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1

The video-based exploration of interiors with autonomous and mobile service robots
is a task that requires much programming effort. Additionally, the programming
tasks differ in the necessary modules. Commands, which control the technical basis
equipment, must consider the reality of the robot. These commands activate the
breaks and the actuation. The parts are basically included in the delivery. Often a
mobile robot additionally possesses sonar, ultrasonic, and cameras, which constitute
the perception function of the robot. The programming of such a mobile robot is a
very difficult task if no control software comes with the robot. First, the programmer
must develop the necessary drivers. As a rule the manufacturer includes a software
library into the scope of the supply. This enables programs in a high-level language
like C++ to be created very comfortably to control most or all parts of the robot’s
basic equipment. Typically operators are available. The user can transfer values to
the arguments whose domain depends on the device that is to be controlled, and the
admitted measurement. Operators, which enable rotary motions, may take values in
degrees or radians. The velocity can be adjusted with values, which are specified in
meters per second or yards per second. Video cameras are sometimes also part of a
mobile robot’s basic equipment, but further software and/or hardware must be
acquired generally. A frame grabber is required. This board digitizes the analog sig-
nal of the camera. The gained digital image can then be processed with an image-
processing library. Such a library provides operators for the image processing that
can also be included into a high-level program. If the camera comes with the robot,
the manufacturer provides two radio sets if the computer that controls the robot is
not physically compounded with the robot. One radio set is necessary to control the
robot’s basic equipment from a static computer. The second radio set transmits the
analog camera signals to the frame grabber. Nowadays, robots are often equipped
with a computer. In this case radio sets are not necessary, because data transfer be-
tween a robot’s equipment and a computer can be directly conducted by the use of
cables. Additionally, a camera head can be used that connects a camera with a robot
and enables software-steered panning and tilting of the camera. Mobile service
robots use often a laser that is, as a rule, not part of a robot. They are relatively
expensive, but sometimes the robot-control software provided involves drivers for
commercial lasers.
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1 Introduction

The application areas for mobile service robots are manifold. For example, a real-
ized application that guided people through a museum has been reported. The
robot, named RHINO [1], was mainly based on a laser device, but many imaginable
areas require the robot to be producible cheaply. Therefore, RHINO will not be
further considered in this book. This book proposes robot-navigation software that
uses only cheap off-the-shelf cameras to fulfill its tasks. Other imaginable applica-
tions could be postal delivery or a watchman in an office environment, service
actions in a hospital or nursing home, and so forth. Several researchers are currently
working on such applications, but a reliable application does not currently exist.
Therefore, at this point a possible scenario for a mobile service robot that works
autonomously will be illustrated.

Postal delivery is considered, as mentioned before. First, it should be said that
such a task can not be realized with a robot that works exclusively with lasers,
because the robot must be able to read. Otherwise it can not allocate letters to the
particular addresses. Therefore, a camera is an essential device. If the mobile robot
is to work autonomously, it is necessary that it knows the working environment. If
the robot needs to be able to work in arbitrary environments, it is a problem if a
human generates a necessary navigation map, which can be considered as a city
map, offline. If the robot’s environment changes, a new map must be created manu-
ally, which increases the operating costs. To avoid this, the robot must acquire the
map autonomously. It must explore the environment before the operating phase
starts. During the operating phase, the robot uses the created map to fulfill its tasks.
Of course, its environment changes, and therefore it is necessary to update the map
during operation. Some objects often change their positions like creatures; others
remain rather permanently in the map. Desks are an example. The robot must also
be able to detect unexpected obstacles, because collision avoidance must be exe-
cuted. If letters are to be distributed in an office environment, and the robot was just
switched on to do this task, it must know its actual position. Because the robot was
just activated, it has no idea where it is. Therefore, it tries a self-localization that
uses statistical methods like Monte Carlo. If the localization is successful, the robot
has to drive to the post-office boxes. It knows the location by the use of the naviga-
tion map. As a rule the boxes are equipped with names. The robot must therefore be
able to read the names, which assures a correct delivery. An OCR (optical character
recognition) module must therefore be part of the navigation map. It shall be
assumed that only one post-office box contains a letter. The robot then has to take
the letter. The robot must also read the doorplates during the map acquisition, so it
is able to determine to which address the letter must be brought. A path scheduler
can then examine a beneficial run. If the robot has reached the desired office, it can
place the letter on a desk, which should also be contained in the navigation map.

In Figure 1 is shown a possible architecture of a video-based robot-navigation pro-
gram on a rather abstract level.

2
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Figure 1 The architecture of a video-based robot navigation software

A mobile robot, which is equipped with a camera, is sketched in the lower right
area of the figure. The image data are read from an image-processing module that
must try to detect an object in the image using image-processing operators. The
object is analyzed and reconstructed after a successful detection. It is necessary to
determine its world coordinates. The three-dimensional world coordinate system is
independent of the robot’s actual position. Its origin can be arbitrarily chosen. For
example, the origin could be that point from which a robot starts its interior explora-
tion. The origin of the three-dimensional camera coordinate system is determined
by the focal point of the camera. If object coordinates are actually known in the cam-
era coordinate system, it is possible to derive the world coordinates. The determina-
tion of the coordinates can use a stereo technique. At least two images from differ-
ent positions are necessary for these purposes. Corresponding pixels belonging to
that image region, which represents the desired object, must be detected in both im-
ages. Stereo triangulation exploits geometrical realities to determine the distance of
the object point from the focal point. Additionally, the technical data of the camera
must be considered for the depth estimation. Calibration techniques are available
for these purposes. If the object coordinates are known, the object and its parts can
be measured. In many cases the robot will be forced to take many more than two
images for a reliable three-dimensional reconstruction, because three-dimensional
objects often look different when viewed from different positions. The acquired data
should then enable a CAD (computer-aided design) model to be produced. This can
be a wire frame represented with a graph. For example, if the CAD model of an
office table is to be obtained, the table legs and the desktop can be represented with
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edges. The program must determine for every edge the length and its start and end-
points, which are represented by nodes. Coordinates are then attached to every
node. The CAD module can additionally use a knowledge base for the proper recon-
struction of the object. For example, the knowledge base can supply an image-pro-
cessing program with important information about the configuration and quantity
of object parts like the desktop and the table legs. After the three-dimensional object
reconstruction is completed, the examined data can be collected in the navigation
map. All these tasks must take place before the operating phase can start. The
autonomous navigation uses the calculated map and transmits control commands
to the mobile robot to fulfill the work necessary that depends on the particular sce-
nario.

As noted before, such a service robot must be producible at a very low price if it is
to fulfill its tasks cost effectively. Beside the use of very cheap equipment, the aim
can be realized with the creation of favorable software. In particular, the software
should be portable, work on different operating systems, and be easily maintainable.

Chapter two discusses some image-processing operators after these introductory
words. The purpose of the chapter is not to give a complete overview about existing
operators. Several textbooks are available. Image-processing operators are discussed
that seem appropriate for machine-vision tasks. Most of the operators explained are
used in experiments to test their presumed eligibility. Although cheap color cameras
are available, the exploitation of color features in machine-vision applications is not
often observed. Different color models are explained with regard to their possible
field of application in machine-vision applications following elementary elucida-
tions.

There then follows a section that relates to Kalman filter that is not a pure image-
processing operator. In fact the Kalman filter is a stochastic method that can basi-
cally be used in many application areas. The Kalman filter supports the estimation
of a model’s state by the use of appropriate model parameters. Machine-vision appli-
cations can use the Kalman filter for the three-dimensional reconstruction by ana-
lyzing an image sequence that shows the object at different points in time. The
image sequence can be acquired with a moving camera that effects the state transi-
tions.

Video-based exploration with autonomous robots can be damaged by illumination
fluctuations. The alterations can be effected by changes in the daylight, which can
determine the robot’s working conditions. For example, lighting alterations may be
observable if the robot’s working time comprises the entire day. Experiments
showed that a Gabor filter can mitigate the effects of inhomogeneous illumination.
The chapter discusses an application that uses the Gabor filter in a machine-vision
application and reports the results.

Subsequent paragraphs describe fundamental morphological operators that are
not typical for video-based machine-vision applications, but as a rule they are used
in almost every image-processing program and thus also in experiments that are
explained in the later chapters of this book. They are therefore explained for clarity.
Further basis operators are edge detection, skeleton procedure, region building, and
threshold operator. The skeleton procedure is not so frequently observed in
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machine-vision applications as the other listed operators, but it seems to be princi-
pally an appropriate technique if the three-dimensional reconstruction with wire
frames is required. The skeleton procedure is therefore discussed for the sake of
completeness.

Chapter three is devoted to navigation. Applications that control mobile service
robots are often forced to use several coordinate systems. The camera’s view can be
realized with a three-dimensional coordinate system. Similar ideas can hold for a
robot gripper when it belongs to the equipment of a mobile robot. Further coordi-
nate systems are often necessary to represent the real world and the robot’s view
that is called the egocentric perception of the robot. Transformations between differ-
ent coordinate systems are sometimes required. An example of this was mentioned
before.

Map appearances can be coarsely divided into grid-based maps and graph-based
maps. Graph-based maps are appropriate if quite an abstract modeling of the envi-
ronment is to be realized. They offer the possibility that known algorithms for
graphs can be used to execute a path plan between a starting point and an arrival
point. For example, the path planning can be calculated on the condition that the
shortest path should be found. Grid-based maps offer the possibility that the envi-
ronment can be modeled as detailed as is wished. The grid technique was originally
developed for maps used by human beings like city maps, atlases, and so forth.

After the discussion of several forms of grid-based maps, path planning is
explained. The path length, the actual necessary behavior, and the abstraction level
of the planning influence the path planning. One application is then exemplified
that combines two abstraction levels of path planning.

The next section shows an example of an architecture that involves different map
types. The chapter finishes with an explanation of the robot’s self-localization.

Chapter four deals with vision systems. Machine vision is doubtless oriented to
the human visual apparatus that is first illustrated. The similarity between the
human visual apparatus and the technical vision system is then elaborated. To this
belongs also behavior-based considerations like the attention control that determines
how the next view is selected. Further sections consider interactions between obser-
ver and environment.

The remainder of chapter four explains current technical vision systems, which
can be low priced. CMOS cameras are more expensive cameras. They are not consid-
ered because affordable development of mobile service robots is not possible with
such cameras.

The content of chapter five is the three-dimensional reconstruction of objects.
CAD techniques are especially considered, but other methods are also described.
The application area for CAD techniques was originally industrial product develop-
ment. The strategy for object reconstruction from image data differs therefore from
the original application that uses CAD to model a new product, but object recon-
struction uses image data to gain a CAD model from an existing object. Neverthe-
less, CAD techniques are appropriate for machine-vision applications. This is shown
in the chapter. First, widespread CAD techniques are regarded and then followed by
approximate modeling methods. Some models are a composite of different ap-

5



1 Introduction

proaches. These are the hybrid models. Automated conversions between different
models are proposed. One approach is then discussed that creates a CAD model
from image data. The drawback of this is an elaborate calculation procedure. This is
often observed if CAD models in machine-vision applications are used. But alterna-
tive approaches, whose purpose is not the explicit generation of a CAD model and
sometimes not even a complete object reconstruction, also frequently suffer from
this problem.

Knowledge-based approaches seem to be appropriate to diminish the calculation
effort. The last application proposes a direct manipulation of the object, which is to
be reconstructed, with marks. This strategy offers possibilities for simplification,
but in some applications such marks may be felt to be disturbing. This may hold
especially for applications with service robots, because human beings also use the
robot’s working environment. Mark-based procedures also require additional work
or are impracticable. An application for a service robot scenario can not probably
use the strategy, because too many objects have to be furnished with such marks.

Chapter six covers stereo vision that tries to gain depth information of the envi-
ronment. The configuration of the used cameras provides geometrical facts, which
can be used for the depth estimation. The task is the three-dimensional reconstruc-
tion of a scene point if only corresponding points in two or more images are known.
The examination of corresponding points is sometimes very difficult, but this
depends on the particular application. Three-dimensional reconstruction can also be
gained from image sequences that were taken from a moving camera. In this case
the Kalman filter can be used.

Chapter seven discusses the camera calibration that is a prerequisite for a success-
ful reconstruction, because the camera parameters are determined with this strat-
egy. The simplest calibration strategy is the pinhole camera calibration that deter-
mines only the camera’s basis parameters like the focal length. But approaches also
exist that consider further parameters. Lens distortion is an example of such param-
eters. Special calibration approaches exist for robot-vision systems. In this case the
robot can be used to perform a self-calibration.

Several computer-vision applications use self-learning algorithms (Chapter 8),
which can be realized with neural networks. OCR (Chapter 9) in computer vision is
an example. Self-learning algorithms are useful here, because the appearance of the
characters varies depending on the environment conditions. But changing fonts can
also be a problem.

Until now the work can be considered as tutorial and shows that known methods
are insufficient to develop a reliable video-based application for a mobile and auton-
omous service robot. In the next chapters methods are explained that will close the
gap.

Chapter 10 proposes the use of redundant programs in robot-vision applications.
Although redundant programming is, in general, a well-known technique and was
originally developed to enhance the robustness of operating systems [2], it is not
common to consider the use in computer-vision applications. First, the chapter
describes the basics and elaborates general design guidelines for computer-vision
applications that use the redundancy technique. The capability was tested with a
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robot-vision program that reads numbers on a doorplate. A high recognition rate
was obtained.

A further drawback for a potential developer is the fact that no evaluation
attempts can be found in the literature to compare different algorithms for service-
robot applications. Chapter 11 reports on executed comparisons among algorithms.
The algorithms are explained and then compared to experiment.

Chapter 12 explains a cost-effective calibration program that is based on pinhole-
camera calibration. Most existing implementations use commercial software
packages. This restricts the portability and increases the costs for licenses. In con-
trast the proposed implementation does not show these drawbacks. Additionally it is
shown how a precise calibration object can be simply and cheaply developed.

Chapter 13 shows the superiority of the redundant programming technique in
the three-dimensional reconstruction by the use of the CAD technique. A new CAD
modeling method was developed for robot-vision applications that enables the dis-
tance-independent recognition of objects, but known drawbacks like mathematically
elaborate procedures can not be observed. The CAD model extraction from image
data with the new method is tested with a program. The results gained are reported.
The sample images used were of extremely poor quality and taken with an off-the-
shelf video camera with a low resolution. Nevertheless, the recognition results were
impressive. Even a sophisticated but conventional computer-vision program will not
readily achieve the reported recognition rate.
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Typically, an image-processing application consists of five steps. First, an image
must be acquired. A digitized representation of the image is necessary for further
processing. This is denoted with a two-dimensional function Iðx; yÞ that is described
with an array. x marks a column and y a row of the array. The domain for x and y
depends on the maximal resolution of the image. If the image has size n�m,
whereby n represents the number of rows and m the number of columns, then it
holds for x that 0£ x < m, and for the y analog, 0 £ y < n. x and y are positive integers
or zero. This holds also for the domain of I. Iðx; yÞmax is the maximal value for the
function value. This then provides the domain, 0£ Iðx; yÞ £ Iðx; yÞmax. Every possible
discrete function value represents a gray value and is called a pixel. Subsequent pre-
processing tries to eliminate disturbing effects. Examples are inhomogeneous illu-
mination, noise, and movement detection.

If image-preprocessing algorithms like the movement detection are applied to an
image, it is possible that image pixels of different objects with different properties
are merged into regions, because they fulfill the criteria of the preprocessing algo-
rithm. Therefore, a region can be considered as the accumulation of coherent pixels
that must not have any similarities. These image regions or the whole image can be
decomposed into segments. All contained pixels must be similar in these segments.
Pixels will be assigned to objects in the segmentation phase, which is the third step
[3]. If objects are isolated from the remainder of the image in the segmentation
phase, feature values of these objects must be acquired in the fourth step. The fea-
tures determined are used in the fifth and last step to perform the classification.
This means that the detected objects are allocated to an object class if their measured
feature values match to the object description. Examples for features are the object
height, object width, compactness, and circularity.

A circular region has the compactness of one. The alteration of the region’s
length effects the alteration of the compactness value. The compactness becomes
larger if the region’s length rises. An empty region has value zero for the compact-
ness. A circular region has the value one for circularity too. In contrast to the com-
pactness, the value of the circularity falls if the region’s length becomes smaller [4].

Image-processing libraries generally support steps one to four with operators.
The classification can only be aided with frameworks.
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2 Image Processing

2.1
Color Models

The process of vision by a human being is also controlled by colors. This happens
subconsciously with signal colors. But a human being searches in some situations
directly for specified colors to solve a problem [3]. The color attribute of an object
can also be used in computer vision. This knowledge can help to solve a task [5, 6].
For example, a computer-vision application that is developed to detect people can
use knowledge about the color of the skin for the detection. This can affect ambigu-
ity in some situations. For example, an image that is taken from a human being
who walks beside a carton, is difficult to detect, if the carton has a similar color to
the color of the skin.

But there are more problems. The color attributes of objects can be affected by
other objects due to light reflections of these objects [7]. Also colors of different
objects that belong to the same class, can vary. For example, a European has a differ-
ent skin color from an African although both belong to the class ’human being’.
Color attributes like hue, saturation, intensity, and spectrum can be used to identify
objects by its color [6, 8]. Alterations of these parameters can effect different repro-
ductions of the same object. This is often very difficult to handle in computer-vision
applications. Such alterations are as a rule for a human being no or only a small
problem for recognition. The selection of an appropriate color space can help in
computer vision. Several color spaces exist. Two often-used color spaces are now
depicted. These are RGB and YUV color spaces. The RGB color space consists of
three color channels. These are the red, green, and blue channels. Every color is rep-
resented by its red, green, and blue parts. This coding follows the three-color theory
of Gauss. A pixel’s color part of a channel is often measured within the interval
½0; 255�. Therefore, a color image consists of three gray images. The RGB color space
is not very stable with regard to alterations in the illumination, because the repre-
sentation of a color with the RGB color space contains no separation between the
illumination and the color parts. If a computer-vision application, which performs
image analysis on color images, is to be robust against alterations in illumination,
the YUV color space could be a better choice, because the color parts and the illumi-
nation are represented separately. The color representation happens only with two
channels, U and V . Y channel measures the brightness. The conversion between
the RGB and the YUV color space happens with a linear transformation [3]:

Y
U
V

0
@

1
A ¼

0:299 0:587 0:114
�0:147 �0:289 0:436
0:615 �0:514 �0:101

0
@

1
A

R
G
B

0
@

1
A. (2.1)

This yields the following equations [9]:

Y ¼ 0:299Rþ 0:587Gþ 0:114B, (2.2)
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2.2 Filtering

U ¼ �0:147R� 0:289Gþ 0:436B, (2.3)

V ¼ 0:615R� 0:514G� 0:101B. (2.4)

To show the robustness of the YUV color space with regard to the illumination,
the constant c will be added to the RGB color parts. Positive c effects a brighter color
impression and negative c a darker color impression. The constant c affects only the
brightness Y and not the color parts U and V in the YUV color space if a transfor-
mation into the YUV color space is performed [3]:

Y Rþ c;Gþ c;Bþ cð Þ ¼ Y R;G;Bð Þ þ c, (2.5)

U Rþ c;Gþ c;Bþ cð Þ ¼ U R;G;Bð Þ, (2.6)

V Rþ c;Gþ c;Bþ cð Þ ¼ V R;G;Bð Þ. (2.7)

The sum of the weights in Equations (2.3) and (2.4) is zero. Therefore, the value
of the constant c in the color parts is mutually cancelled. The addition of the con-
stant c is only represented in Equation (2.2). This shows that the alteration of the
brightness effects an incorrect change in the color parts of the RGB color space,
whereas only the Y part is affected in the YUV color space. Examinations of differ-
ent color spaces have shown that the robustness can be further improved if the color
parts are normalized and the weights are varied. One of these color spaces, where
this was applied, is the ðYUVÞ¢ color space, which is very similar to the YUV color
space. The transformation from the RGB color space into the ðYUVÞ¢ color space is
[3]:

Y ¢
U¢
V ¢

0
@

1
A ¼

1
3

1
3

1
3

1
2

0 � 1
2

� 1
2
ffiffiffi
3
p 1ffiffiffi

3
p � 1

2
ffiffiffi
3
p

0
BBBBBB@

1
CCCCCCA

R
G
B

0
@

1
A. (2.8)

The explanations show that the YUV color space should be preferred for object
detection by the use of the color attribute if the computer-vision application has to
deal with changes in the illumination [3].

2.2
Filtering

2.2.1
Kalman Filter

A Kalman filter can be used for state estimation in dynamic systems. It is a stochas-
tic filter [10]. The following description of the discrete linear Kalman filter is based

11



2 Image Processing

on [11, 12]. The estimation is frequently based on a sequence of measurements,
which are often imprecise. A state estimation will be found for which a defined esti-
mate error is minimized. It is possible to estimate a state vector on the basis of mea-
surements in the past with a Kalman filter. It is also possible to predict a state vector
in the future with a Kalman filter. State vector qðtþ 1Þ, whereby t denotes a point in
the time-series measurements with t ¼ 0; 1; . . ., can be processed by the addition of
random vector xðtÞ to the product of the state vector qðtÞ with the transition matrix
Uðtþ 1; tÞ. Uðt2; t1Þ denotes the transition from time t1 to time t2. Uðt; tÞ is the unit
matrix:

qðtþ 1Þ ¼ Uðtþ 1; tÞqðtÞ þ xðtÞ. (2.9)

The observation vector oðtÞ can be processed with the state vector qðtÞ, the observa-
tion matrix HðtÞ, and also the random vector rðtÞ:

oðtÞ ¼ HðtÞqðtÞ þ rðtÞ. (2.10)

The two random vectors xðtÞ and rðtÞ have an expectation value of 0,
E½xðtÞ� ¼ E½rðtÞ� ¼ 0. Both vectors are uncorrelated and have known statistical attri-
butes. The following formula is valid for a linear state valuer:

~qqðtþ 1Þ ¼ Uðtþ 1; tÞ�~qqðtÞ þ KðtÞoðtÞ. (2.11)

Uðtþ 1; tÞ� and KðtÞ are matrices that must be determined under an unbiased
valuer:

E½qðtÞ� ¼ E½~qqðtÞ�. (2.12)

After some insertions and transformations, the following equation for
Uðtþ 1; tÞ� holds:

Uðtþ 1; tÞ� ¼ Uðtþ 1; tÞ � KðtÞHðtÞ. (2.13)

Further insertions yield an equation for ~qqðtþ 1Þ at time tþ 1:

~qqðtþ 1Þ ¼ Uðtþ 1; tÞ~qqðtÞ þ KðtÞðoðtÞ �HðtÞ~qqðtÞÞ. (2.14)

The matrix KðtÞ can be calculated by fulfilling the demand that the expected value
of estimation error eðtÞ ¼ ½qðtÞ � ~qqðtÞ� must be minimal. Two estimations are per-
formed. The error is measured for every estimation. The system state at time t over
the state transition equation ~qqðtþ 1Þ� is one of these two estimations:

~qqðtþ 1Þ� ¼ Uðtþ 1; tÞ ~qqðtÞ. (2.15)
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The second estimation ~qqðtþ 1Þþ denotes the improved estimation that takes place
on the basis of the observation oðtþ 1Þ:

~qqðtþ 1Þþ ¼ Uðtþ 1; tÞ~qqðtÞþ þ KðtÞ½oðtþ 1Þ �Hðtþ 1Þ~qqðtþ 1Þ��. (2.16)

Estimation errors eðtÞ� and eðtÞþ can be processed with associated covariance
matrices PðtÞ� and PðtÞþ.

2.2.2
Gabor Filter

A Gabor filter belongs to the set of bandpass filters. The explanation begins with the
one-dimensional Gabor filter and follows [13]. The spectrum of a bandpass filter
specifies the frequencies that may pass the filter. The middle frequency is a further
parameter. The impulse answer of the one-dimensional analytical Gabor filter is
given in:

gðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
e�x2

=2r2

e
ifXm x

. (2.17)

fXm
specifies the middle frequency and r2 the variance of the included Gauss

function. i represents an imaginary number. If the Fourier transformation FfgðxÞg
is applied to the Gabor filter gðxÞ in the spatial domain, the following formula
holds:

FfgðxÞg ¼ GðfX Þ ¼
1ffiffiffi
2
p

r
ðe
�r2

2
ðfX�fXm Þ

2

Þ. (2.18)

N ¼ 1ffiffiffiffi
2p
p

r
is derived by the normalization of the included Gauss function:

N
R¥
�¥

e�x2
=2r2

dx ¼ 1. (2.19)

Other kinds of normalizations exist. But the choice of the normalization has no
effect on the calculation of the Gabor filter’s local phase jðxÞ:

jðxÞ ¼ fXm x. (2.20)

The local phase of a bandpass filter yields local information in terms of distance
to an origin O in a coordinate system. The real part of the Gabor filter is also known
as the even Gabor filter and the imaginary part as the odd Gabor filter. The modulus
of the impulse answer is now given:

jgðxÞj ¼ e�x2
=2r2

. (2.21)

The even and the odd Gabor filters are shown in the left side of Figure 2. The
right side depicts the amount and the local phase.
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Figure 2 The one-dimensional Gabor filter [13]

The local phase is not affected by the amount but by the ratio of the even and the
odd Gabor filter. The Gabor filter in the figure can be generated with fXm ¼ 0:19 and
r ¼ 10:5. It can be seen with an appropriate confidence measurement if the local
phase of the Gabor filter is stable on real images with noise. The stability is given if
the confidence measurement is fulfilled from the amount of the impulse answer.
The Gabor filter can also be written by using two parameters, the Gabor wavelength
k and a spectrum factor s:

k ¼ 2p

fXm
s ¼ 1

fXm r
¼ k

2pr
. (2.22)

The Impulse answer of the Gabor filter is given with these two parameters:

gðxÞ ¼
ffiffiffiffiffiffi
2p
p

s
k
� e
�2ðps

k
Þ2 x2

e
i
2p

k
x
. (2.23)

If the spectrum factor s remains constant, and only the Gabor wavelength k
changes, the form and spectrum of the resulting Gabor filters are equal. However,
the alteration of the spectrum factor s yields different Gabor filters, because the
number of frequencies decreases with an increasing spectrum factor. This can be
seen in Figure 3.
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Figure 3 The variation of Gabor wavelength and spectrum factor [13]

The figure shows the odd part of the Gabor filter. The variation of the Gabor wave-
length k by a constant spectrum factor s ¼ 0:33 is illustrated in the left part of the
drawing. The variation is performed in the interval ½14; 64�. It can be seen that no
change happens to the form of the Gabor filter. The Gabor wavelength,
k ¼ 33 pixels, is kept constant in the right side of Figure 3, and the spectrum factor s
varies in the range ½0:2; 0:7�. It can be observed that the number of frequencies is
changing with the alteration of the spectrum factor. The variation of the spectrum in
the given interval ½kmin; kmax� in pixels is shown in the following. The spectrum of
the filter can be measured in octaves o. The next equation shows the relation be-
tween o and the spectrum factor s:

s ¼ 2o�1
2oþ1

, o ¼ log2

1þs
1�s

� �
. (2.24)

For example, if the spectrum factor is one octave (s ¼ 0:33) with Gabor wave-
length k ¼ 33 pixels, then the interval of the spectrum ½kmin; kmax� has the values
½23; 53�. The spectrum interval can be calculated with

kmin;max ¼
k

1– s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnðaÞ

p . (2.25)

a is that part of the amplitude that is least transmitted within the filter spectrum.
It holds that a ˛ ½0; 1� with j~GGðkmin;maxÞj ¼ a � j~GGðkÞj, whereas ~GGðkÞ is equivalent to
the replaced Fourier transformed function GðfX Þ.

We now show the impulse answer of a two-dimensional Gabor filter as explained
in [14]:

gðx; yÞ ¼ e
�x2þd2y2

2r2
�

e
�2pi

x
k � e

�r2

2d

�
. (2.26)

The included Gauss function has, in the two-dimensional case, width r in the
longitudinal direction and in the cross direction a width r=d. d denotes the dilation.
The last constant term is necessary to obtain invariance for the displacement of the
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gray-value intensity of an image. The formula is also known as the mother wavelet.
The complete family of similar daughter wavelets can be generated with the follow-
ing equations:

gðx; yÞ ¼ 2�2m gðx¢; y¢Þ, (2.27)

x¢ ¼ 2�m ½xcosðhÞ þ ysinðhÞ� � s, (2.28)

y¢ ¼ 2�m ½�xsinðhÞ þ ycosðhÞ� � s¢. (2.29)

The parameter m is an integer value and marks the extension and the frequency
of the wave. The translation is labeled with s, s¢, and the rotation with h.

2.2.3
Application of the Gabor Filter

The Gabor filter was tested in a computer-vision project [14] in which a wooden cube
had to be grasped with a robot gripper. Images were taken with a hand camera. The
cube is part of a montage process for wooden parts that must be assembled to aggre-
gates. The assembly procedure can be decomposed into several steps. First, the re-
quired component must be identified. Once this has been done it is necessary to
move the robot gripper to the detected object. Then the fine localization of the grip-
per takes place. The object is then gripped and used for the montage process. It is
highly important that the localization of the object must be very accurate, because
an inexact localization can lead to problems in the following steps of the montage
process. For example, it may be possible that the entire montage process fails.
Because of the real-world aspect of this application, it is expected that it will not be
confused by alterations in the illumination. Three parameters are necessary for the
localization of the object. These can be the two-dimensional ðx; yÞ position of the
object and vertical angle of rotation h. The controller realizes the object localization
and is responsible for calculating correction movement ðDx;Dy;DhÞ. This controller
is implemented with self-learning algorithms. The required correction movement
can not be processed generally in one step, several steps are required.

The recognition of the wooden cube, which served as the test object, is not as sim-
ple as it seems at first sight. The wooden cube has strongly rounded edges. This can
result in an oval shape if the images are taken from a rather inclined view. Three
axial thread axes are the second problem, which affect a strong shadow inside the
cube. So it can be difficult to detect the wooden cube that is included in a set of other
objects.
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Figure 4 The wooden cube within a set of other objects [14]

The left part of Figure 4 shows the gripper above several wooden parts. In the
middle part of the figure the gripper was moved above the wooden cube. The right
part shows an image that has been taken after the fine positioning of the gripper.
The two problems can result in a wrong detection of another object. The tests were
performed with images taken from a hand camera. The recognition of the wooden
cube starts with taking the camera image, which is then preprocessed, see Figure 5.

Grab image
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Object center
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Correction (∆x,∆y)
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interest

Determination of

rotation ∆θ
Robot gripper
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Grip object

Gabor filter

Fuzzy controller
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Figure 5 The regulator circle [14]

After preprocessing, the object center ðx; yÞ is calculated. The calculated object
center is then tested with a Gabor filter or further approaches like the Hough trans-
formation [15] or a fuzzy controller. The test provides the necessary correction
ðDx;DyÞ of the object center. Then the region of interest (ROI) is cut from the entire
image that contains the wooden cube in the center of the image clip. In the next
step a further test is applied that also uses the Gabor filter or the two other ap-
proaches. These are the Hough transformation or the fuzzy controller as mentioned
before. In this step the required angle of rotation h is determined. Now, the neces-
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sary information exists to do the localization of the robot gripper, which receives the
movement values ðDx;Dy;DhÞ.

The Gabor filter and the Hough transformation are part of a self-learning algo-
rithm. The taking of the test images and training images and the calculation of the
parameters is realized with an automated process. For these purposes the training
of the controller happens with a single demonstration of the optimal grip position.
The use of the Gabor filter in the application is shown now in more detail. The cal-
culation of the wooden cube center ðx; yÞ is, in comparison to the examination of
the angle of rotation h, rather simple, because it is often difficult to recognize the
cube form. To handle this problem, the Gabor filter is used for the representation of
the wooden cube. The stimulation for the representation of the wooden cube with
the Gabor filter was the work of Jones and Palmer. They showed by experiments
with cats that the impulse answer of so-called simple cells in the cat’s visual cortex
can be approximated with the model based on Gabor filters as shown before [16].
The approximation is shown in Figure 6.

Figure 6 The approximation of simple cells with a Gabor filter [16]

The left side of Figure 6 shows the impulse answer from the simple cells that was
determined with experiments. This impulse answer is adapted with a Gabor filter,
which is shown in the middle of Figure 6. The difference between the experimen-
tally determined impulse answer and the approximated Gabor filter is depicted in
the right side of Figure 6 [16].

A simple cell can now be modeled with a two-dimensional Gabor function that
has the center ðs; s¢Þ, the wavelength k=2m, the direction h, and an included Gauss
function with the extensions r and r=d. The system uses n neurons that are all look-
ing at the same image and represent a model of a simple cell. The difference be-
tween these neurons can be found in their centers ðs; s¢Þ. The parameters of the
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Gabor function were not known at the beginning of the system design. Therefore,
tests were necessary that have been performed with k different Gabor functions. The
measurement of the test error was determined by the use of the precision in the pre-
diction of the object orientation, which is noted with the angle h. Values for the
three parameters d, r and k had to be found. Therefore, nine coordinates ðs; s¢Þ that
were continuously distributed on that image were chosen from an image.

Figure 7 Sequence of test images with two Gabor families [14]

Figure 7 shows the wooden cube. Two different Gabor families have been applied
to the cube. Four orientations h and the nine chosen coordinates can be seen in the
images. The parameters d ¼ 1:25, r ¼ 1:25, and k ¼ 0:15 were used in the top part
of Figure 7, whereas the values d ¼ 1:00, r ¼ 1:50, and k ¼ 0:10 are valid in the
lower part of Figure 7. The scanning of d, r, and k was performed for four orienta-
tions. This results in 36 (9 � 4) values for d, r, and k. A neural network [17] received
these 36 values per image as a training set. The output of the neural network is the
calculated rotation angle h. The selection of the parameters d, r, and k happens after
k training runs by the minimization of the test error in the output of the angle h.
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The wooden cube has a fourfold symmetry. Images with the orientation h ¼ 45�

and h ¼ �45� are identical. The neural network should be able to recognize this
fact. This problem can be solved with a c-fold pair coding with sinðchÞ and cosðchÞ.
Additionally two neurons in the output layer were used instead of one neuron. The
rotation angle h can be calculated with h ¼ arctanðsinðchÞ=cosðchÞÞ=s. The result’s
quality can also be controlled with the number of neurons in the hidden layer. Good
results were gained with combination that had 36 neurons in the input layer, nine
neurons in the hidden layer, and two neurons in the output layer.

The approach, which is based on the Gabor filter, should also be able to detect
wooden cubes of different colors. This problem can be solved by the approximation
of brightness and contrast to the original training conditions. So it can be possible
to handle the problem of color alterations as well as alterations in illumination. The
hand camera yields an RGB color image. This will be converted into a gray image by
maximization of the color channels for every pixel pi ¼ maxðRi;Gi;BiÞ. Deviations
in contrast and illumination have been also adapted to the conditions that were valid
during the training phase:

pi ¼ ðpi þ c1Þ � c2 with c1 ¼ iI
m � rI¢

=rI � iI¢
m and c2 ¼ rI

=rI¢ ,

whereby i
I
m ¼ mean ðIÞ and r

I ¼ std ðIÞ. (2.30)

iI
m is the middle intensity and rI the standard deviation of a gray image I during

the training phase. I¢ is an actual image that has to be analyzed. It was possible to
grasp wooden cubes by candlelight. The grasping process was robust without the
necessity for additional training effort. Figure 8 shows some examples. The wooden
cube could be detected and grasped.

Figure 8 The wooden cube under different conditions [14]
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The top-left image shows illumination conditions during the training phase, the
top-middle image weak illumination, the top-right image glaring light, the lower-left
image shows a textured working area, the lower-middle image a blue cube, and the
lower-right image shows a red square stone.

The control cycle of the Gabor system starts with the calculation of the central
point of a normalized hand-camera image. The necessary correction movement Dx
and Dy is calculated with the first neural network. It is problem if a wooden cube is
positioned at the border of an image. This must be recognized because of the need
for a new image. Then an image clip, which contains a wooden cube, is cut out. The
Gabor filter is then applied to this image clip. The calculated result, which is repre-
sented by the orientation angle h, is provided for the second neural network. Now
the correction movement of the robot gripper is performed, before the process of
gripping is executed.

Experiments with the system have shown that the precise positioning of the robot
gripper depends on the training of the neural networks. The wooden cube was put
nearby the optimal position of the robot gripper (start position). Then a randomly
chosen translation and rotation of the robot gripper was effected. A sequence of n
steps for the fine positioning was applied. An image is taken, the required transla-
tion and rotation calculated, then applied, and the position and orientation of the
robot gripper recorded in every step. The robot gripper returns to the start position
after n steps and starts again with further randomly executed translation and rota-
tion. These n steps were repeated N times. Now it is possible to determine for each
of the n steps the standard deviation relating to the start position. These N tries
were repeated several times to exclude systematical effects, which can result from
the choice of the start position. Another start position is chosen in every new try.
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Figure 9 Gripping precision with the Gabor approach [14]
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The increase of the precision in the gripping position with the number of steps
can be seen in Figure 9. The figure shows the middle Euclidean error on the Y -axis.
The number of steps can be read from the X -axis. The middle Euclidean error has
the value 1.5 mm in the first step. The middle Euclidean error remains under
0.5 mm as of the 4th step.

2.3
Morphological Image Processing

Morphological image processing is based on mathematical set theory and can be
applied to gray and binary images. The demonstration of the morphological image
processing in this work is mainly based on [18]. Only the morphological image pro-
cessing on binary images is discussed here. The extraction of image regions is sup-
ported with a structuring element. A structuring element can have different forms.
These can be, for instance, a circle, a rectangle, or a rhombus. The selection of the
form depends on the objects in the image to which the structuring element is to be
applied and the contents of the image, for example, noise that should be sup-
pressed.

Erosion and dilation are the basis of the morphological image processing. All
operators that are known in morphological image processing are constructed from
these two base operators.

2.3.1
The Structuring Element

The structuring element is a small set that is applied to an image. Every structuring
element has a reference point. If a structuring element is placed on a binary image,
it is checked whether the pixel that is covered from the reference point is set. If this
is true, the structuring element can be applied. Figure 10 shows some structuring
elements.

a b c

Figure 10 Some structuring elements [18]

The structuring elements are constructed from the squares that represent pixels.
The square that has a dot in the middle pixel is the reference point. Figure 10 shows
a rhombus (a), a square (b), and a hexagon (c) as structuring elements, which are
constituted from the particular pixels. The form and the size of the structuring ele-
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2.3 Morphological Image Processing

ment depend on the objects in the image to which the structuring element is to be
applied.

2.3.2
Erosion

Erosion tests if the structuring element fits completely into a pixel set. If this is true,
the pixel set constructs the eroded set. All pixels that belong to the considered pixel
set are transformed to the reference point. Only binary images are considered here.
This can be formulated mathematically. The erosion of a pixel set A with a structur-
ing element S is denoted with ESðAÞ. This is the set of n pixels pi, i ¼ 1; 2; . . . ; n, for
which S is completely contained in A if the reference point is positioned at the point
pi:

ESðAÞ ¼ fpi jS˝A 1£ i £ ng. (2.31)

Figure 11 shows an example of the erosion.

Figure 11 The erosion of the set A

Pixel region A is pictured in the left part of Figure 11. Erosion was performed by
applying the circular structuring element S to A that yields the result ESðAÞ that is
represented by the black area in the right part of the figure. The zone between the
dashed line and ESðAÞ is eliminated.

2.3.3
Dilation

Dilation produces an opposite effect in comparison to erosion. It extends coherent
pixel sets. The magnitude of the enlargement is controlled by the size of the struc-
turing element used. The larger the used structuring element the larger is the
effected extension. A useful effect of the dilation is the merging of regions if they
are close together and if the size of the structuring element has been determined
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accordingly. Before the dilation is demonstrated with an example, a more formal
description is introduced:

dSðAÞ ¼ fpi jS˙A „ 0 1 £ i£ ng. (2.32)

The application of the dilation to a set A, which consists of n pixels pi, with a
structuring element S provides a new set of pixels dSðAÞ.

The application of the dilation means that every pixel in the original set A is trans-
formed to the shape of the structuring element on condition that the actually consid-
ered pixel of the original set represents the reference point of the structuring ele-
ment S [19].

Figure 12 shows an example of the dilation.

Figure 12 The dilation of a set A

The original set A is transformed with the structuring element. The effect of the
dilation is visible at the border of the original set. The result shown can be gained by
moving the structuring element along the border of the original set on condition
that the coordinates of the actually considered pixel in the original set and the refer-
ence pixel of the structuring element are the same [19].

2.4
Edge Detection

To detect edges, it is not sufficient to analyze only the pixels. Rather it is necessary to
include the entire neighborhood in the inspection. This strategy will find gray-value
jumps, which can be observed if edges exist. Searching for the gray-value jumps will
help edge detection. Edge operators like the Sobel operator use convolution to obtain
the edges of an image. The mathematical derivation and explanation of the Sobel
filter is now shown according to [19].
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2.4 Edge Detection

An original image I is transformed with the convolution into image I¢ with the
help of matrix K. The matrix K is moved over the original image I, and a multiplica-
tion is executed for every value in the matrix K with the respectively covered value in
the matrix I. All results of the performed multiplications are added to a new value,
which is written into the cell of the new matrix I¢ that has the same position as the
cell in the original image I covered from the middle cell of the matrix K .

77 89

111 125
I¢

3 4 7 12

1 3 2 18

19 5 6 14

20 6 4 13
I

1 1 1

1 10 1

1 1 1
K

Figure 13 Example for a convolution

The convolution procedure is demonstrated in Figure 13. The filter mask used K
is of size 3 · 3. Every cell in the matrix has the value one except for the center that
has the value 10. This mask was moved over the image I to examine the four values
in the matrix I¢. For example, the value 77 was calculated as the matrix K was cover-
ing the nine values in the first three rows and first three columns in the matrix I:

77 ¼ 3þ 4þ 7þ 1þ 3· 10þ 2þ 19þ 5þ 6. (2.33)

The explained strategy can not be used to determine new gray values for numbers
that can be found at the border of the image I. The original values can be adopted
unchanged into the new image I¢ or they can be omitted in the new image I¢ as is
done in Figure 13. A domain restricts gray values. Often the domain is determined
with the interval ½0; 255�. The particular valid domain for the gray values can be
exceeded in the new matrix I¢ if the convolution is executed. Therefore, it is neces-
sary to multiply the new calculated values with a constant c0. To avoid negative val-
ues in the new matrix I¢, it is also necessary to add a further constant value c1:

I¢ðx; yÞ ¼ c0

Pþk

i¼�k

Pþl

j¼�l

Kði; jÞIðx � i; y� iÞ þ c1 . (2.34)

Coefficients Kði; jÞ for the convolution can be found in the matrix K with 2kþ 1
columns and 2l þ 1 rows.

