

The Robot Builder's CookbookThe Robot Builder's CookbookThe Robot Builder's CookbookThe Robot Builder's Cookbook

CBprelim
page 1

Tuesday, 19 June 2007 16:11
Black

This page intentionally left blank

TheTheTheThe

Robot Builder's CookbookRobot Builder's CookbookRobot Builder's CookbookRobot Builder's Cookbook

Owen BishopOwen BishopOwen BishopOwen Bishop

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

CBprelim
page 3

Tuesday, 19 June 2007 16:11
Black

Newnes is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Burlington, MA 01801

Copyright © 2007, Owen Bishop. Published by Elsevier Ltd. All rights reserved

The right of Owen Bishop to be identified as the author of this work has been
 asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science and Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax: (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively, you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Please Note: Although every care has been taken with the production of this book to ensure that the
projects contained herein operate in a correct and safe manner, the Publishers do not accept
responsibility for the failure of any project to work correctly or for any damage to any other
equipment it is connected to or used in conjunction with, or in respect of any other damage or injury
that may be so caused. The Publishers do not accept responsibility in any way for the failure to obtain
specified components.

Notice is also given that if equipment that is still under warranty is modified in any way or used or
connected to home-built equipment then that warranty may be void.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record of this book is available from the Library of Congress

ISBN: 978-0-7506-6556-8

For information on all Newnes publications
visit our web site at www.newnespress.com

Printed and bound in UK

08 09 10 10 9 8 7 6 5 4 3 2 1

CBprelim
page 4

Tuesday, 19 June 2007 16:11
Black

ContentsContentsContentsContents

Introduction Making a Robot

1 Robot Behaviour

2 Robot Mechanics

3 Robot Electronics

4 PICs in Control

5 PIC Programming

6 Projects
The Scooter
The Android
A robotic toy
The Quester
The gantry

Index

1

9

25

53

105

133

165
166
209
246
258
297

364

CBprelim
page 5

Tuesday, 19 June 2007 16:11
Black

About this bookAbout this bookAbout this bookAbout this book

This is a book of practical robotics written for beginners but also catering for those who

have progressed a little further beyond that stage. It describes the mechanics of robot

construction, how to build the electronic circuits, and finally goes into the details of

programming robotic systems.

The first half of the book is a cookbook of information, ideas, tips, and suggestions for the

first-time roboticists and others. Much of the content will be of interest and practical use

to students in Further and Higher Education who are working on a micro-controller-

based project (though not necessarily a robotic one).

The second half of the book describes the designing, building and programming of five

robots of varying degrees of complexity. The specifications are flexible and essential

features are emphasised so that the designs are readily adaptable to whatever materials

and parts the reader can obtain. Each description points the way to more advanced

development of the project, resulting in a wide range of fascinating and often

unique robots.

The programs are listed in the PICs MPASM assembler, which allows them to be

modified, fine-tuned and extended. The listings are fully annotated and are accompanied

by detailed flowcharts. These are intended to provide ample guidance for those who wish

to program in one of the dialects of BASIC, or in the C language.

Companion websiteCompanion websiteCompanion websiteCompanion website

This website carries downloadable files of the MPASM versions of all the programs and

subroutines listed in the book. In addition there are files of programs for the Quester and

the Gantry that are too long to be included in the book. All downloads are free of charge.

The site also carries the same programs in the form of hexadecimal files.

The URL of the companion site is:

http://books.elsevier.com/companions/9780750665568

vi

CBprelim
page 6

Tuesday, 19 June 2007 16:11
Black

Making a Robot

 1

Making a Robot
What sort? 2

Getting down to detail 4

Controlling the robot 5

Programming a PIC 6

Simulating the PIC 8

CB00
page 1

Friday, 16 March 2007 06:12
Black

The Robot Builder’s Cookbook

2

Humans are capable of a wide range of

tasks, but most robots are not so

versatile. In industry, robots are

designed to perform a very limited

number of tasks, and to perform them

precisely for hour after hour without

getting tired or bored and without

making mistakes.

In this category come the robot arms

(opposite). These are usually not mobile.

Robot arms are particularly useful for

the heavy, unpleasant or repetitive tasks

in industry. They can be used in

environments in which it is harmful or

dangerous for humans to work.

 A mobile robot looks only vaguely human – and

many do not look human at all!

What sort?

The first question is — ‘What sort of robot do we want to make?’.

When they hear the word ‘robot’, many people immediately think of the R2-D2 or the

robots of the film I, Robot. These are robots similar to humans in some ways, but not in

all. There are many kinds of robot, one major group being the mobile robots, sometimes

called mobile platforms. Examples of mobile robots include the human-like robots

mentioned above and a wide range that mimic animals. Some walk about on six legs, like

insects, and others jump around like frogs. Then there are the more useful mobile robots

that run about the house, sweeping the floor, and those that find their way around a

factory, delivering parts to the work-stations. These rarely look like humans — they just

run around the place and do things.

Someone just starting in robotics, might begin with a low-cost mobile robot. Project 6.1,

the Scooter (pp. 166-208), gives the details.

CB00
page 2

Friday, 16 March 2007 06:12
Black

Making a Robot

 3

Really heavy (in the sense of weight-lifting) tasks, need a gantry robot. Gantry robots are

good at picking up massive items at one place and depositing them accurately at another

place. Their main drawback is that they are not usually mobile, so the distance that they

can transport the load is limited. In this book we use a gantry robot for light-weight tasks,

such as picking up a playing-piece from a game board and moving it to the winning

square. Our gantry robot needs brain rather than brawn.

So what shall it be? A mobile robot or a gantry robot?

Whichever the chosen type, the design process follows very much the same steps, as

outlined in the remainder of this chapter.

This robot has welding gear at

the end of its arm. The arm is

bolted to the floor but the

welding torch can be

manipulated so as to act at

almost any location in the

workshop. Other tools can be

fitted to it when

required.

This gantry robot at a printing

works stacks up blocks of printed

pages, ready for packing. As it

stacks the blocks, it counts them

and builds up a batch of definite

size. Note one of its sturdy

supporting columns in the

foreground.

CB00
page 3

Friday, 16 March 2007 06:12
Black

The Robot Builder’s Cookbook

4

Getting down to detail

Having decided what type of robot to be built, the next step is to draw up a first

specification. It may have to be revised later — at least its minor details.

Start the specification with a list of the things that robot should be able to do, its

structure, and what electronic circuits it will use.

 Refer to Parts 1 to 4 for ideas:

Parts 4 and 5 The PIC
microcontrollers: How they
interface to the robot
electronics and how to
program them to control the
robot’s actions.

Part 3 Robot electronics:
components, sensors,

actuators, and the circuits to
drive them.

Part 1 Robot behaviour:

what they can do.

Part 2 Robot mechanics:
structures, materials,
ready-made parts, tools.

CB00
page 4

Friday, 16 March 2007 06:12
Black

Making a Robot

 5

This is a cookbook. There is no need to read Parts 2 to 5 from beginning to end. Just

browse them to pick out any items of interest. Dip into these parts and gradually put

together the final specification.

Controlling the robot

The first robots (they were called automatons in those days) were purely mechanical,

driven by clockwork or steam power. The arrival of electronics greatly increased the

scope of what robots could be made to do. Modern concepts of robotics began to emerge.

The big advances came when engineers started putting complex digitial circuitry on a

single chip. These were microprocessors, capable of millions of operations per second.

Microprocessors are widely used in computers, robots, and many other devices that

depend on high-speed, digital processing.

A microprocessor can not work on its own. There must be other electronic devices, such

as memory chips, input and output ports, and a system clock, to help it. The circuit-

boards holding the elements of a microprocessor system are relatively large and complex.

They are just a bit too complicated for the average enthusiast to design and build.

Next came microcontrollers — the ‘computer on a chip’. Fast operating, simple to

connect to other electronics, easily programmable, and cheap to buy, they are just right

for controlling simple robots.

 A selection of microcontrollers. From left to

right, the 18-pin PIC16F84, from Microchip,

the 20-pin Atmel AT90S1200, and the 28-pin

PIC16F87.

The data sheet in the background was

down-loaded free from the Microchip site on

the World Wide Web.

CB00
page 5

Friday, 16 March 2007 06:12
Black

The Robot Builder’s Cookbook

6

There are several manufacturers of microcontrollers (or controllers, as we will call them

in future), but the PIC controllers made by Microchip Technology, Inc. seem to be the

most popular in the hobby field (and in many professional fields, too). When you are

planning to build a robot, it is important to choose the right PIC. Finding the right one is

detailed on p. 130. The recently-introduced PIC16F690 is the one selected for the projects

in Part 6, but several other types of PIC are equally suitable.

Programming a PICProgramming a PICProgramming a PICProgramming a PIC

A controller operates according to a program. This is stored digitally in the controller’s

memory in the form of a code, called machine code. This code is very difficult to write by

hand but, fortunately, a computer can help. Using special software, the program is typed

in as a sequence of understandable instructions (or mnemonics) for the controller to

execute. The software assembles the machine code from these instructions.

A PIC (top centre) being programmed in a programming deck. This is connected to a PC

that is running special programming software. A display panel on the deck keeps the

user informed of the progress of the operation.

CB00
page 6

Friday, 16 March 2007 06:12
Black

Making a Robot

 7

Using a programming deck (photo opposite) the assembled machine code is copied from

the PC into the memory of the controller. The deck usually has several light-emitting

diodes (LEDs), and push-buttons for testing the output and input channels of the PIC

while it is running the program on the deck.

The PIC recommended for the projects in this book have flash memory. Digital cameras

use the same sort of memory for storing images. The advantage of flash memory is that it

can be programmed and re-programmed over and over again, at least 100 times. So it is

ideal for developing the software for a robot. Key in the program a section at a time, and

test it as each section is completed. Later, parts of the program can be amended or

deleted if something is wrong. Or even completely replaced with something entirely

different.

As explained above, there is no need to write a program in the machine code in which it

is eventually stored. Instead, the programmer writes in assembler. All PICs have the

same assembler language, which has only 35 different instructions in it. This makes it

quick to learn. Assembler is a one-action-per-instruction language. Step-by-step, the

programmer tells the controller precisely what to do. Programs are easy to follow and

understand.

Some people find assembler difficult because assembler instructs the controller in very

small steps. They are not used to thinking in this way and prefer to program in bigger

steps. They use one of a number of high-level languages. These include several dialects of

BASIC, as well as C and C+. Instructions written in these languages are more like

ordinary English. This makes programming easier, though it is still essential to pay strict

attention to the syntax if the computer is to understand the program.

The machine code produced by the high-level language software (called a compiler) is

usually appreciably longer than the code of an equivalent program written in assembler.

It requires more memory to store it and the program does not perform as fast as an

assembler program. This is not a problem for the robots described in this book, for the

programs are short and high speed is not required.

If you wish to avoid any kind of programming, the machine code files are available on

the Companion Site (opposite p. 1). Download them into a PC, then use a programming

deck to copy them to the PIC.

CB00
page 7

Friday, 16 March 2007 06:12
Black

The Robot Builder’s Cookbook

8

Simulating the PIC

The software supplied with a programming deck usually includes its own assembler and,

as already mentioned, may have a BASIC or C compiler built in to it. On the computer

screen, type in the program (or part of it) using a text editor. This is usually supplied as

part of the programming software, or use Notepad, which comes in the Windows package.

Next comes the simulator.

The simulator is another item which is provided with the programming software. It runs

on the PC but behaves just like a PIC would do. It can run a program at full speed or step

though it line by line.

While the simulator is running, special panels on the screen display the contents of all the

registers of the simulated PIC. It is easy to see what is happening and whether or not the

program is working as intended. The screen also displays the contents of the simulated

PIC’s memory. With the more advanced simulators you are able to set up virtual input

and output devices such as LEDs, digital displays, and push buttons and see how the

simulated controller interacts with these.

Now is the time to look for and correct errors. When all is finally checked, click on a

button to download the assembled program into the PIC. The assembler software

converts it into machine code and transfers it to the PIC's program memory. Once the

program is in the PIC it stays there for years (or until you change it). Plug the PIC into its

socket in the robot circuit and test it for real.

CB00
page 8

Friday, 16 March 2007 06:12
Black

Robot Behaviour

9

Robot BehaviourRobot BehaviourRobot BehaviourRobot Behaviour

Activities of mobile robots 10

Activities of gantry robots 16

Feedback 17

Random activity 19

Subsumption 21

Input and output requirements 22

Distributed processing 22

CB01
page 1

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

10

What shall it do?What shall it do?What shall it do?What shall it do?

This is the question we have to answer before we begin to program it as described in

Part 5. What it can do depends on the type of robot it is. Mobile robots are discussed first.

For gantries, turn to p. 16. From p. 17 onward we discuss the activities common to all

kinds of robot.

Activities of mobile robotsActivities of mobile robotsActivities of mobile robotsActivities of mobile robots

Moving aroundMoving aroundMoving aroundMoving around

By definition, all mobile robots move from place to place. They need to be able to move

forward, to reverse, and to turn to the left or right. Robots are often operated in confined

spaces so it useful to be able to spin on one spot. Variable speed is less important and

often unnecessary.

Mechanics
Wheels 39

Motors 46

Electronics
Motor speed control 93

Motor direction control 94

Servomotors 98

Stepper motors 98

Programming
Steering a mobile robot 144

The Quester (Project 4, p. 258) runs on

three wheels. Two of these, to the left

and right, are the drive wheels. Each

has its own electric motor. The third

wheel is a castor, used for balance.

The panel on the right tells you where

to look for details.

The Scooter (p. 165) also has three

wheels, but uses only one motor. Its

steering is somewhat erratic but very

easy and cheap to build!

CB01
page 2

Friday, 16 March 2007 06:18
Black

Robot Behaviour

11

Detecting and responding to lightDetecting and responding to lightDetecting and responding to lightDetecting and responding to light

Sight is probably the most important of all human senses. The same applies to mobile

robots. Some can detect a lamp which is several metres distant, and aim themselves

towards it. Or maybe they will go in the opposite direction, to end up in the safety of a

dark corner.

The Quester robot homes on a source of
light.

The chassis of the Android has two motors, one for the rear drive wheels and
the other for steering.

CB01
page 3

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

12

ProximityProximityProximityProximity

Another use for light is for proximity sensing. Proximity sensors tell the robot when it is

near to, but not actually touching an object. The word ‘object’ includes immovable

objects such as walls and furniture. In proximity sensing, the source of light is not

separate from the robot, but is mounted on it, often aimed in the forward direction.

A light sensor detects a nearby object

by detecting the light reflected back

from it. If the intensity of the reflected

light exceeds a certain level, the robot

knows that something is there. A

light detector aimed sideways can be

used to keep a robot at a fixed

distance from a wall.

Wall-following is a common type of

behaviour; it is often used by maze-

solving robots.

The important feature of light is that

it is detectable at a distance. This

makes it ideal for long-range

sensing.

One of the problems with using

light sensors is that they may be

confused by room lighting or

sunlight. Pulsed light sources are

one way out of this problem.

The panel on the right lists where to

look for descriptions of a range of

light sensors. These references

explain how to build the sensors

and how to program the robot to

make use of them.

Electronics

One-bit input 68

Analogue input 71

Light sensors 74

Detecting colours 78

Camera 314

Programming

Detecting objects 147

Avoiding objects 149

Electronics

Light proximity detector 141

Ultrasonic proximity detector 86

Bumpers 149, 273

Programming

Obstacle avoiding 149

CB01
page 4

Friday, 16 March 2007 06:18
Black

Robot Behaviour

13

Ultra-sound is an alternative to light in proximity detection. This requires a more

complicated circuit but is not subject to interference from extraneous light sources.

Ultra-sonic sensors can be programmed to measure distances, which makes it possible for

the robot to map its surroundings and more easily find its way about. However, although

such applications are very interesting to attempt, they are not infallible!

ContactContactContactContact

By this we mean physical contact between the robot and an obstacle such as a fairly

massive object or a wall.

Mechanics

Bumpers 149

Electronics

Switches 306

Optical encoder 84

Programming

Avoiding obstacles 206

Typically, the robot has bumpers or

possibly wiry ‘antennae’ arranged so that

they are touched when the robot runs into

anything. The usual response is to reverse

a short distance, turn slightly to left or

right, then move forward to try again. If

the robot has a pair of bumpers, at front

left and right, it is possible for the robot to

work out which is the best direction to

turn.

Side-mounted bumpers can be used for

wall-following, instead of a proximity

detector.

Other uses for contact detection occur when a robot is designed to sweep an area clear of

light objects, or to find and pick up objects.

The fact that a robot is in contact with a sizeable object can often be inferred by

monitoring its motion. If the drive motors are swtched on, but the drive wheels are not

turning, it is likely that the robot is pushing against an immovable obstacle. A tachometer

is used to determine if the wheels are turning or not.

CB01
page 5

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

14

The robot detected the box when its right bumper hit it.

Line following is a special form of contact behaviour. The robot stays in contact with a

line painted on the surface over which it is moving. Line following requires two simple

light sensors and the programming is easy. It is one of the most reliable techniques for

guiding a robot from one place to another.

CommunicationCommunicationCommunicationCommunication

Most robots need to interact with humans, and those programmed to play games interact

more than most. The robot sends messages to the human by flashing LEDs or bleeping.

Electronics
Sound sensors 85

Radio100

Programming
Human-Robot comms

in games 232-234

Communication in the opposite direction is

usually a matter of pressing a button or closing

a switch.

Another technique uses a sensor that is

triggered by sound.

Radio is a way of communicating with another

robot to exchange information and coordinate

their activities.

CB01
page 6

Friday, 16 March 2007 06:18
Black

Robot Behaviour

15

NavigationNavigationNavigationNavigation

 Given that a robot is mobile, it seems reasonable for it to know where it is. In practice,

this is not as simple as it sounds. There are basic methods of navigation, such as line

following, wall following, and homing on a light source. These need the fewest sensors

and are the simplest to program. They are are fine for most purposes.

Some operations require the robot to move around in ‘free space’, without reference to

lines, walls or beacons. It might be thought that switching on the drive motors for

precisely controlled periods would give good positional information. This does not work

in practice. For one thing, the two drive motors do not run at exactly the same speed, even

if they are of the same type. With both motors running forward, the robot moves forward

but veers slightly to the left or right. When turning, it is not possible to control the

turning angle precisely. Errors of this kind are cumulative and it is not long before the

robot completely loses its bearings.

We can counteract the differences between motors in several ways. One way is to use a

tachometer to count the revolutions and part-revolutions of each drive wheel. Another

way is to use stepper motors instead of ordinary DC motors. However, even these may

not entirely solve the problem. Depending on the nature of the surface and of the tyres,

there is inevitably a small amount of slipping. This occurs most when starting, stopping

or turning, and is cumulative. There is little to be done about this.

The best solution is for the robot repeatedly to take

its bearings. The advantage is that errors are not

cumulative. This disadvantages are that

three light beacons are needed, which make setting

up dfficult. Also, the maths is complicated.

One novel solution is to use a magnetic compass.

Inexpensive compasses with electronic output are

available from some robotics suppliers.

Unfortunately, their precision is low but they are

fun to experiment with.

The most practical solution is a gantry, described in

the next section.

Mechanics
Stepper motors 47

Electronics
Stepper motors 98

Tachometer 87

Programming
Magnetic markers

338

CB01
page 7

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

16

Activities of gantry robotsActivities of gantry robotsActivities of gantry robotsActivities of gantry robots

A gantry robot operates over a clearly defined rectangular area. It picks up objects from

any point in the area and sets them down at another point in the area.

The tool (often a gripper) is suspended from a small trolley-like frame, and can be

lowered and raised. The frame has wheels and runs on a pair of rails so that it can travel

from one side of the area to the opposite side. This set of rails is on a larger frame at right

angles to the first set, so the smaller can be moved to any point within the area. Thus the

location of the tool is defined by two coordinates, its x-position and its y-position.

It is easy to design sensors that can read the x and y coordinates and a gantry robot is

therefore much easier to program for applications that require precise navigation.

Gantry robots are used in industry when very heavy loads are to be handled. The hobby

versions are suited for less strenuous tasks. They are excellent for playing board games

such as chess, draughts and checkers.

Like mobile robots, gantries can be programmed to solve mazes. But mobile robots are

apt to lose their bearings. Because the travelling frames can be precisely positioned by

keeping track of their x and y coordinates, a gantry robot can never lose its bearings.

The Gantry robot solves a
maze, using its laser

pointer to follow the path.

CB01
page 8

Friday, 16 March 2007 06:18
Black

Robot Behaviour

17

FeedbackFeedbackFeedbackFeedback

As an example of feedback, take an ordinary domestic refrigerator. When the

temperature inside it rises above a given level the refrigerator pump is turned on

automatically. It stays on until the temperature has fallen to a given level. In this way the

temperature inside the refrigerator is held within close limits.

This type of feedback is called negative feedback because an increase in temperature

results in the interior being cooled down. A robotic example is the op amp motor speed

regulator circuit on p. 93. The speed regulator circuit depends on the electronic hardware

to provide and respond to the feedback.

Feedback can also be effected by software. Imagine a mobile robot running along with a

wall on its left. It has an infrared LED directed sideways at the wall and an IR sensor that

receives the reflected radiation. The programmed behaviour is designed so as to keep the

amount of reflected IR constant. In this way it keeps the robot at a constant distance from

the wall.

When the robot veers toward the wall, the amount of reflected IR increases. The sensor

detects this increase. The program responds to this increase by steering the robot to the

right, making it veer away from the wall. The reverse happens as the robot veers away to

the right.

The usual function of negative feedback is to hold things constant. It produces stability.

There is also positive feedback. In the case of the wall-following robot described above,

suppose that by mistake the output lines to the motors were swapped. Then the slightest

deviation from the correct robot–wall distance would cause dramatic results. The robot

would either veer permanently away from the wall or crash into it. Positive feedback

results in instability, which is something to be avoided in robot behaviour.

When solving a maze, the Gantry does not run along passageways as a mobile robot does.

It operates from above the maze, which is figured on paper or card. A narrow laser beam

is projected down from the frame to mark its location.

CB01
page 9

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

18

There is another type of feedback that is virtually essential in a robot system. For

example, a bulldozer-like mobile robot has a pusher in front of it for playing ‘football’.

This is normally lifted high above ground but is lowered almost to ground level when the

robot sees a ball ahead of it. It must be near to but not actually touching the ground, for it

might catch on irregularities in the surface.

To solve this problem, the pusher is raised or lowered by a motor which winds or

unwinds a length of cord wrapped around its spindle. The switches are microswitches,

the kind of switch most suitable for this kind of mechanism. If the motor is made to wind

in the cord (turning clockwise in the diagram), the pusher is raised until its supporting

lever touches against the lever of switch 1. This closes the switch and a signal is sent to

the controller telling it to turn off the motor. If we did not have this system in place, the

motor might continue turning until the pusher was damaged or the cord snapped.

A mechanism for raising and lowering a
pusher attached to the front of a robot (the

robot and supporting structures are not
shown).

CB01
page 10

Friday, 16 March 2007 06:18
Black

Robot Behaviour

19

Mechanics
Limit switches 306

Hook 308

Electronics
Feedback motor control 93

Programming
Line following 290

Hook 308

Monitoring outputMonitoring outputMonitoring outputMonitoring output

Feedback from limit switches exemplifies

one of the key principles of programming

a robot :

Tell it what to do, then quickly check

that it has done it.

In the pusher example, tell the robot to

raise the pusher, then program a loop to

check switch 1 repeatedly until it is

raised. When the pusher is raised far

enough, switch 1 closes. The input to the

controller changes and it then stops the

motor.

The mechanism has a second switch which detects when the pusher has been lowered to

a position just a little way above ground level. Switches used in this way, to detect when

part of a mechanism has got as far as it can be allowed to go, are called limit switches.

In a similar way, path-following is a matter of moving the robot forward while checking

the path sensors at very frequent intervals. Even on a straight path there may be

irregularities that divert the robot from its intended course. If it has strayed, negative

feedback is applied until it is on track again.

Random activityRandom activityRandom activityRandom activity

Randomness may sound an unlikely topic for a robotics book but it has its applications.

A robot that is reliably built and programmed performs its tasks in an orderly and

inflexible manner.

Humans are not normally like this. Indeed, if people are too rigid in their behaviour we

may complain that they are ‘acting like a robot’ or that the person is ‘an automaton’.

CB01
page 11

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

20

Programming
Random numbers 161

Prisoner 293

Trial and error (Scissors, Paper,

Stone) 232

If a robot is programmed to run for a short, randomly-chosen distance, then turn through

a random angle, and continue indefinitely in the same routine its path is totally random.

We say that it is literally performing a Monte Carlo Walk. We say ‘literally’ because the

same term can be applied to other random sequences that are not actually walks.

 A Monte Carlo Walk usually results in
staying in more-or-less the same place.

Usually we do not aim for total randomness. For example, a robot detects an obstacle in

its path, backs up, turns slightly to avoid the obstacle and then continues forward. The

stopping, backing and turning are fixed responses. Whether it turns left or right on a

given occasion is determined as random. We can not predict which way it will turn next.

This intoduces randomness into its behaviour, but not too much.

Random behaviour is produced in the software, using a random number generation

routine. Actually its output is not genuinely random, but a predictable series of values

that repeat after such a long interval that it appears to be random. This is actually

pseudo-random.

Randomness has other and more serious applications. A robot that is solving a maze may

be programmed to make a random choice whenever it has to go either left or right at a

junction. If it is also programmed to remember which choices it made at each junction

and which choices took it successfully to its goal, it can eventually learn to run the maze

correctly.

This is the basis of learning by trial and error. The same type of learning technique can

be applied to other learning tasks.

CB01
page 12

Friday, 16 March 2007 06:18
Black

Robot Behaviour

21

SubsumptionSubsumptionSubsumptionSubsumption

Imagine a mobile robot that is programmed to home on a source of light. It is pro-

grammed with a homing behaviour. The drawing below shows its path. But when it

reaches point A, its proximity detector detects an obstacle between it and the source of

light.

It immediately stops its homing behaviour. Instead, it enters a phase of avoidance

behaviour. The homing behaviour is subsumed by the avoidance behaviour.

It turns and proceeds to B. There, it still detects the obstacle, so turns more, heading for

C. It has avoided the obstacle and, once it is at C there is a clear path to the lamp. It

resumes its homing behaviour.

Subsumption of one behaviour by another is used as a programming technique in all

types of robot. After all, it is a very human characteristic. If the phone goes while we are

eating lunch, we stop eating, answer the phone and, when the call is ended, resume the

meal.

An example of subsumption.

CB01
page 13

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

22

Input and output requirementsInput and output requirementsInput and output requirementsInput and output requirements

This is nearly the end of Part 1, and probably the designer has developed an impressive

specification. Usually this means a host of sensors and actuators, each requiring one or

more connections to the controller. Now is the time to take stock, to check on the

feasibility of the specification. Possibly the PIC (the controller) that was intended for the

project does not have enough input and output channels.

As an example, take the PIC16F84, one of the most commonly-used of the PIC family. It

has 13 input/output (or I/O) channels. Are these enough? Thirteen pins sounds quite a

lot, but tank type (two-motor) steering takes four channels as outputs to control the

motors. Each LED on the robot requires another channel as output. Sounding a siren

takes another channel. And perhaps it is to operate a gripper. At least one channel is

required for this, bringing the total number of output channels to seven. Only six left for

sensors!

The simplest sensors, such as bumpers, require only a single input, but a robot generally

has more than one bumper. A basic light sensor needs one channel, either for high/low

digital input or for an analogue input. A proximity sensor may need one channel to

signal that there is an object ahead and another pin (an output) to reset the sensor. You

have already run out of pins!

The box on p. 24 leads to some solutions. One of these is to use a controller with more I/

O channels. This is one reason why the PIC16F690 was chosen for this book. It has 20 pins

and all except two can be used for I/O. Another solution is explained in the next section.

Distributed processingDistributed processingDistributed processingDistributed processing

Humans can do more than one thing at a time. For example, a programmer’s heart beats

at a regular controlled rate, at the same time as the programmers’s fingers are pounding

on the keyboard. And they may be typing with one hand while drinking a cup of coffee

with the other.

CB01
page 14

Friday, 16 March 2007 06:18
Black

Robot Behaviour

23

Copyright © 2007, Thomas Murray

CB01
page 15

Friday, 16 March 2007 06:18
Black

The Robot Builder's Cookbook

24

Electronics

Signals between PICs 335

Programming

Distributed processing 153

Programming simultaneous activities

on a single controller is possible but

difficult. One solution is split the tasks

between two or even more controllers.

Each runs independently, except for

occasional handshaking signals sent

from one to the other to tell it what it

is doing. This is known as distributed

processing.

An example of distributed processing is the Horseshoe game running on the Gantry. The

controller on the main frame controls the motors and interacts with the operator. The

other processor is on the x-frame. It deals with the camera sensor when scanning the

playing board to register the positions of the pieces. The logic of the game is performed

by the controller on the main frame.

The Gantry robot (Project 6.5, p. 297)
uses two controllers for its more

complicated activities. PIC1 is on the main
frame. PIC2 is on the x-frame.

Another advantage is that two controllers have more I/O channels than one. In the case

of the Gantry, having two controllers reduces the number of wires running between the

main frame and the x-frame.

CB01
page 16

Friday, 16 March 2007 06:18
Black

Robot Mechanics

25

Robot MechanicsRobot MechanicsRobot MechanicsRobot Mechanics
Materials 26Materials 26Materials 26Materials 26

Fixings 29Fixings 29Fixings 29Fixings 29

Tools 31Tools 31Tools 31Tools 31

Planning a mobile robot body 36Planning a mobile robot body 36Planning a mobile robot body 36Planning a mobile robot body 36

Wheels 39Wheels 39Wheels 39Wheels 39

Motors 46Motors 46Motors 46Motors 46

Solenoids 50Solenoids 50Solenoids 50Solenoids 50

Construction kits 51Construction kits 51Construction kits 51Construction kits 51

Suppliers 51Suppliers 51Suppliers 51Suppliers 51

CB02
page 1

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

26

Materials

The materials for building the body or framework of the robot must be strong enough for

the job, easy to work, durable and low cost. Also it should look good — have a shiny or

attractively coloured surface.

Some kinds of plastic food container have all of these qualities. Project 6.1 illustrates how

to build the robotic mechanisms and circuits into a ready-made box. If there happens to

be a spare unused box in the kitchen cupboard, it costs nothing. The main snag is that it

may not be exactly the right shape or size.

Converting a sandwich box into a robot is a short-cut way of getting into robotics, and the

programs it runs can be really high-level, but a purpose-built body is more professional.

The following sections describe some of the most popular materials.

Aluminium stockAluminium stockAluminium stockAluminium stock

Most DIY stores hold a range of aluminium stock, and it is inexpensive. It is usually sold

in lengths of two metres and there is a variety of sizes and cross-sections. The drawing

shows some of them.

CB02
page 2

Friday, 16 March 2007 06:22
Black

Robot Mechanics

27

Aluminium is also available in sheets, commonly 1.5 mm thick.

This material is easy to drill and to cut, using a hacksaw. Strip and square-sectioned

stock can be bent by hand, provided it is not too thick. So can rod.

It seems too obvious to point out that aluminium has the advantage of being a low-

density metal. Lightweight yet rigid frames mean that low power motors can be used to

move them. This in turn means that low-power batteries are needed to drive them.

Project 6.3, the Gantry, is an example of an aluminium framework. This was built using

only two kinds of stock, strip and channelling.

Brass stockBrass stockBrass stockBrass stock

This is useful for some of the smaller parts of mechanisms. It is obtainable from model-

making stores. Brass is available in most of the same sections as aluminium stock, but in

smaller dimensions. It is often sold in 200 mm lengths. Brass is more expensive than

aluminium but fortunately we do not need a lot of it.

Brass is easily worked with drill and hacksaw. The thinner stocks can be bent by hand.

The photo of the gripper on p. 311 shows how it can be bent to form jaws.

Its distinguishing feature is that, it is reasonably rigid but has a degree of springyness

that aluminium does not have. This is why it or similar alloys are used for electrical

contacts, and various kinds of spring clip.

PlasticPlasticPlasticPlastic

Model shops stock a wide range of plastic rod, tubing, angle, channelling and sheets.

These are are in small sizes, being intended for scale models, but can be useful. Usually

they are high impact polystyrene and special adhesive is used when building up boxes

and frames.

Another source of plastic parts is the DIY store. The plumbing department stocks a range

of tubing and other plumbing parts that can be used in robot building.

CB02
page 3

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

28

Examples of plumbing parts are the plastic pipe caps used as light shields for the IR

sensors of the Quester (p. 273).

The gardening department of the DIY store may provide handy plastic tubing used in

garden reticulation systems. The spacers that separate the decks of the Quester are cut

from long PVC riser tubing.

One of the more generally useful materials for robot construction is 3 mm expanded PVC

board. It is often used by signwriters and a visit to a local signwriter may provide some

offcuts. If this fails, try a local plastics company. The board comes in sheets about 1 m

 by 2 m.

Unlike expanded polystyrene, which is soft and crumbly, expanded PVC is firm. Yet it

has a certain amount of compressibility which means that nuts and bolt-heads sink a

fraction of a millimetre into the surface when tightened. This makes them less likely to be

loosened by vibration. The sheet is easy to drill and cut. A steel rule and sharp craft knife

are all that is needed for cutting straight-edged pieces.

The sheet is manufactured in a range of attractive colours, The Quester, for example, is

bright tomato-red.

Foam board is a similar material. It consists of a 5 mm thick sheet of solid plastic foam

coated on both sides with a plastic film. It is white on one side and coloured on the other.

The board is not quite as strong as expanded PVC, but is just as easily worked and

suitable for small lightweight robots, such as the Scooter and Android. Robot bodywork

and other structures can be assembled by using craft glue, as explained on pp. 213-215.

There is plenty of scope for givng the robot a really unique appearance.

Foam board is sold at office materials stores. The brand (Elmers) used for the Android is

supplied in sheets that measure 568 mm × 762 mm, which is a convenient size.

WoodWoodWoodWood

Wood is rarely thought of as a robot-building material but, at times, it can be just what

we need. It is strong for its weight and easily cut, drilled, painted, carved and glued.

CB02
page 4

Friday, 16 March 2007 06:22
Black

Robot Mechanics

29

As well as a wide range of building and joinery timbers, mostly too large for robot

making, DIY and model-maker’s stores sell a very easily workable timber known as

Balsa. Because of its low density and easy workability it is a firm favourite with flying

model aeroplane constructors. For the same reasons it is useful for robot building too.

The Android shows one way of using it.

Fixings

These hold the parts of the robot together — mostly nuts and bolts.

Buy in a stock of nuts and bolts in the sizes most suitable for small structures. The most

generally useful size of bolts is M3 (3 mm diameter) and you need nuts to fit.

Occasionally a smaller size is required. For instance, a motor may have mounting holes

with M2.5 or M2 threads. Small parts such as microswitches may have 2 mm unthreaded

mounting holes.

You need an assortment of the different lengths. The 10 mm and 15 mm sizes cover most

needs, but sometimes longer bolts such as 25 mm are wanted, and a few of the 6 mm size.

Washers have several different functions. Plain washers, placed next to the head of the

bolt, help to spread the load at that point. They are useful when bolting a relatively

massive item, such as a motor, to a relatively flexible panel. Shake-proof and spring

washers help prevent the nuts from loosening. Use them for bolting metal parts to other

metal parts. They are not needed when bolting to expanded PVC sheet and the material

itself is suitably springy.

Nylon nuts and bolts, from electronic parts suppliers, are necessary if there is a risk of

the bolts causing a short-circuit. This could happen if a circuit-board is bolted to a metal

panel. In such cases use nylon bolts and nuts or plastic stand-offs.

Spacers are short tubes, length 6 mm to 38 mm, made of metal or nylon. They are

intended for holding a circuit board clear of the panel on which it is mounted but have

several other uses. We sometimes refer to the shorter ones as collars.

CB02
page 5

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

30

There are dozens of kinds of adhesive, of which we employ just three. For routine fixing,

general adhesives such as UHU®,, Bostick®, or similar products are our standby.

Another general glue, which sticks expanded PVC sheet and Foam Board is a variety of

craft glue called Sticky Craft Glue, made by CraftSmart. It is milky when applied but dries

clear. Clamp the pieces under slight pressure while the glue sets. Examine it from time to

time at first to check that the pieces have not slipped.

Super glues are quick setting and strong. We use a variety of this known as Fix-Lock

anaerobic adhesive. A drop applied to a nut and bolt runs into the narrow space between

them and sets hard. This locks the nut on to the bolt, preventing it from working loose. A

locking adhesive such as this is invaluable when building robots from metals parts.

Although it holds the nut secure, a little force with a spanner will loosen it if necessary.

It should really be classed as a tool but it seems more sensible to describe it along with the

adhesives. The tool is the glue gun, which melts glue sticks and has a nozzle for applying

the molten glue to the workpiece. A glue gun is a handy tool to have on the workbench

for all kinds of gluing jobs.

Velcro would seem to have little to do with robots but in fact it can be very good at fixing

things that can not be fixed by nuts, bolts or adhesives. Velcro Sticky Back tape consists of

the usual ‘hook’ and ‘eye’ tapes with strongly self-adhesive backs. Typical AAA and AA

battery holders have no mounting holes, and there is nowhere they can be drilled to take

a bolt. We use this tape for fixing battery holders and similar items.

Last but by no means least, be sure to have a pack of Blu-Tack to hand, as well as a

packet or roll of double-sided self-adhesive tape.

The glue sticks are melted by the

electric heating coil in the gun. Press

the trigger to extrude molten glue

from the nozzle.

CB02
page 6

Friday, 16 March 2007 06:22
Black

Robot Mechanics

31

The tools you need for constructing robots partly depend on the materials you use. For

Foam Board the main tools are a steel ruler, a craft knife and a plastic chopping board

(use one discarded from the kitchen) or cutting mat. You need a few other tools for

mounting the motor and circuit boards. For building an aluminium framed robot such as

the Gantry, a drill press is almost essential and so is a hacksaw. When you have decided

what materials are to be used, select your tools from those described below.

Cutting toolsCutting toolsCutting toolsCutting tools

A junior hacksaw, with a 150 mm long blade is good enough for most jobs, such as

cutting wood or plastic, and for circuit boards. For cutting aluminium or brass stock a

regular hacksaw is faster and gives a straighter cut. If you have problems with cutting

things square or if you need to cut at a particular angle, a mitre saw is a great help. It

keeps the saw blade vertical and perpendicular to the length of the workpiece. It has

gauges to help cut pieces to equal lengths. The frame that carries the blade can be rotated

to cut at angles other than 90°, the angle being settable on a graduated scale. A mitre saw

is almost essential for building the Gantry.

Tools

A mitre saw helps keep everything ‘square’.

CB02
page 7

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

32

Use a medium-sized fine flat file for smoothing off cut edges. A set of needle files is

useful for enlarging holes and shaping small parts. Use a file saw for shaping larger

holes, and many other tasks. The blade is a coarse round file about 3 mm diameter and

175 mm long. It is mounted in a handle. The file saw cuts quickly and is suitable for

cutting metal, wood or plastic.

A reamer can enlarge circular holes up to 18 mm in diameter. It is not an essential tool,

but does the job neatly. While on the subject of cutting large holes, consider getting a

circular hole-saw that attaches to an electric drill. It is supplied with a range of inter-

changeable blades in diameters from 25 mm to 53 mm. Again, this is not an essential tool,

but is the best way of cutting large holes quickly.

The saw blades cut holes of a

range of sizes, centred on the

hole first drilled by the bit.

A file-saw, a

reamer and a

junior hacksaw.

CB02
page 8

Friday, 16 March 2007 06:22
Black

Robot Mechanics

33

DrillsDrillsDrillsDrills

Although a hand-turned drill is adequate in many ways, an electric drill is a boon when

there is much drilling to be done. Robot building seems to require a lot of it. If you

already have a small power drill for jobs about the house, it may not be worth while to

get anything more professional. A drill press is not expensive, is so much easier to use

and produces better results.

A drill press helps put the holes in the right places and at right angles. Use it for

aluminium, brass, wood or plastic, preferably running it at its lowest speed.

CB02
page 9

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

34

The drill press in the photo has a drive belt transmission for varying the speed. For

drilling plastic it is best to run it at its slowest speed.

There is a safety guard to prevent flying pieces of metal from damaging your eyes, but

we have yet to see any flying pieces. However, wearing a pair of safety goggles is a

sensible precaution, especially when drilling into metal. A pair of heavy-duty gloves ais

another safety measure.

Plastic safety goggles protect the eyes when drilling.

A selection of small clamps is handy for holding the workpiece while drilling. You also

need a set of drill bits, with diameters ranging from 1 mm to 6 mm. A centre-punch and

hammer are used for punching the spot where the hole is to be drilled. If the workpiece is

not punched beforehand there is a tendency for the bit to skid away and start the hole in

the wrong place.

A small hobby drill, driven by a low voltage motor is needed for the finer work. It can be

powered from the low-voltage suppy of the electronics bench. Most work on a wide

range of DC voltages from about 6 V to 15 V. Kits of tools for these drills include drill

bits, mini reamers, wire brushes, and felt polishing discs. It may even have a mini circular

saw. The most essential items are the bits, ranging in diameter from 0.8 mm up to 2 mm,

and the reamers.

CB02
page 10

Friday, 16 March 2007 06:22
Black

Robot Mechanics

35

Gripping toolsGripping toolsGripping toolsGripping tools

In this category come a pair of standard bull nose pliers and a pair of long nose pliers. It

also includes two sizes of adjustable spanners, with jaws opening up to 12 mm and

36 mm.

There are many kinds of tool for picking up and holding small items, and the most

generally useful is a pair of forceps or tweezers. Get a fairly robust pair (tines about 2 mm

wide) and use them for handling small nuts and bolts, bending wire, levering ICs out of

sockets and dozens of other tasks. Our forceps are used more than any other tool.

On the larger scale a small bench vice holds items being sawn or drilled with the mini

drill. The low-cost vices from hobby stores are made from plastic and have a suction base

for temporarily attaching them to the work bench.

This miniature electric drill is

supplied with a range of

tools.

The magnifier/gripper tool shown in the

photo is another handy item, particularly for

holding small circuit boards and components

such as plugs and switches when soldering.

CB02
page 11

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

36

Other toolsOther toolsOther toolsOther tools

Screwdrivers are obviously essential but only small sizes with regular blades up to 4 mm

wide. Metric bolts usually need a small-size Posidrive screwdriver. A set of jeweller’s

screwdrivers is useful on occasions.

An assortment of small files of various shapes is handy for smoothing cut edges and

shaping parts of mechanisms. A set of needle files is also worth having.

An engineer’s steel rule 300 mm long, graduated in millimetres, completes the tool kit.

Planning a mobile robot body

Things to think about before starting on the building.

• Chassis:

◊ Ready-made chassis such as a plastic food storage box. Easy and quickly

built. See Project 6.1, the Scooter, p. 165.

◊ An existing toy. Generally easy and quick, but there could be snags. See

Project 6.3, p. 246.

◊ Chassis made from sheet plastic or foam board. Easy but takes longer. Gives

scope for invention. See Project 6.2, the Android, p. 209 and Project 6.4, p. 258.

◊ Chassis made from sheet aluminium. You need tools and experience to make

it.

• Wheels:

◊ How many? Three is a popular number.

◊ Drive (traction) wheels at front or rear.

◊ Steering by tank method (two independent drive wheels, two motors).

◊ Steering by automobile method, one motor, with differential gear

(complicated).

CB02
page 12

Friday, 16 March 2007 06:22
Black

Robot Mechanics

37

Copyright © 2007, Thomas Murray

CB02
page 13

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

38

• The terrain it is to run on:

◊ Hard, level, smooth surface such as wooden or tiled floor, or concrete or

brick paving. Wheels may need composition treaded tyres for good grip.

◊ Carpeted floor. Mount wheels low down on the chassis to give clearance

between the chassis and the carpet. Rugs are often difficult to negotiate,

especially rugs with fringes. Wheels of larger diameter ride on to rugs more

easily. Steps and stairs are really difficult — instead of wheels use tracks or

abandon wheels and go for legs.

◊ Lawn. Large diameter wheels, with good clearance.

◊ Sloping terrain. Make the robot broad and squat, so that it does not

overbalance.

• Size:

◊ Small size (under 200 mm in all directions) is good for robots run at home.

They can find their way between the furniture more easily.

◊ Small size may not provide enough space for battery, motors, all the sensors

and actuators that are intended.

◊ Small size may lead to cramped conditions, making it hard to access circuits

for testing, and difficult to insert and remove the PIC microcontroller.

◊ Large size leads to greater weight, need for stonger chassis, need for more

power to drive it, more powerful (larger and heavier) motors, more powerful

(larger and heavier) battery — the situation can get out of hand! Small is

beautiful!

• Shape:

◊ A robot that is about as long as it is wide turns much more easily in a

confined space (such as the average family room).

◊ A robot that is much taller than it is wide is more likely to fall over on

uneven surfaces, if it hits an obstacle, or when it accelerates or decelerates

quickly.

◊ If the robot is to have jaws for picking up a load, it needs to have a broad

base for stability.

There are more detailed design points in the next two sections.

CB02
page 14

Friday, 16 March 2007 06:22
Black

Robot Mechanics

39

Wheels

Road wheelsRoad wheelsRoad wheelsRoad wheels

The main points about a road wheel are its diameter and the nature of its tread. A larger

diameter is better on a rough or uneven surface because the wheel can more easily ride

up over ridges and is less likely to get stuck in grooves. Also it allows there to be a larger

clearance between the surface and the underside of the chassis.

If the surface is smooth and even, for example the rails of a gantry, small wheels have the

advantage of light weight. It is all too easy for a robot design to finish up by being

heavier than the motor can drive. Using small wheels helps to avoid this.

Tyres help the robot to run without slipping. The simply programmed robots usually

start and stop abruptly. This leads to skidding or slipping. We rely on a robot being able

to run in a straight line but slipping makes it run in irregular curves. Unless it is

continually taking its bearings from a fixed landmark, it soon gets lost. Wheels slip, even

when they have tyres, but tyres help to avoid serious slipping.

Above: Road wheel

and Sports tyre by

Tamiya, seen on the

Scooter.

Below: Road wheels by

Lego in two sizes. The

photo shows the

wheels with and

without tyres.

Above: Road wheels and

tyres by Meccano.

CB02
page 15

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

40

A recurring problem with wheels is that the hubs of the selected wheels do not fit on to

the output shaft of the selected motor. There are no standard diameters. Apart from

trying for a different motor or wheels, the solution is to compromise and improvise!

A wheel must be secured to the shaft so that it does not work loose and drop off, and it

does not slip when torque is applied. Often a friction grip between hub and shaft is

adequate, especially for a lightweight robot. If the diameter of the shaft is less than that

of the hub, slip a short length of plastic sleeving, aquarium aerator tubing, or PVC

insulation (stripped from a cable) on to the end of the shaft. Then push the wheel on to

that. Possibly a second layer may be needed to make a tight fit.

If the wheel fits fairly well (so as not to wobble when rotating) slipping can be prevented

by wiring the hub to the shaft (p. 170).

There are several sources of road wheels suitable for robots. Tamiya make a variety of

wheels with tyres, including truck tyres and sports tyres. They also make tank tracks,

which are sold complete with the wheels to run in the tracks. The wheels and tracks are

boxed as kits and sold by hobby shops.

The constructional sets manufactured by Meccano and Lego include many different types

of road wheel. It is possible to obtain most of these as separate parts from a model shop,

or on the Web (pp. 51-52).

Gear wheelsGear wheelsGear wheelsGear wheels

Gear wheels are often needed for drive transmission and for moving arms and grippers.

They are available as packeted kits of plastic gear wheels of a range of diameters from

various manufacturers. Tamiya produce sets of gears, including motors, that can be

assembled into gearboxes of many different ratios. Meccano and Lego produce gear

wheels too, and the kinds of mechanism that can be built from them are shown in the

photos overleaf.

Gear wheels transmit turning force by engaging their teeth. The number of teeth on the

wheels matters more than their diameters. When talking about gear wheels we speak of

‘24t’ wheels and ‘36t’ wheels, meaning wheels with 24 and 36 teeth.

CB02
page 16

Friday, 16 March 2007 06:22
Black

Robot Mechanics

41

When one gear meshes with another, the speed (or rate of rotation, or angular velocity) of

one gear relative to the other depends only on the numbers of teeth on each wheel. For

example, wheel A, with 10 teeth, is driven by a motor and engages with wheel B, which

has 40 teeth. As A rotates one revolution its 10 teeth mesh with 10 teeth of wheel B. But B

has 40 teeth, so has turned only a quarter of a revolution. Meshing a wheel with few teeth

against one with more teeth gives a reduction in speed.

In the example, the gear ratio is given by the numbers of teeth on the two wheels. The

ratio is 40 to 10, or 4 to 1, generally written as 4:1. An electric motor turns at high speed,

generally at several thousand revolutions per minute. If a motor turns at, say,

16000 r.p.m. and drives wheel A, then wheel B will turn at a quarter of that speed, which

is 4000 r.p.m. As an equation:

speed of B = speed of A ×

4000 r.p.m. is too fast for turning a robot’s road wheels. The speed would be less if A had

fewer teeth and B had more, but there is a limit on how small we can make A and how

large we can make B. Instead we put a third wheel C on the same shaft as B so that they

turn together. C has few teeth, say 10. Wheel C is meshed with a fourth gear D, with

more teeth, say 40.

The speed ratios are like this:

A to B 4 to 1

B to C 1 to 1 (on same shaft)

C to D 4 to 1

The overall ratio of A’s speed to D’s speed is 4 × 4 = 16 to 1. If the motor and A turn at

16000 r.p.m., D turns at 16000/16 = 1000 r.p.m.

This arrangement of gear wheels is called a gear train. The train described above needs a

few more wheels to give a speed suitable for road wheels, but the principle of meshing

few teeth with more teeth is the same. The simplest way to construct a train of gears is to

build a gearbox from two panels of aluminium sheet or expanded PVC. The panels are

bolted together, usually at their corners.

Some practical examples of ways of using gears and gear trains are shown on p. 42

teeth on A

teeth on B

CB02
page 17

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

42

The small wheel has

ten teeth and the larger wheel

has 57. The ratio is 5.7:1, so the

larger wheel rotated at about one

sixth of the speed of the smaller

one. Torque is increased about 6

times.

A worm gear. One rotation of the worm

turns the the 58-toothed wheel by one

tooth. The ratio is 57:1. Torque is high with

this type of gear. Note that this is a ‘one

way’ gearing because it is not possible to

rotate the worm by turning the large gear.

The large gear can be turnd only by

rotating the worm. Shafts are at right

angles.

 A crown and pinion gear is a

reduction gear with the shafts at

right angles. The smaller gear, the

pinion, has ten teeth. The crown

has 50 teeth. The ratio is 1:5, so the

smaller wheel turns five times faster

than the large wheel.

CB02
page 18

Friday, 16 March 2007 06:22
Black

Robot Mechanics

43

A reduction gear train reduces the speed of rotation and it increases the torque. This is

the ‘turning force’, of the shaft. The amount of torque depends on the size of the applied

force and its distance from the centre of rotation. Torque is measured by the sizes of the

force and distance. For example, the torque of the motors used to drive the Quester

(Project 6.4) is given as 2.1 kgf cm. It is the turning force produced by a force equivalent

to 2.1 kg, acting on a wheel of 1 cm radius. A force of half that size (1.05 kgf) acting at

double the distance (2 cm) has the same torque.

The torque produced by force f acting

at a distance d is

T = fd

The motor turns the input shaft which has a pinion A meshing with a crown B. A small

gear wheel C is moulded on to B so they turn as one. C engages with a larger wheel D,

which has a pinion E moulded on it. D/E is a loose fit on the shaft. E meshes with a larger

wheel F which has a pinion G moulded on it. G/H is loose. G meshes with a larger wheel

H and this is a tight fit on the output shaft.

The numbers of teeth are: A = 10, B = 36, C = 14, D = 36, E = 14, F = 36, G = 14, H = 36.

The A to B ratio is 1:3.6, the other three are ratios are all 36:14 or 2.57:1. The overall ratio is

1:(3.6 × 2.57 × 2.57 × 2.57) = 1:61.

CB02
page 19

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

44

For example, a robot gripper is holding a load of 0.2 kg and the arm of the gripper is

15 cm long. The arm rotates to lift the load. The torque required is 0.2 × 15 = 0.75 kgf cm.

A motor that develops a torque of only 0.5 kgf cm will simply stall when it tries to lift the

load.

The secret of success is a reduction gear train, The Quester’s motors have built-in gearing

with an 82:1 ratio. This reduces the rate of rotation of the output shaft to 1/82 times that

of the motor, giving an output of 70 r.p.m. But, at the same time, it increases the torque to

82 times that of the motor (in practice, a little less because of friction).

The torque quoted for motors depends on operating voltage. The actual torque

developed by a motor is less when it is run on a lower voltage.

Most applications of motors require some form of reduction gearing, but the same result

can sometimes be obtained in other ways. A good example is the steering mechanism

used in the robot toy (p. 249). The belt winds directly around the output shaft. The

diameter of the pulley is 12.5 times that of the shaft, giving a reduction ratio of 1:12.5.

Pulley wheelsPulley wheelsPulley wheelsPulley wheels

A pulley is a wheel with a grove around its rim, known as a race. Pulley wheels are

mainly used for the transfer of force. In the Gantry, for example, they transfer the force of

gravity to the chassis to pull it along the tracks when the winch unwinds. They are also

used in the pulley system that raises and lowers the hook and some other tools. Another

way in which force is transferred is by a belt drive between two pulleys.

A pair of pulleys of equal diameter simply transfer force over a distance. If their

diameters differ, the result is similar to that of a gear chain. A larger pulley driven by a

smaller pulley rotates at a slower speed but with increased torque.

Pulleys are connected by the drive band, but gears have to be in contact. This makes

pulleys useful for transferring force over a distance. A further advantage of using pulleys

is that drive bands are slightly elastic so the exact distance between the wheels is not

important. With gears it is essential for the teeth of the two wheels to mesh accurately

together.

CB02
page 20

Friday, 16 March 2007 06:22
Black

Robot Mechanics

45

 Pulleys transfer power over a distance. If the wheels are

of different sizes, they turn at different speeds. The

diameters of the races of these wheels are 36 mm and

12 mm.

36/12 = 3, so one turn of the bigger wheel results in 3

turns of the smaller wheel.

Reverse direction by twisting the drive belt.

The photo shows the ‘rounded triangular’

shape of Meccano hubs and shafts, which

prevents them from slipping. The hubs of the

gear wheels are the same shape.

Shafts can be at right angles and at any other

smaller angle. There is a risk of the belt coming

off if the shafts are too close together.

CB02
page 21

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

46

A disadvantage of pulleys is that the drive can can come off or it may break. Another

problem is that if the load is heavy the band may slip, but this is not necessarily a bad

thing. It introduces elasticity into a system. The jaws of a gripper, for example, close on

an object that is to be securely held. If they grip it loosely, it may fall out. If they grip it

too tightly, they may crush it. The exact point at which the jaws should stop closing on

the object is difficult to determine.

The best approach is to build a little elasticity into the system. One way is to use the

gripper only for elastic objects, such as sponge balls. Another way, which allows the

gripper to handle any kind of object, is to use an elastic drive band in the mechanim that

closes the gripper. As it closes on the object the band begins to slip. The motor is left

running to maintain the grip, so that the object does not fall out.

Motors

Although motors are electrical and therefore might be a topic for the electronics chapter,

they move the mechanical parts so need to be talked about here. The discussion focuses

on small low-voltage DC motors.

When selecting a motor for a project, one of the main points is its operating voltage, for

this partly decides the size and weight of the battery that must be carried. Motors

running on 12V need eight AA cells. These are too heavy a load for a small robot such as

the Scooter. The Quester is larger and heavier so needs more powerful motors to propel it.

This robot runs on a pair of 12 V motors, powered by a battery of eight AA cells. If we

needed maximum power we would use dry cells, but rechargeable cells are more

economical. Eight LiMH cells produce 9.6 V, and will drive the motor with sufficient

power.

The next point to consider is the gearbox. It is rarely that a robot mechanism can be

driven directly from a motor turning at several thousand revolutions per minute. If the

motor does not have a built-in gearbox, it is almost certain that you will need to build or

buy one. A built-in gearbox is neater, more convenient, and probably cheaper than a

separate one.

