Basic Stamp and the servo are connected and that a 1
µF tantalum capacitor has been added across the power supply connections for both the
Basic Stamp and the servomotor. This helps eliminate the problems caused by the electri-
cal noise that can be generated when the servo turns on and off. If noise poses a problem
for you, you can try adding an additional 100 µF electrolytic capacitor along with the 1 µF
tantalum capacitors.

To operate the servo you need only a few lines of code, and you can easily control more
than one servo at a time. The trick is to use the pulsout statement, which sends a pulse of
a specific duration to an I/O pin. Servos need to be “refreshed” with a pulse from 30 to 60
times each second to maintain their position. By adding a delay (using the pause state-
ment) and a loop your Basic Stamp can move and maintain any position of the servo. The
following examples show the basic program, using pin 0 as the control signal line to the
servo. It sets the servo in its approximate center position:

low 0
Loop:
pulsout 0,750
pause 20
goto Loop

Here’s how the program works: pin 0 is set as an output and set to lo2, with the low 0
statement. The repeating loop is defined as the code between the Loop: label and the goto
Loop statement. The pulsout statement sends a 1500-microsecond pulse (LOW-HIGH-
LOW) to pin 0. The value of 750 is used because pulsout has a minimum resolution of 2
µs; 750 times 2 is 1500 µs. As mentioned in Chapter 20, a servo motor has a typical oper-
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ating range of 1000 to 2000 µs (or 1-2 milliseconds, the same thing). Pulses within this
range control the angular position of the servo output shaft. A pulse of 1500 (� will posi-
tion the output shaft of the servo in its approximate center position. I say “approximate”
because the actual mechanical center of the shaft can vary from one servo to the other.

The pause statement pauses execution for 20 milliseconds (ms). When the loop is run,
it will repeat about 50 times each second (20 ms * 50 � 1000 ms, or one second). Note
that you can insert additional pulsout statements if you need to control other servos. The
Basic Stamp can adequately control seven or eight servos, but in doing so, it won’t have
much leftover processing time for anything else. For this reason, dedicated servo control
chips are typically used with the Basic Stamp to enable it to control multiple servos in a
“set-and-forget” fashion. We will talk more about these in the next section.

To change the angular position of the servo motor, merely alter the timing of the pul-
sout statement:

pulsout 0,1000           ' 2000 usec pulse, approx. 180 degrees position
pulsout 0,500            ' 1000 usec pulse, approx. 0 degrees position

These values assume a strict 1000-2000 µs operating range for a full 0 to 180° rotation.
This is actually not typical. You will likely find that your servo will have a full 180° rota-
tion with higher and lower values than the nominal 1000–2000 µs. You can only determine
this through experimentation. One servo may have a full 180° rotation with values of 500
to 2300 µs, for example, while another may need pulses in the 800 to 2500 µs range. If you
need full 180° rotation of your servo you’ll need to calibrate your Basic Stamp programs
for each servo that you use. This is not a limitation of the Basic Stamp but of the manu-
facturing variations of the typical hobby servo.

Enhancement Add-in Products for the
Stamp
One of the great advantages of the Basic Stamp is the multitude of program examples and
hardware add-ons available, both from Parallax and independent companies. The Basic
Stamp manual (available in printed form and as a free download from the Parallax Web
site) is replete with examples and application notes. Unfortunately, in at least the edition
that was current as of this writing, most of the application notes are for the older Basic
Stamp I, not the newer and more capable Basic Stamp II. In some cases, you can use the
sample programs in the application notes as is, but you should anticipate needing to “con-
vert” them for use on the BSII. The manual contains application notes for controlling servo
motors, LEDs, stepper motors, and other components common to the typical small robot.

The Web is also an excellent source of sample programs. See Appendix C, “Robot
Information on the Internet,” for a selected list of information about the Basic Stamp. Note
that this list is quite limited. Use your favorite Web search engine—such as AltaVista
(www.altavista.com) or Google (www.google.com)—to find additional resources.

Add-on hardware, including motor drivers, LCD displays, and keyboard interfaces, is
also popular for the Basic Stamp. This hardware serves two important purposes:
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� The external hardware “offloads” the processing requirements from the Basic Stamp.
Rather than have the Basic Stamp control multiple servos, for example, a servo motor
controller chip can do the job, freeing the Basic Stamp to do other things. In most cases,
the external hardware provides for “set-and-forget” functionality: the Basic Stamp
sends a command to the hardware, then goes about its business with other things. The
external hardware does all the rest.

� The external hardware often reduces the degree of I/O pin usage the Basic Stamp needs.
This is an important consideration given that the Basic Stamp has only 16 I/O lines.
That may seem like a lot, but it’s amazing how fast those lines “disappear” when you’re
designing and building a robot! You typically connect the external hardware to the Basic
Stamp by way of a one- or two-wire serial connection. The Basic Stamp’s serout and
serin statements are used to send and receive data.

Typical of the external hardware that supports the Basic Stamp (and most other micro-
controllers, for that matter) is the serial LCD display shown in Fig. 31.9. This display, man-
ufactured by Scott Edwards Electronics (see Appendix B for contact information), con-
nects to the Basic Stamp via a simple serial connection. You then issue simple commands
to display text on the display. The display is available in a number of character-by-line for-
mats (16 characters by 2 lines is common), including an all-graphic LCD panel.

Serially programmed servo modules are also available for the Basic Stamp (and other
microcontrollers). These modules control one or more hobby servo motors. All are “set-
and-forget,” so once you command the module, it does the rest—including continually
sending pulses to the servo motor so it can keep its position. Most servo modules control
a number of servos, typically five or eight.

Dedicated modules for controlling other kinds of motors also exist. For example, the
Motor Mind B (Fig. 31.10) from Solutions Cubed (see Appendix B for contact informa-
tion) is a fully featured DC motor controller and power driver. The Motor Mind can oper-
ate a motor with up to 2 amps continuous current and up to 30 volts. You can use an option-
al tachometer input for built-in speed control (the tachometer frequency can span from 0
to 65,528 Hz). You can set the speed of the motor in 254 discrete steps and, of course, alter
the direction of the motor.

See Appendix B for other useful hardware that you can interfaced to the Basic Stamp
and other microcontrollers.

From Here
To learn more about… Read

Using DC motors for Chapter 18, “Working with DC Motors”
robot locomotion

Using servo motors for Chapter 20, “Working with Servo Motors”
robot control and locomotion

Choices and alternatives for robot Chapter 28, “An Overview of Robot ‘Brains’”
computers and microcontrollers

Attaching real-world hardware Chapter 29, “Interfacing with Computers and 
to computers and microcontrollers Microcontrollers”
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FIGURE 31.9 This LCD display connects to
the Basic Stamp via a serial
line and is programmed using
simple PBasic statements.

FIGURE 31.10 The Motor Mind B, shown with
its heat sink removed, is an all-in-one intelligent
motor controller that is often used with Basic
Stamp (it can also be used with other microcon-
trollers and computers as well). Because it offers
“set-and-forget” motor control and speed, Motor
Mind B permits the Basic Stamp to carry on other
tasks without taking up precious processing time.
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Microcontrollers are fast becoming a favorite method for endowing robots with smarts.
In fact, they’re a robot builder’s dream come true. Microcontrollers are single-chip com-
puters complete with their own input/output ports and even memory. The typical cost of a
microcontroller is from $5 to $15 and most can be programmed using the software on your
PC. Once programmed, the microcontroller is disconnected from the PC and operates on
its own. Microcontrollers are power misers too. Nearly all have simple power requirements
(usually just 3.3 or 5 volts) and require just a few milliamps for their own operation, even
when running at speeds of 5 or 10 megahertz.

Microcontrollers are available in two basic flavors: low-level programmable and embed-
ded-language programmable. As we noted in Chapter 28, these loosely defined terms
relate to the programming of the controller. Both kinds of microcontroller are fully pro-
grammable, but one contains a kind of built-in operating system that allows it to be pro-
grammed with a higher-level language, such as Basic.

Let’s talk about low-level microcontrollers first. You program these with assembly lan-
guage or C, using your PC as a host development system. Assembly language seems some-
what arcane to newcomers, but the language offers full control over the internal workings of
the microcontroller. Unfortunately, there’s no standard when it comes to assembly languages.

Popular alternatives to these low-level programmable microcontrollers are products that
have a built-in programming interface, such as the Basic Stamp from Parallax or the OOPic
from Savage Industries. These controllers support a high-level programming language—typ-
ically Basic—that is permanently embedded within the chip. Using your PC as a develop-
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ment platform, you write software for the microcontroller using a custom program editor.
The software is then compiled to a series of tokens or bytecodes and then downloaded to the
microcontroller.

Joining the ranks of powerful embedded-language programmable microcontrollers is
the BasicX-24, by NetMedia, a company founded by the creator of the popular LANtastic
networking software (which sold some 10 million copies). The BasicX-24 is actually a
member of a family of microcontrollers from NetMedia that also includes the less expen-
sive (but network-capable) BasicX-01. However, all things considered, the BasicX-24 is
perhaps the most versatile, so this chapter will focus on it exclusively.

Inside the BasicX-24 Microcontroller
A selling point of the BasicX-24 (which we’ll refer to as the BX-24 from here on) is that
it is pin-for-pin compatible with Parallax’s Basic Stamp II. That is, the functions of all 24
pins of the BX-24 replicate the functions of the Basic Stamp II, including power and
ground connections. It’s important to note, however, that the BX-24 is not a Stamp “clone.”
The two microcontrollers don’t share the same programming languages, so programs writ-
ten for one will not work on the other. Additionally, the BX-24 has several additional fea-
tures not found in the Basic Stamp II, such as built-in analog-to-digital conversion and 32K
of EEPROM memory.

Fig. 32.1 shows the BX-24 “chip,” which (like the Basic Stamp) is actually several inte-
grated circuits on a small circuit board. The layout of the pins on the BX-24 is identical to
that of any standard-sized 24-pin IC, so it will plug into a regular 24-pin socket. Additional
plated-through holes are provided on either end of the BX-24 board, making it just slightly
longer than the Basic Stamp II. These holes provide connections to additional input/output
lines provided on the BX-24. I’ll get to those in a bit.

The BX-24 directly supports 16 input/output (I/O) lines, the same number as the Basic
Stamp II. For each I/O line, or pin, you can change the direction from an input or an out-
put. When an I/O line is an output, you can individually control the value of the pin, either
0 (logic LOW) or 1 (logic HIGH). When an I/O line is an input, you can read a digital or
analog value from a TTL-compatible device connected to the BX-24. Eight of the 16 I/O
lines can be used for analog connections. The BX-24 incorporates its own built-in 10-bit
analog-to-digital converter (ADC). Under software control, you can indicate which of the
8 input lines is to be read.

Three of the plated-through holes of the BX-24 serve as optional I/O and are program-
matically referred to as pins 25, 26, and 27. This makes a total of 19 input/output pins. The
remaining plated-through holes provide a way to connect to the chip’s serial peripheral
interface, or SPI, lines. I do not recommend that you connect to these lines unless you’re
familiar with SPI interfaces, especially since the BX-24’s EEPROM is controlled by these
same I/O lines.

A nice feature of the BX-24 is its two LEDs: one red and one green. The green LED is
normally used to indicate that the chip is powered on, but you can individually control both
LEDs from your own programs. You might use the LEDs as status indicators, for example.
The LEDs share two of the additional plated-through hole connectors on the BX-24.
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The BX-24 board comes with its own five-volt voltage regulator, which provides
enough operating current for all the components on the board, plus several LEDs or logic
ICs. If you plan on using the BX-24 to operate a robot, you’ll want to provide a separate
power supply of adequate current rating to the other components of the robot. You should
not rely on the BX-24’s on-board regulator for this task.

Pinout Diagram for the BX-24
Fig. 32.2 shows the pinout diagram of the BX-24 as well as the functions of its 24 pins. Of
main interest are the following:

� Pin 24. This is the unregulated power input. Apply an unregulated DC voltage of 5.5 to
15 volts here. The onboard regulator will provide a stable 5 vdc input for the BX-24 cir-
cuitry.

� Pin 23, 4. This is the ground. You can use either or both of these pins when connecting
to other circuitry.

� Pin 21. This is for �5 vdc input. Instead of using pin 24 for power, you may directly
apply regulated 5 vdc to this pin. Or, if power is applied through pin 24, pin 21 serves
as a convenient source of regulated 5 vdc power. The voltage regulator on the BX-24
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FIGURE 32.1 The BasicX-24 consists of surface-mount integrated circuits on a
small circuit board. The BX-24 circuit board has the same dimen-
sions as a standard 24-pin IC.
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can supply approximately 70 mA of total additional current, either through this pin or
through the I/O pins described next.

� Pins 5 through 11. This is I/O Port C, one of two eight-bit ports on the BX-24. Pin 12
serves “double duty” as an input capture pin, which can be used for very accurate tim-
ing. Pin 11 serves double duty as an external interrupt. With the appropriate program-
ming, the BX-24 can be commanded to automatically run certain code when this line
goes HIGH.

� Pins 13 through 20. This is Port D, the second of two eight-bit ports on the BX-24. All
of the pins in this port serve double duty as analog-to-digital conversion inputs. That is,
in addition to on/off (1 and 0) digital inputs and outputs, these pins can accept analog
inputs. The range of the analog inputs spans 0 to 5 volts.

� Pins 25 and 26 are additional I/O lines that are available if you solder connections
directly to the BX-24 chip (as such as they are not strictly “pins,” but we’ll treat them
as if they were). Access to pins 25 and 26 are provided via plated-through holes, which
can be connected to wires or pin headers. These two pins share I/O with the on-board
red and green LEDs.

� Pin 27 serves as the output capture I/O line. As with pins 25 and pin 26, this pin is avail-
able if you solder directly to the BX-24 chip.

Programming the BX-24
To program the BX-24 you need to purchase the BasicX-24 developer’s kit, which contains
one BX-24, a programming cable, a power supply, a “carrier board” (see Fig. 32.3), and
programming software on CD-ROM. You plug the BX-24 into the carrier board, which has
a 24-pin socket and empty solder pads that you can use to add your own circuitry. The pro-
gramming cable connects between the carrier board and a serial port on your PC. The
power supply is the “wall wart” variety and provides about 12–16 vdc.

The BX-24 uses a proprietary programming environment, consisting of an editor and a
download console, which also serves double duty as a terminal for data sent from the
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microcontroller. The program editor, shown in Fig. 32.4, supports the BasicX language,
which is a subset of Microsoft Visual Basic. Don’t expect all Visual Basic commands to be
available in BasicX, however. BasicX supports the same general syntax as Visual Basic,
and many of the same data types (bytes, integers, strings, and so forth).

If you’re familiar with Visual Basic then you should feel right at home with BasicX. The
BasicX language supports the usual control structures, such as If…End If, While…Wend,
For—Next, and Select…Case. Your BasicX programs can be subroutines, and you can call
those subroutines from anywhere in the program.

Depending on how you’ve used Visual Basic, however, you may discover that BasicX
is far less forgiving of certain programming habits. BasicX uses a “strict” data-typing syn-
tax that requires you to use the Dim statement—or one of its variations, such as Const—
to define each variable before it is used. With the Dim statement you must also indicate the
variable type, such as Byte or String.

Modern versions of Visual Basic support a special type of variable called the variant.
Variants can hold most any kind of data, which allows you to freely “mix and match” data
types, such as adding an integer to a string (i.e., adding the number one to the name
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FIGURE 32.3 The easiest way to experiment with the BX-24 is to use the carrier
board that is included as part of the BX-24 developer’s kit. The
carrier board includes a DB-9 connector for hooking the system
up to a PC for programming.
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“Smith” to get “Smith1”). Apart from the danger that you will introduce bugs by mixing
data types, variants consume a lot of memory. They also tend to slow down execution
speed, since it must determine the type of variable each time it is accessed.

Visual Basic provides the variant feature because memory is abundant on PC systems,
and—at least with the latest machines—processor speed is fairly fast. Conversely, memo-
ry in a microcontroller must be carefully rationed. The BX-24 supports 400 bytes (that’s
bytes, not megabytes or even kilobytes) of RAM memory to store data. For a microcon-
troller, that’s actually a copious amount of memory! (By the way, if you’re wondering, your
programs are stored separately in a 32K block of EEPROM, which is enough for some
8000 instructions. You’ll be hard-pressed to create programs that large for your robot.)

When using BasicX, you must be constantly aware of the data type being stored in each
variable. If you need to manipulate two variables that contain different types of data, you
must remember to use the various data conversion commands that BasicX supports. This
is perhaps one of the most frustrating aspects of BasicX programming for newcomers.

A particularly nice feature of the BasicX editor is that it allows you to build “projects”
consisting of multiple files. This allows you, for instance, to build a library of commonly
used programming functions that you may regularly use in your robotics work. When
building a new program for the BX-24, you create a new project and then include any con-
stituent files. This saves you from having to manually cut and paste commonly used code
to make one big program file.

Advanced programmers will appreciate the ability to work with real arrays in the BX-
24 environment. You can create arrays of any data type except strings or other arrays. You
can then reference the elements of the array using an index number. This feature makes it
handy to manipulate such things as data streams, where you want to store a series of bytes
in one compact package.

Before you can send your programs to the BX-24 chip they must be compiled. This is
done in the BasicX editor by choosing the Compile command from the Compile menu.
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FIGURE 32.4 Use the BasicX program editor to
create, edit, compile, and (optionally)
download programs for the BX-24.
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Compiling can take a while on slower machines, so be patient. Syntax errors are flagged, and
if they are found, compiling stops. When you have successfully compiled the program it can
then be downloaded to the BX-24 chip. This can be done from the BasicX editor or from the
download console. After the program has been successfully compiled, it can be redown-
loaded any number of times. It does not need to be recompiled before each download.

Multitasking with the BX-24
One of the more valuable uses subroutines provide is the ability to create multitasking pro-
grams. Multitasking is a built-in feature of the BasicX operating system. In most instances,
the multitasking is “preemptive,” meaning that the BasicX operating system forces the BX-
24 microcontroller to “time-slice” between each multitasked subroutine. Each slice is given
1/512 of a second, more than enough to complete over a hundred instructions before mov-
ing on to the next subroutine. (The BX-24 processes some 65,000 instructions per second,
or approximately 127 instructions per time-slice.) A few of the commands supported in the
BasicX system suspend multitasking because they are sensitive to timing. These include
such commands as InputCapture (explained later in this chapter), which accurately mea-
sures the duration of signals received by the BX-24.

While multitasking is a powerful feature of the BX-24, it’s not always easy to imple-
ment. For each subroutine that you wish to multitask you must manually calculate the
amount of RAM needed to hold data for that subroutine while the system switches. This
calculation is necessary so sufficient “stack space” is allocated to hold the data as the BX-
24 services each task. If you underestimate the RAM requirements, your program won’t
work properly; if you overestimate the requirements, you waste precious memory.

BasicX Functions for Robotics
The BX-24 is a general-purpose microcontroller, so many of its built-in features are geared
toward any typical personal or commercial microcontroller application. Still, a number of
features of the BasicX programming language lend themselves for use in robotics. These
features are implemented as functions added to the BasicX language. To use a feature, you
merely include it in your program along with any necessary command parameters.

Note: Several of these functions require you to use version 1.45 or later of the BasicX
compiler. If you’re already a BX-24 owner, you’ll also need to make sure that your chip
has the latest BasicX operating system firmware embedded into it. Check the BasicX site
(www.basicx.com) for details.

REAL-TIME CLOCK

The BX-24 contains its own real-time clock (RTC), accurate to within several seconds per
day. You must set the correct time whenever you power up the BX-24, but once the time is
set, you can use the RTC to measure events. For example, you can write a robot program
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that accurately marks the time it takes to travel from one room to another. The RTC is also
handy for data logging, which allows your robot to roam around the house or yard and
store data from its sensors. Coupled with the BX-24’s ability to optionally store data in
EEPROM, the data log will survive even if power is removed to the chip.

GETADC AND PUTDAC

As mentioned earlier, the BX-24 has its own eight-channel, 10-bit ADC. With the GetADC
function, you can read a voltage level on any of eight I/O pins and correlate that voltage
level with a binary number (from 0 to 1023). Conversely, you can use the PutDAC func-
tion to output a pulse train that will mimic a variable voltage.

SHIFTIN AND SHIFTOUT

With ShiftIn you can receive a series of bits on a single I/O pin and convert them to a single
byte in a variable. ShiftOut does the inverse, converting a byte into a series of bits. Both func-
tions allow you to specify an I/O pin to be used as the data source and another I/O pin for the
clock. The BasicX software automatically triggers the clock pin for each bit received or sent.
The ShiftIn and ShiftOut functions are particularly handy when you are using serially based
components, which allow you to interface with devices using only two I/O lines.

OPENCOM

The BX-24 supports as many serial ports as you have available I/O pins. With OpenCom
you can establish serial communications with other BX-24 chips or any other device that
supports serial data transfer. One common use for OpenCom is to establish a link from the
BX-24 chip back to the download window of your PC. This window can serve as a termi-
nal for debugging and other monitoring tasks.

PULSEIN AND PULSEOUT

The PulseIn function waits for the level at a given I/O pin to change state. One practical
application of this feature is to activate some function on your robot when a critical button is
pressed. PulseOut sends a pulse of a certain duration (in 1.085 microsecond units) out a
given I/O pin. PulseOut is one of the most commonly used functions and is used to blink
LEDs, trigger sonar pings, and command servo motors to move to a new location. Note that
both PulseIn and PulseOut turn off the task-switching feature of the BX-24. Several other
BasicX functions behave in the same way because they literally “take over” the chip. Because
these functions hog processor time, both can also cause errors in the real-time clock.

INPUTCAPTURE

Somewhat akin to PulseIn, InputCapture watches for signal transition on a specific I/O pin of
the BX-24. InputCapture can time the duration of these transitions, thereby giving you a
“snapshot” of a digital pulse train, including how long each pulse lasted. One application of
InputCapture is watching for and decoding the serial signals from an infrared remote control.
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PLAYSOUND

The PlaySound function outputs a waveform that, when connected to an amplifier via a
decoupling capacitor, allows you to play previously sampled sound that has been stored in
the EEPROM. You can play back sounds at various sampling rates and control the number
of times the sound is repeated. The repeat function is a handy way to stretch a relatively
short sound sample into a longer one—for example, the “chug-chug” of a machine motor
or a series of blips.

ADDITIONAL USEFUL FUNCTIONS FOR ROBOTICS

In addition to BX-24’s built-in functions, you can access many of the internal hardware reg-
isters of the BX-24 chip. The BX-24 is based on the Atmel AT90S8535 microcontroller
(download the data sheet for the ‘8535 to learn more about the internals of this powerful
chip). By controlling the hardware registers of the BX-24 you can program features that the
BasicX language itself does not directly support. For example, by setting a few registers for
Timer1 (one of three timers in the Atmel ‘8535), you can produce dual pulse width modu-
lated (PWM) signals, which are useful for controlling the speed of DC motors. In a practi-
cal circuit, you will need to interface the two PWM outputs of the BX-24 to a suitable tran-
sistor or H-bridge circuit in order to provide enough drive current to run the motors.

Working directly with the hardware registers of the BX-24 is not for the feint of heart,
however. If you want to try this technique, first study the Atmel AT90S8535 data sheet and
learn how the registers of the chip work. It’s entirely possible to set the registers in a way
that will crash the chip, rendering it inoperative (of course, you can always reset the BX-
24 and try again with a new program).

A Sample BX-24 Program
Constructing a BX-24 program involves at least one subroutine, called Main, and one or
more BasicX commands. In the following program example, the BX-24 flashes its red and
green LEDs on and off several times each second.

LISTING 32.1

Sub Main()
' BX-24 LED demonstration.
Const GreenLED As Byte = 26
Const RedLED As Byte = 25
Const LEDon As Byte = 0
Const LEDoff As Byte = 1

Do
'  Red pulse.
Call PutPin(RedLED, LEDon)
Call Delay(0.07)
Call PutPin(RedLED, LEDoff)

Call Delay(0.07)

' Green pulse.
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Call PutPin(GreenLED, LEDon)
Call Delay(0.07)
Call PutPin(GreenLED, LEDoff)

Call Delay(0.07)
Loop
End Sub

Here’s how the program works. The following commands,

Sub Main()
...

End Sub

form the main subroutine that is automatically executed when the BX-24 is first turned on
or when it is reset. You can have additional subroutines in the program, each with a differ-
ent name, but at a minimum you need one subroutine called Main to get things started:

Const GreenLED As Byte = 26
Const RedLED As Byte = 25
Const LEDon As Byte = 0
Const LEDoff As Byte = 1

These lines define four constants, using the Const statement (similar to Dim). Const
stands for “constant” and represents a variable that will never be changed again in the pro-
gram. In this example, each Const statement defines three things:

� The name of the variable, such as GreenLED or LEDon.
� The type of variable (how many bits it requires). In all four instances the variables are

of type Byte and each requires eight bits
� The value of each variable. For example, GreenLED is assigned the value 26; LEDoff is

assigned the value 0.

All four constants are used elsewhere in the program, and they serve as a convenient
way to change values should that ever be necessary. The statements,

Do
...

Loop

set up an “infinite loop.” That is, the loop repeats for as long as power is applied to the BX-
24 (or until the chip is reset). Without the Do…Loop statements the commands in the pro-
gram would execute just once. The loop provides a simple way to repeat the commands
indefinitely:

' Red pulse.
Call PutPin(RedLED, LEDon)
Call Delay(0.07)
Call PutPin(RedLED, LEDoff)
Call Delay(0.07)

Each BasicX function, such as PutPin, is preceded by an optional Call statement. This tells
the BasicX operating system to perform the named function. The PutPin function, called
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twice in this example, changes the state of a specified I/O line. Note the use of the con-
stants. The syntax for PutPin is as follows:

PutPin (PinNumber; Value)

where PinNumber is the number of the pin you want to use (e.g., pin 25 for the red LED),
and Value is either 1 for on (or logical HIGH) or 0 for off (or logical LOW).

The Delay function causes the BX-24 to pause a brief while, in this case 70 millisec-
onds. Delay is called twice, so there is a period of time between the on/off flashing of each
LED:

' Green pulse.
Call PutPin(GreenLED, LEDon)
Call Delay(0.07)
Call PutPin(GreenLED, LEDoff)
Call Delay(0.07)

The process is repeated for the green LED.

Controlling RC Servos with the BX-24
You can easily control RC servos with the BX-24 using a few simple statements. While
there is no built-in “servo command” as there is with the OOPic microcontroller (see
Chapter 33), the procedure is nevertheless very easy to do in the BX-24. Here’s a basic pro-
gram that places a servo connected to pin 20 of the BX-24 at its approximate mid-point
position. (I say “approximate” because the mechanics of RC servos can differ between
makes, models, and even individual units):

Sub Main
Do

Call PulseOut(20, 1.5E-3, 1)
Call Delay(0.02)

Loop
End Sub

The program continuously runs because it’s within an infinite Do loop. The PulseOut
statement sends a short 1.5-millisecond (ms) HIGH pulse to pin 20. The Delay statement
causes the BX-24 to wait 20 milliseconds before the loop is repeated all over again. With
a delay of 20 milliseconds, the loop will repeat 50 times a second (50 * 20 milliseconds �
1000 milliseconds, or one second).

Note the optional use of scientific notation for the second parameter of PulseOut. Using
the value 0.0015 would yield the same result. You should be aware that the BX-24 supports
two versions of the PulseOut statement: a float version and an integer version:

� The float version is used with floating-point numbers, that is, numbers that have a
decimal point.

� The integer version is used with integers, that is, whole numbers only.
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The BX-24 compiler automatically determines which version to use based on the data
format of the second parameter of the PulseOut statement. If you use

Call PulseOut(20, 20, 1)

it tells the BX-24 you want to send a pulse of 20 “units.” A unit is 1.085 microseconds
long; 20 units would produce a very short pulse of only 21.7 microseconds. To continue
working in more convenient milliseconds, be sure to use the decimal point:

Call PulseOut(20, 0.020, 1)

This creates a pulse of 20 milliseconds in length.
Listing 32.2 shows a more elaborate servo control program and is based on an appli-

cation note provided on the BasicX Web site. This program allows you to specify the
position of the servo shaft as a value from 0 to 100, which makes it easier for you to use.

LISTING 32.2

Const ServoPin As Byte = 20
Const RefreshPeriod As Single = 0.02
Const NSteps As Integer = 100
Dim SetPosition As Byte
Dim Position As Single, PulseWidth As Single

Sub Main ()
' Moves a servo by sending a single pulse.
' Insert position as a value from 0 to 100
SetPosition = 50       ' move to mid-point

Position = CSng(SetPosition) / CSng(NSteps)
Do

' Translate position to pulse width, from 1.0 to 2.0 ms
PulseWidth = 0.001 + (0.001 * Position)

' Generate a high-going pulse on the servo pin
Call PulseOut(ServoPin, PulseWidth, 1)
Call Delay(RefreshPeriod)

Loop
End Sub

The five lines at the beginning of the program set up all the variables that are used.
The line

Const ServoPin As Byte = 20

creates a byte-sized constant and also defines the value of the constant as pin 20. Because
it is a constant, the value assigned to ServoPin cannot be changed elsewhere in the pro-
gram. Similarly, the lines

Const RefreshPeriod As Single = 0.02
Const NSteps As Integer = 100

create the constants RefreshPeriod and NSteps. RefreshPeriod is a single-precision float-
ing-point number, meaning that it can accept numbers to the right of the decimal point.
Nsteps is an integer and can accept values from �32768 to �32767.
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The main body of the program begins with Sub Main. The statement

SetPosition = 50

sets the desired position of the servo relative to the total number of steps defined in NSteps
(in the case of our example, 100). Therefore, a SetPosition of 50 will move the servo to its
approximate midpoint. The line

Position = CSng(SetPosition) / CSng(NSteps)

produces a value from 0.0 to 1.0, depending on the number you used for SetPosition. With
a value of 50, the Position variable will contain 0.5. The Position variable is then used with-
in the Do loop that follows. Within this loop are the following statements:

PulseWidth = 0.001 + (0.001 * Position)
Call PulseOut(ServoPin, PulseWidth, 1)
Call Delay(RefreshPeriod)

The first statement sets the pulse width, which is between 1.0 and 2.0 milliseconds. The
PulseOut statement sends the pulse through the indicated servo pin (the third parameter, 1,
specifies that the pulse is positive-going, or HIGH). Finally, the Delay statement delays the
BX-24 for the RefreshPeriod, in this case 20 milliseconds (0.02 seconds).

Reading Button Inputs and Controlling
Outputs
A common robotics application is reading an input, such as a button, and controlling an
output, such as an LED, motor, or other real-world device. Listing 32.3 shows some sim-
ple code that reads the value of a momentary push button switch connected to I/O pin
20. The switch is connected in a circuit, which is shown in Fig. 32.5, so when the switch
is open, the BX-24 will register a 0 (LOW), and when it’s closed the BX-24 will regis-
ter a 1 (HIGH).

The instantaneous value of the switch is indicated in the LED. The LED will be off
when the switch is open and on when it is closed.

LISTING 32.3
Sub Main()
Const InputPin As Byte = 20
Const LED As Byte = 26
Dim State as Byte
Sub Main()
Do

' Read I/O pin 20
State = GetPin(InputPin)
' Copy it to the LED
Call PutPin(LED, State)
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Loop
End Sub

Now let’s see how the program works. The lines,

Const InputPin As Byte = 20
Const LED As Byte = 26
Dim State as Byte

set the constant InputPin as I/O pin 20, and the constant LED as I/O pin 26. (Recall that
one of the BX-24’s on-board LEDs—the green one, by the way—is connected to I/O pin
26.) Finally, the variable State is defined as type Byte:

Do
' Read I/O pin 20
State = GetPin(InputPin)
' Copy it to the LED
Call PutPin(LED, State)

Loop

The Do loop repeats the program over and over. The GetPin statement gets the current
value of pin 20, which will either be LOW (0) or HIGH (1). The companion PutPin state-
ment merely copies the state of the input pin to the LED. If the switch is open, the LED is
off; if it’s closed, the LED is on.

Additional BX-24 Examples
So far we’ve just scratched the surface of the BX-24’s capabilities. But fear not: throughout
this book are several real-world examples of BX-24 being using in robotic applications. For
instance, in Chapter 41 you’ll learn how to use the BX-24 to interface to a sophisticated
accelerometer sensor. In addition, you can find several application notes for the BX-24 (and
its “sister” microcontrollers, such as the BX-01) on the BasicX Web page (www.basicx.com).
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FIGURE 32.5 Wire the switch so it con-
nects to the V� (pin 21,
not pin 24) of the BX-24.
The resistors are added for
safety.
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From Here
To learn more about… Read

Stepper motors Chapter 19, “Working with Stepper Motors”

How servo motors work Chapter 20, “Working with Servo Motors”

Different approaches Chapter 28, “An Overview of Robot ‘Brains’”
for adding brains to your robot

Connecting the OOPic Chapter 29, “Interfacing with Computers and
microcontroller to sensors Microcontrollers”
and other electronics
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While the Basic Stamp described in Chapter 31 is a favorite among robot enthusiasts, it
is not the only game in town. Hardware designers who know how to program their own
microcontrollers can create a customized robot brain using state-of-the-art devices such as
the PIC16CXXX family or the Atmel AVR family of eight-bit RISC-based controllers. The
reality, however, is that the average robot hobbyist lacks the programming skill and devel-
opment time to invest in custom microcontroller design.

Recognizing the large market for PIC alternatives, a number of companies have come
out with Basic Stamp work-alikes. Some are pin-for-pin equivalents, and many cost less
than the Stamp or offer incremental improvements. And a few have attempted to break the
Basic Stamp mold completely by offering new and unique forms of programmable micro-
controllers.

One fresh face in the crowd is the OOPic (pronounced “OO-pick”). The OOPic uses
object-oriented programming rather than the “procedural” PBasic programming found in the
Basic Stamp. The OOPic—which is an acronym for Object-Oriented Programmable
Integrated Circuit—is said to be the first programmable microcontroller that uses an object-
oriented language. The language used by the OOPic is modeled after Microsoft’s popular
Visual Basic. And, no, you don’t need Visual Basic on your computer to use the OOPic; the
OOPic programming environment is completely stand-alone and available at no cost.

The OOPic, shown in Fig. 33.1, has built-in support for 31 input/output (I/O) lines. With
few exceptions, any of the lines can serve as any kind of hardware interface. What enables
them to do this is what the OOPic documentation calls “hardware objects,” digital I/O lines
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that can be addressed individually or by nibble (4 bits), by byte (8 bits), or by word (16
bits). The OOPic also supports predefined objects that serve as analog-to-digital conver-
sion inputs, serial inputs/outputs, pulse width modulation outputs, timers-counters, radio-
controlled (R/C) servo controllers, and 4x4-matrix keypad inputs. The device can even be
networked with other OOPics as well as with other components that support the Philips
I2C network interface.

The OOPic comes with a 4K EEPROM for storing programs, but memory can be
expanded to 32K, which will hold some 32,000 instructions. The EEPROM is “hot swap-
pable,” meaning that you can change EEPRPOM chips even while the OOPic is on and
running. When a new EEPROM is inserted into the socket, the program stored in it is
immediately started.

Additional connectors are provided on the OOPic for add-ins such as floating-
point math; precision data acquisition; a combination DTMF, modem, musical-tone
generator; a digital thermometer; and even a voice synthesizer (currently under
development). The OOPic’s hardware interface is an open system. The I2C interface
specification, published by Philips, allows any IC that uses the I2C interface to
“talk” to the OOPic.

While the hardware capabilities of the OOPic are attractive, its main benefit is what it
offers robot hackers: Much of the core functionality required for robot control is already
embedded in the chip. This feature will save you time writing and testing your robot con-
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FIGURE 33.1 The OOPic supports 31 I/O lines and runs on 6–12 vdc power.
Connectors are provided for the I/O lines, programming cable,
memory sockets, and Philips I2C network.
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trol programs. Instead of needing several dozen lines of code to set up and operate an RC
servo, you need only about four lines when programming the OOPic.

A second important benefit of the OOPic is that its various hardware objects are mul-
titasking, which means they run independently and concurrently of one another. For
example, you might command a servo in your robot to go to a particular location. Just
give the command in a single statement; your program is then free to activate other func-
tions of your robot—such as move another servo, start the main drive motors, and so
forth. Once started by your program, all of these functions are carried out autonomously
by the objects embedded within the OOPic. This simplifies the task of programming and
makes the OOPic capable of coordinating many hardware connections at the same time.

Fig. 33.2 shows a fire-fighting robot that uses several networked OOPics as its main
processor. This two-wheeled robot hunts down small fires and literally snuffs them out
with a high-powered propeller fan.
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FIGURE 33.2 This fire-fighting robot, built by OOPic developer
Scott Savage, uses three OOPics wired together in a
network to control the machine’s central command,
sensors, and locomotion.
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Objects and the OOPic
Mention the term object-oriented programming to most folks and they freeze in terror. Okay,
maybe that’s an exaggeration, but object-oriented programming seems like a black art to many,
full of confusing words and complicated coding. Fortunately, the OOPic avoids the typical pit-
falls of object-oriented programming. The OOPic chip supports an easy-to-use programming
language modeled directly after Microsoft Visual Basic, so if you already know VB, you’ll be
right at home with the OOPic. Future versions of the OOPic software development platform
will support C and Java syntax for those programmers who prefer these languages.

The OOPic VB-like language offers some 41 programming commands. That’s not many
commands actually, but it’s important to remember that the OOPic doesn’t derive its flex-
ibility from the Basic commands. Rather, the bulk of the chip’s functionality comes from
its built-in 31 objects. Each of these objects has multiple properties, methods, and events.
You manipulate the OOPic’s hardware objects by working with these properties, methods,
and events. The Basic commands are used for program flow.

Here’s a sample OOPic program written in the chip’s Basic language. I’ll review what
each line does after the code sample. This short program flashes a red LED on and off once
a second. Fig. 33.3 shows how to connect the LED and a current-limiting resistor to I/O
line 1 (pin 7 on the I/O connector) of the OOPic.

Dim RedLED As New oDio1

Sub Main()
RedLED.IOLine = 1
RedLED.Direction = cvOutput
Do

RedLED.Value = OOPic.Hz1
Loop
End Sub

These lines comprise a complete, working program. Here’s the program broken down:

Dim RedLED As New oDio1

The Dim statement creates a new instance of a particular kind of digital I/O object. This
I/O object, referred to as oDio1, has already been defined within the OOPic. All of the
behaviors of this object have been preprogrammed; your job is to select the behavior you
want and activate the object. Note that all of the OOPic’s object names start with a lower-
case letter O, such as oDio1, oServo,and oPWM.

Sub Main()
...

End Sub

The main body of every OOPic program resides within a subroutine called Main. OOPic
Basic permits you to add additional subroutines to your program, but every program must
have a Main subroutine. As with Microsoft’s Visual Basic, you refer to subroutines by name.

RedLED.IOLine = 1
RedLED.Direction = cvOutput

520 USING THE OOPIC MICROCONTROLLER

Ch33_McComb   9/7/00  1:43 PM  Page 520



These two lines set up the I/O line connected to the RedLED object. In this case, we’ve
defined that the RedLED object is connected to I/O line 1 and that this object will serve as
an output (cvOutput is a predefined constant; you don’t need to define its value ahead of
time). All digital I/O lines can be defined as either input or output. The OOPic does not
reserve certain lines as outputs and others as inputs.

Do
RedLED.Value = OOPic.Hz1

Loop

The statement RedLED.Value � OOPic.Hz1 makes the LED flash once a second. The Do
loop is used to keep the program running, so the LED continues to flash. Note the
OOPic.Hz1 value that is assigned to the RedLED object: OOPic is a built-in “system
object” that is always available to your programs. One property of the OOPic object is Hz1,
which is a one-bit value that can be used, for example, to change the state of an I/O line
(goes from HIGH to LOW) once a second. The following table describes other properties
of the OOPic system object you may find useful.
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330Ω

Any I/O line
on OOPic

FIGURE 33.3 The OOPic can source or sink up to 
25 mA per I/O line. This sample circuit
drives an LED directly. Transistors or
bridges are needed when driving a
large relay or a motor.

OOPIC 
PROPERTY WHAT IT DOES

ExtVRef Specifies the source of the voltage reference 
for the analog-to|digital module.

Hz1 1-bit value that cycles every 1 Hz.

Hz60 1-bit value that cycles every 60 Hz.

Node Used when two or more OOPics “talk” to each other via the I2C network. 
A Node value of more than 0 is the OOPic’s I2C network address.

Operate Specifies the power mode of the OOPic.

Pause Specifies if the program flow is suspended.

PullUp Specifies the state of the internal pull-up resisters on I/O lines 8 –15.

Reset Resets the OOPic.

StartStat Indicates the cause of the last OOPic reset.
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Using and Programming the OOPic
Other than a 6–12 VDC power source, you don’t need any other components to begin using the
OOPic. For adequate current handling when operating under battery power, I suggest that you
use a set of eight alkaline AA batteries in a suitable holder. The OOPic Starter Package comes
with a nine-volt transistor battery clip; you can use this clip with Radio Shack’s part number
270-387 eight-cell AA battery holder. The holder has connectors for the transistor battery clip.

You can develop programs for the OOPic using a proprietary but free development soft-
ware (see Fig. 33.4). The development software works under Windows 9x and NT, and it
self-installs all the necessary system files.

To program the OOPic you connect a cable between the parallel port of your PC and the
programming port of the OOPic. The programming cable is provided as part of the OOPic
Starter Package or you can make your own by following the instructions provided on the
OOPic home page (www.oopic.com/). Once you’ve written a program in the development
software, it is compiled and downloaded through the programming cable. The OOPic is
then ready to begin executing your program. Because the OOPic stores the downloaded
program in nonvolatile EEPROM, the program will remain in the OOPic’s memory until
you erase it and replace it with another.

OOPic Objects That Are Ideal for Use
in Robotics
Though the OOPic is meant as a general-purpose microcontroller, many of its objects are
ideally suited for use with robotics. Of the built-in objects of the OOPic, the oA2D, oDiox,
oKeypad, oPWM, oSerial, and oServo objects are probably the most useful for robotics
work. In the following descriptions, the term property refers to the behavior of an object,
such as reading or setting the current value of an I/O line.

ANALOG-TO-DIGITAL CONVERSION

The oA2D object converts a voltage that is present on an I/O line and compares it to a ref-
erence voltage. It then generates a digital value that represents the percentage of the volt-
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OOPic using a Windows-
based software develop-
ment platform. You open,
save, debug, and compile
your OOPic programs using
pull-down menu commands.
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age in relation to the reference voltage. The Operate property of the oA2D object initi-
ates the conversion, and the Value property is updated with the result of the conversion.
When the Operate value of the oA2D object is 1, the analog-to-digital conversion, along
with the Value update, occurs repeatedly. Conversion ceases when the Operate property
is changed to 0.

There are four physical analog-to-digital circuits implemented within the OOPic. They
are available on I/O lines 1 through 4.

DIGITAL I/O

Several digital I/O objects are provided in 1-bit, 4-bit, 8-bit, or 16-bit blocks. In the case
of the 1-bit I/O object (named oDio1), the Value property of the object represents the elec-
trical state of a single I/O line. In the case of the remaining digital I/O objects, the Value
property presents the binary value of all the lines of the group (4, 8, or 16, depending on
the object used).

There are 31 physical 1-bit I/O lines implemented within the OOPic. The OOPic offers
six physical 4-bit I/O groups, three 8-bit groups, and one 16-bit group.

R/C SERVO CONTROL

The oServo object outputs a servo control pulse on any IO line. The servo control pulse is
tailored to control a standard radio-controlled (R/C) servo and is capable of generating a
logical high-going pulse from 0 to 3 ms in duration in 1/36 ms increments.

A typical servo requires a five-volt pulse in the range of 1–2 ms in duration. This allows
for a rotational range of 180°. The duration of the control pulse is determined by setting
the Value, Center, and InvertOut properties of the oServer object. The Value property con-
trols the position of the servo while the Center property adjusts the control pulse time to
compensate for mechanical alignment. An InvertOut property is used to reverse the direc-
tion that the servo turns in response to the Value and Center properties. We will say more
about servo control in a bit.

KEYPAD INPUT

The oKeypad object splits two sets of four I/O lines in order to read a standard 4x4-key-
pad matrix. The four row lines are individually and sequentially set low (0 volts) while the
four column lines are used to read which switch within that row is pressed.

If any switch is pressed, the Value property of the oKeypad object is updated with the
value of the switch. A Received property is used to indicate that at least one button of the
keypad is pressed. When all the keys are released, the Received property is cleared to 0.

PULSE WIDTH MODULATION

The oPWM object provides a convenient pulse width modulated (PWM) output that is suit-
able for driving motors (through an appropriate external transistor output stage, of course).
The oPWM object lets you specify the I/O line to use—up to two at a time for PWM out-
put, the cycle frequency, and the pulse width.
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ASYNCHRONOUS SERIAL PORT

The oSerial object transmits and receives data at a baud rate specified by the Baud prop-
erty. The baud rate can be either 1200, 2400, or 9600 baud. The oSerial object is used to
communicate with other serial devices, such as a PC or a serial LCD display.

Using the OOPic to Control a Servo
Motor
Though R/C servo motors are intended to be used in model airplanes, boats, and cars, they
are equally useful for robotics applications. Servo motors are inexpensive—basic models
cost under $15 each—and they combine in one handy package a DC motor, a gearbox, and
control electronics. The typical servo motor is designed to rotate 180° (or slightly more)
in order to control the steering wheel on a model car or the flight control surfaces on an
R/C airplane. For robotics, a servo can be connected to an armature to operate a gripper,
to an arm or leg, and to just about anything else you can imagine.

SERVO MOTORS: IN REVIEW

Let’s review the way servos operate so we can better understand how you can interface
them to the OOPic. An R/C servo consists of a reversible DC motor. The high-speed out-
put of the motor is geared down by a series of cascading reduction gears that can be made
out of plastic, nylon, or metal (usually brass, but sometimes aluminum). The output shaft
of the servo is connected to a potentiometer, which serves as the closed-loop feedback
mechanism. A control circuit in the servo uses the potentiometer to accurately position the
output shaft.

Servos use a single pulse width modulated (PWM) input signal that provides all the
information needed to control the positioning of the output shaft. The pulse width varies
from a nominal 1.25 milliseconds (ms) to roughly 1.75 ms, with 1.5 milliseconds repre-
senting the “center” (or neutral) position of the servo output shaft (note that servo specs
vary; these are typical). Lengthening the pulse width causes the servo to rotate in one
direction; shortening the pulse width causes the servo to rotate in the other direction. The
position of the potentiometer acts to “null out” the input pulses, so when the output shaft
reaches the correct location the motor stops.

R/C servos are engineered to accept a standard TTL-level signal, which typically comes
from a receiver mounted inside a model car or plane. The OOPic can interface directly to
an R/C servo and requires no external components such as power transistors.

CONTROLLING SERVOS VIA OOPIC CODE

You can theoretically control up to 31 servos with one OOPic—one servo per IO line.
However, the more practical maximum is no more than 8 to 10 servos. The reason: Servos
require a constant stream of pulses, or else they cannot accurately hold their position. The
ideal pulse stream is at 30 to 60 Hz, which means that to operate properly each servo 
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connected to the OOPic must be “updated” 30 to 60 times per second. The OOPic is engi-
neered to provide pulses at 30-Hz intervals; with more than about eight servos the refresh
rate is reduced to 15 Hz. While most servos will still function with this slow refresh rate,
a kind of “throbbing” can occur if the motor is under load.

Some robotic projects call for controlling a half-dozen or more servos, such as the six-
legged Hexapod II from Lynxmotion (which requires 12 servos working in tandem).
However, the typical experimental robot uses only two or four servos. The OOPic is ideal-
ly suited for this task, and programming is easy. To operate a servo, you need only provide
a few lines of setup code, then indicate the position of the servo using a positioning value
from 0 to 63. This value corresponds to the 0–180° movement of the servo output shaft.

With 64 steps the OOPic is able to position a servo with 2.8° of accuracy. This assumes
a maximum rotation of 180°, which not all servos are capable of. Note that if you need
greater resolution than this you can make use of the OOPic’s built-in pulse width modula-
tion object, which can be programmed to provide your servos with far greater positional
accuracy. However, for most applications, the OOPic’s servo object provides adequate res-
olution and is easier to use.

Listing 33.1 shows a program written in the OOPic’s native Basic syntax and demon-
strates how to control an R/C servo using the oServo object. Fig. 33.5 shows how to con-
nect the servo to the OOPic.

LISTING 33.1.
' OOPic servo demonstrator
' Uses a standard R/C servo

' This program cycles a servo, connected to IOLine 31,
'  for full rotation (0 to 180 degrees)

' Dimension needed objects
Dim S1 As New oServo
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+6 vdc

Gnd

OOPicAny I/O
pin

Servo

Connected
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+V for OOPic

Ground for
+6 vdc servo

power Ground for
OOPic power

330Ω
(optional)

FIGURE 33.5 Follow this basic wiring diagram to connect
a standard R/C servo to the OOPic. Most
servos use consistent color coding for their
wiring: black for ground, red for V�, and
yellow or white for input (signal).
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Dim x As New oByte
Dim i As New oNibble
'————————————————————————-
'First routine called when power is turned on
Sub Main()
Call Setup ' set up servo properties
For i = 1 to 5   ' repeat motions five times

S1 = 0      ' set servo to 0 degrees, and wait a while
Call longdelay
S1 = 63      ' set servo to 180 degrees, and wait a while
Call longdelay

Next i
End Sub
'————————————————————————-
' Delay loop routine
Sub longdelay()
For x = 1 To 200:Next x
End Sub
'————————————————————————-
' Setup routine
Sub Setup()
S1.Ioline = 31             ' Set servo to I/O line 31 (pin 26)
S1.Center = 31             ' Set center to 31 (experiment for best

results)
S1.Operate = cvTrue        ' Turn servo on
End Sub

POWERING THE SERVOS

Note that separate battery power supplies were used for the OOPic and the servo. Most
hobby R/C servos are designed to be operated with 4.5 to 7.2 vdc. Connecting both
OOPic and servo to a single 6-volt supply can cause the OOPic to reset itself. Most ser-
vos draw considerable current when turned on, and this current can cause the supply
voltage of a 6-volt battery pack to sag below the 4.5-volt level required by the OOPic.
When the voltage drops below 4.5 volts, the OOPic’s built-in brownout circuit kicks in,
which resets the processor. This repeats continuously, and the net effect is a nonfunc-
tioning circuit.

One alternative is to power the whole shebang from a single 9- or 12-volt supply, but
with higher voltage comes overpowered servos. Not all servos are built to handle the extra
speed and heat caused by the higher voltage, and an early death for your servos could
result. Therefore, it’s best to use two different batteries. The OOPic is fine operating from
a single 9-volt transistor battery. The servo runs from a set of four AA batteries.