An edge can be detected in gray-value images by searching for gray-value jumps.
So the neighborhood of pixels must be examined. To get an understanding of the
functionality of edge operators like Sobel operator, the first derivative of an image
function is shown here:

I¢xðx; yÞ ¼
@ Iðx;yÞ
@x

and I¢yðx; yÞ ¼
@ Iðx;yÞ
@y

. (2.35)
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The image function has two dimensions. So it is necessary to compute derivatives
for the x and y variables. The discrete variants of the continuous derivatives will be
processed, because an image is a two-dimensional discrete array:

@ Iðx;yÞ
@x

»DxIðx; yÞ ¼ Iðx;yÞ�Iðx�Dx;yÞ
Dx

(2.36)

and

@ Iðx;yÞ
@y

»DyIðx; yÞ ¼ Iðx;yÞ�Iðx;y�DyÞ
Dy

. (2.37)

These two formulas are the discrete derivatives for the x and y variables. When
Dx ¼ 1 and Dy ¼ 1 the derivatives for x and y are written as:

Dx Iðx; yÞ ¼ Iðx; yÞ � Iðx � 1; yÞ, (2.38)

Dy Iðx; yÞ ¼ Iðx; yÞ � Iðx; y� 1Þ. (2.39)

These two derivatives can be connected according to a calculation rule like the
mean value for the amount of the direction difference [4, 19]:

jDxy jm ¼
jDxIðx;yÞjþjDyIðx;yÞj

2
. (2.40)

For DxIðx; yÞ and DyIðx; yÞ convolution matrices Kx and Ky can be written:

Kx ¼ �1 1j j, Ky ¼
�1
1

����
����. (2.41)

If the explained convolution procedure is applied, it is necessary to have a center
in the matrix, which can not be found in the two matrices (2.41). This can be accom-
plished by inserting zero values into the matrices:

Kx ¼ 1 0 �1j j, Ky ¼
1
0
�1

������

������
. (2.42)

The Sobel operator can be used for the edge detection and uses convolution
matrix with the following entries:

KSx ¼
1 0 �1
2 0 �2
1 0 �1

������

������
, KSy ¼

1 2 1
0 0 0
�1 �2 �1

������

������
. (2.43)

The Sobel operator is applied to an image that shows a doorplate in Figure 14.
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(a)

(b)
Figure 14 Edge detection with the Sobel
operator

The original image is shown in the left side of Figure 14. The result is shown in
the right side of the image. The mask size of the Sobel filter used was 3· 3 and the
connection of the calculated values in X and Y directions happened with the calcula-
tion rule �mean value for the amount of the direction difference’. If the doorplate is
to be isolated with a segmentation process, the Sobel operator can be applied in any
of the first steps to detect the edges in the image, and those that do not belong to the
doorplate edges must be eliminated in further steps.
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2.5
Skeleton Procedure

The calculation of the inner skeleton of an object can help to detect regions that
belong to the object. The skeleton procedure is characterized by the following state-
ments [3]:

1. Lines are not be interrupted or shortened.
2. The skeleton is created in the middle of the original region.
3. The lines have a width of one pixel.

Skeleton procedures are iterative. The processing time of these procedures
increases strongly with the object size. The processing of the skeleton happens often
by applying several operators. The object borders are removed one after another
until only the inner skeleton of the object remains, which is represented by a line
with the width of one pixel. An inner skeleton can also be calculated by the use of a
so-called distance image of an object. The distance image is generated by the erosion
of the object’s foreground region until the whole region is eliminated. It is logged in
every iteration step that pixels have been deleted. So the minimal distance to the
object border is acquired for every pixel. The skeleton of the object can now be calcu-
lated by the examination of those pixels, which represent local maxima. These pixels
will then be connected with lines that represent the object’s inner skeleton [3].

2.6
The Segmentation of Image Regions

The segmentation of image regions can be executed top down or bottom up. The
top-down approach needs properties for the decomposition of regions into seg-
ments. Here, it is, for instance, possible to use gray-value jumps, which indicate as a
rule the boundary of an object. First, the bottom-up approach needs initial image
segments of the region that must be determined. Therefore, region A must be
decomposed into segments Pi ð1£ i £nÞ so that every pixel pj ð1£ j £mÞ of the region
A belongs exactly to one segment [3]:

" p
j ˛ A : $ k : p

j ˛ Pk

Pj ˙ Pl ¼ 0 for j „ l

P1 ¨ � � � Pn ¼ A

. (2.44)

This problem can be solved in a trivial manner if every pixel represents one seg-
ment. This strategy provides too many segments, which are difficult to handle.
Therefore, initial segments should be found preferably that do not enclose parts of
different objects. These segments then become merged together by the use of a
threshold value [3].
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With region-growth procedures merging of pixels will be accomplished to one re-
gion providing a similarity criterion for the pixels is fulfilled. A region-growth proce-
dure begins with start points and expands the regions from these points. The seg-
mentation of image regions can be processed locally or globally. Pixels in a narrow
neighborhood are inspected by the local segmentation and fused if they fulfill the
similarity criterion. This procedure enables real-time operations. On the other hand,
it often yields a merging of too many pixels because of the restricted area that is
analyzed. Global processing uses larger neighborhoods and can provide better
results. On the other hand, this strategy consumes more computing time. So real-
time processing is not possible [3].

2.7
Threshold

Threshold operation [19, 20] is a simple but in many cases efficient method for seg-
mentation. The threshold operator offers possibility to define a valid domain for
gray values. Therefore, two gray values are necessary that are the lower boundary
min and upper boundary max of the range:

threshold (InputImage, min, max, OutputImage) min <= max.

The threshold operator is applied to an input image. All gray values that have the
value min, max or a value between min and max are chosen from the input image
and are represented in the output image with the value one. The unselected pixels
take the value zero. A formal description follows that describes the explanations:

ITðx; yÞ ¼
1 if Tmin £ IGðx; yÞ £Tmax

0 else

�
. (2.45)

The usual threshold operator creates a binary image IT. The function ITðx; yÞ
examines the value 1 if the gray value IGðx; yÞ is larger than or equal to Tmin and
smaller than or equal to Tmax.

Often the selected pixels are illustrated in the output image as white pixels and
black pixels are used for the background. For example, if the input image is a gray-
value image with maximal 256 gray values, the threshold operator can be used as
shown in the following statement:

threshold (Doorplate, 0, 95, RawSegmentation).

The threshold operation is demonstrated with the gray-value image that was
shown before in Figure 14. The input image contains dark text on the doorplate.
This text will be segmented. Because the text on the doorplate is in black, the gray
values of the text will be rather lower. Therefore, an acceptable domain is defined
from 0 until 95 for the gray values, see Figure 15.
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Figure 15 The image RawSegmentation

The threshold operation provides the image RawSegmentation as the result in
which the pixels that have gray values within the valid domain are illustrated as
white pixels. All other pixels outside of the valid domain ½0; 95� are represented as
black pixels. In certain cases, like inhomogeneous illumination, the declaration of
absolute values for the pixels, which will be selected, generates only unsatisfactory
results. For example, if an image is taken from the doorplate in the early evening
without artificial illumination, the gray values of the characters will be between 0
and 95 with high probability. But if the image is taken at midday, and the doorplate
is strongly illuminated from the sun, it will probably be the case that some pixels of
the characters have a value higher than 95 and therefore are not selected.

Some variants of the threshold operator exist to encounter such problems. They
execute an automatic adjustment. It is not necessary to specify the valid domain for
the gray values, because these operators use the gray-value distribution of the image
as a guide [21]. Kittler et al. [22] have developed a threshold algorithm that executes
an automatic threshold selection. For these purposes image statistics are used that
do not require the computation of a histogram that represents the gray-level distri-
bution.

The commercial image-processing library HALCON [4] offers a dynamic thresh-
old operator:

dynamic_threshold (InputImage, SmoothedImage, OutputImage,
Offset, IlluminationOption).

An offset is available that can be controlled with a parameter. Very noisy regions
are obtained usually if the offset matches to the interval [–1; 1]. An offset that is larg-
er than 60 can have the effect that no pixels are selected. All pixels are probably
selected if an offset is smaller than –60. The dynamic threshold operator receives
two input images. One image is an original image. A smoothed image of the origi-
nal image is generally used as the second image. The image IO will be the original
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image and image IS the smoothed image. As mentioned before, an offset of is also
necessary [4]:

ITðx; yÞ ¼
1 if IOðx; yÞ £ ISðx; yÞ þ of
0 else

�
. (2.46)

IOðx; yÞ and ISðx; yÞ are functions that calculate gray values of the coordinates x
and y. The result of the dynamic threshold is the binary image IT. Pixels are
included in the binary image IT provided that they fulfill an inequality. The dynamic
threshold operator can apply several inequalities. Which inequality holds is deter-
mined by the user with a parameter (IlluminationOption). The parameter can be
initialized with values �light’, �dark’, �equal’, and �not_equal’. If the value �light’ is
selected, the following inequality is applied [4]:

IOðx; yÞ‡ ISðx; yÞ þ of . (2.47)

The option �dark’ effects the application of the formula

IOðx; yÞ£ ISðx; yÞ � of , (2.48)

the option �equal’ enforces the formula

ISðx; yÞ � of £ IOðx; yÞ £ ISðx; yÞ þ of , (2.49)

and the option �not_equal’ the formula

ISðx; yÞ � of > IOðx; yÞ� IOðx; yÞ > ISðx; yÞ þ of (2.50)

[4].
Sahoo et al. [23] explain several variants of threshold operators and also report on

evaluations of the variants performed with real-world images. Lee et al. [24] also exe-
cuted evaluations for several threshold operators.

To improve the results of the threshold operator, it is often recommended first to
apply a filter like a mean filter to smooth the gray-value distribution. The result of
the filter can then be used as the input image for the gray values.
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Systems that control the navigation of a mobile robot are based on several para-
digms.

Biologically motivated applications, for example, adopt the assumed behavior of
animals [25, 26]. Geometric representations use geometrical elements like rectan-
gles, polygons, and cylinders for the modeling of an environment [27, 28]. Also, sys-
tems for mobile robots exist that do not use a representation of their environment.
The behavior [29] of the robot is determined by the sensor data actually taken [30].
Further approaches were introduced which use icons to represent the environment
[31, 32].

3.1
Coordinate Systems

This chapter explains the use of coordinate systems in the robotics and conversions
between these systems according to methods given in [33]. Movement in robotics is
frequently considered as the local change of a rigid object in relation to another rigid
object. Translation is the movement of all mass points of a rigid object with the
same speed and direction on parallel tracks. If the mass points run along concentric
tracks by revolving a rigid axis, it is a rotation. Every movement of an object can be
described by declaration of the rotation and the translation. The Cartesian coordi-
nate system is often used to measure the positions of the objects. The position of a
coordinate system XC relative to a reference coordinate system XM is the origin O
from XC written in coordinates from XM. For example, the origin of XM could be the
base of a robot and the origin from XC could be a camera mounted on the robot. A
vector of angles gives the orientation of a coordinate system XC with respect to a
coordinate system XM. By applying these angles to the coordinate system XM, it
rotates so that it is commutated with the coordinate system XC. Angle aC deter-
mines the rotation for the XM-axis of XM, angle bC the rotation for the YM-axis of
XM, and angle cC the rotation for the ZM-axis of XM. These angles must be applied
to the original coordinate system of XM. The location of a coordinate system XC

comprises the position and the rotation in relation to a coordinate system XM. So
the location is determined with vector lC that has six values
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lC ¼ ðxM ; yM ; zM ;aC ; bC ; cCÞ: (3.1)

The values xM, yM, and zM give the position in the reference coordinate system
XM and the angles aC, bC, and cC the orientation. It is possible to write the orienta-
tion of a coordinate system XC in relation to a coordinate system XM with the aid of
a 3 � 3 rotation matrix. Rotation matrices consist of orthogonal unit vectors. It holds
that:

M�1 ¼ MT: (3.2)

The rotation matrix M can be processed from elemental 3 � 3 rotary matrices
XMðaCÞ;YMðbCÞ, and ZMðcCÞ of the three orientation angles aC, bC, and cC. The
rotation with aC for the XM-axis is stated as XMðaCÞ, the rotation with bC for the
YM-axis as YMðbCÞ, and so forth.

X
M

Y
M

Z
M

α
C

β
C

γ
C

Figure 16 The six degrees of freedom [33]

Figure 16 shows the three axes XM , YM , and ZM for the coordinate system XM.
Rotation angles aC, bC, and cC are attached to the axes. The reference coordinate
system XM can be moved in the direction of the three axes to obtain the coordinate
system XC . It can also be rotated around the three axes. This means that six degrees
of freedom are possible.

Homogeneous transformation [34, 35] uses a 4 � 4 matrix for rotation and transla-
tion. The transformation of the coordinate system XM into the coordinate system
XC is written with the homogeneous matrix HM;C . Let ðx; y; zÞ

C
and ðx; y; zÞM be the

position of the same scene point in homogeneous coordinates [36], then the follow-
ing formula holds:

ðx; y; zÞ
C
¼ HM;C � ðx; y; zÞM (3.3)

and always

HM;C ¼ ðHC;MÞ
�1

. (3.4)

The location of a rigid object in the coordinate system XC and in the coordinate
system XM can be represented with a homogeneous matrix HM;C:
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Figure 17 Conversion from locations [33]

A further coordinate system XQ is introduced in Figure 17. If relations are given
as in Figure 17, HM;Q can be processed:

HM;Q ¼ HM;C �HC;Q . (3.5)

Often several coordinate systems are necessary in robotics. For example, the view
of a robot is represented with coordinate system XM . Therefore, the origin of XM is
the base of the robot. If the robot is equipped with a sensor like a camera, it can be
used as a second coordinate system XC, whereby the origin of XC represents the
camera that is mounted on the robot, see Figure 18.

Figure 18 Coordinate systems for a mobile robot

For example, the mounted camera can be used for depth estimation. The taking
of two images from different positions can perform this. It is possible to process the
depth for the taken scenario with the coordinates of the camera’s two different posi-
tions.
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3.2
Representation Forms

3.2.1
Grid-based Maps

Grid-based maps use a coordinate system like the polar coordinate system to repre-
sent the environment. Egocentric maps, whose creation was inspired by biological
research [37], are a form of grid-based maps that generate the model of the environ-
ment from the viewpoint of the robot, based on its coordinate system. Egocentric
maps can be developed at runtime to recognize objects, which are dynamically
changing in the environment like people, vases of flowers, and so forth, for which a
persistent representation is impossible. For example, equidistant occupancy grids
can be used for these purposes. So egocentric maps are, for example, helpful for
collision avoidance. Because of the dynamic aspect of these egocentric maps, fre-
quent updates are required that are often calculated several times per second by the
evaluation of information that is provided from sensors like sonar, a ring bumper, or
a laser. Allocentric maps are independent of the view of the robot and can be derived
by merging several egocentric maps [38], see Figure 19.

Figure 19 An allocentric map [38]

The more static character of allocentric maps can result in more persistent maps
with a probabilistic representation of occupancy [38]. Robot RHINO’s navigation
system creates and uses these maps [39]. The self-localization in an allocentric map
can, for instance, happen with the Monte Carlo localization. The equidistant prob-
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abilistic occupancy grids are, analogous to egocentric maps, often chosen. Many rea-
listic applications require maps to represent areas of approximate 1000 m2 and
more. Sonar was mainly used as the distance sensor in the past. The reduced costs
for lasers offer the possibility to produce grid maps with higher resolution. These
two aspects can yield allocentric maps, which should not be stored in the entire
RAM (random access memory), because this can result in long processing for algo-
rithms like the path planning. A solution to handle this problem could be to decom-
pose the entire map into smaller portions so that only a part of the map is stored in
the RAM and the rest remains only in the permanent store. If the robot solves tasks
that are formulated by humans it can be necessary to use additional knowledge
about objects, which can be stored in a knowledge database. This knowledge is
attached to the objects represented in the allocentric occupancy maps. With allo-
centric occupancy maps it is difficult to handle problems if an object covers many
cells in the grid map, because cells are independent and do not share information in
these maps. To attach information to a region that consists of several cells, region
maps are used. For example, a table can consist of many cells that are linked to such
a region and attached with information that every location in this region belongs to
the table. Further region maps provide the advantage that a quick update in some
dynamic cases can be performed. If the robot detects an unequivocally identified
object at an unexpected position, it is able to free the region from the former occu-
pancy of that object. When the robot knows about the dynamic behavior of some
objects, like animals, it is possible to predict the temporal occupancy of a region [38].

3.2.2
Graph-based Maps

Topological maps can be used to solve abstract tasks, for example, to go and retrieve
objects whose positions are not exactly known because the locations of the objects
are often changed. Topological maps are graphs whose nodes represent static objects
like rooms, doors, and so forth [38], see Figure 20.

The edges between the nodes denote �is part’ relationships between the objects.
For example, an abstract task formulated by a human user could be to fetch a
wrench of size 13. To solve this task, the robot proceeds with the aid of the topologi-
cal map along an appropriate path. Therefore, abstract information like �wrenches
are in the workshop’ is sufficient in the knowledge base to enter the approximate
position of the wrench, whereby the topological map contains a node that represents
the workshop. For example, it is possible to derive a topological map from an occu-
pancy map by a segmentation process to obtain objects, which can be represented as
nodes. Relationships must be analyzed between these objects to obtain edges [38].
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Figure 20 A topological map [38]

3.3
Path Planning

Several approaches for path planning exist for mobile robots, whose suitability
depends on a particular problem in an application. For example, behavior-based
reactive methods are a good choice for robust collision avoidance [38].

Path planning in spatial representation often requires the integration of several
approaches. This can provide efficient, accurate, and consistent navigation of a
mobile robot and was, for example, shown by Thrun and B�cken [40], who com-
bined topological and occupancy maps for path planning.

3.3.1
Topological Path Planning

Topological path planning is useful for the creation of long-distance paths, which
support the navigation for solving a task. Therefore, those nodes representing, for
example, free region space are extracted from a topological map, which connect a
start point with a target point. The start point is mostly the actual position of the
robot. To generate the path, several sophisticated and classical algorithms exist that
are based on graph theory, like the algorithm of the shortest path [41].

To give best support for the path planning, it could be helpful to use different
abstraction levels for topological maps. For example, if the robot enters a particular
room of an employee for postal delivery, the robot must use a topological map that
contains the doors of an office building and the room numbers. On the other hand,
if the office building consists of several areas, and the robot has to go to one of the
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areas, it is sufficient for the robot to use a topological map that represents only the
different areas without details such as office rooms and so forth. The possibility to
use topological maps with different abstraction levels helps to save processing time.
The static aspect of topological maps enables rather the creation of paths without
information that is relevant at runtime. The created schedule, which is based on a
topological map, holds nothing about humans or animals, which occupy the path.
In that case it is not possible to perform the schedule. To get further actual informa-
tion, the schedule should be enriched by the use of more up-to-date plans like ego-
centric maps [38].

3.3.2
Behavior-based Path Execution

Behavior-based path execution can be used for collision avoidance, position monitor-
ing, and goal achievement. These types are performed partially concurrently. If the
robot expects after its current position the goal region, two scenarios can occur. The
robot reaches the goal region. In that case the robot can switch from position mon-
itoring to goal achievement. If the robot does not enter the expected goal, it can use
strategies to solve the problem, which depends on an event occurring. If a human
obstructs a path to a goal region, the robot can ask him to release the path. Because
of necessary collision avoidance it can happen that a calculated path is useless. This
requires the processing of a new schedule [38].

3.3.3
Global Path Planning

Sch�lkopf and Mallot developed a view graph [42] to represent a scenario with sever-
al distributed obstacles. Simple collision avoidance was implemented. Data from an
infrared sensor were evaluated. The collision avoidance started if an object was over
one centimeter away. If the distance of a robot was less than one centimeter, the
robot has first to back up and must then flee the obstacle. The description of the
scenario happens with visual input, which provides gray values of a surrounding
panorama. The visual input of one situation in an environment is called a �snapshot’
and is stored as a node in the view graph. So a node represents a sensorial percep-
tion at a specific location in the environment. Snapshots do not contain metric infor-
mation like distances or angles, only local views. Edges denote spatial connections
between snapshots and are used if the moving direction from one snapshot to
another can be processed. For these purposes a so-called homing algorithm [43] is
taken. If a robot is located at a snapshot, the system must choose a direction. There-
fore, the directions to all snapshots in the neighborhood are estimated and the
angles between the snapshots are determined. The largest angle provides the new
direction for the exploration. The direction is chosen in such a way that the robot
drives in the middle of the region between the two snapshots for which the largest
angle was calculated. Snapshots can not be taken if the collision avoidance runs.
Therefore, it is not possible to get snapshots in the neighborhood of obstacles. Con-

39



3 Navigation

nections between snapshots in different graphs are calculated with a homing algo-
rithm. These determined connections model the spatial relationships in the environ-
ment. The processing of the connections between snapshots occurs under the
assumption that visible landmarks have a constant distance to a snapshot. There-
fore, the approach is not appropriate if many obstacles exist with different distances
to the snapshot [44].

3.3.4
Local Path Planning

Tani [45] has developed an approach for local navigation that first creates a topologi-
cal map of an environment. This happens in the learning phase. If a goal is to be
reached, local path planning is performed under the condition that the length of
run is minimal. A behavior-based robot detects unobstructed areas. The centers of
the detected areas are used for the path planning. If several areas are available that
are examined from sensory data the system uses a decision process to select between
the alternatives. A mobile robot was used that provided sensorial data from a laser
range finder.

3.3.5
The Combination of Global and Local Path Planning

T�ubig and Heinze [46] described an approach that integrates local and global navi-
gation for a robot in an office building. Typically corridors, office rooms, and cross-
ways exist in an office building or similar building. To explore an unknown environ-
ment, the robot drives very fast without collisions in corridors. If the robot arrives at
a crossway or an office room, then a decision situation emerges in which the robot
will choose a direction that results in an unexamined region. A direction that would
end in a known blind alley should be avoided. Two levels can be derived from this
description. The robot will drive fast without collision at the local level. The level is
active if only one direction exists in which the robot can drive. On the other hand,
the global level is chosen if the robot is in a state in which it can select several direc-
tions.

The drawing in the top-left part of Figure 21 shows a situation in which the robot
drives along a corridor. The robot is not in a decision situation and the local level is
therefore active. In the top-right part of the figure, the robot is in a corridor in a
decision situation, because it has reached a crossway. The local level detects four di-
rections that can be chosen. The selection of one direction happens with the global
level. After the selection, the robot drives again along a corridor, which means that
the robot navigates in the local level. This is shown in the lower-left part of the fig-
ure. The drawing in the lower-right part shows that the robot is driving on a free-
space area. The local level offers several directions. The global level selects one of
these directions.
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Legend:

Selected action Local action Impossible global action

Sensor's line of sight

Figure 21 Sensorial situations of a robot [46]

The view graph is expanded with local edges. A local edge connects two snap-
shots. This means that the connected snapshots can be reached among one another
with local navigation. If the robot is not in a decision situation, the local navigation
is used until a decision situation emerges. Then the sensorial input provides infor-
mation for the new snapshot. The path that was followed by the local navigation is
represented with a local edge, which ends in a node that represents the new snap-
shot. The robot has to choose the new direction in a decision situation. Therefore,
for every snapshot that is connected to the actual snapshot it is the size of the unex-
plored region with a global algorithm processed that does not consider obstacles. So
the local level is used to get the size of the area that is occupied by obstacles. This
size is then subtracted from the size of the region processed with the global algo-
rithm. The biggest remaining unexplored region is chosen. The center of the chosen
region provides the next location for the exploration of the next direction. The robot
is moved in the examined moving direction until a new sensorial input is found that
is dissimilar to the last snapshot. Then a global edge is inserted into the view graph.
This sensorial input constructs the new snapshot and is inserted into the graph and
connected with the former snapshot by a global edge. If the processed snapshot is
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similar to a snapshot that is stored in the graph, the robot tries to reach this snap-
shot. In this case the movement of the robot is the basis for the global edge.

An example of a view graph with global and local edges is shown in Figure 22.

Legend:

Global edge Local edge

Snapshot
Figure 22 Example of a view graph with global and
local edges [46]

In the top-left part of Figure 22 the start location can be found for the view graph.
A local edge was inserted into the graph, because there was no decision situation. A
local edge is denoted with an interrupted line. A decision situation is found at the
office door. So a snapshot is modeled with a node. The entire decision situation is
constructed with several nodes that are connected with global edges. The accumula-
tion of nodes can also be observed in the room. Local edges can be found in corri-
dors.

3.4
The Architecture of a Multilevel Map Representation

Figure 23 shows an example of a multilevel representation.
Necessary information is collected with sensors like cameras, laser scanners, and

so forth. After the interpretation, the information can be used to construct an ego-
centric map that shows a snapshot of an actual situation and supports the robot by
the localization. Because of the allocentric map’s more permanent character, it is
necessary to use the egocentric map for an update of the allocentric map. It is possi-
ble to derive regions that contain relevant objects from the allocentric map with the
aid of segmentation and classification. These regions with the attached objects are
represented in the region map and yield the foundation for the abstracter topological
map that is connected with the knowledge base, which holds information about the
detected objects. The knowledge in connection with the topological map enables the
robot to perform the task planning. During the execution of the schedule, the robot
is able to use modules for collision avoidance, position monitoring, and goal
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achievement by controlling the actuation. During the runtime of the robot these cal-
culations are repeated several times, so it is possible to ensure consistency between
the maps with different abstraction levels. Of course it is possible that inconsistency
occurs temporarily between the different maps. This requires then perhaps that a
new schedule must be created [38].

Interpretation

Egocentric map

Localization

Allocentric map
U

p
d

a
te

Map segmentation

Region extraction

Region map

Classification

Topological mapKnowledge base

Sensor (camera, laser, etc.)

Figure 23 The architecture of a multilevel map representation [38]

3.5
Self-localization

Stochastic methods like Markov localization and Monte Carlo localization are used
to determine the actual position of a mobile and autonomous robot.

Burgard et al. [1] described extended Markov localization, which is a component
of robot RHINO that was deployed for 6 days as a museum tour guide. The extended
Markov localization revealed its robustness during the test. The localization was suc-
cessful although most of the robot’s sensors were blocked by people who followed
the robot. The extended Markov localization eliminated damaged sensor data.

Monte Carlo localization provides a multimodal distribution for position estima-
tion. Several local maximums exist. Every maximum represents a possible position
of the robot. The Monte Carlo localization applies a cyclic computation to eliminate
local maximums until only one maximum remains. As long as more than one max-
imum exists, the position is ambiguous. The dynamic aspect of the environment
makes it difficult to find the correct position. Small objects like vases and animals
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often change position. The brightness is changing so that, for example, a reference
image can provide a different middle-gray value in comparison to the image actually
taken. The Monte Carlo localization uses a distribution of samples in the state space.
Every sample represents a position. For these purposes three-dimensional Cartesian
coordinates can be used. Each sample is associated with a probability that represents
the possibility that the corresponding sample is the correct actual position of the
robot. The probability is derived from reference information like an image of the
position. The initialization is performed in the first step of the Monte Carlo localiza-
tion. The position is unknown, and the samples are distributed in the state space.
Reference information is used to determine a probability for every sample. To obtain
good results, the determination of the probability is supported by an error measure.
For example, brightness differences between the actual position and the reference
position are compared. The robot performs a position alteration in the second step.
Hence, the samples get a new state, because their positions and orientations change.
The reference information can be newly processed with the aid of interpolation and
subsequently used to get new probabilities for the samples. The cumulative prob-
ability over all samples is then standardized to one and the new probabilities
multiplied by the former probabilities. Once again the cumulative probability is
standardized to one. Samples that have a low probability, are eliminated in the last
step. The resulting freed samples are now distributed in regions with higher prob-
abilities. Steps two and three are iterated until samples remain only in the true
position of the robot. The procedure of the Monte Carlo localization is represented
in Figure 24 [47].

Figure 24 An example of the Monte Carlo localization [47]
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The top-left picture shows a robot in a test environment. In the top-middle picture
the test environment is shown with the initial state of the sample distributions in a
grid. A second step was executed, with the result that the samples are clustered in
some regions. This is shown in the top-right picture. The lower pictures show the
distribution after some repeats of steps two and three. It can be observed that one
position remains that represents the true position of the robot [47]. Also, systems
have been successfully developed that are able to perform the localization and map-
ping for mobile robots concurrently [48].
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4.1
The Human Visual Apparatus

4.1.1
The Functionality

A rather abstract description of the human visual apparatus is now given. Consider
Figure 25.

3

4

5

6

Figure 25 An abstract view of the human visual apparatus [49]

The light incidence is controlled by an opening, which belongs to the iris (5). The
iris is a muscle and it is able to alter the size of its opening by contraction. This
means that the amount of the light incidence, which strikes the retina (4), becomes
greater or smaller. So the retina has an image of the scene that was captured by the
eye. The focusing of the retinal image is executed by altering the curvature of the
lens (6), which is behind the opening of the iris. The retinal image is converted into
electrical signals by photosensitive cells on the retina [49].

The density of the cells in the center of the retina is the highest. This means that
the resolving power is best here. The resolution decreases in the direction towards
the edge of the retina. The cells build squares. These squares are responsible for
strengthening the contrast of the image by using complementary colors and can be
grouped into two kinds. One of the two squares is responsible for bright colors and
the other for darker colors. The squares in the center of the retina enclose many
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4 Vision Systems

photosensitive cells in comparison to those squares that belong to the edge of the
retina. Therefore, the retina has a higher resolution in the center [49].

The photosensitive cells exist in two kinds as mentioned before: cones are respon-
sible for the determination of the gray values and three types of rods for the recogni-
tion of the colors red, green and blue (RGB). The cones have a higher photosensitiv-
ity than the rods. The color signals of the rods are compounded after being generat-
ing and then transmitted by the visual nerve (3) and the lateral geniculate bodies (2)
to the visual cortex (1). The lateral geniculate bodies are responsible for stereo
vision. The signals are stored in Luv-channels. The L-channel involves information
on the brightness and the uv-channels on the colors [49].

4.1.2
The Visual Cortex

Figure 26 shows five of the six layers of the visual cortex responsible for vision. The
deepest layer six projects back to the lateral geniculate bodies and is not illustrated
in the figure [50].

L1

Geometric invariance

L2

Movement and color

L4

Color and form

L5

Movement

L3

Form

Lateral geniculate

bodies

Retina

Visual cortex

Figure 26 Layers of the visual cortex [49]

The first layer (L1) processes invariant images. Information about color, move-
ment, and form is preprocessed in the second layer (L2). The processing of the infor-
mation takes place in parallel in the layers three (L3), four (L4) and five (L5). Hence,
the visual cortex is also responsible for the preprocessing and processing of the
image. It receives the signals from the lateral geniculate bodies. First, the signals are
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transferred to the first area. The invariant coding of the image is executed here.
Invariant coding means that an image is processed here, which is a prototype with-
out loss of image information for the set of all shifted, size-altered, and rotated im-
ages. The representation of the retina’s visual information in the visual cortex’s first
layer happens by the so-called logarithmic polar transformation [49].

The cortical columns exist in the first layer. The layers of the retina belonging to-
gether are reflected here. Architectural layers, for instance, are responsible for the
recognition of colors and movement. Rotations are handled by orientation columns.
The projection of the retinal image happens in a manner such that the center of the
retinal image provides a greater part to the projection in the first area than the
regions belonging to the border of the retinal image. So the resolution power of the
retina is found again in the visual cortex. A position-invariant projection of the ret-
inal image occurs by the displacement of the regarded object into the image center.
The position-invariant projection of the image is a prerequisite for the preparation
of the invariant image concerning the invariance of the image dimensions and
invariance of the image rotation. An invariant image with respect to the image di-
mensions is represented in the visual cortex by activating different cortical columns.
The size alteration of the retinal-image effects a shifting in the visual cortex. Images
in the retina of different sizes are represented in the visual cortex as identical images
in different cortical columns. The presentation of rotated images on the retina takes
place in an analogous way in the visual cortex. In this case varied orientation col-
umns are activated [49].

4.2
The Human Visual Apparatus as Model for Technical Vision Systems

The parts of a computer-vision system work in a way similar to the human visual
apparatus, see Figure 27.

Objective

CCD array

Transformation

Result

Object

Diaphragm

Signal transmission path

Figure 27 Abstract presentation of a technical vision system [49]
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The diaphragm of an objective controls the light incidence and corresponds to the
iris. The objective is responsible for focusing and can be compared with the lens
and the CCD1) array is oriented at the retina. The transmission of the generated elec-
trical signals takes place with the signal transmission path that is comparable with
the visual nerve. Transformation algorithms adopt the invariant coding of the visual
cortex. The logarithmic polar transformation is realized [51–53] in some technical
systems. The logarithmic polar transformation can only be performed if the image
is invariant coded [49].

4.2.1
Attention Control

Area, which is necessary for problem solving, can be determined with attention con-
trol. Features like the color, contrast, or movement can be used for attention control
to provide the area. If the human visual apparatus is considered, the attention is also
controlled besides these features by the resolving power of the sensor. The retina
has the highest resolution in the center, so the attention is directed to objects that
are represented in the center rather than at the border of the retina. It could also be
shown that the attention control by the human visual apparatus is strongly affected
by the problem that should be solved. The advantage of the human visual apparatus
has been adopted for technical vision systems. The visual search or object detection
finds instances from objects by often using attributes like the color [54].

Burt uses a window with a higher resolution than the entire representation of the
scene. The window is moved over the entire scene representation and conducts the
attention to the relevant scene detail [55].

An analogous approach is proposed by [56]. The entire scene is analyzed by opera-
tors to detect stored object models in knowledge base. If the scene possesses objects
that have a resemblance to the object models, but by the resolution of the whole
scene the equality can not unequivocally prove that it is performed by an operator
that is responsible for detecting such conflicts, then this part of the scene is exam-
ined with a higher resolution. Krotkov [57] combines a stereo vision system and a
focusing approach and uses the visual attention control to obtain a partial recon-
struction. In the first step the stereo vision system is used to generate a rather coarse
reconstruction. Points in the scene are determined by the use of the coarse recon-
struction, which are then used for a more precise reconstruction with the focusing
approach. The system from Abbott and Ahuja [58] develops global depth maps by
stepwise expansion to represent the scene successively more completely. If a depth
map is generated, the borders of the map are examined to obtain the expansion of
the global depth map. New views must be positioned at the examined borders. The
next view must be determined with a cost function. Views that are nearby the scene
are preferred, because this helps to minimize the danger that remoter objects could
occlude nearer objects [54].
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4.2.2
Passive Vision

Effort has been made in the past to develop a theory for machine vision that
describes how technical systems can solve tasks similarly as they would be tackled
by the biological vision apparatus. Marr [59] has developed such a theory. He
described the information processing of image data. This approach is regarded as
passive vision, because the scene is observed from a passive motionless observer
[60].

Horn [61] proposed that the entire scene must be represented by symbols in the
process of passive vision. This should happen with the intention that all machine-
vision tasks can then be solved easily. Marr’s theory consists of three parts. First,
there is the processing theory. The aim of the problem will be analyzed here. Once
this has happened, it should be possible to provide necessary requirements so that
the machine-vision task can be solved. The second part (representation and algo-
rithm) describes the process of input processing and output. The last part (hard-
ware) yields explanations for the implementation of algorithms in hardware [60].

4.2.3
Active Vision

Meanwhile, the opinion exists that the complete reconstruction of the scene is not
necessary to solve specific machine-vision problems. In active vision the technical
observer interacts with its environment and performs only selected vision similar to
the biological vision apparatus. Biological vision always follows a determined pur-
pose and is therefore only a part of the complete vision. For example, the human
visual apparatus is restricted to a specific wavelength band of the light. So a general
vision is not possible. Presently, computer vision is strongly restricted by assump-
tions, for example, a required illumination. If the necessary prerequisites are not
fulfilled, the robustness of a computer-vision application rapidly diminishes. Often,
a total outfall can be observed. So algorithms are required that provide a robust rec-
ognition. Problem solving should happen by using relaxed presumptions wherever
possible [60].

Active vision can be further specified. Controlling the zoom, the position of the
camera, the diaphragm, and the line of sight can actively influence the taking of im-
ages. Subject to a problem, image regions can be classified into different importance
levels. This will enable saving of processing time. The interpretation of the taken
images can also be seen as a part of the active vision and is called active symbolic
vision. A further form of active vision is stimulated active vision. The behavior pat-
terns of an observer are examined here to obtain relevant information. For example,
to separate an object from its background, the object can be fixed by the observer.
This has the effect that the object becomes sharply in contrast to the background.
Active and exploratory perception is a further attempt to give an explanation for
active vision. To survive in its environment, a biological system is performing
strongly selective vision by the exploration of the surrounding. For these purposes
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mobility is a necessary prerequisite. The environment is also changing during the
time interval. So the system must be able to recognize this by learning. The set of
information that is absorbed is too large for a precise analysis. This means that the
information must be filtered. The system is equipped with some procedures to
acquire information for a precise selection. The choice of an appropriate procedure
is executed by using a cost estimate. The utilization of a procedure must result in
lower costs in comparison to benefit that can be measured by the information gain
[60].

4.2.4
Space-variant Active Vision

Space-variant active vision is a newer form of active vision. The technical vision
apparatus is based on the vision apparatus of upper vertebrates. In the upper verte-
brates the resolving power is highest in the center of the retina as described earlier.
So the sensor surface will also have the highest resolution in the center. This means
that it is only necessary to use a window with a high resolving power in the center of
the sensor. Nevertheless, the resolving power in the direction towards the border of
the sensor remains high enough to control the attention and to conduct the center
to the important regions. So the selection that is an essential attribute of active
vision is already considered by the construction of the sensor and results in a strong
reduction of the data set and therefore to less processing time. But in this case it is a
problem as standard algorithms of the image processing can not be used [60].

The resolving power is constant over the entire sensor surface and cameras are
only static in the case of space-invariant passive vision systems. This is approxi-
mately comparable with the vision apparatus of the goldfish and requires a large
increase in the number of pixels by the magnification of the sensor’s N/K-quality
(U). N indicates the field of vision and K the maximal resolution power. If U is
doubled, it is necessary to quadruple the number of pixels. So this approach does
not support the selection and provides no contribution to save processing time.
Today, most image-processing systems have an architecture that follows the
approach of space-invariant passive vision systems, because it is simpler to construct
and supports standard algorithms. The space-invariant active vision supports a
homogeneous sensor with an active vision apparatus like a camera that can be
rotated and inclined. For example, a camera that has the flare angle of 50�, which is
expanded by an actuation to 150�, provides a N/K quality improved by a factor of 9.
The architecture today is often used in technical vision systems. In contrast, the
space-variant passive vision is used less often and combines a space-variant sensor
and a rigid camera. For example, a camera with a resolution of 2000 � 2000 pixels
was used. The area of 512 � 512 was moved over the camera image. So it was possi-
ble to imitate the camera movement. But prices for cameras with such a resolving
power are high and also require processing time and memory [60].
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4.3
Camera Types

4.3.1
Video Cameras

Video cameras transmit analog signals. These signals are converted with a frame
grabber into digital images with the typical size of 768 � 512 pixels which need
0.44 MB. Video cameras are widespread in computer vision, because they are rela-
tively cheap and appropriate for real-time purposes. The drawback of video cameras
is the rather low resolution [62].

4.3.2
CCD Sensors

It is possible to convert a conventional photographic camera into a digital camera
with CCD sensors by the mounting of the CCD sensor into the image plane. Addi-
tionally, a hardware device like a PCMCIA card is necessary to store the data. In
contrast to conventional cameras, the images taken can be viewed on a computer
directly, because development time is not necessary. This can improve the quality of
the pictures, because poor quality pictures can be replaced on the spot. The resolu-
tion differs and has typically 2000 � 3000 pixels. An image with this resolution con-
sumes 6 MB in the case of a gray image and 18 MB if it is a color image. The size of
a CCD sensor is about 2.4 � 1.6 cm2 [62].

A pinhole camera is a very simple model for a CCD camera. The hole is the origin
of camera coordinate system XC. Figure 28 shows the model of the pinhole camera
[33].

The camera’s optical axis is represented by the Z-axis of the camera coordinate
system XC with axes XC, YC, and ZC and origin OC. A three-dimensional scene point
X is projected from the hole onto the CCD array C. The CCD array is symbolized
with the two-dimensional sensor coordinate system XS with axes XS, YS, and origin
OS. OS is determined by the point of intersection between the optical axis and the
sensor C. Focal length b is determined by the distance between the origin OC of the
camera coordinate system XC and the origin OS of the sensor coordinate system XS .
The principal axis distance [64] is another name for the focal length that is some-
times chosen. A point ðx; y; zÞ

C
in the camera coordinate system XC is mapped to

the sensor coordinate system XS with the following equation [33, 63]:

xS
yS

� �
¼ b

zC

� xC
yC

� �
. (4.1)
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Figure 28 The pinhole camera model [33, 63]
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The mapping between the sensor coordinate system XS and the image affine coor-
dinate system XA with axes XA, YA, ZA and origin OA is performed by a frame grab-
ber. The result is the projected point pA. p0

A ¼ ðx
0
; y0

; 0ÞT
A

is the principal point of
XA. XC has coordinates ð0; 0; �f ÞT for the principal point now denoted with p0

C to
distinguish it from the coordinates belonging to p0

A . It can be seen that the point of
intersection between the optical axis and the digital image determines the principal
point. The axes XI, YI, ZI of the image Euclidean coordinate system XI with origin
OI are aligned with the axes of the camera coordinate system XC . XI and ZI are also
aligned with the axes XA and ZA of the image affine coordinate system XA. YA can
have another orientation as YI. gS

x and gS
y are scaling factors and model the size of a

sensor pixel. The coordinates (x, y)A of the image affine coordinate system XA have
no dimensions. The unit is a pixel. The unit of the scaling factors is a meter. The
origin OA is the upper-left corner of the digital image. The processing of the pixel
coordinates for a digital image follows [33, 63]:

xA ¼
xS

gS
x
þ u

0
; yA ¼

yS

gS
y
þ v

0
. (4.2)

The camera coordinate system XC can be derived by applying rotation T and trans-
lation s to the world coordinate system XW with axes XW, YW, ZW, and origin OW [63].

4.3.3
Analog Metric Cameras

Analog metric cameras are often used for taking aerial images to get a high resolu-
tion. Therefore, the analog image of a metric camera is analyzed offline with a scan-
ner. The image is scanned with a high resolution ðgx; gyÞ. This strategy is very time
consuming and requires much memory. For example, a gray image with the resolu-
tion of 16 000 � 16 000 pixels takes 256 MB. Analog metric cameras in conjunction
with an offline scanning process are applied by the taking of aerial images, because
these images often have the size of 23 � 23 cm2 [62].