CB02
page 22

Friday, 16 March 2007 06:22
Black

Robot Mechanics

47

Stepper motorsStepper motorsStepper motorsStepper motors

A typical stepper motor has four sets of coils, arranged so that the rotor is turned from

one position to the next as the coils are energised in a fixed sequence. This is listed in the

table overleaf.

The sequence repeats and at any step, two coils are on and two are off. The sequence of

pulses needed to drive the motor can be provided by a microcontroller.

Finally, there is the matter of coupling the output shaft to the driven mechanism. The

problem that this often raises was mentioned on p. 40. If possible, pick a motor with a

shaft that matches. A 4 mm shaft is usually easier to couple. Special couplers are made for

joining shafts of 4 mm and larger, but these are relatively expensive and bulky. They add

to the robot's weight, which is to be avoided if possible.

A pair of very inexpensive motors running

on 1.5 V to 4.5 V. They produce 8 gf cm and

18 gf cm respectively. These motors have no

gearbox.

A 1.5 V to 3 V motor with an attached

metal gearbox. Low-cost but

comparatively noisy.

A 12 V motor with built-in gearbox. Very

quiet. Output shaft is 4 mm, with a flat for

more secure coupling.

CB02
page 23

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

48

Step
no.

Coil 1 Coil 2 Coil 3 Coil 4

0 On Off On Off

1 Off On On Off

2 Off On Off On

3 On Off Off On

 To get from step to step, first coils 1 and 2 change state, then 3 and 4 change state, then 1

and 2, and so on. The result of this is to produce clockwise turning of the rotor, 15° at a

time. If the sequence is run in reverse, the rotor turns anticlockwise. Six times through the

sequence causes the rotor to turn one complete revolution.

The rate at which it runs through the switching sequence depends on the timing of the

program. The motor turns one revolution for every 24 pulses. Varying the pulse rate

varies the speed of the motor. At any step, the rotor can be held in a fixed position by

halting the sequence. If a stepper motor is used for driving something like an arm of a

robot, the arm can be positioned exactly by programming the controller to produce the

required number of pulses. There is no need for limit switches; the robot always knows

where its limbs are. It can move precisely from one position to another simply by

working out how many pulses to generate. Once in the required position, the rotor is, in

effect, locked there and can not move. The torque required to overcome the magnetic

field holding the rotor in position is several hundred gram-force centimetres.

Another advantage of the stepper motor is that its speed is precisely controllable. It is not

affected by the load on the motor, except perhaps an excessive load, which might

completely prevent the motor from turning. A stepper motor is less likely to stall,

overheat, and possibly burn out its coils, than ordinary motor.

The stepper motor may be made to turn 7.5° per step by using a slightly different

switching pattern. Motors with a 1.8° step angle are also produced. When programming a

stepper motor do not feed the pulses to it too fast. At excessive speeds there is the

possibility of dropped steps, which leads to an error in the positioning.

The sequence of pulses for running a stepper motor.

CB02
page 24

Friday, 16 March 2007 06:22
Black

Robot Mechanics

49

Stepper motors sound ideal for robots but we have not used them in the projects in this

book. One reason is that it is difficult to program pulse production at the same time as

other necessary tasks. Also the motors require large current and at least 12 V operating

voltage.

ServomotorsServomotorsServomotorsServomotors

A servomotor is designed to move to a given angular position. The motor has three

connections to the control circuit. Two of these are the positive and 0V supply lines. The

third connection carries the control signal from the control circuit, which may be a

microprocessor.

The rotor of the motor has limited ability to turn. Generally it can turn 60-90° on either

side of its central position.

The control signal is a series of pulses transmitted at intervals of about 18 ms, or 50 pulses

per second.

The angle of turn is controlled by the pulse length:

• 1 ms: turn as far as possible to the left.

A small servomotor of the kind used in flying
model aircraft and robots. The 'horns' (white
levers) are used for connecting the motor to
the mechanisms that it drives.

CB02
page 25

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

50

Solenoids

A solenoid has a many-turned coil of wire, longer than it is wide, and a soft iron core.

When a current is passed through the coil, magnetic forces pull the core into the coil.

Nothing happens when the current is turned off unless there is a spring mechanism (or

gravity) to move the core out of the coil again.

Solenoids are used to provide linear motion, to pull something in a straight line. If the

core is well inside the solenoid to start with, the force on it can be quite large. A 12 V

solenoid can develop a pull of one or two kilograms force. The problem is that the stroke,

the distance that the core moves, is only a few millimetres. This limits the usefulness of

solenoids in robots.

• 1.5 ms: turn to central position.

• 2 ms: turn as far as possible to the right.
Intermediate pulse lengths give intermediate positions.

Servomotors are often used in robots and in model aeroplanes and vehicles. Model shops,

especially those specialising in flying model aeroplane kits, usually stock a wide range of

servomotors.

A miniature solenoid suitable for

robotic applications.

CB02
page 26

Friday, 16 March 2007 06:22
Black

Robot Mechanics

51

The main applications of solenoids are short-stoke actions, such as releasing catch

mechanisms. An electric door latch is operated by a solenoid. They are also built in to

operate electrically controlled valves.

Construction kits

These are a rich source of ready-made parts, such as wheels, angle brackets, girders, and

many more. Construction sets include Meccano, Erector and Lego. Parts are

available as kits or in small quantities of individual types. Even if you intend to make the

parts of your robot yourself eventually, an extensive kit of parts is handy for mocking up

a mechanism during the early stages of design.

There are also the more specialist kits marketed by companies such as Tamiya. Their road

wheels and pulleys are used in several of the projects in this book The local model or

hobby shop is a good source of these.

Suppliers

Local stores are the first place to try, particularly:

• Model shops — for aluminium, brass, plastic and wooden stock in small dimen-

sions. Also constructional sets and kits of parts such as wheels and tyres and items

such as servomotors.

• DIY stores — for aluminium and wooden stock in the larger sizes, tools, and

specialist items in departments such as plumbing and gardening, which can be put

to use in unconvential ways for building robots.

• Electronics stores — for motors, solenoids, nuts and bolts in small sizes.

CB02
page 27

Friday, 16 March 2007 06:22
Black

The Robot Builder’s Cookbook

52

• Plastics retailers — for expanded PVC sheet and other materials. Look in the

Yellow Pages.

New suppliers of robotic components are continually appearing and no list can be up to

date. Try running a browser, such as Google, or Yahoo! Type in a general keyword, such as

‘robot’, ‘robotics’, ‘Meccano’, 'Erector', ‘Tamiya’, ‘Lego’, ‘motors', or ‘wheels’. There are

lots more you can think of.

This approach hardly ever fails to produce the address of an on-line supplier or two that

you had not heard of before.

Apart from advertisements in hobby magazines, the World Wide Web is the best point of

contact for mail order supplies. Here are a few addresses:

www.robotstore.com — a very wide range of parts by mail order over the web.

www.legoshop.com — for Lego parts and sets by mail order over the web.

www.tamiya.com — on-line descriptions of products and a list of agents world-

wide.

www.brickline.com — Lego parts.

www.robotbooks.com — many interesting titles.

www.budgetrobotics.com.

www.robohoo.com

www.hobbyengineering.com — lots of robotics parts, components, and kits.

CB02
page 28

Friday, 16 March 2007 06:22
Black

Robot Electronics

53

Robot Electronics
Materials 54

Tools 57

Components 60

Power supplies 65

The controller circuit 67

Input circuits 68

Output circuits 89

Radio 100

Testing the circuit 102

Suppliers 103

CB03
page 1

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

54

Materials

Circuit boardCircuit boardCircuit boardCircuit board

The components of an electronic circuit are nearly always assembled on a rectangle of

circuit board. This is made from insulating material and has conducting copper tracks on

its underside to make the connections between components. In the circuits described in

this book, we use components that have wire terminals. The wires are pushed through

holes in the board and soldered to the tracks on the other side of the board. Another type

of component is the surface mount device (SMD) which has terminal pads that are

soldered to tracks on the same side of the board. No holes are required. SMDs are very

small and difficult to handle, so we do not use this type in the book. Take care not to ask

for the SMD type by mistake when buying components.

The copper strip

side of standard

stripboard.

One of many

more elaborate

circuit boards,

intended for

integrated

circuits (which

include PICs).

In this book we build the

circuits on stripboard, which

has parallel copper strips, ten

to the inch, perforated with

holes, also ten to the inch. It is

bought ready to use and

allows the layout to be varied

to suit the sizes of the

components, and altered later

if any changes are needed. It

is more economical to

purchase the board as a large

sheet (about 300 mm long by

100 mm wide) and cut it into

smaller pieces with a junior

hacksaw.

CB03
page 2

Friday, 16 March 2007 06:27
Black

Robot Electronics

55

Components are connected by soldering them to the strips and also by soldering

connecting wires at right-angles across the board to connect some of the strips. This is

known as the Manhattan layout. The drawing shows how it works.

A typical stripboard layout, with strips

running east–west and connecting wires

running north–south.

While thinking about circuit board layout now is a good chance to say a few things about

the layout diagrams in this book. The first point is that they are drawn as if the board is

transparent. They show the components, which are on the top side, and the strips, which

are below. They also show the circular cuts in the strips, which are not actually visible on

the component side of the board. The two larger, clear circles are holes drilled in the

board for mounting it on a pair of bolts.

The large circular dots are the places where leads are soldered to the strips beneath the

board, and these too are not visible from the component side.

The components in this drawing comprise a 2-way screw terminal (top left), two 4-way

header plugs (centre left and right) and four transistors.

Connecting wireConnecting wireConnecting wireConnecting wire

Three kinds may be needed:

• Single-stranded insulated connecting wire, 0.71 mm diameter. Used for wiring up

circuit boards. Can be bought by the metre, and a metre or two in two or three

different colours is worth keeping in stock.

CB03
page 3

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

56

• Multi-stranded flexible insulated connecting wire (sometimes called bell wire), 13 ×

0.12 mm (that is, 13 strands, each 0.12 mm diameter). Use for connections to off-

board components such as motors, and for connections between boards. Stock a

few metres in a few different colours.

• Tinned copper wire, bare, 0.71 mm diameter. We prefer this to insulated wire for

wiring up circuit boards. Not having to strip its ends saves time and the risk of

short circuits is minimal. The exposed wires provide plenty of contact points for

use when testing the circuits.

SolderSolderSolderSolder

Solder is a mixture of 60% tin and 40% lead. It comes as wire with a central core of resin.

For building electronic circuits the narrower gauge, 0.71 mm diameter is preferred.

Recently introduced regulations mean that lead solder may no longer be used in certain

countries, including those in the European Union. Lead-free solder must be used instead.

This usually consists of a mixture of tin and antimony. It is available in wire form,

0.71 mm in diameter.

InsulationInsulationInsulationInsulation

It is often essential to stop currents from flowing where they should not flow. Use PVC

insulating tape to wrap around wires or terminals that are at risk. Use it also to wrap

round joints where two wires have been soldered together. A reel of red and a reel of blue

will cover most needs.

Insulated sleeving is PVC tubing a few millimetres in diameter. It is made in a range of

colours. It is handy for protecting bare wires or where two wires are soldered together.

Most sleeving is of the heatshrink variety. It fits loosely over the joint but, when heated

by holding a hot soldering iron near it, it shrinks to half its original diameter. This

anchors the insulation firmly in place.

Heatshrink tubing is sold in packs of assorted diameters and colours. A pack will last for

years.

CB03
page 4

Friday, 16 March 2007 06:27
Black

Robot Electronics

57

Tools

Many of the tools listed in Part 2 are also of use for building electronic circuits. These

include small screwdrivers, long nose pliers, junior hacksaw, a file or two, forceps, a mini

drill, and a magnifier.

Designing toolsDesigning toolsDesigning toolsDesigning tools

These are the things that are used during the design stage before you get to actually

building the circuit.

A bench power supply unit (PSU). This should be able to supply a range of DC voltages

up to 12 V regulated at a current of up to 1 A. A cheaper alternative that will cover most

demands is a plug-top PSU. This is the sort that looks like a mains plug and goes directly

into a mains socket.

An even more basic supply is a battery box holding the number of cells needed to

produce the required voltage. This could be the battery that is intended to go inside the

completed robot. Alkaline cells produce 1.5 V each when fresh. NiCD cells and NiMH

cells produce 1.2 V each and are rechargeable. If you use this type you will need a battery

charger. This is the most economical long-term solution for battery operation.

This plug-top PSU (with Australian

plug) produces a DC output switchable

to 3 V, 4.5 V, 6 V, 7.5 V, 9 V and 12 V.

The maximum current is 1 A.

CB03
page 5

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

58

Circuit designs are developed and tested on a breadboard before soldering them to a

circuit board. The board has an array of sockets, connected in groups. Terminal wires are

bare-ended wires which are pushed into these sockets to connect them electrically.

An assortment of jumper wires of various lengths are used with the breadboard. They

are sold as sets, but you can make them yourself by cutting and stripping the ends of a

few dozen pieces of single cored (essential) connecting wire. Let them vary in length from

about 2 cm to about 10 cm.

It is a good idea to prepare a few wires stripped at one end and with a miniature

crocodile clip soldered at the other. Another useful item for breadboarding and for circuit

testing generally is a set of a dozen or so test leads in a variety of colours. These are made

from light-duty flexible wire and have a hooked test clip at each end.

Another indispensable item is a testmeter, or multimeter. Preferably it should be digital

and should measure DC voltages up to, say, 20 V. It may measure currents up to 1 A, but

current measurements are not often made in robot circuits. It should measure resistance

and capacitance. Continuity checking and diode testing facilities are well worth having.

Digital meters are favoured because of their low input impedance (they take very little

current from the test circuit) and their 4-figure precision (but three figures are enough for

most purposes). But a rapidly changing voltage produces an annoying and unreadable

scramble of digits on the display. This is when an analogue meter comes into its own —

even a cheap old model that you nearly threw away. Its wavering needle tells you almost

all you want to know about voltage swings.

Breadboarding is usually the

first practical step when

designing a circuit.

CB03
page 6

Friday, 16 March 2007 06:27
Black

Robot Electronics

59

Soldering toolsSoldering toolsSoldering toolsSoldering tools

A soldering iron is an essential item. A soldering station with thermostatic control is

nice to have but a simple electrically heated iron will do. The main points are that it

should be low power, about 15 W, and the bit should be no more than 2 mm in

diameter.

If you have several models of iron to choose from, select the one with the above

features and with a light-duty power lead. Some makes of iron are spoilt by having a

heavy duty power lead capable of supplying a 1 kW device. The thick cable makes it

difficult to wield the iron with precision.

An important accessory is a soldering iron rest to hold the hot iron when not in use. It

should have a sponge, which is dampened for wiping the iron.

Another soldering accessory is a heat shunt. Designs vary but the idea is that the shunt

is a block of copper or aluminium that is clipped on to the wire lead of a component

when it is being soldered to the board. It is generally used when soldering

semiconductor devices such as diodes and transistors.

 The shunt is clipped on between the end being soldered and the body of the

component. Heat from the soldered part flows into the shunt rather than into the

component.

Other tools for electronicsOther tools for electronicsOther tools for electronicsOther tools for electronics

A wire and cable stripper removes the insulation from the end of the connecting wire

in a single action. It saves a lot of time. But most wire strippers are designed for use by

electricians. They will strip the insulation from hefty mains cable, or TV antenna cables,

but not from the thin wires such as we use in electronic hobby projects. Choose with

care.

Wire cutters of the side cutter type trim the component leads short after they have

been soldered to the board or terminal. They give a neat finish to the work and no other

tool does the job.

CB03
page 7

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

60

Last on our list is a spot face cutter. It looks like a drill bit mounted in a plastic handle

and it is used for cutting the circular breaks in the copper tracks of strip board.

While on the subject of cutting the strips, ALWAYS examine each cut with a string

magnifier. It is too easy to leave a microscopically thin hair of wire around the edge of the

cut. It is surprising how much current can flow through such an invisible thread. Make

this the first fault to look for (with that magnifier!) when a circuit fails to work.

Components

If you are building one of the projects in this book or working to some other ready-made

design, it is usual to buy just the components you need and no more. Even then it is wise

to buy a few spare transistors and other items that you might damage though overheat-

ing or because of unintentional short circuits.

On the other hand, if you are designing your own circuits or modifying an existing circuit

you need a small stock of the more commonly used components. Here are suggestions:

Resistors: A few of each of the E12 values from 100 Ω up to 1 MΩ. The metal film type,

with 1% tolerance, and rated at 0.5 W are the best. They are usually sold in packs of 10.

E12 resistors

The values are 10, 12, 15, 18, 22, 27, 33, 39, 47,
56, 68, and 82. Next come multiples: ×10,
×100, ×1000, and so on, up to 10 MΩ. There
are also sub-multiples ×0.1 and ×0.01, but these
are rarely needed.

The easiest and most economical

way to stock up with resistors is

to buy a resistor pack that

includes all the common values.

Buy from a reliable source. So-

called ‘Bargain packs’ from

unknown sources may contain

lots of the values that nobody

wants.

A spot face cutter.

CB03
page 8

Friday, 16 March 2007 06:27
Black

Robot Electronics

61

• Variable resistors: The miniature horizontal preset type are good for breadboard-

ing. Sometimes called trimpots. Handy values are 470 Ω, 1 kΩ, 4.7 kΩ, 10 kΩ,

100 kΩ, and 1 MΩ.

• Capacitors: Their main use in our circuits is for smoothing spikes and pulses out of

the supply. Stock a few MKT polyester capacitors, value 100 nF.

• Transistors: Probably the most often needed is the BC548 for use in transistor

switches, but other types can be used for this purpose. The table lists types to

choose from.

Bipolar junction transistors (BJTs):

Type no. npn or pnp Max. current

(mA)

Current gain*

BC327 pnp 800 100-600

BC337 npn 800 100-600

BC548 npn 100 110-800

BC639 npn 1000 200

BC640 pnp 1000 200

2N3904 npn 200 300

* For a collector current of 10 mA. Transistors are often graded by gain; for

example the BC548C has a higher gain than BC548A ad BC548B.

Transistor pinouts.

CB03
page 9

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

62

MOSFETs (metal oxide silicon field effect transistors) are useful as switches and

amplifiers when the source of the signal is unable to provide enough current to

drive a BJT. As switches, they can control large currents and most types have a very

low ‘on’ resistance. Their main disadvantage is that their threshold voltage, the gate

voltage that turns the MOSFET on, varies appreciably from one transistor to

another of the same type.

A MOSFET of interest for low power circuits is the VN10KM, for current up to

500 mA, an ‘on’ resistance of 5 and a transconductance of 0.2 S. A transconductance

of 1 S means that a change in gate voltage of 1 V, results in a change of current of

1 A. The 2N7000 carries current up to 500 mA, with ‘on’ resistance 5Ω, and

transconductance 0.1 S. Its threshold voltage is in the range of 1 V to 2.5 V, typically

2 V.

Pinouts of two low-power

MOSFETs.

• Light emitting diodes: A few of the standard brightness 5 mm LEDs are a help

when testing the output from logic circuits.

• Push-buttons: Buy two or three of these, solder short single-stranded wire leads to

them and strip the ends of the wires. These provide digital input to breadboarded

logic circuits.

This completes the list of components that often appear on the breadboard when

designing circuits for input to and output from a microcontroller. As well as the above,

build up a selection of sensors and actuators such as LDRs, photodiodes, infrared

emitting diodes, a solid state buzzer, and a small loudspeaker. Exactly what you include

depends on your interests. Where necessary, solder short leads to these so that they are

ready for used on the breadboard.

A supplier’s catalogue or two, or the equivalent on a CD, will usually give technical data,

will help you know what is available, and may even suggest ideas that lead to successful

new designs.

CB03
page 10

Friday, 16 March 2007 06:27
Black

Robot Electronics

63

ConnectorsConnectorsConnectorsConnectors

This book is based on the idea of circuit modules. These modules can be put together in

many different ways to build a variety of robots. Modules also have the advantage that

their circuit boards are small and so will fit more easily into that small space in the

cramped interior of the robot. A modular system can be improved, added to and revised

without having to re-build the whole system.

There are several types of connectors suitable for robot circuits. The cheapest are the

0.9 mm or 1 mm terminal pins. These are pushed through the holes in the strips of the

circuit board and soldered in place. The end of the connecting wire is bent into a little

hook, and soldered to the pin. Soldered connections are very reliable but a trouble to

undo if the connections are to be changed.

PCB terminal pins are similar to the basic terminal pins but are longer and usually gold-

plated. They are pushed through the holes and soldered like the plain type of pin.

PCB terminal pins connect with push-on sockets. The sockets

are supplied in break-off strips.

The matching sockets are broken off the strip, crimped around the bare end of the

connecting wire and soldered to it. Contact is good because of the gold plating and the

springy socket.

The designs for several of the controller boards make use of this kind of connector. This

lets the connections between the controller and its peripherals be changed as required

during the development of the robot’s electronic system.

CB03
page 11

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

64

Header plugs and sockets are a good way of connecting modules that have two or more

connections. The plug is soldered to the board and the socket crimped and soldered to

the connecting wire.

A 6-way header socket shell (top) holds the individual sockets (left) and

pushes on to the header plug (right), which is soldered to the board.

The plugs are available in 2-, 4-, 6-, and 8-way versions. The plugs and sockets have

polarising ridges so it is not possible to connect them the wrong way round. This makes

it important to wire them the right way round as the individual sockets are very hard to

extract from the shell once they have been inserted.

PCB screw terminals are another way of making firm connections that are easily changed.

We find them useful for the power supply lines as it is possible to insert two or more

wires in the same terminal, and daisy-chain the power lines from board to board.

A 2-way PCB screw terminal. 3-way

and 4-way versions are also available.

The pins are spaced 5 mm (two strips)

apart.

CB03
page 12

Friday, 16 March 2007 06:27
Black

Robot Electronics

65

Power supplies

The various types of power supply — batteries and PSUs — are discussed on p. 57. Here

we work out what voltage the supply should have and go into more detail about how to

provide it.

The first stage in planning the supply is to list the devices and circuits in the system and

what they will need. All systems will include one or more PICs so start with this. The

most recent PICs operate at any voltage between 2 V and 5.5 V. This wide range gives a

degree of flexibility except that it does not include 6 V, which could be conveniently

provided by four alkaline cells. The nearest is four NiMH (or NiCd) at 4.8 V. In practice,

though rated at 1.2 V per cell they give 1.3 V when fully charged.

The system will almost certainly include one or more motors. Usually the motor is chosen

for its dimensions and its running speed (and perhaps its price). Provided its operating

voltage is not more than 12 V, we either run it at this voltage or on a lower voltage on

which it will run fast enough.

Other devices in the system may have special requirements. For example, CMOS logic

circuits of the 4000 series require between 3 V and 15 V, which is easily met, but the 74HC

series need between 2 V and 6 V. They can not be run on the same supply as a 12 V

motor. Some of the solid state buzzers and bleepers have a wide range of operating

voltages but others have not, so check this point before you buy.

If everything can run at the same voltage it makes the circuit design much simpler. This is

why it is preferable to use low-voltage (3 V or 6 V) motors that can run on the same

supply as the PIC. Sometimes a 12 V motor, solenoid or relay is the only suitable type and

we have to set up two supplies.

The power supply circuit, single or double, should also include an on-off switch and

preferably an indicator LED to light when it is switched on. Some circuits for this are

shown overleaf.

If the drive motors have their own supply it is a good idea to give them a separate switch.

It is then possible to run the PIC and test it without the robot shooting all over the place.

CB03
page 13

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

66

Circuit for the supply of a single-voltage system. The source is a battery

of four NiMH cells. S1 is a panel-mounting toggle switch. D1 is a

standard brightness LED. The resistor limits the current through the

LED to about 20 mA.

Circuit for the supply of a dual-voltage system (the Gantry, p. 297). There is a switch

for each supply, but the 0 V rail is common to both supplies. Note the differing

resistances of R1 and R2.

Calculating the resistance

There is a forward voltage drop of roughly 2 V across a conducting LED.
The drop across the resistor is (Vsupply – 2). If the current through the LED
is to be i amps, the resistance must be (Vsupply – 2)/i.

Example: If Vsupply is 4.8 V and the current is 0.02 A, the resistance R is:

R = (4.8 – 2)/0.02 = 2.8/0.02 = 140 Ω

Use the nearest value, 150 Ω.

CB03
page 14

Friday, 16 March 2007 06:27
Black

Robot Electronics

67

Because the electronic system of the robots is modular, the controller board has little on it

except for the PIC. The drawing shows the essentials.

With its 20-pin package the 690 provides up to 18 I/O pins.

The switch S1 is the power supply switch seen in the drawing opposite. The polyester

capacitor C1 is to absorb voltage spikes on the positive supply line.

When power is first switched on, channels RA0 to RA2, RA4, RB4, RB5, RC0 to RC3, RC6

and RC7 are all analogue inputs. The rest are digital inputs. The analogue channels can be

defined individually as digital and all channels except RA3 can be defined as outputs.

Outputs are always digital.

When they are configured as inputs, the channels of Ports A and B (except for RA3) can

all have weak pull-ups. These can be brought into action individually. The weak pull-up

acts like a high-value resistor between the input pin and the supply line. The input is read

as a logic high, unless it is strongly grounded to the 0 V rail.

Channel RA3 is an exception. It can be configured as a digital input with no weak pull-

up. The circuit for this is shown in dashed lines. It requires an external resistor. If the

channel is configured as MLCR, to reset the controller, it automatically has a weak pull-

up and does not need the external resistor.

The controller circuit

CB03
page 15

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

68

One-bit input circuits. Left: for use when the channel has weak pull-ups. Input

normally reads as high, but goes low when the button is pressed. Centre: for use

on channels without weak pull-ups. A 10 kΩ resistor is suitable. Input is normally

high. Right: The same as the previous circuit except that input is normally low.

Input circuits

One-bit inputOne-bit inputOne-bit inputOne-bit input

The drawings show the main types of circuit to provide digital (high or low) inputs to the

controller. The simplest is just a switch between the terminal pin and the 0 V rail. Input is

normally logic high, and changes to low when the button is pressed.

To use this circuit the channel must have a weak pull-up enabled. This means that it must

be one of the channels of Ports A or B. The switch is drawn as a push-button, but there

are many types of switch that can be used instead. These include toggle switches,

microswitches (ofter used as limit switches, see p. 306), tilt switches, thermostat switches,

reed switches, relays, and even devices such as pressure pads. All of these can provide

direct input to a controller.

Sometimes an input channel is ‘noisy’, picking up interference from motors or other

electromagnetic devices. Voltage spikes may overcome the weak pull-up, especially if the

input line is more than about 10 cm long. In such cases, it is safer to use a stong pull-up,

or perhaps a strong pull-down, in the form of a 10 kΩ resistor, as shown below.

CB03
page 16

Friday, 16 March 2007 06:27
Black

Robot Electronics

69

In a robot with lots of moving parts there may be many micrcoswitches acting as limit

switches. They are necessary but each one occupies an I/O channel. Maybe some of these

channels are wanted for other purposes. One way to be economical with channels is to

logically OR some of the inputs, as shown below.

(a) Connections for two switches with separate inputs to the

processor. (b) The switches are ORed together on to a single

channel.

As an illustration, a robot has two bumpers, one at the front and one at the rear. They can

not normally be both in contact at the same time. Use circuit (b) above to OR the switch

outputs. When S1 OR S2 is closed the channel goes high. The robot can work out which

was closed by knowing whether it was moving forward or backward at that time.

The logic of this assumes that there is no other robot on the scene to run into the bumpers

of the first robot while it is stationary. In that case, its back to circuit (a).

There are OR versions of the input circuits shown opposite. A digital input channel can

also accept logical input from a CMOS gate or other CMOS output terminal. This can

often be useful if the output from a sensor does not swing fully from low to high. A gate

‘squares up’ the signal, producing clear logic levels that the PIC can understand.

CB03
page 17

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

70

Copyright © 2007, Thomas Murray

CB03
page 18

Friday, 16 March 2007 06:27
Black

Robot Electronics

71

One-bit input from a photodiode (visible light or infrared).

The drawing shows a photodiode connected to a digital input channel with no weak pull-

up. The diode is reverse-biased so that only a small leakage current flows through the

resistors. The variable resistor is used to adjust the voltage developed across the resistors.

For a CMOS gate any input above half the supply voltage counts as logic high; an input

below supply/2 counts as low. Here the gate is a 2-input NAND with its input tied

together. It then acts as a NOT or INVERT gate. As light falling on the photodioide

increases, the leakage current increases and the voltage at the gate inputs increases. The

output changes from high to low at the half-way voltage.

This action could be effected without the gate by using the PIC’s internal comparator, but

there are occasions when an external logic solution, such as that given above, is preferred.

Analogue inputAnalogue inputAnalogue inputAnalogue input

The analogue output from a sensor such as a photodiode (see above) or light dependent

resistor circuit can be read by using the PIC’s internal analogue-to-digital converter. This

has a 10-bit output, so we can read the sensor with high precision. It is not just a matter of

high versus low. The PIC van be programmed to do different things at different light

levels.

CB03
page 19

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

72

The Scooter (p. 166) is an example of using an AD converter. The robot spins around,

continually reading the light level ahead of it, until it locates the direction of the brightest

light in its view. Then it moves forward towards it. In this robot the forward-facing LDR

is connected to pin 19, which connects to the AN0 input channel. If you are planning a

robot and think that you may want to read analogue input, reserve pin 19 (AN0) and

possible pin 18 (AN1) for this purpose.

If we are interested in only one input voltage level, a voltage at which a given activity is

triggered, we use the PIC’s comparator (p. 120). With this, the analogue input from the

sensor is compared with a fixed reference voltage, and the one-bit output of the compara-

tor goes high or low depending on whether the input from the sensor is above or below

the reference voltage.

The reference voltage can be provided internally, and is programmable, or it can be

generated externally. The external reference may either come from a reference voltage

device or from a potential divider circuit. The first of these gives a fixed voltage with high

precision; the second gives a voltage that is a fixed proportion of the supply voltage. The

potential divder is often the better one to use as it is adjustable with a screwdriver.

Voltage references: Left: variable output from a potentiometer is proportional to

the supply voltage. Centre: Zener diode, gives stable voltage with varying supply.

Right: Band-gap reference gives highest precision.

Calculating R

1) Imax = current required (in mA) + 5
2) Minimum power rating is Vref x Imax

3) Resistor R = (Vsupply – Vref)/Imax

CB03
page 20

Friday, 16 March 2007 06:27
Black

Robot Electronics

73

For the AD converter, the input voltage converts to an output of 3ffh (if all ten bits of

ADRES and ADRESH are read) when it equals the reference voltage. If the supply voltage

is used as a reference this gives high precision resolution, even when converting low

voltage inputs.

For the comparator the voltage reference decides the input level at which the output

changes state. There are two ways of setting the reference, using bits <3> to <0> of the

VRCON register (p. 121). This method of setting the reference gives only 16 possible

settings. When trying to set the reference to the critical level, a given step may be far too

low and the next above it may be far too high. In this case the input may need amplifying

before it is sent to the comparator. The diagram illustrates a way of improving the

discrimination of the sensor.

The op amp scaler circuit processes the output voltage of a sensor before

sending it to the PIC.

The sensor, a reversed-biased photodiode, has a variable resistance in series with it to

adjust it to operate in high or low light levels. Essentially the op amp circuit is an

inverting amplifier. Its gain as determined by the two fixed resistors is 100000/10000 =

10. A small change in the voltage from the sensor is now large compared with the voltage

steps of the internal voltage reference.

The variable 10 kΩ resistor sets the zero level. Note that the output of the circuit is

inverted.

CB03
page 21

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

74

SensorsSensorsSensorsSensors

A robot needs to be aware of what is happening in the world around it. That is why all

our robots are equipped with several sensors linked to the controller. This section lists

sensors that are often used in robotics.

Resistive sensors respond to changes in a quantity such as light or position and their

response is a change in their resistance. A change in resistance is easily measured by

passing a current through the sensor and generating a changing voltage which is sent to

the controller. Usually the sensing circuit is a potential divider with the sensor as one of

the resistances.

EMF sensors respond to changes in a given quantity by changing the EMF (electromotive

force or, loosely, a voltage) that they produce. This is sent to the controller.

There is scope for ingenuity when using sensors. Shining a beam ahead of it, the Scooter

(for example) has a light sensor to detect light reflected back to it by an object blocking

the robot’s path. The light sensor is being used as a proximity sensor.

Light sensorsLight sensorsLight sensorsLight sensors

The most commonly used light sensor in our robots is a light dependent resistor which,

as its name implies is a resistive sensor. The resistance of a typical LDR, such as the

ORP12, ranges from 1 MΩ or more in darkness to about 80 Ω in bright sunlight. Indoors,

with indirect daylight or artificial illumination, their resistance is a few kilohms.

LDRs respond to light of most colours, with a peak response in the yellow. Of all the light

sensors, the LDRs are the slowest and their response times are several tens or hundreds of

milliseconds. Although this is seems quite fast to humans, the PIC works much faster

than this. Programs may need a short delay to allow time for the LDR to catch up with it.

The potential divider (see drawing opposite) can have a fixed resistor, a variable resistor,

or both. The variable resistor allows for setting the output voltage for any given light

level. The total resistance should be in the same range as the average resistance of the

LDR under the expected operating conditions.

CB03
page 22

Friday, 16 March 2007 06:27
Black

Robot Electronics

75

As light increases the resistance of the LDR

decreases and the voltage sent to the controller

rises.

Another popular light sensor is the photodiode. The action of these depends on the fact

that the leakage current when the diode is reverse biased varies with light intensity. The

circuit is on p. 73. The leakage current is very small. In darkness it is only a few

nanoamps and rises to about 1 mA in bright light. The resistor has a resistance of a few

hundred thousand ohms, so the current generates a reasonable voltage across it. Often a

330 kΩ resistor provides suitable output voltage. The output must be connected to a high

impedance input so that the voltage is not pulled down. The PIC is a CMOS device so has

high-impedance inputs.

A photodiode is generally more responsive to light from the red end of the spectrum.

Some are specially sensitive to infrared. These are used with infrared LEDs for reading

optical encoders (p. 84). They are employed as sensors in line-following robots because

they are less subject to interference from external sources of visible light.

The response time of a photodiode is fast, generally a few hundred nanoseconds, so there

are no problems with this.

A phototransistor (overleaf) has properties similar to those of a photodiode, though their

response time is longer. They are connected in the same way as an npn transistor in a

common-emitter amplifier. Phototransistors often lack a base terminal and, if present, the

base is usually left unconnected.

CB03
page 23

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

76

Left: Some phototransistors have no base

terminal. They are 2-terminal devices with

collector and emitter.

The reason that a phototransistor can operate with a base current is that the light falling

on the transistor releases a supply of electrons. These electrons act in the same way as a

base current.

 Phototransistors are often packaged with an amplifier circuit or a Darlington transistor

output on the same chip for greater sensitivity. There are similar devices based on

photodiodes.

Digital outputDigital outputDigital outputDigital output

The analogue output from a light sensor is usually processed by the PIC's in-built

comparators but sometimes there are not enough of these, and in any case it is simpler to

handle the triggering level in the hardware. This circuit uses an op amp comparator to

convert the analogue output into digital.

The op amp has two inputs and there is no feedback, so the difference between the input

voltages is multiplied by the open loop gain of the amplifier. The output swings very

sharply from low to high when the voltage at pin 3 exceeds the voltage at pin 2.

The voltage at pin 3 is always half the supply. The voltage at pin 2 varies directly with

light intensity. It is set by adjusting VR1 to bring it to half supply when the LDR is

receiving light of the triggering intensity.

CB03
page 24

Friday, 16 March 2007 06:27
Black

Robot Electronics

77

The output of this circuit goes high when the

light level rises above a preset amount.

This circuit is used for the LDR light sensor of the Quester robot (p. 258). The output of the

CA3148E swings close to the supply rails, providing a clear signal for the controller.

The Quester demonstrates another way of producing digital output. A CMOS logic gate

changes state when input voltage levels are close to half the supply voltage. They act like

a comparator with the reference voltage set at Vsupply/2.

The circuit for the two IR probes of the Quester robot (p. 258).

CB03
page 25

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

78

Paper

colour

White Red Green Blue Black

Red LED 1 1 1 0 1

Green LED 1 0 1 0 0

Blue LED 1 0 0 1 0

The circuit uses CMOS NAND gates but could use NOR or INVERT gates instead. There

are two IR probes and the component numbers of the second probe are shown in

brackets.

Each probe has an IR LED (D1, D3) to illuminate the area beneath the probe. The reflected

IR is detected by a pair of BP204 IR diodes. Note that the polarities of the two diodes are

in opposite directions.

Detecting coloursDetecting coloursDetecting coloursDetecting colours

A robot may be required to detect the colour of an object. For example, it may have the

task of sorting building blocks of different colours. A simple way to do this is to illumi-

nate the object with light from two or three different colours, one at a time. A single LDR

light sensor measures the amount of light reflected from the object.

As a test run of the technique, small (30 mm) squares of coloured paper are illuminated

by light from red, green and blue high-intensity LEDs. An LDR is exposed to the light

reflected from these squares. The LDR is part of a circuit like that on p. 75, and the output

voltage is sent to a comparator. With a suitable setting for its reference voltage, the

comparator's output is read for each coloured paper and for each coloured LED. The

output is 0 for low reflection or 1 for high reflection. Here are some typical readings:

Each paper except for red and black produces a different response. If the PIC is

programmed to flash each LED in turn, and to read the output from the comparator each

time, the colours of the papers can be identified. Possibly the problem with black is that it

is reflecting (or emitting?) infrared, to which the LDR is sensitive. Under green light, the

red paper reflects less than black, so it is possible to distinguish these colours if a suitable

reference voltage is used.

CB03
page 26

Friday, 16 March 2007 06:27
Black

Robot Electronics

79

A light detector with memoryA light detector with memoryA light detector with memoryA light detector with memory

This circuit detects brief flashes of light. Although the PIC’s interrupt facilities can

respond to this sort of thing it is not necessarily convenient to have the program

interrupted at an unpredictable time. This circuit allows the controller to poll its output to

discover if a flash has occurred.

The light flash sensor is based on a phototransistor and a set-reset

flip-flop.

Q1 is a phototransistor, preferably of the Darlington type. When a flash of light is

received, Q1 conducts for an instant and the voltage at its collector briefly falls. This low

pulse is inverted by gate 1 and sent by the OP1 terminal to the controller. If the input

channel is configured to ‘interrupt on change’, an interrupt is generated.

Gates 2 and 3 form a bistable flip-flop. Its state is changed by low-going pulse at its set or

reset inputs. This part of the circuit is intended to detect a break in a beam of light that is

normally falling on Q1. A break in the beam generates a high pulse, which is inverted by

gate 1 and triggers the flip-flop to change state from reset (output OP2 low) to set (OP

high). Once made high, it stays high until the flip-flop is reset. While it is in this state the

controller polls OP2 at a suitable time or times. Later the controller sends a short low

pulse to the reset input, which is normally held high. OP2 returns to low.

The response of the circuit is the opposite if the IC (quadruple NAND) is replaced with a

4001 or 74HC02 IC. These have quadruple NOR gates. OP1 goes high when there is a

flash of light. The flip-flop is triggered when there is a flash of light and OP2, normally

high, goes low. It stays low until the flip-flop is reset by a high pulse.

CB03
page 27

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

80

ThThThThermal sensorsermal sensorsermal sensorsermal sensors

You might design a robot that is attracted by the cosy warmth of your fireside, or an

industrial robot might be programmed to enter danger areas and report back on the

temperature there. In either case a thermal sensor is required.

The most often used sensor is a thermistor. This is a resistive sensor. The negative

temperature coefficient type, which is the type used for temperature measuring,

decreases in resistance as temperature rises. Unfortunately its response is not linear. This

means that a thermistor is fine for a trigger circuit, in which a response is triggered at a

preset temperature, such as a fire alarm. The sensor circuit is a potential divider similar to

the one on p. 75, but with a thermistor replacing the LDR.

Thermistors are available as rods, discs or beads of the resistive material. Their resistance

is usually quoted for room temperature (25°C). They are made with a range of values

from 25 Ω to 1 MΩ, with a tolerance of 10% or 20%. Because their tolerance is low, a

trigger circuit needs a trimmer resistor in series with the thermistor to adjust the set

temperature.

The device for precision temperature measuring is the bandgap sensor. It has three

terminal pins and looks like a transistor. An example is the LM35CZ, and there are

several similar devices available. This device operates on any supply voltage between

4 V and 20 V.

Thermistor formula

The formula for the resistance R of a thermistor at temperature T is:

R ref is the resistance at temperature Tref (temperatures in kelvin), e
is the exponential constant 2.718, and β is a factor that depends
on the composition of the thermistor. It is typically 4000, but the
actual value is given in the supplier’s data sheet.

CB03
page 28

Friday, 16 March 2007 06:27
Black

Robot Electronics

81

The output is a voltage that is proportional to the Celsius temperature. As temperature

ranges between 0°C and 110 °C, the output rises from 0 V to 1.1 V. What could be

simpler?

The precision of the LM35CZ is ±0.4°C at 25°C and is no more than ±0.8°C over the

whole of its range.

Motion sensorsMotion sensorsMotion sensorsMotion sensors

A tilt switch could help prevent a disaster for a robot travelling on rough or steep terrain.

The switch is mounted in the robot so that it is normally in the vertical position. The

switch is open in this position. If the body of the robot tilts only a few degrees the switch

closes.

The simplest way to connect a tilt switch is to a digital channel that has a weak pull-up.

Input goes low when the switch is tilted.

Vibration switches are relatives of tilt switches. They make and break contact at the

slightest disturbance. They are intended for use in security systems but there are robotic

applications too.

A home-made tilt switch is easily constructed and may work better than a ready-made

switch.

The bandgap temperature sensor needs no external

components.

CB03
page 29

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

82

When the switch is tilted the wire of the

pendulum touches the metal ring. This completes

the circuit and the input channel of the controller

is pulled down to 0 V.

The main problem with this is that the pendulum may continue to swing when the switch

is no longer tilted. Its motion needs to be damped. Try to find a wire of springy metal or

use a wire spring. Extension springs, the sort in which the adjacent turns are in contact,

are better than compression springs.

Another problem with tilt switches is that they may close when the robot is accelerating

or decelerating. The solution is for the software to ignore input from the tilt switch for a

short time after the drive motors have been turned on or off.

A tilt switch merely indicates by its dgital output when the robot has tilted more than a

fixed amount. A tilt sensor provides an analogue value which is a measure of how much it

has tilted.

The voltage output from a tilt sensor

varies with the amount of tilt.

CB03
page 30

Friday, 16 March 2007 06:27
Black

Robot Electronics

83

A rigid arm is fixed to the spindle of a variable potentiometer, and the arm is directed

downward. There is a mass at its lower end and this is sufficient to turn the spindle when

the robot is tilted. The voltage at the wiper of the potentiometer varies with the amount of

tilt and can be read with the PIC’s AD converter.

This device is sensitive to tilting in a single vertical plane, perpendicular to its spindle. It

may give a false or no reading when tilted in other planes.

Location sensorsLocation sensorsLocation sensorsLocation sensors

These tell the robot where it, or a particular part of it, is located in space. In the Gantry, for

example, it is essential to know exactly where the tool on the x-frame is located. The

Gantry can not perform its tasks without this data.

For locating a robot or, more often, a part of a robot, over a range of a few tens of

millimetres, we can use a technique based on a linear potentiometer. This is a variable

resistor of the slider type, such as those often used for setting the frequency response of

an audio amplifier. The ends of its track are connected to the positive supply and to 0 V.

The object is mechanically attached to the slider. The voltage output at the slider varies

according to its distance along the track. In short, it is a straight line servo.

There is a limit to the length of the track of the potentiometer, which restricts this type of

sensor to short distances. For longer distances we can employ markers. An example of

this technique is the way magnetic markers are used in the Gantry. As illustrated on

p. 317, the small magnets are spaced out beside the rail along which the frame is moving.

The frame carries a Hall effect sensor (p. 88) which produces a pulse when it passes a

magnet. The robot knows where the frame is currently located by simply counting the

pulses. It also has to know in which direction it is moving, and counts up or down

accordingly.

The marker technique relies on beginning at a fixed location. This is why the Gantry

begins by moving its frames to its base location, using the limit switches. An alternative

marker technique uses optical markers, for instance regularly spaced black marks. The

moving part carries a light sensor that produces a pulse as it passes a mark. The marks

are counted as in the magnetic technique.

CB03
page 31

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

84

Optical encoders work on a different principle. The moving part is coupled to a

transparent strip that is marked with a pattern. The pattern consists of four or more rows

of bars which are either transparent or opaque. There is an array of light sources behind

the strip and an array of light sensors detects light passing through the transparent bars.

An optical encoder with sixteen positions. As shown, the

encoder is at position 7 and the 4-bit code sent to the

controller is 1101.

With four rows of bars and four sensors to read them, there can be 16 distinct

combinations of outputs from the sensors. The pattern of bars is based on the Gray code.

In this the four bits do not follow the normal binary sequence of counting from 0000 to

1111. In the binary sequence two or more digits may change at the same time (example

0111 to 1000). It is not likely that they will all change at exactly the same time, which

causes errors. In a Gray code only one digit changes each time we move from one

position to the next.

The bar encoder technique can also be used to determine angular position, using a

pattern of bars in concentric circles. It may be used to read the angles between the

segments of a robot arm. In a mobile robot, it may be used to read the angle turned

through by the wheels as the robot moves along. Given the radius of the wheels, and

assuming that the wheels do not slip, the precise distance moved can be calculated.

Limit switches are perhaps the most often used of position sensors. They are robust,

reliable, and easy to read, which is why there are so many examples of them in this book.

Proximity sensorsProximity sensorsProximity sensorsProximity sensors

A robot may frequently need to know if it is near to something such as a wall, the leg of a

chair, or an object blocking its path. One approach is to install bumpers with

microswitches to detect actual physical contact. The Quester has these.

CB03
page 32

Friday, 16 March 2007 06:27
Black

Robot Electronics

85

Generally it is better to detect objects when they are near by, but before actually running

into them. The light sensors of the Scooter do this by responding to light reflected back

from the object. The more light reflected, the nearer the object. The amount of reflection

may also depend on the size and colour of the object, so this method can give misleading

results under some circumstances.

Another technique is to use ultrasound, as described on pp. 86-88.

Sound sensorsSound sensorsSound sensorsSound sensors

The circuit shown below has a microphone to detect sound, an amplifier to increase

sensitivity and a trigger circuit to send a logical high output to the controller when sound

is detected.

A crystal microphone generates a voltage spike that is

amplified and used to trigger a flip-flop.

The voltage spikes across R1 are fed to the op amp. This is operating without feedback, as

a comparator, so its output swings widely. The amplified spike passes across C1 to the

input of the flip-flop. This is based on NAND gates so is triggered by a low-going spike

of more than Vsupply/2. Its output swings from low to high.

Once set, even by the briefest of low spikes, the output remains high until the normally

high reset input is briefly made low. This resets the flip-flop and its output goes low.

CB03
page 33

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

86

The next amplifier is more complicated to build but is much more sensitive. It is based on

an electret microphone. Just a simple microphone insert is all that is needed.

A highly sensitive sound detector with a digital output.

The audio signal generated by the microphone passes across the capacitor and is

amplified 220000 times by the op amp. The signal is then rectified by the two diodes and

a positive voltage builds up on the 100 nF capacitor. This is compared with the mid-rail

voltage and when this is exceeded the second op amp, wired as a comparator, swings low

and triggers the flip-flop.

The build-up on the capacitor is continually discharged to the 0 V line by the resistor.

Which helps to eliminate the effect of very faint background noises. After reading the

output, the controller resets the flip-flop in the usual way.

Ultrasonic sensorUltrasonic sensorUltrasonic sensorUltrasonic sensor

Ultrasound, by which we generally mean sound with a frequency of 40 kHz, has two

applications in robotics. It can be used for proximity sensing and for measuring distance.

There are two circuits: a generator and a receiver.

CB03
page 34

Friday, 16 March 2007 06:27
Black

Robot Electronics

87

The generator circuit consists of an oscillator built from two logical NAND gates. The

output from each of the gates goes to two more NAND gates each with their inputs

connected together so that they act as INVERT gates. The signal at the output of one gate

is exactly 180° out of phase with that from the other. These two signals are applied to the

crystal of an ultrasonic transmitter and, since they are out of phase, have a push-pull

action that generates a strong burst of ultrasound.

An ultrasound generator circuit,

based on a single logic IC.

The generator has a control input from the PIC, which is made high to switch the

generator on. This allows the PIC to produce short pulses of ultrasound. These are

reflected back from objects up to a metre or two away. The time elapsing between the

production of a pulse and its arrival at the receiver is measured by the PIC. Given that

sound travels at a little over 330 m/s (depending on air temperature), the time taken is

used to calculate the distance of the object.

If the generator is being used only for proximity sensing and if there is a shortage of

output channels, the generator can be run continuously. Omit the connection from the

controller to the input of the gate. Instead, connect both of the inputs to that gate.

The circuit of the receiver (overleaf) is more complicated since it has a two-transistor

amplifier to amplify the signal from the receiver crystal. The signal is then rectified by the

diode to produce an output voltage level that falls when ultrasound is being received.

This analogue signal is fed to a comparator or AD converter in the PIC.

CB03
page 35

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

88

The output from the Hall effect device may be measured as a varying voltage

or can be converted into a digital signal as in this circuit. The PIC’s built-in

comparator can be used instead of the op amp.

Magnetic field sensorMagnetic field sensorMagnetic field sensorMagnetic field sensor

The Hall effect device, which detects magnetic fields, has many applications. Its output is

a voltage that varies according to the strength of the magnetic field passing through it. It

is sensitive to the polarity of the field.

An ultrasonic receiver circuit.

CB03
page 36

Friday, 16 March 2007 06:27
Black

Robot Electronics

89

As a proximity sensor it detects the field of a small permanent magnet. For example, the

Gantry uses small ferrite magnets as markers spaced out along the track (pp. 316-319).

Each time the sensor passes close to a magnet it sends a signal to the controller. The

output to the controller rises or falls, depending on the polarity of the magnet.

The device can act in the same way as a limit switch, to detect when a movable part of a

robot, such as an arm has reached a given position. This is a variation on its use as a

proximity detector. The moving part has a magnet attached to it and a Hall effect device

is positioned so that the magnet comes close to it when the part is at its limit.

The device can also be used in a tachometer, to measure the rate of revolution of a shaft

or wheel. A small magnet is mounted on the rim of the wheel and a Hall effect sensor is

positioned so that the magnet passes close to it as the wheel rotates. A pulse is generated

for each revolution and the pulse frequency (the number of pulses counted during a

timed interval) is used to measure the rate at which the wheel is turning. If the wheel is

part of the drive mechanism of the robot, the controller can calculate the robot’s speed

and how far it has travelled.

A reed switch is another magnetically sensitive device. Reed switches are often used in

security systems to detect whether windows and doors are open or closed. The switch has

two springy contacts that become magnetised when a magnet is nearby. They are

attracted toward each other and the switch closes. They are connected to the PIC as one-

bit inputs, as on p. 68.

Output circuits

Direct driveDirect driveDirect driveDirect drive

The maximum current that can be sourced at any single terminal pin is 25 mA. The

maximum current that can be sourced by the three ports at any instant is 200 mA. The

same figures apply also to sinking current.

A current of 25 mA is sufficient to drive a regular LED but not the high brightness or

extreme brightness types, which take 30 to 50 mA or more.

CB03
page 37

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

90

 Driving an LED directly. Use the

equation on p. 66 for calculating the

value of the resistor.

Transistor switchesTransistor switchesTransistor switchesTransistor switches

A device that requires more than 25 mA is driven by a transistor switch. Most often the

transistor is an npn bipolar junction transistor, but n-channel MOSFETs are also used.

Transistor switches are used for high-power LEDs, sirens and buzzers, motors, solenoids,

speakers, relays and many other devices. The devices are referred to as ‘the load’ in the

discussion that follows.

BJT switches for (left)

non-inductive and

(right) inductive loads.

The current limiting

resistor, R1, may not be

necessary. The load is

switched on when the

input from the PIC goes

high.

Driving a piezo speaker directly.

CB03
page 38

Friday, 16 March 2007 06:27
Black

Robot Electronics

91

The point of using a transistor switch (opposite) is that a small current flowing into the

base (b) of the transistor causes a current about 100 time greater to flow in at the collector

(c) and out of the emitter (e).

For example, if a motor requires 500 mA to drive it, the current to the base need only be

about 5 mA, which a PIC output terminal can easily supply.

When choosing a transistor it is essential to select one capable of carrying the current

needed by the device. The often-used BC548 carries up to 100 mA so is not able to drive a

typical motor. The BC639 carries up to 1 A, so could be the choice for driving a small DC

motor.

The drawings opposite show two variations of the BJT switch. On the right there is a

dioide wired in parallel with the load. This is called a protective diode because it protects

the transistor from the risk of being destroyed when switching an inductive load. An

inductive load is one that operates by producing a magnetic field. Examples are motors,

solenoids and relays. The problem is that, when switched off, these devices induce a

current that produces several hundred volts across the transistor. The diode is there to

conduct this current away before it does any damage.

A transistor switch may be used to drive a device that operates at a voltage higher than

the operating voltage of the PIC. For instance, if the PIC is running on 4.8 V, its output

can control a motor running on 12 V. The PIC is connectd to its 4.8 V supply but the

collector of the transistor is connected through the load to a supply at a higher voltage.

Both circuits must be connected to the same 0 V line.

Through the transistor, the motor,

running on 12 V, is controlled by the

PIC, running on 4.8 V.

CB03
page 39

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

92

A transistor switch based on an n-channel

MOSFET. The current-limiting resistor may

not be required. A protective diode is

necessary if the load is inductive,

Designing a BJT switch

1) Select a transistor type that will carry the intended current and
has sufficient gain.

2) When the transistor is fully on, the voltage at its collector is
approximately 0.7 V. Calculate or find from data sheet the
current Iload through load. Include a series resistor if this is too
high for the load to take.

3) Voltage across base resistor is Vhigh −0.7, where Vhigh is the
voltage of a logical high output, typically Vsupply −0.7.

4) Minimum current to switch load fully on is Iload/gain.

5) Base resistor is (Vsupply − 1.4)/(Iload/gain). Use the next higher
E12 resistor.

Switches based on MOSFETs are similar, except for the fact that the drain (d) current

depends on the voltage at the gate (g). MOSFETs have the advantage of requiring

virtually no current. They are simpler to wire up as they do not need a resistor at the

gate. Some have very low ‘on’ resistance so they deliver the maximum power to the load.

They are faster than BJTs, but BJTs are usually fast enough for robot circuits.

CB03
page 40

Friday, 16 March 2007 06:27
Black

Robot Electronics

93

Motor speed controlMotor speed controlMotor speed controlMotor speed control

The simplest way to switch a motor is by a transistor switch. This turns the motor fully

on or fully off, but does nothing else. There is no way of reversing the motor or regulating

its speed.

The circuit illustrated below is an improvement on a simple switch. As the mechanical

load on the motor varies, its speed varies. This is because the back e.m.f. generated by the

motor varies, which causes the voltage across the motor to vary. The op amp acts to

maintain across the motor a voltage equal to the control voltage.

This circuit holds the speed of a motor steady even though the

mechanical load on it changes.

The control voltage may be constant (say, from a fixed potential divider) to give fixed

speed. For variable speed use a variable potential divider. Or a digital to analogue

converter IC could be used, converting digital input from a PIC into an analogue control

voltage. A simpler and better way of digital speed control is shown in the drawing

overleaf.

Instead of varying the voltage, this technique powers the motor with a fixed voltage, but

turns on the power for only part of the time. The power is turned on and off rapidly so

that the motor runs smoothly without jerkiness.

CB03
page 41

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

94

An npn BJT can be substituted for the

MOSFET.

The speed of the motor is controlled by a pulsed signal generated by the PIC. This signal

has varying mark-space ratio (the ratio between pulse length and the intervals or spaces

between pulses). A program is listed on pp. 252-256.

An advantage of this technique is that the motor always receives the full voltage across

its terminals. It runs well at slow speeds, without stalling.

Motor direction controlMotor direction controlMotor direction controlMotor direction control

There are two ways of doing this: with a transistor H-bridge, and by a relay.

The H-bridge circuit is used in most of the projects in this book. It can be based on BJTs

or MOSFETS. The circuit (see opposite) comprises four transistors for controlling one

motor. Two of the transistors are npn (Q1 and Q3) and two are pnp (Q2 and Q4).