HOW THE OOPIC SERVO CODE WORKS

The first three lines in Listing 33.1 “dimension” (create in memory) the objects used in the
OOPic program. S1 is the servo object; x and I are simple data objects that hold eight and
four bits, respectively. The program itself begins with the Main subroutine, which is auto-
matically run when the OOPic is first turned on or when it is reset. The first order of busi-
ness is to call the Setup subroutine, located at the end of the program. In Setup, the pro-
gram establishes that IO line 31 (pin 26 of the OOPic chip) is connected to the control
input of the servo.

The servo is then centered using a value of 31 (half of 64, considering 0 as the first valid
digit). You need to experiment to find the mechanical center of the servo you are using.
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Each servo, particularly those that have different sizes and come from different manufac-
turers, can have a different mechanical center. Therefore, adjust this value up or down
accordingly. Finally, the servo object is activated using the statement

S1.Operate = cvTrue

Notice the use of properties when working with the OOPic’s objects. Properties are
defined by specifying the name of the object, such as S1 for servo 1, a period (known as the
member operator in programming parlance), then the property name. So, S1.Ioline sets (or
reads) the IO line property for the S1 object. Similarly, S1.Center sets the center property,
and S1.Operate turns the S1 object on or off. Most OOPic properties are read and write,
meaning that you can both set and read their value. A few are read-only or write-only.

Once you have set the servo up, you can manipulate it using the S1.Value property. In
the demonstration program, the Value property is inferred because it is the so-called
default property for servo objects. Therefore, it is only necessary to specify the name of
the object and the value you want for it:

S1 = 0

This sets the servo all the way in one direction, and the following expression,

S1 = 63

sets the servo all the way in the other direction. Because the Value property is the default
for the oServo object, the statement S1 � 63 is the same as writing S1.Value � 63.

Exercise care when playing around with servos. Not all servos can travel a full 90° from
center, especially if you have not properly set the mechanical center using the
S1.Center property. For initial testing, use values slightly higher than 0 and slightly lower
than 63 to represent the minimum and maximum servo movements, respectively.
Otherwise, the OOPic may command the servo to move past an internal stop position,
which can cause the gears to slip and grind. Left in this state the servo can be perma-
nently damaged.

Operating Modified Servos
As designed, R/C servos are meant to travel in limited rotation, up to 90° to either side of some
center point. But by modifying the internal construction of the servo, it’s possible to make it
turn freely in both directions and operate like a regular-geared DC motor. This modification
is handy when you want to use servo motors for powering your robot across the floor.

The steps for modifying servos vary, but the general process is about the same:

1. Remove the case of the servo to expose the gear train, motor, and potentiometer. This
is accomplished by removing the four screws on the back of the servo case and sepa-
rating the top and bottom.
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2. File or cut off the nub on the output gear that prevents full rotation. This typically
requires removing one or more gears, so you should be careful not to misplace any
parts. If necessary, make a drawing of the gear layout so you can replace things in their
proper location!

3. Remove the potentiometer, and replace it with two 2.7K-ohm 1 percent (precision)
resistors, wired as detailed in Chapter 20. This fools the servo into thinking it’s always
in the “center” position. Or relocate the potentiometer to the outside of the servo case,
so you can make fine-tune adjustments of the center position. If needed, you can attach
a new 5K- or 10K-ohm potentiometer to the circuit board outside the servo.

4. Reassemble the case.

See Chapter 20, “Working with Servo Motors,” for a step-by-step tutorial on modifying
commonly available servos for continuous rotation.

OOPIC CODE FOR MODIFIED SERVOS

Once modified, you can connect the servo to the OOPic just as you would an unmodified
servo (see Fig. 33.5). Listing 33.2 shows how to use the OOPic with two modified servos
acting as the drive motors for a two-wheeled robot. You can easily construct a demonstra-
tor robot using LEGO parts, like the prototype shown in Fig. 33.6. I cemented two light-
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FIGURE 33.6 You can construct a demonstrator for the OOPic two-wheel robot
using LEGO bricks. The servos are glued to small LEGO parts to
aid in mounting.
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weight R/C airplane wheels to control horns (these come with the servos). I also cement-
ed a 2x8 flat LEGO plate to the side of each servo to make it easier to snap the motors to
the LEGO-made frame of the robot.

LISTING 33.2.
' OOPic two-motor (servo) robot demonstrator
' Requires the use of modified R/C servos (see text)

' This program cycles the robot through various movements,
'  including forward, backward, right spin, left spin,
'  and turns.

'  Dimension objects
Dim S1 As New oServo
Dim S2 As New oServo
Dim CenterPos as New oByte
Dim Button As New oDio1
Dim x as New oByte
Dim y as New oWord

'————————————————————————-
Sub Main()
CenterPos = 31               ' Set centering of servos
Call Setup
Do

If Button = cvPressed Then
' Special program to calibrate servos
S1 = CenterPos
S2 = CenterPos

Else
' Main program (IO line is held low)
Call GoForward
y = 200              ' Same as LongDelay
Call Delay           ' Alternative to LongDelay

Call HardRight
Call LongDelay

Call HardLeft
Call LongDelay

Call SoftRightForward
Call ShortDelay

Call SoftLeftForward
Call ShortDelay

Call GoReverse
Call LongDelay

End If
Loop
End Sub

'————————————————————————-
' Set up IO lines and servos
Sub Setup()
Button.Ioline = 7                ' Set IO Line 7 for function input
Button.Direction = cvInput       ' Make IO Line 7 input
S1.Ioline = 30                   ' Servo 1 on IO line 30
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S1.Center = CenterPos            ' Set center of Servo 1
S1.Operate = cvTrue              ' Turn on Servo 1
S2.Ioline = 31                   ' Servo 2 on IO line 31
S2.Center = CenterPos            ' Set center of Servo 2
S2.Operate = cvTrue              ' Turn on Servo 2
S2.InvertOut = cvTrue            ' Reverse direction of Servo 2
End Sub

'————————————————————————-
' Short delay routine
Sub ShortDelay()

For x = 1 To 80:Next x
End Sub

'————————————————————————-
' Long delay routine
Sub LongDelay()

For x = 1 To 200:Next x
End Sub

'————————————————————————-
' Selectable delay routine
Sub Delay()

For x = 1 To y:Next x
End Sub

'————————————————————————-
' Motion routines (forward, back, etc.)
' "Hard" turns spin robot in place
' "Soft" turns turn robot right or left in forward
' (or backward) motion
'————————————————————————-

Sub GoForward()
S1 = 0
S2 = 0
End Sub

Sub GoReverse()
S1 = 63
S2 = 63
End Sub

Sub HardRight()
S1 = 0
S2 = 63
End Sub

Sub HardLeft()
S1 = 63
S2 = 0
End Sub

Sub SoftRightBack()
S1 = CenterPos
S2 = 63
End Sub

Sub SoftRightForward()
S1 = 0
S2 = CenterPos
End Sub
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Sub SoftLeftBack()
S1 = 63
S2 = CenterPos
End Sub

Sub SoftLeftForward()
S1 = CenterPos
S2 = 0
End Sub

We attached batteries and OOPic to the top of the robot using double-sided tape.
Power to the OOPic is provided by a 9-volt battery; power to both servos is pro-
vided by a 6-volt pack of AAs. Note that I used a wire-wrap board as a terminal
bus, and standard .100”-center connectors instead of hard-soldering any wiring to
the various components. This makes it easier to test the robot and possibly add to
it at a later date.

REVIEWING THE PROGRAM CODE

The program in Listing 33.2 is a modified version of the program in Listing 33.1. Its main
difference, other than employing two oServo objects instead of one, is that the “center”
position is used to turn the motor off. Values greater than this center position cause the ser-
vos to rotate in one direction; values less than the center position cause the servos to rotate
in the opposite direction. The servos are made to turn one direction when their Value prop-
erty is 0 and the other direction when their Value property is 63.

Note that in Listing 33.2 the “normal” direction of travel for servo 2 (S2) is reversed
from S1, with the following statement:

S2.InvertOut = cvTrue

This is handy because in the two-wheeled robot the servos are mounted on opposite
sides, and therefore one motor must operate in mirror image to the other. That is, one must
turn clockwise while the other turns counterclockwise to move the robot forward or back-
ward. Without the InvertOut property, you’d have to set the Value property of one servo to
0 and the other to 63 to maintain proper forward or backward motion.

Not shown in Listing 33.2 is a useful feature you may want to implement: values very
close to the center position (�/- about five steps) will cause the servos to slow down by a
proportional amount. For example, if the center position is 31, then a value of 32 for S1 or
S2 may cause that servo to rotate clockwise very slowly. Higher values will modestly
increase the speed in the same direction of travel. Conversely, a value of 30 for the S1 or
S2 object may cause the servo to rotate counterclockwise very slowly. A value of 29 would
make the motor go a little faster, and so on.

Listing 33.2 takes the robot through a series of patterned moves, including forward and
backward movement, right and left spins, and turns. Delay routines allow you to specify
how long each movement is to last. Vary the delay up or down to experiment with differ-
ent motions. In the prototype for this book, the program in Listing 33.2 moves the robot
back and forth about two feet. The program repeats itself until you reset the OOPic or dis-
connect the power.

The modified servos use an externally accessible trimmer potentiometer. The trimmer pot,
which is attached to the case of the servo with a small piece of double-sided foam tape, serves
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to provide an accurate voltage divider by which the servos can be set to center, or neutral, posi-
tion. The trimmer pots are set by temporarily taking IO line 7 high. This causes the program in
Listing 33.2 to run an alternative routine in its Main loop, so you can set the Center property
of both servos to a value of 31. The pots are then adjusted so that the motors just stop—this
represents the center position. Using the potentiometer makes it much easier to calibrate the
servos so they can be used with the program. Once calibrated, you can tie IO line 7 low again.

Using the OOPic to Control Stepper
Motors
The OOPic is full of pleasant surprises, including the innate ability to control a standard
four-phase unipolar stepper motor. Unlike R/C servos, however, the OOPic is not able to
directly drive a stepper motor. For that you’ll need an interface with a current and voltage
rating for the stepper motor you are using. Chapter 19 provides additional information on
using stepper motors.

Listing 33.3 shows a simple stepper motor driving program that uses a feature unique
to the OOPic: virtual circuits. Instead of programming each of the four phases of a step-
per with on/off values in code, this program uses two processing objects, oConverter and
oCounter. Processing objects are used to construct virtual circuits, which are like real elec-
tronic circuits, only they are created solely using programming statements.

LISTING 33.3.
' OOPic stepper motor demonstrator
' Uses a standard four-phase unipolar stepper motor
' Operates motor in half-stepping mode

' Dimension objects
Dim Stepper as New oDio4    ' 4-bit IO for controlling stepper
Dim Driver as New oConverter
Dim Position as New oWord   ' 32-bit value for current position
Dim Mover as New oCounter

'————————————————————————-
Sub Main()
Call Setup
' The rest of your code here

' To reverse motor, use Mover.Direction = cvNegative
' or Mover.Direction = cvPositive
' To stop-and-hold motor, use Mover.Operate = cvFalse
' To restart motor, use Mover.Operate = cvTrue
' To stop and de-energize motor, use Driver.Blank = 1
End Sub

'————————————————————————-
' Set up stepper motor
Sub Setup()
Stepper.IOGroup = 1       ' Set stepper to use IO group 1 (pins 8-11)
Stepper.Nibble = 0        ' Picks lower 4 lines from IO group
Stepper.Direction = cvOutput      ' Make lines outputs
Driver.Output.Link(Stepper.Value) ' Set up virtual circuit 
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Driver.Input.Link(Position.Value)
Driver.Mode = cvPhase
Driver.Operate = cvTrue
Mover.ClockIn1.Link(OOPic.Hz60) ' Use OOPic 60 Hz object for stepping
Mover.Output.Link(Position.Value)
Mover.Operate = cvTrue      ' Enable counter
End Sub

The stepper motor program in Listing 33.3 demonstrates one of the uses for the
oConverter numeric-conversion object. This program has the built-in “behavior” of being
able to construct the proper phasing to control the forward and backward rotation of a four-
phase unipolar stepper motor. The program also uses a counter object, which allows you to
define the number of steps you wish to apply to the motor. Keep in mind that the
oConverter object specifies an eight-phase cycle, which has the effect of moving the motor
in half-step increments (this serves to improve the accuracy and torque of the motor). So,
for example, if the motor is rated at 200 steps per revolution, it will require 400 pulses from
the OOPic to turn it a full 360° degrees.

Experiment with the OOPic and you’ll find it’s a capable performer in the field of
robotics. By using its objects judiciously, coupled with a liberal sprinkling of virtual cir-
cuits, you should be able to construct most any kind of robotic creature using a minimum
number of external components.

From Here
To learn more about… Read

Stepper motors Chapter 19, “Working with Stepper Motors”

How servo motors work Chapter 20, “Working with Servo Motors”

Different approaches for adding Chapter 28, “An Overview of Robot ‘Brains’”
brains to your robot

Connecting the OOPic microcontroller Chapter 29, “Interfacing with Computers and
to sensors and other electronics Microcontrollers”
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The most basic robot designs—just a step up from motorized toys—use a wired control box
on which you flip switches to move the robot around the room or activate the motors in the
robotic arm and hand. The wire link can be a nuisance and acts as a tether preventing your
robot from freely navigating through the room. You can cut this physical umbilical cord and
replace it with a fully electronic one by using a remote control receiver and transmitter.

This chapter details several popular ways to achieve links between you and your robot.
You can use the remote controller to activate all of the robot’s functions, or with a suitable
on-board computer working as an electronic recorder, you can use the controller as a teach-
ing pendant. You manually program the robot through a series of steps and routines, then
play it back under the direction of the computer. Some remote control systems even let you
connect your personal computer to your robot. You type on the keyboard, or use a joystick
for control, and the invisible link does the rest.

Control Your Robot with an Atari-style
Joystick
This easy project does not require you to assemble a remote control circuit out of ICs and
components, and it is perfect when you want to control five or fewer functions. It uses a
wired Atari 2600-style joystick. Though the Atari 2600 hasn’t been sold for a long time,
joysticks for it are still common finds at surplus stores. The joystick is designed to work
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with the Atari 2600 game machine and all computers that accept Atari-type (switch con-
tact) joysticks. It is not intended for use with the Apple II or IBM PC, which use poten-
tiometer-type joysticks. (If you’re lucky, you may find wireless Atari-style joysticks. These
come in two parts: a transmitter and receiver.)

Fig. 34.1 shows the functions of the pins on the joystick cable. To interface the joystick
to your robot, wire the pins as shown in Fig. 34.2. You can interface to TTL or CMOS
gates, but for any application where you want to drive heavy loads use relays or opto-iso-
lators. An opto-isolator setup is shown in Fig. 34.2.

You can connect the joystick to discrete circuitry or to a computer or microprocessor.
For example, you can use a Basic Stamp (see Chap. 31, “Using the Basic Stamp”) to
translate the joystick movements to motor control. Pushing the joystick forward (“Up”
on the joystick) might makes both motors go forward. Pushing the joystick back
(Down) might make both motors go backward, and so forth.

Build a Joystick “Teaching Pendant”
No doubt you’ve been to Disneyland or other theme parks that use robotic or “animatronic”
performers. These on-stage automatons are operated via a sophisticated computerized sys-
tem that plays back the audio portion of the program and controls every movement or every
robot on the stage. Walt Disney was one of the early pioneers of this art and science. Audio-
animatronics, the system his WED (Walt Elias Disney) Enterprises group developed, used
audio tones on recorded tape as the control medium.

Animatronic shows are most commonly “acted out” by a human director who operates
a joystick or other control in real time. As the sound portion of the program is played, the
director moves the joystick to operate the various animatronic devices on stage. The move-
ments of the joystick are recorded for later playback. This same concept is used in many
kinds of manufacturing robots, whose actions are programmed not from the keyboard but
from a “teaching pendant,” a controller that records the actions of a human operator.

Using an ordinary joystick you can create your own teaching pendant for your robot (or
animatron, if that’s to your liking). For this next project, I’ll use a common garden-variety
IBM PC-style analog joystick, though you can apply the same techniques to any kind of
joystick, analog or digital. IBM PC-style joysticks are inexpensive (mine cost $5) and

536 REMOTE CONTROL SYSTEMS

N/C

Common

N/C

Fire

Right

Down

Left

Up

N/C

Facing connector end
FIGURE 34.1 Pinout diagram for an Atari-style

joystick.

Ch34_McComb  8/21/00  3:31 PM  Page 536



BUILDING A JOYSTICK “TEACHING PENDANT” 537

+6vdc +5vdc

N/C

Common

N/C

Fire

Right
Down

Left

Up

N/C R2
3.3K

Output

R1
1K
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available everywhere. The joystick teaching pendant controls the motors of a two-wheel
robot. You can record and play back up to 30 seconds of commands. You can also use the
joystick teaching pendant in “free” (no record or playback) mode, where you control the
robot by manually pushing the stick.

For the control electronics, we’ll connect the joystick to a BasicX-24 microcontroller (see
Chapter 32, “Using the BasicX Microcontroller”) by way of a simple interface. The joystick
interface, (see Fig. 34.3) shows how the joystick interface connects to the BX-24. The BX-
24 in turn connects to whatever motor control electronics you are using. See Chapter 18,
“Working with DC Motors,” for more information on motor drive circuits for DC motors.

IBM PC-style joysticks contain analog potentiometers; the resistive value of these pots
changes as you move the joystick around. We actually won’t be using the analog nature of
the joystick for this project, but you can add this feature in your own if you wish. For exam-
ple, instead of controlling the power and direction of the motors, you could rig the joystick
so that the more you push on the stick, the faster the motor goes.

Listing 34.1 provides the BX-24 code for the joystick teaching pendant.

This program requires the use of the SerialPort.Bas file, which is included with the BX-
24 developer’s kit (and available for download at the BasicX site). When creating the
project file for the joystick teaching pendant, be sure to include SerialPort.Bas as well.

LISTING 34.1 JOYSTICK2.BAS
Private S1 As Byte
Private S2 As Byte
Private JoystickX As Integer
Private JoystickY As Integer
Private Steps As Integer
Private TempByte As Byte
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Private Motors As Byte
Private MotorsStr As String * 10
Private TempStr As String * 20
Private RecordFlag As Boolean
Private PlayFlag As Boolean
Private Const GreenLED As Byte = 26
Private Const RedLED As Byte = 25
Private Const LEDon As Byte = 0
Private Const LEDoff As Byte = 1

Private Const MotLD As Byte = 9
Private Const MotLC As Byte = 10
Private Const MotRD As Byte = 11
Private Const MotRC As Byte = 12

Private Const Min As Integer = 450
Private Const Mid As Integer = 850
Private Const Max As Integer = 1200

Private Const CmdDelay As Integer = 256
Private Const MaxSteps As Integer = 60

Dim RecordArray (1 to MaxSteps) As Integer

'DLDR four bit format (see text)
'D=0, forward
'D=1, reverse
'L=0, left motor off
'L=1, left motor on
'R=0, right motor off
'R=1, Right motor on

Sub Main()
Dim Count As Integer
Call PutPin (17, BxOutputLow)                       ' take low
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Call PutPin (18, BxOutputLow)                       ' take low
Call OpenSerialPort(1, 19200)
RecordFlag = False
PlayFlag = False

Call PutPin (GreenLED, LedOff)
Call Sleep (1.5)
Do

JoystickX =  GetPotValue (19)                   ' X stick
JoystickY = GetPotValue (16)                    ' Y stick
Select Case JoyStickY

Case Min to (Mid-51)                       'Forward
Select Case JoystickX

Case Min to (Mid-51)
MotorsStr = "bx00000100"
Motors = bx00000100

Case (Mid-50) to (Mid+50)
MotorsStr = "bx00000101"
Motors = bx00000101

Case Mid+51 to Max
MotorsStr = "bx00000001"
Motors = bx00000001

End Select
Case (Mid-50) to (Mid+50)                  ' Center

Select Case JoystickX
Case Min to (Mid-51)

MotorsStr = "bx00001101"
Motors = bx00001101

Case (Mid-50) to (Mid+50)
MotorsStr = "bx00000000"
Motors = bx00000000

Case Mid+51 to Max
MotorsStr = "bx00000111"
Motors = bx00000111

End Select
Case Mid+51 to Max                         ' Reverse

Select Case JoystickX
Case Min to (Mid-51)

MotorsStr = "bx00001100"
Motors = bx00001100

Case (Mid-50) to (Mid+50)
MotorsStr = "bx00001111"
Motors = bx00001111

Case Mid+51 to Max
MotorsStr = "bx00000011"
Motors = bx00000011

End Select
End Select
Call SetMotors (Motors)
Call PutStr (MotorsStr)
Call Newline
S1 = GetPin (20)
S2 = GetPin (15)
If S1 = 0 Then                  ' button 2, red led, pin 20
RecordFlag = Not RecordFlag
Call SetRedLed (RecordFlag)
If RecordFlag = True Then

Steps = 1
TempStr = "***Recording On***"
Call PutStr (TempStr)
Call Newline

End If
If RecordFlag = False Then
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TempStr = “***Recording Off***”
Call PutStr (TempStr)
Call Newline

End If
End If
If S2 = 0 Then                       ' button 1, green led, pin 15

PlayFlag = Not PlayFlag
Call SetGreenLed (PlayFlag)
If PlayFlag = True Then

TempStr = "***Playback On***"
Call PutStr (TempStr)
Call Newline

End If
End If
If RecordFlag = True Then

If Steps <= MaxSteps Then
RecordArray(Steps) = CInt(Motors)
Call PutI (RecordArray(Steps))
Call Newline
Steps = Steps + 1
End If

End If
If PlayFlag = True Then

RecordFlag = False
Call SetRedLed (RecordFlag)
For Count = 1 to (Steps - 1)

Call PutI (RecordArray(Count))
TempByte = CByte(RecordArray (Count))
Call SetMotors (TempByte)
Call Newline
Call Sleep (CmdDelay)
If GetPin (15) = 0 Then

PlayFlag = False
Call PutPin (GreenLED, LedOff)
Exit For

End If
Next
PlayFlag = False
Call PutPin (GreenLED, LedOff)

End If
Call Sleep (CmdDelay)

Loop
End Sub

Private Sub SetMotors (Motors As Byte)
Select Case Motors

Case 0                  ' all stop
Call PutPin (MotLD, 0)
Call PutPin (MotLC, 0)
Call PutPin (MotRD, 0)
Call PutPin (MotRC, 0)

Case 5                 ' forward
Call PutPin (MotLD, 0)
Call PutPin (MotLC, 1)
Call PutPin (MotRD, 0)
Call PutPin (MotRC, 1)

Case 15               ' reverse
Call PutPin (MotLD, 1)
Call PutPin (MotLC, 1)
Call PutPin (MotRD, 1)
Call PutPin (MotRC, 1)

Case 1                       ' right
Call PutPin (MotLD, 0)
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Call PutPin (MotLC, 0)
Call PutPin (MotRD, 0)
Call PutPin (MotRC, 1)

Case 7                ' hard right
Call PutPin (MotLD, 0)
Call PutPin (MotLC, 1)
Call PutPin (MotRD, 1)
Call PutPin (MotRC, 1)

Case 4                ‘ left
Call PutPin (MotLD, 0)
Call PutPin (MotLC, 1)
Call PutPin (MotRD, 0)
Call PutPin (MotRC, 0)

Case 13               ' hard left
Call PutPin (MotLD, 1)
Call PutPin (MotLC, 1)
Call PutPin (MotRD, 0)
Call PutPin (MotRC, 1)

Case 12               ' left reverse
Call PutPin (MotLD, 1)
Call PutPin (MotLC, 1)
Call PutPin (MotRD, 0)
Call PutPin (MotRC, 0)

Case 3               ' right reverse
Call PutPin (MotLD, 0)
Call PutPin (MotLC, 0)
Call PutPin (MotRD, 1)
Call PutPin (MotRC, 1)

End Select
End Sub

Private Sub SetRedLed (Flag As Boolean)
If Flag = True Then

Call PutPin (RedLED, LedOn)
Else

Call PutPin (RedLED, LedOff)
RecordFlag = False

End If
End Sub

Private Sub SetGreenLed (Flag As Boolean)
If Flag = True Then

Call PutPin (GreenLED, LedOn)
Else

Call PutPin (GreenLED, LedOff)
PlayFlag = False

End If
End Sub

Private Function GetPotValue(ByVal PinNumber As Byte) As Integer
Const CapacitorDischargeTime As Integer = 4
Call PutPin(PinNumber, bxOutputLow)
Call Sleep(CapacitorDischargeTime)
GetPotValue = RCtime(PinNumber, 0) ' Timeout returns 0.

End Function

USING THE JOYSTICK TEACHING PENDANT

In this section we briefly discuss how to use the joystick teaching pendant software,
Joystick.bas. You’ll want to read Chapter 32 to learn more about the BasicX-24 chip and
how it’s programmed. Follow these steps:
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1. Insert the BasicX-24 chip into a suitable carrier.
2. Attach the serial programming cable between your PC and the BasicX-24 carrier.
3. Connect a joystick to the BasicX-24, as shown in Fig. 34.3. For best results, use ribbon

cables that have the appropriate header connectors. I used a ribbon cable originally
designed for use in PCs. It is outfitted with the proper DB-15 connector for the joystick
on one end and a 16-pin dual-row male header on the other.

4. Apply power to the BX-24.
5. Create a new project (Joystick2.Bxp) and be sure to add the SerialPort.Bas file as one

of its files.
6. Write the Joystick2.Bas program in Listing 34.1. When you are finished, be sure to save

it (name it “Joystick2.Bas”).
7. Set up the BasicX Development System main program for the proper download port

and monitor port.
8. Compile and download the program. The program should automatically run after

downloading is complete.

Test the program by pushing the joystick. For the purposes of verification and testing, the
Joystick2.Bas program uses the BasicX debug window to display the binary value of the four
motor control bits (only the last four bits are used). For example, when you push the joystick
forward, the text bx00000101 is shown in the debug window. The last four bits are 0101:

A value of 0 for LeftMotDir/RightMotDir means the motor is going forward (con-
versely, a value of 1 means the motor is going in reverse). A value of
LeftMotCtrl/RightMotCtrl means that motor is activated. With the bits 0101, both motors
are operating and are going forward. Note that the program samples the position of the joy-
stick once every half-second.

RECORDING AND PLAYING BACK STEPS

Briefly depress button 1 (usually the “fire” button). The red LED on the BX-24 chip will
light up to indicate that recording is on. In addition, a “Recording On” message is dis-
played in the debug window. The joystick is now in record mode, and the joystick positions
are being stored in memory. Recording is simple in the Joystick2.Bas program: each half
second the joystick position is stored in one element of a 60-element array. Since there are
60 elements and a new “snapshot” of the joystick controls is made every half second, this
means there is a maximum of 30 seconds of recording.

You can revise the program to add longer programming time, but note that the BX-24
has 400 bytes of memory. The more elements there are, the more memory is consumed. As
written, Joystick2.Bas consumes about 190 bytes of RAM, so there is room for expansion
if you wish.

When you are done recording the steps you want, briefly depress button 1 again. The
joystick will be taken out of record mode. You can play back your previously stored steps
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by briefly depressing button 2. While a previously stored set of steps is being played any
joystick motions are ignored. If necessary you can abort play mode at any time by depress-
ing button 2 again. When playback is complete, the program automatically goes back into
“free-run” mode.

POSSIBLE ENHANCEMENTS

There are a number of enhancements you may wish to add. One is to increase the number
of steps per second. This is done by decreasing the value as follows:

mdDelay As Integer = 256

The value 256 is approximately one half of a second, so 128 would be a quarter second, 64
would be an eighth of a second, and so forth. Be aware that the smaller the number is, the
more steps are recorded per second, so the 60-element array will fill up faster.

Another enhancement is to add an additional joystick. The DB-15 connector is designed
to accept signals from two joysticks at a time when used with a suitable joystick “Y”
adapter (available at Radio Shack and elsewhere).

Commanding a Robot with Infrared
Remote Control
I still remember the first television remote control I ever saw. The remote control, which
looked like something from a 1950s sci-fi movie, was for a Zenith black-and-white TV,
made circa 1962. The remote had just two functions: on/off and channel changing. To
change the channel you had to keep depressing the channel button until the desired chan-
nel appeared (the channels changed up, from 2 through 13, then started over again). What
was more amazing than the remote control itself was how it worked: by ultrasonic sound.
Depressing one of the control buttons struck a hammer against a tuning fork. A micro-
phone in the TV picked up the high-pitched ping and responded accordingly.

These days, remote control of TVs, VCRs, and other electronic devices is taken for
granted. And instead of just two functions, the average remote handles dozens—more than
the knobs and buttons on the TV or VCR itself. Except for some specialty remotes that use
UHF radio signals, today’s remote controls operate with infrared (IR) light. Pressing a but-
ton on the remote sends a specific signal pattern; the distinctive pattern is deciphered by
the unit under control.

You can use the same remote controls to operate a mobile robot. A computer or micro-
controller is used to decipher the signal patterns received from the remote via an infrared
receiver. Because infrared receiver units are common finds in electronic and surplus stores
(they’re used heavily in TVs, VCRs, etc.), adapting a remote control for robotics use is
actually fairly straightforward. It’s mostly a matter of connecting the pieces together. With
your infrared remote control you’ll be able to command your robot in just about any way
you wish—to start, stop, turn, whatever.
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SYSTEM OVERVIEW

Here are the major components of the robot infrared remote control system:

� Infrared remote. Most any modern infrared remote control will work, but…the signal pat-
terns they use vary considerably. You’ll find it most convenient to use a “universal remote
control” (about $10 at a department store). Specifically, you want the universal remote to
support Sharp TVs and VCRs—99.99 percent do.

� Infrared receiver module. The receiver module contains an infrared light detector, along
with various electronics to clean up, amplify, and demodulate the signal from the
remote control. The remote sends a pattern of on/off flashes of light. These flashes are
modulated at about 38–40 kHz in order to reduce interference from other light sources.
The receiver strips out the modulation and provides just the on/off flashing patterns.

� Computer or microcontroller. You need some hardware to decode the light patterns, and
a computer or microcontroller, running appropriate software, makes the job straightfor-
ward. For this project we’ll use the BasicX-24 microcontroller, from NetMedia. The
same programming techniques described here can be used with other microcontrollers
and computers, but you’ll need to adapt the program accordingly.

INTERFACING THE RECEIVER-DEMODULATOR

The first order of business is to interface the receiver-demodulator to the BX-24 chip.
Most any receiver module for 38–42 kHz infrared operation should work well. I’ve speced
out the Sharp GP1U57X because it’s widely available, including at Radio Shack. You can
also use units from LiteOn, Sony, Everlight, and others. (Hint: one good source for infrared
receiver-demodulator units is salvaged VCRs. Carefully unsolder it from the circuit board
in the VCR and use it in your robot remote control project.)

Fig. 34.4 shows the interface for the infrared receiver-demodulator. Note the electrolyt-
ic capacitor and pull-up resistor. These are required for proper operation. You’ll find the
circuit will work better if you solder the ground lead to the metal case of the receiver-
demodulator (if it is so equipped). Keep lead lengths short.

PROGRAMMING THE BX-24

Listing 34.2 shows the demonstration program to be used with the BX-24 microcontroller.
Please refer to Chapter 32, “Using the BasicX Microcontroller,” for more information on
how to use the BX-24, including how to compile, download, and execute programs. For
now, I’ll assume you’re familiar with all these things and cut right to the chase.

To use the program, be sure to set your universal remote control to output Sharp TV
infrared codes. The remote control will come with an instruction booklet on how to select
the proper code setting. Look under the TV listing for Sharp and note which code num-
ber(s) to use. You may need to try several of them before you will have positive results. For
reference, I used a General Electric Universal Remote, model RM94905, and selected
Sharp TV code 112.

Important! To use this program you’ll need to also include the SerialPort.Bas file as part
of the project. This file comes with the BX-24 sample files, which are included with the
Developer’s Kit and are available for free download from the BasicX Web site
(www.basicx.com/).
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LISTING 34.2 SHARPREMOTE.BAS.
————————————————————————————————————————-
Option Explicit

Private Const MaxPulses As Integer = 32
Private PulseTrain(1 To MaxPulses) As New UnsignedInteger
Private Const OverflowValue As Long = 65535

'———————————————————————————————————————-
Sub Main()

Dim I As Integer, Digit As Byte, Success As Boolean
Dim BitValue As Integer, Value As Integer, Tx As String
Dim Motors(1 to 9) as Byte, MotorVal As Byte

' define motor patterns
'DLDR format

Motors(1) = bx00000100             ' forward left turn
Motors(2) = bx00000101             ' forward
Motors(3) = bx00000001             ' forward right turn
Motors(4) = bx00001101             ' spin left
Motors(5) = bx00000000             ' stop
Motors(6) = bx00000111             ' spin right
Motors(7) = bx00001100             ' reverse left turn
Motors(8) = bx00001111             ' reverse
Motors(9) = bx00000011             ' reverse right turn

Register.DDRA = bx00001111         ' PortA direction;
' high nibble=input, low nibble=output

Call Initialize

MotorVal = 5
Register.PORTA = (Register.PORTA AND bx11110000) OR Motors(CInt(MotorVal))

Do
' Record IR pulses on the input capture pin (pin 12 on BX-12)
Call InputCapture(PulseTrain, MaxPulses, 0)

I = 2
Digit = 1
Value = 0
Do

Call TranslateSpace(PulseTrain(I), BitValue, Success)
If (Success) Then

Value = Value * 2           ' Right shift
Value = Value + BitValue    ' Add LSBit

Else
GoTo Continue
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End If

I = I + 2           ' Do even number elements only;
' spaces are in odd number elements

Digit = Digit + 1
Loop While I <= (MaxPulses - 1)

‘ Determine item selected
‘ Tx is for debug window display
‘ MotorVal is the value to use on PortA
Select Case Value

Case 16706
Tx = "0"
MotorVal = 0

Case 16898
Tx = "1"
MotorVal = 1

Case 16642
Tx = "2"
MotorVal = 2

Case 17154
Tx = "3"
MotorVal = 3

Case 16514
Tx = "4"
MotorVal = 4

Case 17026
Tx = "5"
MotorVal = 5

Case 16770
Tx = "6"
MotorVal = 6

Case 17282
Tx = "7"
MotorVal = 7

Case 16450
Tx = "8"
MotorVal = 8

Case 16962
Tx = "9"
MotorVal = 9

Case 16802
Tx = "Power"
MotorVal = 0

Case 16930
Tx = "Channel Up"
MotorVal = 0

Case 16674
Tx = "Channel Down”
MotorVal = 0

Case 16546
Tx = "Volume Up"
MotorVal = 0

Case 17058
Tx = "Volume Down"
MotorVal = 0

Case Else
Tx = "[other]"

End Select

' Set PortA output to motor value (lower four bits only)
Register.PORTA = (Register.PORTA AND bx11110000) OR _

Motors(CInt(MotorVal))
Call PutStr (Tx)                   ' display on debug window
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Call NewLine
Call Delay(0.25)                   ' wait quarter of a second
Continue:

Loop
End Sub

'————————————————————————————————-
' Lifted from NetMedia BasicX code examples
Sub TranslateSpace(ByVal Space As UnsignedInteger, _

ByRef BitValue As Integer, ByRef Success As Boolean)

' Translates the specified space into a binary digit.

' Each space must be within this range.
Const MaxValue As Single = 1700.0E-6
Const MinValue As Single = 300.0E-6

' This is the crossover point between binary 0 and 1.
Const TripPoint As Single = 1000.0E-6
Const UnitConversion As Single = 135.63368E-9 ' => 1.0 / 7372800.0
Dim SpaceWidth As Single
' Convert to seconds.
SpaceWidth = CSng(Space) * UnitConversion

If (SpaceWidth < MinValue) Or (SpaceWidth > MaxValue) Then
Success = False
Exit Sub

Else
Success = True

End If

If (SpaceWidth > TripPoint) Then
BitValue = 1

Else
BitValue = 0

End If

End Sub

'————————————————————————————————-
Sub Initialize()

' Wait for power to stabilize
Call Delay(0.25)

' Used for serial port communications
Call OpenSerialPort(1, 19200)
End Sub

Of critical importance is the Select Case structure, which compares the values that are
returned from the remote. These were the actual numeric values obtained using the Sharp
TV code setting mentioned earlier. If your universal remote doesn’t support these same
values, you can easily determine the correct values to use for each button press on the
remote through the code in Listing 34.3, RemoteTest.Bas. (Only the Main subroutine is
shown; the other routines in SharpRemote.Bas, given in Listing 34.2, are used as is.)

LISTING 34.3 REMOTETEST.BAS.
Sub Main()

Dim I As Integer, Digit As Byte, Success As Boolean
Dim BitValue As Integer, Value As Integer, Tx As String
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Call Initialize
Do

Call InputCapture(PulseTrain, MaxPulses, 0)
I = 2
Digit = 1
Value = 0
Do

Call TranslateSpace(PulseTrain(I), BitValue, Success)
If (Success) Then

Call PutI(BitValue)
Value = Value * 2

Value = Value + BitValue
Else

GoTo Continue
End If
I = I + 2
Digit = Digit + 1

Loop While I <= (MaxPulses - 1)
Call PutByte (9)
Call PutI (Value)
Call Delay(0.5)
Call NewLine

Continue:
Loop

End Sub

When this program is run, pressing keys on the remote control should yield something
like the following on the BasicX Development Program debug window:

100001000000010    16898
100000100000010    16642
100001100000010    17154
100000010000010    16514
100001010000010    17026

The first set of numbers is the signal pattern as on/off bits. The second set is the
numeric equivalent of that pattern. If you see a string of 0s or nothing happens, either
the circuit isn’t working correctly or the remote is not generating the proper format of
signal patterns.

CONTROLLING ROBOT MOTORS WITH THE 
SHARPREMOTE.BAS PROGRAM

The SharpRemote.Bas program assumes that you’re driving the traditional two-motor
robot, using DC motors (as opposed to stepper or modified servo motors). To operate a
robot, connect a suitable motor driver circuit to pins 17 through 20 of the BX-24 chip. You
can use most any motor driver that uses two bits per motor. One bit controls the motor
direction (0 is “forward”; 1 is “backward”), and another bit controls the motor’s power (0
is off; 1 is on). Chapter 18, “Working with DC Motors,” presents a variety of motor dri-
vers that you can use.

Note: Whatever motor drivers you use make sure that you provide adequate bypass fil-
tering. This prevents excess noise from appearing on the incoming signal line from the IR
receiver-demodulator. DC motors, particularly the inexpensive kind, generate copious noise
from radio frequency (RF) interference as well as “hash” in the power supply lines of the
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circuit. If you fail to use adequate filtering unpredictable behavior will result. Your best bet
is to use opto-coupling, with completely separate battery power supplies for the microcon-
troller and IR electronics on the one hand and the motors and motor driver on the other.

In SharpRemote.Bas, the following line,

Motors(1) = bx00000100
Motors(2) = bx00000101
[etc.]

set up the bit patterns to use for the four pins controlling the motors. Yes, the patterns show
eight bits. We’re only interested in the last four, so the first four are set to 0000. The bits
are in “DLDR” format. That is, the left-most two bits control the left motor, and the right-
most two bits control the right motor. The D represents direction; and L and R represent
left and right, as you’d expect.

After the program has received a code pattern from the remote, it reconstructs that pat-
tern as a 16-bit word. This word is then translated into a numeric equivalent, which is then
used in the Select Case structure, as in the following example:

Select Case Value
Case 16706

Tx = "0"
MotorVal = 5

Case 16898
Tx = "1"
MotorVal = 1

....

The value 16706 represents the 0 button. When it’s pressed, the program stores the string
“0” (for display in the debug window) as well as the motor value, 5. Five is used as “stop,”
with both motors turning off (the numeric keypad on the remote forms a control diamond).
The program interprets the value 16898 received from the remote as a 1 and sets the MotorVal
to 1. The pattern for this value calls for the robot to turn left by turning off its right motor and
turning on its left. Review SharpRemote.Bas for other variations, which are self-explanatory.

You will note that several of the buttons on the remote are not implemented and set the
MotorVal to 5, or stop. You can add your own functionality to these buttons as you see fit.
For example, pressing the Volume Up/Down or Channel Up/Down buttons could control
the arm on your robot, if it’s so equipped.

OPERATING THE ROBOT WITH THE REMOTE

Now that you have the remote control system working and you’re done testing, it’s time to
play! Disconnect the BX-24 chip from its programming cable, set your robot on the
ground, and apply all power. In the beginning, the robot should not move. Point the remote
control at the infrared receiver-demodulator, and press the 2 button (forward). The robot
should move forward. Press 5 to stop. Press other buttons to test out the other features.

GOING FURTHER

Perhaps the BX-24 is not your microcontroller of choice. Or maybe you don’t want to use
the signal patterns for Sharp TVs and VCRs. You can adapt the receiver-demodulator inter-
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face and the SharpRemote.Bas program for use with a wide variety of controllers, com-
puters, and signal pattern formats. Of course, you’ll need to revise the program as neces-
sary, and determine the proper bit patterns to use.

You will probably find that the signal patterns used with a great many kinds of remote
controls will be usable with the SharpRemote.Bas program. You merely need to test the
remote, using the RemoteTest.Bas variation to determine the values to use for each button
press. The program still works even if the signal from the remote contains more data bits
than the 16 provided. For this application, it doesn’t really matter that the last couple of bits
are missing—we’re not trying to control a TV or VCR but our own robot, and the code val-
ues for its control are up to us. The only requirement is that each button on the remote must
produce a unique value. Things won’t work if pressing 2 and 5 yield the same value.

Multifunction Encoder and Decoder
Remote Control
Remote control devices, like those detailed in the previous section, typically use a special
function integrated circuit called an encoder to generate unique sequences of digital puls-
es that can then be used to modulate an infrared light beam or radio signal. A matching
decoder, on the receiving end, translates the digital pulses back into the original format.

For example, pressing the number 5 on the remote control might emit a sequence of 1s
and 0s like this:

0111000100010111

The decoder receives this sequence and outputs a 5. In the previous section you used a
BasicX-24 microcontroller as a kind of generic decoder for translating signals from a uni-
versal remote control. Another, less expensive, alternative is to use an encoder/decoder IC
pair, which are available from a number of manufacturers such as National Semiconductor,
Motorola, and Holtek. In this section, we’ll examine a system that uses the popular Holtek
HT-12E and HT-12D four-bit encoder/decoder. The HT-12 chips are available from a num-
ber of sources—you can also substitute most any encoder/decoder pair you wish to use.
Most require minimal external parts and cost under $3 each, so you should feel free to
experiment.

Fig. 34.5 shows the pinout diagram for the HT-12E encoder. Consult the data sheet for this
chip (available at www.holtek.com, Web site for the maker of the chip) for a variety of circuit
suggestions. The HT chips support up to 256 different addresses. To receive valid data, you
must set the same address on both the encoder and the decoder. The data input is four bits
(nibble), which you can connect to individual push-button switches. You can press multiple
switches at a time for up to 16 different data values.

The output of the HT-12E gates an astable multivibrator circuit that oscillates at approx-
imately 40 kHz. I have specified the use of two high-output infrared LEDs. The higher the
output, the longer the range of your remote control system.
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Fig. 34.6 shows the pinout diagram for the HT-12D decoder. When used with infrared
communications, the chip is typically connected to a receiver-demodulator that is “tuned”
to the 40 kHz modulation from the encoder. When the 40 kHz signal is received, the mod-
ulation is stripped off, and only the digital signal generated by the HT-12E encoder
remains. This signal is applied to the input of the HT-12D encoder. The Holtek Web page
provides data sheets and circuit recommendations for the HT-12D chip.

There are five important outputs for the HT-12D: the four data lines (pins 10-13) and
the valid data line (pin 17). The valid data line is normally low. When valid data is received,
it will “wink” high then low again. At this point, you know the data on the data lines is
good. The data lines are latching, which means their value remains until new data is
received.

You can use the decoder with your robot in several ways. One way is to connect each of
the output lines to a relay. This allows you to directly operate the motors of your robot. As
detailed in Chapter 18, “Working with DC Motors,” two relays could control the on/off
operation of the motors; and two more relays could control the direction of the motors.
Chapter 18 also shows you how to use solid-state circuitry and specialty motor driver ICs
instead of relays.

Another way to use the decoder is to connect the four lines to a microcontroller, such
as the Basic Stamp or the BasicX-24. In this way, you can send up to 16 different com-
mands. Each command could be interpreted as a unique function for your robot.

Using Radio Control Instead of Infrared
If you need to control your robot over longer distances consider using radio signals instead
of infrared. You can hack an old pair of walkie-talkies to serve as data transceivers, or even
build your own AM or FM transmitter and receiver. But an easier (and probably more reli-
able) method is to use ready-made transmitter/receiver modules. Ming, Abacom, and sev-
eral other companies make low-cost radio frequency modules that you can use to transmit
and receive low-speed (less than 300 bits per second) digital signals. Fig. 34.7 shows trans-
mitter/receiver boards from Ming. Attached to them are “daughter boards” outfitted with
Holtek HT-12E and HT-12D encoder/decoder chips.
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The effective maximum range is from 20 to 100 feet, depending on whether you use
an external antenna and if there are any obstructions between the transmitter and
receiver. More expensive units have increased power outputs, with ranges exceeding
one mile. You are not limited to using just encoder/decoders like the HT-12. You may
wish to construct a remote control system using DTMF (dual-tone multifrequency) sys-
tems, the same technology found in Touch-Tone phones. Connect a DTMF encoder to
the transmitter and a DTMF decoder to the receiver. Microcontrollers such as the Basic
Stamp can be used as either a DTMF encoder or decoder, or you can use specialty ICs
made for the job.
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From Here
To learn more about… Read

Interfacing and controlling DC motors Chapter 18, “Working with DC Motors”

Connecting to computers and Chapter 29, “Interfacing with Computers and
microcontrollers Microcontrollers”

Using the Basic Stamp microcontroller Chapter 31, “Using the Basic Stamp”

Using the BasicX microcontroller Chapter 32, “Using the BasicX Microcontroller”

FROM HERE 553

Ch34_McComb  8/21/00  3:31 PM  Page 553



This page intentionally left blank.



PART6
SENSORS AND NAVIGATION
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Like the human hand, robotic grippers often need a sense of touch to determine
if and when they have something in their grasp. Knowing when to close the grip-
per to take hold of an object is only part of the story, however. The amount of
pressure exerted on the object is also important. Too little pressure and the object
may slip out of grasp; too much pressure and the object may be damaged.

The human hand—indeed, nearly the entire body—has an immense network of
complex nerve endings that serve to sense touch and pressure. Touch sensors in a
robot gripper are much more crude, but for most hobby applications these sensors
serve their purpose: to provide nominal feedback on the presence of an object and
the pressure exerted on the object.

This chapter deals with the fundamental design approaches for several touch-
sensing systems for use on robot grippers—or should the robot lack hands, else-
where on the body of the robot. Modify these systems as necessary to match the
specific gripper design you are using and the control electronics you are using to
monitor the sense of touch.

Note that in this chapter I make the distinction between “touch” and collision.
Touch is a proactive event, where you specifically wish the robot to determine its
environment by making physical contact. Conversely, collision is a reactive event,
where (in most cases) you wish the robot to stop what it’s doing when a collision
is detected and back away from the condition. Chapter 36, “Collision Avoidance
and Detection,” deals with the physical contact that results in collision.

35
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Mechanical Switch
The lowly mechanical switch is the most common, and simple, form of tactile (touch)
feedback. Most any momentary, spring-loaded switch will do. When the robot makes con-
tact, the switch closes, completing a circuit (or in some cases, the switch opens, breaking
the circuit). The switch may be directly connected to a motor or discrete circuit, or it may
be connected to a computer or microcontroller, as shown in Fig. 35.1.

You can choose from a wide variety of switch styles when designing contact switches
for tactile feedback. Leaf switches (sometimes referred to as Microswitch switches, after
a popular brand name) come with levers of different lengths that enhance the sensitivity of
the switch. You can also use miniature contact switches, like those used in keyboards and
electronic devices, as touch sensors on your robot.

In all cases, mount the switch so it makes contact with whatever object you wish to
sense. In the case of a robotic gripper, you can mount the switch in the hand or finger sec-
tions. In the case of “feelers” for a smaller handless robot, the switch can be mounted fore
or aft. It makes contact with an object as it rolls along the ground. By changing the
arrangement of the switch from vertical (see Fig. 35.2), you can have the “feeler” deter-
mine if it’s reached the edge of a table or a stair landing.

Optical Sensors
Optical sensors use a narrow beam of light to detect when an object is within the grasping
area of a gripper. Optical sensors provide the most rudimentary form of touch sensitivity
and are often used with other touch sensors, such as mechanical switches.
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it’s about to run off the edge of a table.
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Building an optical sensor into a gripper is easy. Mount an infrared LED in one finger
or pincher; mount an infrared-sensitive phototransistor in another finger or pincher (see
Fig. 35.3). Where you place the LED and transistor along the length of the finger or pinch-
er determines the grasping area.

Mounting the infrared pair on the tips of the fingers or pinchers provides for little grasp-
ing area because the robot is told that an object is within range when only a small portion
of it can be grasped. In most gripper designs, two or more LEDs and phototransistors are
placed along the length of the grippers or fingers to provide more positive control.
Alternatively, you may wish to detect when an object is closest to the palm of the gripper.
You’d mount the LED and phototransistor accordingly.

Fig. 35.4 shows the schematic diagram for a single LED-transistor pair. Adjust the value
of R2 to increase or decrease the sensitivity of the phototransistor. You may need to place
an infrared filter over the phototransistor to prevent it from triggering as a result of ambi-
ent light sources (some phototransistors have the filter built into them already). Use an
LED-transistor pair equipped with a lens to provide additional rejection of ambient light
and to increase sensitivity.

During normal operation, the transistor is on because it is receiving light from the LED.
When an object breaks the light path, the transistor switches off. A control circuit con-
nected to the conditioned transistor output detects the change and closes the gripper. In a
practical application, using a computer as a controller, you’d write a short software pro-
gram to control the actuation of the gripper.

Mechanical Pressure Sensors
An optical sensor is a go/no-go device that can detect only the presence of an object, not
the amount of pressure on it. A pressure sensor detects the force exerted by the gripper on
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the object. The sensor is connected to a converter circuit, or in some cases a servo circuit,
to control the amount of pressure applied to the object.

Pressure sensors are best used on grippers where you have incremental control over the
position of the fingers or pinchers. A pressure sensor would be of little value when used
with a gripper that’s actuated by a solenoid. The solenoid is either pulled in or it isn’t; there
are no in-between states. Grippers actuated by motors are the best choices when you must
regulate the amount of pressure exerted on the object.