The projection is now sketched. Analog metric cameras can be represented with a
pinhole camera just as the CCD camera. Figure 29 shows a model of the pinhole
camera that takes an aerial view [65].

The image plane has the distance c to the projection center F, in the camera
model, whereby c is a camera constant that is used in photogrammetry instead of
the focal length. The camera constant c includes additionally linear radial distor-
tions. The geometrical record axis stands vertically on the image plane and cuts the
image plane in the principal point. The offset between the principal point and the
image center is represented with the principal point offset h. Clockwise Cartesian
coordinate systems are used to describe the projection between a scene point X and
a pixel pS . A scene is represented with the rigid world coordinate system XW with
axes XW ;YW ;ZW . To measure the camera view, the camera coordinate system XC

with axes XC ;YC ;ZC is used. ZC stands vertically on the image plane. The image
plane is spanned by XC and YC . The projection between the spatial point X and the
projection center F runs along the camera’s line of sight A [65].
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Figure 29 Model of a pinhole camera recording an aerial view [65]

In the FzCHL system from Yakimovsky and Cunningham the camera constant c
is considered additionally in vectors L and H [66]. In this case the image plane has
the distance of one to the origin of the FzCHL system. The principal point offset is
represented with HLzC [65]:

pS ¼
1

ðX�FÞT�zC
� ðX � FÞT �H
ðX � FÞT � L

 !
þ h (4.3)

with: H ¼ c
gx

xC þ hx � zC ; L ¼ c
gy

yC þ hy � zC . (4.4)
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5.1
Constructive Solid Geometry

Constructive solid geometry (CSG) is a volume-oriented model. Objects are repre-
sented with base elements or primitives (BE) like a square stone, cylinder, sphere,
cone, and so forth. The approach uses association instructions to link the base ele-
ments to new more complex elements (CE). A binary tree is used to represent the
CSG. The leaves of the tree are used to represent the base elements. The association
of the elements happens with association operators (AO) like unification, intersec-
tion, difference, and complement, which are known from the set theory. These asso-
ciation operators are applied to base elements and more complex elements, respec-
tively. The result is a more complex element [67], see Figure 30.

/

∪

CSG modelThree-dimensional object

Figure 30 Representation of a three-dimensional model with CSG model [68]

The formal description that depicts the functioning of the association operators
is:
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SE ¼ fBE;CEg, (5.1)

AO ¼ f¨ ; ˙ ; . . . ; g, (5.2)

aojðse1; . . . ; senÞ ! CE sei ˛ SE, i ¼ 1; 2; . . . ; n; aoj ˛AO,

j ¼ 1; 2; . . . m. (5.3)

Let SE be a set that contains base elements BE and complex elements CE. Set AO
contains association operators like unification, intersection, and so forth. Operator
aoj needs as input a subset (se1 ; . . . ; sen ) of SE. Base operators and more complex
operators can be contained in the subset. The utilization of the operator aoj provides,
as a result, a more complex element CE.

The more complex elements are attached to the nodes of the binary tree. If a base
element is used in a model, the size and location of the base element must be kept
in the model. The set of base elements is changeable. This means that it is possible
to add or delete base elements. If such a process has taken place, it is necessary to
calculate a new binary tree. Therefore, the calculation must start by that branch of
the tree where the alteration has been performed. It can be rapidly processed with a
binary tree whether a spatial point is covered by an element or not. The CSG model
does not possess information about surfaces and edges. If visual presentation is re-
quired, it is necessary to process the information by using stored data. This has the
advantage that storage can be saved. Otherwise more processing time is required for
visualization. Every alteration of the line of sight requires a new processing of the
surfaces and edges [67].

5.2
Boundary-representation Schema (B-rep)

Object boundaries are pictured in a model with boundary-representation schema.
Volumes are modeled with surface elements, whereby a surface element is described
with its borderlines. A borderline can be reconstructed if the end points are stored
[67], see Figure 31.

A more complex calculation is necessary in comparison to the CSG model to
decide if a spatial point is covered from an object or not. The visualization of B-rep
models is simply possible, because the entire required information is stored. So the
alteration of the line of sight does not much affect processing. Hence, the need for
memory increases in comparison to CSG. The B-rep model is appropriate to repre-
sent freeform. With CSG this is difficult, because freeform can not be modeled suffi-
ciently with geometric base elements [67].
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Figure 31 Representation of a three-dimensional object with B-rep [68]

5.3
Approximate Models

Approximate models are an alternative approach to geometric models. Functionality
follows the divide and conquer principle. This principle decomposes a problem into
parts. Every part can then be analyzed separately from the entire problem so that a
problem reduction is performed. The partial solutions are merged and the whole
solution built. The binary-cell model is a further term for approximate models,
because the Euclidean space is represented with three-dimensional cells. Trees are
used to represent hierarchical approximate models [67].
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5.3.1
Octrees

The quadtree model was developed in image processing to represent two-dimen-
sional objects. Octrees are an advancement of quadtrees to model three-dimensional
objects. The objects are approximately modeled with cubes in octrees [69]. A cube is
represented with a node in the tree and can have one of three possible types [70], see
Figure 32.

Figure 32 Three types in the octree [67]

If the cube is completely within the object a black cell is used. The opposite case
holds if the cube is completely outside the object. These two types are end nodes in
the tree and not further refined. A gray cell is used if one part of the cube is covered
by the object and the other not. This gray cell is refined. The refinement is executed
with the bisection of the three Euclidean axes, which are used to model the coordi-
nates of the cube. The bisection affects eight new cubes and the procedure starts
again and can therefore be programmed with a recursive procedure. The procedure
stops if an abort criterion, like a required solution, is fulfilled. At the moment it
must be decided whether the remaining gray cells are related to the object or the
background. Therefore, the object is modeled by the black cells and the correspond-
ing gray cells [67].

5.3.2
Extended Octrees

Extended octrees comprise the three types of the octrees and have further three addi-
tional types [71], see Figure 33.

Figure 33 Additional types in extended octrees [72]
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The face cell is used if the cube contains a piece of the object’s surface. The edge
cell represents a part of an edge and the two accompanying neighboring surfaces.
The third type is the corner cell that comprises an object vertex and those edges that
run into the corner [71, 73].

5.3.3
Voxel Model

Voxels are volume elements that are used to represent objects. A voxel in a model
can belong to an object or not. Therefore, a voxel model can only be an approxima-
tion of the modeled object [74, 75]. The maximal resolution is controlled by the size
of the voxel [76]. To get a more exact modeling with voxel models, they are often
arranged in octrees [77]. The precision of an object model can also be improved with
a higher granulation, but this requires an exponential increase of the data set. Three
kinds of voxel models are in use [67], see Figure 34.

Object Cube model

Column model Slice model

Figure 34 Different voxel models [67]

The cube model consists of cubes that all have the same size. The column model
uses square stones that all have the same width and length but different heights.
The third model is the slice model. An object is represented with slices of the same
thickness. The slices can be described with their edges or with their surfaces. The
precision of the object representation increases with decreasing slice thickness, but
then also needs more memory [67].
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5.4
Hybrid Models

As discussed earlier every model has its advantages and drawbacks. Two or more
approaches can be combined to use the advantages of different models like the CSG
and B-rep. Much calculating effort for visualization is needed if the CSG model is
used when the line of sight has changed. When a CSG model is used as a primary
model, which means that the modifications are executed in the CSG model, the B-
rep model is additionally used for the purpose of visualization. Hence, a B-rep
model is attached to every CSG node in the tree. The reverse case is also used. In
this case B-rep is the primary model and completed with the CSG model [67].

5.5
Procedures to Convert the Models

Several approaches were suggested to convert a B-rep model to an octree approxima-
tion.

The approach of Tamminen and Samet that consists of two phases performs the
conversion successively. It analyzes the surfaces of an object separately. The result of
this procedure provides approximate surfaces that are connected together. In the
second step the nodes of the octree are classified with colors like black, white, and
gray. The examination of a node’s neighborhood is performed for these purposes to
get necessary information for the classification and to determine the connected
regions [78].

The approach of Kela converts B-rep into an octree in four steps. The algorithm
operates recursively and decomposes, at each recursion level, the gained gray cells
into eight successors. The entire model is initially contained in one gray cell. The
partition of the vertices is executed in the first step. In the second step the partition
of the edges takes place, and the partition of the surfaces happens in the third step.
The classification of the cells with the accompanying surfaces and edges is done in
the fourth and last step [79].

Kunii et al. [80] use four phases to convert octrees into B-rep models. First, an
octree is transformed into an extended octree whose entities are labeled in the sec-
ond phase. Tables are derived in the third phase that contain B-rep information. The
fourth phase creates a sequence of Euler operations that describe the created B-rep
model.

Conversion from B-rep to extended octrees can also be realized. The approach
from Carlbom et al. [72] uses two steps to gain a result. The surfaces of the object
are converted step by step into the tree in the first step. The cube is divided into
eight derived cubes. This affects cuttings in the surface representation, which
means that a pseudogeometry with pseudoedges and pseudovertices exists. It must
be decided in the second step whether the node of the tree represents a part within
the object or outside of the object. This examination happens with an algorithm.
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Also, a reconversion from an extended octree to B-rep can be done in two steps.
First, only the vertex cells are inspected and listed. For every face that belongs to a
detected vertex, its two accompanying faces at the vertex are registered. This infor-
mation is necessary to detect polygons in the second step [71].

A conversion from B-rep to CSG is difficult, because ambiguities can exist. The
approach of Vossler uses a sweep procedure to generate simple objects, which are
recognized with techniques known from pattern recognition. Simple objects can be
combined into more complex objects [81]. Objects that are generated with the sweep
procedure are also called production models. Models whose creation is performed
with the Cartesian product, which is applied to geometric elements, belong to the
production models. Rotation models, translation models, and trajectory models are
such production models [82].

5.6
The Use of CAD in Computer Vision

Several approaches have been reported that combine CAD and computer vision.
ACRONYM is an early implementation that offers the user the possibility to cre-

ate volume models of three-dimensional objects. The user also provides spatial rela-
tionships of the objects and subclass relationships. The created volume models and
further data acquired from the user are then used for object recognition in images
with a computer-vision system [83]. But existing CAD models, which were originally
developed for product modeling, can also be used to extract features from them. The
obtained data can then be used for recognition tasks executed by a computer-vision
system [84, 85]. Flynn and Jain propose interpretation tables that are generated off-
line from CAD models. The interpretation tables are used to detect correspondences
between primitive scene surfaces and primitive model surfaces [86]. Surface recon-
struction can be based on stochastic computations to eliminate noise, blurring, non-
linearity, and discontinuity [87–89].

To realize a computer-vision application that is based on CAD, an approach can
be used in which the model knowledge is represented in a CAD database. The CAD
database is connected to the computer-vision system. Of course, different data types
between the computer-vision system and the CAD database can occur. This requires
type conversions between the CAD data types and the data types of the computer-
vision application that can be performed by some systems automatically [90].

Horaud and Bolles use models of objects that are to be detected in a muddle of
several objects. Therefore, the object to be detected can be partially occluded. To
guarantee a reliable and fast recognition under these conditions, an incremental
approach is used that first tries a recognition by the use of only one object feature.
Only when a robust detection can not be based on one feature is a second feature
taken. The number of object features is increased in a recognition process until a
certain recognition can be guaranteed [91].

The approach of Wang and Iyengar uses the B-rep model in three-dimensional
recognition and position determination from images. Area segments are used as
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feature primitives. These feature primitives are represented by translation and rota-
tion invariance. Local curvature attributes are therefore used [92].

It can be an advantage to use a CAD model for a geometric representation of the
objects within a computer-vision system to avoid type conversions. Furthermore, it
is possible to use well-known CAD techniques for the modeling and the calculation
of the objects in a computer-vision system. But the use of CAD in computer-vision
systems must be reflected carefully. Models in CAD systems are complete. This
enables a graphical representation. The necessary information is read from a CAD
database or is derived from several views, which are integrated. A single two- or
three-dimensional image often exists only in computer-vision applications that do
not show an entire object in the scene. In this case it is not possible to obtain the
entire view of an object. A reference coordinate system for an object is used in CAD
models. The coordinate system is object centered, which means that the origin of
the coordinate system refers to the object center. Computer-vision systems use a ref-
erence coordinate system too, but this is observer centered. For example, this can be
the camera. In this case it is necessary to determine the position and the orientation
of an object in a first step to generate a connection between the two coordinate sys-
tems. The view of an object is gained from a model in graphical applications. A com-
puter-vision application has an inverse strategy. First, graphical representations are
taken from which data and finally a model are derived. For example, this can be a B-
rep model. It was shown that the advantages of a B-rep model for representation are
also valid for the inverse case in computer vision if the objects are described by their
contours and area segments. This requires uniform data structures in computer-
vision applications, which comprise the following features [93]:

1. The data structures should contain representations from feature primitives,
which can be extracted from model data and also from image data.

2. The representation of the feature primitives must be based on local attributes
of an object and it is necessary that the representation is rotation and transla-
tion invariant.

3. Geometrical relations between feature primitives must be describable expli-
citly.

4. A complete representation must be designed that can be used in a CAD
model. The usage of this representation in a computer-vision system must be
viewed as pseudo-CAD that refers to the incomplete scene from which the
CAD model is derived.

An example of the usage of a CAD model in computer vision is now explained in
the following paragraphs according to the explanations in [93].

5.6.1
The Approximation of the Object Contour

The representation of objects occurs with a B-rep model in computer-vision systems.
Several attributes like the contour, length of the contour, and so forth were used. A
Boolean variable was used to show if a contour was closed or not. The geometrical
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description used an object-centered coordinate system. The pseudo-B-rep represen-
tation was generated from sensor data that used a camera-centered coordinate sys-
tem. A polygon approximation was used for the reconstruction. The polygon approx-
imation describes the object contour CO with a sequence of corners:

CO ¼ fðx; y; zÞi
C
ji ¼ 1; 2; . . . ; ng. (5.4)

Parameter lc denotes the edge length of the contour CO. Conversion from the
three-dimensional representation into the two-dimensional representation was per-
formed. Processing time should be reduced with this policy. Therefore, it holds that
z

i
C ¼ 0 for all corners in the new model. Also, parameters exist in the B-rep data

structure, which are used to execute the transformation between the camera-cen-
tered coordinate system and the contour-centered coordinate system. It is possible to
generate a transformation matrix between model and camera coordinate system
with these parameters. So the object’s position can be determined. Closed curves
can be written with HðlcÞ function for shapes. A starting point must be determined
on the shape’s contour. The HðlcÞ function must be defined that measures angles in
the shape’s boundary as a function of arc length lc [94]. An example of a possible
HðlcÞ function is:

HðlcÞ ¼ cos
yi

C

xi
C

� �
, i ¼ 1; 2; . . . ; n. (5.5)

In Figure 35 a polygon is illustrated that can be constructed with an appropriate
HðlcÞ function.

The figure shows that the steps in the HðlcÞ function correspond to the polygon’s
corners. The angles and lengths of the polygon areas can also be found in the B-rep
representation. So processing time can be saved, because the HðlcÞ function does
not have to be newly processed in further steps. The rotation of a contour is reflected
by the shifting of the HðlcÞ function along the H-axis.
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Figure 35 The HðlcÞ representation of a polygon contour [93]

5.6.2
Cluster Search in Transformation Space with Adaptive Subdivision

The coherent subsets of an entire set’s elements can be found with the cluster
search in transformation space. The elucidation follows explanations in [93]. A para-
meter vector is used for the description of the elements. Additionally, weighting fac-
tors can be used for the description. The weighting factor can serve as the quality
factor for the particular element. Those elements that belong to the same partial set
are characterized by qualitatively similar parameters. This can be geometrically ob-
served by a cluster that is constituted from the particular elements in the transfor-
mation space. The cluster is valued with an entire quality, for example, this can be
the sum of the element’s single qualities. It is the cluster of all possible clusters
chosen by which the entire quality is the highest. The functionality of the cluster
search is now shown by the description of the algorithm. The examination of an
optimal subset uses defined uncertainty areas and local qualities. An optimal subset
is characterized by the intersection of uncertain areas, where the sum of the accom-
panying single qualities is maximal.
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Figure 36 Cluster search in a two-dimensional transformation space [93]

Figure 36 shows a two-dimensional transformation space. The two-dimensional
coordinates of the elements represent the calculated position in the transformation
space. In the figure it can also be seen that every element has a quality factor and a
defined uncertain area. The entire quality factor is calculated by the addition of the
single quality factors belonging to those elements by which the defined uncertain
areas have a common intersection. The algorithm that processes an optimal subset
by progressive subdivision of the transformation space is shown in Figure 37. The
description of the algorithm uses C++ style. The kernel of this implementation sug-
gestion is enclosed in two methods, which are part of the class �intersection_detec-
tion’. The class uses further classes and accompanying members whose description
is not provided.

constraints intersection_detection::best_subset_search(int
d_max, double q_min)
{

q_best= q_min; //Private member
best_box=0; //Private member
/* ’all_candidates’ is a private member of class ’box’ that
contains all candidates enclosed in transformation space and
’con’ is a private member of class ’constraints’. */
find_box(all_candidates ,0, con);
con= best_box.get_constraints();
return con;
/* The return value shall contain all candidates, which
intersect ’best_box’. */

}
void intersection_detection::find_box(box search_box, int
depth, constraints candidates)
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{
int axis;
box left_half, right_half;
constraints intersection();
intersection.intersection_init(search_box, candidates); /
* The object ’intersection’ is initialized with all those
candidates which intersect the ’search_box’. */
constraints containing_set();
containing_set.containing_init(search_box, candidates); /
* The initialization of object ’containing_set’ with all
candidates which contain the ’search_box’ */
if (quality_factor(intersection)> q_best)

if (intersection == containing_set)
{

q_best= quality_factor(intersection);
best_box= search_box;

}
else
{

axis= depth % p; /* p is a private member of class inter-
section_detection and holds the dimension of the trans-
formation space. */
left_half= search_box.left_half(axis);
/* Assign the left half of ’search_box’ along axis to
’left_half’ * /
right_half= search_box.right_half(axis);
/* Assign the right half of ’search_box’ along axis to
’right_half’ */
search_box(left_half, depth+1, intersection);
search_box(right_half; depth+1, intersection);

}
}

Figure 37 Algorithm for the cluster search [93].

The algorithm is able to handle a transformation space of arbitrary dimension
size p. The search is restricted to a window (search_box) AW in every step. The algo-
rithm starts initially with a window that encloses all uncertain areas (constraints or
candidates). The algorithm uses the procedure �quality_factor(intersection)’ that cal-
culates an entire quality factor from the elements belonging to an intersection that
is transferred to the procedure. The estimated entire quality factor (upper boundary)
of a window is used for the control of the algorithm. The upper boundary is deter-
mined for the actual window by the summation of those single quality factors whose
uncertain areas cut the actual window (candidates). If the upper boundary is lower
than a minimal value (q_min) or lower than the entire quality factor (q_best) found
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until now, the search will be terminated in an area determined by the actual window.
If this is not true, the window is divided into a left and a right part and the search is
performed recursive in these two parts. The recursive subdivision of the window
happens sequentially along the single axes i ¼ 1; 2; . . . ; p of the transformation
space. The abort criterion for the search is given by those contained uncertain areas
in the window that cover the whole window. The best solution is then found. A sec-
ond abort criterion stops the search if a determined recursion depth is gained. So a
long runtime can be avoided when uncertain areas are close together, but do not
touch. An actual implementation is now explained that extends the just-explained
algorithm for the cluster search in some items:

1. The examination of the initial window happens automatically and is based on
the minimal and maximal values of the transformation parameters from all
single elements in the transformation space.

2. A recommendation value for the maximal recursion depth is derived. Calcu-
lation uses the size of the first window AWi and a minimal error value ei for
the single elements. The calculation is executed along the transformation
axes i:

drmax ¼ p �max
i
fhig with hi ¼ log2

AWi

ei

� �
; i ¼ 1; 2; :::; p: (5.6)

The estimation presumes that the fragmentation of a window is only clever if
the actual window size is not lower than the determined minimal error val-
ues of the single elements. If no valid solution exists at that time, then the
actual solution can be considered as an approximation with a maximal error
value in the magnitude of the single element’s error values. hi denotes the
number of necessary bisections of the transformation space per axis. This
computed value is rounded up to an integer.

3. The original algorithm provides no estimation for the maximal runtime.
Moreover, no restriction exists for the duration of the runtime. The determi-
nation of a maximal recursion depth is an instrument to restrict the runtime
so that the use in real-time applications can be assured. This is further sup-
ported by the general limitation of the runtime. Therefore, suboptimal solu-
tions are tolerated.

4. The uncertainty areas are modeled as squares. This is a further instrument to
restrict the runtime, because intersections can be processed very simply. The
transformation space is represented with a list of constraints. Every single
element is described with an uncertainty area and a quality. The center coor-
dinates and the measurements are attributes of the uncertainty areas. The
measurements can be calculated with two diagonally opposite corners,
because the uncertain areas are modeled as squares.

5. With several invocations of the procedure �find_best_subset’ and the masking
of the found subsets, it is possible to generate several clusters in descending
sequence with respect to the entire quality values. The subsets are stored in a
data structure. New subsets are generated during the runtime of the algo-
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rithm and old subsets are eliminated. The last window and the entire quality
are stored. If a valid solution is represented by a subset, a flag is used to mark
the subset.

6. Middle values are examined for valid subsets. For example, these can be the
center coordinates of the last window. Further middle values are processed
that are based on elements of that subset that represents a valid solution.

The selection of the uncertainty areas must be performed carefully, because the
functionality of the cluster search depends strongly on the uncertainty areas. The
position of the single elements in the transformation space XT ˝R

p
can be seen as

a p-dimensional output variable O˛XT :

R
n ! R

p
with op ¼ FtðxÞ. (5.7)

In general, this is a nonlinear mapping that is processed with an inexact vectorial
measurand ip˛R

n
and a covariance matrix P¢. Let yk be a transformation hypoth-

esis. The covariance matrix P can be processed with an input vector ipk:

PðipkÞ ¼ JðipkÞ � P¢ � J
TðipkÞ. (5.8)

The Jacobi matrix is used to obtain linearity:

JðipkÞ ¼
@FðxÞ
@x

����
ip¼ipk

. (5.9)

The main diagonal of the matrix P contains the variances of the transformation
parameters. These variances determine the maximal extension of the uncertainty
areas in the particular dimension of the transformation space. Dependencies exist
between the transformation parameters. With these dependencies it is possible to
get the uncertainty areas as p-dimensional polyhedrons by using regression lines,
which are mostly a linear approximation of the real regression lines. The difficulty
of this approach is the determination of the function FtðxÞ. This function is non-
linear and must be processed at runtime. Therefore, the uncertainty areas are mod-
eled as squares in this implementation of the cluster search to save processing time.
Now, a further error-propagation calculation is used that provides an estimation of
the expected exactness of the middle transformation parameters of a cluster. The
weighted averaging over e single elements is written with the following formula:

Ok ¼ ðOki
ÞT

i¼1;2;...;p
; k ¼ 1; 2; . . . ; e. (5.10)

Ok with p elements Oki
provides in combination with the single qualities kk fol-

lowing output variable in the p-dimensional transformation space:

�OO ¼ ð�OOiÞ
T

i¼1...p
¼

Pe
k¼1

kk�Ok

Pe
k¼1

kk

. (5.11)
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The known standard deviations rOki

, k ¼ 1; 2; . . . ; e, i ¼ 1; 2; . . . ; p, of the single
elements can be read from the covariance matrices and provide the mean error of
the cluster elements’ weighted mean value:

r �OOi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe

k¼1

k2
k �r

2
Oki

s

Pe
k¼1

k
k

. (5.12)

5.6.3
The Generation of a Pseudo-B-rep Representation from Sensor Data

It is now shown how a pseudo-B-rep representation can be generated from sensor
data. Therefore, the three-dimensional contour will be segmented into plane partial
contours. These will be the area primitives. The strategy consists of several steps. All
possible binormals of the three-dimensional contour are calculated in the first step:

di ¼ ðx
i�1
C � x

i
CÞ · ðx

iþ1
C � x

i
CÞ. (5.13)

The binormal is a vector that stands vertically on two successive polygon areas,
see Figure 38.
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Figure 38 The binormals of an object contour
[93]

Because of disturbances it can be that polygon areas are segmented as indepen-
dent contours. If several polygon areas meet in a corner, all involved areas must be
considered for the calculation of the accompanying binormal. The coordinates of a
binormal vector are also adjusted at an observer-centered camera coordinate system
just like the corners. A cluster search procedure (see previous paragraph) is used to
detect optimal plane partial polygons. Standardized binormals di¢ are considered as
elements of a three-dimensional transformation space

XTd¢
� R

3
: (5.14)

di¢ ¼ ðx
i
d¢ ; y

i
d¢ ; z

i
d¢ÞTd¢

¼ di

dik k
. (5.15)
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The axes of XTd¢
are constituted by XTd¢

, YTd¢
, and ZTd¢

. Additionally, a further vec-

tor is derived from every binormal vector. For these purposes the binormal vectors
are rotated about 180� in the transformation space. This is necessary, because it is
not possible to apply the terms �inside’ or �outside’ of an object before the object rec-
ognition has not taken place. So all area primitives are calculated twice. The selec-
tion of the correct area primitives can be gained in the process of object recognition.
The object contours in the image are compared with the model contours. This hap-
pens from the right reading view and the side-inverted view. The side-inverted view
can then be determined, because in that case the similarity to the model contour is
rather poor. Normalized binormal vectors are weighted with the amount of a binor-
mal vector:

di

�� �� ¼ ððx; y; zÞi�1

C
� ðx; y; zÞi

C
Þ · ððx; y; zÞiþ1

C
� ðx; y; zÞi

C
Þ

���
��� ¼

ððx; y; zÞi�1

C
� ðx; y; zÞi

C
Þ � ððx; y; zÞiþ1

C
� ðx; y; zÞi

C
Þ

���
��� � sinðnÞ ¼ lgi

. (5.16)

The weight factor includes the lengths of both polygon areas and angle n that is
generated from the two contours belonging to the polygon areas that meet in cor-
ners, where the binormal stands vertically. The weight assumes that an area can be
processed more precisely in dependence of measurement errors of the corner coor-
dinates the longer both primitive areas are and the closer the involved angle n is to
90�. The whole quality of a cluster is determined by the sum of the single qualities.
It is necessary to determine the dependency between the normalized binormal vec-
tors and input parameters ip. The input parameters are necessary for the calculation
of the normalized binormals. A cluster search is performed to obtain the size and
form of uncertainty areas. The input parameters are derived from the camera coor-
dinates of three neighboring corners of a polygon:

ip ¼ ððx; y; zÞi�1

C
; ðx; y; zÞi

C
; ðx; y; zÞiþ1

C
Þ. (5.17)

A further vectorial transformation function Tf ðxÞcan be derived:

O ¼
ððx;y;zÞi�1

C
�ðx;y;zÞi

C
Þ· ððx;y;zÞiþ1

C
�ðx;y;zÞi

C
Þ

ððx;y;zÞi�1

C
�ðx;y;zÞi

C
Þ· ððx;y;zÞiþ1

C
�ðx;y;zÞi

C
Þ

���
���
¼ Tf ðxÞ: (5.18)

The covariance matrix P is used in which the error measurements of the calcu-
lated corners are contained. The covariance matrix P is the basis from which to pro-
cess the covariance matrix P¢ of the normalized binormals with an error-propagation
calculation:

P¢ððx; y; zÞi
C
Þ ¼ Jððx; y; zÞi

C
Þ � P � JTððx; y; zÞi

C
Þ. (5.19)

J is the Jacobi matrix. The size and form of the uncertain areas can be examined
with the covariance matrix P¢. Because of the use of the error propagation, the nor-
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malized binormal vectors, which have lower single qualities, also have a larger
unsure area. It is possible to obtain the corners of the discovered partial areas by
using the binormal vectors at the end of the cluster search. With a simple plausibil-
ity test it can be ensured that only corners are aggregated to a polygon that are also
associated in the original image data. Therefore, a threshold is used that determines
the maximum allowable distance between corners. The distance should not be
exceeded. It is now assumed that a plane partial polygon consists of n corners. The
mean value of a binormal vector can be computed by the addition of the particular
cluster’s binormals:

d̂d ¼
Pn�1

i¼2

di . (5.20)

The mean binormal d̂d is a good approximation of a normal vector belonging to
the plane primitive area. The precision of the examined binormal can be obtained
from the covariance matrices in connection with the error-propagation calculation.
Then the pseudo-B-rep representation can be constructed. The m plane partial con-
tours BCj , j ¼ 1; 2; . . . ;m, are now represented in a contour-centered coordinate sys-
tem XBCj

:

COj ¼ ðx
kj
; y

kj
; z

kj
; 1Þ

BCj

����k ¼ 1; 2; . . . ; nj

� �
with z

kj
BCj
¼ 0; j ¼ 1; 2; . . . ;m:

(5.21)

The transformation matrix HBCj ;C
shows the relations between the contour-cen-

tered coordinate system XBCj
and the camera-centered coordinate system XC:

ðx
kj
; y

kj
; z

kj Þ
C
¼ HBCj ;C

� ðx
kj
; y

kj
; z

kj Þ
BCj

. (5.22)

The position of the coordinate system XBCj
is determined arbitrarily, but the ori-

gin must be in the first corner ðx
1j
; y

1j
; z

1j Þ
C

of the plane partial polygon Bj (I). The
ZC -axis must be parallel to the direction of the mean binormal d̂d

j
C (II) and the XC-

axis must be parallel to the XC � YC plane of the camera coordinate system (III).
The transformation matrix HBCj ;C

can be considered as the composition of column
vectors in camera coordinates:

HBCj ;C
¼ ðeC

x ; e
C
y ; e

C
z ; s

CÞ. (5.23)

Conditions I and II provide the following equations for the translation vector sC

and the direction vector e
C
z of the ZC-axis:

sC ¼ x
1j
C and e

C
z ¼

d̂dj
C

d̂d
j
C

���
���
. (5.24)

The direction vectors of the XC and YC axes can be calculated by using condition
III:

e
C
x � eC

z ¼ e
C
x �

d̂d
j
C

d̂dj
C

���
���
¼ 0 and e

C
y ¼ e

C
z · e

C
x ¼

d̂d
j
C

d̂dj
C

���
���
· e

C
x . (5.25)
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5.7
Three-dimensional Reconstruction with Alternative Approaches

5.7.1
Partial Depth Reconstruction

Only the relevant part of the observed scene is reconstructed in active vision to solve
a specific task. An analogous strategy is followed for depth reconstruction. It is only
that part of a reconstructed three-dimensional scene that is relevant to the specific
problem. The strategy is called partial depth reconstruction. Depth reconstruction is
necessary for object recognition, navigation, and manipulation. The depth informa-
tion supports collision avoidance during the navigation and manipulation. Many
objects have different appearances if they are viewed from different angles. In this
case a reliable recognition is possible if the depth reconstruction of a three-dimen-
sional object is available. If the system is equipped with knowledge about the scene,
a lower level of reconstruction can be sufficient. The lower that knowledge is the
more helpful, in general, can be the partial depth reconstruction that provides infor-
mation for problem solving. It is also possible to use a special kind of illumination
for the scene. Images that show the illuminated scene can then be analyzed. The
light-section method uses a projector and a camera for depth reconstruction. The
projector beams a line into the scene. The line is observed by the camera from a
slightly displaced position. Because the positions of camera and projector are
known, it is possible to calculate the depth information. A more precise depth recon-
struction can be executed with a sophisticated approach that is called �structured
light’. The projector radiates vertical black and white light beams to an image
sequence in this approach. The number of radiated light beams is doubled in suc-
cessive images. The technique is more precise than the simpler light-section
approach and requires a very precisely calibrated camera and projector. The simple
approach is depth estimate from focusing that uses one rigid camera. If the focal
length of the camera is variable, it is possible to take several images by differently
adjusted focal lengths. It is possible to determine the distance for those pixels that
are sharp in the respective image when the camera is calibrated suitably with regard
to the relation between distance and focal length. The examination of the sharp pix-
els is difficult. The approaches that belong to the category �relative depth’ allow only
the examination of relative relationships between objects in the depth. The approach
�occlusion analysis’ ascertains only if an object is behind or in front of another object
from the viewpoint of the observer. This can be discovered by using the statement
that only an object that is nearer to the observer can occlude further remote objects.
Some approaches provide only information about the form of an object, but no esti-
mate for the depth like approach �form reconstruction from shading or texture’ [60].

Approach is now considered in more detail that belongs to the light-section meth-
ods.
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5.7.2
Three-dimensional Reconstruction with Edge Gradients

The approach of Winkelbach and Wahl [95] is explained in this chapter. It needs a
camera and two light stripe projections to reconstruct freeform. Two-dimensional
gradient directions for reconstruction and generated surface normals are used. It is
possible to apply this approach without calibration. The gradient directions are used
to process the stripe angles in a two-dimensional stripe image as well as to obtain
surface normals and ranges. To gain the local surface normal, it is necessary to take
two images with rotated stripes with regard to both images. The reconstruction con-
sists of two parts:

Part 1:
Two gray images are taken. Each image is illuminated with a different stripe pro-

jection with respect to the stripe orientation. A preprocessing is possibly necessary
to eliminate disturbing information like texture or shading. A gradient operator is
used to measure the local angles of stripe edges. Two-angle images are now avail-
able. But faulty angles and outliers remain.

Part 2:
The local surface slant (surface normal) is calculated with two stripe angles, which

appear at the particular image pixel. The surface normals are used for the three-
dimensional reconstruction of the object.

These steps in the reconstruction procedure are now considered in more detail.
The preprocessing of a textured object is shown in Figure 39.

A textured object that was illuminated with stripes is shown in (a). The object is
shown in (b) with ambient light. The image below left (c) shows the object with pro-
jector illumination. The difference between (a) and (b) can be seen in (d) and the
difference between (b) and (c) in (e). Now the normalized stripe image can be found
in (f) and in (g) the binary mask. The aim is the segmentation of the stripes in gray
images. Therefore, gradient operators were used. Several operators like Sobel and
Canny were evaluated to obtain an appropriate operator for the stripe-angle determi-
nation. This depends on the form of the object to be analyzed. Disturbed angles can
be detected, because they appear mainly in homogeneous areas, where the gradient
values are low. These angles are exchanged with interpolated data based on the
neighborhood. Two strategies were used for the computation of the surface normals.
The first strategy is a precise mathematical approach. The camera and the projectors
are calibrated. The second strategy projects two stripe angles to one surface normal
with a look-up table. The mathematical approach needs two angles H1 and H2 of
the two rotated stripe projections and additionally the two-dimensional image coor-
dinates ðx; yÞ1I and ðx; yÞ2I . Also, the particular normals n1 and n2 are needed, see
Figure 40.
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Figure 39 The preprocessing of a textured object [95]
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Figure 40 Stripe projection [95]

Figure 40 also depicts the tangential direction vector mi of a stripe. The vector is
orthogonal to ni and ðx; yÞiI . Then a formula is used to calculate the surface normal
g:

g ¼ ðn1 · ðx; yÞ
1

I
Þ · ðn2 · ðx; yÞ

2

I
Þ. (5.26)

The creation of a look-up table is based on stereophotometry. First, the estimation
of stripe angles is carried out. Therefore, two rotated stripe images are used as out-
lined before. Knowing the surface normals of a sphere is a prerequisite to filling the
addresses of the look-up table with H1 and H2 , whereby H1 and H2 are two angle
values at each surface point of the sphere. It is possible to compute the missing val-
ues in the table with interpolation. A surface normal can be determined with a look-
up table with respect to two stripe angles in the table.
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5.7.3
Semantic Reconstruction

A knowledge-based approach for the three-dimensional reconstruction of landscapes
in aerial images is discussed in this chapter according to [65]. Semantic reconstruc-
tion is used to improve the precision, reliability, and closeness to reality. This hap-
pens with an association between a three-dimensional model and sensor data. For
these purposes two tasks must be executed:

1. The image is segmented into regions, which can be modeled apart.
2. An appropriate surface model is selected and model parameters are deter-

mined.

To obtain the segmentation of an image in regions with smooth surfaces, it is nec-
essary to discover discontinuities. This approach uses an interpretation of the aerial
image to derive knowledge about the model geometry. This will help to detect the
discontinuities. The task of the surface model selection is supported by a priori
knowledge to choose a suitable surface model. The model parameters are deter-
mined with the measured values. A geometric model can be taken from a generic
model. The geometric model has to be chosen for a semantic object. The generic
model supports the selection of an appropriate geometric model. The reconstruction
of the three-dimensional geometry from the two-dimensional images is difficult
because of occlusions, inaccurate measured values, and poor perspectives. The pro-
jection of a three-dimensional geometry into a two-dimensional image is simpler.
So the model is projected into the image. The data are compared. The reconstruc-
tion procedure is iterative. The model parameters are modified until the projection
fits best with the data. This approach is robust against initial errors in parameter
estimation and against an inexact reconstruction procedure. Four steps are used for
the reconstruction:

1. Model selection: A semantic scene description is used to get a suitable geo-
metric surface model. The calculation of the parameters depends on the con-
ditions for the model reconstruction.

2. Model-driven prediction: It is not often possible to match model and image
directly. First, the model is decomposed. The parts are projected into the
image.

3. Comparison: The transformation of the model into hypotheses for primitives
arises with the prediction. These hypotheses can be compared with the seg-
mented image primitives.

4. Data-driven modification: The results of the matching are transferred to the
selected three-dimensional model. So a geometrical scene description is gen-
erated. The model parameters are constructed from the measured values of
the particular primitive.

Steps one to three are repeated until the reconstruction of the three-dimensional
object is completed, see Figure 41.

77



5 CAD

Examine 2d

primitives
Comparison

Hypothesis for

2d primitives

PredictionReconstruction

3d scene

description

Model

selection

Generic

model

2d Two-dimensional
3d   Three-dimensional

Legend:
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The approach combines a model-driven and a data-driven procedure. The three-
dimensional geometry of a semantic net represents the model that determines the
aim of reconstruction. The surface description is stored in the nodes of the semantic
net. An attribute calculation function is attached to the nodes. The function com-
putes the surface data from the sensor data.

5.7.3.1 Semantic Reconstruction of Buildings
Several algorithms for the reconstruction of buildings in aerial images have been
developed [96–98]. We now consider in more detail an approach that executes a
semantic reconstruction for buildings in aerial images. Therefore, a priori knowl-
edge about the buildings is used for the reconstruction. A generic model of build-
ings is used, because various forms exist. So it should be possible to reconstruct
different kinds of buildings, see Figure 42.

The semantic net in Figure 42 shows on the semantic level that buildings consist
of several building wings. The �is-a’ relationship is used to represent the different
roof shapes. The material level shows the material used for the bricks. For example,
this can be clay. The geometry level holds the geometric forms of the building wings
like a square stone. An initial model is used to reconstruct the square stones after
the adaptation of the model parameters. The sensor level in the figure shows that it
is necessary to detect a rectangle in the image that represents a square stone. Illumi-
nated building roofs can possess different brightnesses because of different slopes.
This can mean that building wings are represented by several partial rectangles,
which must be merged. The rectangle represents an image region for the square
stone with position parameters and form parameters. The fine adaptation between
the square stone and the rectangle happens by matching between the rectangle’s
contour lines and the square stone edges. The extraction of a building uses the ge-
neric building model to verify the building hypothesis by performing a model-driven
propagation to a partial rectangle. Therefore, the segmentation of rectangular
regions is necessary. Figure 43 (a) shows the result of a texture analysis.
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Figure 42 Semantic net for a building model [65]

Figure 43 Matching between image data and model data [65]
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The approximation of the detected regions with rectangles can be seen in (b). So
it is possible to derive the initial length, width, and height of a square stone by using
a depth map (c) and the size of the rectangle. Noise is visible in the depth map. This
results in rather inaccurate parameters of the square stone (d). To obtain better
results, the fine adaptation follows. The rectangle edges are compared with the
square stone edges. The hypothesis for the square stone edges is projected into the
gradient image (e). The comparison uses a similarity measure. This is the middle
intensity of the amount-gradient image’s pixels along the projected edge. Areas that
are invisible are not recognized. If A is the camera’s line of sight, then the normal
vector n of the invisible areas is turned away from A:

A n > 0. (5.27)

The adaptation of the parameter’s orientation, length, width, and height of the
square stone is then executed iteratively by adjusting the parameter’s orientation,
length, width, and height in the enumerated sequence. Now the determination of
the building type follows. The hypothesis contains a building wing with saddleback
roof. The search tree contains a scene description for a saddleback roof and a flat
roof. The comparison of the image data with the square stone edges and the ridge
results in the hypothesis saddleback roof, because the flat-roof model does not
match to the image data. The building recognition is complete if all building wings
are detected. This case is depicted in (f). The building consists of a building wing
with saddleback roof and a further wing with a flat roof.

5.7.3.2 Semantic Reconstruction of Streets and Forests
Three steps are applied for the reconstruction of streets and forests, which are illus-
trated in Figure 44. It starts with the segmentation and interpretation of an original
image (a). The result will contain the streets and forests (b). A necessary depth map
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is generated in the second step (c). The depth map shows a thin plate for continuous
regions. The last step represents the continuous regions detected in the depth map
with a net consisting of triangles (d). These three steps are shown in the sequence.

The triangle net represents differences in elevation. Two steps are needed for the
surface reconstruction:

1. The approximation of a continuous region contour with a closed polygon.
2. Every region is then filled up with triangles. The filling starts at the edge of

the region.

Figure 45 depicts the two steps.

d
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(a)

(b)

T

a m
ax

Figure 45 The filling up of regions with triangles [65]

In (a) the closed polygon is shown that approximates the region contour. (b) dem-
onstrates the filling of the region with triangles. The discontinuities in the depth
map are reflected in the triangle net. The border contour runs between the pixels of
neighboring regions, because every pixel belongs only to one region. The polygon
approximation is a recursive procedure that generates longer border polygon vectors
from shorter border contour vectors. The generation stops if the maximum allow-
able distance dmax between border polygon and border contour is achieved or if the
maximum length amax is exceeded. The parameter amax determines also the mesh
size of the triangle net. The user has the possibility to select a threshold T. The
threshold controls differences in elevation between neighboring regions. Such dif-
ferences in elevation are considered in the model if the amount of difference, which
is computed from two neighboring region heights measured at the Z-axis, exceeds
the threshold. To obtain a scene description near to reality, semantics is used. For
example, an edge of the forest can be finalized with a difference in elevation. This
technique allows a qualitatively good reconstruction also when objects are occluded
or some details are not reconstructed. For example, to get a realistic representation
of an edge of the forest, the reconstructed landscape scene can be enriched with a
grove from a graphic library.
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5.7.3.3 Texture
After the reconstruction of the geometrical surface is completed, determination of
the photometry data is carried out. The aim is the modeling of the surface for the
visualization. Therefore, the sensor image is projected as color texture onto the
reconstructed surface. Matching between triangle and image cut is determined by a
projection between two-dimensional image coordinates and the corresponding
three-dimensional edge points of the triangle [65].

