
Squeak

Learn Programming with Robots

STÉPHANE DUCASSE



Squeak: Learn Programming with Robots

Copyright © 2005 by Stéphane Ducasse

Lead Editor: Jonathan Hassell
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, 

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Assistant Publisher: Grace Wong
Project Manager: Kylie Johnston
Copy Manager: Nicole LeClerc
Copy Editor: David Kramer
Production Manager: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Diana Van Winkle, Van Winkle Design Group
Proofreader: Elizabeth Berry
Indexer: Valerie Perry
Artist: Diana Van Winkle, Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data

Ducasse, Stéphane.
Squeak : learn programming with robots / Stéphane Ducasse.

p. cm.
ISBN 1-59059-491-6
1. Robots--Programming. I. Title.

TJ211.45.D83 2005
629.8'925117--dc22

2005013248

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher. 

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark. 

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street, 
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, 
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Downloads section. 



iv

Contents at a Glance

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

About the Author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

PART 1 ■ ■ ■  Getting Started 
■CHAPTER 1 Installation and Creating a Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

■CHAPTER 2 A First Script and Its Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

■CHAPTER 3 Of Robots and Men . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

■CHAPTER 4 Directions and Angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

■CHAPTER 5 Pica’s Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

■CHAPTER 6 Fun with Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

PART 2 ■ ■ ■  Elementary Programming Concepts 
■CHAPTER 7 Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

■CHAPTER 8 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

■CHAPTER 9 Digging Deeper into Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

■CHAPTER 10 Loops and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

■CHAPTER 11 Composing Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

PART 3 ■ ■ ■  Bringing Abstraction into Play 
■CHAPTER 12 Methods: Named Message Sequences . . . . . . . . . . . . . . . . . . . . . . . . 135

■CHAPTER 13 Combining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

■CHAPTER 14 Parameters and Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

■CHAPTER 15 Errors and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

■CHAPTER 16 Decomposing to Recompose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

■CHAPTER 17 Strings, and Tools for Understanding Programs . . . . . . . . . . . . . . . . 197



CONTENTS AT A GLANCE v

PART 4 ■ ■ ■  Conditionals
■CHAPTER 18 Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

■CHAPTER 19 Conditional Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

■CHAPTER 20 Boolean and Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

■CHAPTER 21 Coordinates, Points, and Absolute Moves . . . . . . . . . . . . . . . . . . . . . . 243

■CHAPTER 22 Advanced Robot Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

■CHAPTER 23 Simulating Animal Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

PART 5 ■ ■ ■  Other Squeak Worlds 
■CHAPTER 24 A Tour of eToy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

■CHAPTER 25 A Tour of Alice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



Contents

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

About the Author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

PART 1 ■ ■ ■  Getting Started 

■CHAPTER 1 Installation and Creating a Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Installing the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Installation on a Macintosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Installation under Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Opening the Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Tips for Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

First Interactions with a Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Sending Messages to a Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Creating a New Robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Quitting and Saving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Installation Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

■CHAPTER 2 A First Script and Its Implications . . . . . . . . . . . . . . . . . . . . . . . . . 13

Using a Cascade to Send Multiple Messages. . . . . . . . . . . . . . . . . . . . . . . . 14

A First Script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Squeak and Smalltalk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Smalltalk and Squeak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Programs, Expressions, and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Typing and Executing Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

The Anatomy of a Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

About Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Expressions, Messages, and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

Message Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
vii



Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Cascade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Creating New Robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Errors in Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Misspelling a Message Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Misspelling a Variable Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Unused Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Uppercase or Lowercase? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Forgetting a Period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Words That Change Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

■CHAPTER 3 Of Robots and Men. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Creating Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Drawing Line Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Changing Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The ABC of Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Controlling Robot Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

■CHAPTER 4 Directions and Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Right or Left? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Directional Convention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Absolute Versus Relative Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

The Right Angle of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Robot Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Simple Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Regular Polygons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

■CHAPTER 5 Pica’s Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

The Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Obtaining a Bot Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Interacting with Squeak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Using the Bot Workspace to Save a Script . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Loading a Script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Capturing a Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Message Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

■CONTENTSviii



Executing a Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Two Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

■CHAPTER 6 Fun with Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Robot Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Pen Size and Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

More about Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Changing a Robot’s Shape and Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Drawing Your Own Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Saving and Restoring Graphics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The “Save Graphics” Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Retooling the Robot Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Graphics Operations Using Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

PART 2 ■ ■ ■  Elementary Programming Concepts
■CHAPTER 7 Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Star Is Born . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Loops to the Rescue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Loops at Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Code Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Drawing Regular Geometric Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Rediscovering the Pyramids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Further Experiments with Loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

■CHAPTER 8 Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Brought to You by the Letter A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Variations on the Theme of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Variables to the Rescue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Declaring a Variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Assigning a Value to a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Referring to Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

And What About Pica? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

■CONTENTS ix



Using Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

The Power of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Expressing Relationships Between Variables . . . . . . . . . . . . . . . . . . . 93

Experimenting with Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

The Pyramids Rediscovered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Automated Polygons Using Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Regular Polygons with Fixed Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

■CHAPTER 9 Digging Deeper into Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Naming Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Variables as Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Assignment: The Right and Left Parts of := . . . . . . . . . . . . . . . . . . . . . . . . 103

Analyzing Some Simple Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

■CHAPTER 10 Loops and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Bizarre Staircase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Practice with Loops and Variables: Mazes, Spirals, and More. . . . . . . . . 113

Some Important Points for Using Variables and Loops . . . . . . . . . . . . . . . 115

Variable Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Using and Changing the Value of a Variable . . . . . . . . . . . . . . . . . . . 116

Advanced Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

■CHAPTER 11 Composing Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

The Three Types of Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Identifying Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

The Three Types of Messages in Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Unary Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Binary Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Keyword-Based Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Order of Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Rule 1: Unary > Binary > Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Rule 2: Parentheses First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Rule 3: From Left to Right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

■CONTENTSx



PART 3 ■ ■ ■  Bringing Abstraction into Play

■CHAPTER 12 Methods: Named Message Sequences . . . . . . . . . . . . . . . . . . . 135

Scripts versus Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

How Do We Define a Method?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Class Bot Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Creating a New Method Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Defining Your First Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

What’s in a Method? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Scripts versus Methods: An Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 143

Returning a Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Drawing Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

■CHAPTER 13 Combining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Nothing Really New: The Square Method Revisited. . . . . . . . . . . . . . . . . . 150

Other Graphical Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

What Do These Experiments Tell You? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Squares Everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

■CHAPTER 14 Parameters and Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

What Is a Parameter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Method for Drawing Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Practice with Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Variables in Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Experimenting with Multiple Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Parameters and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Arguments and Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

About Method Execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

■CHAPTER 15 Errors and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

The Default Value of a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Looking at Message Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A First Look at the Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

■CONTENTS xi



Stepping through the Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Fixing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

■CHAPTER 16 Decomposing to Recompose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Mazes and Spirals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Centered Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Spirals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Golden Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A One-Line-per-Rectangle Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

■CHAPTER 17 Strings, and Tools for Understanding Programs . . . . . . . . . 197

Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Communicating with the User. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Strings and Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Strings and Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Using the Transcript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Generating and Understanding a Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

PART 4 ■ ■ ■  Conditionals

■CHAPTER 18 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A Robot’s True Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Adding a Trace to See What Is Going On . . . . . . . . . . . . . . . . . . . . . . 211

The Value Returned by a Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Conditional Expressions with Only One Branch . . . . . . . . . . . . . . . . . . . . . 213

Choose the Right Conditional Method . . . . . . . . . . . . . . . . . . . . . . . . 214

Nesting Conditional Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Robot Coloring with Three Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Learning from Your Mistakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Interpreting a Tiny Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Further Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

■CONTENTSxii



■CHAPTER 19 Conditional Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Conditional Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Experiences with Traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Stopping an Infinite Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Deeper into Conditional Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A Simple Interactive Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

When to Use Square Brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

■CHAPTER 20 Boolean and Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . 233

Boolean Values and Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Boolean Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Combining Basic Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Negation (not) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Conjunction (and) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Alternation (or) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

All of the Above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Some Smalltalk Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Missing Parentheses (a Frequent Mistake) . . . . . . . . . . . . . . . . . . . . . . . . . 238

A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Using the Debugger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Understanding the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Similar Problems and Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

■CHAPTER 21 Coordinates, Points, and Absolute Moves . . . . . . . . . . . . . . . . 243

Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Using Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A Source of Errors with Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Decomposing 50@60 + 200@400. . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Decomposing (50@60) + (200@400) . . . . . . . . . . . . . . . . . . . . . . . . 248

Absolute Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Relative versus Absolute Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Some Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Translating Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Flying Geese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

■CONTENTS xiii



Absolute Moves at Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Loops and Translations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Further Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

■CHAPTER 22 Advanced Robot Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Obtaining a Robot’s Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Pointing in a Direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Distance from a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Back in the Center of the Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Location If It Moved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

In a Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Heading toward a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Center versus Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

■CHAPTER 23 Simulating Animal Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Wandering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Separating Influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Studying the Influence of the Length . . . . . . . . . . . . . . . . . . . . . . . . . 272

Studying the Influence of the Side to Which the Animal Turns. . . . 273

Trapped in a Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Following Borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Flying to the Opposite Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Random Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Introducing an Exit in the Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Staying in a Healthy Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Further Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Finding Food. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Comparing Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Taking One’s Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Simulating Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

■CONTENTSxiv



PART 5 ■ ■ ■  Other Squeak Worlds 

■CHAPTER 24 A Tour of eToy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Steering an Airplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Step 1: Drawing an Airplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Step 2: Playing with the Halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Step 3: Dragging and Dropping a Method to Create New Scripts . . 295

Step 4: Adding Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Joysticks in Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Step 1: Creating a Joystick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Step 2: Experimenting with a Joystick . . . . . . . . . . . . . . . . . . . . . . . . 298

Step 3: Linking the Joystick and the Script. . . . . . . . . . . . . . . . . . . . 298

Creating an Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Step 1: Creating the Holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Step 2: Drawing Animation Elements . . . . . . . . . . . . . . . . . . . . . . . . . 300

Step 3: Dropping the Pictures into the Holder. . . . . . . . . . . . . . . . . . 301

Step 4: Creating a Simple Sketch Recipient of the Animation . . . . 301

Step 5: Creating a Script with lookLike . . . . . . . . . . . . . . . . . . . . . . . 302

Step 6: Displaying the Selected Animation Element . . . . . . . . . . . . 302

Step 7: Changing the Currently Selected Element of a Holder. . . . 303

Another Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Cars and Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Step 1: Draw a Car and a Steering Wheel . . . . . . . . . . . . . . . . . . . . . 305

Step 2: Turning the Car in a Circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Step 3: Using the Wheel’s Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Step 1: Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Step 2: The Road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Step 3: Conditions and Tests in eToy . . . . . . . . . . . . . . . . . . . . . . . . . 309

Step 4: Customizing Color-Based Tests . . . . . . . . . . . . . . . . . . . . . . . 310

Step 5: Adding Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Some Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Running Several Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Creating a Tile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

■CONTENTS xv



■CHAPTER 25 A Tour of Alice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Getting Started with Alice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Interacting Directly with Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Analyzing a First Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Moving, Turning, and Rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Actor Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Other Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Getting Bigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Quantified Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Standing Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Absolute Moves and Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Pointing At . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Relative Placement of Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Time-Related Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Your Own Wonderland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Multiple Cameras and Other Special Effects . . . . . . . . . . . . . . . . . . . . . . . 330

Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Introducing User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Hidden Aspects of Alice and Pooh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Mapping 2D Morphs to 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Pooh: Generating 3D Forms from 2D . . . . . . . . . . . . . . . . . . . . . . . . . 335

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

■CONTENTSxvi



Foreword

By Alan Kay
President, Viewpoints Research Institute, Inc. & Sr. Fellow, 
The Hewlett-Packard Company

The Future of Programming 
As Seen from the 1960s
I started graduate school (at the University of Utah ARPA Project) in November 1966, and it is
interesting to look back on the world of programming as I surveyed it at that time.

The amazing Jean Sammit (who was an inventor of programming languages and their
first historian, as well as being the first woman president of the ACM) was able to count about
3,000 programming languages that were extant by the late 1960s. Much was going on, and
some of it was of great import and interest. 

Algol 60, as Tony Hoare pointed out, “was a great improvement, especially on its succes-
sors!” It had many surface virtues, including a stronger feeling for contexts and environments
for meaning in a programming language, and one remarkable feature for its day—call by
name—which allowed its programmers a range of expression very similar to the language
designers themselves. For example, one could write procedures that would have the same
meanings and actions as the control statements in the language:

for (i, 1, 10, print(a[i])

where the first and fourth parameters would be marked name and thus bundled into an expres-
sion that correctly remembered the hierarchical namespace context of its variables, but could
be manipulated and executed from inside the body of the for procedure. Not even the original
LISP did this correctly at first!

And there was a little-known syntactic variant in the Algol 60 official syntax that encour-
aged a more readable form for made-up procedures. This allowed a comma in a procedure
call to be replaced by the following construct:

): <some comment> (

and this would allow the preceding call to be written as follows:

for (i): from (1): to (10): do ( print( a[i] ))

Do this with a nice display or IBM Executive typewriter made into a terminal (as JOSS
had), and you would get

for (i): from (1): to (10): do ( print( a[i] ))

which looks a lot like the Algol base language but done as a meta-extension by the programmer
for the benefit of other programmers. xvii



Perhaps the single most profound set of language ideas and representations happened
earlier than Algol, but took much longer for most computer people to understand (and many
never did), in part because of the different and difficult-to-read notation (for outsiders at
least), and because many of LISP’s greatest contributions were “really meta.” One of the great
contributions of LISP was its evaluator written in itself in a half page of code. This was a kind
of “Maxwell’s Equations” for programming, and it allowed many things to be thought about
that were essentially unthinkable in more normal approaches. 

LISP itself was driven into existence to be the programming system for an interactive
commonsense agent—The Advice Taker—that could take the wishes of a human user given in
normal vernacular and turn them into computer processes that would carry out those wishes.
Some very interesting intermediate languages, such as FLIP, and attempts at doing some of
the Advice Taker properties, such as PILOT, were created in the mid 1960s.

Sketchpad was perhaps the most radical of the early systems because it tried to leap all
the way to a reasonable interactive framework for people who wanted to use the computer for
what it was best suited: interactive simulations of all kinds. The three cosmic contributions of
Sketchpad were 

• The first usable approach to interactive computer graphics

• A real object structure for all of its entities

• A nonprocedural way to program in terms of the desired end results, where the system
could employ various automatic problem-solving processes to come up with the
desired results

This was helped tremendously by a “tolerance approach” to solving constraints, which instead
of trying for perfect logic/symbolic solutions of the sets of constraints instead tried to solve
the constraints within global tolerances. This approach allowed many important problems to
be dealt with that are still difficult or intractable symbolically today.

JOSS was a very different cup of tea: it did “almost nothing” (basically numerical calcula-
tions using numbers and array structures), but what it did do was done perfectly and in the
form of what is still one of the great user interface designs in history.

A Programming Language was the name of a book by Kenneth Iverson that took a highly
mathematical approach to programming via functions and metafunctions expressed as a kind
of algebra. In those days the language was called “Iverson.” An actual system in which you
could program a computer was still just an IBM rumor at the time, but many paper programs
were written using these ideas. The best thing about Iverson was that it really paid off if you
thought of it as mathematical transforms and relationships, and didn’t worry about how many
operations would be required. Not worrying about number of operations was almost unthink-
able in those days of 1 MHz clocks on multimillion-dollar building-sized computers, so
Iverson and LISP were both very liberating vehicles for thinking ahead to the future, when
machines would be smaller physically, and larger and faster logically.

The Simula designers wanted to model large, complex dynamic structures and realized
that Algol blocks would do the job if you could cut them loose from Algol’s hierarchical control
structure. In the creation of Simula I in the mid 1960s, they were able to see that their ideas
had great relevance to the language and its programming, and when they did Simula 67 they
could replace many formerly built-in data types, such as string, with a Simula 67 class.

■FOREWORDxviii



The idea of extending the syntax, semantics, and pragmatics of programming languages
constituted an entire genre of investigation in the mid-to-late 1960s. One of the reasons for
this is that it had become abundantly clear that programming was going to be difficult to
scale, and that scalability in most dimensions was going to be critical to the health of comput-
ing. Where complexity is a central issue, architecture dominates materials. This realization
started to make programming appear as something different from math, and it started to
reveal itself as a new form of engineering. There were calls for the formation of a discipline to
be called “software engineering” and to have a conference to try to figure out what this might
mean (how to cope if you can’t just do math?).

ARPA Information Processing Techniques Office (IPTO) was in full swing by the time I went
to graduate school in 1966, and it had already made some great starts toward its collective dream
of having interactive computing for everyone pervasively connected via an “intergalactic net-
work.” Just how to create this network (which had huge scaling requirements) generated some of
the best systems thinking of the time, and was an important part of my own thinking about the
future of programming. 

The ARPA funders were wise and did not turn the vision of their dream into funding goals,
but instead tried to find and fund talents that had their own ideas about what the dream meant
and how it could be done. This resulted in about 17 sites in universities and companies, most of
which had come up with very interesting and different designs and demos. This constituted a
community of both “agreement and argument” that made everyone in it much smarter than
they were before they joined the great dream.

Of course, given Jean Sammit’s 3,000 languages, there is much I haven’t mentioned, and
much interesting design that happened from 1967 to the end of the decade that has to be omit-
ted here. To pick just five developments of particular relevance to the readers of this book, I
would choose the conception of objects that I came up with, and how they were supposed to be
useful to end users of personal computers; Carl Hewitt’s PLANNER system, which was the most
cohesive system for doing “programming as reasoning”; Ned Irons’s IMP system, which repre-
sents perhaps the first really useful completely extensible language; and Dave Fisher’s Control
Definition Language, which illuminated extensibility in general and with respect to control
structures in particular.

My background was in mathematics and molecular biology (I worked my way through
school as a journeyman programmer) and in the arts. Circumstances forced me to try to
understand Sketchpad, Simula, and the proposed ARPA intergalactic network in my first week
in graduate school, and the reaction I had was cataclysmic. They were similar in some ways
and very different in others, but they were different species of the same genus if one took both
a biological and mathematical perspective. Biologically, they were “almost cells” crying out to
be cells. Mathematically, they were “almost algebras” crying out to be algebras. So my initial
fusion of these metaphors with computing was that you could make everything from entities
that were logical computers that could send messages (which would also have to be logical
computers). The logical computers would act the part of cells, and the protocols devised could
be very algebraic—what today is (incorrectly) called polymorphism. This would result in great
simplicity and scalability at the “materials level,” and would open the door for advancements
in simplicity and scalability at the “expression level” where the programmer lived.

Several years later I found Hewitt’s PLANNER, and realized that it was the basis of a way
to get programs to be both more meaningful and more scalable. (Many of the ideas of PLAN-
NER also turned up in the later language called Prolog.) It was pretty clear that trying to send
messages that were goal-oriented could greatly help scalability, in part because there are far

■FOREWORD xix



more ways to try to satisfy goals than goals (think of sorting as a goal versus all the ways to
sort), and this separation could have great benefits in keeping programs more meaningful 
and less about optimizations mixed in with the meanings.

Meanwhile, the extensible language IMP had appeared, and there were several clever
ideas that allowed it to be practical and not just wallow in its own meta-ness.

And, in parallel to the thesis I was working on about personal computers and object-oriented
systems for all levels of users, Dave Fisher was working on a very nice complementary set of ideas
about how to make control structures extensible via being able to add new meanings dynamically
to a LISP-style meta-interpreter.

LOGO, the first great programming language for children, was a happy combination of
JOSS and LISP, by Papert, Feurzig, Bobrow, and others at BBN. This opened up the idea of chil-
dren as very important end users of the powerful ideas of computing, and changed my idea of
computing from a tool or vehicle to a medium of expression that had a similar cosmic destiny
to that of the printing press.

These five systems and the invitation to help start up Xerox PARC were the impetus for
Smalltalk, and are most noticeable in the first versions of Smalltalk.

Looking back from today, it is striking that

• The level of expression in today’s programming is so low (really back around 1965 for
most of it), and very few programmers today program even at the level of what was pos-
sible in LISP and/or Smalltalk in the 1970s.

• Smalltalk has not changed appreciably since it was released as Smalltalk-80 in the early
1980s, even though it contains its own metasystem and is thus very easy to improve.

• Moore’s Law from 1965 turned out to be pretty much correct, and we can now build
huge HW and SW systems, yet they are very fragile because the scalable concepts
beyond simple objectness have not been added (i.e., we perhaps have cells, but no 
concept of even tissues, or how to build/grow multicelluar organisms).

• The Internet turned out to be a very successful expression of a radical approach to
architecture and scaling, yet no software/programming system is set up to allow pro-
grammers to express Internet-like systems (what would the programs for the exemplary
systems of Google and Amazon look like in such a new kind of programming system?).

What happened to progress in the last 25 years? And why is Squeak essentially just a free
Smalltalk, if we desperately need progress?

In 1995 the Internet had gotten mature enough for us to try some experiments with media
that we’d long wanted to do. And the Java (and other programming systems) of the time (and
today) missed pretty badly in being flexible, meta, and portable enough to serve as a vehicle.
Since we had done Smalltalk once before, and had written a book about how to do a complete
such system, it made some sense to take a year to make a free, controllable Smalltalk and release
it on the Internet (in fact, it took about nine months). The idea was that Squeak should not even
be the vehicle so much as the factory for a much better twenty-first-century language.

However, programming systems in which programmers can program often take on a life
of their own, and much of the Squeak open source movement and interest is in precisely a free
Smalltalk with a media system that is highly portable. I think it is safe to say that most of the
Squeak community is dedicated to making this Smalltalk more useful and accessible, and not

■FOREWORDxx



devoted to making something so much better as to render Smalltalk obsolete (a fate I would
dearly love to see happen).

So, I would like to encourage the readers of this excellent new book to not think of
Smalltalk as a bunch of features from the vendor gods that must be adhered to, but as a sys-
tem that is capable of great extension in all dimensions that will reward those who come up
with better ways to program. At PARC we changed Smalltalk every few weeks, and in a major
way every two years. Though it has hardly changed since then, please do and put those big
changes out on the Internet for all of us to learn from and enjoy!

■FOREWORD xxi



About the Author

■STÉPHANE DUCASSE obtained his Ph.D. at the University of Nice-Sophia Antipolis and his
habilitation at the University of Paris 6. He was recipient of the SNF 2002 Professeur Boursier
Award. He is now Professor at the University of Berne and the Université of Savoie.

Stéphane’s fields of interests are design of reflective systems, object-oriented languages
design, composition of software components, design and implementation of applications,
reengineering of object-oriented applications, and teaching novices. He is the main developer
of the Moose reengineering environment. He loves programming in Smalltalk and is the presi-
dent of the European Smalltalk User Group.

Stéphane has written several books in French and English: La programmation: une
approche fonctionnelle et recursive en Scheme (Eyrolles 96), Squeak (Eyrolles 2001), and
Object-Oriented Reengineering Patterns (MKP 2002).

If you want to discover why Stéphane is having fun with Squeak and actively participating
in its development, check out http://www.squeak.org/.  Check out http://smallwiki.unibe.ch/
botsinc/ for the web site of this book. 

xxiii



Acknowledgments

Iwould like to thank all of you who read parts and drafts of this book and provided feedback. 
It is not an easy task to read a work in progress, and I am grateful to all of you who made the
effort. I will not attempt to list all your names here, because I am sure to forget some of you. 
However, I must mention Orla Greevy, Ian Prince, and Daniel Knierim, who read the entire 
manuscript. Thank you for your feedback and support. I would also like particularly to mention
Daniel Villain, who read a draft of the French version. 

I want to thank the Squeak community for the help they have provided me during the
development of the environments used in this book, and for developing the amazing Squeak
environment in the first place. In particular, I would like to thank Nathanael Schärli and 
Ned Konz for their help. I offer special thanks to all the developers who helped Smalltalk to
escape from the clouds of dreamland and become a reality. I would also like to thank all the
“Smalltalkers” who made this language and community so exciting. May you continue to
make your dreams come true. 

Writing this book has been a long and difficult process, because teaching novices is diffi-
cult. Moreover, I am not an easy person to live with, and as a researcher, I become excited by
too many topics. I want to thank Didier Besset particularly for many fruitful discussions at the
beginning of this project. 

I also want to thank my wife, Florence, and my sons Quentin and Thibaut, two small boys
who loved to run noisily around my desk when I was trying to concentrate on my work. Thank
you for accepting a husband and father who was not always present, enthusiastic, and acces-
sible. But soon we will be programming together.

xxv



Preface

Knowledge is only one part of understanding. Genuine understanding comes
from hands-on experience.

—S. Papert

Goals and Audience
The goal of this book is to explain elementary programming concepts (such as loops, abstraction,
composition, and conditionals) to novices of all ages. I believe that learning by experimenting
and solving problems is central to human knowledge acquisition. Therefore, I have presented
programming concepts through simple problems such as drawing golden rectangles or simulat-
ing animal behavior. 

My ultimate goal is to teach you object-oriented programming, because this particular
paradigm provides an excellent metaphor for teaching programming. However, object-
oriented programming requires some more elementary notions of programming and abstrac-
tion. Therefore, I wrote this book to present these basic programming concepts in an elementary
programming environment with the special perspective that this book is the first in a series of
two books. Nevertheless, this book is completely self-contained and does not require you to
read the next one. The second book introduces another small programming environment. It
focuses on intermediate-level topics such as finding a path through a maze and drawing frac-
tals. It also acts as a companion book for readers who want to know more and who want to
adapt the environment of this book to their own needs. Finally, it introduces object-oriented
programming. 

The ideal reader I have in mind is an individual who wants to have fun programming.
This person may be a teenager or an adult, a schoolteacher, or somebody teaching program-
ming to children in some other organization. Such an individual does not have to be fluent in
programming in any language. 

The material of this book was originally developed for my wife, who is a physics and
mathematics teacher in a French school where the students are between eleven and fifteen
years old. In late 1998, my wife was asked to teach computing science, and she was dismayed
by the lack of appropriate material. She started out teaching HTML, Word, and other topics,
and she remained dissatisfied, since these approaches failed to promote a scientific attitude
toward computing science. Her goal was to teach computer science as a process of attacking
problems and finding solutions.

xxvii



As a computer scientist, I was aware of work on the programming language Logo, and I
particularly liked the idea of experimentation as a basis for learning. I was also aware that the
programming language Smalltalk had been influenced by the ideas of Seymour Papert and
those behind Logo, and that it had originated from research on teaching programming to 
children. Moreover, Smalltalk has a simple syntax that mimics natural language. At about that
time, the Squeak environment had arrived at a mature state, and books started to become
available in late 1999. But these were for experienced programmers, so I started and wrote 
the present book.

The environments that I use in this book and its companion book are fully functional. 
They have gone through several iterations of improvements based on the feedback that I have
received from teachers. A guiding rule in our work has been to modify the Squeak environment
as little as possible, for our goal is for readers to be able to extend the ideas presented in this
book and develop new ones of their own. 

Object-Oriented Structure and Vocabulary
The chapters of this book are relatively small, so that each chapter can be turned into a one-
or two-hour lab session. I do not advocate presenting the material directly to children for self-
instruction, but each chapter in fact has all the material for such an approach. 

Although object-oriented programming is not developed in this book, I use its vocabu-
lary. That is, we create objects from classes and send them messages. Object behavior is
defined by methods. I made this choice because the metaphor offered by object-oriented pro-
gramming is natural, and children have an intuitive understanding of the idea of objects and
their behavior. 

Those who are used to Logo may wonder why our robots do not have “pen up” and “pen
down” methods, but instead “go” and “jump,” where under the former, a robot moves leaving
a trace, while the latter moves a robot forward without leaving a trace. I believe that the go and
jump paradigm is better suited to the ideas of object-oriented programming and encapsula-
tion of data than the traditional pen down and pen up design. An excellent analysis of these
two approaches was made by Didier Besset, who collaborated with me on this project in its
early stages.

Organization
The book is divided into five parts, as described below.

Getting Started. Part 1 shows how to get started with the Squeak environment. It explains
the installation process and how to launch Squeak, and then presents robots and their
behavior. A first simple program that draws some lines is presented. 

■PREFACExxviii



Elementary Programming Concepts. Part 2 introduces first programming concepts, such
as loops and variables. It shows how messages sent to a robot are resolved.

Bringing Abstraction into Play. Part 3 introduces the necessity of abstraction, that is,
methods or procedures that can be reused by different programs. The most difficult con-
cept introduced is the idea of composing new methods from existing ones to solve more
complex problems. Several nontrivial experiments are proposed, such as drawing golden
rectangles. Techniques and tools for debugging programs are also introduced.

Conditionals. Part 4 introduces the notion of conditionals, conditional loops, and Boolean
expressions, all of which are central to programming. This part also introduces the notion of
references in a two-dimensional space and some other types of robot behavior. Finally,
ways of using robots to simulate the behavior of simple animals are presented.

Other Squeak Worlds. Part 5 presents two entertaining programming environments that
are available in Squeak: the eToy graphical scripting system and the 3D authoring envi-
ronment Alice. 

■PREFACE xxix



■PREFACExxx

Why Squeak and Smalltalk? 
You may be wondering why among the large number of programming languages available today
I have chosen Smalltalk. Smalltalk and Squeak have been chosen for the following reasons: 

• Smalltalk is a powerful language. You can build extremely complex systems within a
language that is simple and uniform. 

• Smalltalk was designed as a teaching language. It was influenced by Logo and LISP, and
Smalltalk in turn heavily influenced languages such as Java and C#. However, those lan-
guages are much too complex for a first exposure to programming. They have lost the
beauty of Smalltalk’s simplicity. 

• Smalltalk is dynamically typed, and this makes transparent a number of concerns
related to types and type coercion that are tedious to explain and of little interest to 
the novice. 

• With Smalltalk you need to learn only key, essential concepts, concepts that are to be
found in all programming languages. Thus with Smalltalk I can focus on explaining the
important concepts without having to deal with difficult or unattractive aspects of
more complex languages. 

• Squeak is a powerful multimedia environment, so after reading my books you will be
able to build your own programs in a truly rich context. 

• Squeak is available without charge and runs on all of today’s principal computing plat-
forms. And it should be easily portable to the platforms of the future. 

• Squeak is popular. For example, in Spain, it is used in schools, where it runs on over
80,000 computers.



Getting Started

P A R T  1

■ ■ ■



Installation and 
Creating a Robot

Set your stopwatch! Five minutes from now, the robot playground, called the environment,
that you will be using in this book will be up and running and ready for you to have fun in. In
this chapter you will learn how to install the environment, become acquainted with its differ-
ent parts, and begin interacting with the robots that live in this environment. You will learn
how to program these robots to accomplish challenging tasks by sending them messages.

So let us get started installing the environment and preparing for all the challenges ahead
in the rest of the book. If your environment is already installed, then turn off your stopwatch,
skip the first section, and plunge directly into the following sections, which give an overview
of the environment. After you have acquired some facility with robots in Chapters 2 through 4,
I will go into more detail on using the environment in Chapter 5. 

3

C H A P T E R  1

■ ■ ■



Installing the Environment 
The environment used in this book has been developed to run on top of Squeak. Squeak is a 
rich and powerful Open Source multimedia environment written entirely in Smalltalk and freely
available for most computer operating systems at http://www.squeak.org. Note, however, that
you will not be using the default Squeak distribution. Rather, you will be using a distribution that
I have prepared for use with this book. It can be downloaded from the publisher of this book at
http://www.apress.com, in the Downloads section.

Squeak runs exactly the same on all platforms. However, to make your life a little easier, I
have prepared several platform-dependent compressed files. The principle is exactly the same
on a Mac, PC, or any other platform. The only differences are in the tools for file decompression
and the way that you will invoke Squeak. Once you have obtained a file named ReadyToUse.zip,
you decompress it and then drag the file named Ready.image (Mac) or Ready (PC) onto the
Squeak application, and that does it! The file Ready[.image] contains the complete environ-
ment used in this book. Note that you may get files with slightly different names, but that
should have no effect on how everything works.

Installation on a Macintosh
For installation on a Macintosh, you should have a ZIP archive file named readyToUse.zip.
Normally, double clicking on the file’s icon should invoke the proper decompression software,
such as StuffIt Expander. Once this archive has been decompressed, you should end up with
four files, as shown in Figure 1-1. You should identify two files: the file named Ready.image
and the Squeak application file (the one without a file extension in Figure 1-1; it is named
Squeak).

Figure 1-1. Ready-to-use files for the Macintosh. Left: the ZIP archive. Right: the decompressed files.

Installation under Windows
For installation under Windows, you should have a ZIP archive file named readyToUse.zip.
Once this archive has been decompressed using WinZip, you should end up with four files, as
shown in Figure 1-2. You should identify two files: the file named Ready and the Squeak appli-
cation file (the one without a file extension in Figure 1-2; it is named Squeak).

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT4



Figure 1-2. Ready-to-use files for Windows. Left: the ZIP archive. Right: the decompressed files.

Opening the Environment 
To open the environment, drag the file Ready[.image] onto the Squeak application, that is,
onto the file named Squeak, as shown in Figure 1-3. You should obtain the environment shown
in Figure 1-4. If you do not get this environment, then read the section “Installation Trouble-
shooting” near the end of this chapter. 

Figure 1-3. Dragging and dropping the image file onto the Squeak application file opens the
environment on a Mac (left) or on a PC (right).

Tips for Installation
The environment can be opened simply by double clicking on the image file. However, there
are several disadvantages to this: You may have to identify the Squeak application, and some-
times another application may interfere and try to use the image file. Moreover, you can find
yourself in trouble if you have multiple installations of different versions of Squeak. So I sug-
gest that you always open the environment by dragging and dropping the image file onto the
Squeak application file or an alias of it. 

Note that if you do not have enough space for the installation on your hard drive, you can
use an alias to the SqueakV3.sources file, which can be shared among several installations. 

Mac PC

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT 5



■Important! To start the environment, drag and drop the file Ready (with the .image extension for Mac)
onto the squeak application.

First Interactions with a Robot 
Once you have opened the environment by dragging the file named Ready[.image] onto the
Squeak application as explained previously, the environment that you obtain should look
something like the one presented in Figure 1-4.

Figure 1-4. The environment is ready to use.

The environment is composed of a robot factory and two flaps. A flap is a drawer contain-
ing programming tools. You will not need these for a while, and so I will put off describing
them until a later chapter. You should see a small blue robot in the middle of the screen. This
is not a robot made of wires and metal, but a software robot, imagined as seen from above,
pointing toward the right edge of the screen. A robot is a round blue circle; it has two wheels
and a small red head that points in its current direction. As you work through this book, you
will be sending orders to robots. These orders are called messages, and we say that the robots
execute these messages. 

A robot factory to create new robots

A robot pointing to the right Two flaps: drawers containing
tools for programming robots

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT6



Place the mouse over the robot and wait a second. A balloon pops up with some informa-
tion about the robot, such as its current location and its direction, as shown in Figure 1-5.
Since computer monitors are of varying sizes and resolutions, your robot’s position may have
other values.

Figure 1-5. Place the mouse over a robot to pop up a balloon with information about the robot.

Sending Messages to a Robot
You can interact directly with a robot by left clicking on the robot with the mouse (or just
clicking with a one-button mouse). A messaging balloon pops up, as shown in the left picture
in Figure 1-6. In this balloon you can type messages to be sent to the robot. After you type
your messages, you send them to the robot by pressing the return key, and the robot then 
executes them. 

Figure 1-6. Step 1: Left-clicking on a robot causes a messaging balloon to appear.
Step 2: You can type a message to the robot to move 200 pixels forward and then press the return
key. Step 3: The robot executes the message; it has moved, leaving a trace on the screen behind it.

For example, if you type the message go: 200 followed by the return key, you have told the robot
to move forward 200 pixels in its current direction. If you type the message turnLeft: 20 + 70,
you are instructing the robot to turn to its left (counterclockwise) 20 + 70 = 90 degrees, as shown
in Figure 1-7. This second message is more complex than the previous one, because the value
representing the number of degrees that the robot is to turn is itself a message (as I will soon
explain), namely, 20 + 70. We will call such messages compound messages.

Step 1 Step 2 Step 3

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT 7



Figure 1-7. Left: sending a compound message. Right: The message has caused the robot to turn
to its left by 90 degrees.

When the message color: Color green is sent to a robot, it changes its color, as shown in 
Figure 1-8. (You will have to imagine the green color in the grayscale picture.) 

Figure 1-8. Left: The robot is instructed to change its color to green. Right: The color has changed.

You may not understand the format of the messages that I have just presented. Some of
them may appear a bit complex. In fact, color: Color green is another compound message. I
will explain later how you can develop your own messages. For now, simply type the messages
presented to you so that you can become familiar with the robot’s environment. If you want to
repeat a previous message, you do not have to retype it. Simply use the up and down arrows to
navigate over the previous messages that you have sent to the robot. In subsequent chapters,
you will learn step by step all the messages that a robot understands, and what is more, you
will learn how to define new behaviors for your robots.

■Note To interact with a robot, click on it, type a message, and press the return key.

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT8



Creating a New Robot 
The environment already contains a robot, but now I am going to show you how to create new
robots. If you are not satisfied with having only one robot, you can create a new one by sending
the appropriate message to a robot factory. A robot factory is graphically represented as an
orange box surrounded by a light blue box, in the middle of which the word Bot is written, 
as shown in Figure 1-9. In Squeak jargon, and in general in the jargon of object-oriented 
programming, a robot factory is called a class. Classes (factories that produce objects, such as
robots) have a name starting with an uppercase letter. Hence this is the class Bot and not bot.

Figure 1-9. In Squeak jargon, a robot factory is called a class. Classes produce objects.
The Bot class produces new robots.

Just as you did for robots, you can interact with a robot factory by sending it messages.
The message to create a new robot is the message new, as shown in Figure 1-10. Note that
newly created robots, like your original robot, point to the right of the screen. Each of the two
robots has an independent existence, and you can send messages to each of them in turn. 

Figure 1-10. Step 1: Start typing a message. Step 2: The message new has been sent to the robot 
factory. Step 3: In response, the factory has created a robot and delivered it to you.

To create a new robot, send the message new to the robot factory, which is the class Bot. When a robot is
created, it is always pointing to the east, that is, to the right of the screen.

Step 1 Step 2        Step 3

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT 9



Quitting and Saving 
The background of the Squeak window application is called the World. The World has a menu
offering a number of different options. To display the World menu, just (left) click on the back-
ground. You should get a menu similar to the one shown in Figure 1-11. The last group of
options consists of all the actions that you can take to quit out of the environment or save
your work. 

Figure 1-11. The World menu includes actions for quitting and saving.

Selecting the item quit simply quits the environment without saving your work. The
result is that the next time you launch the environment, it will be in exactly the same state as
the last time you saved it. Selecting the item save saves the complete environment. The next
time you start the environment, it will be in exactly the same state as the last time you saved it.
Finally, if you select the item save as…, the environment asks you to create a new name, and it
will then create two new files with that name: one with the extension .image and one with the
extension .changes. That is how I created the files Ready[.image] and Ready.changes. To open
the environment that you saved with a new name, drag and drop the file with the new name
that has the extension .image onto the squeak application file icon as you did to start the envi-
ronment by dragging and dropping the file Ready[.image].

Installation Troubleshooting
Sometimes things don’t proceed just as they should, so in this section I will present some
information that should be of help if you encounter problems during installation. First, I will
explain the role of the principal files that you obtained when you decompressed the archive.

To run the environment provided with this book or with any Squeak distribution, four
files are necessary. Knowing about them can help in solving any problems you may encounter.

Image and changes. The file Ready[.image], called simply the image file, and the file
Ready.changes, called simply the changes file, contain information about your current
Squeak system. These two files are synchronized by Squeak automatically and should be
writable (that is, not read-only). Each time you save your environment, these two files are

To save without quitting

To save and give a new
name to the image 

To quit without saving

To save and quit

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT10



synchronized. You should not edit them with a file editor or change the name of the file
manually. If you want to use different names, just use the save as… menu item of the
World menu. Squeak will then create a new pair of files for you. 

Source. The file named SqueakV3.sources, called the sources file, contains the source code
of a part of the Squeak environment. You will not need it in working through this book, so
do not try to edit it manually. However, this file should always be in the same directory in
which the image file is located. 

Application. The application files Squeak for Mac and Squeak.exe for PC are the Squeak
application. Each of these files is the application that runs when you are programming in
Squeak. It should be executable. This file is referred to as the Squeak application. In com-
puter-science jargon, this application is called a virtual machine, or VM for short.

Keep in mind that the image and changes files should be writable. Some operating systems
change the properties of files to “read only” when they are copied from an external source. If
that happens, Squeak warns you with a message, like that shown in Figure 1-12. If you get such
a message, simply quit Squeak without saving, change the property of the file to permit write
access, and restart.

Figure 1-12. This message appears if the image (Ready.[image]) or changes (Ready.changes) file is
not writable.

Another possible problem you may encounter is related to the sources file SqueakV3.sources.
This file or an alias pointing to this file should be present in the directory in which the image file 
is located. If the file itself is not present, you may get the message shown in Figure 1-13. To cure
this problem, create an alias to the sources file (SqueakV3.sources) in the directory containing 
the image file or simply copy the sources file into the directory that contains the image file. You
should not have this problem if you are using the distribution for this book.

Figure 1-13. Possible messages indicating that the sources file (SqueakV3.sources) is missing from
the directory containing the image file.

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT 11



Summary 
To start the environment, drag and drop the file Ready[.image] or another file that you have
saved with the .image extension into the squeak application. 

• To send a message to a robot, left click on it, type the message, and press the return key. 

• To create a new robot, send the message new to the class Bot, which is your robot factory. 

• When a robot is created, it is always pointing to the east, that is, to the right of the
screen. 

• To obtain the menu for saving the environment, click on the background.

CHAPTER 1 ■ INSTALLATION AND CREATING A ROBOT12



A First Script and 
Its Implications 

While sending messages using direct interaction with a robot is a fun and powerful way 
of programming robots, it is rather limited as a technique for writing complex programs. To
expand your programming horizons, I am going to teach you about the notion of a script,
which is a sequence of expressions, together with all the fundamental concepts and vocabu-
lary that you will need for the remainder of this book. It also serves as a map to subsequent
chapters, which will introduce in depth the concepts briefly presented in this chapter.

First, I will show you how you to send multiple messages to the same robot by separating
a sequence of messages with semicolons. Then you will learn how to write a script using a
dedicated tool called a workspace. I will describe the different elements that compose a script
and show some of the errors that one can make when writing a program.

13

C H A P T E R  2

■ ■ ■



Using a Cascade to Send Multiple Messages 
Suppose you want to get your robot on the screen to draw a rectangle of height 200 pixels and
width 100 pixels. To do so, you might click on your robot and then start to type the first mes-
sage, go: 100, press the return key, then click on the robot and type the second expression,
turnLeft: 90, and press the return key, then click on the robot and type the expression go:
200, and so on. You will quickly notice that this is truly a tedious way of interacting with your
robot. It would be much more convenient if you could first type in all the instructions and
then push a button to have the sequence of instructions executed.

In fact, you can send multiple messages to a robot by separating the messages with a
semicolon character ;. To send a robot the messages go: 100, turnLeft: 90, and go: 200,
simply separate them with a semicolon as follows: go: 100 ; turnLeft: 90 ; go: 200 (see
Figure 2-1). This way of sending multiple messages to the same robot is called a cascade of
messages in Squeak jargon. 

Figure 2-1. You can send several messages to a robot at once using the semicolon character.

However, the technique of writing a cascade of messages (that is, sending a robot multi-
ple messages separated by semicolons) does not work well for complex programs. Indeed,
even for drawing a simple rectangle, the string of messages quickly grows too long, as shown
by the second message in Figure 2-1. And there are other concerns as well. For example, pro-
grammers take into account issues such as whether they can store a sequence of messages
and replay them later and whether they can reuse their messages and not have to type them 
in all the time. For all these reasons, we need other ways to program robots. The first way that
you will learn is to write down a sequence of messages, called a script, in a text editor and ask
the environment to execute your script.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS14



A First Script 
The BotInc environment provides a small text editor, called the Bot Workspace, which is dedi-
cated to script execution (that is, executing the expressions that constitute a script). Click on
the bottom flap, called Working. By default, it contains a Bot Workspace editor, as shown in
Figure 2-2. 

Figure 2-2. A Bot workspace is a small text editor dedicated to the execution of robot scripts.

I will start off by writing a script that draws a rectangle, and then I will explain it in detail
(Script 2-1). 

Script 2-1. The robot pica is created and is made to move and turn.

| pica | 
pica := Bot new. 
pica go: 100. 
pica turnLeft: 90. 
pica go: 200. 
pica turnLeft: 90. 
pica go: 100. 
pica turnLeft: 90. 
pica go: 200. 
pica turnLeft: 90

Figure 2-3 shows the script in a Bot workspace and the result of its execution obtained by
pressing the Do It All button. Try to get the same result: type the script and press the Do It All
button. I have named the robot pica as short for Picasso, since our robots are drawing pic-
tures, just like those of the great Spanish artist. 

The Do It All button of the Bot workspace executes all the messages that the workspace
contains. Therefore, before typing a script, make sure that no other text is already present in
the Bot workspace. Moreover, computers and programming languages cannot deal with even
the most obvious mistakes, so be careful to type the text exactly as it is presented in Script 2-1.
For example, you must type the uppercase “B” of Bot on the second line, and you must end
each line with a period. (There is no need to put a period at the end of the last line, because
periods separate messages in Squeak. There is also no need for a period after the first line,
because it doesn’t contain a message.) But more on that a bit later in the chapter. The script
and its result are shown in Figure 2-3.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS 15



Figure 2-3. A script executed using the Do It All button of the Bot workspace and its result.

Squeak and Smalltalk
Script 2-1 is admittedly simple, but nonetheless, it constitutes a genuine computer program. 
A program is a list of expressions that a computer can execute. To define programs we need
programming languages, that is, languages that allow programmers to write instructions that
a computer can “understand” and execute. 

Programming Languages 
A well-designed programming language serves to support programmers in expressing solu-
tions to their problems. By support, I mean that the language should, among other things,
facilitate expression of the task to be performed, provide efficient execution of the program
code and reliability of the resulting application, give the programmer the ability to prove that
programs are correct, encourage the production of readable code, and make it easy for pro-
grammers to make changes in their applications. There is no “best” or ideal programming
language that satisfies all of these desirable properties, and different programming languages
are best suited for different kinds of tasks. 

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS16



Smalltalk and Squeak 
This book will teach you how to program in the Smalltalk programming language within the
Squeak programming environment. A programming environment is a set of tools that pro-
grammers use to develop applications. Squeak contains a large number of useful tools: text
editors, code browsers, a debugger, an object inspector, a compiler, widgets, and many others.
And that’s not all! In the Squeak environment you can program music, animate flash files,
access the Internet, display 3D objects, and much more. However, before you can start pro-
gramming complex applications, you have to learn some basic principles, and that is the
purpose of this book. 

Squeak programmers develop their applications by writing programs using the program-
ming language called Smalltalk. Smalltalk is an object-oriented programming language. Other
object-oriented programming languages are Java and C++, but Smalltalk is the purest and
simplest. As the term “object-oriented” suggests, such programming languages make use of
objects. The objects that are created and used are, of course, not real objects, but logical struc-
tures, or “virtual” objects, within the computer. But they are called objects because it is useful
to think of these structures as manufactured contraptions, such as a robot, for example, that
are able to understand messages that are sent to them and to execute whatever instructions
are contained in those messages. The point of the object analogy is that we can use a robot, or
a radio, or a camera, without understanding its internal structure. We need only know how to
use it by pushing its buttons or sending it messages via the remote control.

Where do manufactured objects come from? A factory, of course. The factories used to
create objects are called classes in object-oriented programming languages. Defining classes is
somewhat tricky, as is object-oriented programming in general, so in this introductory book I
will not show you how to define classes. Instead, you will only define new types of behavior for
your robot, and this will give you a good grounding in basic programming concepts.

I chose Smalltalk as the language for this book because it is simple, uniform, and pure. It
is pure in that in Smalltalk, everything is an object that sends and receives messages to and
from other objects. It is simple because in Smalltalk there are only a few basic rules, and it is
uniform in that these rules are always applied consistently. In fact, Smalltalk was originally
designed for teaching novices how to program. But that doesn’t mean that Smalltalk can be
used only for writing “baby” or “toy” applications. Indeed, large and complex applications
have been written in Smalltalk, such as the applications controlling the machines that pro-
duce the AMD corporation’s microprocessors that may be running in your computer. 

Another application written entirely in Smalltalk is the Squeak environment itself. Now
isn’t that interesting! This means that once you develop a good understanding of Smalltalk,
you can modify the Squeak environment in order to adapt the system to your own purposes or
simply to learn more about the system. With Smalltalk, then, you have quite a bit of power in
your hands. 

I hope that this discussion about programming languages in general, and Smalltalk in
particular, has motivated you to learn how to program. But please be aware that learning to
program is like learning to play the piano or to paint in oils. It is not simple, and so do not
become discouraged if you have some difficulties. Just as a beginning piano player doesn’t
start off with Beethoven’s Waldstein Sonata, and a novice painting student doesn’t try to repro-
duce Michelangelo’s Sistine Chapel ceiling, the beginning programmer starts off with simple
tasks. I have designed this book so that topics are introduced in a logical order, so that what
you learn in each chapter builds on your knowledge from previous chapters and prepares you
for the material in the following chapters. 

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS 17



Programs, Expressions, and Messages 
Now we are ready to take a closer look at your first script and explain just what is going on. 

Typing and Executing Programs 
When you wrote Script 2-1, you typed some text, constituting a sequence of expressions, and
then you asked Squeak to execute it by pressing the Do it All button. Squeak executed the
sequence of expressions; that is, it transformed the textual representation of your program
into a form that is understandable by a computer, and then each expression was executed in
sequence. In this first script, executing the sequence of expressions created a robot named
pica, and then pica executed, one after another, the messages that were sent to it.

A program in Squeak consists of a sequence of expressions that are executed by the
Squeak environment. In this book, such a sequence is called a script.

■Important! A script is a sequence of expressions.

A program is a bit like a recipe for a chocolate cake. A good cake recipe describes all the
steps to be carried out in correct sequence: cream the butter and sugar; melt the chocolate;
add the chocolate to the butter and sugar mixture; sift in the flour; and so on right through
placing the filled cake pans in a 350º oven, cooling the baked cake on a rack, and spreading on
the frosting. Enjoy! Similarly, a computer program describes all the steps in sequence needed
to produce a certain effect: declare a name for a robot; create a robot with that name; tell the
robot to move 100 pixels; tell the robot to turn; and so on.

The Anatomy of a Script 
The time has arrived to analyze your first script, which is copied here as Script 2-2. 

Script 2-2 

| pica | 
pica := Bot new. 
pica go: 100. 
pica turnLeft: 90. 
pica go: 200. 
pica turnLeft: 90. 
pica go: 100. 
pica turnLeft: 90. 
pica go: 200. 
pica turnLeft: 90 

In a nutshell, Script 2-2 starts of by declaring that it will be using a variable named pica to
refer to the robot it creates. Once the robot is created and associated with the variable pica,
the script tells the robot to take a sequence of walks to different locations on the screen while

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS18



turning 90 degrees to the left after each walk. Now let us analyze each line step by step. Don’t
worry if certain concepts such as the notion of a variable remain a bit fuzzy. Everything will be
dealt with in due course, and if not in this chapter, then in a future chapter. 

| pica | This first line declares a variable. It tells Squeak that we want to use the name
pica to refer to an object. Think of it as saying to a friend, from now on I am going to use
the word pica in my sentences to refer to the robot that I am about to order from the
robot factory. You will learn more about variables in Chapter 8. 

pica := Bot new. This line creates a new robot by sending the message new to the robot
factory (class) named Bot and associates the robot with the name pica, the variable that
was declared in the previous step. The word Bot requires an uppercase letter B because it
is a class, in this case the class that is a factory for producing robots. 

pica go: 100. In this expression, the message go: 100 is sent to the robot we named
pica. This line can be understood as follows: “pica, move 100 units across the computer
monitor.” It is implicit in this expression that a robot receiving a go: message knows in
what direction to travel. In fact, a robot is always pointing in some direction, and when it
receives a go: message, it knows to move in the direction in which it happens to be point-
ing. Note also that the message name go: terminates with a colon. This indicates that this
message needs additional information, in this case a length. For example, go: 100 says
that the robot should move 100 pixels. The message name is go:.

pica turnLeft: 90. This line tells pica to turn 90 degrees to its left (counterclockwise).
This line is again a message sent to the robot named pica. The message name turnLeft:
ends with a colon, so additional information is required, this time an angle.

The remaining lines of the script are similar. 

■Important! Any message name that terminates with a colon indicates that the message needs addi-
tional information, such as a length or an angle. For example, the message name turnLeft: requires a
number representing the angle through which the robot is to turn counterclockwise.

About Pixels
On a computer screen, the unit of distance is called a pixel. This word was invented in about
1970 and is short for “picture element.” A pixel is the size of the smallest point that can be
drawn on a computer screen. Depending on the type of computer monitor you are using, the
actual size of a pixel can vary. You can see individual pixels by looking at the screen through a
magnifying glass.

Expressions, Messages, and Methods 
I have been using the terms expression and message. And now it is time to define them. I will
also define the important term method.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS 19



Expression
An expression is any meaningful element of a program. Here are some examples of expressions: 

• | pica | is an expression that declares a variable (more in Chapter 8).

• pica := Bot new is an expression involving an operation, called assignment, that asso-
ciates a value with a variable (see Chapter 8). Here, the newly created robot obtained by
sending the message new to the class Bot is associated with the variable pica.

• pica go: 100 is an expression that sends a message to an object. Such an expression is
called a message send. The message go: 100 is sent to the object named pica.

• 100 + 200 is also a message send. The message + 200 is sent to the object 100.

Message
A message is a pair composed of a message name, also called a message selector, and possible
message arguments, which are the values that the object receiving the message needs for exe-
cuting the message. These relationships are illustrated in Figure 2-4. The object receiving a
message is called a message receiver. A message together with the message receiver is called a
message send. Here are some examples of messages: 

• In the expression pica beInvisible, the message beInvisible is sent to a receiver, a
robot. This message has no arguments. 

• In the expression pica go: 100, the message go: 100 is sent to a receiver, a robot named
pica. It is composed of the method selector go: and a single argument, the number 100.
Here, 100 represents the distance in pixels through which the robot should move. Note
that the colon character is part of the message selector. 

• In the expression 33 between: 30 and: 50, the message between: 30 and: 50 is
composed of the method selector between:and: and two arguments, 30 and 50. This
message asks the receiver, here the number 33, whether it is between two values, here
the numbers 30 and 50.

• In the expression 4 timesRepeat: [ pica go: 100 ], the message timesRepeat: 
[ pica go: 100 ], which is sent to the number 4, is composed of the message selector
timesRepeat: and the argument [ pica go: 100 ]. This argument is called a block,
which is a sequence of expressions (in this case a single expression) inside square
brackets (more on this in Chapter 7). 

• In the expression 100 + 200, the message + 200 is composed of the method selector +
and an argument, the number 200. The receiver is the number 100.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS20



Figure 2-4. Two message sends composed of a message receiver, a message name (or message
selector), and a set of arguments

Message Separation
As mentioned earlier, each line of Script 2-1, except the first and last, is terminated by a period.
The first line does not contain a message. Such a line is called a variable declaration in computer
jargon. Thus, we can make the following observation: each message send must be separated
from the following one by a period. Note that putting a period after the last message is possible
but not mandatory. Smalltalk accepts both. 

■Important! Message sends should be separated by a period. The last statement does not require a 
terminal period. Here are four message sends separated by three periods.

pica := Bot new. 

pica go: 100. 

pica turnLeft: 90. 

pica go: 100 

■Important! A period character . is a message separator, so there is no need to place one after a mes-
sage send if there is no following message send. Therefore, no period is necessary at the end of a script or
of a block of messages.

pica   go:  100

message
receiver

message selector
message  argument(s)

33 between: 30 and: 50

message

message

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS 21



Method
When a robot (or other object) receives a message, it executes a method, which is a kind of
script that has a name. More formally, a method is a named sequence of expressions that a
receiving object executes in response to the receipt of a message. A method is executed when
an object receives a message of the same name as one of its methods. For example, a robot
executes its method go: when it receives a message whose name is go:. Thus the expression
pica go: 224 causes the message receiver pica to execute its method go: with argument 224,
resulting in its moving 224 pixels forward in its current direction. Later in the book, I will
explain how you can define new methods for your robot, but for now, we do not need them 
to start programming.

Cascade
As I mentioned in the first section of this chapter, you can send multiple messages to a robot by
separating them with semicolons. Such a sequence of messages is called a cascade. You can also
use a cascade in a script to send multiple messages to a robot. Script 2-3 is equivalent to Script
2-2, except that now all the messages sent to the robot pica are separated by semicolons. Using
cascades is handy when you want to avoid typing over and over the name of the receiver of 
the multiple messages. Cascades are useful because they shorten scripts. However, be careful!
Shortcuts can lead to trouble if you don’t watch your step, so be sure that you truly intend for all
your messages to be sent to one and the same receiver.

Script 2-3 

| pica | 
pica := Bot new. 
pica 

go: 100 ; turnLeft: 90 ; go: 200 ; turnLeft: 90 ; 
go: 100 ; turnLeft: 90 ; go: 200 ; turnLeft: 90. 

■Important! To send multiple messages to a robot, use a semicolon character ; to separate the 
messages, following the pattern aBot message1 ; message2. Here is an example: pica go: 100 ; 
turnLeft: 90 ; go: 200 ; turnLeft: 90

Creating New Robots 
To obtain a new robot, you have to send an order to the robot factory to manufacture one for
you. That is, you have to send the message new to the class Bot. There is nothing new here. It 
is exactly what you did in the previous chapter when you clicked on the blue and orange box
named Bot, which represents the class of the same name, and typed new in the bubble. In
Squeak, we always send messages to robots, other objects, or classes to interact with them.
There is no difference in treatment, except that classes and objects understand different 

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS22



messages. It is the job of classes to create objects. An object does not know how to create other
objects, so sending a robot the message new leads to an error. Classes, on the other hand, gen-
erally do not have colors and do not know how to move, and so sending the message color or
go: 135 to a class does not make sense, and doing so leads to an error. Nonetheless, in both
cases you are sending messages!

The Bot class is not the only manufacturing company in the Squeak environment. There
are other classes, and they understand different messages and employ different methods for
creating different kinds of objects. For example, the class Color manufactures color objects. It
returns a blue or green color object in response to the message blue or green. Whenever in this
book a new object must be obtained from a specific class, I will tell you how it is done. 

■Important! To obtain a new object from a class, you generally send the message new to the class. Thus
Bot new creates a new robot. Other classes may offer different messages for obtaining new objects. For
example, Color blue tells the class Color to create a new blue color object.

Errors in Programs 
Computers are very good at making highly complex calculations at incredible speed, but 
they lack the intelligence to correct small mistakes. If I accidentally wrote, “now turn on your
compyuter,” you might chuckle over my misspelling, but you would have no trouble under-
standing what I meant. But computers have no such intelligence, which means that each
expression given to a computer must be given precisely, without the least error. The smallest
seemingly insignificant mistake in a program, even something as trivial as using a lowercase
letter instead of an uppercase one, will almost certainly be misunderstood by the computer. If
you have errors in your scripts, two things can go wrong: either an error message will appear
on the screen, and this is likely to occur when you are doing your first experiments, or the pro-
gram will be executed, but the result will not be what you intended. So when things go wrong,
do not despair and try to find the error in your program. 