There are two control inputs, A and B, which supply current to the bases of the npn

transistors and turn them on when the input voltage is high. They sink current from the

bases of the pnp transistors and turn them on when the input voltage is low. For instance,

if A is high, Q1 is on and Q2 is off. If at the same time B is low, Q3 is off and Q4 is on.

Current flows from the positive line, through Q1, through output A to the motor,

through output B and Q4 to the 0 V line. The current flows through the motor from left to

right in the diagram. If A is low and B is high, it flows through the motor from right to

left. The H-bridge acts as a reversing switch.

CB03
page 42

Friday, 16 March 2007 06:27
Black

Robot Electronics

95

The circuit that controls the twin

drive motors in the Quester
robot. This diagram shows only

the circuit for the left motor. The

figures in brackets refer to the

circuit for the right motor.

If A and B are both high or both low there is no way the current can flow from the

positive line to the 0 V line, so the motor stops.

It may happen that the chosen motor operates on a voltage greater than 6.5 V, the

maximum allowed for the PIC. The H-bridge does not work in this case. This is because a

logic high from the PIC is not high enough to switch off the pnp transistors. To cope with

this, a pair of npn transistors are wired as an interface between the PIC and the H-bridge.

These transistors have the same higher supply voltage as the H-bridge. Their output

voltage when off is close to the higher supply rail, so the pnp are properly turned off.

Interfacing the PIC to an H-

bridge with higher supply

voltage. Two transistors are

needed, but only the A control

is shown here.

CB03
page 43

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

96

An H-bridge motor direction controller based on four n-channel

MOSFETS and two CMOS INVERT gates,

Another version of the H-bridge is shown above. This is based on four n-channel

MOSFETs. Note that in this circuit the transistors are all of the same polarity, unlike the

BJT circuit. The INVERT gates switch the transistors in pairs. Instead of INVERT gates, it

is possible to use 2-input NAND or NOR gates with their input terminals wired together.

If the control input is high, Q1 and Q4 have a low voltage at their gates and are off. Q2

and Q4 have a high gate voltage, so are on. Current flows from the positive supply,

through Q4, the motor and Q2 to the 0 V line. If the control input is low, Q1 and Q3 are

on, while Q2 and Q4 are off. The current flows though the motor in the opposite

direction.

The circuit in the diagram does not have any way of stopping the motor, but this can be

arranged by having a fifth MOSFET in series with the bridge. Connect it with its drain to

the line labelled 0 V in the diagram and with its source to 0 V. A high input to its gate

turns it on and current flows through the bridge.

As an alternative to the H-bridge as a reversing switch, a double-pole double throw relay

has some good features. The circuit being switched can be running on any voltage,

higher or lower than that of the PIC's circuit, as long as the relay contacts are rated to

accept it. Also, relays are available rated for currents of several amps.

CB03
page 44

Friday, 16 March 2007 06:27
Black

Robot Electronics

97

This motor reversing circuit requires two relays: S1 for on/

off and S2 for forward/reverse.

The diagram above is a typical reversing switch based on a DPDT relay. The coils of the

relays are energised by a pair of transistor switches, as seen below.

Transistor switches are used by the PIC to control the reversing

circuit.

The relays commonly used for switching motors are PCB mounting devices, often the

same dimensions as a 16-pin integrated circuit, sometimes a little larger. Most are rated to

operate on 12 V, though generally these types will operate on a lower voltage. A few

types are rated at 6 V and some at 5 V. Their contacts can take up to 1 A, which is plenty

for driving a small motor. But check the specification in the retailer’s catalogue before

buying.

CB03
page 45

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

98

ServomotorsServomotorsServomotorsServomotors

There are several types of servomotor differing in size, control method and timing

requirements. A typical servomotor has three terminals. The positive and 0 V terminals

are connected to the supply. The third terminal is connected to a pulse generator, which

delivers a stream of pulses of fixed length. Typically, the pulse length is between 1 ms and

2 ms and the pulse frequency is 50 Hz. The pulse length determines the angle through

which the shaft turns and its direction. For example, a pulse length of 1 ms makes the

shaft turn to the left (anti-clockwise) as far as it will go. A 2 ms pulse makes it turn as far

right (clockwise) as it can turn. A pulse of average length, 1.5 ms, makes it turn to a

central position.

Often a servo is limited to turning 45° on either side of its central position, but other types

can turn 90° either way. Yet others are able to turn a complete circle. Consult the data

sheets before buying, and when programming the motor.

Servomotors are connected to the moving parts of a robot by a variety of horns and discs

which fit on to the output shaft. Kits containg an assortment of such devices are often

supplied with the motor.

Servomotors are convenient to use for steering applications as they can be put into the

‘straight ahead’ position at the beginning of a program by sending a train of 1.5 ms pulses

for about 200 ms. This gives the motor time to reach the central position from its previous

(unknown position).

Stepper motorsStepper motorsStepper motorsStepper motors

As their name suggests, stepper motors turn step by step. The commonest type has a step

size of 7.5°, so that it takes 24 steps to make one revolution. This produces a slightly jerky

motion but it is satisfactory for most purposes and the programming is simple. This

description refers to unipolar stepper motors which have permanent magnets and 7.5°

steps.

The motor generally has six wires, which are connected to the windings as shown in the

drawing opposite.

CB03
page 46

Friday, 16 March 2007 06:27
Black

Robot Electronics

99

The two windings of the stepper motor are tapped at their

centres.

The two taps are connected to the positive supply line. The ends of the windings are each

connected to one of four transistor switches that alternate between being on or off. When

the switch is off the end of the winding is at the positive supply voltage and no current

flows in that half of the winding. When the switch is on, the voltage at the end of the

winding is pulled down close to 0 V and the half winding is strongly energised.

The transistors at the two ends of a winding are switched oppositely so that either one or

the other of the half windings is energised and the motor turns one step.

The circuit for driving the

stepper motor. Four transistor

switches like this are needed.

The motor is driven by turning on the transistors according to a special sequence. If 0 =

off and 1 = on, the sequence is:

Q1: 1 1 0 0

Q2: 0 0 1 1

Q3: 0 1 1 0

Q4: 1 0 0 1

CB03
page 47

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

100

The transistors are turned on and off once during each sequence, but at different stages.

To run the motor the PIC is programmed to generate a sequence of high pulses on four

digital output channels, usually four channels of the same port. The sequence is

repeated for as long as necessary. Each step is 7.5° and the sequence has four stages, so

one complete sequence turns the motor 30°, so twelve times through the sequence

produces one revolution. A sequence ca be halted at any step so we have positional

control of the motor with a precision of 7.5°.

When the sequence of pulses is halted, the motor stops turning. But two of the transistors

are still switched on and current is flowing in two of the half-windings. The shaft is held

firmly by the continuing magnetic fields. The holding torque is high, of the order of

several hundred gramme centimetres.

The speed of the motor is controlled by the rate at which the sequence of pulses is

generated. Reversing the motor is easy — run the sequence in the reverse order.

The way to program a stepper motor is described on pp. 228-230.

Radio

Two robots that can ‘talk’ to each other and interact with each other open up exciting

possibilities. The obvious way for them to communicate is by radio, using transmitter

and receiver modules operating on the 433.92 MHz band. These modules are mass-

produced for use in remote control devices, car alarms and similar applications, so their

cost is minimal. Also they are intended for use in portable devices so will operate on low

voltages.

There are several types of radio module available but many of them are similar to the

ones descibed here. Consult the data sheet in case of doubt.

The drawings opposite show how simply they are used in conjunction with the PIC.

CB03
page 48

Friday, 16 March 2007 06:27
Black

Robot Electronics

101

A digital signal from the PIC is

sent directly to the Data terminal

of the transmitter module. The

drawing shows an antenna

connected to the ‘Ant’ terminal

but the module has been found

to work well without an antenna

for distances of several metres.

The output from the Data terminal is

taken directly to a digital input channel

of the PIC. Here the input signal is

being copied to an LED. Again, the

antenna is unnecessary for short

distances, Note the higher operating

voltage of the receiver module.

Transmitter and receiver modules are an

effective way for two robots to

communicate, or for remote control by a

human. Two-way communication

requires two of each of these modules.

The modules require only a few milliamps. In the diagrams the PIC is run on the same

supply as the transmitter or receiver. Because the transmitter operates on a lower voltage,

the 6 V supply to the PIC is tapped to give 3 V for the transmitter, when the system is

running both modules. Output from the PIC is fed to the transmitter through a potential

divider.

CB03
page 49

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

102

Testing the circuit

Develop a routine for testing circuits at each stage of construction. Then test the com-

pleted system to check that all its parts work together as they should. Here is an outline

testing routine; details depend on what kind of circuit is being tested.

1) Visual inspection: The PIC is not in its socket at this stage. The power is not switched

on. Check that the circuit board wiring is correct, resistors and capacitors of the correct

value, diodes and electrolytic capacitors inserted the right way round, copper strips cut

where they should be cut (use a magnifier), and no solder blobs or hairs to cause short

circuits (use a lens again).

2) Continuity: The PIC is not in its socket at this stage. The power is not switched on. Use

the continuity checking facility of a multimeter to confirm the continuity of the 0 V line,

the positive supply line(s), and any connections to off-board components.

3) Short circuits: The PIC is not in its socket at this stage. The power is not switched on.

Use the continuity checker to confirm that there is no short circuit between the 0 V line

and the positive supply line(s), or between adjacent pins of IC sockets, including the

PIC’s socket.

3) Power distribution: The PIC is not in its socket at this stage. Connect the negative lead

of the multimeter to the 0 V terminal of the battery or PSU, and switch to a voltage mode.

Switch on the power and check the voltage at all points that should be at supply level. If

any are low, switch off immediately and look for short circuits, resistors of the wrong

value, or faulty components.

4) Outputs: The PIC is not in its socket at this stage. Connect flying leads to the 0 V line

and positive line. Touch these against the individual output sockets of the PIC socket to

check that they operate properly, that LEDs light, motors run, and so on.

5) Inputs: The PIC is not in its socket at this stage. Use a multimeter in its voltage mode

to measure voltages at the input sockets of the PIC socket. Close input (micro)switches

and confirm that input voltages change correctly. Shade or illuminate light sensors and

see if voltages change accordingly.

CB03
page 50

Friday, 16 March 2007 06:27
Black

Robot Electronics

103

6) Testing the PIC: Switch off the power, insert the programmed PIC in its socket and

switch on again. For some of the robot projects, we have written simple diagnostic

programs that test the system one section at a time. These make it easier to find bugs in

the system or in the programming. With a mobile robot, perch it on a support so that its

wheels are in mid-air. This keeps it from running away during the test.

Suppliers

The electronic components mentioned in this Part can all be obtained from those suppli-

ers who are geared to the hobby market. You may be lucky enough to have one or two

such shops locally, and almost all operate a mail order service.

If they issue one, get a copy of your supplier’s catalogue. The catalogue may be on a CD-

ROM, or you may need to access it by Internet. There are dozens of websites to visit.

Here are a few addresses to try:

maplin.co.uk A well-known UK company which supplies worldwide.

jaycar.com.au A mail order supplier of electronic components based in
Australia, operates in UK and USA too. Their catalogue has a
section specialising in robotics and mechatronics.

newark.com Suppliers of a wide range of electronic components, in USA
and worldwide.

crownhill.co.uk For PICs, PICBASIC, development boards, and several
interesting downloads.

ww1.microchip.com Manufacturers of PICs, lots of data, ideas, and a link to the
microchipDIRECT.com site, where a complete range of PICs
are on sale by Mail Order. They also sell PICkit 1 and PICkit2.

robohoo.com Robot arms (USA).

lynxmotion.com Robot kits, parts, servos (USA).

budgetrobotics.com Robot chassis kits and components (USA).

CB03
page 51

Friday, 16 March 2007 06:27
Black

The Robot Builder’s Cookbook

104

There are many more suppliers than we can list here. To contact some more, run a search

program such as Google or Yahoo! and enter a keyword. We have discovered mountains of

information by using keywords or phrases such as ‘relay’, ‘stepper motor’, and

‘phototransistor’.

zagrorobotics.com Robot chassis kits and other parts (USA)

parallax.com For everything to do with the BASIC Stamp®, including
Bluetooth® wireless links (USA).

imagesco.com Supply robotic and electronic parts. Their site has an interesting
selection of sensors (including a low-cost magnetic compass),
articles on robotics topics, with programs in PICBASIC. They
sell the PICBASIC software.

hobbyengineering.com Robotic and electronic parts, including PICs. Wide range of kits

(USA).

CB03
page 52

Friday, 16 March 2007 06:27
Black

PICs in Control

105

PICs in ControlPICs in ControlPICs in ControlPICs in Control

Programming a PIC 106Programming a PIC 106Programming a PIC 106Programming a PIC 106

The PIC16F690 116The PIC16F690 116The PIC16F690 116The PIC16F690 116

Special functions 120Special functions 120Special functions 120Special functions 120
CoCoCoComparators 120mparators 120mparators 120mparators 120

AD converters 123AD converters 123AD converters 123AD converters 123

Serial receiver/transmitter 124Serial receiver/transmitter 124Serial receiver/transmitter 124Serial receiver/transmitter 124

Data memory 127Data memory 127Data memory 127Data memory 127

The PIR1 and PIR2 registers 128The PIR1 and PIR2 registers 128The PIR1 and PIR2 registers 128The PIR1 and PIR2 registers 128

The INTCON register 129The INTCON register 129The INTCON register 129The INTCON register 129

Other PICs 130Other PICs 130Other PICs 130Other PICs 130

CB04
page 1

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

106

PICs and robotsPICs and robotsPICs and robotsPICs and robots

The robot projects in this book are based on the PIC16F690 microcontroller, made by

Microchip Technology Inc. But all PICs have a common basic architecture and electrical

properties so the circuits described in this book can usually be made to work with several

other types of PIC.

The PIC16F690 is especially suitable for hobby robotics because:

• It is one of the newer PICs.

• It uses the latest nanoWatt Technology. The standby current is only 1 nA when

operating on a 2 V supply. At the other end of the scale, its operating current when

running at 4 MHz, on its maximum supply of 5.5 V, is less than 1 mA. Low voltages

and currents are ideal for driving mobile robots.

• If we opt to base timing on the built-in internal oscillator, all but two of its 20 pins

are available as digital inputs and outputs. The robot can have what it needs – lots

of sensors and actuators.

• It has Flash memory, ideal for programming hobby robots.

• It has 4096 words (14-bit) of program memory, which is four times that of the

PIC16F84, the previous most popular PIC. It also has a generous 256 bytes of SRAM

and 256 bytes of EEPROM.

• It has an assortment of on-board devices such as clocks, timers, analogue

comparators, and analogue-to-digital converters useful for advanced robots.

• It is one of the cheaper PICs.

Programming a PIC

CB04
page 2

Friday, 16 March 2007 06:30
Black

PICs in Control

107

• It is programmable on the latest PICkit 2 programmer, and can be test-run on

Microchip’s Low Pin Count Demo Board.

• Because of their similar architecture, the mid-range PICs, such as the F690, all run

on the same 35-instruction assembler language.

Assuming that the reader already knows a bit about programming in assembler (at

beginner’s level) this Part covers topics that are not always included in the simpler

programming handbooks, especially topics useful for robotics. There are notes on using

other PICs on pp. 130-132.

Hardware for programmingHardware for programmingHardware for programmingHardware for programming

For the programs in this book we decided to use the PICkit 2 programmer. This is

obtainable by mail order from several sources and also directly from Microchip.

The website address is:

http://www. microchip.com

The site provides all kinds of useful information about the world of the PIC. Visit it and

glance through the data sheet for the PIC16F690 controller. There is a link to a companion

site, Microchip Direct, which supplies PICs and the PICkit 2 (and other hardware) by

mail order.

The PICkit 2 comes with a USB
connector. It is a small neat unit that

sits comfortably on the computer
bench as you program it and watch it
perform. It connects directly to a small

board that carries the PIC while it is
being programmed. The board has a

switch and some LEDs for testing
input and output routines. There is

space for you to build a few interfaces
to the PIC.

CB04
page 3

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

108

The demo boardThe demo boardThe demo boardThe demo board

The PICkit 2 Low Pin Count Demo board has four LEDs driven by output channels at

RC0 to RC3. These are useful when debugging a program, to indicate the state of the

outputs. If your program has to send output signals through other channels, it may be

possible to send them to RC0 to RC4 while the program is being developed, then change

the destinations later after the program has been debugged.

The board also has a push-to-make push-button SW1 on its front left corner. This is

connected to channel RA4. This pin has an external pull-up resistor so its input is

normally high, but falls when SW1 is pressed. This is useful for simulating a one-bit input

sensor.

For analogue input there is a variable potentiometer at front right on the board, wired

between the supply and 0 V lines. The wiper of this is connected to channel RA1. Input

can be swung from low (fully anticlockwise) to high (fully clockwise).

Software for programmingSoftware for programmingSoftware for programmingSoftware for programming

The most direct way of programming a PIC is first to write the program in assembler,

using a simple text editing program such as Notepad. This, or something similar, is

provided as part of the Windows package. The top photo opposite shows a screen-shot of

an assembler listing in Notepad. When the file is saved, Notepad creates a file in text file

format (.txt). When asked for the file name to save it under, type the name with the

extension ‘.asm’ (not ‘.txt’, and not without an extension).

It is essential not to save the file with other formats, such a Rich Text Format. This inserts

formatting control codes into the text. These codes will confuse the assembler program at

the next stage.

A programmer board is usually supplied with the software that is used to turn the text

file into machine code for downloading into the PIC. The software that comes with

PICkit 2 includes the MPASM suite. The assembler program is called MPASMWIN,

illustrated in the lower photo opposite.

CB04
page 4

Friday, 16 March 2007 06:30
Black

PICs in Control

109

The MPASMWIN window lets you set various parameters for generating the
machine code file (also known as the hex file). While assembling, it checks for errors
and reports these and possibly some warnings. If there are errors they are reported

in an error file (extension .err) which you can view by loading it into Notepad.

 An assembler program can be written using text editor software such as Notepad. In this
view, we see the beginning of the program for the robot of Project 6.4. Labels are placed on
the extreme left of the line. Instructions are set one tabbed space in. Comments are on the

right, preceded by a semi-colon. Including plenty of comments helps other people to
understand the program, and help you a few months later, when you have forgotten some

of the details of the programming.

WindowsWindowsWindowsWindows

The programs in this book
were originated on a PC
running Windows XP.

The programming software
we used also runs under
Windows Vista. (Home Basic
edition).

CB04
page 5

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

110

When using the assembler software, the only thing you have to do is to type in the source

file name, select the processor type, and click on ‘Assemble’. The other settings can

usually be left as they are. With luck (or maybe skill), you are rewarded by a green

display telling you that assembly has been successful. If you get a red display, check the

error file and go back to Notepad. The error file has the same name as the assembler file,

but with the ‘.err’ extension.

Emulator software helps get things right more quickly. The MPLAB Integrated

Development Environment, available from Microchip as part of the PICkit 2 package, is

designed to do just this. It runs on your PC as if you have a PIC there and behaves just as

a real PIC would behave. Its text editor does a lot of the formatting for you, including

displaying the listing in several colours. Labels are in red, instruction codes are in blue

bold, and so on. This makes the listing clearer to read and understand.

When you think you have got it right the IDE can simulate the running of the program.

The top left window in the screen-shot below shows the listing and an arrow at the left

indicates the the line that is currently being processed. The lower left window displays

the contents of the File registers, while at lower right we view the Special Function

registers.

The MPLAB IDE is seen here running a simulation of a PIC16F690.

CB04
page 6

Friday, 16 March 2007 06:30
Black

PICs in Control

111

You can run the program and watch the values changing in the registers, exactly as they

would in a real PIC. If you want to look more closely at a part of the program, you can go

through it step-by-step. It is less confusing to write and test the program a little bit at a

time. If something is wrong it is easier to spot it if only a short segment of the program is

newly added.

When a part of a program or the whole program is working as you want it to, the IDE

calls up programming software to transfer the assembled code to the memory of the real

PIC on the programming board. Plug the PIC into its socket on the robot and the fun

begins.

There is not enough space here to mention all the helpful features of the IDE. The thing to

do is to download it and try it for yourself.

PICkit 2 includes programming software that can be used independently of the emulator.

If you prefer, you can use Notepad for writing the program in assembler, MPASMWIN for

assembling it into a hex file, and finally use the PICkit 2 software to download the hex file

into the PIC. Part 4 aims to give you an idea of what is involved when programming

PICs. There are other editors and programming devices on the market, and new ones are

appearing frequently. Or you may prefer to use software that operates with BASIC or C.

The PICkit 2 has just downloaded the source file Gantry04.hex into a PIC16F690. The
window shows the hex code.

CB04
page 7

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

112

High-level languagesHigh-level languagesHigh-level languagesHigh-level languages

Assembler instructs the controller step by step. High-level languages, such as BASIC and

C, provide the programmer with commands each of which takes the controller through

many steps. This makes programming quicker and easier to follow. A good example is

the WRITE command in PICBASIC. A single program line, ‘WRITE 3, count’, puts the

value of the count variable into byte 3 of the PIC’s EEPROM. Doing the same thing in

assembler takes many more program lines.

A program written in a high-level language generally has shorter listings, and so takes

less time to type and check. Against this is the fact that the machine code eventually

compiled from a high-level language listing is usually longer than the equivalent

assembler program. It takes up more memory and it takes longer to run. Assembler wins

on compactness and speed of execution. A high-level language is considered by many to

be easier to learn and understand.

If you decide to go for a high-level language there are several to choose from. Most come

as part of an Integrated Development Environment, or IDE. An IDE runs on a PC and

consists of a number of modules, such as a text editor, used when writing the programs, a

compiler, to turn it into machine code, a debugger for testing the action of the code on a

simulated PIC, and the software to transfer the code to the PIC’s program memory.

Examples of IDEs currently available are Proton IDE (www.mecanique.co.uk),

SourceBoost IDE (www.sourceboost.com) and Microcode Studio (www.melabs.com). They

are similar in their general structure and the facilities they provide. Each has its own

version of BASIC. The BASIC of Microcode Studio is essentially PICBASIC, which is most

like the conventional BASIC, but with additions to adapt it to programming PICs. The

BASIC of the Proton IDE is similar to this but includes many more specialist commands.

The SourceBoost is the most distinctive of the three, and has many features in common

with C and Java. It is intended for professional programmers.

For those who prefer a minimalist approach, without an IDE, install PICBASIC (from

microEngineering Labs (web address above) and work as described opposite. For writing

and editing the programs, use a simple text editor, such as Notepad, which is usually

provided with Windows software. Other editors can be used instead as long as they save

files in plain text format.

CB04
page 8

Friday, 16 March 2007 06:30
Black

PICs in Control

113

Write the program in Notepad and save it as a text file, with the extension ‘.txt’. There is no

need to type this as Notepad adds it automatically. Then (if you are not using the IDE)

access DOS by clicking on the Start button at the bottom left of the screen. Next click on

‘Run ...’. When the small Run window appears, type ‘cmd’ (without the quotes) and click

on ‘OK’. For future use, all of this can be set up on a short-cut icon on your desktop.

The lowest line in the command window begins with ‘C:\’ but there may be folder names

following this. Get rid of them by typing ‘CD ..’ and pressing Enter. Repeat, if necessary

until only ‘C:\’ remains, then type ‘CD PBC’ and press Enter to get to the PICBASIC

compiler folder.

To call up the compiler, type ‘PBC -p16F90 -qtxt’ followed by a space and the filename of

the BASIC program you have written (including the extension '.txt'. The -p option tells

the compiler which PIC is being programmed. The -q option tells it to load a file with the

'txt' extension. This is explained in more detail in the PCBASIC manual.

To compile the program, simply press Enter. After a delay of a second or two a message

appears stating how many words the compiled file contains. If there are errors in the text

file, they are listed on screen, with their line numbers. Include blank lines when counting

lines. Correct any errors and re-compile.

The final error-free file is now in the same folder, with the same name, but with the '.hex'

extension. It is ready for loading into PICkit 2 or other programming board, as illustrated

on p. 111.

The DOS command window, showing the line that calls up the
compiler and the message that appears when an error-free

program is compiled.

CB04
page 9

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

114

FlowchartsFlowchartsFlowchartsFlowcharts

Microcontrollers inevitably operate in small steps. They perform a long sequence of

simple operations. This means that sometimes it is hard to see where the program is

going, or even if it is aiming at the right goal. A flowchart gives a bird’s-eye view of a

program, or part of a program.

The flowchart symbols used in this book.

Flowcharts are useful at the planning stage for mapping out the main stages of a

program. It may help to draw a flowchart when a program is finished, too — to see if the

program really does what was intended.

Dry runDry runDry runDry run

No matter what ingenious programming software is available, there are times when the

only practicable way to debug a program is to do a dry run. All you need are a pencil and

paper.

In a dry run you set out a table of all the registers and variables that are involved. You

then go through the listing line-by-line and work out the values that are in each register.

Enter these in the table and confirm that they are the right values. As an example, here is

a segment of the listing for part of the random spin routine of Project 6.4 (p. 295). This is

explained on p. 163.

This routine produces a new pseudo-random value in randval every time it is run.

Repeat the routine on paper several times to confirm that the values are really appearing

at random.

CB04
page 10

Friday, 16 March 2007 06:30
Black

PICs in Control

115

Listing Contents of registers

bitn bitm randval w c

clrf bitn 00000000 xxxxxxxx 11011011 xxxxxxxx x

clrf bitm 00000000

btfsc randval, 5 (bit 5 = 0)

bsf bitn, 0 (skip)

btfsc randval, 6 (bit 6 = 1)

bsf bitm, 1 00000001

movf bitn w 00000000

xorwf, bitm, w 00000001

addlw ‘00FF’ 00000000 1
rlf randval, f 10110111

c is the carry bit of the STATUS register.
x = don’t care

Diagnostic programmingDiagnostic programmingDiagnostic programmingDiagnostic programming

No part of a program need be permanent and LEDs are useful indicators for finding out

where the PIC has got to in the listing. Use these facts to make life easier.

For instance, suppose you suspect that the PIC is not going to a particular subroutine

when it should do. Add a line to the beginning of the subroutine, such as bsf portb, 2

(or some other output channel that powers an LED). What happens when you next run

the program tells you where to start looking for an error. If the LED does not light, it

means that the subroutine is not being called. Look in the listing to find the reason for no

call. If the LED lights, the calling routine is OK, but there is a fault in the subroutine itself.

When you have found the fault, correct it, delete the added line, and re-assemble.

A dry run is sometimes the only way to get the
programming just right.

CB04
page 11

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

116

The PIC16F690

Programming a PIC mainly consists of writing data into arrays of registers. There are two

kinds of register:

• Special Function Registers: Hold data related to the input and output ports,

comparators, timers, other functions, and the general running of the controller.

More about some of these in the pages that follow.

• General Purpose Registers: This is where the program writer stores data and

processes it.

Data in these registers is stored as bytes, and is lost when the power is switched off. In the

Special Function Registers the data takes initial default values when power is switched

on. Often the default value is what you want, and you need to access the register only if

you want to set it to a different value, or to read data from it.

Pins and portsPins and portsPins and portsPins and ports

The F690 version that we describe here has a 20-pin double-in-line package (opposite).

Other packages are obtainable, such as surface-mount devices, for example.

All pins except 1 and 20 are available for use as input/output pins. Those of Ports A and

B can be individually set to have built-in pull-ups when configured as inputs. Also, as

inputs, they can be programmed to cause interrupts when the input signal changes.

Certain of the pins, though usable for simple input or output, can be programmed to

have special functions. For example, pin 4, RA3, can be programmed to act as a master

clear input which, when made low, resets the PIC to the start of its program.

Another example is pin 10, RB7. If you are using the USART (pp. 124-126), this pin must

be used for data that is being sent to another PIC by line or radio. There is more about

these special pin functions later in this Part.

CB04
page 12

Friday, 16 March 2007 06:30
Black

PICs in Control

117

 Ports and pin numbers of the
PIC16F690 controller. The channels of
each port are numbered from 0 to 7,
from the least significant to the most

significant bit. Port A has only six
channels. Port B has channels for only

the four most significant bits.

The figures on grey are the digital input
channels AN0 to AN11. For AN0 to
AN7 these figures are also the bit

numbers in the ANSEL register. For
AN8 to AN11, the bit numbers in the

ANSELH register are given in brackets,

The channels marked with an asterix
are also availlable for input to the

comparators.

 BitsBitsBitsBits

Terms used in all the descriptions are defined as follows. The bits of a byte are numbered

from right (bit 0, the least significant bit or LSB) to left (bit 7, the most significant bit or

MSB).

When we refer to a bit in a given register, we give the register name followed by the bit

number in angle brackets. For example, the bit called RB5 (bit 5 of PORTB register) is

referred to as RB<5>. This is the convention used in the PIC data sheets.

A range of bits is defined by quoting its most and least significant bits, in that order. For

example the lower 4 bits of PORTB are RB<3:0>.

Special function registersSpecial function registersSpecial function registersSpecial function registers

These registers control all aspects of the operation of the PIC. They can be written to or

read from as a whole byte of data or as individual bits. In some cases the bits are read-

only or write-only. These, together with the 8-bit working register (known as w), are

where the action is.

0

1

2

3

10 (6)

11 (7)

4
5*
6*
7*

8* (4)
9* (5)

CB04
page 13

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

118

The Special Function registers are located in four areas of memory, of which we can

access only one at a time. These areas are named Bank 0 to Bank 3. Some registers, such as

the STATUS Register, appear in the same position on all four banks. Others appear in

only one or two of the banks. For example, TRISA (which determines which bits of Port

A are inputs and which are outputs) appears only on Banks 0 and 3.

The bank that is currently accessible is determined by the values of bits 5 and 6 of the

STATUS register. For example to select Bank 2 set bits <6:5> to ‘10’, or binary 2. It is

essential when programming to keep track of which is the current Bank. For normal

working we operate in Bank 0, which holds the most often used registers such as STATUS

and Port registers.

As an example of Bank switching, the first thing in most programs is to initialise inputs

and outputs. At power-up all pins are inputs, so to flash an LED we have to make its pin

an output. The LED might be connected between pin 16 and the 0V line. Pin 16 is the RC0

pin, connected to bit <0> of Port C.

Assume we are working in Bank 0, with STATUS<6:5> = ‘00’. To make RC0 an output we

switch over to Bank 1 by setting STATUS<5>. Then we make RC0 an output by clearing

the corresponding bit in TRISC. That done, we return to Bank 0 by clearing bit 5 in the

STATUS register.

The program listing for this operation is:

bsf status, 5 ; Bank 1.

bsf trisc, 0 ; Make RC0 an output.

bcf status, 5 ; Back to Bank 0.

There are many more instances of Bank switching in the listings in this Part and in Part 6.

 Configuration wordConfiguration wordConfiguration wordConfiguration word

This is a 14-bit word that is stored at a special address in memory and which sets up the

way in which the controller is to operate. One of the first things to be done by a program

is to define this word (p. 135).

CB04
page 14

Friday, 16 March 2007 06:30
Black

PICs in Control

119

Without going into details about several of the functions, the word used for the programs

listed in this book is made up as follows:

<13:12> Not implemented, set to 11.

<11:6> Functions enabled or disabled for simplest operating, set to 000011.

<5> Make pin 3 (RA4) a digital input, set to 0.

<4> Enable power-up timer, set to 0.

<3> Disable watchdog timer, set to 0.

<2:0> Select INTOSCIO, internal oscillator with pin 2 (RA5) a normal input/output

pin, not an output pin for the oscillator set to 100.

Putting all these settings together gives:

11 0000 1100 0100

In hexadecimal notation (hex for short), this is:

30C4

Using other settings may make very little difference to the way the program runs, but we

are assuming in our programs that bit <5> is ‘0’ and the internal oscillator is selected.

PortsPortsPortsPorts

The ports connect the PIC to the outside world. Each port is represented by a Special

Function Register on banks 0 and 2. These are labelled PORTA, PORTB, and PORTC.

Although these registers are a byte each, ports A and B do not have all the channels

implemented (see diagram, p. 117).

The same addresses on Banks 1 and 3 refer to the tristate registers of the three ports.

These are labelled TRISA, TRISB, and TRISC. These registers control whether the

channels are for input or output. Setting the corresponding bit to ‘1’ makes the channel an

input. A ‘0’ makes it an output. This is easy to remember if you think of them as 1inputs

and 0utputs.

At switch-on all channels are set as inputs so if you want them all to be inputs you need

take no further action. However in the F690 the channels are automatically set to be

analogue inputs. If you want digital inputs, program them as described on p. 139.

CB04
page 15

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

120

ComparatorsComparatorsComparatorsComparators

The 16F690 has two voltage comparators, each of which has its own control and register.

For comparator 1 (C1), this register is called CM1CON0, at address 119h in Bank 2. We

will look at programming C1. Programming C2 is similar. The comparator has the usual

properties of a comparator circuit. It has two inputs, C1VP (positive, or non-inverting

input) and C1VN (negative, or inverting input). The non-inverting input is supplied

either through the RA0 pin (pin 19) or from an internal voltage reference which can be set

to a number of levels. The inverting input is supplied through one of four analogue

channels 7, 6, 5 or 1 (see p. 117).

A PIC comparator visualised as a schematic. If the polarity bit is 0 (non-
inverted polarity), the output is high when the input at pin 18 is less than the

reference voltage.

The comparator has a single output C1OUT which can be read as a voltage at pin 17 or as

the value of bit 6 of the CM1CON0 register. There is a polarity control bit should you

need to invert the state of the output. The reference voltage is set by using the voltage

reference control register, VRCON, address 118h. The procedure is explained opposite.

As an example, this is how to set up CM1 with its non-inverting input through the RA0

pin (pin 19), its inverting input through RA1 (pin 18) and its output sent to bit 6 of

CMCON0. Polarity is to be non-inverted. Working with a regular hardware comparator

IC such as the LM311, the connections would be as in the diagram above.

Special functions

CB04
page 16

Friday, 16 March 2007 06:30
Black

PICs in Control

121

At reset, all bits in CM1CON0 are set to 0. The settings we need are:

<7> = 1, to enable the comparator.

<6> = 0, this is the output bit.

<5> = 0, output to CM1CON0<6>, not to pin 17.

<4> = 0, for non-inverted polarity.

<3> = 0 (no function).

<2> = 1 , use internal reference.

<1:0> = 00, input at pin 18.

Settings of <1:0> for accepting input at other input pins are 01 (pin 15), 10 (pin 14) and 11

(pin 7). To set Comparator 1 as above, the byte is 10000100, or 84 in hex, which is to be

stored at 119h.

Similarly for Comparator 2; the byte 10000101, or 85h, when stored at 11Ah sets that

comparator to accept input at pin 15.

As we are using the internal reference this must be programmed by setting the VRCON

register. This can provide either a 0.6 V constant reference or a variable reference in the

range 0 V to 0.71875 × VDD. The reference voltage is applied to the inverting input.

To set up both the comparators for the variable internal reference, the bits in VRCON are

as follows:

<7> = 1, to use variable reference for Comparator 1.

<6> = 1, to use variable reference for Comparator 2.

<5> = 0, to select low range (or = 1 for high range).

<4> = 0, constant reference disabled.

<3:0>, four bits to select the range of the variable reference. In the low range the

reference is (this value) / 24 × VDD. In the high range it is VDD/4 + (this value) / 32

× VDD.

For example, the word 11001100 (CCh) stored at 118h sets both comparators to use the

variable reference in its low range. The value of bits <3:0> is 1100 (decimal 12), so the

reference is 12/24 × VDD, that is half the supply voltage.

CB04
page 17

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

122

The output of the comparators is either 0 or 1 and is readable at bit <6> of CM1CON0 and

CM2CON0. Both outputs can be read at the same time as bits <7> and <6> of a third

register, CM2CON1, at 11Bh.

As well as the registers directly involved with the comparators we must also enable the

inputs for analogue voltages. This is done through the analogue select register ANSEL, at

11Eh.

Pin 18 is the AN1 input and pin 15 is the AN5 input so we set bits <1> and <5> to 1. The

byte is 00100010, or 22h.

The registers concerned with the comparators are all in Bank2, so the routine for setting

up Comparators 1 and 2 with a reference of half the supply voltage is:

bsf status, 6 ; Page 2.

movlw 22h ; Define AN1 (pin 18) and AN5

movwf ansel ; (pin 15) as analogue inputs.

movlw 84h ; Set up Comparator 1.

movwf cm1con0

movlw 85h ; Set up Comparator 2.

movwf cm2con0

movlw CCh ; Set up reference voltage for both

movwf vrcon ; comparators.

bcf status, 6 ; Back to page 0.

By the way, all listings in Part 4 assume that the addresses of the registers have been

declared by using EQU directives at the beginning of the program (p. 135), or that they

are defined by the compiler program. If the controller is already in Page 1 mode when

this routine is run, bit 5 of STATUS must be cleared first.

To read the output of Comparator 1 use these lines:

bsf status, 6 ; Page 2.

movlw 40h ; Bit 6 of this byte is ‘1’.

andwf cm1con0, w ; Read the output bit, result in w.

bcf status, 6 ; Back to Page 0.

The ANDing operation sets or clears the zero bit of the STATUS register, which may then

be tested in the usual way and suitable action taken.

CB04
page 18

Friday, 16 March 2007 06:30
Black

PICs in Control

123

Analogue to digital convertersAnalogue to digital convertersAnalogue to digital convertersAnalogue to digital converters

Analogue input is fed to the converter through any one of 14 channels. For this discussion

we will refer only to channel AN0, which is at pin 19. At power-on, all the PIC’s output

channels are automatically set as analogue inputs. The analogue selection register

ANSEL, which is in Bank 2, is used to define which are to be reset as digital inputs. If bit

<0> is ‘1’ this makes AN0 (pin 19), an analogue input. At the same time it disables the

weak pull-up and the interrupt-on-change function.

The next step is to select the input channel and other functions, using ADCON0. The

setting used in this book is:

<7> = 0. result of conversion left justified (see below).

<6> = 0, use supply voltage as reference.

<5:2> = 0000, select AN0 as input channel (pin 19). These bits can take other hex values

for channels AN0 to AN11 (1011).

<1> = 1. Set this bit to start a conversion, then read it; it stays 1 while the conversion is in

progress, and goes low when it is completed. This is the GO/DONE bit.

<0> = 1. This enables the converter, 0 turns it off. In summary, setting <0> sets up the

converter on channel AN0 and setting <1> starts the conversion.

 The final step is to select the clock rate for the conversion, in the ADCON1 register bits

<6:4> do this. In our circuits there is no hurry so we can use the slowest rate, and in this

case can leave these bits clear, as on reset. In other words, nothing to do.

The output is a 10-bit value and so needs two registers to hold it. These are ADRESH and

ADRESL. With left justification selected (see above), the 8 most significant bits appear in

ADRESH and the 2 least significant bits in bits <7:6> of ADRESL. Bits <5:0> of ADRESL

read as 000000. This is how it looks:

 ADRESH ADRESL

X X X X X X X X X X 0 0 0 0 0 0

 10-bit result

If high precision is not required (or is not possible), the content of ADRESL can be

ignored. Ignoring this gives 8-bit precision (1 in 256, or approximately 0.4%) which is

better than most of our sensors can provide.

CB04
page 19

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

124

Using channel AN0 and reading a low-precision result turns out to be relatively simple as

nothing to do to certain of the registers. The only registers to be set are ANSEL in Bank 2

and ADCON0 in Bank 0. The result is read in ADRESH, which is also in Bank 0. Here is a

simple routine:

bcf status, 5

bsf status, 6 ; Bank 2

bsf ansel, 0 ; Select channel AN0

bcf ststus, 6 ; Back to Bank 0

bsf adcon0, 0 ; Turn on converter

bsf adcon0, 1 ; Start conversion

wait:

btssc adcon0, 1 ; If conversion complete

goto wait ; If not complete

movf adresh, w ; Read 8-bit result into

; working register.

The result in the working register is ready for processing.

Data transmission with the USARTData transmission with the USARTData transmission with the USARTData transmission with the USART

The 690 has an Enhanced Universal Synchronous Asynchronous Receiver Transmitter, or

USART for short. We use this to take a byte of data and transmit it serially (that is, one bit

at a time) to the USART of another PIC. The second USART receives the serial data bit by

bit and assembles it into a byte that can be read from a register. Transmission can be by a

single wire (if the 0V line is common to both PICs) or by a radio link.

The output from the USART is at RB7 (pin 10) and the input at RB5 (pin 12). The USART

can operate in both synchronous and asynchronous modes but we describe only the

asynchronous mode. In this mode, one USART waits for an indefinite period to receive

the data signal from the other USART.

As a transmitter, the USART is controlled by the TXSTA register, in Bank 1. The settings

we use are:

<7> = 0, not applicable for asynchronous mode.

<6> = 0, 8-bit transmission.

CB04
page 20

Friday, 16 March 2007 06:30
Black

PICs in Control

125

<5> = 1, enable tranmission.

<4> = 0, asynchronous mode.

<3> = 0, disable Break Character bit.

<2> = 0, low speed.

<1> this bit is ‘1’ if transmit shift register is empty and ‘0’ if it is full.

<0> = 0, the ninth bit, when used.

All we have to do to transmit a byte is to place it in the data register TXREG and set bit

<5> of TXSTA. There is no need to set the Baud Rate Control register (BAUDCTL), as we

use the default asynchronous mode.

After a short delay to allow data (usually only a single byte) to be transmitted, the data is

read from RCREG in the other PIC. To set up the USART as a receiver, the RCSTA

register is loaded as follows:

<7> = 1, enables serial port.

<6> = 0, 8-bit reception.

<5> = 0, not applicable.

<4> = 1, enables receiver.

<3:0> = 0, not applicable.

The following is a routine for configuring the USART:

bsf status, 5 ; Bank 1.

bsf trisb, 7 ; RB7 as input (automatically changed

; to output).

bsf trisb, 5 ; RB5 as input.

clrf txsta ; Set up, but not enable transmitter.

bcf status, 5 ; Back to Bank 0.

bsf rcsta, 7 ; Set up but not enable receiver.

The USART is now ready for action except that it is not enabled. Immediately or

whenever we want to use it we switch it on by:

bsf status, 5 ; Bank 1.
bsf txsta, 5 ; Enable transmitter.

bcf status, 5 ; Bank 0.

CB04
page 21

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

126

A subroutine for transmitting a byte is:

movlw XXh ; XX is the byte, in w.

transmit

btfss pir1, 4 ; If register clear for use.

goto transmit

movwf txreg ; To send the byte.

return

This assumes that the transmitting PIC knows that the other PIC is ready to receive. It

may previously have sent a ‘ready to receive’ byte.

To receive a byte, the code is:

receive

bcf status, z ; Reset zero flag.

btfss pir1, 5 ; New data received?

return ; No, try later.

btfss rcsta, 2 ; Test for framing error.

goto noferr ; No framing error.

movf rcreg, w ; Byte to w.

bcf status, z ; Zero flag clear - error.

goto orerr ; to check overrun flag.

noferr

movf rcreg, w ; Byte to w.

bsf status, z ; Set zero flag to show valid byte.

orerr btfss rcsta, 1 ; Test for overrun error.

return ; No overrun error.

bcf rcsta, 4 ; Clear continuous receive.

bsf rcsta, 4 ; Enable it (clears overrun flag).

return

The subroutine returns with z = 1 if there is a new valid byte in w. Call the above

subroutine, check z, and either use the byte that is in w, or call again until a valid byte is

received.

The routines given above show you how to set up the USART, how to send and how to

receive data. The other thing to think about is how to write these routines into a program

so that data can be exchanged with another controller while the program continues to

run.

CB04
page 22

Friday, 16 March 2007 06:30
Black

PICs in Control

127

Data memoryData memoryData memoryData memory

The 16F690 has 256 bytes of EEPROM data memory that can be written to for long-term

storage of data. Unlike the ordinary SRAM used as temporary storage, the data in this

memory remains for 40 years or more or until it is overwritten.

Most important is the fact that it is not lost when the power is switched off. For this reason

it is useful in robots that can be taught or in other ways can learn their best responses to

given situations. They do not forget what they have learnt. They can carry their acquired

knowledge over from one session to the next.

The data memory is addressed in the range 0 to 0FFh. Reading data is simpler than

writing it. A routine for reading data from EEPROM is as follows:

bsf status, 6 ; Bank 2.

bcf status, 5

movlw address-to-read

movwf eeadr ; Address to eeadr register.

bsf status, 5 ; Bank 3

bcf eecon1, 7 ; Access data memory.

bcf eecon1, 0 ; Read data.

bcf status, 6 ; Bank 2.

movf eedat, w ; Data to w.

bcf status, 5 ; Bank 0.

Writing data includes a sequence of instructions that must be followed exactly:

bsf status, 6 ; Bank 2.

bcf status, 5

movlw address-to-write-to

 movwf eeadr ; Address to eeadr register.

movlw data-to-write

movwf eedat ; Data to eedat register.

bsf status, 5 ; Bank 3.

bcf eecon1, 7 ; Access data memory.

bsf eecon1, 2 ; Enable writing.

bcf intcon, 7 ; Disable interrupts. Required code begins here.

movlw 055h

CB04
page 23

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

128

movwf eecon2 ; Write 55h.

movlw 0aah

movfw eecon2 ; Write aah.

bsf eecon1, 1 ; Write data. Required code ends here.

writing

btfsc eecon1, 1 ; Becomes 0 when data is completely written.

goto writing ; Until data written.

bcf eecon1, 2 ; Disable writing.

bcf status, 5 ; Bank 0.

bcf status, 6

The PIR1 and PIR2 registersThe PIR1 and PIR2 registersThe PIR1 and PIR2 registersThe PIR1 and PIR2 registers

The two Peripheral Interrupt Request registers are helpful when you need to know the

current state of the PIC’s built-in peripheral devices. These are the analogue-to-digital

converters, the USART receiver and transmitter, and the comparators. On being

interrupted, the PIC goes to the interrupt service routine (ISR) and reads data from each

of several sources to find out the reason for the interrupt. But reading from these devices

before they have completed their current processing gives a false result. We must let

them finish what they are doing, and this is where the PIR registers are important.

PIR1 has three flags indicating the readiness or otherwise of the currently operating A-to-

D converter, the receiver and the transmitter. Bit <6>, known as ADIF (Analogue-to-

Digital Interrupt Flag) goes high when the curent conversion is complete. If you read this

bit and find it is 0, you must try again later. Bit <5>, or RCIF, goes high when the receiver

buffer is full, a 0 indicates that data is still accumulating in the buffer, so try again later.

This flag is automatically cleared when you read the buffer data held in RCREG (p. 126).

Bit <4>, or TXIF, goes high when the transmitter buffer is empty and is waiting to receive

more data to be transmitted. Otherwise it is 0, indicating that the buffer is full, and

waiting to transmit it.

PIR2 has two flags that indicate that the output of a comparator has changed. Bit <6>, or

C2IF, goes high when the output of Comparator 2 has changed, while bit <5>, or C1IF,

goes high at a change in Comparator 1.

CB04
page 24

Friday, 16 March 2007 06:30
Black

PICs in Control

129

The bits remain set until you reset them to 0 by a bit clear operation. This means that we

do not have to read the bit as soon as a comparison has been made. We can access the bits

at any later time. However, if you want to use these bits to monitor further comparisons

you must clear the bits to 0 at some stage before then.

All these flag bits are set when the events occur, whether or not interrupts are enabled, so

you can use them even if you are not using interrupts. They tell you when it is safe to

read data from these peripherals. But if you switch interrupts on later in the program,

remember to reset the flags before you do it.

The INTCON registerThe INTCON registerThe INTCON registerThe INTCON register

This register controls the processing of interrupts. The bits of interest are:

<7> GIE 1 = interrupts enabled, 0 = interrupts disabled. This bit is used to switch all

interrupts on or off with a single command.

<6> PEIE 1 = enable peripheral interrupts, 0 = disable these interrupts.

<5> TOIE 1 = enable timer TR0 overflow interrupts, 0 = disable.

<4> INT 1 = enable INT interrupt, 0 = disable. The INT interrupt is an external interrupt

occurring when RA2 changes. The direction of change that brings about an interrupt

depends on INTE, which is bit <6> of the OPTION register: 1 = interrupt on rising edge, 0

= interrupt on falling edge. By default INTE is 1.

<3> RABIE 1 = enable interrupt on change in Port A and Port B. You can select which bits

of Port A have the interrupt on change feature by setting one or more bits in the IOCA

register.

The lower three bits are flags:

<2> T0IF is set when the timer TM0 overflows.

<1> INTF is set when there is an INT interrupt (see above).

<0> RABIF is set when there is an interrupt on change in Ports A and B.

Like the flags in the PIR registers, the flags remain set until you clear them.

CB04
page 25

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

130

Because PICs share the same intruction set, programs written for one type of PIC can

often be run on another type. The program may need to be modified for various reasons

but this usually presents few problems.

The table below describes three popular mid-range PICs that can run at least some of our

robotic programs without too many amendments. All the types are supported by

MPASM, MPLAB IDE, PICkit 2 and the PICBASIC compiler.

Other PICs

Device number 16F84A 16F628A 16F88

Pins 18 18 18

Ports (bits) A (5), B (8) A (8), B (8) A (8), B (8)

General purpose

RAM (bytes)

68 224 368

Program ROM

(words)

1 k 2 k 4 k

EEPROM (bytes) 64 128 256

On-chip

peripherals

1 timer 3 timers

2 comparators

Capture/compare

Internal oscillator

2 timers

AD converter

2 comparators

Capture/compare

Internal oscillator

USART

Popular PICs compared.

CB04
page 26

Friday, 16 March 2007 06:30
Black

PICs in Control

131

The major change is in the controller boards. All the PICs in the table have 18 pins and

the layout of power terminals is different, as can be seen in the pinout diagrams below.

Taking the PICs one at a time, the other important differences are:

16F84A: Has no internal oscillator so an external one is required. The diagram shows an

RC oscillator. The programs in this book assume that the 16F690 is running on its internal

clock rate of 4 Mz. For programs to run at the same speed on the 16F84A the external

oscillator must have a 4 MHz crystal. This is the maximum rate for the 16F84A.

16F628A: This has an internal oscillator running at 4 MHz by default. Using this frees two

more pins for input/output, bringing the total to 16. This PIC has more peripheral

devices than the previous one, so has become very popular. The diagram below shows its

pinout.

(Left) The 16F84A needs an
external oscillator, provided here
by a resistor/capacitor network.

(Above) A crystal
oscillator gives more

precise timing.

(Right) The 16F628A and the
16F88 have the same pinout.

CB04
page 27

Friday, 16 March 2007 06:30
Black

The Robot Builder’s Cookbook

132

16F88: This controller scores over the others (but not over the 16F690) by having a larger

program memory. It also has an analogue-to-digital converter.

The increase in the number and capabilities of the peripherals inevitably leads to more

multiplexing of the input and output channels. Setting up the peripherals becomes more

complex because there are more options to choose from. Although straightforward

operations such as one-bit input and output remain unaffected, control of the peripherals

involves more registers.

There are also differences in the properties of the I/O channels —whether they are digital

or analogue, whether they have weak pull-ups, whether they have interrupt-on-change.

For further details download the data sheet from Microchip.

CB04
page 28

Friday, 16 March 2007 06:30
Black

PIC Programming

133

PIC ProgrammingPIC ProgrammingPIC ProgrammingPIC Programming
Musical tones 150

Look-up tables 154

Using two processors 155

Mathematical operations 157

Random numbers 161

Calibrating the system 163

Software replaces hardware 164

Program segments 134

Inputs and outputs 137

Mode select routine 140

Branching instructions 141

Steering a mobile robot 144

Detecting objects 147

Avoiding objects 149

CB05
page 1

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

134

Program segmentsProgram segmentsProgram segmentsProgram segments

As you can see if you look at the programming examples of the projects, there are

program routines that we use over and over again. Some may differ in detail but

essentially they are repeats. It makes more sense to save these as separate text files, so

that you can load them and put them into your current project. They may need a little

editing here and there but this is nothing compared with the effort needed to type them

in from scratch every time you need them.

Not only does it save typing effort, but it reduces the risk of typing errors too.

The program segments listed in this Part are a selection of the most often needed

routines. The listing opposite begins with a title frame. It is not strictly necessary, but in a

few months’ time you may have forgotten what the program is supposed to do. Every

line of the title frame must begin with a semi-colon so that it is ignored by the assembler.

The first active line of the listing tells the assembler which PIC you are using. Then comes

the configuration directive which sets up the key features of the way the PIC is to operate.

With development software such as MPLAB IDE, it is not necessary to type the list of

equates which comes next. All this data s contained in a linker file which is automatically

loaded when the assembler is run. You will still need to type in equates for the labels of

the registers that your program uses. An example is delay0, used in the delay subroutine

(see pp. 285-286).

When working simply with an assembler such as MPASM a list of equates is required.

The list opposite is a long one because there are many that you may need to use. Not that

you are likely to need them all in any one program. We made the list comprehensive on

the basis that it is preferable to type in the lot once and for all, and get the particulars

right. In any given program you can, if you want to, simply delete those that are not

used.

CB05
page 2

Friday, 16 March 2007 06:34
Black

PIC Programming

135

;***

;

; Filename: Leader.asm

;

; The directives etc for setting up a typical program.

;

;***

list p=16F690

__config 0x30c4

; Bank0

pcl equ 02h

status equ 03h

porta equ 05h

portb equ 06h

portc equ 07h

intcon equ 0bh

pir1 equ 0ch

pir2 equ 0dh

rcsta equ 18h

txreg equ 19h

rcreg equ 1ah

adresh equ 1eh

adcon0 equ 1fh

; Bank1

option_reg equ H'01'

trisa equ H'05'

trisb equ H'06'

trisc equ H'07'

ioca equ H'16'

txsta equ H'18'

adresl equ H'1e'

adcon1 equ H'1f'

Bank2

eedat equ 0ch

eeadr equ 0dh

vrcon equ 18h

cm1con0 equ 19h

cm2con0 equ 1ah

cm1con1 equ 1bh

ansel equ 1eh

anselh equ 1fh

; Bank3

eecon1 equ 0ch

Leader listing (continued overleaf).

CB05
page 3

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

136

; Destination codes and zero-bit code

w equ 00h
f equ 01h
z equ 02h

; Labels
delay0 equ 20h
delay1 equ 21h

goto start

org 04h

goto start

start

goto $

; Subroutines

delay

decfsz delay0, f

goto delay

decfsz delay1, f

goto delay

return

end

 Leader (continued from p. 135).

After the equates for registers, there are equates for the single codes, w, f, and z. These are

optional but well worth including. Some of the PIC’s instructions are of the form ‘do this

and put the result there’. ‘There’ is the working register (w) or the register currently being

operated on (f). For example, to decrement the value in a register named count and put

the result in the working register, the instruction is:

decf count, 0

This leaves count unchanged. To put the result in count, without affecting the

working register the code is:

decf count, 1

CB05
page 4

Friday, 16 March 2007 06:34
Black

PIC Programming

137

Using the equate equivalents, w and f instead of 0 and 1, these instructions become:

decf count, w

and

decf count, f

which makes it much clearer (to the programmer) what is happening.

After the equates there is a list of labels for the general purpose registers that are used by

the program. These start at address 20h and there are up to 96 of them, finishing with

address 7fh. The first 80 of these (20h to 60h) are accessible in Banks 0 to 2, but the last 16

addresses are only in Bank 0.

In this listing there are only two labelled registers required for this delay subroutine.

Next the start address is listed in the conventional way, so that there are four lines

reserved for a jump to the interrupt service routine (if there is one) in the event of an

interrupt.

At the start label, the statement ‘goto $’ sends the processor back to start, so

producing a continuous loop. This may not work with some assemblers, in which case

substitute ‘goto start’. Either version is a temporary action which prevents the

program from running on to the delay subroutine. The start label is where you begin

typing in your own program.

The leader includes delay subroutines. These are almost essential in any program, so

why not include them here? Normally, subroutines go at the end of a listing (though

some people prefer to have them near the beginning). The order makes no difference to

the way the program runs.

One essential line — the program must end with an end directive.

Inputs and outputsInputs and outputsInputs and outputsInputs and outputs

Programs usually begin by clearing the ports and setting each channel as either an input

or an output. We also need to think about which input channels are to be digital and

which analogue. If a channel is a digital input, is it to have weak pull-ups?