By using the ray theorem, it is possible to calculate that position in the image
plane where the image plane is intersected from A. The ray theorem determines the
length relations from the scalar product of the line of sight with the camera axes
[65]:

pS ¼
1

ðX�FÞT �zC

�
ðX � FÞT � c

gx
xC

ðX � FÞT � c
gy

yC

0
BB@

1
CCAþ h. (5.28)

The parameters pS and h are measured in pixels, gx and gy in mm/pixel, and X
and F in m. xC, yC , and zC are without units.

The reconstruction of a scene point X from a pixel ðx; yÞ
S

uses a stereo approach.
The line of sight A belonging to the pixel ðx; yÞ

S
is defined as the unit vector [65]:

Aðx;yÞ
S
¼ c�zCþgx �xS �xCþgy �yS �yC

c�zCþgx �xS �xCþgy �yS �yC

�� ��. (5.29)

It is necessary to know the distance d between the scene point X and the projec-
tion center F. Stereotriangulation is executed with two aerial images to determine d
[65]. The two aerial images, which are necessary for the triangulation, have an over-
lap of 60 %. The position of the corresponding pixels in the two images can be calcu-
lated if the orientation of the camera is known at the recording time. The orientation
data ðF; zC ;H; LÞL , ðF; zC ;H; LÞR of the two recordings are examined with registra-
tion. So the scene point X is processed from the intersection of the lines of sight AL

and AR belonging to pixels pL and pR . The camera registration is inaccurate. This
means that in many cases the two lines of sight will not intersect. Therefore, a mini-
mal distance jd¢j between both warped lines is required [65]:

X ¼ FL þ dL � AL ¼ FR þ dR � AR þ d¢ (5.30)

with an additional condition: A
T
L � d¢ ¼ A

T
R � d¢ ¼ 0. (5.31)

The multiplication of this formula by A
T
L and A

T
R , respectively, provides two scalar

equations that can be resolved to dL [65]:

dL ¼
ðFL�FRÞ

T �ðAT
L �A

2
R�ALÞ

1�ðAT
L �ARÞ

. (5.32)
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5.7.4
Mark-based Procedure

Mark-based procedures enable processing of the object position without using infor-
mation about the camera’s position and the alterations in images, which result from
the alteration of the camera position. The examination of the object position and the
orientation occurs by using knowledge about the object, which must be known addi-
tionally for the computation if the camera position is not known. Mark-based proce-
dures use features of rotation bodies like spheres and cylinders. They also use line
features, for example, of circular discs. Point features are also used. If point features
are used, three points at least are necessary to explore the position and orientation
of an object. These three points form a triangle. If the form and the size of the trian-
gle are known, the object’s position and orientation can be computed. Lang gives an
introduction into mark-based procedures and explains some methods. The elucida-
tions are summarized in the next sections [33].

5.7.4.1 Four-point Procedure
The four-point procedure is a mark-based procedure that uses four points
Xk; k ¼ 1; :::; 4; for the determination of the object position. Distance
dij; i; j ¼ 1; :::; 4; between two points Xi and Xj, which are mounted on the object,
is known for every point pair. So it is possible to compute the object position. There-
fore, the distance between the points that are projected onto the camera sensor is
taken. The approach consists of two steps. In the first step the position of the four
points is determined in relation to the camera coordinates. In the second step a
transformation matrix between the object coordinate system and the camera coordi-
nate system is calculated, see Figure 46.

The calculation of the camera coordinates uses volume computation of tetrahedra.
A tetrahedron is a pyramid with a triangular base. The computation of the tetrahe-
dra takes place by connecting the four points X1, X2, X3, and X4 of the real object and
the origin of the camera coordinate system XC. The base of the rectangle is divided
into four triangles to get four tetrahedra with respect to the camera coordinate ori-
gin. Similarly it is possible to determine four tetrahedra between the origin of the
camera coordinate system and the camera sensor. The object points’ camera coordi-
nates can now be determined with the edge lengths of the tetrahedra.
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Figure 46 Building of a tetrahedron [33]

5.7.4.2 Distance Estimation
Simple approaches for distance estimation between the camera and the object exist.
A surface feature is necessary for the distance estimation. Here, this is the object
size. The distance estimation uses the fact that an object that is nearer to the camera
appears larger in the image than an object that is more remote. Of course, this is
only a heuristic method, because the object size in the image depends also on the
angle from which the image is taken. If the camera takes an image from a more
skewed perspective with regard to the object, the computed values are rather inaccu-
rate. To determine the object size in the image, it is possible to use an approach
based on mark points that are attached to the object. Distances between the mark
points in the image are used to calculate the object size. For example, if four mark
points pi, i ¼ 1; 2; 3; 4, of different sizes are used, all these four points should be
visible in the image to get a good approximation of the real object size. The actual
object size J can be calculated with the following formula if four mark points are
used:

J ¼ d12þd34

2
� d24þd31

2
. (5.33)

d12 , d24 , d34 , and d31 are distances between the mark points. For example, d12 rep-
resents the distance between mark points p1 and p2 . The approach requires that the
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four mark points represent the corners of a rectangle. Point p1 should represent the
upper-left corner, p2 the upper-right corner, p3 the lower-left corner, and p4 the
lower-right corner. The rectangle’s border has to be generated by the distances. The
mark points’ plane must be orthogonal to the principal axis. If these restrictions are
not met, approximate values for the object size only can be computed. It is also nec-
essary that the used mark points differ in size. The computation of the actual object
size using camera coordinates proceeds as follows:

J ¼ 4�xC �yC

ðzCÞ
2 � ðbÞ

2
. (5.34)

The estimation of the object distance between the camera and the object is per-
formed by comparison between the actual object size J and the object size J¢. The
object size J¢ is trained in a teaching process and can be processed with the follow-
ing formula:

J¢¼ 4�xC �yC

ðzC¢ Þ
2 � ðb¢Þ

2
. (5.35)

The focal length of the camera during the teaching phase is denoted by b¢. zC¢ is
the distance of the object during the teaching process. To determine the distance
between the actual object and the camera, the following formula must be used:

zC ¼
b
b¢
�
ffiffiffiffiffi
J¢
J

r
� zC¢. (5.36)

To obtain the distance zC¢ of the teaching process, measurements can be executed
in advance. J¢ can be computed by using the mark-point coordinates in the teaching
process. A further approach uses the real object size Jreal

to calculate the distance
between the camera and the object. Mark points can also be used here. The actual
object size can be determined with the following formula:

J ¼ Jreal

ðzCÞ2
� b2

: (5.37)

The resolution of the formula to zC yields the distance:

zC ¼
ffiffiffiffiffiffiffiffiffi
Jreal

J

r
� b: (5.38)
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Stereo vision is based on the human visual apparatus that uses two eyes to gain
depth information. Stereo vision produces a doubling of the processing time in com-
parison to a monocular visual apparatus, because two images must be analyzed.
Therefore, it is recommended to implement stereo approaches with parallel algo-
rithms. For example, parallelism can be realized with threads. Threads are objects
that can be executed in parallel. Therefore, every camera can be represented in a
software program by one object running as a thread. If such a software program
uses a single processor machine, quasiparallelism is realized, because the threads
have to share the single processor. This can happen by the alternating use of the
processor, but the realized execution sequence of the threads depends strongly on
the threads’ priority. The programmer can determine the priority as a function of
the used thread library. Real parallelism can be realized if a multiprocessor machine
is used. For example, if two threads are running on a double-processor machine,
whereby every thread represents a camera, it is possible that both threads use a dif-
ferent processor during the program execution.

The textbook of Sonka, Hlavac, and Boyle gives an introduction to stereo vision
with its geometrical relationships, which result from the particular configuration of
the cameras. It explains the projection of points from three-dimensional space into
two-dimensional space. Applications with moving cameras are considered. The
three-dimensional reconstruction with two or more cameras of a scene point from
two-dimensional image data is illustrated. The book also discusses the finding of
corresponding pixels in different images. These subjects are summarized in the
next sections [63].

6.1
Stereo Geometry

To obtain the depth information by the use of at least two cameras, it is necessary to
have some data about the geometry of the cameras used, see Figure 47.

6

Stereo Vision

Robot Vision: Video-based Indoor Exploration with Autonomous and Mobile Robots. Stefan Florczyk
Copyright � 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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6 Stereo Vision

X

F F'

u u'
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e e'

Figure 47 Geometry in stereo vision [63]

The first step in stereo vision is the calibration of the cameras to determine each
camera’s line of sight. To get depth information in stereo vision, it is required that
two lines of sight intersect in the scene point X for which the depth information is
to be processed. The last step in stereo vision is the examination of three-dimen-
sional coordinates belonging to the observed scene point. Figure 47 shows the ge-
ometry of a stereo-vision system. The two optical centers F and F¢ are associated
with a baseline. The lines of sight belonging to F and F¢ intersect at the point X and
generate a triangular plane that intersects every image plane in epipolar lines g and
g¢. The projections u and u¢, respectively, of the scene point X can be found on these
two lines. All possible positions of X lie on the line FX for the left image and on the
line F¢X for the right image. This is reflected in the left camera’s image plane for
F¢X by the line g and in the right camera’s image plane for the line F¢X by the line
g¢. The epipoles e and e¢ also lie on the lines g and g¢ that are intersected by the base-
line. These geometric relations can be used to reduce the search dimension from
two dimensions to one dimension.

F

F'

e

e'

∞

∞

Figure 48 Canonical stereo configuration [99]

Figure 48 shows the simple stereo configuration that is called canonical. The
baseline matches to the horizontal coordinate axis. The two cameras’ lines of sight
are parallel. The configuration has the consequence that the two epipoles e and e¢
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6.1 Stereo Geometry

are infinite. The epipolar lines run horizontally. This configuration is used in a man-
ual method operated by a human. The human analyses the horizontal lines in the
image to find matching scene points. The conclusion for the development of an
automated procedure is that matching points can be found by the examination of
horizontal lines rather than by analyzing arbitrary lines. With image rectification a
general stereo approach with nonparallel epipolar lines can be turned into a canoni-
cal stereo configuration by using appropriate formulas. The use of formulas for rec-
tification requires resampling that decreases the resolution of images. Therefore, if
a vision-based application needs high-resolution images, a general stereo approach
should be used. Figure 49 shows the canonical stereo configuration.

F
L

F
R

b

d d

X (x,y,z)
C

u
L

u
R

x
C
 = 00

LI
=x 0

RI
=x Figure 49 Stereo geometry in canonical configuration [63]

It can be seen in the figure that the principal axes of the two cameras are parallel.
The two cameras have the distance of 2d between them. uL and uR are the projec-
tions of the point X onto the particular camera’s image plane. zC represents the dis-
tance between the camera and the scene point. The horizontal distance is represent-
ed by xC. yC is not illustrated in Figure 49. Coordinate systems XIL and XIR exist for
every image plane. XIL represents the image plane of the camera on the left-hand
side and XIR the image plane on the right-hand side. There is an inequality between
XIL and XIR resulting from different camera positions. The value for zC can be deter-
mined with base geometric processing. uL, FL and FL, X are hypotenuses of orthogo-
nal triangles that look very similar. d and b are positive numbers, zC is a positive
coordinate. xC, uL, and uR are coordinates with positive or negative values. These
considerations result in the following formula for the left-hand side:

uL

b
¼ � dþxC

zC
. (6.1)
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The formula for the right-hand side is very similar:

uR

b
¼ d�xC

zC
. (6.2)

Now xC will be eliminated from the equations:

zCðuR � uLÞ ¼ 2db. (6.3)

and resolved to zC:

zC ¼
2db

uR�uL
. (6.4)

6.2
The Projection of the Scene Point

Until now it was necessary to have a camera configuration with two parallel princi-
pal axes. This restriction will be given up in next approach. The translation vector s
is used to transform between the left camera center F and the right camera center
F¢. This affects a mapping between the coordinate system belonging to the camera
on the left-hand side and the other coordinate system on the right-hand side. Addi-
tionally, the rotation matrix T is necessary to calculate the projection. The center F
is the origin in the left coordinate system. The calibration matrices W and W ¢ of the
left and right cameras are needed to apply the following formula:

~uu ¼
xA
yA
zA

2
4

3
5 ¼ ½WTj �WTs� X

1

� �
¼ D

X
1

� �
¼ D~XX . (6.5)

The calibration matrix describes the technical parameters of the camera. The cali-
bration matrix does not collect external parameters, which depend on the orientation
of the camera. The external parameters are registered with the rotation matrix T and
translation vector s. The determination of the camera calibration matrix is described
in Chapter 7.

The scene point X is expressed in homogeneous coordinates ~XX ¼ ½X ; 1� in this for-
mula. This holds also for the projected point ~uu ¼ ½xA; yA; zA�T that has the two-
dimensional Euclidean equivalent u ¼ ½xA; yA�T ¼ ½xA=zA; yA=zA�T. So it is possible
to write ~uu by using a 3 � 4 matrix. A 3 � 3 submatrix on the left-hand side of the 3 � 4
matrix describes a rotation. The remaining column on the right-hand side repre-
sents a translation. A vertical line denotes this. D is the projection matrix, also
known as the camera matrix. If the projection of the camera from three-dimensional
space into a two-dimensional plane is expressed in a simple manner, the following
projection matrix may be sufficient:

D ¼
1 0 0 0
0 1 0 0
0 0 1 0

2
4

3
5. (6.6)
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6.2 The Projection of the Scene Point

With this projection matrix only a very abstract model can be expressed without
consideration of any camera parameters of the used camera. This simple matrix
belongs to the normalized camera coordinate system. As noted before, Equation
(6.5) can now be used to derive the left and right projections u and u¢ of the scene
point X :

u @ W j0½ � X
1

� �
¼ WX , (6.7)

u¢ @ W ¢Tj �W ¢Ts½ � X
1

� �
¼ W ¢ðTX � TsÞ ¼ W ¢X ¢. (6.8)

The symbol @ in the formula represents a projection up to an unknown scale. In
the following the subscripts R and L are used to denote the difference between left
camera’s view and the right camera’s view. The symbol � denotes the vector product.
Now the coordinate rotation for right and left scene points is be given by:

XR¢ ¼ T XL¢ and XL¢ ¼ T
�1

XR¢ . (6.9)

It is valid that the vectors X , X ¢, and s are coplanar. This is described with the
following formula:

X
T
L ðs · XL¢Þ ¼ 0. (6.10)

If equations XL ¼ W�1u, XR¢ ¼ ðW ¢Þ�1u¢, and XL¢ ¼ T�1ðW ¢Þ�1u¢ are substituted,
the next formula results:

ðW�1
uÞTðs · T

�1ðW ¢Þ�1
u¢Þ ¼ 0. (6.11)

Now the vector product is replaced by matrix multiplication. Let s ¼ sx; sy; sz½ �T
be the translation vector. A skew symmetric matrix WðsÞ is generated with the trans-
lation vector [100]:

WðsÞ ¼
0 �sz sy

sz 0 �sx

�sy sx 0

2
4

3
5. (6.12)

Whereby a matrix W is skew symmetric if WT ¼ �W . s „ 0 must be fulfilled.
Rank ðWÞ symbolizes the number of linearly independent lines in W. Rank
ðWÞ ¼ 2 holds if and only if s „ 0. The next equation shows the displacement of a
vector product by the multiplication of two matrices. M is any regular matrix:

s · M ¼ WðsÞ M. (6.13)

Knowing this, the formula (6.11) can be rewritten in the following manner:

ðW�1
uÞTðWðsÞT�1ðW ¢Þ�1u¢Þ ¼ 0. (6.14)
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6 Stereo Vision

Now, additional rearrangements are applied:

u
TðW�1ÞT WðsÞT�1ðW ¢Þ�1

u¢ ¼ 0. (6.15)

The formula results in the fundamental matrix B that represents the middle part
of the previous formula:

B ¼ ðW�1ÞT WðsÞT�1ðW ¢Þ�1
. (6.16)

In the end B is inserted into the formula (6.15):

u
T

B u¢ ¼ 0. (6.17)

This is the bilinear relation also known as the Longuet–Higgins equation.

6.3
The Relative Motion of the Camera

We now consider moving cameras in space by known calibration matrices W and W ¢
that are used for the normalization of measurements in both images. Let u

^
and u

^¢
be the normalized measurements:

u
^ ¼ W

�1
u, u

^¢ ¼ ðW ¢Þ�1
u¢. (6.18)

These formulas can be inserted into (6.15):

u
^T

WðsÞT�1
u
^¢ ¼ 0. (6.19)

Now a term in the formula is substituted by E ¼ WðsÞT�1. E is the essential
matrix:

u
^T

E u
^¢ ¼ 0. (6.20)

Also a bilinear relation originates in the case of stereo vision with nonparallel
axes. E contains the information about the calibrated camera’s relative motion from
a first to a second point. E can be estimated using image measurements. The prop-
erties of E are now listed:

1. E has rank 2.
2. s¢ ¼ Ts. Then Es¢ = 0 and sTE = 0, whereby s is the translation vector.
3. It is possible to decompose E into E ¼ M ZNT for a diagonal matrix Z with

SVD (singular-value decomposition):

Z ¼
c 0 0
0 c 0
0 0 0

2
4

3
5. (6.21)

Z ¼ diag½c; c; 0�, whereby diag½c1; c2; . . .� is a diagonal matrix with diagonal
c1; c2; . . . .
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6.4 The Estimation of the Fundamental Matrix B

It is now presumed that the matrix E has been guessed, and rotation T and trans-
lation s between the two views is examined. As shown before, the essential matrix E
is the product of WðsÞ and T�1. The next formula shows therefore Equation (6.19)
for the left and right views:

u
^T

WðsÞT�1
u
^¢ ¼ 0, u

^¢T TWðsÞu^ ¼ 0. (6.22)

The equation E ¼ TWðsÞ is also valid. To apply SVD for decomposition, the next
two matrices are necessary [100]:

M ¼
0 1 0
�1 0 0
0 0 1

2
4

3
5, Z ¼

0 �1 0
1 0 0
0 0 0

2
4

3
5. (6.23)

Using the matrix M for SVD provides the following equations for the rotation
matrix T :

T ¼ IMN
T

or T ¼ IM
T

N
T
. (6.24)

SVD can also be used to obtain the components of the translation vector from the
matrix WðsÞ by using the matrix Z [100]:

WðsÞ ¼ NZN
T

. (6.25)

6.4
The Estimation of the Fundamental Matrix B

The fundamental matrix has some properties that will be mentioned here:

. As noted before, the essential matrix E has rank two. Inserting E into Equa-
tion (6.16) provides B ¼ ðW�1ÞTEðWÞ�1. The fundamental matrix B then
also has rank two if the calibration matrices are regular.

F F'

u u'

e e'

T, τ

Ψ Ψ '

X

Figure 50 Epipoles e and e¢ in left and right image [63]
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. Figure 50 shows a left and a right image with the particular epipoles e and e¢.
For these epipoles the following holds:

e
T

B ¼ 0 and B e¢ = 0. (6.26)

. SVD can also be applied to the fundamental matrix B ¼M ZNT:

Z ¼
c1 0 0
0 c2 0
0 0 0

2
4

3
5, c1 „ c2 „ 0. (6.27)

Seven corresponding points in the left and the right image are sufficient for esti-
mation of the fundamental matrix B with a nonlinear algorithm. But this algorithm
is numerically unstable. A long runtime can be needed for the computation of a
result [101]. An eight-point algorithm needs at least eight noncoplanar correspond-
ing points and works with a linear algorithm that warrants a suitable processing
time. Using more than eight points has the advantage that the processing is robust
against noise. To guarantee an appropriate runtime it is recommended to perform
normalizations of values, for example, for translation and scaling. The equation for
the fundamental matrix B is now written with subscript A that refers to the image
affine coordinate system as introduced before:

u
T
Ai

uAi
¢ ¼ 0, i ¼ 1; 2; . . . ; 8. (6.28)

An image vector in homogeneous coordinates can be written in the manner
uT ¼ ½xAi

; yAi
; 1�. Eight unknowns must be determined in the 3 � 3 fundamental

matrix B. Eight matrix equations can be constructed by using the eight known corre-
spondence points:

½xAi
; yAi

; 1� B
xAi
¢

yAi
¢

1

2
4

3
5 ¼ 0. (6.29)

Now rewriting the fundamental matrix’s elements as a column vector with nine
elements creates linear equations mT ¼ ½w11; w12; . . . ;w33�:

xAi
xAi
¢ xAi

yAi
¢ xAi

yAi
xAi
¢ yAi

yAi
¢ yAi

xAi
¢ yAi

¢ 1

..

.

w11
w12

..

.

w33

2
6664

3
7775 ¼ 0. (6.30)

M symbolizes the matrix on the left-hand side:

Mm ¼ 0. (6.31)
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6.5 Image Rectification

Assuming that a favored case with no noise is to be handled, M has rank eight.
Using data from real measurements we can construct an overdetermined system of
linear equations that can be solved with the least-squares method. But the estima-
tion of the fundamental matrix B can be erroneous if mismatches exist between cor-
responding points.

f

f

Legend:

Two corresponding pixel
Correct match

f Mismatch

Left image Right image

Figure 51 Mismatches between corresponding points [63]

Figure 51 shows two images with pixel grids. The contour of a chair can be
viewed in both images. Two pixels in both images, which are part of a backrest, have
been matched correctly in contrast to four pixels occurring in both chair legs.

The mismatch of pixels requires the elimination of the faulty matches. This can
be executed by using the least median of squares:

min
m
ðmT

M
T

MmÞ ! min
m
½medianð Mmk k2Þ�. (6.32)

As mentioned before, the fundamental matrix B is of rank two. Equation (6.31)
does not always provide a matrix of rank two. Therefore, B is changed to B̂B.
The matrix B̂B minimizes the Frobenius norm B� B̂B

�� ��. To process B̂B, SVD can
be applied to decompose B ¼ MZNT, Z ¼ diag½c1; c2; c3�, c1 ‡ c2 ‡ c3. Now
B̂B ¼ M diag½c1; c2; 0�NT is obtained.

6.5
Image Rectification

Epipolar lines can be used to find corresponding points in stereo vision. Often epi-
polar lines will not be parallel in both images, because the principal axes of the cam-
eras used are not also parallel. It is possible to apply an adjustment to obtain parallel
optical lines. This strategy has the advantage that parallel epipolar lines support the
search for corresponding points in a better way. The correction is obtained by the
recalculation of image coordinates [102].
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X

F F'

Figure 52 Rectified images to support the matching process [102]

In Figure 52 the images before the recalculation are represented with frames,
which are cyclically interrupted by two dots. The optical centers of the images are F
and F. The dashed epipolar lines belonging to these images are not parallel, in con-
trast to the lines, which are recurrently interrupted by a dot also representing epipo-
lar lines, but belong to the two images represented by solid frames, which are the
recalculated images after the adjustment. The adjusted coordinates are now symbo-
lized by u

^
. For the adjustment two 3 � 3 transformation matrices are searched for to

fulfill two equations: u
^ ¼ M u and u

^¢ ¼ N u¢. As shown before, the epipoles of the
adjusted images now move to infinity. The values for the matrices M and N must be
determined. The adjustment performed with matrices M and N will not alter the
two principal axes. This simplifies the search, because constraints diminish the
number of unknowns. Here are formulas for the image coordinates after adjust-
ment [102]:

u
^ ¼

xA
yA
zA

2
4

3
5 ¼ M

xA
yA

1

2
4

3
5, u

^¢ ¼
xA¢
yA¢
zA¢

2
4

3
5 ¼ N

xA¢
yA¢
1

2
4

3
5. (6.33)

The calculation of the matrices M and N can be executed by the use of projection
matrix D described in formula (7.1). Because there are two images, two projection
matrices D and D¢ exist before recalculation is performed. The three rows of the
3 � 3 submatrix on the left-hand side from D are symbolized by m1, m2, and m3. Analo-
gously the symbols for the submatrix of D belonging to the image on the right-hand
side are m1¢, m2¢, and m3¢. The coordinates of the two optical centers are denoted by F
and F¢. Now the two matrices M and N are written as [102]:

M ¼
ððF·F¢Þ·FÞT

ðF·F¢ÞT

ððF � F¢Þ·ðF·F¢ÞÞT

2
64

3
75 m2 · m3 ; m3 · m1 ; m1 · m2½ �, (6.34)
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N ¼
ððF·F¢Þ·F¢ÞT

ðF·F¢ÞT

ððF � F¢Þ·ðF·F¢ÞÞT

2
64

3
75 m2¢ · m3¢; m3¢ · m1¢; m1¢ · m2¢½ �. (6.35)

6.6
Ego-motion Estimation

We now consider the case when a calibrated camera is moved, but the ego-motion of
the camera is unknown. So the movement can be described by rotation T and trans-
lation s. These values must be examined from corresponding pixels in two images.
These pixels will be denoted by ui and ui¢. An algorithm for the determination of the
parameters s and T is now given[63, 100]:

1. A fundamental matrix must be derived. So corresponding points u
i

and u
i
¢

have to be examined.
2. Normalization can be helpful to diminish numerical errors.

u
^ ¼ M1u, u

^¢ ¼ M2u¢, (6.36)

M1 ¼
c1 0 c3
0 c2 c4
0 0 1

2
4

3
5, M2 ¼

c1¢ 0 c3¢
0 c2¢ c4¢
0 0 1

2
4

3
5. (6.37)

3. Now the fundamental matrix B̂B must be estimated as explained in Section
6.4.

4. It is now possible to determine the essential matrix ÊE, because the calibration
matrices W and W ¢ are known:

ÊE ¼ W
T

B̂B W ¢. (6.38)

5. The parameters T and s can be calculated with SVD by using the essential
matrix ÊE:

ÊE ¼ M Z N
T

, Z ¼
c1† 0 0
0 c2† 0
0 0 c3†

2
4

3
5. (6.39)

As shown before, the diagonal matrix Z should have two equal values, and the
remaining coefficients are zero. But because of numerical errors two different values
in Z are expected. To obtain an appropriate adaptation of Z, c3 should be set to zero
and the arithmetic mean of c1 and c2 should be used:
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E ¼ M

c1†þc2†
2

0 0

0
c1†þc2†

2
0

0 0 0

2
66664

3
77775

N
T

. (6.40)

Finally, the determination of T and s by the decomposition of E is carried out as
shown in Section 6.3.

6.7
Three-dimensional Reconstruction by Known Internal Parameters

We now consider the case when the accompanying three-dimensional coordinates of
a scene point X are estimated from two corresponding pixels u and u¢. But only the
internal parameters of the two cameras are known. This means that the calibration
matrices W and W ¢ are known, but no knowledge about the external parameters
exists. The formulas for u and u¢ are:

u @ ½W j0� X , u¢ @ ½W ¢Tj �W ¢Ts� X . (6.41)

The algorithm for this problem can be applied in four steps:

1. Search for analogies,
2. The essential matrix E has to be computed,
3. Rotation T and translation s are derived from the essential matrix E,
4. X must be calculated by using Equations (6.41).

It is not possible to get a full Euclidean reconstruction with this approach because
of the lack of information about the distance between the cameras. Only a similarity
reconstruction is available.

6.8
Three-dimensional Reconstruction by Unknown Internal and External Parameters

6.8.1
Three-dimensional Reconstruction with Two Uncalibrated Cameras

It is now assumed that no information exists about the internal and external param-
eters of the camera. Hence, both cameras are uncalibrated. No information about
the camera position and the focal length used is given. The projection matrix D is
used to express the first camera’s perspective. The matrix is composed of three row
vectors mT

1 ; m
T
2 ; m

T
3 as shown in Equation (6.5). Apostrophes are used for the second

camera:
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First image: u ¼
xA
yA
zA

2
4

3
5@D X ¼

m
T
1

m
T
2

m
T
3

2
64

3
75 X , (6.42)

Second image: u¢ ¼
xA¢
yA¢
zA¢

2
4

3
5 @D¢ X ¼

m¢T1
m¢T2
m¢T3

2
64

3
75 X . (6.43)

No information about scaling is given. Therefore, this factor must be eliminated
from D by the consideration of the following relations:

xA : yA : zA¼ m
T
1 X : m

T
2 X : m

T
3 X , (6.44)

xA¢ : yA¢ : zA¢ ¼ m¢T1 X : m¢T2 X : m¢T3 X . (6.45)

Hence, the following equations can be written:

xA m
T
2 X ¼ yA m

T
1 X

xA m
T
3 X ¼ zAm

T
1 X

y
A

m
T
3 X ¼ zA m

T
2 X

,

xA¢m¢
T
2 X ¼ yA¢m¢

T
1 X

xA¢m¢
T
3 X ¼ zA¢m¢

T
1 X

yA¢m¢
T
3 X ¼ zA¢m¢

T
2 X

. (6.46)

Now the matrix notation of Equation (6.46) for the first camera follows. The
matrix for the second camera can be written analogously by using apostrophes:

xAm
T
2 � yA m

T
1

xA m
T
3 � zA m

T
1

yAm
T
3 � zAm

T
2

2
64

3
75 X ¼ 0. (6.47)

The first and second rows of the matrix are multiplied by zA and �yA, respectively,
and then added. This is expressed in the next equation:

ðxAzAm
T
2 � yA zA m

T
1 � xAyA m

T
3 þ yA zA m

T
1 ÞX ¼ ðxAzAm

T
2 � xA y

A
m

T
3 ÞX ¼ 0. (6.48)

The next equation is constructed by the extraction of the third row from the
matrix (6.47):

ð�zA m
T
2 þ yAm

T
3 ÞX ¼ 0. (6.49)

Formulas (6.48) and (6.49) are linearly dependent. This holds also for the second
camera. Therefore, it is sufficient to use only two equations. Equations two and
three are used in the next formula:

99



6 Stereo Vision

ðxAm
T
3 � zAm

T
1 Þ X ¼ 0

ðyA m
T
3 � zAm

T
2 Þ X ¼ 0

,
ðxA¢m¢

T
3 � zA¢m¢

T
1 ÞX ¼ 0

ðyA¢m¢
T
3 � zA¢m

T
2 ÞX ¼ 0

.
(6.50)

The equations are now summarized in a matrix:

xAm
T
3 � zAm

T
1

yA m
T
3 � zA m

T
2

xA¢m¢
T
3 � zA¢m¢

T
1

yA¢m¢
T
3 � zA¢m¢

T
2

2
66664

3
77775

X ¼ M X ¼ 0. (6.51)

M is of size 4· 4 and X of size 4 · 1. To find a nontrivial solution for Equation
(6.51), the case detðMÞ ¼ 0 is examined. This holds if the matrix has rank 3 pro-
vided that both pixels u and u¢ are indeed matching pixels. The further procedure
depends now on the actual knowledge about the cameras. When the cameras are
calibrated the known parameters are summarized in matrix M. D and D¢ are known
just as u and u¢. So Equation (6.51) can be resolved. The other case considers uncali-
brated cameras. In this case the examined three-dimensional point ~XX differs from
the Euclidean reconstruction. The difference is expressed in an unknown matrix N
that provides a projective transformation from X to ~XX :

~XX ¼ NX . (6.52)

The dimension of the matrix N is 4· 4. N is always the same for all scene points.
N changes if the camera position or the camera calibration changes:

u ¼
xA
yA
zA

2
4

3
5 @DX ¼ DN

�1
NX ¼ ~DD~XX , (6.53)

u¢ ¼
xA¢
yA¢
zA¢

2
4

3
5 @D¢X ¼ D¢N�1

NX ¼ ~DD¢~XX . (6.54)

The formula shows that DX and ~DD~XX are equal but X and ~XX differ.

6.8.2
Three-dimensional Reconstruction with Three or More Cameras

It is now assumed that three or more cameras observe the same scene. It must be
preconditioned that matching pixels exist in all taken images. Consider Figure 53.
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F
F'

u u'

e e'

F''
u''

e''

X

Figure 53 Scene observed from three cameras [63]

Three cameras are used in the figure. The matching pixels in the images are
denoted by u, u¢, and u†. The accompanying three-dimensional points X , X ¢, and X†
are given by the projection matrices D, D¢, and D†. The approach to derive three-
dimensional points is based on the procedure for two uncalibrated cameras:

u ¼
xA
yA
zA

2
4

3
5 @DX ¼

m
T
1

m
T
2

m
T
3

2
64

3
75X , u¢ ¼

xA¢
yA¢
zA¢

2
4

3
5 @D¢X ¼

m¢T1
m¢T2
m¢T3

2
64

3
75X , (6.55)

u† ¼
xA†
yA†
zA†

2
4

3
5 @D†X ¼

m†T
1

m†T
2

m†T
3

2
64

3
75X . (6.56)

Now the unknown scaling factor must be eliminated. This can be executed in a
similar manner as explained with formulas (6.43)–(6.51). As a result of this proce-
dure a matrix is processed:

1 :
2 :
3 :
4 :
5 :
6 :

xA m
T
3 � zA m

T
1

yAm
T
3 � zAm

T
2

xA¢m
T
3 � zA¢m

T
1

yA¢m
T
3 � zA¢m

T
2

xA†m
T
3 � zA†m

T
1

yA†m
T
3 � zA†m

T
2

2
6666666664

3
7777777775

X ¼ M X ¼ 0. (6.57)

The rows of the matrix are numbered and can be used for further reference. A
nontrivial solution of the matrix (6.57) is to be found. This requires a matrix of rank
3. The matrix has rank 3 if the determinants of all 4 � 4 submatrices belonging to
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the matrix have the value 0. 15 submatrices exist. The submatrices must be clus-
tered. It has to be determined if a submatrix involves two or three cameras. Three
sets of equations can be built representing a bilinear relation between two cameras.
The three sets are [1,2,3,4], [1,2,5,6], and [3,4,5,6]. In the case of three cameras there
exists one scene point X taken from different positions and appearing in three dif-
ferent images. This can be represented by a trilinear relation expressed by sets of
equations. 12 trilinearities exist of which four are linearly independent. Three possi-
bilities are shown for linearly independent 4 � 4 submatrices:

[1,2,3,5] [1,2,4,5] [1,2,3,6] [1,2,4,6],
[1,3,4,5] [2,3,4,5] [1,3,4,6] [2,3,4,6], (6.58)
[1,3,5,6] [1,4,5,6] [2,3,5,6] [2,4,5,6].

A row in the matrix (6.57) represents a plane in which the optical center F and the
scene point X can be found, see Figure 54.

F

u

X

Figure 54 Plane with optical center F and scene point X [63]

But with one trilinearity relation it can not be guaranteed that the three points u,
u¢, and u† taken from the cameras match to the scene point X , see Figure 55.

It is depicted in the figure that only one ray connects an optical center with the
scene point X1. The other two rays meet the points X2 and X3 nearby X1. It is possi-
ble to reduce the space to a plane with these additional two views in which the scene
point X can be found. So it can be said that one trilinearity relation can guarantee
that a common point exists for the ray and the two planes, which lies in three-
dimensional projective space. The number of cameras is now incremented to four
cameras. In this case eight rows constitute the matrix (6.57). The 4· 4 subdetermi-
nants contain one row generated by one camera. This is a quadrilinear constraint.
The quadrilinear constraint can be processed by a linear combination of bilinear and
trilinear constraints. So it must be a precondition that all the bilinear and trilinear
constraints are satisfied. This shows that it is not possible to obtain additional infor-
mation for the scene point X using more than three cameras, on condition that
proper measurements took place. This geometric description is now written in alge-
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braic notation. It is now presumed that the first camera is in canonical configura-
tion:

u @D~XX ¼ DN
�1

NX ¼ ½Zj0�X

u¢ @D¢~XX ¼ D¢N�1
NX ¼ ½cij¢ �X i ¼ 1; . . . ; 3

u† @D†~XX ¼ D†N�1
NX ¼ ½cij† �X j ¼ 1; . . . ; 4

. (6.59)

No knowledge is available about the scale in the image measurements u @ ½Zj0�X :

~XX ¼ u
�

� �
. (6.60)

� is the scale factor that must be determined as outlined before. The scene point
X is projected into the second camera with the next formula:

u¢ @ ½cij¢ �X ¼
u
�

� �
, (6.61)

ui¢ @ ci¢
k
uk þ ci4¢ � k ¼ 1; . . . ; 3: (6.62)

This is a short form without the summation symbol. The term ci¢kukwould be gen-

erally written as
P3
k¼1

cik¢ uk. The scale factor must be extracted from this formula. The

next formula shows three equations. Two of these three equations are independent:

ui¢ðcj¢
k
uk þ cj4¢ �Þ ¼ uj¢ðci¢

k
uk þ ci4¢ �Þ. (6.63)
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These three equations are now resolved to �:

� ¼
ukðui¢cj¢

k�uj¢ci¢
kÞ

uj¢ci4¢� ui¢cj4¢
.

(6.64)

� is eliminated by ~XX:

~XX ¼
u

ukðui¢cj¢
k�uj¢ci¢

kÞ
uj¢ci4¢ � ui¢cj4¢

2
4

3
5@

ðuj¢ci4¢ � ui¢cj4¢ Þu
ukðui¢cj¢

k � uj¢ci¢
kÞ

" #
. (6.65)

The projection of ~XX into the third camera occurs:

u† @ ½clk† �X ¼ cl†
k
xk . (6.66)

Some relations for ul† are:

ul† @ cl†
k
ukðuj¢ci4¢� ui¢cj4¢ Þ þ cl4†ukðui¢cj¢

k � uj¢ci¢
kÞ

@ ukuiðcj¢
k
cl4† � cj4¢cl†

kÞ � ukuj¢ðci¢
k
cl4† � ci4¢cl†

kÞ
@ ukðui¢Xkjl � uj¢Xkil Þ

. (6.67)

A value that depends on three indices is called a tensor: Xijk, i; j; k ¼ 1; 2; 3. A ten-
sor is comparable to a three-dimensional matrix. It is possible to remove the
unknown scale by joining all three views:

ukðui¢um†Xkjl � uj¢um†Xkil Þ ¼ ukðui¢ul†Xkjm � uj¢ul†Xkim Þ. (6.68)

It is valid that i < j and l < m. Nine equations can be observed. Four of these nine
equations are linearly independent. It is now presumed that j ¼ m ¼ 3. For simplifi-
cation it holds that u3 ¼ u3¢ ¼ u3† ¼ 1. Further modifications are applied. This pro-
vides a trilinear constraint among three views:

ukðui¢ul†Xk33 � ul†Xki3 � ui¢Xk3l þXkil Þ ¼ 0. (6.69)

Indices i and l can be instantiated with value 1 or 2. Four linearly independent
equations exist. 27 unknowns exist for the tensor Xijk. These unknowns can be esti-
mated by using at least seven corresponding points in three images. Three advan-
tages in association with trilinear constraints are given:

1. Seven corresponding points from three views are sufficient to derive the tri-
linear tensor. The examination of the fundamental matrix using a pair of
views requires eight corresponding points.

2. Three fundamental matrices can be represented with the tensor.
3. It is expected that the estimation of the constraint will be numerically more

stable if three views are used instead of three fundamental matrices.
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6.9 Stereo Correspondence

6.9
Stereo Correspondence

The computation of correspondences between pixels in different views is a necessary
precondition to obtain depth information. Pixels that represent the same in different
images must be found and thereafter geometrically analyzed. The automatic detec-
tion of corresponding pixels in different images is an actual research topic. Probably,
it is not possible to find an approach that provides a general solution. Rather, specif-
ic features, which are dependent on the computer-vision task, must appear in the
image. These features will be used to find corresponding pixels. For example, ima-
gine a black square that appears in both images, where it occupies most of the
image area. The gray values representing the square are rather identical in both im-
ages. In this case it is not possible to find corresponding pixels lying inside the
square area. It may also be the case that some areas of an object can not be seen
from both cameras and appear therefore only in one image. But such occurrences
are rather rare in practical applications.

Generally it is possible to find matching features in the images. To reduce ambi-
guities, it is recommended to use several features. For example, features can be de-
rived from geometry, which affects the image taking, photometry, or from the object
attributes. Many approaches to calculate correspondences between pixels have been
developed. Some of them are outlined at this point [103]:

1. Epipolar constraint: To find the corresponding pixel in the second image its
epipolar line is used, because the pixel must lie on this line. The search space
is diminished from two-dimensional space to one-dimensional space.

2. Photometric compatibility constraint: The gray values of the pixels are used.
It can be assumed that the gray values of corresponding pixels are nearly
equal. They are probably not completely equal, because the luminosity differs
due to different positions from which the images are taken.

3. Geometric similarity constraints: Geometric attributes of objects like length
of lines, contours, or regions are used to get corresponding pixels. It is sup-
posed that the attribute values are equal.

These three approaches exploit geometrical or photometrical characteristics. The
following methods are based on object attributes:

1. Disparity smoothness constraint: This method is based on the assumption
that the amount of disparity differences between adjacent pixels is similar in
both images. Let p1

L and p2
L be the coordinates of two adjacent pixels in the left

image. p1
R and p2

R are the corresponding coordinates in the right image, then
the absolute difference computed with the following formula is small, on
condition that the two images were taken from cameras arranged in parallel
(canonical configuration):

jjp1
L � p

1
R j � jp

2
L � p

2
R jj. (6.70)
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2. Figural continuity constraint: Additionally to the fulfillment of the disparity
smoothness constraint it is required that the neighboring pixels lie on an
edge in both images.

3. Disparity limit: In psychophysical experiments it has been verified that stereo
images can only be merged if the disparity does not exceed a limit.

4. Ordering constraint: The corresponding pixels of objects that have similar
depths have the same order on epipolar lines of both images. This is not
valid if an object point is close to the camera and has additionally a large
depth difference to other objects in the scene. In this case the corresponding
pixels on epipolar lines can have a different sorting on both lines.

Also a strategy was suggested to detect pseudocorresponding pixels. A mutual cor-
respondence constraint can be used for these purposes. Pseudocorrespondence can
result from noise or shadow cast. It shall be assumed that the search started from
the left image. If two (probably) corresponding pixels pL and pR have been found,
the result is checked. Therefore, a second search starts from the right image. If
pseudocorrespondence exists, the second search will probably generate another
result. The two pixels do not match.