CONDUCTIVE FOAM

You can make your own pressure sensor (or transducer) out of a piece of discarded con-
ductive foam—the stuff used to package CMOS ICs. The foam is like a resistor. Attach two
pieces of wire to either end of a one-inch square hunk and you get a resistance reading on
your volt-ohm meter. Press down on the foam and the resistance lowers.

The foam comes in many thicknesses and densities. I’ve had the best luck with the
semistiff foam that bounces back to shape quickly after it’s squeezed. Very dense foams are
not useful because they don’t quickly spring back to shape. Save the foam from the vari-
ous ICs you buy and test other types until you find the right stuff for you.

Here’s how to make a “down-and-dirty” pressure sensor. Cut a piece of foam 1/4-inch
wide by 1-inch long. Attach leads to it using 30-gauge wire-wrapping wire. Wrap the wire
through the foam in several places to ensure a good connection, then apply a dab of solder
to keep it in place. Use flexible household adhesive to cement the transducer onto the tips
of the gripper fingers.

A better way is to make the sensor by sandwiching several pieces of material together, as
depicted in Fig. 35.5. The conductive foam is placed between two thin sheets of copper or alu-
minum foil. A short piece of 30 AWG wire-wrapping wire is lightly soldered onto the foil
(when using aluminum foil, the wire is wound around one end). Mylar plastic, like the kind
used to make heavy-duty garbage bags, is glued on the outside of the sensor to provide 
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electrical insulation. If the sensor is small and the sense of touch does not need to be too great,
you can encase the foam and foil in heat-shrink tubing. There are many sizes and thicknesses
of tubing; experiment with a few types until you find one that meets your requirements.

The output of the transducers changes abruptly when they are pressed in. The output
may not return to its original resistance value (see Fig. 35.6). So in the control software,
you should always reset the transducer just prior to grasping an object.

For example, the transducer may first register an output of 30K ohms (the exact value
depends on the foam, the dimensions of the piece, and the distance between wire termi-
nals). The software reads this value and uses it as the set point for normal (nongrasping)
level to 30K. When an object is grasped, the output drops to 5K. The difference—25K—
is the amount of pressure. Keep in mind that the resistance value is relative, and you must
experiment to find out how much pressure is represented by each 1K of resistance change.

The transducer may not go back to 30K when the object is released. It may spring up to
40K or go only as far as 25K. The software uses this new value as the new set point for the
next occasion when the gripper grasps an object.

STRAIN GAUGES

Obviously, the home-built pressure sensors described so far leave a lot to be desired in
terms of accuracy. If you need greater accuracy, you should consider commercially avail-
able strain gauges. These work by registering the amount of strain (the same as pressure)
exerted on various points along the surface of the gauge.
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Strain gauges are somewhat pricey—about $10 and over in quantities of 5 or 10. The
cost may be offset by the increased accuracy the gauges offer. You want a gauge that’s as
small as possible, preferably one mounted on a flexible membrane. See Appendix B,
“Sources,” for a list of companies offering such gauges.”

CONVERTING PRESSURE DATA TO COMPUTER DATA

The output of both the homemade conductive foam pressure transducers and the strain
gauges is analog—a resistance or voltage. Neither can be directly used by a computer, so
the output of these devices must be converted into digital form first.

Both types of sensors are perfect for use with an analog-to-digital converter. You can
use one ADC0808 chip (under $5) with up to eight sensors. You select which sensor out-
put you want to convert into digital form. The converted output of the ADC0808 chip is an
eight-bit word, which can be fed directly to a microprocessor or computer port. Fig. 35.7a
shows a the basic wiring diagram for the ADC0808 chip, which can be used with conduc-
tive foam transducer; Fig. 35.7b shows how to connect a conductive foam transducer to
one of the analog inputs of the ADC0808.

Notice the 10K resistor in Fig. 35.7, placed in series between the pressure sensor and
ground. This converts the output of the sensor from resistance to voltage. You can change
the value of this resistor to alter the sensitivity of the circuit. For more information on
ADCs, see Chapter 29, “Interfacing with Computers and Microcontrollers.”

Experimenting with Piezoelectric Touch
Sensors
A new form of electricity was discovered just a little more than a century ago when the two
scientists Pierre and Jacques Curie placed a weight on a certain crystal. The strain on the
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crystal produced an odd form of electricity—significant amounts of it, in fact. The Curie
brothers coined this new electricity “piezoelectricity”; piezo is derived from the Greek
word meaning “press.”

Later, the Curies discovered that the piezoelectric crystals used in their experiments
underwent a physical transformation when voltage was applied to them. They also found
that the piezoelectric phenomenon is a two-way street. Press the crystals and out comes a
voltage; apply a voltage to the crystals and they respond by flexing and contracting.

All piezoelectric materials share a common molecular structure, in which all the mov-
able electric dipoles (positive and negative ions) are oriented in one specific direction.
Piezoelectricity occurs naturally in crystals that are highly symmetrical—quartz, Rochelle
salt crystals, and tourmaline, for example. The alignment of electric dipoles in a crystal
structure is similar to the alignment of magnetic dipoles in a magnetic material.

When the piezoelectric material is placed under an electric current, the physical dis-
tance between the dipoles change. This causes the material to contract in one dimension
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(or axis) and expand in the other. Conversely, placing the piezoelectric material under pres-
sure (in a vise, for example) compresses the dipoles in one more axis. This causes the
material to release an electric charge.

While natural crystals were the first piezoelectric materials used, synthetic materials
have been developed that greatly demonstrate the piezo effect. A common human-made
piezoelectric material is ferroelectric zirconium titanate ceramic, which is often found in
piezo buzzers used in smoke alarms, wristwatches, and security systems. The zirconium
titanate is evenly deposited on a metal disc. Electrical signals, applied through wires bond-
ed to the surfaces of the disc and ceramic, cause the piezo material to vibrate at high fre-
quencies (usually 4 kHz and above).

Piezo activity is not confined to brittle ceramics. PVDF, or polyvinylidene fluoride
(used to make high-temperature PVDF plastic water pipes), is a semicrystalline polymer
that lends itself to unusual piezoelectric applications. The plastic is pressed into thin, clear
sheets and is given precise piezo properties during manufacture by—among other things—
stretching the sheets and exposing them to intense electrical fields.

PVDF piezo film is currently used in many commercial products, including noninductive
guitar pickups, microphones, even solid-state fans for computers and other electrical equip-
ment. One PVDF film you can obtain and experiment with is Kynar, available directly from
the manufacturer (see Measurement Specialists at www.msiusa.com for more information).

Whether you are experimenting with ceramic or flexible PVDF film, it’s important to
understand a few basic concepts about piezoelectric materials:

� Piezoelectric materials are voltage sensitive. The higher the voltage is, the more the
piezoelectric material changes. Apply 1 volt to a ceramic disc and crystal movement
will be slight. Apply 100 volts and the movement will be much greater.

� Piezoelectric materials act as capacitors. Piezo materials develop and retain an electri-
cal charge.

� Piezoelectric materials are bipolar. Apply a positive voltage and the material expands in
one axis. Apply a negative voltage and the material contracts in that axis.

EXPERIMENTING WITH CERAMIC DISCS

The ubiquitous ceramic disc is perhaps the easiest form of piezoelectric transducer to
experiment with. A sample disc is shown in Fig. 35.8. The disc is made of nonferrous
metal, and the ceramic-based piezo material is applied to one side. Most discs available for
purchase have two leads already attached. The black lead is the “ground” of the disc and
is directly attached to the metal itself.

You can use a ceramic disc as an audio transducer by applying an audio signal to it.
Most piezo discs will emit sound in the 1K to 10K region, with a resonant frequency of
between 3K and 4K. At this resonant frequency the output of the disc will be at its 
highest.

When the piezo material of the disc is under pressure—even a slight amount—the disc
outputs a voltage proportional to the amount of pressure. This voltage is short lived: short-
ly after the initial change in pressure, the voltage output of the disc will return to 0. A neg-
ative voltage is created when the pressure is released (see the discussion of the bipolar
nature of piezo materials earlier in the chapter).
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You can easily interface piezo discs to a computer or microcontroller, either with or
without an analog-to-digital converter. Chapter 36, “Collision Avoidance and Detection,”
discusses several interface approaches. See the section “Piezo Disc Touch Bar” in that
chapter for more information.

EXPERIMENTING WITH KYNAR PIEZO FILM

Samples of Kynar piezoelectric film are available in a variety of shapes and sizes. The wafers,
which are about the same thickness as the paper in this book, have two connection points, as
illustrated in Fig. 35.9. Like ceramic discs, these two connection points are used to activate the
film with an electrical signal or to relay pressure on the film as an electrical impulse.

You can perform basic experiments with the film using just an oscilloscope (preferred)
or a high-impedance digital voltmeter. Connect the leads of the scope or meter to the tabs
on the end of the film (the connection will be sloppy; later in this chapter we’ll discuss
ways to apply leads to Kynar film). Place the film on a table and tap on it. You’ll see a fast
voltage spike on the scope or an instantaneous rise in voltage on the meter. If the meter
isn’t auto-ranging and you are using the meter at a low setting, chances are that the volt-
age spike will exceed the selected range.

ATTACHING LEADS TO PIEZO FILM

Unlike piezoelectric ceramic discs, Kynar film doesn’t usually come with preattached
leads (although you can order samples with leads attached, but they are expensive). There
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FIGURE 35.8 Piezo ceramic discs are ideally suited to be contact and pressure
sensors for robotics.
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are a variety of ways to attach leads to Kynar film. Obviously, soldering the leads onto the
film contact areas is out of the question. Acceptable methods include applying conduc-
tive ink or paint, self-adhesive copper-foil tape, small metal hardware, and even miniature
rivets. In all instances, use small-gauge wire—22 AWG or smaller. I have had good
results using 28 AWG and 30 AWG solid wire-wrapping wire. The following are the best
methods:

� Conductive ink or paint. Conductive ink, such as GC Electronics’ Nickel-Print paint,
bonds thin wire leads directly to the contact points on Kynar film. Apply a small glob-
ule of paint to the contact point, and then slide the end of the wire in place. Wait sever-
al minutes for the paint to set before handling. Apply a strip of electrical tape to provide
physical strength.

� Self-adhesive copper-foil tape. You can use copper-foil tape designed for repairing
printed circuit boards to attach wires to Kynar film. The tape uses a conductive adhe-
sive and can be applied quickly and simply. As with conductive inks and paints, apply
a strip of electrical tape to the joint to give it physical strength.

� Metal hardware. Use small 2/56 or 4/40 nuts, washers, and bolts (available at hobby
stores) to mechanically attach leads to the Kynar. Poke a small hole in the film, slip the
bolt through, add the washer, and wrap the end of a wire around the bolt. Tighten with
the nut.

� Miniature rivets. Homemade jewelry often uses miniature brass or stainless steel rivets.
You can obtain the rivets and the proper riveting tool from many hobby and jewelry-
making stores. To use them, pierce the film to make a small hole, wrap the end of the
wire around the rivet post, and squeeze the riveting tool (you may need to use metal
washers to keep the wire in place).

USING KYNAR AS A MECHANICAL TRANSDUCER

Fig. 35.10 shows a simple demonstrator circuit you can build that indicates each time a
piece of Kynar film is struck. Tapping the film produces a voltage output, which is visu-
ally indicated when the LED flashes. The 4066 IC is an analog switch. When a voltage is
applied to pin 3, the connection between pins 1 and 2 is completed and that finishes the
electrical circuit to light the LED. For a robotic application, you can connect the output to
a computer or microcontroller.
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CONSTRUCTING A KYNAR PIEZO BEND SENSOR

You can easily create a workable touch sensor by attaching one or two small Kynar trans-
ducers to a thick piece of plastic. The finished prototype sensor is depicted in Fig. 35.11.
The plastic membrane could be mounted on the front of a robot, to detect touch contact,
or even in the palm of the robot’s hand. Any flexing of the membrane causes a voltage
change at the output of one or both Kynar film pieces.

Other Types of “Touch” Sensors
The human body has many kinds of “touch receptors” embedded within the skin. Some
receptors are sensitive to physical pressure, while others are sensitive to heat. You may
wish to endow your robot with some additional touchlike sensors:

� Heat sensors can detect changes in the heat of objects within grasp. Heat sensors are
available in many forms, including thermisters (resistors that change their value
depending on temperature) and solid-state diodes that are specifically made to be ultra-
sensitive to changes in temperature. Chapter 39, “Fire Detection Systems,” discusses
using solid-state temperature sensors.

� Air pressure sensors can be used to detect physical contact. The sensor is connected to
a flexible tube or bladder (like a balloon); pressure on the tube or bladder causes air to
push into or out of the sensor, thereby triggering it. To be useful, the sensor should be
sensitive down to about one pound per square inch, or less.

� Resistive bend sensors, originally designed for use with virtual reality gloves, vary their
resistance depending on the degree of bending. Mount the sensor in a loop, and you can
detect the change in resistance as the loop is deformed by the pressure of contact.

� Microphones and other sound transducers make effective touch sensors. You can use
microphones, either standard or ultrasonic, to detect sounds that occur when objects
touch. Mount the microphone element on the palm of the gripper or directly on one of
the fingers or pinchers. Place a small piece of felt directly under the element, and
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cement it in place using a household glue that sets hard. Run the leads of the micro-
phone to the sound trigger circuit, which should be placed as close to the element as
possible.

From Here
To learn more about… Read

Designing and building robot hands Chapter 27, “Experimenting with Gripper
Designs”

Connecting sensors to computers and Chapter 29, “Interfacing with Computers and 
microcontrollers Microcontrollers”

Collision detection systems Chapter 36, “Collision Avoidance and Detection”

Building light sensors Chapter 37, “Robotic Eyes”

Fire, heat, and smoke detection for robotics Chapter 39, “Fire Detection Systems”
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FIGURE 35.11 The prototype Kynar piezo bend sensor.
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You’ve spent hundreds of hours designing and building your latest robot creation. It’s
filled with complex little doodads and precision instrumentation. You bring it into your liv-
ing room, fire it up, and step back. Promptly, the beautiful new robot smashes into the fire-
place and scatters itself over the living room rug. You remembered things like motor speed
controls, electronic eyes and ears, even a synthetic voice, but you forgot to provide your
robot with the ability to look before it leaps.

Collision avoidance and detection systems take many forms, and all of the basic sys-
tems are easy to build and use. In this chapter, we present a number of passive and active
detection systems you can use in your robots. Some of the systems are designed to detect
objects close to the robot (called near-object, or proximity, detection), and some are
designed to detect objects at distances of 10 feet or more (called far-object detection). All
use sensors of some type, which detect everything from light and sound to the heat radi-
ated by humans and animals.

Design Overview
Collision avoidance and collision detection are two similar but separate aspects of robot
design. With collision avoidance, the robot uses noncontact techniques to determine the
proximity and/or distance of objects around it. It then avoids any objects it detects.

36
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Collision detection concerns what happens when the robot has already gone too far, and
contact has been made with whatever foreign object was unlucky enough to be in the
machine’s path.

Collision avoidance can be further broken down into two subtypes: near-object detec-
tion and far-object detection. By its nature, all cases of collision detection involve making
contact with nearby objects. All of these concepts are discussed in this chapter.

Note: In this book I make a distinction between a robot hitting something in its path
(“collision”) and sensing its environment tactilely by using grippers or feelers (“touch”).
Both may involve the same kinds of sensors, but the goal of the sensing is different.
Collision sensing is reactive with an emphasis on avoidance; tactile sensing is active with
an emphasis on exploring. See Chapter 35, “Adding the Sense of Touch,” for additional
information on the sensors used for deliberate tactile feedback.

Additionally, robot builders commonly use certain object detection methods to navigate
a robot from one spot to the next. Many of these techniques are introduced here because
they are relevant to object detection, but we develop them more fully in Chapter 38,
“Navigating through Space.”

NEAR-OBJECT DETECTION

Near-object detection does just what its name implies: it senses objects that are close by,
from perhaps just a breath away to as much as 8 or 10 feet. These are objects that a robot
can consider to be in its immediate environment; objects it may have to deal with, and
soon. These objects may be people, animals, furniture, or other robots. By detecting them,
your robot can take appropriate action, which is defined by the program you give it. Your
‘bot may be programmed to come up to people and ask them their name. Or it might be
programmed to run away whenever it sees movement. In either case, it won’t be able to
accomplish either behavior unless it can detect objects in its immediate area.

There are two ways to effect near-object detection: proximity and distance:

� Proximity sensors care only that some object is within a zone of relevance. That is, if an
object is near enough in the physical scene the robot is looking at, the sensor detects it
and triggers the appropriate circuit in the robot. Objects beyond the proximal range of
a sensor are effectively ignored because they cannot be detected.

� Distance measurement sensors determine the distance between the sensor and whatev-
er object is within range. Distance measurement techniques vary; almost all have
notable minimum and maximum ranges. Few yield accurate data if an object is smack-
dab next to the robot. Likewise, objects just outside range can yield inaccurate results.
Large objects far away may appear closer than they really are; very close small objects
may appear abnormally larger than they really are, and so on.

Sensors have depth and breadth limitations: depth is the maximum distance an object can
be from the robot and still be detected by the sensor. Breadth is the maximum height and
width of the sensor detection area. Some sensors see in a relatively narrow zone, typically
in a conical pattern, like the beam of a flashlight. Light sensors are a good example. Adding
a lens in front of the sensor narrows the pattern even more. Other sensors have specific
breadth patterns. The typical passive infrared sensor (the kind used on motion alarms) uses
a Fresnel lens that expands the field of coverage on the top but collapses it on the bottom.
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This makes the sensor better suited for detecting human motion instead of cats, dogs, and
other furry creatures (humans being, on average, taller than furry creatures). The detector
uses a pyroelectric element to sense changes in heat patterns in front of it.

FAR-OBJECT DETECTION

Far-object detection focuses on objects that are outside the robot’s primary area of interest
but still within a detection range. A wall 50 feet away is not of critical importance to a
robot (conversely, the same wall one foot away is very important). Far-object detection is
typically used for area and scene mapping to allow the robot to get a sense of its environ-
ment. Most hobby robots don’t employ far-object detection because it requires fairly
sophisticated sensors, such as narrow-beam radar or pulsed lasers.

The difference between near- and far-object detection is relative. As the designer,
builder, and master of your robot, you get to decide the threshold between near and far
objects. Perhaps your robot is small and travels fairly slowly. In that case, far objects are
those 4 to 5 feet away; anything closer is considered “near.” With such a robot, you can
employ ordinary sonar distance systems for far-object detection, including area mapping.

In this chapter we’ll concentrate on near-object detection methods since traditional far-
object detection is beyond the reach and riches of most hobby robot makers (with the excep-
tion or sonar systems, which have a maximum range of about 30 feet). You may, if you wish,
employ near-object techniques to detect objects that are far away relative to the world your
robot lives in.

REMEMBERING THE KISS PRINCIPLE

Engineering texts like to tout the concept of KISS: “Keep It Simple, Stupid.” If the admo-
nition is intentionally insulting it is to remind all of us that usually the simple techniques
are the best. Of course, “simplicity” is relative. An ant is simple compared to a human
being, but so far no scientist has ever created the equivalent of a living ant (some cartoons
have come close: who remembers Atom Ant?).

KISS certainly applies to using robotic sensors for object detection. We’d all like to put
eyes on our robots to help them see the world the way we do. In fact, such eyes already exist
in the form of CCD and CMOS video imagers. They’re relatively cheap, too—less than $50
retail. What’s missing in the case of vision systems are ways to use the wealth of information
provided by the sensor. How do you make a robot differentiate between a can of Dr. Pepper
and Mrs. Johnson’s slobbering two-year-old —both of which are very wet when tipped over?

When you think about which object detection sensor or system to add to your robot, con-
sider the system’s relative complexity in relation to the rest of the project. If all your small ‘bot
needs is a bumper switch, then avoid going overboard with a $100 sonar system. Conversely,
if the context of the robot merits it, don’t under power your robot with inadequate sensors.
Larger, heavier robots cry out for more effective object-detection systems—if for no other rea-
son than to prevent injuring its master if your creation happens to run into you.

REDUNDANCY

Two heads are better than one? Maybe. One thing is for sure: two eyes are definitely bet-
ter than one. The same goes for ears and many other kinds of sensors. This is sensor 
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redundancy at work (having two eyes and ears also provides stereo vision or hearing,
which aids in perception). Sensor redundancy—especially for object detection—is not
intended primarily to compensate for system failure, the way NASA builds backups into
its space projects in case some key system fails 25,000 miles up in space. Rather, sensor
redundancy is meant as a way to “smooth out” and balance the results from sensors. If one
sensor says an object is 10 feet away and another says it’s a foot away, the robot’s control
computer knows something is amiss and can go about determining the truth.

With only one sensor the robot must blindly (excuse the pun) trust that the sensor data
is reliable. This is not a good idea because even for the best sensors data is not 100 percent
reliable. There are two kinds of redundancy:

� Same-sensor redundancy relies on two or more sensors of an identical type. Each
sensor more or less sees the same scene. You can use sensor data in either (or both)
of two ways: through statistical analysis or interpolation (my terms, for better or
worse). With statistical analysis, the robot’s control circuitry combines the input
from the sensors and uses a statistical formula to whittle the data to a most likely
result. For example, sensors with wildly disparate results may be rejected out of
hand, and the values of the remaining sensors may be averaged out. With interpola-
tion, the data of two or more sensors is combined and cross-correlated to provide a
kind of 3-D representation, just like having two eyes and two ears adds depth to our
visual and aural senses.

� Complementary-sensor redundancy relies on two or more sensors of different types.
Since the sensors are fundamentally different—for example, they use completely dif-
ferent collection methods, among other differences—the data from the sensors is always
interpolated. For instance, if a robot has both a sonar and an infrared distance-measur-
ing system, it uses both because it understands that for some kinds of objects the data
from the infrared system will be more reliable, and for other objects the data from the
sonar system will be more reliable.

Budget and time constraints will likely be the limiting factors in whether you employ
redundant sensor systems in your robots. So when combining sensors, do so logically:
consider which sensors complement others well and if they can be reasonably added. For
example, both sonar and infrared proximity sensors can use the same 40 kHz modula-
tion system. If you have one, adding the other need not be difficult, expensive, or time-
consuming.

Noncontact Near-Object Detection
Avoiding a collision is better than detecting it once it has happened. Short of building some
elaborate radar distance measurement system, the ways for providing proximity detection
to avoid collisions fall into two categories: light and sound. In the following section we’ll
take a closer look at several light- and sound-based techniques.
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SIMPLE INFRARED LIGHT PROXIMITY SENSOR

Light may always travel in a straight line, but it bounces off nearly everything. You can use
this to your advantage to build an infrared collision detection system. You can mount sev-
eral infrared “bumper” sensors around the periphery of your robot. They can be linked
together to tell the robot that “something is out there,” or they can provide specific details
about the outside environment to a computer or control circuit.

The basic infrared detector is shown in Fig. 36.1 (refer to the parts list in Table 36.1).
This uses an infrared LED and infrared phototransistor. A suitable interface circuit is also
shown. The output of the transistor can be connected to any number of control circuits. The
comparator circuit for the whisker switches will work nicely and will provide a go/no-go
output to a computer. Fig. 36.2 shows how the LED and phototransistor might be mounted
around the base of the robot to detect an obstacle like a wall, chair, or person.

Sensitivity can be adjusted by changing the value of R2; reduce the value to increase
sensitivity. An increase in sensitivity means that the robot will be able to detect objects far-
ther way. A decrease in sensitivity means that the robot must be fairly close to the object
before it is detected.
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FIGURE 36.1 The basic design of the infrared proximity sensor.

TABLE 36.1 PARTS LIST FOR INFRARED PROXIMITY SWITCH

R1 270-ohm resistor

R2 10K resistor

Q1 Infrared sensitive phototransistor

LED1 Infrared light-emitting diode

Misc. Infrared filter for phototransistor (if needed)

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance,
rated 35 volts or higher.

Ch36_McComb  8/29/00  8:33 AM  Page 573



Bear in mind that all objects reflect light in different ways. You’ll probably want to
adjust the sensitivity so the robot behaves itself best in a room with white walls. But that
sensitivity may not be as great when the robot comes to a dark brown couch or the coal
gray suit of your boss.

The infrared phototransistor should be baffled—blocked—from both ambient room
light as well as direct light from the LED. The positioning of the LED and phototransistor
is very important, and you must take care to ensure that the two are properly aligned. You
may wish to mount the LED-phototransistor pair in a small block of wood. Drill holes for
the LED and phototransistor.

Or, if you prefer, you can buy the detector pair already made up and installed in a sim-
ilar block. The device shown in Fig. 36.3 is a TIL139 (or equivalent) from Texas
Instruments. This particular component was purchased at a surplus store for about $1.

PASSIVE INFRARED DETECTION

You can use commonly available passive infrared detection systems to detect the proximity of
humans and animals. These systems, popular in both indoor and outdoor security systems,
work by detecting the change in infrared thermal heat patterns in front of a sensor. This
sensor uses a pair of pyroelectric elements that react to changes in temperature.
Instantaneous differences in the output of the two elements are detected as movement,
especially movement by a heat-bearing object, such as a human.

You can purchase pyroelectric sensors—commonly referred to as PIR, for passive
infrared—new or salvage them from an existing motion detector. When salvaging from an
existing detector, you can opt to unsolder the sensor itself and construct an amplification
circuit around the removed sensor, or you can attempt to “tap” into the existing circuit of
the detector to locate a suitable signal. Both methods are described next.

Using a new or removed-from-circuit detector Using a new PIR sensor is by far
the easiest approach since new PIR sensors will come with a data sheet from the manu-
facturer (or one will be readily available on the Internet). Some sensors—such as the Eltec
422—have built-in amplification, and you can connect them directly to a microcontroller
or computer. Others require extra external circuitry, including amplification and signal fil-
tering and conditioning.
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FIGURE 36.2 How the sensor is
used to test proxim-
ity to a nearby
object.
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If you prefer, you can attempt to salvage a PIR sensor from a discarded motion detec-
tor. Disassemble the motion detector, and carefully unsolder the sensor from its circuit
board. The sensor will likely be securely soldered to the board so as to reduce the effects
of vibration. Therefore, the unsoldered sensor will have fairly short connection leads.
You’ll want to resolder the sensor onto another board, being careful to avoid applying
excessive heat.

Fig. 36.4 shows a typical three-lead PIR device. The pinouts are not industry standard, but
the arrangement shown is common. Pin 1 connects to �V (often 5 volts); pin 2 is the output,
and pin 3 is ground. Physically, PIR sensors look a lot like old-style transistors and come in
metal cans with a dark rectangular window on top (see Fig. 36.5). Often, a tab or notch will
be located near pin 1. As even “unamplified” PIR sensors include an internal FET transistor
for amplification, the power connect and output of the sensor are commonly referred to by
their common FET pinout names of “drain” and “source”:

If the sensor incorporates an internal output amplifier and signal conditioner, its output
will be suitable for direct connection to a microcontroller or other logic input. A buffer cir-
cuit, like that shown in Fig. 36.6, is often recommended to increase input impedance. The
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FIGURE 36.3 The Texas Instruments TIL139 infrared emitter/detector sensor unit.
These types of units are often available on the surplus market.
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circuit uses an op amp in unity gain configuration. If the sensor you are using lacks a pre-
amplifier and signal condition, you can easily add your own with the basic circuit shown
in Fig. 36.7.

With both the circuits shown in Figs. 36.6 and 36.7 the ideal interface to a robot com-
puter or microcontroller is via an analog-to-digital converter (ADC). Many microcon-
trollers offer these onboard. If your control circuit lacks a built-in ADC, you can add one
using one of the approaches outlined in Chapter 29, “Interfacing with Computers and
Microcontrollers.”

The output of the PIR sensor will be a voltage between ground and �V. For example’s
sake, let’s assume the output will be the full 0–5 volts, though in practice the actual volt-
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FIGURE 36.4 Most PIR sensors are large, transistorlike devices with a
fairly common pinout arrangement. This is a block dia-
gram of how the typical PIR sensor works.

FIGURE 36.5 The PIR sensor has an infrared window on the top to let in infrared
heat radiated by objects. Movement of those objects is what the
sensor is made to detect, not just the heat from an object.
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age switch will be more restricted (e.g., 2.2 to 4.3 volts, depending on the circuitry you use).
Assuming a 0–5 vdc output, with no movement detected, the output of the sensor will be 2.5
volts. As movement is detected, the output will swing first in one direction, then the other. It’s
important to keep this action in mind; it is caused by the nature of the pyroelectric element
inside the sensor. It is also important to keep in mind that a heat source, even directly in front
of the sensor, will not be detected if it doesn’t move. For a PIR device to work the heat source
must be in motion. When programming your computer or microcontroller, you can look for
variances in the voltage that will indicate a rise or fall in the output of the sensor.

Hacking into a motion detector board Rather than unsolder the PIR sensor from
a motion detector unit, you may be able to hack into the motion detector circuit board to
find a suitable output signal. The advantage of this approach is that you don’t have to build
a new amplifier for the sensor. The disadvantage is that this can be hard to do depending
on the make and model of the motion control unit that you use.

For best results, use a motion detector unit that is battery powered. This avoids any possi-
bility that the circuit board in the unit also includes components for rectifying and reducing
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built-in output amplifier, you can construct
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an incoming AC voltage. After disassembling the motion detector unit, connect �5 vdc power
to the board. (Note: Some PIR boards operate on higher voltages, usually 9–12 volts. You may
need to increase the supply voltage to properly operate the board.) Using a multitester or oscil-
loscope (the scope is the preferred method) carefully probe various points on the circuit board
and observe the reading on the meter or scope. Wave your hand over the sensor and watch the
meter or scope. If you’re lucky, you’ll find two kinds of useful signals:

� Digital (on/off) output. The output will normally be LOW and will go HIGH when
movement is detected. After a brief period (less than one second), the output will go
LOW again when movement is no longer detected. With this output you do not need to
connect the sensor to an analog-to-digital converter.

� Analog output. The output, which will vary several volts, is the amplified output of the
PIR sensor. With this output you will need to connect the sensor to an analog-to-digital
converter (or an analog comparator).

You may also locate a timed output, where the output will stay HIGH for a period of
time—up to several minutes—after movement is detected. This output is not as useful. Fig.
36.8 shows the innards of a hacked motion detector. In this model, I found a suitable ana-
log located near a diode; I then soldered a wire to that diode. If the PIR board you are using
operates with a 5 vdc supply, you can connect the wire you added directly to a micro-
processor or microcontroller input. If the PIR board operates from a higher voltage, use a
logic level translation circuit (see Appendix D for ideas), or connect the wire you added
from the PIR board to the coil terminals of a 9 or 12 volt reed relay.

Use care when poking around inside the motion detector. In one unit I tried to hack I
accidentally shorted out two pins of an IC, which promptly wrecked the device.
Fortunately, I was still able to salvage the PIR sensor itself, so all was not lost.

Using a focusing lens PIR sensors work by detecting electromagnetic radiation in
the infrared region, especially about 5 to 15 micrometers (5000 to 15,000 nanometers).
Infrared radiation in this part of the spectrum can be focused using optics for visible light.
While you can use a PIR device without focusing, you’ll find range and sensitivity are
greatly enhanced when you use a lens. Most motion detectors use a specially designed
Fresnel lens to focus infrared radiation. The lens, a piece of plastic with grooves, is made
to gather more light at the top than at the bottom. With this geometry, when the sensor is
mounted high and pointing down the motion detector is more sensitive to movement far-
ther away than right underneath.

If you’ve gotten your PIR sensor by hacking a motion detector, you can use the same
Fresnel lens for your robot. You may wish to invert the lens from its usual orientation
(because your robot will likely be near the ground, looking up). Or, you can substitute an
ordinary positive diopter lens and mount it in front of the PIR sensor. Chapter 37, “Robotic
Eyes,” has more information on the use and proper mounting of lenses. Note that, oddly
enough, plastic lenses are probably a better choice than glass lenses. Several kinds of glass
actively absorb infrared radiation, as do optical coatings applied to finer quality lenses. You
may need to experiment with the lens material you use or else obtain a specialty lens
(either regular or Fresnel) designed for use with PIR devices.

578 COLLISION AVOIDANCE AND DETECTION

Ch36_McComb  8/29/00  8:33 AM  Page 578



ULTRASONIC SOUND

Like light, sound has a tendency to travel in straight lines and bounce off any object in its path.
You can use sound waves for many of the same things that light can be used for, including
detecting objects. High-frequency sound beyond human hearing (ultrasonic) can be used to
detect both proximity to objects as well as distance. In Chapter 38 you’ll learn how to use an
ultrasonic system to measure distance. The project in this section details a simple ultrasonic
transmitter and receiver that you can use to detect proximity to nearby objects.

In operation, ultrasonic sound is transmitted from a transducer, reflected by a nearby object,
then received by another transducer. The advantage of using sound is that it is not sensitive to
objects of different color and light-reflective properties. Keep in mind, however, that some
materials reflect sound better than others and that some even absorb sound completely. In the
long run, however, proximity detection with sound is a more foolproof approach.

This system is adaptable for use with either a single transmitter/receiver pair or multi-
ple pairs. Ultrasonic transmitter and receiver transducers are common finds in the surplus
market and even new cost under $5 each (depending on make and model). Ultrasonic
transducers are available from a number of retail and surplus outlets; see Appendix B,
“Sources,” for a more complete list of electronics suppliers.

You can also mount a single pair of transducers on a scanning platform (also called a
turret or carousel), as shown in Fig. 36.9. The scanner can be operated using a standard RC
servo (see Chapter 20, “Working with Servo Motors,” for more information).
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FIGURE 36.8 A hacked PIR detector, showing the DC-operated circuit board.
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Figs. 36.10 and 36.11 show a basic circuit you can build that provides ultrasonic prox-
imity detection and has two parts: a transmitter and a receiver (refer to the parts list in
Tables 36.2 and 36.3). The transmitter circuit works as follows: a stream of 40 kHz pulses
are produced by a 555 timer wired up as an astable multivibrator.

The receiving transducer is positioned two or more inches away from the transmitter
transducer. For best results, you may wish to place a piece of foam between the two trans-
ducers to eliminate direct interference. The signal from the receiving transducer needs to
be amplified; an op amp (such as an LM741, as shown in Fig. 36.11) is more than suffi-
cient for the job. The amplified output of the receiver transducer is directly connected to
another 741 op amp wired as a comparator. The ultrasonic receiver is sensitive only to
sounds in about the 40 kHz range (± about 4 kHz).

The closer the ultrasonic sensor is to an object, the stronger the reflected sound will be.
(Note, too, that the strength of the reflected signal will also vary depending on the mater-
ial bouncing the sound.) The output of the comparator will change between LOW and
HIGH as the sensor is moved closer to or farther away from an object.

Once you get the circuit debugged and working, adjust potentiometer R2, on the op
amp, to vary the sensitivity of the circuit. You will find that, depending on the quality of
the transducers you use, the range of this sensor is quite large. When the gain of the op
amp is turned all the way up, the range may be as much as six to eight feet. (The op amp
may ring, or oscillate, at very high gain levels, so use your logic probe to choose a sensi-
tivity just below the ringing threshold.)
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FIGURE 36.9 Ultrasonic sensors mounted on an RC servo scanner turret.
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Contact Detection
A sure way to detect objects is to make physical contact with them. Contact is perhaps the
most common form of object detection and is often accomplished by using simple switch-
es. In this section we’ll review several contact methods, including “soft-contact” tech-
niques where the robot can detect contact with an object using just a slight touch.

PHYSICAL CONTACT BUMPER SWITCH

An ordinary switch can be used to detect physical contact with an object. So-called
“bumper switches” are spring-loaded push-button switches mounted on the frame of the
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robot, as shown in Fig. 36.12. The plunger of the switch is pushed in whenever the robot
collides with an object. Obviously, the plunger must extend farther than all other parts of
the robot. You may need to mount the switch on a bracket to extend its reach.

The surface area of most push-button switches tends to be very small. You can enlarge the
contact area by attaching a metal or plastic plate or a length of wire to the switch plunger. A
piece of rigid 1/16-inch thick plastic or aluminum is a good choice for bumper plates. Glue
the plate onto the plunger. Low-cost push-button switches are not known for their sensitivity.
The robot may have to crash into an object with a fair amount of force before the switch makes
positive contact, and for most applications that’s obviously not desirable.

Leaf switches require only a small touch before they trigger. The plunger in a leaf
switch (often referred to as a Microswitch, after the manufacturer that made them popular)
is extra small and travels only a few fractions of an inch before its contacts close. A metal
strip, or leaf, attached to the strip acts as a lever, further increasing sensitivity. You can
mount a plastic or metal plate to the end of the leaf to increase surface area. If the leaf is
wide enough, you can use miniature 4/40 or 3/38 hardware to mount the plate in place.
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TABLE 36.3 PARTS LIST FOR ULTRASONIC PROXIMITY RECEIVER.

IC1,IC2 741 op amp IC

R1,R8 330 ohm resistor

R3,R4,R6,R7 10K resistor

R2 100K potentiometer

R5 1K resistor

C1,C2 0.01 µF ceramic capacitor

TR1 Ultrasonic receiver transducer (40kHz nominal)

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance,
rated 35 volts or higher.

TABLE 36.2 PARTS LIST FOR ULTRAPROXIMITY TRANSMITTER.

IC1 555 Timer IC

Q1 2N2222 NPN transistor

R1 1K resistor

R2 5K resistor

R3 1.2K resistor

R4 2.2K resistor

C1 0.1 µF ceramic capacitor

C2 0.0033 µF monolithic, mica, or ceramic capacitor

TR1 Ultrasonic transmitter transducer (40 kHz nominal)
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WHISKER

Many animal experts believe that a cat’s whiskers are used to measure space. If the
whiskers touch when a cat is trying to get through a hole, it knows there is not enough
space for its body. We can apply a similar technique to our robot designs—whether or not
kitty whiskers are actually used for this purpose.

You can use thin 20- to 25-gauge piano or stove wire for the whiskers of the robot.
Attach the wires to the end of switches, or mount them in a receptacle so the wire is sup-
ported by a small rubber grommet.

By bending the whiskers, you can extend their usefulness and application. The com-
mercially made robot shown in Fig. 36.13, the Movit WAO, has two whiskers that can be
rotated in their switch sockets. When the whiskers are positioned so the loop is vertical
they can detect changes in topography to watch for such things as the edge of a table, the
corner of a rug, and so forth.

A more complex whisker setup is shown in Fig. 36.14. Two different lengths of whiskers
are used for the two sides of the robots. The longer-length whiskers represent a space a few
inches wider than the robot. If these whiskers are actuated by rubbing against an object but
the short whiskers are not, then the robot understands that the pathway is clear to travel but
space is tight.

The short whiskers are cut to represent the width of the robot. Should the short whiskers
on only one side of the robot be triggered, then the robot will turn the opposite direction
to avoid the obstacle. If both sides of short whiskers are activated, then the robot knows
that it cannot fit through the passageway, and it either stops or turns around.

Before building bumper switches or whiskers into your robot, be aware that most elec-
tronic circuits will misbehave when they are triggered by a mechanical switch contact. The
contact has a tendency to “bounce” as it closes and opens, so it needs to be conditioned.
See the debouncing circuits in Chapter 29 for ways to clean up the contact closure so
switches can directly drive your robot circuits.

PRESSURE PAD

In Chapter 35 you learned how to give the sense of touch to robot fingers and grippers.
One of the materials used as a touch sensor was conductive foam, which is packaged with
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Frame

Plunger switch

FIGURE 36.12 An SPST spring-loaded plunger
switch mounted in the frame or body
of the robot, used as a contact sen-
sor. Experiment with different shapes
and sizes for the plunger.
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most CMOS and microprocessor ICs. This foam is available in large sheets and is perfect
for use as collision detection pressure pads. Radio Shack sells a nice five-inch square pad
that’s ideal for the job.

Attach wires to the pad as described in Chapter 35, and glue the pad to the frame or skin
of your robot. Unlike fingertip touch, where the amount of pressure is important, the
salient ingredient with a collision detector is that contact has been made with something.
This makes the interface electronics that much easier to build.

Fig. 36.15 shows a suitable interface for use with the pad (refer to the parts list in Table
36.4). The pad is placed in series with a 3.3K resistor between ground and the positive sup-
ply voltage to form a voltage divider. When the pad is pressed down, the voltage at the out-
put of the sensor will vary. The output of the sensor, which is the point between the pad
and resistor, is applied to the inverting pin of a 339 comparator. (There are four separate
comparators in the 339 package, so one chip can service four pressure pads.) When the
voltage from the pad exceeds the reference voltage supplied to the comparator, the com-
parator changes states, thus indicating a collision.

The comparator output can be used to drive a motor direction control relay or can be
tied directly to a microprocessor or computer port. Follow the interface guidelines provid-
ed in Chapter 29.

MULTIPLE BUMPER SWITCHES

What happens when you have many switches or proximity devices scattered around the
periphery of your robot? You could connect the output of each switch to the computer, but
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FIGURE 36.13 The Movit WAO robot (one of the older models, but the newer
ones are similar). Its two tentacles, or whiskers, allow it to navi-
gate a space.
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that’s a waste of interface ports. A better way to do it is to use a priority encoder or multi-
plexer. Both schemes allow you to connect several switches to a common control circuit.
The robot’s microprocessor or computer queries the control circuit instead of the individ-
ual switches or proximity devices.

Using a priority encoder The circuit in Fig. 36.16 uses a 74148 priority encoder IC.
Switches are shown at the inputs of the chip. When a switch is closed, its binary equiva-
lent appears at the A-B-C output pins. With a priority encoder, only the highest value
switch is indicated at the output. In other words, if switch 4 and 7 are both closed, the out-
put will only reflect the closure of pin 4.

Another method is shown in Fig. 36.17. Here, a 74150 multiplexer IC is used as a
switch selector. To read whether a switch is or not, the computer or microprocessor applies
a binary weighted number to the input select pins. The state of the desired input is shown
in inverted form at the Out pin (pin 10). The advantage of the 74150 is that the state of any
switch can be read at any time, even if several switches are closed.
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Whisker

Leaf switch

Grommet
(for holding whisker)

Mounting bolt

Left whisker Right whisker

B

A

Vibration or movement
causes switch activation

FIGURE 36.14 Adding whiskers to a robot. a. Whiskers attached to
the dome of the Minibot (see Chap. 8); b. Construction
detail of the whiskers and actuation switches.
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Using a resistor ladder If the computer or microcontroller used in your robot has an
analog-to-digital converter (ADC) or you don’t mind adding one, you can use another tech-
nique for interfacing multiple switches: the resistor ladder. The concept is simple, as Fig.
36.18 shows. Each switch is connected to ground on one side and to V� in series with a
resistor on the other side. Multiple switches are connected in parallel to an ADC input, as
depicted in the figure. The resistors form a voltage divider. Each resistor has a different
value, so when a switch closes the voltage through that switch is uniquely different.

Note that because the resistors are in parallel, you can close more than one switch at
one time. An “in-between” voltage will result. Feel free to experiment with the values of
the resistors connected to each switch to obtain maximum flexibility.

“Soft Touch” and Compliant Collision
Detection
The last nickname you’d want for your robot is “Bull in a China Closet,” a not too flatter-
ing reference to your automaton’s habit of crashing into and breaking everything.
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FIGURE 36.15 Converting the output of a conductive foam
pressure sensor to an on/off type switch output.

RAPressure
sensor
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+
IC1

339 (1/4)
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2

12

3

+5V

OutputR1
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R3
10K

R3
10K

TABLE 36.4 PARTS LIST FOR PRESSURE SENSOR BUMPER SWITCH.

IC1 LM339 Quad Comparator IC

R1 3.3K resistor

R2 10K potentiometer

R3 10K resistor

Misc Conductive foam pressure transducer (see text)
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Unfortunately, even the best behaved robots occasionally bump into obstacles, including
walls, furniture, and the cat (your robot can probably survive a head-on collision with a
solid wall, but the family feline . . . maybe not!).

Since it’s impractical—not to mention darn near impossible—to always prevent your
robot from colliding with objects, the next best thing is to make those collisions as “soft”
as possible. This is done using so-called soft touch or compliant collision detection means.
Several such approaches are outlined here. You can try some or all; mixing and matching
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FIGURE 36.17 Multiple switch detection using a 74150 multiplexer IC.
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sensors on one robot is not only encouraged, it’s a good idea. As long as the sensor redun-
dancy does not unduly affect the size, weight, or cost of the robot, having “backups” can
make your robot a better behaved houseguest.

Laser Fiber “Whiskers”
You know about fiber optics: they’re used to transmit hundreds of thousands of phone calls
through a thin wire. They’re also used to connect together high-end home entertainment
gear and even to make “light sculpture” art. On their own, optical fibers offer a wealth of
technical solutions, and when combined with a laser, optical fibers can do even more.

The unique “whiskers” project that follows makes use of a relatively underappreciated
(and often undesirable) synergy between low-grade optical fibers and lasers. To fully under-
stand what happens to laser light in an optical fiber, let’s first take a look at how fiber optics
work and then how the properties of laser light play a key role in making the fiber optic robo-
whiskers function.

FIBER OPTICS: AN INTRODUCTION

An optical fiber is to light what PVC pipe is to water. Though the fiber is a solid, it chan-
nels light from one end to the other. Even if the fiber is bent, the light follows the path,
altering its course at the bend and traveling on. Because light acts as an information carri-
er, a strand of optical fiber no bigger than a human hair can carry the same amount of data
as some 900 copper wires.

The idea for optical fibers is over 100 years old. British physicist John Tyndall once
demonstrated how a bright beam of light was internally reflected through a stream of water
flowing out of a tank. Serious research into light transmission through solid material start-
ed in 1934, when Bell Labs was issued a patent for the light pipe. In the 1950s, the
American Optical Corporation developed glass fibers that transmitted light over short dis-
tances (a few yards). The technology of fiber optics really took off around 1970 when sci-
entists at Corning Glass Works developed long-distance optical fibers.

Optical fibers are composed of two basic materials, as illustrated in Fig. 36.19: the core
and the cladding. The core is a dense glass or plastic material that the light actually pass-
es through as it travels the length of the fiber. The cladding is a less dense sheath, also of
plastic or glass, that serves as a refracting medium. An optical fiber may or may not have
an outer jacket, a plastic or rubber insulation used as protection.

Optical fibers transmit light by total internal reflection (TIR), as shown in Fig. 36.20.
Imagine a ray of light entering the end of an optical fiber strand. If the fiber is perfectly
straight, the light will pass through the medium just as it passes through a plate of glass. But
if the fiber is bent slightly, the light will eventually strike the outside edge of the fiber. If the
angle of incidence is great (more than the so-called critical angle), the light will be reflected
internally and will continue its path through the fiber. But if the bend is large and the angle of
incidence is small (less than the critical angle), the light will pass through the fiber and be lost.

Note the cone of acceptance, as shown in Fig. 36.20; the cone represents the degree to
which the incoming light can be off axis and still make it into the fiber. The cone of 

LASER FIBER “WHISKERS” 589

Ch36_McComb  8/29/00  8:33 AM  Page 589



acceptance (usually 30°) of an optical fiber determines how far the light source can be
from the optical axis and still manage to make it into the fiber. Though the cone of accep-
tance may be great, fiber optics perform best when the light source (and detector) are-
aligned to the optical axis.

TYPES OF OPTICAL FIBERS

The classic optical fiber is made of glass, otherwise known as silica (which is plain ol’
sand). Glass fibers tend to be expensive and are more brittle than stranded copper wire.
But they are excellent conductors of light, especially light in the infrared region between
850 and 1300 nanometers (nm).

Less expensive optical fibers are made of plastic. Though light loss through plastic
fibers is greater than through glass fibers, they are more durable. Plastic fibers are best
used in communications experiments with near-infrared light sources—the 780 to 950 nm
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FIGURE 36.19 The physical makeup of an optical fiber, con-
sisting of core and cladding.

Totally reflected ray

Lost rays outside
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FIGURE 36.20 Light travels through optical fibers due to a process
called total internal reflection (TIR).
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range. This nicely corresponds to the output wavelength and sensitivity of common
infrared emitters and detectors.

Optical fiber bundles may be coherent or incoherent. These terms relate to the arrange-
ment of the individual strands in the bundle. If the strands are arranged so that the fibers
can transmit an image from one end to the other, they are said to be coherent. The vast
majority of optical fibers are incoherent: an image or particular pattern of light is lost
when it reaches the other end of the fiber.

The cladding used in optical fibers may be one of two types—step-index and graded-
index. Step-index fibers provide a discrete boundary between more dense and less dense
regions of core and cladding. They are the easiest to manufacture, but their design causes
a loss of ray coherency when laser light passes through the fiber: that is, coherent light in,
largely incoherent light out. The loss of coherency, which is due to light rays traveling
slightly different paths through the fiber, reduces the efficiency of the laser beam. Still, it
offers some very practical benefits, as you’ll see later in this chapter.

There is no discrete refractive boundary in graded-index fibers. The core and cladding
media slowly blend, like an exotic tropical drink. The grading acts to refract light evenly,
at any angle of incidence. This preserves coherency and improves the efficiency of the
fiber. As you might have guessed, graded-index optical fibers are the most expensive of
the bunch.

WORKING WITH FIBER OPTICS

Optical fibers may be cut with wire cutters, nippers, or even a knife. But you must exer-
cise care to avoid injuring yourself from shards of glass that may fly out when the fiber is
cut (plastic fibers don’t shatter when cut). Wear heavy cotton gloves and eye protection
when working with optical fibers. Avoid working with fibers around food-serving or 
-preparation areas (that means stay out of the kitchen!). The bits of glass may inadvertent-
ly settle on food, plates, or eating utensils and could cause bodily harm.

One good way to cut glass fiber is to gently nick it with a sharp knife or razor, then snap
it in two. Position the thumb and index finger of both hands as close to the nick as possi-
ble, then break the fiber with a swift downward motion (snapping upward increases the
chance that glass shards will fly off in your direction).

BUILDING THE LASER-OPTIC WHISKER

Consider the arrangement in Fig. 36.21. A laser is pointed at one end of a stepped-index
optical fiber. The fiber forms one or more loops around the front, side, or back of the robot.
At the opposite end of the fiber is an ordinary phototransistor or photodiode (I’ll just refer
to it as a photodetector for now and not worry what kind it is). When the laser is turned on,
the photodetector registers a certain voltage level from the laser light, say 2.5 volts. This is
the quiescent level.

When one or more of the loops of the fiber are deformed—the robot has touched a per-
son or thing, for instance—the laser light passing through the fiber is diverted in its path,
and this changes the interference patterns at the photodetector end. The change in light
level received by the photodetector does not span a very wide range, perhaps one volt total.
But this one volt is enough to not only determine when the robot has touched an object but
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the relative intensity of the collision. The more the robot has “connected” to some object, the
more the fibers will deform and the greater the output change of the light as it reaches the
photodetector.