Squeak has a helpful error-prevention and error-correction facility. It colors the letters
while you are typing. When a word becomes red, this means that you are writing something
that Squeak does not understand. An example is shown in Figure 2-5. When a word is blue, for
a variable or a message, or black, for a class, this indicates that everything is structurally correct. 

If you attempt to execute an expression containing an error, Squeak tries to help you by
notifying you when it encounters the error in your code. The error messages that Squeak uses
are actually menus. The top part of the menu window contains a short description of the
error; then, depending on the type of error, some suggested corrections may be listed as
options. If you don’t like any of the options, you can always cancel execution by choosing
“cancel” in the menu. Then you should locate the place in your script that Squeak did not
understand, correct it, and try again to execute the script. 

I will now tell you about some of the most common errors.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS 23



Misspelling a Message Selector
Misspelling the name of a message leads to an error. In Figure 2-5, I misspelled the message
selector go:, typing god: instead. The message god: does not exist in Squeak, and therefore
Squeak turned the word red. Ignoring Squeak’s friendly warning, I tried to execute the script.
Squeak tried to guess what message selector I had in mind, and prompted me with a menu of
possibilities. At this point, I could choose the correct message selector (go:), and the message
god: will be replaced by go:. Or I can simply choose “cancel.” If I take the latter option, I will
have to change god: to go: manually.

Figure 2-5. I misspelled the message go:, typing god: instead by mistake. The message god: does
not exist (in Squeak). Therefore, Squeak prompts you for a possible correction.

Misspelling a Variable Name
There are two ways to misspell the name of a variable: in the body of the script itself and when
it is declared (between two vertical bars as in | pica |). Figure 2-6 shows the two cases: In the
left-hand figure I declared a variable pica, but then I typed pica1 instead of pica in the script.
Squeak noticed that I was trying to use an undeclared variable, so it turned the text red and
prompted me, suggesting that I either declare the undeclared variable by declaring pica1 as
a new variable, or replace pica1 by pica. Since pica is the variable name that I wanted, and
pica1 was just a typo, I chose the option pica, as shown in the figure. The right-hand figure
shows that I accidentally typed a space between the c and a in pica when I attempted to
declare the variable pica. Squeak did not consider this an error. It simply “thought” that I was
trying to declare two variables, pic and a. Then in the script I typed pica, thinking that I had
declared that variable. But Squeak saw that in fact, pica was an undeclared variable, so it
turned the text red and gave me some options, including declaring a new variable with the
name pica or else replacing what I had typed with the declared variable pic.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS24



CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS 25

Figure 2-6. Two examples of error. Left: I typed pica1 instead of the name of the declared variable
pica. Right: I accidentally typed pic a when trying to declare the variable pica. This had the
result of declaring the variables pic and a and not a variable called pica.

Unused Variables
It may happen that you accidentally declare too many variables. For example, you might
declare the variables pica and daly, thinking that you will need two robots, but then you never
use daly in your script. This is not really an error, and your program will run correctly even if it
has declared variables that are ever used. It is analogous to buying two suitcases, just in case,
but using only one of them. You simply have some extra baggage around that you are not
using. But just in case you really did mean to use daly and forgot, Squeak checks for unused
declared variables and if it finds any, suggests that you might want to remove them. For exam-
ple, in Figure 2-7, the script declares the variables pica and daly but uses only pica. Squeak
notices this and asks you whether you would like to remove the unused variable daly.

Figure 2-7. All the variables and message sends are correct. However, the variable daly is declared
but not used, so Squeak indicates this to us and suggests that we might want to remove the
unused variable. Unused variables are not an error, but good housekeeping suggests that you
should keep things simple and remove them.

Uppercase or Lowercase?
Another common mistake is to forget a required uppercase letter. Names of classes begin with
an uppercase letter, so don’t forget this when you want to send a message to an object factory.
Figure 2-8 shows that I unthinkingly typed bot instead of Bot. Squeak tried to figure out what I
meant, but it failed, and so none of the options that it offered for fixing the problem will do. In
such a case you have to correct the error yourself. In the context of this book, the only classes
you have to worry about are Bot, the robot factory, and Color, the color factory.



Figure 2-8. I forgot the uppercase B in the name of the class Bot, the robot factory. Squeak knows
that something is wrong, but it is not sure what. I will have to correct the error myself.

Forgetting a Period
Finally, one of the most common mistakes, one that even fluent programmers make, is to for-
get a period between two message sends or a semicolon between two messages in a cascade.
A period indicates that a new message send is about to begin, but without the period, Squeak
thinks that the current message is being continued, and that the variable meant to be the
message receiver of a new message is just another message selector. Since there is no message
selector with the name of one of your variables, Squeak tells you that you have typed an
unknown selector and offers you some possible corrections. For example, in Figure 2-9, a
period is missing after the expression pica := Bot new, and Squeak tries to parse (that is, fig-
ure out the structure of) the message pica := Bot new pica go: 120, and according to the
rules of message syntax (structure), about which you will learn in Chapter 11, pica should be a
message selector. But such a message selector does not exist, so Squeak protests and proposes
some possible replacements. Since you know that pica is your declared variable and not a
message selector, you realize that you forgot a period and so you select “cancel” and type the
period manually.

Figure 2-9. The consequences of forgetting a period between message sends: Squeak thinks that
the message receiver of the second message send is a nonexistent message selector.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS26



CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS 27

Words That Change Color
Squeak tries to identify mistakes while you are typing your scripts. If it detects something
fishy, it changes the color of the text and provides some visual cues that suggest what might be
wrong. Figure 2-10 shows some typical situations. Unfortunately, the black-and-white figure
does not show its true colors. But use your imagination!

Figure 2-10. Squeak uses colors to help you find errors and to know when everything is ok.

Here is a key to the figure:

(a) I started to type the first letter of an undeclared or unknown variable. Since no variable
starting with the letter x has been declared, Squeak turns the x red, letting me know
that something is amiss.

(b) I finished typing a variable that has been declared. Squeak shows me that I have typed
a declared variable correctly by turning the text blue.

(c) I am in the process of typing the name of a variable. As long as what I have typed is the
beginning of the name of a declared variable, Squeak underlines it to let me know that
so far, everything is ok. 

(d) As soon as I type a character in a variable name that results in a sequence of letters
that is not the beginning of the name of a declared variable, Squeak turns the word
red. Note the difference with the previous case. In case (c), I could have typed the char-
acter a and thereby completed the declared variable pica, as in (a). However, I typed
the character b, and ended up with a sequence of letters (picb) that is not the begin-
ning of the name of any declared variable. 

(e) After I typed the name of a declared variable (pica, as in case (b)), I accidentally added
an extra character a, which leads to the sequence of letters (picaa), which is not the
beginning of the name of a declared variable. 

(f) Squeak tries to do the same for message selectors as it does for variable names. Here I
mistyped the message go: and typed instead gou. Squeak was looking for a message
selector, and as soon as I typed the character u, it realized that there is no message
selector that begins gou, so it turned the text red. 

(a) Starting to type a  
undeclared variable

(b) Finished declared variable  (c) Starting to type the  
beginning of a  

declared variable

(d) Undeclared variable

(e) Undeclared variable (f) Unknown message (g) Unknown class



(g) Squeak tries to do the same for classes as it does for variables and message selectors.
Here I typed the character w after Bot, and Squeak, expecting a class name because of
the uppercase B in Botw, indicates by turning the text red that there is no class in the
system whose name begins Botw.

Summary
• To execute an expression. Press the Do It All button of the Workspace. 

• A script is a sequence of expressions that performs a task. 

• A message is composed of a message selector and possibly one or more arguments. Some
message selectors do not take arguments, as in the message send pica beInvisible.

• Any message selector that ends with a colon requires additional information (one or
more arguments), such as a length or an angle. For example, the message selector 
turnLeft: requires an argument whose value is a number representing the angle
through which the robot should turn counterclockwise. 

• To obtain a new object, you generally send the message new to a class. For example, Bot
new creates a new robot. Other classes may understand different messages for produc-
ing new objects. For example, Color yellow asks the class Color to create a new yellow
color object. 

• A class is a factory for producing objects. Class names always start with an uppercase
letter. For example, Bot is the factory for creating new robots, and Color is the color 
factory. The message Bot new color: Color yellow asks the Bot class to create a new
robot, and then the color factory is asked to create a yellow color object. Finally, the
message color: is sent to the new robot with the yellow color object as argument,
resulting in the new robot having its color changed to yellow.

• Message sends should be separated by a period. A terminal period after the last mes-
sage send is not required. Here is an example of four message sends separated by three
periods:

pica := Bot new.
pica go: 100.
pica turnLeft: 90.
pica go: 100

• To send multiple messages to the same object use a semicolon to separate the mes-
sages, as in aBot message1 ; message2. For example, pica go: 100 ; turnLeft: 90 ;
go: 200 ; turnLeft: 90 send the sequence of four messages (1) go: 100, (2) turnLeft:
90, (3) go: 200, (4) turnLeft: 90 to the robot named pica.

CHAPTER 2 ■ A FIRST SCRIPT AND ITS IMPLICATIONS28



29

C H A P T E R  3

■ ■ ■

Of Robots and Men

In this chapter I describe the creation of robots and the different types of movements that
robots know about and are capable of performing. I offer some simple experiments for you to
perform, so that you can practice what you have learned in the previous chapters. I also will
show you how robots can change direction along the fixed, or absolute, points of the compass.



CHAPTER 3 ■ OF ROBOTS AND MEN30

Creating Robots
In the previous chapter you created a robot, not the robot. That is, robots are not unique, and
you can create as many robots as you want. Script 3-1 creates two robots: pica and daly. 

Script 3-1. Two robots are born.

| pica daly |
pica := Bot new.
daly := Bot new.
pica color: Color yellow.
daly jump: 100.

The second line creates a robot named pica as in Script 2-1. The third line creates a 
new robot that we refer to using the variable daly. (Just as pica’s name is in homage to Pablo
Picasso, that of daly is to honor Salvador Dali.) Both robots are created at the same location on
the screen. In line four, we tell pica to change its color to yellow so that we can distinguish the
two robots.

Smalltalk is an object-oriented programming language, as I have mentioned. This means
not only that we can create objects and interact with them, but that objects can create other
objects and communicate with them. Moreover, in Smalltalk, there are special objects, called
classes, that are used to create objects. Sending the message new to a class creates an object
described by its class. Sending the message new to the Bot class creates a robot.

To understand what classes are, imagine a class as a sort of factory. A factory for creating
tin boxes might turn out large numbers of generic boxes, all of the same size, color, and shape.
After they have been manufactured, some boxes might be filled with biscuits, while others
might be crushed. When one box is crushed, other boxes are not affected. The same holds for
objects created inside Squeak. In our case, daly did not change color, but pica did, while pica
did not move, but daly did. You can think of a class as a factory able to produce unlimited sup-
plies of objects of the same type. Once produced, each object exists independently of the
others and can be modified as one wishes. 

In Smalltalk, class names always begin with an uppercase letter. That’s why the name of
the robot class is Bot with an uppercase “B.” Notice that in the command Color yellow, the
word Color is written with an uppercase “C.” That is because Color is a class, and what it man-
ufactures is color objects. By specifying the color name, you get an object of the color you
want. (The expression Color yellow is actually a short form for creating a yellow color object.
First, a color object is created by sending the message new to the class Color, and then some
extra messages define the color to be yellow.)

■Important! A class is a factory that manufactures objects. Sending the message new to a class creates
an object of that class. Class names always start with an uppercase letter. Here Bot is the name of the fac-
tory for creating new robots, and Color is the factory for colors.

Thus the command Bot new color: Color blue sends a message to the Bot class to create a new
robot and then sends a message to the new robot to color itself with the color blue.



Drawing Line Segments
Asking a robot to draw a line is rather simple, as you already saw in the previous chapter. The
message go: 100 tells a robot to move ahead 100 pixels, and the robot leaves a trace during its
move. However, when you draw, even if you are an expert Chinese or Japanese calligrapher,
you need to lift the brush from time to time. For this purpose, a robot knows how to jump; that
is, a robot can move without leaving a trace. A robot understands the message jump:, whose
argument is the same as that for go:; namely, it is a distance, given in pixels. Script 3-2 draws
two segments. To keep the picture uncluttered, I have kept the robots out of the illustration
using the message beInvisible.

Script 3-2. Pica is created and then draws two lines.

| pica |
pica := Bot new.
pica go: 30.
pica jump: 30.
pica go: 30. 

Experiment 3-1 (Creating and Moving a Robot)

Experiment by changing the values in the previous script.

Experiment 3-2 (SOS)

Write a script that draws the message “SOS” in Morse code. (In Morse code, an “S” is represented by three short
lines, and an “O” is represented by three long lines, as shown in figure below.

Changing Directions
A robot can orient itself along the eight principal directions of the compass, as shown in 
Figure 3-1. The directions are like those on a standard map: east is to the right, west to the left,
north up, and south down. These directions are absolute, which means that regardless of the
direction in which a robot is currently pointing, if you tell it to point east, the robot will point
to the screen’s right, not to the robot’s right. To point a robot in a given absolute direction, just
send it a message with the name of the direction. Thus, to tell pica to face south, you simply
type pica south.

CHAPTER 3 ■ OF ROBOTS AND MEN 31



Figure 3-1. The default absolute directions of the compass in which a robot can point.

Robots understand the following compass direction messages: east, north, northEast,
northWest, south, southEast, southWest, and west. In the next chapter, I will show you how to
make a robot turn relative to its current position through an arbitrary angle.

Script 3-3 illustrates the four cardinal directions with four different robots; here Picasso
and Dali are joined by Paul Klee and Alfred Sisley. Except for pica, who remains in the default
direction east in which it was created, each robot is oriented in a different direction before
being told to move.

Script 3-3. A gaggle of robots go walking.

| pica daly klee sisl |
pica := Bot new.
pica color: Color green.
pica go: 100.
daly := Bot new.
daly north.
daly color: Color yellow.
daly go: 100.
klee := Bot new.
klee west.
klee color: Color red.
klee go: 100.
sisl := Bot new.
sisl south.
sisl go: 100.

You can use these orientation methods to make more complex drawings. 

north

northEastnorthWest

eastwest

south

southEast
southWest

CHAPTER 3 ■ OF ROBOTS AND MEN32



Experiment 3-3 (A Square)

As a first exercise, draw a square with sides of length 50 pixels. Then draw another square of side length 250 pixels.

Experiment 3-4 (A Staircase)

You are not limited in your robot drawings to squares. You can create a wide range of geometrical figures. For
example, here is a drawing of a small staircase. Write a script to reproduce this drawing.

Experiment 3-5 (The Step Pyramid of Saqqara)

Now you are ready to spread your architectural wings and draw a schematic side view of the step pyramid of
Saqqara, built around 2900 B.C.E. by the architect Imhotep. Write a script to draw a side view of this pyramid,
as shown in the figure. The pyramid has four terraces, and its top is twice as large as each terrace.

Experiment 3-6 (Abstract Art)

Write a script to draw the picture shown in the figure below.

CHAPTER 3 ■ OF ROBOTS AND MEN 33



The ABC of Drawing
Even though you don’t yet have much control over the direction of a robot’s line segments, you
can start programming pica to write letters. Script 3-4 draws a rather primitive letter “A.”

Script 3-4. The letter A is drawn.

| pica |
pica := Bot new. 
pica north. 
pica go: 100. 
pica east. 
pica go: 100. 
pica south. 
pica go: 100. 
pica north. 
pica go: 50. 
pica west. 
pica go: 100 

Drawing a letter “C” is no more difficult. You can even write a script to spell out “pica.” 

Experiment 3-7 (PICA)

Draw the name “PICA” as shown at the start of the chapter. To separate the individual letters, you should use the
command jump:.

CHAPTER 3 ■ OF ROBOTS AND MEN34



■Remark One could argue that Script 3-4 could be improved. For example, the bottom half of the right-
hand vertical line of the “A” is drawn twice, since the robot goes back over this segment—once going south,
once going north—in order to get into position to draw the horizontal bar. Deciding on the best approach to
solving a programming problem can be a difficult proposition. There are many issues to be considered, such
as speed, complexity, and readability of the code, and these questions will have different answers depending
on the programming language and the methods used. However, one approach you might consider is to start
off by choosing the simplest solution. Then if you are dissatisfied because the program is too slow or doesn’t
have the particular bells and whistles you want, you can always modify it to speed it up or add other
enhancements.

Controlling Robot Visibility
You can control whether a robot is to be displayed using the messages beInvisible and
beVisible. The message beInvisible hides the receiver of the message. A hidden robot acts
exactly like a normal one; it just doesn’t show where it is. Be careful not to use the method
hide, which is defined by Squeak for its own purposes and can damage the robot environment
if used improperly. The message beVisible makes the robot receiving the message visible. 
A newly created robot is visible by default. 

Summary 
The following table summarizes the expressions and messages encountered in this chapter.

Expressions / Messages Description Example 

Bot new Create a robot. pica := Bot new

| x y | Declare variables to be used in | pica | 
the script.

jump: anInteger Tell a robot to move forward a pica jump: 10
given number of pixels without 
leaving a trace. 

go: anInteger Tell a robot to move forward a pica go: 10 
given number of pixels while 
leaving a trace.

beInvisible Tell a robot to be invisible. pica beInvisible

beVisible Tell a robot to be visible. pica beVisible

east, northEast, north, Tell a robot to point in the pica north
northWest, west, southWest, given direction.
south, southEast.

Color colorname Create the color colorname. Color blue

color: aColor Ask a robot to change its color. pica color: Color red

CHAPTER 3 ■ OF ROBOTS AND MEN 35



Directions and Angles

By now, you should be getting tired of drawing figures only in fixed directions. In this chapter
you will learn how to change the direction in which a robot points, allowing the robot to point 
in any direction, to turn through any angle relative to its current position, and therefore to draw
lines in any direction. If you already understand clearly what an angle is and how to measure
angles in degrees, you may skip the section “The Right Angle of Things” and then proceed to 
the examples and experiments in the section “Simple Drawings.” 

I will begin by presenting the elementary messages for changing direction that robots
understand. I am going to hide the robots from the illustrations using the message beInvisible
so that you can get clearer pictures. 

37

C H A P T E R  4

■ ■ ■



Right or Left?
In the previous chapter, you learned that a robot can be made to face in different directions
using the messages east, north, northEast, northWest, south, southEast, southWest, and west.
However, with these messages you cannot change the direction of your robot through an arbi-
trary angle, such as 15 degrees. In addition, you cannot turn a robot through, say, a quarter
turn relative to its current direction. 

To turn a robot through a given angle you should use the two methods turnLeft: and
turnRight:, which tell a robot to turn to the left or the right. As the colon at the end of each
method name indicates, these two methods expect an argument. This argument is the angle
through which the robot should turn relative to its current position. That is, the argument is
the difference between the robot’s direction before the message is sent and its direction after
the message is sent. This angle is given in degrees. For example the expression pica turnLeft:
15 asks pica to turn to the left fifteen degrees from its current direction, and pica turnRight:
30 turns pica to the right thirty degrees from its current direction. Figure 4-1 illustrates the
effect of the messages turnLeft: and turnRight:, first when a robot is pointing to the east, 
and second when a robot is pointing in some other direction.

Figure 4-1. Left: A robot facing east turns left or right through 30 degrees. Right: A robot facing in
some other direction turns left or right through 30 degrees.

As you practice turning robots through various angles, keep in mind that when a new
robot is created, it always points to the east, that is, to the right of the screen. 

Experiment 4-1 (Mystery Scripts)

Scripts 4-1 and 4-2 present problems in which you are to guess what the created robot will do. After studying
these two scripts, experiment with them by changing the angle values, for example to determine what angle turns
the robot through a quarter circle, a half circle, or a full circle. If you need to review the notion of angle, read the
section “The Right Angle of Things” before continuing.

turnLeft: 30

turnRight: 30

30 degrees

turnLeft: 30

turnRight: 30
30 degrees

30 degrees

30 degrees

CHAPTER 4 ■ DIRECTIONS AND ANGLES38



Script 4-1. What does pica do? (Problem 1)

| pica | 
pica := Bot new.
pica go: 100.
pica turnLeft: 45.
pica go: 50. 
pica turnLeft: 45. 
pica go: 100 

Script 4-2. What does pica do? (Problem 2)

| pica |
pica := Bot new.
pica go: 100.
pica turnRight: 60.
pica go: 100.
pica turnLeft: 60.
pica go: 100

A Directional Convention
In mathematics, it is a general convention that rotation through a negative angle is construed
as clockwise, while one with a positive angle is in the counterclockwise direction. You can also
make use of this mathematical convention by using the message turn:. Hence, the message
turnLeft: aNumber is equivalent to the message turn: aNumber, while the message turnRight:
aNumber is equivalent to turn: -aNumber, where -aNumber is the negative of aNumber. This rela-
tionship is depicted in Figure 4-2. 

Figure 4-2. Turning through a 30-degree angle starting from the direction east

CHAPTER 4 ■ DIRECTIONS AND ANGLES 39



Absolute Versus Relative Orientation 
You should now feel confident that you can ask a robot to execute any drawing consisting of
straight lines. Before going further, be certain that you understand the difference between ori-
enting a robot absolutely using the methods north, south, southEast, east, etc., and using the
methods turn:, turnLeft:, and turnRight: to orient the robot relative to its current orientation.

Experiments 4-2, 4-3, and 4-4 will help you to solidify your understanding of this difference. 

Experiment 4-2 (A Relative Square) 

Write a script to draw a square using the method turnLeft: or turnRight:.

Experiment 4-3 (Tilting the Square)

Modify your script from Experiment 4-2 by adding the line pica turnLeft: 33. before the first line containing
the message go: 100. You will obtain a square again, but it is tilted 33 degrees from the previous one.

Experiment 4-4 (A Broken Square)

Finally, execute Script 4-3, which attempts to draw a tilted square using the methods north, south, east, and
west that we presented in the previous chapter.

Script 4-3. A broken square

CHAPTER 4 ■ DIRECTIONS AND ANGLES40



| pica |
pica := Bot new. 
pica turnLeft: 33. 
pica go: 100. 
pica north. 
pica go: 100. 
pica west. 
pica go: 100. 
pica south. 
pica go: 100. 

Do you still obtain a square? No! The first side drawn by the robot is slanted, whereas the
other sides are either horizontal or vertical. The script that you wrote for Experiment 4-3 and
Script 4-3 demonstrate the crucial difference between relative and absolute changes in direction:

• The methods north, south, east, and west change direction in an absolute manner. 
The direction in which the robot will point does not depend on the current direction in
which it is pointing. 

• The methods turnLeft: and turnRight: change direction in a relative manner. The
direction in which the robot will point depends on its current direction. 

Figure 4-3 shows the equivalence between relative moves starting with a robot pointing to
the east and absolute moves. As you know, this equivalence is valid only if the robot is point-
ing east and not if it is pointing in any other direction. By the way, note that turning the robot
180 degrees points it in the opposite direction; this trick is often used in scripts.

Figure 4-3. Comparing absolute and relative orientation starting from the easterly direction 

North

northEastnorthWest

Eastwest

south

southEastsouthWest

0º

90º

45º

30º

60º

- 90º

- 30º

- 45º

- 60º

135º

180º

- 135º

CHAPTER 4 ■ DIRECTIONS AND ANGLES 41



The Right Angle of Things
As you know by now, a newly created robot is pointing east, that is, toward the right-hand side
of the screen. If we ask this robot to turn left by 90 degrees, it will end up heading north. If
instead, we ask it to turn right by 90 degrees, it will end up heading south. Script 4-4 illustrates
the result of a turn left by 45 degrees. To help you in following the script, the accompanying
figure shows the robot’s starting position. 

Script 4-4. Moving through angles (1)

| pica | 
pica := Bot new. 
pica west. 
pica go: 100. 
pica east.
pica turnLeft: 45. 
pica go: 100.

The first part of Script 4-4, up to the line pica east, draws a horizontal line, which will act
as a reference line to indicate the easterly direction. The last part draws a line in the direction
45 degrees to the left of the easterly direction. You can vary the value of the angle to see what
sort of angles other numbers of degrees represent. Try the values 60, 120, 180, 240, 360, and
420. In particular, note that a turn by 180 degrees amounts to turning the robot in the opposite
direction from which it is pointing. 

Do you see any difference between arguments of 60 and 420? They represent the same angle!
Any two angle values whose difference is 360 or any multiple thereof are equivalent because 360
degrees represents a complete circle. Try an angle value of 1860 (1860 = 60 + 360 × 5). The result is
the same as you obtained with angle values 60 and 420. So keep in mind in dealing with angles
that a robot’s orientation does not change by adding one or more full turns to the orientation.

Now let us have some fun with the method turnRight:. Script 4-5 draws the hour and
minute hands of a clock together with a reference line. It uses two robots, which you can use 
to investigate the correspondence between a left turn and a right turn. I have added comments
surrounded by quotation marks and have employed a variety of font effects to help you to iden-
tify the different parts of the script. Note that you do not have to type these comments, since
they are not executed.

starting position

CHAPTER 4 ■ DIRECTIONS AND ANGLES42



Script 4-5. Moving through angles (2)

| pica daly | 
pica := Bot new. 
pica jump: 200. "drawing the reference line"
pica turnLeft: 180. 
pica go: 200. 
pica turnLeft: 180. 
pica color: Color blue. 
pica turnLeft: 45.       "drawing the minute hand"
pica go: 150. 
daly := Bot new. 
daly color: Color red. 
daly turnRight: 45.  "drawing the hour hand"
daly go: 100. 

In Script 4-5, the code in italics draws the reference line—that is, the line representing 
the direction of the robot before a turn method is executed—using the fact that a turn through
180 degrees amounts to turning around to point in the opposite direction. The reference line
is also the longest line drawn. Thus, the reference line will still be visible if the lines drawn by
the robots fall on top of it. The text in normal roman font following the italics is the code that
draws the minute hand (using pica) and in bold, the code drawing the hour hand using the
robot daly.

Experiment 4-5 (Moving Clock Hands)

Experiment with different angle values for each of the two robots; that is, change the angle values for the two turn
methods. Then, compare the effect of the method turnLeft: 60 (for pica) and turnRight: 300 (for daly).
You can see that turning left 60 degrees yields the same result as turning right 300 degrees. This is so because
the sum of the two values is 360 degrees, that is, a full circle.

minute hand

hour hand

reference line

CHAPTER 4 ■ DIRECTIONS AND ANGLES 43



Now let us see what happens when the robot turns from another direction. Here is the
same script as Script 4-4 but showing the effect of turning from the north. In this script we are
replacing daly by another robot, berthe, who honors the French impressionist painter Berthe
Morisot.

Script 4-6. Moving through angles (3)

| pica berthe | 
pica := Bot new. 
pica north. 
pica jump: 200. 
pica turnLeft: 180. 
pica go: 200. 
pica turnLeft: 180. 
pica color: Color blue. 
pica turnLeft: 45. 
pica go: 150. 
berthe := Bot new. 
berthe north. 
berthe color: Color red. 
berthe turnRight: 45. 
berthe go: 100. 

Experiment 4-6 (Changing the Reference Direction)

Continue to experiment with Script 4-6 by changing the reference direction. For the comparison to be meaningful,
you have also to orient berthe in the same direction as pica after creating her. Try any angle values you like and
try to predict what the resulting drawing will look like before executing the script. Continue experimenting with the
script until your predictions are accurate.

CHAPTER 4 ■ DIRECTIONS AND ANGLES44



Note that you should always be able to predict what is going to happen before executing a
script, because a computer blindly executes all valid statements, even the silliest ones.

A Robot Clock
I have mentioned that the lines drawn in Script 4-6 are akin to the hands of a clock. The anal-
ogy between time and angles is a good one, for the notion of degrees is strongly correlated
with that of hours. Ancient civilizations discovered the notion of time by measuring the angle
of the sun (or a star) relative to a reference direction. However, a script like Script 4-6 allows
you to place the hands in a position that does not indicate a real time of day. For example, you
could draw a clock with the hour hand pointing north and the minute hand pointing south.
But on a real clock, when the minute hand is pointing south, it is half past the hour, and so 
the hour hand should be halfway between two numbers on the clock’s face.

Now you will study the relationship between the hour hand and the minute hand on a
real clock that represents a real time of day.

Experiment 4-7 (A “Real” Clock)

Modify Script 4-6 as follows:

• Keep the direction of reference to the north (this is how Script 4-6 is written). This reference line indi-
cates 12:00 noon or midnight.

• Use the method turnRight: for both robots. After all, the hands of a clock move clockwise, which is
to the right.

• You can ask pica to draw the minute hand by multiplying the number of minutes after the hour 
that you wish to indicate by 6 (since during the 60 minutes in an hour, the minute hand travels the 
6 × 60 = 360 degrees in a full circle). For example, to represent the minute hand for 20 minutes after
the hour, you should use the expression turnRight: 120 (since 120 = 6 × 20).

• You can ask berthe to draw the hour hand by multiplying the number of the hours you want to indi-
cate by 30 (12 hours times 30 degrees per hour equals 360 degrees) and then adding one-half (0.5) 
of a degree for each minute after the hour, since in 60 minutes, the hour hand moves 30 degrees. For
example, the hour hand is positioned for 2 o’clock with the message turnRight: 60 (60 = 30 × 2),
while the time 4:26 requires the hour hand to be positioned with the message turnRight: 133
(133 = 30 × 4 + 26 × 0.5).

Try to indicate a few times of your choice with this modified script.

CHAPTER 4 ■ DIRECTIONS AND ANGLES 45



Simple Drawings 
To begin with, here is a script for drawing a triangle with three equal sides: 

Script 4-7. An equilateral triangle

| pica |
pica := Bot new.
pica go: 100.
pica turnLeft: 120.
pica go: 100.
pica turnLeft: 120.
pica go: 100.
pica turnLeft: 120.

The last line of code is not necessary for drawing the triangle; it serves to point pica back in
his initial position.

Now, you are ready to draw a house.

Experiment 4-8 

Draw a house as shown in the figure. Try to draw houses of different shapes.

CHAPTER 4 ■ DIRECTIONS AND ANGLES46



CHAPTER 4 ■ DIRECTIONS AND ANGLES 47

Regular Polygons
A regular polygon is a figure composed of line segments all of the same length and all of
whose angles are equal. An equilateral triangle is a regular polygon with three sides. A square
is a regular polygon with four sides. For example, Script 4-7 draws an equilateral triangle
whose side length is 100 pixels. It is obtained by telling pica to go forward 100 pixels and then
turn 120 degrees left, and then repeating these two messages two more times so that they are
executed three times altogether.

You can program a robot to draw a regular polygon with any number of sides by asking it
to move a certain length and then turn left or right by 360 degrees divided by the number of
sides; this sequence must be repeated as many times as there are sides. Note that the last turn
by the robot can be omitted, since the robot has drawn the last line of the polygon.

Experiment 4-9 

Draw a regular pentagon (a regular polygon with five sides), as shown in the figure, with sides of length 100 pixels.

Experiment 4-10 

Draw a regular hexagon (a regular polygon with six sides), as shown in the figure, with sides of length 100 pixels.



If you are just curious to see how far you can go with this process, you can use the cut and
paste feature of the Bot workspace to generate a regular polygon with a large number of sides.
If you are in the mood, go on increasing the number of sides. However, in Chapter 7, I will show
you how you can type a sequence of expressions once and then have them repeated over and
over. 

Experiment 4-11 

Draw the three-spoked figure shown below.

Summary 
• A robot can be oriented relative to its current direction using the methods turnLeft:

and turnRight:.

• The parameter given to the methods turnLeft: and turnRight: is given in degrees. 

• Turning 360 degrees corresponds to a turn through a full circle. 

• Turning 180 degrees corresponds to a turn through a half circle. 

• Angle values whose difference is a multiple of 360 degrees are equivalent. 

CHAPTER 4 ■ DIRECTIONS AND ANGLES48



Here is a list of the methods that you have learned about in this chapter. 

Method Syntax Description Example 

turnLeft: turnLeft: aNumber Tell the robot to change its pica turnLeft: 30
direction by a given number
of degrees to the left. 

turnRight: turnRight: aNumber Tell the robot to change its pica turnRight: 30
direction by a given number
of degrees to the right.

turn: turn: aNumber Tell the robot to change its pica turn: 30 
direction to a given number
of degrees following the 
mathematical convention 
that a turn is to the left if the 
number is positive and to 
the right if it is negative. 

beInvisible beInvisible Hide the receiver. pica beInvisible 

beVisible beVisible Show the receiver. pica beVisible

CHAPTER 4 ■ DIRECTIONS AND ANGLES 49



Pica’s Environment

In this chapter, I will present pica’s environment and show you how to obtain tools and save
your scripts. I will also return to the notion of messages and show that you can ask the envi-
ronment not only to execute a message, but also to print the result of the message execution.

The Main Menu 
When you click on the background you get the main menu of the environment, as shown in
Figure 5-1.

Figure 5-1. Menu options of the environment
51

C H A P T E R  5

■ ■ ■



If you want to know what a particular menu item does, simply move the mouse pointer
over it for a second, and voilà! a balloon should pop up describing the item. The main menu
gives access to five main groups of functionalities: access to tools, screen capture, access to
some robot behavior, appearance, and saving the environment. The submenus are grouped 
as follows: 

• The open… menu collects several tools such as the robot code browser, the Bot work-
space, a file browser, and other tools that I will present as needed.

• The BotsInc actions menu collects several actions such as indicating the version of the
environment and clearing all robots and their traces, as well as some actions to reinstall
the environment if needed: reinstalling default preferences resets the preferences that
you may have modified using the appearance menu to their default values. 

• The appearance… menu collects actions that change the appearance of the environ-
ment such as fonts used, full-screen mode, and background color. 

Obtaining a Bot Workspace
If you happen to close the default Bot workspace, don’t worry. You can get a new one easily
from the dark blue flap, as shown (though not in blue) on the left side of Figure 5-2, or from
the main menu, as shown in Figure 5-1. To install a new Bot workspace in the working flap,
open the working flap (bottom flap) and drop the Bot workspace from the blue flap into the
bottom flap. 

Figure 5-2. Obtaining a new Bot workspace from the flaps

The dark blue flap contains other tools that we are going to use in the future. The second
tool is basically a code browser that you will use when you define new robot methods.

CHAPTER 5 ■ PICA’S ENVIRONMENT52



The environment contains a simple tool (Figure 5-3) that lists the most important messages
that a robot can understand. You can obtain access to this tool via the open...vocabulary menu
or the help menu (open vocabulary). The vocabulary pane lists the messages, grouped accord-
ing to type. For example, the messages east, north, and so on are listed under absolute
directions.

Figure 5-3. The most important messages for robots

Interacting with Squeak
Interaction with Squeak is based on the assumption that you have a three-button mouse,
though there are button equivalents for a Windows two-button mouse or Macintosh one-
button mouse, as shown in Table 5-1. Each button is associated with a logical set of operations.
The left button is for obtaining contextual menus and for pointing and selecting, the middle
button is for window manipulation (bringing a window to the front or moving it), and the
right button is for obtaining handles, which are small colored and round buttons floating
around graphical elements (as shown in Figure 5-4). Collectively, the handles are called a halo.
The handles are useful, for they allow you to interact directly with the robot. I will present
them in detail in the next chapter.

CHAPTER 5 ■ PICA’S ENVIRONMENT 53



Figure 5-4. Right clicking on a robot brings up its halo of handles.

Table 5-1. Mouse Button and Key Combinations

Pointing and Context-Sensitive Open the Halo
Selecting Menus

Three buttons: Left click Center click Right click

Windows 2-button equivalent: Left click Alt-left click Right click 

Mac 1-Button equivalent: Click Option-click Command-click 

Using the Bot Workspace to Save a Script 
The Bot workspace has five buttons and a menu that allow you to save scripts. The button 
Do It All executes the entire script contained in the workspace. The button Do It executes
the part of the script in the workspace that is currently selected. The button Clear Trails 
clears only the robot trails without removing the robots themselves. The button Clear Robots
removes only the robots without clearing their trails. The button Clear All removes all the
robots and their trails.

Once you have written a script, you may wish to save it to a file for future use. The Bot
workspace provides a way of saving and loading files via the workspace menu. Click on the
contents of the workspace to bring up its associated menu, as shown in Figure 5-5. The menu
item save contents will save the complete contents of the workspace into a file. Selecting this
menu item brings up a dialog box, as shown in the figure. Note that the system checks whether
a file with the same name already exists. If such a file already exists, the system gives you the
choice of overwriting the file or saving it under another name.

Figure 5-5. Left: Bot workspace menu options. Middle: Specifying the name of the file in which
the script is to be saved. Right: If a file already exists, you can overwrite it or rename it.

Destroy the robot

Save graphic

Load graphic

Pass graphic
to class

Paint the robot

Select the robot

Duplicate the robot

Resize the robotBot

CHAPTER 5 ■ PICA’S ENVIRONMENT54



Loading a Script 
To load a script, you have to use a file list, a tool that allows you to select and load different
files into Squeak. You can obtain a file list by selecting the menu item open… file list from 
the main menu. A file list comprises several panes. The top left pane allows you to navigate
through volumes and folders; each time you select an item in this pane, the top right pane is
updated. It shows all the files contained in the folder that you selected in the left pane. When
you select a file in the right pane, the bottom pane automatically displays its contents. Figure
5-6 shows that we are in the folder Bot testing, in which the file square.text is selected.

Figure 5-6. The file list is open to the script square.text

To load a script, you simply have to copy the contents of the bottom pane using the menu
item copy and paste it into the Bot workspace using paste, just as you would in any text editor.

Capturing a Drawing
To keep a record of your drawings, you can use the screen capture feature of your computer.
However, with some computers, screen capture is problematic. To avoid such problems, the
environment offers a simple screen capture mechanism that works on any computer. Bring up
the main menu by clicking on the background of the environment. The menu offers two items
for capturing, named capture screen and capture and save image, as shown in Figure 5-7. 

CHAPTER 5 ■ PICA’S ENVIRONMENT 55



Figure 5-7. Left: Two possibilities for capturing and saving the capture. Right: The cursor has
changed, indicating that Squeak is ready for the capture. Now click to position one corner of 
the rectangular region you want to capture.

The easier of the two options is to use the capture and save image menu item. When you
select this item, Squeak shows that it is ready to capture by changing the cursor’s shape to that
of a corner, as shown on the right-hand side of Figure 5-7. Place the cursor at the corner of the
rectangular region you want to capture, click, and drag the mouse to delimit the region you
want. The region is displayed in the bottom left corner of the Squeak window, and Squeak
prompts you for the name of the file without extension that it will save.

If you want to capture a region of the screen, use the menu item capture screen. In this
case, Squeak will not prompt you to save the file, but instead, it creates a picture on the Squeak
desktop, which you can save by first calling up the handles by right clicking on the screenshot.
A number of different handles should appear around the image, as shown in Figure 5-8. Once
the halo, that is, the group of handles, has appeared around your image, click on the red han-
dle, which opens a menu of actions that you can apply to the image. Select export… and the
format in which the image is to be saved. Squeak will prompt you for the name of the file. Note
that you can import these files into Squeak by dropping them from the desktop onto the
Squeak desktop.

Figure 5-8. Call up the halo and choose the red handle menu item export… to save the image to disk.

CHAPTER 5 ■ PICA’S ENVIRONMENT56



CHAPTER 5 ■ PICA’S ENVIRONMENT 57

Message Result
In Smalltalk, objects communicate only by sending and receiving messages to and from other
objects. Once an object receives a message, it executes it, and additionally, it returns a result. A
result is an object that the receiving object has returned to the sender. Communication between
objects by means of messages is similar to communication between people by sending letters:
Some letters that we receive require us to perform certain actions (such as a warning from the
dogcatcher to keep our dog on a leash), while others might require us to sign an acknowledgment
that we have received the letter (a certified letter).

In Squeak, the receiver of a message always returns a result, which by default is the
receiver of the message. However, this result is often not of interest. For example, sending the
message go: 100 to a robot tells the robot to move 100 pixels in its current direction. But we
have no use for the result returned, which in this case is the robot itself, so in this case, we
ignore the result. In many cases, though, the result of a message execution is important. For
example, the expression 2 + 3 sends the message + 3 to the object 2, which returns the object
5. Sending the message color to a robot returns its current color. The result of a message can 
be used as part of another message in a compound message. For example, when the expression
(2 + 3) * 10 is executed, the expression (2 + 3) is executed, whereby the message + 3 is sent
to the object 2, and this returns 5. The result 5 is then used as the object to which a second 
message, * 10, is sent. Thus 5 is the receiver of the message, and it then returns the result 50.

The Squeak environment allows you to execute messages without dealing with the mes-
sage’s result, and it also allows you to execute messages and print the returned message value.
The following section will illustrate this difference in detail.

■Note A result is an object that the receiving object returns to the object that sent a message.
For example, 2 + 5 returns 7 and pica color returns pica’s color, a color object.

In Figure 5-9, the expression 50 + 90 is selected, then using the menu the expression is
executed, and the result, 140, is printed on the screen. 

Figure 5-9. Left: Selecting the expression 50 + 90. Middle: Opening the menu. Right: Executing
the message and having the result printed.



Executing a Script 
There are three ways of executing a script.

1. Using the buttons of the Bot workspace editor. In Chapter 2 you saw a simple way to
execute your first script by pressing the Do It All button of the Bot workspace. But 
to execute a script, you can also select the text you want to execute with the mouse 
(the selection turns green) and then press the Do It button of the Bot workspace.

2. Using the menu. Select the part of your script you want to execute, as shown, for
example, in Figure 5-10. Then open the menu by pressing the middle button of your
mouse (or press the option key while clicking with the left button), and then choose
the do it (d) or the print it (p) menu item as shown in Figure 5-9. 

Figure 5-10. Selecting a piece of a script and executing it explicitly using the menu

3. Using keyboard shortcuts. Select a piece of text, then press command+D on a Mac or
alt+D on a PC. 

Hints
To automatically select all the text of a script, you can simply click at the start of the text (before
the first character), at the end of the text, or on the line after the last expression. If you want to
select a word, you can double click anywhere on the word. If you want to select a line, just dou-
ble click at the beginning (before the first character) or end (after the last character) of the line.

Two Examples
When you execute the expression pica color, which asks the robot its color using the do it (d)
menu item, the message color is sent and executed. However, you have the impression that
nothing happens. This is because you have not asked the system to do anything with the result

CHAPTER 5 ■ PICA’S ENVIRONMENT58



of the message execution. If you are interested in the result of a message, you should use the
menu item print it (p), as shown in Figure 5-11. This has the effect of both executing the piece
of code selected and printing the result returned by the last message in the code. In the figure,
the expression Bot new is executed, and then the message color is sent to the newly created
robot. The message color is executed, and the color of the receiving robot is returned and
printed, as shown in Figure 5-12. The text (TranslucentColor r: 0.0 g: 0.0 b: 1.0 alpha:
0.847) tells us that the color of the robot is a transparent color composed of the three color
components red, green, and blue. 

Figure 5-11. Open the menu and select the item Print it (d) to execute the selected piece of code
and print the returned result.

Figure 5-12. The result of the message is printed as a textual representation of a color.

Let’s look at a final example to make sure that you understand when to use print it. When
you execute the expression 100 + 20 using the menu item do it (d), the message + 20 is sent to
the object 100, which adds 20. However, you do not see anything. This is normal, because in
such a case the execution of the message + 20 returns a new number representing the sum,
but you did not ask Squeak to print it. To see the result, you have to print the result of the mes-
sage execution using the menu item print it. From now on, we will write “—Printing the
returned value:” to indicate that we are using the print command to execute an expression
and print its result, as shown in Script 5-1. Note that we will use this convention only when
the result is important. 

CHAPTER 5 ■ PICA’S ENVIRONMENT 59



Script 5-1. Printing the result of executing an expression 

(100 + 20) * 10
—Printing the returned value: 1200 

■Important! There are two ways of executing an expression: (1) using the Do It menu item to execute an
expression, and (2) using the Print it menu item to execute it and print the returned result.

Summary
• To execute an expression, select a piece of text representing one or several expressions

and press the Do It button or select the menu item do it from the execution menu.

• A result is an object that you obtain from a message. For example, pica color returns
the color of the robot. 

• There are two ways of executing an expression, (1) using the do it menu item to execute
an expression, and (2) using the print it menu item to execute it and print the returned
result.

CHAPTER 5 ■ PICA’S ENVIRONMENT60



61

C H A P T E R  6

■ ■ ■

Fun with Robots

The basic look of a robot is rather simple. Wouldn’t it be nice to be able to create robots that
had a bit more pizzazz to them? Fortunately, you can create customized robots, and in this
chapter, I will show you how you can change the shape, the pen size, and the color of your
robots. You can make your robot look like an animal, a monster, or even the famous robot
R2D2 from the movie Star Wars.



Robot Handles
You have learned about opening a message balloon for sending a message to a robot by click-
ing on that robot. Now you are going to learn about obtaining access to other robot functions
such as duplicating, moving, and changing the look of a robot. These extra functionalities are
available via the halo of handles, which, as was mentioned briefly in Chapter 5, you can beam
up by right clicking (command clicking on a Mac) on a robot. The handles are the small,
round icons that surround the robot like a halo, as shown in Figure 6-1. I will explain the func-
tions of the different handles as they are needed. You can get information about a handle by
letting your mouse rest over a handle; then a balloon pops up and explains the handle’s pur-
pose. For now, try to make a copy of the robot by clicking on the green (“duplicate the robot”)
handle, move the robot by clicking on the black (“select the robot”) handle and dragging the
robot, or destroy the robot using the pale pink (“destroy the robot”) handle with the “X.”

Figure 6-1. Right click (command click) on the robot to bring up the halo of handles.

Pen Size and Color
When our robots moved around the screen in previous chapters, they left a black trace in their
wakes. But you are not limited to the default color black. You can change the color of a robot’s
pen by sending a robot the message penColor: with a color object as argument. One of the
ways of obtaining a color object is to send a message with the name of a color to the class
Color, which is a factory that makes color objects. For example, Color blue yields a blue color
object, and Color yellow yields a yellow color object. Thus you can change the pen color of
the robot pica to the color blue with the message send pica penColor: Color blue. I will
explain more about colors in the following section.

You can also change the thickness of the robot’s pen by sending the message penSize:
with a number as argument. For example, pica penSize: 5 orders pica to change his pen size
to be 5 pixels wide. Script 6-1 draws a thick blue line of width 5 pixels. 

Script 6-1. Pica can draw a thick blue line.

| pica |
pica := Bot new.

Destroy the robot

Save graphic

Load graphic

Pass graphic
to class

Paint the robot

Select the robot

Duplicate the robot

Resize the robotBot

CHAPTER 6 ■ FUN WITH ROBOTS62



pica penColor: Color blue.
pica go: 100.
pica penSize: 5.
pica go: 100

Script 6-2 draws a sailor’s spyglass by repeatedly increasing the pen size.

Script 6-2. Pica draws a spyglass.

| pica | 
pica := Bot new.
pica go: 40.
pica penSize: 2.
pica go: 40.
pica penSize: 4.
pica go: 40.
pica penSize: 6.
pica go: 40.

You can change the color of the robot itself using the method color:. For example, the
message send berthe color: Color yellow changes the robot berthe’s color to yellow. Script
6-3 tells berthe to change her color to yellow and then go forward 100 pixels, while pica is left
behind with his default color and without moving.

Script 6-3. Berthe changes her color and goes for a walk, while pica is left behind.

| pica berthe |
pica := Bot new.
berthe:= Bot new.
berthe color: Color yellow.
berthe go: 100.

More about Colors
As previously mentioned, Squeak is an environment that is built from objects and that uses
objects. Therefore, programming in Squeak amounts to creating objects and sending them
messages. In particular, a color is an object created by the class Color. To obtain a color object,
you send a message to the class Color.

Some color messages are named for the color they represent. For example, Color red
causes the class Color to create a red color object. Here is the list of the predefined message
selectors that you can send to the class Color to create that color: black, veryVeryDarkGray,
veryDarkGray, darkGray, gray, lightGray, veryLightGray, veryVeryLightGray, white, red, yel-
low, green, cyan, blue, magenta, brown, orange, lightRed, lightYellow, lightGreen, lightCyan,
lightBlue, lightMagenta, lightBrown, lightOrange, paleBuff, paleBlue, paleYellow, paleGreen,
paleRed, veryPaleRed, paleTan, paleMagenta, paleOrange, and palePeach.

CHAPTER 6 ■ FUN WITH ROBOTS 63



The Color class is like a real-life paint factory. Not only can it make a large number of
standard colors, it can also create a customized color for you by combining different amounts
of red, green and blue. Table 6-1 shows a few examples of how to create colors this way using
the message r: redAmount g: greenAmount b: blueAmount. The arguments taken by the mes-
sage selector r:g:b: should be decimal numbers between 0 and 1 representing the amounts of
red, green, and blue to be combined. For example, the expression Color r: 1 g: 0 b: 0 cre-
ates the same pure red color that you get from Color red. Using the same amount of each of
the three colors produces a shade of gray. All ones produces white, and all zeros produces
black.

Table 6-1. Creating Colors with Color r:g:b:

Color r: (Red) g: (Green) b: (Blue)

red 1 0 0

light gray 0.1 0.1 0.1

yellow 1 1 0

white 1 1 1

black 0 0 0

gray 0.5 0.5 0.5

pale green 0.8739 1.0 0.8348

Finally, the method fromUser lets you pick a color from a palette on the screen, and then
shows you that color’s ingredients, as illustrated in Figure 6-2 (though you will have to imagine
the colors). For that, you need to execute the expression Color fromUser using the print it
menu to get the result of the selection printed.

Figure 6-2. Choose your color from a color palette with the message send Color fromUser.

Changing a Robot’s Shape and Size
You can change a robot’s shape as well as its color. In addition to the default robot shape, two
shapes, a circle and a triangle, are built into the Bot factory (but you can also draw the robot
shape with a drawing tool, as shown in the next section). The message lookLikeTriangle gives
a triangular shape to a robot. The message lookLikeCircle gives a circular shape to a robot.
The default shape is produced by sending the message lookLikeBot.

CHAPTER 6 ■ FUN WITH ROBOTS64



Another aspect you can change is the size of a robot using the message extent:
widthAndHeight, where the values of widthAndHeight represent the width and height of the 
rectangle in which the robot is drawn. The argument widthAndHeight is a pair of numbers, 
also called a point in Squeak. It is composed of two numbers separated by the @ symbol.
For example, the point 50@100 represents a rectangle 50 pixels wide and 100 pixels tall. 

Thus to create a robot named bigpica in the shape of a triangle that fits inside a square
with dimensions 150@150, you would first send bigpica the message lookLikeTriangle and
then the message extent: 150@150.

Figure 6-3 shows some robot shapes created using the built-in triangle and circle shapes,
and Script 6-4 shows how to create robots of these sizes and shapes and move them into posi-
tion as shown in the figure.

Figure 6-3. Robots can come in different shapes and sizes.

Script 6-4. Creating robots of different sizes and shapes (circles and triangles)

| pica daly bigpica |
pica := Bot new.
pica lookLikeTriangle.
pica west.
pica color: Color red.
pica penColor: Color green.
pica penSize: 3.
pica go: 100.
daly := Bot new.
daly extent: 60@60.
daly east.
daly go: 100.
bigpica := Bot new.
bigpica lookLikeTriangle.
bigpica extent: 150@150.
bigpica penSize: 5.
bigpica north.
bigpica go: 80.

CHAPTER 6 ■ FUN WITH ROBOTS 65



Drawing Your Own Robot
Squeak lets you draw a customized robot. You can even create a robot that looks like one of
the figures shown at the beginning of this chapter. I will now describe step by step how to
draw your own robot.

Step 1: Open the painting tool via the red handle. The first step is to open the painting
tool that is included in Squeak. Right click (or command click for Mac) to beam up the
halo around the robot that you want to paint, as shown in Figure 6-4. Click on the red
handle, the one with the icon of a pen inside. This will open the painting editor, which 
is depicted in Figure 6-5. Do not worry about the other handles. Note that if you have
already drawn a graphic, that graphic will be shown inside the painting tool.

Figure 6-4. Right click (or command click) to obtain the halo. Choose the painting editor
from the red handle.

Figure 6-5. The painting editor

Step 2: Draw the new robot graphic. The second step is to draw a new graphic for your

Paint the robot

CHAPTER 6 ■ FUN WITH ROBOTS66



CHAPTER 6 ■ FUN WITH ROBOTS 67

robot. Draw your robot pointing to the right, as shown in Figure 6-6. The painting editor
has the usual features of graphics programs, such as selecting the brush size, filling a
region, repeating a selected region, and selecting the paint color. The painting tool also
has two buttons (shown in Figure 6-7) to rotate and zoom your drawing.

Figure 6-6. This robot looks like a spotted spider.

Figure 6-7. The zoom and rotate buttons

Step 3: Preserving your graphic. Once you are satisfied with your drawing, you should
press the button keep. This closes the painting tool. Now your robot looks like the graphic
that you created.

Saving and Restoring Graphics
If you have spent lot of time drawing a robot and you would like to save it for future reference,
you can save it to a file. Once it has been saved, you will be able to load it into different envi-
ronments and share it with your friends. You can begin to build a library of robot graphics over
time. Now I will show you how to save and load a graphic. Then I will show how you can asso-
ciate a graphic with a single robot or even to a class (robot factory), so that all newly created
robots will look like the graphics that you have drawn. I will start by showing you how to per-
form all these manipulations by interacting with the robots directly, and then how to write
scripts to do these things automatically.



The “Save Graphics” Handle
To save a graphic, simply click on the blue handle, the one with the file icon (Figure 6-8). 
I chose the color blue to make you think of a frozen lake: saving the graphic “freezes” your
robot’s shape to preserve it. The system will then ask you to give a name to the saved graphic,
as shown in Figure 6-9. This operation saves your graphic to a file, in the same folder as the
Squeak image, with the name you entered and with the extension .frm.

Figure 6-8. The robot now looks like a spider. It is pointing to the right.

Figure 6-9. Clicking on the blue handle produces a prompt for a name.

You can reverse the operation and load a graphic by clicking on the pink handle in the
robot’s halo, the one with an icon that looks like a tool that a robot might use. I chose the color
pink to make you think of bringing your robot back to life. When you click on the pink handle,
the system asks you for the name of the graphic you want to load. Your robot will take on the
appearance of the graphic that you choose.

Retooling the Robot Factory
You have drawn and saved a beautiful spotted spider, and you would like the robot factory 
to make you a robot with this graphic, but when you tell the Bot class to create a new robot, 
it creates one using the default graphic. In order for the Bot class to be able to create your 

Pass image to class

Save graphics

Load graphics

CHAPTER 6 ■ FUN WITH ROBOTS68



spider robot, you have to tell your robot to pass its graphic to the class using the message 
passImageToClass. After you have sent this message, if you create a new robot and ask it to
look like the image, it will look like the graphic that you just drew.

Another way of obtaining the same result is to send lookLikeImage or any of the lookLike
messages to the Bot class itself. Then the class will be configured to create new robots accord-
ing to the new configuration. For example, if you send the message lookLikeCircle to the
class Bot, all newly created robots will look like a circle. Thus if you want to have the Bot class
create robots that look like spiders, you have to (1) get a robot, (2) draw the spider or load a
previously saved spider graphic, (3) pass the spider image to the class, and (4) tell the class to
make robots with the image by sending it the message lookLikeImage. Then all your newly 
created robots will look like a spider, as shown in Figure 6-10.

Figure 6-10. Passing an image to the Bot class and sending the message lookLikeImage results in
all newly created robots looking like that image.

Graphics Operations Using Scripts
You can also write a script to load and save graphics and associate them with a single robot or
with a class.

Script 6-5 creates two robots and loads a graphic for each of them using two different
methods. After pica is created, he is sent the message loadImage, which results in a prompt to
the user for the name of the image to load. Then berthe is created, and she is sent the message
loadImage: 'spider', which gives her the image contained in the image file spider.frm.

CHAPTER 6 ■ FUN WITH ROBOTS 69



Note the important distinction between the messages loadImage and loadImage: 
'fileName'. The first of these has no parameter, and the user is prompted for the name of 
the graphics file to load. The second message does have a parameter, where here 'fileName'
represents the name of the image file inside single quotation marks (and without the file
extension).

You can save the image using the message saveImage or saveImage: 'fileName'. First
berthe is sent the message saveImage, which prompts the user for the name under which the
image is to be saved. Finally, pica is sent the message saveImage: 'spider2', which saves his
image under the file name spider2.frm.

Script 6-5. Two ways of loading and saving robot graphics

| pica berthe |
pica := Bot new.
pica loadImage.             "The user is prompted for the name of the image to load"
berthe := Bot new.
berthe loadImage: ’spider   "A parameter gives the name of the file to be loaded”
berthe saveImage.           “The user is prompted to name the saved image file"
pica saveImage: 'spider2'   "A parameter gives the name of the saved image"

Just as you can load and save graphics associated with an individual robot, you can load
and save graphics that are to be associated with a class, such as the Bot class. The same mes-
sages are used for the class as were used for the individual robots. They are just sent to Bot
instead of to pica or berthe. Script 6-6 first associates the image spider.frm with the Bot class.
Then the image is saved under another name, spiderBot.frm.

Instead of the methods loadImage: and saveImage:, you can use loadImage and saveImage
(no colon, no argument), which prompt the user for a file name. The expression Bot clearImage
resets the Bot class to its condition the first time you used it. This restores the default robot
image to the class, which means that when you run the script, you can reproduce a predictable
scenario.

Script 6-6. Loading and saving a graphic associated with the Bot class

| pica berthe |
Bot clearImage.           "clears any graphic that was previously associated

with the class Bot."
berthe := Bot new.        "berthe looks like a default robot"
Bot loadImage: 'spider'.  "The image in spider.frm is associated with the Bot class"
Bot lookLikeImage
pica := Bot new.          "The robot pica looks like a spider"
Bot saveImage: 'spider3'  "The spider image is saved under the name spider3.frm"

The following scripts (Scripts 6-7 and 6-8) assume that three image files, luth.frm,
spider.frm, and airplane.frm are located in the directory containing the Squeak image. 
These files are included in the distribution of the environment used in this book. 

CHAPTER 6 ■ FUN WITH ROBOTS70



CHAPTER 6 ■ FUN WITH ROBOTS 71

Script 6-7 uses the method loadImage: to associate an image with a robot, and the method
lookLikeImage to instruct a robot to look like the image with which it is associated. After the robot
pica is created, he is asked to look like his associated image (pica lookLikeImage). Since no
graphic has been associated with pica, asking him to look like an image produces no change. 
But then the image from the file luth.frm is associated with pica by sending him the message
loadImage: 'luth'. Now when pica is sent the message lookLikeImage, his appearance is
changed, and he looks like a luth sea turtle. In the last line of the script, a different image file is
associated with pica. Once it has been given the message lookLikeImage, a robot will look like
whatever image is associated with it. Thus when the expression pica loadImage: 'spider' is
executed, pica will look like a spider. 