6.9.1
Correlation-based Stereo Correspondence

Correlation-based stereo correspondence uses the gray values to find matching pix-
els in two images. Indeed analyzing only pixels is not sufficient, because there may
be several candidates that have the same gray value. It is necessary to examine the
neighborhood. For example, this happens with windows of sizes 5 � 5 or 8 � 8. Block
matching is an approach that considers the neighborhood to find stereo correspon-
dence. It shall be presumed that the canonical configuration for two cameras is
used. Block matching tries to find matching blocks in both images. In these match-
ing blocks only one disparity exists between the pixels’ gray values for each block of
the two images. Block matching starts with the decomposition of one of the two
images into blocks. This may be the right image. Then it tries to find corresponding
blocks in the left image. Statistical measurements for the gray values are used to
check the correspondence between two blocks. At the end of the block matching a
matrix should exist that contains for every block a particular disparity that correlates
to a representative pixel in the block [103].

A drawback of the block-matching method is the relatively long runtime, which is
in general a symptom of stereo-correspondence algorithms that are trying detections
of correlations between pixels.

6.9.2
Feature-based Stereo Correspondence

Approaches that belong to the class of feature-based stereo correspondence, search
for conspicuous criteria like edges, pixels along edges, and so on. To detect corre-
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spondence, the attributes of these features are also used. For example, these can be
the edge length, the orientation, and others. Approaches that are feature-based have
some advantages in comparison to intensity-based approaches [103]:

1. Ambiguity can be diminished, because the number of pixels that must be
examined is rather small.

2. The calculation is not so strongly biased by photometric confusions like inho-
mogeneous illumination.

3. The calculation of disparities can be executed with subpixel precision.

The PMF algorithm is a feature-based method. Prerequisite for this method is the
detection of a set that contains pixels that fulfill a feature. These pixels must be
extracted from the images with appropriate operators. For example, operators for
edge detection can be used. The algorithm obtains these pixels as input and pro-
cesses pixel pairs in both images, which belong together. Three constraints are used
to find corresponding pixels. These are the epipolar constraint, the uniqueness con-
straint, and the disparity gradient limit constraint. The uniqueness constraint pre-
sumes that generally a pixel from the first image can only be associated to one pixel
in the second image. The disparity gradient is used to calculate the relative disparity
between two matching pixel pairs. Consider Figure 56.

Left Right

Cyclopean

1
p

2
Lp

1
Rp

2
Rp

2

p

),(d 21
S pp

Ld Rd

1
Lp

Figure 56 The calculation of the cyclopean separation [63]

In the left and right images two pixels p1 and p2 can be found, which have been
taken from a three-dimensional scene. The coordinates of p1

L in the left image are
p1

L ¼ ðx1
AL
; y1

AÞ and of p2
L ¼ ðx2

AL
; y2

AÞ. The coordinates for the two pixels in the right
image are denoted similarly by p1

R ¼ ðx1
AR
; y1

AÞ and p2
R ¼ ðx2

AR
; y2

AÞ. Note that the y
coordinates must be equal for the pixel pairs. This is a demand to fulfill the epipolar
constraint. The cyclopean image is generated with the average of the x coordinates
in the left and right images:
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p
1
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x1
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þx1

AR
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; y

1
A

 !
, (6.71)

p
2
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x2
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AR

2
; y

2
A

 !
. (6.72)

The cyclopean separation dS can also be found in Figure 56 that represents the
distance between the two pixels in the cyclopean image:

dSðp
1
; p

2Þ ¼
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The next formula is used to process disparity between the pixel pair in the cyclo-
pean image:

Uðp1
; p

2Þ ¼ x
1
AL
� x

1
AR

� �
� x

2
AL
� x

2
AR

� �

¼ x
1
AL
� x

2
AL

� �
� x

1
AR
� x

2
AR

� �

¼ dL � dR

. (6.74)

The disparity gradient is the ratio between disparity and cyclopean separation:

Cðp1
; p

2Þ ¼ Uðp1
; p

2Þ
dSðp

1
; p

2Þ

¼ dL � dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

dL þ dRð Þ2þ y
1
A � y

2
A

� �
2

r . (6.75)

The disparity gradient will exceed the value one rather rarely in practical use. This
constraint means that a short disparity between two scene points in the three-
dimensional scene is not permitted if the points are very close together. A solution
is then generated with a relaxation procedure. The possible matching points are
valued. The evaluation uses the fixed boundary for the disparity gradient as a criter-
ion. It is checked if further matches exist for the pixel pair that also meet the bound-
ary. A match is considered as correct if it has a high valuation. The detected matches
are used in a downstream process to find further matches. Six steps are now listed
that explain the PMF algorithm:
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1. Features like edge pixels must be determined that can be used for stereo cor-
respondence.

2. One of the two images must be chosen to find pixels for stereo correspon-
dence. These pixels are used to find the associated pixels in the other image
with epipolar lines.

3. The score of the matching pixels must be raised. The actual value depends on
the matches that have been found before. It is additionally required that
these pixels may not exceed the determined disparity gradient limit.

4. The match with the highest score for both pixels is accepted. Further exami-
nations for this pixel pair are not performed to fulfill the uniqueness con-
straint.

5. The scores must be calculated again. The algorithm terminates if all possible
matches have been found. Otherwise it must be continued with step two.

The using of epipolar lines in step two reduces the search space to one dimension
and the uniqueness constraint assures that a pixel is only used once for the calcula-
tion of the disparity gradient.

The PMF algorithm can ran very fast. Its procedure is suitable for parallel imple-
mentation. It is difficult to find corresponding pixels in horizontal lines with PMF,
because these lines extend often over neighboring grids that aggravates the detection
with epipolar lines.

6.10
Image-sequence Analysis

The evaluation of temporal image sequences belongs to the passive optical sensor
methods. Image-sequence analysis can extract three-dimensional information with-
out a priori knowledge of the objects contained in the image. The image-sequence
analysis can be used to determine a relative three-dimensional movement between
the camera and the scene. For example, this scenario can be found by autonomous
robots. If the movement is known, it is possible to determine the three-dimensional
information with the image-sequence analysis by using only one camera, which is
also called pseudostereo vision. The most general task in image-sequence analysis is
the determination of the three-dimensional structure of a scene and the examination
of the parameters that depict the relative movement between the camera and the
scene. The first task in image-sequence analysis is the determination of an associa-
tion between two successive images. The matching of the images can be realized on
the basis of optical flow. The optical flow is represented in a vector field in which the
difference of the successive images is tracked relating to time. In most instances the
difference of the pixels between the two successive images can be found in the vec-
tor field, but it must be said that the tracking of pixel differences in the vector field
is very time consuming. The optical flow is used to process a depth map. The depth
map is generated by using a smoothness condition, but it can be that disturbances
effect confusion by applying the smoothness condition. To guarantee a proper depth
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map, a dense scanning in a time slice is required. This will ensure that the pixel
differences between the two images are rather small. Therefore, the methods based
on the optical flow are often called continuous approaches. A further precondition
for the approaches based on the optical flow is the constancy of the illumination
between the images. But in reality this is not often true. Feature extraction is an
alternative approach that is independent of the alteration of the illumination. Points
or lines must be used generally for the feature extraction. Otherwise additional
restrictions must be defined. The feature-extraction approach offers the possibility
for larger lags between the taking of two successive images. The independence from
changes in the illumination provides a more robust construction of the depth map.
First, the depth map will be rather sparsely populated, because the extracted features
are distributed with quite wide distances in the image. But this approach also has
drawbacks. The features can be temporarily occluded or image data can be disturbed
that make it harder to generate the depth map. A discontinuous movement is also a
problem here. Approaches exist that use a system of equations to process the
unknown movement and/or structure parameters. The problem that is to be solved
determines if a linear or nonlinear system of equations must be used. A linear sys-
tem of equations can be solved with well-known mathematical algorithms, for exam-
ple, the Gauss–Jordan algorithm. Iterative solution methods can be used for non-
linear systems of equations [93].

6.11
Three-dimensional Reconstruction from Image Sequences with the Kalman Filter

An application is now depicted in which the three-dimensional structure of an
object is calculated, whereby the movement parameters, which are relative to the
camera, are known. The three-dimensional reconstruction is based on the analysis
of two-dimensional image sequences. This is known as a dynamic estimation prob-
lem with a nonlinear observation equation. Parameters are required for the three-
dimensional geometrical representation. These parameters are three-dimensional
world coordinates ðx; y; zÞWk

at a point in time k. The taking of the image sequence
is a representation of the system in discrete time. The projection matrix Dk describes
the mapping of three-dimensional world coordinates to two-dimensional sensor
coordinates ðx; yÞSk

at a point in time k. Estimation approaches for nonlinear
dynamic systems can be realized with a linear system and/or an observation equa-
tion in the environment of an operating point. The linear equations can be derived
with a Taylor series. For these purposes an extended Kalman filter can be used that
is a suboptimal estimation approach. The estimation of a state vector is only an
approximation for the estimated value of the minimal variance and the covariance
matrix of the estimated error. Therefore, a test is required to obtain hints whether
the extended Kalman filter provides good estimated values. The equations of the dis-
crete extended Kalman filter are now shown [93]:

The prediction of the state vector: ðx; y; zÞ�
ŴWkþ1

¼ Zk � ðx; y; zÞ
þ
ŴWk

. (6.76)
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The prediction of the covariance matrix: P
�
kþ1 ¼ Zk � Pþk � Z

T
k � Qk . (6.77)

The update of the state vector:

ðx; y; zÞþ
ŴWk
¼ ðx; y; zÞ�

ŴWk
þ Kk � ½ðx; yÞSk

� Dk � ðx; y; zÞ
�
ŴWk
�. (6.78)

The update of the covariance matrix:

P
þ
k ¼ ½N � Kk � Lk � ðx; y; zÞ

�
ŴWk

� � P�k . (6.79)

Kalman enhancement:

Kk ¼ P
�
k � L

T
k � ðx; y; zÞ

�
ŴWk

� ½Lk � ðx; y; zÞ
�
ŴWk

� P�k � L
T
k � ðx; y; zÞ

�
ŴWk

þMk �
�1

. (6.80)

Figure 57 shows a state-space representation of the system model and the Kalman
filter.

The predicted state vector is used as the operating point. The values of the Kal-
man enhancement matrix Kk are random variables. The values depend on the Jacobi
matrix and the state vector Lk � ðx; y; zÞ�ŴWk

. The series of enhancement matrices must
be calculated during the runtime. The construction of the Kalman filter depends on
two assumptions. The image coordinates must be determinable from the three-
dimensional world coordinates. This is possible by performing the calibration proce-
dure. Parameters that represent the relative movement between the camera and the
object, must be known [93].
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Calibration is the determination of the camera model, for example, a pinhole-cam-
era model, parameters. A division into two classes of camera-calibration approaches
can be observed. Approaches that belong to the first class [104, 105], are based on a
physical camera model like the pinhole-camera model. The approaches of the sec-
ond class [106, 107] are based only on mathematical models.

Figure 58 shows a robot-vision system with coordinate systems.

X
M

X
C

X
S

Object
Mobile robot

CameraX
A

Figure 58 Coordinate systems of a robot-vision system [33]

Two calibrations are necessary. The camera and the robot must be calibrated. The
process of camera calibration provides internal camera parameters. The relative
position of a camera coordinate system XC to another coordinate system, for exam-
ple, the robot coordinate system XM is specified by external parameters. The camera
calibration will enable determination of parameters that explain the projection of a
three-dimensional object to the two-dimensional plane. A precise camera calibration
permits an exact three-dimensional object reconstruction by using information
about the object, such as size, position, and movement. The application determines
the necessary precision of the calibration method. The worse the camera projection
the more exact must be the calibration process. Many calibration approaches exist
that calculate the internal and the external camera parameters. Two categories of cal-
ibration approaches exist. These are test-area-calibration approaches and self-calibra-
tion approaches. Test-area-calibration approaches use images where the three-
dimensional world coordinates are known to derive the internal and external camera
parameters. Very precisely measured test areas or reference objects are often used.
The manufacturing and measuring of such reference objects requires much effort
and is often afflicted with errors. The self-calibration approaches determine the
external and internal camera parameters as well as the world coordinates of the ref-
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7 Camera Calibration

erence points. For these purposes several images of an unmeasured reference object
taken from different camera positions are necessary. In the majority of cases the
self-calibration procedure needs appropriate start values to determine the unknown
parameters in an iterative process. Self-calibration approaches can be further divided
into passive and active self-calibration approaches. Passive self-calibration approach-
es need no knowledge about the movement of the camera in contrast to active self-
calibration approaches [33].

The next sections describe the calibration of a pinhole camera according to [63]
and the self-calibration of a robot system that is described in [33]:

7.1
The Calibration of One Camera from a Known Scene

7.1.1
Pinhole-camera Calibration

The calibration of one camera from a known scene often requires two steps. The
estimation of the projection matrix D takes place in the first step. Therefore, it is
necessary to use the known world coordinates in the scene. The internal and exter-
nal parameters are calculated in the second step. To derive the projection matrix,
equations are used that show the relationship between a point X ¼ ðx; y; zÞTW in the
world coordinate system and its corresponding point in the image affine coordinate
system ðx; yÞTA. Unknown values cij can be found in a 3 � 4 projection matrix that
must be calculated:

�xA
�yA
�

0
@

1
A ¼

c11 þ c12 þ c13 þ c14
c21 þ c22 þ c23 þ c24
c31 þ c32 þ c33 þ c34

0
@

1
A

xW
yW
zW
1

0
BB@

1
CCA, (7.1)
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�yA
�

0
@

1
A ¼

c11xW þ c12yW þ c13 zW þ c14
c21xW þ c22yW þ c23 zW þ c24
c31xW þ c32yW þ c33 zW þ c34

0
@

1
A, (7.2)

xAðc31xW þ c32yW þ c33 zW þ c34Þ ¼ c11 xW þ c12yW þ c13zW þ c14

yAðc31xW þ c32yW þ c33zW þ c34Þ ¼ c21xW þ c22yW þ c23zW þ c24

. (7.3)

Two linear equations are available for a known point in the world coordinate sys-
tem and its corresponding point in the image coordinate system. If n points are
examined, the equations can be written as a 2n � 12 matrix with 12 unknowns:

xW yW zW 1 0 0 0 0 �xA xW �xAyW �xAzW �xA
0 0 0 0 xW yW zW 1 �yAxW �yA yW �yA zW �yA

..

.

0
B@

1
CA

c11
c12

..

.

c34

0
BBB@

1
CCCA ¼ 0.

(7.4)
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Eleven unknown parameters can be observed in the matrix D if homogeneous
coordinates are used. Six corresponding scene and image points at least are neces-
sary to get a solution. Additional points are often used. So the least-squares method
can be used to solve the overdetermined Equation (7.4). This procedure has the
advantage that errors in the measurements can be eliminated. The projection matrix
D is computed as a result:

D ¼ ½WT j �WTs� ¼ ½Mjm�. (7.5)

External parameters, which are the rotation T and the translation s, must be
extracted from the projection matrix. M is a 3 � 3 submatrix from D and m the last
column on the right-hand side.

W is called the camera-calibration matrix:

~uu ¼
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yA
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(7.6)

~uu represents a computed two-dimensional point in the image plane I in homoge-
neous coordinates derived from the projection of the corresponding three-dimen-
sional camera coordinates ðx; y; zÞC, see Figure 59.

The next equation shows the relation between uC and the corresponding three-
dimensional camera coordinates, where b is the focal length:

uC ¼
�bxC

zC
;
�byC

zC
; �b

� �
T

. (7.7)

Point p0 represents the intersection of the optical axis with the image plane I:
p0

A ¼ x0
A ; y0

A ; 0ð ÞT. The point u can be written in homogeneous coordinates as
~uu ¼ xA ; yA ; zAð ÞT. XA , YA , and ZA are the coordinate axes of the image affine
coordinate system XA . It is possible to compute the affine transformation with a
3 � 3 matrix with homogeneous coordinates. The homogeneous matrix has the
unknowns c1, c2, and c3. The translation vector can be computed from the formula
(7.5) by the substitution from M with WT and resolution to

s ¼ �M
�1

m. (7.8)

The determination of the calibration matrix W must consider the fact that W is
upper triangular and the rotation matrix T is orthogonal. M can be split into two
matrices to obtain W and T with the matrix-factorization method [108]: QR-decom-
position.
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Figure 59 Relation between the coordinates of the projected point [63]

7.1.2
The Determination of the Lens Distortion

To refine the camera calibration, the lens distortion can be added to the pinhole-
camera model, because it is a feature of real cameras. Two kinds of distortion can be
observed. Radial distortion bends the camera’s line of sight and de-centering shifts
the principal point from the principal axis. The next equations show five external
parameters:

xA ¼
xA

zA

¼ �b c1
xC

zC
� b c2

yC

zC
� x

0
A ¼ aXA

xC

zC
þ ashear

yC

zC
� x

0
A , (7.9)

yA ¼
yA

zA

¼ �b c3
yC

zC
� y

0
A ¼ aYA

yC

zC
� y

0
A . (7.10)

Substitutions aXA
¼ �bc1, ashear ¼ �bc2, and aYA

¼ �bc3 are executed in these
formulas. The internal parameters have the unit pixels. Measuring b with the XA -
axis scaling is represented by aXA

. b has the unit pixel. If b is measured in pixels
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7.1 The Calibration of One Camera from a Known Scene

with the YA -axis scaling, the symbol aYA
is used. Obliquity between the XA -axis of

the image affine coordinate system in comparison to the YI-axis is measured with
ashear. So ashear also represents the obliquity between b and YI, because the XA -axis
and b are coincident. The equations show that the focal length is replaced by a cam-
era constant. The camera constant has the same value as the focal length in the sim-
ple pinhole-camera model. This is not true for real cameras. In this case the coinci-
dence holds only if the focus is set to infinity. If this is not the case, the camera con-
stant has a lower value than the focal length. To determine these internal parame-
ters, known calibration images with continuous patterns like points are used that
are distributed on the whole image. So the internal parameters can be determined
by the examination of distortions in the pattern. Radial and decentering distortions
are considered often as rotationally symmetric and are modeled in many cases with
polynomials. xA and yA are correct image coordinates in the following equations. x
and y are pixel coordinates. ~xxA and ~yyA are the measured image coordinates, which
are inexact. ~xxA and ~yyA are computed by using the pixel coordinates x, y and the prin-
cipal point coordinates x̂x0

A and ŷy0
A :

~xxA ¼ x � x̂x
0
A , (7.11)

~yyA ¼ y� ŷy
0
A . (7.12)

To obtain the correct values of the image coordinates ~xxA and ~yyA , it is necessary to
add balances fxA

and f yA
to the inexact values ~xxA and ~yyA :

xA ¼ ~xxA þ fxA
, (7.13)

yA ¼ ~yyA þ fyA
. (7.14)

To determine ~xxA and ~yyA , polynomials of higher degree are often used to reflect the
rotational symmetry:

fxA
¼ ð~xxA � f

x0
A
Þðc1 w

2 þ c2w
4 þ c3w

6Þ, (7.15)

fyA
¼ ð~yyA � f

y0
A
Þðc1w

2 þ c2w
4 þ c3w

6Þ. (7.16)

f
x

0
A

and f
y

0
A

are balances for the shifting of the principal point. w2 represents the
square of the radial distance with regard to the center:

r
2 ¼ ð~xxA � f

x0
A
Þ þ ð~xxA � f

x0
A
Þ. (7.17)

The determination of the balances f
x

0
A

and f
y
0
A

is quite simple, because x̂x0
A and ŷy0

A

can be used for the calculation:

x
0
A ¼ x̂x

0
A þ f

x0
A

, (7.18)
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y
0
A ¼ ŷy

0
A þ f

y0
A

. (7.19)

To obtain a simplification of Equations (7.15) and (7.16), a polynomial of second
order is often used. The simplification can be gained, for example, by omitting the
principal point shifting:

xA ¼ ~xxA ½1– c1ðð~xxAÞ
2 þ ð~yyAÞ

2Þ�, (7.20)

yA ¼ ~yyA ½1– c1ðð~xxAÞ
2 þ ð~yyAÞ

2Þ�. (7.21)

Two calibration methods are now outlined that are appropriate to determine the lens
distortion, but require additional data in contrast to the pinhole-camera calibration.

HALCON offers a calibration approach. 10 to 20 images are required from this
approach. The images can show a planar calibration table. The images of an object
must be taken from diverse positions and orientations. It is further required that the
object must fill at least a quarter of the image. HALCON’s calibration operator also
asks for the technical data of a camera. These are the nominal focal length b, the
horizontal size gx, and the vertical size gy of a cell on a CCD sensor. A unit meter
must be used for these initial values. The central point of an image must be pro-
vided with coordinates ðxc; ycÞ

A
. The coordinates in pixels can be simply processed

by the division of the image width and height by two [4].
Roger Tsai [109] has developed a calibration method that is common in industrial

applications. The following explanation of the method is from [110]. The method
needs the principal point ðx0; y0Þ

A
. But the scale factors gx and gy are also required

and an aspect distortion factor w� is needed. w� represents the distortion with
regard to the image width and image height. The method calculates the focal length
b and the radial distortion wD. The method has similarities with HALCON’s calibra-
tion operator. The method uses a calibration table that must be drawn on a sheet of
paper and attached onto a vertical plate. The plate was joined with a rail that per-
mitted the displacement of the plate in 10-mm steps. Therefore, the distance be-
tween camera and calibration object could be altered in well-defined and simply
measurable steps.

7.2
Calibration of Cameras in Robot-vision Systems

In the following, two different self-calibration approaches are explained that were
developed for cameras with a rigid focal length:

1. Calibration with moved calibration object,
2. Calibration with moved camera.

Both approaches do not require the measurement of the reference object that is
necessary for the calibration procedure. Both approaches use knowledge about the
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relative movement between the camera and reference object. The robot performs
the movement. Image information and the knowledge about the movement are suf-
ficient to obtain the model parameters. Both approaches belong to the category of
the active self-calibration approaches. The essential differences can be found in the
configuration of the camera and the unmeasured reference object. A camera is rigid
and a reference object is connected with a robot in the first approach, whereas in the
second approach a camera is connected with a robot and a reference object is rigid.
The lens distortion is taken into consideration in both approaches. One parameter
for the lens distortion is only used in the first approach, whereas the distortion
model is more complex in the second approach. The approaches were evaluated. For
both approaches more calibration points are recommended as necessary for the so-
lution systems. The principal point coordinates are calculated for every calibration
point. The mean value and the standard deviation are computed over all experi-
ments. To assure the reproduction of the result several calibrations are performed
by the same system configuration. The calculated standard deviation is called the R-
standard deviation. A high R-standard deviation shows that the calibration approach
is inappropriate, because the values of the single experiments differ strongly and
reproduction is not possible. Reproduction and deviation are both quality character-
istics to evaluate the system, whereas reproduction is the more important criterion
for the evaluation, because a poor reproduction is an indication of an inexact para-
meter determination. The number of reference points is varied to see the depen-
dency between the results and the number of reference points. The reference points
are arranged on the object in snake form, see Figure 60.

Figure 60 Reference object with points in snake form [33]

Two steps are executed:

1. The start point is determined.
2. A sorting occurs with regard to the criterion of the shortest distance.

Figure 60 shows that one point is larger than all the other points on the object.
This point is the start point and can be found in the first place of the result vector. A
function for the sorting is utilized that uses the criterion of the shortest distance.
The point that is the nearest to the start point, is chosen. This point is then the sec-
ond point in the result vector and serves as the new start point.
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7.2.1
Calibration with Moving Object

The approach of Lin and Lauber [111] does not need a precisely measured reference
object in contrast to conventional calibration approaches. The reference object is
connected with the robot in the approach. A camera then takes images from the
robot in different positions. A �quasimeasurement’ is obtained with the movement
of the robot. The quality of the measurement is determined from the precision of
the robot. The positions are taken sequentially by performing different kinds of
movements, like translation and rotation alone or together to change from one posi-
tion into the next position in the sequence. Figure 61 shows such a sequence.

1

2 3

4

5
6

Figure 61 Six positions of the robot [33]

The first image (1) is taken. Then the robot executes three translations (2, 3 and
4). The positions 5 and 6 are reached by using rotation and translation. The
approach is separated into two parts, whereby part 1 consists of two steps:

Part 1
Step 1: The internal parameters and the camera orientation are calculated here.
Step 2: The calculation of the camera position is accomplished.

Part 2
The calculation of the lens-distortion coefficient and the iterative improvement of
all internal parameters is the task of part 2.
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The lens-distortion coefficient w is set to zero in the first iteration step of part
one. The lens-distortion coefficient and the other parameters are improved itera-
tively in the second step. As mentioned, a pair of points is needed to calculate the
parameters. This means that two points on the reference object at least must exist.
The approach was tested with a zoom camera but the results revealed that it was not
appropriate for the calibration of a zoom camera.

7.2.2
Calibration with Moving Camera

The approach of Wei et al. [112] is considered here according to the explanations in
[33]. The camera must be connected with the robot if the approach is to be applied.
The reference object is rigid. The robot moves to different positions and takes an
image of the reference object from every position. The reference object must contain
at least one point. Then the projection parameters and the camera coordinates are
calculated by the position alteration(s) of the point(s) in an image and the known
robot movements. The model for the lens distortion is more complex here in com-
parison to the approach of Lin and Lauber. The radial distortion and the tangential
distortion are modeled with two parameters. The defined movements of the
approach are shown in Figure 62 [33].

1

24
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0

3

6

7

Figure 62 Seven positions of the robot’s camera [33]

First, the robot takes the position zero. Five translation movements can be ob-
served in the sequence. These are the positions one to five in Figure 62. Three posi-
tions must be linearly independent to get a solution of the equation system. Then
two additional positions at least are necessary. Both must be gained by using transla-
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tion and rotation together to change from one position into another position of the
sequence. It is permitted that the robot can take in further positions to improve the
calibration results. The approach is analogously structured to the approach of Lin
and Lauber. It also consists of two parts. The first part is decomposed into two steps:

Part 1
Step 1: The movements based on translation are used to obtain the initial values
of the internal parameters: the three angles of the camera orientation and the
coordinates of the reference points used.
Step 2: The movements, which consist of translation and rotation together, are
used to calculate external parameters that are robot coordinates representing the
camera position or tool coordinates when a gripping device is mounted onto the
robot.

Part 2
In this part, parameters are calculated iteratively that characterize the lens distor-
tion.

Tests have shown better results in comparison to the approach of Lin and Lauber.
But the reproduction of the results was as poor as by Lin and Lauber because of the
high deviation.
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Neural networks are based on the human brain. Therefore, a brief introduction into
the human brain is given here. The human brain consists of neurons. Inhibiting
and exciting connections exist between the neurons. A weight is assigned to each
neuron. The stimulation and blocking of a neuron is responsible for the value of the
neuron weight. So a set of a certain input is represented in certain regions of the
brain. The brain is self-organizing, because similar inputs are projected into areas of
the brain that are at close quarters. Complex tasks like the control of the fine motor
manipulations need more area than rather simple tasks [49].

The self-organizing maps (SOMs), which were developed from Kohonen, are
based on the human brain. The SOM consists of n neurons, which belong to the set
SE. A weight vector mi ˛Rm with elements xil; l ¼ 1; 2; . . . ;m, is attached to every
neuron ti; i ¼ 1; 2; . . . ; n. The distance between two neurons ti and tj in the map
can be measured with dSEðti; tjÞ. Vector ip˛Rm represents an input (training) sig-
nal. Similarity between the input signal ip and the weight xil can be determined
with the Euclidean distance ||.||. A neuron ti� is activated from the input signal ip if
the evaluation of inequality provides �true’ as a result [113]:

jjmi� � ip jj £ jjmi � ip jj; " ti ˛SE. (8.1)

The neuron with the smallest Euclidean distance between its weight vector and
the input signal fulfils the inequality. Working with neural networks involves gener-
ally two parts. In the first part the neural network has to be trained with input data,
which are similar to the input at runtime. In the second part the trained neural net-
work is used at runtime to recognize the input. The training of SOMs comprises
three steps. The initialization takes place in the first step. So the weight xil of every
neuron ti gets a value assigned that can be calculated randomly. In the second step
an input vector from the training set is chosen in response to obtain an activated
neuron, which is called the �winning neuron’ ti� . The selection of the input vector
follows a probability distribution. Then an adaptation occurs in the third step. The
weights xil (ti ˛SE) of the neurons in the SE neighborhood of ti� , which can be
determined with the distance dSE , are modified. The steps two and three can be
repeated several times. The calculation of the weight xil of a neuron ti at iteration
step t occurs according to the following formula [113]:
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DxilðtÞ :¼ mðtÞ � utðti� ; tjÞðipðtÞ � xil ðtÞÞ, (8.2)

ipðtÞ Training input at iteration step t
ti� ¼ ti�ðipðtÞÞ Winning neuron at iteration t
mðtÞ Learning rate at iteration t, which is a monotonic decreasing

function with 0 <mðtÞ < 1.
ut Activation profile at iteration t. The closer the weight xil of the

neuron ti to the weight xi� l of the neuron ti� the more it is acti-
vated from the neuron ti� .

The new weights of the neurons are assigned with xilðtþ 1Þ :¼ xilðtÞ þ DxilðtÞ
after the computation of DxilðtÞ has taken place. So the neurons within a neighbor-
hood have similar weights. This means that similar data can be found in such a clus-
ter. So the neural network is used to recognize data at runtime in the second part. It
is necessary to count the activations of the neurons. The recognition of the input
data is performed by the use of the neuron’s activations [113].

8.1
Semantic Maps

Semantic nets can be derived from semantic maps. Semantic nets are graphs that
have nodes representing terms and edges representing associations. It is possible to
cluster the attributes of objects in a semantic map with the aid of SOMs. The clus-
ters can then be converted into a semantic net. An input set of 16 animals was used

124

Horse

Zebra

Cow

Wolf
Tiger

Lion

Dog

Fox Cat

Duck

Goose

Falcon

Owl

Dove

Eagle

Hen

Figure 63 Semantic map [49]



8.2 Classificators for Self-organizing Neural Networks

in an example. Each animal was characterized with a 13-dimensional attribute vec-
tor. The attribute vectors were used to train a SOM in 2000 learning steps. The
weights were chosen initially by random. An animal is attached to the neuron that
has the highest activation for the particular animal. Three main categories can be
found in the map shown in Figure 63 after the training [49].

Hoofed animals are positioned in the top-right part, birds in the left part and wild
animals in the lower-right part of the map. The distance between the attribute vec-
tors of neurons, which are located in the same part, is less than the distance between
the attribute vectors of neurons, which can be found in different parts [49].

8.2
Classificators for Self-organizing Neural Networks

Self-organizing neural networks can not be used for classification. An additional
level must be built, which is responsible for the classification and obtains the input
of the self-organizing neural network for interpretation. This requires a training
method, which consists of two steps [49], see Figure 64.

[Attribute vector]

SOM

Winner neurons

Classificator
Object class

Object ID

Legend:

SOM: Self organizing map

Figure 64 Classification with SOM [49]

The training of the SOM occurs in the first step. After the training is finished, the
coordinates of those winner neurons, which represent a certain object identity, serve
as input patterns for the training of the classificator. This can be a linear decision
maker, which selects the winning neuron that has the highest activation. The linear
decision maker is a supervised learning classificator in conjunction with the tech-
nique of self-organization, which is supported by the SOM. This means that the clas-
sificator must know to which object class every output neuron belongs. The classifi-
cator is not able to generate clusters for similar inputs, which is a feature of the self-
organization. It is only possible to identify the class affiliation of a neuron if it was
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activated during the training phase. This is a drawback of the classificator, because
the class affiliation is only known for some of the neurons. These considerations
result in some requirements that a classificator should have if it cooperates with a
SOM [49]:

1. The classificator should use the feature of the cluster creation provided by the
SOM. Linear decision makers are only able to connect neurons that have
been activated during the training phase, to the object class. Hence, only a
part of the SOM’s output layer is used as input for the classificator, but the
entire output layer should be used from a decision maker.

2. The classificator should be self-organizing as well as the SOM. The classifica-
tor should find the cluster boundaries without help only by analyzing the
neighborhood of those neurons that have been activated during the training
phase.

3. The misclassification of a neuron to a cluster must be avoided by using the
affiliation criterion. For these purposes the distance from the examined neu-
ron to the center of the cluster and the weight vector of the neuron can be
utilized, which depicts a prototype of an object.

4. Ambiguities should be adopted, because different three-dimensional objects
can have the same views, which are represented by the same neuron in the
output layer of the SOM. This results in overlapping but correct clusters.
These overlapping clusters should be reflected in the classificator.

The approach of adaptive cluster growing (ACG) uses a classificator for SOMs
that supports the cluster recognition in the SOM. The ACG uses neurons that have
been activated during the training phase. At the beginning it is known only for these
neurons to which object class and cluster, respectively, they belong. The ACG is a
one-layer neural network whose input neurons are the output neurons of the SOM,
whereby every output neuron of the SOM is connected with every output neuron of
the ACG. So a many-to-many connection exists here. The procedure starts, for exam-
ple, with an input image I for the SOM that examines the winning neuron. The con-
nections between the SOM neurons and the ACG neurons have the value null if the
winning neuron is not activated from an object class that is represented by the con-
nected ACG neuron and one if the winning neuron is activated by the object class. It
is possible to model ambiguities with this architecture, because one winning neuron
can activate a part of the entire neuron set [49], see Figure 65.
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Figure 65 Connection between SOM and ACG [49]

Connections between the SOM and the ACG with value null are represented by
thin lines and connections with value one by thick lines. tSOM� is the winning neu-
ron and activates the two neurons tACG

0 and tACG
1 in the ACG, because the value of

the connection is one. The connection to the neuron tACG
2 in the ACG has the value

null. Therefore, this neuron is not activated from tSOM� . The neuron tSOM
0 in the

SOM activates no neurons in ACG. This can happen if the input for the training of
the SOM did not activate this neuron, or during the training of the ACG it was not
possible to relate tSOM

0 to an object class and cluster of the SOM, respectively. There-
fore, a further training is required to detect the clusters. This is a recursive algo-
rithm that analyses the environment of the activated neurons in the SOM. Whether
the activated neuron and a further neuron are similar can be decided by the compar-
ison of the two prototype vectors. The similarity between the two vectors can be
proved with a threshold. The threshold is increased in every recursion step. Hence,
it can be assured that neurons that are further away from the center must have a
higher similarity, and the threshold serves as the break criterion for the recursive
algorithm. This is shown in Figure 66 [49].
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Threshold (ACG weight must be set to one)

Threshold (ACG weight remains zero)
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Figure 66 The modification of the threshold in the ACG [49]

The recursion steps are written at the X -axis. The interrupted line represents the
similarity between two prototype vectors. A horizontal line can be found in every
recursion step. The line represents the threshold that is increased in every recursion
step. If the horizontal line representing the threshold is painted large, then the
weight of the connection between two neurons in the ACG must be set to one. If the
line is painted thin, the weight remains zero. This emerges in recursion step six,
because the threshold exceeds the similarity between two prototype vectors [49].
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Commercial OCR systems are able to recognize characters that have a size of at least
6 until 8 points character height. It is not possible to increase the recognition rate
with a size alteration of the characters. To get better recognition results, it can be a
good strategy to perform manipulations at the characters. This can be executed by
using operators that are known from the image processing (see Chapter 2) like mor-
phological operators, skeleton operators, and so forth. Character recognition is often
difficult because the characters can be stuck together. It must be said that it is not
always possible to recognize characters in a correct way, when they are stuck togeth-
er, because an interpretation of such characters can be achieved differently. This is
shown in Figure 67 [114].

Figure 67 Ambiguity in character recognition [114]

Commercial OCR systems have been tested. The tests have shown that the
increase of the resolution from 300 dpi to 600 dpi has not provided an essentially
better quality in character recognition [114].

Further errors in character recognition can occur. Characters that are close togeth-
er in an image are often stuck together, see Figure 68.
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Figure 68 Characters that are stuck together

Figure 68 shows the room number of an office on a doorplate. Two numerals are
stuck together. This fact makes a correct recognition difficult. But the merging of
two different characters is not the only problem in OCR. Sometimes a merging can
occur within the character, see Figure 69.

Figure 69 Merging within a character

The doorplate in Figure 69 now contains a room number that has a numeral
stuck together in itself. It is also a problem in OCR when a character has a similarity
to another character, where it can be interpreted as that character to which the anal-
ogy exists, as in Figure 70.
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Figure 70 Similar numerals

The two numerals one and seven in Figure 70 are part of the room number in the
doorplate. Depending on the quality of the image it can happen that the one is inter-
preted as the seven and vice versa. The recognition process is sometimes difficult if
some characters are not completely closed, as in Figure 71.

Figure 71 A numeral that is not closed

The room number on the doorplate in Figure 71 has a numeral that is not closed.
This is the six. Therefore, the recognition of the six is problematical.
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A redundant robot-vision program is explained in this chapter, which was developed
for a robot-vision scenario. The explanations are based on [115].

A mobile robot autonomously creates a map (see Chapter 3) of its office environ-
ment in this scenario (see Chapter 1). After the map was created, it serves as the
basis for the robot to fulfill tasks executed by an office messenger or a watchman.
For example, postal delivery could be a task for an office messenger. The robot can
only fulfill such tasks if it possesses cameras. The robot must be able to read door
numbers that can be found on office doorplates. Reading the office numbers is not
always simple, because the dynamic character of the elucidated scenario aggravates
the recognition process. The working time of the robot is not restricted generally.
This effects inhomogeneous illumination. The robot will take images at different
times of day. Therefore, a robot-vision program that can read the room numbers
must consider different natural and artificial illumination intensities.

Another problem are different positions from which the robot takes images from
the doorplate. This may concern the angle that is determined by the camera’s line of
sight that meets the doorplate. As the angle becomes more acute the more difficult
it is for a robot-vision program to read the numbers on the doorplate. Images that
are taken from an acute angle can affect problems that are well known in OCR (see
Chapter 9). These problems can yield poor recognition of the numbers. It is not pos-
sible to handle the problems with commercial OCR programs. Therefore, the imple-
mented program uses the commercial image-processing library HALCON [4]. HAL-
CON provides a self-learning algorithm that can be trained with digits. Also, neural
networks (see Chapter 8) have been successfully used for OCR. Therefore, several
approaches exist that can be used for OCR in computer-vision programs. But an ap-
plication must nevertheless be well designed for the specific problem to gain good
recognition results. This requires proper image segmentation.

The segmentation process can be supported by several operators. Frequency fil-
ters, such as a highpass filter, a Gabor filter, etc., can be qualified for the segmenta-
tion of images that were taken under different illumination conditions (see Section
2.2). So there is probably no need for the development of new operators. A redun-
dant program design is proposed in this chapter. It is shown how redundant robot-
vision programs are designed to obtain good recognition results. The implemented
program processes several results that are compared to select a solution with the
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10 Redundancy in Robot-vision Scenarios

highest recognition rate. If the digit recognition was not satisfactory, the program
processes additional results to obtain a better solution.

An overview is now given of the program design. General guidelines are also
introduced for the development of redundant programs in computer vision, which
are derived from the program that is explained in the following. For these purposes
the program flow is considered that manifests the redundant calculation. The pro-
gram was tested in an experiment. Results are reported. The used sample images
show doorplates and have been taken in different conditions, like changes in illumi-
nation and the position from which the images were taken.

10.1
Redundant Programs for Robot-vision Applications

It has been discussed that the generation of a map, which will be the base for the
fulfillment of tasks that an office messenger or a watchman has to do, with an
autonomous and mobile robot is very difficult and can only be solved with the sup-
port of a robot-vision program. Because of the dynamic character, it is a challenge to
create a robust program. In particular the changes in illumination can quickly yield
a failure of the robot-vision program. A redundant program design is proposed to
improve the recognition process. The quality of the recognition process can be
raised with different strategies.

The segmentation process can be advanced. It may also be a useful approach to
construct a reliable classification. Classification is the last step in computer vision
(see Chapter 2). In this step attributes of objects are examined and compared with a
class description. If the examined values match the class description, the objects are
assigned to the class. For example, a segmented rectangle in an image can represent
a doorplate in an office environment. The doorplate’s measurements, like the width
and the height, can be attributes for the classification process. The aim of the devel-
oped program was the appropriation of a robust segmentation for the classification.
Several approaches, like the elucidated neural networks and self-learning approach-
es, exist for OCR. It seems that there is no need for the additional development of
classification techniques. Rather a good segmentation process is required that pro-
vides qualified results for the classification. The classification can only process use-
ful results if the segmentation process is successful.

In this section it is not proposed to develop new operators. The main focus was
the development of a redundant program design to meet the dynamic character of
the robot-vision scenario. The program uses two redundantly calculated results,
which are used for the examination of the final result. This procedure realized the
principle that a final solution must be based at least on two redundantly calculated
results. The consideration of a single result is regarded as too insecure. It is also
required that calculations be carried out with different ranges. For example, the dis-
tance between a robot and a doorplate can vary in the elucidated scenario in certain
boundaries. Although the distances do not differ strongly, the fluctuations can affect
the segmentation. For example, if the segmentation process is searching for a rec-
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tangle, which probably represents a doorplate, it can use the rectangle’s measure-
ments in the image for the detection. But these measurements will vary if the dis-
tance changes between the robot and the doorplate.

Therefore, it is proposed to use redundant calculations with different parameteri-
zations. But a different parameterization is not sufficient. The redundant calcula-
tions will also be accomplished using different strategies. This concerns the imple-
mented algorithms. In the elucidated scenario it could be a way first to search for a
rectangle that may represent a doorplate. If the rectangle is found, the further calcu-
lations can be restricted to the detected rectangle, because the room number is
expected to be within the rectangle. But it can also be successful to try a direct recog-
nition of the room number in the entire image. In this case the rectangle search is
circumvented, which can be especially valuable if the detection of a rectangle is diffi-
cult. For example, an image that contains only a part of the whole doorplate would
aggravate the rectangle detection. If it is not possible to find a rectangle, it is neces-
sary to generate both redundant results with direct character recognition. These
explanations reveal that a redundant program can demand a very high program-
ming complexity. It depends on the application whether this can be justified.

Also, a long running time can result from redundant programming that should
be palliated with another design principle. First calculation attempts should always
use fast algorithms. Therefore, it is approved that these calculations must not be
very precise. More precise algorithms are only utilized if the first calculations are
unsuccessful. In this case a longer running time is expected. Also, plausibility
checks can be used to improve the quality of the results. For example, it can be pre-
sumed that office room numbers consist of more than one digit. If a final solution
contains only one digit, it is recommended that further calculations be executed.
The examined final solution is obviously incomplete. The explained design princi-
ples are now listed:

1. A final solution must be based on at least two calculations.
2. Different strategies should be used for the calculations.
3. Redundant results should be gained using different parameterizations in the

recognition process.
4. Fast calculations are required for the first calculation tries.