The key benefit of the laser-optic whisker system is that a collision can be detected with
just a feather touch. In fact, your robot may know when it’s bumped into you before you
do! Since contact with the robot is through a tiny piece of plastic, there’s little chance the
machine will damage or hurt anything it bumps into. The whiskers can protrude several
inches from the body of the robot and omnidirectionally, if you desire. In this way it will
sense contact from any direction.

Fig. 36.22 shows a prototype of this technique that consists of a hacked visible light
penlight laser, several strands of cheap (very cheap) stepped-index optical fibers, and a set
of three phototransistors. The optical fibers are tied together in a bundle using a small brass
collar, electrical tape, and tie-wrap. This bundle is then inserted into the opening of the
penlight laser and held in place with a sticky-back tie-wrap connector (available at Radio
Shack and many other places).

On the opposite ends of the optical fibers are #18 crimp-type bullet connectors. These
are designed to splice two #18 or #20 wires together, end to end. I (carefully) crimped them
onto the ends of the fibers, so they act as plug-in connectors. As shown in Fig. 36.23, these
ersatz connectors plug into makeshift “optical jacks,” which are nothing more than 1/4-
inch-diameter by 3/8-inch aluminum tubing. The tubing is glued over the ends of the pho-
totransistors and the phototransistors are soldered near the edge of the protoboard.

Refer to Fig. 36.24 for a schematic wiring diagram of a power regulator for the penlight
laser. Note the zener diode voltage regulator. The laser I used was powered by two AAA
batteries, or roughly three volts. Diode lasers are sensitive to high input voltage, and many
will burn out if fed a higher voltage than they are designed for. The penlight laser con-
sumes less than about 30 mA. An alternative is to use three signal diodes (e.g. 1N4148) in
series between the �V and the input of the laser to drop the 5 vdc voltage to about 2.7–3.0
volts. The diodes you use should be rated for 1/4-watt or higher.

INTERFACING THE PHOTODETECTORS

The output of a phototransistor is close to the full 0–5-volt range of the circuit’s supply
range. You’ll want your robot to be able to determine the intensity changes as the whiskers
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FIGURE 36.21 The basic parts
of a laser-optic
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bump against objects. If you’re using a computer or microcontroller to operate your robot,
this means you’ll need to convert the analog signal produced by the detectors into a digi-
tal signal suitable for the brains on your ‘bot. Several popular microcontrollers, such as the
BasicX-24, OOPic, and 68HC11, have analog-to-digital converter (ADC) ports built in. If
your computer or controller doesn’t have ADC inputs, you can add an outboard ADC using
an ADC0809 or similar chips. See Chapter 29 for more information on interfacing an ana-
log signal to a digital input by way of an analog-to-digital converter.

CREATING THE WHISKER LOOPS

Okay, so the laser-optic whisker system may not use cat-type whiskers with ends that stick
out. Still, the word whisker aptly describes the way the system works. If something even
so much as brushes lightly against the whisker, the light reaching the photodetector will
change, and your robot can react accordingly.
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FIGURE 36.22 The prototype laser-optic sensor, showing the loose fibers (on
the robot these fibers are neatly looped to create a kind of sen-
sor antenna).

Fiber optic strand

Bullet connector

Aluminum tubing

Phototransistor

FIGURE 36.23 Use short lengths of aluminum tubing, available at
hobby stores, and a crimp-on bullet connector to create
“optical jacks” for the laser-optic whisker system.
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The prototype system for this book used three “whiskers,” all of which were formed into
three small loops around the front and two sides of the test robot. The loops can he held in
place with small screws, dabs of glue (don’t use hot-melt glue!), or even LEGO parts
should your robot be constructed with them. When forming the loops don’t make them too
tight. The more compliant the loops are, the more they will detect small amounts of pres-
sure. If the loops are very tight, the fibers become rigid and not very compliant. This
reduces the effectiveness of the whiskers.

At the same time, the loops should not be so loose that they tend to wobble or flap while
the robot is in motion. Should this occur, the natural vibration and movement of the fiber
will cause false readings. A loop diameter of from 4 to 6 inches should be sufficient given
optical fiber pieces of average diameter and stiffness. Experiment with the optical fibers
you obtain for the project. Your laser-optic whisker system does not need to use three sep-
arate fiber strands. One strand may be enough, especially if the robot is small. I elected to
use three so the robot could independently determine in which direction (left, front, right)
a collision or bump had occurred.

GETTING THE RIGHT KIND OF OPTICAL FIBER

Perhaps the hardest part of constructing this project is finding the right kind of optical
fiber. You want to avoid any kind of graded-index fiber (described earlier) because these
will not produce the internal interference patterns that the project depends on. In essence,
what you want is the cheapest, lousiest fiber-optic strands you can find. The kind designed
for “light fountain art” (popular in the early 1970s) is ideal. You do not want to use data
communications-grade optical fiber.

Before you buy miles of optical fiber, test a two-foot strand with a suitable diode laser
and phototransistor. Loop the fiber and tape it snugly to your desk or workbench. Connect
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the phototransistor to a sensitive volt-ohm meter or, better yet, an oscilloscope. Gently
touch the fiber loops to deform them. You should observe a definite change of output in
the phototransistor. If you do not, examine your setup to rule out a wiring error, and try
again. Turn the laser off momentarily and observe the change in output.

WORKING WITH LASER DIODES

Penlight lasers can be easily hacked for a wide variety of interesting robot projects—the
soft-touch fiber-optic whisker is just one of them. Penlight lasers use a semiconductor las-
ing element. While these elements are fairly hearty, they do require certain handling pre-
cautions. And even though they are small, they still emit laser light that can be potentially
dangerous to your eyes. So keep the following points in mind:

� Always make sure the terminals of a laser diode are connected properly to the drive
circuit.

� Never apply more than the rated voltage to the laser or it will burn up.
� Extend the same care to laser diodes that you do to any static-sensitive device. Wear an

antistatic wrist strap while handling the bare laser element, and keep the device in a pro-
tective, antistatic bag until it’s ready for use.

� Use only a grounded soldering pencil when attaching wires to the laser diode terminals.
Limit soldering duration to less than five seconds per terminal.

� Never connect the probes of a volt-ohm meter across the terminals of a laser diode. The
current from the internal battery of the meter may damage the laser.

� Use only batteries or well-filtered AC power supplies. Laser diodes are susceptible
to voltage transients and can be ruined when powered by poorly filtered line-operat-
ed supplies.

� Take care not to short the terminals of the laser during operation.
� Avoid looking into the window of the laser while it is operating, even if you can’t see

any light coming out (is the diode the infrared type?).
� Unless otherwise specified by the manufacturer, clean the output window of the laser

diode with a cotton swab dipped in ethanol. Alternatively, you can use optics-grade lens
cleaning fluid.

� If you are using a laser from a laser penlight, bear in mind that the penlight casing acts
as a heat sink. If you remove the laser from the penlight casing, be sure to attach the
laser to a suitable heat sink to avoid possible damage. If you keep the laser in the cas-
ing, there is usually no need to add the heat sink—the casing should be enough.

Piezo Disc Touch Bar
The laser-optic whisker system described earlier is a great way to detect even your robot’s
minor collisions. But it may be overkill in some instances, providing too much sensitivity
for a zippy little robot always on the go. The soft-touch collision sensor described in this
section, which uses commonly available piezo ceramic discs, is a good alternative to the
laser-optic whisker system for lower-sensitivity applications. This sensor is constructed
with a half-round bar to increase the area of contact.
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CONSTRUCTION OF THE PIEZO DISC TOUCH BAR

The main sensing elements of the piezo disc touch bar are two 1-inch-diameter bare
piezo ceramic discs. These discs are available at Radio Shack and many surplus elec-
tronics stores; they typically cost under $1 or $2 each, and you can often find them for
even less.

You attach the discs to a 6 1/2-inch long support bar, which you can make out of
plastic, even a long LEGO Technic beam. As shown in Fig. 36.25, you glue the discs
into place with 1/8-inch foam (available at most arts and craft stores) so it sticks to the
ceramic surface of the disc and acts as a cushion. You then bend a length of 1/8-inch-
diameter aluminum tubing (approximately 8–9 inches) into a half-circle; thread through
two small grommets, as shown in Fig. 36.25; and glue the grommets to the support bar.
You flatten the ends of the tubing and bend them at right angles to create a “foot”; the
foot rests on the foam-padded surface of the discs. Fig. 36.26 shows a photograph of a
finished piezo disc touch bar. The half-round tubing slopes downward slightly. This is
intentional, so the robot can adequately sense objects directly in front of it near 
the ground.

To construct the piezo disc touch bar I used hot-melt glue to attach the discs and grom-
mets to the support bar. You can use most any other adhesive or glue you wish, but be sure
it provides a good, strong hold for the different materials used in this project (metal, plas-
tic, and rubber).

CONSTRUCTING THE INTERFACE CIRCUIT

Piezo discs are curious creatures: when a voltage is applied to them, the crystalline ceram-
ic on the surface of the disc vibrates. It is the nature of piezoelectricity to be both a con-
sumer and a producer of electricity. When the disc is connected to an input, any physical
tap or pressure on the disc will produce a voltage. The exact voltage is approximately pro-
portional to the amount of force exerted on the disc: apply a little pressure or tap and you
get a little voltage. Apply a heavier pressure or tap, and you get a bigger voltage.

The piezoelectric material on ceramic piezo discs is so efficient that even a moderate-
ly strong force on the disc will produce in excess of 5 or 10 volts. That’s good in that it
makes it easy to interface the discs to a circuit, since there is usually no need to amplify
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Piezo disc

Bar

Foam

FIGURE 36.25 Glue the piezo discs to a piece of plastic; the
plastic is a support bar for the discs that also
makes it easier to mount the touch bar sensor
onto your robot.
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the signal. But it’s also bad in that the voltage from the disc can easily exceed the maxi-
mum inputs of the computer, microcontroller, or other electronic device you’re interfacing
with. (Pound on a piezo disc with a hammer, and, though it might be broken when you’re
done, it will also produce a thousand volts or more.)

To prevent damage to your support electronics, attach two 5.1-volt zener diodes as
shown in Fig. 36.27, to each disc of the touch bar. The zener diodes limit the output of the
disc to 5.1 volts, a safe enough level for most interface circuitry. For an extra measure of
safety, use 4.7-volt zeners instead of 5.1 volt.

Note that piezoelectric discs also make great capacitors. This means that over time the disc
will take a charge, and the charge will show up as a constantly changing voltage at the output
of the disc. To prevent this, insert a resistor across the output of the disc and ground. In my
experiments I found a resistor of about 82K eliminated the charge buildup without excessive-
ly diminishing the sensitivity of the disc. Experiment with the value of the resistor. A higher
value will increase sensitivity, but it could cause an excessive charge buildup. A lower value
will reduce the buildup but also reduce the sensitivity of the disc. It is also helpful to route the
output of the disc to an op amp, preferably through a 100K or higher resistor.

MOUNTING THE TOUCH BAR

Once you have constructed the piezo disc touch bar and added the voltage-limiting circuitry,
you can attach it to the body of the robot. The front of the robot is the likely choice, but you
can add additional bars to the sides and rear to obtain a near 360° sensing pattern. The width
of the bar makes it ideal for any robot that’s between about 8 and 14 inches wide.

PIEZO DISC TOUCH BAR 597

FIGURE 36.26 The finished prototype of the piezo disc touch bar. One variation
is to mount the discs a little lower so the metal bar physically
deforms the disc rather than pushes against its center.
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Since the sensing element of the touch bar, the aluminum tube, has a half-round shape,
the sensor is also suitable for mounting on a circular robot base. For added compliancy,
you may wish to mount the bar using a thick foam pad, spring, or shock absorber (shocks
made for model racing cars work well). If the bar is mounting directly to the robot the sen-
sor exhibits relatively little compliancy.

You should mount the bar at a height that is consistent with the kinds of objects the
robot is most likely to collide with. For a “wall-hugging” robot, for example, you may wish
to mount the bar low and ensure that the half-round tube slopes downward. That way, the
sensor is more likely to strike the baseboard at the bottom of the wall.

SOFTWARE FOR SENSING A COLLISION

Listing 36.1 shows a short sample program for reading the values provided by the piezo
disc touch bar. The program is written for the BASIC Stamp II microcontroller and
requires the addition of a one or more serial-output analog-to-digital converter chips (I
used an ADC0831 for my prototype). You need only one ADC if it has multiple inputs;
you’ll need two ADCs if the chips have but a single input. See the comments in the pro-
gram for hookup information.

LISTING 36.1.
' For the Basic Stamp II
' Uses an ADC081 serial ADC
Adress  var    byte     ' A-to-D result: one byte
CS      con    13       ' Chip select is pin 13
Adata   con    14       ' ADC data output is pin 14
CLK     con     15      ' Clock is pin 15
Vref    con     0       ' VRef

high Vref

high CS                      ' Deselect ADC to start

again:
low CS                                ' Activate ADC
shiftin AData,CLK,msbpost,[ADres\9]   ' Shift in the data
high CS                               ' Deactivate ADC
debug ? Adres                         ' Display result
pause 100                             ' Wait 1/10 second

goto again                                ' Repeat
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5.1 v zener

OutputFrom disc

5.1 v zener

FIGURE 36.27 A suitable inter-
face circuit for
connecting a
piezo disc to a
TTL-compatible
input or op amp.
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Other Approaches for Soft-touch
Sensors
There are several other approaches for using soft-touch sensors. For example, the resistive
bend sensor changes its resistance the more it is curved or bent. Positioned in the front of
your robot in a loop, the bend sensor could be used to detect the deflection caused by run-
ning into an object.

If you like the idea of piezoelectric elements but want a more localized touch sensor
than the touch bar described in the previous section, you might try mounting piezoelectric
material and discs on rubber or felt pads, or even to the “bubbles” of bubble pack shipping
material, to create “fingers” for your ‘bot.

From Here
To learn more about… Read

Connecting analog and digital sensors Chapter 29, “Interfacing with Computers and 
to computers, microcontrollers, Microcontrollers”
and other circuitry

Building and using sensors for tactile Chapter 35, “Adding the Sense of Touch”
feedback

Giving your robots the gift of sight Chapter 37, “Robotic Eyes”

Using sensors to provide navigation Chapter 38, “Navigating through Space”
assistance to mobile robots

FROM HERE 599
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Giving sight to your robots is perhaps the kindest thing you can do for them. Robotic
vision systems can be simple or complex to match your specific requirements and your
itch to tinker. Rudimentary “Cyclops” vision systems are used to detect nothing more than
the presence or absence of light. Aside from this rather mundane task, there are plenty of
useful applications for an on/off light detector. More advanced vision systems decode rel-
ative intensities of light and can even make out patterns and crude shapes.

While the hardware for making robot “eyes” is rather simple, using the vision information
they generate is not. Except for the one-cell light detector, vision systems must be interfaced
to a computer to be useful. You can adapt the designs presented in this chapter to just about
any computer using a microprocessor data bus or one or more parallel printer ports.

Simple Sensors for “Vision”
A number of simple electronic devices can be used as “eyes” for your robot. These include
the following:

� Photoresistors. These are typically a cadmium-sulfide (CdS) cell (often referred to sim-
ply as a photocell). A CdS cell acts like a light-dependent resistor: the resistance of the
cell varies depending on the intensity of the light striking it. When no light strikes 
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the cell, the device exhibits very high resistance, typically in the high 100 kilohms, or
even megohms. Light reduces the resistance, usually significantly (a few hundreds or
thousands of ohms). CdS cells are very easy to interface to other electronics, but they
are somewhat slow reacting and are unable to discern when light flashes more than 20
or 30 times per second. This trait actually comes in handy because it means CdS cells
basically ignore the on/off flashes of AC-operated lights.

� Phototransistors. These are very much like regular transistors with their metal or plastic
tops removed. A glass or plastic cover protects the delicate transistor substrate inside.
Unlike CdS cells, phototransistors are very quick acting and are able to sense tens of thou-
sands of flashes of light per second. The output of a phototransistor is not “linear”; that is,
there is a disproportionate change in the output of a phototransistor as more and more light
strikes it. A phototransistor can become easily “swamped” with too much light. Even as
more light shines on the device, the phototransistor is not able to detect any more change.

� Photodiodes. These are the simpler diode versions of phototransistors. Like phototran-
sistors, they are made with a glass or plastic cover to protect the semiconductor mater-
ial inside them. And like phototransistors, photodiodes are very fast acting and can
become “swamped” when exposed to a certain threshold of light. One common charac-
teristic of most photodiodes is that their output is rather low, even when fully exposed
to bright light. This means that to be effective the output of the photodiode must usual-
ly be connected to a small amplifier.

Photoresistors, photodiodes, and phototransistors are connected to other electronics in
about the same way: you place a resistor between the device and either �V or ground. The
point between the device and the resistor is the output, as shown in Fig. 37.1. With this
arrangement, all three devices therefore output a varying voltage. The exact arrangement
of the connection determines if the voltage output increases or decreases when more light
strikes the sensor.

Light-sensitive devices differ in their spectral response, which is the span of the visible
and near-infrared light region of the electromagnetic spectrum that they are most sensitive
to. CdS cells exhibit a spectral response very close to that of the human eye, with the great-
est degree of sensitivity in the green or yellow-green region (see Fig. 37.2). Both photo-
transistors and photodiodes have peak spectral responses in the infrared and near-infrared
regions. In addition, some phototransistors and photodiodes incorporate optical filtration
to decrease their sensitivity to the visible light spectrum. This filtration makes the sensors
more sensitive to infrared and near-infrared light.
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+V

Light sensor

Output

FIGURE 37.1 The basic connection scheme
for phototransistors, photodi-
odes, and photoresistors
uses a discrete resistor to
form a voltage divider. The
output is a varying voltage,
which can go from 0 to �V
depending on the sensor.
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One-Cell Cyclops
A single light-sensitive photocell is all your robot needs to sense the presence of light. The
photocell is a variable resistor that works much like a potentiometer but has no control
shaft. You vary its resistance by increasing or decreasing the light. Connect the photocell
as shown in Fig. 37.3. Note that, as explained in the previous section, a resistor is placed
in series with the photocell and that the output tap is between the cell and resistor. This
converts the output of the photocell from resistance to voltage, the latter of which is easi-
er to use in a practical circuit.

The value of the resistor is given at 3.3K ohms but is open to experimentation. You can
vary the sensitivity of the cell by substituting a higher or lower value. For experimental
purposes, connect a 1K resistor in series with a 50K pot (in place of the 3.3K ohm resis-
tor) and try using the cell at various settings of the wiper. Test the cell output by connect-
ing a volt-ohm meter to the ground and output terminals.

So far, you have a nice light-to-voltage sensor, and when you think about it there are
numerous ways to interface this ultrasimple circuit to a robot. One way is to connect the out-
put of the sensor to the input of a comparator. (The LM339 quad comparator IC is a good
choice, but you can use just about any comparator.) The output of the comparator changes
state when the voltage at its input goes beyond or below a certain “trip point.”

In the circuit shown in Fig. 37.4 (refer to the parts list in Table 37.1), the comparator is
hooked up so the noninverting input serves as a voltage reference. Adjust the potentiome-
ter to set the trip point. To begin, set it midway, then adjust the trip point higher or lower
as required. The output of the photocell circuit is connected to the inverting input of the
comparator. When the voltage at this pin rises above or below the set point, the output of
the comparator changes state.

One practical application of this circuit is to detect light levels that are higher than the
ambient light in the room. Doing so enables your robot to ignore the background light level
and respond only to the higher intensity light. To begin, set the trip point pot so the circuit

ONE-CELL CYCLOPS 603

Photodiode

1100 nm300 nm 700 nm

Human eye

CdS cell

FIGURE 37.2 Light sensors vary in their sensitivity to different colors
of the electromagnetic spectrum. The color sensitivity of
CdS cells is very similar to that of the human eye.
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3.3K

LD1

FIGURE 37.3 A one-cell robotic eye, using a CdS
photocell as a light sensor.
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FIGURE 37.4 How to couple the photocell to a comparator.

TABLE 37.1 PARTS LIST FOR SINGLE-CELL ROBOTIC EYE

IC1 LM339 Quad Comparator IC

R1 3.3K resistor

R2 10K potentiometer

R3 10K resistor

LD1 Photocell
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just switches HIGH. Use a flashlight to focus a beam directly onto the photocell, and watch
the output of the comparator change state. Another application is to use the photocell as a
light detector—period. Set the pot all the way over so the comparator changes state just
after light is applied to the surface of the cell.

Multiple-Cell Light Sensors
The human eye has millions of tiny light receptacles. Combined, these receptacles allow us to
discern shapes, to actually “see” rather than just detect light levels. A crude but surprisingly
useful implementation of human sight is given in Fig. 37.5 (refer to the parts list in Table 37.2).
Here, eight photocells are connected to a 16-channel multiplexed analog-to-digital converter
(ADC). The ADC, which has room for another eight cells, takes the analog voltages from the
outputs of each photocell and one by one converts them into digital data. The eight-bit binary
number presented at the output of the ADC represents any of 256 different light levels.

The converter is hooked up in such a way that the outputs of the photocells are converted
sequentially, in a row and column pattern, following the suggested mounting scheme shown
in Figs. 37.6 and 37.7. A computer hooked up to the A/D converter records the digital value
of each cell and creates an image matrix, which can be used to discern crude shapes.

Each photocell is connected in series with a resistor, as with the one-cell eye presented
earlier. Initially, use 2.2K resistors, but feel free to substitute higher or lower values to
increase or decrease sensitivity. The photocells should be identical, and for the best results,
they should be brand-new prime components. Before placing the cells in the circuit, test
each one with a volt-ohm meter and a carefully controlled light source. Check the resis-
tance of the photocell in complete darkness, then again with a light shining at it a specif-
ic distance away. Reject cells that do not fall within a 5 to 10 percent “pass” range. See
Chapter 29, “Interfacing with Computers and Microcontrollers,” for more information on
using ADCs and connecting them to computer ports and microprocessors.

Note the short pulse that appears at pin 13, the End-of-Conversion (EOC) Output. This
pin signals that the data at the output lines is valid. If you are using a computer or micro-
controller, you can connect this pin to an interrupt line (if available). Using an interrupt
line lets your computer do other things while it waits for the ADC to signal the end of a
conversion. See Chapter 42, “Tips, Tricks, and Tidbits for the Robot Experimenter,” for
basic information on using the hardware interrupt port on computers and microcontrollers.

You can get by without using the EOC pin—the circuit is easier to implement without
it—but you must set up a timing delay circuit or routine to do so. Simply wait long enough
for the conversion to take place—a maximum of about 115 µs (microseconds)—then read
the data. Even with a delay of 125 �s (to allow for settling, etc.), it takes no more than
about 200 milliseconds to read the entire matrix of cells.

Eyes from Static CMOS Memory
Long before solid-state (CCD and CMOS) camcorders and digital cameras became com-
mon, robot experimenters used to play around with static CMOS RAM (random access
memory), using modified chips as multicell eyes for their creations. Most all semiconduc-
tors are sensitive to light, even the memory matrix inside memory chips. By using static
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TABLE 37.2 PARTS LIST FOR MULTICELL ROBOTIC EYE.

IC1 ADC0816 8-bit analog-to-digital converter IC (okay to substitute another
multiplexing ADC, such as the ADC0817, etc.)

R1–R8 2.2K resistor (adjust value to gain best response of photocells)

R9,R10 2.2K resistors

LD–L8 Photocell

All resistors have 5 or 10 percent tolerance, 1/4-watt.

8 sensor "eye"

Photocell

1"

 2.5"

1/16" plastic
(painted gray or black)

FIGURE 37.6 Mounting the photocells for an eight-cell eye.

3"

 2.5"

16 sensor "eye"

FIGURE 37.7 Mounting the photocells
for a pair of four-cell
eyes.
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memory, you can keep the interface to the chip simple and straightforward. In fact, all you
need to do is connect some wires from the chip to your computer or microcontroller.

You can sometimes find static CMOS memory chips that have already been modified
for use as vision sensors. But if you cannot, you can make one yourself, using something
like the 1K x 4-bit 2114L memory chip. You need to find the kind that come in a ceramic
case, outfitted with a soldered metal lid. These were common in certain commercial,
industrial, and military applications years ago, and they should still be available at the bet-
ter electronics surplus stores. Aside from their use in ersatz robotic vision systems, these
chips have such a low memory capacity (and are dog slow, to boot!) that they really aren’t
useful for much else. So it’s a good idea to ask the store salespeople if they have any; this
is the kind of stuff that collects dust in a back room.

You’ll need to get the metal lid off in order to expose the semiconductor die inside the
chip. The best way to do this is with a small butane torch. Secure the chip in a metal vise,
and carefully apply even flame over the lid. After 5 to 10 seconds, the solder should melt.
Quickly remove the flame, and slip the lid all the way off. Take care not to disturb the die
or the connections inside the chip, or you’ll ruin it. Fig. 37.8 shows a static RAM chip with
its lid removed. Do not touch the removed metal lid, or the memory chip, until they have
cooled off!

Fig. 37.9 is a hookup schematic for linking the 2114 with the Basic Stamp II, using all
10 address lines and all four output lines. (Each of the four output lines is connected to an
LM308 precision op-amp, or requivalent.) Connect the 2114’s write enable (/WE) line to
pin 14 of the Stamp, and tie the chip select (/CS) low. The program in Listing 37.1 is a
demonstrator of how to read a few of the pixels inside the chip. For each memory address
you use you poll the four I/O lines. Though the listing shows only the use of the base
address of 0000000000 as a demonstration, you can extrapolate the concept to access all
of the memory locations in the chip. A logic 1 (HIGH) on an input line means high bright-
ness on the chip.

LISTING 37.1.

A0       CON       4
A1       CON       5
A2       CON       6
A3       CON       7
A4       CON       8
A5       CON       9
A6       CON       10
A7       CON       11
A8       CON       12
A9       CON       13
WE       CON       14

I used the 2114 because it was fairly common in its day and is still available in many sur-
plus outlets. However, just about any RAM chip will work. Static RAM is preferable
because it is easy to hook up, but you can also use dynamic RAM chips. Consult the
RAM chip’s data sheet for details on how to hook it up.)

608 ROBOTIC EYES
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Low WE             ' set write enable to low to start
Low A0             ' set all address lines to low (address 0000000000)
Low A1
Low A2
Low A3
Low A4
Low A5
Low A6
Low A7
Low A8
Low A9

' display data in debug window
Repeat_Loop:

HIGH WE
debug dec In0, tab, dec In1, tab, dec In2, tab, dec In3, cr
Low WE
Pause 150
Goto Repeat_Loop:

Because the 2114 chip is designed for RAM applications and not vision, the organiza-
tion of its memory cells is not ideal for rendering a visual scene. (It’s basically four long
rectangular blocks of 1K bit memory cells.) Each of the four outputs of any given address
is located on separate portions of the semiconductor die. To assemble a usable picture, you
will need to interlace the data from each of the four outputs.

Though the shape of the memory die in the 2114 makes for a poor video camera, it’s ideal
for such things as detecting patterns in reflected laser or focused infrared light. You could use
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FIGURE 37.8 A static RAM chip with its lid removed. Once the lid is off, the
semiconductor die inside can see the light of day, and any other
light for that matter.
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the 2114 to make your own highly accurate triangulation distance measurement system, akin
to the Sharp GP2D02 unit discussed in Chapter 38, “Navigating through Space.”

While semiconductor vision systems like the 2114 are cheap and relatively easy to use,
they suffer from rather poor sensitivity, so don’t expect to be able to use them in low-light
conditions! In fact, the scene scanned by the 2114 chip should be fairly well lit, and you
should outfit the chip with a suitable lens. Either a single-element lens as described in the
next section or a compound lens, like that used for security cameras, is ideal. The chip
exhibits narrow dynamic range, which means the output line will tend to snap all the way
HIGH with only a small change in brightness. This makes the 2114 and similar memory
chips best suited for controlled lighting conditions where you want high contrast.

If your robot is used in low-light situations, I recommend a conventional CCD or
CMOS imaging device. Black-and-white and color CCD cameras and imagers are now
routinely available for under $100. With a digital output like that demonstrated with the
2114, you can easily connect the camera or imaging chip directly to a computer or micro-
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FIGURE 37.9 How to connect the 2114 static RAM chip
to a Basic Stamp II. The hookup requires
that quite a number of connections be
made to the Stamp’s pins.
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processor. Sadly, more elaborate vision systems are just a wee bit beyond the scope of this
book (I had to draw the line somewhere). Fortunately, there are several ready-made prod-
ucts you can try that come complete with hookup diagrams and associated software. See
Appendix B, “Sources,” for additional information.

Using Lenses and Filters with Light-
sensitive Sensors
Simple lenses and filters can be used to greatly enhance the sensitivity, directionality, and
effectiveness of both single- and multicell-vision systems. By placing a lens over a small
cluster of light cells, for example, you can concentrate room light to make the cells more
sensitive to the movement of humans and other animate objects. The lens need not be com-
plex; an ordinary 1/2- to 1-inch-diameter magnifying lens, purchased new or surplus, is all
you need.

You can also use optical filters to enhance the operation of light cells. Optical filters
work by allowing only certain wavelengths of light to pass through and blocking the oth-
ers. CdS photocells tend to be sensitive to a wide range of visible and infrared light. You
can readily accentuate the sensitivity of a certain color (and thereby de-accentuate other
colors) just by putting a colored gel or other filter over the photocell.

In this section we’ll briefly review the roles of lenses and filters, and how you can use
them with light cells for your robots.

USING LENSES

Lenses are refractive media constructed so that light bends in a particular way. The two
most important factors in selecting a lens for a given application are lens focal length and
lens diameter:

� Lens focal length. Simply stated, the focal length of a lens is the distance between the
lens and the spot where rays are brought to a common point. (Actually, this is true of
“positive” lenses only; “negative” lenses behave in an almost opposite way, as we will
discuss later.)

� Lens diameter. The diameter of the lens determines its light-gathering capability. The
larger the lens is, the more light it collects.

There are six major types of lenses, shown in Fig. 37.10. Such combinations as plano-
convex and bi-concave refer to each side of the lens. A plano-convex lens is flat on one
side and curved outward on the other. A bi-concave lens curves inward on both sides.
“Negative” and “positive” refer to the focal point of the lens, as determined by its design.

Lenses form two kinds of images: real and virtual. A real image is one that is focused
to a point in front of the lens, such as the image of the sun focused to a small disc on a
piece of paper. A virtual image is one that doesn’t come to a discrete focus. You see a vir-
tual image behind the lens, as when you are using a lens as a magnifying glass. Positive
lenses, which magnify the size of an object, create both real and virtual images. Their focal
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length is stated as a positive number, such as �1 or �2.5. Negative lenses, which reduce
the size of an object, create only virtual images. Their focal length is stated as a negative
number.

Lenses are common finds in surplus stores, and you may not have precise control over
what you get. For robotics vision applications, plano-convex or double-convex lenses of
about 0.5 inch to 1.25 inch in diameter are ideal. Focal length should be fairly short—1 to
3 inches. When you are buying an assortment of lenses the diameter and focal length of
each lens is usually provided, but if they are not, use a tape to measure the diameter of the
lens and its focal length (see Fig. 37.11). Use any point source except the sun—focusing
the light of the sun onto a small point can cause a fire! (As if you’ve never done this…)

To use the lens, position it over the light cell(s) using any convenient mounting tech-
nique. One approach is to glue the lens to a plastic or wood lens board. Or, if the lens is
the correct diameter, you can mount it inside a short length of plastic PVC pipe; attach the
other end of the pipe to the light cells. Be sure you block out stray light. You can use black
construction paper to create light baffles. This will make the robot only “see” the light
shining through the lens. If desired, attach a filter over the light cells. You can use a dab of
glue to secure the filter in place.

Using Fig. 37.6 as a guide, you can create a kind of two-eyed robot by placing a lens
over each group of four photocells. The lenses are mounted in front of the photocells,
which are secured to a circuit board in two groups of four. For one project I used minia-
ture photocells in TO-8 packages. These measure about 1/8 inch in diameter, and while
they can be difficult to work with (avoid soldering them to your circuit board!) their small
size is ideal for constructing compact multicell vision systems.

Each of the eight cells is connected to a separate input of an eight-input analog-to-dig-
ital converter (ADC) chip. By using an eight-input ADC, the values of all eight cells can
be readily sensed without the need for separate ADC chips and extra wiring.

USING FILTERS

Filters accept light at certain wavelengths and block all others. A common filter used in
robot design is intended to pass infrared radiation and block visible light. Such filters are
commonly used in front of phototransistors and photodiodes to block out unwanted ambi-
ent (room) light. Only infrared light—from a laser diode, for instance—is allowed to pass
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through and strike the sensor. Optical filters come in three general forms: colored gel,
interference, and dichroic:

� Colored gel filters are made by mixing dyes into a Mylar or plastic base. Good gel fil-
ters use dyes that are precisely controlled during manufacture to make filters that pass
only certain colors. Depending on the dye used, the filter is capable of passing only a
certain band of wavelengths. A good gel filter may have a bandpass region (the spec-
trum of light passed) of 40 to 60 nanometers (nm). Considering that the range of visi-
ble light ranges from about 400 to a little over 700 nm, an average bandpass region of
50 nm is roughly 15 percent of the visible light band. That equates to nearly one full
color of the basic six-color rainbow.

� Interference filters consist of several dielectric and sometimes metallic layers that each
block a certain range of wavelengths. One layer may block light under 500 nm, and
another layer may block light above 550 nm. The band between 500 and 550 nm is
passed by the filter. Interference filters can be made to pass only a very small range of
wavelengths.

� Dichroic filters use organic dyes or chemicals to absorb light at certain wavelengths.
Some filters are made from crystals that exhibit two or more different colors when viewed
at different axes. Color control is maintained by cutting the crystal at a specific axis.

Introduction to Video Vision Systems
Single- and multicell-vision systems are useful for detecting the absence or presence of
light, but they cannot make out the shapes of objects. This greatly limits the environment
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into which such a robot can be placed. By detecting the shape of an object, a robot might
be able to make intelligent assumptions about its surroundings and perhaps be able to nav-
igate those surroundings, recognize its “master,” and more.

Even as recently as five years ago video vision was an expensive proposition for any
robot experimenter. But the advent of inexpensive “pinhole” cameras—so called because
they are used in place of the pinhole lens in the front door of a house or apartment—now
makes the hardware for machine vision affordable.

A video system for robot vision need not be overly sophisticated. The resolution of the
image can be as low as about 100 by 100 pixels (10,000 pixels total), though a resolution
of no less than 300 by 200 pixels (60,000 pixels total) is preferred. The higher the resolu-
tion is, the better the image and therefore the greater the robot’s ability to discern shapes.
A color camera is not mandatory and, in some cases, makes it harder to write suitable video
interpolating software.

Video systems that provide a digital output are generally easier to work with than those
that provide only an analog video output. You can connect digital video systems directly to a
PC, such as through a serial, parallel, or USB port. Analog video systems require that a video
capture card, fast analog-to-digital converter, or other similar device be attached to the PC.

While the hardware for video vision is now affordable to most any robot builder, the job
of translating a visual image a robot can use requires high-speed processing and complicat-
ed computer programming. Giving robots the ability to recognize shapes has proved to be a
difficult task. Consider the static image of a doorway. Our brains easily comprehend the
image, adapting to the angle at which we are viewing the doorway; the amount, direction, and
contrast of the light falling on it; the size and kind of frame used in the doorway; whether the
door is opened or closed; and hundreds or even thousands of other variations. Robot vision
requires that each of these variables be analyzed, a job that requires computer power and pro-
gramming complexity beyond the means of most robot experimenters.

Vision by Laser Light
Fortunately, there are some less complicated methods you can try as you experiment with
robot vision. Here’s one you might want to tackle, and it uses only about $30 worth of parts
(minus the video camera). You need a simple penlight laser, a red filter, and a small piece
of diffraction grating (available from Edmund Scientific Company and other sources for
optical components; see Appendix B, “Sources,” for additional information).

The system works on a principle similar to the three-beam focusing scheme used in CD
players. In a CD player, laser light is broken into “sub-beams” by the use of a diffraction
grating. A single, strong beam appears in the center, flanked by weaker beams on both
sides, as shown in Fig. 37.12. The three-beam CD focusing system uses the two closest
side beams, ignoring all the others.

The beam spacing increases as the distance from the lens to the surface of the disc
increases. Similarly, the beam spacing decreases as the lens-to-CD distance decreases. A
multicelled photodetector in the CD players integrates the light reflected by these beams
and determines whether the lens should be moved closer to, or farther away, from the disc.
For history buffs, the fundamental basis of this focusing technique is over a hundred years
old and was pioneered by French physicist Jean Foucault.
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CD players use a diffraction grating in which lines are scribed into a piece of plastic in
only one plane. This causes the laser beam to break up into several beams along the same
plane. With a diffraction grating that has lines scribed both vertically and horizontally, the
laser beam is split up into multiple beams that form a “grid” when projected on a flat sur-
face (see Figs. 37.13 and 37.14). The beams move closer together as the distance from the
laser and surface is decreased; the beams move further apart as the distance from the laser
and surface is increased.

As you can guess, when the beams are projected onto a three-dimensional scene, they
form a kind of topographical map in which they appear closer or farther apart depending
on the distance of the object from the laser.

The red filter placed in front of the camera lens filters out most of the light except for
the red beams from the penlight laser. For best results, use a high-quality optical bandpass
filter that accepts only the precise wavelength of the diode laser, typically 635 or 680
nanometers. Check the specifications of the laser you are using so you can get the correct
filter. Meredith Instruments and Midwest Laser Products, among other sources, provide a
variety of penlight lasers and optical filters you can use (see Appendix B).

The main benefit of the laser diffraction system is this: it’s easier to write software that
measures the distance between pixels than it is to write software that attempts to recognize
shapes and patterns. For many machine vision applications, it is not as important for the
robot to recognize the actual shape of an object as it is to navigate around or manipulate
that shape. As an example, a robot may “see” a chair in its path, but there is little practical
need for it to recognize the chair as an early-eighteenth-century Queen Anne-style two-
seater settee. All it really needs to know is that something is there, and by moving left or
right that object can be avoided.

Going Beyond Light-sensitive Vision
Sight provides a fast and efficient way for us to determine our surroundings. The eyes take
in a wide field, and the brain processes what the eyes see to compose a “picture” of the
immediate environment. Taking a cue from the special senses evolved by some animals,
however, visual eyesight is not the only way to “see.” For instance, bats use high-pitched
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sound to quickly and efficiently navigate through dark caves. So accurate is their “sonar”
that bats can sense tiny insects flying a dozen or more feet away.

Similarly, robots don’t always need light-sensitive vision systems. You may want to con-
sider using an alternative system, either instead of or in addition to light-sensitive vision.
The following sections outline some affordable technologies you can easily use.

ULTRASONICS

Like a cave bat, your robot can use high-frequency sounds to navigate its surroundings.
Ultrasonic transducers are common in Polaroid instant cameras, electronic tape-measuring
devices, automotive backup alarms, and security systems. All work by sending out a high-fre-
quency burst of sound, then measuring the amount of time it takes to receive the 
reflected sound.
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Ultrasonic systems are designed to determine distance between the transducer and an
object in front of it. More accurate versions can “map” an area to create a type of topo-
graphical image, showing the relative distances of several nearby objects along a kind of
3-D plane. Such ultrasonic systems are regularly used in the medical field. Some trans-
ducers are designed to be used in pairs—one transducer to emit a series of short ultrason-
ic bursts, another transducer to receive the sound. Other transducers, such as the kind used
on Polaroid cameras and electronic tape-measuring devices, combine the transmitter and
receiver into one unit.

An important aspect of ultrasonic imagery is that high sound frequencies disperse less
readily than do low-frequency ones. That is, the sound wave produced by a high-frequen-
cy source spreads out much less broadly than the sound wave from a low-frequency source.
This phenomenon improves the accuracy of ultrasonic systems. Both DigiKey and All
Electronics, among others, have been known to carry new and surplus ultrasonic compo-
nents suitable for robot experimenters. See Chapters 36 and 38 for more information on
using ultrasonic sensors to guide your robots.

RADAR

Radar systems work on the same basic principle as ultrasonics, but instead of high-fre-
quency sound they use a high-frequency radio wave. Most people know about the high-
powered radar equipment used in aviation, but lower-powered versions are commonly used
in security systems, automatic door openers, automotive backup alarms, and of course,
speed-measuring devices used by the police.

Radar is less commonly found on robotics systems because it costs more than ultra-
sonics. But radar has the advantage that radar it is less affected by wind, temperature, and
distance. For example, radar can be used up to several miles away; ultrasonics is useful
only up to about 10 or 20 meters.

PASSIVE INFRARED

A favorite for security systems and automatic outdoor lighting, passive pyroelectric
infrared (PIR) sensors detect the natural heat that all objects emit. This heat takes the form
of infrared radiation—a form of light that is beyond the limits of human vision. The PIR
system merely detects a rapid change in the heat reaching the sensor; such a change usu-
ally represents movement.

The typical PIR sensor is equipped with a Fresnel lens to focus infrared light from a
fairly wide area onto the pea-sized surface of the detector. In a robotics vision application,
you can replace the Fresnel lens with a telephoto lens arrangement that permits the detec-
tor to view only a small area at a time. Mounted onto a movable platform, the sensor could
detect the instantaneous variations of infrared radiation of whatever objects are in front of
the robot. See Chapter 36, “Collision Avoidance and Detection,” for more information on
the use of PIR sensors.

TACTILE FEEDBACK

Many robots can be effective navigators with little more than a switch or two to guide their
way. Each switch on the robot is a kind of “touch sensor”: when a switch is depressed, the
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robot knows it has touched some object in front of it. Based on this information, the robot
can stop and negotiate a different path to its destination.

To be useful, the robot’s touch sensors must be mounted where they will come into con-
tact with the objects in their surroundings. For example, you can mount four switches
along the bottom periphery of a square-shaped robot so contact with any object will trig-
ger one of the switches. Mechanical switches are triggered only on physical contact;
switches that use reflected infrared light or capacitance can be triggered by the proximity
of objects. Noncontact switches are useful if the robot might be damaged by running into
an object, or vice versa. See Chapter 35, “Adding the Sense of Touch,” for more informa-
tion on tactile sensors.

From Here
To learn more about… Read

Using a brain with your robot Chapter 28, “An Overview of Robot ‘Brains’”

Connecting sensors to a robot Chapter 29, “Interfacing with Computers and 
computer or microcontroller Microcontrollers”

Using touch to guide your robot Chapter 35, “Adding the Sense of Touch”

Getting your robot from point Chapter 38, “Navigating through Space”
A to point B
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The projects and discussion in this chapter focus on navigating your robot through
space—not the outer-space kind, but the space between two chairs in your living room,
between your bedroom and the hall bathroom, or outside your home by the pool. Robots
suddenly become useful once they can master their surroundings, and being able to wend
their way through their surrounds is the first step toward that mastery.

The techniques used to provide such navigation are varied: path-track systems, infrared
beacons, ultrasonic rangers, compass bearings, dead reckoning, and more.

A Game of Goals
A helpful way to look at robot navigation is to think of it as a game, like soccer. The aim
of soccer is for the members of one team to kick the ball into a goal. That goal is guarded
by a member of the other team, so it’s not all that easy to get the ball into the goal.
Similarly, for a robot a lot stands between it and its goal of getting from one place to anoth-
er. Those obstacles include humans, chairs, cats, a puddle of water, an electrical cord—just
about anything can prevent a robot from successfully traversing a room or yard.

To go from point A to point B, your robot will consider the following process (as shown
in Fig. 38.1):
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1. Retrieve instruction of goal: get to point B. This can come from an internal stimulus
(battery is getting low; must get to power recharge station) or from a programmed or
external command.

2. Determine where point B is in relation to current position (point A), and determine a
path to point B. This requires obtaining the current position using known landmarks or
references.

3. Avoid obstacles along the way. If an immovable obstacle is encountered, move around
the obstacle and recalculate the path to get to point B.
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FIGURE 38.1 Navigation through open space requires
that the robot be programmed not only to
achieve the “goal” of a specific task but to
self-correct for possible obstacles.
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4. Correct for errors in navigation (“in-path error correction”) caused by such things as
wheel slippage. This can be accomplished by periodically reassessing current position
using known landmarks or references.

5. Optionally, time out (give up) if goal is not reached within a specific period of time or
distance traveled.

Notice the intervening issues that can retard or inhibit the robot from reaching its goal.
If there are any immovable obstacles in the way the robot must steer around them. This
means its predefined path to get from point A to point B must be recalculated. Position and
navigation errors are normal and are to be expected. You can reduce the effects of error by
having the robot periodically reassess its position. This can be accomplished by using a
number of referencing schemes, such as mapping, active beacons, or landmarks. More
about these later in the chapter.

People don’t like to admit failure, but a robot is just a machine and doesn’t know (or
care) that it failed to reach its intended destination. You should account for the possibility
that the robot may never get to point B. This can be accomplished by using time-outs,
which entails either determining the maximum reasonable time to accomplish the goal or,
better yet, the maximum reasonable distance that should be traveled to reach the goal.

You can build other fail-safes into the system as well, including a program override if
the robot can no longer reassess its current location using known landmarks or references.
In such a scenario, this could mean its sensors have gone kaput or that the landmarks or
references are no longer functioning or accurate. One course of action is to have the robot
shut down and wait to be bailed out by its human master.

Following a Predefined Path: Line
Tracing
Perhaps the simplest navigation system for mobile robots involves following some prede-
fined path that’s marked on the ground. The path can be a black or white line painted on a
hard-surfaced floor, a wire buried beneath a carpet, a physical track, or any of several other
methods. This type of robot navigation is used in some factories. The reflective tape
method is preferred because the track can easily be changed without ripping up the floor.

You can readily incorporate a tape-track navigation system in your robot. The line-trac-
ing feature can be the robot’s only means of semi-intelligent action, or it can be just one
part of a more sophisticated machine. You could, for example, use the tape to help guide a
robot back to its battery charger nest.

With a line-tracing robot, you place a piece of white or reflective tape on the floor. For
the best results, the floor should be hard, like wood, concrete, or linoleum, and not carpet-
ed. One or more optical sensors are placed on the robot. These sensors incorporate an
infrared LED and an infrared phototransistor. When the transistor turns on it sees the light
from the LED reflected off the tape. Obviously, the darker the floor the better because the
tape shows up against the background.

In a working robot, mount the LED and phototransistors in a suitable enclosure, as
described more fully in Chapter 36, “Collision Avoidance and Detection.” Or, use a 
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commercially available LED-phototransistor pair (again, see Chapter 36). Mount the
detectors on the bottom of the robot, as shown in Fig. 38.2, in which two detectors have
been placed a little farther apart than the width of the tape. I used 1/4-inch art tape in the
prototype for this book and placed the sensors 1/2 inch from one another.

Fig. 38.3 shows the basic sensor circuit and how the LED and phototransistor are wired.
Feel free to experiment with the value of R2; it determines the sensitivity of the photo-
transistor. Fig. 38.4 shows the sensor and comparator circuit that forms the basis of the
line-tracing system. Refer to this figure often because this circuit is used in many other
applications.

You can use the schematics in Fig. 38.5 and Fig. 38.6 to build a complete line-tracing
system (refer to the parts lists in Tables 38.1 and 38.2). You can build the circuit using just
three IC packages: an LM339 quad comparator, a 7486 quad Exclusive OR gate, and a
7400 quad NAND gate. Before using the robot, block the phototransistors so they don’t
receive any light. Rotate the shaft of the set-point pots until the relays kick in, then back
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FIGURE 38.2 Placement of the left and right phototransistor-LED
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FIGURE 38.4 Connecting the LED and phototransistor to an LM339
quad comparator IC. The output of the comparator
switches between HIGH and LOW depends on the
amount of light falling on the phototransistor. Note the
addition of the 10K “pullup” resistor on the output of the
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FIGURE 38.5 Wiring diagram for the line-tracing robot. The outputs of the 7400 are rout-
ed to the relays in Figure 38.6.
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FIGURE 38.6 Motor direction and control relays for the line-tracing
robot. You can substitute the relays for purely electron-
ic control; refer to Chap. 18.

TABLE 38.1 PARTS LIST FOR LINE TRACER.

IC1 LM339 Quad Comparator IC

IC2 7486 Quad Exclusive OR Gate IC

IC3 7400 Quad NAND Gate IC

Q1,Q2 Infrared-sensitive phototransistors

R1,R4 270-ohm resistor

R2,R5,
R7,R8 10K resistor

R3,R6 10K potentiometer

LED1,2 Infrared light-emitting diode

Misc. Infrared filter for phototransistor (if needed)

All resistors are 5–10% tolerance.

TABLE 38.2 PARTS LIST FOR RELAY CONTROL.

RL1,RL2 DPDT fast-acting relay; contacts rated 2 amps or more

D1, D2 1N4003 diodes
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off again. You may have to experiment with the settings of the set point pots as you try out
the system.

Depending on which motors you use and the switching speed of the relays, you may
find your robot waddling its way down the track, overcorrecting for its errors every time.
You can help minimize this by using faster-acting relays. Another approach is to vary the
gap between the two sensors. By making it wide, the robot won’t be turning back and forth
as much to correct for small errors. I have also found that you can minimize this so-called
overshoot effect by carefully adjusting the set-point pots.

You’ll hardly ever see a railroad track with a turn tighter than about 8°. There is good
reason for this. If the turn is made any tighter, the train cars can’t stay on the track, and the
whole thing derails. There is a similar limitation in line-tracing robots. The lines cannot be
tighter than about 10° to 15°, depending on the robot’s turning radius, or the thing can’t
act fast enough when it crosses over the line. The robot will skip the line and go off course.

The actual turn radius will depend entirely on the robot. If you need your robot to turn
very tight, small corners, build it small. If your robot has a brain, whether it is a computer
or central microprocessor, you can use it instead of the direct connection to the relays for
motor control. The output of the comparators, when used with a �5 volt supply, is compat-
ible with computer and microprocessor circuitry, as long as you follow the interface guide-
lines provided in Chapter 29. The two sensors require only two bits of an eight-bit port.

Wall Following
Robots that can follow walls are similar to those that can trace a line. Like the line, the wall
is used to provide the robot with navigation orientation. One benefit of wall-following
robots is that you can use them without having to paint any lines or lay down tape.
Depending on the robot’s design, the machine can even maneuver around small obstacles
(doorstops, door frame molding, radiator pipes, etc.).

VARIATIONS OF WALL FOLLOWING

Wall following can be accomplished with any of four methods:

� Contact. The robot uses a mechanical switch, or a stiff wire that is connected to a
switch, to sense contact with the wall, as shown in Fig. 38.7a. This is by far the simplest
method, but the switch is prone to mechanical damage over time.