The script continues with a new robot, berthe, being created. Since the class Bot does not
have any image associated with it, berthe will have the graphic of a default robot, and if you
send her the message lookLikeImage, nothing changes, since she does not have an associated
image.

Script 6-7. Changing the image of a robot

| pica berthe |
Bot clearImage.

pica := Bot new.
pica lookLikeImage.
"No image loaded or created, so nothing changes"

pica loadImage: 'luth'.
pica lookLikeImage
"Load an image and ask the robot to look like it"

pica loadImage: 'spider'.
"load another image, and since the message lookLikeImage has already been 
sent, pica will look like the new image"

berthe := Bot new.
berthe lookLikeImage.
"When berthe is created, she looks like a default robot, and since no image 
has been loaded into the class, the message lookLikeImage causes nothing to 
change"

Script 6-8 shows how to notify the Bot class that all newly created robots should have a
particular graphic. In contrast to the situation described in Script 6-7, the message loadImage:
'fileName' is sent to the class Bot itself and not to a particular robot. Just as a swimmer and a
billiards player have different reactions to the word “pool,” different objects and classes have
different understandings of the same message. That is because every object or class has its
own method that responds to a given message, and these methods may be different for the
same message. In the case at hand, loadImage: has different behavior depending whether it is
received by the Bot class or by a robot, which is an instance of the class. When received by the



Bot class, the message loadImage: 'fileName' leads to the class loading and associating the
graphic from the file, so that newly created instances (robots) can use the new graphic. When
received by a robot, only the particular robot receiving the message can use this graphic.

Script 6-8. Associating a graphic with the Bot class

| berthe daly pica yertle |
Bot loadImage: 'spider'.
berthe := Bot new.
berthe lookLikeImage.
"berthe, as an instance of the Bot class, now looks like a spider"

daly := Bot new.
daly lookLikeImage.
"daly also now looks like a spider"

pica := Bot new.
pica loadImage: ’luth’.
pica lookLikeImage.
"But a specific robot can still change its own graphics; 
pica now looks like a turtle"

pica getImageFromClass.
"pica gets his image from the Bot class; now he looks like a spider again"

Bot loadImage: ’luth’.
Bot lookLikeImage.
yertle := Bot new.
"Now the class will create robots that look like luth turtles"

Script 6-8 starts by loading a new graphic from a file and associating it with the Bot class
itself. Then the new robot berthe is created, and she is sent the message that tells her to use
the new graphic. Creating another robot, daly, and sending him the message lookLikeImage
makes him also look like the image associated with the class.

All robots created can be made to look like a spider. However, a particular robot, such 
as the robot pica in the script, can be given his own image by sending him the message 
loadImage: 'fileName'. The robot’s associated image overrides the class image. The message
getImageFromClass makes it possible to restore the graphic associated with the class. The last
sequence of messages shows that we can associate a new graphic to a class, replacing the 
currently associated image. Sending the message loadImage: 'fileName' to the class Bot
associates the graphic in the file fileName.frm to the class. Then sending the message 
lookLIkeImage ensures that newly created robots will by default look like the graphic 
now associated with the class. Hence the robot yertle looks like a turtle.

CHAPTER 6 ■ FUN WITH ROBOTS72



Summary
Method Description Example

lookLikeCircle Change the shape of the receiver Bot new lookLikeCircle
to a circle.

lookLikeBot Change the shape of the receiver Bot new lookLikeBot
to a robot.

lookLikeTriangle Change the shape of the receiver Bot new lookLikeTriangle
to a triangle.

lookLikeImage Change the appearance of the Bot new lookLikeImage
receiver to the graphic you painted.

lookLikeCircle Sending to the class results in newly Bot lookLikeCircle
created robots having the shape of 
a circle.

lookLikeBot Sending to the class results in newly Bot lookLikeBot
created robots having the shape of 
a robot. 

lookLikeTriangle Sending to the class results in newly Bot lookLikeTriangle
created robots having the shape of 
a triangle.

lookLikeImage Sending to the class results in newly Bot lookLikeImage
created robots having the shape of 
the graphic you painted or loaded.

loadImage: 'fileName' Load the image file fileName.frm Bot loadImage: 'spider' or
into the class or the robot. berthe loadImage: 'spider'

loadImage Prompt the user for the name of Bot loadImage or
an image file to be loaded into the berthe loadImage
class or the robot.

saveImage: 'fileName' Save the image of the class or the Bot saveImage: 'spider' or
robot to the file named fileName.frm. berthe saveImage: 'spider'

saveImage Save the image of the class or the Bot saveImage or
robot by prompting the user for berthe saveImage
a file name.

penColor: aColor Change the color of the pen. berthe penColor: Color blue

penSize: aNumber Change the size of the pen. berthe penSize: 3
The default size is 1.

color: aColor Change the color of the receiver berthe color: Color yellow
to the specified color.

extent: aPoint Change the size of the receiver to berthe extent: 80@100
dimensions given by aPoint, where 
aPoint is given by w@h, where w is
the width and h is the height.

passImageToClass Pass the graphic of the receiver to berthe passImageToClass
the class. After this message, robots 
created by the class will have as 
graphic the graphic of the current 
robot.

getImageFromClass Get the graphic of the class. After berthe getImageFromClass
this message, the receiver will look 
like the robots that would be 
created by the class.

CHAPTER 6 ■ FUN WITH ROBOTS 73



Elementary
Programming 
Concepts

P A R T  2

■ ■ ■



Looping

By now, you must think that the job of robot programmer is quite tedious. You probably
have a number of ideas for interesting drawings, but you just don’t have the heart to write 
the scripts to draw them, since it appears that the number of lines that you have to type gets
larger and larger as the complexity of the drawing increases. In this chapter, you will learn how
to use loops to reduce the number of expressions given to a robot. Loops allow you to repeat a
sequence of expressions. With a loop, the script for drawing a hexagon or an octagon is no
longer than the script for drawing a square.

77

C H A P T E R  7

■ ■ ■



A Star Is Born 
We would like to instruct a robot to draw a star, similar to the one shown in the picture at the
beginning of this chapter. We will instruct pica to draw a star in the following way: starting at
what will be the center of the star, draw a line, return to the center, turn through a certain
angle, draw another line, and so on until the star is finished. Script 7-1 creates a robot that
draws a line of length 70 pixels and then returns to its previous location. Note that after it has
returned to its starting point, the robot makes an about-face, so that it is pointing in its origi-
nal direction. 

Script 7-1. Drawing a line and returning 

| pica |
pica := Bot new.
pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.

To draw a star, we have to repeat part of Script 7-1 and then instruct the robot to turn
through a given angle. Let’s draw a six-pointed star, and so the angle will be 60 degrees, since
turning 60 degrees each time will result in 360/60 = 6 branches. Script 7-2 shows how this
should be done to obtain a star having 6 branches without using loops. 

Script 7-2. A six-pointed star without loops

| pica |
pica := Bot new.
pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.
pica turnLeft: 60.
pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.
pica turnLeft: 60.
pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180. 
pica turnLeft: 60.
pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.
pica turnLeft: 60. 

CHAPTER 7 ■ LOOPING78



pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.
pica turnLeft: 60. 
pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.
pica turnLeft: 60. 

As you can see, after pica is created, he repeats the same five lines of code six times (shown
in alternating roman and italic type). It seems wasteful to have to type the same code segment
over and over. Imagine the length of your script if you wanted a star with 60 branches, like the
one shown in Experiment 7-1. What we need is a way of repeating a sequence of expressions.

Loops to the Rescue
The solution to our problem is to use a loop. There are different kinds of loops, and the one
that I will introduce here allows you to repeat a given sequence of messages a given number of
times. The method timesRepeat: repeats a sequence of expressions a given number of times,
as shown in Script 7-3. This script defines the same star as the one in Script 7-2, but with
much less code. Notice that the expressions to be repeated are enclosed in square brackets.

Script 7-3. Drawing a six-pointed star using a loop 

| pica |
pica := Bot new. 
6 timesRepeat: 

[ pica go: 70.
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.
pica turnLeft: 60 ] 

■Important! n timesRepeat: [ sequence of expressions ] repeats a sequence of expressions 
n times.

The method timesRepeat: allows you to repeat a sequence of expressions, and in
Smalltalk, such a sequence of expressions, delimited by square brackets, is called a block.

The message timesRepeat: is sent to an integer, the number of times the sequence should
be repeated. In Script 7-3 the message timesRepeat: [...] is sent to the integer 6. There is
nothing new here; you have a message being sent to an integer when we looked at addition:
the second integer was sent to the first, which returned the sum.

CHAPTER 7 ■ LOOPING 79



Finally, note that the number receiving the message timesRepeat: has to be a whole
number, because in looping as in real life, it is not clear what would be meant by executing a
sequence of expressions, say, 0.2785 times.

The argument of timesRepeat: is a block, that is, a sequence of expressions surrounded
by square brackets. Recall from Chapter 2 that an argument of a message consists of informa-
tion needed by the receiving object for executing the message. For example, [ pica go: 70.
pica turnLeft: 180. pica go: 70. ] is a block consisting of the three expressions pica go:
70, pica turnLeft: 180, and pica go: 70.

■Important! The argument of timesRepeat: is a block, that is, a sequence of expressions surrounded
by square brackets.

Loops at Work 
If you compare Script 7-1 with the expressions in the loop of Script 7-3, you will see that 
there is one extra expression: pica turnLeft: 60, which creates the angle between adjacent
branches. There is a simple relationship between the number of branches and the angle
through which the robot should turn before drawing the next branch: For a complete star, 
the relation between the angle and the number of repetitions should be angle ∗ n = 360.

To adapt Script 7-3 to draw a star with some other number of branches, you have to change
the number of times the loop is repeated by replacing 6 with the appropriate integer. Note that
the angle 60 should also be changed accordingly if you want to generate a complete star. 

Experiment 7-1  (A Star with Sixty Branches)

Write a script that draws a star with 60 branches.

Code Indentation 
Smalltalk code can be laid out in a variety of ways, and its indentation from the left margin has
no effect on how the code is executed. We say that indentation has no effect on the syntactic
“sense” of the program. However, using clear and consistent indentation helps the reader to
understand the code. 

CHAPTER 7 ■ LOOPING80



I suggest that you follow the convention that was used in Script 7-3 in formatting 
timesRepeat: expressions. The idea is that the repeated block of expressions delimited 
by the characters [ and ] should form a visual and textual rectangle. That is why the block
begins with the left bracket on the line following timesRepeat: and we align all the expressions
inside the block to one tab width. The right bracket at the end indicates that the block is fin-
ished. Figure 7-1 should convince you that indented code is easier to read than unindented
code.

Figure 7-1. Indenting blocks makes it much easier to identify loops. Left: unindented.
Right: indented.

Code formatting is a topic of endless discussion, because different people like to read their
code in different ways. The convention that I am proposing is focused primarily on helping in
the identification of repeated expressions.

Drawing Regular Geometric Figures 
Many figures can be obtained by simply repeating sequences of messages, such as the square
that was drawn in Chapter 4 (repeated here as Script 7-4).

Script 7-4. Pica’s first square

| pica |
pica := Bot new.
pica go: 100.
pica turnLeft: 90.
pica go: 100.
pica turnLeft: 90.
pica go: 100.
pica turnLeft: 90.
pica go: 100.
pica turnLeft: 90 

Experiment 7-2 (A Square Using a Loop)

Transform Script 7-4 so that it draws the same square using the command timesRepeat:. Now you should be
able to draw other regular polygons, even those with a large number of sides.

| pica |
pica := Bot new.
6 timesRepeat: [ pica go: 70. 
pica turnLeft: 180.
pica go: 70.
pica turnLeft: 180.
pica turnLeft: 60 ]

| pica |
pica := Bot new.
6 timesRepeat: 
   [ pica go: 70. 
   pica turnLeft: 180.
   pica go: 70.
   pica turnLeft: 180.
   pica turnLeft: 60 ]

CHAPTER 7 ■ LOOPING 81



Experiment 7-3 (A Regular Pentagon)

Draw a regular pentagon using the method timesRepeat:.

Experiment 7-4 (A Regular Hexagon)

Draw a regular hexagon using the command timesRepeat:.

Once you have gotten the hang of it, try drawing a regular polygon with a very large num-
ber of sides. You may have to reduce the side length to make the figure fit on the screen. When
the number of sides is large and the side length is small, the polygon will look like a circle.

Rediscovering the Pyramids 
Recall how you coded the outline of the pyramid of Saqqara in Experiment 3-5. You can simplify
your code by using a loop, as shown in Script 7-5.

CHAPTER 7 ■ LOOPING82



Script 7-5. A looping pyramid script

| pica |
pica := Bot new. 
5 timesRepeat: 

[pica north.
pica go: 20.
pica east.
pica go: 20].

5 timesRepeat:
[pica go: 20.
pica south.
pica go: 20.
pica east]. 

pica west.
pica go: 200. 

Now you should be able to generate pyramids with an arbitrary number of terraces using
the same number of expressions, merely by changing the numbers in the script. 

Experiment 7-5 (A Ten-Step Pyramid)

Draw a pyramid with 10 terraces using a variation of Script 7-5.

You may now want to generate pyramids with even larger numbers of terraces. The size of
the terraces will have to be adjusted if you want them to fit on the screen.

CHAPTER 7 ■ LOOPING 83



CHAPTER 7 ■ LOOPING84

Further Experiments with Loops 
As you have seen, generating a step pyramid involves the repetition of a block of code that
draws two line segments. Once you have identified the proper repeating element, you can
produce complex pictures from elementary drawings through repetition. The following 
experiments illustrate this principle.

Experiment 7-6 (A Swiss Cross) 

Draw the outline of the Swiss cross shown on the right using turnLeft: or turnRight: and timesRepeat:.

Experiment 7-7 (A Staircase) 

Draw the staircase illustrated in the figure.

Experiment 7-8 (A Staircase Without Risers) 

Draw the stylized staircase—with treads but without risers—illustrated in the figure.



Experiment 7-9 (A Staple) 

Draw the illustrated graphical element that looks like a staple.

Experiment 7-10 (A Comb)

Transform the graphical element that you produced in Experiment 7-9 to produce the comb shown in the figure.

Experiment 7-11 (A Ladder)

Transform the graphical element from Experiment 7-9 to produce a ladder.

Experiment 7-12 (Tumbling Squares)

Now that you have mastered loops using timesRepeat:, define a loop that draws the tumbling squares illus-
trated at the start of Chapter 4.

CHAPTER 7 ■ LOOPING 85



CHAPTER 7 ■ LOOPING86

Summary 
In this chapter you learned how to program loops using the method n timesRepeat:.

Method Syntax Description Example 

timesRepeat: n timesRepeat: repeats a sequence of 10 timesRepeat:
[ a sequence of expressions ] expressions n times [ pica go: 10.

pica jump: 10 ]



Variables

People are always giving names to things. For example, we give names to people, to dogs, 
and to cars. When we do this, we are associating some object, being, or idea with a word or a
symbol. Once this association has been made, we may then use the word or symbol to refer to
or interact with the object associated with it. A name can last a lifetime, or it can be discarded
after a short period of time. Sometimes, names refer to other names. For example, an actor
generally has several names: a given name, a stage name, and the name of the character that
he or she is currently playing on stage or screen. In a programming language, we also need to
be able to name things, and variables are used for this purpose. 

In this chapter, you will learn about variables, which are placeholders for objects, and 
how variables help to simplify programs. Indeed, variables are often necessary in programming.
Finally, as the complexity of the problems that you encounter increases, you will see that you will
need to express dependencies between variables. For example, the width of a rectangle might be
two-thirds its length. In this chapter I will show you how to use variables to express dependencies
between different quantities.

87

C H A P T E R  8

■ ■ ■



CHAPTER 8 ■ VARIABLES88

Brought to You by the Letter A
As you did in Chapter 3, suppose you want to use a robot to write letters of the alphabet. The
rather primitive letter A that we are going to draw is characterized by its height, its width, and
a midheight, which is the height at which the midline of the A should be drawn, as shown in
Figure 8-1.

Figure 8-1. The shape of a letter A is characterized by its height, width, and midheight.

Experiment 8-1 

Write a script that draws a letter A of height 100 pixels, width 70 pixels, and midheight 60 pixels.

Variations on the Theme of A
The script you wrote for Experiment 8-1 should resemble Script 8-1. 

Script 8-1. An A for Experiment 8-1 

| pica | 
pica := Bot new. 
pica north. 
pica go: 100. 
pica east. 
pica go: 70. 
pica south. 
pica go: 100. 
pica west. 
pica jump: 70. 
pica north. 
pica go: 60. 
pica east. 
pica go: 70 

width

midheight

height



Experiment 8-2 (frAnkenstein)

Modify Script 8-1 to draw a monstrous letter A of height 200 pixels, width 100 pixels, and midheight 70 pixels, as
shown in the figure below.

In modifying Script 8-1 for Experiment 8-2, you found that in order to produce an A of 
a different size, you had to change the numbers that represent the height, the width, and the
midheight of the letter everywhere they occur and synchronously. By synchronously, I mean
“in the correct order”; that is, 100 should become 200, 70 should become 100, and 60 should
become 70 without any mixups. 

Experiment 8-3 (A Variety of A’s)

Modify Script 8-1 to draw other A’s of different sizes of your choice. Try to reproduce some of the A’s that appear in
the picture at the start of this chapter.

In doing Experiment 8-3 you undoubtedly quickly came to the conclusion that changing
the values of an A’s characteristics everywhere is tedious. Moreover, it should be obvious that
in making such changes, you run the risk of becoming confused and forgetting to change a
value or making a change to an incorrect value. The result can be nothing like what you had in
mind for your script. You can imagine that in complex programs, changing values one by one
in this way can become highly problematic. 

CHAPTER 8 ■ VARIABLES 89



Variables to the Rescue
Making large numbers of changes in producing letters of different sizes and shapes is both
tiresome and error-prone, and so we need a solution that will both keep us from mixing up the
numbers representing the various characteristics of a letter and enable us to make alterations
without having to change all the values everywhere. In fact, we would like to be able to do the
following: 

• Declare the height, width, and midheight of a letter A once for the entire script.

• Refer to these values as needed.   

• Change the values if necessary.

These three things are exactly what a variable allows us to do! Amazing isn’t it? A variable
is a name with which we associate a value. We must declare it and associate a new value with 
it. Then we can refer to a variable and obtain the value associated with this variable. It is also
possible to modify the value associated with a variable and assign it a new value. The value of
a variable value can be a number, a collection of objects, or even a robot. We now illustrate
how to declare, associate a value, and use a variable. 

■Important! A variable is a name with which we associate a value. We declare a variable and associate
a value with it. Then we can refer to a variable and obtain its value. It is also possible to modify the value
associated with a variable and associate a new value with it.

Declaring a Variable
Before using a variable, we have to declare it; that is, we must tell Squeak the name of the vari-
able that we want to use. We declare variables by enclosing them between vertical bars | |,
as shown in the following example, which declares the three variables height, width, and 
midheight:

| height width midheight| 

To be precise, vertical bars | | declare temporary variables, which are variables that exist only
during the execution of the script.

Assigning a Value to a Variable 
Before using a variable it is almost always necessary to give it a value. Associating a value is
called assigning a value to a variable. In Smalltalk, the symbol pair := is used in combination
to assign a value to a variable. In the following script, after declaring three variables we assign
100 to the variable height, 70 to the variable width, and 60 to the variable midheight. When we
assign a value to a variable for the first time, we say that we are initializing it:

| height width midheight |
height := 100.
width := 70.
midheight := 60

CHAPTER 8 ■ VARIABLES90



■Important! The symbol := assigns a value to a variable. For example, height := 120 assigns the
value 120 to the variable height, while length := 120 + 30 assigns the result of the expression 
120 + 30, that is, 150, to the variable length.

When we assign a value to a variable for the first time, we say that we are initializing it.

Referring to Variables
To refer to the value assigned to a variable—we also say use a variable—simply write its name
in a script. In the following script, after being declared in line 1, the variable height is initial-
ized with the value 100 in line 3 and used in line 5 to tell the created robot to go forward the
number of pixels associated with the variable height, which here is 100.

| pica height | 
pica := Bot new. 
height := 100 
pica north. 
pica go: height

■Important! In general, a variable must be declared and initialized before being used.

And What About Pica?
You guessed it! pica is also a variable. It just happens to be a variable whose value is a robot.
Hence, | pica | declares a variable named pica. The expression pica := Bot new initializes
the variable with a value, here a new robot. Then we use this robot by sending messages to it
via the variable pica, for example, pica go: 100.

Using Variables
Now let us explore the benefits of using variables, and I will show you some powerful proper-
ties that variables possess. In particular, I will show you the power that comes from expressing
relationships between variables. 

By introducing variables into Script 8-1, we obtain Script 8-2. 

Script 8-2. An A with variables 

| pica height width midheight | 
pica := Bot new. 
height := 100.              "initializes the variables"
width := 70. 
midheight := 60. 
pica north. 

CHAPTER 8 ■ VARIABLES 91



pica go: height.            "then we use the variables"
pica east. 
pica go: width. 
pica south. 
pica go: height. 
pica west. 
pica jump: width. 
pica north. 
pica go: midheight. 
pica east. 
pica go: width

You will agree that changing variable values once is easier than changing numbers scat-
tered throughout the script. Change some values to convince yourself. You should be able to
draw all the A’s that appear in the figure at the head of this chapter. Now if you want to change
the characteristics of your letter A, you need only reinitialize the variables by changing the val-
ues in lines 3, 4, and 5, as shown in Script 8-3. The resulting drawing is presented in Figure 8-2. 

Script 8-3. A modified letter A 

| pica height width midheight |
pica := Bot new.
height := 30.       "initializes the variables"
width := 200.
midheight := 10.
...

Figure 8-2. A short and stout letter A simply created with height = 30, width = 200,
and midheight = 10

Using variables, you can easily create many different letters, and in the future, you will be
able to write programs to solve many challenging problems. Let us step back for a moment
and consider the power provided by variables.

The Power of Variables
The experiments in the remainder of the chapter illustrate the power of variables. Variables let
you name a thing, whether a robot, a length, or practically anything else. Then you can use the
names instead of having to repeat the values that you associated with the names. Variables
make your scripts much easier to change, since you can simply reinitialize your variables to
different values.

CHAPTER 8 ■ VARIABLES92



In addition, a variable can hold a wide variety of types of values. Up to now, you have
assigned robots and numbers to variables, but you can also assign colors (for example, 
robotColor := Color yellow), a sound, or indeed any Squeak object. 

Note also that variables make your scripts much more readable and easier to understand.
To convince yourself of this, just compare Scripts 8-1 and 8-2. The simple fact of using variables
with names such as “width” and “height” helps you to understand how the letter is drawn.

Expressing Relationships Between Variables 
In your experiments with the letter A, you probably found some of your letters easier to recog-
nize than others. Letters of the alphabet should generally adhere to certain proportions to keep
them readable. In particular, the dimensions that describe a particular letter are not chosen at
random, but maintain certain proportions between them. 

In our simple letter A, let us decide that the width should be two-thirds of the height, and
the midheight should be three-fifths of the height. We can express these relationships using
variables, as shown in Script 8-4. As you can see, the value of a variable does not have to be a
simple number, but can be the result of a complex computation.

Script 8-4. Relations between variables: a first approximation 

| pica height width midheight |
pica := Bot new.
height := 120.
width := 120 * 2 / 3.
midheight := 120 * 3 / 5.
...

In looking over Script 8-4, you will soon realize that it is not optimal. The relationships
between the variables are expressed not between the variables themselves, but in terms of 
the value 120 (in lines 3, 4, and 5). This value would have to be changed manually whenever
you wanted to produce a different letter A with the same proportions. You want to be able to
change the value of height and have the values of width and midheight change automatically.
The solution is to use the variable height instead of 120, as shown in Script 8-5. In this script,
the values of the variables width and midheight truly depend on the value of height. What
makes this work is that the value of a variable can be expressed in terms of other variables.
The expression width := height * 2 / 3 expresses that the width of the letter is equal to 
two-thirds of its height. 

Script 8-5. Relations between variables: The variables width and midheight depend on height.

| pica height width midheight |
pica := Bot new.
height := 120.
width := height * 2 / 3.
midheight := height * 3 / 5.
pica north.
...

CHAPTER 8 ■ VARIABLES 93



Initialize Before Using!
The only constraint that you have to consider in expressing relationships between variables is
that a variable used in the definition of another variable should have a value. For example, in
Script 8-5, the variable height has its initialized value 120, which is used by width and midheight
in computing their initialized values. To see what can go wrong, in Script 8-6 the variable height
has not been initialized, and so when an attempt is made to initialize the variable width to
height * 2/3,   this leads to an error, because there is no   value of height to be used in the 
computation. I will have more to say about errors in Chapter 15. 

Script 8-6. Problematic width initialization

| height width midheight | 
width := height * 2 / 3. 
height := 120. 
midheight := height * 3 / 5. 

Experimenting with Variables
The experiments that follow will help you to gain experience with variables. 

Experiment 8-4 (Golden Rectangle) 

A golden rectangle is a rectangle one of whose sides is approximately 1.6 times the length of the other. The num-
ber 1.6 is an approximation of the “golden ratio”: the number. A nice property of such a rectangle is that if you cut
off a square inside the rectangle, as shown in the figure below, then the part of the rectangle left over is again a
golden rectangle. You can then cut a square off of this smaller golden rectangle and obtain an even smaller golden
rectangle, and so on ad infinitum. The dimensions of a golden rectangle are pleasing to the eye, and since ancient
times, artists and architects have used the golden ratio in their work. Write a script that draws a golden rectangle.
You can express the number  in Smalltalk as 1 + 5 sqrt / 2.

CHAPTER 8 ■ VARIABLES94



Experiment 8-5 (Scripts That Don’t Work)

Explain why neither of the following scripts is able to draw a letter A of height 120 pixels.

| pica height |                      | pica height | 
pica := Bot new.                     pica := Bot new.
height := 120.                       pica north. 
pica north.                          pica go: height. 
pica go: 100.                        pica east. 
pica east.                           pica go: 70. 
pica go: 70.                         pica south. 
pica south.                          pica go: height.
pica go: 100.                        pica west. 
pica west.                           pica jump: 70. 
pica jump: 70.                       pica north. 
pica north.                          pica jump: 50. 
pica jump: 50.                       pica east. 
pica east.                           pica go: 70 
pica go: 70 

The Pyramids Rediscovered
In Script 7-5, in Chapter 7, we defined the outline of the step pyramid of Saqqara as in Script 8-7.

Script 8-7. The pyramid of Saqqara 

| pica | 
pica := Bot new. 
5 timesRepeat: 

[ pica north. 
pica go: 20. 
pica east. 
pica go: 20 ]. 

5 timesRepeat: 
[ pica go: 20. 
pica south. 
pica go: 20. 
pica east ]. 

pica west. 
pica go: 200. 

CHAPTER 8 ■ VARIABLES 95



Experiment 8-6 (A Pyramid with a Variable Number of Terraces)

Modify Script 7-5, introducing the variable terraceNumber to represent the number of terraces that the pyramid
should have.

Experiment 8-7 (A Pyramid with a Variable Terrace Size)

Modify the script from Experiment 8-6 by introducing the variable terraceSize to represent the size of a terrace.

Automated Polygons Using Variables
The use of variables greatly simplifies the definition of scripts in which some of the variables
depend on other variables. In this section, you will see how the use of variables provides great
leverage in dealing with loops. Chapter 10 will go more deeply into the power that the combi-
nation of variables and loops can give to your programs. 

Let us look again for a moment at Experiments 7-3 and 7-4, in which a Bot was asked to
draw a regular pentagon and a regular hexagon. The requisite code appears here as Scripts 8-8
and 8-9.

Script 8-8. A regular pentagon 

| pica | 
pica := Bot new. 
5 timesRepeat: 

[ pica go: 100. 
pica turnLeft: 72 ] 

CHAPTER 8 ■ VARIABLES96



Script 8-9. A regular hexagon 

| pica | 
pica := Bot new. 
6 timesRepeat: 

[ pica go: 100. 
pica turnLeft: 60 ]

In order to transform the first script into the second, you must change the number of
sides (let us call it s) and the magnitude of the turn (let us call it T) such that the product s × T
is equal to 360. Wouldn’t it be nice if we could write a script in which we would have to change
only a single number, let us say the number of sides, since this is the easiest parameter to
choose? This can be done by introducing variables. Try to come up with your own solution.

Script 8-10 solves the problem. It makes it possible to draw a regular polygon with any
number of sides by changing a single number. Try it before I discuss it further. 

Script 8-10. Drawing a regular polygon

| pica sides angle |
pica := Bot new.
sides := 6.
angle := 360 / sides.
sides timesRepeat:

[ pica go: 100. 
pica turnLeft: angle ] 

This script introduces two new variables, sides and angle, which are used to hold the
number of sides and the size of the angle. Then, the expression sides := 6 assigns the value 6
to the variable sides, and the expression angle := 360 / sides assigns a value to the variable
angle, which is the result of 360 divided by the value held in the variable sides. The value of
the variable angle is then used as the argument of the command turnLeft: given to the robot
in the repeating block.

CHAPTER 8 ■ VARIABLES 97



Regular Polygons with Fixed Sizes 
You will notice that if Script 8-10 is executed with a large number of sides, the resulting figure
does not fit on the screen. The next experiment asks you to fix this problem by reducing the
length of the sides as the number of sides increases. 

Experiment 8-8 (Controlling the Sides of the Polygon)

Modify Script 8-10 so that the size of the regular polygon stays roughly constant as the number of sides changes.
Hint: Introduce a variable totalLength that is set to a fixed length, and let each side of your polygon have length
equal to totalLength divided by the number of sides.

Summary
• A variable is a name with which we associate a value. We must declare it and assign a

value to it. Then we can refer to a variable and obtain the value associated with this
variable. It is also possible to modify the value associated with a variable and assign 
a new value to it.

• A variable can be used at any place where its value can be used. 

• The first time that we assign a value to a variable, we say that we are initializing it.

• The symbol := assigns a value to a variable. For example, height := 120 assigns the
value 120 to the variable height, while length := 120 + 30 assigns the result of 
the expression 120 + 30, that is, 150, to the variable length.

• A variable must generally be declared and initialized before being used. 

CHAPTER 8 ■ VARIABLES98



Use of Variable Syntax Description Example

variable declaration | variablename | Declares variablename | pica height |
as a variable

variable assignment variablename := Assigns the value of length := 40
expression expression to the length := 30 + 20

variable variablename

Using a variable’s value pica go: length
in an expression 

Changing the value of a length := length + 10
variable using its current
value

CHAPTER 8 ■ VARIABLES 99



Digging Deeper into Variables

In the previous chapter I introduced variables. In this chapter I am going to delve a bit deeper
into the subject so that you can learn more about how variables are used. Since this chapter is
a bit technical in nature, you might want to omit it on a first reading. 

Before illustrating in detail how variables work, I want to stress again the importance of
choosing good names for variables. 

101

C H A P T E R  9

■ ■ ■



Naming Variables
You are free to choose practically any name for a variable. However, giving your variables
meaningful names is very important, because doing so will help you both in writing your 
programs and in understanding the programs that you have written. To illustrate this point,
read Script 9-1, which is in fact Script 8-10 rewritten using meaningless variable names. 

Script 9-1. Meaningless variable names make a program difficult to understand.

| x y z| 
x := Bot new. 
y := 6. 
z := 360 / y. 
y timesRepeat: 

[ x go: 100. 
x turnLeft: z ]. 

As you may discover by trying it out, Script 9-1 is perfectly correct, and Squeak can execute
it without any problem. But I am sure that you know which of the two scripts 8-10 and 9-1 is
more understandable. 

In Smalltalk, the name of a variable can be any sequence of alphabetic and numeric
(alphanumeric) characters beginning with a lowercase letter. It is customary to use long vari-
able names that clearly indicate the function of the variable in the program. Doing so helps
you and other programmers to understand your scripts more easily. 

Being able to understand what a program does is very important, since as you will see
later, a program usually involves a combination of many scripts.1 When the time comes that
you need to understand a script written by someone else, or even one written by yourself, but
perhaps many months ago, you will be glad that you adopted the habit of choosing meaning-
ful variable names. 

Now that you have been convinced of the importance of choosing meaningful names for
variables, I will discuss variables in detail.

Variables as Boxes
Variables are placeholders that refer to objects. A common way to explain the notion of a vari-
able is to use a graphical notation in which variables are represented as boxes. Let us illustrate
this idea in Script 9-2 and Figure 9-1.

In Script 9-2 (step a in the script and in the figure), two variables, pica and pablo, are
declared. Then in step (b) we create a robot and assign it to the variable pica; that is, the vari-
able pica now refers to the newly created robot. Then in (c) the variable pablo is assigned the
value of the variable pica, and therefore pablo now points to the same object as the variable
pica, that is, to the newly created robot. When we send a message using either of the two vari-
ables, we are actually sending that message to the same object, namely the robot created in
step (b), since both variables refer to the same object. Therefore, in (d), the message sent to

CHAPTER 9 ■ DIGGING DEEPER INTO VARIABLES102

1. This is actually a simplification. Soon, you will learn about methods, which are the true building
blocks of programming with objects. 



pica causes him to move 100 pixels, while the message in (e), which addresses pablo, causes
the same robot to change its color to yellow. 

Another way of saying this is that the robot has two names: pica and pablo. It is just as if
the artist Pablo Picasso’s mother had said, “Picasso, come here” (pica go: 100), and then said,
“All right, Pablo, here is your yellow shirt. Put it on” (pablo color: yellow).

Script 9-2. Two variables point to the same robot.

(a)  | pica pablo |          
(b)  pica:= Bot new.
(c)  pablo := pica.
(d)  pica go: 100.
(d)  pablo color: Color yellow.

Figure 9-1. (a) Two variables, pica and pablo, are declared. (b) A robot is created and the variable
pica is associated with this new object. (c) The variable pablo is assigned the value of the variable
pica, and therefore pablo now points to the same object as pica. (d) When we send the message
go: 100 using pica, the robot moves. (e) When we send the message color: Color yellow to
pablo, the same robot changes color. In sum, if we send a message to either of the two variables,
we are actually sending that message to the same object.

Assignment: The Right and Left Parts of := 
There are two very different ways that a variable name is used in a script. Sometimes, the name
is used to refer to its value, as in expressions such as walkLength + 100 and pica go: 100. At
other times, the variable name is used to refer to the placeholder itself in order to initialize it 
or change its value, as in walkLength := 100 and pica := Bot new.

The key thing to understand about variables is that using a variable name always refers to
the value associated with the variable, except in the case that the variable is on the left-hand
side of an assignment expression, that is, to the left of the symbol :=. In this one case, the vari-
able name represents the placeholder itself and not the value of the variable. Another way of
saying this is that the value of a variable is always read, except when it appears to the left of :=,
in which case it is written, that is, changed. Script 9-3 shows an example. 

pica

| pica walkLength |

(a) (b)

walkLength

pica

walkLength

pica := Bot new

(c)

pica

walkLength

100

walkLength := 100

CHAPTER 9 ■ DIGGING DEEPER INTO VARIABLES 103



Script 9-3. The variable walkLength is written in line 3 and then read in line 4.

(1)  | walkLength pica | 
(2)  pica := Bot new. 
(3)  walkLength := 100. 
(4)  walkLength + 150. 
(5)  pica go: walkLength

In line 3 of Script 9-3, the variable name walkLength appears to the left of :=, so it refers 
to the placeholder, and the value 100 is assigned to the variable walkLength. After line 3 has
been executed, the variable walkLength refers to the number 100. In line 4, walkLength + 150
is not part of an assignment expression, and so the variable name refers to the variable’s value.
(Note that in line 4, an addition is carried out, but the result of the addition is not used. There-
fore, this line does not do anything and could be removed.) In line 5, both variables pica and
walkLength are used to refer to their values, that is, the objects to which they refer. Therefore,
the variable walkLength here refers to its value 100 , while pica refers to the robot created ear-
lier in the script. Thus line (5) has the effect that the message go: 100 is sent to the robot
created the line 2.

■Important! A variable is a placeholder for a value, that is, an object. Using a variable returns its value
except when the variable is on the left-hand side of an assignment expression, that is, to the left of the sym-
bol :=. In such a case, the value of the variable is changed to the value of the expression on the right-hand
side of the assignment expression. For example, walkLength + 150 returns 150 added to the value of the
variable walkLength, while walkLength := 100 changes the value of walkLength to 100.

Analyzing Some Simple Scripts 
To understand better how variables are manipulated, I am going to describe a series of scripts.
First, read the script and guess what it does; then evaluate the script carefully to determine its
result. I suggest that you to draw a box representation if you think it would be helpful, and
check your drawing against the one shown in the figure. As you will see, I   give a small expla-
nation of each script. Note that explanations from one script are not repeated in subsequent
scripts, so go through them in order, and look back at the previous scripts for clarification of
any points that are confusing.

Script 9-4. Two variables are declared and initialized, and then their values are used.

pica

| pica walkLength |

(a) (b)

walkLength

pica

walkLength

pica := Bot new

(c)

pica

walkLength

100

walkLength := 100

CHAPTER 9 ■ DIGGING DEEPER INTO VARIABLES104



| pica walkLength | 
pica := Bot new. 
walkLength := 100. 
pica go: walkLength

In script 9-4, the variables pica and walkLength are declared. A new robot is created 
and assigned to the variable pica. Then 100 is assigned to the variable walkLength. The robot
(value assigned to the variable pica) receives the message go: with the value of the variable
walkLength as argument, which in this case is 100.

Script 9-5. Like Script 9-4, except that a variable is used as part of an expression

| pica walkLength | 
pica := Bot new. 
walkLength := 100. 
pica go: walkLength + 170. 

In script 9-5, to determine the number of pixels that the robot should move forward, the
expression walkLength + 170 is evaluated. Since walkLength was initialized to the value 100
and its value was not changed thereafter, the value of walkLength is 100. Therefore, walkLength
+ 170 has the value 270, and the robot moves forward 270 pixels. The expression pica go:
walkLength + 170 in Script 9-5 is equivalent to the expression pica go: walkLength2 of Script 9-6.
Indeed, the value of the variable walkLength2 is the value of the variable walkLength plus 170.

Script 9-6. Using a new variable to hold the value of the length of pica’s walk 

| pica walkLength walkLength2 | 
pica := Bot new. 
walkLength := 100. 
walkLength2 := walkLength + 170. 
pica go: walkLength2. 

The value of a variable can indeed be changed using :=. In Script 9-7, first the variable
walkLength is declared, then we assign 100 to it, and then we assign 300 to it (the dashed arrow
in the figure pointing to 100 indicates that the variable no longer points to 100). When the vari-
able is then used in the last expression of the script, its value is 300. As a result, the robot
moves forward 300 pixels. 

pica

pica walkLength walkLength2 |

(a) (b)

walkLength2

pica

walkLength2

pica := Bot new

(c)

pica

walkLength2

walkLength:= 100

(d)

pica

walkLength2

270

walkLength2 := walkLength + 170

walkLength walkLength walkLength

100
walkLength

100

CHAPTER 9 ■ DIGGING DEEPER INTO VARIABLES 105



Script 9-7 Changing walkLength twice

| pica walkLength | 
pica := Bot new. 
walkLength := 100. 
walkLength := 300. 
pica go: walkLength 

Script 9-8 shows that using the value of a variable in any way other than assigning it a new
value has no effect on the variable’s value. The only way to change the value of a variable is with
an assignment expression. In Script 9-8, the variable walkLength is initialized with the value
100. Then the value of walkLength, here 100, is added to 200, but   no assignment expression is
involved, and so the variable’s value is not modified. And so when the value of walkLength,
which here is 100, is used in the last statement to specify how far the robot should move for-
ward, the robot moves 100 pixels. 

Script 9-8. Using a variable without assigning it a value has no effect on its value.

| walkLength pica | 
pica := Bot new. 
walkLength := 100. 
walkLength + 200. 
pica go: walkLength 

pica

| pica walkLength |

(a) (b)

walkLength

pica

walkLength

pica := Bot new

(c)

pica

walkLength

100

walkLength := 100 walkLength + 200

(d)

pica

walkLength

100

pica

| pica walkLength |
(a) (b)

walkLength

pica

walkLength

pica := Bot new
(c)

pica

walkLength

100

walkLength := 100 walkLength := 300

(d)

pica

walkLength

300
100

CHAPTER 9 ■ DIGGING DEEPER INTO VARIABLES106



In Script 9-9, the variable walkLength is initialized to 100. Then its value is changed to 
the value of the expression walkLength + 50. At this point, the value of walkLength is 100, so
the expression walkLength + 50 returns 150, and then the value 150 is assigned to the variable
walkLength. So in the last step, the robot moves forward 150 pixels. 

It is important to note here that in the   expression walkLength := walkLength + 50, the
variable name walkLength is used in two different ways: first, the expression to the right of :=
is evaluated, in which walkLength represents a value, and then the result of that evaluation is
assigned to the variable walkLength to the left of :=, which on this side represents the variable
as a placeholder.

Script 9-9. The value of the variable walkLength is used to define the variable itself.

| pica walkLength | 
pica := Bot new. 
walkLength := 100. 
walkLength := walkLength + 50. 
pica go: walkLength 

In Script 9-10, the variable walkLength is initialized to 150. Then the value of walkLength is
reassigned to refer to the value of the expression walkLength + walkLength. In computing the
value of the expression walkLength + walkLength, the value of walkLength is 150. Therefore,
the expression returns 300, which becomes the new value of the variable walkLength. And so
the robot moves forward 300 pixels.

Script 9-10 

| pica walkLength | 
pica := Bot new. 
walkLength := 150. 
walkLength := walkLength + walkLength. 
pica go: walkLength

pica

| pica walkLength |

(a) (b)

walkLength

pica

walkLength

pica := Bot new

(c)

pica

walkLength

100

walkLength := 100 walkLength := walkLength + 50

(d)

pica

walkLength

150
100

CHAPTER 9 ■ DIGGING DEEPER INTO VARIABLES 107



Summary
• A variable is an object that serves as a placeholder for a value. You can think of a vari-

able as a box referring to an object.

• Using a variable returns its value except when the variable is on the left of an assignment
expression :=. In such a case its value changes to become the value of the expression on
the right of the assignment expression :=. For example, walkLength + 100 returns 100
added to the value of the variable walkLength. On the other hand, walkLength := 100
changes the value of walkLength to be 100.

CHAPTER 9 ■ DIGGING DEEPER INTO VARIABLES108



Loops and Variables

In this chapter I will show you how to use variables and loops in combination. We will begin
by analyzing a simple problem that illustrates the need for using variables with loops. Then
you will experiment with some other problems. 

109

C H A P T E R  1 0

■ ■ ■



A Bizarre Staircase
Try to program a robot to draw the strange Staircase shown in Figure 10-1. All of the risers
have the same height, but the treads get longer and longer as you climb the staircase. One 
way to start is to write a script for a normal stairway and then modify it. You will need to solve
the problem of making each tread longer than the previous one.

Figure 10-1. Pica draws a bizarre staircase.

A simple solution is shown in Script 10-1, where the length of each tread grows by 10 pix-
els. However, such a solution is not satisfactory for two reasons: First, you have to compute
the length of each tread manually. And second, you have to repeat an almost identical
sequence of message sends over and over. 

Script 10-1. Pica draws the bizarre staircase.

| pica | 
pica := Bot new.
pica go: 10.
pica turnLeft: 90.
pica go: 5.
pica turnRight: 90.
pica go: 20.
pica turnLeft: 90.
pica go: 5.
pica turnRight: 90.
pica go: 30.
pica turnLeft: 90.
pica go: 5.
pica turnRight: 90.
pica go: 40.
pica turnLeft: 90.
pica go: 5.
pica turnRight: 90.
... 

CHAPTER 10 ■ LOOPS AND VARIABLES110



We would like to be able to use the power of variables (to automate the increasing tread
length) combined with the power of loops (so that we don’t have to type so much code). To
avoid repeating the sequence of message sends you can use the timesRepeat: message. And as
for using variables, the key is to be found in an examination of Script 10-1, where you will see
that the length of each tread after the first is the length of the previous tread plus 10 pixels.
After all, 20 = 10 + 10, 30 = 20 + 10, 40 = 30 + 10, and so on, as shown in Figure 10-2. 

Figure 10-2. The length of a tread is the length of the previous tread plus 10 pixels.

Let us use the variable treadLength to represent the length of a tread. Then, once
treadLength has been initialized to the length of the first tread, the expression treadLength 
:= treadLength + 10 will set the length of the next tread to be the value of the current tread
increased by 10. The result is that if treadLength is initialized to 10, and the first tread is
drawn, that tread will of course have length 10. Then, after the expression treadLength :=
treadLength + 10 is executed, the next time a tread is drawn it will have length 20. And after
the expression is executed again, the next tread will have length 30, and so on.

Let’s combine everything! We will start with the script of a normal staircase (Script 10-2).
Then, in Script 10-3, we obtain the same staircase, but using the variable treadLength. Then in
Script 10-4, we add the line treadLength := treadLength + 10 to change the treadLength
value in each step of the loop, and thus we finally obtain the stairway we want.

Script 10-2. A stairway with normal steps

| pica | 
pica := Bot new. 
10 timesRepeat: 

[ pica go: 10. 
pica turnLeft: 90. 
pica go: 5. 
pica turnRight: 90 ] 

10
20

 =
 1

0 
+

 1
0

30
 =

 2
0 

+
 1

0

40
 =

 3
0 

+
 1

0

50
 =

 4
0 

+
 1

0

60
 =

 5
0 

+
 1

0

70
 =

 6
0 

+
 1

0

80
 =

 7
0 

+
 1

0

90
 =

 8
0 

+
 1

0

CHAPTER 10 ■ LOOPS AND VARIABLES 111



Script 10-3. A stairway with normal steps using the variable treadLength

| pica treadLength | 
pica := Bot new. 
treadLength := 10. 
10 timesRepeat: 

[ pica go: treadLength. 
pica turnLeft: 90. 
pica go: 5. 
pica turnRight: 90 ] 

Script 10-4. The solution: increasing the variable treadLength each time through the loop 
produces the bizarre staircase.

| pica treadLength | 
pica := Bot new. 
treadLength := 10. 
10 timesRepeat: 

[ pica go: treadLength. 
pica turnLeft: 90. 
pica go: 5. 
pica turnRight: 90.
treadLength := treadLength + 10 ] 

Let’s look more closely at the sequence of expressions in the loop in Script 10-4. The first
expression draws a tread by making the robot go forward a distance given by the value of the
variable treadLength (which has been initialized to 10 for the first time through the loop).
Then the robot turns, draws a riser (straight up), and turns again. Then the value of the vari-
able treadLength is increased by 10 and the loop restarts, but now the variable treadLength
has a new, larger, value (20 for the second repetition). The whole process is executed 10 times.

The expression treadLength := treadLength + 10 is absolutely necessary. Without it, the
value of the variable would never change. 

Experiment 10-1 (Placement of the Increment in the Loop)

Try changing the last line of the loop; for example, treadLength := treadLength + 15. Then try moving the
line to different places in the loop. Can you explain what happens when you move the last line of the loop to the
beginning of the loop?

If you are still uncertain about what is going on in Script 10-4, I suggest that you think
carefully about the value of the variable treadLength, especially at the beginning and end of
the loop. Figure out the value of treadLength in each expression for three repetitions of the
loop. If necessary, read Chapter 8 again.

CHAPTER 10 ■ LOOPS AND VARIABLES112



CHAPTER 10 ■ LOOPS AND VARIABLES 113

Practice with Loops and Variables: 
Mazes, Spirals, and More 
Let’s see how combining variables and loops can help you to solve some other problems. 

Experiment 10-2 (Another Bizarre Staircase)

Modify Script 10-4 to produce the picture shown below, which represents a staircase in which both the treads and
the risers grow in size.

Experiment 10-3 (A Simple Maze)

Write a script that reproduces the drawing shown below. In addition, by changing the angle through which the
robot turns, you should be able to re-create the picture shown at the beginning of this chapter, as well as the spiral
shown in Figure 10-3.



Figure 10-3. A nice spiral

Experiment 10-4 (Russian Squares)

Draw the nested squares of different sizes as shown in the figure below. You might begin by defining a loop that
draws the same square ten times. Then introduce a variable sideLength to represent the side length of a square,
and finally, make the side length grow each time through your loop. As an additional challenge, you might try to
write a new script that draws the same figure without the robot having either to jump or draw any line twice.

CHAPTER 10 ■ LOOPS AND VARIABLES114



Experiment 10-5 (A Long Corridor)

The concentric (having a common center) squares of different sizes shown in the figure below represent a long
corridor, which seems to get smaller as you look into the distance. Again start by drawing a square, but this time
draw it starting from its center (you will need a jump message), so that when you change the square’s size, the
next square will automatically be drawn concentric to the first one. Now define your square inside a loop, and then
introduce a variable sideLength representing the side length of the square. Finally, make the square grow each
time through your loop.

Some Important Points for Using Variables and Loops
Now that you have seen the overall process of combining loops and variables and have experi-
mented a bit, I would like to stress some important points. Script 10-5 shows a typical situation
in outline form: First a variable is declared. Then it is initialized. Inside the loop, the variable is
used to perform some computations, and then its value is changed for the next pass through
the loop. 

Script 10-5. An outline script showing the use of a variable in a loop

| treadLength pica |                "variable declaration" 
...   
treadLength := 10.                  "initialization of the variable" 
...  
10 timesRepeat:  

[ pica go: treadLength.        "variable use" 
...  
treadLength := treadLength + 10 ]   "variable change of value" 

CHAPTER 10 ■ LOOPS AND VARIABLES 115



Variable Initialization
When you introduce a variable in a loop, you have to pay special attention to the first value of
the variable, that is, the value assigned to the variable when it is initialized. Keep in mind that
a variable cannot be used until it has been initialized. Normally, variable initialization is done
outside of the loop, for otherwise, the variable’s value would be reinitialized at each step of the
loop, with the result that the value of the variable would not change. 

Using and Changing the Value of a Variable
Inside the loop, the variable’s value is often used to perform a variety of computations, such as to
compute the values of other variables or perhaps to tell a robot how far to travel. Then the value
of the variable is eventually changed. In the stairway example, the expression treadLength :=
treadLength + 10 increases the value of the tread length based on its preceding value. What is
important to understand is that the new value assigned to the variable will be its value for the
next step of the loop, as illustrated in Figure 10-4. 

Figure 10-4. The length of a tread is the length of the previous tread plus 10 pixels. The last value
that a variable has in the loop body is the value that the variable will have at the start of the
loop when it is repeated.

treadLength := 10.

. . .

10 timesRepeat: 

[ pica go: treadLength
. . .
treadLength := treadLength + 10 ] 

treadLength

10
treadLength := 10

step 1

treadLength

10
pica go:treadLength treadLength := treadLength + 10

10treadLength
20

step 2

treadLength
20

treadLength := treadLength + 10

20treadLength
30

step 3

treadLength

30
treadLength :=treadLength + 10

30treadLength
40

pica go:treadLength

pica go:treadLength

CHAPTER 10 ■ LOOPS AND VARIABLES116



Advanced Experiments

Experiment 10-6 (Squares)

Define a script that creates the checkerboard construction shown below. This experiment is a bit more complicated
than the earlier experiments, in that it is difficult to see how to draw the figure using a single loop. However, there
are several ways of solving the problem using two loops. For example, you could use one loop to draw all the hori-
zontal lines, and then another loop to draw all the vertical lines.

Experiment 10-7 (Pyramid) 

Write a script that creates the construction shown in the figure below, representing the blocks of stones forming
part of the step pyramid of Saqqara, which you have seen in previous chapters. You might modify your script from
Experiment 10-7 by changing the variable for the length of the lines drawn each time through the loop.

CHAPTER 10 ■ LOOPS AND VARIABLES 117



CHAPTER 10 ■ LOOPS AND VARIABLES118

Summary
• When introducing a variable inside a loop, be careful how you initialize the variable.

Keep in mind that a variable must be initialized before its value is used. Normally, ini-
tialization occurs outside the loop, for otherwise, the value of the variable would not
change when the loop is repeated. 

• Keep in mind that the last value that a variable is assigned in a loop body will be the
variable’s value the next time the loop is executed.



Composing Messages

As with any language, Smalltalk follows certain rules in executing the messages sent to
objects. I have not yet presented these rules to you, and you may have wondered just what
those rules are when you were experimenting with the previous scripts. Your patience will be
now rewarded. This chapter explains how to read and write correctly formulated messages. 

This chapter may appear a bit more difficult or abstract than the previous ones. However,
I have done my best to present clearly the simple rules that govern the writing of messages.
Understanding such details might not be as much fun as playing with robots, but it is the
price that must be paid if you are to be able to write more advanced programs. The good news
is that Smalltalk is not a complex language: there are only five rules that you need to under-
stand. If you are still hesitant, you may also skip this chapter on a first reading and return to it
when you have questions about the structure of your programs.

As described in Chapter 2, a message is composed of the message selector and the optional
message arguments. A message is sent to a message receiver. The combination of a message and
its receiver is called a message send.

When you write a complex expression such as pica go: 100 + 20, it contains two message
sends, using the message selectors go: and +, and you have to know the order in which the
messages are executed if you are to understand what the result of the entire expression will be.
In Smalltalk, the order in which messages are executed is determined by the type of message
send. There are three types of messages: unary, binary, and keyword-based. Unary messages
are always sent first, followed by binary messages, and finally keyword-based messages. Any
messages enclosed in parentheses are executed prior to any other messages. This means that
you can change the order in which message sends are executed through the use of parenthe-
ses. These rules go a long way toward making Smalltalk code easy to read. And you will soon
discover that most of the time, you do not even have to think about them. However, you have
to know them, because occasions will arise that will require your knowledge of them.

All of the examples presented in this chapter consist of executable code, as shown in the
text. So do not hesitate to try them out and see how they function. I will begin by showing you
how to identify the different types of messages, and then I will present some examples of each
type. Finally, I will present the rules for message composition. 

119

C H A P T E R  1 1

■ ■ ■



The Three Types of Messages
Smalltalk defines a small number of simple rules to determine the order in which message
sends are executed. These rules, which I will present in detail later, are based on the distinc-
tion among three different types of messages: 

• Unary messages are messages with no arguments. They are sent to an object (the 
message receiver) without any other information. For example, in the expression pica
color, the message color is a unary message. It does not send any additional informa-
tion; that is, there is no argument. These messages are called “unary,” from the Latin
unum, meaning “one,” because a message send with a unary message involves only
one object, the message receiver.

• Binary messages are messages that involve two objects: the message receiver and the
message selector’s sole argument. (The word “binary” is related to the Latin bis, mean-
ing “twice.”) Binary messages are mainly related to mathematical expressions. For
example, in the message send 10 + 20, the message consists of the message selector +
together with the single argument 20. The message + 20 is sent to the object 10, which 
is the message receiver.

• Keyword-based messages are messages whose message selector contains a keyword 
with at least one colon character : in its name and that has one or more arguments. For
example, in the message send pica go: 100, the keyword go: contains the colon char-
acter : and there is one argument, 100, and therefore there are two objects involved in
the message send: the message receiver pica and the argument 100.

■Note Don’t be confused by the nomenclature for unary and binary messages. The idea of “one” in the
word unary and the idea of “two” in the word binary refer to the number of objects involved in a message
send, not the number of arguments. Thus a unary message has no arguments, and so a unary message
send involves one object, namely, the message receiver. A binary message has a single argument, and
therefore a binary message send involves two objects: the argument of the message selector and the 
message receiver.

Identifying Messages
In order to understand the structure of an expression, the first thing you need to do is to identify
the messages and their receivers. To do this, I suggest that you use a graphical notation as shown
in Figure 11-1. In all the figures of this chapter, the message receivers are underlined, each mes-
sage is surrounded by an ellipse, and the messages that make up the expression are numbered in
the order in which they will be executed. When there is more than one ellipse, the first ellipse to
be executed is drawn with a dashed line so that you can see at once where to begin.

Figure 11-1 shows that the expression pica color: Color yellow contains within it the
expression Color yellow. Therefore, there are two ellipses, one for the entire expression pica
color: Color yellow, and one for the subexpression Color yellow. You will learn a bit later that
the expression Color yellow is executed first, so its ellipse is a broken line and is numbered 1.

CHAPTER 11 ■ COMPOSING MESSAGES120



Note that each message has a receiver. The robot pica receives the message color: ..., and
Color receives the message yellow. Therefore, these two message receivers are underlined. (The
three dots in the message color: ... indicate the argument of the message selector color:,
which will be the result of the message send Color yellow.)

Figure 11-1. The expression pica color: Color yellow contains the subexpression Color yellow.
The message yellow is sent to Color, and then the message color: ... is sent to pica.

As I have mentioned, every message is sent to an object called the message receiver. A
receiver does not have to be a robot. It can be just about anything, from a number to a win-
dow. A message receiver can appear explicitly as the first element of an expression, such as
pica in the expression pica go: 100 or Color in the expression Color new. However, a receiver
can also be the result of other message sends. For example, in the message Bot new go: 100,
the receiver of the message go: 100 is the resulting object returned by the message send Bot
new. Nevertheless, in every case, a message is sent to some object, and that object is called the
message receiver. 

■Important! In a message send, a message is always sent to an object, called the message receiver,
which may be named explicitly or may be the result of other message sends.

Table 11-1 shows some message sends, and I suggest that in each case, you identify the
type of message and then draw the graphical representation of the expression.

Table 11-1. Some Examples of Message Sends, Simple and Compound

Expression Type(s) Action 

pica go: 100 keyword-based The receiving robot moves forward 100 pixels.

100 + 20 binary The number 100 receives the message + with
the number 20 as argument.

pica east unary The receiving robot pica points to the east.

pica color: Color yellow keyword-based, unary The receiving robot pica changes its color to 
the color yellow.

pica go: 100 + 20 keyword-based, binary The receiving robot moves forward 120 pixels.

Bot new go: 100 unary, keyword-based The message new is sent to the Bot class, 
which returns a new robot to which the 
message go: 100 is sent, causing the robot 
to move forward 100 pixels.

pica  color:  Color  yellow

1

2

CHAPTER 11 ■ COMPOSING MESSAGES 121



From Table 11-1 you should observe the following points: 

• Some of the messages have arguments, while others do not. The message east, being
unary, does not have an argument, while go: 100 and + 20 each have one argument,
the number 100 and the number 20, respectively.

• Different messages are sent to different objects. In the expression pica east, the mes-
sage east is sent to a robot, and in 100 + 20, the message + 20 is sent to the number 100.

• There are simple messages and compound messages. For example, Color yellow and
100 + 20 are simple: One message is sent to one object. On the other hand, the expression
pica go: 100 + 20 contains two messages: + 20 is sent to 100, and then go: ... is sent to
pica, where ... represents the result of the execution of the message send 100 + 20.

• A message receiver can be the result of an expression that returns an object. In the
expression Bot new go: 100, the message go: 100 is sent to the object (a robot) that
results from evaluation of the expression Bot new.

The Three Types of Messages in Detail
Now that you are able to identify message receivers and the three types of messages, let us
look at the different types of messages in detail.