The redundant program follows these guidelines and is explained in the next sec-
tion.

10.2
The Program

The functionality of the program functions and the program flow is elucidated. To
meet the guidelines the functions often offer a relatively large number of formal
parameters to support the use of different parameterizations. Images are analyzed
with operators that are parameterized very loosely with wide parameters. This
means that the first calculations possibly select many details in the image in order
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to avoid necessary information being eliminated. Otherwise, if too many details are
selected, the character recognition can also be aggravated. For example, wide ranges
can be provided for the feature height. A rectangle can be searched for in an image
with a relatively wide interval for the feature height to avoid the possibility that the
rectangle that represents the doorplate will not be selected.

But it may also be the case that rectangles are found that do not represent the
doorplate. In this case the unwanted objects must be eliminated in a downstream
processing level. The program implements two different strategies for the character
recognition. It performs a direct recognition of the characters in the entire image, or
it first searches for a rectangle that probably represents a doorplate. Both strategies
are explained in the following.

10.2.1
Looking for a Rectangle

The strategy that first looks for a rectangle is implemented with the function rec-
tangle_search:

void rectangle_search (int MEAN_VALUE_SEARCH, int
Height_MIN).

First, the function is searching for edges with the Sobel operator (see Section 2.4)
and processes edge data like lengths, coordinates, and orientations. But it must be
noted that the edge detection can be very time consuming. This depends strongly on
the image in which the edges are to be detected. For example, documents with text
and many figures can often be found near to an office door. In this case a vast quan-
tity of edges will be processed that can take a long time. A mean value filter is
applied to the image to get a smoothed version and thereafter the Sobel operator is
applied. This procedure will help to save processing time, because the smoothed
image will contain fewer edges. The user of the function rectangle_search
can control if the mean value filter is taken or not. Therefore, the flag
MEAN_VALUE_SEARCH is offered. This flag must be initialized with one if the
mean value filter is used before the edge detection.

With the second parameter, the minimal height for objects that are to be selected
can be adjusted. Objects whose region heights fall below this lower limit are not con-
sidered for further calculations. The calculated edges are approximated with lines [4]
by the use of a HALCON operator. This creates a binary image. Also, the mentioned
edge data are used for the processing of these lines. Then the lines are elongated.
The extension of the lines generates a rectangular shape that has crosses at its cor-
ners, because in many cases the segmented rectangle, which represents the door-
plate, has interrupted lines.

It is now expected that the rectangle is bordered by a closed contour. Holes are
now filled. This results in a filled rectangle. The binary image is processed with ero-
sion and dilation (see Section 2.3). Until now the binary image contains exactly one
region. This region is decomposed. Coherent pixels in the image constitute a region
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(see Section 2.6). The expected size features of the rectangle, which probably
represents the doorplate, are now used to eliminate the unwanted regions. Only
the rectangle remains. As elucidated, the possibility exists that the function
rectangle_search can be parameterized in such a way that the edge detection
is executed on a smoothed image. This saves processing time and should be used
for the first calculation tries. If these attempts do not provide the required
rectangle the procedure can be used once again. But now the smoothing is omitted.
A more detailed and more time-consuming search is then performed. The
recognition of the room number can start if the rectangle is found. The function
rectangle_search uses a variable to indicate if the rectangle detection was suc-
cessful.

10.2.2
Room-number Recognition

Room-number recognition can start if the rectangle is found. Therefore, the func-
tion char_rec can be used:

char_rec(int NO_REC, int RawSeg, int Height_MIN, int
Height_MAX, tuple RecNum_REC, tuple Confidence_REC).

At first the parameters are depicted. NO_REC is a flag that indicates if a rectangle
was found or not. Zero indicates that a rectangle was found. The function uses the
dynamic threshold (see Section 2.7) of the HALCON library. Objects that are
selected by the function must have a region height of at least Height_MIN pixels
and may have the maximal region height of Height_MAX pixels. The recognized
digits are stored in RecNum_REC. For every recognized digit a confidence value in
per cent is calculated. This value indicates how secure the recognition of the corre-
sponding digit was.

At first the function starts with the cutting of the calculated rectangle. The result
is an image clip that is augmented. A homogeneous matrix (see Section 3.1) is used
for these purposes to execute translation and scaling. Then the image clip is pro-
cessed with a mean value filter, which follows the dynamic threshold. A similar
effect could be gained if a threshold operator were applied to a highpass filtered
image. The dynamic threshold operator offers a parameter to extract light or dark
areas. Room numbers are often in black. In this case the parameter must be set to
’dark’. Holes, which may result from the application of the dynamic threshold
operator, are filled if they match to a specified size. An opening is now used that
consists of erosion followed by the Minkowski addition to calculate smoothed rims.
Coherent pixels are now analyzed that constitute a region. Regions can now be
selected that match to the expected minimal and maximal height and width of
digits.

At best only those regions remain that represent the digits of the doorplate. The
recognition of the digits can then start. For these purposes a self-learning algorithm
[4] of the HALCON library is used that was trained with eligible digit examples. The
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result of this training is an ASCII file that is used at run time from an operator that
also determines the confidence values. The confidence values can be used to elimi-
nate regions that do not represent digits, because the corresponding confidence
values should be very low in this case, unless the region has a strong similarity with
a real digit. But this would be random, and it can be expected that this should not
emerge too often. It may be more frequent that regions that do not represent digits
and do not appear similar, have measurements that match to the expected height
and width of digits on a doorplate. These regions can be eliminated by the use of the
confidence values. The program uses a boundary for confidence values. Only
regions that have a corresponding confidence value that does not fall below the
boundary are selected into the result. In any event, a region that represents a digit
should never be eliminated. Therefore, the boundary was chosen very low so as to
avoid this case, but it may now occur that unwanted regions are sometimes selected.

The redundant program design helps to detect such erroneous classifications.
The obtained result can be compared with a second redundantly calculated result.
This result is examined with the direct recognition of digits in the entire image.

10.2.3
Direct Recognition of Digits

The operator for OCR can also be used from an algorithm that implements the
direct recognition of room numbers, because the size of the selected digits has no
effect on the classification. The function direct_recognition implements the
algorithm:

direct_recognition(int Width_MIN, int Width_MAX, int
Height_MIN, int Height_MAX, tuple RecNum_TH, tuple
confidence_TH).

The user of the function can provide minimal and maximal boundaries that spec-
ify allowable intervals for the height and width of regions that may be selected. The
recognized numbers are stored in the array RecNum_TH. The corresponding confi-
dence values can be found in the array confidence_TH. The function starts with
the mean value filter. It follows the dynamic threshold. Specified holes are filled in
the binary image. Opening with a circle follows this. The entire region is decom-
posed into regions that represent coherent pixels as elucidated before. The values
provided for the allowable boundaries of object width and height are used to select
regions. The boundaries must be lower than those boundaries that are used in an
algorithm that first searches for a rectangle, because the digits are smaller. In partic-
ular no augmentation happens in the algorithm that implements the direct recogni-
tion.

As soon as the regions that probably represent digits are detected, the classifica-
tion can start, which is similar to in the function char_rec. An operator that uses
an ASCII file that was calculated from a self-learning algorithm, performs the digit
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recognition. Arrays are also used to store the recognized digits and the correspond-
ing confidence values. Figure 72 shows the direct recognition of digits in an image.

Figure 72 Direct recognition of a room number

The number on the doorplate is �4961’. The recognized digits are bordered with
rectangles. The digits read are written into the top-left corner of the figure.

10.2.4
The Final Decision

Two results are now calculated with different strategies. It is now the task of the
program to make a final decision. The best result is selected. At first it is checked if
two results exist, because only in that case can a comparison be executed. The flag
NO_REC serves for these purposes. If NO_REC has the value zero, two results exist.
If NO_REC does not have the value zero, a further result must be processed, because
a final decision can only be executed if two redundant results are available. The com-
parison of two redundant results is performed with the function

result_intersection (tuple Result1, tuple Result2, tuple
Intersection).

The two results are provided by the use of the formal parameters Result1 and
Result2. The function returns the intersection in the variable of the same name,
which is also a formal parameter. Only digits are included in the variable Inter-
section whose corresponding confidence values do not fall below a boundary in
both results.
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10.3
The Program Flow

The OCR file that was generated from a self-learning algorithm is first read from
the program. The call of the function rectangle_search follows. At the begin-
ning a result is sought by the use of the mean value filter. Therefore, the flag
MEAN_VALUE_SEARCH is initialized with one. This affects a fast but not very pre-
cise search. It is then checked whether a variable contains only one region that prob-
ably represents the desired rectangle. If one region is contained exactly in the vari-
able, the function char_rec is called. If the number that indicates the contained
regions is not equal to one, the calculation was not successful. A further call of
rectangle_search is required. The flag MEAN_VALUE_SEARCH now obtains
the value zero. The mean value filter is not applied in this case. Therefore, the pro-
posed guidelines are considered. If the fast search with the utilization of the mean
value filter is not useful, a further search is executed that performs a more precise
but also more time-consuming search. Figure 73 shows the entire program flow.

After the function rectangle_search has finished, a variable should contain
a rectangle that represents the doorplate. This is verified and if true, the function
char_rec is called. Otherwise the detection of the doorplate was not successful
and rectangle_search is called once again. MEAN_VALUE_SEARCH is now
initialized with zero to indicate that the segmentation should not use the mean val-
ue filter. The mean value filter is only applied in the first calculations attempts,
because the edge detection in a smoothed image saves running time. But the seg-
mentation process is not so precise. Therefore, the mean value filtering is omitted if
the doorplate detection malfunctioned.

A second redundant result is gained with the function direct_recognition
that accomplishes the number detection on the entire image. Digits are directly
searched for. At first the formal parameters of the function obtain very relaxed val-
ues. These relaxed values avoid digits of the doorplate being eliminated. A flag indi-
cates if two results are available and if the rectangle detection was successful. This
information can be taken to alter the search strategy if two results do not exist. If a
rectangle was not detected, calculation of both results is tried with the direct recog-
nition. A function with the same name is used for these purposes. The values of the
formal parameters are now more restrictively selected to avoid unwanted regions
being collected. But a restrictive parameterization can have the drawback that some-
times one or several digits are also eliminated.

The function intersection_result obtains two redundant results if avail-
able. The intersection of two results is calculated. The quality of the computed inter-
section is verified with a plausibility check. This check presumes that numbers on
office doorplates consist, as a rule, of more than one digit.

If the intersection contains only one digit, the function rectangle_search is
called again, but other parameters are used. For example, a former recognition pro-
cess detected a rectangle that did not represent a doorplate. In this case the parame-
terization was improper and therefore changed in a fresh calculation. Regions are
now also selected if their minimally permissible height is lower than in the former
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computation, because the value of the corresponding parameter is now decreased. It is
verified again if a rectangle is found that is a prerequisite for the function char_rec.

If a rectangle is found, the procedure char_rec is called with other parameters.
The flag NO_REC_WR obtains the value one if no rectangle was found. In this case
the use of wide ranges (WR) did not also provide a utilizable result. Narrower ranges
are now used to calculate a second result with the function rectangle_search.
If now two new results exist, they were both calculated with the function
rectangle_search. One result was calculated with narrow ranges and a second
result with more relaxed ranges. The function result_intersection is now
called if both results exist. This is verified.

The final solution is constituted by the intersection from both redundantly calcu-
lated results. If two additional results can not be provided, the final solution is com-
posed from the comparison of the former calculated intersection with a probably cal-
culated further single result. It is simply the result chosen that contains the most
digits. If no additional result can be created at all, the probably only recognized digit
is selected for the final result.

10.4
Experiment

Images were taken under different illumination conditions and from different posi-
tions. The room numbers were often difficult to recognize also for a human. An
example is shown in Figure 74.

Figure 74 An image of poor quality

Although the room number in Figure 74 is difficult to recognize, it was correctly
read from the robot-vision program. An example is also given of an image that was
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taken from a position where the camera’s line of sight met the doorplate in an acute
angle, see Figure 75.

Figure 75 An image with an acute angle to the doorplate

The robot-vision program also read in the room number correctly this case. This
holds also for the following two images, which were taken under different illumina-
tion conditions. Figure 76 shows an image that was taken in rather dark illumina-
tion.

Figure 76 A dark image

In contrast, a brighter image is shown in Figure 77.

143



10 Redundancy in Robot-vision Scenarios

Figure 77 A bright image

These dynamically changing factors are very problematical for conventional com-
puter-vision programs. The recognition results of the explained program are
depicted in Table 1.

Table 1 The recognition rates of room numbers.

Correctly
recognized

3 digits
recognized

2 digits
recognized

1 digit
recognized

Digits
twisted

Nothing
recognized

Quantity 160 14 5 1 4 4

A total of 188 images were used in the experiment. The room number was read
accurately in 160 sample images. Three digits of the entire room number, which
consists in all cases of four digits, were recognized in 14 images. Two digits only
could be recognized in five images and one digit was recognized in a sole image. In
four images the digits were recognized, but the sequence of the digits was erro-
neously reproduced. No digits at all were recognized in four images.

10.5
Conclusion

Robot-vision projects can strongly benefit from a redundant program design. In this
chapter a robot-vision program was introduced that can be used from a mobile robot
whose task is the autonomous creation of a map that represents the office environ-
ment. The generated map can then be a basis for the robot to perform actions that a
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watchman or an office messenger has to do. For example, postal delivery could be
such a task for an office messenger. The reported scenario features a very dynamic
character. The robot has to take images under different illumination conditions and
from different positions. These factors are a problem for the reliability of the robot-
vision application that needs to read the room numbers in the office environment.
Several operators and techniques exist for OCR in computer vision. In this chapter a
qualified program design was introduced. General guidelines were derived from the
redundant program design and reported in this chapter. The use of the general
guidelines should enhance the dependability of robot-vision programs in the future.
In particular, robot-vision programs that calculate results that are based on probabil-
ities like the self-localization (see Section 3.5), the classification, and so forth, should
profit from a redundant program design. The calculated confidence values will be
improved with redundant programming. The elucidated program has been in use
since 2001 from the autonomous robot system OSCAR [116] for doorplate recogni-
tion. OSCAR controls the robot MARVIN. The purpose is autonomous indoor
exploration as mentioned before.
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In the preceding chapter it was stated that redundant programming should be used
in robot-vision scenarios. Algorithms are introduced in this chapter that appear to
be appropriate for the reported robot-vision scenario. Therefore, the algorithms are
compared.

The examples are based on [117]. The evaluation performed was motivated
because of the fact that not enough studies exist in the area of the video-based
indoor exploration with autonomous mobile robots that report about criteria for the
algorithm evaluation. The dynamic character of the robot scenario is considered
again. Inhomogeneous illumination can occur. In Section 2.2 it was shown that the
Gabor filter can be a good choice if inhomogeneous illumination occurs. The woo-
den cube could be gripped by the robot also by candlelight. It is not possible to
remove the confusions because of the dynamic character of the robot-vision sce-
nario. In this chapter several algorithms are reported that seem to be appropriate for
the scenario. The developed algorithms are compared. The comparisons were sup-
ported by evaluation criteria that are introduced in this chapter.

Five algorithms based on Gabor filtering, highpass filtering [118], band filtering
[4], color-feature detection (see Section 2.1), or Sobel filtering (see Section 2.4) are
depicted. Every implemented algorithm uses one of the five listed operators. An
image was taken from a Pioneer 1 robot that shows the corridor of our research
institute. At first the algorithms are demonstrated, then they are used to detect dif-
ferent objects in the image. For example, a fire extinguisher in an image can be
detected with the algorithm based on the color feature. The comparison of the algo-
rithms took place in experiments. The reliability of the algorithms was tested with
regard to inhomogeneous illumination. All five algorithms were used to detect the
same object in the image. The object is disturbed by a shadow and was therefore
selected, because inhomogeneous illumination occurs. The results of the experi-
ment and the used evaluation criteria are elucidated.
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11.1
Algorithms for Indoor Exploration

The algorithms are implemented in C++. They are object oriented [119] and use the
commercial image-processing library HALCON/ C++. The algorithms are designed
similarly. Figure 78 depicts the algorithm that is based on the Gabor filter.

Five classes are shown. The HALCON types HTuple and Hobject are mainly
used. Class win is used to show an image Im in a window on the screen. The attri-
butes Height and Width control the size of the window. WindowID is the logical
number of that window in which the image Im is shown. The logical number is
assigned from HALCON to every window. If an image Im is shown in a window, the
user has the possibility to view the image as long as he wants. He can proceed by
the execution of an input from the command line. For these purposes the variable
proceed is used, which stores the user input. Two widow types can be generated
with constructor win(Hobject Image, int standard=0). If flag standard
is not equal to zero, a standard window is generated that has the default settings of
HALCON. Otherwise the window size is controlled by the image size. The actual
image can be changed with the method change_image(Hobject Image).
Image Im is displayed with the method display(). If the user has the possibility
to view the image as long as he wants to, method hold() is used. The method
ensures that program execution stops until the user performs an input from the
command line.

A path to an image that is stored on the bulk memory must be provided as a char-
acter array to the constructor fourier(char file[]) that belongs to the class of
the same name. Variable PioneerImage is used to store the read image in the
main memory. Method calculate() performs the Fourier transformation. Vari-
able ImageFFT is used for the storage of the transformed image. The class
fourier can process RGB images. The method calculate() in the class
fourier extracts the blue channel of the RGB image into private member Blue.
Blue is zoomed to quadratic size. The zoomed image is stored in ImageZoom and
written to the bulk memory. A quadratic image size is often used [110] for imple-
mentations of the fast Fourier transform.

Class gabor generates a filter of the same name with the method calcu-
late(). Constructor convolution(char file[]) produces a path of an
image and convolutes this image with the Gabor filter. The convolution is executed
with the method calculate() that is called by the constructor. But before
calculate() is called, the two constructors of the base classes are called. For
these purposes the path of the image that is to be convoluted is forwarded to the
constructor of the class fourier. After the enforcement of the convolution the
resulting image is at first in the frequency domain and therefore transformed back
into the spatial domain. The image in the spatial domain is stored on the mass stor-
age.
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public:

win(Hobject Image, int standard = 0 )

void change_image (Hobject Image)

void display()

void hold()

void close()
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Hobject PioneerImage

Hobject Blue

Hobject ImageZoom

Hobject ImageFFT

public:

fourier(char file [])
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public:

convolution (char file [])
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convolution * c

Hobject GaborInv

Hobject ImageZoom

Hobject RegionDynThresh

Hobject RegionFillUp

Hobject RegionErosion

Hobject RegionDilation
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Operation:

Class name

Legend:

Class with operations and attributes: Inheritance: Association

Figure 78 Class design of an object segmentation algorithm
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The constructor of class segmentation creates an object of type convolution on the
heap (dynamic store). The constructor of the class convolution is called with a
path to the image that is to be convoluted. After the convolution takes place method
go() in class segmentation is called. Intermediate data are the convoluted
image that was retransformed into the spatial domain, and the zoomed image. Both
images are stored on the bulk memory from the base objects as mentioned before.
These two results are used from the method go(). Extensive explanations of the
segmentation algorithm are given below. The segmentation algorithm creates
intermediate data that are displayed from an object of the class win on the screen.
After the segmentation has finished, the desired object remains. Destructor
~segmentation() is called if an object of the class segmentation is removed.
The destructor deletes the convolution object from the dynamic memory.

11.1.1
Segmentation with a Gabor Filter

Image IO, which was taken from a Pioneer 1 robot, shows a poster that is extracted
from the entire image with the Gabor filter. The detection of the poster is difficult
because of a shadow cast. This can be viewed in Figure 79.

Figure 79 Image IO from a corridor

Two posters can be found on the right side of the wall. The poster nearby the light
switch is to be detected. Inhomogeneous illumination can be observed on the poster
and its environment due to the shadow cast. Additionally, reflections on the poster
result from a neon lamp. Therefore, the poster shows typical emergings that appear
in the autonomous indoor exploration with mobile robots.

The Gabor filter was used for the poster segmentation because of its direction fil-
tering effect. The impulse answer of the two-dimensional Gabor filter is represented
with the formula (2.26). A total of 50 pixels have been used for the bandwidth k. The
value of 1 was actually used for r and 0.3 for d. The Gabor filter was applied to the
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Fourier-transformed image that was gained from the extracted and zoomed blue
channel of image IO. The zoomed image was of size 512 · 512 and denoted with IZ.
The result of the Gabor filtering was retransformed into the spatial domain and is
denoted by IG and shown in Figure 80.

Figure 80 Gabor filtered image IG

The illumination differences of the poster are alleviated. For the image IG the
threshold image was constructed by the use of the dynamic threshold operator (see
Section 2.7). The value of 15 was assigned to the offset of . Pixels are included in the
binary image IT provided that they fulfill the inequality IZðxA; yAÞ £ IGðxA; yAÞ þ of
of Equation (2.46). Morphological operators were applied to the threshold image.
The height HðAiÞ and width WðAiÞ of the desired poster Ai ˛ IE, i ¼ 1; 2; . . . ;N, are
used to select the poster. IE is an image and Ai a region in the image IE. Ai is consti-
tuted by a set of coherent pixels. IE contains N regions altogether. The maximal
height of a region Ai is computed with function HðAiÞ and the maximal width with
function WðAiÞ:

SE ¼ fAi jð50 £WðAiÞ £ 100Þ � ð60 £HðAiÞ£ 100Þ �
ðAi ˛ IEÞg i ¼ 1; 2; . . . ;N

. (11.1)

The formula shows the selected lower limits and upper limits for height and
width. Regions are selected whose heights and widths are within the boundaries. If
the boundaries in the formula are used for the image IE that was calculated with
morphological operators that were applied to IT, then SE contains only one region
that represents the poster Ai. The formula reveals that the boundaries can be
selected very widely and gives hints as to how reliable the depicted algorithm prob-
able will be. It is expected that such an algorithm is relatively resistant against noise
and dynamic changes like alterations of the illumination or the object size in an
image. The coordinates of the region are also available. For example, this makes it
possible that the region can be cut out for further examinations.
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11.1.2
Segmentation with Highpass Filtering

We now show how highpass filtering can be applied to the RGB image IO that was
taken from a Pioneer 1 robot. In this case an algorithm was implemented to detect
the second poster in IO. This is the poster that is positioned right beside the neon
lamp and opposite to the fire extinguisher. Illumination differences also exist, but
are not so pronounced as in the poster that was detected with the algorithm that
uses the Gabor filter. The size of the highpass filter mask used was 29 · 29. A high-
pass filter may be appropriate if low frequencies are to be eliminated. The larger the
size of the highpass filter mask used the more the frequency domain increases,
which may pass into the direction of lower frequency. Therefore, a large highpass
filter mask lets pass low frequencies. The highpass filter was applied to the blue
channel image IB that was extracted from the image IO. The result of this convolu-
tion can be viewed in Figure 81.

Figure 81 Highpass filtered image IH

The figure shows that the illumination differences could be defused. The Gabor
and highpass filter are both frequency selective. The highpass filter is followed by
the dynamic threshold operator that was adjusted with the offset of of 30. The
resulting binary image is processed with morphological operators. Finally, poster Ai

is selected. This occurs by the use of the features height and width for the remaining
regions in the image IE. The upper and lower boundaries for these features can be
seen in the formula:

SE ¼ fAi jð40 £WðAiÞ £ 60Þ � ð100 £HðAiÞ£ 200Þ �
ðAi ˛ IEÞg i ¼ 1; 2; . . . ;Ng

. (11.2)

If these boundaries are chosen for the image IE, then there remains only one re-
gion Ai in SE that represents the desired poster in the RGB image IO, because the
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zooming of the blue channel was not necessary. The convolution was executed in
the spatial domain with a filter mask. The algorithm based on the highpass filtering
permits wide ranges for the width and height features of the regions to be selected
widely, just as by the algorithm that uses the Gabor filter.

11.1.3
Object Selection with a Band Filter

The light switch in the RGB image IO is to be found. An algorithm is now explained
that uses a band filter IF

BF for the object detection. In this case the convolution takes
place in the frequency domain. The superscript symbol F denotes that the spatial
image IBF, which is the band filter, is transformed into the frequency domain. Fre-
quencies that are outside of a frequency band that has the normalized lower bound-
ary fmin and normalized upper boundary fmax are selected and put into the result of
the filtering. Frequency values may be selected for both boundaries that are in the
interval ½0; 100�. The algorithm uses 40 for fmin and 50 for fmax. Frequencies are
selected that are in the intervals ½0; 40Þ and ð50; 100�. The algorithm creates the
specified band filter to use for the convolution with the Fourier transformed image
IF

Z:

I
F
B ¼ I

F
Z � I

F
BF . (11.3)

The convolution occurs in the frequency domain and is marked with the dot. The
result is the image IB that is retransformed into the spatial domain with the inverse
Fourier transform. The usual threshold operator (see Section 2.7) is now applied to
IB. Tmin was initialized with 130 and Tmax with 170. The binary image IT was pro-
cessed with morphological operators. Then regions were searched for that were con-
stituted by coherent pixels. The light switch Ai was selected by the use of the fea-
tures height and width. The used boundaries are shown in the formula:

SE ¼ fAi jð30 £WðAiÞ £ 50Þ � ð40 £HðAiÞ £ 60Þ �
ðAi ˛ IEÞg i ¼ 1; 2; . . . ;N

. (11.4)

11.1.4
Object Detection with the Color Feature

It seems to be favorable to search for the fire extinguisher with its color feature. The
red color is very eye catching and singular in the image. The three channels of the
RGB image were extracted:

IRðxA ; yAÞ; IGðxA ; yAÞ; IBðxA ; yAÞ. (11.5)

The gray values in all three channels are defined on the interval ½0; 255�. Gray
value 0 is used for black and gray value 255 for white. All three channels were uti-
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lized for the extinguisher detection. A threshold image was derived from each chan-
nel:

ITv ðxA ; yAÞ ¼
1 if Tvmin £ IvðxA ; yAÞ£Tvmax

0 else v˛ fR;G;Bg

�
. (11.6)

ITv is a threshold image that was calculated from channel v. The used threshold
boundaries are now listed:

TR min
¼ 60; TR max

¼ 130; TG min
¼ 30; TG max ¼ 65;

TB min
¼ 30; TB max ¼ 55:

(11.7)

Relatively wide ranges are required. This may be perhaps astonishing, but the
image shows color differences within the fire extinguisher. The need for wide ranges
makes the use of only one channel for the detection of the fire extinguisher extreme-
ly disadvantageous, because too many pixels would remain in the threshold image.
Most of these pixels do not belong to the fire extinguisher. Therefore, all three chan-
nels are used, and the intersection of the three calculated threshold images is com-
puted:

ITRGB
¼ ITR

˙ ITG
˙ ITB

. (11.8)

The result of the intersection is a new threshold image ITRGB
. The value

ITRGB
ðxA; yAÞ only has the value 1 if this holds also for ITRðxA; yAÞ, ITG

ðxA; yAÞ, and
ITBðxA; yAÞ. Otherwise ITRGB

ðxA; yAÞ obtains the value 0. It is expected that ITRGB
con-

tains only a small number of pixels. It is preferred that most of these pixels belong
to the fire extinguisher. But Figure 82 shows that this ideal case is not obtained.

Figure 82 Fire extinguisher in a threshold image

154



11.1 Algorithms for Indoor Exploration

Many pixels remain in the threshold image ITRGB
that do not belong to the fire

extinguisher. It can also be observed that not all the pixels that represent the fire
extinguisher are selected. This is amazing, because the ranges have been selected
relatively widely. The image ITRGB

is processed with morphological operators and
then the fire extinguisher is selected by the use of the region’s features width and
height. This strategy is known from the algorithms that have been explained in the
previous sections:

SE ¼ fAi jð15 £WðAiÞ £ 20Þ � ð40 £HðAiÞ £ 60Þ �
ðAi ˛ IEÞg i ¼ 1; 2; . . . ;N

. (11.9)

The unprofitable threshold image ITRGB
forces very narrow ranges, which may

make it evident that the depicted algorithm seems to be less appropriate in compar-
ison to the algorithms based on Gabor and highpass filtering.

11.1.5
Edge Detection with the Sobel Filter

The Sobel filter is now used to detect the light switch in the image IO. The edge
detection happens in the spatial domain. The algorithm uses the mean value filter
IMF of size 9 � 9 in the first step. The convolution takes place with the image IO:

IM ¼ IO
��IMF . (11.10)

The symbol �� represents the convolution in the spatial domain. Then the edge-
detection operator (see Section 10.2.1) was used based on the Sobel filter. The opera-
tor was applied to the image IM: the result of the convolution in the spatial domain.
The mask of the Sobel filter had a size of 9 � 9 and the used calculation specification
was ’the amount of the direction difference’:

IDðxA ; yAÞ ¼
jDxIMðxA;yAÞjþjDyIMðxA;yAÞj

2
. (11.11)

Subscript D indicates the use of discrete gradients. DxIMðxA; yAÞ represents the
discrete gradient in the XA direction and DyIMðxA; yAÞ the discrete gradient in the
YA direction. But ID is not the image IS that was gained by the use of a Sobel filter,
because this requires an appropriate filter mask. After the edge detection was per-
formed, the edges are approximated with lines, which are included in IS. Then
some data is computed in IS, like length, coordinates, and orientation in radians.
The applied edge-detection operator enables adjustment of a minimal necessary
length. Edges and their approximations respectively are not considered if their
lengths fall below the adjusted lower boundary. The image IS contains the approxi-
mated lines. It is a binary image that can be processed with morphological opera-
tors. The result of these morphological operations is then decomposed into several
regions. Each of these regions represents coherent pixels. Finally, the determination
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of that region that represents the light switch Ai is carried out. For these purposes
region attributes like compactness (see Chapter 2), area, width, and height are used.
The following formula shows the used parameterization for the attributes width and
height:

SE ¼ fAi jð20 £WðAiÞ £ 30Þ � ð25 £HðAiÞ £ 30Þ �
ðAi ˛ IEÞg i ¼ 1; 2; . . . ;N

. (11.12)

11.2
Experiments

In the last sections some algorithms have been elucidated. The experiment is now
described that should evaluate the algorithms with regard to their eligibility for
indoor exploration projects with autonomous and mobile robots. For these purposes
two evaluation criteria were used. One criterion was the range of the interval used
for the height attribute. The wider an interval for the height criterion can be selected
the better is the valuation of the algorithm. The interval boundaries were deter-
mined as wide as possible. This means that the selected boundaries provide exactly
one remaining region. This region is the desired region that represents the object to
be selected. If the selected lower boundary of the interval were decreased by at least
one pixel or the selected upper boundary increased by at least one pixel then this
would yield a result with at least two remaining regions. In this case at least one
region would be unwanted. In the previous sections sequenced selections were
used. For example, regions were first selected that matched to the interval bound-
aries for the width attribute and then the same strategy was used in conjunction
with the height criterion. Also, further attributes are possible like the region area.
Such successive selections were not implemented in the experiment, because the
comparison of the algorithms would be aggravated. Only the height attribute was
considered. Of course, an implementation of an algorithm to be used practically will
surely require such successive selections. Further alterations were made to obtain
more comparable algorithms. The explained algorithms used the threshold
(dynamic and conventional threshold) in most instances. In the experiment the con-
ventional threshold was generally used. Only the algorithm that uses the Sobel
operator for the edge detection is implemented without a threshold operation,
because the approximated lines were accumulated in a binary image.

The area of the detected region that represented the desired object was the second
evaluation criterion. The larger the computed area of the detected region the better
was the appraisal of the algorithm. As mentioned before, it is necessary to keep the
results of the algorithms as comparable as possible. Therefore, in either case the
poster nearby the light switch in the image IO should be detected from all algo-
rithms in the experiment. The choice of this object happened because of the illumi-
nation differences, which can be observed in the region that represents the object.
Inhomogeneous illumination is a typical occurrence in indoor exploration projects
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with autonomous and mobile robots. It was also assured that the examined height
intervals could be compared, because in either case a 512� 512 augmentation of
the original image was used, also in such cases where a zoomed image was not nec-
essary. The computed values for the two evaluation criteria are listed in Table 2 for
all five implemented algorithms.

Table 2 Evaluation of algorithms.

Algorithm based on Max. height interval [pixel] Area [pixel]

Sobel filter [71; 142] 2483
Color-feature extraction [66; 140] 1715
Band filter [31; 46] 599
Gabor filter [45; 511] 1308
Highpass filter [98; 156] 3766

It is stated that the area criterion was weighted higher for the evaluation. More
information about the object is provided for the reconstruction and recognition if a
larger area is detected. But also the range of the height interval must be appraised
adequately, because an algorithm that permits a wide interval for the height is less
vulnerable to unforeseen disturbances like noise, inhomogeneous illumination, and
so on. These aspects yield the conclusion that the algorithm based on the highpass
filtering is the best. Sobel and Gabor are considered as equal. With the algorithm
based on the Sobel filter, a relatively large object area was gained. The Gabor filter
permits a wide interval for the height criterion. The algorithms that used the color-
feature extraction and the band filter, did not feature convincing values. These two
algorithms are probably not appropriate for indoor exploration if dynamic changes
like inhomogeneous illumination occur.

11.3
Conclusion

Five algorithms were depicted. The Sobel filter, color-feature extraction, band filter,
Gabor filter, or highpass filter were used from the algorithms. Each algorithm used
one of these five operators. An experiment was executed. The five algorithms were
compared in the experiment with respect to their fitness for indoor exploration pro-
jects with autonomous and mobile robots. An image that was taken from a mobile
Pioneer 1 robot was used. The image shows the corridor of our research depart-
ment. The image also shows posters on the wall. One of these posters is character-
ized by inhomogeneous illumination, which is a typical occurrence in indoor
exploration projects with autonomous and mobile robots.

The algorithm that used the highpass filter has proved its robustness. Two evalua-
tion criteria were used for these purposes. One of these two criteria was the calcu-
lated area of the segmented region that represented the desired object. The larger
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the calculated value for the area the better was the evaluation. The other evaluation
criterion was the largest range that could be gained for the height interval. This
means that the range of the interval could not be increased by at least one pixel with-
out this yielding at least one other object that would be selected in the final result.
In that case at least one object would be unwanted.
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As mentioned before a map should be generated only by a video from an autono-
mous mobile robot. Therefore, it is necessary that three-dimensional world coordi-
nates ðxj; yj; zjÞW with j ¼ 1; 2; . . . ; n of n points in the world coordinate system
XW are determined. The points may belong to objects and serve the robot for the
navigation and the collision avoidance. Therefore, the mounted camera on the Pio-
neer 1 robot should be calibrated (see Chapter 7).

An approach is depicted following the elucidations in [120]. The robot is equipped
with a wide-angle lens. This kind of lens is often used in such projects, but has the
drawback that distortions appear in the image because of the fisheye effect. Some
further requirements for the explained robot-vision scenario are listed:

1. Production costs must be low for service robots if they are to be profitable.
2. A service robot should execute its tasks in real time.
3. It must be possible to run a robot on different operating systems.

These principles require cheap software. Items two and three are prerequisites for
item one. Low productivity would be the result if a service robot were not able to
fulfill its tasks in real time. Therefore, fast algorithms must be implemented. Item
three will probably increase the gain. The expected higher sales of such a robot allow
it to be sold with declining unit costs in comparison to a robot that can be run only
on one operating system.

The calibration program SICAST (simple calibration strategy) should help to
meet the three elucidated strategies. SICAST is implemented in C++ and is very por-
table, because it uses only the standard C++ libraries. The development costs for
SICAST were very low. Only a C++ compiler and a frame grabber are required. The
whole source code is available and was developed according to object-oriented guide-
lines. These facts support item 2, because algorithms can be replaced by more effi-
cient versions if necessary, and possible bugs in license software will have no affect.
A bug in SICAST can be eliminated very rapidly, because the whole source code is
accessible. Many existing calibration approaches use license software like MAPLE or
MATLAB. Sometimes the calibration procedure is very time consuming.

In the next sections calibration approaches are compared. Algorithms that are
implemented in SICAST are depicted, and the object-oriented design of SICAST is
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explained. An experiment was used to check the suitability of the calibration pro-
gram, and at the end a conclusion can be found.

12.1
Camera Calibration for Indoor Exploration

Video-based indoor exploration requires camera calibration. The camera parameters
affect the projection of three-dimensional world coordinates ðxj; yj; zjÞW of a point j
in the world coordinate system XW to its two-dimensional image coordinates
ðxj; yjÞA in the image affine coordinate system XA. If the three-dimensional coordi-
nates of an object are known, they can be collected in a map, which forms the basis
for a service robot to fulfill tasks that a watchman or an office messenger has to do.

The calibration of a pinhole camera can be gained with the approach of Faugeras
and Mourrain (see Section 7.1.1). In contrast to the other elucidated methods of
HALCON and Roger Tsai (see Section 7.1.2), which determine additionally the lens
distortion, no initial data is needed.

12.2
Simple Calibration with SICAST

12.2.1
Requirements

We now elucidate a calibration approach that is based on the proposal of Faugeras
and Morrain. A camera, which is mounted on our Pioneer 1 robot, is equipped with
a wide-angle lens of low resolution. The images are transmitted to a frame grabber
that is integrated in a static computer. The camera’s technical data is not available.
Therefore, HALCON’s operator or Roger Tsai’s approach are not suitable for the
camera calibration. Another reason for the choice of the proposal of Faugeras and
Morrain is the simple process. It is not necessary to take several images from differ-
ent positions and orientations. MAPLE was used [121] by Faugeras and Morrain in
their implementation to execute the mathematical calculations.

The program SICAST needs only the standard C++ libraries. Some algorithms
used for the QR-decomposition and singular-value decomposition (SVD) are given
in [108]. Also, some algorithms for matrix calculations are taken from [122]. This
strategy helps to meet the following listed requirements for the indoor exploration
project:

1. Source code is available,
2. Portability is supported,
3. Cheap program development.

In accordance with item three, a three-dimensional calibration object was created.
Only a frame grabber and a C++ compiler are necessary for the camera calibration.
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Two tins of the same size, which were set one upon the other, constitute the calibra-
tion object. The tins were swathed with a sheet of paper that was marked in different
heights. This calibration object can be used to measure nondegenerative points. For
these purposes the position of the calibration object was changed in every image.
The calibration object can be viewed in Figure 83.

Figure 83 The three-dimensional calibration object

The xj
W and yj

W coordinates were varied by the alteration of the calibration object’s
position within an office cupboard. This should simplify the determination of the
coordinates. The exact positioning of the calibration object was supported with a
sheet of paper that was printed with standardized squares. For every new position-
ing a dot was drawn onto the paper. To determine the xj

W and yj
W coordinates, only

the coordinates of the dot must be measured. The dot also enabled a very proper
positioning of the calibration object, because the object could be aligned with the
dot. Figure 83 also reveals strong distortions that result from the fisheye effect.

12.2.2
Program Architecture

An overview about program architecture is provided in Figure 84, which contains
the major classes of the calibration program:
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Figure 84 Program architecture

Classes matrix and vector are classes on low-level, which are used by many
of the shown classes. These associations are omitted in the drawing to preserve the
overview. The template concept of C++ was used to implement parameterized
classes. This permits the use of different built-in C++ data like float or double
by the same class. The parameterized classes can also use implemented type for
fractions. The availability of fractions can be useful for implemented matrix-manip-
ulation algorithms like the Gauss–Jordan method. The class fraction is implemen-
ted as template class. Built-in C++ data types can be used from the class fraction.
Further utility classes exist among the classes, which are shown in Figure 84. These
utility classes are used by the shown classes, but the utility classes are not included
in the figure, because the overview would suffer. The figure shows an abstract class
tuple from which the classes matrix, vector, and tensor are derived. An
object of the class tuple can not be created. But the derived classes inherit the
members of the class tuple. These common members can be used from all de-
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rived classes. Class tuple offers a column attribute to the derived classes and a
show method that prints out the actual value of the column attribute on the screen.
The show method is purely virtual and overridden by the derived classes, which pos-
sess their own implementations of the show method. The size of a vector object
can be assessed with the column attribute. Class matrix provides for the additional
dimensioning of a row attribute to register the second dimensions. A tensor
object is three-dimensional and additively needs attributes for the second and third
dimensions.

The projection matrix D is first computed using the class of the same name. The
input matrix I with m rows and n columns symbolizes the overdetermined linear
equation system. Class svd is used to gain the solution of the equation system.
Three matrices M; N, and Z are computed. The matrices M; N and the transpose
ZT of Z constitute the result. The size of M is m · n just as the matrix I. The size of
N and ZT is n · n. The equation system

I � m1 ¼ m2 (12.1)

will now be solved. An inhomogeneous solution must be found if m2 „ 0. The next
formula shows the equation system:

M
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�
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nn
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0
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1
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¼ I

0
BBBBBBBB@

1
CCCCCCCCA

. (12.2)

A homogeneous solution (m2 ¼ 0) is required for the equation system (12.1). The
diagonal elements of the diagonal matrix N are positive or zero. The diagonal ele-
ments are denoted by xN

ii ði ¼ 1; 2 . . . ; nÞ. If the value xN
ii is zero or close to zero,

then the corresponding row i of the matrix ZT constitutes a solution or a proximity
solution. Class svd uses this fact to determine one (proximity) solution. Other pos-
sibly existing solutions must be detected manually. Matrices N and Z must be ana-
lyzed for these purposes.

Finally the class projection_matrix arrays the vector m1 to the matrix D of
size 3· 4. The division of every element in D by the element c34 takes place. The
result is a normalized matrix D that is needed from class calibration as input.
The class calibration contains algorithms for the formulas (7.5) and (7.8). The
matrix D is decomposed into M and m. �M is computed. M is then provided for
class qr_decomposition. The implemented algorithm of the QR-decomposition
creates the orthogonal matrix T and the upper triangular matrix W by the decompo-
sition of the matrix M. Both matrices are assigned to a tensor object that is
returned to a calibration object.

Finally, the translation vector s must be computed. The matrix �M is made avail-
able to class inverse. A 3 · 3 unit matrix is appended at matrix �M. The result of
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the merging is noted with M¢. M¢ has six columns. �M is represented by the first
three columns of M¢ and the unit matrix by the last three columns of M¢.

Class gauss_jordan possesses an algorithm with the same name. The Gauss–
Jordan algorithm is used to create a matrix in reduced echelon form [122] from the
matrix M¢. The new matrix is denoted by M†, which has the same size as matrix M¢
(3 · 6). The first three columns of M† establish the unit matrix provided that �M is
invertible. This condition can be used to prove simply the invertibility of �M. The
program stops immediately if �M is not invertible and prints an error message on
the screen. Otherwise the last three columns of M† are regarded as the inverse of
�M. The class gauss_jordan is parameterized and permits the use of matrices
whose elements can have an allowable domain that is determined by built-in C++
types or elements of the class fraction.