� Noncontact, active sensor. The robot uses active proximity sensors, such as infrared or
ultrasonic, to determine its distance from the wall. No physical contact with the wall is
needed. In a typical noncontact system, two sensors are used to judge when the robot is
parallel to the wall (see Fig. 38.7b).

� Noncontact, passive sensor. The robot uses passive sensors, such as linear Hall effect
switches, to judge distance from a specially prepared wall (Fig. 38.7c). In the case of
Hall effect switches, you could outfit the baseboard or wall with an electrical wire
through which a low-voltage alternating current is fed. When the robot is in the prox-
imity of the switches the sensors will pick up the induced magnetic field provided by

WALL FOLLOWING 625

Ch38_MCComb  8/29/00  8:32 AM  Page 625



the alternating current. Or, if the baseboard is metal the Hall effect sensor (when rigged
with a small magnet on its opposite side) could detect proximity to a wall.

� “Soft-contact.” The robot uses mechanical means to detect contact with the wall, but the
contact is “softened” by using pliable materials. For example, you can use a lightweight
foam wheel as a “wall roller,” as shown in Fig. 38.7d. The benefit of soft contact is that
mechanical failure is reduced or eliminated because the contact with the wall is made
through an elastic or pliable medium.

In all cases, upon encountering a wall the robot goes into a controlled program phase to
follow the wall in order to get to its destination. In a simple contact system, the robot may
back up a short moment after touching the wall, then swing in a long arc toward the wall
again. This process is repeated, and the net effect is that the robot “follows the wall.”

With the other methods, the preferred approach is for the robot to maintain proper dis-
tance from the wall. Only when proximity to the wall is lost does the robot go into a “find
wall” mode. This entails arcing the robot toward the anticipated direction of the wall. When
contact is made, the robot alters course slightly and starts a new arc. A typical pattern of
movement is shown in Fig. 38.8.
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FIGURE 38.7 Ways to follow the wall include: a.
Contact switch; b. Noncontact active
sensor (such as infrared); c. Noncontact
passive sensor (e.g., Hall effect sensor
and magnetic, electromagnetic, or fer-
rous metal wall/baseboard); and d. “Soft
contact” using pliable material such as
foam rollers.
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ULTRASONIC WALL FOLLOWING

A simple ultrasonic wall follower can use two ultrasonic transmitter/receiver pairs. Each trans-
mitter and receiver is mounted several inches apart to avoid cross talk. Two transmitter/receiv-
er pairs are used to help the robot travel parallel to the wall. Suitable ultrasonic transmitter and
receiver circuits are detailed in Chapter 36, “Collision Avoidance and Detection.”

Because the robot will likely be close to the wall (within a few inches), you will want
to drive the transmitters at very low power and use only moderate amplification, if any, for
the receiver. You can drive the transmitters at very low power by reducing the voltage to
the transmitter.
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Wall

FIGURE 38.8 A wall-following robot that merely
“feels” its way around the room
might make wide, sweeping arcs.
The arc movement is easily
accomplished in a typical two-
wheeled robot by running one
motor slower than the other.
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SOFT-CONTACT FOLLOWING WITH FOAM WHEEL

Soft-contact wall following with a roller wheel offers you some interesting possibilities. In
fact, you may be able to substantially simplify the sensors and control electronics by plac-
ing an idler roller made of soft foam as an outrigger to the robot and then having the robot
constantly steer inward toward the wall. This can be done simply by running the inward
wheel (the wheel on the side of the wall) a little slower than the other. The foam idler roller
will prevent the robot from hitting the wall.

DEALING WITH DOORWAYS AND OBJECTS

Merely following a wall is, in essence, not that difficult. The task becomes more chal-
lenging when you want the robot to maneuver around obstacles or skip past doorways. This
requires additional sensors, perhaps whiskers or other touch sensors in the forward portion
of the robot. These are used to detect corners as well. This is especially important when
you are constructing a robot that has a simple inward-arc behavior toward following walls.
Without the ability to sense a wall straight ahead, the robot may become hopelessly trapped
in a corner.

Open doorways that lead into other rooms can be sensed using a longer-range ultrason-
ic transducer. Here, the long-range ultrasonic detects that the robot is far from any wall and
places the machine in a “go straight” mode. Ideally, the robot should time the duration of
this mode to account for the maximum distance of an open doorway. If a wall is not detect-
ed within X seconds, the robot should go into a “look for wall” mode.

Odometry: The Art of Dead Reckoning
Hop into your car. Note the reading on the odometer. Now drive straight down the road for
exactly one minute, paying no attention to the speedometer or anything else (of course,
keep your eyes on the road!). Again note the reading on the odometer. The information on
the odometer can be used to tell you where you are. Suppose it says one mile. You know
that if you turn the car around exactly 180° and travel back one mile, at whatever speed,
you’ll reach home again.

This is the essence of odometry, reading the motion of a robot’s wheels to determine
how far it’s gone. Odometry is perhaps the most common method for determining where
a robot is at any given time. It’s cheap and easy to implement and is fairly accurate over
short distances. Odometry is similar to the “dead reckoning” navigation used by sea cap-
tains and pilots before the age of satellites, radar, and other electronic schemes. Hence,
odometry is also referred to in robot literature as dead reckoning.

Unlike your car, robots don’t have speedometers connected to their transmissions
or front wheels to drive the odometer. Instead, a robot’s “odometer” is typically 
devised using optical or magnetic sensors. Let’s take a look at how each kind is used in
a robot.
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OPTICAL ENCODERS

You can use a small disc fashioned around the hub of a drive wheel, or even the shaft of a
drive motor, as an optical shaft encoder (described in “Anatomy of a Shaft Encoder,” in
Chapter 18). The disc can be either the reflectance or the slotted type:

� With a reflectance disc, infrared light strikes the disc and is reflected back to a pho-
todetector.

� With a slotted disc, infrared light is alternately blocked and passed and is picked up on
the other side by a photodetector.

With either method, a pulse is generated each time the photodetector senses the light.

MAGNETIC ENCODERS

You can construct a magnetic encoder using a Hall effect switch (a semiconductor sensi-
tive to magnetic fields) and one or more magnets. A pulse is generated each time a mag-
net passes by the Hall effect switch. A variation on the theme uses a metal gear and a spe-
cial Hall effect sensor that is sensitive to the variations in the magnetic influence produced
by the gear (see Fig. 38.9).

A bias magnet is placed behind the Hall effect sensor. A pulse is generated each time a
tooth of the gear passes in front of the sensor. The technique provides more pulses on each
revolution of the wheel or motor shaft, and without having to use separate magnets on the
rim of the wheel or wheel shaft.

THE FUNCTION OF ENCODERS IN ODOMETRY

As the wheel or motor shaft turns, the encoder (optical or magnetic) produces a series of
pulses relative to the distance the robot travels. Assume the wheel is 3 inches in diameter
(9.42 inches in circumference), and the encoder wheel has 32 slots. Each pulse of the
encoder represents 0.294 inches of travel (9.42/32). If the robot senses 10 pulses, it knows
it has moved 2.94 inches.

If the robot uses the traditional two-wheel drive approach, you attach optical encoders
to both wheels. This is necessary because the drive wheels of a robot are bound to turn at
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FIGURE 38.9 A Hall effect sensor
outfitted with a
small “bias” mag-
net and sensitive to
the changes in
magnetic flux
caused by a rotat-
ing ferrous metal
gear.
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slightly different speeds over time. By integrating the results of both optical encoders, it’s
possible to determine where the robot really is as opposed to where it should be (see Fig.
38.10). As well, if one wheel rolls over a cord or other small lump, its rotation will be hin-
dered. This can cause the robot to veer off course, possibly by as much as 3° to 5° or more.
Again, the encoders will detect this change.

It’s best to make odometry measurements using a microcontroller that is outfitted with
a pulse accumulator or counter input. These kinds of inputs independently count the num-
ber of pulses received since the last time they were reset. To take an odometry reading, you
clear the accumulator or counter and then start the motors. Your software need not moni-
tor the accumulator or counter. Stop the motors, and then read the value in the accumula-
tor or counter. Multiply the number of pulses by the known distance of travel for each
pulse. (This will vary depending on the construction of your robot; consider the diameter
of the wheels and the number of pulses of the encoder per revolution.)

If the number of pulses from both encoders is the same, you can assume that the robot trav-
eled in a straight line, and you have only to multiple the number of pulses by the distance per
pulse. For example, if there are 1055 pulses in the accumulator-counter, and if each pulse rep-
resents 0.294 inches of travel, then the robot has moved 310.17 inches straight forward.

ERRORS IN ODOMETRY

In a perfect world, robots would not need anything more than an odometer to determine
exactly where they were at any given time. Unfortunately, robots live and work in a world
that is far from perfect; as a result, their odometers are far from accurate. Over a 20- to 30-
foot range, for example, it’s not uncommon for the average odometer to misrepresent the
position of the robot by as much as half a foot or more!

Why the discrepancy? First and foremost: wheels slip. As a wheel turns, it is bound to
slip, especially if the surface is hard and smooth, like a kitchen floor. Wheels slip even
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FIGURE 38.10 The relative number of
“counts” from each
encoder of the typical two-
wheeled robot can be used
to indicate deviation in
travel. If an encoder shows
that one wheel turned a
fewer number of times
than the other wheel, then
it can be assumed the
robot did not travel in a
straight line.
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more when they turn. The wheel encoder may register a certain number of pulses, but
because of slip the actual distance of travel will be less. Certain robot drive designs are
more prone to error than others. Robots with tracks are steered using slip—lots of it. The
encoders will register pulses, but the robot will not actually be moving in proportion.

There are less subtle reasons for odometry error. If you’re even a hundredth of an inch
off when measuring the diameter of the wheel, the error will be compounded over long dis-
tances. If the robot is equipped with soft or pneumatic wheels, the weight of the robot can
deform the wheels, thereby changing their effective diameter.

Because of odometry errors, it is necessary to combine it with other navigation tech-
niques, such as active beacons, distance mapping, or landmark recognition. All three are
detailed later in this chapter.

Compass Bearings
Besides the stars, the magnetic compass has served as humankind’s principal navigation
aid over long distances. You know how it works: a needle points to the magnetic north pole
of the earth. Once you know which way is north, you can more easily reorient yourself in
your travels.

Robots can use compasses as well, and a number of electronic and electromechanical
compasses are available for use in hobby robots. One of the least expensive is the
Dinsmore 1490, from Dinsmore Instrument Co. The 1490 looks like an overfed transistor,
with 12 leads protruding from its underside. The leads are in four groups of three; each
group represents a major compass heading: north, south, east, and west. The three leads in
each group are for power, ground, and signal. A Dinsmore 1490, mounted on a circuit
board, is shown in Fig. 38.11.

The 1490 provides eight directions of heading information (N, S, E, W, SE, SW, NE,
NW) by measuring the earth’s magnetic field. It does this by using miniature Hall effect
sensors and a rotating compass needle (similar to ordinary compasses). The sensor is said
to be internally designed to respond to directional changes much like a liquid-filled com-
pass. It turns to the indicated direction from a 90° displacement in approximately 2.5 sec-
onds. The manufacturer’s specification sheet claims that the unit can operate with up to 12°
of tilt with acceptable error, but it is important to note that any tilting from center will
cause a corresponding loss in accuracy.

Fig. 38.12 shows the circuit diagram for the 1490, which uses four inputs to a comput-
er or microcontroller. Note the use of pullup resistors. With this setup, your robot can
determine its orientation with an accuracy of about 45° (less if the 1490 compass is tilted).
Dinsmore also makes an analog-output compass that exhibits better accuracy.

Another option is the Vector 2X and 2XG. These units use magneto-inductive sensors
for sensing magnetic fields. The Vector 2X/2XG provides either compass heading or
uncalibrated magnetic field data. This information is output via a three-wire serial format
and is compatible with Motorola SPI and National Semiconductor Microwire interface
standards. Position data can be provided either 2.5 or 5 times per second.

Vector claims accuracy of ±2°. The 2X is meant to be used in level applications. The
more pricey 2XG has a built-in gimbal mechanism that keeps the active magnetic-inductive
element level, even when the rest of the unit is tilted. The gimbal allows tilt up to 12°.
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FIGURE 38.11 The Dinsmore 1490 digital compass provides simple bearings
for a robot. The sensor is accurate to about 45°.
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FIGURE 38.12 Circuit diagram for using the
Dinsmore 1490 digital compass.
When used with a �5 vdc supply,
the four outputs can be connected
directly to a microcontroller. One or
two outputs can be activated at a
time; if two are activated, the sensor
is reading between the four com-
pass points (e.g., N and W outputs
denotes NW position).
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Ultrasonic Distance Measurement
Police radar systems work by sending out a high-frequency radio beam that is reflected off
nearby objects, such as your car as you are speeding down the road. The difference
between the time when the transmit pulse is sent and when the echo is received denotes
distance. Speed is calculated using the Doppler effect: the time between the sending pulse
and echo increases or decreases proportionately depending on how fast you are going.

Radar systems are complex and expensive, and most require certification by a govern-
ment authority, such as the Federal Communications Commission for devices used in the
United States. There is another approach: you can use high-frequency sound instead to
measure distance, and with the right circuitry you can even provide a rough indication of
speed.

Ultrasonic ranging is, by now, an old science. Polaroid used it for years as an automat-
ic focusing aid on their instant cameras. Other camera manufacturers have used a similar
technique, though it is now more common to implement infrared ranging (covered later in
the chapter). The Doppler effect that is caused when something moves toward or away
from the ultrasonic unit is used in home burglar alarm systems. However, for robotics the
more typical application of ultrasonic sound is either to detect proximity to an object (see
“Ultrasonic Wall Following,” earlier in the chapter) or to measure distance (also called
ultrasonic ranging).

To measure distance, a short burst of ultrasonic sound—usually at a frequency of 40
kHz for most ultrasonic ranging systems—is sent out through a transducer (a specially
built ultrasonic speaker). The sound bounces off an object, and the echo is received by
another transducer (this one a specially built ultrasonic microphone). A circuit then com-
putes the time it took between the transmit pulse and the echo and comes up with distance.

Certainly, the popularity of ultrasonics does not detract from its usefulness in robot
design. The system presented here is suited for use with a computer or microcontroller.
There are a variety of ways to implement ultrasonic ranging. One method is to use the
ultrasonic transducer and driver board from an old Polaroid instant camera, such as the
Polaroid Sun 660 or the Polaroid SX-70 One Step. However, the driver board used in these
cameras may require some modification to allow more than one “ping” of ultrasonic sound
without having to cycle the power to the board off, then back on. More about this in a
bit.You can also purchase a new Polaroid ultrasonic transducer and driver board from a
number of mail order sources, including on the Internet. Several of these outlets are listed
in Appendix B, “Sources.” These units are new, and most come with documentation,
including hookup instructions for connecting them to popular microcontrollers, such as the
Basic Stamp. Perhaps the most common Polaroid distance measuring kit is composed of
the so-called 600 Series Instrument Grade transducer along with its associated Model 6500
Ranging Module.

The transducer, which is about the size of a silver dollar coin, acts as both ultrasonic
transmitter and receiver. Because only a single transducer is used, the Polaroid system as
described in this section cannot detect objects closer than about 1.3 feet. This is because
of the amount of time required for the transducer to stop oscillating before it sets itself up
to receive. The maximum distance of the sensor is about 35 feet when used indoors, and a
little less when used outdoors, especially on a windy day. The system is powered by a sin-
gle 6-vdc battery pack and can be interfaced to any computer or microcontroller.
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FACTS AND FIGURES

First some statistics. At sea level, sound travels at a speed of about 1130 feet per second
(about 344 meters per second) or 13,560 inches per second. This time varies depending on
atmospheric conditions, including air pressure (which varies by altitude), temperature, and
humidity. The time it takes for the echo to be received is in microseconds if the object is
within a few inches or even a few feet of the robot. The short duration is really no prob-
lem, however, for fast-acting CMOS and TTL ICs. The overall time between transmit pulse
and echo is divided by two to compensate for the round-trip travel time between the robot
and the object.

Given a travel time of 13,560 inches per second for sound, it takes just 73.7 microsec-
onds (0.0000737 seconds) for sound to travel one inch. With this figure in the back of our
minds, let’s consider how the Polaroid ranging system works. The Ranging Module is con-
nected to a computer or microcontroller using only two wires: INIT (for INITiate) and
ECHO. INIT is an output, and ECHO is an input. The Ranging Module contains other I/O
connections, such as BLNK and BINH, but these are not strictly required when you are
determining distance to a single object, and so they will not be discussed here.

To trigger the Ranging Module and have it send out a burst of ultrasonic sound, the
computer or microcontroller brings the INIT line HIGH. The computer-microcontroller
then waits for the ECHO line to change from LOW to HIGH. The time difference, in
microseconds, is divided in two, and that gives you distance. To measure the time between
the INIT pulse and the return ECHO, the computer or microcontroller uses a timer to pre-
cisely count the time interval.

Different timing-counting approaches are used depending on the computer or micro-
controller you are using. For example, with the Basic Stamp or BasicX microcontrollers
(see Chapters 31 and 32, respectively), you might use the RCTime function, which is nor-
mally used to time how long it takes for a capacitor to discharge. There is no capacitor to
discharge in the Ranging Module, but the overall timing technique is still the same. With
the OOPic microcontroller (see Chapter 33), you might use its oTimer object.

Let’s suppose you’re using the BasicX microcontroller. The short bit of code in
Listing 38.1, which is taken from the BasicX application note on ultrasonic ranging, uses
pins 15 and 16 of the chip to connect to the ECHO and INIT lines, respectively, of the
Polaroid Ranging Module. The lines of the Ranging Module are connected as shown in
Fig. 38.13.

Note that the BLNK and BINH lines are held LOW and that the power supply to the
Polaroid Ranging Module must not come from the on-board regulator of the BasicX. The
Polaroid Ranging Module needs a far more robust power supply that is capable of deliver-
ing an amp or two of current for a brief period of time. Four AA batteries connected in
series will suffice. Connect the ground from the 6-vdc battery pack to the ground points
of Polaroid Ranging Module and the BasicX.

LISTING 38.1.

' Connect pin 15 of BasicX to ECHO, pin 16 to INIT
Private Const EchoPin As Byte = 15
Private Const InitPin As Byte = 16
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' Echo delay (floating-point variable)
Dim EchoDelay As Single

' Speed of sound at room temperature (meters per second)
Const SpeedOfSound As Single = 344.0

' Take INIT HIGH and make a ping on the transducer
Call PutPin(InitPin, bxOutputHigh)

' Wait for echo to be returned
Call RCTime(EchoPin, 0, EchoDelay)

' Take INIT line LOW
Call PutPin(InitPin, bxOutputLow)

' If no echo RCTime overflows and returns 0.0
If (EchoDelay = 0.0) Then

Range = 11.0
Else

Range = (EchoDelay / 2.0) * SpeedOfSound
End If

When INIT is taken HIGH, the Polaroid Ranging Module emits a short burst of ~50
kHz sound from the transducer. The module then waits for a period of 2.38 milliseconds
for the transducer to stop ringing. This is the period of time it takes for the sonar ping to
travel about 32 inches. Considering round-trip time, this equates to the 1.3-foot minimum
imposed by the system. After this so-called “blanking” period, the Polaroid Ranging
Module listens for the return ECHO. When an echo is detected, the ECHO line goes HIGH.
Note that the module itself does not do any timing; this is the domain of the microcon-
troller that is connected to the module.

GUTTING A POLAROID SUN 660 CAMERA

Before moving on to the next subject of the chapter, it’s worth noting that used Polaroid
cameras are commonly available in thrift stores and on Internet auction sites such as eBay.
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Even models with the built-in sonar ranging system are commonly available for under $10,
and unless the camera has been damaged, they likely still work. (This is a testament to the
excellent manufacturing quality of Polaroid cameras, despite their “snap-together” con-
struction, as you’ll see in a bit.)

Most of these cameras use a transducer and ranging module very similar to the units
described already, though you will probably encounter a couple of variations. In addition,
you must first disassemble the camera to extract the ultrasonic transducer and the ranging
module board. This actually isn’t as easy as it looks, because Polaroid was known for
building their cameras with few, if any, screws. Instead, the cameras must be disassembled
like a Chinese puzzle box: first this part, then that, then this one over here—all the while
being careful you don’t break anything important.

The methods for deconstructing the typical Polaroid camera are beyond the scope of
this book, but here are a few tips. Bear in mind that when you dissect a Polaroid camera
for its ultrasonic parts you render the camera completely inoperative:

� Start first by removing the film door and/or film rollers. This is typically accomplished
by finding and removing the small hinges and pins that hold these parts onto the main
body of the camera.

� Pry off the faceplate. Use a thin flat-bladed screwdriver and carefully look for the
“snap” points. It’s okay if you break off a little bit of plastic here and there.

� When you reach the innards of the camera, locate the small plastic pins that secure the
transducer element. This is a delicate part of the camera, so very carefully pry the trans-
ducer loose. Under no circumstances should you disassemble the transducer or touch
the gold-plated contact surface inside. Doing so will ruin the transducer (the gold plat-
ing will come right off in your hands).

Locate the ranging module and carefully pry it up (it’ll likely be held down with two or
more small plastic prongs). You can remove the wide multi-pin connector from the mod-
ule, but keep the shielded wires to the ultrasonic transducer intact.

When you are done, you should have something that looks like the module and trans-
ducer in Fig. 38.14. This module came out of a Sun 660, and not all Polaroid modules look
the same. Though similar in design, the pinouts of the multi-pin connector are different
from those found in the Model 6500 Ranging Module described earlier in the chapter.
Table 38.3 lists the pinouts for the Model 6500 Ranging Module as well as the ranging
module from the Sun 660. Note that the Sun 660 module has an eight-pin connector; the
Model 6500 has a nine-pin connector.

A disadvantage of using sonar ranging boards removed from Polaroid cameras is that in
many cases, the board is not able to produce more than one “ping” of ultrasonic sound with-
out recycling the power off, then back on. The Polaroid cameras from which the boards are
taken are powered by a battery contained in the film pack. Between pictures, power to the
electronics inside the camera is turned off, which resets the sonar ranging board.

There are a number of ways to modify the sonar board to permit it to ping more than once,
and without recycling its power. I’ve found that one of the most effective—and easy—meth-
ods is to add a small single-pole, single-throw (SPST) five-volt relay between the sonar rang-
ing module and the battery that powers it. The relay should be rated for at least one amp. The
relay is controlled by the robot’s microcontroller or microprocessor. A basic hook-up scheme
for controlling a relay with a computer is shown in Chapter 18, “Working with DC Motors.”
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Infrared Distance Measurement
Ultrasonic sound is not the only method you can use to measure distance between your ‘bot
and some object. Infrared light can also be used. Unlike ultrasonic measurement, infrared
distance sensors don’t attempt to determine the time-of-flight for a light beam—it would
be on the order of femto- and picoseconds for the distances we’re interested in. Only the
most costly electronic circuitry can handle these speeds.

Instead, infrared systems use a technical known as parallax, that is, the measurement of
the angle of reflectance between a known light source and its return beam. Here’s how the
technique works: A beam of infrared light illuminates a scene. The beam reflects off an
object in front of the sensor and bounces back into the sensor. The closer the object is, the
greater the angle of displacement due to parallax. The reflected beam falls onto a linear
array of very small photodetectors. This photodetector array is connected to circuitry that
resolves the distance of the object. The circuitry can provide either a digital or an analog
output. We’ll cover both varieties here.

The premier maker of infrared distance measurement sensors for use in robotics is
Japan-based Sharp. One of their infrared distance measurement sensors, the GP2D02, is
shown in Fig. 38.15. Actually, Sharp doesn’t make these sensors for the robotics industry;
rather, they are principally intended for use in cars for proximity devices and copiers for
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FIGURE 38.14 A ranging module pulled from a Polaroid Sun 660 camera. The
camera was purchased for under $10 at a thrift store.
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paper detection. Depending on the model, the sensors have a range of about 4 inches (10
cm) and 31.5 inches (80 cm).

We’ll talk about three Sharp sensors, all of which have terribly nondescriptive names:

� GP2D05—Digital HIGH/LOW output registers whether an object is within a preset
range.

� GP2D02—Digital serial output indicates range as an 8-bit value.
� GP2D12—Analog output indicates range as a voltage level.

(Also available is the GP2D15. It has a 3- to 30-cm range, and outputs a digital
HIGH/LOW value depending on range to the detected object. It’s not quite as useful for
robotics work as the others, but works on the same principles.)

In all cases, the Sharp infrared sensors share better-than-average immunity to ambient
light levels, so you can use them under a variety of lighting conditions (except perhaps
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TABLE 38.3 PINOUTS FOR THE POLAROID MODEL 6500 RANGING 
MODULE AND “TAKE OUT” RANGING MODEL FROM THE POLAROID SUN
660 MODULE.

POLAROID MODULE 6500 RANGING MODULE

PIN FUNCTION 

1 GND

2 BLNK

3 (not used; do not connect)

4 INIT

5 (not used; do not connect)

6 OSC

7 ECHO

8 BINH

9 V�

RANGING MODULE FROM SUN 660

1 GND

2 BLNK

3 BINH

4 INIT

5 (not used; do not connect)

6 OSC

7 ECHO

8 V�
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very bright light outdoors). The sensors use a modulated—as opposed to a continuous—
infrared beam that helps reject false triggering. It also makes the system accurate even if
the detected object absorbs or scatters infrared light, such as heavy curtains or dark-
colored fabrics.

USING THE GP2D05 INFRARED DISTANCE JUDGMENT 
SENSOR

The GP2D05 is a “distance judgment” sensor rather than a ranging sensor. It has a one-bit
output that is either HIGH or LOW depending on whether an object has been detected with-
in a threshold range. This range is set by adjusting a small potentiometer on the back of the
sensor. Range is from 10 to 80 cm, depending on the adjustment of the pot. Fig. 38.16 shows
a typical hookup diagram for the GP2DO5. To use the sensor, the Vin line is brought LOW
for no more than 56 milliseconds (28 milliseconds is typical). If the Vout line goes HIGH
after this period of time, it means that there was an object detected within the preset range of
the sensor. If the line does not go high, it means no object was detected.

USING THE GP2D02 DIGITAL SERIAL OUTPUT INFRARED
RANGING SENSOR

The GP2D02 digital serial output infrared sensor is probably the most commonly used
of the Sharp units. Its output is an eight-bit serial digital train. The hookup diagram is
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FIGURE 38.15 The Sharp infrared sensors are equipped with a focused infrared
light source and a linear photodetector array. Distance can be
determined by detecting where the reflected light touches the
array.
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shown in Fig. 38.17. To use the GP2D02, you must send a clock signal to the sensor, then
store each of the eight bits that are returned. Convert those eight bits into a value (from
0 to 255), and this is the range (in noncorrelated “units”) from the sensor to the detect-
ed object.

Listing 38.2 demonstrates a simple Basic Stamp II program for use with the GP2D02
sensor. It displays the eight-bit result from the sensor in the debug window.

LISTING 38.2.

DataInput                con     0
ClockOutput              con     1
StorageVariable          var     byte
RepeatLoop:

LOW ClockOutput            ' activate detector
Pause 70                   ' initial wait of 70 milliseconds
Wait:

If In0 = 0 Then Wait ' wait for output if needed
' shift in data
SHIFTIN DataInput, ClockOutput, MSBPOST, [StorageVariable]
HIGH ClockOutput    ' deactivate detector
DEBUG dec StorageVariable, CR    ' display result
PAUSE 1000          ' waits 1 sec; wait at least 2 ms before repeating
GOTO RepeatLoop     ' repeat again

The eight-bit output value of the GP2D02 is not linear, which means that you can’t
expect a 1:1 ratio between the value you get and the distance separating the sensor and the
detected object. For the value to be meaningful, you should conduct tests with objects
placed set distances from the sensor (use a tape measure for accuracy). Note the values you
get. The higher the value (say, 230 or 240) the closer the object is, and objects closer than
10 cm will yield unpredictable results. Values from 30 to 50 denote objects at the far end
of the detection range, which is 80 cm.

The accuracy of the readings will depend greatly on the width of the target. You may
wish to experiment by placing the sensor in front of a smooth white wall. Vary the distance
between wall and sensor and note your results.

USING THE GP2D12 ANALOG OUTPUT INFRARED RANGING
SENSOR

The GP2D12 is similar to the GP2D02 of the last section, except that it provides an analog
output rather than a digital one. In some situations (and with some microcontrollers), an
analog output is easier to deal with. This is the case if your microcontroller or computer has
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one or more analog-to-digital converter (ADC) inputs. Examples of microcontrollers with
ADC inputs include the BasicX (see Chapter 32) and the OOPic (see Chapter 33).

Fig. 38.18 shows the connection of the GP2D12. When powered by �5 vdc, the
GP2D12 outputs a voltage that is related to the distance between it and the detected object.
The voltage span is approximately 0.6 volts to 3.1 volts. The lower the voltage, the farther
away the object is, as shown in Fig. 38.19.

“Where Am I?”: Sighting Landmarks
Explorers rely on landmarks to navigate wide-open areas. It might be an unusual outcrop-
ping of rocks or a bend in a river. Or the 7-Eleven down the street. In all cases, a landmark
serves to give you general bearings. From these general bearings you can more readily nav-
igate a given locale. Robots can use the same techniques, though rocks, rivers, and conve-
nience stores are somewhat atypical as useful landmarks. Instead, robots can use such tech-
niques as infrared beacons to determine their absolute position within a known area. The
following sections describe some techniques you may wish to consider for your next robot
project.

INFRARED BEACON

Unless you confine your robot to playing just within the laboratory, you’ll probably want
to provide it with a means to distinguish one room in your house from the next. This is par-
ticularly important if you’ve designed the robot with even a rudimentary form of object
and area mapping. This mapping can be stored in the robot’s memory and used to steer
around objects and avoid walls.

For less than a week’s worth of groceries, you can construct an infrared beacon system
that your robot can use to determine when it has passed from one room to the next. You
equip the robot with a receiver and place a transmitter in each room. The transmitters send
out a unique code, which the robot interprets as a specific room. Once it has identified the
room, it can retrieve the mapping information previously stored for it and use it to navi-
gate through its surroundings.

The beacon system that follows is designed around a set of television and VCR remote
control chips sold by Holtek. The chips are reasonably inexpensive but can be difficult to
find. The chips used in this project are HT12D and HT12E; I bought mine at Jameco
(www.jameco.com, but you should check the Internet for other sources as well).

You can, of course, use just about any wireless remote control system you desire. The
only requirements are that you must be able to set up different codes for each transmitting
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station and that the system must work with infrared light. You’ll experience too much inter-
ference if you use radio control or ultrasonics.

You can connect the four-bit output of the HT-12D decoder IC to a microcontroller or
computer. You will also want to connect the VD (valid data) line to a pin of your micro-
controller or computer. When this line “winks” LOW, it means there is valid data on the
four data lines. The value at the four data lines will coincide with the setting of the four-
position DIP switch on each transmitter.

RADIO FREQUENCY IDENTIFICATION

Though a fairly old technology that dates back decades, radio frequency identification (RFID)
uses small passive devices that radiate a digital signature when exposed to a radio frequency
signal. RFID is found in products ranging from toys—most notably the Star Wars Episode 1
action figures—to trucking, farm animal inventories, automobile manufacturing, and more.

A transmitter/receiver, called the interrogator or reader, radiates a low- or medium-fre-
quency carrier RF signal. If it is within range, a passive (unpowered) or active (powered)
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detector, called a tag or transponder, re-radiates (or “backscatters”) the carrier frequency,
along with a digital signature that uniquely identifies the device. RFID systems in use
today operate on several common RF bands, including a low-speed 100–150 kHz band and
a higher 13.5 MHz band.

The tag is composed of an antenna coil along with an integrated circuit. The radio sig-
nal provides power when used with passive tags, using well-known RF field induction
principles. Inside the integrated circuit are decoding electronics and a small memory. A
variety of data transmission schemes are used, including non-return-to-zero, frequency
shift keying, and phase shift keying. Manufacturers of the RFID devices tend to favor one
system over another for specific applications. Some data modulation schemes are better at
long distances, for example.

Different RFID tags have different amounts of memory, but a common device might
provide for 64 to 128 bits of data. This is more than enough to serve as room-by-room or
locale-by-locale beacons. The advantage RFID has over infrared beacons (see earlier in
this chapter) is that the coverage of the RF signal is naturally limited. While this limitation
can certainly be a disadvantage, when properly deployed it can serve as a convenient way
to differentiate between different areas of a house’s robotic work space. The average work-
ing distance between interrogator and tag is several feet, though this varies greatly depend-
ing on the power output of the interrogator. Units with higher RF power can be used over
longer distances. For room-by-room robotics use, however, we actually prefer a limited
range, which also means a less expensive system.

While RFID systems are not complex, their cost is not quite in the super-affordable
region (demonstration and developers’ kits are available from some manufacturers for
$100–$200, and this includes the reader and an assortment of tags). However, once imple-
mented RFID is a low-maintenance, long-term solution for helping your robot know where
it is.

LANDMARK RECOGNITION

As mentioned, humans navigate the real world by using landmarks: the red barn on the way
to work signals you’re getting close to your turnoff. Robots can use the same kind of visu-
al cues to help them navigate a space. Landmarks can be “natural”—a support pillar in a
warehouse for example—or they can be artificial, reflectors, posts, or bar codes positioned
just for use by the robot. A key benefit of landmark recognition is that most systems are
easy to install, cheap, and when done properly unmistakable from the robot’s point of view.

Wide field bar code One technique to consider is the use of wide-field bar codes,
which are commonly used in warehouses for quick and easy inventory. The bar code pat-
tern is printed very large—perhaps as tall as two inches and as wide as a foot. A tradition-
al laser bar code reader then scans the code. The large size of the bar code makes it possi-
ble to use the bar code reader even from a distance—10 to 20 feet or more.

You can adapt the same method to help your robot navigate from room to room, and
even within a room. For each location you want to identify, print up a large bar code. Free
and low-cost bar code printing software is available over the Internet and in several com-
mercial packages. You can either make or purchase a wide-field bar code scanner and con-
nect it to your robot’s computer or microcontroller. As your robot roams about, the scan-
ner can be constantly looking for bar codes. The laser light output from the scanner is very
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low and, if properly manufactured, is well within safe limits even if the beam should quick-
ly scan past the eyes of people or animals).

Door frame “flags” Yet another technique that merits consideration is the use of
reflective tape placed around the frames of doors. Doorways are uniquely helpful in robot
navigation because in the human world we tend to leave the space around them open and
uncluttered. This allows us to enter and exit a room without tripping over something. It also
typically means that line of sight of the door will not be blocked, creating a reliable land-
mark for a robot.

Imagine vertical strips of reflective tape on either side of the doorway. These strips
could reflect the light from a scanning laser mounted on the robot, as shown in Fig. 38.20.
The laser light would be reflected from the tape and received by a sensor on the robot.
Since the speed of the laser scan is known, the timing between the return “pulses” of the
reflected laser light would indicate the relative distance between the robot and the door-
way. You could use additional tape strips to reduce the ambiguity that results when the
robot approaches the doorway at an angle.
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FIGURE 38.20 A scanning laser mounted on your
robot can be used to detect the
patterns of reflective tape located
on or near doorways. Since the
speed of the scan is known, elec-
tronics on your robot calculate
distance (and position, given more
strips) from robot to door.

Ch38_MCComb  8/29/00  8:32 AM  Page 644



Or consider using a CCD or CMOS camera. The robot could use several high-output
infrared LEDs to illuminate the tape strips. Since the tape is much more reflective than the
walls or door frame, it returns the most light. The CCD or CMOS camera is set with a high
contrast ratio, so it effectively ignores anything but the bright tapes. Assuming the robot is
positioned straight ahead of the door, the tapes will appear to be parallel. The distance
between the tapes indicates the distance between the robot and the doorway. Should the
robot be at an angle to the door, the tapes will not be parallel. Their angle, distance, and
position can once again be interpolated to provide the robot’s position relative to the door.

OTHER TECHNIQUES FOR “BEACONS” AND “LIGHTHOUSES”

There are scores of ways to relay position information to a robot. You’ve already seen two
beacon-type systems: infrared and radio frequency. And there are plenty more. Sadly, there
isn’t enough space in this book to discuss them all, but the following sections outline some
techniques you might want to consider. Many of these systems rely on line of sight
between the beacon or lighthouse and the robot. If the line of sight is broken, the robot may
very well get lost.

Three-point triangulation Traditional three-point triangulation is possible using
either of two methods:

� Active beacon. A sensor array on the robot determines its location by integrating the rel-
ative brightness of the light from three active light sources.

� Active robot. The robot sends out a signal that is received by three sensors located
around the room. The sensors integrate the robot’s position, then relay this information
back to the ‘bot (via RF or an infrared radio link).

Coupled sonar and IR light This technique calculates time of flight using sound, and
it offers excellent accuracy. You equip three active beacons with sonar transmitters and
high-output infrared light-emitting diodes. You then connect the three beacons electrically
so they will fire in sequence. When fired, both the sonar transmitter and IR LEDs emit a
short 40 kHz signal. Because light travels much faster than sound, the robot will detect the
IR signal first followed by the sound signal.

The difference in time between the reception of the IR and sound signals represents dis-
tance. Each beacon provides a “circle” path that the robot can be in. All three circles will
intersect at only one spot in the room, and that will be the location of the robot. See Fig.
38.21 for a demonstration of how this works.

Exploring Other Position-referencing
Systems
Over the years a number of worthwhile techniques have been developed to help robots
know where they are. We’ve covered many of the most common techniques here. If your
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budget and construction skill allow for it, however, you might want to consider any or all
of the following.

GLOBAL POSITIONING SATELLITE

Hovering over the earth are some two dozen satellites that provide accurate world-posi-
tioning data to vehicles, ships, and aircraft. The satellite network, referred to as global
positioning system (GPS), works by triangulation: the signals from three or more satellites
are received and their timings are compared. The difference in the timings indicates the rel-
ative distances between the satellites and the receiver. This provides a “fix” by which the
receiver can determine not only the latitude and longitude most anywhere on the earth, but
also elevation.

GPS was primarily developed by the United States government for various defense sys-
tems, but it is also regularly used by private commerce and even consumers. Until recent-
ly, the signals received by a consumer-level GPS receiver have been intentionally “fuzzied”
to decrease the accuracy of the device. (This is called “selective availability,” imposed by
the U.S. government for national security reasons.) Instead of the accuracies of a few feet
or less that are possible with military-grade GPS receivers, consumer GPS receivers have
had a nominal resolution of 100 meters, or about 325 feet. In practical use, with selective
availability activated in the GPS satellites, the actual error is typically 50–100 feet.
Selective availability has since been deactivated (but could be re-activated in the event of
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hostilities between the United States and another country), and the resolution of consumer
GPS receivers can be under 20–25 feet.

Furthermore, a system called differential GPS, in which the satellite signals are corre-
lated with a second known reference, demonstrably increases the resolution of GPS signals
to less than five inches. When used outdoors (the signal from the satellites is too weak for
indoor use) this can provide your robot with highly accurate positioning information, espe-
cially if your ‘bot wanders hundreds of feet from its base station. Real-time differential
GPS systems are still fairly costly, but their outputs can read into the robot’s computer in
real time. It takes from one to three minutes for the GSP system to “lock” onto the satel-
lites overhead, however. Every time the lock is broken—the satellite signals are blocked or
otherwise lost—it takes another one to three minutes to reestablish a fix.

If you’re interested in experimenting with GPS, look for a receiver that has a NMEA-
0183 or RS-232 compatible computer interface. A number of amateur radio sites on the
Internet discuss how to use software to interpret the signals from a GPS receiver.

INERTIAL NAVIGATION

You can use the same physics that keep a bicycle upright when its wheels are in motion to
provide motion data to a robot. Consider a bicycle wheel spinning in front of you while
you hold the axle between your hands. Turn sideways and the wheel tilts. This is the gyro-
scopic effect in action; the angle of the wheel is directly proportion to the amount and time
you are turning. Put a gyroscope in an airplane or ship and you can record even imper-
ceptible changes in movement, assuming you are using a precision gyroscope.

Gyros are still used in airplanes today, even with radar, ground controllers, and radios
to guide their way. While many modern aircraft have substituted mechanical gyros with
completely electronic ones, the concept is the same. During flight, any changes in direc-
tion are recorded by the inertial guidance system in the plane (there are three gyros, for all
three axes). At any time during the flight the course of the plane can be scrutinized by look-
ing at the output of the gyroscopes.

Inertial guidance systems for planes, ships, missiles, and other such devices are far, far
too expensive for robots. However, there are some low-cost gyros that provide modest
accuracies. One reasonably affordable model is the Max Products MX-9100 micro piezo
gyro, often used in model helicopters. The MX-9100 uses a piezoelectric transducer to
sense motion. This motion is converted into a digital signal whose duty cycle changes in
proportion to the rate of change in the gyro.

Laser- and fiber-optic-based gyroscopes offer another navigational possibility, though
the price for ready-made systems is still out of the reach of most hobby robot enthusiasts.
These devices use interferometry—the subtle changes in the measured wavelength of a
light source that travels in opposite directions around the circumference of the gyroscope.
The light is recombined onto a photosensor or a photocell array such as a CCD camera. In
the traditional laser-based gyroscopes (e.g., the Honeywell “ring gyro”), the two light
beams create a bull’s-eye pattern that is analyzed by a computer. In simpler fiber-optic sys-
tems, the light beams are mixed and received by a single phototransistor. The wave patterns
of the laser light produce sum and difference signals (heterodyning). The difference sig-
nals are well within audio frequency ranges, and these can be interpreted using a simple
frequency-to-voltage converter. From there, relative motion can be ascertained.
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You can also use accelerometers (similar to those described in detail in Chapter 41,
“Experimenting with Tilt and Gravity Sensors”) for inertial navigation. The nature of
accelerometers, particularly the less-expensive piezoelectric variety, makes them difficult
to employ in an inertial system. Accelerometers are sensitive to the earth’s own gravity, and
tilting on the part of the robot can introduce errors. By using multiple accelerometers—
one to measure movement of the robot and one to determine tilt—it is generally possible
to reduce (but perhaps not eliminate) these errors.

MAP MATCHING

Maps help us navigate strange towns and roads. By correlating what we see out the wind-
shield with the street names on the map, we can readily determine where we are—or per-
haps, just how lost we are! Likewise, given a map of its environment, a robot could use its
various sensors to correlate its position with the information in a map. Map-based posi-
tioning, also know as map matching, uses a map you prepare for the robot or that the robot
prepares for itself.

During navigation, the robot uses whatever sensors it has at its disposal (infrared, ultra-
sonic, vision, etc.) to visualize its environment. It checks the results of its sensors against
the map previously stored in its memory. From there, it can compute its actual position and
orientation. One common technique, developed by robot pioneer Hans Moravec, uses a
“certainty grid” that consists of squares drawn inside the mapped environment (think of
graph paper used in school). Objects, including obstacles, are placed within the squares.
The robot can use this grid map to determine its location by attempting to match what it
sees through its sensors with the patterns on the map.

Obviously, map matching requires that a map of the robot’s environment be created
first. Several consumer robots, like the Cyebot, are designed to do this mapping
autonomously by “exploring” the environment over a period of time. Industrial robots typ-
ically require that the map be created using a CAD program and the structure and objects
within it very accurately rendered. The introduction of new objects into the environment
can drastically decrease the accuracy of the map matching, however. The robot may mis-
take a car for a foot stool, for example, and seriously misjudge its location.

From Here
To learn more about… Read

Using computers and microcontrollers in Part 5—“Computers and Electronic Control”
your robots

Infrared and wireless communications Chapter 34, “Remote Control Systems”
techniques

Keeping your robot from crashing Chapter 36, “Collision Avoidance and Detection”
into things

Vision for your robot Chapter 37, “Robotic Eyes”

Preventing your robot from falling over Chapter 41, “Experimenting with Tilt and Gravity 
(or at least knowing when it happens) Sensors”
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Everyone complains that a robot is good for nothin’—except, perhaps, providing its mas-
ter with a way to tinker with gadgets in the name of “science!” But here’s one useful and
potentially life-saving application you can give your robot in short order: fire and smoke
detection. As this chapter will show, you can easily attach sensors to your robot to detect
flames, heat, and smoke, making your robot a kind of mobile smoke detector.

Flame Detection
Flame detection requires little more than a sensor that detects infrared light and a circuit
to trigger a motor, siren, computer, or other device when the sensor is activated. As it turns
out, almost all phototransistors are specifically designed to be sensitive primarily to
infrared or near-infrared light. You need only connect a few components to the phototran-
sistor and you’ve made a complete flame detection circuit. Interestingly, the detector can
“see” flames that we can’t. Many gases, including hydrogen and propane, burn with little
visible flame. The detector can spot them before you can, or before the flames light some-
thing on fire and smoke fills the room.

39
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DETECTING THE INFRARED LIGHT FROM A FIRE

The simple circuit in Fig. 39.1 shows the most straightforward method for detecting
flames. (See parts list in Table 39.1) You mask a phototransistor so it sees only infrared
light by using an opaque infrared filter. Some phototransistors have the filter built in; with
others, you’ll have to add the filter yourself. If the phototransistor does not have an
infrared-filtered lens, add one for the light to pass through. Place the transistor at the end
of a small opaque tube, say one with a 1/4-inch or 1/2-inch I.D. (the black tubing for drip
irrigation is a good choice). Glue the filter to the end of the tube. The idea is to block all
light to the transistor except that which is passed through the filter.

In the circuit, when infrared light hits the phototransistor it triggers on. The brighter the
infrared source is, the more voltage is applied to the inverting input of the comparator. If
the input voltage exceeds the reference voltage applied to the noninverting input, the out-
put of the comparator changes state.

Potentiometer R2 sets the sensitivity of the circuit. You’ll want to turn the sensitivity down
so ambient infrared light does not trigger the comparator. You’ll find that the circuit does not
work when the “background” light has excessive infrared content. You can’t, for example, use
the circuit outdoors or when the sensor is pointed directly at an incandescent light or the sun.
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FIGURE 39.1 A flame detector built around the LM399 quad 
comparator IC.

TABLE 39.1 PARTS LIST FOR FLAME DETECTOR.

IC1 LM339 Quad Comparator IC

R1 10K resistor

R2 10K potentiometer

R3 10K resistor

Q1 Infrared-sensitive phototransistor

Misc. Infrared filter for phototransistor (if needed)

All capacitors have 10 percent tolerance unless noted; all resistors 1/4-watt.
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Test the circuit by connecting an LED and 270-ohm resistor from the Vout terminal to
ground. Point the sensor at a wall, and note the condition of the LED. Now, wave a match
in front of the phototransistor. The LED should blink on and off. You’ll notice that the cir-
cuit is sensitive to all sources of infrared light, which includes the sun, strong photolamps,
and electric burners. If the circuit doesn’t seem to be working quite right, look for hidden
sources of infrared light. With the resistor values shown, the circuit is fairly sensitive; you
can change them by adjusting the value of R1 and R2.

“WATCHING” FOR THE FLICKER OF FIRE

No doubt you’ve watched a fire at the beach or in a fireplace and noted that the flame
changes color depending on the material being burned. Some materials burn yellow or
orange, while others burn green or blue (indeed, this is how those specialty fireplace logs
burn in different colors). Just like the color “signature” given off when different materials
burn, the flames of the fire flicker at different but predictable rates.

You can use this so-called flame modulation in a robot fire detection system to determine
what is a real fire and what is likely just sunlight streaming through a window or light from
a nearby incandescent lamp. By detecting the rate of flicker from a fire and referencing it
against known values, it is possible to greatly reduce false alarms. The technique is beyond
the scope of this book, but you could design a simple flame-flicker system using an op amp,
a fast analog-to-digital converter, and a computer or microcontroller. The analog-to-digital
converter would translate the instantaneous brightness changes of the fire into digital signals.

The patterns made by those signals could then be referenced against those made by
known sources of fire. The closer the patterns match, the greater the likelihood that there
is a real fire. In a commercial product of this nature, it is more likely that the device would
use more sophisticated digital signal processing.

Using a Pyroelectric Sensor to Detect
Fire
A pyroelectric sensor is sensitive to the infrared radiation emitted by most fires. The most
common use of pyroelectric infrared (or PIR) sensors is in burglar alarms and motion
detectors. The sensor detects the change in ambient infrared radiation as a person (or ani-
mal or other heat-generating object) moves within the field of view of the sensor. The key
ingredient here is change: a PIR sensor cannot detect heat per se but the changes in the
heat within its field of view. In larger fires, the flickering flames create enough of a change
to trigger the PIR detector.

Chapter 36, “Collision Avoidance and Detection,” discusses how to use PIR sensors to
detect the motion of people and animals around a robot. The same sensor, with little or no
change, can be employed to detect fires. To be effective as a firefighter, you should ideally
reduce the sensor’s field of the view so the robot can detect smaller fires. The larger the
field of view, the more the temperature and/or position of the heat source must change in
order for the PIR sensor to detect it.
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With a smaller field of view, the magnitude of change can be lower. However, with a small
field of view, your robot will likely need to “sweep” the room, using a servo or stepper motor,
in order to observe any possible fires. The sweeping must stop periodically so the robo can
take a “room reading.” Otherwise, the motion of the sensor could trigger false alarms.

Smoke Detection
“Where there’s smoke, there’s fire.” Statistics show that the majority of fire deaths each year
are caused not by burns but by smoke inhalation. For less than $15, you can add smoke detec-
tion to your robot’s long list of capabilities and with a little bit of programming have it wan-
der through the house checking each room for trouble. You’ll probably want to keep it in the
most “fire-prone” rooms, such as the basement, kitchen, laundry room, and robot lab.

You can build your own smoke detector using individually purchased components, but
some items, such as the smoke detector cell, are hard to find. It’s much easier to use a com-
mercially available smoke detector and modify it for use with your robot. In fact, the
process is so simple that you can add one to each of your robots. Tear the smoke detector
apart and strip it down to the base circuit board.
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The active element used for detecting smoke—the radioactive substance
Americium 241—has a half-life of approximately seven years. After about five
to seven years, the effectiveness of the alarm is diminished, and you should
replace it. Using a very old alarm will render your “Smokey the Robot” fairly
ineffectual at detecting the smoke of fires.

HACKING A SMOKE ALARM

You can either buy a new smoke detector module for your robot or scavenge one from a
commercial smoke alarm unit. The latter tends to be considerably cheaper—you can buy
quality smoke alarms for as little as $7 to $10. In this section, I’ll discuss hacking a com-
mercial smoke alarm, specifically a Kidde model 0915K, so it can be directly connected
to a robot’s computer port or microcontroller. Of course, smoke alarms are not all designed
the same, but the basic construction is similar to that described here. You should have rel-
atively little trouble hacking most any smoke detector you happen to use.