CB05
page 5

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

138

start

bcf intcon, 7 ; Disable interrupts.

bsf status, 5 ; Bank1.

movlw 3eh ; <1:5> inputs, rest outputs,

movwf trisa ; for Port A.

movlw 20h ; <5> input, rest outputs,

movwf trisb ; for Port B.

clrf trisc ; All outputs.

movlw 06h ; <2:1> interrupt on change,

movwf ioca ; port Port A.

bcf status, 5 ; Bank2.

bsf status, 6

clrf ansel ; For digital I/O.

bcf status, 6 ; Bank0.

clrf porta

clrf portb

clrf portc

A typical setting up routine.

Now we step warily through the various banks of Special Function registers. Incidentally,

even though a linker file may have eliminated the need to type the equates, the list of

registers on p. 135 is handy as a reminder of which bank each register is in. INTCON is in

all four banks, but some of the registers are not. It is important to be aimed at the right

bank when setting a register.

The bank is selected by setting or clearing bits 6 and 5 of the STATUS register. On power-

up, these bits are both ‘0’, selecting Bank 0, which is the default.

Setting STATUS <5> changes STATUS <6:5> to ‘01’ which selects Bank 1. Here are found

the tristate registers, which make each channel of a port an input or an output. On power-

up all bits are set (= 1), so all channels are inputs. By resetting a bit to 0, the

corresponding channel becomes an output. In this example, all bits of Port A are to be

inputs, so leave TRISA in its default state. In Port B, all bits are outputs, except for bit 5.

The bits must therefore be 0010000, or 20h. This value is put into the working register, w,

by movlw 20h, and then moved to TRISB by movwf trisb. Port C channels are all to be

outputs. Simply clear all bits at one go by clrf portc.

CB05
page 6

Friday, 16 March 2007 06:34
Black

PIC Programming

139

A weak pull-up is the equivalent to a high-value resistor connected between an input

terminal and the positive supply. It makes the input read as logic high, unless the

external circuit takes it low enough to read as logic low. This feature replaces external

pull-up resistors, though these may be necessary if the input signal is noisy with sharp

voltage spikes.

Weak pull-ups are available on Ports A and B, but not on Port C. In the example opposite

they are disabled by default because the global enabling bit 7 of the option register

(OPTION_REG) is set. If pull-ups are required, clear this bit, to enable all the WPUs by

default, then clear the corresponding bits in registers WPUA and WPUB to disable the

WPUs that are not required.

Port A in this example has all channels as inputs and connected to switches that take the

channel to 0 V when closed. The default condition is accepted for Port A. In Port B, all

channels are outputs except for bit 5.

In this project there are two microswitches that need to be monitored for interrupts.

These are connected to bit 1 and 2 of Port A. Therefore the code setting is 00000110, or

06h. This value is put in the Interrupt On Change register, IOCA. The interrupt on change

setting does not take effect until the Global Interrupt Enable bit (GIE) is set. This

could be done straight away, by setting the Global Interrupt Enable bit:

bsf intcon, 7

In the example we do not want interrupts just yet, so we leave GIE as 0.

All inputs in this application are to be digital but, in the 16F690, all the channels that can

act as inputs for the AD converters are analogue channels by default. If we want them to

be general-purpose digital inputs, we have to clear the corresponding bits in the ANSEL

and ANSELH registers. In this example, we do not use AD converters. Select Bank 2 and

clear the whole ANSEL register, making all channels that are inputs into digital inputs.

There is no need to do anything to ANSELH as the channels are all outputs except for

RB5, which is under the control of the USART.

That completes the initial setting up. Return to Bank 0, ready for the main program but,

before doing this, it is a safety precaution to clear all the output channels, unless there is a

reason for not doing so.

CB05
page 7

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

140

Mode select routineMode select routineMode select routineMode select routine

The memory of a PIC is large enough to accommodate several different programs —

unless they happen to be blockbusters. For this reason it is convenient to have a number

of programs in a single PIC chip and to be able to select any one of these at run time.

The first program lines after the ‘start’ label usually initialise the ports and set any

options that are in force for the whole program. Immediately after this comes the mode

select routine. Leave it out if there is only one program on the chip.

Below is a typical mode select routine. In this example, the two mode select switches are

connected to RC0 and RC1, as in the Quester project.

btfsc portc, 1 ;Test mode select bit 1.

goto bit1hi

btfsc portc, 0 ;Test mode select bit 0.

goto mode2

goto mode1

bit1hi

btfsc portc, 0 ;Test mode select bit 0.

goto mode4

goto mode3

The program then branches to the four sub-programs (modes), which are listed one after

the other, each beginning with a modeX label.

Opposite is the flowchart of this routine. It is a good example of the use of branching

instructions. There are three two-way branch points, which lead to the four modes.

It is essential that the subprograms are entirely separate. It must not be possible for the

PIC to run on from one mode to the next in the listing. However, sub-programs can share

the same sub-routines, such as delays.

An example of a mode select routine.

CB05
page 8

Friday, 16 March 2007 06:34
Black

PIC Programming

141

Flowchart of the Mode Select routine.

Branching instructionsBranching instructionsBranching instructionsBranching instructions

The PIC instruction set has two branching instuctions, one of which was used in the

Mode Select routine (opposite). The other instruction is the converse of this, test a bit and

skip the next instruction if it is set (btfss). These two are the only instructions for

implementing a decision box in the flowchart.

In the listing opposite we used the instruction directly. The PIC tests a bit and acts

accordingly. Often the instruction tests a bit that has been set or cleared as the result of a

previous operation. Very often the bit tested in the zero bit, bit <2> in the STATUS

register, which is why we set up a special equate for ‘z’.

There are 15 instructions that affect the zero bit. These are the operations that can have a

zero result. For example, decf decrements a given register and, if the result is 00h, sets the

zero flag to 1. If the result is not 00h, the flag is cleared to 0. We use the state of the flag to

branch one way if z = 1 and another way if z = 0. The routine might look like this:

decf count, f ; Decrement register count and put result

; in count.

btfsc status, z ; Test zero bit and skip next instruction

; if it is clear.

goto finish ; Go to the finish label if count is

; 00h.

... continue with the program.

CB05
page 9

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

142

Other instructions that result in a change of the zero bit include adding, subtracting, and

the logical operations, so this is a generally useful routine.

There is sometimes a problem with these skipping instructions because they skip only

one line. The action required in the event of ‘no skip’ may take two lines or sometimes

more. In the example, the finish routine obviously takes several lines, so we had to use a

goto instruction to branch to a part of the program where we can have as many lines as

we need.

It sometimes happens that we want to put one of two different literal values in the

working register, depending on the condition of a bit. For example, a register is to be set

to 90h if the bit is clear or to 60h if the bit is set. The problem is that putting a literal value

into a register takes two lines, not just one. This is because the value is first put in w

(movlw), then moved from the w to the register (movwf).

A way round this problem is to pre-load w before reading the bit:

movlw 90h ; Put 90h in w, ready to spin left.

btfsc randval, 0 ; Test bit <0> of the randval register.

movlw 60h ; Change setting to spin right.

movwf portb ; Spin left or right.

This example comes from Project 6.4, the mode 4 listing (p. 296). A value is to be sent to

Port B to control the direction in which the Quester turns. We set w to one of the possible

settings (spin left) before we test the random bit. Then we test the bit. If it is set we change

the value in w to spin right. This needs only the single skippable line. If the bit is set, we

skip over the change instruction, leaving the value for spin left as it is. The required

setting is now in w, and is moved to Port B to switch on the motors.

The bit test instructions are used in logical operations and when there is input to the

program from pressing a button or setting a switch. There are two techniques for using

buttons and switches: (1) test the bit in passing, and (2) wait for the bit to take a particular

value, either 0 or 1. The Mode Select routine is an example of type (1). The switch has

already been open or closed before the program reads its state. The test and the resulting

branch are taken care of by the single btfsc or btfss instruction. The Mode Select

routine is run at the very start of a program. Why waste the switches on a single routine?

The same switches can be used later to select other options. For example, in a game a

switch can be turned on to tell the robot ‘I have made my move — your move now’.

CB05
page 10

Friday, 16 March 2007 06:34
Black

PIC Programming

143

Waiting for a particular input means putting the PIC into a loop. The simplest way to do

it is this:

waiting btfsc portb, 4 ; Test input from switch at RB4.

goto waiting ; Test again if input is 1.

... continue with program

This routine waits until the input goes low. If there is a weak pull-up on the input (p. 139)

we need only place a switch between the pin and the 0 V line. The program waits for us

to close the switch. The same for a push-button.

The simple routine above has its snags, the main one being that PICs run very fast. If we

are using a button, and there are several wait routines in the program, the PIC may have

run on to the next routine while we are still pressing the button for the first routine. If the

programming makes it possible for this to happen, we need to check that the button has

been pressed and released before the program continues. Expand the routine to:

waitinglow btfsc portb, 4 ; Test input from switch at RB4.

goto waitinglow ; Test again if input is 1.

waitinghigh btfss portb, 4 ; Test input from switch.

goto waitinghigh ; Test again if input is 0.

... continue with program

These routines make the processor wait in a loop. It is not able to do anything else while

waiting. Sometimes this is the way we want it. At other times we would like it to do

something else while it is waiting. For example, it might flash an LED until we press the

button to stop it doing that and do something else instead. In this case we need a routine

to sample the button setting at frequent intervals.

Polling is one way of doing it. Keep on sending the PIC to test the button input at such

frequent intervals that pressing the button appears to have an immediate effect. Here is a

possible solution:

flash bsf portc, 0 ; Turn on LED connected to RC0.

call delay ; On for 0.2 s.

bcf portc, 0 ; Turn LED off.

call delay ; Off for 0.2 s.

btfsc portb, 4 ; Test input from button at RB4.

goto flash ; Button not pressed, do another flash.

... continue with program

CB05
page 11

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

144

Polling is the easiest technique to follow. You know exactly when the input is going to be

read. In this case you know that the flashing loop will end with the LED off.

The alternative technique is to use an interrupt, using interrupt-on-change. The problem

is that you can not be certain at what stage in the flashing loop this will be triggered. You

need to program the PIC to jump out of the loop and switch off the LED before you

continue with the program. Also there is the matter of testing the input channels to find

out which one caused the interrupt. Interrupts are a great feature in some programs, but

are probably better avoided if simple polling will do the job almost as well.

Steering a mobile robotSteering a mobile robotSteering a mobile robotSteering a mobile robot

There are two main techniques for steering a three-wheeled robot:

• Two drive wheels on the same axle (or perhaps with a differential gear) turned by a

single motor, and usually at the rear; a single free-running steering wheel, usually

at the front, with a motor to turn it in the required direction. The arrangement is

that of a child’s tricycle. It is used in the Android.

• Two drive wheels on separate axles, each with its own motor. The wheels are

usually about half-way along the chassis, to give the robot the ability to spin on its

centre. The third wheel is a castor. It is similar to steering a tracked vehicle, such as

a tank. The programming for tracks is the same as for wheels. This technique is

used in the Quester.

There is a third technique, used in the Scooter, that has a castor which automatically steers

the vehicle to one side when it runs in reverse. This extremely simple method is easiest to

build and does not need programming, but has limitations.

Two-wheel steering relies on switching the motors individually into forward or reverse.

The table opposite lists five possible actions. These are controllable by digital output: a

motor is either running or stopped. If it is running, it is either running forward or it is

running in reverse. We could program it for analogue control, in which the motors are

made to run at different speeds. Then the robot could follow a curved path. But

analogue-based programming is complicated and digital is generally good enough.

The technique is to execute the intended curved path as a series of short straight runs

alternating with frequent but small spins in the required direction.

CB05
page 12

Friday, 16 March 2007 06:34
Black

PIC Programming

145

Left motor Right motor Result

Stop Stop Stop

Forward Forward Forward

Forward Reverse Spin right

Reverse Forward Spin left

Reverse Reverse Reverse

 Digital steering.

To program a path curving to the left, for example, the actual path is a series of forward

runs lasting about 0.2 s each (turn on both motors, call delay). Between each straight

segment there is a short spin to the left. Breaking up the path like this has another

purpose. It gives the opportunity between segments to poll the sensors, to check that the

robot is heading in the right direction.

Mode 3 of the Quester programs is an example of this. The robot is programmed to follow

a curved black line. The flowchart on p. 291 shows that in between the short forward-

moving segments it checks its sensors to make sure it is still on the line. If it is not, it

corrects the error by short spins to the left or right.

The motors are controlled by four digital outputs from Port B. The table on p. 277 gives

the details. The left motor is controlled by two outputs, A (from RB7) and B (from RB6).

These go to the motor power control board which works as described in Part 4. To run

the left motor in a forward direction we make A high and B low. For the reverse direction

A is low and B is high. Putting these settings into bytes to send to Port B, we need

10000000 for forward and 01000000 for reverse. In hex these are 80h and 40h respectively.

To make the robot run forward we need to switch on the right motor too. This is

controlled by two outputs from Port B, C (from RB5) and D (from RB4).

CB05
page 13

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

146

The complete code byte for running both motors forward must make both RB7 and RB5

high. The code is 10100000, or a0 in hex. To put both motors in reverse, make RB7 and

RB5 low, and make RB6 and RB4 high. The code is 01010000, or 50 in hex. Code 00h

makes all control inputs low, stopping both motors.

Typical instructions for setting both motors into forward drive are:

movlw a0h ; Code to w register.

movwf portb ; Both motors turned on.

call delay ; 0.2 s.

clrf portb ; Stop both motors.

This gives a 0.2 s segment, but we could call it longdelay instead, putting a suitable

value into w before calling. Or we could let the robot run until a given event interrupts it.

This way of programming depends on the fact that Port B has only four channels (which

is why the four LSBs of the code are always low). In another robot you may be controlling

the motors from Port A or Port C and want to use the other channels as outputs for other

purposes. As an example, suppose the motors are controlled by bit <7:4> of Port C. The

same codes apply, and sending a0h to Port C will turn the motors on, but it will turn off

all devices connected to the other four outputs. The easiest way is to set or clear the bits

individually, using bsf and bcf.

Programming motors switched by relays (pp. 96-97) is similar, but the codes are different.

As in transistor switching, each motor is controlled by two bits, but one bit controls on/

off and the other controls direction. For a single motor the control outputs are:

On/off relay

(1 = on)

Forward/

reverse relay

(1 = fwd)

Code

(<1:0>)

Result

1 1 3h Forward

1 0 2h Reverse

0 0 or 1 0h or 1h Stop

 Motor control with relays.

CB05
page 14

Friday, 16 March 2007 06:34
Black

PIC Programming

147

Steering with two motors is done by doubling the code digits. So forward is 0fh, reverse is

0ah, spin left is 0ch, spin right is 0eh, and stop is 00h.

In Project 6.5 we use three motors switched by relays to move the x-frame, the y-frame

and the tool to different places in the working area. These winch motors are switched on

one at a time and wind out or wind in the winch cord. For a single motor, the control

settings are:

In/out relay (1

= wind out)

On/off relay

(1 = on)

Code

(<1:0>)

Result

0 or 1 0 0h or 2h Stop

0 1 1h Wind in

1 1 3h Wind out

Winch motor control with relays.

The codes in the table apply when the relays are controlled by bits <1:0>. In the Gantry

project the wind in/out is controlled by RC7 and the three motors by RC4 (M1, y-winch),

RC5 (M2, x-winch) and RC6 (M3, tool winch). The corresponding codes are as listed on

p. 339.

Controlling stepper motors is described on pp. 98-100.

Detecting objectsDetecting objectsDetecting objectsDetecting objects

The ability to detect an object that is not in physical contact is often an essential element

of a robot’s behaviour. A light sensor such as an LDR is used for detecting a source of

light at a distance, and an ultrasonic sensor can detect relatively large solid objects up to

several metres away. In this section we look at a way of detecting a small object that is a

few centimetres away. It might be a game piece that is to be picked up by a gripper.

CB05
page 15

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

148

To sense whether or not there is an object ready to be picked up we employ a simple

strategy. There is an LED with its beam directed at where the object is expected to be.

The object reflects light from the LED back toward the robot. There is an LDR to sense the

reflected light. There may also be other sources of light in the room and we need to be

able to distinguish between light coming from these sources and light reflected from the

object.

The solution is to flash the LED alternately on and off and to sample the output from the

LDR when the LED is on and when it is off. The diagram below shows what happens.

The LDR is driven from an ouput channel which is alternately set to 0 and to 1 to flash

the LED on and off. The flashing routine should include short delays to give the LDR

time to respond. The LDR is connected to an analogue input channel sampled by a

comparator. Instead we could use a digital input from an op amp IC, as on p. 73. In either

case, output from the comparator falls when the LDR receives light reflected from the

object or from other sources.

The output from the comparator under different conditions.

If an object is present, the signal from the comparator falls when the LED is on, and is 1

when the LED is off. If no object is present, the comparator output remains constant at 1.

This happens too if the object is too far away to reflect enough light back to the LDR. A

source of bright light causes a continuous low output from the comparator, remaining

low when the LED is off. These three cases are identified by the routine illustrated in the

flowchart opposite.

CB05
page 16

Friday, 16 March 2007 06:34
Black

PIC Programming

149

The flowchart sets out the simplest routine. The result of this routine is to be placed in a

register labelled object, which acts as a flag. The value in the register is to be 01h if an

object is found.

The comparator is programmed to give a high output (1) when the LDR is receiving light.

The LED is switched on and, after a short delay to give the LDR time to respond, we test

the output from the comparator, as described on pp. 187-189. If the output is high, the

LDR is receiving light, either by reflection from an object of from another source. Follow-

ing the ‘Yes’ branch, we sort out these two possibilities by switching off the LED and

testing again. Now we expect a low output from the comparator. In this event the

object variable is set to 01h, indicating that an object has been detected.

The program would probably continue with a routine to pick up the object if object is

set to 01h, or to do something else if it is not.

If either of the tests gets a ‘No’ response, the routine runs on to the end, where object is

cleared to 00h. Note that we must actually clear it. It might have been set to 01h as a

result of a previous test.

Right: Detecting an object. It could happen that there is another source
of light that stops shining on the LDR at the same instant that the LED

is switched off. Perhaps this is unlikely, but if you want to guard against
this error, repeat the two tests before setting or clearing the flag. A ‘No’

result from any one of the four tests clears the flag.

Avoiding objectsAvoiding objectsAvoiding objectsAvoiding objects

Before an object can be avoided it has to be detected. This

operation is essentially the same as the object detection

routine, but, instead of going on to pick up the object, the

robot backs up and steers away from it. A practical

example of this is described and listed for the Scooter on

pp, 194-200.

Bumpers, as used in the Quester, are the alternative

sensors for object avoidance. Programming them is easy

as all that has to be done is read a one-bit input and take

appropriate action.

CB05
page 17

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

150

Musical tonesMusical tonesMusical tonesMusical tones

If your robot has a speaker, it can make music, or at least can produce a beep or two of

given pitch and length. This can be a way of getting the robot to talk to you.

The tonesound routine operates by switching the speaker on and off at a given frequency

for a given number of times. The routine needs three values to be stored in registers

before the routine is called:

• data1 and datafinal set the frequency of the tone. Data1 is the outer loop

variable for two nested loops, the inner loop variable is set to 0Fh. These loops are

followed by a final loop which acts as a fine adjustment of the frequency, and has

datafinal as its variable.

• lendata sets the length of the tone. This is the loop variable of the inner one of

two nested loops, used in the half (= half period) subroutine. The outer loop

counter is set to 05h.

Assuming that the oscillator frequency of the PIC is 4 MHz, calculate the half-period in

microseconds:

half = 500 000/frequency

By trial and error find a pair of values for data1 and datafinal for which:

(50 × data1) + (3 × datafinal) + 15 = half

For a tone of suitable length, calculate:

lendata = frequency × 0.1

You can alter the length of the tone by varying lendata, but the equation above gives a

good starting point.

As an example, here is the calculation for a 1 kHz tone:

half = 500000/1000 = 500 µs

A few trials gave us

(50 × 9) + (3 × 12) + 15 = 501

This is as close as we can get, so data1 = 9 and datafinal = 12.

A suitable value for lendata is 1000 × 0.1 = 100.

The listing opposite and on p. 152 uses this data to produce a 1 kHz tone.

CB05
page 18

Friday, 16 March 2007 06:34
Black

PIC Programming

151

; Registers needed for playing a tone,

outloop equ 22h

lendata equ 23h

inloop equ 24h

loop1 equ 25h

loop2 equ 26h

data1 equ 27h

datafinal equ 28h

finalloop equ 29h

; Setting up the registers

movlw 064h ; lendata = 100 decimal.

movwf lendata

movlw 09h ; data 1 = 9.

movwf data1

movlw 0ch ; datafinal = 12 decimal.

movwf datafinal

playit

movlw 05h ; Set outer loop counter.

movwf outloop

next1

movf lendata, w ; Set inner loop counter.

movwf inloop

next2

bsf portc, 0 ; Speaker on.

call half

bcf portc, 0 ; Speaker off.

call half

decfsz lendata, f ; Count down inner loop.

goto next2

decfsz outloop, f ; Count down outer loop.

goto next1

return

Playing a tone (continued overleaf).

CB05
page 19

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

152

half

movf data1, w

movwf loop1 ; Set outer counter.

next3

movlw 0fh

movwf loop2 ; Set inner counter.

next4

decfsz loop2, f ; Count down inner loop.

goto next4

nop

decfsz loop1, f ; Count down outerloop.

goto next3

nop

movf datafinal, w ; Set final loop counter.

movwf finalloop

next5

decfsz finalloop, f ; Count down final loop.

goto next5

nop

return

end

This continuation of the listing on p. 151 is the half period subroutine

Begin the program by setting Port C <0> as an output. A circuit for driving a speaker is

shown on p. 90.

This listing can be made a subroutine of a more complex routine that puts a set of values

in the data registers and calls playit. In this way you can make your robot play tunes.

The table opposite lists data values for obtaining some of the notes on the musical scale.

By programming a sequence of such tones you can invent a tone ‘language’ that the robot

uses to express its ‘feelings’. A longer sequence of tones becomes a song.

On the opposite page there are flowcharts of the two subroutines. These show the various

loops involved in producing a tone of a given pitch and duration. To play more than,

say, four tones in succession it is best to have the values stored in a look-up table. This is

described in the next section. A practical example of a tone playing routine is given for

the Android (pp. 230-232).

CB05
page 20

Friday, 16 March 2007 06:34
Black

PIC Programming

153

Note data1 datafinal lendata

C 024h 020h 02Ah

C’ 010h 02Fh 054h

E’ 0Ah 051h 06Ah

G’ 0Ah 029h 07Eh

C” 08h 015h 0A8h

G” 06h 01h 0F9h

Variable values for musical tones, to be loaded into the
three registers before calling playit.

(Left) The frequency
generating playit

subroutine.

(Right)The half period
delay routine.

CB05
page 21

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

154

Look-up tablesLook-up tablesLook-up tablesLook-up tables

When a routine needs to access data in a systematic way, the best approach is to put the

data in a look-up table. The table is a block of data in a subroutine, or a block of EEPROM

memory. It might contain a set of numeric values, for example the variables used in the

playit subroutine. It might contain a set of codes for different arrangements of pieces on a

game board. It might contain the coded results of attempts to learn a maze. Stored in a

look-up table, the data is quickly accessed.

Here, we look at how to put the data in a subroutine. To access the data we set up a

variable which tells the PIC which particular item of data is to be read. Because it points

to an item, this variable is named pointer. Pointer is stored in a General Purpose register

and given an initial value of zero:

pointer equ 30h ; Any other unused address is OK.

clrf pointer ; Reset to 0.

The subroutine is best placed early in the listing, particularly if there is a lot of data. This

avoids the risk of the table spilling over into two blocks of program memory. The first

line is:

addwf pcl, w

Before the subroutine is called the value of pointer is placed in the working register. To

read the first byte, the pointer is 00h. To read the second value it is 01h and so on. On the

first line of the subroutine, the program counter is therefore increased by the value of the

pointer. Normally the PIC would continue automatically incrementing the program

counter and go on to the second line of the subroutine. If the pointer is 00h, this is what

happens, but if the pointer is more than zero, the PIC jumps further. It jumps to the line

to which it is pointed.

All of the lines of the subroutine, apart from the first, are of the form:

retlw, 0ah

The line loads a value (in this example 0ah) into the working register and sends the

processor back to the main program. There the value in w is used in the program that

called the subroutine.

As an example here is a look-up table for the codes used in a 7-segment display.

CB05
page 22

Friday, 16 March 2007 06:34
Black

PIC Programming

155

sevenseg

addwf pcl, f ; Jump to the required line.

retlw 03fh ; Code for ‘0’.

retlw 006h ; Code for ‘1’.

retlw 05bh ; Code for ‘2.

retlw 04fh ; Code for ‘3’.

retlw 066h ; Code for ‘4’.

retlw 06dh ; Code for ‘5’.

retlw 07dh ; Code for ‘6’.

retlw 003h ; Code for ‘7’.

retlw 07fh ; Code for ‘8’.

retlw 06fh ; Code for ‘9’.

A look-up table of codes for a 7-segment LED or LCD display. The first bit of
each code is 0 and the other seven bits set the segments to be on (= 1) or off

(= 0). From left to right the bits control segments gfedcba.

This subroutine is intended for a seven-segment display driven through an 8-bit port,

such as Port C. To use the 7-segment we load w with the number that is to be displayed

and call sevenseg. The processor returns with the corresponding code in w. This is loaded

into Port C and the numeral is displayed.

 A practical example of using a look-up table appears in the tune playing program of the

Android.

Using two processorsUsing two processorsUsing two processorsUsing two processors

In a system based on distributed processing, two or more controllers share the processing

tasks. One of the benefits of this arrangement is to increase computing power and speed.

It may also be a way of increasing the number of inputs and outputs of the system to cope

with a large number of motors or sensors, for example. Programming this type of system

is complicated because the controllers are operating simultaneously and need to be

synchronised with each other by a set of hand-shaking signals. A rather simpler system is

illustrated in the drawing overleaf.

CB05
page 23

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

156

 This is based on the idea of the two PICs, in separate locations but linked by wire or

radio, which operate alternately. One waits or performs minor tasks while the other is

busy with a more complex task. That completed, the formerly busy PIC signals to the

waiting PIC, which gets busy while the other rests. A system such as this (see the

diagram) is easier to program because only one processor is active at any given time.

Programming two PICs to
operate alternately. A PIC sends
a pulse to the other when it has
completed its current task. Then
it waits (dashed lines) to receive

a pulse before resuming its
activities.

There are two subroutines for sending and waiting to receive signal pulses:

pulseout
bsf portc, 0
call delay
bcf portc, 0
return

pulsein
btfss portc, 1
goto pulsein
return

The controller sends the pulse from channel RC0, and receives pulses through channel

RC1. This style of programming is easy to plan but it depends on both controllers being

programmed to follow a predictable sequence of actions.

CB05
page 24

Friday, 16 March 2007 06:34
Black

PIC Programming

157

A single pulse has limited meaning. Most times it means ‘My job is done — now its your

turn’. Sending a coded byte gives the receiving controller far more information. A single

byte can take any of the values 0 to 255, so it can have up to 256 different meanings. For

instance, if the Android has an extra motor to move its left arm, the control of the motors

could be given to a Slave PIC and the rest of the processing is done by the Master PIC.

The Master sends the Slave signals, telling it which motor to switch on, in which

direction to run it, and possibly at what speed. The Master sends one of a pre-defined set

of coded bytes. The Slave takes the appropriate action.

The USART is used to transmit the byte serially from Master to Slave. The RB7 channel

(pin 10) on the Master is connected to the RB5 channel (pin 12) on the Slave. An ordinary

wired connection will do, provided that it is not too long and that the two controllers are

operating on the same power supply. It may be advisable to use a light duty screened

cable for the connection if the distance is more than a few centimetres. Connect the screen

to 0 V at one end.

The listing of the Master program includes the segments for configuring the USART for

enabling it, and for transmitting a byte. The byte must be in the working register before

calling the transmit subroutine.

The listing of the Slave program includes the segments for configuring the USART, for

enabling it, and for receiving a byte. If a new byte has been received, it is in the RCREG

register and the zero flag of STATUS is set to ‘1’.

Mathematical operationsMathematical operationsMathematical operationsMathematical operations

The instruction set of the PIC includes the two essential operations, addition and

subtraction. These can be used to perform other operations, such as multiplication and

division. Humans are familiar with the decimal system, so their algorithms for

multiplication and decision are based on this. Logic systems are based on the binary

system, so it makes sense to use binary instead.

Multiplication by 2 is simply a matter of shifting the binary digits to the left. For

example, binary ‘0001 0011’ equals 19 decimal. When shifted one place to the left it

becomes ‘00100110’. The LSD (least significant digit) is filled with a zero. The value is

now 38 decimal, which is double the original value.

CB05
page 25

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

158

Shifting digits to the left is performed by the rlf instruction. The LSB is filled with the

carry bit (bit <0> of STATUS). When using rlf for multiplying, clear the carry bit first.

The MSD (most significant digit) is shifted into the carry bit. In the example on the

previous page this was a ‘0’, so nothing was lost in the rotation. If we know that this bit

can never be a ‘1’ multiplying by 2 is simply a matter of clearing carry and rotating left

once. If the MSB is a ‘1’, it must be accounted for by moving it into a register that holds

the upper byte of a 2-byte variable.

The 2-byte variable could be stored in two registers valh and vall. Begin by clearing

both, and also carry. Then move the value to be multiplied into vall.

clrf valh ; Clear the registers and carry.

clrf vall

double

bcf status, 0 ; Clear carry.

rlf vall, f ; Multiply by 2, with carry.

rlf valh, f

bcf status, 0 ; Clear carry ready for next operation.

return

Multiplying by other amounts is simple if the multiplier is a power of 2. For instance, to

multiply by 8, run the algorithm above three times. Multiplying by amounts that are not

a power of 2 is done in stages.

Opposite is a routine for multiplying an amount in a single byte, vall, by an amount in a

second single byte, multiplier. In this example, it multiplies 31h by 12h to obtain 372h.

The bits of the multiplier are taken one at a time, by right-rotating them. If the bit is ‘0’,

nothing is done except to left-rotate vall ready for the next stage. If the bit is ‘1’, the

amount in vall is added to templ. This is a variable in which the value of the product

is gradually accumulated.

At each stage in this process, any overflow from vall is rotated into carry and from

there rotated into valh, so the result is a double-bit value, maximum 65535 in decimal.

There is no provision for overflowing into a third byte, but a two-byte maximum should

be large enough for most applications of this routine.

CB05
page 26

Friday, 16 March 2007 06:34
Black

PIC Programming

159

start
movlw 031h ; An example.
movwf vall
movlw 12h
movwf multiplier ; An example.
movlw 08h ; 8 bits to a byte.
movwf bitcount

multiply
bcf status, 0
clrf valh
clrf templ
clrf temph

times
rrf multiplier, f ; Take bits of multiplier, in order.
btfss status, 0 ; If carry = 1.
goto iszero : If carry = 0.
movf vall, w
addwf templ, f ; Add value (low byte)to temp.
btfsc status, 0
incf temph, f
movf valh, w
addwf temph, f

iszero
call double
decfsz bitcount, f
goto times

finish goto finish

double
bcf status, 0
rlf vall, f ; Multiply, with carry.
rlf valh, f
bcf status, 0 ; Clear carry ready for next operation.
return

end

A routine for multiplying two single-byte values to obtain a double-byte result.

Multiplication can also be done by repeated addition of the original value, but the

method given above is quicker.

Dividing by two and by multiples of two is easily done by rotating right and then

clearing the carry. Division by other amounts is more easily done by repeated subtrac-

tion. The divisor is subtracted from the dividend (the number to be divided) until a

negative result occurs. The number of subtractions is counted and this is the quotient

(dividend/divisor). The routine overleaf shows a single-byte division routine.

CB05
page 27

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

160

start

movlw 84h ; Example.

movwf divid ; Dividend.

movlw 018h ; Example divisor in w.

clrf count

call divide

finish goto finish

divide

subwf divid, f ; Subtract divisor from dividend

btfss status, 0

goto negative ; If negative result.

incf count, f ; Number of subtractions.

goto divide

negative

addwf divid, f ; Restore dividend to last

; positive value.

bcf status, 0

rlf divid, f ; Double this value.

bcf status, 0

subwf divid, f ; Subtract divisor.

btfss status, 0

return ; If rounding down.

incf count, f

return ; If rounding up.

end

A routine for dividing one single-byte value by another and obtaining a single-byte result.

The routine returns a result in count. The result is rounded up or down to the nearest

integer.

The greater than (>) and less than (<) operators are easily programmed, using the subwf

instruction. Value a is placed in a labelled register (call is vala) and value b is in the

working register. The result is obtained by reading the carry flag STATUS <0>, and the

zero flag, STATUS <2>.

There are three possibilities:

CB05
page 28

Friday, 16 March 2007 06:34
Black

PIC Programming

161

Carry bit,

C =

Zero bit,

Z =

a > b 1 0

a = b 1 1

a < b 0 0

Using subwf for comparisons.

For the combined operator >= (greater than or equal to) only the carry bit needs to be

read.

Similarly, if the value a is placed in w and we use the instruction sublw, we can compare

a with a fixed value.

Random numbersRandom numbersRandom numbersRandom numbers

It might be thought that random numbers have no place in robot programming, but there

are several situations in which they are needed. In games’ programs random numbers

can simulate the throwing of a dice, or other chance event. In programs in which the

robot learns by experience, its initial pattern of behaviour is often a random one, but it

learns to modify this to produce a more effective pattern.

Anothe use of random numbers is to make its actions seem more human. A human often

appears to be acting randomly, simply because we do not know what is going on in their

mind. Random numbers, in moderation can add this quality to robot actions.

CB05
page 29

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

162

Although the term ‘random’ is used here for convenience, the numbers generated by the

routine are totally predictable. It is just that the sequence of digits — 0s or 1s — is so long

before it repeats itself that the sequence appears to be a random one. The correct term is

‘pseudo-random’.

The routine simulates a hardware (pseudo-)random number generator that uses a shift

register.

The principle is that the contents of two of the registers (m and n) of a shift register are

ex-ORed together and fed back into the first register (0). This produces a pseudo-random

sequence of digits. The length of the sequence depends on which registers are tapped. As

illustrated above and as in the program opposite, with m = 5 and n = 6, the sequence

repeats every 127 bits.

The generator has an arbitrary set of bits in its registers to start with, when random (the

variable that is equivalent to the shift register) is given the value held in seed. This has

at least one ‘1’ in it. If seed is 00000000, the ex-OR gates produce nothing but zeros.

The next step is to assign to bitm and bitn the values at registers 5 and 6. These are ex-

ORed together by the xor instruction (the equivalent of the ex-OR gate). The result of this

(‘0’ or ‘1’) is stored in w, and is added to the literal constant ffh. If the result of ex-ORing

is ‘0’ the value in w remains ffh and the carry flag stays clear. If it is ‘1’ the value changes

to 00h and the carry flag becomes ‘1’. The rotate left instruction then feeds the carry flag

into register 0, producing a new set of values in random.

A random number generator can be built from a shift
register IC and an exclusive-OR gate.

CB05
page 30

Friday, 16 March 2007 06:34
Black

PIC Programming

163

movlw 0DBh ;Seed (arbitrarily chosen).
movwf random

monte
clrf bitn ;Clear bit registers.
clrf bitm
bcf status, 0 ;Carry = 0.
btfss random, 5 ;Is n = 1?
goto findm ;No: now find m.
bsf bitn, 0 ;Yes: make bitn = 1.

findm
btfss random, 6 ;Is m = 1?
goto xorem ;No: go to 'logic gate'.
bsf bitm, 0 ;Yes: make bitm = 1.

xorem
movf bitn, w
xorwf bitm, w ;xor bitn with bitm.
addlw 0ffh ;Set carry if w = 1.
rlf random, f

To read a random digit, use btfss or btfsc to obtain the value of one of the digits of

random. Then take action according to wheters the bit is ‘0’ or ‘1’. The bits can also be

sampled in groups of two or more to obtain random numbers 0 to 3 (sampling two bits), 0

to 7 (three bits) and so on.

In the listing the generator always begins with the same seed. This produces the same

sequence every time it is run. It is better to have a seed that is obtained by chance. One

way of doing this is to start with a known seed but keep the generator running in a loop,

waiting for a button to be pressed to stop the generator and continue with the program.

Exactly when the button is going to be pressed is not precisely known, so the generation

of random numbers begins from an unknown seed.

Calibrating the systemCalibrating the systemCalibrating the systemCalibrating the system

The values of some of the variables used in our programs are valid only for our versions

of the robot. This is a problem with motor control. When a drive motor is switched on for

a particular length of time (say, 0.2 s), the distance travelled by the robot depends on: the

type of motor, the reduction ratio of the gearbox, the supply voltage, the diameter of the

wheel and tyre. Your robot will differ from ours in at least one of these respects. The

same applies to other variables such as the output from analogue sensors.

CB05
page 31

Friday, 16 March 2007 06:34
Black

The Robot Builder’s Cookbook

164

Often we can decide how to adjust the variable values by watching the robot in action. A

robot running on a straight path may be programmed to run for 10 s by calling the

longdelay subroutine, telling it to call delay 50 times. The working register is loaded with

32h before calling longdelay. If, for example, the robot moves twice as far as it should do,

amend the listing to load w with half the value, 19h.

Sometimes we need to sample a variable while the robot is in action. For instance, the

output of an A-to-D converter can be read and its value stored in EEPROM. At the end of

the run plug the PIC into the programming board and read out the stored value. Amend

the program accordingly.

Software replaces hardwareSoftware replaces hardwareSoftware replaces hardwareSoftware replaces hardware

Often it is possible to use simpler or fewer sensors if we compensate by more elaborate

programming and more complex behaviour. Take as an example, the line following

behaviour of the Quester, which relies on having two sensors.

It would save space, input channels, and cost to have only one sensor. With one light

sensor, program the robot to keep the sensor directly above the track. If the sensor detects

that the robot has deviated from the track, it starts to waggle from side to side, trying to

find the track again and stay on it. Program the robot so that it remembers which waggle

direction successfully brings it back on track. Then, when the robot next deviates from the

track it tries the successful direction first. If it is still on the same curved part of the track,

which is likely, this behaviour will help it get back on the track more quickly.

This is just one example of the interdependence of the mechanical, electronic, and

programming aspects of robotics. Although they are described in separate Parts of the

book, effective design depends on all three, considered together.

CB05
page 32

Friday, 16 March 2007 06:34
Black

The Scooter

165

Projects
That was the cookbook — now for some menus ...

Part 6 takes the mechanical, electronic and programming ideas of Parts 3 to 5 and puts

them together to make robots. If the individual ideas are the recipes for the courses, the

robots are the tasty meals. Part 6 shows five ways of combining some of the ideas, but

these are not the only ways of putting them together. For instance, take the infrared

sensors of the Quester and put them on the Android. Then add the maze-solving routines

of the Gantry. That done, the Android will be able to run a maze and learn to solve it. This

is just one way of recombining the ideas — there are dozens more.

6.1 The Scooter6.1 The Scooter6.1 The Scooter6.1 The Scooter 166166166166
An easily built but surprisingly versatile mobile robot.An easily built but surprisingly versatile mobile robot.An easily built but surprisingly versatile mobile robot.An easily built but surprisingly versatile mobile robot.

6.2 Not another android!6.2 Not another android!6.2 Not another android!6.2 Not another android! 209209209209
For those who like a robot to look like a robot.For those who like a robot to look like a robot.For those who like a robot to look like a robot.For those who like a robot to look like a robot.

6.36.36.36.3 A robotic toyA robotic toyA robotic toyA robotic toy 246246246246
Turn an existing toy into a robot.Turn an existing toy into a robot.Turn an existing toy into a robot.Turn an existing toy into a robot.

6.4 The Quester6.4 The Quester6.4 The Quester6.4 The Quester 258258258258
A mobile robot with a wide range of featuresA mobile robot with a wide range of featuresA mobile robot with a wide range of featuresA mobile robot with a wide range of features

6.3 The Gantry6.3 The Gantry6.3 The Gantry6.3 The Gantry 297297297297
A gantry robot that plays board games, paintsA gantry robot that plays board games, paintsA gantry robot that plays board games, paintsA gantry robot that plays board games, paints
pictures, and solves mazes.pictures, and solves mazes.pictures, and solves mazes.pictures, and solves mazes.

CB061
page 1

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

166

Specification

Chassis based on ready-made plastic box.
Runs on 4.5 V or 4.8 V battery.
Three wheels: 2 rear drive wheels, 1 biased
castor at front for simple steering.
PIC 16F690A.
Sensors: switch, adaptable light sensors.
Actuators: motor, LEDs, buzzer/siren.

Programming

Hello World!
Calibrating the comparator
Light seeking
Proximity light sensor
Avoiding obstacles
Using an AD converter

Mechanics

This robot is to have low-cost

construction and its electronics

circuits are to be as simple as

possible.

Its modular electronic design makes

it a low-cost project in another way.

You can change the sensors and re-

program the PIC, so that you can in

effect build several different scooters

for little more than the cost of one.

The panel on the right lists the

Scooter’s main features, but you can

add other features at any time after

you have built the essential

structures.

Building the robot in a ready-made box gets it up and running that much sooner. It is also

a plus feature for those who are not too expert at — or not too interested by — building

things. The prototype was assembled in a plastic food storage box with snap-on lid,

bought at the local supermarket. The box is about 120 mm square and 50 mm deep. It is

made of green transparent plastic and the lid is orange, so it has a striking appearance as

it dashes erratically about the room, flashing its LEDs.

Hobby electronics stores are another source of plastic boxes of various shapes and sizes.

Choose a squarish one, possibly slightly bigger than the one we used.

CB061
page 2

Friday, 16 March 2007 06:37
Black

The Scooter

167

Slightly more expensive, but suitable for

drilling and cutting are the Jiffy boxes or

other ABS plastic enclosures sold by

electronics hobby shops. Most are black

plastic but it is possible to get them in other

colours, including transparent ones for

people who like to see the works. Choose

one which has a squarish shape — many

are too long and narrow to be suitable.

Some have grids marked on the lid, which

are helpful when cutting holes. They often

have slots for mounting circuit boards, and

may have a built-in battery compartment.

Wheels and steering

The Scooter has three wheels, which gives it stability on slightly uneven surfaces. It is

interesting to contrast the wheel system of the Scooter with the very different system of

the Quester. The Scooter’s two front wheels are on the same shaft so it needs only one

drive motor and only one motor control circuit. This makes the robot easier and cheaper

to build.

The third wheel is a castor. How this is constructed depends on what type of small wheel

is available. We used a pair of Lego® wheels, with tyres, 25 mm diameter. The wheels

clip on to two extensions on a 16 mm square brick. A second brick of the same type is

clipped on above this so that the assembly can be bolted to a strip of expanded PVC

board (or a strip of brass). The other end of this strip pivots on a bolt that projects from

the lid.

When choosing a box, avoid those made of brittle plastic, such as high-impact

polystyrene. Food storage boxes are usually made from a fairly rigid yet slighly flexible

plastic that is easy to drill and to cut with a craft knife. This type is suitable for the

project. Sometimes they soften with the heat of drilling, which leaves a rather ragged

edge to the hole, but on the whole it is usually no problem to get a tidy finish.

CB061
page 3

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

168

The robot is steered by an extremely simple mechanism. When moving forward, the

castor lever turns to the position shown in the photo above. The Scooter always travels

straight ahead. To turn, it must reverse a short distance, which makes the castor lever

turn to an angled position, as in the photo opposite and in the drawing on p. 179. As a

result, the robot backs and turns at the same time.

If it continues to back several times, this action takes it round in a small circle about

400 mm in diameter. Normally it turns through only a small angle before the robot moves

forward again, but in a different direction.

This technique is not true steering ability but it is simple to build, works well and is easy

to program. You may decide to adopt two-motor steering instead. If so, refer to the

description of the Quester. Its wheel and motor system can readily be fitted into a plastic

box.

The Scooter’s wheel assembly is on the lid, seen here from below (the outer side). It
runs on three wheels, in effect, but the rear castor wheel actually is a pair of wheels.

The castor is pivoted at a point to one side of the fore-aft centre line. In this photo the
castor is in the position it takes up when the robot is running straight ahead.

CB061
page 4

Friday, 16 March 2007 06:37
Black

The Scooter

169

Building the wheel system

We chose a typical food storage box, with a snap-on lid. The corners are rounded (see

photo). The best way to use this type of box is upside down. The lid (now underneath)

has the motor, the drive wheels and the castor mounted on it. The circuit boards and

parts of the robot are housed in the box.

An electric motor spins too fast to drive the wheels directly. Use a motor with a built-in

gearbox. We chose a 6 V (nominal) DC motor which included a kit of plastic gear wheels.

These are assembled to give two different reduction ratios, 1:60 and 1:288. We made up

the 1:60 gearing as the Scooter is intended to be a fast mover. The axis of the motor is at

right-angles to the drive shaft. The drive shaft projects from both sides of the gearbox and

each end is coupled to a wheel.

A top (inside) view of the wheel assembly on the lid. The castor wheels
are mounted inside the lid but project through a fan-shaped aperture.
The lever on which the wheels are mounted turns on a pivot; a long

bolt fixed to the inside of the lid. In this photo the lever is in the position
it takes when the robot is reversing. The stop peg limits the lever from
turning further when in the ‘ahead’ position (photo opposite). There is
no need for a stop peg for the ‘reverse’ position because the casing of

the motor prevents the lever from turning further,

CB061
page 5

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

170

 A recurring problem for robot builders is that the drive shaft of the chosen motor and

and the hubs of the chosen wheels are not the same diameter. Yet it is essential for the

wheels to fit firmly on to the shaft, without slipping. Now may be the time to improvise.

We chose a pair of wheels with a sporty look. They are sold by Tamiya as a 56 mm

diameter Sports Tire set. The set includes hubs for attaching the wheels to the shaft, but

does not include the shaft. To give a stable base, the drive wheels need to be about

170 mm apart, but the output shaft of the gearbox is not long enough. Aluminium tubing,

4 mm diameter was used to extend the shaft at both ends. This is a push-in fit into the

hubs and also a push-fit on to the output shaft. The tubing must be long enough to hold

the wheel well away from the side of the box.

The 4 mm tubing fits firmly to the output shaft and does not need any support. The

tubing did not slip as the drive shaft rotated, but friction grip has a habit of gradually

working loose. To prevent this, push the tubing on to the shaft and drill a 1 mm (or

smaller) hole through the tubing and shaft. Push a short length of connecting wire

through the hole and bend its ends to prevent it from dropping out.

Coupling one of the drive wheels to the
output drive shaft of the gearbox, The

wire, threaded through a hole bored in
the drive shaft and tubing, eliminates

slipping. (Not to scale)

Consider this alternative. As described above, the robot can go only straight ahead or

back and turn right. The main pair of wheels could be mounted at an angle so that the

robot continuously veers to the left as it goes forward. To go ahead it continually corrects

this bias by backing a short way and then continuing forward. To go right it backs a

greater distance before continuing. In effect this gives it left-right steering, essential when

trying to follow a wall.

CB061
page 6

Friday, 16 March 2007 06:37
Black

The Scooter

171

Two slots are cut in the side walls of the box, a little wider than the diameter of the

tubing.

There are several ways of building the castor. The essential feature is that the wheel(s) is

mounted on a lever that is pivoted to the left or right of the fore-aft centre line of the

robot. The axle of the wheel(s) is parallel to the lever.

The principle of the eccentric castor.
The view is from above.

The wheel unit is made from two
identical wheel-mounting bricks. The

wheels rotate on two projections from
the sides of the lower brick. The upper
brick also has two projections, visible in
the photo. These are aligned at right-
angles to the projections on the lower
brick. A long M3 bolt runs through the

central holes in each brick and is used to
attach the assembly to the lever.

The wheel assembly is bolted to the lever, which is cut from metal strip or sheet plastic.

The wheels are at right-angles to the length of the lever. At the other end the lever pivots

on a bolt (see photo overleaf). The length of the bolt and the position of the lever on the

bolt are adjusted so that the lid is level when resting on the drive and castor wheels.

The lever may sag under the weight of the robot for two reasons. One reason is that the

plastic of the lid is too flexible. In this case, reinforce the lid by bolting to the lid a small

square of stiffer plastic at the point where he pivot is mounted.

CB061
page 7

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

172

The prototype Scooter did not need this reinforcement. Because the lever has to turn freely

on the pivot it can not be bolted firmly to it, so allowing it to sag. It needs to be thicker.

The photo shows the solution.

Before drilling the hole for the pivot, two small squares of plastic board are
bolted to the lever, using two shorter bolts. Then the pivot hole is drilled

through all three layers. The forward stop peg is seen in this photo.

An alternative design for a castor has a single wheel. The mounting could be
made from strip aluminium or brass about 10 mm wide.

This completes the mechanical side of the robot apart from mounting the circuit boards

when they are ready, and a few other items such as LEDs. Boards are bolted to the lid and

the bottom of the box, using 15 mm M3 bolts and nuts.

CB061
page 8

Friday, 16 March 2007 06:37
Black

The Scooter

173

Shopping list — mechanical
Box, squarish, made of non-brittle plastic, possibly transparent.

DC motor and gearbox with output shaft on both sides.

Pair of wheels, with tyres, about 60 mm diam.

Metal tubing to fit into wheels and fit over drive shaft of motor.

Pulley wheel(s) about 25 mm diam for castor, with shaft about 40 mm long.

Material for making castor wheel bearings.

Nuts and bolts, mainly M3, bolts 6 mm and 10 mm long.

Summing up:

• Select a box of suitable shape (squarish), size (about 120 mm to 150 mm square),

and material (non-brittle, drillable, cuttable plastic).

• Plan the layout of motor, gearbox , drive wheels, and castor. Try to give the robot as

much clearance as practicable between its underside and the surface. For stability,

the drive wheels should be as far back and as far apart as possible.

• The gearbox ratio should give the Scooter a speed in the range 20 cm/s to 50 cm/s.

• Ensure that the drive wheels do not slip and will not come off the drive shaft when

driven.

• Cut an aperture in the lid for the castor wheels, and pivot the lever so that it does

not sag.

• Position the stop pegs.

• Mount the motor/gearbox/drive-wheel unit.

• Cut the slots in the sides of the box through which the drive shafts pass.

• Finally, check that the robot is level on its three wheels, and that the wheels do not

rub against the box.

CB061
page 9

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

174

ElectronicsElectronicsElectronicsElectronics

The robot is controlled by a PIC16F690 microcontroller. Several other types of PIC could

be used with small amendments to the programs. The system is powered by a battery of

four lithium metal-hydride AAA or AA cells. These give 4.8 V output (up to 5.2 V when

freshly charged) which is within the PICs maximum limit of 5.5 V.

The system is on three circuit boards: the controller board (for the PIC), the motor control

board, and the switching board. There are a number of off-board components such as the

battery, light-emitting diodes (LEDs) and light dependent resistors (LDRs).

To save space and keep the Scooter small and nippy, we used bare-ended, PVC insulated,

single-stranded connecting wire. The wire ends are pushed into socket strips on the

boards. The wire sold as hook-up wire or bell wire is sometimes a little too thick to go

into the sockets. Check this point before buying it.

Controller boardController boardController boardController board

Keeping to the theme of small compact units, the controller board is minimal in design. It

is essentially a 20-pin IC socket with socket strips for the connections.

The controller has socket strips on
each side for push-in connections.
Note the cuts in the copper strips

to isolate the pins on the two
opposite sides. Sockets at C1, D1
and E1 are connected as a group

by running a blob of molten solder
between them on the rear of the

board. This group is for the positive
supply voltage. It is labelled with a
patch of red insulating tape. The

0 V supply is at C12, D12, and E12,
which are also joined by solder

blobs beneath the board.
Capacitor C1 is 100 nF miniature

polyester.

CB061
page 10

Friday, 16 March 2007 06:37
Black

The Scooter

175

Motor control boardMotor control boardMotor control boardMotor control board

This has an H-bridge for controlling the direction of the motor. It is mounted on the lid,

beside the motor/gearbox unit (photo p. 180).

Connections are made to this board in the same way as to the controller board, by

pushing the stripped ends of the wires into sockets. Alternatively, solder the wires

directly to terminal pins or to individual sockets that push on to terminal pins. Details of

the connections are on p. 178.

Switching boardSwitching boardSwitching boardSwitching board

This is the name given to the board that interfaces the PIC to the sensors and to the

actuators other than the motor. There is room for a second board of this kind if the system

is expanded later. Schematic and layout diagrams are overleaf.

It is possible to provide current for LEDs directly from a PIC output, but this should not

be more than 20 mA. This project uses high intensity LEDs to provide illumination for the

light-activated proximity sensors. The LEDs require up to 70 mA each, so must be turned

on and off by transistor switches. In the prototype, D1 and D2 are white LEDs, producing

18 cd. The side-facing LED, D3 is a blue one, producing 10 cd.

 The buzzer is a semi-mechanical type and takes 40 mA, so needs a transistor switch.

The motor control board has two connecting sockets for the
supply lines. This allows it to be daisy-chained to other

boards and units in the system.

CB061
page 11

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

176

As well as transistor switches for the LEDs and buzzer (AWD), the switching
board has the resistors of the two light sensor circuits, It also has two

optional voltage dividers for use with comparator circuits.

The BC337 transistors specified in the schematic are rated at 800 mA, which is far more

than the recommended LEDs need. Almost any other npn transistor will do (such as a

BC548), unless you are switching several LEDs in parallel and running them at the peak

current of 100 mA or more. The BC548 has the same pinout as the BC337, so the strip-

board placing is the same for both types.

The resistance values of R6 and R7 depend on the values of the light-dependent resistors

LDR1 and LDR2. The resistance should be approximately equal to the resistance of the

LDR under the light conditions in which the robot is expected to operate. The output

from the sensor will then vary over a range centred on half the supply voltage.

Layout of the switching board. The two trimmer resistors, VR1 and VR2, are optional.

CB061
page 12

Friday, 16 March 2007 06:37
Black

The Scooter

177

The completed Switching Board.

Mounting the boards and off-board itemsMounting the boards and off-board itemsMounting the boards and off-board itemsMounting the boards and off-board items

The three boards are each supported on two M3 bolts. The exact positioning depends on

the size and shape of the box. Remember to place the Controller board so that it is easy to

remove and replace the PIC when debugging the program. Check that the motor and

other items on the lid will not come into contact with the boards when the lid is on the

box. Leave enough room for the wiring.

Drill 3 mm holes in the box for the bolts that support the boards. Drill a hole in the

bottom of the box for the power switch.

The two headlamp LEDs, D1 and D2, are inserted in 5 mm holes. The holes are in what

will eventually be the forward-facing wall of the box. Drill them about half-way up the

front of the box, one on the left and one on the right. When drilling these holes angle the

drill bit so that the ‘beams’ of the LEDs will converge to produce a single spot of light on

objects about 100 mm ahead of the robot. Drill a single 5 mm hole for D3 on the left side

of the robot.

To provide directional sensitivity, the LDRs are inserted into 10 mm pieces of plastic

sleeving of suitable diameter. A hole of a size to grip the sleeving is drilled for each LDR.

LDR1 faces forward and is mid-way between D1 and D2. LDR2 is directed to the left and

is close to D3.

CB061
page 13

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

178

In a few cases, indicated by * in the socket columns of the table, the wires are soldered to

the terminals.

The positive supply also goes to the off-board LEDs and LDRs. For neatness, this line and

the connections returning from the components are best assembled as a unit.

Off-board connectionsOff-board connectionsOff-board connectionsOff-board connections

The boards are connected by single-stranded PVC insulated connecting wires. The

insulation is stripped from the ends of each wire for about 5 mm. The table below lists the

connections needed. Cut the wires as short as conveniently possible.

FROM Function TO

Board Socket Board Socket

Controller E1 Positive supply Switching A1

Switching A2 Positive supply Motor control C2

Motor control C1 Positive supply Power switch S1*

Power switch S1 (common) * Positive supply Battery positive

Controller E12 0 V line Motor control E2

Motor control E1 0 V line Switching C1

Switching C2 0 V line Battery negative

Controller L1 Motor control A Motor control G2

Controller M1 Motor control B Motor control H2

Motor control G20 Motor output A Motor M1 terminal*

Motor control H20 Motor output B Motor M1 terminal*

Controller G12 LDR1 Switching F1

Controller F12 Comp. 1 ref. Switching B1

Controller N12 Buzzer Switching A22

Controller J1 D1 and D2 Switching C22

Controller I1 D3 Switching E22

CB061
page 14

Friday, 16 March 2007 06:37
Black

The Scooter

179

Connections between the Switching board and the LEDs/LDRs
(diagrammatic).