Unary Messages
Among the uses of unary messages are obtaining a value from an object, such as the size of a
robot’s pen (pica penSize); obtaining an object from a class (Color yellow); and instructing
the receiver to perform an action (pica beInvisible). Recall that a unary message does not
take an argument: it is sent to the receiver without any other information. Thus the one object
involved in a unary message send is the message receiver. Unary message sends are of the
form of receiver messageName. Script 11-1 presents some examples of unary messages, shown
in boldface type. 

Script 11-1. Examples of unary messages 

| pica | 
pica := Bot new. 
pica color. 
pica penSize. 
pica east. 
Color yellow.
125 factorial

■Important! Unary messages are messages that do not take an argument. A unary message send has
the form receiver messageName.

CHAPTER 11 ■ COMPOSING MESSAGES122



Binary Messages 
Binary messages are messages that involve two objects: the receiver and a single argument. All
binary message selectors are composed of one or two characters from the following list: +, *, /,
|, &, =, >, <, ˜, @. Therefore +, =, and * are message selectors, but so is =>, which is composed of
two symbols.

Table 11-2 shows some examples of binary message sends and their meaning. At this
point, I would rather not go into the details of these examples, so don’t worry if you are not
sure about exactly what each of these message selectors does. But try executing the expres-
sions and others like them. 

Table 11-2. Examples of Binary Messages with Numbers

Expression Returned Value Action

1 + 2.5 3.5 Addition of two numbers

3.4 * 5 17.0 Multiplication of two numbers

8 / 2 4 Division of two numbers

10 - 8.3 1.7 Subtraction of two numbers

12 = 11 false Testing for equality between two numbers

12 ~= 11 true Testing for inequality between two numbers

12 > 9 true Is the receiver greater than the argument?

12 >= 10 true Is the receiver greater than or equal to the argument?

12 < 10 false Is the receiver less than the argument?

100@10 100@10 Create a point with coordinates (100, 10)

■Important! Binary message sends involve two objects: the receiver and a single argument. The mes-
sage selector of a binary argument is composed of one or two characters from the following list: +, *, /, |,
&, =, >, <, ˜, @. Binary message sends have the form receiver messageName argument.

Keyword-Based Messages 
Keyword-based messages are messages that take at least one argument and that contain at least
one colon character :. Note that the colon is part of the message selector. Therefore, go:, not go,
is the name of a keyword-based message. Script 11-2 shows some examples of keyword-based
messages, shown in boldface type.

Script 11-2. Examples of keyword-based messages 

| pica |
pica := Bot new.
pica go: 100.
pica penSize: 5.
pica color: Color yellow.
pica turn: 90

CHAPTER 11 ■ COMPOSING MESSAGES 123



I have said that a keyword-based message has at least one argument, but we have not yet
seen an example of such a message with multiple arguments. Let us look at an example now:
The message send aNumber between: lowerBound and: upperBound checks whether the num-
ber aNumber is in the interval represented by the two numbers lowerBound and upperBound.
This message needs two arguments, namely, the two bounds of the interval. An example is
shown in Table 11-3. Note that the message selector is actually between:and:. It is composed 
of the two words between: and and:.

Table 11-3. Keyword-Based Messages That Take More Than One Argument 

Expression Arguments Return Value Action

5 between: 2 and: 10 2, 10 true Is 5 between 2 and 10?
Color r: 0 g: 1 b: 0 0, 1, 0 a green color object creates a color with the given 

values of red, green, and blue.

■Important! Keyword-based messages have at least one argument, and their message selector contains
at least one colon character :. A keyword-based message send that takes two arguments is of the form
receiver messageNameWordOne: argumentOne messageNameWordTwo: argumentTwo.

Order of Execution
You have seen that there are three kinds of messages: unary, binary, and keyword-based. Now
I will tell you, as I promised, how to determine the order in which messages are executed. The
order of message execution is determined by the type of message, as described by the follow-
ing three rules: 

Rule 1: Unary message sends are executed first, then binary message sends, and finally
keyword-based ones. 

Rule 2: As with mathematical expressions, the priority of message execution can be over-
ridden by parentheses: message sends in parentheses are executed before any other types
of message sends.

Rule 3: Message sends of the same type are executed from left to right. 

These rules may seem complex, but they are quite natural, and once you get used to them,
you will not have to think too much about them most of the time. In particular, the third rule
simply states that messages of the same type are executed in the order in which they are read. 

If you are ever in doubt and want to be sure that your messages are executed the way you
want, you can always add extra parentheses, as shown in Figure 11-2. In the figure, the expres-
sion pica color: Color yellow is analyzed. The message selector yellow is a unary message,
while the message selector color: is a keyword-based one. Therefore, the expression Color
yellow is executed first. If you are unsure about the order of execution, then you can put

CHAPTER 11 ■ COMPOSING MESSAGES124



parentheses around Color yellow to make sure that it will be executed first. This won’t change
the natural order of execution. That is, pica color: Color yellow and pica color: (Color
yellow) have precisely the same effect. The rest of this section illustrates each of these points.

Figure 11-2. Unary message sends are executed first, so Color yellow is executed first. This execu-
tion returns a color object, which is passed as the argument of the message color: ... that is
sent to pica.

Rule 1: Unary > Binary > Keywords 
Unary message sends are executed first, then binary message sends, and finally keyword-
based message sends. In programmer jargon we also say that unary messages have precedence
over binary messages, and binary messages have precedence over keyword-based messages. 

■Important! Rule 1: Unary message sends are executed before binary message sends, which are 
executed before keyword-based message sends.

Example 1
In the message send pica color: Color yellow, there is one unary message, yellow, sent 
to the class Color, and there is one keyword-based message, color: ..., which is sent to the
robot pica. Unary message sends are executed first, so the first message send to be executed 
is Color yellow. This execution returns a color object, represented as aColor (since we need a
name to refer to it), which is passed to pica as the argument of the message color: aColor.
Figure 11-2 shows graphically the order in which the messages are executed. 

As an aid to your understanding, I would like to propose a textual way of representing a
compound message send in step-by-step execution. In Step-by-step 11-1, the message send 
to be executed step by step is pica color: Color yellow. The first line shows the complete
message send in boldface type.

Step-by-step 11-1. Decomposition of the execution of pica color: Color yellow

pica color: Color yellow 
(1)           Color yellow        "unary" 

-returns> aColor  
(2) pica color: aColor "keyword-based" 

pica  color:  Color  yellow

1

2

pica color: ( Color yellow )

1

2

is equivalent to

CHAPTER 11 ■ COMPOSING MESSAGES 125



The lines of code represent the execution steps in numbered order in which they will occur.
Thus Color yellow is the first expression to be executed. Note that the expressions have been
indented to line up with their counterparts in the message send at the top.

When the execution of a message send returns a result that is used in the following execu-
tion, the line following the executed expression shows “-returns>” followed by the result. Here
the expression Color yellow returns a color object that I have called aColor so that it can be
referred to in the sequel. The second expression to be executed is pica color: aColor, where
as I just explained, aColor is the result obtained from the previous execution step. To stress
this point, the returned value or object is displayed in italic type. For further clarification, the
kind of message that is currently being executed is displayed as a comment inside quotation
marks. For example, Color yellow is shown to be a unary message.

Example 2
The message send pica go: 100 + 20, contains the binary message selector + and the key-
word-based message selector go:. Binary messages are executed prior to keyword-based
messages, so 100 + 20 is executed first: The message + 20 is sent to the object 100, which
returns the number 120. Then the message pica go: 120 is executed with 120 as argument.
Step-by-step 11-2 shows how the expression is executed.

Step-by-step 11-2. Decomposition of the expresssion pica go: 100 + 20

pica go: 100 + 20
(1)          100 + 20      "binary"

-returns> 120 
(2) pica go: 120           "keyword-based"

Example 3 
The message pica penSize: pica penSize + 2 contains the unary message penSize, the
binary message with selector +, and the keyword-based message with selector penSize:. Step-
by-step 11-3 illustrates the decomposition of message execution. The unary message send
pica penSize is executed first (step 1). This message returns a number, which we are calling
aNumber, representing the current size of the receiver’s pen. Then the binary message send
aNumber + 2 is executed (step 2). The number aNumber is the receiver of the message + 2,
which in turn returns another number, the sum, which here is called anotherNumber. Finally,
the keyword-based message penSize: anotherNumber is sent to pica, who sets his pen size to
anotherNumber.

Altogether, the entire compound expression increases the receiver’s pen size by two 
pixels. It does so by first asking pica for his pen size (pica penSize), increasing that number 

pica   go:   100  + 20  

1

2

CHAPTER 11 ■ COMPOSING MESSAGES126



by two (aNumber + 2), and then telling pica to change his pen size to the new number 
(pica penSize: anotherNumber). Note that penSize and penSize: are two different message
selectors! The first is unary and asks the receiver for its pen size, and the second is keyword-
based and tells the receiver to change its pen size to the value of its argument.

Step-by-step 11-3. Decomposition of the expression pica penSize: pica penSize + 2

pica penSize: pica penSize + 2 
(1)               pica penSize        "unary"

-returns> aNumber  
(2)               aNumber + 2         "binary"

-returns> anotherNumber 
(3) pica penSize: anotherNumber "keyword-based"

Example 4
As an exercise, I will let you decompose the execution of the message Bot new go: 100 + 20,
which is composed of one unary, one keyword-based, and one binary message (see Figure 11-3).

Figure 11-3. Decomposing Bot new go: 100 + 20

Rule 2: Parentheses First 
The default ordering of message execution may not be suitable for what you want to accom-
plish in an expression, and so you should be able to change it. For this purpose, Smalltalk
offers parentheses ( and ). Just as in mathematics, expressions in parentheses get the highest
precedence, and they are executed before any others. 

Keep in mind that if you find the rules for order of execution a bit complex or if you sim-
ply want to clarify the structure of an expression, use parentheses to ensure that the messages
are executed in the order that you wish. Figure 11-4 shows some of the expressions that we
have previously looked at together with their equivalents using parentheses.

Bot  new    go:     100 + 20

1
3

2

pica   penSize:   pica  penSize    + 2
1

3 2

CHAPTER 11 ■ COMPOSING MESSAGES 127



Figure 11-4. Equivalent messages using parentheses

■Important! Rule 2: As in mathematics, messages in parentheses are executed before any others. They
have the highest priority.

Example 5
The message (65 @ 325 extent: 134 @ 100) center returns the center of a rectangle whose
upper-left point has coordinates (65, 325), whose width is 134 pixels, and whose height is 100 pix-
els. Step-by-step 11-4 shows how the message is decomposed and executed. First, the message
within the parentheses is executed. It is a compound expression consisting of three message
sends: two binary message sends, 65 @ 325 and 134 @ 100, which are executed first and return
points; and the keyword-based message extent:..., which is then sent to the point (65, 325) and
which returns a rectangle with upper-left point and dimensions as described above. Finally, the
unary message center is sent to this rectangle, and a point, the rectangle’s center, is returned. Try-
ing to evaluate the message without parentheses leads to an error, because in that case, the unary
message center would have to be executed first, and it would be sent to the object 100, but a
number object does not understand the message center.

Step-by-step 11-4. Decomposition of a compound expression with parenthesis priority

(65 @ 325 extent:  134 @ 100) center 
(1)  65@325                                      "binary" 

-returns> aPoint 
(2)                    134@100                   "binary" 

-returns> anotherPoint 
(3)  aPoint extent: anotherPoint "keyword-based" 

-returns> aRectangle  
(4)  aRectangle center                           "unary" 

-returns> 132@375  

is equivalent topica   penSize:  pica  penSize     + 2
1

3 2

pica   penSize:  ( ( pica  penSize )     + 2)
1

3 2

(Bot  new)   go:   ( 100  + 20)

1
3

2

is equivalent toBot  new    go:    100  + 20

1 23

CHAPTER 11 ■ COMPOSING MESSAGES128



Rule 3: From Left to Right 
Now that you know how messages are categorized according to priority of execution, the final
question to be addressed is how messages with the same priority are executed. Rule 3 states
that they are executed from left to right. This rule was used already, in Step-by-step 11-4,
where the left-hand binary message @ 325 was executed before the right-hand message @ 100.

■Important! Rule 3: Messages of the same type are executed in order from left to right.

Example 6
In the expression Bot new east, both message sends are unary messages, so the first one as
you read from left to right, Bot new, is executed first. It returns a newly created robot, called
aBot in Step-by-step 11-5, to which the second message, east, is sent. Step-by-step 11-5 shows
the order of execution. 

Step-by-step 11-5. Decomposition of the expression Bot new east

Bot new east 
(1) Bot new            "unary" 

-returns> aBot 
(2)     aBot east      "unary" 

Example 7
In the expression 20 + 2 * 5, there are only the two binary message selectors + and *. Accord-
ing to Rule 3, since + is to the left of *, it should be executed first. In normal mathematical
notation as well as in many programming languages, multiplication would take precedence
over addition regardless of the order in which the arithmetic operations appear. However, in
Smalltalk there is no specific priority for mathematical operations. The message descriptors +
and * are just binary messages, and therefore they have equal status. The message selector *
does not have precedence over +, and the leftmost message selector + is sent first, and then 
* is sent to the result, as shown in Step-by-step 11-6.

Bot   new    east
1

2

CHAPTER 11 ■ COMPOSING MESSAGES 129



Step-by-step 11-6. Decomposition of 20 + 2 * 5

20 + 2 * 5 
(1) 20 + 2 

-returns> 22
(2) 22 * 5 

-returns> 110

■Note There is no priority among binary messages. In the expression 20 + 2 * 5, the leftmost message
+ is evaluated first, despite the fact that in normal mathematical notation, multiplication takes precedence
over addition.

You can see, then, as shown in Step-by-step 11-6, that the result of this expression is not
30, which you would get if you did the multiplication first, but 110. This behavior is surprising
at first, but it derives from the three simple rules for executing messages. This counterintuitive
order of mathematical operations is the price that we have to pay for the simplicity of the
Smalltalk model, which has only methods. If you want your expression to obey the normal 
priority of mathematical operations, then you should use parentheses, since when message
sends are enclosed in parentheses, they are executed first. Hence the expression 20 + (2 * 5)
returns the result 30, as shown in Step-by-step 11-7. 

■Important! Message sends surrounded by parentheses are executed first. Therefore, in the expression 
20 + (2 * 5), the message with * is executed before the one with +, which is the usual order of 
operations in mathematics.

Step-by-step 11-7. Decomposition of 20 + (2 * 5)

20 + (2 * 5) 
(1) 2 * 5 

-returns> 10 
(2) 20 + 10 

-returns> 30 

20 +  ( 2 *  5 )
12

20 +  2   *  5
1 2

CHAPTER 11 ■ COMPOSING MESSAGES130



■Note In Smalltalk, the mathematical message selectors such as + and * all have the same priority. The
symbols + and * are simply message selectors for binary messages. Therefore, * does not have priority over
+. If you want to force one operation to take precedence over another, then you should use parentheses.

The fact that Smalltalk does not follow mathematical precedence can be confusing at the beginning. There-
fore, when you have multiple binary messages representing a mathematical expression, give yourself and
anyone else reading your program a break and insert parentheses to express how the computation should
be performed. When you have become more accustomed to the way that messages are executed, you will
probably become more laissez-faire about parentheses.

A consequence of rule 1—which provides for the order of execution of different types of
messages, with unary messages being executed before binary messages, and binary messages
before keyword-based messages—is that you very often do not have to use parentheses. That
is, most of the time, you do not have to worry about order of execution. Table 11-4 shows
expressions written to be executed according to Smalltalk’s rules and equivalent expressions
using parentheses, which would be necessary if the order of precedence did not exist. 

Table 11-4. Some Expressions and Their Fully Parenthesized Equivalents 

Without Parentheses Equivalent Expression with Parentheses

pica color: Color yellow pica color: (Color yellow)

pica go: 100 + 20 pica go: (100 + 20)

pica penSize: pica penSize + 2 pica penSize: ((pica penSize) + 2)

2 factorial + 4 (2 factorial) + 4

Summary 
• A message is always sent to an object, called the message receiver, which may be the

result of other messages. 

• Unary messages are messages that take no argument. A unary message send is of the
form of receiver messageName.

• Binary messages are messages that involve two objects: the receiver of the message 
and a single argument. The message selector of a binary message consists of one or two
characters from the following list: +, , *, /, |, &, =, >, <, ˜, @. Binary message sends are of
the form receiver messageName argument.

• Keyword-based messages are messages that take one or more arguments and use a 
keyword with at least one colon character :. A keyword-based message send taking 
two arguments is of the form receiver messageNameWordOne: argumentOne 
messageNameWordTwo: argumentTwo.

CHAPTER 11 ■ COMPOSING MESSAGES 131



• Rule 1. Unary messages are executed first, then binary messages, and finally keyword-
based messages. 

• Rule 2. As in mathematics, expressions in parentheses are executed before any others. 

• Rule 3. When messages are of the same type, the order of execution is from left to right. 

• In Smalltalk, mathematical message selectors such as + and * have the same priority,
and therefore * does not have priority over +. You should use parentheses to ensure that
your mathematical expressions are executed in the proper order. 

CHAPTER 11 ■ COMPOSING MESSAGES132



P A R T  3

■ ■ ■

Bringing Abstraction 
into Play

In this part of the book you will learn how to define your own methods. This will enable

you to reuse sequences of messages, and  you will be able to define complex methods out

of simpler ones.



Methods: Named 
Message Sequences 

Up to now, you have been using scripts to create robots and send them sequences of mes-
sages. Using scripts has the advantage of being a straightforward approach, but it has some
severe limitations. One of the major limitations is that a script cannot be called by another
script. This is a serious problem, because a script cannot be reused by other scripts. You have
to rewrite the same sequence of messages again and again. 

Wouldn’t it be nice if one could define a kind of script whose sequence of messages could
be sent to any robot? In fact, this is possible, and such a sequence of messages is called a
method. (In the context of this book we will not go into the full power of methods, since that
would get us into the somewhat tricky subject of object-oriented programming.) A method is
a named script. The name of a method can be used in a script or even in another method to
invoke the method. Actually, there is nothing much new here: all the robot messages that you
have used so far represent methods that you could use with any robot! 

In this chapter, you will learn how to define methods. You already know most of what you
need to write the code of a method. However, a method must be defined using a special editor
called a code browser. We will start by comparing a script and a method. Then we will define a
method, and finally, we will look in detail at what we have accomplished. 

135

C H A P T E R  1 2

■ ■ ■



Scripts versus Methods 
Let’s look at one of the scripts that you have already written, for example, Script 12-1, which
creates a robot and tells it to draw a square with side length 100 pixels. 

Script 12-1. Pica draws a simple square.

| pica | 
pica := Bot new.
4 timesRepeat: 

[ pica turnLeft: 90. 
pica go: 100 ] 

The problem with this script is that each time you need to draw a square of side length
100 you need to copy the three last lines of Script 12-1. Furthermore, if you want another robot
(for example, daly) to draw the square, you must change the name pica to daly everywhere.
This is illustrated by Script 12-2.

Script 12-2. Pica and daly each draw a simple square.

| pica daly | 
pica := Bot new. 
daly := Bot new. 
daly jump: 200. 
daly color: Color red. 

4 timesRepeat:
[ pica turnLeft: 90. 
pica go: 100 ]. 

4 timesRepeat: 
[ daly turnLeft: 90. 
daly go: 100 ]. 

For all these reasons, working with scripts is not easy. In fact, I suspect that the following
three statements reflect your personal experience with scripts:

• Writing long scripts is a painful task. 

• Repeating long scripts is boring and error-prone. 

• When one is copying complex scripts, the likelihood of making a programming error,
such as omitting a line, is high. (A programming error is an error in the logic of a pro-
gram. In contrast to syntax errors, which are caught quickly by the computer because
they are errors in program structure, programming errors can be quite difficult to catch.)

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES136



To overcome these difficulties, we would like to define a sequence of messages once and
for all, give the sequence a name, and then be able to send the named sequence as a single
message to any robot, just as we have been able to send predefined robot messages such as
go:, north, and jump:.

With this approach we could define a new method called square, and then write Script 12-3.
But don’t execute the script yet, because the method square has not yet been defined. Once you
have the method square, you will no longer have to copy and adapt the sequence of messages
defining a square. You can simply use it twice. The message send pica square will tell pica to
carry out the instructions encoded in the method square.

I hope that I have convinced you that defining methods will be worth the effort. 

Script 12-3. Pica and daly draw squares using the method square.

| pica daly | 
pica := Bot new. 
daly := Bot new. 
daly go: 200. 
daly color: Color red. 
pica square. 
daly square 

How Do We Define a Method? 
In this section I will give you a cookbook recipe for creating a method. In Squeak you can
define methods on any object, but in this book you will define methods only for robots. To
help you out with this, I developed a specialized code browser named Class Bot Browser just
for defining methods for your robots. There is a Class Bot Browser in the working flap, or you
can always create one by dragging its thumbnail from the dark blue flap or via the menu
open….

Using a Class Bot Browser to define a method requires you to (1) choose or create a
method category, which is a kind of method folder; (2) type the method; and then (3) compile
it. These steps will be described in upcoming sections. But first let us have a detailed look at
the different parts of a Class Bot Browser.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 137



A Class Bot Browser
Defining methods requires a new tool: the editor shown in Figure 12-1. This browser is actu-
ally a simplified version of the browser used by Smalltalk programmers. The browser consists
of three parts, or panes:

Categories. The upper left pane contains the category list. It shows the different method
categories. Method categories are just names that group methods together so that you
can find information faster. In Figure 12-1, the category turning is selected; it groups all
the operations having to do with robots’ directional changes. Other categories that group
other robot methods are also listed. 

Methods. The upper right pane contains the method list. This list shows the method
names of the methods in the selected category. In Figure 12-1, five methods are listed:
pointAt:, turn:, turnLeft:, turnRight:, and turnTo:. The method named turn: is cur-
rently selected. 

Method Definition. The bottom pane contains the code editor. It shows the definition of
the method whose name is selected together with optional comment text. This pane is
also the place where you can type the code of a new method. 

Figure 12-1. A Class Bot Browser showing the definition (bottom pane) of the method turn:
(selected in the upper right pane) belonging to the category turning (selected in the upper 
left pane).

List of categories (folder for methods)

Selected category

List of methods in the selected category

Selected method

Selected method definitionSelected method name and parameters
Method comment

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES138



Creating a New Method Category 
Methods are grouped by categories. A category is defined by giving it a name. To define a
method, you either define a new category for it or select an existing category. Let’s create a
new category named regular polygons. Here is how it is done:

1. Click with the right mouse button (Alt-click or Option-click) on the category list. 
A menu like the one in Figure 12-2 will pop up. 

Figure 12-2. To create a new method category, open the category menu and select 
add category.

2. Select the option add category of that menu. 

3. Type the name of the category in the dialog box that appears, as shown in Figure 12-3.
You may choose any name for the category. Of course, meaningful names are better
then meaningless ones when you want to share your work with other people or find
your method again at a later date. 

Figure 12-3. Enter a new category name in the dialog box and click the Accept button.

4. Click the Accept button to validate your choice.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 139



As shown in Figure 12-4, the name of the new category appears in the category pane and
is automatically selected. The editor is ready to accept a new method definition. It shows you
a reminder of how to define a method, which you can remove when you start typing your
method. You are now ready to define your first method. 

Figure 12-4. The new category is ready.

Defining Your First Method 
If the category to which you want to add your method is not selected, select it. Then type the
contents of Method 12-1 (following this paragraph) into the code editor pane. To do this,
select all the text in the code editor and start typing your method. 

Method 12-1. A new method for drawing a square of side length 100

square 
"Draw a square of side length 100 pixels" 

4 timesRepeat:
[ self go: 100.
self turnLeft: 90 ]

Defining a method is a three-step process: 

1. Typing the method. Typing code into the code editor pane works exactly as with the
script editor. First delete the reminder text that is in the code editor pane. The easiest
way to do this is to point your mouse at the beginning of the editor pane before the
first character and click. This will select all of the code editor text. Once you finish 
typing the new method, your code display pane should look like Figure 12-5. 

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES140



2. Compiling the method. Click to bring up the menu for the code editor, as shown in the
figure, and select the option accept. Doing so causes the method definition to be com-
piled, that is, transformed into a representation that the computer can understand and
execute. A new method named square now appears in the method list. If you made a
mistake while typing the method, Squeak will report the error as it would for a script.

Figure 12-5. After typing in the method square, you compile it using the code editor menu.

If you defined the method correctly, you should be able to compile it without Squeak
reporting any errors. The browser will then reflect the fact that the compilation is com-
plete and that robots can now understand messages containing the new method by
showing the new method’s name in the method list (see Figure 12-6).

3. Testing the method. As the saying goes, the test of whether a pudding has been prop-
erly made is in tasting it. Likewise, you have not finished creating your new method
until you have tested it, because the method that you defined might not do what you
had in mind for it. Now you may execute Script 12-3. You should get one black square
and one red square.

Observe that a method can be used and reused, as demonstrated by Script 12-3. This is
old news. Indeed, you have used this fact since the beginning of this book: message selectors
such as go: and turnLeft: are the names of methods defined in the same way as the method
square.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 141



What’s in a Method? 
I asked you to type a method without much explanation. Now it is time to analyze the struc-
ture of the method. 

A method is composed of a name, an optional method comment, and a method body (a
sequence of expressions), as shown in Figure 12-6. The method name can also contain parame-
ters (see Chapter 14), and the method body can also define local variables using vertical bars | |.

Figure 12-6. A method is composed of a name, an optional method comment,
and a method body.

Method name. A method name should always represent what the method does, not how
it does it. When you want somebody to open a door, you don’t explain all the physics and
mathematics involved. It is the same for methods. 

■Important! A method name should always represent what the method does, not how it does it.

Method names without parameters, such as square, follow the same syntax as variable
names. They are composed of alphanumeric characters (letters and digits) and start with
a lowercase character. In our case, the method name is square.

Method comment. A comment consists of text enclosed between double quotes ("This
is a comment"). The text itself cannot contain any double quotes. However, a comment
can be as long as you like, and can continue over several lines. 

In general, a comment explains the purpose and the effect of the method. It explains how
the method can be used, but not how the method does its job. Anyone who wants to know
how the method works can read the method’s body. 

If the method name is clear enough, the comment may be omitted. In our case the
method comment is, "Draw a square of side length 100 pixels".

Method comment

Method body: a sequence
of expressions

Method name

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES142



Method body. After the comment comes the method definition itself, which is the
sequence of messages that are executed in response to a message. In our case, the
method body is as follows: 

4 timesRepeat:
[ self go: 100.
self turnLeft: 90 ]

■Important! A method is a named sequence of expressions. It is composed of a name, an optional 
comment, and a sequence of expressions. Once a method for robots has been defined, any robot can 
execute it in response to a message with the same name.

Scripts versus Methods: An Analysis 
Let’s compare Method 12-2 with Script 12-4. You can see three significant differences: (1) The line
in the script declaring the variable pica is not in the method; (2) the line creating the robot is also
not in the method; (3) in the remainder of the method, the variable pica is replaced by self.

Script 12-4. Pica draws a simple square.

| pica | 
pica := Bot new. 
4 timesRepeat: 

[ pica turnLeft: 90. 
pica go: 100 ] 

Method 12-2. Instructions to any robot for drawing a simple square.

square
"Draw a square of side length 100 pixels"
4 timesRepeat:

[ self go: 100. 
self turnLeft: 90 ]

Remember that a robot method represents a sequence of expressions that can be sent to
any robot: The robot in the script referred to by the variable pica will not necessarily be the
receiver of the message square. The robot daly, or any other robot, could also be the receiver
of the message square, as we saw in Script 12-4. 

Therefore, it is important in defining the method square not to refer to any particular
robot, since the message square will be sent to different robots at different times. Thus we
need a name that will stand for whatever robot happens to be the message receiver of the
message square. That is the purpose of self. Inside a method, self represents the object
receiving the message, because that object itself will be executing messages such as go: 
and turnLeft:.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 143



The Variable “self”
In Chapter 8 I explained that a variable is just a named placeholder for an object. In particular,
I emphasized that the same variable could be used to point to different objects at different
times. 

In the case of a method, the variable self points to whatever object has received the 
message: when the expression pica square is executed, the variable self in the method
square refers to the robot named pica, and when the expression daly square is executed, 
self refers to the robot named daly.

■Important! Inside a method, the variable self represents the object that has received the message
that led to the execution of that method. For example, when the expression pica square is executed,
pica receives the message square and executes the robot method of the same name. The word self 
in the method now refers to the robot named pica, since pica is executing the method; when the expres-
sion daly square is executed, self refers to the robot named daly.

The word self in a method is a special sort of variable, because you cannot change its
value. Only Squeak can assign the value of self. That is why self is not declared between 
vertical bars | |. Moreover, self can be used only inside a method definition. 

■Important! When the code of a method needs to send a message to the receiver, the message is sent
to self. For example, in the method square, the robot executing the method needs to turn itself, so the
message turn: 90 is sent to self.

Method or Not: That Is the Question
At this stage, you may be tempted to go back and convert all the scripts you have written into
methods. This is not advisable, because not every script is worth turning into a method. In
general, you should define a method when you have a sequence of messages that is general
enough to be used several times.

Returning a Value 
A method can also return a value by using the character ^, called a caret. When you type a
caret, Squeak prints an upward-pointing arrow (�) in the environment. Imagine that you
want to have a method that returns the greatest distance that a robot should be allowed to
move at one time. You could define the method maxDistance, shown in Method 12-3. In this
example, the method simply returns a number, but instead, you could have the method return
the result of a complex expression, perhaps involving where the robot is positioned on the
screen.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES144



Method 12-3. This method returns a value.

maxDistance 
"returns the maximum distance a robot should be able to move"
^ 100

If a method does not explicitly return a value, then it returns the message receiver by
default. Method 12-4 is equivalent to the method square defined previously. In fact, at the end
of every method there is an implicit expression ^ self if there is no explicit return expression.
However, in this book you do not have to worry about that. 

Method 12-4. This equivalent version of the square method explicitly returns the message receiver.

squareEquivalent 
"Draw a square of side length 100 pixels" 
4 timesRepeat: 

[ self go: 100.
self turnLeft: 90].

^ self

In this book, you will not use this feature much, but it is important to know that a method
always returns a value.

Drawing Patterns
Now it is time to practice. As you have seen, it is quite easy to transform a script into a
method. Many seasoned programmers use scripts to test ideas. When they have proven the
feasibility of an idea in the form of a script, they move the code of the script into a method for
later reuse. The next exercise trains you to do exactly this. Let’s consider Script 12-5, which
draws an abstract “art nouveau” design. 

Script 12-5. Pica draws a simple abstract pattern.

| pica | 
pica := Bot new. 
pica go: 100 ; 

turnLeft: 90 ; 
go: 100 ; 
turnLeft: 90 ; 
go: 50 ; 

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 145



CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES146

turnLeft: 90 ; 
go: 50 ; 
turnLeft: 90 ; 
go: 100 ; 
turnLeft: 90 ; 
go: 25 ; 
turnLeft: 90 ; 
go: 25 ; 
turnLeft: 90 ; 
go: 50 

Experiment 12-1 (A Simple Abstract Design)

Create a method named pattern that produces the figure drawn by Script 12-5.

You now can use this method in a script to draw a more elaborate design that might be
used for an art nouveau picture frame. 

Script 12-6. An art nouveau picture frame

| pica |
pica := Bot new.
4 timesRepeat: [ pica pattern ; go: 50 ]



At this point, the astute reader might ask, Why don’t we create a method, named frame50,
for example, corresponding to that of Script 12-6? This is indeed possible, since any method
created for a robot can be reused by another robot method. Creating such methods is the topic
of the next chapter.

Experiment 12-2 (A Method for the Art Nouveau Picture Frame)

Create a method named frame50 that produces the design produced by Script 12-6.

Summary 
• A method is a named sequence of expressions. It is composed of a name, a comment,

and a sequence of expressions. Once a method for robots has been defined, any robot
can execute it in response to a message with the same name. 

• A method name should always represent what the method does, not how it does it. 

• A new method for a robot is created using a Class Bot Browser, which is a special editor
for defining methods.

• Inside a method, the variable self represents the object that receives the message.
When the method’s code needs to send a message to the receiver, the message should
be sent to self.

Glossary 
Method categories. A method category is a folder in which methods are sorted. Categories
help you to find methods more quickly. 

Method. A method represents a sequence of expressions that an object can execute. 
A method has a name. It is executed when an object receives a message having the 
same name. 

Class Bot Browser. A Class Bot Browser is a special tool for viewing and editing methods.

Comment. A comment is a piece of text surrounded by quotation marks that explains the
purpose of a method. 

self. The variable self is predefined by Smalltalk. It always represents the receiver of the
message in a method definition.

CHAPTER 12 ■ METHODS: NAMED MESSAGE SEQUENCES 147



Combining Methods

In Chapter 12, you learned how to define methods. I showed that defining methods is inter-
esting and useful because (1) methods save you from having to rewrite scripts, which is
time-consuming and subject to error, and (2) methods can be used and reused by different
robots. The other main advantage of using methods is the possibility of using methods in
other methods, that is, calling one or more existing methods as part of the definition of a 
new method. The reuse of methods is what we will explore in this chapter. 

Being able to reuse methods is extremely important, because we can define a method 
in terms of another one without having to know all the details of how the second method is
defined. We just call it and ask it to do what it is designed to do. 

149

C H A P T E R  1 3

■ ■ ■



CHAPTER 13 ■ COMBINING METHODS150

Nothing Really New: The Square Method Revisited
Having methods call other methods (which we call composing methods) is quite natural and 
is not really new. In fact, it is what you did in Chapter 12 when you defined a method! The
method square includes in its definition calls to the methods turnLeft:, go:, and timesRepeat:
(as shown in Method 13-1). Thus even the simple method square is defined in terms of other
methods, and we did not have to know how turnLeft:, go:, and timesRepeat: are defined. We
needed to know only what they do. So we are essentially done with this chapter, with nothing
left to do but have some fun.

Method 13-1 

square 
"Draw a square of 100 pixels wide " 

4 timesRepeat:
[ self go: 100;

turnLeft: 90 ]

Other Graphical Patterns 
In Chapter 12, I asked you to define the method pattern, which draws a simple abstract pat-
tern (See script 12-5). Now I will ask you to perform some further experiments that will
produce more drawings by defining more methods. 

Experiment 13-1 

Define a method pattern4 that calls pattern four times to produce the figure below. You will use this method
later, in another script. After you have created the method pattern4, use the following three-line script to make
pica draw the figure:

| pica | 
pica := Bot new. 
pica pattern4 



Experiment 13-2 (A Ferris Wheel)

Define a method called tiltedPattern that draws the picture at the beginning of this chapter, which looks
somewhat like a Ferris wheel. Hint: you will have to call pattern nine times, and the angle through which to turn
between calls is 10 degrees.

Experiment 13-3 (Doubling the Frame)

Define the method doubleFrame, presented below, that draws the picture shown after the method definition.

doubleFrame 

8 timesRepeat:
[ self pattern.
self turnLeft: 45.
self go: 100 ]

What Do These Experiments Tell You? 
Now let’s see what you can learn from the experiments you did. As you can see from the meth-
ods pattern4, tiltedPattern, and doubleFrame, the method pattern was defined only once,
and then reused several times in different methods. Defining pattern as a method allows you
to (1) define it only once, (2) reuse it in various contexts, and (3) not introduce errors by copy-
ing this method over and over. 

If you look at the definition of the method doubleFrame, you see that it is defined in terms
of the pattern method, which is itself defined in terms of other methods, such as go: and
turnLeft:. In fact, a complex method is often defined in terms of simpler methods, which
themselves are defined in terms of even simpler methods, which themselves are defined in
terms of even simpler methods, which themselves…. The advantage of this is that it is easier
to understand and to define simple methods than complex methods, and the technique of
defining methods in terms of simpler methods limits the degree of complexity in any one
method. In Chapter 16, I will show you that to solve a problem, it is advantageous to decom-
pose it into smaller subproblems, solve these subproblems, and then use the solutions to the
smaller subproblems to solve the main problem.

CHAPTER 13 ■ COMBINING METHODS 151



It is essential to understand that in defining the method doubleFrame, you do not have to
know how pattern is defined. You just need to know what it does and how to use it! When we
define a method, we are giving a single name to a sequence of messages, which reduces the
number of details that we have to keep track of. We just have to remember what the method
does and its name, not how it does it. We say that we are building an abstraction over the defi-
nition details.

To make this point clear, I rewrote the method doubleFrame without calling the method
pattern by directly copying the definition of pattern (shown in italics). Compare doubleFrame➥

WithoutCallingPattern (Method 13-2) with the method doubleFrame. The new version without
pattern is not only longer, but for most people it is also more confusing and harder to under-
stand.

Now imagine what would happen if I did the same with the code of turnRight:, turnLeft:,
and go:— because these are methods too. It would be a nightmare! There would be so many
details that we would be lost all the time. 

Method 13-2. Creating the double frame without the abstraction of the pattern method 

doubleFrameWithoutCallingPattern 

8 timesRepeat:
[ self go: 100.
self turnRight: 90.
self go: 100.
self turnRight: 90.
self go: 50.
self turnRight: 90.
self go: 50.
self turnRight: 90.
self go: 100.
self turnRight: 90.
self go: 25.
self turnRight: 90.
self go: 25.
self turnRight: 90.
self go: 50.
self turnLeft: 45.
self go: 100 ] 

■Important! When you write a new method, it can call other methods. You can use a method without
knowing how it is written. After you finish writing a method, you can call it when you write another method.

CHAPTER 13 ■ COMBINING METHODS152



Squares Everywhere
Now it is time to practice. Define the following methods using the method square.

Experiment 13-4 (Some Boxes)

Define methods box and separatedBox that produce the pictures shown in Figure 13-1.

Figure 13-1. Boxes

Experiment 13-5 (Your Choice)

Use your previous methods to generate various figures of your choice. Have fun!

Experiment 13-6 (A Star) 

Using the method box, experiment and define a method star that produces the right-hand picture in Figure 13-2.

Figure 13-2. Stars

CHAPTER 13 ■ COMBINING METHODS 153



Summary 
• When you write a new method, it can call other methods. 

• You can use a method without knowing how it is written; you need to know only what 
it does. 

• After you finish writing a method, you can call it when you write other methods. 

• Hiding the details of a method by giving it a name is called abstraction.

CHAPTER 13 ■ COMBINING METHODS154



Parameters and Arguments 

In many previous scripts you sent messages with arguments. For example, in the message 
go: 100 you specified that a robot should move a distance of 100 pixels, and the argument of
this message is therefore 100. Although you have learned how to define methods, you have not
yet learned how to define methods that require one or more arguments.

In this chapter you will learn how to define methods whose behavior depends on message
argument values. We say that such methods have parameters, and that their behavior is para-
meterized. Method parameters act as placeholders in the definition of a method, and these
placeholders are filled by message arguments when the message is sent. First, we will define 
a method with a parameter and invoke it. Then we will analyze it. 

155

C H A P T E R  1 4

■ ■ ■



What Is a Parameter? 
The method square defined in Chapter 12 is rather limited, because the size of the square is
fixed once and for all. You may have asked yourself, “what might be done so that I could draw
a square with side length 300 pixels, or 175, or 225, or even 23 pixels?” There is nothing pre-
venting you from defining the methods square300, square175, square225, square23, and so on. 

But creating multiple square methods does not solve the problem in a satisfactory way. It
would be very inconvenient if we had to define a new method every time we wanted to draw a
square of a different size. What we would really like is to have a universal method for drawing
squares that allowed the user to specify the side length at the time that we call the method.
That way, we would not have to define a new method for every different square size. 

What we need is to replace the fixed side length with a kind of variable whose value will 
be assigned when the message is sent, and not before. This kind of variable exists in many pro-
gramming languages. It is called a parameter. A method parameter is a special variable that can
take on an arbitrary value at the moment the message is sent. It therefore serves as a placeholder
when you define the method and so is not given a value in the message definition.

This should all sound somewhat familiar. After all, you know that methods such as go:
and turnLeft: take an argument (a distance or an angle) at the time the message is sent. 
Each time you wrote an expression such as pica turnLeft: 90, pica turnLeft: 32, or daly
turnLeft: 65, you included in the message the value of the angle as an argument, and then 
the method turnLeft: used this value in deciding through what angle to turn the robot. In fact,
in each of these expressions, it was the same method turnLeft: that was executed, each time
with a different value for the angle through which pica or daly was to turn. Being able to specify
different angles during different message sends using the same message selector turnLeft: is a
powerful feature of the method turnLeft:. You would like to have an analogous feature for the
method for drawing squares, as well as for other methods that you define. And you will, as soon
as I explain how to define a method that like the method turnLeft: can take one or more argu-
ments at execution time.

A Method for Drawing Squares 
You have seen that in Smalltalk, the name of a message selector is terminated by a colon (:)
to indicate that the message takes an argument. Likewise, the name of the method correspon-
ding to such a message selector also ends with a colon, and in the definition of the method, a
parameter is used as a placeholder for the argument of a message. Thus if you want to create 
a method to draw a square of arbitrary size, you could use square: as its name and sideLength
as the parameter. You can then define the method square: as shown in Method 14-1. This
method is then used in Script 14-1, in which pica draws two squares, one of side length 10,
and the other of side length 20.

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS156



Method 14-1. The method square: uses the parameter sideLength to draw a square of arbitrary size.

square: sideLength
"Draw a square of the given side length" 

4 timesRepeat:
[ self go: sideLength.
self turnLeft: 90 ]

Script 14-1. The method square: is used to draw squares of different sizes.

| pica | 
pica := Bot new. 
pica square: 10. 
pica go: 300. 
pica square: 20 

Now let’s analyze the definition of the method square: in Method 14-1. To define a
method that requires one argument, the method name ends with a colon and is followed by
the name of the parameter, which here is sideLength.

The parameter represents a variable whose value is defined when a message is sent (not
when the method is defined). In Script 14-1, when the message square: 10 is sent, the parame-
ter sideLength will be given the value 10. Then when the message square: 20 is sent, sideLength
will have the value 20. Unlike regular variables in scripts, parameters are not explicitly declared
using vertical bars | |.

In Method 14-1, the name of the parameter is sideLength. The name of the parameter 
should be chosen to indicate what it is used for. You could just as well have named this parameter
length, as in Method 14-2 (or size, or anything else), as long as you replaced all the occurrences
of sideLength in the method body with length. Note that Method 14-2 and Method 14-1 give
exactly the same results. That is because sideLength and length are both names for exactly the
same thing: the parameter for the method square:.

Method 14-2 

square: length
"Draw a square of the given side length" 

4 timesRepeat:
[ self go: length.
self turnLeft: 90 ]

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS 157



Practice with Parameters
Now it is time to practice a bit. Let’s start with a simple exercise. 

Experiment 14-1 (A Method to Draw a Hexagon)

Define a method hexagon: that draws a hexagon with the side length passed as an argument.

Experiment 14-2 (A Method to Draw a Cross)

Transform the script given below into a method named cross: that draws a cross with the length of one of its
arms passed as argument. You should then be able to execute the expression pica cross: 100. Hint: notice
that 50 = 100 / 2. A good name for the parameter might be armLength.

|pica | 
pica := Bot new. 
4 timesRepeat: 

[ pica go: 50. 
pica turnLeft: 90. 
pica go: 100. 
pica turnRight: 90. 
pica go: 100. 
pica turnRight: 90. 
pica go: 50 ] 

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS158



Variables in Methods
Just as we have used variables in our scripts to give names to certain quantities, we can also
use variables in methods for the same purpose. If we wanted to tell pica to draw a polygon
with side length 100, we might come up with something like Script 14-2. Because the value of
the angle that pica has to turn through depends on the number of sides of the polygon, I have
introduced the variables numberOfSides and angle. The number of sides is assigned a certain
value (numberOfSides := 6 in our example), and then angle is assigned a value that is calculated
in terms of the value of numberOfSides. Now if we want to change the number of sides of the
polygon from 6, as defined in the script, to any other value, we need to change only the value
assigned to numberOfSides in the third line of the script, and we don’t have to worry about the
angle. 

Script 14-2. Drawing a polygon in a script using variables

| pica numberOfSides angle |
pica := Bot new.
numberOfSides:= 6.
angle := 360 / numberOfSides.
numberOfSides timesRepeat:

[ pica go: 100.
pica turnLeft: angle ]

To convert Script 14-2 into a method, we can define a parameter for the number of sides.
This is done in Method 14-3, which defines the method polygon100: for drawing a polygon
with an arbitrary number of sides, each side having a length of 100 pixels. 

Method 14-3. Drawing a polygon in a method using a variable and a parameter

polygon100: numberOfSides 
"Draws a polygon with an arbitrary number of sides; 
the length of each side is 100 pixels" 

| angle |
angle := 360 / numberOfSides.
numberOfSides timesRepeat:

[ self go: 100. 
self turnLeft: angle ] 

This method has one argument, numberOfSides, and one variable, angle. Both of them are
used within the code of the method. Since numberOfSides is a parameter, its value is specified 
in the argument of any message that invokes the method, for example, pica polygon100: 7
for a seven-sided regular polygon (heptagon). The variable angle is initialized in the text of the
method by setting it to the necessary angle, which depends on the value of the parameter at the
time a message is sent (so it will be 360 / 7 in our example). For any value of numberOfSides, the
variable angle will have the correct value for a regular polygon with that number of sides. 

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS 159



Now that you have the method polygon100:, you can use it to draw polygons, as shown in
Script 14-3.

Script 14-3. Using the method polygon100: to draw a heptagon and a pentagon

| pica berthe|
berthe := Bot new.
pica := Bot new.
berthe polygon100: 5.
pica polygon100: 7.

Experimenting with Multiple Arguments 
Why should we be limited to polygons with side length 100? Wouldn’t it be better to have a
method that draws an arbitrary regular polygon, where both the number of sides and the side
length are determined when the message is sent? For that, we would need two parameters:
numberOfSides and sideLength. So, how do we create a method having two parameters? You
can create a method with two parameters by writing a method name with two colons and
placing one argument name after each colon.

■Note To define a method with multiple parameters, terminate each word in the method name (one word
for each parameter) with a colon, and place each parameter after its corresponding word in the method
name. The method named polygon:size: requires two arguments. The definition of the method polygon:
numberOfSides size: sizeValue defines two parameters, numberOfSides and sizeValue. The first
parameter represents, as its name implies, the number of sides. The second parameter is related to the size
of the polygon. It will be explained following the definition of the method.

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS160



The definition of the method polygon:size: is shown as Method 14-3. After you have
defined it, you can then simply send a message such as pica polygon: 7 size: 100.

Method 14-4

polygon: numberOfSides size: sizeValue 
"Draws a polygon with the number of sides and size to be specified" 

| angle sideLength |
angle := 360 / numberOfSides.
sideLength := 4 * sizeValue / numberOfSides.
numberOfSides timesRepeat:

[ self go: sideLength. 
self turnLeft: angle ]

You may wonder why the parameter sizeValue does not specify the side length of the
polygon, but instead, I decided to define the side length (given by the variable sideLength
in the method) to be 4 * sizeValue / numberOfSides. In order to keep all polygons with the
same sizeValue approximately the same size, I made all polygons have their perimeters equal
to the perimeter of a square with side length sizeValue. The perimeter of such a square is 4 *
sizeValue. The result is that by setting the variable sideLength equal to 4 * sizeValue / 
numberOfSides, when the robot draws numberOfSides sides each of length sideLength, it 
ends up walking a distance equal to the perimeter of a square with side length sizeValue.
Thus for example, any polygon drawn with its second argument 100 will have perimeter 400
pixels, and so all the polygons will be displayed using about the same fraction of the screen.

You may think that the name of the parameter numberOfSides is a bit too long and 
cumbersome. However, it is a very good name for the parameter, because it can easily be
understood by any person reading the method. As we already discussed in Chapter 9, it is
quite important that your code should be readable, almost like a story, by anyone. And that
includes you: the name of a variable or parameter that is unclear may well stump you when
you look at your code several months after you wrote it.

Experiment 14-3 

Define a method rectangleWidth:height: that draws a rectangle with its width and height passed as arguments.

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS 161



Experiment 14-4 

By slightly modifying the method cross: that you wrote in Experiment 14-2, define a method crossWalk1:walk2:
that can draw the stylized crosses shown in Figure 14-1. Order the parameters so that a normal cross like the one
drawn by cross: will have its first parameter equal to twice the second, and so will be drawn by expressions
such as pica crossWalk1: 60 walk2: 30.

Figure 14-1. Three stylized crosses are produced by the method crossWalk1:walk2:. The cross on
the left is the result of the message send pica crossWalk1: 5 walk2: 50; the middle cross is from
pica crossWalk1: 50 walk2: 5; the right-hand cross is from pica crossWalk1: 10 walk2: 20.

Parameters and Variables 
Now that you have practiced a bit, it is time to look more carefully at the difference between
ordinary variables and parameters. Let’s compare the script and method that were defined
earlier for drawing a square of arbitrary side length. They are reproduced as Script 14-4 and
Method 14-5.

In Script 14-4, first the variable sideLength is declared (line 1), then a value is assigned to
it (line 3), and finally it is used as the argument of the method go: (line 5). 

Script 14-4. The square script using a variable

(1)  | pica sideLength | 
(2)  pica := Bot new. 
(3)  sideLength := 10. 
(4)  4 timesRepeat: 
(5)       [ pica go: sideLength. 
(6)       pica turnLeft: 90 ]

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS162



Method 14-5 shows examples of two features of parameters. First, the parameter side-
Length is declared by being placed after a colon in the method name (line 1). Second, it is used
as the argument of the message go: (line 5). A parameter is not initialized in the method defi-
nition because it always gets its value from the corresponding argument in any message that
invokes the method. For example, when the message pica square: 20 is sent to pica, then the
parameter sideLength of Method 14-5 gets 20 as its value.

Method 14-5. The square-drawing method using a parameter

(1) square: sideLength 
(2) "Draw a square of given side length" 
(3) 
(4) 4 timesRepeat: 
(5)      [ self go: sideLength. 
(6)      self turnLeft: 90 ]

There are thus three distinctive differences between parameters and ordinary variables:

Parameters are not explicitly declared. Unlike other variables, a parameter does not
have a variable declaration between vertical bars | |. A parameter is declared when it
appears after a colon in the first line of the method’s definition.

Parameters cannot be assigned a value. Parameters cannot be modified the way other
variables can. You cannot assign new values to parameters inside the body of a method
definition. For example, in Method 14-5 the expression sideLength := 100 is impossible.
Parameters cannot have their values modified because they are a special kind of variable.
They are placeholders for the arguments that are passed when a message invokes the cor-
responding method, and their values are assigned by Squeak when a message is sent and
thus cannot be explicitly assigned using :=.

Variable initialization. Ordinary variables and parameters get their values in very different
ways. A variable value is changed by using an explicit assignment using :=. A parameter
value is assigned when the method is invoked by a message. For example, the message
send pica square: 10 causes the parameter sideLength to be given the value 10. Thus a
parameter is a variable, but it is a special type of variable whose value is assigned only at
the time a message is sent and the corresponding method executed. 

■Note Aside from the three differences between parameters and ordinary variables, a parameter can be
used in the code of a method definition just like any other variable.

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS 163



Arguments and Parameters 
I have introduced the two terms argument and parameter for two related but different ideas.
An argument is a specific object passed in a message. A parameter is the placeholder variable
used in a method definition whose precise value isn’t known when the method is defined. 
A parameter takes its value from a corresponding argument.1

In Figure 14-2, in the message square: 100, the number 100 is the message argument.
When the method square: is executed, its parameter sideLength is set to 100, the value of the
argument.

Figure 14-2. The relationship between an argument (an object) and a parameter 
(a placeholder variable)

Another way to understand the difference between an argument and a parameter is that a
parameter is a placeholder inside a method that represents an input to the method, while an
argument is the actual value that is passed as this input. This idea is illustrated in Figure 14-3.

Figure 14-3. The value of the argument is bound to the parameter during execution of the method.

square: sideLength

   4 timesRepeat: 
         [ self go: sideLength. 
         self turn: 90 ]

pica square: 100. 

…
pica square: 55. 
…

…

…

…
pica square: 100. 
…

square: sideLength

   4 timesRepeat: 
         [ self go: sideLength. 
         self turn: 90 ] An argument: the number 100 is passed

to the method square: and used for the value of the
corresponding parameter 

A parameter: the placeholder variable sideLength
represents the input of the method

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS164

1. Many authors define these terms differently. Some use “actual parameter” for what we call “argument”
and “formal parameter” for what we call “parameter.” Others use the terms “parameter” and “argu-
ment” interchangeably.



CHAPTER 14 ■ PARAMETERS AND ARGUMENTS 165

Note that a parameter can also be used as an argument in other message sends. For
example, in the definition of the method square: (Method 14-5), the parameter sideLength
is used as the argument in the message go: sideLength.

A message argument can also be a variable. For example, in Script 14-5, which uses 
the method square:, the argument of the first message square: is the value of the variable
squareSize, which is 100. The argument of the second message square: is the value of the
expression squareSize + 200, which is 300. The parameter sideLength of the method square:
gets the value 100 from the first square: message, and then the value 300 from the second
square: message. 

Script 14-5. A variable as argument

| pica dist |
pica := Bot new.
squareSize := 100.
pica square: squareSize.
pica go: 300.
pica square: squareSize + 200

About Method Execution
On a first reading you may wish to skip this section, since it goes into details that beginners 
do not need to know. I wrote it because I wanted to answer the questions of the most curious
readers, but I could as easily have omitted this paragraph without loss of continuity. 

When a method is executed, certain new variables are created. These variables are the
message receiver self and the method parameters (which refer to the method arguments),
such as sideLength in Figure 14-4, which shows the effect of sending the message square:
length to a robot referred to by the variable pica, where the variable length references the
number 100.

Figure 14-4. When a message is sent and a method executed, new variables are created that refer
to the arguments and the receiver of the message.

pica

square: sideLength

      4 timesRepeat: 
               [ self go: sideLength.
               self turn: 90 ]

length
100

…
length := 100.
pica square: length

sideLength self

script

method



When the method square: is executed, the variable self refers to the message receiver,
which in our example is the robot pointed to by the variable pica; and the parameter sideLength
refers to the value of the variable length, which here is the number 100. The same process occurs
for each message send. For example, the execution of the expression daly square: 200 assigns
to self the robot referenced by the variable daly and assigns to sideLength the number 200.

This may look complex, but you do not have to worry about it. These are the hidden steps
that Squeak takes to make sure that parameters are set to the values of the message arguments. 

Summary
• A parameter is a special kind of variable that acts as a placeholder for message argu-

ments. A method parameter is declared right after a colon in the method name
indicating the position of the parameter. A parameter must not be declared as a vari-
able, and it cannot be assigned a value in the body of a method definition. Parameters
receive their values from message arguments when a message invokes the method. 

• To define a method with multiple arguments, terminate each word in the method name
with a colon, and place each parameter after its corresponding word in the method
name. For example, the method named polygon:size: requires two arguments. The
definition of the method polygon: numberOfSides size: sizeValue defines two
parameters, numberOfSides and sizeValue.

CHAPTER 14 ■ PARAMETERS AND ARGUMENTS166



Errors and Debugging

Now that you know how to define methods that call other methods, you will be able to write
more and more complex programs, and sooner or later you will find that you have made an
error and cannot figure out what is wrong. Errors in computer programs are called bugs, and 
I am going to show you a powerful tool that helps you to find those bugs and get rid of them:
the Squeak debugger. 

A debugger is a tool that shows the execution of a program. It lets you inspect and change
the values of the variables and edit the methods of a program. In this chapter I will present
some typical examples of errors and explain what a debugger is and how to use it. I will begin
by presenting some common errors regarding variables. Then I will show you how to use the
debugger to identify and fix other kinds of problems.

167

C H A P T E R  1 5

■ ■ ■



The Default Value of a Variable 
Variables are very useful in programming, but they require a bit of attention. For example, you
can easily introduce a bug in a program by using a variable that has not been declared or that
has been assigned incorrect values. Even experienced programmers make errors. However, an
experienced programmer knows how to find and fix bugs. Squeak provides some help by
checking, for example, whether the variables that you use have been declared. Such structural,
or syntax, errors in a program are easy to catch, and Squeak will catch them. However, Squeak
has no way of detecting logical errors, such as assigning a variable the value 1000 when you
should have assigned it 100. Such errors you will have to find yourself, and using a debugger
can help you to understand, locate, and fix your errors. 

First, let’s experiment a bit. Type, select, and print Script 15-1, which declares the variable
size and then attempts to use it before it has been initialized. You should obtain Figure 15-1,
which shows that Squeak prompts you when a variable is not initialized. If you selected the
choice yes when prompted when you print Script 15-1, you should get nil printed as shown
by Figure 15-1 (right). The value nil that you just obtained is a special object assigned to any
declared variable. We will begin by looking at the default value of a variable.

Figure 15-1. Left: Squeak prompts you when you attempt to use a variable that has not been ini-
tialized. Right: The value nil is printed when you proceed.

Script 15-1. Attempting to use a variable before it is initialized

| size | 
size

The reason that Squeak squawks when you use an uninitialized variable is that if you do
not initialize one or more variables, your program is almost certain to run incorrectly, because
your program will be using a variable that has an incorrect value or even no value at all. In
Smalltalk, the value of a variable is by default the object nil, which represents an undefined
value. Although nil is an object like any other, it does not understand many messages. In par-
ticular, it does not understand any of the messages that are sent to number objects or to robot
objects. Therefore, you will get an error if you try to send such a message to the object nil. The
object nil is important for determining whether a variable has been assigned a value.

CHAPTER 15 ■ ERRORS AND DEBUGGING168



■Important! In Smalltalk, the value of an uninitialized variable is by default the object nil, which is used
to represent an undefined value.

The error occurring during the execution of Script 15-1 generates the message shown 
in Figure 15-1. Normally, just answer no and go back and initialize the variable. However,
although Squeak is able to analyze your scripts for such structural errors, it cannot detect
before a script is run whether you have used an invalid value. In such a case, Squeak opens a
debugger, which you can use to access the execution state, which includes the receiver of the
message, the message itself, the variables that are available, and so on. This is what I will
explain now.

Looking at Message Execution 
In case you have forgotten the definitions of the methods pattern and pattern4, they are re-
created as Methods 15-1 and 15-2. What is important to note here is that the method pattern4
uses the method pattern, while the method pattern in turn invokes the methods go: and
turnRight:.

Method 15-1

pattern 
"draws a pattern" 

self go: 100.
self turnRight: 90.
self go: 100.
self turnRight: 90.
self go: 50.
self turnRight: 90.
self go: 50.
self turnRight: 90.
self go: 100.
self turnRight: 90.
self go: 25.
self turnRight: 90.
self go: 25.
self turnRight: 90.
self go: 50 

CHAPTER 15 ■ ERRORS AND DEBUGGING 169



Method 15-2 

pattern4 
"draws four patterns"

4 timesRepeat: [self pattern] 

After these methods have been defined, if Squeak executes the expression Bot new pattern4,
several messages get invoked in a chain reaction whose end result is that the robot draws four
patterns on the screen. Let’s have a look at this chain of messages: First, Bot new creates a new
robot, to which the message pattern4 is sent. As a result, the method pattern4 is executed. This
execution sends the message timesRepeat:, which in turn sends the message pattern. The execu-
tion of the method pattern sends several messages, namely go: and turnRight:. In programming
language jargon such a chain of messages is called an execution stack: the stack contains all the
methods executed in reaction to an initial message and the chain of messages that those methods
executed, then all the methods executed in reaction to each of this second set of messages and
the chain of messages that those methods executed, and so on until there are no more messages
left.