However, you should limit your hacking attempts to those smoke alarms that use tradi-
tional 9-volt batteries. Certain smoke alarm models, particularly older ones, require you to
use AC power or specialized batteries (such as 22-volt mercury cells). These are harder to
salvage and, besides, their age makes them less suitable for sensitive smoke detection.

Start by checking the alarm for proper operation. If it doesn’t have one already,
insert a fresh battery into the battery compartment. Put plugs in your ears (or cover up
the audio transducer hole on the alarm). Press the “Test” button on the alarm; if it is
properly functioning the alarm should emit a loud, piercing tone. If everything checks
okay, remove the battery, and disassemble the alarm. Less expensive models will not
have screws but will likely use a “snap-on” construction. Use a small flat-headed screw-
driver to unsnap the snaps.
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Inside the smoke detector will be a circuit board, like the one in Fig. 39.2, that consists
of the drive electronics and the smoke detector chamber.

Either mounted on the board or located elsewhere will be the piezo disc used to make
the loud tone. Remove the circuit board, being careful you don’t damage it. Examine the
board for obvious “hack points,” and note the wiring to the piezo disc. More than likely,
there will be either two or three wires going to the disc:

� Two wires to the piezo disc: the wires will provide ground and �V power. This design
is typical when you are using all-in-one piezo disc buzzers, in which the disc itself con-
tains the electronics to produce the signal for audible tones.

� Three wires to the piezo disc: the wires will provide ground, �V power, and a signal
that causes the disc to oscillate with an audible tone.

Using a volt-ohm meter or an oscilloscope, find the wire that serves as ground. (It is
probably colored black or brown, but if no obvious color coding is used, examine the cir-
cuit board and determine where the wires are attached.) Connect the other test lead to the
remaining wire. Or if the disc has three wires, connect the test lead to one of the remain-
ing wires.

Replace the battery in the battery compartment, and depress the “Test” button on the
alarm. Watch for a change in voltage. For a two-wire disc you should see the voltage
change as the tone is produced. For a three-wire disc, try each wire to determine which
produces the higher voltage; that is the one you wish to use. If you are using an oscillo-
scope, find the wire that produces a clean on/off pulse.

SMOKE DETECTION 653

FIGURE 39.2 The guts of a smoke detector.
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Once you have determined the functions of the wires to the piezo disc, clip off the disc
and save it for some other project. Retest the alarm’s circuit board to make sure you can
still read the voltage changes with your volt-ohm meter or oscilloscope. Then clip off the
wires to the battery compartment, noting their polarity. Connect the circuit to a �5 vdc
power supply. Depress the “Test” button again. Ideally, the circuit will still function with
the lower voltage. If it does not, you’ll need to operate the smoke alarm circuit board with
�9 vdc, which can complicate your robot’s power supply and interfacing needs.

If you have an oscilloscope note the voltage. It should not be more than �5 volts. If it
is, that means the circuit board contains circuitry for increasing the drive voltage to the
piezo disc. You don’t want this when you are interfacing the board to a computer port or
microcontroller, so you’ll need to limit the voltage by using a circuit such as that shown in
Fig. 39.3. Here, the output of the smoke alarm circuit is clamped at no more than 5.1 volts,
thanks to the 5.1-volt zener diode.

Because the output of the smoke alarm detector is often an oscillating signal, there is no
effective way to measure the peak voltage by using a volt-ohm meter. The meter will only
show an average of the voltage provided by the circuit. If you are limited to using only a volt-
ohm meter for your testing, for safety’s sake add the 5.1-volt zener circuit as shown in Fig.
39.4. While this may be unnecessary in some instances, it will help protect your digital inter-
face from possible damage caused by over-voltage from the smoke alarm circuit board.

INTERFACING THE ALARM TO A COMPUTER

Assuming that the board works with the �5 vdc applied, your hacking is basically over,
and you can proceed to interface the alarm with a computer port or microcontroller. By
way of example, we’ll assume that a simple microcontroller that periodically polls the
input pin is connected to the smoke alarm circuit board. The program, checks the pin sev-
eral times each second. When the pin goes HIGH, the smoke alarm has been triggered.

If your microcontroller supports interrupts, a better scheme is to connect the smoke alarm
circuit board to an interrupt pin. Then write your software so that if the interrupt pin is trig-
gered, a special “I smell smoke” routine is run. The benefit of an interrupt over polling is that
the latter requires your program to constantly branch off to check the condition of the input
pin. With an interrupt, your software program can effectively be ignorant of any smoke detec-
tor functionality. If and when the interrupt is triggered because the smoke alarm circuit was
tripped, a special software routine takes over, commanding the robot to do something else.
See Chapter 28 for more information on using interrupts in microcontrollers.

Rather than connect the output of the smoke alarm circuit board directly to the input
pin, use a buffer to protect the microcontroller or computer against possible damage. You
can construct a buffer using logic circuits (either TTL or CMOS) or with an op amp
wired for unity-gain (with unity-gain, the op amp doesn’t amplify anything). The buffer
is optional, but I do recommend it. Note also that the smoke alarm circuit board derives
its power from the robot’s main �5 vdc power supply and not from the microcontroller.

Alternatively, you can use an opto-isolator. The opto-isolator bridges the gap between
the detector and the robot. You do not need to condition the output of the opto-isolator
if you are connecting it to a computer or microprocessor port or to a microcontroller.
Several opto-isolator interfacing circuits are shown in Appendix D, “Interfacing Logic
Families and ICs.”
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TESTING THE ALARM

Once the smoke alarm circuit board is connected to the microcontroller or computer port,
test it and your software by triggering the “Test” button on the smoke alarm. The software
should branch off to its “I smell smoke” subroutine. For a final test, light a match, and then
blow it out. Wave the smoldering match near the smoke detector chamber. Again, the soft-
ware runs the “I smell smoke” subroutine.

LIMITATIONS OF ROBOTS DETECTING SMOKE

You should be aware of certain limitations inherent in robot fire detectors. In the early
stages of a fire, smoke tends to cling to the ceilings. That’s why manufacturers recommend
that you place smoke detectors on the ceiling rather than on the wall. Only when the fire
gets going and smoke builds up, does it start to fill up the rest of the room.

Your robot is probably a rather short creature, and it might not detect smoke that con-
fines itself only to the ceiling. This is not to say that the smoke detector mounted on even
a one-foot high robot won’t detect the smoke from a small fire; just don’t count on it. Back
up the robot smoke sensor with conventionally mounted smoke detection units, and do not
rely only on the robot’s smoke alarm.

DETECTING NOXIOUS FUMES

Smoke alarms detect the smoke from fires but not noxious fumes. Some fires emit very
little smoke but plenty of toxic fumes, and these are left undetected by the traditional
smoke alarm. Moreover, potentially deadly fumes can be produced in the absence of a fire.
For example, a malfunctioning gas heater can generate poisonous carbon monoxide gas.
This colorless, odorless gas can cause dizziness, headaches, sleepiness, and—if the con-
centration is high enough—even death.

Just as there are alarms for detecting smoke, so there are alarms for detecting noxious
gasses, including carbon monoxide. Such gas alarms tend to be a little more expensive than
smoke alarms, but they can be hacked in much the same way as a smoke alarm. Deduce
the signal wires to the piezo disc and connect them (perhaps via a buffer and zener diode
voltage clamp) to a computer port or microcontroller.
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Combination units that include both a smoke and gas alarm are also available. You
should determine if the all-in-one design will be useful for you. In some combination
smoke-gas alarm units, there is no simple way to determine which has been detected.
Ideally, you’ll want your robot to determine the nature of the alarm, either smoke or gas
(or perhaps both).

Heat Sensing
In a fire, smoke and flames are most often encountered before heat, which isn’t felt until
the fire is going strong. But what about before the fire gets started in the first place, such
as when a kerosene heater is inadvertently left on or an iron has been tipped over and is
melting the nylon clothes underneath?

If your robot is on wheels (or legs) and is wandering through the house, perhaps it’ll be
in the right place at the right time and sense these irregular situations. A fire is brewing,
and before the house fills with smoke or flames the air gets a little warm. Equipped with
a heat sensor, the robot can actually seek out warmer air, and if the air temperature gets too
high it can sound an initial alarm.

Realistically, heat sensors provide the least protection against a fire. But heat sensors
are easy to build, and, besides, when the robot isn’t sniffing out fires it can be wandering
through the house giving it an energy check or reporting on the outside temperature
or…you get the idea.

Fig. 39.4 shows a basic but workable circuit centered around an LM355 temperature
sensor. This device is relatively easy to find and costs under $1.50. The output of the
device, when wired as shown, is a linear voltage. The voltage increases 10 mV for every
rise in temperature of 1° Kelvin (K).

Degrees Kelvin uses the same scale as degrees Centigrade (C), except that the zero point
is absolute zero—about �273°C. One degree Centigrade equals 1° Kelvin; only the start
points differ. You can use this to your advantage because it lets you easily convert degrees
Kelvin into degrees Centigrade. Actually, since your robot will be deciding when hot is hot,
and doesn’t care what temperature scale is used, conversion really isn’t necessary.

You can test the circuit by connecting a volt-ohm meter to the ground and output ter-
minals of the circuit. At room temperature, the output should be about 2.98 volts. You can
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calculate the temperature if you get another reading by subtracting the voltage by 273
(ignore the decimal point but make sure there are two digits to the right of it, even if they
are zeros). What’s left is the temperature in degrees Centigrade. For example, if the read-
ing is 3.10 volts, the temperature is 62°C (310 � 273 � 62). By the way, that’s pretty hot!
Time to turn on the air conditioner.

You can calibrate the circuit, if needed, by using an accurate bulb thermometer as a ref-
erence and adjusting R2 for the proper voltage. How do you know the “proper” voltage?
If you know the temperature, you can determine what the output voltage should be by
adding the temperature (in degrees C) to 273. If the temperature is 20°C, then the output
voltage should be 2.93 volts. For more accuracy, float some ice in a glass of water for
15–20 minutes and stick the sensor in it (keep the leads of the testing apparatus dry). Wait
5 to 10 minutes for the sensor to settle and read the voltage. It should be exactly 2.73 volts.

The load presented at the outputs of the sensor circuit can throw off the reading. The
schematic in Fig. 39.5 provides a buffer circuit so the load does not interfere with the output
of the 355 temperature sensor. Note the use of the decoupling capacitors as recommended in
the manufacturer’s application notes. These aren’t essential, but they are a good idea.

Fire Fighting
By attaching a small fire extinguisher to your robot, you can have the automaton put out
the fires it detects. Obviously, you’ll want to make sure that the fire detection scheme
you’ve put into use is relatively free of false alarms and that it doesn’t overreact in nonfire
situations. Having your robot rush over to one of your guests and put out a cigarette he just
lit is not only bad manners, it’s potentially embarrassing.

It’s a good idea to use a “clean” fire extinguishing agent for your fire-fighting ‘bot.
Halon is one of the best such agents, but, alas, the stuff is known to punch massive holes
in the earth’s ozone layer, and as a result it is no longer manufactured for general con-
sumption. It’s still legal to use, however, so if you have a working Halon fire extinguisher,
you may wish to use it with your robot firefighter. You may also consider one of a number
of Halon alternatives; select one that does not dispense a foam or powder. For example,
any inert gas (helium, argon) and many noncombustible gasses (e.g., nitrogen) can be used
to deplete a fire, and they will not leave a sediment on whatever they are sprayed on.

No matter what you use for the fire extinguisher, be sure to use caution as a guide when
building any fire-fighting robot. Consider limiting your robot for experimental use, and
test it only in well-ventilated rooms—or better yet—outside.
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TABLE 39.2 PARTS LIST FOR THE BASIC TEMPERATURE TRANSDUCER.

R1 4.7K resistor, 1 percent tolerance

R2 10K 10-turn precision potentiometer

D1 LM335 temperature sensor diode

All capacitors have 10 percent tolerance unless noted; all resistors 1/4-watt.
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The exact mounting and triggering scheme you use depends entirely on the design of
the fire extinguisher. The bottle used in the prototype firebot is a Kidde Force-9, 2 1/2
pound Halon extinguisher. It has a diameter of about 3 1/4 inches. You can mount the extin-
guisher in the robot by using “plumber’s tape,” that flexible metallic strip used by plumbers
to mount water and gas pipes. It has lots of holes already drilled into it for easy mounting.
Use two strips to hold the bottle securely. Remember that a fully charged extinguisher is
heavy—in this case over 3 pounds (2 1/2 pounds for the Halon chemical and about 1/2
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TABLE 39.3 PARTS LIST FOR THE BUFFERED TEMPERATURE TRANSDUCER.

R1 12K resistor, 1 percent tolerance

C1,C3 0.1 �F ceramic capacitor

C2,C4 4.7 �F tantalum capacitor

D1 LM335 temperature sensor diode

All capacitors have 10 percent tolerance unless noted; all resistors 1/4-watt.
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pound for the bottle). If you add a fire extinguisher to your robot, you must relocate other
components to evenly distribute the weight.

The extinguisher used in the prototype system for this book used a standard actuat-
ing valve. To release the fire retardant, you squeeze two levers together. Fig. 39.6 shows
how to use a heavy-duty solenoid to remotely actuate the valve. You may be able to
access the valve plunger itself (you may have to remove the levers to do so). Rig up a
heavy-duty solenoid and lever system. A computer or control circuit activates the 
solenoid.

For best results, the valve should be opened and closed in quick bursts (200–300 mil-
liseconds are about right). The body of the robot should also pivot back and forth so the
extinguishing agent is spread evenly over the fire. Remember that to be effective, the extin-
guishing agent must be sprayed at the base of the fire, not at the flames. For most fires,
this is not a problem because the typical robot stays close to the floor. If the fire is up high,
the robot may not be able to effectively fight it.

You can test the fire extinguisher a few times before the bottle will need recharging. I
was able to squeeze off several dozen short blasts before the built-in pressure gauge regis-
tered that I needed a new charge. For safety’s sake, experiment with an extra extinguisher.
Don’t use your only extinguisher for your robot experiments; keep an extra handy in the
unlikely event that you have to fight a fire yourself.

If the fire-fighting robot bug bites you hard, consider entering your machine in the annual
Trinity College Fire Fighting Home Robot Contest (see www.trincoll.edu/events/robot/ for
additional information, including rules and a description of the event). This contest involves
timing a robot as it goes from room to room in a houselike test field (the “house” and all its
rooms are in a reduced scale). The object is to find the fire of a candle and snuff it out in the
least amount of time. Separate competitions involving a junior division (high school and
younger) and a senior division (everyone else) help to provide an even playing field for the
contestants.

From Here
To learn more about… Read

Connecting sensors to computers Chapter 29, “Interfacing with Computers and 
and microcontrollers Microcontrollers”

Adding the sensation of “touch” Chapter 35, “Adding the Sense of Touch”

Optical systems for detecting light Chapter 37, “Robotic Eyes”

Enabling the robot to move around in Chapter 38, “Navigating through Space”
a room or house

Adding a siren or other warning device Chapter 40, “Sound Output and Input”
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FIGURE 39.6 Using a heavy-duty solenoid to activate a
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The robots of science fiction are seldom mute or deaf. They may speak pithy warnings—
“Danger, Will Robinson, Danger”—or squeak out blips and beeps in some “advanced” lan-
guage only other robots can understand. Voice and sound input and output make a robot more
“humanlike,” or at least more entertaining. What is a personal robot if not to entertain?

What’s good for robots in novels and in the movies is good enough for us, so this chap-
ter presents a number of useful projects for giving your mechanical creations the ability to
make and hear noise. The projects include using recorded sound, generating warning
sirens, recognizing and responding to your voice commands, and listening for sound
events. Admittedly, this chapter only scratches the surface of what’s possible today, espe-
cially with technologies like MP3 compressed digitized sound and ultracompact compact
disc (and the ability to record them on a CD recorder connected to your computer). Alas,
my publisher told me I had killed enough trees as it is and the book could not get any big-
ger, so this chapter must remain simply a primer on sound output and input.

Mechanically Recorded Sound Output
Before electronic doodads took over robotics there were mechanical solutions for just about
everything. While they may not always have been as small as an electrical circuit, they were
often easier to use. Case in point: you can use an ordinary cassette tape and playback 

40
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mechanism to produce music, voice, or sound effects. Tape players and tape player mecha-
nisms are common finds in the surplus market, and you can often find complete (and still
working) portable cassette players-recorders at thrift stores. With just a few wires you can rig
a cassette tape player in the robot and have the sound played back, on your command.

When looking for a cassette player try to find the kind shown in Fig. 40.1, which are
solenoid controlled. These are handy for your robot designs because instead of pressing
mechanical buttons, you can actuate solenoids by remote or computer control to play, fast-
forward, or rewind the tape.

For most cassette decks you only need to provide power to operate the motor(s) and
solenoids (if any) and a connection from the playback head to an amplifier. Since you are
not using the deck for recording, you don’t have to worry about the erase head, biasing the
record head, and all that other stuff. If the deck already has a small preamplifier for 
the playback head, use it. It’ll improve the sound quality. If not, you can use the tape head
preamplifier shown in Fig. 40.2 (you can use a less expensive op amp than the one speci-
fied in the parts list in Table 40.1, but noise can be a problem). Place the preamplifier
board as close to the cassette deck as possible to minimize stray pickup.

Electronically Recorded Sound Output
While mechanical sound playback systems are adequate, they lack the response and flexi-
bility of a truly electronic approach. Fortunately, all-electronic reproduction of sound is
fairly simple and inexpensive these days, in large part because of the wide availability of
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FIGURE 40.1 A surplus cassette deck transport. This model is entirely solenoid
driven and so is perfect for robotics.

Ch40_McComb  8/21/00  3:35 PM  Page 662



custom-integrated circuits that are designed to record, store, and play back recorded sound.
Most of these chips are made for commercial products such as microwave ovens, cellular
phones, or car alarms.

In the following sections you’ll learn about two approaches to electronically recorded
sound output: hacking a sound recorder toy and using a special-purpose sound storage chip.

HACKING A TOY SOUND RECORDER

You can hack toy sound recorders, such as the Yak Bak, for use in your robot. These units,
which can often be found at toy stores for under $10, contain a digital sound recording chip,
microphone, amplifier, and speaker (and sometimes sound effects generator). To use them,
you press the Record button and speak into the microphone. Then, stop recording and press
the play button and the sound will play back until you make a new recording.

Fig. 40.3 shows a Yak Bak toy that was disassembled and hacked by soldering wires
directly to the circuit board. The wires, which connect to a microcontroller or computer,
are in lieu of pressing buttons on the toy to record and play back sounds. The buttons on
most of these sound recorder toys are made of conductive rubber and are easily removed.
To operate the unit via a microcontroller or computer, you bring the button inputs HIGH
or LOW. (Which value you choose depends on the design of the circuit; you need to exper-
iment to find out which to use.) Connect a 1K to 3K resistor between the microcontroller-
computer port and the button input.
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TABLE 40.1 PARTS LIST FOR CASSETTE TAPE HEAD PLAYER AMPLIFIER.

IC1 LT1007 low-noise operational amplifier (Linear Technology)

R1 330K-resistor

R2 4.9K resistor

R3 100–ohm resistor

C1 0. 1 �F ceramic capacitor

All resistors have 5 percent tolerance, 1/8- or 1/4-watt, metal film; all capacitors have 10 percent tol-
erance, rated 35 volts or higher.
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Suppose you have a Yak Bak or similar toy connected to I/O pin 1 on a Basic Stamp II.
Assume that on the toy you are using, bringing the button input HIGH triggers a previously
recorded sound snip. The control program is as simple as this:

high 1
pause 10
low 1

The program starts by bringing the button input (the input of the toy connected to pin 1
of the Basic Stamp) HIGH. The pause statement waits 10 milliseconds and then places the
button LOW again.

The built-in amplifier of these sound recorder/playback toys isn’t very powerful. You
may wish to connect the output of the toy to one of the audio output amplifiers described
later in the chapter (see “Audio Amplifiers”).

USING THE ISD FAMILY OF VOICE-SOUND RECORDER ICS

Toy sound recorders are limited to playing only a single sample. For truly creative robot
yapping, you need a sound chip in which you can control the playback of any of several
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FIGURE 40.3 A hacked Yak Bak can be used to store and play short sound
snips. You can record sounds for later playback, which can be via
computer control. This model has two extra buttons for sound
effects, which are also connected to the robot’s microcontroller or
computer.
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prerecorded snips. You can do this easily by using the family of sound storage and play-
back chips produced by Information Storage Devices (ISD). The company has made
these “ChipCorder” ICs readily available to the electronics hobbyist and amateur robot
builder.

You can purchase ISD sound recorder chips from a variety of sources, including Jameco
and Digikey (see Appendix B). Prices for these chips vary depending on feature and
recording time, but most cost under $15. While there are certainly other makers of sound
storage/playback integrated circuits, the ISD chips are by far the most widely used and
among the most affordable.

The ChipCorder products enjoy a rich assortment of data sheets and application notes,
all of which are available from the ISD Web page at www.isd.com.

Sirens and Other Warning Sounds
If you use your robot as a security device or to detect intruders, fire, water, or whatever,
then you probably want the machine to warn you of immediate or impending danger. The
warbling siren shown in Fig. 40.4 will do the trick, assuming it’s connected to a strong
enough amplifier (refer to the parts list in Table 40.2). The circuit is constructed using
two 555 timer chips (alternatively, you can combine the functions into the 556 dual 
timer chip). To change the speed and pitch of the siren, alter the values or R1and R4, 
respectively.

For maximum effectiveness, connect the output of the IC2 to a high-powered amplifi-
er. You can get audio amplifiers with wattages of 8, 16, and even more volts in easy-to-
build kit form. See Appendix B, “Sources,” for a list of mail order companies that also sell 
electronic kits.
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FIGURE 40.4 A warbler siren made from two 555 timer ICs.
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Sound Control
Unless you have all of the sound-making circuits in your robot hooked up to separate
amplifiers and speakers (not a good idea), you’ll need a way to select between the
sounds. The circuit in Fig. 40.5 uses a 4051 CMOS analog switch and lets you choose
from among eight different analog signal sources. You select input by providing a three-
bit binary word to the select lines. You can load the selection via computer or set it man-
ually with a switch. A binary-coded-decimal (BCD) thumbwheel switch is a good
choice, or you can use a four-bank DIP switch. Table 40.3 shows the truth table for
selecting any of the eight inputs.

You can route just about any of your sound projects through this chip, just as long as
the outlet level doesn’t exceed a few milliwatts. Do not pass amplified sound through the
chip. Besides in all likelihood destroying the chip, it’ll cause excessive cross talk between
the channels. It’s also important that each input signal not have a voltage swing that
exceeds the supply voltage to the 4051.

Audio Amplifiers
Fig. 40.6 shows a rather straightforward 0.5-watt sound amplifier that uses the LM386
integrated amp. The sound output is minimal, but the chip is easy to get, cheap, and can be
wired up quickly. It’s perfect for experimenting with sound projects. The amplifier as
shown has a gain of approximately 20, using minimal parts. You can increase the gain to
about 200 by making a few wiring changes, as shown in Fig. 40.7. Either amplifier will
drive a small (two- or three-inch) eight-ohm speaker. Refer to the parts lists in Tables 40.4
and 40.5 for these circuits.
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TABLE 40.2 PARTS LIST FOR SIREN.

IC1,IC2 555 Timer IC

R1 10K resistor

R2 1 megohm resistor

R3 10K resistor

R4 1K resistor

R5 4.7K resistor

C1 0.22 �F ceramic capacitor

C2 0.1 �F ceramic capacitor

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance, rated
35 volts or higher.
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FIGURE 40.5 How to use the 4051 CMOS 8-input analog switch to
control the output of the various sound-making circuits
in your robot. You can choose the sound source you
want routed to the output amplifier by selecting its
input with the Input Select lines (they are binary weight-
ed: A � 1, V �2, C � 4). For best results, the audio
inputs should not already be amplified.

TABLE 40.3 4051 TRUTH TABLE.

C B A Selected Output Pin

0 0 0 0 13

0 0 1 1 14

0 1 0 2 15

0 1 1 3 12

1 0 0 4 1

1 0 1 5 5

1 1 0 6 2

1 1 1 7 4
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Speech Recognition
Robots that listen to your voice commands and obey? Don’t laugh; the technology is not
only available, it’s relatively inexpensive. Several companies, such as Sensory Inc. and
Images Company, offer full-featured speech recognition systems for under $100. Both
require you to “train” the system to recognize your voice patterns. Once trained, you sim-
ply repeat the command, and the system sets one or more of its outputs accordingly.

The Voice Direct, from Sensory Inc., is relatively easy to set up and use. The unit con-
sists of a small double-sided circuit board that is ready to be connected to a microphone,
speaker (for auditory confirmation), battery, and either relays or a microcontroller. The
Voice Direct board recognizes up to 15 words or phrases and is said to have a 99 percent
or better recognition accuracy. Phrases of up to 3.2 seconds can be stored, so you can tell
you robot to “come here” or “stop, don’t do that!” Fig. 40.8 shows Voice Direct module;
the product comes with complete circuit and connection diagrams.
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FIGURE 40.6 A simple gain-of-50 integrated amplifier, based
on the popular LM386 audio amplifier IC.

TABLE 40.4 PARTS LIST FOR GAIN-200 AUDIO AMPLIFIER.

IC1 LM386 Audio Amplifier IC

R1 10-ohm resistor

R2 10K potentiometer

C1 0.047 �F ceramic capacitor

C2 250 �F electrolytic capacitor

SPKR1 8-ohm miniature speaker

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance, rated
35 volts or higher.
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Keep the following in mind when using a voice recognition system:

� You must be reasonably close to the microphone for the system to accurately understand
your commands. The better the quality of the microphone you have, the better the accu-
racy of the recognition.

� If you are using a voice recognition system on a mobile robot, you may wish to extend
the microphone away from the robot so motor noise is reduced. For best results, you’ll
need to be fairly close to the robot and speak directly and clearly into the microphone.

� Consider using a good-quality RF or infrared wireless microphone for your voice recog-
nition system. The receiver of the wireless microphone is attached to your robot; you
hold the microphone itself in your hand.
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FIGURE 40.7 A simple gain-of-200 integrated amplifier.

TABLE 40.5 PARTS LIST FOR GAIN-OF-200 AUDIO AMPLIFIER.

IC1 LM386 Audio Amplifier IC

R1 10-ohm resistor

R2 10K potentiometer

C1 100 �F electrolytic capacitor

C2 0.047 �F ceramic capacitor

C3 10 �F electrolytic capacitor

C4 250 �F electrolytic capacitor

SPKR1 8-ohm miniature speaker

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance, rated
35 volts or higher.
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Speech Synthesis
Not long ago, integrated circuits for the reproduction of human-sounding speech were fair-
ly common. Several companies, including National Semiconductor, Votrax, Texas
Instruments, and General Instrument offered ICs that were not only fairly easy to use, even
on the hobbyist level, but surprisingly inexpensive. Voice-driven products using these chips
included the Speak-and-Spell toys and voice synthesizers for the blind. In most cases, these
ICs could create unlimited speech because they reproduced the fundamental sounds of
speech (called phonemes).

With the proliferation of digitized recorded speech, however, unlimited speech synthe-
sizers have become an exception instead of the rule. The companies that made stand-alone
speech synthesizer chips either stopped manufacturing them or were themselves sold to
other firms that no longer carry the old speech parts. (This was the case with General
Instrument. and their once-popular SPO-256 speech synthesizer. General Instrument was
sold to Microchip Technologies, makers of the PIC microcontroller.)

In addition, products such as the sound card for the IBM PC-compatible computers
obviated the need for a separate, stand-alone speech circuit. Using only software and a
sound card, it is possible to reproduce a male or female voice. In fact, Microsoft provides
free speech-making tools for their Windows operating system, and you can use these tools

670 SOUND OUTPUT AND INPUT

FIGURE 40.8 The Voice Direct voice recognition system from Sensory Inc.
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under a variety of programming platforms, including Visual Basic. See the Microsoft site
(www.microsoft.com) for more information.

Sure, unlimited speech synthesizer chips and chip sets are still available. But because
they are not used as universally their price tends to be high. In the short sections that fol-
low I’ll review some of the unlimited speech synthesizers that are available in the hobby-
ist-amateur market as well as some of the alternatives available for providing a “synthe-
sized” voice for your robotoid.

STAND-ALONE AND PC BOARD VOICE SYNTHESIZERS

If you were building robots in the late1970s and 1980s, odds are you either used, or want-
ed to use, a Votrax SC-01 or a General Instrument SPO-256 voice synthesis chip. Both
were reasonably inexpensive (under $20) and could be connected to any computer. For sev-
eral years, Radio Shack sold the SPO-256 and its companion text-to-speech converter IC
as part of their regular inventory. Alas, these chips are no longer available except in occa-
sional garage sales or surplus stores.

While they are not aimed at the hobbyist-amateur robotics market, such products as the
RC8650 voice synthesizer chip set from RC Systems (www.rcsys.com) offer high-quality
speech and fairly reasonable prices. The RC8650 costs under $50 in “low quantities,” but
as surface mount chips they can be hard for hobbyists to use. The company sells a demon-
stration kit, at about $175, that requires little or no electronic construction.

If you use an IBM PC-compatible motherboard for your robot’s brain (see Chapter 28,
“An Overview of Robot ‘Brains’”) you should consider adding a generic sound card to it
and using text-to-speech software to program the card. As mentioned earlier, Microsoft
provides a set of APIs (application programming interfaces) for speech output. Using the
Internet, you can find other text-to-speech drivers for DOS and Linux as well.

VOICE SYNTHESIS TEXT-TO-SPEECH INTERNET SITES

If you plan to use recorded (mechanical or electronic) sound with your robot you may want
to consider any of the several text-to-speech Internet sites, such as the Bell Labs TTS (text-
to-speech) project at http://www.bell-labs.com/projects/tts/. At this Web site you type in the
text you want to synthesize, and a sound file (.wav, .au, or .aiff format) is returned to you.
Save the file and use it to produce a sound sample with a cassette tape or recording chip.

OF VODERS AND VOCODERS…AND ROBOTS

First, let’s cover a little bit of the history and science behind the speech synthesizer. One of the
earliest pioneers of the science of speech synthesis was Homer Dudley who, as a Bell Labs
researcher during the 1930s and early 1940s, developed “parametric” methods for reproduc-
ing the human vocal tract. Among Dudley’s accomplishments was the Voder, a mechanical
speech-making machine that was controlled by a human operator. To make a word or sen-
tence, the operator—who trained for about a year to become proficient on the machine—
”played” the Voder using a small pianolike keyboard and foot pedals. The Voder was popular
among the audiences who saw it in newsreel films as well as at the World’s Fair. Though it had
very little commercial value, the Voder was perhaps the world’s first true speech synthesizer.
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From the Voder came the Vocoder, an electronic device that literally took sound apart
and put it back together again. The Vocoder combined noise and periodic pulses to produce
a completely synthesized version of the human voice tract—all without human interven-
tion. One of the aims of the Vocoder was to change the waveform of speech that was sent
through the phone lines. Bell Labs hoped that it could not only reduce the bandwidth
required to transmit speech but improve intelligibility as well. The Vocoder proved a huge
success, and all-digital (and much improved) variations of it still exist. They are used in
most all telephone systems, including cellular phones.

The Vocoder was also popular in radio, movies, and television as a way to produce
eerie-sounding voices. Because the Voder-Vocoder model is based on the parameters of
speech (pitch, modulation, noise, etc.) these parameters could be changed to electronical-
ly alter the sound of a voice. In operation, a human would speak normally into a micro-
phone, which was connected to a Vocoder. The controls on the Vocoder were intentionally
“mal-adjusted” to produce various effects such as monotones, warbles, and vibratos.
Vocoder effects were used in the movie Colossus: The Forbin Project, in the 1970s TV
series Battlestar Galactica, for background voice effects in Star Wars, and in many others.

A later version of a Bell Labs Vocoder synthesizer was programmed in the early 1960s
to sing a song, “Bicycle Built for Two.” Novelist Arthur C. Clarke saw the demonstration
of the “singing computer” and used it in his book 2001: A Space Odyssey. If you’re famil-
iar with the book or movie, you know that this is the song HAL the computer sings as he
is being deactivated by astronaut Dave Bowman.

Vocoders are available today in both hardware and software form. Rock bands have long
used analog vocoders (notice the lower case v to denote a generic Vocoder-like device) to
create the “singing guitar” effect. You’ll find vocoders of all sizes, shapes, and prices at
most any well-stocked music store. All-software vocoders are available for use with
Windows, DOS, and Macintosh. For example, the Prosoniq Orange Vocoder for use on
Macs and PCs is designed to digitally manipulate any sound input, including mixing it
with other tones and sounds to create unusual composite effects.

Where does all this lead us? For robotics, you can use vocoders to record voice samples
and manipulate those voice samples so they don’t sound like you, Uncle Bob, or Betty
from next door (or whoever you used to record the voices). Instead, you can make your
robot sound like the Colossus computer, a Cylon from Battlestar Galactica, a small child,
a gnat, rustling leaves . . . even a robot!

The vocoder-processed voice samples can be stored using a cassette tape, a hacked
digital recording toy, or a digital voice chip, such as the ISD series. These techniques were
described earlier in this chapter. Under the control of bumper switches or a microproces-
sor or computer, your robot can then play back the appropriate vocoder-enriched 
voice clip.

Passive Sound Input Sensors
Next to sight, the most important human sense is hearing. And compared to sight, sound
detection is far easier to implement in robots. Simple “ears” you can build in less than an
hour let your robot listen to the world around it.
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Sound detection allows your robot creation to respond to your commands, whether they
take the form of a series of tones, an ultrasonic whistle, or a hand clap. It can also listen
for the telltale sounds of intruders or search out the sounds in the room to look for and fol-
low its master. The remainder of this chapter presents several ways to detect sound. Once
detected, the sound can trigger a motor to motivate, a light to go lit, a buzzer to buzz, or a
computer to compute.

MICROPHONE

Obviously, your robot needs a microphone (or mike) to pick up the sounds around it. The
most sensitive type of microphone is the electret condenser, which is used in most higher-
quality hi-fi mikes. The trouble with electret condenser elements, unlike crystal element
mikes, is that they need electricity to operate. Supplying electricity to the microphone ele-
ment really isn’t a problem, however, because the voltage level is low—under 4 or 5 volts.

Most all electret condenser microphone elements come with a built-in field effect tran-
sistor (FET) amplifier stage. As a result, the sound is amplified before it is passed on to
the main amplifier. Electret condenser elements are available from a number of sources,
including Radio Shack, for under $3 or $4. You should buy the best one you can. A cheap
microphone isn’t sensitive enough.

The placement of the microphone is important. You should mount the mike element at
a location on the robot where vibration from motors is minimal. Otherwise, the robot will
do nothing but listen to itself. Depending on the application, such as listening for intrud-
ers, you might never be able to place the microphone far enough away from sound sources
or make your robot quiet enough. You’ll have to program the machine to stop, then listen.

AMPLIFIER INPUT STAGE

Use the circuit in Fig. 40.9 as an amplifier for the microphone (refer to parts list in Table 40.6).
The circuit is designed around the common LM741 op amp, which is wired to operate from
a single-ended power supply. Potentiometer R1 lets you adjust the gain of the op amp, and
hence the sensitivity of the circuit to sound. After experimenting with the circuit and adjust-
ing R1 for best sensitivity, you can substitute the potentiometer for a fixed-value resistor.
Remove R1 from the circuit and check its resistance with a volt-ohm meter. Use the closest
standard value of resistor.

By adding the optional circuit in Fig. 40.10, you can choose up to four gain levels via
computer control. The resistors, R1 and R2 (you decide on their value based on the gain
you wish), are connected to the inverting input of the op amp and the inputs of a 4066
CMOS 1-of-4 analog switch. Select the resistor value by placing a HIGH bit on the switch
you want to activate. The manufacturer’s specification sheets for this chip recommend that
only one switch be closed at a time.

TONE DECODING DETECTION

The 741 op amp is sensitive to sound frequencies in a very wide band and can pick up
everything that the microphone has to send it. You may wish to listen for sounds that occur
only in a specific frequency range. You can easily add a 567 tone decoder IC to the ampli-
fier input stage to look for these specific sounds.
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The 567 is almost like a 555 in reverse. You select a resistor and capacitor to establish
an operating frequency, called the center frequency. Additional components are used to
establish a bandwidth—or the percentage variance that the decoder will accept as a desired
frequency (the variance can be as high as 14 percent). Fig. 40.11 shows how to connect a
567 to listen to and trigger on about a 1 kHz tone (refer to the parts list in Table 40.7).

Before you get too excited about the 567 tone decoder, you should know about a few
minor faults. The 567 has a tendency to trigger on harmonics of the desired frequency. You
can limit this effect, if you need to, by adjusting the sensitivity of the input amplifier and
decreasing the bandwidth of the chip.
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FIGURE 40.9 Sound detector amplifier. Adjust R1 to increase or
decrease the sensitivity, or replace the potentiometer
with the circuit that appears in Figure 40.10.

TABLE 40.6 PARTS LIST FOR SOUND DETECTOR.

IC1 LM741 Op Amp IC

Q1 2N2222 transistor

R1 500K potentiometer

R2,R3 6.8K resistor

R4,R5 1K resistor

C1,C2 0.47 �F ceramic capacitor

MIC1 Electret condenser microphone
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Another minor problem is that the 567 requires at least eight wave fronts of the
desired sound frequency before it triggers on it. This reduces false alarms, but it 
also makes detection of very-low-frequency sounds impractical. Though the 567 has a 
lower threshold of about 1 hertz, it is impractical for most uses at frequencies 
that low.

Yet another “problem” with the 567 is that it is officially “discontinued” by several
of the manufacturers that used to make it. For the time being, however, you can still 
purchase 567 chips from most new and surplus retail and mail order electronics 
companies.
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kHz.

Ch40_McComb  8/21/00  3:36 PM  Page 676



BUILDING A SOUND SOURCE

With the 567 decoder, you’ll be able to control your robot using specific tones. With a tone
generator, you’ll be able to make those tones so you can signal your robot via simple
sounds. Such a tone-generator sound source is shown in Fig. 40.12 (refer to the parts list
in Table 40.8). The values shown in the circuit generate sounds in the 48-kHz to 144-Hz
range. To extend the range higher or lower, substitute a higher or lower value for C1. Basic
design formulas and tables for the 555 are provided in App. E.

For frequencies between about 5 kHz and 15 kHz, use a piezoelectric element as the
sound source. Use a miniature speaker for frequencies under 5 kHz and an ultrasonic 
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TABLE 40.7 PARTS LIST FOR TONE DECODER.

IC1 567 Tone Decoder IC

R1 50K 3- to 15-turn precision potentiometer

R2 2.2K resistor

C1 0.1 �F ceramic capacitor

C2 2.2 �F tantalum or electrolytic capacitor

C3 1.0 �F tantalum or electrolytic capacitor

C4 1.0 �F electrolytic capacitor

Unless otherwise noted all resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10
percent tolerance, rated 35 volts or higher.
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FIGURE 40.12 A variable frequency tone generator, built
around the common 555 timer IC. The
tone output spans the range of human
hearing, and then some.
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transducer for frequencies over 30 kHz. Cram all the components in a small box, stick a
battery inside, and push the button to emit the tone. Be aware that the sound level from the
speaker and especially the piezoelectric element can be quite high. Do not operate the tone
generator close to your ears or anyone else’s ears except your robot’s.

From Here
To learn more about… Read

Computer and microcontroller options for robotics Chapter 28, “An Overview of Robot
‘Brains’”

Interfacing sound inputs/outputs to a computer Chapter 29, “Interfacing with Computers 
or microcontroller and Microcontrollers”

Sensors to prevent your robot from bumping Chapter 36, “Collision Avoidance and
into things Detection”

Eyes to go along with the ears of your robot Chapter 37, “Robotic Eyes”
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TABLE 40.8 PARTS LIST FOR TONE GENERATOR.

IC1 555 Timer IC

R1 1-megohm potentiometer

R2 1K resistor

C1 0.001 �F ceramic capacitor

C2 0.1 �F ceramic capacitor

SPKR1 4- or 8-ohm miniature speaker

All resistors have 5 or 10 percent tolerance, 1/4-watt; all capacitors have 10 percent tolerance, rated
35 volts or higher.
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Every schoolchild learns, the human body has five senses: sight, hearing, touch, smell,
and taste. These are primary developed senses; yet the body is endowed with far more sens-
es, including many we often take for granted. These more “primitive” human senses are
typically termed “sixth senses”—a generic phrase for a sense that doesn’t otherwise fit
within the common five.

One of the most important “sixth senses” is the sense of balance. This sense is made
possible by a complex network of nerves throughout the body, including those in the inner
ear. The sense of balance helps us to stand upright and to sense when we’re falling. When
we’re off balance, the body naturally attempts to reestablish an equilibrium. The sense of
balance is one of the primary prerequisites for two-legged walking.

Our sense of balance combines information about both the body’s angle and its motion.
At least part of the sense of balance is derived from a sensation of gravity—the pull on our
bodies from the earth’s mass. Gravity is an extraordinarily strong physical force, but
strangely enough it is not often used in hobby robotics because accurate sensors for mea-
suring it have been prohibitively expensive.

But just consider the possibilities if a robot were given the ability to “feel” gravity. The
same forces of gravity that help us to stay upright might provide a two-legged robot with
the sensation that would keep it upright. Or a rolling robot—on wheels or tracks—might
avoid tipping over and damaging something by determining if its angle is too steep. The
sense of gravity might enable the robot to avoid traveling over that terrain, or it might tell
the robot to shift some internal ballast weight (assuming it were so equipped) to change its
center of balance.

41
EXPERIMENTING WITH TILT AND

GRAVITY SENSORS

679

Ch41_McComb   8/29/00  9:33 AM  Page 679

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



In this chapter we’ll explore various ways, from the simple to the not-so-simple, to
endow your robot with a sense of balance so it can determine its motion and its physical
orientation on this earth.

Sensors to Measure Tilt
One of the most common means for providing a robot with a sense of balance is to use a
tilt sensor or tilt switch. The sensor or switch measures the relative angle of the robot with
respect to the center of the earth. If the robot tips over, the angle of the sensor or switch
changes, and this can be detected by electronics in the robot. Tilt sensors and switches
come in various forms and packages, but the most common are the following:

� Mercury-filled glass ampoules that form a simple on/off switch. When the tilt switch is
in one position (say, horizontal), the liquid-mercury metal touches contacts inside the
ampoule, and the switch is closed. But when the switch is rotated to vertical, the mer-
cury no longer touches the contacts, and the switch is open. The major disadvantage of
mercury tilt switches is the mercury itself, which is a highly toxic metal.

� The ball-in-cage (see Fig. 41.1) is an all-mechanical switch popular in pinball machines
and other devices where small changes in level are required. The switch is a square or
round capsule with a metal ball inside. Inside the capsule are two or more electrical con-
tacts. The weight of the ball makes it touch the electrical contacts, which forms a switch.
The capsule may have multiple contacts so it can measure tilt in all directions.

� Electronic spirit-level sensors use the common fluid bubble you see on ordinary levels
at the hardware store plus some interfacing electronics. A spirit level is merely a glass
tube filled, though not to capacity, with water or some other fluid. A bubble forms at the
top of the tube since it isn’t completely filled. When you tilt the tube gravity makes the
bubble slosh back and forth. An optical sensor—an infrared LED and detector, for
example–can be used to measure the relative size and position of the bubble.

� Electrolytic tilt sensors are like mercury switches but more complex and a lot more
costly. In an electrolytic tilt sensor a glass ampoule is filled with a special electrolyte
liquid—that is, a liquid that conducts electricity but in very measured amounts. As the
switch tilts, the electrolyte in the ampoule sloshes around, changing the conductivity
between two (or more) metal contacts.

BUILDING A BALANCE SYSTEM WITH A MERCURY SWITCH

You can construct a simple but practical balance system for your robot using two small
mercury switches. You want mercury switches that will open (or close) at fairly minor
angles, perhaps 30–35° or so—just enough to signal to the robot that it is in danger of
tipping over. You may have to purchase the switch with these specifications through a
specialty industrial parts store, unless you’re lucky enough to find one on the used or
surplus market.

Mount the switch in an upright position. If the level of the robot becomes extreme the
switch will trigger. You can directly interface the switch to an I/O (input/output) line on a
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PC or microcontroller. However, you’ll probably want to include a debounce circuit in line
with the switch and I/O line since mercury switches can be fairly “noisy” electrically. A
suitable debouncer circuit is shown in Chapter 29.

BUILDING A BALANCE SYSTEM WITH A BALL-IN-CAGE
SWITCH

The four-conductor ball-in-cage switch is a rather common find in the surplus market, and
it’s very inexpensive. If the switch is tilted in any direction by more than about 25–30°, at
least one of the four contacts in the switch will close, thus indicating that the robot is off
level. You can use a debouncer circuit with the ball-in-cage tilt sensor.

Because the ball-in-cage sensor has four contacts (plus a center common), you can
either provide independent outputs of the switch or a common output. With indepen-
dent outputs, a PC or microcontroller on your robot can determine in which direction
the robot is tilting (if two contacts are closed, then the ball is straddling two contacts
at the same time). However, unless you come up with some fancy interface circuitry,
you’ll need to dedicate four I/O lines on the PC or microcontroller, one for each switch
contact.

SENSORS TO MEASURE TILT 681

FIGURE 41.1 A typical ball-in-cage switch.
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Conversely, with the common output approach you can wire all the outputs together in
a serial chain. The switch will close if the ball touches any contact. This approach uses only
one I/O line, but it deprives the robot of the ability to know in exactly which direction it is
off level. A variation on this theme is to use resistors of specific values to form a voltage
divider. When you connect the resistors to an I/O line capable of analog input (an analog-
to-digital converter, for example), you can easily determine by the changing voltage at the
input which contact switch has been closed.

Using an Accelerometer to Measure Tilt
One of the most accurate, yet surprisingly low-cost, methods for tilt measurement involves
an accelerometer. Once the province only of high-tech aviation and automotive testing
labs, accelerometers are quickly becoming common staples in consumer electronics. It’s
quite possible, for example, that your late-model car contains at least one accelerometer—
if not as part of its collision safety system (such as an airbag), then perhaps as an integral
part of its burglar alarm. Accelerometers are also increasingly used in high-end video game
controllers, portable electric heaters, and in-home medical equipment.

New techniques for manufacturing accelerometers have made them more sensitive and
accurate yet also less expensive. A device that might have cost upwards of $500 a few years
ago sells in quantity to manufacturers for under $10 today. Fortunately, the same devices
used in cars and other products is available to hobby robot builders, though the cost is a
little higher because we’re not buying 10,000 at a time!

In the following two sections, I’ll show you how to construct highly accurate angle
sensors using either of two affordable accelerometers from semiconductor maker Analog
Devices. Both accelerometers are available through a number of retail outlets, and nei-
ther requires extensive external circuitry. While the text that follows is specific to the
accelerometers from Analog Devices, you may substitute units from other sources after
making the appropriate changes in the circuitry and computer interface software.

WHAT IS AN ACCELEROMETER?

The basic accelerometer is a device that measures change in speed. Put an accelerometer in
your car, for example, and step on the gas. The device will measure the increase in speed.
Most accelerometers only measure acceleration (or deceleration) and not constant speed or
velocity. Such is the case with the accelerometers detailed here.

And though accelerometers are designed to measure changes in speed, many types of
accelerometers—including the ones detailed in the following sections—are also sensi-
tive to the constant pull of the earth’s gravity. It is this latter capability that is of interest
to us since it means you can use the accelerometer to measure the tilt, or “attitude,” of
your robot at any given time. This tilt is represented by a change in the gravitational
forces acting on the sensor. The output of the accelerometer is either a linear AC or DC
voltage or, more handily, a digital pulse that changes in response to the acceleration or
gravity forces.
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ADDITIONAL USES FOR ACCELEROMETERS

Before we go into the details of using accelerometers for tilt and angle measurement in
robots, let’s review the different robotics-based sensoric applications for these devices.
Apart from sensing the angle of tilt, a gravity-sensitive accelerometer can also be used for
the following tasks:

� Shock and vibration. If the robot bumps into something, the output of the accelerometer
will “spike” instantaneously. Because the output of the accelerometer is proportional to
the power of the impact, the harder the robot bumps into something, the larger the voltage
spike. You can use this feature for collision detection obviously, but in ways that far exceed
what is possible with simple bumper switches since an accelerometer is sensitive to shock
from most any direction.

� Motion detection. An accelerometer can detect motion even if the robot’s wheels aren’t
moving. This might be useful for robots that must travel over uneven or unpredictable ter-
rain. Should the robot move (or stop moving) when it’s not supposed to, this will show up
as a change in speed and will therefore be sensed by the accelerometer.

� Telerobotic Control. You can use accelerometers mounted on your clothes to transmit
your movements to a robot. For instance, accelerometers attached to your feet can detect
the motion of your legs. This information could be transmitted (via radio or infrared
link) to a legged robot, which could replicate those moves. Or you might construct an
“air stick” wireless joystick, which would simply be a pipe with an accelerometer at the
top or bottom and some kind of transmitter circuit. As you move the joystick your move-
ments are sent to your robot, which acts in kind.

SINGLE- AND DUAL-AXIS SENSING

The basic accelerometer is single axis, meaning it can detect a change in acceleration (or
gravity) in one axis only, as shown in Fig. 41.2. While this is moderately restrictive, you can
still use such a device to create a capable and accurate tilt-and-motion sensor for your robot.
The first accelerometer project we describe in this chapter uses such a single-axis device.

A dual-axis accelerometer detects changes in acceleration and gravity in both the X
and Y planes (see Fig. 41.2). If the sensor is mounted vertically—so that the Y axis points
straight up and down—the Y axis detects up and down changes, and the X axis will detect
side-to-side motion. Conversely, if the sensor is mounted horizontally, the Y axis detects
motion forward and backward, and the X axis detects motion from side to side.

THE ANALOG DEVICES’ ADXL ACCELEROMETER FAMILY

Analog Devices is a semiconductor maker primarily for industrial- and military-grade oper-
ational amplifiers, digital-to-analog and analog-to-digital converters, and motion control

To detect motion in 3D—forward/back, left/right, and up/down—you need both a
single- and a dual-axis accelerometer mounted perpendicularly to one another.
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products. One of their key product lines is accelerometers, and for them they use a patent-
ed fabrication process to create a series of near-microscopic mechanical beams. This
“micro-machining” involves etching material out of a substrate. During acceleration, the
beam is distended along its length. This distention changes the capacitance in nearby plates.
The change in capacitance is correlated as acceleration and deceleration.

A thorough discussion of the theory of operation behind the ADXL family of accelerom-
eters is beyond the scope of this chapter, but you can obtain much more on the subject
directly from the manufacturer. Check The Analog Devices Website at www.analog.com.