The positive line is drawn in the diagram as a continuous line. It is a length of bare

connection wire which runs from the anode of D1 (front right), across the front of the

body, to half-way along the left side. Then it continues to the positive terminal of the

power switch S1. A small loop is twisted in this line level with each of the components it

visits: D1, LDR1, D2, D3 and LDR2. There is insulated sleeving between these points. The

leads of the components are cut short, bent into hooks, and hooked into the loops in the

positive line. The loops and hooks are squeezed together with pliers and the joints are

soldered.

Four other lines run back from the non-positive terminal of each component to a socket

on the switching board. One of these serves two components, the cathodes of D1 and D2.

These connections use insulated single-stranded connecting wire and are wound spirally

around the positive line to give the assembly some rigidity.

The wired assembly is supported by two small cable clips, situated on either side of

LDR1. These self-adhesive clips do not adhere to the plastic of the box, so they are bolted

in place with M2 bolts.

CB061
page 15

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

180

The patch of Velcro is to hold the battery box in place. The box holds four AAA

rechargeable NiMH cells and has a matching Velcro patch on its side. It connects to the

circuit by a standard PP3 battery connector.

This completes the wiring but it is essential to test everything at this stage. Routine

testing is described on pp. 102-103. The main stages are:

• Test for continuity on the 0 V line and positive supply line.

• Test for short circuits between these two lines.

• With the PIC removed from its socket, switch on the power and check that each board

and off-board component receives power.

• At the PIC socket apply a positive voltage to each output line using the table opposite

to identify test points. The LEDs and buzzer should operate. With a positive and 0 V

lead applied to pins 8 and 9, the motor should run forward or in reverse.

• Use a test meter to see that the voltage from the LDRs is a reasonable value with the

LDRs exposed to light and shaded.

The interior of the box when wiring is finished, as seen from below. Most of the connections are
between the Processor board and Switching board, but the wiring has been routed away from the

processor socket so that it does not interfere with putting the PIC into its socket and removing it. The
connections to the LED/LDR assembly can be seen going off to the left (right in the photo), near the

label ‘Velcro’. The main switch S1 can just be picked out between the Velcro and the buzzer.

CB061
page 16

Friday, 16 March 2007 06:37
Black

The Scooter

181

PIC I/OPIC I/OPIC I/OPIC I/O

For later reference, the table below lists I/O connections to the PIC. A photocopy of this

table mounted on card is handy to have on the workbench while assembling and testing

the circuit modules.

Port Name IC pin I/O Connected to 0 = 1 =

A RA0 19 AnI Reference voltage (AN0)

RA1 18 AnI Forward light sensor (AN1)

RA2 17 I Program select Program 1 Program 2

RA3 4 I

RA4 3 I/O

RA5 2 I/O

B RB4 13 I/O

RB5 12 I Reserved for USART input

RB6 11 O Bleeper Off Sound

RB7 10 O Reserved for USART output

C RC0 16 I/O

RC1 15 I/O

RC2 14 I/O

RC3 7 I/O

RC4 6 O Headlamps Off On

RC5 5 O Side lamp Off On

RC6 8 O Motor A Forward Reverse

RC7 9 O Motor B Reverse Forward

The entries are grouped by I/O port and list all the channels available on the PIC16F690.

In the fourth column, the I or O indicates whether the channel is to be configured as an

input or an output. AnI is an analogue input.

RC0 to RC3 can be used as analogue inputs for the comparators or AD converters if you

decide to add more sensors, such as LED2.

The table shows the settings of Motor A and B lines. To stop the motor make both 0 or

both 1.

CB061
page 17

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

182

Shopping list — electronic
Controller board:

C1 polyester capacitor, 100 nf
IC1 PIC16F690
20-way d.i.l. turned pin IC socket
socket strip 2 x 12 sockets
stripboard 17 strips x 12 holes

Motor control board:
Q1, Q3 BC639 npn transistor (2 off)
Q2, Q4 BC640 pnp transistor (2 off)
socket strip, 2, 3, and 6 sockets
stripboard 8 strips x 21 holes

Switching board:
R1-R3 resistors 470R (3 off)
R4 resistor 27R
R5 resistor 68R
R6, R7 resistors 100K (2 off)
VR1, VR2 horiz. trimmers 100K (2 off), optional
audible warning device, solid-state
socket strip, 3, 4, 5, and 8 sockets
stripboard 12 strips x 30 holes

Off-board components:
D1 - D3 5 mm light emitting diodes, ultra bright (3 off)
LDR1m LDR2 light dependent resistors (ORP12 or similar)
S1 SPST mini toggle switch
battery holder, 4 x AAA or 4 x AA, with wire or stud terminals
PP3 type battery connector (if battery box has stud terminals)
AAA or AA NiMH rechargeable cells (4 off) (preferred)

Miscellaneous:
Strip of Velcro sticky Back
Single stranded connecting wire (to fit sockets)
Solder

CB061
page 18

Friday, 16 March 2007 06:37
Black

The Scooter

183

Programming in assemblerProgramming in assemblerProgramming in assemblerProgramming in assembler

It is assumed in this section that you are using the PICkit 2 programmer and software and

writing in assembler. If you are using another programmer, your listing will be largely

the same but with minor differences. If you are programming in PICBASIC, there are

versions of these assembler programs on pp. 200-208.

Hello World!Hello World!Hello World!Hello World!

It is almost a tradition for beginners’ books on programming to begin with the simplest of

all programs — displaying ‘Hello World’ on the monitor screen. This program is the

robotic equivalent. It makes the Scooter show off its output capabilities in the simplest

possible routine. At the same time it is a way of checking that the output circuits are

working properly.

The first thing the Scooter does when this program is run, is to stay motionless for about 5

seconds, waiting for everybody to give it their full attention. Then it switches its two

headlamp LEDs on for 5 s. Next it runs forward for 2 s, so make sure that you are not in

its way. Finally it switches on its side lamp LED for 2 s. The program that produces these

actions is listed overleaf.

The file begins with a leader that identifies the program. This is not part of the program.

This header is ignored by the assembler because the assembler always ignores anything

on a line that comes after a semicolon (;). You can alter this header or leave it out

altogether.

The first lines in any code define variables and other initial settings. The listing states the

type of controller the program is written for. In this example it is the 16F690. This is

followed by the configuration code, which is 0x33c4. Note that the directive __CONFIG

begins with two underline characters. The listing continues with directives giving the

addresses of registers, the code values of ‘w’ (working register) and ‘f’ (the current file

register), and the labels of the delay subroutines. Depending on the software you are

using, you may not need to include all these addresses because they are built into the

software or are found by calling on an ‘include’ file.

CB061
page 19

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

184

;***

; Filename: Scoot01.asm *

; *

; Hello World! *

; *

;***

list p=16F690 ; The controller

__CONFIG 0x30c4

; Bank0

status equ 03h

portb equ 06h

portc equ 07h

; Bank1

trisb equ 06h

trisc equ 07h

; Bank2

ansel equ 1eh

anselh equ 1fh

; Destination code

f equ 01h

; Labels

delay0 equ 20h

delay1 equ 21h

delayn equ 22h

org 00h

goto start

org 04h

goto start

start

bcf status, 5 ; Bank0.

bcf status, 6

clrf portb

clrf portc

bsf status, 5 ; Bank1.

clrf trisb ; Port B all outputs.

clrf trisc ; Port C all outputs.

bcf status, 5 ; Bank2.

bsf status, 6

clrf ansel ; Digital input/output.

clrf anselh ; Digital input/output.

bcf status, 6 ; Bank0.

bcf status, 5

CB061
page 20

Friday, 16 March 2007 06:37
Black

The Scooter

185

; Program begins here

clrf portb

clrf portc

movlw 019h ; Delay 5 s. Get ready to watch display.

call longdelay

bsf portc, 4 ; Headlamps on.

movlw 019h ; Delay 5 s.

call longdelay

bcf portc, 4

bsf portc, 7 ; Go forward.

movlw 0ah ; Delay 2 s.

call longdelay

clrf portc ; Stop.

bsf portc, 5 ; Side lamp on.

bsf portb, 6 ; Buzzer on.

movlw 019h ; Delay 2 s.

call longdelay

clrf portc ; Side lamp off.

clrf portb ; Buzzer off.

endit goto endit

; Subroutines

delay

decfsz delay0, f

goto delay

decfsz delay1, f

goto delay

return

longdelay

movwf delayn

repeat

call delay

decfsz delayn, f

goto repeat

return

end

CB061
page 21

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

186

Now set up the controller so that it operates correctly with the output circuits (the inputs

from the LDRs are not used in this program). Bits <5> and <6> of the STATUS register

switch in the banks of Special Function registers. The registers for Port B and Port C in

Bank 0, are cleared. Port A is not used in this program. Then switch to Bank 1 to set the

tristate registers so that all channels in Ports B and C are outputs.

Unlike some of the earlier PICs, the channels of the 16F690 are analogue by default and

have to be set to digital. So visit Bank 2, where ANSEL and ANSELH are located, and

clear them both to ‘0’, which makes everything digital.

The actual program begins at the top of p. 185. The port registers are cleared to make

certain that the LEDs do not light up immediately. That done, there is a pause, using the

longdelay subroutine.

The LEDs and motor are switched on or off by setting bits in the port registers. The table

on p. 181 lists which bits. Setting bit 4 of Port C, for instance, makes the RC4 output go

high and so activates the transistor switch the turns on LED1 and LED2. The ‘bit set’,

instruction (bsf) is used for switching on, and the ‘bit clear’ instruction (bcf) for

switching off. At the end, just to be sure that nothing remains switched on, clear all

channels of both ports, using ‘clrf’.

Having done its tricks, the Scooter is left in a continuing endit loop.

To produce the pauses the program calls on the longdelay subroutine. This calls on the

delay subroutine. Both subroutines are at the end of the listing. At the very end of the

listing is the essential directive, end.

Hello some moreHello some moreHello some moreHello some more

The listing can be adapted and extended to increase the Scooter repertoire:

• Make it flash the LEDs two or three times instead of only once.

• Make it give a treble beep before and after it runs forward.

• Make it run backward and then forward in a different direction.

• Make it end the routine by flashing its LEDs in an endless loop.

CB061
page 22

Friday, 16 March 2007 06:37
Black

The Scooter

187

Seeking the lightSeeking the lightSeeking the lightSeeking the light

In this program, the Scooter is set down in a room which has fairly subdued lighting.

There is one brighter souce of light which may be either a table-lamp on the floor or (in

daytime) a window with a low sill. The robot’s task is to locate this source and to move

toward it.

The program is also an example of how to use the PIC’s comparators. Before going on to

the light-seeking program, here is a program intended for running while setting the

variable resistor VR1 (p. 176). A diagnostic program such as this is useful for checking

that the sensor and voltage reference are working properly.

;***

; Filename: Scoot02.asm *

; *

; Calibrating the comparator. *

; *

;***

list p=16F690 ; Define processor

__CONFIG 0x30c4

; Bank0

status equ 03h

porta equ 05h

portb equ 06h

portc equ 07h

intcon equ 0bh

; Bank1

option_reg equ 01h

trisa equ 05h

trisb equ 06h

trisc equ 07h

; Bank2

cm1con0 equ 19h

ansel equ 1eh

anselh equ 1fh

; Destination codes

w equ 00h

f equ 01h

z equ 02h

CB061
page 23

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

188

; Labels

delay0 equ 20h

delay1 equ 21h

org 00h

goto start

org 04h

goto start

start

bcf intcon, 7 ; Disable interrupts.

bcf status, 5 ; Bank0.

bcf status, 6

bsf status, 5

clrf trisb ; Port B all outputs.

clrf portc ; Port C all outputs.

bcf status, 5 ; Bank2.

bsf status, 6

movlw 03h ; Digital input except RA0 and RA1.

movwf ansel

clrf anselh ; Digital output.

movlw 080h ; Enable comparator.

movwf cm1con0

bcf status, 6 ; Bank0.

bcf status, 5

; Program begins here

clrf porta

clrf portb

clrf portc

sample

bsf status, 6 ; Bank 2.

movlw 050h ; Bit 6 = 1.

andwf cm1con0, w ; Read output bit.

bcf status, 6 ; Bank 0.

btfss status, z ; Test zero bit.

goto sample

bsf portc, 5 ; Side lamp on.

call delay

bcf portc, 5 ; Lamp off

goto sample

CB061
page 24

Friday, 16 March 2007 06:37
Black

The Scooter

189

; Subroutine

delay

decfsz delay0, f

goto delay

decfsz delay1, f

goto delay

return

end

After stating the type of PIC and the configuration word, there is a list of labels for special

purpose registers. This list is generally not needed if you are running development

software that uses ‘include’ files. There are no interrupt service routines so we go straight

to the main program.

The flow chart shows that the program runs in
a continuous loop. Each time around the loop
the output of the comparator is read, and the
LED is switched on for 0.2 s or not, depending

on the reading.

 If the LDR is receiving bright light there is a high input voltage to the comparator. If this

voltage is greater than the reference voltage coming from VR1, bit <6> of CM1CON0 is

high. The state of this bit is monitored by looking at the zero flag in the status register. If

the input voltage is high, bit <6> of CM1CON0 is ‘0’,and the zero flag is set. The

instruction ‘btfss status, z’ results in skippng the next line and turning the LED on

for 0.2 s. Then the program loops back to test the bit again. If light is low, bit<6> is ‘1’, the

zero flag is clear, and the program loops back without flashing the LED.

CB061
page 25

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

190

Use the program like this. Place the robot so that it is receiving reasonably bright light —

as bright as the target lamp to be used when running the light-seeking program. Run the

calibration program. Adjust VR1 with a screwdriver so that the LED just comes on. The

LED should go out immediately if the source of light is removed or reduced.

Now for the light-seeking program. This is based on a simple procedure. The room has

low intensity diffuse background light. There is a single bright source of light, such as a

table-lamp placed on the floor, or a window with bright sky outside. The Scooter is placed

on the floor, not facing the light source. The flowchart explains what happens next.

The Scooter first tries to find the light source,

using the routine beginning at the label

‘sample’. It reads the comparator output to

determine if the light ahead of it is bright or

not bright. By ‘bright’ we mean that the

voltage from the LDR sensor is greater than

the reference voltage.

If the scene ahead is not bright, the robot

goes into the ‘scan’ subroutine. It backs a

short distance, turning right as it goes, then

runs forward a short distance. In effect it

has turned a little to the right and is now

looking at a different part of the room. For

as long as the bright light does not come

into its view, it continues to read the

comparator output and then scan one step.

After 10 such attempts (see bottom of left

column) it will have covered a 360° view of

the room and failed to find any bright light.

It abandons the search and flashes all its

LEDs. The program ends at this point.

Left: The light-seeking program gives the robot
five attempts to home on a bright light.

CB061
page 26

Friday, 16 March 2007 06:37
Black

The Scooter

191

If, while it is reading the comparatpr and scanning, the comparator gives a logic high

output, the robot knows it is facing toward a bright source. It goes to the ‘found’ label,

where it first of all celebrates by switching on its side LED and sounding its bleeper. Then

it rushes forward to get to the source.

However, the angular resolution of its light sensor is rather wide so it may not be

heading accurately. After travelling for a few seconds it may be heading to one side of the

source. It must aproach the source in stages, checking the direction at the end of each

stage. So when it stops moving forward it returns to the ‘sample’ label and repeats the

reading and scanning behaviour. When it finds the light again it moves forward,

perhaps in a new direction.

Altogether it is allowed five ‘goes’ or stages to get to the lamp. If it does not reach it by

then the bottom of the right column of the flowchart shows that it stops and flashes just

its headlamp LEDs.

;***

; Filename: Scoot03.asm *

; Scooter seeking light, using comparator. *

; *

;***

list p=16F690 ; Define processor

__CONFIG 0x30c4

; Bank0

status equ 03h

porta equ 05h

portb equ 06h

portc equ 07h

intcon equ 0bh

; Bank1

trisa equ 05h

trisb equ 06h

trisc equ 07h

; Bank2

cm1con0 equ 19h

ansel equ 1eh

anselh equ 1fh

CB061
page 27

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

192

; Bits

w equ 00h

f equ 01h

z equ 02h

; Labels

delay0 equ 20h

delay1 equ 21h

direction equ 23h

stages equ 24h

org 00h

goto start

org 04h

goto start

start

bcf intcon, 7 ; Disable interrupts.

bcf status, 5 ; Bank0.

bcf status, 6

bsf status, 5

clrf trisb ; Port B all outputs.

clrf portc ; Port C all outputs.

bcf status, 5 ; Bank2.

bsf status, 6

movlw 03h ; Digital input except RA0 and RA1.

movwf ansel

clrf anselh ; Digital output.

movlw 080h ; Enable comparator.

movwf cm1con0

bcf status, 6 ; Bank0.

bcf status, 5

; Program begins here

clrf porta

clrf portb

clrf portc

movlw 08h

movwf stages

scanning

movlw 0ah ; Direction = 10

movwf direction

CB061
page 28

Friday, 16 March 2007 06:37
Black

The Scooter

193

sample

movlw 03h

call longdelay

bsf status, 6 ; Bank 2.

movlw 050h ; Bit 6 = 1.

andwf cm1con0, w ; Read output bit.

bcf status, 6 ; Bank 0.

btfss status, z ; Test zero bit.

goto found

call scan

call delay

decfsz direction ; Counting down the scans.

goto sample ; Try again.

goto flash

found

bsf portc, 5 ; D3 on.

bsf portb, 6 ; Bleeper on.

movlw 0ah

call longdelay

clrf portc ; D3 off.

clrf portb ; Bleeper off.

bsf portc, 7 ; Forward.

movlw 0eh

call longdelay

clrf portc ; Stop.

decfsz stages

goto scanning

goto finish

flash

bsf portc, 5 ; Side lamp on.

bsf portc, 4 ; Head lamps on.

movlw 03h

call longdelay

clrf portc

movlw 03h

call longdelay

goto flash

finish

bsf portc, 4 ; Headlamps on.

movlw 03h

call longdelay

clrf portc

movlw 03h

call longdelay

goto finish

CB061
page 29

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

194

; Subroutines

scan

bsf portc, 6 ; Reverse.

movlw 05h

call longdelay

clrf portc ; Stop.

call delay

bsf portc, 7 ; Forward.

movlw 05h

call longdelay

clrf portc ; Stop.

return

The program also needs the delay and longdelay subroutines (p. 185), followed by the ‘end’

directive.

This program employs an external reference. This allows the triggering level to be reset

with the screwdriver instead of having to edit the program and reassemble it.

Robots differ in their motors and wheels so that 10 directions might not cover the

whole circle. If so, edit the program for more directions (first line after the ‘scanning’

label).

If you are running the Scooter in a large room (such as an empty double garage) it could

be allowed a few more stages to get to the lamp. Amend the value given to stages (lines

immediately before the ‘scanning;’ label).

Avoiding obstaclesAvoiding obstaclesAvoiding obstaclesAvoiding obstacles

For this event, the room needs to have plenty of floor space and to be evenly lit. It can

have fairly bright overall lighting as long as it is not stronger than the beams from the

two forward-facing LEDs. The program illustrates a technique for light-based proximity

detection.

The technique uses the PIC’s analogue to digital converter to measure the light received

at the forward-facing LDR while the forward-facing LEDs are on. It compares this

reading with the reading from the LDR when the LEDs are off.

CB061
page 30

Friday, 16 March 2007 06:37
Black

The Scooter

195

The LEDs are mounted on the body of the robot and directed on a single central point

about 100 mm ahead of the robot. If an object is present at this point, and assuming the

object is large enough and fairly reflective, the amount of light received by the LDR will

be significantly greater than normal. The robot detects this situation and takes avoiding

action.

The robot will respond also when it approaches a wall or furniture, so it is able to scoot

about the room indefinitely, though it may eventually get stuck in a corner. You could try

to program it to get out of such a trap.

The program listing (pp. 198-199) twice includes a routine for recording the AD output in

EEPROM. This was written into the program during development to monitor the data

processing. After running the program to test the behaviour of the robot, the PIC is

returned to the programmer board, for the stored data to be read. These routines are not a

necessary part of the final program and there is no need to type them in. However, they

are very helpful at the development stage.

The main program loop is relatively simple:

In the main loop of the obstacle
avoiding program, the robot moves
forward for a short distance, then
flashes its LEDs on and off (in the

convert1 subroutine). If it detects an
obstacle, it backs and turns (in the

spin subroutine) but, if it does not, it
carries straight on.

CB061
page 31

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

196

The interesting part of this program is the convert1 subroutine.

The convert1 subroutine of the
obstacle avoiding program.

The action of this

subroutine is to return a

value stored in the variable

flags. If no obstacle is

detected ahead the value

returned is 1. If not, it is 0.

The subroutine begins by

setting flags to 0. It then

switches on the headlamps

(D1 and D2). There is a

short delay to allow the AD

circuit to equilibrate, and

then the PIC goes to a

further subroutine (adread)

to perform the AD

conversion. It sets bit<1> of

the ADCON0 register to

start the conversion. Then it

waits in a loop until bit<1>

is cleared, indicating that

conversion is complete.

Returning to convert1, it

moves the result of the

conversion from its

working register to a

register labelled reflect.

The whole procedure is then repeated with the LEDs switched off. This time the PIC

returns from adread with a value in its working register which represents the level of the

background illumination of the room at that time. Based on the two readings, with

headlamps on and headlamps off, the PIC decides if there is an obstacle ahead or not.

Consult the listing to see the details.

CB061
page 32

Friday, 16 March 2007 06:37
Black

The Scooter

197

The first step in processing the readings is to subtract the background reading from

reflect. If this gives a negative result, something odd happened during the reading and the

PIC is sent back to try again. The program finds out whether the result of a subtraction is

negative by testing the carry bit (bit<0>) of the STATUS register is 0. If the result is

positive or zero, the carry bit is 1. So the line ‘btfss status, 0’ performs the check

and sends the controller back to the beginning or to the next stage of processing.

There may be random changes of illumination between the two readings that are not due

to reflection from an object, and these should be ignored. We set a minimum value for

what is a significant difference, subtract this and test to see if this still leaves a positive

value in reflect. If so, flags<0>is set to 1. If not, flags<0>> is left as 0.

This completes the processing and the subroutine returns to the main loop with flags<0>

set or clear.

The value subtracted from reflect controls the sensitivity of the processing. Too big and

the robot will fail to detect an object; too little and it will repsond to small changes in

ambient light levels that are not the effect of an object ahead. Edit the program if you

think the subtracted value is wrong for your robot. This is the purpose of the routines

that store the data in EEPROM, for you can read what values were returned from the two

readings.

In this program we are not interested in 10-bit precision. This is why the converter was

configured to right-justify the result, putting the eight most significant bits in ADRESH.

The line ‘bsf eecon1, 7’ does this. On returning from adread, the result is in ADRESH,

and the two least significant bits (in ADRES) are ignored.

The listing begins in the usual way by stating the controller type and its configuration. It

then lists the equates, but does not need them all. The full list is on p. 135 but can be

shortened by deleting unused register names. This program uses:

Bank 0: STATUS, PORTA, PORTB, PORTC, INTCON, ADRESH, ADCON0.

Bank 1: OPTION_REG, TRISA, TRISB, TRISC, WPUA, ADCON1.

Bank 2: EEDAT*, EEADR*, ANSEL, ANSELH.

Bank 3: EECON1*, EECON2*.

Those marked * are needed only if you are wanting to write results in the data memory.

Equates are used for w, and f, and for the variables, delay0, delay1, delayn, reflect and flags.

CB061
page 33

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

198

The instructions for setting up the controller begin at the start label. They are the same as

those in the listing on pp. 191-192. After this comes the program, listed below.

; Program begins here

movlw 019h ; Delay 5 s.

call longdelay

scooting

call shortdelay

bcf flags, 0

bcf portc, 6 ; Motor forward.

bsf portc, 7

movlw 05h

call longdelay

bcf portc, 7 ; Stop.

call convert1 ; Read forward sensor.

call shortdelay

btfss flags, 0 ; If reflection.

goto scooting

call spin

goto scooting

flash

bsf portc, 5 ; Side lamp on.

call delay

bcf portc, 5 ; Side lamp off.

call delay

goto flash

; Subroutines

convert1

bcf flags, 0 ; Clear reflecting flag.

bsf portc, 4 ; Headlamps on.

call shortdelay

call adread

movf adresh, w ; Read 8-bit result into w.

movwf reflect ; Reflected light.

; Writing data EEPROM (optional).

bcf portc, 4 ; Headlamps off.

call shortdelay

call adread

CB061
page 34

Friday, 16 March 2007 06:37
Black

The Scooter

199

; Writing data EEPROM (optional).

movf adresh, w ; Read 8-bit result into w.

subwf reflect, f ; Reflected - background.

btfss status, 0 ; Reflected >= background.

goto convert1 ; Spurious readings - try again

movlw 19h ; Minimum significant difference.

subwf reflect, w

btfss status, 0

return ; No reflection detected.

bsf flags, 0 ; Reflection - set flag.

return ; Reflection detected.

adread

movlw 050h ; Select clock 1/16 Fosc.

movwf adcon1

movlw 01h ; Left just.,Voltage ref is supply.,

; channel 0, enabled.

movwf adcon0

call delay ; To sample voltage.

bsf adcon0, 1 ; Start conversion.

waiting

call delay

btfsc adcon0, 1 ; If conversion complete.

goto waiting

return

spin

bsf portb, 6 ; Buzzer on.

bsf portc, 5

call delay

bsf portc, 6 ; Reverse and turn.

bcf portc, 7

movlw 05h

call longdelay

bcf portc, 6 ; Stop.

bcf portb, 6 ; Buzzer off.

bcf portc, 5

return

shortdelay

movlw 060h ; Sets length of delay.

movwf delay1

call delay

clrf delay1 ; Restore delay1 to zero.

return

CB061
page 35

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

200

Add the delay and longdelay subroutines as on p. 185 and complete the program with the

end directive on the last line. If you want to monitor the data while testing or developing

the program, insert the routines listed on pp. 127-128 at the points indicated in the listing.

They can be deleted later after the program has been fine-tuned.

This programming section has concentrated on the analogue processing available in the

16F690. But this is not all that the Scooter can do if it is given additional sensors or

actuators. For instance, add a sound sensor and program it to start roaming when you

click your fingers. Or mount an infrared sensor at its front, pointing downwards as in the

Quester. It can then be programmed to avoid crossing a black line. It can be trapped

simply by drawing a continuous line around it. If it is biased to turn left (p. 170) it could

be trained to follow a line or run a maze.

A more ambitious project is to build two Scooters and let them communicate with each

other. This could be by flashing LEDs or by radio. Joint behaviour of two robots is

something to explore.

Programming in PICBASICProgramming in PICBASICProgramming in PICBASICProgramming in PICBASIC

This section describes BASIC programs that are similar to the assembler programs in

their action. Use these and the flowcharts as a guide to converting other assembler

programs into BASIC. Where the assembler and PICBASIC programs have a more or less

identical action we will not describe this again. Refer to the previous section. Important

differences are described in this section.

Hello World!Hello World!Hello World!Hello World!
The program of the PICBASIC version is listed opposite. It is clear when we compare this

listing with the assembler listing on pp. 184-185, that the BASIC listing is much shorter.

This is generally true of all BASIC versions of assembler programs. BASIC has built-in

routines for complicated tasks, while assembler has to be told what to do, one small step

at a time. But the assembled program in machine code is probably always shorter than

the version generated by BASIC compiler.

CB061
page 36

Friday, 16 March 2007 06:37
Black

The Scooter

201

' Scoot01.txt

Symbol Portb = $6

Symbol Portc = $7

Symbol Trisb = $86

Symbol Trisc = $87

Symbol Ansel = $11E

Symbol Anselh = $11F

Poke Trisb, 0 ' Port B all outputs.

Poke Trisc, 0 ' Port C all outputs.

Poke Ansel, 0 ' Digital input/output.

Poke Anselh, 0 ' Digital input/output.

' Program begins here.

Poke Portb, 0

Poke Portc, 0

Pause 5000 ' Delay 5 s.

Poke Portc, $10 ' Headlamps on.

Pause 5000 ' Delay 5 s.

Poke Portc, $80 ' Go forward.

Pause 2000 ' Delay 2 s,

Poke Portc, $20 ' Side lamp on.

Poke Portb, $40 ' Buzzer on.

Pause 2000 ' Delay 2 s.

Poke Portc, 0 ' Side lamp off.

Poke Portb, 0 ' Buzzer off.

End

A noticable feature of this listing is the high proportion of ‘Poke’ statements. PICBASIC

normally uses the ‘High’ and ‘Low’ commands for making an output pin high or low.

These commands refer only to the bits of Port B. For various reasons, the Scooter’s PIC is

already set up to use Port C for most output operations. To change it to using Port B

would mean altering the wiring, and rather than do this we have used ‘Poke’. Also,

Port B in the 16F690 controller has only four bits. In the assembler version we are able to

set or clear individual bits but ‘Poke’ acts on all the bits of a port at the same time. There

are ways of handling this, which are explained later.

Similarly, the ‘Peek’ command reads all bits at the same time.

CB061
page 37

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

202

Seeking the lightSeeking the lightSeeking the lightSeeking the light

The PICBASIC version of this program has the same aim as the assembler version, but

tackles it in a different way. In the assembler version, the Scooter spins round until the

first time it detects a bright source of light. Then it moves towards it. In the BASIC

version, the robot spins round for at least 360°, sampling as it goes. It finds which is the

brightest of perhaps several sources. Then it moves towards the brightest source. The

flowchart shows how it does this.

The BASIC version includes the routine for finding the
maximum.

CB061
page 38

Friday, 16 March 2007 06:37
Black

The Scooter

203

The Scooter is using one of its analogue-to-digital converters instead of its comparator.

This means that it does not need to use pin 19 (AN0) for input from the voltage reference

(VR1). We can just ignore this input or we can use it as an alternative input to a second

AD converter. The PIC pin 19 (RA0/AN0) at F12 is connected to resistor R7 at E1. This

makes LDR2 available as a light sensor on the left side of the robot.

The program includes a routine to find the brightest source. As it scans and samples, the

successive samples read into SampleA are compared with SampleB and the greater is put

into SampleB. At the end of the sampling phase SampleB is reduced slightly and stored in

SampleC. This is so that sampling error is less likely to result in the robot missing the

brightest source as it tries to find it again in the looking routine.

In the looking routine it scans again, comparing the input, SampleD, with SampleC until it

finds a brighter (with a reasonable chance, the same?) source. Then it goes to the found

routine and moves forward. The advantage of this program over the other version is that

it will work at any overall light level. It does not depend on presetting a reference

voltage. It samples input voltages and picks out the greatest. But there is a bug lurking

here! Under very low light, with a not-very-bright source, the value of SampleB may be

less than 16. Taking 16 away from this low value makes SampleC negative. It might be –3,

for example, which is $fd in hex. However the compiler does not recognise this as a

negative value. It is taken to be positive and $fd has the value 253 in decimal. This puts it

way above any likely reading, and the true source will not be found. So, do not run this

program in a coal cellar.

Here is the listing:

' Scoot03.txt

Symbol Portb = $6

Symbol Portc = $7

Symbol Adresh = $1E

Symbol Adcon0 = $1F

Symbol Trisb = $86

Symbol Trisc = $87

Symbol Adcon1 = $9F

Symbol Ansel = $11E

Symbol Anselh = $11F

Symbol SampleA = B2

Symbol SampleB = B3

CB061
page 39

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

204

Symbol SampleC = B4

Symbol SampleD = B5

Symbol Looks = B6

Symbol Finds = B7

Symbol Direction = B8

Symbol Stages = B9

Poke Trisb, 0 ' Port B all outputs.

Poke Trisc, 0 ' Port C all outputs.

Poke Ansel, 3 ' Digital input except RA0 and RA1.

Poke Anselh, 0

Poke Portb, 0

Poke Portc, 0

Pause 4000

Stages = 0

Scanning:

SampleA = 0

SampleB = 0

SampleC = 0

SampleD = 0

Sample:

For Direction = 1 to 10

Pause 500 ' Allow time to settle.

Gosub ADread

Peek Adresh, SampleA ' Read result into SampleA.

If SampleA < SampleB Then Ignore ' Find brightest.

SampleB = SampleA

Ignore:

Write Direction, SampleA

Gosub Scan

Next Direction

Write 11, SampleB

SampleC = SampleB - $10 ' Slightly smaller.

Poke Portc, $20 ' D3.

Pause 2000

Poke Portc, 0 ' D3 off.

Looks = 0

Looking:

If Looks > 10 Then Abandon

Looks = Looks + 1

Pause 500

Gosub ADread ' Looking for bright light.

Peek Adresh, SampleD

Write 12, SampleD

If SampleD > SampleC Then Found ' Bright light found.

Gosub Scan

Goto Looking

CB061
page 40

Friday, 16 March 2007 06:37
Black

The Scooter

205

Found:

Poke Portc, $80 ' Forward.

Pause 3000

Poke Portc, 0 ' Stop.

Stages = Stages + 1

If Stages = 5 Then Finish

Goto Scanning

Abandon:

Poke Portc, 0 ' Stop.

Flash:

Poke Portc, $20

Pause 500

Poke Portc, $0

Pause 500

Goto Flash

Finish:

Poke Portc, $30 ' All LEDs.

Pause 500

Poke Portc, $0

Pause 500

Goto Finish

' Subroutines

ADread:

Peek Adcon0, B0 ' Enable converter.

Poke B0, 0

Bit0 = 1

Poke Adcon0, B0

Poke Adcon1, $50 ' Clock 1/16 Fosc.

Pause 5

Peek Adcon0, B0 ' Start conversion

Bit1 = 1

Poke Adcon0, B0

Waiting:

Pause 5

Peek Adcon0, B0

If Bit1 = 1 Then Waiting ' Test GO/DONE bit.

Return ' Done.

Scan: Poke Portc, $40 ' Reverse.

Pause 1000

Poke Portc, 0 ' Stop.

Pause 100 ' Allow time to halt.

Poke Portc, $80 ' Forward.

Pause 1000

Poke Portc, 0 ' Stop'

Return

End

CB061
page 41

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

206

When developing and testing this program, it is helpful to know the values of the input

voltages. PICBASIC makes this simple. The short command ‘Write 11, SampleB’ puts

the value of SampleB ito EEPROM at address 11. The PIC is returned to the programming

board for this value to be displayed on the computer screen. In the sampling routine we

can see the ten succesive values of SampleA, which gives us an idea of their variability.

These write commands can be deleted when development is finished.

Avoiding obstaclesAvoiding obstaclesAvoiding obstaclesAvoiding obstacles
This has much the same structure as the assembler version:

' Scoot04.txt

Symbol Status = $3

Symbol Porta = $5

Symbol Portb = $6

Symbol Portc = $7

Symbol Intcon = $B

Symbol Adresh = $1E

Symbol Adcon0 = $1F

Symbol Trisa = $85

Symbol Trisb = $86

Symbol Trisc = $87

Symbol Adcon1 = $9F

Symbol Ansel = $11E

Symbol Anselh = $11F

Symbol Reflect = B2

Symbol Backg = B3

Symbol Flag = BIT8

Poke Intcon, 0 ' Disable interrupts.

Poke Porta, 0

Poke Portb, 0

Poke Portc, 0

Poke Trisb, 0 ' Port B all outputs.

Poke Trisc, 0 ' Port C all outputs.

Poke Ansel, 3 ' Digital input except RA0 and RA1.

Poke Anselh, 0

Pause 5000

CB061
page 42

Friday, 16 March 2007 06:37
Black

The Scooter

207

Scooting:

Pause 100

Flag = 0

Poke Portc, $80 ' Motor forward.

Pause 2000

Poke Portc, 0 ' Stop motor.

Gosub Convert1

Pause 100

Write 4, B1

If Flag = 1 Then Spin

Goto Scooting

' Subroutines

Convert1:

Flag = 0 ' Clear reflecting flag.

Poke Portc, $10 ' Headlamps on.

Pause 1000

Gosub ADread

Peek Adresh, Reflect ' Read result into Reflect.

Write 1, B2

Poke Portc, 0 ' Headlamps off.

Pause 1000

Gosub ADready

Peek Adresh, Backg ' Read result into Backg(round).

Write 2, B3

Reflect = Reflect - Backg 'Subtract background light.

If Reflect < 0 Then Convert1 ' Spurious result.

If Reflect < 25 Then Done ' No reflection detected.

Write 3, B2

Flag = 1 ' If reflection detected.

Done: Return

Spin:

High 6 ' Buzzer on.

Poke Portc, $50 ' Reverse and turn. + D3

Pause 5000

Poke Portc, 0 ' Stop.

Low 6 ' Buzzer off.

Return

ADread:

Peek Adcon0, B0 ' Enable converter.

Poke B0, 0

Bit0 = 1

CB061
page 43

Friday, 16 March 2007 06:37
Black

The Robot Builder’s Cookbook

208

Poke Adcon0, B0

Poke Adcon1, $50 ' Clock 1/16 Fosc.

Pause 5

Peek Adcon0, B0 ' Start conversion

Bit1 = 1

Poke Adcon0, B0

Waiting:

Pause 5

Peek Adcon0, B0

If Bit1 = 1 Then Waiting ' Test GO/DONE bit.

Return ' Done.

End

CB061
page 44

Friday, 16 March 2007 06:37
Black

 The Android

209

Specification

Runs on 6 V battery.
Lightweight body.
Three wheels, 2 rear drive wheels, 1
motor-turned steering wheel at front.
PIC 16F690.
Sensors: light dependent resistors, push
button input,
Actuators: Drive motor, steering motor,
arm motor, bleeper, LEDs, speaker.

Programs

Scissors, paper, stone
Song and dance
Light seeking
Avoiding obstacles

The Android looks like the sort of robot

featured in so many movies and TV

plays. But although its appearance is

traditional, its construction is novel.

The body is built from two low-

density and easy-to-work materials.

The body panels are cut from foam

board. This can be done using a sharp

craft knife and steel ruler. The joints

are strengthened with balsa wood. The

structure is held together with craft

glue. The resulting body is remarkably

rigid and strong, yet few tools and few

skills are required to put it together.

Emphasising the modular approach of this book, many of the circuit units in this robot

are the same as or slight modifications of corresponding units used by some of the other

robots.

Mechanics

Start by building the chassis. It needs to be rigid and able to bear the strain of supporting

the motors, steering gear, the body and its contents. Make it from plywood, composition

board, or our favourite material, 3 mm expanded PVC sheet. The drawing overleaf

shows the dimensions of the chassis, with cut-aways for the wheels, but the exact sizes

and shapes depend on the motors and wheels you use.

CB062
page 1

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

210

The chassis panel, showing the areas cut out for the wheels.

The drive wheel assembly consists of

a 6 V motor with gearbox and an

output shaft on either side. The

wheels are approximately 56 mm

diameter. We used the same

assembly as in the Scooter (pp. 169-

170) but with the shafts cut shorter so

that the wheels are 104 mm apart

(centre to centre).

The steering wheel assembly consists

of a pair of Lego wheels clipped to

a special brick, as in the Scooter. The

steering gearbox is built from

Meccano® parts. The motor with

gearbox has a worm gear on its 4 mm

diameter output shaft. This meshes

with a 57-tooth gear. An alternative

steering mechanism is discussed on

pp. 224-226.

CB062
page 2

Friday, 16 March 2007 06:43
Black

 The Android

211

A view of the chassis from below shows how

the wheels are within its rectangular area. This

is so that the wheels will not be easily visible

when the Android body is in place.

The splayed ends of the aluminium tubing (see

lower photo) are visible in this view.

A rear view of the chassis with the

wheels and motors installed. The chassis

panel has a ledge projecting at the rear.

A length of balsa is glued to this later, to

support the body.

A front view of the chassis shows the

steering gearbox and the steering wheel

assembly. The gear wheel is on a

standard Meccano ‘triangular’ section

shaft. The lower end of this is a tight fit

into a length of 5 mm diameter

aluminium tubing. The central hole of the

brick is drilled out to 5 mm diameter. The

lower end of the tubing passes through

this hole. The end of the tubing is cross

cut for about 6 mm into four sections

which are splayed outward between the

four studs of the brick, to hold the brick

on the tubing.

CB062
page 3

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

212

A lever is bolted to the gear

wheel. The lever has a long bolt

projecting downward to engage

with the levers of the limit

switches. These are mounted on a

small platform of PVC sheet bolted

to the frame of the steering

mechanism. This photo was taken

before the switches were wired

up.

This view, from the right, shows the worm

gear mechanism and the way the two limit

switches are positioned. The steering

wheels are able to swivel approximately

15º to either side of straight ahead.

The limit switches will be wired in parallel

between the PIC input pin (channel RA5)

and the 0 V line. Input goes low when

either switch is closed.

Having built the assembly from Meccano

and found that it works, you may decide to

buy spares to replace the parts used. Or

you may prefer to dismantle the Meccano

version and build a new version, using

aluminium stock and metal or plastic gears

from other sources.

While assembling the chassis look ahead to the next stage to work out how the body is to

fit on to and be supported by the chassis. The drive and steering mechanisms will be

housed in the ‘feet’ of the body. There must be room for them to operate without

touching against the inside of the body. Also it must be possible to remove the body to

make alterations and adjustments to these mechanisms.

CB062
page 4

Friday, 16 March 2007 06:43
Black

 The Android

213

The Foam Board is 5 mm thick

and some of the cut edges are

visible. They are shaded in grey

in the drawing.

The 80 × 30 cut-away in the

sides is to allow extra width for

the rear wheels. The panel

shown in dashed lines is glued

on to cover the cut-away.

Before going on to build the body, start work on the electronics and

programming of the drive and steering motors. It is easier to do this now and

check their operation while the chassis and its mechanisms are easy to get at.

The body is built from Foam Board and 13 mm square balsa. There are no limits to the

fancy designs but we decided to keep it simple. Hence the boxy Android. Use a very sharp

blade for cutting, as the inner foam of the board tends to rip away from the surface films.

Take care when cutting near to the corners of a panel as the same thing may happen here.

Apart from taking these precautions, the board is simple to handle.

The height of the robot is a matter of preference. If it is too short, it will not look like the

conventional android. If it is too tall, it may tend to topple over. Our prototype is 360 mm

tall. When planning it, and the layout of the items inside it, keep the centre of gravity as

low as possible, and above a point that is well inside the triangle formed by the contact

points of the three wheels. The chassis with the drive and steering motors and gearing are

at the lowest possible level, so this helps keep the centre of gravity low. Arrange to have

that other heavy item, the battery, as low down as possible.

CB062
page 5

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

214

This is the body from the rear,

showing the balsa strips glued in the

angles. The two strips low down on

the sides are to suppot the shelf that

carries the battery and the main circuit

boards. To allow easy access for

checking, the shelf is not glued to

these supports.

There are two cross strips at the top

and bottom. The lid is slightly longer

than the distance between the strips.

To insert it, the lid is slid up behind the

top strip, then drops down behind the

bottom strip. Blocks of balsa stop it

dropping too far.

From the front, the Android looks

imposing with its dark blue board

and the white edges of the board.

The next step is to give it some arms.

The drawing illustrates one way of putting the body together. There are several other

ways, depending on how you want the robot to look.

CB062
page 6

Friday, 16 March 2007 06:43
Black

 The Android

215

ArmsArmsArmsArms

Cut two of these from Foam Board. If you intend to program the Android to play Scissors,

Paper, Stone, one of these arms is attached to the shaft of a stepper motor. This is an

example of one way of providing moving parts for the Android. In the prototype the right

arm swings up to indicate the ‘call’. The other arm is just glued in place, but this too

could be moved by its own stepper motor.

An arm is cut from a rectangle of Foam Board about130 mm by

40 mm. The movable arm has three holes in the ‘shoulder’ for bolting

on the pulley wheels that attach the arm to the shaft.

The stepper motor is bolted inside the body with its output shaft projecting through a

hole at the shoulder position. The arm is clamped between a pair of 28 mm diameter

pulleys from a Tamiya® pulley kit. They are secured by three bolts. A bush from the

same kit fits tightly into the hub of the inner pulley and this bush fits firmly on to the

drive shaft of the motor.

When the arm turns to one of its fixed

positions, the notch at its upper end reveals

one of several symbols. These could indicate

the robot’s play in the Scissors, Paper, Stone
game. There are several possible applications

for this feature, particularly in games

programs.

CB062
page 7

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

216

Shopping list — mechanical
5 mm Foam Board, 1 sheet.

3 mm expanded PVC board or plywood approx. 140 mm × 166 mm.

Balsa, 13 mm × 13 mm × 2 m.

Craft glue (Tacky glue).

DC motor and gearbox with output shaft on both sides.

DC motor and gearbox, or stepper motor for steering.

DC stepper motor for am.

Parts for worm drive, if used.

Pair of wheels, with tyres, about 60 mm diam.

Metal tubing to fit into wheels and fit over drive shaft of motor.

Pulley wheels (2) about 25 mm diam for arm.

Insulating tape, coloured, for decorating robot body.

Nuts and bolts, mainly M3, bolts 6 mm and and 10 mm long.

Other peripheralsOther peripheralsOther peripheralsOther peripherals

The speaker is a miniature piezo speaker, diameter about 30 mm. It is mounted inside the

body just below the head. Drill a cluster of 2 mm holes in the body wall to allow sound to

escape and glue the speaker by its rim to the wall, behind the cluster. If necessary, cover

the perforated area outside by gluing a circle of fabric over it.

Drill two holes in the head to take the pair of LEDs that are its ‘eyes’. With Foam Board

the hole can be a little smaller than the diameter of the LED. For 5 mm LEDs, holes 4.5

mm in diameter gave a good push fit. If they are to spare, use the two LEDs 1 and 2 taken

from the Scooter.

CB062
page 8

Friday, 16 March 2007 06:43
Black

 The Android

217

Electronics

This robot is a demonstration of how circuit modules belonging to one robot can be used

in another. Either build them again for the new robot, or take the old robot apart and use

its circuit boards for the new one. We adopted the second course for the Android. Having

already built the Scooter, we took its controller board, motor control board, and switching

board to put into the Android. We also took the motor control board from the Quester, so

all the main parts of the Android came from other robots and needed only to be connected

together.

The Android has three motors: drive, steering, and arm. The arm motor is needed for

moving the right arm when playing Scissors, Paper, Stone. The left arm does not move in

our version, though this could have a motor too.

The third motor, M3, which is used for steering, is rated to run on 4.5 V to 18 V. On a 6 V

supply it runs slowly but fast enough. The H-bridge output is 1.4 V below the input so

this motor is getting only 4.6 V. This motor is controlled by a motor control board like

that from the Scooter, which is for a single motor. The other two motors use the double

control board from the Quester.

The entire system operates on 6 V, provided by a battery of four alkaline cells. The power

switch S1 is mounted on the right body wall, near the feet, checking that it does not

obstruct the rotating arm.

Controller boardController boardController boardController board

This is the same as the controller board of the Scooter (p. 174) but has three pull-up

resistors added to it. These are 10 kΩ resistors soldered between E2 and F2, between E3

and G3, and between E4 and H4.

The controller board is bolted to the shelf on the right and close to the front (see photo

overleaf) where it is easy to remove and replace the PIC.

CB062
page 9

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

218

Before wiring up the board, the

programming of the stepper motor of the

arm was developed and tested. The motor is

on the right-hand wall, with wires leading to

the prototype motor control board (still

breadboarded at this stage). The breadboard

receives input from the PIC, which is on the

PICkit 2 development board.

A closer view shows the shelf with the

controller board at front right and the

switching board on the left. At the back

right corner, the shelf is cut away to allow

wires for the drive and steering motors to

pass down to the chassis beneath. The

motor control board for the stepper will go

on the shelf at back left. The battery (4 ×

AA) will go in the central space on the shelf.

The power switch is on the right wall just

above the controller board. The motor

control board for the drive and steering

motors is mounted on the wall behind (from

this view) and just above it is the speaker.

The wires from this pass through a cable

clip, which supports the 100 µF capacitor.

CB062
page 10

Friday, 16 March 2007 06:43
Black

 The Android

219

With all the essential circuit modules, except for one, taken ready-made from other robots

there would seem to be little to do but join them together. But first there may be a

problem to be attended to. The steering motor H-bridge does not provide a full 6 V

supply so the motor may run too slowly or not at all. An interfacing circuit may be

needed. The interface board and the steering motor are then supplied with a higher

voltage (say, 9 V). which needs a separate power switch.

The alternative is to think again and shop around for a motor (perhaps a stepper motor)

that will run on 4.6 V. In fact, a stepper could be better because it does not take its supply

from an H-bridge so can obtain the full 6 V from the battery.

The interfacing circuit comprises two transistor switches. Almost any

type will do. In the prototype they are a couple of BC108 transistors

that have been unused in the spares box for a few years, but the

more recent BC548 is equally suitable.

On the interface board, the

connecting wires are soldered

directly into the holes. Their

other ends are stripped for

inserting into the sockets on the

controller and motor control

boards. The power supply is

taken from spare sockets on

these boards.

CB062
page 11

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

220

The transistor switches of the interface are inverters, so the signal from the controller is

inverted when it arrives at the motor. If the motor turns in the wrong direction, simply

reverse the E and F connections between the interface and motor control boards.

Stepper motor control boardStepper motor control boardStepper motor control boardStepper motor control board

This interfaces the controller with the stepper motor inputs and consists of four transistor

switches. The schematic of one switch is on p. 99. The circuit board layout is below. This

board is run on the same supply as the controller (6 V), or its supply could be at higher

voltage if the motor needs it.

The stepper motor (M3) control board.

The board is most conveniently located at the back right of the shelf, next to the controller

board.

Speaker driveSpeaker driveSpeaker driveSpeaker drive

A piezo speaker can be driven directly from a PIC output. The circuit is given on p. 90.

If the sound is not loud enough, use a transistor switch to drive an 8 Ω speaker. The

circuit has the speaker in its collector circuit and needs a protective diode (see the

drawing on the right, p. 91).

CB062
page 12

Friday, 16 March 2007 06:43
Black

 The Android

221

 With a 6 V supply and an impedance of 8 Ω, the current has a maximum of 750 mA.

Build the switch on a small board with no resistor in series with the speaker and a base

resistor of 470 Ω. Alternatively, and more conveniently, use Q3 on the switching board,

but replace R5 with a wire link.

Off-board connectionsOff-board connectionsOff-board connectionsOff-board connections

The table below lists the connections for the power supply and for the motors. Make and

test these first.

FROM Function TO

Board Socket Board Socket

Controller C1 Positive supply Switching A1

Controller D1 Positive supply M3 control A1

Controller E1 Positive supply Power switch S1*

M3 control B1 Positive supply M1/M2 control C2

Power switch S1 (common) * Positive supply Battery positive

Controller C12 0 V line Switching C1

Controller D12 0 V line M3 control H1

Controller E12 0 V line Battery negative

M3 control H3 0 V line M1/M2 control E2

Controller N12 M1/2 control A M1/M2 A G2

Controller N1 M1/2 control B M1/M2 B H2

Controller J1 M1/2 control C M1/M2 C I2

Controller I1 M1/2 control D M1/M2 D J2

Motor control G20 Motor output A Motor M1 terminal*

Motor control H20 Motor output B Motor M1 terminal*

Motor control I20 Motor output C Motor M2 terminal*

Motor control J20 Motor output D Motor M2 terminal*

CB062
page 13

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

222

FROM Function TO

Board Socket Board Socket

Controller H1 Button Button terminal*

Controller G12 LDR1 Switching F1

Controller F12 Comp. 1 ref. Switching B1

Controller L12 D1/D2 Switching B22

Controller M12 Speaker Speaker terminal*†

Controller H12 Bleeper Switching A22

Controller F1 Steering limits Limit switches

FROM Function TO

Board Socket Board Socket

Controller I12 M3 M3 control A1 G1

Controller J12 M3 M3 control A3 H25

Controller K12 M3 M3 control B1 G25

Controller K1 M3 M3 control B3 F1

Next make the connections for the arm stepper motor as in the table below.

The connections to the motor are as listed on the stripboard diagram on p. 220, using an

8-way plug and socket.

Finally, make the connections to the other off-board components.

*The other terminal of the button and the speaker are connected to 0 V. The anode

terminals of D1 and D2 are connected to the positive supply. †The speaker may be

switched by Q2 on the switching board.

Stepper steeringStepper steeringStepper steeringStepper steering

Alternatively, the off-board connections and the I/O table for this are on pp. 232-234.

CB062
page 14

Friday, 16 March 2007 06:43
Black

 The Android

223

PIC I/OPIC I/OPIC I/OPIC I/O

For later reference, the table below lists I/O connections to the PIC. A photocopy of this

table mounted on card is handy to have on the workbench while assembling and testing

the circuit modules.

Port Name IC pin I/O Connected to 0 = 1 =

A RA0 19 AnI Reference voltage, Comparator 1(C1IN+)

RA1 18 AnI Forward light sensor, Comparator 1 (C12IN-)

RA2 17 I Program select

RA3 4 I Button switch Pressed Not

RA4 3 I Spare (input only)

RA5 2 I Steering limit switches Limit Free

B RB4 13 O Headlamps Off On

RB5 12 O Speaker

RB6 11 O M1, Drive motor A Forward Reverse

RB7 10 O M1, Drive motor B Reverse Forward

C RC0 16 O M3, Arm motor A1 High Low

RC1 15 O M3, Arm motor A3 High Low

RC2 14 O M3, Arm motor B1 High Low

RC3 7 O M3, Arm motor B3 High Low

RC4 6 O M2, Steering motor C To left To right

RC5 5 O M2, Steering motor D To right To left

RC6 8 O Bleeper Off On

RC7 9 O Spare

The entries are grouped by I/O port and list all the channels available on the PIC16F690.

In the fourth column, the I or O indicates whether the channel is to be configured as an

input or an output. AnI is an analogue input.

The table shows the settings of motor M1 A and B lines that provide forward/reverse/off

control. To stop the motor make both 0 or both 1. If the motor turns in the wrong direc-

tion reverse the connections to the motor control board or to the motor. The same applies

for lines C and D of motor M2.

M3, which moves the arm, is a stepper motor with four control inputs.

CB062
page 15

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

224

FROM Function TO

Board0 Socket Board Socket

Controller C1 Positive supply Switching A1

Controller D1 Positive supply M3 control A1

Controller E1 Positive supply Power switch S1*

M3 control B1 Positive supply M2 control A1

M2 control B1 Positive supply M1 control C1

Power switch S1 (common) * Positive supply Battery positive

Controller C12 0 V line Switching C1

Controller D12 0 V line M3 control H1

Controller E12 0 V line Battery negative

M3 control H3 0 V line M2 control H1

M2 control H3 0 V line M1 control E2

Controller N12 M1 control M1 A G2

Controller N1 M1 control M1 B H2

Controller J1 M2 control M2 A1 G1

Controller I1 M2 control M2 A3 H25

Controller L1 M2 control M2 B1 G25

Controller M1 M2 control M2 B3 F1

Controller I12 M3 control M3 A1 G1

Controller J12 M3 control M3 A3 H25

Controller K12 M3 control M3 B1 G25

Controller K1 M3 control M3 B3 F1

Steering by stepper motorSteering by stepper motorSteering by stepper motorSteering by stepper motor

The ordinary DC motor, M2, is replaced by a stepper motor of the same type as used for

the arm. It has the advantage of more accurate and probably faster changes of direction. It

might be more compact, too.

CB062
page 16

Friday, 16 March 2007 06:43
Black

 The Android

225

The arrangement of motor control board is amended to a single H-bridge board for M1,

the drive motor. This would be like the board used in the Scooter, p.175. The new steering

motor, which is referred to as M2, needs a second control board like that used for M3.

PIC I/O (Stepper steering)PIC I/O (Stepper steering)PIC I/O (Stepper steering)PIC I/O (Stepper steering)

For later reference, the table below lists I/O connections to the PIC. A photocopy of this

table mounted on card is handy to have on the workbench while assembling and testing

the circuit modules.

Port Name IC pin I/O Connected to 0 = 1 =

A RA0 19 AnI Reference voltage, Comparator 1(C1IN+)

RA1 18 AnI Forward light sensor, Comparator 1 (C12IN-)

RA2 17 O Bleeper Off On

RA3 4 I Button switch Pressed Not

RA4 3 I Steering limit, L Limit Free

RA5 2 I Spare (WPU)

B RB4 13 O Headlamps Off On

RB5 12 O Speaker

RB6 11 O M1 Drive motor, A Forward Reverse

RB7 10 O M1 Drive motor, B Reverse Forward

C RC0 16 O M3, Arm motor, A1 High Low

RC1 15 O M3, Arm motor, A3 High Low

RC2 14 O M3, Arm motor, B1 High Low

RC3 7 O M3, Arm motor, B3 High Low

RC4 6 O M2 Steering motor, A1 High Low

RC5 5 O M2 Steering motor, A3 High Low

RC6 8 O M2 Steering motor, B1 High Low

RC7 9 O M2 Steering motor, B3 High Low

The entries are grouped by I/O port and list all the channels available on the PIC16F690.