A possible representation is shown in Figure 15-2, where the last method to be executed is
on top, and so on down the line. A method that calls another method appears below the called
method. The part of each expression that leads to the invocation of the method above it
appears in boldface type. Let us look at what is going on in detail. 

1. In the bottom box, the message new is sent to the class Bot, which creates a new robot.

2. The message pattern4 is sent to the created robot.

3. The execution of the method pattern4 sends the message timesRepeat: [self pattern].
The message timesRepeat: is in bold, since it is the first to be sent.

4. The execution of the method timesRepeat: leads to the execution of the block. This is
done by sending the message value to the argument of the message timesRepeat:.

5. In the method pattern4 the message pattern is sent by the method timesRepeat: as a
result of the block execution.

6. The process continues in a similar manner, with the messages of the method pattern
being executed one after another.

Figure 15-2 contains one other box, which I will explain in a minute. What you should
understand at this point is that one method calls another one and that the called method is
above the calling method on the stack.

CHAPTER 15 ■ ERRORS AND DEBUGGING170



Figure 15-2. The execution stack, which contains all the messages and the methods invoked as a
result of the execution of B ot new pattern4

Bot new pattern4

aBot pattern4

pattern
   self go: 100.
   self turnRight: 90.
   self go: 100.
   self turnRight: 90.
   self go: 50.
   self turnRight: 90.
   self go: 50.

self halt.
   self go: 100

pattern4

       4 timesRepeat: [ self pattern ]

halt

    Halt signal

timesRepeat: aBlock

            …   aBlock value 

pattern4

       4 timesRepeat: [ self pattern ]

1

2

3

4

5

6

7

CHAPTER 15 ■ ERRORS AND DEBUGGING 171



A First Look at the Debugger 
Figure 15-2 shows how you can picture the sequence of messages sent and methods executed
resulting from the execution of a message. The Squeak debugger actually lets you see, navi-
gate, and change the chain of messages. The debugger is automatically invoked when a
message is not understood by an object, as I will show later, but you can invoke it explicitly by
introducing the expression self halt in the body of a method. Introducing such an expres-
sion is useful when you want to understand how an expression is executed or to locate a bug
in a program.

■Important! The Squeak debugger is a tool that allows you to navigate through a sequence of executed
methods. Using a debugger, you can print the values of a method’s arguments, modify the method’s defini-
tion, change and view the values of variables and arguments, and continue execution.

To open the debugger, add the expression self halt in the method pattern, as shown in
Method 15-3. Then execute the expression Bot new pattern4. You should obtain the situation
depicted in Figure 15-3. First a new robot is created. Then it starts to draw the first pattern,
and after drawing four lines, it stops, and a window opens that gives you an opportunity to
open the debugger.

Figure 15-3. The robot starts to draw the beginning of the first pattern, but after drawing four
lines, it stops, and you can open the debugger.

Tell the debugger to continue
execution of the program.

Tell the debugger to cancel
and abandon execution

Open the debugger

CHAPTER 15 ■ ERRORS AND DEBUGGING172



Method 15-3. Introducing the expression self halt in a method opens a window that gives you
the opportunity to open the debugger.

pattern 
"draws a pattern" 

self go: 100.
self turnRight: 90.
self go: 100.
self turnRight: 90.
self go: 50.
self turnRight: 90.
self go: 50.
self halt.
self turnRight: 90.
self go: 100.
self turnRight: 90.
self go: 25.
self turnRight: 90.
self go: 25.
self turnRight: 90.
self go: 50 

■Important! To invoke the debugger, insert the expression self halt in a method. The execution of the
expression self halt opens a window that gives you an opportunity to open the debugger.

The debugger window shown in Figure 15-3 offers three buttons: Proceed, Abandon, and
Debug.

Proceed. This button tells the debugger to continue execution of the method, ignoring
the self halt message. Note that it is possible to proceed only if you opened the debug-
ger using self halt. When an actual error occurs that opens the debugger, using Proceed is
of no help, since Squeak cannot continue. 

Abandon. This button tells the debugger to close, and execution is simply discontinued. 

Debug. This button tells the debugger to open. An open debugger window is shown in
Figure 15-4.

CHAPTER 15 ■ ERRORS AND DEBUGGING 173



If you press debug and select the second line of the top pane, you obtain the window
shown in Figure 15-4. As you can see, the debugger is composed of several panes. The top
pane represents the execution stack, as was outlined in Figure 15-2. You are shown all the
messages that have been sent up to just before the halt occurred, with the most recent mes-
sage on top. The most recent message is of course halt, and therefore it is at the top of the
stack. This is the message that led to the opening of the dialog box shown in Figure 15-3. 

Figure 15-4. The debugger window. The method pattern is selected.

Selecting one of the lines in the top pane shows the method definition in the next pane
down. Figure 15-4 shows that we selected the method pattern in the stack, and its definition is
shown in the second large pane. The object that received the message pattern (which is the
object referred to by the variable self) and executed it is shown in the bottom left pane. 

In the method body of the currently selected method, which in our example is pattern,
the debugger highlights in green the method whose execution is currently stopped, and which
is above the selected method on the stack. Here self halt is currently stopped, and it is above
pattern on the stack. You can also see that all the expressions above self halt in the method
body have been executed, while the expressions below have not. In this example, self go:
100. self turnRight: 90. self go: 100. self turnRight: 90. have already been executed. 

The execution stack
The message that led to the debugger invocation

The method definition  
of the 
selected method

The object executing the current method,
which is the value of self

The message whose method is currently at the top of the stack

CHAPTER 15 ■ ERRORS AND DEBUGGING174



If you select the third line in the top pane, that is, the method pattern4, you will see, as
shown in the left pane of Figure 15-5, that the stack of the execution of the method pattern4
above is related to the execution of the expression self pattern of the method pattern4. Now
if you select the fifth line, you have another look at the method pattern4, but now before the
timesRepeat: loop is executed.

If you select the fourth line, as shown in Figure 15-5, you see the definition of the method
timesRepeat: itself. You can see in the top pane that the object receiving the timesRepeat:
message is not a robot but an integer. In our example, in the expression 4 timesRepeat: 
[ self pattern ] the receiver of the loop is the integer object 4. This means that within this
method the variable self is bound to an integer object. This is nothing unusual, since the 
variable self always represents the object that has received the current message.

Figure 15-5. Left: The method pattern4 is selected. Right: The method timesRepeat: is selected.

Stepping through the Stack
The Squeak debugger not only lets you navigate the stack and identify the receivers of the var-
ious messages, but lets you execute the method step by step. You can tell the debugger to
perform several actions using the buttons located between the first and second panes. Here is
a description of the most useful ones, in order from left to right.

Proceed. Pressing this button has the same effect as pressing the Proceed button in the
dialog box shown in Figure 15-3. The debugger is closed, and execution of the method
continues if possible.

Restart. You can ask the debugger to restart the execution of the current method. Note
that sometimes, doing this can lead to difficulties, since you might thereby modify the
same object twice, leading to an unexpected result or an outright error.

CHAPTER 15 ■ ERRORS AND DEBUGGING 175



Into. This button and the next one are the most useful buttons in the debugger and the
most frequently used. Pressing this button takes you into the method currently selected
without executing it. That is, you are taken inside the code for the selected method as dis-
played in the second pane of the debugger, and no execution of the method takes place.
See Figure 15-6 for an example, in which the method turnRight: of the method pattern is
selected and stepped into.

Figure 15-6. Stepping into the method turnRight:.

Over. Pushing this button lets you execute the message currently selected without stepping
into the method. You simply execute the expression and then stop. See Figure 15-7. In this
figure, I stepped into the method pattern, and then I stepped over some expressions in the
method pattern, which led to those methods being executed. You can see in the figure that 
I have stopped at the expression go: 25. I am still inside the method pattern because I did
not step into any of the expressions that constitute pattern. As the methods are executed,
you should see the robot performing each action one after the other. Note that when you
arrive at the end of the method, having executed all of the expressions, stepping over just
returns you to the method that invoked the current one, and you move down the stack. For
example, after you were done stepping through pattern, you would end up in pattern4.

When you press the button Into, you are asking the debugger to go into the method with-
out executing it. For example, if the currently selected expression in the method pattern is
self turnRight: 90, then you can either simply execute that expression by pressing the Over
button, or you can press the Into button, which tells the debugger to go inside the method
turnRight:, stopping at its first expression, as shown in Figure 15-6, where as you can see, the
first message to be sent is the message negated. And here again you have the choice to step

CHAPTER 15 ■ ERRORS AND DEBUGGING176



CHAPTER 15 ■ ERRORS AND DEBUGGING 177

into the expression negated or to execute it by stepping over it. And once again, when you
reach the end of a method, you return to its calling method. Note that you can also see the
value of the arguments passed to the method by selecting the argument name on the method
body and choosing print it (see Figure 15-8).

Figure 15-7. Stepping in the method pattern and then stepping over each message, watching the
robot executing each expression one by one.

Figure 15-8. Left: Selecting an argument and printing. Right: The value is printed.



Finally, you can modify the method definition inside the debugger by editing the code
and then accepting it via the contextual menu item accept (see Figure 15-9). For example, in
Figure 15-9, I restarted the method by pressing the Restart button; I then edited the method in
the debugger itself, replacing the 100 of the first go: message with 500. Then I recompiled the
method by choosing accept in the menu. Now the robot will move 500 pixels if you press the
proceed button.

This is all somewhat complex, and you might find it confusing at first. Remember that 
the debugger simply lets you execute all the expressions of a method step by step. So please
experiment with the debugger and try out all the buttons. Be assured that no robots will be
harmed in the process.

Figure 15-9. Left: Editing the method definition and recompiling it. Right: The method pattern
has been recompiled.

Fixing Errors
I have shown you how to open the debugger by inserting the expression self halt in a method. 
I have also shown how you can edit the code of a method in the debugger. This technique allows
you to use the debugger to fix your errors, that is, to debug your code. When an object receives a
message that it does not understand, you have the opportunity to open the debugger. When an
object does not understand a message, Squeak sends this object the message doesNotUnderstand:
with a representation of the message. By default, the method doesNotUnderstand: opens a dialog
box to ask you whether you want to open the debugger. You can then use the debugger to navi-
gate in the stack of executed methods and try to understand what went wrong. 

CHAPTER 15 ■ ERRORS AND DEBUGGING178



Example 1
To illustrate the process, change the first line of the method pattern to self go2: 100 and exe-
cute the expression Bot new pattern4. You should obtain the debugger dialog box, as shown in
Figure 15-10. The debugger dialog box indicates that the receiver, a robot created by the class
Bot, does not understand the message go2:. When you press the button Debug in the dialog
box, you open the debugger, as shown in the right pane of Figure 15-10.

The method on the top of the stack is the method doesNotUnderstand:, which is sent to
the receiver of a message when that receiver does not understand the message. The method
directly below it is then the method containing the message leading to the error and hence the
call to the method doesNotUnderstand:. Here the method pattern contains the message go2:,
which is not understood by the robot, as shown in Figure 15-10. 

Figure 15-10. Left: A doesNotUnderstand: error has occurred. Right: Identifying the problem.

Example 2
Now change the first line of the method pattern to self go: nil and execute the expression
Bot new pattern4. You should get the debugger dialog box shown in Figure 15-11. The error 
is difficult to spot. Here, the dialog box title MessageNotUnderstood: UndefinedObject
indicates that there is a message not understood sent to nil, which is an instance of 
the class UndefinedObject.

The fact that nil was passed as a value led to an error after several other method execu-
tions. Therefore, you have to go down the stack to the point where you can understand your
mistake and fix it. For example, in the right-hand pane of Figure 15-11, the second method
from the top shows that something wrong happened with *, but the problem does not come
from this method. This is the same situation in the following method, go:. If you select that
method, you can see that the method go: just passes the argument it receives from the method
pattern to the method positionIfGo:. If you select the parameter distance and print its value,
you get nil. This indicates that the problem comes from a place further down the stack. 

A robot instance of the class Bot
does not understand the message go2:

CHAPTER 15 ■ ERRORS AND DEBUGGING 179



Figure 15-11. Left: A message not understood sent to nil. Right: Going down the execution stack.

Finally, from the left pane of Figure 15-12, you can see that nil is passed as an argument
instead of a number, as expected by the method go:. You can now fix the bug by editing the
method pattern to change self go: nil to self go: 100, accepting all the changes using the
pop-up menu, and pressing the button Proceed to continue execution.

This example of using nil as the argument in a go: message provides a very easy problem to
identify. While you may occasionally introduce such trivial bugs, you will generally have to face 
a wide variety of unexpected situations that lead to bugs. However, the process is the same: you
use the debugger to navigate through the stack, checking the values of the arguments until you
understand what went wrong. You may find that your code itself needs to be changed, not only
the arguments of messages. 

Figure 15-12. Left: Editing the method definition and recompiling it. Right: The method pattern
has been recompiled.

CHAPTER 15 ■ ERRORS AND DEBUGGING180



Summary 
• In Smalltalk, the value of an uninitialized variable is by default the object nil, which is

used to represent an undefined value.

• The Squeak debugger is a tool that allows you to navigate through the executed meth-
ods. Using the debugger, you can print the values of arguments, modify the definition
of methods, and continue execution.

• To open the debugger explicitly, insert the expression self halt in a method. When the
expression self halt is executed, the debugger can be opened.

CHAPTER 15 ■ ERRORS AND DEBUGGING 181



Decomposing to Recompose 

In this chapter I would like to show you that a good approach to solving a problem is to
decompose the problem into smaller problems that are easier to solve, and then compose the
solutions of the smaller problems to solve the main one. Often, defining and using a number
of simple methods lets you solve a complex problem in a much simpler and more natural way
than by attempting to solve the whole thing at once. This is yet another example of the power
of abstraction that I introduced in Chapter 12.

Unfortunately, although the decomposition of problems into smaller ones is a powerful
technique, there is no systematic way to decompose a problem. Only through experience and
trial and error is it possible to learn and develop some intuition about problem-solving. In this
chapter, I offer you some small but nontrivial problems that you should try to solve. That is, try
to decompose each problem into smaller problems and then compose your solutions to form
a solution to the initial problem. The problems proposed here are certainly the most complex
exercises in this book, so do not be discouraged if your first attempts fail. It is important.
though, that you try to solve them.

183

C H A P T E R  1 6

■ ■ ■



Mazes and Spirals
In Chapter 10, you experimented with loops and variables. At that time, you didn’t know that
you could use methods that you wrote yourself. Now I suggest that you redo those experi-
ments using methods such as square: and that you define methods with multiple arguments
to help you. As I already mentioned, solving complex problems using simpler methods is a
difficult task that can be learned only by experience. Therefore, I strongly encourage you to do
all the experiments in this chapter and indeed, you should try to find more than one solution
for each of them. Try to see how the solution to a problem can be expressed at a high level of
abstraction. Such an approach makes the overall problem simpler to express. For example, to
draw a pyramid of squares, you could simply draw a large number of squares. But at a higher
level, you could view the pyramid as a number of rows of squares of varying lengths, and then
try to define and use a method that draws a row of n squares.

Centered Squares 
The following experiments give you more opportunities to practice your skills. Imagine differ-
ent strategies to solve these problems. Here is a hint: define a method centeredSquare: size
that draws a square centered around the robot, and after drawing the square brings the robot
back to its original position. 

Experiment 16-1 (Square Ripples in a Square Pond)

By composing methods, draw the picture shown below.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE184



CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE 185

Experiment 16-2 (A Corridor)

By composing methods, draw the picture shown below.

Experiment 16-3 (Russian Squares) 

Use the method square: to build squares of different sizes as shown in the figure below.



Spirals
The spirals in this chapter are all drawn using just straight segments, angles, and repetition.
They have no curves; the robot draws a straight line segment as it goes forward, then turns
through an angle and repeats the process.

In the first group of spirals, the length of each segment changes a little from the previous
one. The robot turns through the same angle after each straight segment. These are called
constant-angle spirals because the angle doesn’t change.

Experiment 16-4 (A Constant-Angle Spiral)

Define a method constantAngleSpiral: that draws a constant-angle spiral. The angle through which the robot
turns is the sole parameter. Change the distance through which the robot travels by the same amount for each
segment. Have fun and try different angle values; you can create wonderful drawings. The following script created
the spiral shown below.

| pica |
pica := Bot new.
pica constantAngleSpiral: 121

Experiment 16-5 (Another Spiral)

In the previous experiment, at each step you added the same number to the distance through which the robot
moves. Now experiment by computing the length of a side, not by adding a constant amount to the previous side
length, but instead by multiplying by a constant ratio. Pay attention! Multiplying by 1.1 means an increase of 10
percent.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE186



Experiment 16-6 (A Spiral with Four Parameters)

The constantAngleSpiral: method depends on four different values. They are the number of segments,
the starting length for the first segment, the amount by which each segment is incremented, and the angle
through which the robot turns. Define a method named spiralSegments:firstLength:lengthIncrement:
constantAngle: that can draw all of these spirals by varying the choice of four parameters. Try, for example,
the following script, which draws two different spirals.

| pica |
pica := Bot new.
pica spiralSegments: 50 firstLength: 10 lengthIncrement: 3 constantAngle: 144.
pica color: Color red.
pica spiralSegments: 120 firstLength: 1 lengthIncrement: 3 constantAngle: 12.

Experiment 16-7 (Spirals with Constant Distance)

Up until now, you created spirals by changing the distance through which the robot moved forward, and the robot
always turned through the same angle. Now experiment with doing the opposite: keep the distance constant, and
increase the angle by a fixed increment after each segment. For these experiments, define a method with four
arguments: the number of times to repeat, the initial value of the angle, the angle increment, and the length of a
segment. As shown in Figure 16-1, which depicts three of these spirals, predicting the curves generated by this
method is quite difficult. Feel free to play with different values. Have fun! 

Figure 16-1. Left: Iterations: 90, initial angle: 2, increment: 20, length: 30. Middle: iterations: 72,
initial angle: 40, increment: 30, length: 30. Right: iterations: 100, initial angle: 40, increment 5:,
length: 23.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE 187



Experiment 16-8 (“Spirals” Out of Squares)

If you change the method that you defined in Experiment 16-7 to draw a small square instead of a line, you can
get really crazy pictures like the one shown in Figure 16-2.

Figure 16-2. Drawing a fixed-length “spiral” using squares

Experiment 16-9 (A Spiral Out of Lines)

Try to reproduce the figure shown below. Here are some hints: start with a length of 5 and increase it by 3, and
turn through an angle of 178 degrees.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE188



Golden Rectangles
Now it is time to write some methods for drawing the famous golden rectangles that were
introduced in Chapter 8. I encourage you to try your own methods before reading my solu-
tion. For some of the experiments I do not offer a solution. Instead, I just give you some hints.

A golden rectangle is a rectangle with the property that if you cut a square out of one end
of the rectangle with side length equal to the rectangle’s width, the rectangle that is left over is
again a golden rectangle. For example, rectangle 2 in Figure 16-3 comprises a square on the
bottom and another golden rectangle on the top. In rectangle 3, the golden rectangle inside
rectangle 2 has been divided into a square and an even smaller golden rectangle. The process
is repeated again in rectangles 4 and 5.

It is not difficult to show that for a rectangle to have this property, the ratio of the length to 

the width must be (which is approximately equal to 1.6).1 This special number is called the
golden ratio or golden section. It can be calculated in Smalltalk by the expression 1 + 5 sqrt / 2.

The problem that I am posing for you is to draw several golden rectangles, each one
nested inside the previous one, as shown in Figure 16-3.

Figure 16-3. The first five steps in the construction of nested golden rectangles

Try to identify actions that might help you achieve your goal. To help yourself, take a
piece of paper and draw a golden rectangle of width about 10 centimeters with one or two
golden rectangles inside, like those in Figure 16-3. For example, you might first try to define 
a method goldenRectangle: that draws a golden rectangle. Then you could define a method
manyGoldenRectangles: that draws several golden rectangles by calling the previous method.

Another approach is to draw one golden rectangle and then draw just one line inside that
rectangle to create the next golden rectangle, and so on. Don’t get discouraged if it takes some
trial and error, because this exercise is complex. 

To help you get started, look at Script 16-1, which draws a golden rectangle. Start by con-
verting this script into a method that has the width of the rectangle as its parameter.

1                  2 3                    4 5

1 +    5
2

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE 189

1. If the width of a golden rectangle is 1 and its length x, then when you cut a square out of the golden
rectangle, the smaller golden rectangle has width  and length 1. Since these two rectangles are similar,
the ratios of their sides must be the same. Clearing denominators and solving the resulting quadratic
equation reveals that the length x of the original rectangle must be equal to the golden ratio.



Script 16-1. Pica draws a golden rectangle.

| pica length width |
pica := Bot new.
width := 100.
length:= width * ((1 + 5 sqrt)/2).
2 timesRepeat:

[ pica go: width;
turnLeft: 90;
go: length;
turnLeft: 90. ]

A One-Line-per-Rectangle Solution
Here is a solution based on the fact that you need to draw only the largest rectangle com-
pletely. After that, you can draw a single line in just the right place to create the next-smaller
golden rectangle. This process is shown in Figure 16-4.

Figure 16-4. Once a robot has drawn a golden rectangle, it moves into position and then draws a
line that cuts the rectangle to form a square and a smaller golden rectangle.

Thus to draw several golden rectangles you need to know how to (1) draw one entire
golden rectangle, (2) draw a line that defines the square within the golden rectangle, and (3)
compute the width of the next golden rectangle. Therefore, there are three tasks: 

1. Define a method that given a width, knows how to compute the corresponding length
and draws a golden rectangle, as I suggested you do in the previous section. Let’s call
this method goldenRectangle: width, where the parameter width represents the width
of the golden rectangle.

2. Define a method that draws the line to delimit the square included inside the rectangle,
as shown by the second rectangle in Figure 16-3. Let’s call this method dividingLine:
sideLength; it first moves the distance sideLength from the robot’s starting point, and
then draws a segment of length sideLength in the robot’s initial direction. Note that 
these two distances are the same because they are two side lengths of a square.

self turnLeft: 90.

self jump: size.

self turnRight: 90.

self go: size

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE190



3. Once the methods goldenRectangle: and dividingLine: have been defined, you will
need a method that puts everything together: It should draw a golden rectangle, and
then repeatedly draw the missing side of the square to form the next-smaller golden
rectangle and compute the size of the next square, which is also the width of the next
golden rectangle. You will also need to ensure that the robot starts at the right place
and points in the right direction to draw the next square. Let’s name this method 
goldenRectangles: largestWidth atLevel: n, where largestWidth represents the
width of the first golden rectangle, and n indicates the number of squares that will 
be drawn (so you will end up with n + 1 golden rectangles).

Now let us develop these three methods.

The Method goldenRectangle: width 
Method 16-1 is nothing special; given the width of a golden rectangle, it computes the length
and then draws the rectangle. 

Method 16-1. Draw a golden rectangle given its width.

goldenRectangle: width 
"Draw a rectangle whose length is the golden ratio times its width" 

| length | 
length := width * (1 + 5 sqrt / 2). 
2 timesRepeat:

[ self go: width ;
turnLeft: 90 ;
go: length ;
turnLeft: 90 ]

The method goldenRectangle: starts drawing in the robot’s current direction and draws
the rectangle’s width first. When it is finished, the robot is back at the starting point pointing
in its original direction. 

The Method dividingLine: sideLength
The definition of the method dividingLine: assumes that the robot is at a corner and pointing
along the width of the rectangle, with the rectangle’s length at the robot’s left. This scenario
matches the situation at the end of the method goldenRectangle:. Figure 16-4 shows the action
of dividingLine:, by which the robot turns ninety degrees to its left, walks along the rectangle’s
length, turns ninety degrees to the right, and then draws the missing side of the square to create
a new golden rectangle.

In the situation of Figure 16-4, where the robot is at the bottom of a golden rectangle 
and pointing to the right (first panel), it ends up by drawing a horizontal segment of length
sideLength at the distance sideLength above its starting position (third panel). This explana-
tion is actually more complex than the definition of the method.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE 191



Method 16-2. Draw a line that divides a golden rectangle into a square and a smaller golden 
rectangle.

dividingLine: sideLength 
"Move the distance sideLength to the left of the starting position, 
and draw a segment of length sideLength in the initial direction." 

self turnLeft: 90 ;
jump: sideLength;
turnRight: 90 ;
go: sideLength

The Method goldenRectangles: largestWidth atLevel: n 
This method, Method 16-3, is a bit more complex. Try to understand it yourself before reading
the explanation that follows. 

Method 16-3

goldenRectangles: largestWidth atLevel: n 
"Draw n + 1 golden rectangles; the largest of them has width largestWidth" 

(1)  |  currentRectangleWidth | 
(2)  currentRectangleWidth := largestWidth. 
(3)  self goldenRectangle: currentRectangleWidth. 
(4)  n timesRepeat:  [  self dividingLine: currentRectangleWidth. 
(5)      self turnLeft: 90. 
(6)      currentRectangleWidth := currentRectangleWidth * ((1 + 5 sqrt) / 2) - 1)]

This method produces a group of nested golden rectangles of which the first has 
largestWidth as its width. To create six golden rectangles, execute the expression 
Bot new goldenRectangles: 100 atLevel: 5. This is what happens: 

• The variable currentRectangleWidth represents the width of the current rectangle. 
It also represents the size of the square segment to draw.

• Line (2) initializes the value of the variable currentRectangleWidth to the width of the
first golden rectangle. This width is given as the argument of the method. This is the
width of the first golden rectangle.

• Line (3) draws the first golden rectangle, which serves as the basis for all the others. 

• Line (4) defines a loop that repeats the same actions n times.

• Line (4) first draws the missing part of the square using the method dividingLine:.
The size of this square is the width of the current golden rectangle. Therefore, the
method uses the variable currentRectangleWidth as its argument. Note that using
the variable largestWidth will not work for the smaller rectangles, because its
value does not change when the loop is repeated.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE192



• Line (5) positions the robot so that the next segment can be drawn. Our starting
assumption was that the rectangle is always drawn with its width in the direction
the robot is pointing. Therefore, the expression self turnLeft: 90 points the robot
along the width of the new rectangle (for example, after the last drawing of Figure
16-4, the robot will turn from east to north).

• The last line, line (6), comes from the observation that the length of a nested
golden rectangle is in fact the width of the previous one. Therefore, the width of 
a new rectangle is the difference between the length and width of the previous 
rectangle. Expressed as some simple mathematical expressions, we get

From the formula for the golden ratio, we have

Therefore, 

In Smalltalk, we write this as currentRectangleWidth := currentRectangleWidth *
((1 + 5 sqrt) / 2) - 1).

The individual problems of drawing a golden rectangle and drawing a dividing line are
fairly simple. The composition of the solutions to these two problems to obtain the desired
solution requires paying attention to the assumptions of each method, that is, the context for
which it was defined. 

You might want to try to find another solution to this problem. Then you can use the
same technique with Experiment 16-10.

Experiment 16-10 (Increasing Golden Rectangles) 

You have seen a method for drawing a set of decreasing, or nested, golden rectangles. Now write a method to 
create a set of increasing, or nesting, golden rectangles. The figures below show some possible steps.

newWidth = currrentRectangleWidth  x                  – 1(      )1 +    5
    2

currrentRectangleLength =                  x currentRectangleWidth
1 +    5
    2

newWidth = currrentRectangleLength – currentRectangleWidth

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE 193



Tiling
Now I would like you to try to reproduce some pictures using the method square:. These
experiments are important for developing an understanding of how to compose methods and
reuse the abstractions they represent. The idea promoted by these exercises is key to under-
standing how complex programs are built.

Here are some hints: First of all, there are several ways to approach the problems. In gen-
eral, try to see how you can simplify the problem. If you look at the three figures associated
with the next three experiments, you might imagine that it would be helpful if you had a
method called, say, lineOfSquares: that could draw a row of an arbitrary number of squares.
Assuming that you had such a method, sketch a solution to each problem. Then implement
the method and see whether it helped you. Decomposing a problem is difficult, and the only
way to learn is to invent and try something, evaluate the result, improve your invention, and
try again.

Alternatively, you could also use nested loops like these: 

n timesRepeat: [
m timesRepeat: [ ... ] ]

I also suggest that you define your methods so they put the robot back in its starting posi-
tion at the end of the method. This makes it easier to compose the methods. Experiment with
all these approaches.

Experiment 16-11 (A Rectangular Pyramid) 

Using the method square:, which draws one square of a given size, lineOfSquares:, which draws a row of
squares, and any other methods that you define, draw the pyramid shown below.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE194



Experiment 16-12 (A Triangular Pyramid) 

Using the method square:, which draws one square of a given size, lineOfSquares:, which draws a row of
squares, and any other methods that you define, draw the pyramid shown below.

Experiment 16-13 (Checkerboard Squares)

Using the method square:, which draws one square of a given size, lineOfSquares:, which draws a row of
squares, and any other methods that you define, draw the pyramid shown below.

Summary 
• To solve a big problem, decompose it into smaller problems; then compose the solu-

tions of the smaller problems to build the solution to the large one. 

• Pay attention to the context in which the small problems are solved, because you will
need to make sure that their assumptions are valid when you compose them.

CHAPTER 16 ■ DECOMPOSING TO RECOMPOSE 195



Strings, and Tools for
Understanding Programs 

In this chapter I present an important concept: the notion of strings. A string is a sequence of
characters that can be used to represent words or sentences. One important use of strings is 
to communicate with users. In subsequent chapters, you will learn to use strings as a tool for
understanding more complex program structures such as conditions and conditional loops.
In this chapter I will present only the most important aspects of strings, providing the basic
information that you will then use in subsequent chapters. I will also show you how to use
strings to help you understand how programs are executed. I recommend that you also try to
use the debugger for help in understanding the experiments that are proposed in this chapter.

197

C H A P T E R  1 7

■ ■ ■



Strings
Strings are used to represent information and present it to the user. Strings are delimited by
single quotes ('This is a string'), and as you can see, a string can contain white-space
characters. For example, the string 'squeak is cool' represents a sequence of fourteen char-
acters: s q u e a…. Note that a space is also a character. A string can contain any number of
characters, including zero. Thus '' is an empty string, 'a' is a string with only the character a,
and ' ' is a string whose only character is a space. 

■Important! A string is a sequence of characters delimited by single quotes. A string represents textual
information such as words or sentences. Strings can be used to display information on the screen.

Selecting a string and printing it (menu print it) prints that string. Several methods are
defined on strings, but the most important one in the context of this book is the method , whose
name is the comma character. When the message , is sent to a string as receiver with one string
as argument, the method , returns the concatenation of the two strings. That is, it returns a sin-
gle string whose characters are those of the first string followed by those of the second. 

'squeak'                          "the value of a string is itself" 
—Printing the returned value: 'squeak' 

'a'                               "a string can be composed of only one character"

''                                "an empty string" 

'squeak' , 'is cool'              "concatenating two strings" 
—Printing the returned value: 'squeakis cool' 

'', 'squeak', ' ', 'is cool'       "concatenating multiple strings"
—Printing the returned value: 'squeak is cool' 

The method copyReplaceAll: allows you to modify a string by replacing all occurrences of
a particular substring with a different string. In the example below, 'not' is replaced with
'really':

'Squeak is not cool' copyReplaceAll: 'not' with: 'really'
—Printing the returned value: 'Squeak is really cool' 

Communicating with the User 
Squeak offers some tools to display information on the screen and to request information
from the user. The class PopUpMenu allows you to bring up a menu and display some informa-
tion for the user using strings. For example, the expression PopUpMenu inform: 'squeak is
cool' causes a small window to pop up that displays the string 'squeak is cool' and then
waits until the user presses the ok button. The class FillInTheBlank allows you to request

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS198



input from the user. For example, the expression FillInTheBlank request: 'is squeak
cool?' brings up a dialog box with an input field and waits for the user to fill in the input field
and press the accept button or the cancel button. The result of this expression is a string that
represents what was typed by the user. You can also specify a default user input using the mes-
sage request:initialAnswer: as shown in the following script, and in Figure 17-1.

(1) PopUpMenu inform: 'squeak is cool'

(2) FillInTheBlank request: 'is squeak cool?'
—Printing the returned value: 'yes'

(3) FillInTheBlank request: 'is squeak cool?' initialAnswer: 'yes of course'
—Printing the returned value: 'yes of course'

Figure 17-1. Pop-up menu and fill in the blanks

Strings and Characters 
A string is composed of characters. While a string is enclosed in single quotes to show that it is
a string, individual characters are prefixed by a dollar sign $ to show that they are characters.
For example, $a represents the character representing the letter “a”. Note that while individual
characters are prefixed by the dollar sign $, when you edit a string you simply type the charac-
ters without the dollar sign. 

There are several methods for accessing the individual characters of a string. For example,
the methods first, second, and third return the first, second, and third characters of a string.
The method size returns the number of characters in a string, while the method at: aNumber
returns the character located at the specified position in the string. You can replace the char-
acter at a specified position with another character using at: aNumber put: aCharacter. The
method copyUpTo: aCharacter returns the beginning of a string up to the first character that
matches aCharacter. Here are some examples:

'squeak is cool' first
—Printing the returned value: $s 

'squeak is cool' size
—Printing the returned value: 14 

(1) (2) (3)

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS 199



'squeak' at: 5
—Printing the returned value: $a

'squeak is cool' at: 11 put: $f 
—Printing the returned value: 'squeak is fool' 

'squeakiscool' copyUpTo: $i 
—Printing the returned value: 'squeak' 

'squeak is cool' copyUpTo: Character space 
—Printing the returned value: 'squeak' 

To create a character that does not have a graphical representation, such as the space, tab,
or carriage return character, you can send a message to the class Character. The messages
Character space, Character tab, and Character cr return respectively the space, tab, and car-
riage return characters. 

Script 17-1 shows how to insert a carriage return into a string. Note that the method
at:put: does not return the modified string, but the character that was inserted. This is an
example where the effect of the message and its result are clearly different. Printing the result
of the message 'squeak is cool' at: 7 put: Character cr does not illustrate the effect of
the method. Therefore, we print instead the modified string. To review how to print results of a
message send on the screen, see Chapter 5, “Pica’s Environment.”

Script 17-1. Inserting a carriage return into a string

|myString|
myString:= 'squeak is cool'.
myString at: 7 put: Character cr.
myString
—Printing the returned value: 'squeak
is cool’

A character can also be converted into a string by sending it the message asString. In
Script 17-2, three strings are concatenated together. The middle one is the string 'a' created
by the message send $a asString.

Script 17-2. A character is converted into a string, which is then concatenated with other strings.

'sque', $a asString, 'k'
—Printing the returned value: 'squeak'

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS200



Strings and Numbers 
A string can represent a number. For example, the string '10' is a textual representation of 
the number 10. However, a string is not a number. A string does not know how to perform any
mathematical operation, and a number does not know how to behave as a string. For example,
we cannot concatenate two numbers or add two strings. However, a number knows how to
produce a string that represents it using the method asString. In addition, a string knows 
how to convert a representation of a number into a number using the method asNumber.

Thus there is a difference between the number 10 and the string '10'. The number 10 repre-
sents the mathematical quantity 10, while the string '10' represents the textual representation
of the number 10 that consists of the two characters 1 and 0. The string '10' is composed of the
two characters: $1 and $0, and the string '12' is composed of the two characters $1 and $2. Here
are some illustrations of operations with strings and numbers:

10 , 12
-> error! a number does not know the message , 

'10', '12'
—Printing the returned value: '1012'

10 asString
—Printing the returned value: '10'

10 asString , 12 asString 
—Printing the returned value: '1012' 

'10' asNumber 
—Printing the returned value: 10 

■Note A string can represent a number, but such a string is not a number. For example, the string '79' is
composed of the two characters: $7 and $9. To obtain the string representing a number, send the message
asString to it.

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS 201



Using the Transcript
Squeak offers several powerful tools for understanding program execution, such as the debugger
(see Chapter 15). Another tool is called Transcript, with which you can display information in
the form of strings. To open a transcript window, drag the thumbnail that is available in one of
the flaps onto the desktop, or you can choose the transcript item of the open… menu. This
opens a window, as shown in Figure 17-2. 

Figure 17-2. To open a transcript window, drag and drop the thumbnail that you can find in a flap.

There are two main messages for displaying information in a transcript window: show:
and cr. The message show: aString displays the given string in the window, and the message
cr inserts a new line. See Figure 17-3.

Figure 17-3. Writing to the transcript

Script 17-3 gives some examples of displaying information in a transcript window.

Script 17-3. Displaying information in a transcript window

Transcript show: 'squeak is cool'.
Transcript cr.
Transcript show: 'really cool'

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS202



Note that a transcript window can display only strings. And so if you want to display a
number, you have to obtain a string representing it using the method asString. This is illus-
trated in Script 17-4. 

Script 17-4. A number is converted into a string before it is displayed.

Transcript show: '21 + 21 is: ', 42 asString ; cr

Generating and Understanding a Trace 
Now I would like to show you how you can use Transcript to generate a trace of a program. 
A trace is a collection of indications of what is going on that is generated by a program. For
example, you might want to track a robot’s movements in a script by having the script print 
'I am turning right' every time the robot makes a right turn. To generate a trace, you simply
introduce one or more expressions into your script that do not change the original execution
of the program but, for example, display information in a transcript window. Let us begin with
Script 17-5, which draws a staircase with treads of increasing length. 

Script 17-5. A staircase with treads of increasing length

| pica treadLength | 
pica := Bot new. 
treadLength:= 10. 
10 timesRepeat: 

[ pica go: treadLength. 
pica turnLeft: 90. 
pica go: 5. 
pica turnRight: 90. 
treadLength:= treadLength + 10 ] 

The first simple trace that we can generate tells us when the program is about to enter the
timesRepeat: loop and when it has exited the loop. This is shown in Script 17-6. 

Script 17-6. The staircase with a simple trace 

| pica treadLength | 
pica := Bot new. 
treadLength:= 10. 
Transcript show: 'Before the loop' ; cr. 
10 timesRepeat: 

[ pica go: treadLength. 
pica turnLeft: 90. 
pica go: 5. 
pica turnRight: 90. 
treadLength:= treadLength + 10 ]. 

Transcript show: 'After the loop' ; cr. 

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS 203



Experiment 17-1 (Putting a Trace inside the Loop)

Modify Script 17-6 by introducing the expression Transcript show: 'inside the loop' ; cr. inside the
loop. Your transcript should now print 'inside the loop' ten times, one for each pass through the loop. You
can also insert the expression self halt to allow you to open the debugger. But watch out, or you will get ten
debuggers!

Now I would like to use the same technique to generate a more sophisticated trace. For
example, it would be nice to see how the value of the variable treadLength evolves while the
program is executed. Script 17-7 contains a new expression that prints the value of the vari-
able treadLength at the beginning of the loop each time it is executed. The results are shown
in Figure 17-4.

Figure 17-4. Adding a trace to a script

Script 17-7. The staircase with a more sophisticated trace

| pica treadLength | 
pica := Bot new. 
treadLength:= 10. 
10 timesRepeat: 

[ Transcript show: '>> ', treadLength asString ; cr.
pica go: treadLength.
pica turnLeft: 90.
pica go: 5.
pica turnRight: 90.
treadLength:= treadLength + 10 ]

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS204



Adding a trace after an assignment is often useful, since it reveals some key behavior of 
a program. For example, in Script 17-8, the expression Transcript show: 'After := ' ,
treadLength asString ;cr. has been added after the assignment statement that is the last
expression of the loop. The trace, which is shown following the script, prints the value of the
variable treadLength at the beginning and the end of the loop. These two values should be 
the same, and indeed, they are, as the trace shows.

Script 17-8. The staircase with a trace after an assignment

| pica treadLength |                             
pica := Bot new.                        
treadLength:= 10.                              
10 timesRepeat: 

[ Transcript show: 'treadLength: ', treadLength asString ; cr.
pica go: treadLength. 
pica turnLeft: 90. 
pica go: 5. 
pica turnRight: 90. 
treadLength := treadLength + 10. 
Transcript show:' treadLength after := ' , treadLength asString ; cr. ] 

And here is the trace:

treadLength:  10 
treadLength after :=  20
treadLength:  20
treadLength after :=  30
treadLength:  30
treadLength after :=  40
treadLength:  40
treadLength after :=  50
treadLength: 50
treadLength after := 60
treadLength:  60
treadLength after :=  60
treadLength:  70
treadLength after :=  70
treadLength:  80
treadLength after :=  90
treadLength:  90
treadLength after :=  100
treadLength:  100
treadLength after :=  110

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS 205



Summary
• A string is a sequence of characters delimited by single quotes: 'This is a string'.

A string represents textual information such as words or sentences and can be used 
to display information on the screen. For example, 'squeak is cool' is a string of 14
characters.

• A character is one letter prefixed by the dollar sign $. Thus $a represents the character a.

• A string can represent a number, but such a string is not a number. For example, the
string '79' is composed of the two characters: $7 and $9. To obtain the string represent-
ing a number, send the message asString to it.

• A Transcript window is a small window used to display messages. The message show:
aString displays the value of the argument aString, which must be a string, in the tran-
script window. The message cr adds a new line in the transcript window.

CHAPTER 17 ■ STRINGS, AND TOOLS FOR UNDERSTANDING PROGRAMS206



Conditionals

Up until now, all of your programs have executed all of their expressions. You have had

no way to express that certain parts of a program should be executed only when certain

conditions are met. In this part, I present conditional expressions, which solve this prob-

lem. This part also introduces the notion of references in two-dimensional space as well

as some other robot behavior. Finally, I will show you how to use a robot to simulate the

behavior of simple animals.

P A R T  4

■ ■ ■



Conditions

Up to this point, the programs you have defined execute all the expressions they contain,
one after the other. You had no way of saying that certain expressions should be executed only
when certain conditions were met. This chapter and the next one introduce an important pro-
gramming concept: the notion of conditional execution, that is, the execution of a certain
piece of code only when a specified condition holds. Formally, a condition is an expression
that can be either true or false. 

This chapter starts by defining a simple problem that shows the need for conditional exe-
cution. Then I will show you that a conditional expression is composed of a condition and a
conditional message that takes one or more arguments whose execution depends on the value
of the condition. The arguments of a conditional message are called conditional blocks, which
are sequences of expressions enclosed in square brackets [ ].

209

C H A P T E R  1 8

■ ■ ■



A Robot’s True Colors 
Suppose you want to change the color of a robot depending on its distance from the center 
of the screen. If a robot is less than 200 pixels from the center, it should be red. Otherwise, it
should be green. This problem requires conditional execution. Depending on a condition—
the robot’s location—its color should change.

The method distanceDetector, which appears as Method 18-1, shows a possible solution,
and Script 18-1 shows how the method distanceDetector can be used. 

Script 18-1. Pica changes color according to the method distanceDetector.

| pica |
pica := Bot new. 
pica jump: 20. 
pica distanceDetector. 
pica jump: 200. 
pica distanceDetector. 

Method 18-1. A distance detector method

distanceDetector 

| distanceFromCenter |
distanceFromCenter := self distanceFrom: World center.
distanceFromCenter < 200

ifTrue: [ self color: Color red ]
ifFalse: [ self color: Color green ]

Let’s analyze what happens when the expression pica distanceDetector is executed.
First, the expression self distanceFrom: World center computes the distance from the
receiver to the center of the screen. This distance is stored in the variable distanceFromCenter.

Then the expression distanceFromCenter < 200 ifTrue: [ self color: Color red ]
ifFalse: [ self color: Color green ] is executed as follows: if the distance from the center
is less than 200, the color of the receiver is changed to red; otherwise, it is changed to green.
This expression is a conditional expression. It is spread over three lines in the method defini-
tion, but it is all one expression, which you can tell because there is no period between any of
its parts. 

Once again, a conditional expression is composed of two parts: a condition and a condi-
tional message whose arguments are conditional blocks. The expression distanceFromCenter 
< 200 is a condition, the expression ifTrue: [ self color: Color red ] ifFalse: [ self
color: Color green ] is a conditional message, and [ self color: Color red ] and [ self
color: Color green ] are conditional blocks, as shown in Figure 18-1.

CHAPTER 18 ■ CONDITIONS210



Figure 18-1. A conditional expression is composed of a condition and a conditional message,
whose arguments are conditional blocks.

The method ifTrue:ifFalse: executes one condition, here distanceFromCenter < 200,
and depending on its value, executes one of the conditional blocks and skips the other. The
keyword ifTrue: indicates that the conditional block [ self color: Color red ] is executed
only if the condition is true. Similarly, the keyword ifFalse: indicates that the conditional
block [ self color: Color green ] is executed only if the condition is false. Conditional
blocks are also called condition branches. Imagine that you are tracing up the trunk of a tree 
in a picture with your finger, and each time you encounter a branch, you have to choose
which path to follow, and you can follow only one path at a time. The term branch refers to
such a situation. It represents the fact that execution of the program has to choose between
branches and execute only one branch, while skipping over the other one.

You have now seen two different kinds of expressions: one kind, such as self distanceFrom:
World center, are always executed when they are encountered in a program, while others, those
inside conditional blocks, are executed only when their associated condition is true or false, as
the case may be.

A conditional block is not limited to a single expression. Rather, it can contain a sequence
of expressions, as I will present in the next chapter. Thus the method ifTrue:ifFalse: defines
two conditional blocks, each containing a sequence of expressions. (As you will see in the next
section, you can even have a sequence of no expressions.)

Note finally that the method ifTrue:ifFalse: is a single method with two arguments, one
for the true case and one for the false case. Therefore, you must not put a period after the right
bracket ] terminating the ifTrue: block, since that would break up the conditional statement
by ending it too soon, causing an error.

Adding a Trace to See What Is Going On
To understand how conditional expressions are executed, you should experiment with send-
ing messages to Transcript to generate a trace, as presented in Chapter 17. You can also use
the debugger by inserting the expression self halt, as shown in Chapter 15. If you want to
know whether a particular branch is being executed, introduce expressions in the branch. For
example, you could place the expression Transcript show: 'now in the true branch'; cr in
the ifTrue: branch. Method 18-2 presents one way to generate such a trace in the context of
the distanceDetector method. Depending on the position of the robot, different traces will be
produced. Try to guess what they will be before executing Script 18-1. Do not hesitate to add
and modify such traces in all the scripts that you find difficult to understand. 

distanceFromCenter < 200
ifTrue: [ self color: Color red ]
ifFalse: [ self color: Color green ]

Condition

Conditional blocks
(sequences of expressions)Conditional message

CHAPTER 18 ■ CONDITIONS 211



Method 18-2. The distance dectector method with a trace

distanceDetector 
| distanceFromCenter |
distanceFromCenter := self distanceFrom: World center.
Transcript show: 'always'; cr. 
distanceFromCenter < 200

ifTrue: [ self color: Color red.
Transcript show: 'red' ; cr ] 

ifFalse: [ self color: Color green 
Transcript show: 'green' ; cr ] 

The Value Returned by a Method
When I showed you how to define methods in Chapter 12, I explained that executing a method
not only evaluates the messages it contains but also returns a value. Up until now, we have not
particularly emphasized the results returned by methods. Now, however, we are going to be
especially concerned with the value returned by the condition that begins a conditional expres-
sion. For example, the condition distanceFromCenter < 200 returns a value (true or false) that
tells whether the distance to the center of the screen is or is not less than 200 (you will learn
more about true and false values in Chapter 20).

Other expressions that appear in Method 18-1 return values of interest. For instance, not
only does the expression self distanceFrom: World center compute the distance of the
receiver from the center of the screen, but it also returns that distance. Then the condition
distanceFromCenter < 200 uses this distance to decide which branch of the conditional
expression should be executed.

■Important! A conditional expression is composed of a condition and a conditional message that takes
one or more arguments and whose execution depends on the value of the condition. The arguments of a
conditional message are called conditional blocks, which are sequences of expressions enclosed in square
brackets [ ]:

aCondition 

ifTrue: [ expressionsIfConditionIsTrue ] 

ifFalse: [ expressionsIfConditionIsFalse ] 

CHAPTER 18 ■ CONDITIONS212



Conditional Expressions with Only One Branch 
Sometimes, you need to perform an action when a certain condition is true, but if the condi-
tion is false, then you want to do nothing (or vice versa). To take an example from real life, if
you are carrying a closed umbrella, then if it is starting to rain, you want to open it, but if it is
not starting to rain, you don't want to do anything special (do nothing). For an example from
Squeak, the method redWhenCloseToCenter (Method 18-3) changes the color of the receiver to
red when it is at a distance smaller than 200 pixels from the screen center, but if the distance is
not smaller than 200 pixels, then the robot’s color remains unchanged.

Method 18-3. If you want to do nothing if the condition is false, you can use an empty conditional
block with ifTrue:ifFalse:.

redWhenCloseToCenter 

| distanceFromCenter |
distanceFromCenter := self distanceFrom: World center.
distanceFromCenter < 200

ifTrue: [ self color: Color red ]
ifFalse: [ ]

With the method ifTrue:ifFalse:, you leave the second branch empty, resulting in a 
conditional block with no expressions: [ ]. However, Smalltalk provides two other methods,
ifTrue: and ifFalse:, to express these kinds of conditional expressions. The method ifTrue:
executes its conditional block when its condition is true. Using the method ifTrue:, I can
rewrite Method 18-3 more conveniently as Method 18-4. 

Method 18-4. With the method ifTrue:, you no longer require an empty conditional block.

redWhenCloseToCenter 

| distanceFromCenter |
distanceFromCenter := self distanceFrom: World center.
distanceFromCenter < 200

ifTrue: [ self color: Color red ]

The method ifFalse: is completely analogous to the method ifTrue:, executing its con-
ditional block when its condition is false. Each of the methods ifTrue: and ifFalse: executes
a condition, and then, depending on the value returned by the condition, the method either
executes or skips the conditional block.

CHAPTER 18 ■ CONDITIONS 213



■Important! The method ifTrue: executes its conditional block when its condition is true. The method
ifFalse: executes its conditional block when its condition is false:

aCondition 
ifTrue: [ expressionsIfConditionIsTrue ] 

aCondition 
ifFalse: [ expressionsIfConditionIsFalse ] 

Choose the Right Conditional Method
Using ifTrue:ifFalse: is not the same as using ifTrue: followed by ifFalse:. With
ifTrue:ifFalse:, the condition that precedes it is executed only once, but if you want to use
ifTrue: followed by ifFalse:, then you need a condition before each message, and both of
them will be executed, even if they are identical. Potentially, this could lead to unintended
consequences if the conditional block of the first conditional expression (ifTrue:) modifies
what is tested by the condition of the second conditional expression (ifFalse:). In such a
case, using ifTrue: followed by ifFalse: would not be equivalent to using ifTrue:ifFalse:.

Nesting Conditional Expressions 
A conditional expression can contain any other expressions inside its conditional blocks, 
and in particular, these blocks can contain other conditional expressions. This is what I will
explain next. There is nothing conceptually new about this, but it is a common and useful
practice, and that is why I want to show it to you.

Robot Coloring with Three Colors
Let’s modify the previous problem. If a robot is less than 200 pixels from the center of the
screen, then it should be colored red; if it is between 200 and 300 pixels away, it should be 
colored yellow; and if it is a distance greater than 300, it should be colored green. 

In this problem, different parts of the method should be executed under different circum-
stances. That is, there are three different ranges of distances, and the robot’s color should change
to yellow, green, or red depending on which range it is in. A possible solution to our problem is
shown by Method 18-5. What I have done is to break the problem into two pieces: what to do if
the robot’s distance to the center is greater than 300 pixels, and what to do if it is not. Then I
break the “if it is not” part again into two subproblems: what to do if the distance to the center 
is less than 200, and what to do if it is not.

CHAPTER 18 ■ CONDITIONS214



Method 18-5. Color the robot one of three colors depending on its distance from the center.

setThreeColor 

| distance | 
distance := self distanceFrom: World center.
distance > 300
ifTrue: [ self color: Color green ] 
ifFalse: [ distance < 200 

ifTrue: [ self color: Color red ] 
ifFalse: [ self color: Color yellow ] ]

Method 18-6 contains the exact same code with typographical emphasis added to show
the conditional expressions. There are two different conditional expressions. The first one
(conditional expression 1 below) is shown in italics, and the second (conditional expression 2)
in bold. The second conditional expression is executed only if the condition of the first condi-
tional expression is false. That is, if the distance is less than or equal to 300, then conditional
expression 2 is executed. If condition 2 is executed, then its condition distance < 200 is exe-
cuted, and depending on its value, the ifTrue: or ifFalse: branch is executed. Here are the
two conditions:

Conditional Expression 1:

distance > 300
ifTrue: [ self color: Color green ] 
ifFalse: [ "execute conditional expression 2" ]

Conditional Expression 2:

distance < 200 
ifTrue: [ self color: Color red ]
ifFalse: [ self color: Color yellow ]

And here is Method 18-6.

CHAPTER 18 ■ CONDITIONS 215



Method 18-6. This is Method 18-5 with emphasis added.

setThreeColor 

| distance | 
distance := self distanceFrom: World center. 
distance > 300 

ifTrue: [ self color: Color green ] 
ifFalse: [ distance < 200

ifTrue: [ self color: Color red ]
ifFalse: [ self color: Color yellow ] ]

If you are having trouble identifying which conditional block will be executed, choose a
few particular values for the distance (such as 150, 250, and 350). Trace through the method
and underline the part of each method that will be executed. Following each step carefully will
show you that only certain branches are executed. You can also introduce different traces to
show how the different conditions are executed, or you can use the debugger to go step by
step through the method. 

Learning from Your Mistakes 
Since everyone makes mistakes, studying your programming errors is an excellent way to
learn and understand a concept from another perspective. I have decided to define a method
coloredTurn: anAngle that changes the color of a robot according to the direction in which it
is pointing. When the robot points to the north, I would like it to turn blue to represent cold.
And I would like the robot to turn red when it points to the south, and otherwise, it should be
green. My first attempt, which was not entirely successful, at defining this method is pre-
sented as Method 18-7.

Method 18-7. The robot’s color depends on its direction: first attempt (with a bug).

coloredTurn: anAngle 
"change the color of the robot so that it is blue when 
pointing north, red when pointing south, and green otherwise" 

self turn: anAngle.
self direction = 90

ifTrue: [ self color: Color blue ].
self direction = -90

ifTrue: [ self color: Color red ]
ifFalse: [ self color: Color green ]

CHAPTER 18 ■ CONDITIONS216



The definition of Method 18-7 is not correct. Try to understand why before reading any
further. Follow through the method definition to see that when a robot is pointing north, it
will first get colored blue, as it should, but then it will become colored green, which it should
not. It should stay blue after being colored blue. Script 18-2 illustrates the bug in the method. 

Script 18-2. There is a bug in the method!

| pica | 
pica := Bot new. 
pica coloredTurn: -90. 
pica color 
—Printing the returned value: Color red          "ok"
pica coloredTurn: 90. 
pica color 
—Printing the returned value: Color green.       "ok" 
pica coloredTurn: 90. 
pica color 
—Printing the returned value: Color green        "wrong" 

What went wrong? Execute Method 18-7 mentally to identify the bug. The problem is that
when the robot is pointing north, the condition self direction = 90 is true, and so its associ-
ated block is executed, coloring the robot blue. We should be done. But then the method
continues and executes the conditional block of the second conditional expression, and since
the direction of the robot is not south, the robot’s color is changed to green. The following
commented version of the code illustrates this. 

pica coloredTurn: 90. 

self direction = 90                        "is true" 
ifTrue: [ self color: Color blue ]     "so the true conditional message is

executed; the robot becomes blue 
and evaluates the next condition" 

self direction = -90                       "is false" 
ifFalse: [ self color: Color green ] "so the false conditional

message is executed. Bug!" 

How to fix it? In tracing through the method, you saw that when the robot is pointing
north, the second conditional should not be executed. It should be executed only if the first
condition is false. Therefore, you can use nested conditional expressions. Correct code is
shown in Method 18-8. 

CHAPTER 18 ■ CONDITIONS 217



Method 18-8. The robot’s color depends on its direction: correct version.

coloredTurn: anAngle 
"change the color of the robot so that it is blue when 

pointing north, red when pointing south, and green otherwise" 

self turn: anAngle. 
self direction = 90

ifTrue: [ self color: Color blue ]
ifFalse: [ self direction = 90

ifTrue: [ self color: Color red ]
ifFalse: [ self color: Color green ] ]

Interpreting a Tiny Language 
In theoretical biology, researchers have developed systems called Lindemeyer systems for
studying the growth of plants. Lindemeyer systems are based on robot graphics similar to the
robots that you have been experimenting with. Lindemeyer robots understand a tiny language
composed of characters such as $g and $t. A robot’s action is associated with each of these
characters. For example, the character $g (for “go”) is associated with moving forward, while
$t (for “turn”) is associated with turning through an angle of 45 degrees. A Lindemeyer system
generates a sequence of characters. These characters are then interpreted by a robot, and the
sequence of actions that it takes produces a picture. 

Let us define a method interpret: aCharacter that makes a robot move forward if the
character is $g and turn counterclockwise 45 degrees if the character is $t. Script 18-3 illus-
trates how this method is used, and the method is defined in Method 18-9.

Script 18-3. Using the method interpret: aCharacter.

| pica | 
pica := Bot new. 
4 timesRepeat: 

[ pica 
interpret: $g; 
interpret: $t; 
interpret: $g; 
interpret: $g; 
interpret: $t; 
interpret: $g ] 

CHAPTER 18 ■ CONDITIONS218



CHAPTER 18 ■ CONDITIONS 219

Method 18-9. Interpreting a character

interpret: aCharacter 

aCharacter = $g
ifTrue: [ self go: 20 ]
ifFalse:  [ aCharacter = $t 

ifTrue: [ self turn: 45 ] ]

Try to write a script to reproduce Figure 18-2. Since a string is a sequence of characters, it
encodes a picture generated by a Lindemeyer robot. Although it uses some methods that I have
not yet explained (they will be explained in the sequel to this book), try out Script 18-4, which
repeatedly sends the message interpret: to the robot with each character of the string. Then
experiment further by changing the string 'gttgttgttttttgttttttgttgttgttttttgttttttg' to
something else to create your own pictures. You will build a complete Lindemeyer system in the
sequel to this book.

Figure 18-2. A picture generated using the method interpret: with the sequence of characters
'gttgttgttttttgttttttgttgttgttttttgttttttg'.

Script 18-4. Using interpret: in a loop

| pica |
pica := Bot new.
'gttgttgttttttgttttttgttgttgttttttgttttttg'

do: [ :aChar | pica interpret: aChar ] 

Further Experiments
Enhance the method interpret: aCharacter so that either $g or $G will make the robot go for-
ward, and either $t or $T will make it turn 45 degrees counterclockwise. Also use the character
$+ before $t or $T to make the robot turn 45 degrees counterclockwise, and similarly $- to
make it turn 45 degrees clockwise.