In addition to the mechanical portions of the accelerometer, all the basic interface cir-
cuitry is part of the device. In fact, looking at one of the ADXL accelerometers you’d think
it was just an integrated circuit of some kind. Because the basic circuitry is included as part
of the accelerometer, only a minimum number of external parts are needed. In the first pro-
ject that follows, only eight external parts are used, three of which are filtering/bypass
capacitors to reduce the effects of electrical noise. The second project uses even fewer
external parts.

Constructing a Single-axis
Accelerometer Robotic Sensor
The single-axis accelerometer outlined here is based on the Analog Devices
ADXL150JQC. The ‘150 combines a micro-machined mechanical accelerometer with on-
board amplification electronics. The normal range of the ‘150 is plus or minus 50 g’s (a g
is the unit of measure of gravitational pull; one g is equal to the gravitational pull on the
surface of the earth). This range is actually too high for most robotic applications, so we’ll
be scaling it down to about ±5 or 10 g’s.

For reference, one g is the equivalent of a mass traveling at a speed of 32 feet per second,
per second. That is, for every second of elapsed time, the speed of the mass increases (or
decreases for deceleration) by 32 feet per second. However, note that objects falling to earth
eventually reach a “terminal velocity” due to air friction and do not continue to accelerate.
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The output signal of the ‘150 is a voltage. We’ll be using the ‘150 in full DC mode,
where the output will swing no less than about 2.5 volts as the sensor detects changes in
acceleration. Depending on how you adjust the sensor board, you can get the ‘150 to deliver
close to the full 0- to 5-volt output range. The broader the range of voltage, the more res-
olution the sensor will provide. At a scaling factor of ±5 g’s, we’ll be able to detect changes
in 400 mV per g. With an 8-bit analog-to-digital converter (ADC) measuring a full 4000-
mV (4-volt) range, this equates to a resolution of 15.625 mV per step, or roughly 0.06 g’s.
That’s not bad; a 10- or 12-bit ADC will provide even greater resolution.

The one “gotcha” of the ADXL150 is that it is a 14-pin surface-mount component, which
makes it more difficult to use in a homebrew circuit. There are a number of techniques you
can use to make use of the ‘150, or most any surface mount part for that matter:

� Use an IC surface-mount carrier board. Carefully solder the surface-mount component
onto the carrier board. You can then use the carrier in ordinary breadboards and proto-
typing boards. Because the leads of the ADXL150 are pre-tinned, you need only hold
the part in place for the first “tack” of the soldering pencil. Repeat for the other leads.
Be sure to buy a carrier board that has solder pads appropriately spaced for the ‘150.
Most IC carrier boards are made for thinner packages; the ADXL150 is in a “fat”
ceramic package and is wider than most ICs.

� Solder a short length of 30 AWG wire-wrap wire to each of the ‘150’s leads. This is del-
icate work and requires expert soldering and a good eye (it was the technique I used for
the prototype).

� Design and etch your own surface-mount board, custom-made for the ADXL150.
� Purchase the ADXL150 Evaluation Board, available directly from Analog Devices as

well as several online and catalog merchants. This is perhaps the easiest method.

CONSTRUCTION DETAILS

Refer to Fig. 41.3 for a schematic showing how to use the ADXL150 as a general-purpose
accelerometer suitable for measuring tilt, vibration, and, of course, acceleration. This cir-
cuit was adopted from the data sheet provided for the ADXL150, with the parts adjusted
to the values appropriate for robotic endeavors.

The heart of the circuit is the ADXL150, which is powered by �5 vdc. Capacitors C1,
C2, and C3 are for power supply bypass, and you should include them to reduce noise on
the output. IC2 is an Analog Devices OP196 “rail-to-rail” operational amplifier. Though
the circuit calls for the OP196 op amp, most any single-supply (V+ only, V- voltage not
needed) rail-to-rail operational amplifier will probably work.

See Fig. 41.4 for a view of the prototype I built. Note the wire-wrap wires attached to
the leads of the ADXL150. I mounted the ‘150 to a 14-pin wire-wrap socket using double-
sided foam tape and attached the free ends of the wires to the pins of the socket. After
inserting the socket into the prototyping board and soldering it in place, I clipped off the
excess length of the socket pins since it was not needed. Note that in my prototype I sol-
dered a wire to every pin on the ‘150 but this is not needed. Only pins 7, 8, 9, 10, and 14
need to be connected to anything. (Pin 9 is for the self-test function, which is not used in
this project.)

After constructing the ADXL150 sensor board, connect the power leads to a suitable �5
vdc power supply, and connect the output to a fast-acting meter or oscilloscope. While you
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FIGURE 41.3 A basic schematic diagram for using the Analog Devices ADXL150 single-
axis accelerometer.

FIGURE 41.4 My  prototype of the ADXL150 accelerometer, which can be used
for robotic tilt, motion, and vibration sensing.
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slowly move the sensor board in different directions, adjust R2 and R4 for maximum volt-
age change.

ADJUSTING THE SENSOR

You will need to experiment with different settings to achieve the output you want for the
application you have planned for the ‘150:

� As a level or tilt sensor, position the ADXL150 so it points arrow up (�1 g setting).
Any tilt in any direction will then be registered as a negative-going voltage change. For
this application, you want a low-g scale, so adjust R2 near its minimum and R4 near
its maximum.

� As a movement sensor, position the ADXL150 so it points arrow forward (arrow to the
front of the robot). For a slow robot, a rather low-g scale is likely the best choice, but
adjust as you see fit. Some small robots turn and spin on their axis very quickly, pro-
ducing momentary forces of 2 or 3 g’s!

� As a shock or vibration sensor, position the ADXL150 in the horizontal or vertical posi-
tion, as desired. Adjust the scale setting based on the sensitivity you need. If the robot
is not supposed to be highly sensitive to minor bumps and grinds, for instance, set a
high-g scale by increasing R2 and decreasing R4.

CONTROL INTERFACE AND SOFTWARE

Of course, the schematic in Fig. 41.3 still needs to be interfaced to a computer or micro-
controller via an analog-to-digital converter to do your robot any good. Chapter 29,
“Interfacing with Computers and Microcontrollers,” discusses in more detail how to use
ADCs, so we will dispense with that discussion for this project. If you plan to use your PC
to interface to the ADXL150, for example, you need just a basic ADC chip, such as the
ADC0804. You input a single analog voltage, and the output is converted to eight data bits,
which you can connect to your PC via the parallel printer pot.

Conversely, you can use a microcontroller, such as the Parallax Basic Stamp II, which
provides more than enough input/output lines from the ADC. Or perhaps an easier
approach is to use a BasicX-24 microcontroller from NetMedia. As described in Chapter
32, the BasicX-24 (BX-24) is pin-for-pin compatible with the Basic Stamp II, but it
includes an on-board analog-to-digital converter. This ADC is the “multiplexing” type, so
you can use any (and all) of eight different data lines to read analog data. This feature of
the BasicX-24 makes it particularly well suited for use with sensors such as the ADXL150
accelerometer, since there is no external ADC circuit.

Listing 41.1 shows a test program for the BasicX-24 microcontroller and how to use the
ADXL150 as a tilt sensor. You connect the amplified output of the ADXL150 to pin 13 (I/O
line 7) of the BasicX-24. The main body of the code—defined by the Main() subroutine—is
an endless loop that constantly collects data from the accelerometer. A “software filter” 
is employed to average out the values of the ‘150. I’ve set the filter to average 254 samples
of data from the accelerometer; you can select a lower value if you don’t want to sample as
many data points.

When running, the program changes the color of the LED built onto the BasicX-24 car-
rier board. With the ‘150 pointing “up” so the output is at its highest level, the green LED
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lights. As the ‘150 is tilted horizontally, the output decreases, and the red LED lights
instead. You’ll need to experiment with the “setpoint” (I used 825), depending on the actual
values provided by your ADXL150 circuit.

LISTING 41.1
' ADXL150 test program
' For use with BasicX-24 microcontroller
' Output of ADXL150 is connected to pin 13 (IO line 7)
'   of the BasicX-24

Dim Voltage As Integer, BlinkTotal As Integer
Dim Total As Long
Const PinNumber As Byte = 13
Const GreenLED As Byte = 26
Const RedLED As Byte = 25
Const LEDon As Byte = 0
Const LEDoff As Byte = 1

Sub Main()
Dim x as Byte
Total = 0
Do

For x = 1 to 254                   ' adjust for “filter”
Voltage = GetADC (PinNumber)
Total = Total + CLng(Voltage)

Next
Total = Total = Total \ 254        ' adjust for “filter”
BlinkTotal = CInt(Total)
Call LEDs
Call Delay(0.1)

Loop
End Sub

Sub LEDs()
If BlinkTotal > 825 Then             ' adjust as needed

Call PutPin(RedLED, LEDoff)
Call PutPin(GreenLED, LEDon)

Else
Call PutPin(GreenLED, LEDoff)
Call PutPin(RedLED, LEDon)

End If
End Sub

Constructing a Dual-axis Accelerometer
Robotic Sensor
The ADXL150 single-axis accelerometer, described in detail in the last section, has a close
sibling: the ADXL250, which is like two accelerometers in one. The ADXL250 is a dual-
axis device in which the axes are oriented at right angles to one another. When the
accelerometer is positioned horizontally, it can therefore detect motion in 360° (it cannot
detect up and down motion when in this position, however).

Using the ADXL250 is very similar to using the ADXL150—you just duplicate the
interface electronics for the second axis. Refer to the data sheet for the ADXL250 on 
the pinout diagram for the device.
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Analog Devices makes a less expensive line of accelerometers that is specifically designed
for consumer products. Their ADXL202 is a dual-axis device with a ±2-g sensitivity (if you
need more g’s, check out the ADXL210, which is rated at ±10 g’s). Besides being cheaper than
the ADXL150/250, the ‘202 has a simplified output: instead of a linear voltage, the output is
purely digital. As acceleration changes, the timing of the pulses at the output of the ADXL202
changes. This change can be readily determined by a PC or microcontroller, using simple soft-
ware (see the example for the Basic Stamp later in the chapter). No op amp or scaling adjust-
ment components are necessary, which makes the ADXL202 a breeze to use.

Like the ADXL150, the ‘202 is a surface-mount component. See the discussion in the
section on the ADXL150 about alternative ways to interface the ‘202 electronics in your
robot. By a long measure, the ready-made ADXL202 Evaluation Board is the easiest way
to use this device. It comes on a small postage stamp carrier, which can be directly sol-
dered to the Basic Stamp or other microcontroller.

WIRING DIAGRAM

The basic hookup diagram for the ADXL202 is shown in Fig. 41.5. Note that except for
two filter capacitors and a single resistor, there are no external components. I have speci-
fied a rather low bandwidth of 10 Hz for the device. According to the ADXL202 data
sheet, the value of C1 and C2 for this bandwidth should be 0.47 µF.

Resistor R1 sets the value of the timing pulse used for the output of the X and Y axes of the
‘202 chip. I have specified a modest timing pulse of 5 milliseconds; according to the data sheet
this requires a nominal value of about 625K for R1 (I specified a reasonably close standard
resistor value). Note that the exact timing of the pulse is not critical, as any variation will be
accounted for in the software. You will want to select a higher or lower timing pulse based on
the capabilities of the PC or microcontroller you are using and the resolution you desire.
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UNDERSTANDING THE OUTPUT OF THE ADXL202

The ADXL202 delivers a steady stream of digital pulses, or square waves. The timing of the
pulses, defined as T2, is set by R1 (see the previous section). For our project, the pulses are
5 ms apart. Changes in acceleration change the width of each pulse (this is called pulse
width modulation, or PWM). For the ADXL202, the width changes 12.5 percent for each g
of acceleration—both positive and negative changes. Therefore, the width of these 5-ms
pulses will change by 50 percent for the entire ±2-g range of the device. A zero g state is 50
percent duty cycle. The width of the pulses is defined as T1. Because the ADXL202 uses a
pulse width modulated output, rather than a linear DC output, no analog-to-digital conver-
sion is necessary.

ORIENTING THE ACCELEROMETER

Because the ADXL202 has two axes, it can detect acceleration and gravity changes in two
axes at once. You can use the device in vertical or horizontal orientation. As a tilt sensor,
orient the device horizontally; any tilt in any direction will therefore be sensed. In this posi-
tion, the ADXL202 can also be used as a motion detector to determine the speed, direc-
tion, and possibly even the distance (given the resolution of the control circuitry you use)
of that movement.

CONTROL INTERFACE AND SOFTWARE

The control interface for the ADXL202 is surprisingly simple. Fig. 41.6 shows the hookup
diagram for connecting the ADXL202 surface-mount chip and evaluation board to a Basic
Stamp II. In both cases, power for the ‘202 comes from one of the Stamp’s I/O pins. As
mentioned in an application note written by an Analog Devices engineer on the subject of
interfacing the ADXL202 to a Basic Stamp, this isn’t the overall best design choice, but
for experimenting it’s quick and simple.

Listing 41.2 shows a short program written in PBasic for the Basic Stamp II that allows
continual reading of the two outputs of the ADXL202. The program works by first deter-
mining the period of the T2 basic pulse. It then uses the PULSIN command with both the
T1y and T1x axis signals. PULSIN returns the length of the pulse; a longer pulse means
higher g; a shorter pulse means lower g.

LISTING 41.2
Freq    Var Word
T1x Var Word
T1y Var Word
T2 Var Word

Low      0    ' self test, pin 0
Input    2    ' X accel, pin 2
Input    4    ' Y accel, pin 4
High     6    ' V+ pin 6

Count 4, 500, Freq
T2 = Freq * 2
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Repeat_Loop:
debug cls
Pulsin 2,1,T1y
T1y = 2 * T1y
Pulsin 4,1,T1x
T1x = 2 * T1x
T1y = 8 * T1y / T2
T1x = 8 * T1x / T2
debug dec T1x, tab, dec T1y, tab, cr
Pause 150
Goto Repeat_Loop:

Because the Basic Stamp II has a clock frequency of 2 µs, the actual time of the T1y
and T1x pulses are converted to microseconds with the lines,

T1y = 2 * T1y
T1x = 2 * T1x

In T1y and T1x are the pulse widths, in microseconds. These widths are then referenced
to the T2 value previously obtained by the program with the following lines:

T1y = 8 * T1y / T2
T1x = 8 * T1x / T2

The typical results of this program are numbers like 200 and 170, for the X and Y axes,
respectively. Note that even on a flat surface, the two outputs of the ADXL202 may not
exactly match because of manufacturing tolerances.

The Repeat_Loop loop continually reads the outputs of the sensor. Without the
Pause statement and Debug lines, the code loops very fast—just a few tenths of
microseconds–which allows you to insert other programming for your robot. Note that
once the loop has begun, the value of T2 is never read again (unless you restart the
entire program). This is acceptable for low-accuracy applications like basic tilt sens-
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ing. But when higher accuracy is required, the timing of the T2 pulse train should be
re-read every 5 or 10 minutes, and even more frequently if the robot will be subjected
to sudden and sharp temperature changes. The output of the ADXL202 is sensitive to
temperature, so changes in temperature will affect the timing of the T2 pulse.

As the program runs you will note that the value of the X and Y outputs will change ±50
to ±75 just by tilting the accelerometer on its sides. Sudden movement of the accelerome-
ter will produce more drastic changes. Note the values you get and incorporate them into
the accelerometer control software you devise for your robot.

ADDITIONAL USES

Though the ADXL202 accelerometer is ideally suited for use as a tilt sensor, it has other uses
too. No additional hardware or even software is required to turn the sensor into a movement,
vibration, and shock sensor. Assuming that the accelerometer is oriented so the robot travels
in the chip’s X-axis, then as the robot moves the ‘202 will register the change in acceleration.

Should the robot hit a wall or other obstacle, it will be sensed as a very high accelera-
tion/deceleration spike. Your control software will need to loop through the code at a high
enough rate to catch these momentary changes in output if you want your robot to react to
shocks and vibrations. The Repeat_ Loop in the code in Listing 41.2 repeats often enough
that your robot should detect most collisions with objects.

If you absolutely must detect all collisions you’ll need to devise some kind of hardware
interrupt that will trigger the microprocessor or microcontroller when the output of the
‘202 exceeds a certain threshold. Most hardware interrupts are not engineered to accept
pulse width modulated signals, however, so additional external circuitry may be required.
Another approach is to dedicate a fast-acting microcontroller just to the task of monitor-
ing the output of the ADXL202. The low cost of microcontrollers these days makes such
dedicated applications a reasonable alternative.

Alternatives to “Store-bought”
Accelerometers
While factory-made accelerometers, such as the Analog Devices ADXL150 and ADXL202,
are the most convenient for use with robotics, there are some low-cost alternatives you might
want to experiment with. You can make your own homebrew accelerometer using a 50-cent
piezo ceramic disc and a heavy steel ball or other weight. The homebrew piezo accelerome-
ter isn’t as accurate as the ADXL series or other factory-made accelerometers, but it’ll do in
a pinch and teach you about the physics of motion in the process.

The piezo disc accelerometer works by using a well-known behavior of piezoelectric
material: it is both a consumer of energy and a producer of energy. Most applications of
piezoelectric materials are in consumer products like speakers and beepers. Apply a voltage
to the piezoelectric material, and it vibrates, producing a tone. Conversely, if you vibrate the
piezoelectric material using some mechanical means, the output is an electrical signal.

Piezo discs are common finds in electronic and surplus stores. These units are typically
used as the elements in low-cost speakers or tone-makers (like smoke alarms, car alarms,
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and what not). The typical piezo disc is about an inch in diameter and is made of brass or
some other nonferrous metal. Deposited on one side of the disc is a ceramic material made
of piezo crystals. It is these crystals that vibrate when a voltage is applied to the disc. Most
piezo discs already have two wire leads conveniently soldered to them so they can be easily
connected to the rest of your circuit.

CONSTRUCTING THE PIEZO DISC ACCELEROMETER

We’ll be using the disc in electricity-producing mode, with the help of a steel ball or other
heavy weight to provide mechanical energy. Place the ball or weight on the disc—ceram-
ic side up—and tape the ball in place so it won’t roll or fall off the disc. Connect the out-
put of the disc to a fast-acting voltage meter or an oscilloscope. Lift the disc up and down
rapidly, and you’ll see the voltage output of the disc fluctuate, perhaps as much as a full
volt or two. The faster you move the disc, the more the voltage will swing.

And, just as important, note that the polarity of the voltage changes depending on the
direction of travel. The output of the disc might be in positive volts when moving up but
negative volts when moving down.

To complete the construction, mount the disc either on a separate sensor board or on the
robot itself. As an accelerometer that senses lateral motion, the disc can be mounted in a
vertical position, though that will reduce its sensitivity since the ball or weight is being
pulled off the disc by gravity. Be sure that the tape holding the ball is secure. You may wish
to construct a more reliable captive mechanism, perhaps housing the disc and ball or
weight in an enclosure. A 35-mm film can cut to size or a plastic “bug case” (like the kind
used for prizes in bubble gum machines) are good options.

As with a factory-made accelerometer, you can use the piezo disc accelerometer for
vibration and shock detection. Sudden jolts—like when the robot bumps into something—
will translate into larger-than-normal variations in the output of the disc. When you con-
nect this accelerometer to the brains of your robot, this information can be used to deter-
mine the machine’s proper course of action.

Limitations of the Piezo Disc
Accelerometer
While the piezo disc makes for a cheap and easy accelerometer, it’s not without its limita-
tions. Here are two you will need to consider:

� The disc will only measure changes in momentum since it is inherently an AC device.
Once the momentum of the disc normalizes, the output voltage will fall back to its nom-
inal state. Since gravity acts like a constant DC signal, this means you will not be able
to use the piezo disc as a tilt sensor very easily.

� The output of the piezo disc can easily exceed the input voltage of your PC, microcon-
troller, or other interface electronics. Should the disc receive the blow of a sharp impact,
the voltage output can easily exceed 20, 50, and even 100 volts. For this reason, you
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must always place a zener diode to act as a voltage clamp, as shown in Fig. 29.14 of
Chapter 29. Select a zener diode voltage that is compatible with the input voltage for the
interface you are using. For example, if the interface voltage is 5 vdc, use a 5.1-volt zener.

� The piezo disc is basically a capacitor so it stores a charge over time. You can reduce
the effects of the capacitive charge by placing a 50K to 250K resistor across the output
leads of the disc (this will help to “bleed off ” the charge). You may also want to feed
the output of the disc to an op amp.

From Here
To learn more about… Read

Connecting hardware to a computer Chapter 29, “Interfacing with Computers and
or microcontroller Microcontrollers”
Using the Basic Stamp with an accelerometer Chapter 31, “Using the Basic Stamp”

Using the BasicX microcontroller Chapter 32, “Using the BasicX Microcontroller”
with an accelerometer

Navigating through an environment Chapter 38, “Navigating through Space”
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Most every book has a “straggler” chapter that really doesn’t fit with the rest. Well, this
is the straggler chapter for Robot Builder’s Bonanza. It contains various odds-and-ends dis-
cussions about robot building, including some of my own personal methodologies, rants,
and observations.

But First…
All robots are different because their creators have different tasks in mind for their creations
to accomplish. A robot designed to find empty soda cans is going to be radically different
from one made to roam around a warehouse sniffing out the smoke and flames of a fire.

Consider that a true robot is a machine that not only acts independently within an envi-
ronment but reacts independently of that environment. In describing what a robot is it’s
often easier to first consider what it isn’t:

� Your car is a machine, but it’s not a robot. Unless you outfit it with special gizmos, it
has no way of driving itself (okay, so “Q” can make a self-running car for James Bond).
It requires you to control it, to steer the wheels and operate the gas and brake pedals,
and to roll down the window to talk to the nice police officer.
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� Your refrigerator is a machine, but it’s not a robot. It may have automatic circuitry that
can react to an environment (increase the cold inside if it gets hot outside), but it can-
not load or unload its own food, so it still needs you for its most basic function.

� Your dishwasher is a machine, but it’s not a robot. Like the refrigerator, the dishwasher
is not self-loading, may not adjust itself in response to how dirty the dishes are, and can-
not be reprogrammed to accommodate changes in the soap you use, nor can it detect
that you’ve loaded it with $100-a-plate porcelain—so go easy on the rinse cycle, thank
you very much.

Other machines around your home and office are the same. Consider your telephone
answering machine, your copier, or even your personal computer. All need you to make
them work and accomplish their basic tasks.

A real robot, on the other hand, doesn’t need you to fulfill its chores. A robot is pro-
grammed ahead of time to perform some job, and it goes about doing it. Here, the dis-
tinction between a robot and an automatic machine becomes a little blurry because both
can run almost indefinitely without human intervention (not counting wear and tear and
the availability of power). However, most automatic machines lack the means to interact
with their environment and to change that environment if necessary. This feature is often
found in more complex robots.

Beyond this broad distinction, the semantics of what is and is not a robot isn’t a major
concern of this book. The main point is this: Once the robot is properly programmed, it
should not need your assistance to complete its basic task(s), barring any unforeseen obsta-
cles or a mechanical failure.

“What Does My Robot Do?”: A Design
Approach
Before you can build a robot you must decide what you want the robot to do. That seems
obvious, but you’d be surprised how many first-time robot makers neglect this important
step. By reducing the tasks to a simple list, you can more easily design the size, shape, and
capabilities of your robot. Let’s create an imaginary homebuilt robot named RoBuddy, for
“Robotic Buddy,” and go through the steps of planning its design. We’ll start from the
standpoint of the jobs it is meant to do. For the sake of simplicity, we’ll design RoBuddy
so that it’s an “entertainment” ‘bot—it’s for fun and games and is not built for handling
radioactive waste or picking up after your dog Spot.

I’ve found that one of the first things people ask me about my robots is, “So, what does
it do?” That’s not always an easy question to answer because the function of a robot can’t
always be summarized in a quick sentence. Yet most people don’t have the patience to lis-
ten to a complex explanation. Such is the quandary of the robot builder!

AN ITINERARY OF FUNCTIONS

One of the best shortcuts to explaining what a robot can do is to simply give the darned
thing a vacuum cleaner. That way, when you don’t feel like repeating the whole litany of
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capabilities, you can merely say, “it cleans the floors.” That’s almost always guaranteed to
elicit a positive response. So this is Basic Requirement #1: RoBuddy must be equipped
with a vacuum cleaner. And since RoBuddy is designed to be self-powered from batteries,
the vacuum cleaner needs to run under battery power too. Fortunately, auto parts stores
carry a number of 12-volt portable vacuum cleaners from which you can choose.

Like the family dog that performs tricks for guests, a robot that mimics some activity
amusing to humans is a great source of entertainment. One of the most useful—and effec-
tive—activities is pouring and serving drinks. That takes at least one arm and gripper,
preferably two, and the arms must be strong and powerful enough to lift at least 12 ounces
of beverage. We now have Basic Requirement #2: RoBuddy must be equipped with at least
one appendage that has a gripper designed for drinking glasses and soda cans.

The RoBuddy must also have some kind of mobility so that at the very least it can move
around and vacuum the floor. There are a number of ways to provide locomotion to a robot,
and these were described in earlier chapters. But for the sake of description, let’s assume
we use the common two-wheel-drive approach, which consists of two motorized wheels
counterbalanced by one or two nonpowered casters. That’s Basic Requirement #3:
RoBuddy must have two drive motors and two wheels for moving across the floor.

Since RoBuddy flits about your house all on its own accord, it has to be able to detect
obstacles so it can avoid them. Obviously, then, the robot must be endowed with some kind
of obstacle detection devices. We’re up to Basic Requirement #4: RoBuddy must be
equipped with passive and active sensors to detect and avoid objects in its path.

Serving drinks, vacuuming the floor, and avoiding obstacles requires an extensive
degree of intelligence and is beyond the convenient capability of “hard-wired” discrete cir-
cuits consisting of some resistors, a few capacitors, and a handful of transistors. A better
approach is to use a computer, which is capable of being programmed and reprogrammed
at will. This computer is connected to the vacuum cleaner, arm and gripper, sensors, and
drive motors. Finally, then, this is Basic Requirement #5: RoBuddy must be equipped with
a computer to control the robot’s actions.

These five basic requirements may or may not be important to you or applicable to all
your robot creations. However, they give you an idea of how you should outline the func-
tions of your robot and match them with a hardware requirement.

ADDITIONAL FEATURES

Depending on your time, budget, and construction skill, you may wish to endow your
robot(s) with a number of other useful features, such as:

� Sound output perhaps combining speech, sound effects, and music.
� Variable speed motors so your robot can get from room to room in a hurry but slow

down when it’s around people, pets, and furniture.
� Set-and-forget motor control, so the “brains on board” that is controlling your ‘bot needn’t

spend all its processing power just running the drive motors.
� Distance sensors for the drive motors so the robot knows how far it has traveled

(“odometry”).
� Infrared and ultrasonic sensors to keep the robot from hitting things.
� Contact bumper switches on the robot so it knows when it’s hit something and to stop

immediately.
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� LCD panels, indicator lights, or multidigit displays to show current operating status.
� Tilt switches, gyroscopes, or accelerometers to indicate when the robot has fallen over,

or is about to.
� Voice input, for voice command, voice recognition, and other neat-o things.
� Teaching pendant and remote control so you can move a joystick to control the drive

motors and record basic movements.

Of course, we discussed all of these in previous chapters. Review the table of contents
or index to locate the relevant text on these subjects.

Reality versus Fantasy
In building robots it’s important to separate the reality from the fantasy. Fantasy is a Star
Wars R2-D2 robot projecting a hologram of a beautiful princess. Reality is a homebrew
robot that scares the dog as it rolls down the hallway—and probably hits the walls as it
goes. Fantasy is a giant killer robot that walks on two legs and shoots a death ray from a
visor in its head. Reality is foot-tall “trash can” robot that pours your houseguests a Diet
Coke. Okay, so it spills a little every now and then . . . now you know why a robot equipped
with a vacuum cleaner comes in handy!

It’s easy to get caught up in the romance of designing and building a robot. But it’s
important to be wary of impossible plans. Don’t attempt to give your robot features and
capabilities that are beyond your technical expertise, budget, or both (and let’s not also for-
get the limits of modern science). In attempting to do so, you run the risk of becoming
frustrated with your inability to make the contraption work, and you miss out on an other-
wise rewarding endeavor.

When designing your automaton, you may find it helpful to put the notes away and let
them gel in your brain for a week. Quite often, when you review your original design, you
will realize that some of the features and capabilities are mere wishful thinking, and
beyond the scope of your time, finances, or skills. Make it a point to refine, alter, 
and adjust the design of the robot before, and even during, construction.

Understanding and Using Robot
“Behaviors”
A current trend in the field of robot building is “behavior-based robotics,” where you pro-
gram a robot to act in some predictable way based on both internal programming and
external input. For example, if the battery of your robot becomes weak, it can be pro-
grammed with a “find energy” behavior that will signal the robot to return to its battery
charger. Behaviors are a convenient way to describe the core functionality of robots—a
kind of “component” architecture to define what a robot will do given a certain set of 
conditions.
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The concept of behavior-based robotics has been around since the 1980s and was devel-
oped as a way to simplify the brain-numbing computational requirements of artificial
intelligence systems popular at the time. Behavior-based robotics is a favorite at the
Massachusetts Institute of Technology, and Professor Rodney Brooks, a renowned leader
in the field of robot intelligence, is one of its major proponents.

Since the introduction of behavior-based robotics, the idea has been discussed in count-
less books, papers, and magazine articles, and has even found its way into commercial
products. The LEGO Mindstorms robots, which are based on original work done at MIT,
use behavior principles. See Appendix A, “Further Reading,” for books that contain useful
information on behavior-based robotics.

WHEN A BEHAVIOR IS JUST A SIMPLE ACTION

Since the introduction of behavior-based robotics, numerous writers have applied the term
behavior to cover a wide variety of things—to the point that everything a robot does becomes
a “behavior.” The result is that robot builders can become convinced their creations are really
exhibiting human- or animal-like reactions, when all they are doing is carrying out basic
instructions from a computer or simple electronic circuit. Delusions aside, this has the larger
effect of distracting you from focusing on other useful approaches for dealing with robots.

Let me explain by way of an analogy. Suppose you see a magic show so many times that
you end up believing the disappearing lady is really gone. Not so. It’s an optical and psy-
chological trick every time. Sometimes a robot displays a simple action as the result of
rudimentary programming, and by calling everything it does a “behavior” we lose a clear-
er view of how the machine is really operating.

The following sections contain a brief discourse on behavior-based robotics, and my
personal views on clarifying terms so we can get the most out of the behavior concept.

WALL FOLLOWING: A COMMON “BEHAVIOR?”

One common example of behavior-based robotics is the “wall follower,” which is typical-
ly a robot that always turns in an arc, waiting to hit a wall. A sensor on the front of the
robot detects the wall collision. When the sensor is triggered, the robot will back away
from the wall, go forward a set amount, then repeat the whole process all over again.

This is a perfect example of how the term behavior has been misplaced: the true behav-
ior of the robot is not to follow a wall but simply to turn in circles until it hits something.
When a collision occurs, the robot moves to clear the obstacle, then continues to turn in a
circle once again. In the absence of the wall—a reasonable change in environment—the
robot would not exhibit its namesake “behavior.” Or conversely, if there were additional
objects in the room, the robot would treat them as “walls” too. In that case, the robot might
be considered useless, misprogrammed, or worse.

If “wall following” is not a true behavior, then what is it? I won’t presume to come up
with an industry-standard term. The important thing to remember is that a true behavior is
independent, or nearly so, of the robot’s typical physical environment. That’s Rule Number
One to keep in mind.

Note that environment is not the same as a condition. A condition is a light shining on
the robot that it might move toward or away from; an environment is a room or other area
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that may or may not have certain attributes. Conditions contribute to the function of the
robot, just like batteries or other electric power contribute to the robot’s ability to move its
motors. Conversely, environments can be ever changing and in many ways unmanageable.
Environments consist of physical parameters under which the robot may or may not oper-
ate at any given time.

Robotic behaviors are most useful when they encapsulate multiple variables, particu-
larly those are in response to external input (senses). This is Rule Number Two of true
behavior-based robotics. The more the robot is able to integrate and differentiate between
different input (senses), irrespective of its environment—and still carry out its proper pro-
gramming—the more it can demonstrate its true behaviors.

THE “WALT DISNEY EFFECT”

It is tempting to endow robots with human- or animal-like emotions and traits, such as
hunger (battery power) or affinity/love (a beacon or an operator clicking a “clicker”). But
in my opinion these aren’t behaviors at all. They are anthropomorphic qualities that mere-
ly appear to result in a human-type response simply because we want them to.

In other words, it’s completely made up. Imagine this in the extreme: Is a robot “suici-
dal” if it has a tendency to drive off the workbench and break as it hits the floor? Or is it
that your workbench is too small and crowded, and your concrete floor is too hard?
Emotions such as love are extremely complex; as a robot builder, it’s easy to get confused
about what your creation can really do and feel.

In his seminal book Vehicles, Valentino Braitenberg gives us a study of synthetic psy-
chology on which fictional “vehicles” demonstrate certain behavioral traits. For example,
Braitenberg’s Vehicle 2 has two motors and two sensors (say, light sensors). By connecting
the sensors to the motors in different ways the robot is said to exhibit “emotions,” or at the
least actions we humans may interpret as quasi-intelligent or human-like emotional
responses. In one configuration, the robot may steer toward the light source, exhibiting
“love.” In another configuration, the robot may steer away, exhibiting “fear.”

Obviously, the robot is feeling neither of these emotions, nor does Braitenberg suggest
this. Instead, he gives us vehicles that are fictional representations of human-like traits. It’s
important not to get caught up in Disneyesque anthropomorphism. A good portion of
behavior-based robotics centers around human interpretation of the robot’s mechanical
actions. We interpret those actions as intelligent, or even as cognition. This is valid up to a
point, but consider that only we ourselves experience our own intelligence and cognition
(that is, we are “self-aware”); a robot does not. Human-like machine intelligence and emo-
tions are in the eye of a human beholder, not in the brain of the robot. This, however, may
change in the future as new computing models are discovered, invented, and explored.

ROBOTIC FUNCTIONS AND ERROR CORRECTION

When creating behaviors for your robots, keep in mind the function that you wish to
accomplish. Then, consider how that function is negatively affected by variables in the
robot’s likely environments. For practical reasons (budget, construction skill), you must
consider at least some of the limitations of the robot’s environment in order to make it reli-
ably demonstrate a given behavior. A line-following robot, which is relatively easy to build
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and program, will not exhibit its line-following behavior without a line. By itself, such a
robot would merely be demonstrating a simple action. But by adding error correction—to
compensate for unknown or unexpected changes in environment—the line-following robot
begins to demonstrate a useful behavior. This behavior extends beyond the robot’s imme-
diate environmental limits. The machine’s ability to go into a secondary, error-correcting
state to find a line to follow is part of what makes a valid line-following behavior—even
more so if in the absence of a line to follow the robot can eventually make its own.

Error correction is Rule Number Three of behavior-based robotics. Without error cor-
rection, robots operating in restrictive environments are more likely to exhibit simple, even
stupid, actions in response to a single stimulus. Consider the basic “wall-following” robot
again: it requires a room with walls—and, at that, walls that are closer together than its
turning radius. Outside or in a larger room, the robot “behaves” completely differently, yet
its programming is exactly the same. The problem of the wall-following robot could be
fixed either by adding error correction or by renaming the base behavior to more accu-
rately describe what it physically is doing.

ANALYZING SENSOR DATA TO DEFINE BEHAVIORS

By definition, behavior-based robotics is reactive, so it requires some sort of external input
by which a behavior can be triggered. Without input (a light sensor, ultrasonic detector,
bumper switch, etc.) the robot merely plays out a preprogrammed set of moves—simple
actions, like a player piano. More complex behaviors becomes possible if the following
capabilities are added:

� The ability to analyze the data from an analog, as opposed to a digital, sensor. The out-
put of an analog sensor provides more information than the simple on/off state of a dig-
ital sensor. Let’s call this sensor parametrics.

� The ability to analyze the data from multiple sensors, either several sensors of the same
type (a gang of light-sensitive resistors, for example) or sensors of different types (a
light sensor and an ultrasonic sensor). This is commonly referred to as sensor fusion.

Let’s consider sensor parametrics first. Suppose your robot has a temperature sensor
connected to its onboard computer. Temperature sensors are analog devices; their output is
proportional to the temperature. You use this feature to determine a set or range of prepro-
grammed actions, depending on the specified temperature. This set of actions constitutes
a behavior or, if the actions are distinct at different temperatures, a variety of behaviors.
Similarly, a photophilic robot that can discern the brightest light among many lights also
exhibits sensor analysis from parametric data.

Sensor fusion analyzes the output of several sensors. Your robot initiates the appropri-
ate behavioral response as a result. For example, your robot may be programmed to follow
the brightest light but also detect obstructions in its path. When an obstruction is encoun-
tered, the robot is programmed to go around it, then continue—perhaps from a new direc-
tion—toward the light source.

Sensor fusion helps provide error correction and allows a robot to continue exhibiting
its behavior (one might call it the robot’s “prime directive”) even in the face of unpre-
dictable environmental variables. The variety, sophistication, and accuracy of the sensors
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determine how well the robot will perform in any given circumstance. Obviously, it’s not
practical—economic or otherwise—to ensure that your robot will work flawlessly under
all environments and conditions. But the more you give your robots the ability to overcome
common and reasonable environmental variables (such as socks on the floor), the better it
will display the behavior you want.

THE ROLE OF SUBSUMPTION ARCHITECTURE

Subsumption architecture isn’t an odd style of building. Rather, it’s a technique devised by
Dr. Brooks at MIT that has become a common approach for dealing with the complexities
of sensor fusion and artificial machine intelligence. With subsumption, sensor inputs are
prioritized. Higher-priority sensors override lower-priority ones. In the typical subsump-
tion model, the robot may not even be aware that a low-priority sensor was triggered.

More complex hybrid systems may employ a form of simple subsumption along with
more traditional artificial intelligence programming. The robot’s computer may evaluate
the relative merits of low-priority sensors and use this information to intuit a unique course
of action, perhaps one in which direct programming for the combination of input variables
does not yet exist. In some cases, the output of a low-priority sensor may moderate the
interpretation of a high-priority one.

As an example, a fire-fighting robot may have both a smoke detector and a flame detec-
tor. The smoke detector is likely to sense smoke before any fire can be identified, since
smoke so easily permeates a structure. Therefore, the smoke sensor will likely be given a
lower priority to the flame detector, since it is so easily triggered. But consider that flames
can exist without a destructive fire (e.g., a fireplace and candlelight, both of which do not
emit much smoke under normal circumstances). Rather than have the robot totally ignore
its other sensors when the high-priority flame detector is triggered, the robot instead inte-
grates the output of both flame and smoke sensors to determine what is, and isn’t, a fire
that needs to be put out.

Multiple Robot Interaction
An exciting field of research is the interaction of several robots working together. Rather than
build one big, powerful robot that does everything, multirobot scenarios combine the
strengths of two or more smaller, simpler machines to achieve synergy: the whole is greater
than the parts. Anyone who has seen the now-classic science fiction film Silent Running
knows what three diminutive robots (named Huey, Luey, and Dewey, by the way) can do!

Robot “tag teams” are common in college and university robot labs, where groups of
robot researchers compete with their robots as the players of a game (robo-soccer is pop-
ular). Each robot in the competition has a specific job, and the goal is to have them work
together. There are three common types of robot-to-robot interaction:

� Peer-to-peer. Each robot is considered equal, though each one may have a different job
to do, based on predefined programming The workload may also be divided based on
physical proximity to the work, and whether the other robots in the group are busy
doing other things.
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� Queen/drone. One robot serves as the leader, and one or more additional robots serve
as worker drones. Each drone takes it’s work orders directly from the queen and may
interact only peripherally with the other drone ‘bots.

� Convoys. Combining the first two types, the leader of the convoy is the “queen” robot,
and the other robots act as peers among themselves. In convoy fashion, each robot may
rely on the one just ahead for important information. This approach is useful when the
“queen” is not capable, for computer processing reasons or otherwise, to control a large
number of fairly mindless drones.

Why all the fuss with multiple robots? First and foremost because it’s generally easier
and cheaper to build many small and simple robots than a single big and complex one.
Second, the mechanical failure of one robot can be compensated for by the remaining good
robots. In many instances, the “queen” or leader robot is no different than the others, it just
plays a coordinating role. In this way, should the leader ‘bot go down for the count, any
other robot can easily take its place. And third, work tends to get done faster with more
hands helping.

Dealing with Failures
Few robots work perfectly when you flip the switch the first time. Failure is common in
robot building and should be expected. As you learn from these failures you will build bet-
ter robots. Failure can occur at the onset when you first try a new design, or it can occur
at any point thereafter, as the robot breaks down for one reason or another.

MECHANICAL FAILURE

Mechanical problems are perhaps the most common failure. A design you developed just
doesn’t work well, usually because the materials or the joining methods you used were not
strong enough. Avoid overbuilding your robots (that tends to make them too expensive and
heavy), but at the same time strive to make them physically strong. Of course, “strong” is
relative: a lightweight, scarab-sized robot needn’t have the muscle to tote a two-year-old
on a tricycle. At the very least, however, your robot construction should support its own
weight, including batteries.

When possible, avoid “slap-together” construction, such as using electrical or duct tape.
These methods are acceptable for quick prototypes but are unreliable for long-term test-
ing. When gluing parts in your robot, select a glue that is suitable for the materials you are
using. Epoxy and hot-melt glues are among the most permanent. You may also have luck
with cyanoacrylate (CA) glues, though the bond may become brittle and weak over time
(a few years or more, depending on humidity and stress).
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ELECTRICAL FAILURE

Electronics can be touchy, not to mention extremely frustrating, when they don’t work
right. Circuits that functioned properly in a solderless breadboard may no longer work
once you’ve soldered the components in a permanent circuit, and vice versa. There are
many reasons for this, including mistakes in wiring, odd capacitive effects, even variations
in tolerances due to heat transfer. Here are some pointers:

� If a circuit doesn’t work from the get-go, review your wiring and make necessary
repairs.

� If the circuit fails after some period of use, the cause may be a short circuit or broken
wire, or it could be a burned-out component. Example: if your motors draw too much
current from the drive circuitry you run the risk of permanently damaging some semi-
conductors.

Certain electronic circuit construction techniques are better suited for an active, mobile
robot. Wire-wrap is a fast way to build circuits, but its construction can invite problems.
The long wire-wrap pins can bend and short out against one another. Loose wires can come
off. Parasitic signals and stray capacitance can cause “marginal” circuits to work, then not
work, and then work again. For an active robot it may be better to use a soldered circuit
board, perhaps even a printed circuit board of your design (see Chapter 6, “Electronic
Construction Techniques,” for more information).

Some electrical problems may be caused by errors in programming, weak batteries, or
unreliable sensors. For example, it is not uncommon for sensors to occasionally yield total-
ly wacky results. This can be caused by design flaws inherent in the sensor itself, spurious
data (noise from a motor, for example), or corrupted or out-of-range data. Ideally, the pro-
gramming of your robot should anticipate occasional bad sensor readings and basically
ignore them. A perfectly acceptable approach is to throw out any sensor reading that is out-
side the statistical model you have decided on (e.g., a sonar ping that says an object is 1048
feet away; the average robotic sonar system has a maximum range of about 35 feet).

PROGRAMMING FAILURE

As more and more robots use computers and microcontrollers as their “brains,” program-
ming errors are fast becoming one of the most common causes of failure. There are three
basic kinds of programming “bugs.” In all cases, you must review the program, find the
error, and fix it:

� Compile bug, caused by bad syntax. You can instantly recognize these because the pro-
gram compiler or downloader will flag these mistakes and refuse to continue. You must
fix the problem before you can transfer the program to the robot’s microcontroller or
computer.

� Run-time bug, caused by a disallowed condition. A run-time bug isn’t caught by the
compiler. It occurs when the microcontroller or computer attempts to run the program.
An example of a common run-time bug is the use of an out-of-bounds element in an
array (for instance, trying to assign a value to the thirty-first element in a 30-element
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array). Run-time bugs may also be caused by missing data, such as looking for data on
the wrong input pin of a microcontroller.

� Logic bug, caused by a program that simply doesn’t work as anticipated. Logic bugs
may be due to simple math errors (you meant to add, not subtract) or by mistakes in cod-
ing that cause a different behavior than you anticipated.

Task-Oriented Robot Control
As “workers,” robots have a task to do. In many books on robotics theory and application,
these tasks are considered “goals.” Personally, I’m not big on the term goal because that
suggests a human emotion involving desire. The robot you build will have no “desire” to
fetch you a can of soda, but will merely do so because its programming tells it to. Instead,
I prefer the term task—a defined job that the robot is expected to accomplish. A robot may
be given multiple tasks at the same time, such as the following:

1. Get me a can of Dr. Pepper;
2. Avoid running into the wall while doing so;
3. Watch out for the cat and other ground-based obstacles;
4. And remember where you came from so you can bring the soda back to me.

These tasks form a hierarchy. Task 4 cannot be completed before task 1. Together, these
two form the primary directive tasks (shades of Star Trek here—okay, I admit it: I’m a
Trekker!). Tasks 2 and 3 may or may not occur; these are error mode tasks. Should they
occur, they temporarily suspend the processing of the primary directive tasks.

PROGRAMMING FOR TASKS

From a programming standpoint, you can consider most any job you give a robot to look
something like this:

Do Task X until
on error Do Task Y

repeat
Task Y until no error

resume Task X
Task X complete

X is the primary directive task, the thing the robot is expected to do. Y is a special func-
tion that gets the robot out of trouble should an error condition—of which there may be
many—occurs. Most error modes will prevent the robot from accomplishing its primary
directive task. Therefore, it is necessary to clear the error first before resuming the prima-
ry directive.

Note that it is entirely possible that the task will be completed without any kind of com-
plication (no errors). In this case, the error condition is never raised, and the Y functionality
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is not activated. The robot programming is likewise written so that when the error condi-
tion is cleared, it can resume its prime directive task.

MULTITASKING ERROR MODES FOR OPTIMAL FLEXIBILITY

For a real-world robot, errors are just as important a consideration as tasks. Your robot pro-
gramming must deal with problems, both anticipated (walls, chairs, cats) and unanticipat-
ed (water on the kitchen floor, no sodas in the fridge). The more your robot can recognize
error modes, the better it can get itself out of trouble. And once out of an error mode, the
robot can be reasonably expected to complete its task.

How you program various tasks in your robot is up to you and the capabilities of your
robot software platform. If your software supports multitasking (BasicX, OOPic, LEGO
Mindstorms, and others), then try to use this feature whenever possible. By dealing with
tasks as discrete units, you can better add and subtract functionality simply by including
or removing tasks in your program.

Equally important, you can make your robot automatically enter an error mode task
without specifically waiting for it in code. In non-multitasking procedural programming,
your code is required to repeatedly check (poll) sensors and other devices that warn the
robot of an error mode. If an error mode is detected, the program temporarily branches to
a portion of the code written to handle it. Once the error is cleared, the program can resume
execution where it left off.

With a multitasking program, each task runs simultaneously. Tasks devoted to error
modes can temporarily take over the processing focus to ensure that the error is fixed
before continuing. The transfer of execution within the program is all done automatically.
To ensure that this transfer occurs in a logical and orderly manner, the program should give
priorities to certain tasks. Higher-priority tasks are able to take over (“subsume,” a word
now in common parlance) other running tasks when necessary. Once a high-priority task
is completed, control can resume with the lower-priority activities, if that’s desired.

GETTING A PROGRAM’S ATTENTION VIA HARDWARE

Even in systems that lack multitasking capability it’s still possible to write a robot control
program that doesn’t include a repeating loop that constantly scans (polls) the condition of
sensors and other input. Two common ways of dealing with unpredictable external events
are using a timer (software) interrupt or a hardware (physical connection) interrupt.

Timer interrupt A timer built into the computer or microcontroller runs in the back-
ground. At predefined intervals—most commonly when the timer overflows its count—the
timer grabs the attention of the microprocessor, which in turn temporarily suspends 
the main program. The microprocessor runs a special timer interrupt program, which in the
case of a task-based robot would poll the various sensors and other input looking for pos-
sible error modes. (Think of the timer as a heart beat; at every beat the microprocessor
pauses to do something special.)

If no error is found, the microprocessor resumes the main program. If an error is found,
the microprocessor runs the relevant section in code that deals with the error. Timer 
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interrupts can occur hundreds of times each second. That may seem like a lot in human
terms, but it can be trivial to a microprocessor running at several million cycles per second.

Hardware interrupt A hardware interrupt is a mechanism by which to immediately
get the attention of the microprocessor. It is a physical connection on the microprocessor
that can in turn be attached to some sensor or other input device on the robot. With a hard-
ware interrupt the microprocessor can spend 100 percent of its time on the main program
and temporarily suspend it if, and only if, the hardware interrupt is triggered.

Hardware interrupts are used extensively in most computers, and their benefits are well
established. Your PC has several hardware interrupts. For example, the keyboard is con-
nected to a hardware interrupt, so when you press a key the processor immediately fetch-
es the data and makes it available to whatever program is currently running. The standard
PC architecture has room for 16 hardware interrupts, even though the microprocessor uses
just one interrupt pin. The one pin is multiplexed to make 16 separate inputs. You can do
something similar in your own robot designs.

Glass half-empty, half-full There are two basic ways to deal with error modes. One
is to treat them as “exceptions” rather than the rule:

� In the exception model, the program assumes no error mode and only stops to execute
some code when an error is explicitly encountered. This is the case with a hardware
interrupt.

� In the opposite model, the program assumes the possibility of an error mode all the time
and checks to see if its hunch is correct. This is the case with the timer interrupt.

The approach you use will depend on the hardware choices available to you. If you have
both a timer and a hardware interrupt at your disposal, the hardware interrupt is probably
the more straightforward method because it allows the microprocessor to be used more
efficiently.

And Last…
Few other moments in life compare to the instant when you solder that last piece of wire,
file down that last piece of metal, tighten that last bolt, and switch on your robot.
Something you created comes to life, obeying your commands and following your prepro-
grammed instructions. This is the robot hobbyist’s finest hour. It proves that the countless
evenings and weekends in the workshop were worth it after all.

I started this book with a promise of adventure—to provide you with a treasure map of
plans, diagrams, schematics, and projects for making your own robots. I hope you’ve fol-
lowed along and built a few of the mechanisms and circuits that I described. Now, as you
finish reading, you can make me a promise: improve on these ideas. Make them better. Use
them in creative ways that no one has ever thought possible. Create that ultimate robot that
everyone has dreamed about.
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Your ideas, suggestions, and other comments are welcome. If you see a mistake in a cir-
cuit or mechanism, I’ll make sure the next edition of this book is corrected. Write me, care
of McGraw-Hill at the address in the front of the book, or visit me at www.robotoid.com.
I can’t always reply in a timely manner, but I assure you I’ll consider your comments. If
you have a unique robot design, why not share it with others? Send me details of your
robots—finished or in process.