In the fourth column, the I or O indicates whether the channel is to be configured as an

input or an output. AnI is an analogue input.

CB062
page 17

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

226

Shopping list — electronic
Controller board:

R1 - R3 resistors 10k (3 off)
Other components as on p. 182.

Motor control board (double):
Q1, Q3, Q5, Q7 BC639 npn transistor (4 off)
Q2, Q4, Q6, Q8 BC640 pnp transistor (4 off)
socket strip or PCB plugs 4-way (2 off)
stripboard 16 strips x 21 holes

Motor control board (single, for DC motor steering):
Q1, Q3 BC639 npn transistor (2 off)
Q2, Q4 BC640 pnp transistor (2 off)
socket strip, 2, 3, and 6 sockets
stripboard 8 strips x 21 holes

Motor control board (single, for each stepper motor):
Q1-Q4 BC639 npn transistor (4 off)
R1-R4 resistor, 470R (4 off)
D1-D4 1N4001 or similar rectifier diode (4 off)
socket strip, 1 2 (2 off) 3, and 8 sockets
stripboard 8 strips x 25 holes

Switching board:
As on p. 182

Off-board components:
D1 - D2 5 mm light emitting diodes, ultra bright (2 off)
LDR1 light dependent resistor (ORP12 or similar)
S1 SPST mini toggle switch
battery holder, 4 x AAA or 4 x AA, with wire or stud terminals
PP3 type battery connector (if battery box has stud terminals)
AAA or AA NiMH rechargeable cells (4 off) (preferred)
S2 SPST push-to-make push-button
S3 Microswitch (2 off if steering by DC motor)

Miscellaneous:
Strip of Velcro sticky Back
Single stranded connecting wire (to fit sockets)
Solder

There are two stepper motors: M2 is the steering motor and M3 moves the arm. Both

have four control inputs.

CB062
page 18

Friday, 16 March 2007 06:43
Black

 The Android

227

Programming

Having ‘borrowed’ some of its circuit boards from Scooter, the Android can run the same

programs. These are Hello World! (pp. 183-186), the light-seeking program (pp. 190-194)

and the object avoiding program (pp. 194-200). The I/O allocations of the Android differ

from those of the Scooter so the listings must be amended:

• Bleeper has moved from RB6 (pin 11) to RC6 (pin 8).

• The headlamps, D1 and D2, have moved from RC4 (pin 6) to RB4 (pin 11).

• The side lamp, D3 at RC5 (pin 5) is not installed on the Android, but there is a spare

channel at RC7 (pin 9) that could be used.

• Motor M1 has moved from RC6/7 (pins 8/9) to RB6/7 (pins 10/11).

The main difference is that Android has a motor M2 for steering, instead of the eccentric

pulley. Where the listing shows the robot changing its direction of motion by backing a

short distance, the instruction to reverse the motor M1 is omitted. Instead, motor M2 is

programmed to alter the direction of steering.

Going straightGoing straightGoing straightGoing straight

The first thing to be done in almost every program is to turn the steering wheel so that

the robot will run straight ahead. The wheel may have been left at an angle at the end of

the previous session, so the robot begins the new session, not knowing which way it is

heading. This is not a problem for robots with tank steering.

The program turns the steering wheel in one direction until it triggers the limit switch on

that side. It then knows where the wheel is pointing and turns it back by a fixed amount

to centre it. There are two listings (both overleaf) for this routine, one for use with a DC

motor and the other for a stepper motor.

The DC motor routine relies on timing the return to the central position, so will require

fine-tuning and, even then, may not be accurate. The stepper motor routine is very

accurate, provided that the limit switch is accurately placed.

CB062
page 19

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

228

On the subject of limit switches, steering by DC motor is less precise than steering by

stepper. With a DC motor there is cumulative error and there must be two limit switches,

left and right, to prevent it from turning too far in either direction. With a stepper motor

we need only one limit switch for initially centreing the wheel. After that the steps are

counted every time the wheel is turned. Its position is held as the value of a variable and

the robot always knows which way it is heading.

Below is the subroutine for use with a DC motor. It calls on the delay and longdelay

subroutines. It is called at the beginning of the main program:

straight

btfss porta, 4 ; Left MS closed?

goto centre ; If closed.

bcf portc, 5 ; Turn wheel left.

bsf portc, 4

call delay

bcf portc, 4 ; Stop turning wheel.

goto straight ; Until fully left.

centre

bcf portc, 4

bsf portc, 5

movlw 030h ; This value needs tuning.

call longdelay ; Wheel right,to centre

bcf portc, 5 ; Stop turning.

return

The listing opposite is complete, except for the initial statement and equates. The equate

list includes four variables, mask, pointer, count and times. Immediately before the start of

the program there is a look-up table, codes. This table lists the codes that are sent to the

motor to make it turn one step to the left or right. The pointer points to the current code

the motor has reached. The next code read from a table will be the correct one for

continuing to turn in the given direction.

There are only four codes so a pointer should return to code 0 after pointing to code 3 (or

to 3 after 0 wen counting down). This is easily arranged by using a mask, value 0000 0011

in binary and ANDing this with the pointer to read only the lower two bits. The actual

value in the pointers runs up to 255 before resetting but this is ignored by ANDing out

the lower two digits. Note that the beeper is moved from RC6 to RA2 when steering is

done by stepper motor.

CB062
page 20

Friday, 16 March 2007 06:43
Black

 The Android

229

goto start
org 04h
goto start

codes
addwf pcl, f
retlw 90h ; high nybble of Port C.
retlw 50h
retlw 60h
retlw 0a0h

start
bcf intcon, 7 ; Disable inter-

rupts.bcf status, 5 ; Bank0.
bcf status, 6
bsf status, 5 ; Bank1.
movlw 0fbh
movwf trisa ; Port A <2> is output.
clrf trisb ; All outputs.
clrf trisc ; All outputs.
bcf option_reg, 7 ; Weak pull-ups.
bsf wpua, 4 ; WPU on RA4.
bcf status, 5 ; Bank2.
bsf status, 6
clrf ansel ; For digital I/O.
clrf anselh
bcf status, 6 ; Bank0.
bcf status, 5
clrf porta
clrf portb
clrf portc

; Program begins here

clrf pointer ; Clear pointer.
movlw 03h
movwf mask
movlw 010h
call longdelay
call beeps
call straight ; Centre steering wheel.
bcf portb, 6 ; Forward.
bsf portb, 7
movlw 0ah
call longdelay
bcf portb, 7 ; Stop.
call beeps

bsfportb,6 ;Reverse.
bcf portb, 7
movlw 0ah
call longdelay
bcf portb, 6 ; Stop.

flashem
bsf portb, 4
call delay
bcf portb, 4
call delay
goto flashem

; Subroutines
delay

decfsz delay0, f
goto delay
decfsz delay1, f
goto delay
return

longdelay
movwf delayn

repeat
call delay
decfsz delayn, f
goto repeat
return

beeps
movlw 05h
movwf times

domore
bsf porta, 2
movlw 05h
call longdelay
bcf porta, 2
movlw 05h
call longdelay
decfsz times, f
goto domore
return

straight
btfss porta, 4 ; Left MS closed?
goto centre ; If closed.
movlw 01h
movwf count
call cyclel ; Turn wheel left.

call delay

CB062
page 21

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

230

Song and Dance ActSong and Dance ActSong and Dance ActSong and Dance Act

First the song. A routine for producing a square-wave tone is described on pp. 150-155.

This produces a single burst of sound at a given frequency and of a given duration. But

before it can do this it needs three values to work on. It also needs editing to produce the

sound signal at the specified pin.

In the Android, the speaker is driven from Port B, channel RB5. Edit the listing to read

portb instead of portc, trisb instead of trisc, and portb, 5 instead of portc, 0.

To obtain the pitch of Middle C, type in this list of values:

movlw 024h

movwf data1

movlw 020h

movwf datafinal

movlw 02ah

movwf lendata

call playit

This is part of the listing of the main program so type call playit immediately after it.

If you are trying this out as a demo, prevent the PIC from running on into the subroutines

by typing a waiting loop such as:

done goto done

goto straight ; Until fully left.
centre

movlw 06h ; For 6 steps (45 deg.).
movwf count
call cycler
return

cycler
movf pointer, w
decf pointer, f ; Next right.
andwf mask, w
call codes

movwf portc ; Step motor.
call delay
call delay
decfsz count, f ; Count steps.

goto cycler
return

cyclel
movf pointer, w
incf pointer, f ; Next left.
andwf mask, w
call codes
movwf portc
call delay
call delay
decfsz count, f
goto cyclel
return

end

CB062
page 22

Friday, 16 March 2007 06:43
Black

 The Android

231

If you intend to sound the same tone several times in a program, the whole thing can be

put into a subroutine.

If you want a sequence of two to four notes, repeat the list that number of times and call

playit after each. For example, this routine plays C, C', G':

movlw 024h ; Play C

movwf data1

movlw 020h

movwf datafinal

movlw 0ah

movwf lendata

call playit

movlw 010h ; Play C'

movwf data1

movlw 02Fh

movwf datafinal

movlw 015h

movwf lendata

call playit

movlw 0ah ; Play G'

movwf data1

movlw 029h

movwf datafinal

movlw 07eh

movwf lendata

call playit

With these settings the tones last for one or more seconds. The simplest way to make

them shorter is to reduce the value in the outer loop counter from 5 to 3, or 2.

For a proper tune it is more practicable to use a look-up table. Each entry in the table

holds three values: data1, datafinal, lendata. The table for the 3-note ‘tune’

above is given overleaf. It lists the three values for each note, one after another.

The subroutine for reading the table reads three values, using pointer, puts them in the

three variables, and then calls playit. For the next note, pointer is again incremented three

times, reading and transferring them each time, before calling playit. And so on until all

notes have been played.

CB062
page 23

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

232

The listing for the 3-note sequence is:

yourtune

addwf pcl, f

retlw 024h ; This is data1, first note.

retlw 020h ; This is datafinal, first note.

retlw 02ah ; This is lendata, first note.

retlw 010h ; This is data1, second note.

retlw 02fh ; This is datafinal, second note.

retlw 054h ; This is lendata, second note.

retlw 0ah ; This is data1, third note.

retlw 029h ; This is datafinal, third note.

retlw 07eh ; This is lendata, third note.

A subroutine such as this can be extended to many more notes, so building

up a complete melody. First work out the values, using the method described on p. 150.

Then work out the table.

Now for the dance! Controlling the motors is done by sending a sequence of codes to the

drive motor M1 and the steering motor, M2. A stepper is better for steering as it can be

programmed to turn quickly (but not too quickly, or it may lose some steps). The codes

can be included in the look-up table at every fourth (forward/reverse/off) and fifth (left/

right) place.

The dance codes start or stop the drive or steering motors, which continue running while

the next note is played. When the note is finished the PIC goes to the look-up table to find

out what to do next. The motors may be reversed, stopped or left unchanged. It can be

left to continue its motion unchanged for several notes. Choreographing a robot is a

fascinating exercise.

Scissors, Paper, StoneScissors, Paper, StoneScissors, Paper, StoneScissors, Paper, Stone

This international strategic game is one that the Android loves to play. With clever

programming it might even learn how to win.

This is a game for two players. They stand facing each other with their right hands

behind their backs. They form their right hands to symbolise scissors, paper, or stone.

CB062
page 24

Friday, 16 March 2007 06:43
Black

 The Android

233

For scissors, the hand is flat with the second and third fingers spread apart. For paper, the

hand is flat with fingers together. For stone, the hand is clenched in a fist.

On a given signal, the players swing their hands forward and upward to reveal their

choice of scissors, paper or stone. If they have both chosen the same, the result is a draw

but, if they have chosen differently, the winner is decided like this:

• Scissors wins against paper because scissors cut paper.

• Paper wins against stone because paper wraps stone.

• Stone wins against scissors because stone blunts scissors.

Such a simple game may seem trivial, but some people take it seriously. As recently as

May 2005, it was reported on BBC News that the famous auction company Christie’s won

a £10.5m contract as the result of a single round of this game in a contest against

Sotheby's.

The program is listed in full on pp. 240-245 and there are flowcharts on pp. 237-239. To

run this game on the Android, the right arm must be driven by a stepper motor. Two

sensors are required: the Program Select switch and the push-button. The state of the

game is indicated by the eye LEDs (D1 and D2) and the buzzer. In this program, the

Program Select is not for making a choice between different programs but for making a

choice between two different playing strategies for the robot.

The procedure for the game as played with the Android is as follows:

1) Turn the Program Select switch on or off. If it is off, the Android plays randomly and it

is a matter of chance if it wins or not. If it is on, the robot is programmed to learn its best

play by experience.

2) Run the program. The eyes light up at half brightness.

3) When you are ready to begin, press and release the button. The eyes go dark, then flash

once when the button is released.

4) The arm is probably already raised. Press and hold the button. The arm turns

clockwise. This stage is timed. If you do not press the button soon after stage (3), the

program goes to Stage (5), but with the arm not in the correct position.

5) When the arm is pointing vertically down, release the button.

6) The robot makes its choice and the beeper sounds, As the sound ends, the robot raises

its arm to indicate its choice. You do the same.

CB062
page 25

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

234

7) The robot’s choice can be read in the notch at its shoulder. Or judge by eye how much

it has turned: 45° means scissors, 90° means paper, 135° means stone.

8) The robot can not detect what response you made, so it needs to be told if it has won. If

it has won, press the button once. If not, or if the contest resulted in a draw, do nothing.

After about 1 minute, the robot will lower its arm and it is ready for the next game.

9) To play again with the same robot strategy, press the button to return to step (6). The

robot’s strategy can be changed by re-setting the Mode Select switch first.

This is a long listing and it is noticeable that the major part of it is concerned with

sequencing the input and output routines. The actual game, the strategy subroutine, is

relatively short.

There is plenty of scope for adding to the program. For example, the robot could use the

speaker and generate different sound signals at each stage of the game. Or it could be

programmed to do a short Song and Dance act whenever it wins, and perhaps emit a

dismal sound when it loses.

To take it further, there are many learning strategies that the robot can adopt. This

program is structured to allow a new subroutine to be slotted in, replacing one of the

existing subroutines. Try programming a different strategy, one that you think will be a

winner.

The listing has the usual set of equates for Special Function registers. The general purpose

registers are:

delay0, delay1, and delayn for the delay and longdelay subroutines.

ranval, bitn, and bitm for the random number generator.

count, holds 01, 10, or 11, later multiplied by 8 to give the number of steps the motor is to

turn.

pointer, points to the codes in the code look-up table.

mask to mask out bits <7:2> of randval, leaving bits <1:0>.

waitime, for setting a time-out in the ready subroutine.

countcopy holds a copy of the inital value of count for subsequent use.

newcount holds 01, 10, or 11, which determine the robot’s next response. If it wins,

newcount is not changed. If it loses, newcount is changed from 01 to 10, from 10 to 11, or

from 11 to a randomly selected value.

CB062
page 26

Friday, 16 March 2007 06:43
Black

 The Android

235

Copyright © 2007, Thomas Murray

CB062
page 27

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

236

A flowchart of the main program is shown opposite. It begins by running the random

number subroutine repeatedly until you decide to start playing, and press the button. The

effect of this is that, because the timing is never exactlty the same twice, the game is

almost certain to begin with a different random number every time.

The listing continues with a double check on the button to prevent the controller running

on at high speed as soon as the button is pressed. Then comes a sequence of four calls to

subroutines. The eye LEDs are flashed once and then come the ready and moveit

subroutines, charted on p. 238. These turn the arm to hang vertically downward, if it is

not down already. For as long as the button is held pressed by the player, it calls the

moveit subroutine, in which the cyclel subroutine advances the stepper motor by one step.

If the button is released, the ready subroutine by-passes moveit. Either way, there is a

countdown of waittime, after which the position of the arm can not be adjusted.

Returning to the main program, the eyes are flashed three times to announce that the

Android is ready to play. To decide on its response the program calls the strategy

subroutine, charted on p. 239. After flashing the eyes again, the subroutine reads the

Program Select switch. It sends the PIC to strategy1 if the switch is off. There it selects a

random number and uses mask to pick out the two lowest bits. If these are ‘00’, the process

is repeated until the digits are ‘01’, ‘10’, or ‘11’ (which are 1, 2, or 3 in decimal). These

correspond to scissors, paper, stone, so the result is a random choice of the robot’s play.

To translate this into moving the arm, the value (now in count) is multiplied by eight to

give 8, 16, or 24. This is done by rotating count left three times. Eight steps of the motor

turn it by 45°, so the value in count turns the motor by 45°, 90°, or 135°. The value is stored

in countcopy for use later when the arm is being returned to its vertical position. The

subroutine return to the main program with the bits (multiplied by 8) stored in count, to

determne how far the arm is to be raised.

In the alternative mode of play, strategy2, the robot repeats a successful play for as long as

it continues to be successful. The aim of the algorithm is to give it a slightly better than

average chance of winning. The value in newcount is tested on entering the strategy2

routine. On the first time round it will be zero and the PIC is directed back to strategy1 to

pick a random value and place it in count. If this is not the first game of a session, the

value in newcount is other than zero. This is assigned to count and multiplied by 8 before

returning to the main program.

CB062
page 28

Friday, 16 March 2007 06:43
Black

 The Android

237

The value in newcount may be one that has resulted in a win for the robot. It is repeating

its successful play. However, if the robot lost the previous game, newccount is usually (but

not always) given a different value in the tryagain routine (the last routine in the listing, p.

245). It will try a different response in the current game.

The main program of

Scissors, Paper, Stone.

CB062
page 29

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

238

The ready and moveit
subroutines, which

prepare the robot for

playing.

Following a return from the strategy subroutine, the PIC calls cycler. This subroutine (see

top right of the flowchart on p. 237, and the listing on p. 243) turns the arm by the

number of steps held in count. At each step it refers to the codes look-up table and sends

the code to the stepper motor.

 In cycler, the pointer is decremented at each step so the codes are read from the bottom

of the table upward. In cyclel, used later to automatically lower the arm, the pointer is

incremented at each step, and so reads the table from top to bottom.

CB062
page 30

Friday, 16 March 2007 06:43
Black

 The Android

239

Flowchart of the strategy subroutine.

The game is over now and the robot has either won or lost. When playing according to

strategy1 (switch not closed) the robot emits a bleep and flashes its eyes. It then waits for

the player to press the button to initiate a new round.

Under strategy2 (switch closed) it is sent to the winlose subroutine where it waits (at

scoring) for the player to press the button if the robot has won. The length of wait is set by

the value placed in waittime. The bleeper sounds while it is waiting. After checking that

the button has been released, it copies countcopy into newcount. But this is eight times the

original value so the bits 3 and 4 of countcopy are copied to bits 0 and 1 of newcount. This

restores the correct value to newcount, ready for the next round.

CB062
page 31

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

240

goto start
org 0004h
goto start

codes

The PIC then waits (at waiting) for the button to be pressed while waittime is counted

down to zero. If it is pressed the PIC returns to the main program with the winning

count stored in newcount.

If it is not pressed,the program jumps to result, where newcount is incremented to give the

robot a new response. However, if its previous response was 11, incrementing this gives a

value that is outof range. In this case, tryagain selects a value at random. This may be the

same as the previous value, but the chances are that it will be different.

In either mode, the program waits for the button to be pressed before it lowers the arm,

using cyclel and counting down count. The program goes back to nextgame. After this,

three eye flashes and a bleep signal the beginning of the next game.

After the initialising list statement and __CONFIG statement there is a list of equates:

delay0 equ 20h

 delay1 equ 21h

randval equ 22h

bitn equ 23h

bitm equ 24h

count equ 25h

pointer equ 26h

mask equ 27h

waittime equ 28h

countcopy equ 29h

delayn equ 2ah

newcount equ 2bh

The program is as listed below and pp. 241-245:

CB062
page 32

Friday, 16 March 2007 06:43
Black

 The Android

241

addwf pcl, f
retlw 09h ; Codes in low nybble.
retlw 05h
retlw 06h
retlw 0ah

start
bcf intcon, 7 ; Disable interrupts.
bcf status, 5 ; Bank0.
bcf status, 6
clrf porta
clrf portb
clrf portc
bsf status, 5 ; Bank1.
clrf trisb ; All outputs.
clrf trisc ; All outputs.
bcf status, 5 ; Bank2.
bsf status, 6
clrf ansel ; For digital I/O.
clrf anselh
bcf status, 6 ; Bank0.
bcf status, 5

; Program begins here

bsf randval, 0 ; Seeding random numbers.
clrf pointer ; Clear pointer.
movlw 03h
movwf mask
clrf newcount

ticking
call flashem
call randno
btfsc porta, 3 ; Button pressed?
goto ticking

nopress1
btfss porta, 3 ; Wait for button release.
goto nopress1
call flashem ; Flash eyes.
call ready ; To turn arm downward.

nextgame
call flashem
call flashem
call flashem
call strategy ; Return with count set.
bsf portc, 6 ; Bleeper on for 3s.
movlw 010h
call longdelay
bcf portc, 6 ; Bleeper off.
call cycler ; To show choice.
btfss porta, 2 ; If strategy2 used.
call winlose
bsf portc, 6 ; Ready to play?

CB062
page 33

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

242

call flashem
call flashem
bcf portc, 6

newgame
btfss porta, 3
goto newgame

nopress2
btfsc porta, 3
goto nopress2
movf countcopy, w ; Arm down.
movwf count
call cyclel
goto nextgame

; Subroutines

delay
decfsz delay0, f
goto delay
decfsz delay1, f
goto delay
return

longdelay
movwf delayn

repeat
call delay
decfsz delayn, f
goto repeat
return

randno
clrf bitn
clrf bitm
btfsc randval, 5 ;Getting n.
bsf bitn, 0 ;If n = 1.
btfsc randval, 6 ;Getting m.
bsf bitm, 0 ;If m = 1.
movf bitn, w ;n to w.
xorwf bitm, w ;XOR m and n, result in w.
addlw 0ffh ;Set carry if w = 1.
rlf randval,f ;New random number in randval.
return

flashem
bsf portb, 4
call delay
bcf portb, 4
call delay
return

ready
btfss porta, 3 ; Wait for button release.

CB062
page 34

Friday, 16 March 2007 06:43
Black

 The Android

243

goto ready
movlw 040h
movwf waittime

setting
btfss porta, 3 ; Press until arm down
call moveit
call delay
decfsz waittime, f
goto setting
call flashem
return ; Time expired.

moveit
movlw 01h
movwf count
call cyclel ; For one step.
call delay
return

cycler
movf pointer, w
decf pointer, f ; Next position.
andwf mask, w
call codes
movwf portc ; Step the motor.
call delay
decfsz count, f ; Counting the steps.
goto cycler
return

cyclel
movf pointer, w
incf pointer, f
andwf mask, w
call codes
movwf portc
call delay
decfsz count, f
goto cyclel
return

strategy
bsf portb, 4 ; Eyes on.
movlw 05h
call longdelay
bcf portb, 4 ; Eyes off.
btfsc porta, 2
goto strategy1
goto strategy2

strategy1 ; Purely random.
call randno
movf mask, w
andwf randval, w ; Lowest two bits.
btfsc status, z
goto strategy1 ; If 00.

CB062
page 35

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

244

movwf count
call multiply ; x 8.
return

strategy2
movf newcount, w
btfsc status, z ; First time through?
goto strategy1 ; Yes, use random value.
movwf count ; No. Count = newcount.
call multiply ; x 8.
return

multiply
bcf status, 0 ; Clear carry bit.
rlf count, f ; count x 8.
rlf count, f
rlf count, f
movf count, w
movwf countcopy ; Remember count x 8.
return

winlose
movlw 030h
movwf waittime
bsf portc, 6 ; Bleeper on - did robot win?

scoring
btfss porta, 3 ; Wait for button release.
goto scoring
bcf newcount, 0 ; Copy countcopy (x 8)
btfsc countcopy, ; into newcount<1:0>.
bsf newcount, 0
bcf newcount, 1
btfsc countcopy, 4
bsf newcount, 1

nopress3
call delay
decfsz waittime, f ; Time expiring.
goto waiting
goto timeout

waiting
btfsc porta, 3 ; Button pressed = robot won.
goto nopress3
return ; With winning count in newcount.

timeout
bcf portc, 6 ; Time up! Bleeper off.
goto result ; Not pressed - robot lost.
return

result
call rejectit ; With losing count in newcount.
bcf portc, 6 ; Loss registered, bleeper off.
return

rejectit
incf newcount, f ; Next count to use.

CB062
page 36

Friday, 16 March 2007 06:43
Black

 The Android

245

This completes the listing of the Scissors, Paper, Stone program. It is a ‘bare bones’

program, and takes up very little of the PIC’s program memory. So there is plenty of

scope and memory space for adding some ‘frills’, such as those suggested on p. 234.

btfss newcount, 2 ; If it equals 4.
return

tryagain
call randno ; To select a new random value.
movf mask, w
andwf randval, w
btfsc status, z ; If 00.
goto tryagain
movwf newcount ; Newcount holds next response.
return

end

CB062
page 37

Friday, 16 March 2007 06:43
Black

The Robot Builder’s Cookbook

246

Some of us are not very good with our

hands, or perhaps are bored with too much

handicrafting and want to get on with the

coding. One way round this is to start with

a ready-made chassis. This may be

purchased from a vendor of robot parts.

Another course is to adapt a toy.

A warning here! If the toy is a new or fairly

new one that is still covered by the

manufacturer’s Warranty or Guarantee, this

may be made void the moment you start to

prise open the toy or interfere with it in any

other way. Better use a superannuated toy

(with its owner’s permission, of course!).

This project describes how a plastic toy car was given robotic capabilities. The same idea

can be applied to a wide range of toys. Toys on wheels give the greatest scope for an

interesting conversion. Instead of a toy vehicle, why not a toy duck?

Toys such as dolls and fluffy animals are more of a problem. Probably the best bet is to

base a robot on a string puppet. Build a robot mechanism to pull the strings, equip it with

a few sensors, then program it to walk, dance, or perform acrobatic stunts. Try to give it

intelligence and the ability to learn.

 So, if a toy car does not appeal, look for some other toy that would be fun to endow with

robotic skills. For something different, how about a robot motor boat, or even a sailing

boat? Teach it to sail close to the wind, to tack, and go about — all it needs is a tilt sensor

and a wind direction sensor. If you are, or have been, a model railway enthusiast, there is

a lot to be done in putting the system under intelligent robotic control.

Specification

Based on an inexpensive or discarded
toy.
Operating voltage depends on devices
installed.
Any number of wheels, including none.
PIC 16F690.
Sensors and actuators as appropriate to
the type of toy.

Programs described in this part:

Variable motor speed
Switching sound effects
Gunshot sound effect

CB063
page 2

Friday, 16 March 2007 06:46
Black

A robotic toy

247

Mechanics

When selecting a toy for this project check that it has space inside it to hold a battery and

a few circuit boards. If it already has a battery holder, so much the better. The chunky

style of toy vehicle designed for young children usually has plenty of room inside.

Also make sure that the plastic is not the kind that is liable to shatter when drilled. The

construction of the toy should allow it to be opened up and put together again without

damaging it. The car used in this project is held together with self-tapping screws, which

are ideal for taking apart and reassembling the bodywork.

Our toy is a cheap car intended to be pushed

along by hand. It has no drive motor and

there is no steering. Its main asset is that it

has press-buttons on one side. Pressing a

button starts a sound effect playing and

LEDs flashing. This feature is easily put

under automatic control, as explained later.

The main mechanical tasks are to provide

drive and steering motors and possibly

stepper motors for other functions, such as

raising the back of a tip-up truck. A large

truck-type toy could provide a base for a

ready-made robot arm, giving it mobility.

Drive wheelsDrive wheelsDrive wheelsDrive wheels

The car has four wheels, which turn in bearings on the sides of the body. We decided to

use the rear wheels for driving the vehicle, and the front ones for steering, just as in a

conventional automobile. The existing battery supply is from two type AA alkaline cells,

giving 3 V. The motor/gearbox unit chosen as the drive motor runs on 3 V and has an

output shaft on either side.

CB063
page 3

Friday, 16 March 2007 06:46
Black

The Robot Builder’s Cookbook

248

After considering various possibilities it was decided to push the wheels on to the ends of

the output shafts. A short length of plastic sleeving pushed on to the shafts first was to

make the wheels a tight fit. At this stage we discovered that it was impossible to remove

the wheels from their original axle. So we gave up this idea and substituted Tamiya

wheels, attached as described on p. 170. The hub caps of the wheels match those of the

existing front wheels sufficently well.

The drive motor is bolted to the floor of the bodywork and its shafts are just the right

distance above the floor to pass freely through the existing bearings.

SteeringSteeringSteeringSteering

Steering is more of a problem because the front wheels are not able to turn from side to

side. Also the front wheels are closely surrounded by mudguards so there is little space

around them in which they could be turned if remounted. The answer to this is to raise

the existing front wheels off the ground by a steering assembly similar to, but simpler

than, that used in the Android.

The similarity is that the wheels are a pair of Lego wheels with tyres (left below). The

brick has a 4.5 mm hole bored in it to take the long bolt. This is a 50 mm roofing bolt,

3/16" in diameter. The nuts that come with this bolt are square, so a portion of each stud

is cut away (see close-up opposite) to allow the nut to fit between them. This prevents the

nut from working loose.

The steering castor. There are twoThe steering castor. There are twoThe steering castor. There are twoThe steering castor. There are two

plastic collars on the bolt to set theplastic collars on the bolt to set theplastic collars on the bolt to set theplastic collars on the bolt to set the

distance between the wheels anddistance between the wheels anddistance between the wheels anddistance between the wheels and

the underside of the body.the underside of the body.the underside of the body.the underside of the body.

CB063
page 4

Friday, 16 March 2007 06:46
Black

A robotic toy

249

The four studs around the nut areThe four studs around the nut areThe four studs around the nut areThe four studs around the nut are

cut away so that the nut fits neatlycut away so that the nut fits neatlycut away so that the nut fits neatlycut away so that the nut fits neatly

between them and can not turn.between them and can not turn.between them and can not turn.between them and can not turn.

The bolt passes upward through a 4.5 mm hole drilled in the lower body, centrally and

just to the rear of the front wheels. The underside rests on the upper end of the collar and

the length of this is such that there is a gap of about 5 mm between the front wheels and

the ground. This is small enough not to be noticeable.

Looking down on the steering mechanism, we can see the upper end ofLooking down on the steering mechanism, we can see the upper end ofLooking down on the steering mechanism, we can see the upper end ofLooking down on the steering mechanism, we can see the upper end of

the castor bolt projecting upward. At its upper end a 25 mm pulley isthe castor bolt projecting upward. At its upper end a 25 mm pulley isthe castor bolt projecting upward. At its upper end a 25 mm pulley isthe castor bolt projecting upward. At its upper end a 25 mm pulley is

gripped between two nuts and a third nut is tightened against the uppergripped between two nuts and a third nut is tightened against the uppergripped between two nuts and a third nut is tightened against the uppergripped between two nuts and a third nut is tightened against the upper

one of these as a lock-nut.one of these as a lock-nut.one of these as a lock-nut.one of these as a lock-nut.

The upper end of the castor bolt projects up into the front part of the body, under the

bonnet. Washers are threaded on it, secured by nuts, so that the assembly turns freely yet

does not wobble unduly. At the upper end of the bolt, a plastic pulley wheel is held

between two nuts, tightened to prevent it from turning on the bolt (see below).

CB063
page 5

Friday, 16 March 2007 06:46
Black

The Robot Builder’s Cookbook

250

The steering motor is a 3 V DC motor without a gearbox. It is small, only 20 mm in

diameter and 25 mm long, so fits easily in the limited space inside the car. It does not

have any means of bolting it in position, so it is held in a spring clip that is bolted to the

side of the body. The clip is the kind used for holding a 9V PP3 battery. It grips the motor

firmly yet the motor can be slid up or down to bring the ‘pulley’ on the motor's output

shaft level with the pulley on the castor shaft.

There is no actual pulley on the motor shaft. The rubber band runs around the shaft itself.

It is prevented from slipping off by two belt guides supplied as part of the Tamiya Pulley

Set (see their instruction leaflet).

Two bolts project downward from the underside of the body. These are positioned as

stops to prevent the castor from turning more than 45° on either side of ‘straight ahead’.

A rubber band runs around the drive shaft and the pulley. When a brief pulse is applied

to the motor, it rotates at high speed, turning the pulley/castor in one direction or the

other. Almost instantly, it is prevented from turning further by one of the stops. The

motor continues to rotate, but the band slips and the pulley remains directed at 45° to the

left or right.

The steering action is much faster than that of the other steering mechanisms. The car

zigzags along in a lively way. This vehicle is a good one to program for object avoidance

and path following. Maybe we could teach it to run a slalom along a row of drinks cans.

 More modsMore modsMore modsMore mods

For a toy vehicle, an amusing addition to the sensors is a downwardly-directed light

sensor underneath, at the front. It could have its own light source, preferably infrared, or

rely on ambient light. When the robot is running on a table there will be a change of light

level as the front of the vehicle reaches the edge of the table. Program it to respond

immediately by backing and turning before going forward again.

A sensor that detects the Earth’s magnetic field is unusual but inexpensive. Installed in a

toy vehicle (or in any of the other mobile robots) it provides a sense of direction. Precision

is not high but good enough for simple navigation routines.

CB063
page 6

Friday, 16 March 2007 06:46
Black

A robotic toy

251

Electronics

 The switching is put under the control of the PIC by wiring a relay in parallel with the

push-button. A relay driving circuit is illustrated on p. 91. To connect the relay to the

sound effects circuit board of the toy, carefully prise the key-top from the circuit board.

With the power switched on, try short-circuiting the two pads together for an instant.

This should initiate the sound effect and, if so, solder a wire to each pad and run the

wires to the contact terminals of the relay. When the output from the PIC energises the

relay its contacts close, connecting the pads and so turning on the sound.

Sounds add much realism to the robot’s actions. If you have another spare toy with a

different set of effects, it may be possible to install the circuit for these instead or as well.

But first check that their operating voltages are compatible.

The sound effects were an entertaining feature of the original toy, and we wanted to

retain them for the robot. An effect is turned on by pressing a button on the side of the

car. In the robotic version, they are switched on automatically by using relays.

Each button has a flexible plastic key-top, underneath which is a small (4 mm diam.) disc

of conductive foam. The keytop adheres to the circuit board, which has two finger-like

copper pads beneath each key-top, with a narrow gap between the pads. When the

keytop is pressed the conductive disc bridges the gap between the pads and the sound

effect is switched on.

Two forms of copper pad used in push-to-make buttons of keypads.Two forms of copper pad used in push-to-make buttons of keypads.Two forms of copper pad used in push-to-make buttons of keypads.Two forms of copper pad used in push-to-make buttons of keypads.

CB063
page 7

Friday, 16 March 2007 06:46
Black

The Robot Builder’s Cookbook

252

Programming

The electronic system includes a board for the controller and circuitry on or off board for

the other devices that are installed. Both the drive and steering motors need to be

reversible, so a transistor H-bridge or a relay board is needed for each motor. Browse the

cookbook looking for other features to add to the robotic toy.

The sound effects run on 3 V from the built-in battery holder. A second battery holder

holds two more AA cells (or AAA cells if space is short). It is wired in series with the

built-in holder. The two batteries total 6 V for powering the controller board, the transis-

tor switch that switches the relays, and the H-bridges that control the drive motor and

steering motor.

Steering controlSteering controlSteering controlSteering control

A pulse with the duration of a single call to delay is sufficient to turn the wheel fully in

either direction. To steer straight ahead, first send a pulse to turn the wheel fully to right

or left. Then send a shorter pulse to nudge the wheel in the opposite direction and into

the forward (mid-way) direction. The pulse is obtained by calling shortdelay with 040h as

the initial value of delay1. Adjust this value to suit your motor. The two pulses take only

a fraction of a second, so the effect is a smooth change of direction.

Varible speed controlVarible speed controlVarible speed controlVarible speed control

This routine has many applications. The idea is that power is supplied to a motor as a

stream of pulses. The pulses are at the full supply voltage (or the voltage available from

an H-bridge) but the ratio between the length of a pulse and the interval between pulses

can be varied by programming. The shorter the pulse and, therefore, the longer the

interval, the lesser the power delivered to the motor and the slower it turns. This way of

controlling speed is preferable to varying the voltage. It makes the motor less likely to

stall or fail to start at low speed.

CB063
page 8

Friday, 16 March 2007 06:46
Black

A robotic toy

253

The frequency of the pulses is around 100 Hz, so that the motor turns smoothly. The

circuit may also be used for dimming a lamp or an LED.

The period of the waveform is constant (hitime + lotime) but the ratio

hitime:lotime can be varied over the range 128:0 (motor fully on) to 0:128 (motor

off). In practice, the motor requires a minimum hitime in order to keep it turning

slowly so the full ratio range can not be used. Similarly with LEDs.

The listing overleaf is complete except for the PIC type, configuration and equates. The

motor will be controlled through channel RC0, using a transistor switch. The flowchart

of the burst subroutine is on p. 256.

The calling routine of theThe calling routine of theThe calling routine of theThe calling routine of the

MarkspaceMarkspaceMarkspaceMarkspace variable speed variable speed variable speed variable speed

program.program.program.program.

The listing (pp. 254-255) is a demonstration of the

routine and is useful for testing the action of the

routine with a given motor or lamp.

The main program is short. It sets the values of three

essential parameters of the rectangular waveform that

drives the motor. In this demo they are typed into the

program before compiling and running it. In an

application they would be calculated by program-

ming logic.

A single cycle of the waveform is divided into 128

(08h) small blocks of time. The length of one block is

delaytime, which can be set to any value between 1

and 256 (ffh). First the output is made high for a given

number of blocks, set by hitime. Then it is made low

for a given number of blocks set by lotime. Hitime

is typed in and lotime is calculated by subtracting

hitime from 128. The output is made low for

lotime.

The single waveform cycle is repeated a number of

times (lenburst) to produce a burst of pulses at the

output to drive the motor for a given length of time.

The programming could be adapted to power the

motor for a longer time or until a given event occurs.

CB063
page 9

Friday, 16 March 2007 06:46
Black

The Robot Builder’s Cookbook

254

lenburst equ 23h

hitime equ 24h

lotime equ 25h

hicount equ 26h

locount equ 27h

delayx equ 28h

lencount equ 29h

delaytime equ 2ah

org 00h

goto start

org 04h

goto start

start

bsf status, 5 ; Bank1.

clrf trisc ; Port C all outputs.

bcf status, 5 ; Bank2.

bsf status, 6

clrf ansel ; Digital input/output.

clrf anselh ; Digital input/output.

bcf status, 6 ; Bank0.

bcf status, 5

; Program begins here

clrf portc

movlw 010h ; Set length of unit time-block.

movwf delaytime

movlw 70h ; Set time-blocks for high output.

movwf hitime

sublw 080h ; Calculate low time-blocks.

movwf lotime

movlw 050h ; Set length of burst.

movwf lenburst

call burst ; To produce burst of pulses.

bcf portc, 0

bsf portc, 3 ; LED on RC3 signals 2nd burst on.

movlw 02h ; Set parameter for 2nd burst.

movwf hitime

sublw 080h

movwf lotime

movlw 0C0h

CB063
page 10

Friday, 16 March 2007 06:46
Black

A robotic toy

255

movwf lenburst

call burst

bcf portc, 3

endit goto endit

; Subroutines

burst

movf lenburst, w ; lencount = lenburst.

movwf lencount

speed

movf hitime, w ; hicount = hitime.

movwf hicount

movf lotime, w ; locount = lotime

movwf locount

bsf portc, 0 ; Turn output on (high)

hiphase

call delayit ; Remains high while hicount

decfsz hicount, f ; is counted down to zero.

goto hiphase

bcf portc, 0 ; Turn output off (low).

lophase

call delayit ; Remains low while locount

decfsz locount, f ; is counted down to zero.

goto lophase

decfsz lencount, f ; Burst continues while

goto speed ; lencount is counted dowm

return ; to zero.

delayit

movf delaytime, w ; Produces a delay while

movwf delayx ; delayx (= delaytime)

nextloop ; is counted down to zero.

decfsz delayx, f

goto nextloop

return

end

CB063
page 11

Friday, 16 March 2007 06:46
Black

The Robot Builder’s Cookbook

256

The The The The burstburstburstburst subroutine produces a train of pulses of fixed frequency and length subroutine produces a train of pulses of fixed frequency and length subroutine produces a train of pulses of fixed frequency and length subroutine produces a train of pulses of fixed frequency and length

but with variable mark:space ratio.but with variable mark:space ratio.but with variable mark:space ratio.but with variable mark:space ratio.

The routine can be used to give a more realistic action to a mobile robot. Instead of

starting and stopping with a jerk the robot accelerates smoothly from rest, and gracefully

decelerates to a halt. The burst subroutine is called with fixed values of delaytime and

lenburst and an initial value for hitime. It then runs in a loop in which hitime is

gradually increased or decreased.

CB063
page 12

Friday, 16 March 2007 06:46
Black

A robotic toy

257

Machine-gun sound effectMachine-gun sound effectMachine-gun sound effectMachine-gun sound effect

This routine generates a burst of white noise which sounds reasonably like a burst of

machine-gun fire. It makes a good addition to the repertoire of a military toy robot. The

sound is variable so it could have other applications.

The random number generator (pp. 161-163) is made to run in a loop, generating a

sequence of values of randval at high speed. As each new number is generated, its bit<7>

is read (by ANDing randval with 080h,) and channel RC7 of port C is set to the same

value.

The result is that RC7 outputs a random sequence of values. The output goes to a

transistor switch with a speaker in its collector circuit (p. 89). The random levels produce

a burst of white noise.

The routine is a short one and calls on delay, shortdelay, and randno:

bsf randval, 0 ; Seeding random numbers.

movlw 050h ; Length of burst.

movwf count

repeat

call randno

movlw 080h

andwf randval, w ; Get bit <7>

movwf portc ; Send it to RC7.

call shortdelay

decfsz count, f

goto repeat

bcf portc, 7 ; In case last value is 1.

endit goto endit

With count set to 050h, the sound burst is about one second long. If the burst is made

longer it develops a regular beat which spoils the effect. This happens because the

sequence is not truly random and repeats after 127 calls to randno. It would be possible to

extend the virtual shift register to, say, 16 bits and give bitn and bitm the values of bits

<15> and <14> respectively. The sequence then repeats after every 32767 calls.

CB063
page 13

Friday, 16 March 2007 06:46
Black

The Robot Builder's Cookbook

258

This is a mobile platform with room

to install as many sensors and

actuators as the 16F690 can handle. It

is ideal for experimenting with new

ideas in the fields of robot

mechanics, robot electronics and

robot programming.

There is room on the platform for

several sensors and the platform can

readily be enlarged to take more.

The modular design of the

electronics give flexibility and the

scope for extension. With a PIC at

the heart of it all, the Quester is ready

to explore new types of robotic

action.

Specification

Two decks construction:
Lower: motors, wheels.
Upper: PIC, sensors, actuators.

Two batteries: 12 V (motors), 6 V (logic).
Three wheels: 2 drive, 1 castor.
PIC 16F690.
Sensors: switches, bumpers, light, IR.
Actuators: motors, LEDs, buzzer/siren.
Control panel on upper deck.

Programs:
Program selector
Wanderer (avoids obstacles)
Light seeker
Line follower
Prisoner (can not cross a line)
Maze runner (on the Web)

MechanicsMechanicsMechanicsMechanics

The decks are cut from sheet plastic (we prefer 3 mm expanded PVC), plywood, or

hardboard. The drawing opposite shows the lower deck. First cut a square, 160 mm ×

160 mm. Cut away the recesses for the drive wheels, and cut away the triangular areas at

the rear corners. You may need larger recesses if the wheels are greater than 70 mm

diameter.

The motors and gears are mounted below the lower deck (see photo opposite). The drive

wheels must therefore be large enough to give clearance between the motors and the

ground. The photo also shows the base of the castor. When planning the layout of the

deck, check that the castor will be able to turn fully through 360° without touching the

rear ends of the motors or their supports.

CB064
page 2

Friday, 16 March 2007 06:50
Black

The Quester

259

These give a further 1:5 reduction in

speed, bringing the maximum speed of

the robot down to about 50 mm/s, which

is much more manageable.

The bearings for the axles consist of two

double-right-angled strips (one for each

motor shaft). Mount the drive assemblies

(motors, gears and bearings and wheels)

so that the deck is level when standing

on the drive wheels and castor.

The drawing indicates the locations of

the axles and motors. However, the

exact positioning depends on the sizes of

the motors and other parts.

In our Quester the motors operate on

12 V DC, are reversible (important!), and

have built-in gearboxes. These reduce

the speed of rotation to 70 r.p.m. With

70 mm diameter drive wheels, this gives

the robot a speed of:

 70 × Ω × 70 =

 15 m/min, or 256 mm/s.

The lower deck, viewed from below.

The lower deck seen from below.

This is rather too fast for convenience,

so we added external gears (from

Meccano) to reduce the speed further.

With Meccano gears, use a needle file

to re-shape the ‘rounded triangular’

hole in the 10-tooth cog wheel to fit the

motor output shaft. The cog wheels

mesh with 50-tooth crown gears.

CB064
page 3

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

260

Most motors have threaded holes for bolts, or have fixing lugs. Others are without any

such features and are intended to be mounted in a spring clip. If a clip of the right size is

not obtainable, a mounting can be improvised from PVC sheet. Each motor is supported

at one end by the angle bracket through which the output shaft passes. The other end is

suported in a framework (drawing below) made from strips of PVC board, bolted

together and fixed to the deck by an angle bracket. Wind a single layer of PVC insulating

tape round the rear end of each motor to help the framework grip the motor.

The rear ends of the motors are supported by a
framework.

The rear ends of the motor (with smoothing
capacitor soldered to its terminals) is supported in
a framework. Part of the angle bracket that fixes
the framework to the deck is seen on the right.

Drill all the holes in the deck before bolting

anything to it. Most holes are either 3 mm

or 4 mm in diameter, but the three holes for

the deck spacers might need to be larger.

These are shown in the drawing on p. 269.

Other holes, not in the drawing, are for the

brackets supporting the axles and the

motors, for the bracket that attaches the

framework, and for the castor. Two holes

are needed for mounting the power control

board, and two more for each hinge of the

bumpers.

The decks are clamped together by three
long bolts (one shown here). Each bolt is

surrounded by a spacer tube cut from garden
sprinkler tubing. The nut is tightened to hold
the decks firmly against the ends of the tube.

CB064
page 4

Friday, 16 March 2007 06:50
Black

The Quester

261

The castor is the right size to
support the lower deck

horizontally.

This view shows the rear end of
the right motor supported in
the framework. The power

control board is visible,
mounted on the top surface of

the lower deck.

 The upper deck, showing
the layout of the circuit

boards and the positions
of the three spacers.

A castor, a light-duty furniture type, can be purchased from a DIY store. Try to get one

that, when bolted to the deck, supports the rear end of the deck horizontally. Otherwise it

is necessary to adjust the mounting of either the castor or the drive wheel assemblies to

make the deck level.

The upper deck (below) is cut from a 160 mm square of expanded PVC board. It has the

same overall dimensions as the lower deck. It is mounted on the lower deck so that its

rear edge is exactly above the rear edge of the lower deck. There are three holes for the

spacer bolts; these must be in exactly the same positions as those in the lower deck. The

spacing between the two decks must be large enough to allow access for hands and small

tools. However, if the spacing is too large the robot is more likely to topple over on a

rough surface. Spacing of 100 mm is about right.

CB064
page 5

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

262

(Above) Three-quarters rear view of the
upper deck and control panel (white). The
control panel is supported at the front by

being hinged to a framework of metal strip. In
the foreground are the boards for the

bumpers and IR sensors.

(Right) Rear view of the upper deck and
control panel. The rear edge of the panel is

supported by, but not attached to, two
vertical metal strips that are bolted to the
deck. The processor board is in the fore-
ground and, behind it is the 6 V battery.

For each board that is to be included in the

system, drill a pair of holes to match the holes

in the circuit boards. Refer to the stripboard

layout figures on pp. 265-275 to find the

spacing of these holes.

Note that there are no holes in either deck for

fixing the batteries. They are attached with

self-adhesive Velcro strip. This makes it

easy to remove them when replacing or

recharging spent cells.

There are several other ways of mounting the upper deck. One way is to cut the spacers

from wood dowelling about 20 mm in diameter or 20 mm square timber and fasten the

decks by passing screws through holes in the deck and into the ends of the dowelling.

Brackets of strip aluminium bolted to the decks are another suggestion.

There is a large hole (about 25 mm diameter) in the upper deck for the cables that

connect the two decks. These include the 4-way lead from the processor board to the

motor control board. The hole is large enough to pass the sockets that terminate both

ends of this cable. Alternatively, you may decide to route this cable another way, in

which case the hole could be smaller.

The figure shows the locations of the circuit boards and the battery that supplies the

logic circuits. The boards are each to be fixed to the deck by a pair of nylon bolts.

CB064
page 6

Friday, 16 March 2007 06:50
Black

The Quester

263

The figure shows one of the two vertical supports bolted to the upper deck. These are

Meccano pieces. The control panel is hinged to a PVC cross-member joining the upper

ends of the supports. At the rear, the control panel rests on another pair of supports, as

seen in the photo opposite.

In the photo, the space between the upper deck and the control panel is crammed with

circuitry and connecting wire. However, the control panel can be flipped up for easy

access. Using wires of several different colours makes it easier to trace connections. The

control panel is a rectangle of white polystyrene sheet, but could have been made from

the expanded PVC.

The control panel. There are two holes for
mounting the control circuit board.

The completed control panel. You may
prefer to label the switches and LEDs.

The panel carries the switches S1 and S2

for battery B1 (12 V drive motors) and

battery B2 (6 V logic) and their indicator

LEDs, D1 and D2. The push-button S3

resets the system. The rotary switch S4

selects which of the four programs is to be

run. Other switches could be there to

activate patterns of behaviour.

This is mainly an account of the

construction of a particular mobile robot.

Many different versions are possible and

workable. You may need to substitute

other materials and methods of

construction, and your eventual design

may look very different from the robot

shown here. But the same principles apply

to all mobile robots. Experiment and

innovate!

CB064
page 7

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

264

ElectronicsElectronicsElectronicsElectronics

A block diagram of the whole electronic system
of the Quester.

Controller boardController boardController boardController board

The schematic (opposite) shows that this board has little on it other than the PIC and the

circuitry for pulling up the input to channel RA3 (pin 4), which does not have an internal

pulll-up. The power switch S2 and the push-button S3 are located on the control panel.

As can be seen in the drawings opposite and the photo on p. 266, the main items of the

board are a 20-pin socket for the PIC and a large number of PCB pins for I/O.

After an overall view, this

section looks at Quester’s

electronic system, board by

board. A shopping list of the

components required is given

on pp. 278-279.

The centre of the system is

the processor board which

carries the PIC16F690

microcontroller. It receives

power from B2 through

switch S2 on the control

panel. LED D2 indicates

when the power is on.

There are connections to S3

and S4 on the control panel,

to the power control board

on the lower deck, and to the

input/output boards on the

upper deck and elsewhere

that interface the sensors and

actuators to the PIC.

CB064
page 8

Friday, 16 March 2007 06:50
Black

The Quester

265

Schematic of the controller board.

 Layout of the controller board. Check the
underneath of the board, using a hand lens

to make sure that all the copper strips are
cut beneath the PIC.

CB064
page 9

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

266

A completed controller board. The PIC socket is empty to show the gold insert
machined pins. This type of socket is best for the controller IC, which has to be
removed for re-programming several times during development and testing.

The inter-board connection technique used here provides the greatest possible flexibility

when configuring the system for different sets of sensors and actuators.

The diagram shows two M3 mounting holes drilled as G2 and at G19. The board is bolted

directly to the upper deck, using M3 nylon bolts and nuts.

When the board is completed, the only testing required is for continuity between the

individual pin sockets of the IC socket and the corresponding terminal pins.

Separate pins for each I/O connection give flexibility, but you could instead use 2-way or

4-way header plugs for the connections to certain of the I/O boards.

Motor control boardMotor control boardMotor control boardMotor control board

The circuit is the conventional H-bridge. The PCB layout is seen opposite. This version of

the circuit provides for two motors operating independently. The connection to the PIC,

the control input, is a 4-way header plug on the left in the figures. The output to the two

motors is another 4-way header plug, on the right.

CB064
page 10

Friday, 16 March 2007 06:50
Black

The Quester

267

 Layout of the motor control board.

The completed motor control board.

Check the completed board in the usual way by testing continuity and the absence of

short circuits. For a functional test, temporarily connect the motors to the ‘Out’ terminal.

Use A and B for the left motor, use C and D for the right motor. The motors should be

connected with the same polarity. For example, if A is connected to a given terminal on

the left motor, C should be connected to the corresponding terminal on the right motor.

Connect a 12 V battery to SKT1, also connect a pair of flying leads to the battery. If the

positive supply is connected to control A and 0 V to control B, the left motor should run

in the forward direction. If not, reverse the connections at the motor terminals. Repeat

with 0 V to A and positive to B. The motor runs in reverse. Repeat the test for controls C

and D.

CB064
page 11

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

268

Control panelControl panelControl panelControl panel

The control panel switches power supplies for the motors (12 V) and the logic (6 V).

Power distribution
circuit. The switches
S1 and S2 are on the

Control Panel.

Note the 0 V line which connects the 0 V terminal of both batteries to the 0 V terminals of

the processor board and all the sensor and actuator boards. In this way all modules in the

system have reference to the same ground (0 V) level. Signals may be exchanged between

the modules.

The Control panel carries several independent circuits:

• Power switches, S1 and S2, with their indicator LEDs, D1 and D2.

• Program Select rotary switch, S3, with output to the controller board.

• Push-button, S4, with output to the controller board.

 Schematic of the
control panel.

CB064
page 12

Friday, 16 March 2007 06:50
Black

The Quester

269

Most of the wiring of the control panel is between the components themselves,
already mounted on the panel. There is a small stripboard (above) which connects

the on-panel components to the outside modules using PCB pins. This board is
mounted on the back of the control panel.

The control panel is quickly tested for continuity and short circuits. Also test the

functioning of the circuits particularly the action of S4. The output voltages should follow

the binary sequence 00, 01, 10, 11 as the switch is rotated clockwise, with pin TP13 on this

board being the more significant bit (goes to pin TP13 on the controller board and to pin

15 of the PIC).

A point to be remembered when running wires to off-panel modules is that the wires

must be routed close to the hinge end of the panel. Otherwise it will be difficult to raise

the panel when testing or servicing the system. We used small self-adhesive plastic cable

grips, fixed on the rear of the front panel. These hold the wires close to the hinged edge of

the control panel.

Input/Output modulesInput/Output modulesInput/Output modulesInput/Output modules

The Quester has five input modules: a light sensor, a pair of I/R sensors, a pair of

bumpers. It also has input from S3 and S4 on the Control panel, as already described.

Excluding the drive motors, the robot has three output modules: a bleeper, and two high

brightness LEDs.

CB064
page 13

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

270

It is not necessary for you to equip your robot with the same selection. To start with, you

may build and install only the bumpers. Experiment with these for a while before adding

some of the other sensors and actuators. There are more sensor and actuator circuits

described in Part 3 that could extend the behaviour of your robot. Several of the suppliers

of robot kits also sell sensor and actuator units that can be connected into the Quester’s

system. Investigate some of these.

Light sensor and LEDsLight sensor and LEDsLight sensor and LEDsLight sensor and LEDs

As there was room for only four boards on the upper deck we decided to build these two

modules on the same board. The schematics are on p. 75 (plus an op amp comparator as

on p. 73) and p. 91 (left). See Shopping List, pp. 278-279, for component values.

The light sensor occupies the upper half of the board, with the pair of LED
switches on the lower half.

The light sensor is nominally an ORP12, but any low-cost LDR can usually be

substituted. Preferably it should be about 5 mm in diameter. It has a twin lead soldered

to its terminal wires, about 60 mm long and terminating in a 2-way header socket.

Polarity is unimportant. The board occupies position 1 (see p. 261) at front right of the

upper deck and the LDR is mounted on the front panel (opposite).