Summary 
A conditional expression is composed of two parts: a condition and a conditional message,
which contains one or more conditional blocks. Which conditional block or blocks are exe-
cuted depends on the value of the condition. The following table shows some of the methods
used with conditions:

CHAPTER 18 ■ CONDITIONS220

M
et

ho
d

De
sc

rip
tio

n
Ex

am
pl

e

aC
on
di
ti
on

if
Tr
ue
: 

[ 
ex
pr
es
si
on
sI
fC
on
di
ti
on
Is
Fa
ls
e
]

E
xe

cu
te

ex
pr
es
si
on
sI
fC
on
di
ti
on
Is
Tr
ue

se
lf
 d
ir
ec
ti
on
 =
 9
0

o
n

ly
 if

 a
Co
nd
it
io
n

is
 tr

u
e.

if
Tr
ue
: 
[ 
se
lf
 c
ol
or
: 
Co
lo
r 
gr
ee
n 
]

If
 a

 r
o

b
o

t i
s 

p
o

in
ti

n
g 

to
 th

e 
n

o
rt

h
, i

t t
u

rn
s 
gr
ee
n.

aC
on
di
ti
on

if
Fa
ls
e:
 [
 e
xp
re
ss
io
ns
If
Co
nd
it
io
nI
sF
al
se

]
E

xe
cu

te
ex
pr

es
si
on
sI
fC
on
di
ti
on
Is
Fa
ls
e

se
lf
 d
ir
ec
ti
on
 =
 9
0

o
n

ly
 if

 a
Co
nd
it
io
n

is
 fa

ls
e.

if
Fa
ls
e:
 [
 B
ee
pe
r 
be
ep
 ]

T
h

e 
sy

st
em

 b
ee

p
s 

o
n

ly
 w

h
en

 th
e 

ro
b

o
t i

s 
n

o
t 

p
o

in
ti

n
g 

to
 th

e 
n

o
rt

h
.

aC
on
di
ti
on

if
Tr
ue
: 
[ 

ex
pr
es
si
on
sI
fC
on
di
ti
on
Is
Tr
ue

]
E

xe
cu

te
ex
pr

es
si
on
sI
fC
on
di
ti
on
Is
Tr
ue

se
lf
 d
ir
ec
ti
on
 =
 9
0

if
Fa
ls
e:
 [
 e
xp
re
ss
io
ns
If
Co
nd
it
io
nI
sF
al
se

]
w

h
et

h
er

aC
on
di
ti
on

is
 tr

u
e;

 o
th

er
w

is
e,

 
if
Tr
ue
: 
[ 
se
lf
 c
ol
or
: 
Co
lo
r 
gr
ee
n 
]

ex
ec

u
te

ex
pr
es
si
on
sI
fC
on
di
ti
on
Is
Fa
ls
e.

if
Fa
ls
e:
 [
 B
ee
pe
r 
be
ep
 ]



Conditional Loops

Conditional expressions are a powerful tool for creating complex programs because they
allow you to control the flow of execution, branching one way if a condition is true and
branching the other way if it is false. However, conditions are not enough. Some programs
need to combine loops and conditions into conditional loops, that is, loops that execute a
block of expressions while a certain condition holds, stopping execution when the condition
no longer holds. This chapter presents the conditional loops offered by Smalltalk and intro-
duces some simple examples. Then, in Chapter 23, we will use conditional loops to simulate
animal behavior. 

221

C H A P T E R  1 9

■ ■ ■



CHAPTER 19 ■ CONDITIONAL LOOPS222

Conditional Loops
The idea behind conditional loops is that a block (a sequence of expressions) is repeated as
long as a certain condition holds (or alternatively, as long as a certain condition doesn’t hold).
Smalltalk defines two messages, whileTrue: and whileFalse:, that allow you to define condi-
tional loops.

What such loops accomplish is indicated by method name: whileTrue: executes its con-
dition and executes the conditional block as long as (while) the condition is true. The method
whileFalse: does the same thing, but executes the conditional block only while the condition
is false.

■Important! whileTrue: and whileFalse: allow you to define conditional loops for which the 
conditional block is repeated while the condition holds (whileTrue:) or while the condition does not hold
(whileFalse:).

An Example
Let’s take a simple example. Imagine that we have a robot somewhere down in the southern
part of the screen where the y-coordinate is greater than 100 (in the Squeak environment, the
positive y-axis runs from downward, from north to south), and we want the robot to move
north until its y-coordinate is less than 100 pixels, as shown in Figure 19-1. A solution using a
conditional loop is shown in Method 19-1, and it can be invoked as shown in Script 19-1. 

Figure 19-1. The method upTo100 moves the robot north while its y-coordinate is greater than 100.

Script 19-1. Invoking the method v

| pica | 
pica := Bot new. 
pica upTo100 

Y

X

Y = 100

Y > 100

North

South

Y < 100



Method 19-1. Moving the robot north while its y-coordinate is greater than 100

upTo100 
"Turn the receiver north and move it ten pixels at a time 
until its y-coordinate is less than 100. Then the receiver turns green." 

self north. 
[ self center y > 100 ]

whileTrue: [ self go: 10 ].
self color: Color green.

Let’s look carefully at what happens when this method is executed.

1. The expression self north is not part of the conditional loop, so it is executed once. 

2. The conditional loop is composed of a condition and a conditional message, as 
shown in Figures 19-2 and 19-3. The condition, which here is expressed as the block 
[ self center y > 100 ], is executed (returning a true or false value).

Figure 19-2. A whileTrue: conditional loop is composed of a condition and a conditional
message, which contains a conditional block (a sequence of expressions).

3. The method whileTrue: specifies the nature of the loop: If the result of the condition in
step 2 is true, then the conditional block [ self go: 10 ] is executed, and after execu-
tion of the conditional block terminates, the method execution resumes back at step 2
(where the condition is executed again). On the other hand, if the condition is false,
then execution continues at step 4.

Figure 19-3. The whileTrue: and whileFalse: conditional loops are composed of a condi-
tion and a conditional message. The conditional block for whileFalse: is executed as long
as whileFalse:’s condition is false; whileTrue:’s conditional block is executed as long as
whileTrue:’s condition is true.

[ Weather today isRaining ] 
 whileTrue: [ self doNotGoOutside.

self readAGoodBook ] 

Condition

Conditional Block

[ Weather today isRaining ] 
 whileFalse: [ self takeSunglasses.

self goOutside ] 

self center y > 100 ] 
 whileTrue: [ self go: 10. ]

Condition

Conditional Block

CHAPTER 19 ■ CONDITIONAL LOOPS 223



4. At this step, the result of the condition [ self center y > 100 ] in step 2 was false, so
the conditional block was not executed, and the loop stops. The program goes on to
step 5.

5. Execution of the method resumes at the first expression after the conditional block. In
this example, the expression self color: Color green gets executed, and the method
terminates.

■Important! A conditional loop is composed of a condition and a conditional message, which contains a
conditional block (a sequence of expressions).

[ condition ] whileFalse:
[ conditional messages ]

[ condition ] whileTrue:
[ conditional messages ]

Experiences with Traces 
I suggest that you add traces in the method you just wrote and analyze the resulting trace.
Also, use the debugger. Do not hesitate to modify the location of your trace in the method,
because different placements of Transcript show: can result in different traces. For example,
in Method 19-2, I introduced a trace at the beginning of the conditional block. I obtained the
trace shown in Figure 19-4. 

Figure 19-4. A trace of the execution of the method upTo100

CHAPTER 19 ■ CONDITIONAL LOOPS224



Method 19-2. The method upTo100 with a trace inside the loop

upTo100
"Turn the receiver north and move it ten pixels at a time 
until its y-coordinate is less than 100. Then the receiver turns green." 

self north.
[ self center y > 100 ]

whileTrue:
[ Transcript show: ’* ’ , self center y asString.
self go: 10 ].

self color: Color green 

As an alternative, you can introduce the line Transcript show: '# ' , self center y
asString ; cr. after the expression self go: 10, as shown in Method 19-3, or even inside the
condition block, before the first line, as shown in Method 19-4.

Method 19-3. Placing transcripts in the method upTo100

upTo100 
"Turn the receiver north and move it ten pixels at a time 
until its y-coordinate is less than 100. Then the receiver turns green." 

self north.
[ self center y > 100 ]

whileTrue:
[ self go: 10
Transcript show: ’# ’ , self center y asString; cr ]

Method 19-4. Placing transcripts in the method upTo100

upTo100 
"Turn the receiver north and move it ten pixels at a time 
until its y-coordinate is less than 100. Then the receiver turns green." 

self north.
[ Transcript show: ’c ’ , self center y asString; cr.
self center y > 100 ]

whileTrue:
[ Transcript show: ’* ’ , self center y asString; cr.

self go: 10 ].
self color: Color green 

Let’s compare the traces produced by the different methods. Look in particular at the final
values. Observe that whileTrue: can be converted to whileFalse: by negating the condition
(to stay inside while it is raining is logically the same thing as to stay inside while it is false that
it is not raining). Use whichever method helps you understand your program better. Try to
redefine the method upTo100 using whileFalse: instead of whileTrue:. Then define a method
that makes the robot move northward one pixel at a time. Compare the exact positions where
the robot stops.

CHAPTER 19 ■ CONDITIONAL LOOPS 225



Defining conditional loops correctly can be tricky. Keep in mind the following key points
(for a whileTrue: loop; analogous statements hold for a whileFalse: loop):

• The condition is executed before the whileTrue: message is executed.

• If the condition is true and therefore the conditional block is executed, the condition is
then executed again. Something must happen inside the loop (such as moving the robot
northward) that will eventually make the condition false. Otherwise, the loop will
repeat and repeat and repeat forever.

• If the condition is false the first time that it is executed, the loop will never be executed.

It is easy to forget to check the condition carefully with regard to the second bullet 
item above, namely, that the condition will eventually become false (or true in the case of a
whileFalse: loop). If it does not, then the loop will repeat endlessly. In writing a conditional
loop, you should always keep in mind that the loop should somehow be working toward its
termination. That is, the loop should be tending toward a situation that makes the condition
false for a whileTrue: loop or true for a whileFalse: loop.

To investigate the point in the third bullet item above, try the following experiment: Move
the robot by using the black halo close to the top edge of the window so that its y-coordinate 
is less than 100. Then invoke the method upTo100. As you see, nothing happens, which is as
expected: the method is invoked, and the condition self center y > 100 is false, because 
the position of the robot is smaller than 100. Therefore, the conditional block is not executed.

Stopping an Infinite Loop 
It is not difficult to write an endless loop. You will find yourself in one if the condition expression
never returns true for whileFalse: or never returns false for whileTrue:.

If find that you have written and executed an endless loop, you can stop it by pressing
Command+period on a Mac and either Alt+period or Control+C on other platforms. Once you
have stopped the loop, you have to figure out why it didn’t terminate by opening the debugger
by clicking the Debug button in the window that appears. You can also print and analyze
information using Transcript.

■Important! If a conditional loop is executed once, it will loop endlessly if the conditional block does not
perform some action that will eventually break the condition, that is, make a whileFalse: condition true or
a whileTrue: condition false.

Let’s consider this difficult point using our robot example. If the loop is to terminate, then
the distance between the robot and the horizontal line having y-coordinate 100 must become
smaller and smaller until the robot crosses the line where the y value is 100, and so for the
loop to be able to terminate, the expressions inside the conditional block should somehow
reduce this distance. More precisely, as long as the robot’s y-coordinate is too big (>= 100),
the loop will continue. So to be sure that the loop will terminate, the conditional block must
somehow reduce the robot’s y-coordinate. The expression self go: 10 in the conditional

CHAPTER 19 ■ CONDITIONAL LOOPS226



block does this, because the robot’s y-coordinate gets smaller as the robot moves north 
(and the method makes sure right at the beginning that the robot is in fact pointing north).

Let’s look at the case shown in Method 19-5, upTo100Infinite. Here the condition is, as in
the previous methods, to stop the loop when the y-coordinate of the robot is less than 100, that
is, when the robot arrives above the horizontal line 100 pixels from the top of the screen. How-
ever, since this method points the robot so that it is heading south, as shown in Figure 19-5,
there is no way for its y-coordinate to become less than 100 if it begins south of the line with 
y-coordinate 100. In such a case, Method 19-5 will never terminate, because the conditional
block cannot change the condition to be false. The problem here is that the conditional block
increases the value of the y-coordinate, and so the possibility for the condition to evaluate to
false actually becomes less with each repetition. This example is rather extreme, but it illustrates
clearly the problem of failing to specify a loop that terminates.

Figure 19-5: The situation for the execution of the method upTo100Infinite

Method 19-5. A situation that can lead to an infinite loop 

upTo100Infinite 
"Turn the receiver south and move it ten pixels at a time 
until its y-coordinate is less than 100. Then the receiver turns green.

self south.
[ self center y > 100 ]

whileTrue: [ self go: 10 ].
self color: Color green

■Important! When you are defining a loop, always ask yourself whether there is a possibility that the
condition might never be broken. If the condition does not have a chance to fail, the loop will continue to
execute forever.

Y

X

Y = 100

Y > 100

North

South

Y < 100

CHAPTER 19 ■ CONDITIONAL LOOPS 227



Deeper into Conditional Loops
The astute reader may have noticed that the condition in a conditional loop is a block, since 
it is an expression surrounded by square brackets. A consequence of this is that the condition
of a conditional loop is not limited to containing just a single expression. It can contain a
sequence of expressions in a block as long as the last message of the condition returns either
true or false. This allows you to express more complicated conditional loops. The following
“script” shows such a block in outline form. Note that the receiver of the conditional message
is a block, in which the receiver does something, then some object does something, and
finally a condition is evaluated: is the receiver still working?

[ self doThis. 
anObject doThat. 
self isStillWorking ] 

whileTrue: 
[ self grumbleAndKeepOnWorking ] 

With this option, you could change the method upTo100 to look like Method 19-6. While
this method looks nearly the same as upTo100, it can have a different effect under certain cir-
cumstances. Try to understand what the difference is. For example, add a trace or invoke the
debugger in Method 19-6 and analyze it.

Method 19-6. A modified method for moving the robot north

notTheSameUpTo100 
"Turn the receiver north and move it ten pixels at a time 
until its y-coordinate is less than 100. Then the receiver turns green.

self north. 
[ self go: 10. 
self center y > 100 ]

whileTrue: [ ].
self color: Color green

Since the condition is always executed at least once, the robot will always move at least ten
pixels, even if its y-coordinate is smaller than 100 at the outset. This was not the case in our
earlier versions of this method.

A Simple Interactive Application 
Imagine that you want to let the user decide how many steps of length ten pixels east and 
then ten pixels north a robot should take. Script 19-2 shows how this can be done. The user is
prompted for the number of steps; then a branching conditional expression (like those in the
previous chapter) is used, in which the condition checks whether the user’s input was a valid
number (method isAllDigits). If the input is valid, it is converted into a number (asNumber),
and the robot takes that number of steps. If the input is not valid, the script ends and the
robot does not take any steps.

CHAPTER 19 ■ CONDITIONAL LOOPS228



Script 19-2. An interactive staircase with user input

| pica | 
answer := (FillInTheBlank 

request: ’Number of steps’ 
initialAnswer: ’15’). 

answer isAllDigits 
ifTrue: [ pica := Bot new. 

answer asNumber timesRepeat: 
[ pica 

go: 10 ; 
north ; 
go: 10 ;
east ] ]

But we can do better! Script 19-3 shows a wonderful use of conditional loops to ask the
user to input a value and then keep asking (loop) until a valid input is given. Once again, we
will prompt the user to input a string that represents the number of steps. Once again, we will
check using isAllDigits whether the data that the user entered represents a number. But this
time, the request for user input is contained in the condition block, and if the input does not
represent a valid number (...answer isAllDigits] whileFalse:), the user is again prompted
for input. This loop will run until a string that represents a number is input. 

Script 19-3. An interactive staircase with a user input loop

| pica answer | 
[ answer := (FillInTheBlank 

request: ’Number of steps’ 
initialAnswer: ’10’). 

answer isAllDigits ] whileFalse: [ ]. 
pica := Bot new. 
answer asNumber timesRepeat: 

[ pica
go: 10 ;
north ;
go: 10 ;
east ]

CHAPTER 19 ■ CONDITIONAL LOOPS 229



When to Use Square Brackets 
You have no doubt noticed that I have presented conditions that require the use of empty
square brackets [ ] at different places. You may also have noticed that I placed square brack-
ets around the condition (or condition block) in the whileTrue: and whileFalse: conditional
expressions that have appeared in this chapter. So, when do you need to use square brackets?
There are basically two rules in Smalltalk: you surround an expression or a sequence of
expressions with [ and ] in the following cases: 

• You need to execute the same expression a given number of times. For example:

• timesRepeat: [ pica go: 10; turnLeft:90 ] repeats the message sends 
pica go: 10; turnLeft:90 four times.

Note that the number of times the expression is repeated can be 1 or even zero, but you
will still need the brackets: 1 timesRepeat: [ self go: 120 ].

• An expression is executed a variable number of times. For example, 

• distance < 200 ifTrue: [ self color: Color red ] executes self color: Color
red only under certain circumstances,

• [ self center y > 100 ] whileTrue: [ self go: 10 ] repeats conditionally both
self center y > 100 and self go: 10 multiple times. Therefore, the receiver and
the argument are blocks. 

To be precise, here is the real definition of when brackets are necessary: the argument of 
a conditional message (ifTrue:, ifFalse:, ifTrue:ifFalse:, timesRepeat:) or a conditional
loop message (whileTrue:, whileFalse:) is enclosed in square brackets. The receiver of a 
conditional loop message (whileTrue:, whileFalse:) is enclosed in square brackets. 

Summary 
• A conditional loop consists of a condition and a conditional message, whose argument

is a conditional block containing a sequence of expressions.

• The methods whileTrue: and whileFalse: allow you to define conditional loops in
which the conditional block is repeated while the condition holds (whileTrue:) or does
not hold (whileFalse:).

• When you are defining a loop, always ask yourself whether there is a possibility that the
condition might never be met, in which case the loop will never be executed. On the
other hand, if the condition does not have a chance to fail, the loop will repeat indefi-
nitely.

• Surround an expression or sequence of expressions with square brackets when 
(1) you need to execute the same expression several times (4 timesRepeat: [ self go:
10 ]) or (2) the expression is conditionally executed (dist < 200 ifTrue: [ self
color: Color blue ]). Also, the receiver of a conditional loop message (whileTrue:,
whileFalse:) is enclosed in square brackets.

CHAPTER 19 ■ CONDITIONAL LOOPS230



Here is a description of the methods introduced in this chapter:

Method Description Example

[ aCondition ] whileFalse: Execute aCondition. If it is false, [ answer := (FillInTheBlank
[ SequenceOfMessages ] execute SequenceOfMessages and request: 'Number of steps'

repeat this step. If aCondition is true, initialAnswer: '10').
pass to the next expression without answer isAllDigits ] whileFalse: [ ].
executing SequenceOfMessages.

[ aCondition ] whileTrue: Execute aCondition. If it is true, [ self center y > 100 ]
[ SequenceOfMessages ] execute SequenceOfMessages and whileTrue: [ self go: 10 ]

repeat this step. If aCondition is false, 
pass to the next expression without 
executing SequenceOfMessages.

CHAPTER 19 ■ CONDITIONAL LOOPS 231



Boolean and 
Boolean Expressions 

As I mentioned in the two previous chapters, conditional expressions and conditional loops
require expressions that return a value that is either true or false. Such expressions are called
Boolean expressions, and now we are going to look at them in greater detail, because Boolean
expressions and Boolean values are key concepts in programming and indeed in all of computer
science. I will show you how to write basic Boolean expressions and how you can combine them
to express complex conditions. Finally, I will present some of the most common errors that can
arise from missing parentheses.

233

C H A P T E R  2 0

■ ■ ■



Boolean Values and Boolean Expressions 
A Boolean expression is an expression that returns one of the two values true and false. Such val-
ues are called Boolean.1 A Boolean value can be only true or false. In programming languages,
Boolean values are important because they serve as the basis for conditional execution.

Boolean Values
Boolean values represent the truth or falsity of statements. Here are some true statements: 
2 + 2 equals 4; the earth accomplishes a complete rotation around its axis in approximately 
24 hours. Here are some false statements: The French Revolution ended in 1648; 56 < 34. In
Smalltalk, there are two objects available to represent Booleans: true and false. The object
true represents the statement “it is true,” and the object false represents “it is false.” The
objects true and false understand all the key messages that allow you to use Boolean 
expressions, as you will see in a minute.

Boolean Expressions
A Boolean expression is an expression that returns a Boolean object (true or false). The
expression (2 > 1) is a Boolean expression. It returns a Boolean object. You can think of a
Boolean expression as a question whose answer is true or false (is 2 greater than 1? true!).
Table 20-1 shows some examples of Boolean expressions and the kinds of questions they
express. Try to print the expression Time now > (Time new hours: 8). You will get either 
true or false depending on the time you execute it.

Table 20-1. Examples of Simple Boolean Expressions

Expression Explanation 

Bot new color = Color red Is the color of the newly created robot red? 

Bot new center = (100@153) Is the newly created robot located at the 
position 100 pixels to the right of the left 
edge of the screen and 153 pixels down 
from the top edge?

Time now > (Time new hours: 8) Is the time now after 8 o’clock a.m.? 

| pica |
pica := Bot new.
pica go: 100.
(Rectangle origin: 100@200 corner: 300@400)

containsPoint: pica center Is the center of the robot inside the 
rectangle whose top left and bottom right 
corners are determined by the arguments 
100@200 and 300@400?

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS234

1. The word Boolean is in honor of George Boole (1815–1864), a British mathematician and logician who
discovered that logical propositions could be represented as symbolic expressions (now called
Boolean expressions) and manipulated as mathematical objects.



Observe that the first two questions could be answered from just the information in the
Boolean expression (because newly created robots have default colors and locations). The
others require knowing what has happened in a script prior to the appearance of the Boolean
expression. Evaluate and print the results of the Boolean expressions in the table. After you try
each example, experiment by changing the expression and checking your new prediction.

Simple Boolean expressions are based on several messages: =, which returns true or false
depending on whether two objects are equal; ~=, which returns true or false depending on
whether two objects are not equal; and other messages such as >, <=, <, >=, which return true
or false depending on whether two objects are in certain order relations. 

Combining Basic Boolean Expressions 
The expressions presented in the previous sections are simple, and they are often not sufficient
by themselves. However, they can be combined to express complex conditions. Compound
Boolean expressions can be put together from simpler ones using three logical connectives:
negation (not), conjunction (and), and alternation (or). Note that negation does not really com-
bine Boolean expressions, but it is common to present it with conjunction and alternation.

In Smalltalk there are three messages, corresponding to the three logical connectives, that
build compound Boolean expressions from simpler ones: not for negation (not), & for conjunc-
tion (and), and | for alternation (or). To compose compound expressions, you just send any of
these three messages to a Boolean expression, with another Boolean expression as argument in
the case of conjunction and alternation. The messages are used like this: 

aBooleanExpression not
aBooleanExpression & anotherBooleanExpression
aBooleanExpression | anotherBooleanExpression

Table 20-2 presents some examples of compound Boolean expressions. Now let us look in
detail at how to form compound Boolean expressions by combining simple Boolean expres-
sions using the messages not, |, and &.

Table 20-2. Examples of Compound Boolean Expressions

Expression Explanation

(Bot new color = Color red) not Is the color of a newly created robot other than red? 

| pica |
pica := Bot new.
(pica center = (100@100)) & Is a newly created robot located at the position 100@100
(pica direction = 90) and also pointing north? 

Time now > (Time new hours: 8) | Is the time now after 8 a.m. or is it Sunday (or both)?
(Date today weekday asString = 'Sunday')

Time now > (Time new hours: 8) | Is the time now after 8 a.m. or is it not Sunday (or both)?
(Date today weekday asString = 'Sunday') not

((pica color = Color red) & Is it true that either pica’s color is red and he is pointing
(pica direction = 90)) | north or pica’s color is blue and he is not pointing north
((pica color = Color blue) & (or both)?
(pica direction = 90) not)

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS 235



Negation (not)
Negation is used to express the contrary of something. In Smalltalk, negation is expressed
using the message not, which simply negates the Boolean expression to which it is sent. In the
last line of Script 20-1, the message not is sent to the expression (aBot color = Color red).
If such an expression is true, then its negation will be false, and vice versa. You can interpret
(aBot color = Color red) not as follows: “Is the color of the robot something other than
red?” or “Is it false that the color of the robot is red?”

Script 20-1. Example of negation

| aBot |
aBot := Bot new.
aBot color: Color green.
(aBot color = Color red) not  
“Is the color of the robot something other than red?”

Note that you can always negate (logically reverse) a condition to switch from one form 
to the other. For example, in Method 20-1, distanceFromCenter >= 200 is the negation of the
expression distanceFromCenter < 200, as shown in Method 20-2. So these two methods have
exactly the same effect. Again, I suggest that you add a trace to understand what is happening. 

Method 20-1. If a robot’s distance to the center is not greater than or equal to 200 (that is, less
than 200), change its color to red.

redWhenCloseToCenter 

| distance |
distance := self distanceFrom: World center.
distance >= 200
ifFalse: [ self color: Color red ] 

Method 20-2. If a robot’s distance to the center is less than 200, change its color to red.

redWhenCloseToCenter

| distance |
distance := self distanceFrom: World center. 
distance < 200
ifTrue: [ self color: Color red ] 

Conjunction (and)
The term conjunction literally means joined together. Conjunction is used to express that a 
compound Boolean expression expression1 & expression2 is true only when both of the two
Boolean subexpressions expression1 and expression2 are true. In Squeak, a conjunction is
defined by sending the binary message & to a Boolean expression with another Boolean expres-
sion as argument. Again, a conjunction is true only when both subexpressions that compose it

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS236



are true. If either or both subexpressions are false, then the compound subexpression is false. 
In Table 20-3, the compound expression will be true only if both (aBot center = 100@100) and
(aBot direction = 90) are true.

Table 20-3. An Example of Conjunction

Expression Explanation

(aBot center = 100@100) & (aBot direction = 90) Is the robot located at position 100@100
and pointing north?

Alternation (or)
Alternation is used to express the idea of choice. Think of an alternative: do you want coffee or
tea? cake or ice cream? An alternation is defined by sending the binary message | to a Boolean
expression with another Boolean expression as argument. An alternation is used to express
that you are asking whether at least one of the Boolean expressions is true. Therefore, an alter-
nation is true if one or both of the expressions it is composed of is true. 

This definition of alternation often causes confusion. That is because in English, the word
“or” is used in two different ways. When your host at a dinner party, Fred, asks, “Would you like
coffee or tea,” he is probably expecting one of the following answers: “coffee,” “tea,” “nothing,
thank you.” But if he asks, “Would you like some ice cream or cake,” he is probably expecting 
you to say one of “ice cream,” “cake,” “both, please!” When “or” means either the one or the
other but not both, we call it exclusive or. When “or” means one or the other or both, we call it
inclusive or. In Smalltalk, as in most computer programming languages, “or” means inclusive or.

In Table 20-4, the compound expression is true if the expression (aBot center = 100@100)
is true or the expression (aBot direction = 90) is true or both are true. 

Table 20-4. An Example of Alternation

Expression Explanation

(aBot center = (100@100)) | (aBot direction = 90) Is the robot located at position 100@100
or is it heading north (or both)? 

All of the Above
The last two examples of Table 20-2 show that you can combine Boolean expressions multiple
times, negate them, and group them using alternation (or) and conjunction (and) to represent
complex conditions.

Some Smalltalk Points 
Recall that classes are factories for producing objects. When a particular robot is created by
the class Bot, we say that the robot is an instance of the class Bot. In Smalltalk, Boolean values
are also objects. The object true is an instance of the class True, which defines the behavior 
of the Boolean value true. Similarly, false is an instance of the class False, which defines the
behavior of the Boolean value false. Note that even if true and false are objects in the same

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS 237



sense that a robot created by the class Bot is an object, they are so central to Smalltalk that
true and false are special objects. Hence, you do not have to create them using new. Instead,
true and false exist all the time, and you do not have to worry about their creation. Note that
the Boolean objects true and false start with a lowercase letter.

As I explained in the first section of this chapter, when you evaluate an expression such as
Time now > (Time new hours: 8) you get either the Boolean object true or the Boolean object
false, depending on the time you execute it. I also said that to compose Boolean expressions,
the messages &, not, and |are sent to Boolean expressions, and that the result of a Boolean
expression is either true or false. Therefore, the messages &, not, and | are methods defined
on the classes True and False, which manufacture the objects true and false.

Table 20-5 shows how the three Boolean operations are used.

Table 20-5. The Three Boolean Operations

Kind Message Examples Result

Negation (not) not falseExpression not true

falseExpression not false

(Bot new color = Color red) not true

Conjunction (and) & trueExpression & trueExpression true

falseExpression & trueExpression false

trueExpression & falseExpression false

falseExpression & falseExpression false

(aBot center = 100@100) & 
(aBot direction = 90) true or false

Alternation (or) | trueExpression | trueExpression true

falseExpression | trueExpression true

trueExpression | falseExpression true

falseExpression | falseExpression false

Time now > (Time new hours: 8) | 
(Date today weekday asString = 'Sunday') true or false

Missing Parentheses (a Frequent Mistake)
Every now and then you might find yourself in trouble with the syntax of Smalltalk. All pro-
grammers, even experienced ones, have such trouble on occasion. The difference between 
a beginner and an experienced programmer is not that one makes mistakes and the other
doesn’t. The main difference is that an experienced programmer is much more adept at 
identifying errors and fixing them. 

Missing parentheses is a frequent source of mistakes in both logic and syntax, and so 
I am going to show you how to analyze the errors you may make. Basically, when you are 
composing a Boolean expression, you have to identify clearly the expression to which the
messages not, |, and & are sent. Let us look at a particular case. 

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS238



A Case Study 
Script 20-2 shows a Boolean expression that fails to represent the following question: “Is the
color of a newly created robot different from red?” To see that executing this script leads to 
an error, execute the expression described in Script 20-2, open the debugger when the error
occurs, and select the first line in the top pane to obtain Figure 20-1.

Figure 20-1. The message not is not sent to the complete Boolean expression Bot new color =
Color red, but is sent instead to the expression Color red, which returns a color. But color
objects do not understand the message not, and therefore an error occurs.

Script 20-2. Missing parentheses cause misidentification of the receiver of a not message.

Bot new color = Color red not 

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS 239



Using the Debugger
The title window of the debugger already gives us some information: MessageNotUnderstood:
Color»not. This tells us that a color object (an object created by the class Color) does not
understand the message not.

Now when you select the topmost line of the top pane, you see the body of the method
doesNotUnderstand: in the second pane. When you click on self in the left bottom pane, you
see (in the second pane on the bottom) that the receiver is not a Boolean, as it should be, but
a color, Color red. If you click on aMessage on the right bottom pane, you will see which mes-
sage was not understood. In our case, you will see not, which means that the message not has
not be sent to the right receiver, because it was sent to the result of the expression Color red,
which is a color object and does not understand the message not.

Understanding the Problem 
The reason that the message not was sent to the expression Color red and not to the complete
Boolean expression is related to the way Smalltalk executes expressions, as explained in Chapter
11. Recall that first, expressions surrounded by parentheses are executed, then unary messages,
then binary, and finally keyword-based messages. In our case, the message not is a unary mes-
sage. Therefore, it is evaluated before the binary message =, and so it is sent to the result of the
expression Color red. To get the correct execution order, you have to surround the appropriate
expression in parentheses, as shown in Script 20-3. Now the message not will be sent to the result
of the = message.

The order of execution of the messages in the defective Script 20-2 is as follows: The
expression Bot new color = Color red not is executed as though it were written fully paren-
thesized as follows: (((Bot new) color) = ((Color red) not)). Therefore, first both parts of
the binary method = are evaluated, that is, the expression ((Bot new) color), which returns
the new robot’s color, and the expression ((Color red) not). The execution of the expression
((Color red) not) first evaluates Color red, which returns a color object, and then the mes-
sage not is sent to this color object, which leads to an error.

To obtain the desired behavior, the expression should be parenthesized so that the not
message is sent to the result of the = message. The expression is then as shown in Script 20-3.

Script 20-3. Using parentheses helps to ensure that your message is formulated correctly.

(Bot new color = Color red) not 

This expression is executed as follows: first both parts of the binary method = are evaluated.
The first returns a color object that represents the color of the new robot, while the second
returns a red color object. These two color objects either are or are not the same. Then the =
message is executed, which sends the result of the right-hand expression to the color object
for the robot’s color. The execution of the message = returns a Boolean, to which the message
not is sent.

If you are ever unsure about the order in which messages are executed, you should use
the fact that expressions in parentheses are executed before other expressions. Therefore, you
can put parentheses around expressions to make sure that your messages are executed in the
correct logical order.

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS240



Similar Problems and Solutions
It would be tedious to try to examine all the many similar problems you may encounter 
with your Boolean expressions. Try executing Scripts 20-4 and 20-6 and see whether you can
understand what is wrong. The corresponding correctly parenthesized expressions appear in
Scripts 20-5 and 20-7.

Script 20-4. Missing parentheses result in misidentification of the receiver of &.

| aBot |
aBot := Bot new.
aBot center = 100@100 & aBot penSize = 5

Script 20-5. Parentheses are used to get the proper receiver of &.

| aBot |
aBot := Bot new.
(aBot center = 100@100) & (aBot penSize = 5)

Script 20-6. Missing parentheses result in misidentification of the receiver of |.

| aBot |
aBot := Bot new.
aBot center = 100@100 | aBot direction = 90

Script 20-7. Parentheses are used to get the proper receiver of |.

| aBot |
aBot := Bot new.
(aBot center = 100@100) | (aBot direction = 90)

Summary 
• The Boolean values in Smalltalk are true and false. The value true represents a true

statement, and false a false statement. 

• Boolean expressions are expressions that return Boolean values.

• Compound Boolean expressions are composed of simple Boolean expressions using
conjunction (and), alternation (or), and negation (not). 

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS 241



The table below reviews the three Boolean operations.

Kind Message Examples Result

Negation (not) not falseExpression not true

falseExpression not false

(Bot new color = Color red) not true

Conjunction (and) & trueExpression & trueExpression true

falseExpression & trueExpression false

trueExpression & falseExpression false

falseExpression & falseExpression false

(aBot center = 100@100) & 
(aBot direction = 90) true or false

Alternation (or) | trueExpression | trueExpression true

falseExpression | trueExpression true

trueExpression | falseExpression true

falseExpression | falseExpression false

Time now > (Time new hours: 8) | 
(Date today weekday asString = 'Sunday') true or false

CHAPTER 20 ■ BOOLEAN AND BOOLEAN EXPRESSIONS242



Coordinates, Points,
and Absolute Moves

Up to now, the messages sent to a robot telling it to move gave instructions relative to the
robot’s current position. For example, the expression pica go: 100 tells pica to go forward 
100 pixels from his current position in his current direction. Such a move is said to be relative
because the position reached by the robot at the end of the move depends on its initial posi-
tion. This kind of move is very useful, as we have seen, but sometimes, you would like to be
able to tell a robot to move to a specific location on the screen, such as the screen’s center.
Such a move, in which the robot ends up at a certain position irrespective of where it started,
is called absolute. For making absolute moves we need a coordinate system, which is a way to
represent a specific location on the screen. 

You have encountered this coordinate system a bit in earlier chapters, but now it is time
for more detail. You may have encountered coordinate systems in your study of mathematics.
Furthermore, you use a coordinate system when you are looking for a street on a map. The
map listing may indicate that a given street is located in a square identified by a letter and a
number, or perhaps by two letters or even two numbers. The same applies to your computer
screen. You can refer to a point on the screen by giving a pair of numbers, one for the horizon-
tal direction and the other for the vertical direction.

In this chapter I will introduce the precise definitions of points and coordinates. Then I
will present some new robot behavior and give you some experiments to try. Knowledge of
points and coordinates will help you to explore new problems in the future, such as using
robots to model animal behavior.

243

C H A P T E R  2 1

■ ■ ■



CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES244

Points
Since everything in Smalltalk is an object, locations on the screen are also described by
objects, called points. Points are created by the class Point, and their behavior is similar to
that of the points you are familiar with from mathematics. In two dimensions, a point is com-
posed of two coordinates: the x-coordinate, for the horizontal direction, and the y-coordinate,
for the vertical. A point is created by sending the message @ to a number with another number
as argument. For example, point D of Figure 21-1 is created by the expression 45@35. Its 
x-coordinate is 45, and its y-coordinate is 35.

Figure 21-1. A point in Smalltalk represents a location in two dimensions. A point has an 
x (horizontal) coordinate and a y (vertical) coordinate.

■Important! 200@400 is a point whose x-coordinate is 200 and whose y-coordinate is 400.

Script 21-1 shows how to access the individual components of a point. 

(0, 0) 2010 30 5040

10

20

30

40

(10, 10)

A
• •

•

•

(20, 20)

(30, 10)

(45, 35)

B

C

D

•

y

x



Script 21-1. Accessing the components of a point

| point1 |
point1 := 45@35. 
point1 x 
-> 45 
point1 y
-> 35 

It is worth noting that the coordinate system in Smalltalk is not quite the same as the
mathematical one. Figure 21-1 shows that in contrast to the standard mathematical model,
the positive direction for the y-axis runs from the top of the screen to the bottom. However,
the x-axis increases from left to right, as in standard mathematical notation. We say in Squeak
that the origin of the coordinate system is at the top left corner of the screen. Thus, the point
45@35 is located 45 pixels to the right of the left edge of the screen and 35 pixels down from the
top. Points with one or both coordinates negative are located somewhere off the screen.

■Important! The Smalltalk coordinate system has its origin (0,0) at the top left corner of the screen, and
the positive direction of the y-axis is downward, from the top of the screen to the bottom.

All the usual mathematical operations are available for points. In this chapter I will pres-
ent only a few of operations that you will be using in the future. For example, you can multiply
a point by a number to obtain a point whose coordinates are those of the initial point multi-
plied by the number. Thus (100@200) * 3 yields the point 300@600. You can also use such
common mathematical operations as addition and subtraction on points themselves. The
operations are carried out coordinatewise, and thus (100@200) + (40@360) yields the point
(140@560). Note that binary operations such as * and + can operate on points to create new
points. Script 21-2 shows these operations. 

Script 21-2. Manipulating points to create new points 

| point1 point2 point3 | 
point1 := 200@400. 
point2 := point1 * 2 
point2 
—Printing the returned value: 400@800 
point2 x 
—Printing the returned value: 400 
point2 y 
—Printing the returned value: 800 
point3 := (50@60) + point1. 
point3 x 
—Printing the returned value: 250 
point3 y 
—Printing the returned value: 460 
point1 + 85               "85 is shorthand for the point 85@85" 
—Printing the returned value: 285@485

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 245



Using Grids 
To assist you in understanding points, you can have a look at the information displayed in 
the balloon that pops up when you let the mouse hover over a robot. You can also use a grid.
Squeak can actually draw a grid on the background of the screen. To obtain a grid, bring up
the world menu, select appearance…, and then the menu item use standard texture or
make graph paper…. Choosing the latter lets you define the size and color of the grid.

As shown in Script 21-3 and illustrated in Figure 21-2, you can also program the grid 
using the following methods: drawGrids and undrawGrids to draw and erase grids, gridColor:
aColor to change the color of a grid, gridSize: anInteger to specify the size of a grid (the
number of pixels for the side length of each square), gridWorldColor: aColor to change 
the color of the world when a grid is drawn, and worldColor: aColor to change the color 
of the world. You can also retrieve the size of a grid using the method gridSize.

Figure 21-2. A grid of size 25 pixels

Script 21-3. Setting up a grid

| env |
env := BotEnvironment default.
env gridSize: 25.
env gridWorldColor: Color paleBlue.
env gridColor: Color blue.
env drawGrids

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES246



Using the world menu, you can change the size of the screen. To go into full-screen mode,
bring up the world menu, select appearance…, and then turn full-screen mode on or off. You
can also use the methods fullScreenOff and fullScreenOn as shown in Script 21-4.

Script 21-4. Setting the screen size

BotEnvironment default fullScreenOn 

A Source of Errors with Points 
The way points are created and the order in which messages are executed may lead to errors, 
as shown in the first line of Script 21-5.  The message send 50@60 + 200@400 returns aB3dVector
instead of a point representing the sum of the two points. The problem is that due to the order 
of message execution, a point, and not an integer, is the receiver of the message @, and in that
case it returns another kind of point (a 3D vector) that does not interest us here. I will explain
exactly what went wrong in the next paragraph. But in any case, we certainly didn’t get the result
we wanted! So once again, let me remind you to pay careful attention to the order in which the
messages are sent and use parentheses as necessary. 

Script 21-5. A possible error with points 

50@60 + 200@400         "returns a 3D vector, not a point"
-> a B3DVector3(250.0 260.0 400.0) 
(50@60) + (200@400) 
-> 250@460

■Note To avoid trouble with points, surround them with parentheses when they are involved in complex
operations.

Recall from Chapter 11 the order in which messages are executed, and in particular the
following: 

• Expressions inside parentheses ( ) are evaluated first.

• Unary messages are executed before binary ones, and binary messages are executed
before keyword-based ones. 

• Messages of the same type are evaluated in order from left to right. 

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 247



The method @ is just a binary method like any other, and it has the same priority as binary
methods such as +, *, and =. Therefore, the expression 50@60 + 200@400 is executed as though it
had been typed as follows: (((50@60) + 200) @ 400). The second message @ will end up being
sent to a point and not an integer. Let us look at what happens in the first line of Script 21-5,
which does not return the point 250@460, as you might have expected.

Decomposing 50@60 + 200@400
As just mentioned, 50@60 + 200@400 is equivalent to (((50@60) + 200) @ 400).

Step 1. @ is sent to 50 with the argument 60. The point 50@60 is returned.

Step 2. + is sent to the point 50@60 with the argument 200. The point 250@260 is returned,
because when a number is passed to a point as an argument, it is considered as the point
having the same value for its x- and y-coordinates, here 200@200.

Step 3. @ is sent to 250@260 with 400 as argument, and the object B3DVector3(250.0 260.0
400.0) is returned.

If we now simply put parentheses around the two points, we obtain a point that is the
sum of those two.

Decomposing (50@60) + (200@400)

Step 1. Expressions in parentheses are evaluated first. 

Step 1.1. @ is sent to 50 with 60 as argument and the point 50@60 is returned.

Step 1.2. @ is sent to 200 with 400 as argument and the point 200@400 is returned.

Step 2. + is sent to 50@60 with argument 200@400 and the new point 250@460 is returned.

The moral is this: put parentheses around points when you are manipulating them.

Absolute Moves
Now that we can specify a location on the screen, we can tell a robot to go directly to that loca-
tion. For this task we have the two methods goTo: aPoint and jumpTo: aPoint.

• Sending the message goTo: aPoint to a robot tells it to go to the location represented by
the point.

• Sending the message jumpTo: aPoint to a robot tells it to jump to the location repre-
sented by the point.

Note that the messages jump: and jumpTo: do not leave a trace, while go: and goTo: do.
Let us practice now. Try to figure out what Script 21-6 does. Then try to estimate the size of
your screen in pixels by positioning a robot as close as possible to the bottom right corner. 

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES248



Script 21-6. Going and jumping directly to a location

| pica |
pica := Bot new.
pica goTo: 200@400.
pica jumpTo: 300@400.
pica go: 1.
pica jumpTo: 400@400.
pica goTo: 450@400

The following section will stress the differences between the methods go: aDistance and
goTo: aPoint, and jump: aDistance and jumpTo: aPoint.

Relative versus Absolute Motion
Now we will look closely at the difference between the methods go: aDistance and goTo: aPoint.
The method go: tells a robot to move a given distance along its current direction. Thus, where
the robot ends up depends on its current location and its current direction. Script 21-7 illus-
trates this.

Script 21-7. Parallel motion

| pica marge |
pica := Bot new. 
marge := Bot new. 
marge lookLikeTriangle. 
pica lookLikeCircle. 
marge color: Color red. 
marge penSize: 3. 
marge north. 
marge jump: 50. 
marge east. 
pica go: 200.
marge go: 200.

As you can see, the two robots are moving along parallel lines and do not end up in the
same location, even though the same message, go: 200, was issued to them at the end of 
the script.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 249



In contrast, the method goTo: aPoint tells a robot to move to a fixed location regardless of
its position and direction before the move. This is illustrated in Script 21-8.

Script 21-8. Convergent motion

| pica marge |
pica := Bot new.
marge := Bot new.
marge lookLikeTriangle.
pica lookLikeCircle.
marge color: Color red.
marge penSize: 3.
marge north.
marge jump: 50.
marge east.
pica goTo: World center - 100.
marge goTo: World center - 100.

In this case, the two robots end up at the same location. One says that the method go:
produces relative motion, whereas the method goTo: produces absolute motion. In the script
we used the expression World center - 100 so that you get exactly the same picture as the one
shown here even if your computer monitor has a different resolution from the one used to
write this book.

Finally, note that the methods go: and goTo: do not change the direction of the robot.
This is illustrated in Script 21-9. In this script we tell pica to move forward 100 pixels from his
current position, go directly to a position that is located at distance (100, 100) from the center
of the screen, and then move forward 100 pixels in his current direction.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES250



Script 21-9. Combining absolute and relative motion

| pica |
pica := Bot new.
pica lookLikeCircle.
pica north.
pica go: 100.
pica goTo: (World center - (100@100)).
pica go: 100.

Some Experiments 
Here are some experiments for you to try so that you can become more familiar with the con-
cepts that have been presented here. As you can see, the robot does not change its direction
when it is transported to a given location using goTo:.

Experiment 21-1 (Rectangle 1)

Using the methods goTo: and jumpTo:, define a method rectangleTopLeft: point1 bottomRight:
point2 that draws a rectangle. A message send might look like this: pica rectangleTopLeft: 200@500
bottomRight: 350@700.

Experiment 21-2 (Rectangle 2)

Define another method, rectangleOrigin: point1 extent: point2, in which the second point no 
longer represents the opposite corner but the size (base and height) of the rectangle. For example, pica 
rectangleOrigin: 200@600 extent: 350@500 draws a rectangle with upper left corner 200@600
and having base of length 350 pixels and height 500.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 251



Translations
If we move every point of a geometrical figure by the same distance in the same direction, 
we obtain the same figure, but in another position. This operation is called a translation in
mathematics. As shown in Figure 21-3, a translation can be thought of as motion by a certain
amount in the x-direction and a certain amount in the y-direction. And of course, these num-
bers don’t have to be the same. We can therefore represent the translation of a figure as the
sum of a vertex and a “translation point” representing the size of the translation in the x- and
y-directions. Then the vertex of the new figure is equal to the sum of a vertex of the original
figure and the translation point. In Figure 21-3, the vertex (x1, y1) is translated by adding a
translation point, and the result is a point whose new x-coordinate is xnew = x1 + x translation
and whose new whose new y-coordinate is ynew = y1 + y translation. For example, the point
200@300 translated by the translation point 50@75 is 250@375.

Figure 21-3. Translating a figure requires adding the same x value and y value to each point of
the figure.

Experiment 21-3 (Triangle 1) 

Define a method named triangleAt: firstPoint point2: secondPoint point3: thirdPoint that
draws a triangle with vertices at the three points given as arguments. Script 21-10 illustrates how to use such a
method.

(x , y )

(x  + x translation, y + y translation)

x

y

y translation

x translation
1 1

1 1

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES252



Script 21-10. Using triangleAt:secondPoint:thirdPoint:

| pica | 
pica := Bot new.
pica

triangleAt: 200@300
point2: 200@250
point3: 150@300

Translating Triangles
Now that you have a method for drawing triangles, you can draw several identical triangles by
simply translating the first one. In Script 21-11, I define three translations and then draw the
corresponding triangles.

Script 21-11. Using triangleAt:point2:point3: to draw translated triangles 

| pica firstPoint secondPoint thirdPoint t1 t2 t3 |
firstPoint:= 200@300.        "three points of a triangle"
secondPoint:= 200@250.
thirdPoint:= 150@300.
t1 := 50@50.                 "three points for translating the triangle"
t2 := 90@150.
t3 := 150@90.
pica := Bot new.
pica beInvisible.
pica triangleAt: firstPoint point2: secondPoint point3: thirdPoint.
pica triangleAt: firstPoint + t1 point2: secondPoint + t1 point3: thirdPoint + t1.
pica triangleAt: firstPoint + t2 point2: secondPoint + t2 point3: thirdPoint + t2. 
pica triangleAt: firstPoint + t3 point2: secondPoint + t3 point3: thirdPoint + t3. 

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 253



We could also have defined another method triangleAt:point2:point3:translation:
that performs the translation so we wouldn’t have to do the point addition ourselves. Such a
solution is safer because it would prevent us from accidentally applying different translations
to different points of the same triangle, and therefore I suggest that you implement it.

Flying Geese
One can repeat the translation operation to obtain repeating patterns. Script 21-12 generates
a pattern that looks like flying geese. Note that I chose the amount of translation so that each
triangle just touches the next and so that they run along a diagonal. 

Script 21-12. Flying geese

| pica translation firstPoint secondPoint thirdPoint |
firstPoint:= 200@300.
secondPoint:= 200@250.
thirdPoint:= 150@300.
translation := 25@25.
pica := Bot new.
10 timesRepeat:

[ pica triangleAt: firstPoint point2: secondPoint point3: thirdPoint. 
firstPoint:= firstPoint + translation. 
secondPoint:= secondPoint+ translation. 
thirdPoint:= thirdPoint + translation ].

Script 21-13 shows how you can write the translation in a more concise way using the fact
that points can be multiplied as well as added.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES254



Script 21-13. Flying geese 

| pica times | 
pica := Bot new. 
times := 1. 
10 timesRepeat: 

[ pica triangleAt: 200@300 
point2: 200@250 
point3: 150@300 
translation: (25@25) * times. 

times := times + 1].

Experiment 21-4 (Triangle 2)

As a variation of Experiment 21-3, define a method named triangleAt: aPoint delta1: aPoint1 delta2:
aPoint2 that draws a triangle starting at point aPoint and then uses each of the two following arguments as the
difference between another point of the triangle and the first point. Thus triangleAt: 200@300 delta1: 0@50
delta2: -50@50 draws the same triangle as triangleAt: 200@300 point2: 200@250 point3: 150@300.

Absolute Moves at Work 
You may be wondering why I am making such a big deal about points. So far, none of the
drawings that we have made required points. In fact, executing most of those drawings using
points would have been quite difficult. Imagine trying to draw a pentagon using only the
goTo: message. Nevertheless, absolute positions are useful. The following example illustrates
this point about points. We will use a point to keep track of a robot’s position at different
points during the execution of a complex drawing. Then we will use a saved position to 
continue our drawing. 

The first example is based on Script 3-4 of Chapter 3, in which the letter A was drawn. 
We noted in that chapter that the bottom half of the right-hand vertical bar of the A is drawn
twice by the script. We considered that it was not that big a problem. But imagine a situation
in which drawing a line was an expensive proposition, either in terms of computation time or
in terms of ink on a printer. In that case, it would be worth the effort to avoid drawing a line
twice. My solution is to use a point to store the location of the robot at the left edge of the hor-
izontal bar and then to return to that point to draw the bar after the rest of the letter is drawn.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 255



Script 21-14  draws a letter A as in Script 3-4. I then modify the script to obtain Script 21-15,
which draws the A without drawing over a line using an absolute jump. 

Script 21-14. Drawing the letter A by going over a line twice

| pica | 
pica := Bot new. 
pica turnLeft: 90. 
pica go: 100. 
pica turnRight 90. 
pica go: 100. 
pica turnRight 90. 
pica go: 100. 
pica turnRight 180. 
pica go: 40. 
pica turnLeft 90. 
pica go: 100 

Script 21-15. Drawing the letter A using a jump to an absolute point

| pica barPoint | 
pica := Bot new. 
pica turnLeft: 90. 
pica go: 40. 
barPoint := pica center. 
pica go: 60. 
pica turnRight: 90. 
pica go: 100. 
pica turnRight: 90. 
pica go: 100. 
pica jumpTo: barPoint. 
pica turnLeft: 90. 
pica go: 100 

In script 21-15, the left-hand vertical bar of the A is drawn in two steps, first 40 then 
60 pixels. Between the steps, the absolute location of the robot is obtained using the method 
center, and this location is stored in the variable barPoint. This is the location where the 
bar of the A should be drawn. After the last vertical bar is drawn, the robot jumps back to 
the location of the bar using the method goTo: barPoint and draws the horizontal bar. 

By the way, you can verify that the letter A is drawn correctly at any angle by adding a
command turnLeft: or turnRight: through any number of degrees after the creation of 
the robot.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES256



Experiment 21-5 (Arrows)

Using the same technique as in Script 21-15, define a script that generates eight arrows shooting from the robot’s
origin in eight different directions, as shown in the figure below. Hint: First define a method called arrow: aPoint
that draws an arrow pointing in the current direction starting at the given point. Then use an additional variable 
to remember the origin of the arrow. Once you have successfully written and tested such a method, I strongly 
suggest that you solve the same problem using the methods go: and jump:. This way, you will really understand
the difference between two ways of expressing the same problem.

Loops and Translations 
Before reading the following, try to define the script that draws Figure 21-4. 

Figure 21-4. A pattern of flying geese

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 257



My solution appears in Script 21-16, which draws Figure 21-4. Points define a number of
useful methods, among them negated and setX:setY::

• The method negated sent to a point returns a point whose x- and y-coordinates are 
the negated values of the receiving point. Thus, the point (200@400) negated is the
point -200@-400. Note that the parentheses are necessary. Indeed, negated is also a
method understood by numbers. Thus, the expression 200@400 negated yields the 
point 200@-400 (a point off the screen) because the method negated, being a unary
method, is executed by the number 400 before the method @ is executed. In Script 21-16
this method is used to produce a translation in the opposite direction.

• The method setX:setY: changes the coordinates of a point. Thus, after the expression
aPoint setX: 200 setY: 400 is executed, the point aPoint has 200 for its x-coordinate
and 400 for its y-coordinate. 

Script 21-16. A pattern of flying geese

| pica point1 move shift|
point1 := 200@300.
move := 25@0.
shift := -25@50.
pica := Bot new.
5 timesRepeat:

[ 10 timesRepeat: 
[ pica

triangleAt: point1
delta1: 25@-25
delta2: -25@25.

point1 := point1 + move ]. 
point1 := point1 + shift. 
move := move negated.
shift setX: shift x negated setY: shift y ]. 

Script 21-16 uses the methods negated and setX:setY: within a double loop to generate
the flying geese pattern over a large region of the screen. The inner loop is in the spirit of
Script 21-12, except that the orientation of the triangle and that of the translation are rotated
so that a line of triangles is now horizontal. The outside loop makes a translation of the last 
triangle to bring it over the line of triangles just drawn using the point variable shift; then, 
the translation is reversed so that the next line is drawn in reverse order. The triangles, how-
ever, are still drawn with the same orientation. The fact that a second line of triangles appears
to point in the opposite direction is an optical illusion resulting from the fact that the two
lines of triangles touch each other. Note that the variable shift must be transformed in a spe-
cial way: the sign of its x-coordinate is reversed at the end of each line to compensate for the
last translation, which is not drawn. 

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES258



Further Experiments 

Experiment 21-6 (Translating a Robot by a Point)

Defining methods with well-defined and simple behavior is a way to simplify your code, as explained in Chapter 16.
How would you define a method called translate: aPoint that translates the receiver, a robot, by aPoint
from its current position? Before looking at my solution in Method 21-1, try to find your own implementation.

Method 21-1. Translating a robot by a point

translate: aPoint
"translate the receiver by aPoint"

self goTo: (self center + aPoint)

Propose a different method, translateX: x y: y, which takes as argument the values for
x and y separately. 

Experiment 21-7 (Using the Method translate: 1) 

Change the definition of the method triangleAt:point2:point3: to use the method translate: aPoint.

Experiment 21-8 (Using the Method translate: 2)

Using the method translate: aPoint, reimplement some of the methods you created in this chapter and com-
pare their size and complexity.

Summary
• A point is a pair of numbers: it has an x, or horizontal, coordinate and a y, or vertical,

coordinate. 

• 200@400 is a point whose x-coordinate is 200 and whose y-coordinate is 400. 

• The Smalltalk coordinate system has its origin (0, 0) at the top left corner of the screen,
and the y-axis has its positive direction downward, from the top of the screen to the
bottom.

• To avoid trouble with points, surround them with parentheses when they are involved
in complex operations.

• The methods goTo: aPoint and jumpTo: aPoint make the receiver move to the location
of the argument, a point.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES 259



Here are some of the methods associated with points:

Message Description Example

x @ y Creates a point of given coordinates. 300 @ 600 

goTo: aPoint Tells a robot to move to a given point. pica goTo: 300 @ 600

jumpTo: aPoint Positions a robot at a given point. pica jumpTo: 300 @ 600

point1 + point2 Creates a point whose coordinates are (50 @ 200) + (300 @ 600)
the sums of the coordinates of the two 
given points. This is useful for 
representing translation.

point1 * number Creates a point whose coordinates are (50 @ 200) *3 
the products of the coordinates of the 
point and the number.

point1 negated Constructs a point whose coordinates are (50 @ 200) negated
the opposite of the original point.

center Returns the current position of a robot as barPoint := pica center
a point.

CHAPTER 21 ■ COORDINATES, POINTS, AND ABSOLUTE MOVES260



Advanced Robot Behavior 

Up to this point, I have presented only a subset of the messages that can be sent to a 
robot. In this chapter I present several more advanced messages that we will use in further
experiments. 

261

C H A P T E R  2 2

■ ■ ■



Obtaining a Robot’s Direction 
The first method that we need is the method direction, which returns the current direction 
of a robot in degrees. Using this message you can verify that the messages south, north, and 
so on that modify the direction of a robot in an absolute manner are in accord with their
mathematical definitions, as shown in Script 22-1 and illustrated in Figure 22-1. Note that 
the direction is always a number between -179 and 180 degrees.

Script 22-1. Illustrating the method direction

| robot | 
robot := Bot new
robot north. 
robot direction. 
—Printing the returned value:  90 
robot west.  
robot direction.  
—Printing the returned value:  180 
robot east.
—Printing the returned value:  0 
robot southEast 
—Printing the returned value:  -45

Pointing in a Direction 
The message turnTo: aDirection tells the receiver to turn to a particular direction given as an
angle in degrees. I have called the argument of this message aDirection rather than anAngle to
stress the fact that the parameter represents an absolute angle, based on the mathematical
definition, as illustrated in Figure 22-1. Thus for example, the message turnTo: 45 turns the
receiving robot to point northeast regardless of where it was pointing before. Contrast this
with the message turn: 45, which turns the robot 45 degrees to the left relative to its current
position. This means that the expression robot turnTo: 90 is equivalent to any of robot
north, robot turnTo: 270, and robot turnTo: 360 + 90 (see Script 22-2). Note that the num-
bers in Figure 22-1 are the smallest in absolute value to represent an angle, and in fact, the
implementation in Smalltalk always makes the robot turn through this smallest amount.