A slightly different algorithm flow is required in the class gauss_jordan if
matrices with elements of type fraction are used in comparison to the utilization of
floating-point elements. For these purposes the algorithm flow is controlled with
if-statements. Class type_check, which is derived from standard C++ class
type_info, examines the used elementary type automatically. Otherwise informa-
tion about the actually utilized type ought to be provided.

12.3
Experiments

The three-dimensional calibration introduced was tested with thirty sample points.
Indoor exploration is typically accomplished with a camera that is equipped with a
wide-angle lens. Such cameras register a large view with one image, but the image
is also characterized by strong distortions that hamper the calibration procedure.
Such a camera, which was affixed on Pioneer 1 robot, was used in the experiment.
None of the measured points were degenerated, because different positions and
heights were selected for every point. Therefore, it was found that no value for xj

W,
yj

W, zj
W with j ¼ 1; 2; . . . ; n ¼ 30 was measured more than once. The position of

the robot and the mounted camera were not changed during the image taking. The
three-dimensional world coordinates and the corresponding two-dimensional image
coordinates were measured manually. Equation system (7.4) was constructed with
the obtained values and solved with SICAST. The gained solution was appraised by
the reprojection of the three-dimensional points ðxj; yj; zjÞW. This was realized with
Equation (7.1). The obtained terms �x̂xj

A and �ŷyj
A were then divided by �. This enabled

the comparison of the computed two-dimensional image coordinates ðx̂xj; ŷyjÞA with
j ¼ 1; 2; . . . ; n, whereby n denotes the number of calculated points, with the
empirically measured two-dimensional image coordinates ðxj; yjÞA. The quality of
the calibration was evaluated with the mean deviations xmean and ymean in X and Y
directions:

xmean ¼
1
n

Pn

j¼1

x
j
A � x̂x

j
A

���
���, ymean ¼

1
n

Pn

j¼1

y
j
A � ŷy

j
A

���
���.

(12.3)
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12.4 Conclusion

The sample size of n ¼ 30 points produced for xmean the value of 40.9 pixels and
for ymean 33.1 pixels. This result was obviously damaged by five outliers, which were
then eliminated. Therefore, another calculation was executed with n ¼ 25. This new
calculation examined for xmean the value 20.6 pixels and for ymean the value
18.8 pixels.

12.4
Conclusion

Methods for camera calibration were checked with regard to their suitability for
indoor exploration with autonomous and mobile robots. Two approaches were inap-
propriate due to very time-consuming calibration procedures and the required initial
values, which are not available for a camera that is to be calibrated. The last method
elucidated does not feature the drawbacks. Nevertheless, its implementation was
also useless for the indoor exploration project, because the mathematical calcula-
tions were executed with the commercial program library MAPLE. It was claimed
that the robot navigation system must be simply portable. This permits only the use
of standard libraries. Furthermore, it is demanded that development costs must be
as low as possible and the source code must be available. Only an in-house imple-
mentation for the camera calibration, which adopts the last approach, can fulfill
these requirements.

The program’s architecture and functionality was introduced. The calibration pro-
gram was tested with experiments. The experiments revealed that the utilized wide-
angle lens complicated the calibration. First, the result of the experiment was dam-
aged by outliers, which were then eliminated in a subsequent calculation to enhance
the capability of the projection matrix. The gained calibration results will be further
rectified in the future, because it is expected that a well-calibrated camera helps by
the processing of a precise map for navigation tasks. Hence, the calibration program
must be modified. Several numerical solutions frequently exist. All these solutions
can only be detected manually at the moment. The detection of all numerical solu-
tions should be automated. The best solution should then be selected also automati-
cally from the gained solution set. But further automations are intended.

Outliers should also be detected from the calibration program. The calibration
starts with n sample points for which the projection matrix is computed. The quality
of the used points can be tested. Therefore, the measured three-dimensional points
are reprojected with the computed matrix. The reprojection reveals outliers. The cal-
culated two-dimensional coordinates must only be compared with the acquired two-
dimensional empirical data. If the reprojection manifests m outliers, then they must
be eliminated from the sample set. The calibration must then be executed again
with the new sample set. The automation of this strategy is desired.

Alternative algorithms should be implemented to solve Equation (7.4). The solu-
tions, which will then be created in different ways, should be compared among each
other.
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A new method for CAD (computer-aided design) modeling from image data is intro-
duced. For these purposes the following sections are based on [123], but the explana-
tions are more detailed. In particular, a more extensive experiment is reported. The
method was used within an RV (robot-vision) program that was designed for the
explained robot-vision scenario in which a mobile robot autonomously creates a
map of its office environment. The reconstruction of three-dimensional objects is
one important aspect in the map creation. The reconstructed objects should be reg-
istered with their three-dimensional world coordinates in the map.

When the robot starts the map generation, it does not possess information with
regard to the distances and positions of the objects in the office environment. This
is a difficult hurdle for a successful map creation. The new method helps the robot
by object finding and reconstructing if information about the actual object distance
to the camera is not available.

The dynamic character of the indoor exploration program can aggravate the object
detection. The designer of an RV program must recognize the possible disturbances
and handle these in the program. In certain cases the effects can damage the object
recognition very greatly. For example, large areas of the object to be detected can be
occluded in such a way that object recognition is impossible. Occlusions are a chal-
lenge for an RV program if they emerge in such a way that the object recognition is
not unfeasible. Among the occlusions of object areas other difficulties can appear.

The object parts of the object to be detected can be mixed up with object parts that
belong to the occluding object. For example, a chair, whose legs can look very similar
to table legs, can occlude a table that is to be detected. An RV program could
wrongly consider the chair legs as table legs.

The use of color information is also problematical, because the gray values in the
image can vary. This depends on the artificial and natural illumination conditions
and the actual object position.

An object that is positioned nearby a window can be difficult to detect because of
possible solar irradiation that may overexpose the image. The overexposure can
mean that the entire desktop will be represented in an image only by fragments.

Sometimes the object to be detected can be merged with another object that is
located very close to the desired object. In this case it can be difficult to separate the
objects. If the separation fails, the object detection can be confused, because the
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13 Redundant Robot-vision Program for CAD Modeling

expected attribute values will differ from the actual measured attribute values. For
example, in the case of table detection the attributes height and width can have
unforeseen values.

The desired object can also be confused with another object although no occlu-
sions are present. This can occur if the object is similar to the desired object. For
example, if a table is to be detected, it can be mistaken for a chair. A chair often also
has four legs just as a table. But the number of chair legs is not always four, because
the number of chair legs depends on the design. Desktops and chair seats can also
be very similar.

Three-dimensional objects often show different views if images are taken from
different positions, especially if the camera moves around the object. But all views
can not be provided often with the aid of a robot, because some positions are not
achievable. A position can be occupied by another object.

The new method, which is now explained, permits the object detection if an object
possesses several views. Different distances between the camera and the object can
also be handled with the new method. The new method was utilized within a devel-
oped RV program to prove the suitability of the method. The RV program was de-
signed in a way that it should be able to handle some of the elucidated unforeseen
effects. The new method is depicted in the next section. The design of the method is
introduced and then an example is outlined in which an object is modeled with the
new method. The developed RV program is explained. For these purposes the pro-
gram’s class design is shown and some specifications are elucidated. The imple-
mentation shows the problem handling if unpredictable effects occur. A redundant
program was implemented, to enhance the robustness of the object recognition.
The introduced design guidelines for redundant robot-vision programs were
adhered to. An experiment was executed to prove the eligibility of the RV program
and the new method. Sample images that include many of the depicted problems
were used in the experiment. A conclusion is given at the end.

13.1
New CAD Modeling Method for Robot-vision Applications

13.1.1
Functionality

The design of the novel method ICADO (invariant CAD modeling) is introduced in
this section. Three-dimensional object reconstruction from image data (see Sections
5.6 and 5.7) will be supported with ICADO. The method utilizes edge models that
are conventional graphs for the objects and is therefore oriented at B-rep (see Sec-
tion 5.2). ICADO is suitable for use within RV programs. The use of the CAD model
within the implementation should avoid data-type conversions, which can occur if a
CAD database is used. ICADO should be appropriate for object reconstruction if an
object can have different distances to a camera. This is the case for the indoor
exploration with an autonomous and mobile robot. It may often occur in the sce-
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nario that the robot is disadvantageously positioned with regard to the object to be
reconstructed. In this case an approximate guess of the object position and distance
shall be gained with ICADO. The appraised data can then serve to drive the robot to
better positions from which images of more useful quality can be taken. Mostly,
three-dimensional objects show several views. A successful recognition with ICADO
requires that a specific ICADO model must be generated for every view. ICADO is
oriented at B-rep. ICADO does not use absolute measurements for the object model-
ing, because the values differ in the image if the distances between a camera and an
object can change.

To handle these features, ICADO works with norm factors, which are assigned to
the edges of the model. Fuzzy knowledge about the expected length of an object part
in pixels, which is represented by an edge in the model, must be provided for only
one edge. The edge is designated as the reference quantity. All measurements for
other edges can be deduced from the reference quantity. Fuzzy knowledge for the
reference quantity can be provided with an interval. The domain of the interval that
is determined by a lower and upper boundary contains values that probably match
to the actually measured length of an object part in pixels that is represented by a
reference quantity. The use of an interval allows the measured length to vary within
certain boundaries.

The task of the implemented RV program is the detection of that object part that
is modeled by a reference quantity. If the particular edge was detected, its length
must be determined in pixels. The computed value must suit the domain of the
interval that explains the reference quantity. If a detected edge fulfils this condition,
then the two-dimensional coordinates of the edge’s two endpoints are examined
from the image data. These endpoints are modeled in an ICADO model with nodes
in the conventional graph. Nodes in an ICADO model generally constitute the end-
points of an edge or connections between edges. A complete ICADO model can now
be computed using known norm factors and the determined node coordinates. All
unknown edge lengths and node coordinates must be determined. The reference
quantity a0 is divided by the edge’s norm factor nfi, i ¼ 1; . . . ; n, to determine the
edge length ai. n is the number of edges that are contained in an ICADO model:

ai ¼
a0

nfi
; i ¼ 1; . . . ; n. (13.1)

A bookshelf was modeled with an ICADO model and can be viewed in Figure 85.
Eleven nodes and 14 edges constitute the bookshelf. Circles are used for nodes

whose node numbers are written in the circles. Lengths are attached to the edges.
An RV program does not know the actual lengths of object parts in an image, which
are represented by edges, because the lengths can differ in images. This holds also
for the node coordinates. The top-left corner is represented by an origin O. The X -
axis measures the horizontal distance to the origin and the Y -axis the vertical dis-
tance in a two-dimensional coordinate system. x and y coordinates belong at least to
one edge ri. An RV program must know the values of the norm factors and a permis-
sible domain for the length of a reference quantity. The designer of an ICADO
model must examine the object parts that will be represented by the edges of an
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ICADO model. One of these object parts must also be selected as the reference
quantity. This is the edge zero in Figure 85. How the ICADO model in the figure
can be used from an RV program is now elucidated.
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Figure 85 Bookshelf that is represented with an ICADO model

If the bookshelf is to be reconstructed from an image, an object part must be
found that represents the reference quantity. The RV program processes a binary
image from the original image. The binary image contains regions of different sizes.
Only regions that match to interval ½60; 80� for the width and ½100; 120� for the
height are now selected. The domains, which are determined by lower and upper
boundaries, must be ascertained empirically. The boundaries should be selected for
intervals as wide as possible to guarantee the detection also if the distance between
camera and object fluctuates within certain limits. A segmentation algorithm, which
uses the intervals, should detect a region that represents the bookshelf. It is
assumed for the following explanations that the discovery of the bookshelf was suc-
cessful. A rectangle is then created that contains the region. The size of the rectangle
is selected as small as possible. The top-left corner of the rectangle can be regarded
as the rough estimation of node one that belongs to the ICADO model and the top-
right corner as the estimation of node two. The RV program is now able to investi-
gate the length of the reference quantity. For these purposes the value of the x coor-
dinate belonging to node one is subtracted from the value of the x coordinate
belonging to node two. Remaining unknown edge lengths and coordinates can now
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be calculated one after another. For example, the length of edge one can be gained
by dividing the length of the reference quantity by the norm factor of edge one:

a1 ¼
a0

nf1
¼ 15:98. (13.2)

The estimated ~yy coordinate of node three can be obtained by the addition of the
length of edge one to the value of the y coordinate of node one. The ICADO model
reveals an offset of approximately 19 pixels between node one and node three. The
offset must be subtracted from the x coordinate of node one to obtain the valued ~xx
coordinate of node three:

~xxr1 m3
¼ xr0 m1

� 19 ¼ 116, ~yyr1 m3
¼ yr0 m1

þ a1 ¼ 92:98. (13.3)

The calculation of the two-dimensional coordinates must not consider in either
case an offset, as can be verified in Figure 85. The proposed strategy examines a first
valuation for the bookshelf. An RV program must contain an algorithm for the clas-
sification to decide if the detected region represents a bookshelf in the original
image. Further calculations are now executed only on the discovered region to
reduce the processing time. Therefore, the region is cut from the entire image. The
processed edges in the image clip are compared with the estimated ICADO model.
The comparisons in an RV program should permit deviations between the detected
edges and the ICADO model, because a too-restrictive strategy will probably elimi-
nate edges that belong to the object to be recognized. The edges that match to the
ICADO model probably belong to the bookshelf. An RV program should provide a
recognition probability that indicates how confident the detection is. The recogni-
tion probability is computed using the selected edges. The more edges selected the
higher should be the recognition probability. The computation of the recognition
probability happens with an implemented classification algorithm.

It is the task of a designer to determine which object parts of an object to be rec-
ognized must be modeled with an ICADO model. Edges within the bookshelf are
not part of the ICADO model, because their detection will often be difficult because
of shadows within the object, which result from boards belonging to the bookshelf.
A designer must recognize such effects during the development of an appropriate
ICADO model. If an object possesses different views, it is not possible to guarantee
a robust detection if the positions, from which the object will be taken, can change
or if the object self-changes its position. In that case a robust detection requires the
modeling of several ICADO models. An ICADO model must be created for every
possible object view. An RV program that was designed for a scenario where the
object’s view can not change, can therefore be implemented more simply and
should consume less processing time in comparison to an RV program that was de-
veloped for a scenario with changing object views.
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13.1.2
Program Architecture

Program RICADO (redundant program that uses ICADO) was developed in C++.
The program utilizes the commercial image-processing library HALCON/C++. The
guidelines for the development of redundant computer-vision programs (see Chap-
ter 10) have been followed. The redundancy of the program is manifested by three
methods �a1’, �a2’, and �a3’. Each of these three methods can compute a result.
Therefore, three redundant results can be used. The results are gained using differ-
ent strategies and parameterizations. Gabor filters are included in all three algo-
rithms, because the direction filtering effect helps to detect a table in an office envi-
ronment. A desktop is to be found by the examination of horizontal edges and four
table legs by the discovery of vertical edges in an image.

The decision for the Gabor filter was influenced by algorithm comparisons (see
Chapter 11) for indoor exploration scenarios. Algorithms that were based on the
Gabor filter, highpass filter, and Sobel filter gained good results. Therefore, the
Gabor filter was used in this work because of its direction filtering effect, as noted
before.

A result provides a recognition probability, a ROI (region of interest) that probably
represents a table, an edge model of the table, and the size of the discovered ROI.
The three methods �a1’, �a2’, and �a3’ are members of class �algorithms’ and are now
explained. The drawing in Figure 86 shows the entire class architecture.

The figure does not contain method parameters and attributes to keep the over-
view. The class �algorithms’ contains a further method with the name �init’. Method
�init’ prepares the use of the other methods in the class and must therefore be called
first. The method �init’ converts an RGB image, which is read from the mass stor-
age, into a gray image, because color information is not used for the table detection.
The dynamic character of indoor exploration with autonomous and mobile robots
often effects different gray values. Therefore, the use of color information will often
not be helpful. Zooming to the quadratic size of the gray image is necessary, because
the gray image will be converted into the frequency domain. This is executed by the
use of the fast Fourier transform whose implementation, realized by a HALCON
operator, expects an image of quadratic size. Private members, which belong to the
class �algorithms’, store the zoomed and transformed images. These private mem-
bers can then be used by the other three methods.

The parameterization of the method �a1’ permits the detection of objects if the
distance between the camera and the table varies. At the beginning a Gabor filter is
generated with a parameterization that permits the discovery of horizontal regions
to find the desktop. After the convolution of the transformed gray-value image with
the Gabor filter, the result is retransformed into the spatial domain and serves as
input for the method �find_desktop’ in class segmentation.

The method will discover the desktop and applies, in a first step, a threshold
operator to the input image. Holes with a size between one and ten pixels are then
filled in the obtained binary image. Erosion and dilation process the borders. The
binary image represents one region that is then decomposed. Coherent pixels in the
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binary image constitute one region. The attributes height and width are used to
select regions that match to intervals for both attributes. The interval boundaries for
the two intervals are determined by values that are gained from formal parameters
belonging to the method �find_desktop’.

In the next step the number of selected regions is calculated. The desktop detec-
tion is considered as successful if only one region can be counted. In this case the
recognition probability gets the value 20 % assigned. Otherwise it is presumed that
probably several fragments establish the entire desktop. The method �find_desktop’
was then unsuccessful and method �find_fragments’ in the class �segmentation’ will
support the desktop discovery.
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The method �find_fragments’ obtains as input a binary image that is a provisional
result of the method �find_desktop’. The method �find_fragments’ tries to find frag-
ments and if detected, the method assigns the fragments to two variables. One vari-
able produces regions of relatively small width and the second variable regions of
larger width, because it is expected that the desktop is broken into smaller and larger
regions. A new variable is then used for the unification of the regions. Dilation,
which utilizes a circle element with a radius of 3 pixels, is then applied to the unified
regions. The dilation should merge desktop fragments that are positioned close to-
gether. The recognition probability obtains the value 20 % if now only one region is
counted.

Otherwise, method �patch’ tries to find a region that represents a desktop. In this
case it is assumed that the region is probably larger than normally expected. A rea-
son for an odd size can be that the table is merged with another object that is posi-
tioned in the vicinity of the table. Dilation and erosion are applied to regions that
are first selected by the method �patch’. The disconnection of probably merged
objects will occur with erosion that uses a circle with a relatively large radius. Some-
times this strategy affects very small regions that can be eliminated with erosion
with a circle that has a radius of two pixels. The method �patch’ proceeds then simi-
lar to the method �find_fragments’. Smaller regions and larger regions are collected
separately in two variables. This strategy expects that the former large region is now
decomposed into fragments. The unification of the regions that are contained in
both variables is assigned to a third variable and then the unified region is processed
with morphological operators. The number of regions that are contained in the third
variable is computed. If two regions are counted, a line is utilized to merge these
regions into one region. Formal parameters provide lower and upper boundaries for
an interval that specifies a domain for the attribute width. It is then tested to see if
the remaining regions fit to the interval.

After the execution of the selection, the method �a1’ checks the number of
remaining regions. Only one region should be counted. The recognition probability
is set to 20 % if this is true and then erosion and dilation are applied with circle ele-
ments that have in both cases a radius of 2.5 pixels. As mentioned before the
detected region is bordered with a smallest rectangle. The calculated top-left corner
½x1L ; y1L � and lower-right corner ½x1R ; y1R � coordinates are used for the processing of
an ICADO model. The corner coordinates represent two nodes of the ICADO
model. The reference quantity can be computed with these coordinates. Each node
that was detected effects an increase of the recognition probability by 10 %. A
detected desktop contributes 20 %. Eight nodes in the ICADO model represent the
four table legs. Therefore, 100 % can only be gained if a desktop and four table legs
are detected.

Method �generate_model’ creates an ICADO model. The method belongs to class
�cad’. The calculated corner coordinates of the smallest rectangle are needed as input
from the method. The class �cad’ contains method �calculate_lengths’ to process the
length of a reference quantity. The length of the reference quantity is calculated by
the difference between the column coordinates of the smallest rectangle’s top-left
corner and lower-right corner. Method �get_mf’ provides the empirically examined
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norm factors and is used by the method �calculate_length’. The height of a table can
now be valued as well as all node coordinates of an ICADO model, because the
length of a reference quantity and the norm factors are therefore necessary. The
examination of the node coordinates occurs with private methods �calculate_row_-
co_ordinates’ and �calculate_column_coordinates’, which are used by the method
�generate_model’. The calculated coordinates are then provided to the method �a1’
with the methods �get_row’ and �get_col’. These two methods expect a node number
for which then the belonging row and column coordinate, respectively, is returned.
Method �get_length’ makes available the calculated table height a1. The table height
is needed from the method �a1’. A rectangular region is generated with the top-left
coordinates of the smallest rectangle and an appraised value for the table height a1.
The created rectangular region has top-left coordinates ½x1L¢ ; y1L¢ � and lower-right coor-
dinates ½x1R¢ ; y1R¢ �. It is assumed that the region represents the whole table:

½x1L
¢ ; y1L

¢ � ¼ ½x1L
� 20; y1L

� 10�, ½x1R
¢ ; y1R

¢ � ¼ ½x1R
þ 10; y1L

þ a1 þ 30�. (13.4)

ROI is computed using some constants to ensure that the entire table is con-
tained in the region. An appropriately parameterized Gabor filter is used to discover
vertical regions in the ROI. The result is gained in the frequency domain and then
retransformed into the spatial domain. The method �a1’ obtains the result and exe-
cutes a comparison between processed image data and a guessed ICADO model.

The method �calculate_line_data’ of class �model_matching’ is used from the
method �a1’ to find with a HALCON operator [4], which is based on the Sobel filter
of size 3 � 3, vertical edges in a Gabor-filtered image. The detected edges are approxi-
mated with lines by the used operator that permits the deviation of a maximal of
two pixels between the approximated edge pixels and the line pixels. The operator is
also adjusted in such a way that the discovered regions must have at least a length of
three pixels. A shorter region is not approximated by a line. The coordinates of the
two endpoints belonging to every line are also available.

The number of detected lines is computed with the method �calculate_line_data’.
If no lines are generated, the method aborts immediately. The method �calculate_li-
ne_data’ computes for every created line its orientation in radians, the length, and
the center coordinates.

The method �a1’ obtains the number of the created lines and then calls the meth-
od �find_legs’ that belongs to the class �model_matching’. The approximate lines are
compared with the calculated ICADO model using the calculated line data. The
comparison uses relatively relaxed boundaries to permit slight deviations between
the ICADO model and the approximate lines. If a line matches to the ICADO
model, a region is generated with the thickness of one pixel that has the line’s center
coordinates and the line’s orientation. A larger length is chosen for the region in
comparison to the line, because possible disruptions between lines, which represent
a table leg, will be patched with this strategy. The comparisons provide a variable to
the method �a1’ in which all newly created regions, which probably represent table
legs, are accumulated.
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The method �a1’ proceeds and calls the method �process_lines’ of the class �seg-
mentation’. The method �process_lines’ obtains the newly generated variable, which
probably contains approximations for table legs, as input. Erosion and dilation are
applied to the created regions. A circle element with the radius of three pixels is
used in both cases. Holes with sizes between one and ten pixels are filled. Formal
parameters determine the boundaries for an interval that defines the allowable
domain for the height attribute. Only regions whose sizes match to the interval are
now selected. The method �a1’ obtains the selected regions. Regions that are posi-
tioned close together will be merged with the use of dilation, because it is assumed
that the connected regions probably represent the same table leg.

A classification algorithm now determines the recognition probability. The meth-
od �determine_likelihood’ of class �classification’ realizes this. The method com-
pares the node coordinates with the lower and upper areas of the computed regions
to examine the recognition probability. Also, these comparisons allow small devia-
tions. A recognized matching effects that the detected node in the ICADO model is
labeled as discovered. If all four table legs are properly represented by the created
regions, the method �determine_likelihood’ contributes maximal 80 % if all eight
nodes are marked as detected. The method �a1’ then obtains the calculated likeli-
hood and adds the value to the recognition probability, which is provided to the call-
ing environment.

Another process is implemented in the method �a2’. First, the method looks for
vertical regions to detect table legs in an image. A Gabor filter is parameterized
accordingly to execute a convolution in the frequency domain. After the convolution
is performed, the result is retransformed into the spatial domain. The method �cal-
culate_line_data’ is also used from the method �a2’, but with another parameteriza-
tion. The created approximate lines for probably detected regions are provided to
method �line_filter’ that belongs to the class �model_matching’.

The method �line_filter’ will select only vertical lines from the set of all created
lines. To perform this task, the method �line_filter’ is supplied with calculated line
data like endpoint coordinates, orientations, and lengths. The proposed design
guidelines require that the first calculation attempts will use only fast algorithms.
The method �line_filter’ realizes this demand with a flag that indicates as a function
of its allocation whether vertical lines with only positive orientations are found or
additionally lines with negative orientations. Processing time can be saved if only
lines with a positive orientation need be examined. First, the method �line_filter’ is
parameterized to find only lines with a positive orientation and creates, for the
detected lines, regions with the thickness of one pixel. The method uses the orienta-
tions and center coordinates of the corresponding lines for the creation of the
regions. The region lengths are larger than the line lengths to effect that possible
disruptions between lines that probably represent the same table leg are eliminated.
At the end a new variable contains the created regions. Formal parameters provide
lower and upper boundaries for an acceptable domain of the height attribute. Those
created regions that match to the interval, are selected. The method �line_filter’ deci-
des now which of the generated regions are probably table legs by the comparison of
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two regions ðAi;AjÞ. Upper ðe; f Þ row coordinates or lower (0) row coordinates must
have values at close quarters or equal values:

dev ‡ ye Ai
� yf Aj

����
���� � dev ‡ y0 Ai

� y0 Aj

���
���, i; j ¼ 1; . . . ; n, i„ j. (13.5)

An admissible tolerance is denoted with dev. Column coordinates that belong to
the regions may be maximally at a distance max and additionally it must hold that
the distance between the regions does not fall below the value min:

min£ x0 Ai
� x0 Aj

���
���£max, i; j ¼ 1; . . . ; n, i „ j. (13.6)

Formal parameters provide values for the minimally and maximally permitted
distances and are ascertained empirically. The measured distances between a cam-
era and a table and the corresponding distances between table legs in images must
be acquired. Regions that fulfill the requirements are collected in a new variable and
unified into a single region. A rectangle that is as small as possible is then created to
border the region. It can be expected that such a rectangle probably covers a region
that represents the table legs, but not the desktop. The desktop will also be included.
This happens using the top-left and lower-right coordinates of the smallest rectan-
gle. Values are added to these coordinates. The resulting values are used for the crea-
tion of a larger rectangular region that also covers the desktop.

Further computations are restricted to this ROI that is cut from the zoomed
image. The method �a2’ obtains the calculated ROI and forwards it to method �con-
volution’ that is parameterized in such a way that the desktop should be found. The
earlier detected table legs are not considered from the method �a2’. The table legs
were only discovered to determine the ROI that is first convoluted with a Gabor fil-
ter. The desktop will then be found with the method �find_desktop’.

At best only one region persists. Otherwise additional calculations are required to
isolate the desktop. These computations use attributes area, compactness (see Chap-
ter 2), and circularity (see Chapter 2) to select regions that match to intervals that
specify the acceptable domain for the attributes. The limits of the intervals are
gained from formal parameters provided by the method �a2’.

Fragments are detected if the method �a2’ can not count any regions after the
method �find_desktop’ has finalized. Perhaps an entire region, which represents a
desktop, is broken into several parts and therefore a similar strategy as in the meth-
od �a1’ is used. Smaller and larger regions are collected separately in two variables.
The allowable extensions are defined with two intervals. The regions that are con-
tained in both variables are then unified in a new variable and erosion and dilation
are applied. Fragments that are close together are connected with a dilation that
uses a relatively large structuring element. Small unwanted regions will be deleted
using the erosion. These elucidated operations are applied if required. Only one re-
gion should remain. If this is true, the recognition probability is set to 20 %, because
it is presumed that this region represents a desktop.

If no region was found, then a desktop was not localized. The method �a2’ was
unsuccessful and finalizes immediately. Otherwise a discovered region is processed
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13 Redundant Robot-vision Program for CAD Modeling

with erosion and dilation in the method �a2’. These morphological operators are exe-
cuted with a circle element that has the radius of 0.5 pixels. The resulting region
probably represents a desktop and is bordered with a rectangle that is as small as
possible. Data for a reference quantity and an estimated ICADO model can now be
gained with rectangle’s upper-left ½x2L ; y2L � and lower-right ½x2R ; y2R � corners. The
data is calculated with the method �generate_model’ and serves the method �a2’ for
the discovery of the table legs and a ROI that will include a table with top-left corner

½x2L
¢ ; y2L

¢ � ¼ ½x2L
� 4 � dev; y2L

� 10 � dev� (13.7)

and lower-right corner

½x2R
¢ ; y2R

¢ � ¼ ½x2R
þ 4 � dev; y2R

þ 5 � dev�. (13.8)

The boundaries for the ROI are calculated using constant dev to get a relatively
wide region with regard to the used corner coordinates. The ROI is calculated with
method �cut_object’ also used in the method �a1’. This also holds for the methods
�convolution’, �calculate_line_data’, and �find_legs’. The strategy, which the method
�find_legs’ implements, is then different in comparison to the method �a1’.

The method �a2’ then uses the method �process_legs’ that belongs to the class
�model_matching’. The class �model_matching’ involves private members, which
now contain regions. The contents of the private variables have been calculated
before from other members of the class �model_matching’. These members proba-
bly include table legs and are used from the method �process_legs’. The method pro-
cesses the regions with erosion and dilation using a circle element with radius 0.5
in both cases. Holes are then filled, provided the area is between one and ten pixels.
The height attribute is then used for the selection of regions whose heights match to
an interval. The limits of the interval are determined by formal parameters of the
method �process_legs’. The method �a2’ now obtains the remaining regions, which
are probably table legs. The recognition probability must now be examined by meth-
od �a2’ with the classification algorithm of the method �determine_likelihood’. The
calling environment then obtains the computed recognition probability.

The method �a3’ shows a quite similar strategy as the method �a2’. Both methods
differ especially in the parameterization, but differences in the algorithms can also
be observed sometimes. Flags are offered by some methods as formal parameters.
The flags enable different algorithm flows to be selected in the methods. The flags
must then be parameterized from the methods �a2’ or �a3’ accordingly to choose the
desired algorithm flow. The algorithm flows differ especially in the applied sequence
of image-processing operators.

The method �convolution’ is used by the method �a3’ and applies an appropriately
parameterized Gabor filter to detect vertical regions in the frequency domain. The
methods �calculate_line_data’ and �line_filter’ are called from the method �a3’ to
find table leg candidates. A rectangle is created with a different size with regard to
the generated rectangle in the method �a2’. The rectangle should cover a table. The
next step is the discovery of the desktop with the method �find_desktop’. This strat-
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egy is also quite similar as in the method �a2’, but additional selections follow using
the attributes �compactness’ and area size. These selections should yield exactly one
region. Otherwise the method �patch’ is called. But the algorithm flow differs
slightly in comparison to the method �a1’. The method �patch’ begins with the
choosing of fragments. Two fragment sets are collected. One set inserts regions
whose width and area attributes match to intervals that define acceptable domains.
A second set includes regions whose heights and areas fit to defined upper and
lower limits for both criteria. Both sets are collected in two variables. The content of
both variables is then unified in a third variable and processed with erosion that
uses a circle element of radius 0.5 pixels. The remaining calculations are the same
as if the method �patch’ is called from the method �a1’. A recognized desktop then
effects the adaptation of the recognition probability and table legs are discovered in
the computed ROI. Finally, for the method �a3’ is the calculation of the recognition
probability that is finally returned.

Method �select’ in class �selector’ controls the calling of the three methods �a1’,
�a2’, and �a3’. The method �select’ prepares the use of these three methods with the
call of the �init’ method that is also a member of the class �algorithms’. First, the
method �a1’ provides a result f1 that includes a recognition probability, a calculated
area of a ROI, an edge model of a probably detected table, and the ROI’s top- and
lower-corner coordinates. Arrays are used to store the information. One array of size
three is used to store the calculated recognition probabilities of all three methods
�a1’, �a2’, and �a3’. A second array of size three is used to store the ROIs calculated
by all three methods and so forth. A second redundant result is necessary to meet
the design guidelines. The guidelines demand that a final solution l ¼ fj , j ¼ 1; 2,
must be computed using at least two results. The method �select’ asks therefore a
second redundant result from the method �a2’. The obtained computations are also
stored in the arrays, which already contain the calculations of the method �a1’. These
two results are analyzed from the method �select’ with regard to their eligibility as
the final solution. A result is chosen as final solution if it has the recognition prob-
ability of at least 50 % and additionally reaches the highest probability. If both results
have the same recognition probability of at least 50 %, then the result is chosen that
was computed from the method with the lowest number in its name. This is the
method �a1’:

SE ¼ ffj j$j ” max
i

$i > ¼ 50� i ¼ 1; 2 � 1£ j £ 2g, (13.9)

Q = The set of all indices that denote an element in SE,

l ¼

fj if jSEj ¼ 1 j˛Q

fj if jSEj ¼ 2 j” min
i˛Q

i j˛Q

0 if jSEj ¼ 0

8>>>><
>>>>:

. (13.10)

Figure 87 shows data that was calculated from the methods �a1’ and �a2’.
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Figure 87 Report for an examined image

The report shows that the analyzed image had the ID zero. The distance of three
meters between table and camera was guessed. The confidence of 70 % was gained
for the recognition with the method �a1’. The size J1 of an image clip was 20 592 pix-
els. The calculated confidence of the method �a2’ was lower in comparison to the
gained confidence of the method �a1’ and reached only 60 %. The calculated size of
an image clip J2 was 23 074 pixels. According to the previous explanations the result
of the method �a1’ must be selected as the final result. The result yields the highest
recognition probability that is larger than 50 %. For the selected result the coordi-
nates of the top-left corner and the lower-right corner of the image clip (ROI) are
printed in the last row of the report.

The method �a3’ must be additionally called from the method �select’ if no result
can be selected. In this case the explained conditions could not be fulfilled. The
arrays that were used to store the data generated from the methods �a1’ and �a2’ are
also used for the data gained from the method �a3’. Three computed results fi ,
i ¼ 1; 2; 3, are now available. The final solution l ¼ fj , j˛ f1; 2; 3g, will now be cho-
sen from these three results. A final solution can only be selected from these three
results if the sum of all three computed recognition probabilities $i is at least 40 %.
Otherwise a final solution l can not be yielded. If the sum of all calculated probabil-
ities reaches at least 40 %, then further requirements must be fulfilled before a final
solution is selected. A permissible domain is defined for the ROI’s size. The domain
is defined by an interval with an upper boundary Tu and a lower boundary T l. The
boundaries were determined empirically. A final solution must include a ROI whose
area is within the domain. This condition represents a plausibility check. ROIs with
unexpected areas are refused. If more than one result can be chosen, then it is the
result selected that features the highest recognition probability. If more than one
result fulfills all the explained conditions and have all the same recognition probabil-
ity that is the highest, then the final solution is yielded from that method (�a1’, �a2’,
�a3’) with the lowest number in its name:

SE1 ¼ ffi jT l £Ji £Tu �
P3

j¼1

$j ‡ 40 � 1£ i £ 3g, (13.11)

Q1 = The set of indices that denote all elements in SE1,

SE2 ¼ ffi jmax
j˛Q1

$j ”$i � i˛Q1g, (13.12)
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Q2 = The set of indices that denote all elements in SE2,

l ¼

fj if jSE2 j ¼ 1 j˛Q2

fj if jSE2 j ¼ 2 j ” min
i˛Q2

i j˛Q2

0 if jSE2 j ¼ 0

8>>>><
>>>>:

. (13.13)

The elucidations have shown that the methods possess a large number of formal
parameters. This enables their use if the distance between camera and object varies.
If the distance changes it is often necessary that the methods are called with another
parameterization. The necessary parameterization for a specific distance must be
examined empirically. The parameterization for a distance is then provided to the
method �select’. It is the task of the method �select’ to distribute the values to the
methods in the class �algorithms’.

The method �select’ obtains the values from the method �best_solution’ in the
class �selector’. The method obtains several value sets. Every value set was examined
empirically. It is appropriate for a particular distance between a camera and an
object. The method �select’ is called from the method �best_solution’ with a parame-
terization that is appropriate to detect a table that has the distance of three meters to
the camera. This is the first guess, which happens on the assumption that in an
indoor exploration scenario a robot stands in an office door. The robot takes images
from the office. A table is probably often located further away from the door in
which the robot stands. If the office has a size of 4 � 4 meters, and the table is
located nearby a wall opposite to the door, then three meters may be a good guess
for the first calculation. The discovery of a final solution is indicated with a flag that
is provided from the method �selection’. The method �best_selection’ now calls the
method �select’ again if no final solution is found. The call now provides a parame-
terization to the method �select’ that is appropriate to detect a table with the distance
of about two meters to the camera. If this call is also unsuccessful, another parame-
terization is transferred to the method �select’ that will find tables with the distance
of about one meter to the camera. If these calculations fail, then no final solution
can be determined.

A discovered final solution is conducted to the �main’ function of RICADO. The
final solution provides the approximate distance and position of a table that was
probably discovered. The data enables a navigation program to move the robot to
positions from which more premium images can be taken. When images can be
gained that show several views of a three-dimensional object, the three-dimensional
reconstruction can be supported with ICADO models, which were modeled for dif-
ferent object views.
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13.2
Experiment

An experiment is now depicted. A camera with a wide-angle lens was used. The
camera is mounted on a Pioneer 1 robot. A total of 20 sample images were taken in
the experiment. The used sample images show many of the described problems. In
every sample image a table to be discovered can be viewed. Also, the recognition
probability should be examined if the table was successfully detected. The camera
had different distances to the table during the image taking. The distances of about
one, two, and three meters were chosen. Four sample images can be viewed in
Figure 88.

Figure 88 Table that was imaged from different distances

The image in the top-left corner (a) of the figure shows the table with the distance
of about three meters to the camera. A chair is positioned between the camera and
table. The camera’s view to the table is partially restricted. Some of the chair legs are
also located very unfavorably. They are nearby the table legs. A further difficulty is
the desk in the right side of the image, which is fixed to the table. The table can be
seen very close to a window. This fact effected an overexpose on some table areas in
the image. Especially the association between the right-rear table leg and the desk-
top is broken in the image due to the overexposure. The mix-up of the table with a
clip of the widow frame could take place due to the partially similar design of both
objects. The table in the top-right corner (b) was also taken from the distance of
three meters. Another location was chosen for the chair. A relatively large area of the
desktop is occluded. The image in the lower-left corner (c) shows the table that was
taken from the distance of two meters to the camera. The table and desk are located
directly side by side. A mix-up between chair legs and table legs could occur as the
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result of the inauspicious placement of the chair. The distance of one meter between
the camera and the table was selected as the image in the upper-right corner (d) was
taken. Overexposure can be observed in the image area that shows the upper part of
the right-rear table leg. The chair is also placed very awkwardly, because it obstructs
the camera’s view to a large area of the desktop. The table was discovered in all these
four sample images from RICADO. Table 3 illustrates the achieved recognition
results of RICADO with regard to the 20 sample images whose quality is compar-
able with the four images shown in Figure 88.

Table 3 Achieved recognition results of RICADO.

Likelihood No recognition £ 40 % > 40 % and £ 60 % > 60 % and £ 90 %

Recognition number 1 9 7 3

The test revealed that the discovery of the table only failed in one image. The
gained recognition results differ in the other 19 images. A likelihood of less than or
equal to 40 % was calculated for nine images. A recognition probability larger than
40 % and less than or equal to 60 % was computed for seven images. The observed
likelihood for three images was larger than 60 %, but less than or equal to 90 %. The
necessary run-time consumed from RICADO was also measured and printed on the
screen after the analysis of the 20 sample images, see Figure 89.

Figure 89 Performance measurements

RICADO was tested on a computer with a PentiumPro processor with a 200-MHz
clock frequency and 128 MB main memory. The shortest measured time consump-
tion was 19 s. This calculation was executed with the two methods �a1’ and �a2’. The
distance between the camera and the table amounted to three meters. RICADO
starts the search for the table with the assumption that the table is about three
meters from the camera. If the table can not be detected, another search starts with
the assumption that the table now has the distance of two meters to the camera. An
unsuccessful search would mean that a third search starts. Now the distance of one
meter is presumed. Therefore, the highest time consumption of 94 s was observed
by the distance of one meter between the camera and the table. 52.7 s were exam-
ined for the mean time consumption. Nine images were taken from the distance of
three meters, five images from the distance of two meters, and six images from the
distance of one meter between the camera and the table.
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13.3
Conclusion

A new method, ICADO (invariant CAD modeling), was introduced. ICADO sup-
ports the creation of CAD models from image data also if distances between the
camera and the object can change. ICADO allows the use within an RV (robot-
vision) program and avoids data type conversions, which are often necessary if an
existing CAD database is used from an RV program. The suitability of ICADO was
verified with the program RICADO (redundant program using ICADO). RICADO
was programmed for use in a robot-vision scenario.

An autonomous and mobile robot generates a map of its indoor environment.
This scenario requires typically the three-dimensional reconstruction of objects
whose distances to the robot fluctuate. Some problems can occur in such a scenario
due to its dynamic character. The former elucidated design guidelines, which were
proposed for redundant computer-vision programs, have been used for the develop-
ment of RICADO, because it was expected that such a redundant program design
can meet problems occurring in the RV scenario.

An experiment was executed, in which 20 sample images, which showed many of
the problems, were taken. The images were taken at distances of one, two, and three
meters between camera and object. In either case a table should be detected. Some
sample images show a chair that obstructs the camera’s view. The table is fixed in
some images to a desk that can be found nearby the table. The images that were
taken at a distance of three meters between the camera and the table show a close
placement of the table nearby a window. Some areas of the table are overexposed
due to the solar irradiation. The design of some clips of a window frame and the
table was similar and could produce confusions. The table was discovered in 19 of
the 20 sample images taken. The consumed run-time was measured. A report
revealed relatively much processing time that probably results from time-consum-
ing operations in the frequency domain and redundant program design.

The time consumption can probably be diminished if RICADO is ported to a dis-
tributed program. The architecture permits porting to be realized simply. But the
relatively long run-time seems not really to be a problem for the robot-vision sce-
nario. A completely new map should be generated only once at setup time. This
map will only be updated during the running mode. Therefore, a relatively high
time consumption is only expected at setup time and not during the running mode.