The LEDs are mounted by drilling two 1 mm holes 2 mm apart for each. The lead wires

are passed through these holes, glue is applied to the base of each LED, and the LED is

glued to the panel. The lead wires of each LED are soldered to a pair of wires about

100 mm long, terminating in a 2-way header socket. Polarity is important; the cathode of

LED1 should go to the pin at I11 and the anode to J11. The cathode of D2 goes to I19 and

its anode to J19. The cathode is usually identified by being the wire lead nearer to the rim

on the body of the LED.

CB064
page 14

Friday, 16 March 2007 06:50
Black

The Quester

271

The front panel with mounted light sensor and
two LEDs. The front panel is PVC cut to fit on
the two front supports of the control panel.

To provide directional sensitivity, a 10 mm
length of opaque plastic sleeving is pushed on

to the LDR. It should be a fairly tight fit. The
sleeving is then pushed into a hole in the
panel, and this too should be a tight fit.

Note the strip of PVC bolted on top of the hinges. This is for neatness, to cover the gap

between the front edge of the control panel and the upper edge of the front panel.

The sensor is tested by connecting 6 V to SKT1, and a voltmeter to TP1 and 0 V. Adjust

the setting of VR1 until the output is low (less than 1 V) when the LDR is covered and is

high (more than 3.5 V) when the LDR (in its tube) is exposed to light from a daylight

window or mains table lamp. It will probably be necessary to readjust the setting when

the robot is being tested, depending on ambient lighting conditions.

With the board power supply still connected and the LEDs connected to PL1 and PL2 the

LEDs are tested by applying 6 V to the pin at N11; D1 should come on. Similarly, test the

switching of D2 by applying 6 V to the pin at M11.

Infrared sensor boardInfrared sensor boardInfrared sensor boardInfrared sensor board

The infrared sensors in this robot are mounted below the lower deck, just behind each

bumper, and directed downward. The rims of the shields are about 20 mm above ground

level. The probes are built on small squares of stripboard (overleaf). The IR LED (D1) is a

5 mm type able to pass a maximum current of 50 mA. The IR photodiode (D2) is a BP104,

which fits conveniently close to the circuit board, but other types can be used. When

soldering in the diodes, note that they are mounted with opposite polarity.

CB064
page 15

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

272

 The IR sensor board. The schematic is
on p. 77. Both the light sensor (p. 280)
and this IR sensor have a comparator

built from an IC on the board. We could
instead use the PIC’s built-in compara-
tor module or the AD converter, but

triggering levels would then have to be
set by programming instead of by

screwdriver.

(Left) Stripboard
layout of an IR

probe. There is a
central hole for
the supporting

bolt.

(Right) The leads
of D1 are cut

short so that it lies
close to the probe

board.

 The IR sensor board interfaces the two
sensors to the system. The board has

two header plugs: PL1 connects to the
left sensor and PL2 to the right.

Connections are: strip A, +6 V; strip B,
output from photodiode cathode; strip

C, from IR LED anode. Output is
normally taken from the board at TP1

(left) and TP3 (right).

Underneath view of the robot,
showing the two IR sensors. The

circuit boards can be seen
surrounded by the white plastic

shields.

CB064
page 16

Friday, 16 March 2007 06:50
Black

The Quester

273

The probe boards are enclosed in downwardly directed shields (drawing below). We

used PVC pipe caps obtained from the plumbing department of the local hardware store.

A 30 mm M3 bolt passes through the circuit board, through a central hole drilled in the

shield and through the lower deck. These items are secured by nuts. A second hole is

drilled in the shield to one side of centre. This is for the connecting wires (not shown in

the figure), which pass through the circuit board from the rear and are then soldered.

The mounted probes are seen in the lower photo opposite. They are mounted with their

centres about 45 mm apart.

 Sectional view of a probe. The inside
of the shield may be painted matt
black to give greater directional

sensitivity, but it was found that this
made little difference.

The sensors are tested by using a piece of white card, half of which is painted black.

Connect the 6 V power supply and plug in one of the probes. Connect a voltmeter to the

output pin. Adjust the preset resistor until the output voltage is low (close to 0 V) when

the white area of the card is held 20 mm from the sensor, but rises close to the positive

supply voltage when the black area is held there.

BumpersBumpersBumpersBumpers

These are two rectangular PVC panels, left and right, hinged at the front of the lower

deck. They hang vertically but, when pressed, they swing back and contact

microswitches. The bumpers need to be able to recover quickly when pressure is

removed, so the hinges should be quite loose. Try searching through the stock at the

store to pick out the two loosest hinges they have.

CB064
page 17

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

274

The robot encounters an obstacle. It is sensing
that its right bumper is pressing against

something, closing the right microswitch.
Conventionally, bumpers are located at the front

of the robot, but it could be useful to have
bumpers at the back too, for detecting obstacles
while reversing. A bumper, or something similar
can also be mounted on one side of the robot

for use in wall-following routines.

(Right) The microswitch is bolted to a small PVC
panel suspended below the lower deck on two

bolts. Here the right bumper is flipped back.

The bumper board. Only a small board is
needed for bumpers. The resistors are

10 kΩ.

The bumper board, mounted in position 4
on the upper deck.

CB064
page 18

Friday, 16 March 2007 06:50
Black

The Quester

275

Bleeper boardBleeper boardBleeper boardBleeper board

The board for the bleeper or other audible warning device (AWD) can be mounted in the

least accessible position on the upper deck, because there is nothing on the board that will

need adjusting. The stripboard layout is adaptable to devices of various shapes and sizes.

For a bleeper, we used a low-cost mini piezo buzzer. It operates on 1.5 V to 28 V,

producing a single tone, frequency 3.5 kHz at about 80 dB.

The Bleeper board. For maximum loudness, make sure that the
AWD is fixed firmly to the circuit board and the board is fixed

firmly to the deck.

Test the board by connecting the 6 V supply. Then apply +6 V to pin TP1 to hear the

bleeper sound.

By now we are ready to start making the inter-
board connections. First to be made are the power

connections on the upper deck. Note the power
lines (top left) to the control panel and the

common ground line (lower left) to the lower
deck. The 6V battery will be fixed to the Velcro

patch.

CB064
page 19

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

276

Connections between boardsConnections between boardsConnections between boardsConnections between boards

See the drawings on p. 264 and p. 268, and the table below. The photo on the previous

page illustrates the way the 0 V and +6 V lines are daisy-chained from board to board.

The PIC is not in its socket, and will not be there until the whole system has been tested.

From board To No. of wires From connector To connector

Control panel Processor MCLR 1 Pin* Pin

Control panel Processor

Program select

2 Soldered to S4 Pins

Light sensor LDR 2 2-way skt† Soldered to LDR

Light sensor Processor 1 Pin Pin

LEDs Processor 2 + 2 2-way skt each Soldered to

LEDs

IR sensor IR sensors 3 + 3 3-way skt† each Soldered

IR sensor Processor 2 Pins Pins

Bumpers Bumpers 3 3-way skt Soldered

Bumpers Processor 2 2-way skt Pins

Bleeper Processor 1 Pin Pin

* Pin = 0.9 mm pin on the board, socket on the lead.

† 2-way and 3-way = polarising header plug on the board, socket on the lead.

Begin testing by checking the power supply to each board. The positive line on the boards

should be at 6 V, or 4.8 V to 5 V with rechargeable cells. Check the Input/Output

responses as detailed on pp. 102-103. This procedure checks what happens when a given

voltage is applied to an output pin (O) in the processor socket, or when stimulating a

sensor and measuring the voltage at the input pin (I).

CB064
page 20

Friday, 16 March 2007 06:50
Black

The Quester

277

PIC I/OPIC I/OPIC I/OPIC I/O

For later reference the table below lists I/O connections to the PIC. A photocopy of this

table mounted on card is handy to have on the workbench.

Port Name IC pin I/O Connected to 0 = 1 =

A RA0 19 I Light sensor Dark Light

RA1 18 I I/R sensor (R) White Black

RA2 17 I I/R sensor (L) White Black

RA3 4 I Push button Pressed Released

RA4 3 I Bumper (R) No contact Contact

RA5 2 I Bumper (L) No contact Contact

B RB4 13 O Motors D (L) A0 = forward

RB5 12 O Motors C (L) 50 = reverse

RB6 11 O Motors B (R) 60 = spin right

RB7 10 O Motors A (R) 90 = spin left

C RC0 16 I Program select 0

RC1 15 I Program select 1

RC2 14 O Bleeper Off Sound

RC3 7 O LED (R) Off On

RC4 6 O LED (L) Off On

RC5-7 5, 8, 9 Spare

The entries are grouped by I/O port and list all the channels available on the PIC16F690.

In the fourth column, the I or O indicates whether the channel is to be configured as an

input or an output.

In Port B, the right-hand column lists the binary values used in assembler code to

produce the required motion of the robot. If it does not, reverse the connections between

the power control board and the terminals of the motor.

A 4-way program select switch with two input lines is not necessary if the controller runs

only one or two programs. Instead, the program select lines could be used for other

switched inputs such as microswitches for additional bumpers or for limit switches.

CB064
page 21

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

278

Shopping list — electronic (1)
Controller board:

R1 resistor 1k.
C1 polyester capacitor, 100n.
C2 polyester capacitor, 10n.
20-way d.i.l. turned pin socket.
2-way screw terminal.
0.9 mm PCB terminal pins (17 off).
Stripboard 13 strips x 20 holes.

Motor control board (double):
Q1, Q3, Q5, Q7 BC639 npn transistor (4 off).
Q2, Q4, Q6, Q8 BC640 pnp transistor (4 off).
PCB plugs 4-way (2 off).
2-way screw terminal.
Stripboard 16 strips x 21 holes.

Control panel:
R1 resistor, 470R.
R2 resistor, 150R.
R3, R4 resistors, 10k.
D1, D2 light-emitting diodes, 5mm.
S1, S2 miniature toggle switches.
S3 miniature 3-pole, 4-way rotary switch.
S4 push-to-make push-button.
0.9 mm PCB terminal pins (19 off).
Stripboard 11 strips x 14 holes.

Light sensor board:
R1 light dependent resistor, ORP12 or similar.
R2 resistor 470R.
R3, R4 resistor, 10k (2 off).
VR1 miniature preset potentiometer (trimpot) 10k.
IC1 CA3140E CMOS operational amplifier.
8-pin d.i.l. IC socket.
2-way screw terminal.
2-way PCB plug and socket.
0.9 mm PCB terminal pin.
Stripboard 15 strips x 22 holes.

LED switches (on light sensor board)
R1, R3 resistors, 470R.
R2, R4 resistors, 120R.
Q1, Q2 npn transistors, BC548 or similar.
D1 - D2 5 mm light emitting diodes, ultra bright (2 off)

CB064
page 22

Friday, 16 March 2007 06:50
Black

The Quester

279

Shopping list — electronic (2)
Infrared sensor board

R1, R3 resistors, 68R (2 off).
R2, R4 resistors, 22k (2 off).
VR1, VR2 miniature preset potentiometers (trimpots) 100k (2 off).
D1, D3 infrared light-emitting diodes, 5 mm (2 off).
D2, D4 infrared photodiodes, BP104 or similar (2 off).
IC1 CMOS 4011 quadruple NAND gate.
2-way screw terminal.
3-way PCB plugs and sockets (2 off).
14-pin d.i.l. IC socket.
0.9 mm PCB terminal pins (4 off).
Stripboard, 15 strips x 22 holes.
Materials for the shields.

Bumper board
R1, R2 resistors, 10k ((2 off).
2-way screw terminal.
2-way PCB plug and socket.
3-way PCB plug and socket.
MS1, MS2 miniature microswitches, SPST or SPDT(2 off).
Stripboard 10 strips x 15 holes.

Bleeper board
R1 resistor, 470R.
Q1 npn transistor BC548 or similar.
AWD solid state buzzer or siren, 6 V operating.
2-way screw terminal.
0.9 mm PCB terminal pin.
Stripboard 15 strips x 22 holes.
Bolts for fixing AWD (2 off).

Miscellaneous
Connecting wire.
Solder.
Bolts for mounting circuit boards.

CB064
page 23

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

280

ProgrammingProgrammingProgrammingProgramming

It is assumed in this section that you are using the PICkit 2 programmer and software. If

you are using another programmer, your listing will be largely the same but with minor

differences.

The first lines in any code define variables, as shown opposite, but before these we have a

header (optional), state the processor used, and define its configuration.

The listing is written for the 16F690. The configuration wod is 0x33c4 (see pp. 118-119).

Note that the directive __config begins with two underline characters. The listing

continues with directives giving the addresses of registers, the code values of ‘w’

(working register) and ‘f’ (the current file register), and the labels of the delay subrou-

tines. There are optional labels for variables used in the modes 2 and 4. You can leave

these out if you are not intending to run these modes.

Below is the header, followed by PIC type and configuration word:

;**

; ROBOT BUILDER'S COOKBOOK

;

; Filename: Robot105

;

; Operates in one of four selectable modes:

; 1) Wanderer - uses bumpers to avoid obstacles

; 2) Light seeker

; 3) Line follower

; 4) Prisoner - wanders randomly within an

; area enclosed by a line

;

;**

list p=16F690

__config 0x33c4

CB064
page 24

Friday, 16 March 2007 06:50
Black

The Quester

281

Next come the equates followed by initialising instructions:

status equ 03h

porta equ 05h

portb equ 06h

portc equ 07h

trisa equ 05h

trisb equ 06h

trisc equ 07h

ansel equ 1eh

anselh equ 1fh

w equ 00h

f equ 01h

z equ 02h

delay0 equ 020h

delay1 equ 021h

delayn equ 022h

;Directive for Mode 2

scans equ 023h

;Directives for Mode 4

randval equ 024h

bitn equ 025h

bitm equ 026h

;Program begins here

goto start

org H'0004'

goto start

start

bsf status, 5 ;Page 1.

clrf trisb ;All port B as outputs.

movlw H'03' ;RC0 and RC1 as inputs.

movwf trisc

bcf status, 5 ;Back to page 0.

CB064
page 25

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

282

bsf status, 6 ;Page 2.

clrf ansel ;Digital I/O.

clrf anselh ;Digital I/O.

bcf status, 6 ;Back to page 0.

clrf porta ;Clear all ports.

clrf portb

clrf portc

Port A is an input port by default, but Port B must be configured as an output port. To

read the program select switch (S3) bits RC0 and RC1 of Port C must be inputs. The rest

are to be outputs.

By default, Port C accepts analogue input or output. We need it to be operated only as a

digital port. In the 16F690 this is done by setting the bits in the ‘analogue select’ registers

(ANSEL and ANSELH) to 0. Two ‘clrf’ instructions do this. Clearing all three registers

completes the initialising routine.

If you are intending to implement only one of the modes, go ahead and start typing its

listing. If you are intending eventually to run all four modes, you need the routine

(below) which reads input from the program select switch on the control panel and

directs the PIC to the program of your choice. The flowchart opposite shows how this

operates.

btfsc portc, 1 ;Test mode select bit 1.

goto bit1hi

btfsc portc, 0 ;Test mode select bit 0.

goto mode2 ;Light seeker mode.

goto mode1 ;Wanderer mode.

bit1hi

btfsc portc, 0 ;Test mode select bit 0.

goto mode4 ;Prisoner mode.

goto mode3 ;Line follower mode.

Next, the setting of switch S4 is tested by reading RC1. If it is low (switch set to 0X) the

program continues by testing bit 0. Depending on the value of bit 0 the program takes

us to Mode 1 (00) or Mode 2 (01). A high value of bit 1 (switch set to 1X) causes a branch

to the bit1hi label where a test of bit 0 routes either to Mode 3 (10) or Mode 4 (11).

CB064
page 26

Friday, 16 March 2007 06:50
Black

The Quester

283

If you are intending to install two or more modes, but want to type and test one at a time,

it is safer to put in short routines to catch the processor when it attempts to run on from

the end of a routine earlier in the listing. The simplest is:
mode2 goto mode2

An alternative is:
mode2 goto $

Remember that a listing must always end with the ‘end’ directive.

Flowchart of the program
select routine.

CB064
page 27

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

284

Mode 1 — WandererMode 1 — WandererMode 1 — WandererMode 1 — Wanderer

In this mode, the robot bleeps once, then runs across the floor, bumping into furniture,

walls and obstacles. Every time it bumps it switches on the LED on the side that it

bumped, reverses a short distance, turns away from the side it bumped, switches off the

LED and then continues on its way, flashing the LEDs and emitting bleeps as it does so. It

repeats this sequence indefinitely.

The Quester needs the two bumpers for this mode, but no other sensors. It is a good

program for your first on-the-job testing of the robot. Ideally the robot also needs the two

LEDs and the AWD. However, these are optional and the program works without them

— it is just less noisy and colourful.

(Right) Flowchart of mode1.

The flowchart (right) explains

how it works. The listing

opposite gives the details.

This mode also requires four

subroutines, which are listed

on p. 286. The avoidright and

avoidleft subroutines are used

only in mode1, but could be

useful in other programs. The

delay and longdelay

subroutines are used by all

modes, so be sure to type it in.

The main routine (right and

opposite) is a loop that begins

by reading the bumpers. If

one of these is pressed, the

appropriate subroutine is

called and the robot takes the

avoiding action described

earlier.

CB064
page 28

Friday, 16 March 2007 06:50
Black

The Quester

285

If nothing is detected, the robot runs forward for about 2 s, then stops, bleeps and flashes

its LEDs before returning to the beginning of the loop.

The delay subroutine is called several times in the loop to provide the necessary gap

between switching on the LEDs or AWD and off again. This produces a delay of fixed

length, about 0.2 s.

The longdelay subroutine is more flexible. Before calling it, a hex value is loaded into the

working register. Longdelay decrements this repeatedly until it becomes zero. At each

stage, longdelay calls delay. So longdelay can produce a delay of any length up to about 50 s

in steps of 0.2 s.

Here is the listing of the main loop of Mode 1:

mode1

bsf portc, 2 ;Beep, 0.2 s.

call delay

bcf portc, 2

wander

btfsc porta, 4 ;Read right bumper.

call avoidright

btfsc porta, 5 ;Read left bumper.

call avoidleft

movlw H'A0' ;Code for 'Forward'

movwf portb ;Both motors forward.

movlw H'0A' ;Delay 10 x 0.2 = 2 s.

call longdelay

clrf portb ;Stop.

bsf portc, 2 ;Short bleep.

call delay

bcf portc, 2
call delay
bsf portc, 2 ;Long bleep.
movlw H'08'
call longdelay
bcf portc, 2
bsf portc, 3 ;Flash both LEDs.
bsf portc, 4
call delay
clrf portc

goto wander ;Repeats without end.

CB064
page 29

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

286

These are the subroutines:

delay

decfsz delay0, f

goto delay

decfsz delay1, f

goto delay

return

longdelay

movwf delayn

repeat

call delay

decfsz delayn, f

goto repeat

return

avoidright

bsf portc, 3 ;Right LED on.

movlw 050h ;Both motors reverse.

movwf portb

movlw 0ah ;Delay = 10 x 0.2 = 2 s.

call longdelay

movlw 090h ;Spin left.

movwf portb

movlw 0ah

call longdelay

clrf portb ;Stop.

clrf portc ;LED off.

return

avoidleft

bsf portc, 4 ;Left LED on.

movlw 050h

movwf portb

movlw 0ah

call longdelay

movlw 060h ;Spin right

movwf portb

movlw 0ah

call longdelay

clrf portb

clrf portc

return

end

CB064
page 30

Friday, 16 March 2007 06:50
Black

The Quester

287

In this program the inputs from the bumpers are polled at frequent intervals. In the

16F690, Port A inputs can be configured to cause an interrupt on a change of input. We

could instead use an interrupt routine to call the avoding action. Details are in the PIC

Data Sheet. However, this makes the program more complicated and, since it is no

problem if the robot proceeds in short steps, it is easier to use a polling routine.

Mode 2 — Light seekerMode 2 — Light seekerMode 2 — Light seekerMode 2 — Light seeker

This program is best run with the robot in a curtained or low-lit room. It works most

effectively if there is only one source of light. There should not be any obstacles on the

floor. The robot needs the light sensor and the pair of bumpers.

The Quester is made to detect the direction of the source by spinning round while

continually reading the input from the light sensor. The tube on the light sensor restricts

the angle of view to about 10 degrees ahead. As soon as the sensor detects light ahead, the

robot stops spinning, enters the advance routine, and moves forward for about 3 s. Then it

stops and reads the input from its bumpers.

If the bumpers signal that they have made contact, it is probable that the robot has

reached the lamp or window. It reverses a short distance turns off its LED and the

program ends. If the bumpers are not in contact, the light sensor is read again and, if light

is still seen, it returns to its advance behaviour. If no light is visible now, it goes back to the

beginning and starts to scan for light again.

The total number of scans is limited to 128, where a scan is a single 0.2 s spin to the left. It

may take several scans to find the light again each time it loses it. This value is stored in

the register scan at the start of the program. Whenever the robot loses track of the light

scan may be decremented several times. If, after 128 scans, light has not been detected,

it may be that a bulky object is blocking the light, or the lamp has been switched off. The

robot goes to the distress routine, in which it turns off its LEDs and remains stationary,

bleeping for help.

Try to extend the searching activity by amending the distress subroutine. Instead of

stopping and bleeping, the robot could be programmed to set off for a new location.

From this location it scans for light again. It may be able to see it again from its new

location. It repeats this several times until it finds the light again.

CB064
page 31

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

288

Flowchart of mode2.

Note that this mode calls on the delay and longdelay subroutines (p. 286). If they are not

already included, add them to the listing, shown opposite and on p. 290.

CB064
page 32

Friday, 16 March 2007 06:50
Black

The Quester

289

mode2

bsf portc, 3 ;Right LED on.

bsf portc, 4 ;Left LED on.

scan

movlw 80h ;Max. 128 scans

movwf scans

continue

movlw 90h ;Spin left.

movwf portb

call delay

clrf portb ;Stop.

bsf portc, 2 ;Bleeper.

call delay

bcf portc, 2

btfsc porta, 0 ;Light detected ahead?

goto advance ;Yes - advance toward light.

decfsz scans, f ;Counting down number of scans.

distress

clrf portc ;LEDs off.

bleeping

bsf portc, 2 ;Bleeping.

call delay

clrf portc

movlw 10h

call longdelay

goto bleeping

advance

movlw a0h ;Forward.

movwf portb

movlw 10h

call longdelay

clrf portb ;Stop.

btfsc porta, 4 ;Right bumper in contact?

goto success ;If in contact.

btfsc porta, 5 ;Left bumper in contact?

goto success ;If in contact.

btfsc porta, 0 ;Light still visible?

goto advance ;Yes, continue in same direction.

goto scan ;No, look for light.

CB064
page 33

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

290

success

movlw H'50' ; Reverse away from lamp (hot!)

movwf portb

movlw H'10'

call longdelay

clrf portb ; Stop.

clrf portc ; LEDs off.

goto $; Wait (another way of doing it).

Mode 3 — Line followerMode 3 — Line followerMode 3 — Line followerMode 3 — Line follower

The Quester follows a line marked on the floor or other surface. For this task, it needs the

pair of infrared sensors. The ultra-bright LEDs on the front panel are not essential, but

they add to the visual appeal of the robot, especially when it is operating in low light. It

can, of course, operate in darkness or in bright room lighting. There is also the practical

point that when the robot is spinning left or right to keep on a curving line, the LED on

the side to which it is spinning comes on. This helps you to check that the line following

is working correctly.

The line is either made from adhesive black strip, from black card, or is painted on the

running surface. Before preparing the line, confirm that the line really does absorb

infrared. Some black papers and card reflect it, so the black line is indistinguishable from

the white or light coloured surface. We found that painting a line on thin white card

using Payne’s Grey acrylic paint, gave good results. Presumably, Lamp Black acrylic

would be just as good.

The line should be about 20 mm wide. Prepare a loop line with straight sections and

curves. The radius of each curve should be 70 mm or more. With sharper bends the robot

finds itself attempting to cross the line, and stops.

The flowchart and diagram opposite explain how the robot reads the left and right

sensors to find out if they are detecting reflected IR. Normally, when the robot is running

along a straight line, the sensors are positioned on either side of the line. The situation is

as at (a) the top of the diagram. The robot moves forward for 0.2 s and reads the sensors

again.

CB064
page 34

Friday, 16 March 2007 06:50
Black

The Quester

291

Flowchart for mode3.

What the sensors see, in the
four possible cases.

If only one of the sensors sees white, it is veering.

The reaction varies according to which sensor sees

white and which sees black. If the left sees black

and the right white (as at b), it is veering right. To

stay on the line it must spin left. The program

jumps to the spinl label: the left LED comes on

and the working register is set to H‘90’, the motor

contol code for spinning left. The opposite happens

if the robot veers off to the left, as at (c).

If both sensors see no white, the robot must be

crossing the line (as at d). It stops and the program

ends. This is where you might program it to do

something more exciting, as suggested later.

CB064
page 35

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

292

In cases (b) or (c) program jumps to spinl or spinr, depending on which direction it needs

to spin. The working register (w) is loaded with the appropriate code and the program

goes to spinnit. There, it uses the value in w to spin the robot in the required direction.

The program repeats and the robot runs round and round the loop indefinitely, or until it

is blocked when attempting to cross the line.

The listing is:

mode3

btfsc porta, 2 ;Left IR sensor.

goto rorcross ;Is veering right or crossing.

btfsc porta, 1 ;Right IR sensor.

goto spinr ;Is veering left.

movlw a0h ;Forward.

movwf portb

call delay

clrf portb ;Stop.

goto mode3 ;Repeat endlessly.

rorcross

btfsc porta, 1 ;Right sensor.

goto blocked ;Is crossing.

goto spinl ;Is veering right

spinr

bsf portc, 3 ;Right LED on.

movlw 60h ;Spin right.

goto spinnit

spinl

bsf portc, 4 ;Left LED on.

movlw 90h ;Spin left.

spinnit

movwf portb ;Make it spin.

call delay

clrf portb ;Stop.

clrf portc ;LED off.

goto mode3

blocked

goto $;Wait (or further action).

CB064
page 36

Friday, 16 March 2007 06:50
Black

The Quester

293

Many amendments and extensions can be made to this program. For example, a simple

amendment is to program it to follow a white line on a dark surface.

You can experiment with the lines. If the robot comes to an end of a line, it will continue

more or less straight ahead for a short distance. Then it can detect the beginning of

another line and follow it. Use this behaviour to make the robot follow a figure-of-eight

loop.

The robot can also run a maze of branching lines. At each branch there is a strip across

the junction to make it stop. Then it makes a random selection to go either left or right.

and arrives at one of several endings. Only one of these is ‘home’. Program it to

remember which selection it made at each branch and, eventually, to learn to run directly

home every time. Quest05.asm, a maze runner program on this theme, is available for

downloading from the companion website (p. vi).

Mode 4 — PrisonerMode 4 — PrisonerMode 4 — PrisonerMode 4 — Prisoner

This mode requires the pair of IR sensors and, optionally a pair of LEDs and the bleeper.

The Quester is placed in an area completely surrounded by a continuous line. It is unable

to escape because it is programmed not to cross the line. It wanders randomly and

indefinitely within its two-dimensional prison. However, you could leave a narrow gap

in the line and see how long it takes to find its way out, and then bleep triumphantly.

The flowchart (overleaf) begins with a simple loop that keeps the robot moving forward

with both LEDs on for as long as neither sensor detects the black line. However, if the left

sensor or the right sensor detects a line, the program jumps to the randomspin routine.

In the randomspin routine, it turns off the LEDs and sounds the bleeper while it reverses

for 3.2 s. Then a digit (0 or 1) is randomly generated using a version of the random

number routine described on pp. 161-163. The number is stored in randval. After this, the

code to be sent to the motors is first set to 90h (spin left) but is changed to 60h (spin right)

if the random digit is 1. After spinning in the randomly-chosen direction and some more

flashing and bleeping, the robot resumes its forward progress. The program runs

indefinitely.

CB064
page 37

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

294

Flowchart for mode4.

CB064
page 38

Friday, 16 March 2007 06:50
Black

The Quester

295

When typing in this program, you need to include the three extra equates listed on p. 281.

Also include the delay and longdelay subroutines.

mode4

movlw 33h

movwf randval ;Seed value to randval.

next

bsf portc, 3 ;both LEDs on

bsf portc, 4

btfsc porta, 2 ;Left IR sensor.

goto randomspin ;Blocked to the left.

btfsc porta, 1 ;Right IR sensor.

goto randomspin ;Blocked to the right.

onitsway

movlw a0h ;Forward.

movwf portb

call delay

clrf portb ;Stop.

goto next ;Repeat endlessly.

randomspin

clrf portc ;LEDs off.

bsf portc, 2 ;Bleeper on.

movlw 50h ;Reverse.

movwf portb

movlw 10h

call longdelay

clrf portc ;Bleeper off.

clrf portb ;Stop.

clrf bitn

clrf bitm

btfsc randval, 5 ;Getting n.

bsf bitn, 0 ;If n = 1.

btfsc randval, 6 ;Getting m.

bsf bitm, 0 ;If m = 1.

movf bitn, w ;n to w.

xorwf bitm, w ;XOR m and n, result in w.

addlw 0ffh ;Set carry if w = 1.

CB064
page 39

Friday, 16 March 2007 06:50
Black

The Robot Builder's Cookbook

296

rlf randval,f ; New random number in randval

movlw 90h ; Set to spin left.

btfsc randval, 0 ; Get bit 0 of random number.

movlw 60h ; Change setting to right.

movwf portb ; Spin left or right.

movlw 10h

call longdelay

clrf portb ; Stop.

bsf portc, 2 ; Bleep.

bsf portc, 3 ; Flash LEDs.

bsf portc, 4

call delay

clrf portc

goto onitsway

Developing the Developing the Developing the Developing the QuesterQuesterQuesterQuester

There is plenty of scope for combining some

of the routines in this specification to make

longer and more complex programs — the

PIC16F690 still has plenty of program

memory to spare.

Consider building some of the other sensors

described in Part 3. Add them to this robot.

For instance, the sound sensor has several

applications ranging from responding to a

hand-clap (everyone in the room has to keep

very quiet when this is running) to allowing a

pair of robots to communicate by using sound

signals. The ultrasonic transmitter and

receiver provide another way of detecting and

locating obstacles.

The Gantry’s camera is a very sensitive and

directional light sensor, which could be

applied to light-seeking or light-avoiding

programs.

Too many wires visible? This is a
research robot so wires are inevitable.

Some people like to see the 'works' but,
if you prefer a sleeker look, make a

'skin'. Use PVC sheet, foam board or
thick cardboard. The skin drops over

the Quester, to hide the circuit boards,
batteries and wiring,

CB064
page 40

Friday, 16 March 2007 06:50
Black

The Gantry

297

Gantry robots are often found on the factory floor, but less often on the hobbyist’s

workbench. A gantry robot usually consists of a main frame that supports a pair of

overhead rails, the y-rails (see drawing). The y-rails carry the wheeled y-frame. This

bears a second pair of rails, the x-rails, which carry the wheeled x-frame.

The tool or load is suspended from the x-frame and may be raised or lowered. By moving

the frames in the x- and y-directions and by raising or lowering the tool, the tool may be

placed precisely at any point in or above the working area.

For applications such as playing board games

a gantry has the advantage that the location of

the tool is very precisely known. This is not

usually the case with simple mobile robots.

The techniques for finding their location are

usually subject to errors, and the errors are

cumulative.

The architecture of a typical

gantry robot.

CB065
page 1

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

298

Specification

Aluminium extrusion construction.
Main frame plus x- and y-frames.
Two motors for x- and y-frames.
One motor for tool, up/down.
PIC16F690.
Two IR or Hall Effect sensors for x-
and y-location.
Tools: hook, gripper, paint brush,
laser beam, camera.

Programs:
Moving from A to B
Moving from C to D
Scanning
Operating the hook.
Operating the gripper*
Horseshoe game*
Maze solving*

* On the companion site.

MechanicsMechanicsMechanicsMechanics

Aluminium extrusions are ideal for this

project. In our prototype we mainly used

15 mm × 15 mm channelling, 3 mm thick. We

used 3 mm expanded PVC for the panels on

which electronic modules are to be mounted.

Because the design needs to be adapted to

the parts available, especially the motors and

gearboxes, it is best to start in the middle and

work outwards. The central unit of the robot

is the x-frame. This is built from two lengths

of aluminium channelling, 100 mm long,

bolted to two cross-members, 50 mm long.

The x-frame, like most of the Gantry, is bolted together using M3 bolts and nuts, with

shake-proof washers. Nuts are locked with thread-locking anaerobic adhesive.

Drill holes in the centre of each cross-member for tying the thread used to pull the

x-frame along the rails. Drill holes in the longer members for mounting the wheels and

the PVC panel, which measures 70 mm × 50 mm.

The x-frame consists of

four lengths of

channelling bolted

together. The structure

is held ‘square’ by the

PVC panel bolted across

the long members. The

same bolts are used to

secure the wheel base-

plates.

CB065
page 2

Friday, 16 March 2007 10:37
Black

The Gantry

299

The most suitable wheels we found for this robot

are Lego™ parts (right). We used the smaller of

the two sizes (approx. 8 mm diameter) supplied

in a bulk pack of wheels. The wheel hubs

(remove the tyres) snap firmly on to the square

base-plate, and have a low-friction action ideal

for this application. The base-plate has two

projections for accepting wheels; saw off the

unused projection. Drill a 3 mm hole through the

centre of the base-plate for bolting the plate to the

longer members of the frame.

 A base plate (black) with one wheel

(white). The groove in the wheel is just

wide enough for it to ride firmly on a rail

3 mm thick.

When the frame is assembled, the grooves

in the opposite pairs of wheel-hubs are

57 mm apart. Measure this distance before

proceeding. If the grooves in the wheels

are not 57 mm apart, the width of the next

stage, the y-frame, will need to be changed

to fit.

The dimensions of the x-frame as

described above are minimal, to keep the

size of the completed Gantry within

reasonable bounds. However, there is no

problem in making it longer or wider (or

both) to accommodate certain kinds of

tool.

The x-frame seen from below, to show how the

four wheels are mounted. At this stage there is no

provision for mounting the tool.

The y-frame (overleaf) is considerably longer than the x-frame because it has to allow the

tool to traverse the width of the working area and a little to either side. We will assume

that the working area is to be like a chess-board with 64 squares arranged in 8 rows and 8

columns. If each is 30 mm square, the minimum length of the y-frame will be:

(width of cross-member × 2) + (length of motor panel) + (length of x-frame) + (width of

working area) + (free space on either side of working area).

In the prototype, the dimensions are (15 × 2)+ 80 + 100 + (30 × 8) + 40 = 450 mm.

CB065
page 3

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

300

The completed y-frame, showing the x-winch motor mounted on the motor panel at the left-hand end.

The pulley for the counterweight cord is at the right-hand end.

The pulley end of the y-frame. The pulley mounting

must project at least 20 mm beyond the end of the

frame to allow the cord to clear the y-rail.

As shown on the right, the cross-

members project beyond the width of

the frame. The base-plates are

approximately 16 mm square, so the

cross-members need to project

17 mm on each side. The total length

of a cross-member is:

(spacing between x-rails) + (width of

channelling) × 2 + (projection) × 2

In the prototype, the dimensions are:

57 + (15 × 2) + (17 × 2) = 121 mm

CB065
page 4

Friday, 16 March 2007 10:37
Black

The Gantry

301

The main frame consists of a front rail, a rear rail and two side rails, bolted together at

their corners, as shown below. These are cut from aluminium channelling. They are

bolted together, the front and rear rails with open sides up, and the two side rails with

open sides down. The lengths of the rails are optional but remember that the working

area of the robot is less than that enclosed by the frame. The spacing between the side

rails must equal the distance apart of the grooves in the opposite wheels of the

y-frame. In the prototype, this distance is 455 mm. The front and rear rails are 485 mm

long (with 15 mm channeling), and the side rails are 510 mm long.

The completed main frame. The y-frame runs from front to rear along the side members of the

main frame. The front panel is used for mounting PIC1 and other electronic control circuits.

The frame includes the front panel, 485 mm × 100 mm, in expanded PVC. This has 3 mm

holes at its corners and is bolted between the front rail and sides rails at the front corners.

This means that washers or nuts of equal thickness must be bolted between the rear and

side rails at the rear corners.

CB065
page 5

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

302

(Right). Close-up to show the front right

leg bolted to the right side rail. Note the

screwdriver access hole.

(Left). Close-up to show the right rear leg bolted

to the right side rails and the rear rail (bolt not

visible) for this rail. Note the screwdriver access

hole.

Note that the other function of the front panel is to keep the frame square.

The Gantry is completed by adding four legs, cut from aluminium channelling. Their

length is optional and in the protoype they are 340 mm long. The legs must be long

enough to allow the counterweights to pull the two frames the full distance along their

rails. The front two legs are bolted to the side rails, just clear of the front panel. When

drilling the hole in the top end of the leg, drill through both sides of the rail, to make an

access hole for the screwdriver.

Assembly of the two rear legs is slightly more complicated as they are at the rear corners

and have to be bolted to the rear rail and the side rail. When marking the leg for drilling

allow for the spacing washer or nut between the rails (see above).

CB065
page 6

Friday, 16 March 2007 10:37
Black

The Gantry

303

The completed Gantry with the winches and some of the

electronic units in position. The aluminium strip joining the front

two legs helps to make the gantry more rigid.

The completed Gantry is shown above. The next step is to install the winches and the

microswitch limit switches. First consider the winches — where they are and what they

do. The x-winch moves the x-frame along the x-rails. Drive is provided by a small DC

motor M1, running on 3 V. The winch is connected to the x-frame by a cord which is

wound in or out, depending on the direction of rotation of the motor shaft (below). The

cord is kept taut by a counterweight attached to the other end of the frame. The same

method is used for driving the y-frame.

A simple winch-driven

mechanism for moving a

wheeled frame.

CB065
page 7

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

304

MotorsMotorsMotorsMotors

This project has three DC motors

acting as winches. Motor 1 is

mounted at the centre of the front

panel and moves the y-frame. M2

is mounted at one end of the y-

frame and moves the x-frame.

M3 is mounted on the y-frame

and raises or lowers the tool.

The project may have one or

more other motors for driving

tools such as a gripper and a

paintbrush.

The three winches. Motor 3 is above the panel and its winch

is below. Motor 2 is the other way up. Winches 2 and 3 are

both close to the central axis of the y-frame. This is to avoid

skew forces derailing the x-frame. Winch 1 is at the centre of

the front panel.

All three winch motors are powered and controlled from the motor power board, which

is mounted on the front panel. The paired leads to M2 and M3 run from a terminal block

at the left end of the main frame to a block on the panel of the y-frame. The lead must be

long enough to allow the y-frame to run freely from front to rear.

Choose the most flexible wire you can get. In a full-sized industrial gantry the leads are

not a constraint on the motion of the frames. In a project such as this, the most flexible

connection wires commonly stocked by hobby electronics stores are relatively too stiff.

We selected the motor for its small size, built-in gearbox, long protruding shaft, and low

cost. The motor has a fixed reduction gearbox. On a 12 V supply, the output shaft rotates

at 36 rpm with an output torque of 12 kg cm. The motor is rated to run on any voltage in

the range 4.5 V to 18 V, at proportional speeds and torque. We found that the frame and

tool moved too slowly if the cord was wound directly on to the shaft.

The counterweight needs to be heavy enough to pull the x-frame along as the winch

unwinds, but not so heavy that the winch can not wind it up. In the prototype, the

counterweight is four fishing tackle weights of 35 g. Any compact object of about the

same weight will do. The y-frame is moved by a similar mechanism, its winch being

mounted on the front panel of the main frame, and with eight 35 g counterweights.

CB065
page 8

Friday, 16 March 2007 10:37
Black

The Gantry

305

To increase frame speed, fit metal bobbins on the shafts of the drive motors. The bobbins

used in sewing machines are suitable. A motor shaft is usually 2 or 4 mm in diameter but

the standard bobbin needs a 6 mm shaft.

Plastic rod cut from the right kind of coat-hanger is a very tight fit in the bobbin. Force a

10 mm length of rod through the central hole of the bobbin. Then drill a 4 mm hole

through the rod, along the axis. This must be a tight fit on the shaft of the motor.

A bobbin may not be necessary with a speedier motor. In this case the cord is wound

directly around the shaft. It is anchored to the shaft by tying a knot close to one end,

threading this through a 5 mm length of 3 mm heatshrink tubing, pushing this on to the

shaft and shrinking it until it grips the shaft tightly. The knot prevents the cord from

being pulled out.

If the cord is wound directly on the shaft, it is preferable to secure two small discs or

wheels to the shaft about 10 mm apart. The cord is wound between these guides.

The y-winch mounted in the middle of the front panel,

bolted to a small rectangle of PVC board. The motor output

shaft has a bobbin on it. Cord runs from this to the y-frame.

The bobbin also has the

advantage that it confines the

cord close to the central axis of

the y-frame when winding on,

so preventing skew forces from

derailing the x-frame.

Before fitting the bobbin, it may

be necessary to cut the output

shaft short to save space on the

front panel.

The motor/gearbox unit shown

in the figure has two M3

threaded holes on either side of

the output shaft. Using these, it

is bolted to a small PVC panel

which is attached to the front

panel by two angle brackets.

CB065
page 9

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

306

Limit switchesLimit switchesLimit switchesLimit switches

The x- and y-frames have IR or Hall effect magnetic sensors for determining the x- and y-

positions of the tool. In addition, a pair of microswitches mounted on the main frame are

used as limit switches. These detect when the x- and y-frames are in their base positions.

They reliably put the tool at the front right corner of the frame. From there it uses the IR

or Hall effect sensors to find its way to any other place in the working area. In other

words, the limit switches provide a starting point to return to if the software loses count

of the markers.

The limit switch for the y-direction is microswitch MS1. This is bolted at the top of the

front right leg so that the y-frame closes it when it comes to the front limit of its travel.

Both MS1 and MS2 are closed when the x-frame is at the front

right corner of the main frame.

MS2 is bolted underneath the right side-rail of the main frame. A finger projects from one

end of the x-frame (see opposite). The finger is shaped so that it projects under the end of

the y-frame to contact the microswitch on the main frame. Its vertical end presses against

the lever of MS2 as the x-frame reaches the right end of its travel.

CB065
page 10

Friday, 16 March 2007 10:37
Black

The Gantry

307

The finger attached to the x-frame reaches down beneath the right side-rail of

the main frame. Its upturned end presses against the actuator lever of MS2

when the y-frame is at the front and the x-frame is at the right. Determine the

dimensions of the finger by measurement when the x-frame is in position.

This arrangement means that the x-frame can close MS2 only when the y-frame is in its

base position. Software can take care of this requirement — first move the y-frame until

M1 closes, then move the x-frame until M2 closes.

Note that M1 and M2 are both on the main frame. Their leads run directly to the PIC1

board, from where the winch motors are controlled. If the gantry is not to become a

birds’ nest of connecting wires tangling with the x- and y-frames we need to keep the

number and length of connecting wires to a minimum. This is a major reason for having

the up/down tool winch on the y-frame, rather than on the x-frame where its action takes

effect. For the same reason, MS1 and MS2 are on the main frame, only a few centimetres

away from the PIC1 processing board. Power supply for PIC2 is a problem. Do we have a

battery on the x-frame (taking up space, adding weight and increasing friction) or do we

run three wires from the main frame (tangling risk and impeding motion)? We eventu-

ally settled for the second alternative.

CB065
page 11

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

308

ToolsToolsToolsTools

Which tools you provide for your gantry depends on your interest in different aspects of

robotics. There is space for only one tool on the x-frame at any one time, but they are

designed so that they can be quickly bolted on to the underside of the frame. Two 25 mm

M3 bolts project downward at the centres of the long members of the x-frame. The

selection of tools described in this part comprises:

• Hook: gives the Gantry the function of a crane. Objects to be lifted need a loop for

the hook to catch.

• Gripper: a relatively simple one-sided design for picking up objects. Can be used

for moving games pieces and for building with wooden or plastic ‘bricks’.

• Brush: used for painting pictures.

• Laser pointer: Used for solving mazes, scanning pictures, playing board games.

• Camera: Measures brightness of reflected laser beam. Has many other applications.

HookHookHookHook

The hook is made from brass rod bent into shape and attached to a pulley block. The

pulley wheels used here and in other tools are included in the pulley set from Tamiya.

Two views of the

hook, show it attached

to a pulley block. The

sides of the block are

bolted together by

two bolts at the top,

with 6 mm spacers

between them.

CB065
page 12

Friday, 16 March 2007 10:37
Black

The Gantry

309

A special mechanism raises and lowers the hook. The same mechanism is used to raise

and lower the gripper. The principle of this is illustrated below. The winch motor M3 is at

the left end of the y-frame. From the winch the cord runs under the x-frame and is tied to

the right end of the y-frame.

The travelling pulley mechanism. The upper two pulleys are

mounted in a box on the x-frame. The lower pulley is in the

pulley block that carries the hook. As the frame moves from

left to right the height of the hook above ground is

unchanged.

The hook is raised by winding in some of the cord. It is lowered by unwinding. But if the

frame is moved without winding or unwinding the cord, the cord simply passes through

the system and the hook stays at the same height. The photo below shows the mechanism

in detail.

The travelling pulley

mechanism with its front

panel removed from the

four long bolts at its

corners. The rear panel is

bracketed at a right angle

to the tool’s base panel

so that it is vertical

beneath the x-frame.

CB065
page 13

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

310

The cord is seen threaded through the mechanism as in the photo on p. 309.

The robot needs to know two facts about the hook: whether it is carrying a load and

its height above the working surface. This information is obtained in a simple way by the

two microswitches, labelled MS1 and MS2 in the photo. MS1 is used to detect if the hook

is carrying a load. The axle of the right-hand pulley passes through holes drilled in the

front and rear panels. The axle of the left-hand pulley is mounted on a lever which is

pivoted at one end. This lever is held up by a spring. The upper end of the spring is

bolted to one of a row of holes in the rear panel. The tension in the spring is adjustable by

the choice of hole. The tension is set so that the spring supports the lever when there is no

load, but allows the lever to be pulled down when a given load is present.

When the lever is pulled down it presses against the actuator lever of MS1, which closes

the switch, sending a signal to the microcontroller.

MS2 is seen end-on in the figure. When the pulley block is raised as far as possible it

presses up against the lever of MS2. This closes the switch, indicating that the hook has

reached its upper limit. From this position a short timed burst on the winch lowers the

hook to a reasonably predictable height.

There is no limit switch to indicate when the hook has dropped to ground level.

However, suppose the hook is known to be carrying a load, as indicated by MS1. If the

hook is then lowered, MS1 opens when the load touches the ground. The hook has

reached the level at which the robot should free the hook from the load by moving the x-

frame to one side. This is an instance of how software can substitute for the lack of a limit

switch.

GripperGripperGripperGripper

The gripper has one fixed and one movable jaw. The fixed jaw consists of a single brass

strip bent to shape and bolted to the base panel. The movable jaw is double and driven by

a motor with built-in gearbox. The two arms of the movable jaw are directly attached to

opposite ends of the gearbox output shaft.

The gripper is raised and lowered by the same pulley block as the hook, complete with

the two limit switches.

CB065
page 14

Friday, 16 March 2007 10:37
Black

The Gantry

311

 The single-sided jaw is opened and

closed by the motor, through the

gearbox. It is raised and lowered by the

M3 winch on the y-frame.

The motor unit is compact, measuring about 40 × 64 × 20 mm. It has holes for bolting it to

the PVC panel, and a clip to hold the motor. The gears are plastic and a tight fit on the

shafts. There are two drive levers that are pushed on to the opposite ends of the output

shaft. The motor unit is bolted to a 100 mm × 45 mm PVC base plate, which also carries

the pulley and the fixed jaw.

The movable jaws each have two parts.

The base part is made from brass strip

5 mm wide × 60 mm long. Before bending

it to shape it is drilled with two holes at

one end for bolting to the drive lever and

two holes at the other end for attaching

the claw. The claw is made from thinner

brass strip, 12 mm wide × 80 mm long.

The single fixed jaw is made from brass

strip 18 mm wide × 120 mm long. The

overall length of the gripper is 130 mm.

For some operations it might be better for

the claws and fixed jaw to be shorter than

shown in the photos.

The jaw motor from CIC. The movable jaws

are bolted to the two levers at each end of

the output shaft. This shaft projects a few

millimetres beyond the levers, fitting into one

of the two holes in the base section of each

movable jaw (see overleaf).

CB065
page 15

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

312

The flexibility that a gripper must have is provided by

the springiness of the brass of the fixed and outer

movable jaws. Even with this we need to provide

feedback to the microcontroller, in the form of a third

limit switch. The microswitch is mounted on a bracket

cut from thin brass strip. It is positioned so that the base

of one arm of the jaw closes the switch when the jaws

are securely gripping an object. The position of closing

can be adjusted by bending the bracket.

The limit switch provides a single reference point for the state of the jaws. Rather than

install a second switch, which adds to the complexity and weight of the tool, not to

mention the extra pair of wires, we rely on this single point. From this position the jaws

are opened by a reasonably reproducible amount by sending the motor a pulse of

controlled length.

The gripper is supported below the x-frame by the pulley mechanism used for the hook.

The gripper is heavier than the hook so the anchoring point of the spring must be altered

to increase the tension.

BrushBrushBrushBrush

This converts our gantry into an artist. The base panel of the brush tool is bolted directly

to the underside of the x-frame. The tool incorporates its own pulley mechanism for

raising and lowering the brush. This is driven by the M3 winch on the y-frame.

The brush is mounted on a four-sided frame loosely bolted at the corners. This allows the

brush to be moved up and down while remaining vertical. When the brush is down, in

the painting position, it rests lightly on the paper. It is pulled along and paints a line as

the x- and y-frames move. It is raised to stop drawing. The limit switch signals when the

brush has been lifted clear of the paper and high enough to move to a paint-well to

recharge the brush.

 The microswitch on its bracket. The jaw base is secured to the

lever by a bolt and a hole for the output shaft.

CB065
page 16

Friday, 16 March 2007 10:37
Black

The Gantry

313

The brush tool is built from a mixture of aluminium strip, PVC strips, and

Meccano parts. It has Tamiya pulley wheels, and a sawn-off make-up brush.

A truly hybrid construction.

LaserLaserLaserLaser

This projects an intense but very small spot of laser light on the floor beneath the x-frame

(overleaf). It is used to point out objects such as playing pieces. For instance it points to

the piece the Gantry wants to move next. Or it can trace the Gantry’s chosen path through

a maze.

The laser is an inexpensive ‘laser pointer’. It has its own battery of button cells. The

pointer is held in a springy clip of the type used for holding PP3 9 V batteries. The

pointer has an on-off push-button. With our pointer the laser is twisted in the clip so that

the clip holds the button on.

This tool may be combined with the camera (see next section). This is directed downward

to focus on the spot of laser light. The small size of the spot gives the tool high resolution

when detecting objects below.

CB065
page 17

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

314

CameraCameraCameraCamera

This is a one-pixel digital camera! It has a single LDR as its sensor. Its output is an

analogue voltage ranging between a few millivolts when focussed on a black object and

several volts when aimed at brightly lit white objects.

Because it has a lens to focus a life-size image of the object on to the sensor, the camera

has high sensitivity and a narrow field of view. These features are important when the

Gantry is playing a board game or when registering the layout of a drawn maze. But,

although the camera was designed for the Gantry, all of the other robots could find a use

for it.

The camera lens is an inexpensive magnifier, diameter about 25 mm and focal length

about 30 mm. The greater the diameter, the more sensitive the instrument. The lens is

held at the end of a plastic tube that slides inside a fixed tube. The tubes are of black ABS

plastic, and are plumbing items for garden reticulation systems. The retaining ring is part

of a garden hose connector. The sliding tube has to stay in position after it has been

focussed so it needs to be a firm fit over the fixed tube. A turn or two of PVC insulating

tape around the end of the fixed tube helps to prevent slipping. Similarly, a layer of PVC

tape around the focussing tube helps the retaining ring to stay in place.

For many scanning applications the camera and laser are mounted on the

same base plate.

CB065
page 18

Friday, 16 March 2007 10:37
Black

The Gantry

315

The camera, directed downward to focus an image of an object in

the Gantry's working area.

The optics of the camera are as follows. A magnifying lens of focal length f focuses a full-

size inverted image on the LDR when the LDR is 2 focal lengths behind the lens and the

object is two focal lengths in front of it. For example, the lens used in the prototype

camera has a focal length of 30 mm. The distance between the LDR and the lens is 60 mm.

Camera is mounted so that the lens is 60 mm above the working area.

With the lens focussed at 2f, the image of a 40 mm square on a playing board more than

covers the LDR, which is only 8 mm in diameter. There is no need to aim at the exact

centre of the square.

The LDR is soldered to a very small rectangle of stripboard. Two connecting wires are

soldered to the board from the strip side and lead out through a hole bored in the fixed

tube. The wall of the tube is 4 mm thick and the stripboard is glued to the cut end of the

tube.

CB065
page 19

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

316

A small stripboard bolted to the base plate carries a variable preset resistor for adjusting

the output from the sensor. The circuit is on p. 75. R1 = 47 kΩ and VR1 = 470 kΩ.

When its output is read by the PIC comparator, the camera readily distinguishes between

white and black, with or without illumination by the laser beam. If its output is fed to an

AD converter it is possible to distinguish shades of grey or a limited range of colours.

Location sensorsLocation sensorsLocation sensorsLocation sensors

One of the advantages of the gantry type of robot is that it is easy to keep the robot

informed of the exact location of the x-frame. This is done by placing regularly spaced

markers on one of the x-rails and one of the y-rails. The markers work like this. At the

start of a session the x-frame is returned to its base location (front right). From then on, it

keeps a count of how many markers it has passed, and the direction it is moving. From

this data it can calculate its position in an imaginary square grid. The more markers, the

more precisely it knows where it is.

There are two types of markers: magnetic and infrared. We used the magnetic type but

the IR markers would have been almost as effective.

Magnetic markers consist of small ferrite magnets spaced evenly along two of the rails.

They are detected by Hall effect devices mounted on the x- and y-frames. We used

magnets measuring 10 mm square and 4 mm thick. Glue them at equal intervals to two

strips of PVC board and place the strips in the channel of one of the x-rails and one of the

y-rails. Make sure they all have the same pole uppermost.

Stripboard layout of the camera board, VR1 is adjusted to suit the

range of ambient light intensity.

CB065
page 20

Friday, 16 March 2007 10:37
Black

The Gantry

317

(Left). Using markers to track the location of

the x-frame and thus the x- and y- position of

the tool.

Two sensor probes are required and these

are mounted at one end of the y-frame

and on one side of the x-frame. To mount

the probes, first solder each to a very

small rectangle of stripboard (right).

(Below). Stripboard layout of the x-probe. The

board is supported on two M2.5 bolts (see

diagram overleaf).

A bracket cut from brass strip supports the x-probe so that it faces down toward the

magnets, and is about 2 mm above them. Three wires (0 V, +3 V, and output) run from

the probe to the PIC2 board. There they plug on to terminal pins TP1, TP4, and TP17

respectively. The height of the board is adjusted by setting the positions of the nuts that

hold the board.

The y-probe is similar, but supported on a flat strip projecting from the y-frame beside

the pulley. The leads run across to the x-frame and are plugged on to TP2, TP3 and TP15.

When running the leads from the probes to the PIC2 board, plan the route so that the

leads will not restrict the movement of the frames. The hanging loop between the y-frame

and the x-frame must not run the risk of becoming tangled with the wheels and

projections such as the finger and MS2. It must not come between the end of the y-frame

and MS1, so preventing the y-frame from getting to its base position.

Magnets have a north and south pole at opposite faces. The output of the sensor rises or

falls when a magnet is near, depending on which pole is nearer the sensor. Usually the

magnets should be glued to the strip with the same pole uppermost.

CB065
page 21

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

318

However, this polarity makes it possible to have two types of marker: north pole up and

south pole up. A rise in output means one thing, a fall means another. Can this property

be exploited?

IR markers are used in a similar way. The markers consist of black-painted patches on

strips of white card placed inside the rails. The probes are similar to the IR probes of the

Quester robot. The have an infrared LED to illuminate the strip and an IR photodiode to

detect the reflected IR (if any). Make sure that the photodiode can not receive radiation

directly from the LED or reflected from the aluminium rail. It may be necessary to push a

short length of opaque plastic sleeving on to the body of the photodiode to confine it to

receive only reflected radiation. Mounting the probe is the same as for the magnetic

probe.