CHAPTER 22 ■ ADVANCED ROBOT BEHAVIOR262



Figure 22-1. The angles associated with absolute direction messages

Script 22-2. Illustrating the method turnTo: anAbsoluteAngleInDegrees

| robot |
robot := Bot new.
robot turnTo: 90.
"leads to the same result as: robot north"

Distance from a Point 
The next piece of information that we would like to obtain from a robot is its distance from a
given point. This is just what you get when you send the message distanceFrom: aPoint to
a robot. Such information is useful, for example, when you want to know whether a robot is
approaching a given location.

Script 22-3. Illustrating distanceFrom: aPoint

| robot |
robot := Bot new.
robot jumpTo: 100@100.
robot distanceFrom: (140@130)
—Printing the returned value: 50

North

northEastnorthWest

Eastwest

south

southEastsouthWest

0º

90º

45º

30º

60º

- 90º

- 30º

- 45º

- 60º

135º

180º

- 135º

CHAPTER 22 ■ ADVANCED ROBOT BEHAVIOR 263



Back in the Center of the Screen
Another useful message is home, which places the receiving robot where it appeared when it
was created, that is, in the center of the screen. 

Location If It Moved 
Sometimes, we would like to know the location that a robot would be in if it were to move a
certain distance in its current direction. We will make considerable use of this functionality
when we simulate animal behavior. For this purpose, the method positionIfGo: aDistance is
defined, and it can be used as shown in Script 22-4.

Script 22-4. Illustrating positionIfGo: aDistance

| robot |
robot := Bot new.
robot jumpTo: 100@100.
robot east.
robot positionIfGo: 100
—Printing the returned value: 200@100

The point at horizontal distance 100 pixels from the point 100@100 is the point 200@100.

In a Box
Before reading the solution, try to define a method go: anInteger ifStayInBox: aRectangle
that moves the receiver only if such a move would have it end up inside a specified rectangle,
as shown in Script 22-5.

Script 22-5. Using the method go: anInteger ifStayInBox: aRectangle

Bot new 
go: 100 
ifStayInBox: (Rectangle center: World center extent: 400@300)

To create a rectangle, you can use, for example, the method center:extent:, which 
creates a rectangle centered at a point. The expression (Rectangle center: World center
extent: 400@300) returns a rectangle whose center is the center of the screen and whose base
and height are 400 and 300 pixels. You can ask a rectangle whether it contains a point using
the method containsPoint: aPoint. To determine what the position of a robot would be if it
moved forward a certain distance, you can use the method positionIfGo: aDistance.

Method 22-1 shows the definition of such a method ifStayInBox. It uses the method
positionIfGo:, which computes the location of a robot if it were to move forward a given dis-
tance in its current direction. We will use the idea of constraining the movement of a robot to
represent animal behavior in Chapter 23.

CHAPTER 22 ■ ADVANCED ROBOT BEHAVIOR264



Method 22-1. Move the receiver only if it will land inside a given rectangle.

go: anInteger ifStayInBox: aRectangle 
"Move foward the receiver only if it stays within a Rectangle" 

(aRectangle containsPoint: (self positionIfGo: anInteger))
ifTrue: [ self go: anInteger. ]

Heading toward a Point 
It is sometimes necessary to ask a robot to direct itself toward a certain point. The method
pointAt: aPoint changes the direction of the receiver so that it points in the direction of the
point aPoint. Once the method has been executed, the receiving robot points in the direction
of the specified point, as shown in Figure 22-2. You can verify this using the method
direction, as shown in Scripts 22-6 and 22-7.

Figure 22-2. A robot points at the point 200@100 after being sent the message pointAt.

Script 22-6. Illustrating pointAt: aPoint

| robot |
robot := Bot new.
robot jumpTo: 100@200.
robot pointAt: 200@100.
robot direction
—Printing the returned value: 45

CHAPTER 22 ■ ADVANCED ROBOT BEHAVIOR 265



Script 22-7. Illustrating pointAt: aPoint

| robot |
robot := Bot new.
robot jumpTo: 100@200.
robot pointAt: 200@300.
robot direction
—Printing the returned value: -45

However, being able to point at a given location may not be enough. Sometimes, we
would like to know the angle through which a robot should turn to point at a given location.
The method angleToPointAt: aPoint returns the difference between the receiver’s current
direction and the direction that would point it toward aPoint.

Figure 22-3 and the Script 22-8 illustrate this method. In the figure, a robot is pointing in
the direction of point A, and its direction is 45. Now the expression robot angleToPointAt:
200@100 returns 0, because the robot is already pointing toward this point. Then the robot is
turned to point at point B. Now the expression robot angleToPointAt: 200@100 returns -45,
because the robot would have to turn clockwise through 45 degrees to point at point A.

Figure 22-3. The method angleToPointAt: aPoint returns the angle through which a robot
would have to turn to point at aPoint.

Script 22-8. Illustrating angleToPointAt. See Figure 22-3.

| robot |
robot := Bot new.
robot jumpTo: 100@200.
robot pointAt: 200@100.
robot direction.
—Printing the returned value: 45
robot angleToPointAt: 200@100.
—Printing the returned value: 0
robot pointAt: 100@100.
robot angleToPointAt: 200@100.
—Printing the returned value: -45 

CHAPTER 22 ■ ADVANCED ROBOT BEHAVIOR266



Center versus Position 
Finally, you may want to know the current location of a robot on the screen. To obtain this
information you can use the method center, which returns the position of the robot’s pen. A
robot also understands the method position, which is provided by Squeak and returns the top
left corner of the rectangle representing the robot, as shown in Figure 22-4. Normally, you do
not have to use the position method, which is provided by Squeak itself and is not specific to
the Bot class.

Figure 22-4. The difference between the position and the center of a robot.

Summary 
The following table summarizes the methods introduced in this chapter:

Message Description Example 

angleToPointAt: aPoint Tells the receiver to compute the berthe angleToPointAt: 100@100
angle through which it would need 
to turn in order to point at aPoint

turnTo: aDirection Tells the receiver to turn to point in berthe turnTo: 90 
the direction aDirection

direction Tells the receiver to report its current berthe north; direction
direction

position Tells the receiver to report its upper berthe position
left point

center Tells the receiver to report the berthe center
position of its pen

beVisible Tells the receiver to display itself berthe beVisible 

beInvisible Tells the receiver to hide itself berthe beInvisible 

distanceFrom: aPoint Tells the receiver to report its berthe distanceFrom: 140@130
distance from aPoint

position

center

CHAPTER 22 ■ ADVANCED ROBOT BEHAVIOR 267



Simulating Animal Behavior

Computers are good for modeling the world in which we live, from plant growth to economic
models to the behavior of markets. In this chapter I will show you how to model certain animal
behaviors and use simulation to understand the factors that influence them. Together we will
model strategies that animals develop to walk, escape, find food, and remain in a friendly envi-
ronment.

269

C H A P T E R  2 3

■ ■ ■



Wandering
Let’s start by modeling how an animal might wander. The basic approach to simulating an
animal’s wandering behavior is to write a loop in which the animal walks and turns somewhat
at random. We will use a random number in defining a method wandering: that makes the
receiver wander by walking a random number of steps, turning through a random angle, and
repeating these two moves aNumber times. (To obtain a random integer between 1 and 30, 
send the message atRandom to the number 30.) A possible result of executing the method is
illustrated in Figure 23-1.

Figure 23-1. An animal wanders by walking a random number of steps and then turning randomly.

Method 23-1 presents one way to define the simple behavior described above and illus-
trated in the figure. Here we simply tell a robot to move randomly a distance between 1 and 30
pixels and turn left through an angle between 1 and 30 degrees. Script 23-1 shows how to
invoke this method. 

Script 23-1 

Bot new wandering: 500 

Method 23-1 

wandering: n 
"Make the robot walk a random distance and turn through a random angle n times" 
n timesRepeat:

[ self go: 30 atRandom.
self turnLeft: 30 atRandom ]

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR270



Of course, animals do not wander at random. Eons of evolutionary development 
have created animals that move and turn in response to stimuli in their environment. 
Perhaps an animal turns and wanders until a certain event occurs. To begin to model 
such behavior in which the animal loops until some event happens, which we will model 
by having the user press a mouse button, you could use a conditional loop. The method
wanderingUntilButtonPressed (Method 23-2) illustrates this point. It allows an animal  
to wander until the user presses one of the mouse buttons. Since the loop is executed
extremely rapidly, it may happen that your computer seems blocked, so just keep holding
down the button. 

Method 23-2. An animal wanders randomly until an event occurs.

wanderingUntilButtonPressed 
"Make the robot walk a random distance and turn through a random angle 
until a mouse button is pressed" 

[ self anyButtonPressed ] whileFalse:
[ self go: 30 atRandom.
self turnLeft: 30 atRandom ]

Separating Influences
Method 23-1 is interesting, but it mixes two aspects of the animal’s wandering: the random
walking and the random changes of direction. Moreover, every time you want to try a new
value of the angle or the number of steps, you have to recompile the method wandering: n.
Therefore, define a method wandering: n maxAngle: anAngle that takes as its second argu-
ment the maximum value of the random angle through which the receiver should turn. In this
method, let the robot always move forward a fixed distance. Such a method may be invoked as
in Script 23-2.

Script 23-2 

Bot new wandering: 500 maxAngle: 60

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 271



Try to guess what the animal trace will look like before executing your scripts. Experiment
with different angle values. Figures 23-2 and 23-3 show different results with 15, 60, 90, 180,
and 360 degrees.

Figure 23-2. Walking with random angles of maximum 15 (left), 60 (center),
and 90 (right) degrees

Figure 23-3. Walking with random angles of maximum 180 (left) and 360 (right) degrees

Studying the Influence of the Length
We have just been examining the influence of the angle on the shape of the walk. What are
your hypotheses about the influence of the length? What should happen if an animal walks a
random distance and then turns through a constant angle? 

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR272



CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 273

Studying the Influence of the Side to Which the Animal Turns 
Up to now, we have always had our animal turn to the left. We can study the influence of the
ability to turn to only one side or to two sides. Try to think of a solution to this programming
problem before reading my solution. Hint: Note that atRandom returns a number between the
receiver and 1. Therefore 2 atRandom returns either 1 or 2.

One possible way to generate a random choice is by introducing a random number (1 or 2)
to represent the side chosen, as sketched in Script 23-3. Another idea is to generate a random
number twice the maximum angle desired and subtract that angle from the random number.
More precisely, to obtain a number between -45 and 45, you can generate a random number
between 1 and 91 and subtract 46 from that number, as shown in Script 23-4. Figure 23-4
shows what can happen when these strategies are used, and you can see that the path looks
more like that of a real animal, a snail, say, than the previous ones.

Figure 23-4. An animal wanders by walking and then turning randomly, where turning to the
right and to the left are equally likely.

Script 23-3. A random number (1 or 2) determines whether the animal turns left or right.

... 
left := 2 atRandom. 
left = 1 

ifTrue: [ self turnLeft: ...] 
ifFalse: [ self turnRight: ...]

... 



Script 23-4. The maximum turning angle is subtracted from a random number to yield an angle
that can be positive or negative.

... 
rdAngle := ((1 + (angle * 2)) atRandom) - (1 + angle). 
self turn: rdAngle. 

...

Trapped in a Box 
Now I would like to constrain the wandering of the animal so that it remains inside a box. 
This will allow us to study different strategies that bugs seem to follow when they find them-
selves in such an uncomfortable situation. Doing this is easy. Before telling the animal to
move through a certain distance, you have to check whether the location where it would end
up is contained in the box. Such a constrained move has already been presented in chapter 22,
with Method 22-1, but I will repeat the code in Method 23-3. 

Method 23-3

go: aDistance ifStayInBox: aRectangle 
"Move the receiver forward only if it stays within aRectangle" 
(aRectangle containsPoint: (self positionIfGo: aDistance)) 

ifTrue: [ self go: aDistance ] 

To create a box, I can create a rectangle, as shown in Script 23-5. This script creates a box
200 pixels on a side around the current position of the animal.

Script 23-5. Create a rectangle centered on an animal.

| pica rectangle | 
pica := Bot new. 
rectangle := Rectangle center: pica center extent: 200@200.

To improve the visual effect of the simulation and if you want to see the box on the screen,
you have to create a “rectangle morph,” that is, a graphical object whose shape is a rectangle, 
as described in Script 23-6. This script first creates a rectangle, then creates a rectangle morph
whose bounds are those of the rectangle, with a transparent interior and blue border. Finally,
the rectangle morph is displayed by invoking the method openInWorld.

Script 23-6. Visualizing a rectangle centered on an animal 

| pica rectangle rm |
pica := Bot new.
rectangle := Rectangle center: pica center extent: 200@200.
rm:= RectangleMorph new.
rm bounds: rectangle.
rm color: Color transparent.
rm setBorderWidth: 2 borderColor: Color blue.
rm openInWorld.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR274



Now I will define the method box: aRectangle that draws a box representing the rectan-
gle, as you will certainly get considerable use out of it. 

Method 23-4. Draw a visible box on the screen.

box: aRectangle 
"Draw a morph to represent the rectangle"
| rm |
rm := RectangleMorph new.
rm bounds: aRectangle.
rm color: Color transparent.
rm setBorderWidth: 2 borderColor: Color blue.
rm openInWorld

Now combine all the pieces to create an animal inside a box and test the method go:
anInteger ifStayInBox: aRectangle. The next natural question is this: how can we more
accurately model the behavior of the trapped animal? Imagine different alternatives. You
should experiment with a number of variations. 

Following Borders
One approach is to make the animal turn a little bit when it can’t move and try again. This is
what Method 23-5 specifies. When the robot can move, it just wanders, but if its motion would
cause it to bump into a box border, it turns through an angle. This behavior is contained in a
loop that makes the robot turn and try again to walk. If the turn is not big enough, it just con-
tinues to turn until it can move again.

Scripts 23-6 and 23-7 together produce results similar to those shown in Figure 23-5.
Script 23-6 displays a rectangle morph to materialize the box, and Script 23-7 controls the 
animal’s motion.

Figure 23-5. An animal trapped in a box turns until it can move without bumping into the border.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 275



Script 23-7. An animal trapped in a box tries to move.

| t rec |
t := Bot new.
rec := (Rectangle center: t center extent: 200@200).
t follow: 500 borderOfBox: rec

Method 23-5. The robot turns if it can’t move and tries again.

follow: n borderOfBox: aRectangle 
self box: aRectangle. 
n timesRepeat: 

[ (aRectangle containsPoint: (self positionIfGo: 30)) 
ifTrue: [ self go: 30. 

self turnLeft: 30 atRandom ] 
ifFalse: [ self turnLeft: 1 ] ] 

Flying to the Opposite Border
Another strategy to simulate is that of an insect that tries to fly to the opposite border. I will let
you code this behavior, a possible trace of which is shown in the left pane of Figure 23-6.

Figure 23-6. Left: The insect moves in the opposite direction when confronted by a wall.
Right: The insect chooses a random direction when confronted by a wall. This picture was
obtained by setting the maximum length of the random walk to 10 pixels and turning a 
maximum of 90 degrees. To escape, it will make a random turn of a maximum of 360 degrees.

Random Direction
Another choice is for the animal to change its direction at random. I will let you define this
behavior, for which a possible trace is shown in the right pane of Figure 23-6.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR276



Introducing an Exit in the Box
Now you can add another rectangle to represent an exit in the box as illustrated in Script 23-8
and displayed in Figure 23-7. 

Figure 23-7. A box with an exit

Script 23-8. Visualizing a box containing an exit 

| box rm rm2 exit |
box := Rectangle center: World center extent: 200@200.
rm := RectangleMorph new.
rm bounds: box.
rm color: Color transparent.
rm setBorderWidth: 2 borderColor: Color blue.
rm openInWorld.
exit := Rectangle origin: (box topRight + (2@50)) extent: 100@100.
rm2 := RectangleMorph new.
rm2 bounds: exit.
rm2 color: Color transparent.
rm2 setBorderWidth: 2 borderColor: Color black.
rm2 openInWorld.

Define a method to avoid having to repeat this code over and over. You might create a
method named escaping: aBox withExit: aExit that checks first whether the next move
would be contained in the rectangle representing the exit, and if this is the case, the method
lets the animal escape.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 277



Staying in a Healthy Environment 
Have you ever wondered how slime bacteria manage to stay in moist places and avoid dry
places? All right, perhaps you have not. In any case, I propose to simulate the strategies that
certain basic life forms such as bacteria use to stay in an area where they have a greater chance
of survival. I propose that you model two simple strategies discovered in the late 1950s using
only changes in speed and direction. Note that when I talk about speed, I mean the distance
that the animal can move at each step, which in our case will be the distance in pixels passed 
to the go: method.

The first strategy that the bacteria can follow is to change direction randomly in all cir-
cumstances but to change speed depending on the degree of environmental health. This
strategy makes sense, because when a bacterium considers a region healthy, it will take more
time for it to move a given distance, and hence it will stay longer in a healthy environment
than in an unhealthy one. A possible path for a bacterium is shown in Figure 23-8.

Figure 23-8. First strategy. The bacterium increases its speed when it finds itself in an unhealthy
environment. It changes its direction at a constant rate. Here the speed in a healthy environ-
ment is a random number up to 25 pixels,while in an unhealthy environment it is 100. The
interior of the rectangle represents the healthy environment.

The second strategy is the opposite. The bacterium moves at constant speed but changes
its direction depending on the health of the environment. It will change its direction on aver-
age by a larger angle when it finds a healthy place. Therefore, it has more chance to retrace 
its steps and remain within a smaller region. Certain very simple bacteria use this strategy to
stay in an environment where they can find food. A possible path for a bacterium is shown in
Figure 23-9.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR278



CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 279

Figure 23-9. Second strategy. The bacterium increases the range of its directional change in a
healthy environment. Here the speed is 25, and the change in direction is at most 36 in an
unhealthy environment, and 360 in a healthy one.

To implement these ideas you just have to imagine that the rectangle we have been 
using represents a healthy region. For the first strategy, you could define a method named
stayAtConstantAngleNTimes: aNumber in: aRegion, as shown in Script 23-9. Experiment 
with different values of the angle through which the bacterium can turn. 

Script 23-9.
| bacterium |
Bot clearWorld.
bacterium:= Bot new.
bacterium stayAtConstantAngleNTimes: 500

in: (Rectangle center: bacterium center extent: 200@200)

Method 23-6 shows a possible solution.

Method 23-6. A bacterium changes its speed to remain in a healthy environment.

stayAtConstantAngleNTimes: n in: aRectangle 
"The receiver tries to stay in a healthy environment by changing its speed, 
repeat n times." 

self box: aRectangle.
n timesRepeat:

[ (aRectangle containsPoint: self center)
ifTrue: [ self go: 25 atRandom ]
ifFalse: [ self go: 100 atRandom ].

self turn: 25 ]



Further Experiments
We could imagine that the animal decreases its speed depending on the distance from the
healthy zone. You might also introduce a bit of random behavior in the criterion (speed or
turning angle) that otherwise does not change. You also could introduce the possibility for the
bacterium to turn both clockwise and counterclockwise, as we already have implemented ear-
lier in this chapter. As Figure 23-10 shows, the second strategy is not particularly efficient; the
bacterium has no way of “knowing” whether it is moving in the direction of a good area, so it
may end up staying outside of a healthy area for a long time and die as a consequence. Pro-
pose some other approaches to solve this aspect of the problem.

Figure 23-10. Second strategy. Here the speed is a random number at most 10; the bacterium’s
change in direction is 36 degrees if the environment in unhealthy, and 360 if it is healthy.

Finding Food 
Now I would like to model different ways that an animal could search for food. A first approach
is based on the fact that an animal can locate its food visually. Again you can represent the food
area by a rectangle.

Comparing Distance 
Imagine that an animal can evaluate the distance from a food source, which we will model 
as the animal’s distance from the center of the rectangle used to represent the area in which
food is located. Note that to obtain the distance between two points, you can use the method
dist:. For example, 100@100 dist: 200@200 returns the distance between the points 100@100
and 200@200. You can obtain the distance between a robot and a point using the method 
distanceFrom: aPoint.

Implement a method named, for example, findFoodAreaByDistance: aFoodRectangle
that determines whether by walking one step forward the animal gets closer to the food area.
When it is getting closer, it continues to move, but if it is getting farther away, it changes its
direction by a certain fixed amount. Script 23-10 shows how the method might be used.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR280



Script 23-10. Executing findFoodAreaByDistance:

| animal food |
animal := Bot new.
food := Rectangle center: 400@250 extent: 30@30.
animal findFoodArea: food

The behavior that I have described is somewhat naive, because there is no guarantee that
turning through a certain angle will lead to an improved situation. Figures 23-11 and 23-12
present some traces. The right panel of Figure 23-12 shows a situation in which the animal
comes within a certain distance of the food and then continually circles about the food rec-
tangle without getting any closer. Try to figure out some solutions to this problem. Method
23-7 presents one possible definition of the method findFoodAreaByDistance:.

Figure 23-11. Finding food by comparing distances and simply turning. Left: turn 120 degrees.
Right: turn 90 degrees.

Figure 23-12. Finding food by comparing distances and simply turning. Left: turn 45 degrees.
Right: turn 15 degrees.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 281



Method 23-7. An animal approaches a food source by trying to decrease its distance from the food.

findFoodAreaByDistance: foodRectangle 

| food move | 
self box: foodRectangle. 
move := 10. 
food := foodRectangle center. 
[ (foodRectangle containsPoint: self center)

or: [ self anyButtonPressed ] ] whileFalse:
[ ((self positionIfGo: move) dist: food) > (self distanceFrom: food)

ifTrue: [ self turnLeft: 15 ] 
ifFalse: [ self go: move ] ] 

Further Experiments
Here are some ideas for additional experiments. Change the position of the food or the direc-
tion of the animal at the beginning of its walk in Script 23-10.

Improve the behavior implemented by Method 23-7 so that once the animal realizes that
it is moving in the wrong direction, it will not turn naively in a random direction but will check
first to determine whether by turning one way it improves its situation and then changes
direction accordingly.

To help you in your experimenting, do not hesitate to define new methods. For example,
you could define a method positionIfGo: aDistance andTurn: anAngle that returns the 
position where the receiver would be if it were to turn through anAngle and move forward
aDistance (see Method 23-8). 

Method 23-8. Find the position the receiver would be in if it turned through a certain angle and
moved a certain distance.

positionIfGo: aDistance andTurn: anAngle 
"Return the position where the receiver would be if it turned
through anAngle and moved forward aDistance"

| position |
self turn: anAngle.
position := self positionInDirectionForDistance: aDistance.
self turn: anAngle negated.
^ position

We have been talking about the distance between the food and the animal, but it is
unlikely that an animal has a way to make such precise measurements. Nevertheless, animals
can estimate the distance from a food source in a variety of ways, such as the intensity of the
smell of the food. For such an animal, reducing the distance to its food is equivalent to
increasing the intensity of the smell.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR282



Taking One’s Bearings
In fact, a good way for an animal to be sure of reaching its food is to know exactly where the
food is located. In such a case, the best strategy is to “keep your eyes on the prize” by constantly
looking at the food and moving in its direction. Implement this approach using the method
pointAt: and introduce some random movements to make the simulation a bit more realistic.

Now you can introduce the notion of speed and perturbation in the animal’s trajectory.
Define a method keepABearing: aRectangle moving: aDistance turning: anAngle that
keeps the animal always pointing to the center of the food area but moving and turning by 
a constant amount. Figures 23-13 and 23-14 show some results of this approach. With these
constraints can you guess which is the more efficient way of reaching food: having a high
speed and turning through a large angle or having a low speed and turning through a small
angle? Of course, this simulation does not take into account that the food may move too.

Figure 23-13. Finding food by always pointing toward it. Left: speed 5 pixels turning 45 degrees.
Right: speed 5 pixels turning 60 degrees.

Figure 23-14. Finding food by always pointing toward it. Left: speed 15 pixels turning 5 degrees.
Right: speed 5 pixels turning 60 degrees with random angle.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 283



The left panel in Figure 23-14 shows that being able to point at the food with a small pertur-
bation is one of the fastest approaches to reaching it. However, the speed has to be reasonable.
Carry out some experiments with high speed to see whether this assertion is true. To obtain a
more realistic simulation, introduce randomness in the angle and speed that could represent
factors such as wind. For example, I introduced some randomness in the right panel in Figure
23-14. In addition to introducing randomness, implement the possibility that the angle may 
vary in both directions, as we have discussed earlier in this chapter.

Simulating Vision 
In the previous experiment, the animal could locate its food without any constraints. Now we
would like to be a bit more realistic in our simulation. When an animal identifies its food by
eye, it has a restricted angle of vision that prevents it from simply moving straight to the food.
Imagine that our animal now has a single eye that is represented by an angle of vision within
which the animal can see its food, as shown in Figure 23-15.

Figure 23-15. The food lies outside the angle of vision, so the animal cannot see it.

To define this behavior, I use the method angleToPointAt:, which returns the angle
through which the animal should turn in order to point toward a given point. You could then
decide, for example, that if the animal does not see any food, it turns around, and if it does 
see food, it moves straight in that direction. You need to be able to determine whether the
angle through which the animal needs to turn is smaller than half of its view range. This is
what the expression (self angleToPointAt: aRectangle center) abs < (viewRange /2) does
in Method 23-9. The expression self angleToPointAt: aRectangle center) abs returns the
angle between the animal’s current direction and its food. Now put all of these ideas together
and define the method lookAndFindFoodAt: aRectangle viewRange: viewRange turning:
anAngle, which implements this behavior. Method 23-9 provides a possible solution, but try 
to invent your own approach. Some traces are shown in Figures 23-16 and 23-17.

food

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR284



Figure 23-16. Finding food by turning only when the food is not seen. Left: vision angle 10
degrees, turning angle 15 degrees. Right: vision angle 40 degrees, turning angle 60 degrees.

Figure 23-17. Finding food by turning only when the food is not seen. Left: vision angle 15
degrees, turning angle 2 degrees. Right: vision angle 35 degrees, turning angle 3 degrees.

This approach is again rather naive, since it may loop (see Figure 23-18, right panel). Indeed,
the change in angle does not necessarily lead to a better situation. I also suggest that you make
the animal move continuously and not simply turn around when it does not see its food.

Figure 23-18. Finding food by turning only when the food is not seen. Left: vision angle 35
degrees, turning angle 80 degrees. Right: vision angle 45 degrees, turning angle 2 degrees.

CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR 285



CHAPTER 23 ■ SIMULATING ANIMAL BEHAVIOR286

Method 23-9 

lookAndFindFoodAt: aRectangle viewRange: viewRange turning: anAngle 

[ (aRectangle containsPoint: self center)
or: [ self anyButtonPressed ] ] whileFalse:

[ (self angleToPointAt: aRectangle center) abs < (viewRange /2)
ifTrue: [ self go: 15 ] 
ifFalse: [ self turn: anAngle ] ]

Summary
The approaches to modeling animal behavior presented in this chapter are simple, but
already they produce some interesting results. In general, the introduction of perturbation
helps to simulate real behavior. For further projects, you might combine several behaviors and
try to link certain inputs such as the angle of vision. Many other aspects of animal behavior
can be modeled based on the examples presented in this chapter. I wish you lots of fun.



Other Squeak Worlds

P A R T  5

■ ■ ■



A Tour of eToy

This chapter presents a small tour of the eToy system. The eToy system provides an interface
for manipulating objects, sending them messages, composing graphical scripts, and executing
them. It is used in school by children ages 9 to 12. There is also a recent book, Powerful Ideas
in the Classroom,1 that presents in detail how to use eToy to teach mathematics and science.
You can find a great deal of information related to eToy at http://www.squeakland.org.

In this chapter I will show you how to steer an airplane with a joystick, how to create ani-
mation, how to steer a car, and finally how to program a car to follow a road automatically. For
all these tasks you should open a “morphic” project using the World menu (open item). If you
use the BotsInc. environment, you have to go through some simple manipulation to obtain
the full squeak menu. Select the help… menu item and then reinstall the full menu.

Now open a morphic project by again opening the World menu and choosing open…
followed by morphic project. You should get a small window. Click on it to enter the project.
You will be able to return to the current place using the menu item previous project of the
World menu. Once inside the new project, you should select flaps… and then install the default
shared flaps. It should take a moment, but you should get some new flaps, in particular those
named “widgets” and “supplies” at the bottom of the screen.

If you use Squeak directly, select open… and then choose the morphic project menu
item from the World menu and enter the new window that appears by clicking in it. Give your
project a name and click on it to enter.

289

C H A P T E R  2 4  

■ ■ ■

1. B. J. Allen Conn and Kim Rose, Powerful Ideas in the Classroom: Using Squeak to Enhance Math and
Science Learning (Viewpoints Research Institute, 2003).



Steering an Airplane 
To steer an airplane, you first have to create an airplane. Then you have to obtain a joystick
and create a script that connects the airplane with the joystick. 

Step 1: Drawing an Airplane
To obtain an airplane, the best thing to do is to draw it yourself. Open the blue flap called
“widgets” (Figure 24-1) and drag the palette or paint editor from the flap to the desktop. This
action opens a tool called “Paint” for painting and drawing on the screen.

Figure 24-1. Open the widgets flap to obtain the Paint tool.

Using Paint, draw a small airplane, as shown in Figure 24-2. My airplane looks like a small
cross, but you are welcome to draw a more sophisticated one. Once you are done with your
drawing, press the button labeled “Keep.” The paint editor will disappear, and you will be left
with a sketch that looks like an airplane. The airplane that you have drawn is called a Player in
eToy jargon.

Figure 24-2. Drawing an airplane with the Paint tool

CHAPTER 24 ■ A TOUR OF eTOY290



Step 2: Playing with the Halo
Now if you click on your sketch with the right mouse button (or equivalent), you will see a
halo appear around the sketch, as shown in Figure 24-3. Each halo handle has a color, a logo,
and a function. Here I will explain each of them briefly. Note that different types of sketches
will bring up a different set of handles. You can always get a description of a handle by letting
the mouse hover over it for a second.

Figure 24-3. A halo surrounds a sketch.

• The pink handle with a cross symbol destroys the sketch. Depending on your prefer-
ences, the sketch is simply put in the trash or else completely destroyed. When it is put
in the trash, you can retrieve and reuse it.

• The red handle with small rectangles brings up the menu associated with the sketch.
The menu depends on the sketch you are interacting with. It provides many actions for
changing the sketch. 

• The black handle with pincers selects the sketch. Note that selecting a sketch changes
its container. Use the brown handle to move the sketch inside its container. Use the red
handle to embed the sketch in the sketch underneath it. The idea is that you can embed
a morph into the morph under it by opening the red handle’s menu and selecting the
embed into menu item. This operation offers you a morph into which you can embed
your morph. Once this is done, moving the embedding morph will move your morph
too. With the black handle you can “de-embed your morph” from its container, while
with the brown handle you only move your morph inside its container.

• The brown handle with a square moves the sketch without changing its container.

• The green handle with two squares duplicates the sketch. 

CHAPTER 24 ■ A TOUR OF eTOY 291



• The grey handle with a wrenchlike tool offers debugging facilities, which are normally
used only by expert squeakers. 

• The dark grey handle has a pen with which you can repaint a sketch. 

• The dark pink handle with an eyedropper changes the color of a sketch. However, it
does not work with sketches such as our airplane. To change the color of a sketch that
you have created, you need to use the dark grey “repaint” handle. If you select this han-
dle, you will be taken back into the paint tool, where you can make any paint/color
changes you wish. The dark pink handle is more appropriate to use for changing font
colors, rectangle colors, and border colors.

• The yellow handle with a square and bar changes the size of the sketch.

• The blue handle with a small spinning square rotates the sketch. 

• The orange handle with a small rectangle produces a tile that represents the object for
the tiling system of eToy (more on this later). 

• The cyan handle with an eye opens a viewer on the sketch. The viewer presents a
graphical representation of the methods and instance variables of the object.

• The pale green handle with a circle collapses a sketch.

To program in the eToy environment we mainly use a viewer. Therefore, open a viewer on
the airplane by clicking on the cyan handle with an eye. You should obtain the tools shown in
Figure 24-4.

Figure 24-4. Opening a viewer

CHAPTER 24 ■ A TOUR OF eTOY292



Figure 24-5 explains the main parts of a viewer. At the top, the name of the sketch can be
modified. By default your sketch is named Sketch. I suggest that you call it “airplane” by edit-
ing the name in the viewer. In addition to changing the name, you can open a menu, as shown
in the figure. With this  menu you can add new variables to the object, obtain an empty script,
or get a tile representing the object.

Figure 24-5. Understanding a viewer

Name of the sketch.  
Click on it to edit it.

To access the viewer menu  

Method Category. Click on it 
to select another one

A Method or Script.
Click on ! to execute it.

To see the viewer  

To get the value of a variable
in a script (getter)

Variables of the sketch

The value of a variable.
You can change it 
directly by clicking on it
or use the triangles.

To change the value of
a variable in a script, grab
the green arrow (setter). 

CHAPTER 24 ■ A TOUR OF eTOY 293



In the viewer, categories are displayed. The name of a category is displayed to the right of
the two up/down green triangles. In Figure 24-5, the categories basic and tests are displayed.
You can navigate them using the small double triangles. You can also click on the category
name itself to obtain a list of the categories.

Below each category can be seen a list of methods. When a method can be executed, there
is a yellow exclamation mark in front of it. Press the exclamation mark in front of the method
forward by and you will see that the airplane is moving forward. There are also methods that
only access a variable or change a variable’s value. We call these methods accessors: they are
getter methods, which access values, and setter methods, which modify them. 

Note that you can modify the value of a variable directly by using the green triangles or 
by typing a value directly in the variable box. Try, for example, to change the x variable to have
the value 800. In a script, since you cannot interactively change the value of a variable, you
should use the getter and setter methods. You can obtain the getter method for the variable x
by dragging the x box onto the desktop. To get the setter method, you should drag the big
green arrow, as shown in Figure 24-6. 

Figure 24-6. Accessing variables within a script

The number to the right of the big green arrow is the value of the variable. If you move the
airplane using the brown or black handle, you will see the variables x and y changing their 
values.

You can also have watchers, which provide ways of spying on the values of variables. To
create a watcher, you should click on the small menu icon that is to the left of a sketch vari-
able. You should obtain the menu displayed in Figure 24-7. Then you can choose to create a
simple watcher, which will display only the value of the variable, or a detailed watcher, which
you can also use to change the value of the spied-on variable. 

CHAPTER 24 ■ A TOUR OF eTOY294



Figure 24-7. The watchers: spying on your variables

Step 3: Dragging and Dropping a Method to Create New Scripts
If you take a method such as forward by from the viewer and drop it onto the desktop, you
create a script. You should get, for example, the script shown in Figure 24-8. 

Figure 24-8. A script is created.

To execute a script you have simply to click on the clock icon. The status of the clock is
then set to ticking (see Figure 24-9), which means that your script is executed at regular time
intervals. 

Figure 24-9. When the clock is ticking, your script is being executed.

Figure 24-10 shows the different parts of a script: you can see the name of the sketch, the
name of the script, a clock for starting and stopping script execution, a list of events to which
the script can be linked, and the creation of a conditional, or test. 

Figure 24-10. The different parts of a script

morph name start script events tests

CHAPTER 24 ■ A TOUR OF eTOY 295



Step 4: Adding Methods
When you execute the script, you can see that the airplane is flying in a straight line. No doubt
you would like your airplane to be able to turn. To accomplish this, you need to add methods
to the script. Drag the method turn by from the viewer and drop it into the script. The script
should show you the place where you can drop the method by creating some green boxes.
Drop the method into one of the boxes. You should get a script that looks like the one in 
Figure 24-11. 

Figure 24-11. The method turn by has been added to the script.

Now when you execute the script, the airplane should turn in a circle. In fact, a sketch is
similar to a robot, and you can see what the airplane is doing by telling it to lower its pen. To
do so, look for the variable penDown in the viewer and put its value to true, as shown by the
script displayed in Figure 24-12. The result is shown in Figure 24-13.

Figure 24-12. Once the pen is down, the airplane will draw a trace on the desktop, as shown 
in Figure 24-13.

Figure 24-13. The airplane has put down its pen, and is seen to be flying in a circle.

CHAPTER 24 ■ A TOUR OF eTOY296



Note that you can select when the script will be executed using the “events” button of the
script. Figure 24-14 shows all the events that you can use. You can obtain this menu by clicking
on the text to the right of the clock.

Figure 24-14. A list of available events 

Joysticks in Action 
Flying in a circle is fun, but you would probably like to steer your airplane. Instead of the air-
plane always turning the same amount, you can vary the angle of turning depending on the
state of a joystick.

Step 1: Creating a Joystick
First create a joystick by dragging one from the “supplies” flap and dropping it onto the desk-
top. The red circle represents the top of the joystick (Figure 24-15), and with it you can
indicate a direction and an amount of energy to be put into the movement. 

Figure 24-15. Creating a joystick 

CHAPTER 24 ■ A TOUR OF eTOY 297



CHAPTER 24 ■ A TOUR OF eTOY298

Step 2: Experimenting with a Joystick
Second, open a viewer on the joystick using the turquoise handle. Then browsing the methods,
you will find some useful methods under the category “joystick” (Figure 24-16). Move the joy-
stick and look at the variables. The variable amount represents the amount of energy put into the
movement; that is, you can choose not only the direction in which the joystick is moved, but 
the strength of the movement as well. The variable angle represents the direction in which you
are moving the joystick, and I will let you guess the roles of the other two variables.

Figure 24-16. Methods under the category joystick

Step 3: Linking the Joystick and the Script
In order to steer the airplane, you have to change the value of the method turn by in the script
by a value given by the joystick. For this purpose, the leftRight variable appears to suit our
needs. Drag the variable directly onto the argument of the turn by method in the script. It
may take some time for the script to accept the variable, but you should obtain the script
shown in Figure 24-17.

Figure 24-17. Now the joystick’s leftRight variable will control the turning of the airplane.



Now click on the clock and steer your airplane with the joystick. As you can see, steering
the airplane could be improved by controlling how fast the airplane is steered. Try to find a
solution. The amount variable can be of help. 

Creating an Animation 
The idea for creating an animation is the following: first you draw individual animation frames
and put them into an animation holder. Then you create a simple sketch whose graphical rep-
resentation will be replaced by the animation elements. For this purpose you can write a script
that makes the sketch look like the different steps that are contained in the holder. 

Step 1: Creating the Holder
To create an animation, you need to create a holder. A holder is a graphical object that can con-
tain other graphical objects. It also knows which is the currently selected item among the items
that it contains. To create a holder, drag it from the red flap named “supplies” (Figure 24-18)
and drop it onto the desktop. 

Figure 24-18. The red flap can be used to create a holder.

An empty holder is then created (Figure 24-19).

Figure 24-19. An empty holder

CHAPTER 24 ■ A TOUR OF eTOY 299



Step 2: Drawing Animation Elements
For the second step, you should draw the picture that you want to animate using the paint
editor presented earlier. I recommend that you first draw a picture, then duplicate it using the
green handle. Then select the dark grey handle to repaint the sketch. This way, you can create
several pictures by modifying one picture step by step. I am going to paint a worm in two dif-
ferent positions (Figure 24-20).

Figure 24-20. A worm in two different positions

Note that you can also use the red handle painting item (see Figure 24-21), but I suggest
that you use the handles provided as much as possible.

Figure 24-21. The red handle painting menu

CHAPTER 24 ■ A TOUR OF eTOY300



Step 3: Dropping the Pictures into the Holder
The next step is simply to drop the resulting pictures into the holder. A black rectangle 
(Figure 24-22) represents the currently selected picture in the holder.

Figure 24-22. The worm in the black rectangle is the image currently selected.

Step 4: Creating a Simple Sketch Recipient of the Animation
Now you need a sketch whose graphical aspect will be used as a placeholder for the animation.
Therefore, you should create a simple sketch such as an ellipse, which you drag and drop from
the supplies flap. Then open a viewer on this sketch, as shown in Figure 24-23. 

Figure 24-23. A viewer on the sketch recipient

CHAPTER 24 ■ A TOUR OF eTOY 301



Step 5: Creating a Script with lookLike
From the simple sketch, here the ellipse, you can create a new script by dragging the method
lookLike dot (shown in Figure 24-23) from the viewer to the desktop. This action should cre-
ate the script described in Figure 24-24. 

Figure 24-24. A script with lookLike dot

Step 6: Displaying the Selected Animation Element
Now you should indicate that the ellipse should look like the currently selected element of the
holder. Select the holder and open it in a viewer, as shown in Figure 24-25. 

Figure 24-25. The holder opened in a viewer

Look for the category collection by choosing “basic,” as shown in Figure 24-26. 

CHAPTER 24 ■ A TOUR OF eTOY302



CHAPTER 24 ■ A TOUR OF eTOY 303

Figure 24-26. Pressing the “basic” button allows you to access  collection.

From the list of methods drag the method named playerAtCursor, which returns the
player, that is, the graphical element contained in the holder that is at the current position.
Then drop it onto the square with a dot in the middle (this box represents an argument of the
method lookLike). You will obtain the script shown in Figure 24-27. 

Figure 24-27. Now the ellipse should look like the element pointed to by the cursor.

Step 7: Changing the Currently Selected Element of a Holder
If you execute the previous script using the ticking button, the script will change the shape of
the ellipse to the currently selected graphical element. We do not yet have an animation. For
that, we need to find a way to change the currently selected item of a holder. In fact, a holder
has an index, named cursor, that represents the rank of the currently selected item. It suffices
to increment such an index to make the holder select another graphical element.



To change the value of the variable named cursor, drag the arrow (shown on the right in
Figure 24-28) onto the following line of the previous script. You will obtain the script shown 
in Figure 24-29, which says that the variable contains the value 1.

Figure 24-28. The cursor in the player

Figure 24-29. Introducing an assignment

Now if you click on the double green triangles of the setter in the script, you will see that
you have the possibility to increase the cursor by a given amount, as shown in Figure 24-30.
Now your animation should work. 

Figure 24-30. Increasing the cursor

Another Way
To achieve the same effect, you can also mimic the expression cursor := cursor + 1, which
will move the cursor to the next element. Therefore, drag the left part of the cursor from the
viewer at the place of the 1 in the script, and you will get the script shown in Figure 4-31. 

Figure 24-31. Using the expression cursor := cursor + 1.

Now you just have to click on the small green triangle at the end of the cursor box in the
script to make the expression + 1 appear, as shown in this final script. As you can see, the first
solution is easier.

CHAPTER 24 ■ A TOUR OF eTOY304



I recommend that readers interested in using eToy in the classroom read the book men-
tioned at the start of this chapter; it presents many important pedagogical aspects that can be
used with this example.

Cars and Drivers 
Now I would like to show you how you can build a script to control a car with a steering wheel.
This exercise can be used by teachers to show the use of division to act as a demultiplier, as
exists in real cars, but it is also simply fun to do. 

Step 1: Draw a Car and a Steering Wheel
Using the painter editor, draw a car and a steering wheel, as shown in Figure 24-32. 

Figure 24-32. Draw a car and a wheel.

Step 2: Turning the Car in a Circle
Open a viewer on the car, rename the sketch “car,” and then drag and drop the method for-
ward as you did previously. The script shown in Figure 4-33 should be created.

Figure 24-33. Drag and drop the method forward.

Then drag and drop the method turn below the previous method in the newly created
script. You should obtain the script in Figure 4-34, which when executed makes the car go in 
a circle.

Figure 24-34. Drag and drop the method turn.

CHAPTER 24 ■ A TOUR OF eTOY 305



Step 3: Using the Wheel’s Heading
Now you have to link the angle through which the car turns with the wheel’s position. We need
to find a way to rotate the wheel and determine the amount of rotation. The first problem is easy
to solve: bring up the halo, click on the blue handle, and turn it (Figure 24-35). This rotates the
wheel. To solve the second problem, open a viewer on the wheel, rename it “wheel,” and look for
the heading variable in the viewer (the expression will be wheel's heading). When you rotate the
wheel using the handle, the value of the variable changes. This variable represents the rotation
angle compared to the original picture.

Figure 24-35. The wheel with its halo of handles

Now that you have all the pieces of the puzzle, you have to indicate that the car should
turn not by a fixed amount but from the wheel’s heading. To do this, drag the expression
wheel's heading from the viewer onto the number 5 argument of the turn method in the 
previous script. You should now have the script shown in Figure 24-36. 

Figure 24-36. The car is now turned from the wheel’s heading.

Now if you click on the small clock in the script, it runs, and using the wheel’s blue handle
you can control the car. However, you will notice that this is not quite perfect. Teachers should
elicit hypotheses from their students about the nature of the problem and possible solutions. 

The problem is that the wheel’s heading value should be divided so that the user can have
finer control over turning. To do this, click on the rightmost small green triangle of the wheel’s
heading block. This adds extra boxes. Click on them to select division //. You have now a
script that looks like Figure 24-37.

CHAPTER 24 ■ A TOUR OF eTOY306



CHAPTER 24 ■ A TOUR OF eTOY 307

Figure 24-37. Dividing the wheel’s heading value yields finer control.

The car, its steering wheel, and the halos all appear in Figure 24-38. Have fun controlling
your car!

Figure 24-38. Have fun with your car.

Now we would like to program the car so that it finds its way along a road automatically. The
idea is to equip the car with some sensors that tell it whether it is going off the road. Once 
the car has been equipped with sensors and properly programmed, we will put it on a road
and see how it does in following it.

I will not show you a working solution to this problem because I think that you will enjoy
experimenting with this one on your own. More to the point, my solution does not work very
well.



Step 1: Sensors
In eToy you can ask whether a certain color in a sketch can see another color underneath it.
This capability can be used in constructing a sensor. A sensor will then be a simple dot of one
color that will tell the car whether it is passing over another color. To equip your car with sen-
sors, repaint the car and add two dots of colors, as shown in Figure 24-39. 

Figure 24-39. Two sensors have been added to the car.

Step 2: The Road
Using the paint editor, create a road of a single color. Later, you can try using multiple bands
of colors.

Figure 24-40. The road

CHAPTER 24 ■ A TOUR OF eTOY308



CHAPTER 24 ■ A TOUR OF eTOY 309

Step 3: Conditions and Tests in eToy
Open a viewer on the car then drag and drop the method forward by onto the desktop. This
creates a script like those that you are now used to creating.

Now you need to have a way to express different types of behavior depending on the
value of the sensor. For that purpose you need to be able to express a condition, or test. To
obtain a test, you should drag the small pale square box (second box from the right at the top
of the script, near the cross button), as shown in Figure 24-41. Drag and drop this test tile into
the script. You should now get a script that looks like the one in the figure.

Figure 24-41. Adding a test to the script

Now you need to find a way to make your sensors active. Locate the method color sees
in the category test, as shown in Figure 24-42. This method returns true or false depending
on whether a colored part of the sketch of a given color passes over another given color.

Figure 24-42. Adding a test to the script



Drag a color sees method into the script next to the word Test. You should obtain a
script like the one in Figure 24-43.

Figure 24-43. Adding a color sees method to the script.

Step 4: Customizing Color-Based Tests
Now you need a way to define the color that the test should use. This is easy. You have simply
to click on the colored square inside the method color sees itself. This automatically opens a
color picker (see Figure 24-44). With the color picker, you can pick the color of one sensor. The
first color of the script should change to reflect the color you selected. Do the same operation
for the second colored box, but this time pick the color of the road (Figure 24-45).

Figure 24-44. Using the color picker

Figure 24-45. Choose the color of the road for what the car’s color sees.

CHAPTER 24 ■ A TOUR OF eTOY310



Step 5: Adding Actions
Now you can specify that the car should turn when the sensor does not see the color of the road.
You just have to drag and drop the method turn by beside the word No in the script. Now you
can select the car, put it on the road, and press the clock to run the script. See Figure 24-46.

Figure 24-46. The car runs along the road!

Clearly, the car’s behavior is not perfect, and I leave it to you to change it or find your own
solution.

Some Tricks 
I would like now to show you some aspects of eToy that may help you. The eToy environment
can be customized, so open the menu playfield options… (Figure 24-47) and let your mouse
hover over the different items and read the balloon help. Here are some of the things you can do:

Figure 24-47. The playfield options menu

CHAPTER 24 ■ A TOUR OF eTOY 311



Running Several Scripts
If you create several scripts, they will run in parallel. To control all the scripts available on the
desktop, you can use the widget named “All Scripts,” which is available in the widget flap.
Once you drop this widget onto the desktop, you get a panel (Figure 24-48) that allows you to
run and stop all the scripts currently on the desktop.

Figure 24-48. The script control panel

Note that you can also use the method start script and the related method scripting
contained in the category to start, pause, or stop scripts (Figure 24-49).

Figure 24-49. The start script and scripting methods

It is interesting to see that one script can invoke the execution of other scripts. This allows
you to create complex scripts.

Clearing
You can clear all your robot trails using the method clear all pen trails, which is available
in the category pen use. You can also clean the traces made by players from the desktop. For
that purpose use the last menu item of the menu appearance, which you can get from the
World menu.

Creating a Tile
If you want to write a script that links two objects, you will need to refer to these objects. In
such a case, you will need a tile that represents the object to be linked that you can drop into
your script. Let us take an example. Imagine that you have two airplanes, one blue and one
red, and you want the red airplane to follow the blue one. To do this, you can use the method
move toward, which is shown in Figure 24-50. 

CHAPTER 24 ■ A TOUR OF eTOY312



Figure 24-50. The move toward method

Since you want the red airplane to move toward the blue airplane, and not a dot as in the
previous script, first use the orange handle of the blue airplane to get a tile representing it
(Figure 24-51).

Figure 24-51. A tile representing the blue airplane

Then drop this tile into the script. Now the red airplane follows the blue one, as shown in
Figure 24-52. 

Figure 24-52. The script control panel: the red airplane is following the blue one.

CHAPTER 24 ■ A TOUR OF eTOY 313



Internationalization
If you want to use eToy with small children, you will want everything to appear in their native
language. The complete Squeak interface has been translated into a number of languages. Bring
up the World menu and select the item help… followed by set language… (Figures 24-53 and
24-54).

Figure 24-53. The set language menu

Figure 24-54. Choosing Spanish

Summary
This chapter has presented just a small survey of the many possibilities offered by eToy. I sug-
gest that you go to http://www.squeakland.org and check out the material available there.

CHAPTER 24 ■ A TOUR OF eTOY314



A Tour of Alice

Alice is an authoring environment for building interactive 3D worlds in Squeak. Alice is 
also a research project whose goal is to provide abstraction and an environment that is easy
for novices to learn and use. Squeak Alice is a port of Alice in Squeak made by Jeff Pierce. A
detailed description of the system is given in one of the chapters of the book Squeak: Open
Personal Computing and Multimedia.1 Squeak Alice is built on Balloon, the 3D engine of
Squeak, which runs on any platform, with no special hardware requirements. This chapter
presents Squeak Alice, but within the context of this book. 

Squeak Alice comes with a complete environment for manipulating 3D objects. To
develop scripts and interact with 3D objects, you can either create a new environment, as I
will explain later in the chapter, or use the predefined environment that is provided by default
in the Squeak environment. To get started faster, I suggest that you use the predefined envi-
ronment first. Later on, you can open and use your own 3D characters. That is the strategy
that we will follow in this chapter. 

315

C H A P T E R  2 5

■ ■ ■

1. Mark J. Guzdial and Kimberly M. Rose, Squeak: Open Personal Computing and Multimedia
(Prentice Hall, 2001).



Getting Started with Alice 
When you start a standard Squeak environment, there appears a window called The Worlds of
Squeak, as shown in Figure 25-1. If you click on this window, you arrive at a place containing
several small windows, each of them representing a demo related to an aspect of Squeak.

Figure 25-1. There are several environments for playing with the multimedia aspects of Squeak.

If you click on the window named 3D, you will arrive in the predefined Squeak Alice envi-
ronment, as shown in Figure 25-2. There are four windows on the desktop: the top right-hand
pane is just a window containing some notes indicating where to find the 3D objects and
other information. The top left-hand pane, which contains a bunny in 3D, is the 3D world in
which 3D objects, called actors, evolve. The bottom right pane is the script editor of Squeak
Alice. This is the window that we will use to create 3D objects and define scripts to control
these objects. The script editor already contains a long list of interesting scripts that I suggest
you try out later. The bottom left-hand pane shows a hierarchical list of all the actors that cur-
rently exist in the 3D world. 

Before you get started, I suggest that you check the display depth of your environment.
The display depth represents the number of colors that you can have. To change it, select
appearance… in the world menu and then set display depth…. I recommend that you try the
setting 32, but the result may depend on the capacity of your graphics card. When the display
depth is not that of your card, Squeak has to transform in “permanence” the rendering of the
3D objects, so Alice gets slower. Once you have set the display depth, I also suggest that you
enlarge the left window a bit by bringing  up the halo on the complete window and selecting
the yellow handle. Note that the complete window is called “camera” when you bring up the
halo; that is because this window displays what a camera would be observing in the 3D world. 

CHAPTER 25 ■ A TOUR OF ALICE316



Figure 25-2. The predefined Squeak Alice environment

CHAPTER 25 ■ A TOUR OF ALICE 317



Interacting Directly with Actors
With Squeak Alice you can directly interact with the 3D objects, such as the bunny, that exist
in the 3D world:

• To move an actor horizontally, click on it in the 3D world. This lets you bring the bunny
closer or farther away in the world. 

• To move an actor vertically, press Shift+Click (see Figure 25-3 (a)). 

• To rotate an actor vertically, press Ctrl+Click (see Figure 25-3 (b)). 

• To rotate an actor freely, press Ctrl+Shift+Click (see Figure 25-3 (c)). 

Figure 25-3. You can move the bunny up and down (Shift+Click), rotate it vertically (Ctrl+Click),
and do a free rotation (Shift+Ctrl+Click).

Note that if you want an actor to return to a stable position, use the method standUp. This
is extremely useful for experimenting with actions performed in parallel.

You can also interact with the actors via the list of all the actors available in the world, as
shown in Figures 25-4 and also 25-2. The list contains all the actors. You can see that the light,
the camera, and the ground are all actors. You can apply certain predefined actions such as
growing, shrinking, and stretching by selecting the actor and obtaining the pop-up menu 
(see Figure 25-4 (right)). 

(a) (c)(b)

CHAPTER 25 ■ A TOUR OF ALICE318



Figure 25-4. A list of all the actors and their hierarchical structure

Actors can be composed of other objects. An actor’s parts are hierarchically structured.
For example, the bunny is composed of a head and a body. The head is composed of glasses
and ears. The parts are displayed in the list as well, and you can apply the actions to them, too.
Figure 25-5 shows the bunny after the following transformation: we shrank the drum,
enlarged the head, and squished the left ear. 

Figure 25-5. A transformed bunny

CHAPTER 25 ■ A TOUR OF ALICE 319



The Environment 
As I have already mentioned, the environment is composed mainly of three graphical compo-
nents: the scene, or camera window, which displays the 3D world (top-left window in Figure
25-2); the actor list (See Figure 25-4); and the script editor (area at the right of the scene actor
list in Figure 25-2). I will now discuss the script editor in detail. There are three buttons at its
top: Script, Actor Info, and Quick Reference (see Figure 25-6).

Figure 25-6. The script editor

• The button Script allows you to edit and execute scripts. 

• The button Actor Info shows information related to the actor currently selected in the
actor list (Figure 25-7).

• The button Quick Reference lists all the possible actions and default constants defined
for each kind of action. This is useful online help.

When the Script button is selected, you can define scripts and execute them using the
traditional do it action from the menu or the Command+D or Alt+D shortcut. In fact, the
script editor is an extended workspace dedicated to the execution of Alice. This extended
workspace contains predefined variables, as explained in the Quick Reference. For our current
exploration you need to know only that camera refers to the default camera, cameraWindow to
the scene morph itself, and w to the Wonderland, that is, the complete Alice system.

Note that Squeak Alice runs without hardware acceleration, which is disabled by default.
As such, Squeak Alice runs on any platform. If you want to turn on hardware acceleration,
bring up the menu (red handle) on the camera morph and select the item with the evocative
name hardware acceleration.

CHAPTER 25 ■ A TOUR OF ALICE320



Figure 25-7. Actor information

Scripts
Before proceeding, open the camera controls, as shown in Script 25-1. This way, you will be
able to follow the actor if it exists within the vision angle.

Script 25-1. Adding a camera control

cameraWindow showCameraControls

You can move the camera by clicking on the cameraControls widget shown in Figure 25-8.
Note that you can move the camera up and down by holding the shift key while moving the
mouse over the cameraControls widget. If by accident you press the reset button and you do
not want to restart the system, you can load the bunny as explained in the section “Your Own
Wonderland” in this chapter.

Figure 25-8. Adding a camera control with cameraWindow showCameraControls

CHAPTER 25 ■ A TOUR OF ALICE 321



Analyzing a First Script 
To make it possible to compose actions and change their execution speed, the authors of Alice
altered the model of message execution. The model of execution of the actors is different from
what we have seen in the rest of the book. Even if the syntax is the same, multiple messages
sent to an actor are not executed in sequence but are instead combined. Compare the differ-
ent types of execution of Script 25-2 by executing it line by line and then by selecting all four
lines.

Script 25-2. Some simple actions

bunny move: forward. 
bunny turn: left. 
bunny move: back. 
bunny roll: left 

To execute a script composed of a sequence of actions, use the method doInOrder:, as
shown in Script 25-3. 

Script 25-3. Executing a sequence of messages one after the other

w doInOrder: { 
bunny move: forward. 
bunny turn: left. 
bunny move: back. 
bunny roll: left}

As you see, the difference between all the effects taking place together and their taking
place in sequence is quite important. Another important point is that the Wonderland envi-
ronment provides some useful predefined constants for programming the actors such as left,
back, and forward, which were used in the Script 25-3. Here is a list of some of the available
constants for movement, as presented in the Quick Reference pane. I do not present actions
related to location in this chapter. 

• direction: left, right, up, down, forward, and back.

• duration: rightNow and eachFrame.

• style: gently, abruptly, beginGently, and endGently.

• position: asIs

• location: onTopOf, below, beneath, inFrontOf, inBackOf, behind, toLeftOf, toRightOf,
onFloorOf, and onCeilingOf.

These constants are used to specify variations of the methods for manipulating actors.
Read the Quick Reference to see the possible combinations.

CHAPTER 25 ■ A TOUR OF ALICE322



Moving, Turning, and Rolling 
Actors can be manipulated to move, turn, and roll using the methods move:, turn:, and roll:,
as shown in Script 25-3. The Quick Reference pane shows that these methods can be further
parameterized to yield various results. Here are some examples, but I suggest that you read
the chapter on Alice in the book mentioned at the beginning of this chapter and the Quick
Reference to learn about all the possibilities. Note that there are some inconsistencies
between the description and the implementation, so do not hesitate to experiment. 

Script 24-4 presents the list as presented in the Quick Reference. 