Now, stop reading—and do. Impress us all!
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Interested in learning more about robotics? Sure you are! Here is a selected list of books
than can enrich your understanding and enjoyment of all facets of robotics. These books are
available at most better bookstores, as well as at many online bookstores, including Amazon
(www.amazon.com), Barnes and Noble (www.bn.com), and Fatbrain (www.fatbrain.com).

This appendix also lists several magazines of interest to the robot experimenter. Both
mailing and Internet addresses have been provided.

Contents

Hobby Robotics

LEGO Robotics and LEGO Building

Technical Robotics, Theory and Design

Artificial Intelligence and Behavior-Based Robotics

Mechanical Design

Electronic Components

Microcontroller/Microprocessor Programming
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Electronics How-to and Theory

Power Supply Design and Construction

Motors and Motor Control

Lasers and Fiber Optics

Interfacing to IBM PC (and Compatibles)

Magazines

Hobby Robotics
Robots, Androids and Animatrons: 12 Incredible Projects You Can Build
John Iovine
McGraw-Hill
ISBN: 0070328048

The Personal Robot Navigator
Merl K. Miller, Nelson B. Winkless, Kent Phelps, Joseph H. Bosworth
A K Peters Ltd
ISBN: 188819300X

(Contains CD-ROM of robot navigation simulator)

Applied Robotics
Edwin Wise
Howard W Sams & Co
ISBN: 0790611848

Muscle Wires Project Book
Roger G. Gilbertson
Mondo-Tronics
ISBN: 1879896141

Stiquito: Advanced Experiments with a Simple and Inexpensive Robot
James M. Conrad, Jonathan W. Mills
Institute of Electrical and Electronic Engineers
ISBN: 0818674083

Stiquito for Beginners: An Introduction to Robotics
James M. Conrad, Jonathan W. Mills
IEEE Computer Society Press
ISBN: 0818675144

LEGO Robotics and LEGO Building
Dave Baum’s Definitive Guide to LEGO Mindstorms
Dave Baum
Apress
ISBN: 1893115097
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Unofficial Guide to LEGO MINDSTORMS Robots
Jonathan B. Knudsen
O’Reilly & Associates
ISBN: 1565926927

Lego Crazy Action Contraptions
Dan Rathjen
Klutz, Inc
ISBN: 1570541574

Technical Robotics, Theory and 
Design
Mobile Robots: Inspiration to Implementation
Joseph L. Jones, Anita M. Flynn,
Bruce A. Seiger
A K Peters Ltd
ISBN: 1568810970

Sensors for Mobile Robots : Theory and Application
H. R. Everett
A K Peters Ltd
ISBN: 1568810482

Art Robotics: An Introduction to Engineering
Fred Martin
Prentice Hall
ISBN: 0805343369

Robot Evolution: The Development of Anthrobotics
Mark Rosheim
John Wiley & Sons
ISBN: 0471026220

Machines That Walk: The Adaptive Suspension Vehicle
Shin-Min Song
MIT Press
ISBN: 0262192748

Remote Control Robotics
Craig Sayers
Springer-Verlag
ISBN: 038798597

Artificial Vision for Mobile Robots: Stereo Vision and Multisensory Perception
Nicholas Ayache, Peter T. Sander
MIT Press
ISBN: 0262011247
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Artificial Intelligence and Behavior-
based Robotics
Robot: Mere Machine to Transcendent Mind
Hans Moravec
Oxford University Press
ISBN: 0195116305

Behavior-Based Robotics (Intelligent Robots and Autonomous Agents)
Ronald C. Arkin
MIT Press
ISBN: 0262011654

Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems
David Kortenkamp (editor), R. Peter Bonasso (editor), Robin Murphy (editor)
MIT Press
ISBN: 0262611376

Cambrian Intelligence: The Early History of the New AI
Rodney Allen Brooks
MIT Press
ISBN: 0262522632

Vehicles: Experiments in Synthetic Psychology
Valentino Braitenberg
MIT Press
ISBN: 0262521121

Intelligent Behavior in Animals and Robots
David McFarland, Thomas Bosser
MIT Press
ISBN: 0262132931

Mechanical Design
Mechanical Devices for the Electronics Experimenter
Britt Rorabaugh
Tab Books
ISBN: 0070535477

Mechanisms and Mechanical Devices Sourcebook, Second Edition
Nicholas P. Chironis, Neil Sclater
McGraw-Hill
ISBN: 0070113564

Home Machinist’s Handbook 
Doug Briney
Tab Books
ISBN: 0830615733

712 APPENDIX A

App A_McComb   8/21/00  3:35 PM  Page 712



Electronic Components
Electronic Circuit Guidebook : Sensors
Joseph J. Carr
PROMPT Publications
ISBN: 0790610981

Electronic Circuit Guidebook (various volumes)
Joseph J. Carr
PROMPT Publications
Volume 1: Sensors; ISBN: 0790610981
Volume 2: IC Timers; ISBN: 0790611066
Volume 3: Op Amps; ISBN: 0790611317

Build Your Own Low-cost Data Acquisition and Display Devices
Jeffrey Hirst Johnson
Tab Books
ISBN: 0830643486

Microcontroller/Microprocessor
Programming
Programming and Customizing the Basic Stamp Computer
Scott Edwards
McGraw-Hill
ISBN: 0079136842

Microcontroller Projects with Basic Stamps
Al Williams
R&D Books
ISBN: 0879305878

The Basic Stamp 2—Tutorial and Applications
Peter H. Anderson (Author and Publisher)
ISBN: 0965335763

Programming and Customizing the Pic Microcontroller
Myke Predko
McGraw-Hill
ISBN: 007913646X

Easy Pic’N: A Beginner’s Guide to Using Pic16/17 Microcontrollers
David Benson
Square One Electronics
ISBN: 0965416208

PIC’n Up Pace: An Intermediate Guide to Using PIC Microcontrollers
David Benson
Square One Electronics
ISBN: 0965416216
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Design with Pic Microcontrollers
John B. Peatman
Prentice Hall
ISBN: 0137592590

Microcontroller Cookbook
Mike James
Butterworth-Heinemann
ISBN: 0750627018

Handbook of Microcontrollers
Myke Predko
McGraw-Hill
ISBN: 0079137164

Programming and Customizing the 8051 Microcontroller
Myke Predko
McGraw-Hill
ISBN: 0071341927

The 8051 Microcontroller
I. Scott MacKenzie
Prentice Hall
ISBN: 0137800088

The Microcontroller Idea Book
Jan Axelson
Lakeview Research
ISBN: 0965081907

Programming and Customizing the Hc11 Microcontroller
Thomas Fox
McGraw-Hill Professional Publishing
ISBN: 0071344063

AVR RISC Microcontroller Handbook
Claus Kuhnel
Newnes
ISBN: 0750699639

Electronics How-to and Theory
McGraw-Hill Benchtop Electronics Handbook
Victor Veley
McGraw-Hill
ISBN: 0070674965

The TAB Electronics Guide to Understanding Electricity and Electronics
G. Randy Slone
Tab Books
ISBN: 0070582165
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Electronic Components: A Complete Reference for Project Builders
Delton T. Horn
Tab Books
ISBN: 0830633332

The Forrest Mims Engineer’s Notebook
Forrest M. Mims, Harry L. Helms
LLH Technology Pub
ISBN: 1878707035

Engineer’s Mini-Notebook (series)
Forrest M. Mims
Radio Shack

Logicworks 4: Interactive Circuit Design Software for Windows and Macintosh
Addison-Wesley
ISBN: 0201326825
(Book and CD-ROM; includes software)

Beginner’s Guide to Reading Schematics
Robert J. Traister, Anna L. Lisk
Tab Books
ISBN: 0830676325

Printed Circuit Board Materials Handbook
Martin W. Jawitz (editor)
McGraw-Hill
ISBN: 0070324883

The Art of Electronics
Paul Horowitz, Winfield Hill
Cambridge University Press
ISBN: 0521370957

Student Manual for the Art of Electronics
Paul Horowitz, T. Hayes
Cambridge University Press
ISBN: 0521377099

Power Supply Design and Construction
DC Power Supplies
Joseph J. Carr
McGraw-Hill
ISBN: 007011496X

Power Supplies, Switching Regulators, Inverters, and Converters
Irving M. Gottlieb
Tab Books
ISBN: 0830644040
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Motors and Motor Control: Electric Motors and Control Techniques, Second Edition
Irving M. Gottlieb
ISBN: 0070240124

Lasers and Fiber Optics
Lasers, Ray Guns, and Light Cannons: Projects from the Wizard’s Workbench
Gordon McComb
McGraw-Hill
ISBN: 0070450358

Optoelectronics, Fiber Optics, and Laser Cookbook
Thomas Petruzzellis
McGraw-Hill
ISBN: 0070498407

Understanding Fiber Optics
Jeff Hecht
Prentice Hall
ISBN: 0139561455

Laser: Light of a Million Uses
Jeff Hecht, Dick Teresi
Dover
ISBN: 0486401936

Interfacing to IBM PC (and
Compatibles)
Use of a PC Printer Port for Control & Data Acquisition
Peter H. Anderson (Author and Publisher)
ISBN: 0965335704

The Parallel Port Manual Vol. 2: Use of a PC Printer Port for Control and Data Acquisition
Peter H. Anderson (Author and Publisher)
ISBN: 0965335755

Programming the Parallel Port
Dhananjay V. Gadre
R&D Books
ISBN: 0879305134

Parallel Port Complete
Jan Axelson
Peer-to-Peer Communications
ISBN: 0965081915
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Serial Port Complete
Jan Axelson
Lakeview Research
ISBN: 0965081923

Real-World Interfacing with Your PC
James Barbarello
PROMPT Publications
ISBN: 0790611457

Magazines
Robot Science and Technology
3875 Taylor Road, Suite 200
Loomis, CA 95650
www.robotmag.com

Poptronics
Gernsback Publications
500 Bi-County Blvd.
Farmingdale, NY 11735
www.poptronics.com

Nuts & Volts Magazine
430 Princeland Court
Corona, CA 91719
www.nutsvolts.com

Everyday Practical Electronics
Wimborne Publishing Ltd.
Allen House
East Borough, Wimborne
Dorset BH2 1PF
United Kingdom

Elektor
www.elektor-electronics.co.uk
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Selected Specialty Parts and Sources

General Robotics Kits and Parts

Electronics/Mechanical Mail Order; New, Used, and Surplus

Microcontrollers, Single Board Computers, Programmers

Radio Control (RC) Retailers

Servo and Stepper Motors, Controllers

Ready-Made Personal and Educational Robots

Construction Kits, Toys, and Parts

Miscellaneous

The listing in this appendix is periodically updated at www.robotoid.com.

Internet-based companies that do not provide a mailing address on their Web site are
not listed. In addition, Internet-based companies hosted on a “free” Web hosting service
(Tripod, Geocities, etc.) are also not listed because of fraud concerns.
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SELECTED SPECIALTY PARTS AND SOURCES 719

Selected Specialty Parts and Sources
BEAM Robots

Solarbotics

Bend Sensor
Images Company

Infrared Proximity/Distance Sensors
Acroname
HVW Technologies

Infrared Passive (PIR) Sensors
Acroname
Glolab

LCD Serial Controller
Scott Edwards Electronics

Microcontroller Kits and Boards
DonTronics
microEngineering Labs
Milford Instruments
NetMedia
Parallax, Inc. 
Savage Innovations
Scott Edwards Electronics, Inc.

Motor Controllers (“Set and Forget”) 
Solutions Cubed

Servo Motor Controller
FerretTronis
Lynxmotion
Medonis Engineering
Mister Computer
Pontech
Scott Edwards Electronics, Inc.

Shape Memory Alloy
Mondo-Tronics

Sonar Sensors (Polaroid and others)
Acroname

Speech Recognition
Images Company

Surplus Mechanical Parts and Electronic Components
All Electronics
Alltronics
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American Science & Surplus
B.G. Micro
C&H Sales
Halted Specialties Co.
Herbach & Rademan
Martin P. Jones & Assoc.

Wireless Transmitters (RF and Infrared)
Abacom Technologies
Glolab

General Robotics Kits and Parts
Acroname
P.O. Box 1894
Nederland, CO 80466
(303) 258-3161
www.acroname.com

Abacom Technologies
32 Blair Athol Crescent
Etobicoke, Ontario M9A 1X5
Canada
(416) 236-3858
www.abacom-tech.com

A.K. Peters, Ltd.
63 South Avenue
Natick, MA 01760
(508) 655-9933
www.akpeters.com

Amazon Electronics
Box 21
Columbiana, OH 44408
(888) 549-3749
www.electronics123.com

Design and Technology Index
40 Wellington Road
Orpington, Kent, BR5 4AQ
UK
�44 0 1689 876880
www.technologyindex.com

Images Company
39 Seneca Loop
Staten Island, NY 10314
(718) 698-8305
www.imagesco.com
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GENERAL ROBOTICS KITS AND PARTS 721

Glolab Corp.
134 Van Voorhis
Wappingers Falls, NY 12590
www.glolab.com

HVW Technologies
Suite 473
300-8120 Beddington Blvd., SW
Calgary, Alberta T3K 2A8
Canada
(403) 730-8603
www.hvwtech.com

Hyperbot
905 South Springer Road
Los Altos, CA 94024-4833 
(800) 865-7631
(415) 949-2566
www.hyperbot.com

Lynxmotion, Inc.
104 Partridge Road
Pekin, IL 61554-1403
(309) 382-1816
www.lynxmotion.com

Mekatronix
316 Northwest 17th Street, Suite A
Gainesville, FL 32603
www.mekatronix.com

Milford Instruments
120 High Street
South Milford, Leeds LS25 5AG
UK
�44 0 1977 683665
www.milinst.demon.co.uk

Mondo-Tronics, Inc
4286 Redwood Highway, #226
San Rafael, CA 94903
(415) 491-4600
www.robotstore.com

Mr. Robot
8822 Trevillian Road
Richmond, VA 23235
(804) 272-5752
www.mrrobot.com

Norland Research
8475 Lisa Lane
Las Vegas, NV 89113
(702) 263-7932
www.smallrobot.com
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Personal Robot Technologies, Inc. 
P.O. Box 612 
Pittsfield, MA 01202
(800) 769-0418
www.smartrobots.com

RobotKitsDirect
17141 Kingview Avenue
Carson, CA 90746
(310) 515-6800 voice
www.owirobot.com

Sensory Inc
521 East Weddell Drive
Sunnyvale, CA 94089-2164 
(408) 744-9000
www.sensoryinc.com

Solarbotics
179 Harvest Glen Way Northeast
Calgary, Alberta, T3K 3J4
Canada 
(403) 818-3374
www.solarbotics.com

Technology Education Index
40 Wellington Road 
Orpington, Kent, BR5 4AQ
UK
�44 0 1689 876880
www.technologyindex.com

Zagros Robotics
P.O. Box 460342
St. Louis, MO 63146-7342
(314) 176-1328
www.zagrosrobotics.com

Electronics/Mechanical Mail Order:
New, Used, and Surplus
All Electronics 
P.O. Box 567
Van Nuys, CA 91408-0567
(800) 826-5432
www.allectronics.com

Alltech Electronics
2618 Temple Heights
Oceanside, CA 92056
(760) 724-2404
www.allelec.com
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Alltronics 
2300-D Zanker Road
San Jose, CA 95101-1114
(408) 943-9773
www.alltronics.com

American Science & Surplus
5316 North Milwaukee Avenue
Chicago, IL 60630
(847) 982-0870
www.sciplus.com

B.G. Micro
555 North 5th Street Suite #125
Garland, Texas 75040
(800) 276-2206
www.bgmicro.com

C&H Sales
2176 East Colorado Boulevard
Pasadena, CA 91107
(800) 325-9465
www.candhsales.com

DigiKey Corp.
701 Brooks Avenue South
Thief River Falls, MN 56701
(800) 344-4539
www.digikey.com

Edmund Scientific
101 East Gloucester Pike
Barrington, NJ 08007-1380 
(800) 728-6999
www.edsci.com

Electro Mavin
2985 East Harcourt Street
Compton, CA 90221
(800) 421-2442
www.mavin.com

Electronic Goldmine
P.O. Box 5408
Scottsdale, AZ 85261
(480) 451-7454
www.goldmine-elec.com

Fair Radio Sales 
1016 East Eureka Street 
P.O. Box 1105
Lima, OH 45802 
(419) 227-6573
www.fairradio.com
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Gates Rubber Company
900 South Broadway
Denver, CO 80217-5887
(303) 744-1911
www.gates.com

Gateway Electronics
8123 Page Boulevard
St. Louis, MO 63130. 
(314) 427-6116
www.gatewayelex.com

General Science & Engineering
P.O. Box 447 
Rochester, NY 14603
(716) 338-7001
www.gse-science-eng.com

W. W. Grainger, Inc.
100 Grainger Parkway
Lake Forest, IL 60045-5201
www.grainger.com

Halted Specialties Co.
3500 Ryder Street
Santa Clara, CA 96051
(800) 442-5833
www.halted.com

Herbach and Rademan
16 Roland Avenue
Mt. Laurel, NJ 08054-1012
(800) 848-8001
www.herbach.com

Hi-Tech Sales, Inc.
134R Route 1 South
Newbury St.
Peabody, MA 01960 
(978) 536-2000
www.bnfe.com

Hosfelt Electronics
2700 Sunset Boulevard
Steubenville, OH 43952
(888) 264-6464
www.hosfelt.com

Jameco
1355 Shoreway Road
Belmont, CA 94002
(800) 536-4316
www.jameco.com
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JDR Microdevices
1850 South 10th Street
San Jose, CA 95112-4108
(800) 538-5000
www.jdr.com

Marlin P. Jones & Associates, Inc.
P.O. Box 12685
Lake Park, FL 33403-0685
(800) 652-6733
www.mpja.com

MCM Electronics
650 Congress Park Drive
Centerville, OH 45459
(800) 543-4330
www.mcmelectronics.com

McMaster-Carr
P.O. Box 740100
Atlanta, GA 30374-0100
(404) 346-7000
www.mcmaster.com

Mouser Electronics
958 North Main Street
Mansfield, TX 76063
(800) 346-6873
www.mouser.com

PIC Design 
86 Benson Road 
Middlebury, CT 06762
(800) 243-6125
www.pic-design.com

Scott Edwards Electronics Inc.
1939 South Frontage Road
Sierra Vista, AZ 85634
(520) 459-4802
www.seetron.com

Small Parts, Inc.
13980 Northwest 58th Court
P.O. Box 4650
Miami Lakes, FL 33014-0650
(800) 220-4242
www.smallparts.com

Surplus Traders
P.O. Box 276
Alburg, VT 05440 USA
(514) 739-9328
www.73.com

ELECTRONICS/MECHANICAL MAIL ORDER 725

App B_McComb  8/29/00  8:44 AM  Page 725



726 SOURCES

TimeLine, Inc.
2539 West 237 Street Building F
Torrance, CA 90505
(310) 784-5488
www.digisys.net/timeline/

Unicorn Electronics
1142 State Route 18
Aliquippa, PA 15001
(800) 824-3432
www.unicornelectronics.com

W.M. Berg, Inc.
499 Ocean Avenue
East Rockaway, NY 11518
(516) 599-5010
www.wmberg.com

Microcontrollers, Single-board
Computers, Programmers
Boondog Automation
414 West 120th Street, Suite 207
New York, NY 10027
www.boondog.com/

DonTronics
P.O. Box 595 
Tullamarine, 3043 
Australia
(Check Web site for phone numbers)
www.dontronics.com

Gleason Research
P.O. Box 1494
Concord, MA 01742-1494
(978) 287-4170
www.gleasonresearch.com

Kanda Systems, Ltd.
Unit 17-18
Glanyrafon Enterprise Park
Aberystwyth, Credigion SY23 3JQ
UK
�44 0 1970 621030
www.kanda.com

microEngineering Labs, Inc.
Box 7532
Colorado Springs, CO 80933
(719) 520-5323
www.melabs.com
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MicroMint, Inc.
902 Waterway Place
Longwood, FL 32750
(800) 635-3355
www.micromint.com

NetMedia (BasicX)
NetMedia Inc
10940 North Stallard Place
Tucson, AZ 85737
(520 ) 544-4567
www.basicx.com

Parallax, Inc.
3805 Atherton Road, Suite 102
Rocklin, CA 95765 
(888) 512-1024
www.parallaxinc.com

Protean Logic
11170 Flatiron Drive 
Lafayette, CO 80026
(303) 828-9156
www.protean-logic.com

Savage Innovations (OOPic)
2060 Sunlake Boulevard #1308
Huntsville, AL 35824
(603) 691-7688 (fax)
www.oopic.com

Technological Arts
26 Scollard Street 
Toronto, Ontario 
Canada M5R 1E9
(416) 963-8996
www.technologicalarts.com

Weeder Technologies
P.O. Box 2426
Fort Walton Beach, FL 32549
(850) 863-5723

Wilke Technology GmbH 
Krefelder 147 
D-52070 Aachen 
Germany
�49 (241) 918 900
www.wilke-technology.com

Z-World
2900 Spafford Street
Davis, CA 95616
(530) 757-3737
www.zworld.com/
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Radio Control (R/C) Retailers
Tower Hobbies
P.O. Box 9078
Champaign, IL 61826-9078
(800) 637-6050
(217) 398-3636
www.towerhobbies.com

Servo and Stepper Motors, Controllers
Effective Engineering
9932 Mesa Rim Road, Suite B
San Diego, CA 92121
(858) 450-1024
www.effecteng.com

FerretTronics
P.O. Box 89304
Tucson, AZ 85752-9304
www.FerretTronics.com

Hitec RCD Inc.
12115 Paine Street
Poway, CA 92064
www.hitecrcd.com

Medonis Engineering
P.O. Box 6521
Santa Rosa, CA 95406-0521
www.medonis.com

Mister Computer
P.O. Box 600824
San Diego, CA 92160
(619) 281-2091
www.mister-computer.com

Pontech
(877) 385-9286
www.pontech.com

Solutions Cubed
3029 Esplanade, Suite F
Chico, CA 95973
(530) 891-8045
www.solutions-cubed.com
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Vantec
460 Casa Real Plaza 
Nipomo, CA 93444
(888) 929-5055
www.vantec.com

Ready-Made Personal and Educational
Robots
ActiveMedia Robotics
44-46 Concord Street
Peterborough, NH 03458
(603) 924-9100
www.activrobots.com

Advanced Design, Inc.
6052 North Oracle Road
Tucson, AZ 85704
(520) 575-0703
www.robix.com

Arrick Robotics
P.O. Box 1574
Hurst, TX, 76053 
(817) 571-4528
www.robotics.com

General Robotics Corporation
1978 South Garrison Street, #6
Lakewood, CO 80227-2243 
(800) 422-4265
www.edurobot.com

Newton Research Labs, Inc.
4140 Lind Avenue Southwest 
Renton, WA 98055
(425) 251-9600
www.newtonlabs.com

Probotics, Inc
Suite 223 
700 River Avenue
Pittsburgh, PA 15212
(888) 550-7658
www.personalrobots.com

READY-MADE PERSONAL AND EDUCATIONAL ROBOTS 729
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Construction Kits, Toys, and Parts
Valient Technologies
(Inventa)
Valiant House
3 Grange Mills
Weir Road
London SW12 0NE
UK
�44 020 8673 2233
www.valiant-technology.com

Miscellaneous
Meredith Instruments
P.O. Box 1724 
5420 West Camelback Rd., #4
Glendale, AZ 85301
(800) 722-0392
www.mi-lasers.com
Lasers

Midwest Laser Products
P.O. Box 262
Frankfort, IL 60423
(815) 464-0085
www.midwewst-laser.com
Lasers

Synergetics
Box 809 
Thatcher, AZ 85552 
(520) 428-4073
www.tinaja.com
Technical information

Techniks, Inc.
P.O. Box 463
Ringoes, NJ 08551
(908) 788-8249
www.techniks.com
Press-n-Peel transfer film
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Electronics Manufacturers

Shape Memory Alloy

Microcontroller Design

Robotics User Groups

General Robotics Information

Books, Literature, and Magazines

Surplus Resources

Commercial Robots

Video Cameras

Laser and Optical Components

LEGO Mindstorms Sources on the Web

Servo and Stepper Motor Information

APPENDIXC
ROBOT INFORMATION ON THE

INTERNET

731
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Electronics Manufacturers
Analog Devices, Inc.
http://www.analog.com/

Atmel Corp.
http://www.atmel.com/

Dallas Semiconductor
http://www.dalsemi.com/

Infineon (Siemens)
http://www.infineon.com/

Maxim
http://www.maxim-ic.com/

Microchip Technology
http://www.microchip.com/

Motorola Microcontroller
http://www.mcu.motsps.com/

Precision Navigation
http://www.precisionnav.com/

Sharp Optoelectronics
http://www.sharp.co.jp/ecg/data.html

Xicor
http://www.xicor.com/

Shape Memory Alloy
(Portions of these pages are in Japanese)

http://www.toki.co.jp/BioMetal/index.html
www.toki.co.jp/MicroRobot/index.html

Microcontroller Design
Peter H. Anderson—Embedded Processor Control
http://www.phanderson.com/

“No-Parts” PIC Programmer
http://www.CovingtonInnovations.com/noppp/index.html

Iguana Labs
http://www.proaxis.com/~iguanalabs/tools.htm

LOSA—List of Stamp Applications
http://www.hth.com/losa/
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Myke Predko’s Microcontroller Reference
http://www.myke.com/

PICmicro Web Ring
http://members.tripod.com/~mdileo/pmring.html

Shaun’s Basic Stamp II Page
http://www.geocities.com/SiliconValley/Orchard/6633/index.html

Robotics User Groups
Seattle Robotics Society
http://www.seattlerobotics.org/

Yahoo Robotics Clubs
http://clubs.yahoo.com/clubs/theroboticsclub
http://search.clubs.yahoo.com/search/clubs?p�robotics

The Robot Group
http://www.robotgroup.org/

Robot Builders
http://www.robotbuilders.com/

B-9 Builder’s Club
http://members.xoom.com/b9club/index.htm

San Francisco Robotics Society
http://www.robots.org/

Nashua Robot Club
http://www.tiac.net/users/bigqueue/others/robot/homepage.htm

Mobile Robots Group
http://www.dai.ed.ac.uk/groups/mrg/MRG.html

Dallas Personal Robotics Group
http://www.dprg.org/

Portland Area Robotics Society
http://www.rdrop.com/~marvin/

General Robotics Information
Robotics Frequently Asked Questions
http://www.frc.ri.cmu.edu/robotics-faq/

Legged Robot Builder
http://joinme.net/robotwise/

Tomi Engdahl’s Electronics Info Page
http://www.hut.fi/Misc/Electronics/

ROBOTICS USER GROUPS 733

APP C_McComb  8/21/00  3:35 PM  Page 733



Boondog Automation Tutorials
http://www.boondog.com\tutorials\tutorials.htm

Find Chips Search
http://www.findchips.com/

Robotics Resources
http://www.eg3.com/ee/robotics.htm

Robotics Reference
http://members.tripod.com/RoBoJRR/reference.htm

Bomb Disposal Robot Resource List
http://www.mae.carleton.ca/~cenglish/bomb/bomb.html

Introduction to Robot Building
http://www.geckosystems.com/robotics/basic.html

Robot Building Information, Hints, and Tips
http://www.seattlerobotics.org/guide/extra_stuff.html

Suppliers for Robotics/control Models and Accessories
http://mag-nify.educ.monash.edu.au/measure/robotres.htm

Mobile Robot Navigation
http://rvl.www.ecn.purdue.edu/RVL/mobile-robot-nav/mobile-robot-nav.html

Robota Dolls
http://www-robotics.usc.edu/~billard/poupees.html

Basic Stamp, Microchip Pic, and 8051 Microcontroller Projects
http://www.rentron.com/

Hila Research QBasic
http://fox.nstn.ca/~hila/qbasic/qbasic.html

Dennis Clark’s Robotics
http://www.verinet.com/~dlc/botlinks.htm

Dissecting a Polaroid Pronto One-step Sonar Camera
http://www.robotprojects.com/sonar/scd.htm

Polaroid Sonar Application Note
http://www.robotics.com/arobot/sonar.html

General Robot Info
http://www.employees.org:80/~dsavage/other/index.html

Standard Technologies of the Seattle Robotics Society
http://www.nwlink.com/~kevinro/guide/

Tech Wizards
http://www.hompro.com/techkids/

Android Workshop
http://www.tgn.net/~texpanda/library.htm

Hacking RAD Robot
http://www.netusa1.net/~carterb/radrobot.html

BEAM Robotics
http://nis-www.lanl.gov/robot/
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Books, Literature, and Magazines
Robotics Book Reviews
http://www.weyrich.com/book_reviews/robotics_index.html

Robot Books
http://www.robotbooks.com/

Lindsay Publications
http://www.lindsaybks.com/

Circuit Cellar
http://www.circellar.com/

Midnight Engineering
http://www.midengr.com/

Robotics Bookstore
http://www.bectec.com/html/bookstore.html

Robohoo
http://www.robohoo.com/

Surplus Resources
Silicon Valley Surplus Sources
http://www.kce.com/junk.htm

Commercial Robots
Electrolux Vacuum Robot
http://www3.electrolux.se/robot/meny.html

Gecko Systems Carebot
http://www.geckosystems.com/

IS Robotics
http://www.isr.com/

Nomadic Technologies
http://www.robots.com/products.htm

Video Cameras
http://www.quickcam.com/
Logitech QuickCam

VIDEO CAMERAS 735

APP C_McComb  8/21/00  3:35 PM  Page 735



Laser and Optical Components
Ultrasonic Imaging Project
http://business.netcom.co.uk/iceni/usi_project/

Interfacing Polaroid Sonar Board
www.cs.umd.edu/users/musliner/sonar/

LEGO Mindstorms Sources on the Web
LEGO Mindstorms home page
http://www.legomindstorms.com/

LEGO Mindstorms Internals
http://www.crynwr.com/lego-robotics/

RCX Software Developer’s Kit (from LEGO)
http://www.legomindstorms.com/sdk/index.html

RCX Internals
http://graphics.stanford.edu/~kekoa/rcx/

RCX Tools
http://graphics.stanford.edu/~kekoa/rcx/tools.html

Scout Internals (from LEGO)
http://www.legomindstorms.com/products/rds/hackers.asp

LEGO Dacta (educational arm of LEGO)
http://www.lego.com/dacta/

Pitsco (educational second sourcing for LEGO)
http://www.pitsco-legodacta.com/

LUGNET Newsgroups (technical LEGO discussion boards; robotics group is largest)
http://www.lugnet.com/

NQC (Not Quite C); (popular alternative programming environment for RCX)
http://www.enteract.com/~dbaum/nqc/

Gordon’s Brick Programmer
http://www.umbra.demon.co.uk/gbp.html

LEGO on My Mind
http://homepages.svc.fcj.hvu.nl/brok//LEGOmind/

Mindstorms Add-Ons
http://www-control.eng.cam.ac.uk/sc10003/addon.html

MindStorms RCX Sensor Input
http://www.plazaearth.com/usr/gasperi/lego.htm
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Servo and Stepper Motor Information
R/C Servo Fundamentals
http://www.seattlerobotics.org/guide/servos.html

Modifying R/C Servos to Full Rotation
http://www.seattlerobotics.org/guide/servohack.html

Definitive Guide to Stepper Motors
http://www.cs.uiowa.edu/~jones/step/index.html

Servo-Motor 101
http://www.repairfaq.org/filipg/RC/F_Servo101.html

Dual Axis Stepper Motor Controller
http://members.aol.com/drowesmi/dastep.html

Using the Allegro 5804 Stepping Motor Controller/Translator
http://www.phanderson.com/printer/5804.html

SERVO AND STEPPER MOTOR INFORMATION 737
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Most integrated circuits can be connected directly to one another, with no additional
components. However, you should make some special design provisions when mixing
CMOS and TTL logic families and when interfacing to or from mechanical switches, light-
emitting diodes (LEDs), opto-isolators, relays, comparator ICs, and operational amplifiers
(op amps). Refer to the following figures for more information on interfacing these com-
ponents.

TTL to CMOS Level Translation

CMOS to TTL Level Translation

Op-Amp to CMOS and TTL Interfacing

Opt-Isolator Circuits

LED Drivers

CMOS and TTL to Relay and LED Drivers

APPENDIXD
INTERFACING LOGIC FAMILIES 

AND ICS

738

App D_McComb  8/29/00  8:44 AM  Page 738

Copyright 2001 The McGraw-Hill Companies, Inc.   Click Here for Terms of Use.



TTL to CMOS Level Translation

TTL TO CMOS LEVEL TRANSLATION 739

Output

+5vdc

Input

2.2K

TTL to CMOS (Same Supply Voltage)

TTL to CMOS (Different Supply Voltage)

Output

+5vdc

Input
1K

10K

2N2222 e

b
c

CMOS
(Any Gate)

CMOS
(Any Gate)

TTL
(Any Gate)

TTL
(Any Gate)

+12vdc
(or higher than TTL supply)

FIGURE GROUP D.1. TTL to CMOS level translation.
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CMOS to TTL Level Translation

740 INTERFACING LOGIC FAMILIES AND ICS

Output

+5vdc

Input

1K

CMOS to TTL (Same Supply Voltage)

CMOS to TTL (Different Supply

Output

+5vdc

Input
1K

10K

2N2222 e

b c

CMOS
(Any Gate)

TTL
(Any Gate)

+12vdc
(or higher than TTL supply)

CMOS
(Any Gate)

TTL
(Any Gate)

FIGURE GROUP D.2. CMOS to TTL level translation.
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Op Amp to CMOS and TTL Interfacing

OP AMP TO CMOS AND TTL INTERFACING 741

Output

Input

10K

Op-Amp/Comparator to CMOS -- Vone = Vtwo

Vone Vtwo

Output
Input

10K

Op-Amp/Comparator to CMOS -- Vone <> Vtwo

Vone Vtwo

1N914

1N914

10K pullup
(as needed)

CMOS
(Any Gate)

Op-Amp or Comparator

Op-Amp or Comparator
CMOS

(Any Gate)

10K pullup
(as needed)

FIGURE GROUP D.3. Op-amp—AMP to CMOS and TTL interfacing.
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Opto-Isolator Circuits

742 INTERFACING LOGIC FAMILIES AND ICS

Signal In

Signal Out

1K 4.7

+5vdc +12vdc

Level Shifer -- 5VDC to
Non-Inverted

Signal In Signal Out

1K

4.7K

+5vdc +12vdc

Level Shifer -- 5VDC to
Inverted

+V

R1*
Output

Input

Supply voltage

5
6
9

12

R1
68Ω
100Ω
150Ω
220Ω

Value of R1

CMOS NAND Gate

CMOS NAND Gate

10K

Basic CMOS
Opto-Isolator

FIGURE GROUP D.4. Opto-isolator interfacing.
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LED Drivers

LED DRIVERS 743

TTL or CMOS
(Any Gate)

Output

V+

R1

LED1

TTL & CMOS to LED

Output

V+

R1

LED1

LED turns on
when output is high

TTL & CMOS to LED

+5vdc +12vdc

10mA

20mA

30mA

1K

560Ω

330Ω

Value of R1

330Ω

180Ω

110Ω

Note: 30mA current may destroy some LEDs

TTL or CMOS
(Any Gate)

LED turns on
when output is low

FIGURE GROUP D.5. LED drivers.
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CMOS and TTL to Relay and LED
Drivers

744 INTERFACING LOGIC FAMILIES AND ICS

TTL & CMOS to Relay

+5vdc

Output

RL1

1N4001

2N2222
e

b
c

1K

TTL or CMOS
(Any Gate)

FIGURE GROUP D.6. CMOS and TTL to RELAY and LED
drivers.
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Drill Bit and Bolt Sizing

APPENDIXE
REFERENCE

745

FIGURE E.1
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555 Circuit Reference

746 REFERENCE

6

2

1

7

8

5

4

3

C1

+

R2

R1

100

10

1

0.1

0.01

0.001

.1 Hz 1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz
Frequency

10M 1M 100K 10K 1KOutputIC1
555

C2
0.1

C1
µF

R1 + R2 values

V+ (5-15vdc)

6

2

1

7

8

5

4

3

C1
+

R1

100

10

1

0.1

0.01

0.001

.10uS 100uS 1mS 10mS 100mS 1 Sec 10 Sec
Time delay

R1 value

10M1M100K10K1K

Output

Reset

Trigger

V+ (5-15vdc)

C2
0.1µF

bypass

IC1
555

C1
µF

FIGURE E.2
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567 Tone Decoder

WIRE GAUGE 747

3

1

2

8
OUTPUT

INPUT

+5

5

6

7
GND

V+

4

Decoded
output

Signal
In

fo=
1

1.1R1C1

Bandwidth=1070
Vin

foC2

C3
0.22

567
IC1

2.2K
R2

(load)

+

C4
1.0

10K
R3

C5
0.02

in % of fo

Components selected
for approx. 1kHz
response

C2
0.0047

C1
0.022

R1
50K

Adjust for
best response

FIGURE E.3
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Wire Guage

TABLE E.1 SINGLE CONDUCTOR

CONDUCTOR SIZE MAX. CURRENT CARRYING CAPACITY

30 AWG 2

22 AWG 8

20 AWG 10

18 AWG 15

16 AWG 19

14 AWG 27

12 AWG 36

Source: Alpha Wire Company

748 REFERENCE
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INDEX

accelerometers, 682–694
Analog Devices chips and, 

683–692
dual-axis circuit, 688–692
explanation of, 682
home-built, 692–694
single-axis circuit, 684

advanced locomotion stepper 
systems, 357–369

steering wheel systems, 359
track driven, 357–359
Tri-Star wheels for, 362
six-wheeled cart for, 360–362
shape memory alloys (SMA) 

for, 364–369
alkaline batteries, 190
amp-hour current, 194
analog-to-digital converter (ADC), 

433, 447–450
androids, 13–15
appendage, 371–376
autonomous robot, 12

Basic Stamp microcontroller:
developer’s kit and, 483
enhancement products for, 497
general information about, 

481–498

Basic Stamp microcontroller 
(Cont.):

interfacing with, 492–497
PBasic language and, 486–492
pin layout and, 485

BasicX microcontroller:
controlling servo motors with, 

511–513
functions for robotics and, 

507–509
general information about, 

501–514
interfacing with, 513
pin layout and, 503
programming with, 504–506
sample program for, 509–511

batteries:
increasing ratings for, 197
monitors for, 207–210
recharging, 197
types of, 190–192
understanding ratings for, 

193–197
voltage doubling and inverting 

circuits for, 206
behavior-based robotics, 

698–702
breadboard, 36, 65–67

Buggybot:
battery holder for, 129
framework for, 127
motor and mount for, 128
parts list for, 126
wiring diagram for, 130

building block approach, 4
building robots:

basic skills needed for, 4–7
buying kits for, 7
programming for, 79–97

bumper switches, 561

camber, 219
casters, 226
capacitors, description of, 56–59
Capek, Karel, 23
cartesian coordinate arms, 373
chain (see roller chain)
circuit boards, 69
collision avoidance and detection, 

569–599, 581–599
compass navigation, 631
computers:

Basic Stamp microcontroller, 
481–498

BasicX microcontroller, 
501–514

749
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computers (Cont.):
inputs and outputs with, 

432–434
microcontrollers for, 424–428
OOPic microcontroller, 

571–533
personal computers for, 

429–432
PIC microcontrollers for, 425
single board, 428
using discrete components for, 

422
conductive foam pressure sensor, 

560
continuous DC motor, 236, 

253–277
cylindrical coordinate arms, 373

data output, 437
DC motors:

direction control of, 255–265
microprocessor control of, 268
motor bridge control of, 

262–265
motor speed control in, 265–268
odometry with, 270–276, 

628–631
power MOSFET for, 262
relay control in, 255
torque in, 240–242
transisitor control of, 

257–262
travel speed of, 231
versus other motor types, 

235–237
differential steering, 228
digital-to-analog converter (DAC), 

433, 451
diodes, description of, 59
discharge curve of batteries, 196

EEPROM, 427
electronic components:

capacitors, fixed and variable, 
56–59

descriptions of, 55–63
diodes, 59
integrated circuits, 61
resistors, fixed and variable, 55
schematic diagrams for, 61
transistors, 60

electronics:
common components used in, 

55–62
construction techniques used 

with, 65–77
endoskeleton and exoskeleton 

supports, 13
Erector Set robots, 134
extruded aluminum for 

construction, 39, 123

fiber optic touch system, 589–595
fingers in robotic grippers, 20, 

403–417
fire detection systems, 649–660
firefighting, 658–660
flame detectors, 649–652
flexible finger grippers, 414
frame design of robots, 12–17
frequency meter, 36
Furby, 142
fuse protection, 200

gears and gear reduction, 
242–248

GPS (global positioning satellite), 
649

grippers:
construction from toys, 406
discussion of, 403–417
parts list for clapper, 403
parts list for two-pincher, 406
parts list for worm-driven, 410
wrist rotation for, 415

hardware supplies, 38
Harvard microcontroller 

architecture, 425
heat sensors, 656–658
horizontal center of balance, 220
hydraulic power source, 18

I2C network, 432
infrared beacon navigation, 641
infrared distance navigation, 

637–641
infrared fire detection, 650
infrared light collision avoidance 

systems, 573
infrared pushbutton remote 

control, 543–550
infrared line following systems, 

621–625
inputs and outputs of computers, 

432–434
integrated circuits (ICs), 

description of, 61
integrating logic families and ICs:
interfacing:

analog inputs and, 445
architectures and, 438, 451
inputs and, 440–444
motors and, 437
outputs and, 439
programming of, 453–458
sensors and, 435–437

interrupts, hardware and 
software, 433

I/O (see interfacing)

landmark navigation:
infrared beacon, 641

landmark navigation (Cont.):
radio frequency identification 

and, 642
recongnition and, 643–645
review of, 641

lead acid batteries, 192
LEDs:
LEGO:

custom robots with, 147–158
building the Pepbot from, 

151–158
Mindstorms Robotics Invention

System, 161–172
using parts from, 136, 148
working with, 147–149

legs:
limitations of:
robots with:

lenses and filters, 611–613
light sensitive sensors:

differences between:
photocells used as:
phototransistors and 

photodiodes used as:
line tracing navigation, 621–625
locomotion:

caster arrangements for, 226
design principles of, 217–233
motor drives for, 224
weight and, 217–220
wheels, legs, and tracks for, 223

logic probe, 32
logic pulser, 33

magnetic pickup:
metal:

platforms of, 123–131
selecting and working with, 

123–126
microphone sound sensors, 

672–678
Microwire interface, 432
Minibot, 110–113
miter gears:
motors:

AC vs. DC, 235
continuous vs. stepping, 236
mounting, 249–251
selection of, 235–252
servo, 237
shaft construction of, 251
specifications for, 238–242
using gears and pulleys with, 

242–248
multiple switch contact collision 

avoidance, 584–586
multiple-cell light sensors:

BasixX microcontroller and, 507
multitasking:

explained, 706
OOPic microcontroller and, 519

750 INDEX
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navigation:
nickel-cadmium batteries, 191, 199
nickle metal hydride batteries, 192
Nitinol (see shape memory alloy)
Not Quite C (NQC) for LEGO 

Mindstorms:
basic programming example of, 

179–183
downloading programs with, 

183
introduction to, 178
multitasking programs with, 

184–186
programming constants used 

with, 181

odometry, 270–276
distance counters in, 271
errors common in, 630
explanation of, 270
magnetic encoders and, 629
navigation and, 628–631
quadrature shaft encoding in, 

274
shaft encoders for, 270, 

273–275, 629
on-board computers (see

computers)
OOPic microcontroller:

controlling servo motors with, 
524–531

controlling stepper motors with, 
531–533

functions for robotics and, 522-
general information about, 

517–533
interfacing with object-oriented

programming and, 520
sample program for, 525

optical sensor, 558

parts acquisition, 44–52
retail stores for, 44–47
speciality outlets for, 48
surplus outlets for, 49

Pepbot, 151–158
LEGO parts and construction 

for, 151–154
microcontroller for, 153
programming for, 156–158

PIC microcontroller, 425
piezoelectric touch sensor, 

562–567, 595–598
PIR (passive infrared)

fire sensing and, 652
hacking PIR module and, 577
introduction to, 574–577
focusing lenses and, 578

plastic:
robots made from, 101–113
selecting  and buying, 109

plastic (Cont.):
types of, 102
working with, 109

pneumatic power source, 18
polar coordinate arms, 373, 

389–402
base construction for, 389
elbow mechanism for, 

394–396
forearm for, 397–402
parts list for, 391
shoulder rotation mechanism 

for, 390–394
polarity inverter, 208
Polaroid ultrasonic sensors, 

633–637
ports (see interfacing)
power distribution, 200–203
power MOSFET for DC motors, 

262
power supply, 210
power systems, 17
pressure angle of gears, 249
pressure sensors, 559–562
Princeton microcontroller 

architecture, 425
printer port computer control:

bit position weights in, 463
controlling a robot and, 

469–473
experimenter’s interface with, 

464–480
general interfacing with, 

432–458
inputting data for, 475-
more than eight devices with, 

473–475
parallel port addresses and 

pin functions of, 
460–464

PC input/output map for, 461
programming example of, 

478
priority encoder, 585
proximity sensors, 569–599
programming:

common command statements 
used in, 89

data types used in, 85, 91
high-level vs. embedded, 425
important concepts of, 79–85
PC parallel port, 478
ports and interfaces, 453–458, 

478
relational operators used in, 

93–95
routines used in, 80–82
variables and expressions 

used in, 82, 89, 92–97
pulleys, 248
pullup resistor, 434

quad comparator IC (LM339), 445
quadrature shaft encoding, 

274, 387

rack gears, 247
radio-controlled modules, 551
radio frequency identification 

(RFID), 642
remote control:

Atari joystick and, 535-
infrared systems for, 543–550
joystick teaching pendant and, 

536–543
radio frequency circuits for, 551
types of, 535–552

regulated power supplies, 
203–206

relay control, DC motors, 255
resistors, description of, 255
revolute coordinate arm, 372, 

377–387
design overview of, 377
elbow and forearm for, 379
parts list for, 379
refinements and position 

control in, 380–383
shoulder joint and upper 

arm of, 378
position control for, 383–387

robot anatomy, 13
materials for, 13–15, 38–40

robot construction:
electronic, 65–77
setting up shop for, 44
tools and supplies for, 25–44

robot design:
arms and hands, 20, 371–376
autonomous vs. teleoperated, 12
good electronic principles for, 

72
failure-mode and, 703–705
locomotion systems, 18–20
mobile vs. stationary of, 10
practical applications and, 

696–698
sensory systems, 21
tethered vs. self-contained, 10

robotic eyes:
discussion of, 601–618
laser light and, 614
lenses and filters for use with, 

611–613
simple light sensors and, 601
single- and multiple-cell and, 

603–605
static RAM chips and, 605–611
video vision and, 613

Robotics Invention System 
(LEGO):

advanced programming of, 
173–186
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Robotics Invention System 
(LEGO) (Cont.):

alternative motors and outputs 
with, 170

downloading programs to, 167
overview of, 161–12
RCX, design of, 162
programming in Not Quite C 

for, 178–186
programming in Visual 

Visual for, 173–178
sensors used with, 165, 168

Robotix, 135
roller chain, 248
Rossum’s Universal Robots, 23
rotary solenoid, 417
rotational speed, calculating, 231
Roverbot, 321–333

base for, 322
batteries for, 327
motors for, 323
parts list for, 323
riser frame for, 329
support casters for, 325

running torque of motors:
explained, 240–242
increasing use of gears, 244

schematic diagrams of electronic 
components, 61

self-contained robot:
servo motor:

controlling of, 304–308
description of, 296
modification for continuous 

rotation of, 308–313
mounting of, 315
pulse width modulation with, 

296–298
rotational limits of, 299
types of, 300
wiring and connectors for, 302
working with, 295–317

sensors:
description of, 21

shaft encoder, 270
shape memory alloy:

activation techniques in 
arms/grippers, 374

biasing, 367
introduction to, 364–366
mechanisms with, 368
using, 366–368

Sharp infrared sensors, 637–641
six-legged walking robot, 335–355

batteries for, 351
frame for, 336
legs for, 337–345

six-legged walking robot (Cont.):
motors and motor mounting 

for, 345–351
parts list for, 336, 340
testing and alignment of, 353

six-wheeled robot cart, 360
smoke detector sensors, 653–656
soft touch contact, 586–599
soldering:

safety precautions for, 77
technique of, 76
tools and equipment for, 74

sound amplifier, 666–668
sound, recorded, 662, 664
sound, sensors, 672–678
speech recognition, 668
speech synthesis, 670–672
SPI, serial peripheral interface, 432
spirit.ocx programming file, 174
static electricity (ESD), 70–72
status address, in PC parallel 

port, 000
steering methods, 228–231
step angle, 000
stepper motors:

building and testing with, 
279–294

buying and testing, 289–294
controller chip for, 284
controlling schemes for, 

284–294
design considerations of, 

280–284
logic gates to control, 285–289
pulse rate and speed, 262
step angle of, 281
translators and enhancements 

for, 285
voltage and current rating of, 

283
wave step vs. full phasing, 280
wiring diagram for, 292

strain gauge touch sensor, 561
surplus parts for robots, 49, 51
switch debounce, 434

teleoperated robotics, 12
tilt sensor, 680–682
tone decoding sound detection, 

674
tone generator, 677
tools and supplies, 25–44

basic construction, 26–27
electronic components and 

supplies, 40–44
electronic tools, 28–37
soldering, 74–77

torque, 240

touch/tactile sensors:
mechanical pressure and, 

559–562
mechanical switches and, 558
optical sensors and, 558
piezoelectric and, 561–567

toy car, building robots from, 
143

toy conversion, 133–145
track-driven robots, 357
transistors, description of, 60
Tri-Star wheel locomotion, 362

ultrasonic sensors:
distance measurement circuits 

for, 633–637
proximity detection and, 579

vertical center of gravity, 221
Visual Basic:

LEGO programming in, 
173–178

voice recognition, 668
voice synthesis, 670
volt-ohmeter, 29–32

safety and use of, 31
understanding functions of, 31

voltage doublers and inverters, 
206

voltage regulation, 203–206
voltage tap-offs in battery packs, 

202

wall following, 625–628
warbling siren alarm, 665
wheels, 223
whisker collision avoidance 

system, 583
wire-wrapping, construction 

techniques for, 67–69
tools and supplies for, 37, 67

wireless joystick, control of 
robots with:

wood:
building robots from, 115–122
robotic platforms with, 118–122
selecting and working with, 

115–118
work envelope, 372
worm gears, 247
wrist rotation, 416

Yak Bak toy modification, 663

zener diode:
battery monitor with, 208
voltage regulation with, 205

zinc batteries, 190
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