RICADO provides information about the table’s approximate distance and posi-
tion in an image as soon as the table detection has finished. The information will be
used from a robot navigation program to move the robot to more convenient posi-
tions. Images of higher quality will be taken from these positions to perform a pre-
cise three-dimensional reconstruction. Several views of an object will be modeled in
the future with ICADO. A modified version of RICADO must be modeled to test the
appropriateness of ICADO for several object views.

184



185

[1] Burgard, W./ Cremers, A. B./ Fox D./ H�hnel, D./ Lakemeyer, G./ Schulz, D./
Steiner, W./ Thrun, S.: Experiences with an interactive museum tour-guide
robot, in: Artificial Intelligence, Vol. 114, pp. 3–55, 1999.

[2] Echtle, K.: Fehlertoleranzverfahren, Studienreihe Informatik, Springer, Berlin,
1990.

[3] Wolf, M.: Posturerkennung starrer und nichtstarrer Objekte, Logos, Berlin,
2000.

[4] MVTec: Halcon / C++, MVTec Software GmbH, Munich, 1999.
[5] Koschan, A.: A comparative study on color edge detection, in: 2nd Asian Confer-

ence on Computer Vision, (ACCV ’95), Volume 3, pp. 574–578, 1995.
[6] Garcia-Campos, R./ Battle, J./ Bischoff, R.: Architecture of an object-based track-

ing system using colour segmentation, in: 3rd International Workshop in Signal
and Image Processing, Manchester, 1996.

[7] Koschan, A.: Minimierung von Interreflexionen in Realen Farbbildern unter
Ber�cksichtigung von Schatten, in: 2nd Workshop Farbbildverarbeitung, Report
Nr.1/ 1996 des Zentrums f�r Bild- und Signalverarbeitung, Technische Universi-
t�t Illmenau, pp. 65–69, Oktober 1996.

[8] Wiemker, R.: The color constancy problem: an illumination invariant mapping
approach, in: International Conference on Computer Analysis of Images and
Patterns (CAIP ’95), Springer, 1995.

[9] Schuster, R.: Objektverfolgung in Farbbildfolgen, Infix, Sankt Augustin, 1996.
[10] Brammer, K./ Siffling, G.: Kalman-Bucy-Filter: deterministische Beobachtung

und stochastische Filterung, 4th edn., Oldenbourg, Munich/ Vienna, 1994.
[11] Kalman, R. E.: A new approach to linear filtering and prediction problems, in:

Transactions of the ASME – Journal of Basic Engineering, 82, Series D, 1960.
[12] Denzler, J.: Aktives Sehen zur Echzeitverfolgung, Infix, Sankt Augustin, 1997.
[13] Hansen, M.: Stereosehen: Ein verhaltensbasierter Zugang unter Echtzeitbedin-

gungen, Ph.D. thesis, Report no. 9902, Institut f�r Informatik und Praktische
Mathematik der Christian-Albrechts-Universit�t Kiel, 1999.

[14] Arnrich, B./ Walter, J.: Lernen der visiomotorischen Kontrolle eines Robotergrei-
fers mit Gaborfiltern, in: Workshop SOAVE ’2000 Selbstorganisation von adapti-
vem Verhalten, Groß, H.-M./ Debes, K./ B�hme, H.-J. (editors), pp. 1–13, VDI
GmbH, D�sseldorf, 2000.

[15] Illingworth, J./ Kittler, J.: A survey of the Hough transform, in: Computer
Vision, Graphics, and Image Processing, Vol. 44, pp. 87–116, 1988.

Bibliography

Robot Vision: Video-based Indoor Exploration with Autonomous and Mobile Robots. Stefan Florczyk
Copyright � 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40544-5



Bibliography

[16] Jones, J. P./ Palmer, L. A.: An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in cat striate cortex, in: Journal of Neurophysiol-
ogy, Vol. 58, No. 6, pp. 1233–1258, 1987.

[17] Abe, S.: Neural Networks and Fuzzy Systems: Theory and Applications, Kluwer,
Boston/ London/ Dordrecht, 1997.

[18] Soille, P.: Morphologische Bildverarbeitung: Grundlagen, Methoden, Anwen-
dungen, Springer, Berlin/ Heidelberg/ New York, 1998.

[19] Abmayr, W.: Einf�hrung in die digitale Bildverarbeitung, Teubner, Stuttgart,
1994.

[20] Russ, J. C.: The Image Processing Handbook, 3rd edn., CRC Press, Boca Raton
(FL), 1999.

[21] Weszka, J. S.: A survey of threshold selection techniques, in: Computer Graphics
and Image Processing, Vol. 7, pp. 259–265, 1978.

[22] Kittler, J./ Illingworth, J./ F�glein, J.: Threshold selection based on a simple
image statistic, in: Computer Vision, Graphics, and Image Processing, Vol. 30,
pp. 125–147, 1985.

[23] Sahoo, P. K./ Soltani, S./ Wong, A. K. C.: A survey of thresholding techniques,
Computer Vision, Graphics, and Image Processing, Vol. 41, pp. 233–260, 1988.

[24] Lee, U./ Chung, S. Y./ Park, R. H.: A comparative performance study of several
global thresholding techniques for segmentation, Computer Vision, Graphics,
and Image Processing, Vol. 52, pp. 171–190, 1990.

[25] Tani, J./ Fukumura, N.: Learning goal-directed sensory-based navigation of a
mobile Robot, in: Neural Networks, Vol. 7, No. 3, pp. 553–563, 1994.

[26] Balakrishnan, K./ Bousquet, O./ Honovar, V.: Spatial learning and localization in
animals: A computational model and its implications for mobile robots, Techni-
cal report TR# 97–20, Artificial Intelligence Research Group, Department of
Computer Science, Iowa State University, 1997.

[27] Berg, de M./ Kreveld, van M./ Overmars, M./ Schwarzkopf, O.: Computational
geometry: algorithms and applications, 2nd rev. edn., Springer, Berlin/ Heidel-
berg/ New York et al., 2000.

[28] Latombe, J.-C.: Robot Motion Planning, 3rd Printing, Kluwer Academic Publish-
ers, 1993.

[29] Brooks, R. A.: A robust layered control system for a mobile robot, in. IEEE Jour-
nal of Robotics and Automation, Vol. RA-2, No. 1, pp. 14–23, 1986.

[30] Brooks, R. A.: Intelligence without representation, Artificial Intelligence, Vol. 47,
pp. 139–159, 1991.

[31] Freksa, C.: Temporal reasoning based on semi-intervals, Artificial Intelligence,
Vol. 54, pp. 199–227, 1992.

[32] Kuipers, B.: Modeling spatial knowledge, in: Cognitive Science, Vol. 2, pp. 129–
153, 1978.

[33] Lang, O.: Bildbasierte Roboterregelung mit einer am Greifer montierten Zoom-
kamera, VDI, D�sseldorf 2000.

[34] Wloka, D. W.: Robotersysteme 1: Technische Grundlagen, Springer, Berlin/ Hei-
delberg/ New York, 1992.

[35] Paul, R. P.: Robot Manipulators, MIT Press, 7th printing, 1986.
[36] Mohr, R./ Triggs, B.: Projective geometry for image analysis: A tutorial given at

ISPRS, http://www.inrialpes.fr/movi/people/Triggs/p/Mohr-isprs96.ps.gz,
Vienna, July 1996.

[37] Reece, M./ Harris, K. D.: Memory for places: a navigational model in support of
Marr’s theory of hippocampal function, in: Hippocampus, Vol. 6, pp. 735–748,
1996.

[38] Kraetzschmar, G./ Sablatn�g, S./ Enderle, S./ Utz, H./ Steffen, S./ Palm, G.:
Integration of multiple representation and navigation concepts on autonomous

186



Bibliography

mobile robots, in: Workshop SOAVE ’2000 Selbstorganisation von adaptivem
Verhalten, Groß, H.-M./ Debes, K./ B�hme, H.-J. (editors), pp. 1–13, VDI
GmbH, D�sseldorf, 2000.

[39] Buhmann, J./ Burgard, W./ Cremers, A. B./ Fox, D./ Hofmann, T./ Schneider, F.
E./ Strikos, J./ Thrun, S.: The mobile robot RHINO, in: AI Magazine, Vol. 16,
No. 2, pp. 31–38, 1995.

[40] Thrun, S./ B�cken, A.: Learning maps for indoor mobile robot navigation, Tech-
nical Report CMU-CS-96–121, Carnegie Mellon University, School of Computer
Science, Pittsburgh, PA 15213, April 1996.

[41] Russell, S. J./ Norvig, P.: Artificial Intelligence: A Modern Approach, Prentice-
Hall, Upper Saddle River (New Jersey), 1995.

[42] Sch�lkopf, B./ Mallot, H. A.: View-based cognitive mapping and path planning,
in: Adaptive Behavior, Vol. 3, No. 3, pp. 311–348, 1995.

[43] Franz, M. O./ Sch�lkopf, B./ Mallot, H. A./ B�lthoff, H. H.: Where did I take
that snapshot? Scene-based homing by image matching, Biological Cybernetics,
Vol. 79, Springer, pp. 191–202, 1998.

[44] Franz, M. O./ Sch�lkopf, B./ Mallot, H. A./ B�lthoff, H. H.: Learning view
graphs for robot navigation, Autonomous Robots, Vol. 5, Kluwer Academic Pub-
lishers, pp. 111–125, 1998.

[45] Tani, J.: Model-based learning for mobile robot navigation from the dynamical
Systems Perspective, IEEE Transactions on Systems, Man, and Cybernetics-Part
B: Cybernetics, Vol. 26, No. 3, pp. 421–436, June 1996.

[46] T�ubig, H./ Heinze, A.: Weiterentwicklung eines Graphen-basierten Ansatzes
als Rahmensystem f�r eine lokale Navigation, in: Workshop SOAVE ’2000 Selb-
storganisation von adaptivem Verhalten, Groß, H.-M./ Debes, K./ B�hme, H.-J.
(editors), pp. 47–56, VDI GmbH, D�sseldorf, 2000.

[47] K�nig, A./ Key, J./ Gross, H.-M.: Visuell basierte Monte-Carlo Lokalisation f�r
mobile Roboter mit omnidirektionalen Kameras, in: Workshop SOAVE
’2000 Selbstorganisation von adaptivem Verhalten, Groß, H.-M./ Debes, K./
B�hme, H.-J. (editors), pp. 31–38, VDI GmbH, D�sseldorf, 2000.

[48] Thrun, S./ Burgard, W./ Fox, D.: A probabilistic approach to concurrent mapping
and localization for mobile robots, Machine Learning, Vol. 31, pp. 29–53, 1998.

[49] Elsen, I.: Ansichtenbasierte 3D-Objekterkennung mit erweiterten Selbstorgani-
sierenden Merkmalskarten, VDI GmbH, D�sseldorf, 2000.

[50] Hubel, D. H./ Wiesel, T. N.: Brain Mechanisms of Vision, in: Neuro-vision Sys-
tems: Principles and Applications, Gupta, M. M./ Knopf, G. K. (editors), IEEE
Press, New York, Reprint, pp. 163–176, 1993.

[51] B�ker, U./ Dr�e, S./ Hartmann, G.: Ein neuronales Bilderkennungssystem f�r
Robotikanwendungen, in: at – Automatisierungstechnik, Vol. 45, pp. 501–506,
1997.

[52] Capurro, C./ Panerai, F./ Sandini, G.: Dynamic vergence using log-polar images,
in: International Journal of Computer Vision, Vol. 24, No. 1, pp. 79–94, 1997.

[53] Bradski, G./ Grossberg, S.: Fast-learning VIEWNET architectures for recognizing
three-dimensional objects from multiple two-dimensional views, in: Neural Net-
works, Vol. 8, No. 7/8, pp. 1053–1080, 1995.

[54] Abbott, L. A.: A survey of selective fixation control for machine vision, in: IEEE
Control Systems, Vol. 12, No. 4, pp. 25–31, 1992.

[55] Burt, P. J.: Smart sensing within a pyramid vision machine, in: Proceedings of
the IEEE, Vol. 76, No. 8, pp. 1006–1015, 1988.

[56] Califano, A./ Kjeldsen, R./ Bolle, R. M.: Data and model driven foveation, in:
Proceedings of the 10th International Conference on Pattern Recognition, pp. 1–
7, 1990, cited according to [54].

187



Bibliography

[57] Krotkov, E. P.: Exploratory visual sensing for determining spatial layout with an
agile stereo camera system, Ph.D. thesis, Univ. Pennsylvania, 1987 cited accord-
ing to [54].

[58] Abbott, L. A./ Ahuja, N.: Surface reconstruction by dynamic integration of focus,
camera vergence, and stereo, in: Proc. Second Int. Conf. Computer Vision, pp.
532–543, 1988 cited according to [54].

[59] Marr, D.: Vision, W. H. Freeman, San Francisco, 1982 cited according to [60].
[60] Ahrns, I.: Ortsvariantes aktives Sehen f�r die partielle Tiefenrekonstruktion: Ein

System zur visuell gest�tzten Manipulatorsteuerung auf der Basis eines biolo-
gisch motivierten Sehkonzepts, VDI GmbH, D�sseldorf, 2000.

[61] Horn, B. K. P.: Robot Vision, McGraw Hill Book Company, New York, 1991 cited
according to [60].

[62] Rottensteiner, F./ Paar, G./ P�lzleitner, W.: Fundamentals, in: Digital Image
Analysis: Selected Techniques and Applications, Kropatsch, W. G./ Bischof, H.
(editors), Springer, New York/ Berlin/ Heidelberg, pp. 373–390, 2001.

[63] Sonka, M./ Hlavac, V./ Boyle, R.: Image processing, analysis, and machine
vision, 2nd edn., Pacific Grove/ Albany/ Bonn, PWS Publishing, 1999.

[64] Mohr, R.: Projective geometry and computer vision, in: Handbook of Pattern
Recognition and Computer Vision, Chen, C. H./ Pau, L. F./ Wang, P. S. P.
(editors), World Scientific Publishing Company, Singapore/ New Jersey/ Lon-
don, pp. 369–393, 1993.

[65] T�njes, R.: Wissensbasierte Interpretation und 3D-Rekonstruktion von Land-
schaftsszenen aus Luftbildern, VDI GmbH, D�sseldorf, 1999.

[66] Yakimovsky, Y./ Cunningham, R.: A system for extracting three-dimensional
measurements from a stereo pair of TV Cameras, in: Computer Graphics and
Image Processing, Vol. 7, pp. 195–210, 1978.

[67] Bao, Z.: Rechnerunterst�tzte Kollisionspr�fung auf der Basis eines B-rep Poly-
tree CSG-Hybridmodells in einem integrierten CAD CAM-System, VDI GmbH,
D�sseldorf, 2000.

[68] Samet, H./ Webber, R. E.: Hierarchical data structures and algorithms for com-
puter graphics, Part II: applications, in: IEEE Computer Graphics and Applica-
tions, Vol. 8, No. 4, pp. 59–75, 1988.

[69] Meagher, D.: Geometric modeling using octree encoding, in: Computer Gra-
phics and Image Processing, Vol. 19, pp. 129–147, 1982.

[70] Jackins, C. L./ Tanimoto, S. L.: Oct-trees and their use in representing three-
dimensional objects, in: Computer Graphics and Image Processing, Vol. 14, pp.
249–270, 1980.

[71] Brunet, P./ Navazo, I.: Geometric modelling using exact octree representation of
polyhedral objects, in: EUROGRAPHICS ’85, Vandoni, C. E: (editor), Elsevier
Science Publishers, North-Holland, pp. 159–169, 1985.

[72] Carlbom, I./ Chakravarty, I./ Vanderschel, D.: A hierarchical data structure for
representing the spatial decomposition of 3-D Objects, in: IEEE Computer Gra-
phics and applications, Vol. 5, No. 4, pp. 24–31, 1985.

[73] Samet, H./ Webber, R. E.: Hierarchical data structures and algorithms for com-
puter graphics, Part I: fundamentals, in: IEEE Computer Graphics and applica-
tions, Vol. 8, No. 3, pp. 48–68, 1988.

[74] Jense, G. J.: Voxel-based methods for CAD, in: Computer-Aided Design, Vol. 21,
No. 8, pp. 528–533, 1989.

[75] Schmidt, W.: Grafikunterst�tzes Simulationssystem f�r komplexe Bearbeitungs-
vorg�nge in numerischen Steuerungen, Springer, Berlin/ Heidelberg/ New
York, 1988.

[76] Pritschow, G./ Ioannides, M./ Steffen, M.: Modellierverfahren f�r die 3D-Simu-
lation von NC-Bearbeitungen, in: VDI-Z, Vol. 135, No.6, pp. 47–52, 1993.

188



Bibliography

[77] Hook, van T.: Real-time shaded NC milling display, in: Computer Graphics, Vol.
20, No. 4, pp. 15–20, August 1986.

[78] Tamminen, M./ Samet, H.: Efficient octree conversion by connectivity labeling,
in: Computer Graphics, Vol. 18, No. 3, pp. 43–51, July 1984.

[79] Kela, A.: Hierarchical octree approximations for boundary representation-based
geometric models, in: Computer-aided Design, Vol. 21, No. 6, pp. 355–362, 1989.

[80] Kunii, T. L./ Satoh, T./ Yamaguchi, K.: Generation of topological boundary repre-
sentations from octree encoding, in: IEEE Computer Graphics and applications,
Vol. 5, No. 3, pp. 29–38, 1985.

[81] Vossler, D. L.: Sweep-to-CSG conversion using pattern recognition techniques,
in: IEEE Computer Graphics and Applications, Vol. 5, No. 8, pp. 61–68, 1985.

[82] Seiler, W.: Technische Modellierungs- und Kommunikationsverfahren f�r das
Konzipieren und Gestalten auf der Basis der Modell-Integration, VDI GmbH,
D�sseldorf 1985.

[83] Brooks, R. A.: Symbolic reasoning among 3-D models and 2-D images, in: Artifi-
cial Intelligence, Vol. 17, pp. 285–348, 1981.

[84] Flynn, P. J./ Jain, A. K.: BONSAI: 3-D object recognition using constrained
search, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
13, No. 10, pp. 1066–1075, 1991.

[85] Glauser, T./ Bunke, H.: Generierung von Entscheidungsb�umen aus CAD-Mod-
ellen f�r Erkennungsaufgaben, in: Mustererkennung: 11. DAGM-Symposium,
Proceedings, Burkhardt, H./ H�hne, K. H./ Neumann, B. (editors), Springer,
Berlin/ Heidelberg/ New York, pp. 334–340, 1989.

[86] Flynn, P. J./ Jain, A. K.: 3D object recognition using invariant feature indexing
of interpretation tables, in: CVGIP: Image Understanding, Vol. 55, No. 2, pp.
119–129, 1992.

[87] Blake, A./ Zisserman, A.: Visual Reconstruction, MIT Press, Cambridge (Massa-
chusetts)/ London, 1987.

[88] Grimson, W./ Eric, L./ Pavlidis, T.: Discontinuity detection for visual surface
reconstruction, in: Computer Vision, Graphics, and Image Processing, Vol. 30,
pp. 316–330, 1985.

[89] Geman, S./ Geman, D.: Stochastic relaxation, Gibbs distributions, and the Baye-
sian restoration of images, in: IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-6, No. 6, pp. 721–741, 1984.

[90] Shapiro, L. G./ Lu, H.: Accumulator-based inexact matching using relational
summaries, in: Machine Vision and Applications, Vol. 3, pp. 143–158, 1990.

[91] Horaud, P./ Bolles, R. C.: 3DPO: A system for matching 3-D objects in range
data, in: From pixels to predicates: recent advances in computational and robotic
vision, Pentland, A. P. (editor), Ablex Publishing Corporation, Norwooden (New
Jersey), pp. 359–370, 1986.

[92] Wang, W./ Iyengar, S. S.: Efficient data structures for model-based 3-D object
recognition and localization from range images, in: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 14, No. 10, pp. 1035–1045,1992.

[93] Otterbach, R.: Robuste 3D-Objekterkennung und Lagebestimmung durch Aus-
wertung von 2D-Bildfolgen, VDI, D�sseldorf 1995.

[94] Zahn, C. T./ Roskies, R. Z.: Fourier descriptors for plane closed curves, IEEE
Transactions on Computers, Vol. C-21, No. 3, March 1972.

[95] Winkelbach, S./ Wahl, F. M.: Shape from 2D edge gradients, in: Pattern recogni-
tion, Radig, B./ Florczyk, S. (editors), 23rd DAGM Symposium, Munich, Ger-
many, Proceedings, Springer, Berlin, pp. 377–384, 2001.

[96] Brunn, A./ G�lch, E./ Lang, F./ F�rstner, W.: A multi-layer strategy for 3D build-
ing acquisition, in: Mapping buildings, roads and other man-made structures

189



Bibliography

from images, Leberl, F./ Kalliany, R./ Gruber, M. (editors), Proceedings of the
IAPR TC-7, Oldenbourg, Vienna/ Munich, pp. 11–37, 1997.

[97] Pearson, J./ Olson, J.: Extracting buildings quickly using radiometric models, in:
Mapping buildings, roads and other man-made structures from images, Leberl,
F./ Kalliany, R./ Gruber, M. (editors), Proceedings of the IAPR TC-7, Olden-
bourg, Vienna/ Munich, pp. 205–211, 1997.

[98] Stilla, U./ Michaelsen, E./ L�tjen, K.: Automatic extraction of buildings from aer-
ial Images, in: Mapping buildings, roads and other man-made structures from
images, Leberl, F./ Kalliany, R./ Gruber, M. (editors), Proceedings of the IAPR
TC-7, Oldenbourg, Vienna/ Munich, pp. 229–244, 1997.

[99] Faugeras, O. D.: Three-dimensional Computer Vision: A Geometric Viewpoint,
MIT Press, Cambridge (Massachusetts), London, 1993.

[100] Hartley, R. I.: Estimation of relative camera positions for uncalibrated cameras,
in: Computer Vision – ECCV ’92, Second European Conference on Computer
Vision, Santa Margherita Ligure, Italy, Proceedings, Sandini, G. (editor), pp.
579–587, Springer, 1992.

[101] Faugeras, O. D./ Luong, Q. T./ Maybank, S. J.: Camera self-calibration: theory
and experiments, in: Computer Vision – ECCV ’92, Second European Confer-
ence on Computer Vision, Santa Margherita Ligure, Italy, Proceedings, Sandini,
G. (editor), pp. 321–334, Springer, 1992.

[102] Ayache, N./ Hansen, C.: Rectification of images for binocular and trinocular
stereovision, in: 9th International Conference on Pattern Recognition, Rome,
IEEE, Los Alamitos (CA), pp. 11–16, 1988.

[103] Klette, R./ Koschan, A./ Schl�ns, K.: Computer Vision: R�umliche Information
aus digitalen Bildern, Vieweg, Wiesbaden, 1996.

[104] Echigo, T.: A camera calibration technique using three sets of parallel lines, in:
Machine Vision and Applications, Vol. 3, pp. 159–167, 1990.

[105] Wang, L.-L./ Tsai, W.-H.: Computing camera parameters using vanishing-line
information from a rectangular parallelepiped, in: Machine Vision and Applica-
tions, Vol. 3, pp. 129–141, 1990.

[106] Martins, H. A./ Birk, J. R./ Kelley, R. B.: Camera models based on data from two
calibration planes, in: Computer Graphics and Image Processing, Vol. 17, pp.
173–180, 1981.

[107] Izaguirre, A./ Pu, P./ Summers, J.: A new development in camera calibration:
calibrating a pair of mobile cameras, in: The International Journal of Robotics
Research, Vol. 6, pp. 104–116, 1987.

[108] Press, W. H./ Teukolsky, S. A./ Vetterling, W. T./ Flannery, B. P.: Numerical
Recipes in C: The Art of Scientific Computing, 2. edn., Cambridge Univ. Press,
Cambridge, 1992.

[109] Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses, in: IEEE Journal of
Robotics and Automation, Vol. 3, No. 4, pp. 323–344, 1987.

[110] Shapiro, L. G./ Stockman, G. C.: Computer Vision, Prentice Hall, Upper Saddle
River (New Jersey) 2001.

[111] Lin, D./ Lauber, A.: Calibrating a camera by robot arm motion, Proceedings
ISMCR’95, S3 – Measurement, Performance, Evaluation and Improvement cited
according to [33].

[112] Wei, G.-Q./ Arbter, K./ Hirzinger, G.: Active self-calibration of robotic eyes and
hand-eye relationships with model identification, in: IEEE Transactions on
Robotics and Automation, Vol. 14, No. 1, pp. 158–166, 1998.

[113] W�nstel, M./ Polani, D./ Uthmann, T./ Perl, J.: Behavior classification with Self-
Organizing Maps, in: Workshop SOAVE ’2000 Selbstorganisation von adaptivem

190



Bibliography

Verhalten, Groß, H.-M./ Debes, K./ B�hme, H.-J. (editors), pp. 77–85, VDI
GmbH, D�sseldorf, 2000.

[114] B�hm, M.: Formulartyperkennung und Schriftaufbereitung in der optischen
automatischen Archivierung. Ph.D. thesis, Technical University Berlin, 1997.

[115] Florczyk, S.: A redundant program to handle inhomogeneous illumination and
changing camera positions in a robot vision scenario, in: Pattern Recognition:
Methods and Applications, Murshed, N. (editor), Proc. VI Iber-American Symp.
Pattern Recognition, IAPR-TC3, Florian�polis, Brazil, 2001, pp. 100–105.

[116] Blum, S.: OSCAR – Eine Systemarchitektur f�r den autonomen mobilen
Roboter MARVIN, in: Autonome Mobile Systeme, Informatik Aktuell, pp. 218–
230, Springer, 2000.

[117] Florczyk, S.: Evaluation of object segmentation algorithms as components of
autonomous video based robot systems, in: Second International Conference on
Images and Graphics, Wei, S. (editor), Vol. 4875, SPIE, 2002, pp. 386–393.

[118] Ritter, G. X./ Wilson, J. N.: Computer vision algorithms in image algebra, CRC
Press, Boca Raton/ New York/ Washington, et al., 2000.

[119] Stroustrup, B.: Die C++ Programmiersprache, 2. edn., Addison-Wesley, Bonn,
Germany, 1992.

[120] Florczyk, S.: A calibration program for autonomous video based robot navigation
systems, in: Krasnoproshin, V./ Ablameyko, S./ Soldek, J. (editors), Pattern Rec-
ognition and Information Processing: Proceedings of the Seventh International
Conference, Vol. I, Minsk: United Institute of Informatics Problems of National
Academy of Sciences of Belarus, pp. 129–133, 2003.

[121] Faugeras, O./ Mourrain, B.: On the geometry and algebra of the point and line
correspondences between N images, Technical Report 2665, Institut National de
Recherche en Informatique et en Automatique, Sophia-Antipolis, France, 1995.

[122] Janiszczak, I./ Kn�rr, R./ Michler, G. O.: Lineare Algebra f�r Wirtschaftsinfor-
matiker: Ein algorithmen-orientiertes Lehrbuch mit Lernsoftware, Vieweg,
Braunschweig/ Wiesbaden, Germany, 1992.

[123] Florczyk, S.: ICADO – A method for video based CAD modeling, in: Krasno-
proshin, V./ Ablameyko, S./ Soldek, J. (editors), Pattern Recognition and Infor-
mation Processing: Proceedings of the Seventh International Conference, Vol.
II, Szczecin: Publishing House and Printing House of Technical University of
Szczecin Faculty of Computer Science and Information Technology, pp. 321–
325, 2003.

191





193

a
abstract class 162
ACRONYM 63
active vision 51–52, 74
actuation 1, 43, 52
adaptive cluster growing 126
aerial image 55, 77–78, 82
affine transformation 115
allocentric map 36, 42
amplitude 15
analog camera 1
analog signal 1
angle of rotation 16–18
approximate model 59
aspect distortion factor 118
attention control 5, 50
autonomous navigation 4
autonomous robot 4, 43, 109, 145

b
B-rep 58, 62–65, 168
band filter 147, 153, 157
bandpass filter 13
bandwidth 150
base class 148
basic equipment 1
behavior 5, 33, 37–40, 51
binary cell model 59
binary image 22–23, 29, 31, 136, 138,

151–153, 155–156, 170, 172, 174
binary mask 75
binormal 71–73
block matching 106
blurring 63
boundary-representation 58
brightness 10–11, 20, 44, 48, 78

c
C++ 1, 67, 148, 159–160, 162, 164, 172
CAD 3, 5, 7, 63–64, 167–168, 184

calibration 3, 6–7, 75, 88, 90, 92–93, 97–98,
100, 111, 113–118, 120–122, 159–161,
163–165

calibration matrix 90, 115
calibration object 7, 118, 161, 163
camera calibration matrix 90
camera center 90
camera constant 55–56, 117
camera coordinate system 3, 53, 55, 65, 71,

73, 83, 91, 113
camera coordinates 72–73, 83, 85, 115, 121
camera head 1
camera matrix 90
camera parameter 6, 91, 113, 160
Canny 75
canonical configuration 89, 103, 105–106
CCD 50, 53, 55, 118
character recognition 2, 129, 135–136
circularity 9, 177
class description 134
classification 9, 42, 62, 125–126, 134, 138,

145, 171, 176, 178
classificator 125–126
cluster search 66, 69–73
CMOS 5
collision avoidance 2, 36, 38–39, 42, 74,

159
color camera 4
color channel 10, 20
color feature 4, 147, 153, 157
color image 10, 20, 53
color information 167, 172
color model 4
color part 10–11
color signal 48
color space 10–11
column model 61
compactness 9, 156, 177, 179
complementary color 47

Index

Robot Vision: Video-based Indoor Exploration with Autonomous and Mobile Robots. Stefan Florczyk
Copyright � 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40544-5



194

computer vision 6–7, 10–11, 16, 49, 51, 53,
63–64, 105, 133–134, 144–145, 172, 184

cone 48
confidence measurement 14
confidence value 137–139, 145
constructive solid geometry 57
constructor 148, 150
contour 64–66, 71–73, 78, 81, 95, 105, 136
contrast 7, 20, 47, 50
control command 4
control software 1
convolution 24–26, 148, 150, 152–153, 155,

172, 176–178
correlation-based stereo correspondence 106
corresponding pixels 82, 87, 97–98, 105–107,

109
corresponding points 6, 94–95, 97, 104, 114
cortical column 49
covariance 13, 70–73, 110–111
CSG 57–58, 62–63
cube model 61
cyclopean image 107–108
cyclopean separation 108

d
de-centering 116–117
decision situation 40–42
depth estimation 3, 6, 35
depth information 6, 74, 87–88, 105
depth map 50, 80–81, 109
depth reconstruction 74
derived class 162–163
design guidelines 6, 168, 176, 179, 184
design principle 135
destructor 150
device 1–2, 50, 53, 122
diaphragm 50–51
dilation 15, 22–24, 136, 172, 174, 176–178
direction difference 26–27, 155
disparity gradient 107–109
disparity gradient limit constraint 107
disparity limit 106
disparity smoothness constraint 105
distance estimation 84
distance image 28
distortion model 119
driver 1
dynamic threshold 31, 137–138, 151

e
edge detection 4, 24, 26, 107, 136–137, 140,

155–156
ego-motion 97

egocentric map 36–37, 39, 42
egocentric perception 5
eight-point algorithm 94
epipolar constraint 105, 107
epipolar line 88–89, 95–96, 105–106, 109
epipole 88, 94, 96
erosion 22–23, 28, 136–137, 172, 174,

176–179
error propagation 70, 72–73
essential matrix 92–93, 97–98
estimation error 12
Euclidean reconstruction 98, 100
exploration of interiors 1
external parameter 90, 98, 113–116, 122

f
fast Fourier transform 148, 172
feature extraction 110, 157
field of vision 52
figural continuity constraint 106
filter mask 25, 152–153, 155
fisheye 159, 161
focal length 6, 53, 55, 74, 85, 98, 115,

117–118
focal point 3
focusing approach 50
four-point procedure 83
Fourier transformation 13, 148
frame grabber 1, 53, 55, 159–160
frequency 13, 16, 148, 152–153, 172,

175–176, 178, 184
frequency filter 133
Frobenius norm 95
fundamental matrix 92–95, 97, 104
fuzzy controller 17
fuzzy knowledge 169
FzCHL system 56

g
Gabor filter 4, 13–18, 20–21, 133, 147–148,

150–153, 157, 172, 175–178
Gauss function 13, 15, 18
Gauss-Jordan algorithm 110, 164
geometric model 59
geometric representation 33
geometric similarity constraint 105
geometrical record axis 55
global level 40
goal achievement 39, 43
gradient image 80
gradient operator 75
graph 3, 5, 37–42, 124, 168–169
graph based map 5

Index



195

gray image 10, 20, 53, 55, 75, 172
gray value 9, 16, 24–25, 28–31, 39, 44, 48,

105–106, 153, 167, 172
grid based map 5, 36

h
hardware 1, 51, 53
highpass filter 133, 147, 152–153, 155, 157,

172
histogram 30
homing algorithm 39
homogeneous coordinates 34, 90, 94, 115
homogeneous matrix 34, 115, 137
homogeneous sensor 52
homogeneous transformation 34
Hough transformation 17–18
hue 10
human visual apparatus 5, 47, 49–51, 87
hybrid model 6

i
ICADO 168–172, 174–176, 178, 181, 184
illumination condition 21, 133, 142–143,

145, 167
illumination fluctuation 4
image affine coordinate system 55, 94,

114–115, 117, 160
image analysis 10
image center 49, 55
image coordinates 75, 82, 95–96, 111, 117,

160, 164
image data 3, 5, 7, 51, 64, 73, 80, 87, 110,

167–169, 175, 184
image Euclidean coordinate system 55
image function 25–26
image plane 53, 55–56, 82, 88–89, 115
image processing 1, 22, 52, 60, 129
image rectification 89
image region 3, 78
image sequence 4, 6, 74, 109–110
image-preprocessing 9
image-processing library 1, 30, 133, 148, 172
image-processing operator 3–4, 178
image-processing program 4
impulse answer 13–15, 18, 150
indoor exploration 145, 147, 150, 156–157,

160, 165, 167–168, 172, 181
infrared sensor 39
inhomogeneous illumination 4, 9, 30, 107,

133, 147, 150, 156–157
intensity 10, 16, 20, 80, 107, 133
internal parameter 98, 116–117, 120, 122
interpolation 44, 76

interpretation table 63
invariant coding 49–50
invariant image 49
inverse Fourier transform 153
iris 47, 50

j
Jacobi matrix 70, 72, 111

k
Kalman filter 4, 6, 11, 110–111
knowledge base 4, 37, 42, 50

l
landmark 40
laser 1–2, 36–37, 40, 42
lateral geniculate body 48
least median of squares 95
least-squares method 95, 115
lens distortion 6, 116, 118–122, 160
light incidence 47, 50
light-section method 74
line of sight 51, 55, 58, 62, 80, 82, 88, 116,

133, 143
linear state valuer 12
local edge 41–42
local level 40–41
local navigation 41
local phase 13–14
localization 2, 16, 18, 36, 42–43, 45
logarithmic polar transformation 49–50
Longuet-Higgins equation 92
look-up table 75–76
Luv 48

m
machine vision 4–5, 51
mark based procedure 6, 83
Markov localization 43
MARVIN 145
matching pixels 89, 100–101, 106,

108–109
mean value 26–27, 71, 73, 119, 136–138,

140, 155
mean value filter 136, 138, 140
metric camera 55
Minkowski addition 137
mismatch of pixels 95
mobile robot 1–3, 5, 33, 38, 40, 45, 133–134,

144, 147, 150, 156–157, 159, 165, 167–168,
172, 184

mobile service robot 1–2, 5
model geometry 77

Index



model knowledge 63
Monte Carlo 2, 36, 43
morphological operator 4, 129, 151–153, 155,

174, 178
movement detection 9
multilevel representation 42
mutual correspondence constraint 106

n
navigation 2, 4–5, 33, 36, 38, 40–41, 74, 159,

165, 181, 184
navigation map 2, 4
neural network 6, 19–21, 123–126,

133–134
neuron 18, 20, 123–128
noise 9, 14, 22, 63, 80, 94–95, 106, 151,

157
norm factor 169, 171, 175

o
object center 17, 64
object coordinates 3
object description 9
object detection 11, 50, 153, 167–168
object model 50
object point 3, 106
object reconstruction 4–5, 113, 168
object-centered coordinate system 65
object-oriented design 159
observation matrix 12
observation vector 12
obstacle 2, 39–41
occlusion 77, 168
occlusion analysis 74
occupancy grid 36–37
occupancy map 37
OCR 2, 6, 129–130, 133–134, 138, 140, 145
octave 15
octree 60–62
off-the-shelf camera 2
operating costs 2
operating phase 2, 4
operating system 4, 6, 159
optical axis 53, 55, 115
optical center 88, 96, 102
optical flow 109
ordering constraint 106
orientation 19–21, 33–34, 44, 49, 55, 64, 75,

80, 82–83, 90, 107, 118, 120, 122, 136, 155,
160, 175–176

orientation column 49
OSCAR 145
overexposure 167, 182–183

p
panning 1
parameterized class 162
partial reconstruction 50
passive vision 51–52
path planning 5, 37–38, 40
path scheduler 2
pattern recognition 63
photogrammetry 55
photometric compatibility constraint 105
photometry 82, 105
photosensitive cell 47–48
pinhole camera 6–7, 53, 55, 113–114,

116–118, 160
pixel 9
plausibility check 135, 140, 180
PMF-algorithm 107–109
point of intersection 53, 55
polygon approximation 65, 81
position estimation 43
position monitoring 39, 42
prediction 19, 77, 110–111
principal axis 53, 85, 89–90, 95–96, 116
principal point 55–56, 116–119
principal point offset 55
processing time 28, 39, 51–52, 58, 65, 70, 87,

94, 136–137, 171, 184
production model 63
projection center 55, 82
projection matrix 90–91, 96, 98, 101, 110,

114–115, 163, 165
projection parameter 121
projective space 102
projective transformation 100
pseudo B-rep 65, 71, 73
pseudo CAD 64
pseudo correspondence 106
pseudo geometry 62

q
QR-decomposition 115, 160, 163
quadtree 60

r
radial distortion 55, 116, 118, 121
radio set 1
random vector 12
ray theorem 82
realtime 29, 53, 69, 159
real-time processing 29
recognition probability 171–174, 176–180,

182–183
recognition rate 7, 129, 134

Index196



redundancy 6, 172
redundant program 6, 133–135, 138, 144,

168, 172, 184
redundant programming 6–7, 135, 145,

147
reference coordinate system 33–34, 64
reference object 113, 118, 120–121
reference point 22–24, 114, 119, 122
reference quantity 169–170, 174, 178
region building 4
region growth procedure 29
region of interest 17
relative depth 74
relative motion 92
relative movement 109, 111, 119
resolution 7, 9, 37, 47, 49–50, 52–53, 55, 61,

85, 89, 129, 160
retina 47, 49–50, 52
RGB 20, 48, 148, 152–153, 172
RHINO 2, 36, 43
RICADO 172, 181, 183–184
ring bumper 36
robot coordinate system 113
robot gripper 5, 16, 18, 21
robot vision 6–7, 113, 133–134, 142–144,

147, 159, 167–168, 184
rod 48
ROI 17, 172, 175, 177–180
rotary motion 1
rotation 16, 19–21, 33–34, 49, 55, 63–65, 83,

90–91, 93, 97–98, 115, 120, 122
rotation matrix 115
rotational symmetry 117

s
saturation 10
scale factor 101, 103, 118
scene point 6, 34, 53, 55, 82, 87–91, 98, 100,

102–103, 108
schedule 39, 42
segment 9, 28, 63–64
segmentation 9, 27–29, 37, 42, 75, 77–78, 80,

133–134, 140, 150, 170, 172–173, 176
segmentation phase 9
selective vision 51
self-calibration 6, 113–114, 119
self-learning algorithm 6, 16, 18, 133,

137–138, 140
self-learning approach 134
self-localization 2, 5, 36, 145
self-organizing map 123
semantic map 124
semantic net 78, 124

semantic reconstruction 77
sensor coordinate system 53, 55
sensor coordinates 110
sensorial input 41
service robot 2, 4, 6–7, 159–160
shading 74–75
shape 16, 24, 65, 78, 136
shortest path 5, 38
SICAST 159–160, 164
signal color 10
signal transmission path 50
similarity criterion 29
similarity reconstruction 98
simple cell 18
singular-value decomposition 92, 160
skeleton operator 129
skeleton procedure 4, 28
slice model 61
smoothed image 30, 136–137, 140
snapshot 39–42
Sobel 24–27, 75, 136, 147, 155–157, 172,

175
software 1–2, 4, 7, 87, 159
software library 1
sonar 1, 36
spatial connection 39
spatial domain 13, 148, 150–151, 153, 155,

172, 175–176
spectrum 10, 13–15
standard deviation 20–21, 119
state estimation 11
state transition 4
state vector 12, 110–111
stereo correspondence 106, 109
stereo photometry 76
stereo technique 3
stereo triangulation 3, 82
stereo vision 6, 48, 50, 87–88, 92, 95, 109
stripe projection 75
structured light 74
structuring element 22–24, 177
surface model 77
surface normal 75–76
SVD 92–95, 97, 160
sweep procedure 63

t
tangential distortion 121
task planning 42
technical data 3, 118, 160
template concept 162
test-area-calibration 113
texture 74–75, 78, 82

Index 197



thread 16, 87
three colors theory 10
three-dimensional reconstruction 3–7, 75,

77, 87, 110, 181, 184
threshold 4, 28–31, 73, 81, 127–128, 137,

151–156, 172
threshold operator 4, 29–31, 137, 151–153,

172
tilting 1
time series 12
topological map 37–40, 42
trajectory model 63
transformation space 66–72
transition matrix 12
translation 16, 21, 33–34, 55, 63–64, 73,

90–94, 97–98, 115, 120–122, 137, 163

u
ultrasonic 1
un-calibrated camera 100–101
unbiased valuer 12
uncertainty area 66, 69–70, 72
uniqueness constraint 107, 109
unit matrix 12, 163–164

v
velocity 1
video-based exploration 4
video camera 1, 7, 53
virtual method 163
vision system 5–6, 49–50, 52, 63–64, 88, 113
visual cortex 18, 48–50
visual input 39
visual nerve 48, 50
volume model 63
voxel 61

w
wavelength 14–15, 18, 51
wavelet 16
wide-anglelens 159–160, 164–165, 182
winning neuron 123, 125–127
wire frame 3, 5
world coordinate system 3, 55, 114, 159–160
world coordinates 3, 110–111, 113–114,

159–160, 164, 167

z
zoom camera 121

Index198

Administrator
k