Script 25-4. Variations on move:

move: aDirection 
move: aDirection distance: aNumber 
move: aDirection distance: aNumber 
move: aDirection distance: aNumber duration: aNumber 
move: aDirection distance: aNumber duration: aNumber style: aStyle 
move: aDirection asSeenBy: anActor 
move: aDirection distance: aNumber asSeenBy: anActor 
move: aDirection distance: aNumber duration: aNumber asSeenBy: anActor 
move: aDirection distance: aNumber duration: aNumber asSeenBy: anActor style: aStyle 

move: aDirection speed: aNumber 
move: aDirection speed: aNumber for: aNumber 
move: aDirection speed: aNumber until: aBlock 
move: aDirection speed: aNumber asSeenBy: anActor 
move: aDirection speed: aNumber asSeenBy: anActor for: aNumber 
move: aDirection speed: aNumber asSeenBy: anActor until: aBlock 

Here is some explanation: First, you can specify a distance using distance:. Then you
should know that by default, an animation takes one second to execute. To change this default
behavior you can specify another duration using duration: and give the number of seconds
that the animation should last. In fact, even if you define a duration of zero, it may not be exe-
cuted instantaneously by the Wonderland. If you want really instantaneous animations, use
the rightNow constant. You can also specify a style, using style: and the associated constants
gently, which describes how the animation should start or end: abruptly, beginGently,
endGently.

Actions are normally time-dependent, which means that they have a start and an end.
You can also create persistent actions, using speed:, which specifies that actors move at a 
constant rate. Pay attention that if you use speed: but omit a distance, the actor will move 
forever. The argument of speed for the move: method is meters per second, while that for the
method turn: is the number of turns per second. The argument specified by for: allows you
to specify a duration for the message when using speed; until: allows you to specify a condi-
tion, expressed by means of a block, during which the action will last. Note that you can stop
animation using the message stop.

CHAPTER 25 ■ A TOUR OF ALICE 323



By default, actions such as move: and turn: take as reference the actor itself. Therefore,
when you say bunny turn: left the bunny will turn to its left. Sometimes, you will want to
specify another frame of reference, and in such a case you should use asSeenBy:, which allows
you to specify another frame of reference, as shown by the examples in Script 25-5. 

Script 25-5. Examples of message variants

bunny move: forward distance: 3 duration: rightNow style: endGently 
bunny move: forward distance: 3 duration: 0 
bunny move: forward distance: 3 duration: rightNow 
bunny move: forward distance: 5 speed: 1 
bunny move: left distance: 3 duration: 3 asSeenBy: camera 
bunny turn: left turns: 3 speed: 1 
bunny roll: right turns: 2 

Actor Parts
Actors are composed of parts in a parent–child relationship. Parts belongs to only one parent.
This relationship is important because the actions sent to a parent affect its parts. For exam-
ple, when you ask the bunny to move its head, its glasses, which are part of the head, move
too. Parts are nothing special. They are simply actors to which you can send messages, as illus-
trated in Script 25-6. 

Script 25-6. Sending messages to parts

bunny drum roll: left bunny drum roll: left speed: 1 

w doInOrder: { 
bunny head glasses move: forward. 
bunny head glasses move: back}

bunny drum stop

In fact, all of the actors are parts of a superparent called the scene. If you look at the hier-
archical list showing all the actors in the World, you see the scene, and below and indented the
bunny, but also the ground, the light, and the camera.

Sometimes, you need to be able to send a message to an object affecting only certain of
its parts. For example, you might want to be able to change the color of the bunny without
changing the color of its left ear; thus you need to make the ear autonomous from the rest of
the bunny. To make this possible, Alice introduces the notion of first class objects. A first class
part belongs to its parent but is not affected when its parent changes. Separating the bunny’s
head from its torso is illustrated in Figure 25-9.

CHAPTER 25 ■ A TOUR OF ALICE324



Figure 25-9. An independent body for cartoon-like animations

Two methods allow you to control whether an object is part of another one. The method
becomeFirstClass makes the receiver a first class object, while the method becomePart makes
the receiver a part of its parent. Execute Script 25-7 line by line to understand the difference.

Script 25-7. First class part examples

bunny setColor: green. 
bunny head becomeFirstClass. 
bunny setColor: red. 
bunny head becomePart. 
bunny setColor: pink

You can also change the parent–child relationship between objects using the method
becomeChildOf (See Script 25-8). 

Script 25-8. Sending messages to parts

bunny head becomeChildOf: ground 
bunny move: forward 
ground head turn: left

Other Operations
Actors understand many more messages than what I have shown you so far. Here I give a sim-
ple description of the other methods.

Getting Bigger 
The method resize: changes the size of the receiver. It exists in multiple variations such as
resize:duration:, resizeTopToBottom:leftToRight:frontToBack:, and
resizeLikeRubber:dimension:, as shown in Script 25-9. 

CHAPTER 25 ■ A TOUR OF ALICE 325



Script 25-9. Resize experiments

bunny resize: 1/2 
bunny resizeTopToBottom: 2 leftToRight: 1 frontToBack: 3 
bunny resizeLikeRubber: 2 dimension: topToBottom

Quantified Moves
The method nudge: moves an actor in multiples of its length, width, or height depending on
the direction chosen.

Script 25-10. Nudge experiments

bunny nudge: up distance: 2 duration: 2

Standing Up
The methods standUp and standUpWithDuration: aNumber allow you to make an actor move to
a standing position, which can be useful after experimentation. 

Coloring
The method setColor: changes the size of the receiver. It exists in multiple variations such as
setColor:duration: and setColor:duration:style:. Look at Script 25-7 for an example. 

Destruction
The method destroy destroys an actor with a nice animation. Fortunately, the Wonderland
environment has a powerful undo mechanism.

Visibility
The methods hide and show manage the visibility of an object. 

Absolute Moves and Rotations
Up to now we used only actions that change the location or direction of an actor. The method
moveTo: moves the receiver to a given location, and the method turnTo: makes the receiver
point in the specified direction. The position and direction may be either a triple in the form 
{ right . up . forward } or anActor. The values of the triple may be a number or asIs (e.g., 
{ asIs . 0 . asIs }). Note that the triple describes a location in the actor’s parent’s reference
frame. Hence bunny moveTo: { 1 . 1 . 0 } means that the bunny should move 1 meter to
the right and 1 meter above the scene’s origin, which is the parent of the bunny actor. The
same triple in the expression bunny head moveTo: {1 . 1 . 0 } refers to the location 1 meter
to the right and 1 meter above the bunny’s origin.

Compare the actions of moveTo: and move: in Script 25-11. 

CHAPTER 25 ■ A TOUR OF ALICE326



Script 25-11. Absolute move experiments

bunny moveTo: {0 . 0 . 0} 
bunny head moveTo: {0 . 1 . 0}. 
bunny head moveTo: {0 . -1 . 0} 
bunny head move: up. 
bunny head move: down 
bunny head turnTo: camera duration: 1 style: abruptly 
bunny turnTo: camera duration: 1 style: abruptly

Note that the method alignWith: anActor is equivalent to turnTo:.

Pointing At
The method pointAt: aTarget allows you to make actors face each other, where a target may
be an actor, a { right . up . forward } trip, or an x@y pixel value. 

Script 25-12. Experiments with pointAt:

bunny pointAt: camera. 
bunny turn: left. 
bunny move: forward. 
camera pointAt: bunny. 

Relative Placement of Actors
Finally, actors can be placed in positions relative to one another using the method place:
aLocation object: anActor. Locations are specified using the constants onTopOf, below,
beneath, inFrontOf, inBackOf, behind, toLeftOf, toRightOf, onFloorOf, and onCeilingOf.
Try loading multiple actors, as explained later in the chapter. Play with the expressions 
presented in Script 25-13. 

Script 25-13. Placing actors 

camera place: inFrontOf object: bunny.
camera move: up.
bunny move: back distance: 2.
camera pointAt: bunny.
bunny head place: toRightOf object: bunny

Time-Related Actions 
You can also define actions that are related to the time flow using the eachFrame constant as
the argument of duration:, as shown in Script 25-14. You can use the method stop to stop the
animation (see the next section). 

CHAPTER 25 ■ A TOUR OF ALICE 327



Script 25-14. Using the eachFrame constant

bunny head pointAt: camera duration: eachFrame. 
bunny move: forward

You can also specify the length of an action in seconds when the action specifies the
eachFrameFor: aNumber possibility, as shown in Script 25-15. 

Script 25-15. Constraining an action to a certain amount of time 

bunny moveTo: {asIs . 0 . asIs} eachFrameFor: 10

The method eachFrameFor: aNumber makes the actions repeat for the specified number of
seconds. The method eachFrameUntil: aBlock repeats the actions until the block returns true.

Note that asIs is a special constant that states that the method currently executed will not
modify the current value. It leaves the value “as is.” However, other methods can change this
value. Here the script constrains the bunny to follow along the ground. Note that the triplet
means {Left . Up . Forward}, and therefore here the bunny cannot move up or down for a
period of 10 seconds. 

Animation
To define an animation, just assign it to a variable. For example, I declare in Script 25-16 that
spin makes the bunny turn twice to the left for a duration of 2 seconds. 

Script 25-16. A simple animation

spin := bunny turn: left turns: 2 duration: 2. 

You can pause an animation (spin pause), resume it (spin resume), stop it (spin stop), or
start it again (spin start).

Animations can also loop using the methods loop and loop: aLoopNumber, or be stopped
with stopLooping.

Script 25-17. A simple animation 

flip := bunny turn: forward turns: 1 duration: 2. 

Now you can compose animations using the method doInOrder:, which executes a
sequence of messages in sequence, or doTogether:, which executes a sequence of messages
combined.

Script 25-18. Two simple animations executed in sequence

w doInOrder: {spin start . flip loop:2}

CHAPTER 25 ■ A TOUR OF ALICE328



Script 25-19. Two simple animations composed together

w doTogether: {spin start . flip loop:2}

Note that some combinations do not work, and you may get a walkback (a window telling
you that there is a problem). A composition can itself be named and composed with other
animations. 

Script 25-20. Two simple animations composed in sequence

bla := w doInOrder: {spin start . flip loop:2}. bla start

Keep in mind that the method standUp makes an actor stand up on its feet, which is useful
after unexpected results of action combinations. 

Your Own Wonderland 
You can create your own Wonderland by executing Script 25-21.

Script 25-21. Opening a new Wonderland

Wonderland new 

Once you have created your own Wonderland or after pressing the reset button, you
should load some 3D objects. The team that develops Alice provides a ZIP archive full of 3D
characters at http://www.cs.cmu.edu/~jpierce/squeak/SqueakObjects.zip (or look for them
at http://www.apress.com). Note that these objects are represented in an old format, and
therefore trying to load the new Alice objects won’t work in Squeak. 

As a simple experiment you can also create a simple plane using the expression 
w makePlaneNamed: 'myPlane'. Here is how to load 3D objects on a PC (Script 25-22) and
under Mac OS X (Script 25-23).

Script 25-22. Loading new 3D objects on PC

w makeActorFrom: 'Objects\Animals\Bunny.mdl'

Script 25-23. Loading new 3D objects under Mac OS X

w makeActorFrom: ':Objects:Animals:PurpleDinosaur.mdl'

"if you have some problems on mac use the full path name"
w makeActorFrom: 'OSX:Users:ducasse:Alice:Objects:Animals:PurpleDinosaur.mdl'

CHAPTER 25 ■ A TOUR OF ALICE 329



After you load multiple characters such as the snowman and the purple dinosaur 
(Figure 25-10), you can then write and execute Scripts 25-24 and 25-25. 

Figure 25-10. The three amigos w makeActorFrom: 'Purpledinosaur.mdl'

Script 25-24. Multiple actor script 

bunny turn: left 
bunny turn: left asSeenBy: snowman 
snowman place: inFrontOf object: purpleDinosaur. 

Script 25-25. A quick glance at the bunny 

w doInOrder: { 
purpleDinosaur head pointAt: bunny 
purpleDinosaur head alignWith: purpleDinosaur } 

Multiple Cameras and Other Special Effects 
Having multiple cameras can slow down the 3D rendering of Alice, but it is worthwhile under-
standing them for building animation. When a new camera is created, a new view is created as
well. A new 3D object representing the new camera is also created. Changing the location of a
camera by clicking on it automatically changes the view that displays what the camera sees. In
addition, changing the position of the camera using the camera controls widget modifies the
location of the camera object.

In Figure 25-11, there are three cameras. I chose to use the right camera to have an overall
view of the scene, while the two left cameras are set to provide different close-up views of the
bunny. Script 25-26 shows how to add another camera window.

Script 25-26. Creating another camera window

w makeCamera

Note that a camera is an actor like any other 3D object, and therefore you can move it
using the messages shown in Script 25-27. 

CHAPTER 25 ■ A TOUR OF ALICE330



Script 25-27. Moving a camera

w doInOrder: { 
camera roll: left. 
camera move: back distance: 4. 
camera standUp.}

Figure 25-11. The left windows display what the cameras shown in the right window see.

CHAPTER 25 ■ A TOUR OF ALICE 331



Alarms
Each Wonderland keeps track of the time passing via a scheduler object. When a Wonderland
is created, the time is set to zero, and the scheduler starts to update this time at every frame.
You can get the current time using the expression scheduler getTime. What is interesting 
is that you can set alarm to execute certain actions at a specific point in time using the
method do:at:inScheduler: or, once a given period of time has passed, using the method
do:in:inScheduler:. Script 25-28 defines two alarms. 

Script 25-28. Two alarms 

Alarm 
do: 

[bunny head turn: left turns: 3. 
bunny setColor: red] 

at: (scheduler getTime + 5) 
inScheduler: scheduler. 

Alarm 
do: [bunny setColor: pink] 
in: 8 
inScheduler: scheduler.

You can send the following messages to an alarm: checkTime, which returns the time at
which the alarm should be executed, and stop, which will stop the alarm if it has not already
been executed.

Introducing User Interaction 
At this point you can program animations, but you cannot yet define interactions with the
user. Squeak Alice allows you to attach actions to actors when certain events such as mouse
clicks occur. For example, Script 25-29 makes the bunny turn its head when it is clicked with
the right mouse button. 

Script 25-29. Defining an action associated with a right mouse click 

bunny respondWith: [:event | bunny head turn: left turns: 1] to: rightMouseClick

The three methods addResponse: aBlock to: eventType, removeResponse: aBlock to:
event Type, and respondWith: aBlock to: eventType manage the definition of actions. The
actions are expressed using blocks and are associated with event types, among which are 
the following: keyPress, leftMouseDown, leftMouseUp, leftMouseClick, rightMouseDown,
rightMouseUp, and rightMouseClick.

The difference between the methods addResponse:to: and respondWith:to: is that the
first one allows you to define several different actions with the same type of event, while 
the second one erases the previously defined actions and defines a new one. The method
removeResponse:to: removes the corresponding actions. An example using respondWith:to:
appears in Script 25-30.

CHAPTER 25 ■ A TOUR OF ALICE332



Script 25-30. Defining an action associated with a left mouse click 

bunny
respondWith: 
[:event | 
bunny head turn: left turns: 2 duration: 2. 
w doInOrder: { 

bunny head move: up. 
bunny head move: down}] to: leftMouseClick 

In Script 25-31 I have added two reactions and then removed the first one so that only the
second is executed when you click on the bunny. 

Script 25-31. Managing responses 

reaction := bunny 
addResponse: [:event | bunny head turn: left turns: 1] 
to: rightMouseClick. 

bunny 
addResponse: [:event | bunny head pointTo: { 0. 0. 0}] 
to: rightMouseClick. 

bunny removeResponse: reaction to: rightMouseClick

Hidden Aspects of Alice and Pooh 
I would like to finish this short presentation of Squeak Alice by showing you some fun aspects
that also illustrate the power of Alice.

Mapping 2D Morphs to 3D 
You can put 2D morphs into 3D objects. The process is as follows: 

• First bring the red handle menu onto the camera window and select the item accept
drops, as shown in Figure 25-12.

Figure 25-12. Left: The bunny before. Right: Telling the camera to accept 
other dropped objects

CHAPTER 25 ■ A TOUR OF ALICE 333



• Then create a living morph; for example, bring up the object panel using the main
Squeak menu item objects (o) or Command+O, and create a bouncing atom morph as
shown in Figure 25-13.

Figure 25-13. Left: The objects panel. Center: A bouncing atoms morph. Right: A living
morph mapped into a 3D object.

• Drop the newly created bouncing atoms morph onto a part of the bunny. Normally, the
morph should be mapped into the 3D object, as shown in the Figure 25-13 (middle).

Finally, Script 25-32 shows a fun and powerful aspect of Alice and Squeak. It creates a wall
through which you can see what the mouse is pointing at. 

Script 25-32. Fun with Alice 

w makePlaneNamed: 'test'. 
test 
doEachFrame: 

[ test setTexturePointer: 
(Form fromDisplay: ((Sensor mousePoint) extent: 50@50)) asTexture ]

CHAPTER 25 ■ A TOUR OF ALICE334



Pooh: Generating 3D Forms from 2D 
Pooh is a system that allows you to generate 3D forms by drawing 2D forms within an Alice
world. If you are curious, try the following steps:

• Open a new Wonderland (Wonderland new).

• Bring up the halo on the camera window, as shown in Figure 25-14.

Figure 25-14. Opening the halo on the Alice camera to obtain access to Pooh

• Select the middle right white halo with the small bear icon. 

• Draw a closed curve directly on the camera window. When you have finished, Pooh
generates a 3D form as shown in Figure 25-15 (right). 

Figure 25-15. Left: Obtaining a 3D form. Right: Obtaining the paint editor on a 3D form.

CHAPTER 25 ■ A TOUR OF ALICE 335



• Now you can paint the form by getting the halo on the new form and selecting the pen
halo that appears in the center, as shown in Figure 25-15 (left). This opens a Paint Box.
When you are done, press the Keep button of the Paint Box. Figure 25-16 shows the pre-
vious shape painted. It also shows that you can rotate the shape, and any other shape. 

Figure 25-16. Left: A painted cow. Right: The same cow rotated.

Finally, I would  like to show you some experimental aspects of Squeak. You can use eToy,
presented in the previous chapter, with the 3D objects of Alice. You can obtain an eToy viewer
using the turquoise handle on the 3D object and use the same techniques as presented in
Chapter 24. Figure 25-17 shows a simple script.

Figure 25-17. Using an eToy script to control a 3D object

Summary
Alice is a powerful environment. I have shown only a few of the most important aspects. The
interested reader should read the chapter dedicated to Alice in the book on Squeak mentioned
at the beginning of this chapter.

CHAPTER 25 ■ A TOUR OF ALICE336



■Numbers
20 + (2 * 5) expression, decomposing, 130
20 + 2 * 5 expression, decomposing, 130
30-degree angle, turning through, 39
45-degree left turn, result of, 42
(50@60) + (200@400), decomposing, 248
50@60 + 200@400, decomposing, 248
65 @ 325 extent: 134 @ 100 message,

decomposing, 128

■Symbols
" (double quotes), using in method

comments, 142
' (single quotes), using with strings, 198
& (conjunction) message

example of, 235–238, 242
parentheses error related to, 241

() (parentheses)
including for order of execution, 124–125
mistakes caused by, 238–241
using with points, 247

. (period)
forgetting, 26
using with messages and scripts, 21

// (division), selecting for steering wheel in
eToy, 306–307

: (colon)
using with message selectors, 156
using with methods and multiple

arguments, 166
using with methods and parameters, 160
using with parameters, 163

:= (assignment expression)
right and left parts of, 103–104
using with traces, 204
using with variables, 90–91

@ method, effect of, 248
[] (square brackets)

guidelines for use of, 230
using with conditional blocks, 212
using with loops, 79, 228

^ (caret), returning values with, 144
| (or) message

example of, 235, 237–238, 242
parentheses error related to, 241

| | (vertical bars), enclosing variables
between, 90

■A
A

drawing, 34–35
shape of, 88
using absolute moves with, 255–256
using variables with, 91–92
variations of, 88–89

Abandon button in debugger window, effect
of, 173

absolute
versus relative motion, 249–251
versus relative orientation, 40–41, 243

absolute directions
angles associated with, 263
significance of, 31–32

absolute moves
making, 248–249
significance of, 255–257

Abstract Art Experiment, 33
Abstract Design Experiment, 146–147
abstraction, building over method definition

details, 152
accessor methods, displaying for categories

in eToy system, 294
aCondition method, description and

example of, 220
action length, specifying in Alice, 328
actions

adding for car in eToy, 311
composing in Alice, 322
creating in Alice, 323
defining in Alice, 332
removing in Alice, 332–333

Actor Info button in Alice’s script editor,
description of, 320

actor script in Alice, example of, 330
actors in Alice

displaying information about, 321
hierarchical structure of, 319
interacting with directly, 318–319
moving, turning, and rolling, 323–324
parts of, 324–325
relative placement of, 327

addResponse:to: and respondWith:to:
methods in Alice, comparing, 332

aDistance method versus goTo: aPoint,
249–251

Index 

337



airplane
adding methods for, 296–297
creating joystick for, 297–298
dragging and dropping method to create

new scripts for, 295
drawing, 290
experimenting with joystick for, 298
flying, 296
playing with halo for, 291–295
tiling, 313

alarms, setting in Wonderland, 332
Alice authoring environment. See also

Wonderland
accessing, 315
changing parent-child relationship of

objects in, 325
components of, 320–321
composing actions in, 322
creating morphs in, 334
creating Wonderland in, 329–330
defining animations in, 328–329
displaying, 317
executing messages in, 322
features of, 315
first class objects in, 324
getting time for Wonderland in, 332
interacting with actors in, 318–319
mapping 2D morphs to 3D in, 333–334
message variations in, 324
moving, turning, and rolling in, 323–324
multiple cameras in, 330–331
removing actions in, 332–333
resizing receivers in, 325–326
script editor in, 320
special effects, 330–331
specifying action length in, 328
stopping animations in, 323
time-related actions in, 327–328
user interaction in, 332–333
using destroy method in, 326
using eToy system with, 336
using hide and show methods in, 326
using moveTo and move methods in,

326–327
using nudge: method in, 326
using place: method in, 327
using pointAt: aTarget method in, 327
using scripts in, 321–324
using setColor: method in, 326
using standUp methods in, 326

alternation (or) message, example of, 235,
238, 242

angle variable
using in methods, 159
using with polygons, 97

angles
for absolute direction messages, 263
changing values of, 43
linking with wheel position in eToy,

306–307
moving through, 42, 43, 44
randomizing for animal behavior, 271–272
representing, 42
versus time, 45

angleToPointAt: method
defining for animal behavior simulation,

284
description and example of, 267
diagram of and code for, 266

animal behavior simulations
decreasing speed in, 280
finding food in, 280–286
trapped in a box, 274–277
of vision, 284–286
wandering, 270–274

animation elements
displaying, 302–303
drawing, 300

animations
creating holders for, 299
creating independent bodies for, 325
creating sketch recipients for, 301
defining in Alice, 328–329
stopping in Alice, 323

Another Bizarre Staircase Experiment, 113
appearance... submenu, description of, 52
application file, troubleshooting, 11
argument values, viewing with debugger, 177
arguments

indicating for message receivers, 121
in keyword-based messages, 124
for methods, 160
and parameters, 164–166
using with methods, 156
variables as, 165

Arrows Experiment, 257
Art Nouveau Picture Frame Experiment, 147
asIs constant, using in Alice, 328
assignment, introducing in eToy, 304
assignment expression (:=)

right and left parts of, 103–104
using with traces, 204
using with variables, 90–91

asString message, example of, 200

■B
bacteria example

changing direction in, 277–278
increasing speed in, 277

balloons, displaying for messages, 7
basic button, pressing in eToy, 302–303

■INDEX338



beInvisible and beVisible methods, effects of,
37, 49, 267

binary messages. See also messages
examples of, 119–120, 123
explanation of, 119–120
lack of priority in, 130

black handle for halos, description of, 291
blocks, indenting, 81
blue handle for halos, description of, 292
boldface type, significance of, 170–171
Boolean expressions

combining, 235–237
error in, 239
examples of, 234–235

Boolean operations, examples of, 238
Boolean values, definition of, 234
borders, examining in trapped-in-a-box

animal behavior, 275–276
Bot class

associating graphics with, 71–72
creating spider robot with, 68–69
loading and saving graphics associated

with, 70
significance of, 23

Bot clearImage expression, effect of, 70
Bot new east expression, decomposing, 129
Bot new expression, executing, 59
Bot new go: 100 + 20 message, decomposing,

127
Bot new pattern4, execution of, 171
Bot Workspace text editor

features of, 15
obtaining, 52–53
saving scripts with, 54

BotsInc actions submenu, description of, 52
box method, defining star method with, 153
boxes. See also trapped-in-a-box animal

behavior
adding exits to, 277
moving robots inside of, 264–265
variables as, 102–103

Boxes Experiment, 153
A Broken Square Experiment, 40
brown handle for halos, description of, 291
bunny

moving in Alice, 318
sample script of, 330
transforming in Alice, 319

buttons on mouse, purposes of, 53

■C
camera controls, adding and moving in Alice,

321, 330–331
capture screen menu item, accessing, 55–56

car
adding actions for, 311
adding sensors to, 308
drawing in eToy, 305
expressing different behaviors for, 309
turning in circle in eToy, 305

caret (^), returning values with, 144
carriage return characters, representing, 200
cascades. See also messages

sending multiple messages with, 14
uses for, 22

Case Studies of not-message error, 239
categories

creating for methods, 139–140
displaying in eToy viewer, 294

center message, description and example of,
260, 267

center versus position, 267
centered squares, creating, 184–185. See also

squares
changes file, troubleshooting, 10–11
changing directions, 31–33
Changing the Reference Direction

Experiment, 44
characters
and strings, 199–200

interpreting with tiny language, 219
checkerboard construction, creating, 117
Checkerboard Squares Experiment, 195
circular shape, applying to robots, 64
Class Bot Browser

features of, 137
using, 138

classes. See also robot factories
creating objects for, 30
as factories, 30
as factories for producing objects, 237–238
obtaining new objects from, 23
restoring default images to, 70
role in object-oriented programming, 17

Clear All button, effect of, 54
clear all pen trails method, using in eToy, 312
Clear Robots button, effect of, 54
Clear Trails button, effect of, 54
clock, creating, 45
Clock Hands Experiment, 43
clock hands, moving, 42–43
code, indenting, 80–81
collection category, looking for, 302–303
colon (:)

using with message selectors, 156
using with methods and multiple

arguments, 166
using with methods and parameters, 160
using with parameters, 163

■INDEX 339



color: aColor method, description and
example of, 73

Color class, effect of, 23
Color factory, features of, 64
color messages

effect of, 8
executing, 59
names of, 63–64

color objects, obtaining, 62
color of text, changes in, 27
Color r:g:b: expression, creating colors with,

64
color sees method, dragging in car example,

310
color-based tests, customizing in eToy, 310
coloredTurn: anAngle method

debugging, 217–218
defining, 216

colorname color, creating, 35
colors

asking robots for, 58–59
changing for grids, 246
changing for robots, 30, 35, 210–212,

214–216
creating, 64
of pens, 62–63
picking with fromUser method, 64
relationship to robot direction, 216, 218

A Comb Experiment, 85
comments, including in methods, 142
compass directions, pointing robots in, 32
composing methods, definition of, 150. See

also methods
composing solutions, significance of, 183
compound Boolean expressions, using,

235–237
compound expressions, decomposing with

parenthesis priority, 128
compound messages

definition of, 7
examples of, 7–8
representing, 125–126
sending, 8

concentric squares, drawing, 115. See also
squares

conditional block, example of, 212
conditional expressions

components of, 212
nesting, 214–216
with one branch, 213–214
using to change robot colors, 210–211
using traces with, 211–212

conditional loops
components of, 223–224
defining, 226
effect of executing once, 226
example of, 222–224

conditional methods, choosing, 214
conjunction (&) message

example of, 235–238, 242
parentheses error related to, 241

constant-angle spiral, definition of, 186
A Constant-Angle Spiral Experiment, 186
constants for movements in Alice, examples

of, 322
context-sensitive menus, accessing, 54
Controlling the Sides of the Polygon

Experiment, 98
coordinate system in Smalltalk, description

of, 245
copying robots, 60
copyUpTo method, example of, 200
Corridor Experiment, 115, 185
Creating and Moving a Robot Experiment, 31
cross, drawing with parameters, 158
crossWalk1:walk2: method, defining, 162
current location of robots, determining, 267
cursor value, changing in eToy, 304
cut and paste feature, generating regular

polygons with, 48
cyan handle for halos, description of, 292

■D
daly robot, creating, 30
Debug button in debugger window, effect of,

173
debugger. See also errors; program errors

closing, 175
definition of, 167
fixing parentheses errors with, 240
invoking, 172–173
printing arguments from, 177
using with infinite loops, 226

debugger window, opening, 174
decomposing problems, significance of, 183
Defining Method pattern4 Experiment,

150–151
destroy method in Alice, using, 326
direction method

description and example of, 267
example of, 265–266

directional convention, significance of, 39
directions

changing, 31–33, 35, 49
obtaining for robots, 262
pointing at, 265–266
pointing in, 262–263
randomizing for animal behavior, 276–277

display depth, checking and setting, 316
dist: method, obtaining distance with, 280
distance

comparing in animal behavior simulation,
280–282

specifying in Alice, 323

■INDEX340



distanceDetector method
changing robot colors with, 210
using trace with, 212

distanceFrom: aPoint message
code for, 263
description and example of, 267

dividingLine: sideLength method,
developing for golden rectangles,
191–192

division (//), selecting for steering wheel in
eToy, 306–307

Do It All button
effect of, 15–16, 54
executing scripts with, 58

Do It button, effect of, 54
do it (d) message, effect of, 59
doesNotUnderstand: method, effect of, 178
double quotes ("), using in method

comments, 142
doubleFrame method, defining, 151–152
doubleFrameWithoutCallingPattern code,

152
Doubling the Frame Experiment, 151
drawGrids method, using, 246
drawing

ABC of, 34
animation elements, 300
capturing, 55–56
of equilateral triangle, 46
geometric figures, 81–82
hexagons, 47
of house, 46
patterns, 145–147
regular polygons, 47
robots, 66–67
spyglass, 63
squares, 136–137, 143
staircase, 110–112
star, 78–81

Drawing a House Experiment, 46
Drawing a Rectangle with Arguments

Experiment, 161
Drawing a Regular Polygon Experiment, 47
Drawing a Three-Spoked Figure Experiment,

48
Drawing Stylized Crosses Experiment, 162
drawings, rotating and zooming, 67
duration, specifying for actors in Alice, 323

■E
eachFrame constant, using in Alice, 328
east message, example of, 32
easterly direction, indicating, 42
ellipses

changing appearance in eToy, 303
around messages, meaning of, 120

environment
components of, 6
identifying robots in, 6
installing, 4
opening, 5–6
quitting and saving, 10

equilateral triangle, drawing, 46
errors. See also debugger; program errors

fixing, 178–180
generating with points, 247–248
learning from, 216–218

escaping: aBox withExit: aExit method,
creating, 277

eToy system
basic button in, 302–303
cars and drivers example in, 305–311
changing holder elements in, 303–304
clearing robot trails in, 312
clearing tiles in, 312–313
conditions and tests in, 309–310
creating animations in, 299–305
creating new scripts with, 295
creating road in, 308
creating sensors in, 308
customizing, 311–314
customizing color-based tests in, 310
displaying events menu in, 297
features of, 289
internationalization in, 314
linking objects in, 312–313
modifying names of sketches in, 293
opening viewer in, 292
running scripts in, 312
steering airplane example in, 290–297
using joystick for airplane example in,

297–299
using watchers in, 294
using with 3D objects in Alice, 336

events menu, displaying in eToy system, 297
execution stack, example of, 171
Experiments. See also scripts

Abstract Art, 33
Another Bizarre Staircase, 113
Another Spiral, 186
Arrows, 257
A Broken Square, 40
Changing the Reference Direction, 44
Checkerboard Squares, 195
A Comb, 85
A Constant-Angle Spiral, 186
Controlling the Sides of the Polygon, 98
A Corridor, 185
Creating and Moving a Robot, 31
Defining Method pattern4, 150–151
Doubling the Frame, 151
Drawing a House, 46

■INDEX 341



Experiments (continued)
Drawing a Rectangle with Arguments, 161
Drawing a Regular Polygon, 47
Drawing a Three-Spoked Figure, 48
Drawing Stylized Crosses, 162
frAnkenstein, 89
Golden Rectangle, 94
Increasing Golden Rectangles, 193
A Ladder, 85
A Long Corridor, 115
A Method for the Art Nouveau Picture

Frame, 147
A Method to Draw a Cross, 158
A Method to Draw a Hexagon, 158
Moving Clock Hands, 43
Mystery Scripts, 38
PICA, 34
Placement of the Increment in the Loop,

112
Putting a Trace inside the Loop, 204
Pyramid, 117
A Pyramid with a Variable Number of

Terraces, 96
A Pyramid with a Variable Terrace Size, 96
A “Real” Clock, 45
Rectangles 1 and 2, 251
A Rectangular Pyramid, 194
A Regular Hexagon, 82
A Regular Pentagon, 82
A Relative Square, 40
Russian Squares, 114
Russian Squares Experiment, 185
Scripts That Don’t Work, 95
A Simple Abstract Design, 146–147
A Simple Maze, 113
Some Boxes, 153
SOS, 31
A Spiral Out of Lines, 188
A Spiral with Four Parameters, 187
“Spirals” Out of Spirals, 188
Spirals with Constant Distance, 187
A Square, 33
Square Ripples in a Square Pond, 184
A Square Using a Loop, 81
Squares, 117
A Staircase, 33, 84
A Staircase without Risers, 84
A Staple, 85
A Star, 153
A Star with Sixty Branches, 80
The Step Pyramid of Saqqara, 33
A Swiss Cross, 84
A Ten-Step Pyramid, 83
Tilting the Square, 40
Translating a Robot by a Point, 259
Triangle 1, 252
Triangle 2, 255

A Triangular Pyramid, 195
Tumbling Squares, 85
Using the Methods translate: 1) and

translate: 2), 259
A Variety of A’s, 89
Your Choice, 153

expressions
components of, 119
examples of, 20
executing, 60
parenthesized equivalents of, 131
printing results of, 60
relationship to methods, 143
relationship to programs, 16, 18
self halt expression, 172–173
for staircase drawing, 112
using square brackets ([]) with, 230
using variables in, 105

extent: aPoint method, description and
example of, 73

extent:widthAndHeight message, resizing
robots with, 65

■F
factories

classes as, 30
Color factory, 64
relationship to manufactured objects, 17

false and true objects, returning with
Boolean expressions, 234–235

file lists, loading scripts with, 55
files

importing, 56
troubleshooting, 10–11

findFoodAreaByDistance: aFoodRectangle
method, implementing, 280–281

first class objects in Alice, description of,
324–325

first method, example of, 199
flaps

definition of, 6
obtaining Bot workspaces from, 52

flying geese, pattern of, 254, 257–258
folders, navigating, 55
food, finding in animal behavior simulation,

280–286
for: method, using in Alice authoring

environment, 323
forward method, dragging and dropping in

eToy, 305
fromUser method, picking colors with, 64
full-screen mode, going into, 247

■G
geometric figures, drawing, 81–82
getImageFromClass method, description and

example of, 73

■INDEX342



getter methods, displaying for categories in
eToy system, 294

Glossary for methods, 147
go: anInteger ifStayInBox: aRectangle

method, code for, 264
go message

advancing along pixels with, 31
drawing rectangles with, 14
effect of, 7

Golden Rectangle Experiment, 94
golden rectangles. See also rectangles

drawing, 189–190
nesting, 189, 192
one-line-per-rectangle solution for,

190–193
golden section, calculating, 189
goldenRectangle: methods, examples of

width method, developing, 191-193
goTo: aPoint message

versus aDistance, 249–251
description and example of, 260

graphics
associating with Bot class, 71–72
drawing and preserving for robots, 66–67
loading, 68
loading and saving, 70
loading and saving for Bot class, 70
saving and restoring, 67–72
using scripts with, 69–72

green handle for halos, description of,
291–292

grey handle for halos, description of, 292
grids, using, 246–247

■H
halo of handles

accessing, 56, 60
explanation of, 53–54
getting information about, 60
manipulating for airplane, 291–295
obtaining when drawing robots, 56, 66
for steering wheel in eToy, 306

handles. See halo of handles
heading value, dividing for steering wheel in

eToy, 306–307
healthy region, imagining rectangle as, 279
height variable, relationship to width and

midheight, 93
heptagon, drawing with polygon100:

method, 160
Hexagon Experiment, 82
hexagons

drawing, 47
drawing with parameters, 158
example of, 97

hide and show methods in Alice, using, 326
holder elements, changing in eToy, 303–304

holders
creating for animations, 299
dropping pictures in, 301
opening in viewers, 302

home message, effect of, 264
house, drawing, 46

■I
ifFalse: method, effect of, 213–214
ifStayInBox method, code for, 265
ifTrue:ifFalse: method

effect of, 211
using empty conditional block with, 213

image file, troubleshooting, 10–11
images

applying to robots, 72
changing, 71
restoring to classes, 70
saving, 70

importing files, 56
Increasing Golden Rectangles Experiment,

193
infinite loops, stopping, 226–227
initializing variables, 116
installation

on Macintosh and Windows systems, 4
tips for, 4
troubleshooting, 10–11

interactive application, example of, 228–229
internationalization, implementing in eToy,

314
interpret: aCharacter method, defining, 218
Into button, using with debugger, 176
invisibility and visibility, applying to robots,

35

■J
joystick

creating for airplane, 297
experimenting with, 298
linking with script, 298–299

jump command, using in PICA Experiment,
34

jump: messages
effect in absolute moves, 248–249
effect of, 31

jumps, drawing letter A with, 256
jumpTo: aPoint message, description and

example of, 260

■K
keepABearing: method, defining, 283
key combinations and mouse button,

explanations of, 54
keyword-based messages. See also messages

examples of, 119–120, 123–124
explanation of, 119–120

■INDEX 343



■L
A Ladder Experiment, 85
languages, setting in eToy, 314
left button on mouse, purpose of, 53
Left to Right order of execution, examples of,

129–131
left turn by 45 degrees, result of, 42
length, examining in wandering animal

behavior, 272
letter A

drawing, 34–35
shape of, 88
using absolute moves with, 255–256
using variables with, 91–92
variations of, 88–89

Lindemeyer systems, significance of, 218
line segments, drawing, 31
lines

creating spirals from, 188
drawing and coloring, 62–63
drawing for star, 78

loadImage: message
description and example of, 73
effect of, 69–70
versus LoadImage: ‘fileName’, 70

locations
determining, 267
jumping to, 249
representing as points, 244
speculating on, 264–265

A Long Corridor Experiment, 115
look* methods, descriptions and examples

of, 73
lookLike method, creating scripts with, 302
lookLikeBot message, effect of, 64
lookLikeCircle message, applying to robots,

64, 69
lookLikeImage method, effect of, 71
lookLikeTriangle message, effect of, 64–65
Loop Increment Experiment, 112
loops. See also nested loops

combining variables with, 113–115
defining, 227
experimenting with, 84–85
introducing variables in, 116
repeating sequences of messages with,

79–80
stopping, 226–227
and translations, 257–258
using with pyramid script, 83

lowercase letters, errors related to, 25–26

■M
Macintosh

installing Squeak on, 4
opening environment on, 5

main menu, options on, 51

mathematical coordinate system, comparing
to Smalltalk, 245

mathematical message selectors in Smalltalk,
priorities of, 131

Maze Experiment, 113
mazes, creating, 184–185
menu items, getting explanations of, 52
menus, displaying for World, 10
message execution, looking at, 169–171
message receivers. See receivers
message selectors

for Color class, 63
misspelling, 24
using colons (:) with, 156

message sends
effect of, 121
priority of, 130

messages. See also binary messages;
cascades; keyword-based messages;
order of execution; unary messages

common examples of, 53
components of, 119
examples of, 7, 20–21
executing, 176
executing in Alice, 322
forgetting periods between, 26
identifying, 120–122
order of execution of, 240, 247–248
results of, 57
sending to actor parts in Alice, 324–325
sending to robot factories, 9
sending to robots, 7–8
sending with cascades, 14
types of, 119–120
using loops with, 79–80
using with Boolean expressions, 235–237
variations in Alice, 324

method categories, creating, 139–140
method definitions, modifying with

debugger, 178, 180
method execution, overview of, 165–166
A Method for the Art Nouveau Picture Frame

Experiment, 147
A Method to Draw a Cross Experiment, 158
A Method to Draw a Hexagon Experiment, 158
methods. See also composing methods

adding for airplane, 296–297
adding traces to, 224–225
calling other methods with, 152
compiling and testing, 141
components of, 142–143
debugging, 176
defining for golden rectangles, 190–191
defining with Class Bot Browser, 138,

140–141
defining with multiple arguments, 166

■INDEX344



defining with multiple parameters, 160
defining with square method, 153
definition of, 22
displaying for airplane joystick, 298
displaying for categories in eToy system,

294
dragging and dropping to create new

scripts for airplane, 295
for drawing squares, 156–157
entering without executing, 176–177
recompiling with debugger, 178
relationship to expressions, 143
versus scripts, 136–137, 143–144
using and reusing, 141, 151
using arguments with, 156, 160
values returned by, 212
variables in, 159–160

middle button on mouse, purpose of, 53
midheight variable, relationship to width and

height, 93
morphic projects, opening, 289
morphs, creating in Alice, 334
Morse code, drawing SOS message in, 31
motion. See also moving robots

in Alice authoring environment, 323–324
relative versus absolute motion, 249–251

mouse buttons
explanations of, 53–54
and key combinations, 54

move: method, using in Alice authoring
environment, 323–324

move toward method, using in eToy, 312–313
movement constants in Alice, examples of,

322
moves, making absolute moves, 248–249
moveTo and move methods in Alice, using,

326–327
Moving Clock Hands Experiment, 43
moving robots, 35, 60. See also motion
Mystery Scripts Experiment, 38

■N
n timesRepeat: [], effect of, 79, 86
named scripts. See methods
negated method, using with points, 258
negation (not) message, example of,

235–236, 238, 242
nested loops, examples of, 194–195. See also

loops
nesting conditional methods, 214–216
new message, effect of, 9
nil value, significance of, 168–169, 179–180
north direction, moving robots in, 223, 228
north message, example of, 32
northEast message, example of, 32
northWest message, example of, 32

not (negation) message
example of, 235–236, 238, 242
parentheses error in, 239

nudge: method in Alice, using, 326
numberOfSides variable, using in methods,

159
numbers and strings, overview of, 201, 203

■O
object-oriented programming language,

Smalltalk as, 17
objects

behavior in Smalltalk, 57
in binary messages, 123
classes as factories for production of,

237–238
creating for classes, 30
linking in eToy, 312–313
manipulating in Alice, 325
obtaining from classes, 23
relationship to binary messages, 120

open... submenu, description of, 52
or (|) message

example of, 235, 237, 237–238, 242
parentheses error related to, 241

or (alternation) message
example of, 237, 237–238, 242

orange handle for halos, description of, 292
order of execution. See also messages

of messages, 240, 247–248
overview of, 124–125
Rule 1, 124, 125–127, 131
Rule 2, 124, 127–128
Rule 3, 129–131

Over button, using with debugger, 176

■P
pablo variable, declaring, 102–103
Paint tool, opening to draw airplane, 290
painting tool, opening, 66
panes of Class Bot Browser, explanations of,

138
parallel motion, example of, 249
parameter values, changing, 163
parameters

and arguments, 164–166
declaring, 163
defining methods with, 160
definition of, 156
drawing squares with, 163
features of, 163
naming, 161
prohibition of assigning values to, 163
using, 158
using with polygons, 159
using with spirals, 187
and variables, 162–163

■INDEX 345



parentheses (())
including for order of execution, 124–125,

131
mistakes caused by, 238–241
using with points, 247

Parentheses First order of execution,
examples of, 127–128

passImageToClass message, effect of, 69
passImageToClass method, description and

example of, 73
pattern method

debugging, 179
defining, 169
recompiling with debugger, 180
selecting in debugger window, 174
stepping into, 177

pattern4 method
defining, 150–151, 170
selecting in debugger, 175

patterns
drawing, 145–147
examples of, 150–151

pen size and color, overview of, 62–63
penColor and penSize methods, descriptions

and examples of, 73
penColor: message, effect of, 62–63
pentagon, drawing with polygon100:

method, 160
pentagon, example of, 96
Pentagon Experiment, 82
period (.)

forgetting, 26
using with messages and scripts, 21

pica color: Color yellow, decomposing
execution of, 125–126

pica color expression, executing, 58–59
PICA Experiment, 34
pica go: 100 + 20 expression, decomposition

of, 126
pica penSize: pica pensize + 2 expression,

decomposing, 127
pica robot

applying image to, 72
creating, 30
as variable, 91

pica variable, declaring, 102–103, 104–105
picas, creating for robots, 15, 18–19
pictures, dropping in holders, 301
pink handle for halos, description of,

291–292
pixels

determining for forward movement of
robot, 105

significance of, 19
place: method in Alice, using, 327
Placement of the Increment in the Loop

Experiment, 112

plane, creating in Alice, 329
playerAtCursor method, dragging in eToy,

303
playfield options menu, displaying in eToy,

311
point1 * number message, description and

example of, 260
point1 + point2 message, description and

example of, 260
point1 negated message, description and

example of, 260
pointAt: aPoint method, code for, 265–266
pointAt: aTarget method in Alice, using, 327
pointAt: method, using with animal behavior

simulation, 283
pointing and selecting with mouse, 54
points

and absolute moves, 255–257
distances from, 263
heading toward, 265–266
overview of, 244–245
for simulating vision in animal behaviors,

280–282
translating robots by, 259
using negated and setX:setY: methods

with, 258
polygon100: method, using, 160
polygons

automating with variables, 96–97
drawing, 47–48
with fixed sizes, 98
using variables and parameters with, 159

polygon:size: method, defining, 161
Pooh system, generating 3D forms from 2D

with, 335–336
PopUpMenu class, example of, 198–199
position

versus center, 267
linking with angle in eToy, 306–307

position message, description and example
of, 267

positionIfGo: aDistance method, code for,
264

print it (p) menu item, selecting, 59
printing

arguments from debugger, 177
results of expressions, 60

Proceed button, using with debugger, 173,
175, 180

program errors. See also debugger; errors
detecting with text colors, 27–28
forgetting periods, 26
misspelling message selectors, 24
misspelling variable names, 24
overview of, 23
unused variables, 25
uppercase versus lowercase, 25–26

■INDEX346



program execution, using Transcript tool
with, 202–203

programming languages, significance of, 16
programs

definition of, 16
typing and executing, 18

Putting a Trace inside the Loop Experiment,
204

Pyramid Experiment, 117
Pyramid of Saqqara Experiment, 33, 95

using loops with, 83
using variables with, 96

A Pyramid with a Variable Number of
Terraces Experiment, 96

A Pyramid with a Variable Terrace Size, 96

■Q
Quick Reference button in Alice’s script

editor, description of, 320
quitting Squeak environment, 10

■R
random direction, choosing for trapped-in-

a-box animal behavior, 276–277
reactions, managing in Alice, 333
read only files, identifying, 11
A “Real” Clock Experiment, 45
receivers

explanation of, 121
finding positions in animal behavior

simulation, 282
hiding and showing, 49
indicating arguments for, 121
moving if landing inside rectangles, 265
resizing in Alice, 325–326
returning with square method, 145
sending messages to, 144

Rectangle Experiments, 251
rectangles. See also boxes; golden rectangles

centering on animals, 274
drawing, 14, 264
as exits in trapped-in-a-box animal

behavior, 277
as healthy regions, 279
moving robots inside of, 264–265

rectangleWidth:height: method, defining,
161

A Rectangular Pyramid Experiment, 194
red handle for halos, description of, 291
red handle painting, item, using with

animations, 300
reference direction, changing, 44
reference lines, drawing, 43
regular hexagon, example of, 97
A Regular Hexagon Experiment, 82
regular pentagon, example of, 96
A Regular Pentagon Experiment, 82

regular polygons
drawing, 47–48
with fixed sizes, 98

A Relative Square Experiment, 40
relative

versus absolute motion, 249–251
versus absolute orientation, 40–41, 243

request:initialAnswer: message, effect of, 199
resize: method, using in Alice, 325–326
Restart button, using with debugger, 175
results of message, significance of, 57
right button on mouse, purpose of, 53
road

coloring in eToy, 310
creating in eToy, 308

robot clock, creating, 45
robot factories. See also classes

retooling, 68–69
sending messages to, 9

robot graphics, loading and saving, 70
robot movements, tracking in scripts,

203–205
robot trails, clearing in eToy, 312
robot visibility, controlling, 35
robots

applying images to, 72
changing colors of, 30, 35, 63, 210–212
changing directions of, 49
changing images of, 71
changing shapes and sizes of, 64–65
coloring, 214–216
copying, 60
creating, 9, 22–23, 30, 35
creating picas for, 15
destroying, 60
determining colors of, 58–59
determining current locations of, 267
determining direction of steps for,

228–229
drawing, 66–67
identifying in environment, 6
interacting with, 8
making absolute moves with, 248–249
making invisible, 35
moving, 35, 60
moving inside, 264–265
moving north, 223, 228
obtaining directions for, 262
obtaining information about, 7
painting, 66
placing in center of screen, 264
pointing in compass directions, 32
sending messages to, 7–8
translating by points, 259
turning through given angles, 38

rolling in Alice, overview of, 323–324
rotating drawings, 67

■INDEX 347



rotation, determining for steering wheel in
eToy, 306–307

Rule 1 of order of execution
consequence of, 131
explanation of, 124
Unary>Binary>Keywords, 125–127

Rule 2 of order of execution
explanation of, 124
Parentheses First, 127–128

Rule 3 of order of execution
explanation of, 124
From Left to Right, 129–131

Russian Squares Experiment, 114

■S
save contents menu item, accessing, 54
save image menu item, accessing, 55–56
saveImage: ‘fileName’ message, effect of, 70
saveImage method, description and example

of, 73
saving Squeak environment, 10
scheduler getTime expression, using in

Wonderland, 332
screen regions, capturing, 56
screens

displaying information on, 198–199
placing robots in center of, 264
resizing with world menu, 247

script editor in Alice, features of, 320
scripting method, using in eToy, 312
scripts. See also Experiments

adding traces to, 204
analyzing, 18–19, 104–107
analyzing in Alice, 322
creating for airplane, 295
creating with lookLike method, 302
declaring variables for, 35
definition of, 13
executing, 58–60
for golden rectangle, 94
linking airplane joystick with, 298–299
loading, 55
versus methods, 136–137, 143–144
relationship to expressions, 18
running in eToy, 312
saving with Bot workspace, 54
selecting complete text of, 58
using in Alice authoring environment,

321–324
using with graphics operations, 69–72
writing, 15–16

Scripts That Don’t Work Experiment, 95
selecting with mouse, 54
self halt expression, opening debugger with,

172–173
self variable, relationship to methods, 144, 166

sensor for car, creating in eToy, 308
set language menu, displaying in eToy, 314
setColor: method in Alice, using, 326
setter methods, displaying for categories in

eToy system, 294
setX:setY method, using with points, 258
shapes of robots, changing, 64–65
sideLength parameter

declaring, 163
using in Russian Squares Experiment, 114
using with square method, 157

sides of turns, examining in wandering
animal behavior, 273

sides variable, using with polygons, 97
A Simple Abstract Design Experiment,

146–147
A Simple Maze Experiment, 113
simulating animal behavior. See animal

behavior simulations
single quotes ('), using with strings, 198
size method, example of, 199
size variable, declaring, 168
sizes of robots, changing, 64–65
sizeValue parameter, example of, 161
sketch names, modifying in eToy, 293
sketch recipients, creating for animations in

eToy, 301
Smalltalk programming language, 30

behavior of objects in, 57
blocks in, 79
coordinate system in, 245
laying out code in, 80–81
mathematical message selectors in, 131
naming variables in, 102
significance of, 16–17

SOS message, drawing in Morse code, 31
sources file, troubleshooting, 11
south message, example of, 32
southEast message, example of, 32
southWest message, example of, 32
space characters, representing, 200
special effects, using in Alice authoring

environment, 330–331
speed: method, using with actions in Alice,

323
spider robot, creating with Bot class, 68–69
spider.frm image file, contents of, 69–70
spiral, drawing, 114
A Spiral Out of Lines Experiment, 188
A Spiral with Four Parameters Experiment,

187
spirals, creating, 186
“Spirals” Out of Spirals Experiment, 188
Spirals with Constant Distance Experiment,

187

■INDEX348



spyglass, drawing, 63
square brackets ([])

guidelines for use of, 230
using with conditional blocks, 212
using with loops, 79, 228

A Square Experiment, 33
square: method

defining methods with, 153
execution of, 166
reproducing pictures with, 194–195
returning message receiver with, 145
using sideLength parameter with, 157

square script, using variable with, 162
A Square Using a Loop Experiment, 81
squares. See also centered squares;

concentric squares
drawing, 40, 81, 136–137, 143
drawing with methods, 156–157

Squares Experiment, 114, 117
Squeak

downloading, 4
files required for, 10–11
installation, 4–5
interacting with, 53–54
quitting and saving environment of, 10
and Smalltalk programming language,

16–17
Squeak application file, troubleshooting, 11
stack in debugger, stepping through, 175–178
staircase

drawing, 110–112
drawing with treads, 203–205
interactive version of, 229

Staircase Experiments, 33, 84, 113
standUp method, applying to actors in Alice,

318, 326
A Staple Experiment, 85
star, drawing, 78–81
A Star Experiment, 153
A Star with Sixty Branches Experiment, 80
start script method, using in eToy, 312
steering wheel

drawing in eToy, 305
using heading of, 306–307

The Step Pyramid of Saqqara Experiment, 33
steps

determining directions of, 228–229
drawing for staircase, 111–112

strings
and characters, 199–200
and numbers, 201, 203
overview of, 198

submenus, explanations of, 52
A Swiss Cross Experiment, 84

■T
tab characters, representing, 200
A Ten-Step Pyramid Experiment, 83
terraceNumber variable, using with pyramid,

96
terraceSize variable, using with pyramid, 96
text color, changes in, 27
text editor, using Bot Workspace as, 15
three-spoked figure, drawing, 48
tiles, creating in eToy, 312
tiling squares, 194–195
tiltedPattern method, significance of, 151
Tilting the Square Experiment, 40
time

versus angles, 45
getting for Wonderland in Alice, 332

time-related actions, defining in Alice,
327–328

timesRepeat: method
argument of, 80
displaying in debugger, 175
effect of, 79, 86

tiny languages, interpreting, 218–219
totalLength variable, using with polygons, 98
traces

adding to methods, 224–225
drawing for airplane, 296
estimating for wandering animal behavior,

272
generating, 203–205
for simulating vision in animal behaviors,

284–285
using with conditional expressions,

211–212
Transcript tool

generating traces of programs with,
203–205

using, 202–203
using with conditional expressions,

211–212
using with upTo100 method, 225

Translating a Robot by a Point Experiment,
259

translations
of flying geese, 254–255
and loops, 257–258
overview of, 252–253
of triangles, 253–254

trapped-in-a-box animal behavior. See also
boxes

flying to opposite border for, 276
following borders for, 275–276
introducing exit in box for, 277
overview of, 274–275
random direction for, 276

■INDEX 349



treads
drawing for staircase, 203–205
measuring for staircase drawing, 111–112

Triangle 1 Experiment, 252
Triangle 2 Experiment, 255
triangles

drawing, 46
translating, 253–254

A Triangular Pyramid Experiment, 195
triangular shape, applying to robots, 64
troubleshooting installation of Squeak, 10–11
true and false objects, returning with

Boolean expressions, 234–235
Tumbling Squares Experiment, 85
turn: method

adding for airplane, 296
dragging and dropping in eToy, 305
effect of, 39
using in Alice authoring environment,

323–324
turning in Alice, overview of, 323–324
turnLeft message, effect of, 7, 38–39
turnRight: method, example of, 38–39, 42–43
turns, examining in animal behavior,

273–274, 275–276
turnTo: aDirection message, effect of,

262–263, 267
turnTo: anAbsoluteAngleInDegrees method,

code for, 263

■U
unary messages. See also messages

examples of, 121, 122
explanation of, 119–120
order of execution of, 125

Unary>Binary>Keywords order of execution,
examples of, 125–127

underlined message receivers, meaning of,
120–121

undrawGrids method, using, 246
until: method, using in Alice authoring

environment, 323
uppercase letters, errors related to, 25–26
upTo100 method

adding trace to, 224–225
effect of, 222

upTo100Infinite method, executing, 227
user input loop, adding to interactive

staircase, 229
user interaction, implementing in Alice,

332–333
users, communicating with, 198–199

■V
v method, invoking, 222
values

assigning to variables, 90
changing for variables, 116
excluding from variables, 106
modifying for variables using eToy, 294
relationship to variables, 90
representing as nil, 168–169
returning, 144–145
returning from methods, 212

variable declaration, relationship to
messages, 21

variable names
misspelling, 24
self variable, 144
significance of, 103

variable values, changing, 163
variables

as arguments, 165
assigning values to, 90
automating polygons with, 96–97
as boxes, 102–103
changing values of, 116
combining with loops, 113–115
declaring, 90
declaring, initializing, and using, 104–105
declaring and assigning, 99
declaring for scripts, 35
default values of, 168–169
defining with walkLength variable, 107
definition of, 90
errors related to, 24–25
experimenting with, 94–96
expressing relationships between, 93–94
initializing, 90–91, 116
introducing in loops, 116
for length of pica’s walk, 105
in methods, 159–160
modifying values of using eToy, 294
naming, 102
and parameters, 162–163
as placeholders, 102, 104
power of, 92–93
referring to, 91
using, 116
using in expressions, 105
using with letter A, 91–92
using with Pyramid of Saqqara

Experiment, 96
using with square script, 162
using with staircase drawing, 111
using without values, 106

A Variety of A’s Experiment, 89

■INDEX350



vertical bars (| |), enclosing variables
between, 90

viewer
displaying categories in, 294
opening holder in, 302
opening in eToy system, 292
parts of, 293
on sketch recipient, 301

visibility and invisibility, applying to robots,
35

vision, simulating for animal behavior,
284–286

VM (virtual machine), Squeak application
file as, 11

vocabulary pane, listing common messages
in, 53

■W
w makePlaneNamed: expression, using in

Alice, 329
walkLength variable

changing twice, 106
declaring, 104–105
defining variable with, 107
initializing, 107–108
writing and reading, 104

wandering behavior, simulating, 270–274
watchers, using in eToy, 294
websites

eToy system, 289
Squeak, 4

west message, example of, 32
wheel. See steering wheel
whileFalse: loop

components of, 223
description and example of, 231
effect of, 222

whileTrue: loop
components of, 223
converting to whileFalse:, 225
description and example of, 231
effect of, 222

widgets flap, opening to draw airplane, 290
width variable, relationship to midheight and

height, 93
Windows

installing Squeak on, 4
opening environment on, 5

Wonderland. See also Alice authoring
environment

alarms in, 332
creating in Alice, 329–330
opening for use with Pooh, 335

words, selecting in scripts, 58
World menu

displaying menu for, 10
opening morphic projects from, 289
resizing screens with, 247

The Worlds of Squeak window, displaying,
315

worm, animating, 300

■X
x @ y message, description and example of,

260

■Y
yellow handle for halos, description of, 292
yertle robot, appearance of, 72
Your Choice Experiment, 153

■Z
zooming drawings, 67

■INDEX 351



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