The spacing of the markers (either magnetic or reflective) depends on the intended

resolution and the dimensions of the working area. Probably the best that can be

achieved is an 8 × 8 grid, like a chessboard (opposite). First find the size of the working

area. The size in the y-direction is the distance moved by the y-probe as the frame moves

from its base position to the rear of the main frame. Measure this distance and call it

Y mm. Calculate a value for X in the same way. To simplify the programming, it is better

for the grid to be square and not to completely fill the working area.

Mounting the magnetic probe for the x-rail.

The probe is seen end-on. The bracket is

bolted to the side of the x-frame. The probe

unit is centred by placing one or two washers

between the bracket and the side of the

frame. The height of the sensor is set partly

by bending its terminal wires and partly by

adjusting the position of the stripboard on

the vertical bolts. Fine adjustment of height

can also be made by inserting a strip of thin

card beneath the PVC strip. The wiring to the

three terminal pins passes up through a hole

in the bracket and is secured to the frame by

mini stick-on cable clips.

CB065
page 22

Friday, 16 March 2007 10:37
Black

The Gantry

319

In a game program, this allows the x-frame to move outside of the grid, perhaps to pick

up or deposit playing pieces that are not actually in play on the grid. In painting

programs, it is preferable to have the paint-pot outside of the area of the painting. The

base position at the extreme front and right should also be outside the grid.

Where to place the markers. For an 8 × 8 playing area you need 9 markers

for each direction.

The figure above shows that the number of markers on each side is one more than the

number of squares in the grid. Starting at the base position and moving to the rear, the

first marker tells the robot that the x-frame is moving into the playing area.

After this, the markers tell it as it moves from one row (or column) to the next. The last

(9th) marker tells it that it is leaving the grid and must not move much further. For safety,

there could be a 10th marker to stop the frame as it reaches the edge of the working area.

Decide on values of X and Y that are less than the working area. For a square grid X

equals Y. Place the markers every X/8 and Y/8 along the x- and y-rails, as in the

diagram.

CB065
page 23

Friday, 16 March 2007 10:37
Black

The Robot Builder’s Cookbook

320

ElectronicsElectronicsElectronicsElectronics

It is almost inevitable with any innovative project that some of the parts and components

will be incompatible with some of the other parts and components. We have already come

across this problem in the Mechanics section. A motor with a 2 mm output shaft has to

drive a gear system based on 3 mm shafts, and sometimes our mechanism is held together

by metric nuts and bolts plus a few rated in fractions of an inch.

The same happens in the electronics —for example, different components need different

supply voltages. This is the first problem that must be sorted out.

Gantry and tool systemsGantry and tool systemsGantry and tool systemsGantry and tool systems

The electronics of the Gantry consists of two separate but cooperating systems, each with

its own PIC16F690. The gantry system moves the x-frame where it needs to go. This

includes moving the y-frame. It also raises and lowers the tool. In other words, it switches

the motors on or off and sets the direction in which they turn. This system also has push-

buttons and a switch used by the operator, plus a pair of indicator LEDs. It gives the

operator control of the robot. It is based on a PIC that we will call PIC1.

 The other system, controlled by PIC2, is the tool system. This is where the important

decisions are taken. It has sensors that tell it what is happening, and it decides what is to

happen next. It has connections to PIC1 and signals it when to run the motors. This is a

two-way connection which we will look at in more detail later.

Gantry systemGantry systemGantry systemGantry system

In the gantry system the two main items are:

• PIC1: Operates on 2.0 V to 5.5 V DC. It needs only a few tens of milliamps to drive

the LEDs.

• Motors: Three of these running on 12 V DC at up to 500 mA. Under heavier load

they would need more current but 500 mA is the most they are likely to take.

CB065A
page 2

Friday, 16 March 2007 09:35
Black

The Gantry

321

The power supplies for the PIC1. Note the common 0 V line.

Stripboard layout of the power
switching board for the PIC1 system.
This is bolted to the inside of the left
side panel, low down and near the

front. The bolts are 25 mm long and
the LEDs at the rear of this board

project through 5mm holes drilled in
the panel.

The best supply for the PIC is a battery of four nickel-metal-hydride rechargeable cells.

This produces 4.8 V (a little more when freshly charged). Two such batteries are

convenient for running the motors. These give 9.6 V, which slightly under-runs the

motors. Or we could use a 12 V battery or a mains plug-top power supply unit. The

supply does not have to be stabilised, but the PSU must be capable of providing 500 mA.

Power control boardPower control boardPower control boardPower control board

The power switching circuit is mounted on the left side panel of the gantry, near to the

front. There is a 3-way screw terminal block for connections to the batteries or PSUs:

motor 9.6 V or 12 V, common 0 V, and logic 4.8 V. The LEDs and switches are mounted

on the side panel with a small circuit board for making the connections.

CB065A
page 3

Friday, 16 March 2007 09:35
Black

The Robot Builder’s Cookbook

322

This arrangement minimises the number of leads from the main frame to the y-frame. It is

important to do this because stiffness of the leads is relatively greater on a small gantry

like this, when compared with a full-sized industrial gantry. Also, the more dangling

wires there are, the more likely one of them will get tangled with the tools and disrupt

the operation of the robot.

Power connections. Also shown are the control lines from the PIC1 board to the motor
control board, and the output lines from there to the motors. The return line is common to

all three motors.

PIC1 controller boardPIC1 controller boardPIC1 controller boardPIC1 controller board

This carries the PIC16F690 that controls the winch motors. The schematic for the board

(opposite) shows that it also has push-buttons and a toggle switch for input from the

operator. It has two LEDs, one red, one green, and a bleeper for simple output signals to

the operator.

The board has wired connections to the PIC2 board. This requires three wires — signal

from PIC1 to PIC2, signal from PIC2 to PIC1, and 0 V — running from the front panel to

the x-frame. The wires could get in the way of operations, so use the most flexible

connecting wire that you can get. The wires run from the PIC1 board along the outside of

the right side rail to the far right corner of the Gantry, then loop across to the x-frame.

CB065A
page 4

Friday, 16 March 2007 09:35
Black

The Gantry

323

Schematic of the PIC1 controller board.

Stripboard layout of the PIC1 board. Cut strips between E23/E24 and F26/F27.

Apart from the motor control relays, and the microswitches MS1 and MS2, which are

connected to the board via plugs PL1-PL3, all the other items in the gantry system are on

the PIC controller board, illustrated below. Input to the PIC comes from the two push-

buttons S1 and S2, and the toggle switch S3. Output from the PIC goes to two LEDs, and

the bleeper (AWD). There is a transistor switch Q1 useful for switching devices that take

more than the 20 mA that a PIC output pin can supply.

CB065A
page 5

Friday, 16 March 2007 09:35
Black

The Robot Builder’s Cookbook

324

The PIC1 controller board.

The 4.8 V supply comes from four NiMH cells, or you could use a 4.5 V or 6 V PSU. A
low-powered PSU is good enough, say 200 mA or 300 mA, but the unit should have a
stabilised output.

There should be no problems with the assembly of this board. You may need to modify
some parts of the layout slightly to take account of differences in pin spacing for certain
components, such as the push-switches and the buzzer.

There are two 3 mm holes at C3 and V36 for bolting the board to the front panel. In the
prototype, it was placed at the right-hand end of the panel. We put 4 mm standoffs on the
bolts. The allocation of the pins of PIC1 is listed on p. 331.

Tool systemTool systemTool systemTool system

The tools and sensors used in controlling the tools are all under the command of a second

PIC. This is referred to as PIC2. Its board is on the x-frame. Another function of this

controller is monitoring the location of the x-frame.

Only one tool is attached to the frame at any time, so most of the I/O channels of PIC2

lead to terminal pins. There are more than enough pins to spare for the tools described on

pp. 308-319, and for any that you are likely to design and build yourself.

CB065A
page 6

Friday, 16 March 2007 09:35
Black

The Gantry

325

To save space on the x-frame, the board includes a motor control circuit, used for moving

the jaws of the gripper. This could be used also for driving other tools.

To save more space on the x-frame, it takes its 4.8 V power supply from the battery B2

that supplies the gantry system. This not only saves space but saves weight too. Too

much weight on the x-frame increases the friction in the wheel bearings. This affects the

y-frame as well. A pair of wires runs from a terminal block at the left end of the front

panel. It loops to the panel of the y-frame and loops again to the x-frame. The 0 V wire is

common to both systems, which is essential if signals are to be passed from one PIC to

the other.

It is not feasible to provide a separate motor supply, and not worthwhile because it is

needed only if you are running the gripper tool. We run it on the same supply as the PIC

and accept the small risk of voltage spikes. The 3 V motor we used is known to tolerate

over-running at 4.8 V but, if you prefer, choose a 6 V motor and under-run it.

The schematic of the PIC2 board.

The schematic shows that there are many unused pins available as inputs or outputs.

This gives you the maximum flexibility for designing and adding sensors and actuators

to the x-frame. There are three pins allocated for communicating with the PIC1. The LED

is mainly for use when testing programs. It can be temporarily programmed to light up

or to flash at a certain point in the program, so confirming that PIC2 has actually got to

that stage and is not hanging around at some other stage. The outputs of the magnetic

sensors on the x-frame and y-frame are wired directly to PIC1.

CB065A
page 7

Friday, 16 March 2007 09:35
Black

The Robot Builder’s Cookbook

326

Stripboard layout of the PIC2 controller board. There is room for later additions too.
There are two holes near the right edge for bolting the board to the x-frame, with its
strips vertical. The empty area on the right is covered by the frame when the board
is bolted in place. If you think that you may leter want to add more sub-circuits to

the system, cut it to have more strips.

The PIC2 controller board mounted on one side member of the x-frame.

CB065A
page 8

Friday, 16 March 2007 09:35
Black

The Gantry

327

Motor control boardMotor control boardMotor control boardMotor control board

This is mounted on the front panel of the Gantry, and controls the three winch motors.

Instead of the H-bridge, this board is based on four relays. A DPDT relay RLA1 is wired

as a reversing switch. Three SPST relays RLA2-4 switch the motors on or off individually.

It receives four control inputs from PIC1, one for each relay. It has a 2-way plug output to

the y-winch (M1), and a 3-way output to the x-winch (M2) and the tool winch (M3).

The circuit for controlling the winch motors. The motors are connected to
three SPST relays, but share a common line to return the current to the

DPDT reversing switch. The relays are rated to operate on 12 V, but those
used in the prototype work just as well on 9.6 V from four NiMH cells.

The four relays are operated by four
transistor switches like the one shown in
this figure. The lowest working voltage of
commonly available relays is 12 V (but see
above). This circuit allows the relay to be
switched by a PIC operating at a lower

voltage, such as 4.8 V.

CB065A
page 9

Friday, 16 March 2007 09:35
Black

The Robot Builder’s Cookbook

328

The stripboard layout (below) shows the internal connections of the relays that we used.

These are standard relay pinouts, so there should be no problems here, but check that

your relays have the same wiring and, if necessary, alter the wiring on the board.

 Layout of the motor control board. Strip A runs the full length of the board, with no cuts.
Strip B is cut only at B39. The 12 V or 9.6 V power supply goes to the screw terminal

block at B2 (+) and D2 (0 V)

Diodes protect each transistor switch from voltage spikes induced when the coils are

switched off. Any small signal diode, such as a 1N4148 is suitable.

Magnetic probe circuitsMagnetic probe circuitsMagnetic probe circuitsMagnetic probe circuits

Each probe (p. 317) is connected to the controller board by three leads: positive

supply, 0 V and output. The positive supply and 0 V are connected to pins at the top

of the PIC2 board. The output leads run direct to pins 15 (RC1) and 14 (RC2) of PIC1.

These are the comparator input pins.

CB065A
page 10

Friday, 16 March 2007 09:35
Black

The Gantry

329

The motor control board mounted on the front panel of the Gantry. The y-winch motor M1 can
just be seen on the right of the board.

Wiring up the toolsWiring up the toolsWiring up the toolsWiring up the tools

Several of the tools have microswitches to provide feedback to the processor. One side of

the switch is connected to 0 V. The other side goes to an input channel that has been

defined as a digital input with a weak pull-up. Any of the spare channels in Ports A and B

can be used (see table on p. 332).

The hook is raised and lowered by the tool winch. There are two microswitches, MS1 and

MS2 (p. 309). The switches operate by grounding the input. There are three leads from the

pulley block to the processor board. The leads end in sockets that push on to the PCB

terminal pins on the board. Each switch has a lead to the PIC. The third lead is a common

ground. Use one of the 0 V pins on strip C.

The gripper has one microswitch, and this is connected in the same way as the switches

on the pulley block, to one of the 0 V pins and to a spare input pin of Port A or B. This is

programmed as a digital input with weak pull-up. The twin lead from the jaw motor M4

ends in a 2-way socket that goes on to the PCB header plug at V24/W24 on the processor

board.

CB065A
page 11

Friday, 16 March 2007 09:35
Black

The Robot Builder’s Cookbook

330

The brush has one microswitch connected to 0 V and a digital input with weak-pull-up. If

you add other microswitches to the tools, there are spare inputs in Ports A and B to

connect them to.

The laser has its own built-in battery. The laser tool board may also carry the camera. Its

LDR light sensor operates as a voltage divider and so needs three leads: positive supply,

0 V line, and output. Use pins on strip A and C for the first two connections. The output

goes to an analogue to digital converter or a comparator. This may be any of the AD

input channels (AN0 to AN11) or comparator input channels (AN1 or AN5 to AN7), as

indicated in the table on p. 332.

InterferenceInterferenceInterferenceInterference

The Gantry has several connecting wires that are 10 cm long or longer. These wires are

liable to pick up spikes and other signals radiated from other connecting wires. For

example, the wires from the Hall effect sensors to the PIC1 board are about 70 cm long,

and this may lead to unreliable counting of the marker magnets. This problem may not

arise but, if it does, the x- and y-frames do not move the correct distances. The effect is

cumulative.

The sensible solution would be to use screened cable. Unfortunately, this reduces the

flexibility of the connections. It was found that the problem was eliminated by soldering

100 nF polyester capacitors to the PIC1 controller board beween the input pins and the

0 V lines. On the diagram on p. 323, the capacitors are at C32/G32 and C38/H38.

Interference may also swamp the action of the weak pull-ups on digital inputs that are

made low by grounding them to the 0 V line. Examples are the inputs from the limit

switches that detect when the x-frame is at its base location. Other examples are the

inputs from microswitches on the tools. In such cases the input is configured not to have

a weak pull-up, and instead has a hard-wired pull-up resistor connected to the positive

supply line. Usually a 10 kΩ resistor is suitable, but a smaller resistance may be used.

down to about 1 kΩ.

The middle diagram on p. 68 shows the circuit. The resistor can be located either on the

tool or on the controller board, wherever it is convenient.

CB065A
page 12

Friday, 16 March 2007 09:35
Black

The Gantry

331

PIC1 I/OPIC1 I/OPIC1 I/OPIC1 I/O

For later reference the table below lists I/O connections to PIC1. A photocopy of this table

mounted on card is handy to have on the workbench while assembling and testing the

circuit modules.

Port Name IC pin I/O Connected to 0 = 1 =

A RA0 19 I/O X2

RA1 18 I Microswitch 1 Closed Open

RA2 17 I Microswitch 2 Closed OPen

RA3 4 I Push button S1 Pressed Released

RA4 3 I Push button S2 Pressed Released

RA5 2 I Toggle switch S3 Closed Open

B RB4 13 O D2 (Green LED) Off On

RB5* 12 I/O X1

RB6 11 O D1 (Red LED) Off On

RB7* 10 O Bleeper Off On

C RC0* 16 I/O X0

RC1 15 AnI Hall effect device (x) Between At marker

RC2 14 AnI Hall effect device (y) Between At marker

RC3 7 O Motor 3 (Tool winch) Off On

RC4 6 O Motor 2 (x-winch) Off On

RC5 5 O Motor 1 (y-winch) Off On

RC6 8 O Motors (Direction) Decrease Increase

RC7 9 O Spare trans. switch Off On

The entries are grouped by I/O port and list all the channels available on the PIC16F690.

In the fourth column, the I or O indicates whether the channel is to be configured as an

input or an output. I/O indicates that it can be either. AnI is an analogue input.

Push buttons S1 and S2: Used in games, etc. for ‘Start’, ‘Finished my move’ etc.

Switch S3: Program select, or similar functions.

X0, X1 and X2 are lines to the board on the x-frame. They control the tool or exchange

signals with PIC2, if present. Lines marked * are reallocated for some of the programs on

the companion site (see ‘Program Notes’ published on the site).

CB065A
page 13

Friday, 16 March 2007 09:35
Black

The Robot Builder’s Cookbook

332

PIC2 I/OPIC2 I/OPIC2 I/OPIC2 I/O

For later reference the table below lists I/O connections to PIC2, if installed, or to

terminal pins on the x-frame board. A photocopy of this table mounted on card is handy

to have on the workbench while assembling and testing the circuit modules.

Port Name IC pin I/O Connected to Comp. input AD input

A RA0 19 I/O Spare Reference AN0

RA1 18 I/O Reserved for camera Input 1 or 2 AN1

RA2 17 I/O Spare AN2

RA3 4 I Spare (input only)

RA4 3 I/O Spare AN3

RA5 2 I/O Spare

B RB4 13 I/O X2 AN10

RB5 12 I X1 (or USART input) AN11

RB6 11 I/O Spare

RB7 10 O X0 (or USART output)

C RC0 16 O LED D1 (red)

RC1 15 I/O Spare Input 1 or 2 AN5

RC2 14 O Motor A AN6

RC3 7 O Motor B AN7

RC4 6 I/O Spare

RC5 5 I/O Spare

RC6 8 I/O Spare AN8

RC7 9 I/O Spare AN9

The entries are grouped by I/O port and list all the channels available on the PIC16F690.

In the fourth column, the I or O indicates whether the channel is to be configured as an

input or an output. I/O indicates that it can be either. Channels that can be configured as

inputs to the comparators and AD converters are listed in the sixth and seventh columns.

X0, X1 and X2 are lines to the PIC1 processor board on the front panel. They send sensor

information or receive signals from PIC1.

Channels in Ports A and B have programmable interrupt-on-change and pull-up facilities

when acting as inputs.

CB065A
page 14

Friday, 16 March 2007 09:35
Black

The Gantry

333

Shopping list — electronic (1)
Power control board:

R1 resistor 470R.
R2 resistor 150R.
D1, D2 light-emitting diode 5 mm.
S1, S2 miniature toggle switches, SPST or SPDT.
0.9 mm terminal pins (6 off).
Stripboard 7 strips × 14 holes.

PIC1 Controller board:
R1, R4 resistors 470R (2 off).
R2, R3 resistors 47R (2 off).
C1 capacitor, polyester, 100 nf.
D1, D2 light-emitting diodes 5 mm (1 red, 1 green).
Q1, Q2 npn transistors, BC548 or similar.
AWD solid-state buzzer or siren.
PL1 4-way PCB plug and socket.
PL2, PL3 2-way plug and socket (2 off).
S1, S2 push-to-make push-buttons, PCB mounting (2 off).
S3 miniature toggle switch, SPST or SPDT.
Screw terminals, PCB mounting.
0.9 mm terminal pins (6 off).
IC socket, 20-pin d.i.l., turned pin.
Stripboard 23 strips × 38 holes.

PIC2 Controller and tool motor control board:
R1 resistor 47R.
C1 capacitor, polyester, 100 nf.
D1 light-emitting diode, 5 mm.
Q1, Q3 npn transistors, BC639 or similar.
Q2, Q4 pnp transistors, BC640 or similar.
PL1 2-way PCB plug and socket.
Screw terminals, PCB mounting.
0.9 mm terminal pins (22 off).
IC socket, 20-pin d.i.l., turned pin.
Stripboard 21 strips × 27 holes.

Motor control board (for winches):
R1 - R4 resistors, 1k (4 off).
Q1 - Q4 npn transistors, BC548 or similar (4 off).
RLA1 DPDT relay, 12 V, miniature, PCB mounting.
RLA2 - RLA4 SPST or SPDT relay, 12 V, miniature, PCB mounting (3 off).

[continued]

CB065A
page 15

Friday, 16 March 2007 09:35
Black

The Robot Builder’s Cookbook

334

Shopping list — electronic (2)

Motor control board, (continued)
D.i.l. IC sockets (14-pin 3 off, 16-pin 1 off).
Screw terminal, PCB mounting.
PL1 PCB plug and socket 2-way.
PL2, PL3 PCB plugs and sockets 4-way (2 off).
Stripboard 21 strips x 47 holes.

Camera board
R1 resistor 47k.
VR1 miniature preset potentiometer, 470 k.
0.9 mm terminal pins (5 off).
Stripboard 5 strips x 9 holes.

 Off-board components:
LDR1 light dependent resistor (ORP12 or similar).
UGN3503U Hall effect magnetic sensors (2 off).
Laser pointer.
Ferrite magnets 10 mm × 10mm × 4 mm (12 off or more).
Battery holder, 8 x AAA or 8 x AA, with wire or stud terminals.
Battery holder, 4 x AAA or 4 x AA, with wire or stud terminals.
PP3 type battery connectors (if battery box has stud terminals) (2 off).
AAA or AA NiMH rechargeable cells (12 off) (preferred).
Microswitches miniature (2 off for main frame, 2 off for hook, 1 for gripper, 1

for brush).

Miscellaneous:
Connecting wire.
Solder.

CB065A
page 16

Friday, 16 March 2007 09:35
Black

The Gantry

335

ProgrammingProgrammingProgrammingProgramming

The electronic design of the Gantry allows for it to be programmed in three different

ways:

• Controlled by one PIC located on the front panel of the main frame. Motors M1 to

M3 are controlled directly through the motor control board. Sensors and tools are

located on the x-frame with wired connections to the PIC board. The PIC socket on

the x-frame is not used.

• Controlled by one PIC on the x-frame, the converse of the above. Probably not so

practicable.

• Controlled by two PICs, acting jointly. PIC1 is mainly concerned with the motors,

and interfacing with the user. PIC2 handles the action of the sensors and tools.

There are wired connections between the two PICs to coordinate their activities.

If there are numerous sensors and actuators on the x-frame, it is best for them to be

processed by a PIC on the x-frame. The best plan is to adopt the third option. This not

only provides increased computing power but also reduces the number of connecting

wire between the x-frame to the main frame. The x-frame is able to move more freely

with fewer connecting wires and there is less risk of tangling. Programming for this

option is explained on pp. 155-157.

In practice, a simple system with few sensors can operate well with a limited number of

wires running between the frames. This makes the first option the obvious choice. The

examples in this section use six lines. These comprise two power lines and four signal

lines. The signal lines are allocated different tasks depending on the tool in use and the

type of activity.

Programs for the Gantry have the same opening stages as those for the other projects.

Load the header program, which contains the directives, and add the directives for the

labels used in Gantry programs. The listing overleaf shows these and the initial setting up

of the processor.

The channels of Port A are all inputs and, since they are set as inputs by default at power-

up, there is no need to do anything about configuring Port A.

CB065B
page 1

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

336

; Labels

delay0 equ 20h

delay1 equ 21h

delayn equ 22h

xpos equ 23h

ypos equ 24h

flags equ 25h

goto start

org 04h

goto start

start

bcf intcon, 7 ; Disable interrupts.

bcf status, 5 ; Bank0.

bcf status, 6

clrf porta

clrf portb

clrf portc

bsf status, 5 ; Bank1.

movlw 00h ; Port B all outputs.

movwf trisb

movlw 06h ; Port C all outputs

movwf trisc ; except RC1 and RC2.

bcf option_reg, 7 ; Enable weak pull-ups.

bcf wpua, 7 ; But not RA0.

bcf status, 5 ; Bank2.

bsf status, 6

movlw 60h ; Analogue input RC1,2.

movwf ansel

clrf anselh

movlw 95h ; Set up comparators.

movwf cm1con0

movlw 96h

movwf cm2con0

movlw 0c9h ; Ref = 0.53 x supply.

movwf vrcon

bcf status, 6 ; Bank0.

bcf status, 5

CB065B
page 2

Friday, 16 March 2007 09:43
Black

The Gantry

337

Changing to Bank1 locations, Port B and C channels are all outputs, except for RC1 and

RC2 which are to be analogue inputs for receiving signals from the two Hall effect

magnetic sensors.

In Port A all channels need weak pull-ups because they are connected to switches or

push-buttons that ground the channel when they are closed.

Changing to Bank2 in Port C the two input channels RC1 and RC2 are made analogue

inputs.

The next five lines set up the comparators, as described on pp. 120-122. Setting

CM1CON0 to 95h, sets bit <7> to enable comparator 1, bit <4> to select for non-inverted

polarity of the output, and bit <2> to use the internal reference voltage. Bits <1:0> are set

to 01 to assign channel RC1 (pin 15) as input. Setting CM2CON0 to 96h gives comparator

2 the same setting as comparator 1 except that its input is as RC2 (pin 14).

Before the setting for the variable reference was decided on, the PIC was removed from

its socket and the 4.8 V supply turned on. A voltmeter was connected to the output from

Hall sensor 1 and the 0 V line. The x-frame was moved by hand along the rail and

readings taken with the sensor between the magnet markers and with it directly over the

markers. With a supply voltage of 5.1 V (freshly charged), the output was 2.5 V between

markers, rising to a peak of about 3 V over the markers. A sensible threshold level is

2.75 V, which is approximately 0.53 times the supply. We assume that as the supply

voltage falls with the state of charge of the battery, the output and threshold voltages will

fall in proportion.

A few trials with a calculator showed that the best way of setting the reference was to

select for high range (see p. 121) and use the formula Vsupply × (0.25 + value/32). With a

value of 9 in bits <3:0>, the result is 0.53. Bits <7:5> are all high to use this reference for

both comparators, and to select the high range. The code for VRCON is therefore c9h.

The same reference voltage must be used for both comparators but this is no problem as

the sensors are identical and positioned the same distance above the magnets. However,

it is a good idea to measure outputs from both sensors before deciding on the reference

level.

Remember to return to Bank0 before continuing with the program.

CB065B
page 3

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

338

Finding its bearingsFinding its bearingsFinding its bearingsFinding its bearings

The first thing the controller wants to know is the location of the x-frame. The x-frame

may have been left anywhere at the end of the previous session. The magnetic markers

are just markers, like milestones without distances carved on them. This is why there are

two microswitches at the front right corner of the main frame. When the Gantry is first

switched on the program moves the frame until both switches close. Then the PIC has a

firm reference position, the base location.

Once it has been to the base it moves around the working area, keeping a count of the

markers it passes in the x- and y-directions. From then on it always knows where it is.

The listing for moving the x-frame to base is set out below.

; Program begins here

gofront

btfss porta, 1 ; MS1 closed?

goto atfront ; Yes.

bsf portc, 5 ; Wind in y-winch.

bcf portc, 6

goto gofront ; To check MS1 again.

atfront

bcf portc, 5 ; Stop y-winch.

goright

btfss porta, 2 ; MS2 closed?

goto atbase ; Yes.

bsf portc, 4 ; Wind out x-winch.

bcf portc, 6

goto goright ; To check MS2 again.

atbase

bcf portc, 4 ; Stop x-winch.

bsf portb, 4 ; Green LED on.

movlw 05h

call longdelay

bcf portb, 4 ; Low to put green LED off.

CB065B
page 4

Friday, 16 March 2007 09:43
Black

The Gantry

339

First move the y-frame toward

the front until MS1 closes, then

move the x-frame to the right

until MS2 closes. Finally (and

optionally), switch on the

green LED to indicate that the

x-frame is at base.

The instructions to the x-and y-winches, are given by voltage levels at RB4 (x-winch), RB5

(y-winch) and RB6 (direction):

Direction RB4 (x) RB5 (y) RB6

(direction)

Left 1 X 1

Right 1 X 0

Back X 1 1

Forward X 1 0

Stop 0 0 X

For each direction set either RB4 (x-winch, M2) for left or right, or set RB5 (y-winch, M1)

for back/forward. The setting or RB6 decides the direction. To stop the x-frame, clear

either RB4 or RB5.

After moving the x-frame to base, the listing takes it into the working area to perform its

tasks. These tasks use a set of subroutines for navigating the x-frame around the working

area.

CB065B
page 5

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

340

Moving the x-frameMoving the x-frameMoving the x-frameMoving the x-frame

One of the advantages of a gantry is that the processor always knows where the x-frame

is. So one of the important programming tasks is to put it where it should be.

As explained earlier, the Gantry locates the x-frame on a square grid. In the prototype

there are 6 rows of 6 columns, making a total of 36 locations.

There are four core subroutines for moving the x-frame. They move it one step in each

direction — left, right, back, forward.

Here is the listing of left, the subroutine that moves the frame one step to the left:

left

bsf portb, 6 ; Red LED on.

movlw 03h

call longdelay

bcf portb, 6 ; Red LED off.

bsf portc, 4 ; Winding in x-winch

bsf portc, 6

movlw 07h ; 1.4 s delay.

call longdelay ; To clear marker.

bsf status, 6 ; Page 2.

againl

btfss cm1con0, 6 ; Bit set if input>0.53 x supply.

goto againl

bcf status, 6 ; Back to Page 0.

btfss flags, 0

bcf portc, 4 ; Stop.

return

The flowchart is shown opposite. Before calling this subroutine set or clear bit <0> of the

flags register. The eight bits of flags are used to indicate whether or not something has

happened or is to happen in the future. In this program, bit <0> is clear (= 0), which

indicates that the x-frame is to stop after one step. The bit is set if it is not to stop, but

continue moving. This is done by using ‘bcf flags, 0’ or ‘bsf flags, 0’.

The subroutine begins by flashing the red LED. This is not essential and can be omitted,

though it is handy when testing the program.

CB065B
page 6

Friday, 16 March 2007 09:43
Black

The Gantry

341

The left subroutine. The right subroutine.

Next, motor M2 is turned on to wind in and pull the frame to the left. There is a long

delay at this stage because it is assumed that the x-frame is stationed at a marker. It must

get away from that marker before it starts looking for the next one. This delay may need

to be altered in length, depending on the speed of the motor and the ratio of the gearbox.

Trial and error is the only practicable way to find the best length for the delay.

Now comes a two-line loop in which bit <6> of CM1CON0 is tested until it goes high.

Note the switch to Bank2 before testing CM1CON0. Note also the switch back to Bank0

after the marker has been detected.

The subroutine ends by either stopping the winch or by letting it continue running,

depending on the state of flags <0>. The x-frame has moved from one marker to the next

marker to the left, on the same row.

CB065B
page 7

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

342

The right subroutine (flowchart p. 341) operates in a similar way but in the opposite

direction:

right

bsf portb, 6 ; Red LED on.

movlw 03h

call longdelay

bcf portb, 6 ; Red LED off.

bsf portc, 4 ; Winding out x-winch.

bcf portc, 6

movlw 07h ; 1.4 s delay.

call longdelay ; To clear marker.

bsf status, 6 ; Page 2.

againr

btfss cm1con0, 6 ; Bit set if input > 0.53 x supply

goto againr

bcf status, 6 ; Back to Page 0.

btfss flags, 0 ; Non-stop?

bcf portc, 4 ; Stop.

return

When typing in the listing, just copy the listing of left and edit it.

Moving the y-frameMoving the y-frameMoving the y-frameMoving the y-frame

This moves the x-frame too, which is the whole point of the operation. There are two

subroutines, back and forward moving the y-frame by switching the y-winch, M1. Their

listings are opposite. The listings and the flowcharts (p. 344) show that these have the

same structure as the left and right subroutines.

Going placesGoing placesGoing placesGoing places

The four one-step routines will take the x-frame to any part of the working area. This next

routine takes it to location (0, 0), which is at the front and on the right. Starting from base

where the frame was left after the routine of p. 338, it must take one step to the left

followed by one toward the back.

CB065B
page 8

Friday, 16 March 2007 09:43
Black

The Gantry

343

back
bsf portb, 6 ; Red LED on.
movlw 03h
call longdelay
bcf portb, 6 ; Red LED off.
bsf portc, 5 ; Winding out y-winch.
bsf portc, 6
movlw 07h ; 1.4 s delay.
call longdelay ; To clear marker.
bsf status, 6 ; Page 2.

againb
btfss cm2con0, 6 ; Bit set if input > 0.53 x supply
goto againb
bcf status, 6 ; Back to Page 0.
btfss flags, 0
bcf portc, 5 ; Stop.
return

forward
bsf portb, 6 ; Red LED on.
movlw 03h
call longdelay
bcf portb, 6 ; Red LED off.
bsf portc, 5 ; Winding in y-winch.
bcf portc, 6
movlw 07h ; 1.4 s delay.
call longdelay ; To clear marker.
bsf status, 6 ; Page 2.

againf
btfss cm2con0, 6 ; Bit set if input > 0.53 x supply
goto againf
bcf status, 6 ; Back to Page 0.
btfss flags, 0
bcf portc, 5 ; Stop.
return

When the moving routines are used for a single step, only the flags <0> bit needs to be set

or cleared before calling the subroutines. To get from base to location (0, 0), just clear that

bit, then call left and back:

bcf flags, 0 ; Enable stop in subroutines.

call left ; To rightmost column.

call back ; To front row.

CB065B
page 9

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

344

(Left) The back
subroutine.

(Right) The

forward
subroutine

Summing up, the main program comprises:

• Directives, including labels of registers for storing data.

• Initialising.

• Moving x-frame to base.

• Moving x-frame to (0, 0).

• Subroutines: left, right, back, forward, delay, longdelay.

• Directive ‘end’.

A useful addition to this list is flash, which flashes the green LEDs on and off indefinitely.

This comes at the end of the main program, before the subroutines:

flash

bsf portb, 4 ; Green LED on.

call delay

bcf portb, 4 ; Green LED off.

call delay

goto flash

CB065B
page 10

Friday, 16 March 2007 09:43
Black

The Gantry

345

The program runs straight on to flash after moving the x-frame to (0, 0). As the program is

typed in and tested stage by stage, flash remains at the end of it. Flash is optional but it is

always good to see the LED flashing to show that the controller has completed its tasks.

Or, if it is flashing and the controller has not done everything it should have done, there is

somewhere an error still to be corrected.

Moving from A to BMoving from A to BMoving from A to BMoving from A to B

The routine for moving from base to (0, 0) is the simplest example of moving from A to B.

It is simple because there is only one step to the left followed by one step back. Now

suppose the x-frame has already been moved to (0, 0) ready to begin an action that needs

it to be somewhere near the centre of the work area. It will probably need to take two or

more steps to the left and back to get there. Subroutines are to be called once for each

step.

Below is the listing for a routine to move the x-frame from (0, 0) to (3, 3):

; Move to location 3, 3.

movlw 03h ; Set up counters to 3.

movwf xpos

movwf ypos

bsf flags, 0 ; Disable stop in subroutine.

nextleft

call left ; To rightmost column.

decfsz xpos, f ; Counting down to zero.

goto nextleft

bcf portc, 4 ; Stop x-winch.

nextback

call back ; To front row.

decfsz ypos ; Counting down to zero.

goto nextback

bcf portc, 5 ; Stop y-winch.

The routine has two registers, xpos and ypos, for counting the steps. To repeat the calls

three times each, these registers are set to 3 and count down to zero.

CB065B
page 11

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

346

Moving from C to DMoving from C to DMoving from C to DMoving from C to D

The AtoB program is a useful one for positioning the x-frame at the beginning of a

session. It assumes that it is at (0, 0) and takes it to some other location to perform its

tasks. Suppose the x-frame now has to go to another position. One way of doing this is to

repeat the routines for moving it to base, then to (0, 0), and eventually to the new

location. This takes time and it is quicker to go directly from one location to the next,

without visiting base and (0, 0). This is the function of the program named CtoD. It takes

the x-frame from its Current location to a Destination location.

The routine needs six register: xpos, ypos, xc, yc, xd, and yd. We have already used xpos

and ypos. The new ones are the current x, the current y, the destination x and the

destination y. These registers are loaded with the required values before calling the

subroutine. In this excerpt the x-frame is at (5, 4) and is to move to (3, 1). The calling

routine for this is:

movlw 05h ; Current x to xc.

movwf xc

movlw 04h ; Current y to yc.

movwf yc

movlw 03h ; Destination x to xd.

movwf xd

movlw 01h ; Destination y to yd.

movwf yd

call xctod ; To move it left or right.

call yctod ; To move it back or forward.

The flowchart of subroutine xctod shows how the distance and direction are calculated

from the values of the starting and finishing positions. Subtracting xc from xd gives the

distance to be moved. If the result is positive, the x-frame is moved to the left, by calling

the left subroutine.

The situation is slightly more complicated if xc is to the right of xd, the value in xpos is

negative. The left and right subroutines only work with positive values. Before calling the

right subroutine, the value in xpos must be made positive. A negative result of a

subtraction causes the carry bit (STATUS<0>) to be set.

CB065B
page 12

Friday, 16 March 2007 09:43
Black

The Gantry

347

The CtoD routine works out the

direction and distance betwwen the

cuurent and destination locations,then

moves the x-frame directly to it new

location.

The conversion of negative to positive is done in two steps. First subtract 1 from the

negative value. For example, -4 becomes -5. Then complement the byte, substituting 0s

for 1s and 1s for 0s. The ‘comf’ instruction takes care of this and the result is the positive

value. Continuing the example, -5 in hex is fah., or 11111011 in decimal. Complementing

this yields 00000100, which is 4 in decimal. The right subroutine is then called with this

value in xpos. The listing of xctod is given overleaf.

Moving in the y direction employs a similar subroutine, yctod. Its flowchart and listing

differ from xctod by substituting ‘y’ for ‘x’ in all statements and labels. Also, the

subroutines are called rear and forward respectively, instead of left and right.

The ctod routines (either one or both) can be included in the main program if they are not

often used. If there is a lot of moving around it is better to list them as subroutines. Load

the required values in xc, yc, xd and yd and call the two subroutines.

CB065B
page 13

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

348

xctod

bsf flags, 0 ; No stops.

movf xc, w

subwf xd,f ; Carry=1, if result negative.

movf xd, w

movwf xpos

btfsc status, 0 ; Test carry.

goto leftgo

goto rightgo

leftgo

call left

decfsz xpos, f

goto leftgo

bcf portc, 4 ; Stop.

return

rightgo

decf xpos, f

comf xpos, f ; Make xpos positive.

rtgo call right

decfsz xpos, f

goto rtgo

bcf portc, 4 ; Stop.

return

ScanningScanningScanningScanning

One of the more complicated operations is to scan the working area. This might be the

basis of a maze solving program in which a plan of the maze is scanned into the robot’s

memory. Then the robot analyses the plan, solves the maze, and finally traces out the

correct path by moving a pointer attached to the x-frame.

The scan has four sequences, as can be seen in the flowchart (p. 351). Starting at (0, 0) the

x-frame is moved from right to left along row 0. It stops every time it reaches a marker,

including the first one at (0, 0), and performs an action. In the test version of this program

it simply produces a bleep. After returning from the call to left, it decrements xpos. This

register is set to 5 at the start so is reduced to zero by the time it reaches (6, 0).

CB065B
page 14

Friday, 16 March 2007 09:43
Black

The Gantry

349

The next sequence returns the x-frame to the right end of the row, but without stopping

or performing its action. As before, xpos is set to 5 at the start and reduced to zero as it

reaches the right column.

In the third sequence the y-frame is moved one step back, bringing the x-frame to (0, 1).

The loop then repeats from label xloop, taking the x-frame along the next row, stopping at

each marker, and then returning non-stop to (0, 1). The xloop repeats, decrementing ypos

each time until it has completed scanning the six rows. Note that the starting value of

ypos is 6, but the starting value of xpos is 5. This is because xpos is decremented after

calling the subroutines (left or right) but, because it is involved in the xloop, ypos is

decremented before calling back. In the fourth and final sequence, the y-frame is moved

forward five steps, bringing the x-frame back to (0, 0).

The scan routine can be adapted in several ways. For example when playing a game of

noughts and crosses (tic-tac-toe), changing the settings of xpos to 2 and the settings of

ypos to 3 then 2, results in the required 3 × 3 playing area. The listing continues overleaf:

; Scanning routine.
movlw 06h
movwf ypos ; Set up y counter to 6.

; Scanning right to left.
xloop

movlw 05h
movwf xpos ; Set up x counter to 5.
bcf flags, 0 ; Stop each time.

next1
call action ; Demo. reads sensors etc.
call left
decfsz xpos, f ; x counter = 0?
goto next1 ; No, continue to left.
bcf portc, 4 ; Stop.
call action

; Returning left to right.
movlw 05h ; Counter to 5.
movwf xpos
bsf flags, 0 ; No stopping.

next2
call right
decfsz xpos, f ; Until 5 markers detected.
goto next2
bcf portc, 4 ; Stop.

CB065B
page 15

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

350

; Move y-frame one row to back.

bcf flags, 0 ; Stopping.

decfsz ypos, f ; Until 5 markers detected.

goto next3

goto farback

next3

call back

goto xloop ; To scan next row.

farback

bcf portc, 5 ; Stop.

; Return y-frame to front row.

movlw 05h ; y counter to 5.

movwf ypos

bsf flags, 0 ; No stops.

next4

call forward

decfsz ypos, f

goto next4

bcf portc, 5 ; Final stop.

Operating the hookOperating the hookOperating the hookOperating the hook

The hook is used for picking up and putting down objects. For example, use it for

moving pieces in a game. The hook is raised and lowered by motor M3 at the left end of

the y-frame.

There are two microswitches to provide feedback (p. 17). M3 closes when the pulley

block is fully raised and is pressing against the lever of the microswitch. This establishes

that the hook is in a known position. Its function is the same as the two microswitches on

the main frame, which establish that the x-frame is at its base. Once the hook is fully

raised it can be lowered to any required height by switching on the motor for a given

length of time. The values used in timing routines will need to be adjusted to take

account of motor speed, gearing and the diameter of the bobbin.

CB065B
page 16

Friday, 16 March 2007 09:43
Black

T
h

e
 G

a
n

tr
y

3
5

1

A
 p

ro
g

ra
m

 t
o

 s
ca

n
 t

h
e

w
h

o
le

 w
o

rk
in

g
 a

re
a,

 a
n

d
 p

er
fo

rm
 a

n
 a

ct
io

n

(s
u

ch
 a

s
d

et
ec

tin
g

 a
n

 o
b

je
ct

)
at

 e
ac

h
 lo

ca
tio

n
.

C
B

06
5B

pa

ge
 1

7
Fr

id
ay

, 1
6

M
ar

ch
 2

00
7

09
:4

3
B

la
ck

The Robot Builder’s Cookbook

352

The other microswitch is used to detect whether or not the hook is carrying a load. The

mechanism (pp. 308-309) has a spring and the tension in this must be adjusted so that,

when a load is hooked, the lever is pulled down and closes the switch.

Both switches are connected so that they ground the input pin when closed. They are

wired to digital input channels with weak pull-ups. For the fully-up microswitch we used

the X2 between-board link, which connects to channel RA0 (see table, p. 331). For the

load-detect switch we used the X1 link, that goes to channel RB5. To make the requird

connection the three leads from the hook are plugged on to the PIC2 board as follows:

• 0 V to one of the 0 V pins (N7, N11, or N17).

• Fully-up switch to X2 (J13).

• Load-on switch to X1 (I15).

Each of these pins is connected directly to a second pin on the same strip. The X1 and X2

leads to the PIC1 board are plugged on to the second pin. The X0 connection is not used

with the hook, but could be used for a light sensor, for example.

The listing (pp. 355-356) demonstrates how to program the hook. The x-frame moves to

location (2, 3), where it picks up a load. Then it moves to location (5, 5) ad puts it down.

The load is any compact object of suitable weight (enough to close the microswitch) and

with a loop or handle to pick it up by. Purists may object at having to provide a handle,

but suitcases and plastic shopping bags have handles for the same purpose.

The action of this program is readily broken down into routines and subroutines. Some of

these have been described already: moving to base (p. 338) and atob (p. 345). The atob

routine calls left, right, back and forward, so these must be included in the listing. To assist

with putting together the listing, the table on pp. 362-363 summarises all the routines and

subroutines for the gantry, and the names of the subroutines that they call.

There are three routines for use with the hook:

• raise, which raises the hook as far as it can go.

• lower, which lowers the hook until the load rests on the surface.

• updown, which raises or lowers the hook for 0.2 s or other preset period.

CB065B
page 18

Friday, 16 March 2007 09:43
Black

The Gantry

353

Both raise and lower call on updown, and updown in turn calls on delay. Whether updown

raises or lowers the hook depends on a flag that must be set before calling the subroutine.

The flag is at bit <1> of the flags register (p. 363), where 0 = down and 1 = up.

In the original version of raise the hook was simply raised until MS3 closed.

Unfortunately, the pressure of the hook against the pulley block caused MS4 to close and

so the controller acted as if there was a load on the hook. To prevent this, a single call to

updown lowers the hook one step after raising it.

The program begins as usual by initialising the controller. There is one difference when

using the hook. In Bank 1, instead of movlw 00h, change this to movlw 020h. This sets

RB5 as an input. Also add flags EQU 25h and attempts EQU 26h to the list of

labels.

The next section of the program moves the x-frame to base and then to (0, 0) as listed on

p. 338 and p. 343, then the program proceeds as shown in the flowchart overleaf.

 The routine for moving to (2, 3) is the same as the atob listing on p. 345, but with xpos set

to 02h and ypos set to 03h.

The Gantry plays a game of chance. Where will the hook deposit the load?

CB065B
page 19

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

354

Demonstrating the action of the hook.

At this stage the program enters a routine of looking for the load. It is assumed that it will

be placed just below location (2, 3), but that its height is not known. The hook is put

through a sequence of moves illustrated in the diagram opposite. It tries to engage in the

loop or handle on the load by moving in from the right, then moving up. If the load is not

detected, it returns to the right and then drops down one step before trying again. It

repeats this cycle until, after moving up, it detects that the load is engaged.

If it has tried 15 times and failed to find the load, it must be assumed that something is

wrong (perhaps it has knocked the load over, or there is no load). In this case it jumps to

the end of the routine, moving away, raising the hook and stopping at that point.

CB065B
page 20

Friday, 16 March 2007 09:43
Black

The Gantry

355

The scooping action of the hook when

searching for an object of unknown height.

movlw 0fh ; Counter to 15.
movwf attempts
call raise ; Raise hook to top.

; Move to location 2, 3,

movlw 02h ; Set up counters to 2, 3.
movwf xpos
movlw 03h
movwf ypos
bsf flags, 0 ; Disable stop in subroutine.

nextleft
call left ; To rightmost column.
decfsz xpos, f ; Counting down to zero.
goto nextleft
bcf portc, 4 ; Stop x-winch.

nextback
call back ; To front row.
decfsz ypos, f ; Counting down to zero.
goto nextback
bcf portc, 5 ; Stop y-winch.

; Finding load.
bcf flags, 0 ; Stop enabled.
bcf flags, 1 ; Hook down.
call updown

Controlling the hook (continued overleaf).

CB065B
page 21

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

356

findit call updown
call left
bsf flags, 1 ; Hook up.
call updown
call updown
call delay ; Time to settle.
btfss portb, 5 ; Load detected?
goto found
call right
decfsz attempts, f
goto trymore
goto abandon

trymore bcf flags, 1 ; Hook down.
call updown
call updown
goto findit

found
call raise

; Move to location 5, 5. (From 3, 3)

movlw 02h ; Set up counters to 2, 2.
movwf xpos
movlw 02h
movwf ypos
bsf flags, 0 ; Disable stop in subroutine.

nextlft
call left ; To rightmost column.
decfsz xpos, f ; Counting down to zero.
goto nextlft
bcf portc, 4 ; Stop x-winch.

nextbak
call back ; To back row.
decfsz ypos, f ; Counting down to zero.
goto nextbak
bcf portc, 5 ; Stop y-winch.

; Deposit load.
call lower
bcf flags, 0 ; Enable stop.

abandon call right
call right
callraise

flash
bsf portb, 4 ; Green LED on.
call delay
bcf portb, 4 ; Green LED off.
call delay
goto flash

CB065B
page 22

Friday, 16 March 2007 09:43
Black

The Gantry

357

The listing opposite completes the main program. The flash routine comes at the end of

the main program as an indicator that the controller has completed its allotted tasks. For

subroutines the program needs delay, longdelay, left, right, back, and forward.

The special subroutines for this program are as follows:

raise bsf flags, 1 ; Set = raise.
btfss porta, 0 ; MS3 closed?
goto relax ; Hook is at top.
call updown
goto raise

relax bcf flags, 1
call updown ; Down a little.
return

lower bcf flags, 1 ; Clear = lower.
btfsc portb, 5 ; MS4 open? 0 = load on it.
return ; No load or load relieved.
call updown
goto lower

updown bsf portc, 3 ; Tool winch on.
bcf portc, 6 ; Winding in winch.
btfss flags, 1
bsf portc, 6 ; Or winding out.
movlw 05h
call longdelay
bcf portc, 3 ; Stop tool winch.
return

end

The listing opposite shows the counters being set to move it 2, not 3 steps left. This is

because the x-frame is already one step to the left when it detects and lifts the load.

The values given in this listing may need altering to take account of motor speed and

other factors. Most often the length of the delay and longdelay subroutines will need

increasing or decreasing, particularly in the routine for finding the load. If it is assumed

that the load is never a tall one, the hook may be dropped for several seconds before it

starts to search for the load. This will mean that the maximum number of attempts will be

reduced.

CB065B
page 23

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

358

More tasks for the hookMore tasks for the hookMore tasks for the hookMore tasks for the hook

Combining a program similar to the above with the random number routine (p. 161) can

be the basis for a game of chance. One version is being played in the photo on p. 353.

The playing area is a square of card marked out in, say, 5 rows and 5 columns of squares.

The hook picks up the load from a fixed location and deposits it on one of the squares.

Players win or lose according to the rules of the game, decided upon beforehand. Add

excitement to the game by programming the Gantry to ‘change its mind’ a few times

before eventally setting down the load.

Using a version of the scan routine (pp. 349-350), program the hook to sweep the area

systematically for objects and place them in a neat row at the back of the working area.

Programming the brushProgramming the brushProgramming the brushProgramming the brush

Like the hook, the brush is raised and lowered by motor M3, but it has only one limit

switch. This is closed whan the brush is resting on the paper or is down into the paint in

the well. It opens when the brush has been lifted high enough to clear the rim of the well.

The sequence of a typical painting program is: (1) move the brush to the well and dip it in

the paint; (2) raise it and move it to the beginning of the stroke; (3) lower it on to the

paper; (4) move it to the end of the stroke; (5) raise it. Repeat from (1) to (5) until the

painting is complete.

Stages (1), (2) and (4) use the xctod and yctod routines. To program a painting, all that is

needed is a look-up table of consecutive values of xd and yd. At a given stage in the

sequence, xc and yc are the values held by xd and yd in the previous stage. The look-up

table is constructed in the same way as a table for generating sounds (pp. 154-155). A

program for painting with several colours uses two or three paint wells, plus a large well

of water for washing the brush when changing colours.

Painting pictures and designs are not the only tasks for the brush. It can be used for games

programs that have written output, such a Noughts and Crosses (Tic-Tac-Toe).

CB065B
page 24

Friday, 16 March 2007 09:43
Black

The Gantry

359

For writing the noughts and crosses use a smaller brush. Use the xctod and yctod routines

to take the brush to the selected square then call on a subroutine to draw the nought or

cross inside the square.

Programming the laserProgramming the laserProgramming the laserProgramming the laser

The laser can operate as a simple pointer. In a board game, for example, it points to the

piece it wants to move. Its other use is for scanning the working area. If it is solving a

maze, the Gantry uses the laser to scan the map of the maze. It scans the map into its

memory, then solves the maze logically, and finally uses the laser beam to trace out its

calculated path through the maze.

The laser can also operate in conjunction with the camera, as explained in the next

section.

Programming the cameraProgramming the cameraProgramming the cameraProgramming the camera

The camera has a light dependent resistor, connected as a potential divider (p. 75). It can

be used to measure the level of laser light reflected from a target (playing piece, playing

board, maze map) in the working area. Instead of the laser, the light source may be one or

more LEDs, or the ambient room lighting. When using the camera, the map or other

target is best supported about 60 mm below the camera lens to bring it into focus.

For distinguishing between white (or a light tone) and black (or a dark tone) the output of

the sensor circuit is sent direct to Comparator 1 of PIC2 (RA1, pin 18). CM1CON0 is set

up as described on pp. 120-122. VRCON is set at a level that distinguishes a black area

from a white area.

For distinguishing between a few colours (by their brightness) the output is sent to one of

the 12 AD converter channels of PIC1 or PIC2. The connections from the PIC2 board to

PIC1 inputs are: X0 to AN4 (pin 16), X1 to AN11 (pin 12), X2 to AN0 (pin 19).

To set up the circuit, use a testmeter to measure the output voltage under the operating

conditions that are to be distinguished.

CB065B
page 25

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

360

When using a comparator, use these measurements to calculate a reference voltage for

VRCON that is mid-way between the two voltage levels. In the program , read

CM1CON0<6>, which will be 0 for black and 1 for white.

When using an AD converter, use these measurements to calculate analogue values that

discriminate between the different colours. Write an ‘If A > B’ branching routine based on

these values to process the results of readings made at run-time.

With a little experimentation it is possible to distinguish between black, white and one or

two shades of grey (or other colours such as red and green, see p. 78). This ability is

useful in a game program for identifying playing pieces belonging to the two players

(human and Gantry) and the black and white squares of the playing board.

Programming the gripperProgramming the gripperProgramming the gripperProgramming the gripper

The gripper is raised and lowered by the same mechanism as the hook, so the

programming if up/down actions is the same, including the feedback from the two limit

switches. In addition, the gripper motor has to be controlled by on/off and open/close

signals, and there is a limit switch that closes when the jaws close.

One way of treating the programming is to make this an example of distributed

processing. PIC1 controls the three winch motors and the sequencing of the operation.

We use a second controller, PIC2, to control the jaw motor, under the direction of PIC1.

PIC2 is located on the x-frame.

The X1 and X2 lines have the same functions as for the hook. X0 is not used for the hook

but, for the gripper, its function is to coordinate control of opening and closing the jaw.

The line runs from RC0 (pin 16) of the PIC1 board to RB4 (pin 13) of the PIC2 board. By

configuring the channels alternately as input or output, this line is used for two-way

communication between the two PICs.

The routine is for PIC1 to send a pulse along the X0 line, instructing PIC2 to open the jaw

if it is closed or close it if it is open. When the state of the jaw has been altered, PIC2 sends

a reply pulse to PIC1, informing it that the task is done. The flowchart opposite describes

the sequence in more detail.

CB065B
page 26

Friday, 16 March 2007 09:43
Black

The Gantry

361

Programs with handshaking running simultaneously on two PICs.

CB065B
page 27

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

362

The main program, of which only the beginning is shown in the flowchart, instructs PIC2

to open or close the jaw alternately. This is all that PIC2 has to do so, provided that all

paths in PIC1’s program keep to the open-close-open-close... sequence, the PIC2 program

can be a loop that opens or closes the jaw, followed by sending a ‘done’ reply pulse every

time it receives a pulse from PIC1. In between, it simply waits for the next pulse to arrive.

With additional sensors to monitor, PIC2 can have other tasks allotted to it, but the

essential alternation between opening and closing the jaws must be maintained.

Gantry subroutinesGantry subroutinesGantry subroutinesGantry subroutines

This table lists the routines and subroutines used for moving the x-frame. It is a summary

to use when building up gantry routines.

Name Page Before calling Action Subroutines

called

left 340 flags, 0 = 0 or 1 move left 1 step longdelay

right 342 flags, 0 = 0 or 1 move right 1

step

longdelay

back 343 flags, 0 = 0 or 1 move back 1

step

longdelay

forward 343 flags, 0 = 0 or 1 move forward 1

step

longdelay

atob (routine) 345 xpos, ypos move no. of

rows and

columns set by

xpos and ypos

left, right, back,

forward

xctod 346-348 xc, xd, flags<0> move from

current x to

destination x

left, right, back,

forward,

longdelay

yctod 347 (convert

xctod)

yc, yd, flags<0> move from

current y to

destination y

left, right, back,

forward,

longdelay

CB065B
page 28

Friday, 16 March 2007 09:43
Black

The Gantry

363

Name Page Before calling Action Subroutines

called

scan (routine) 349-350 xpos, ypos scan right to left,

forward to back,

stopping on

rightward scans,

return to start

left, right, back,

forward

raise 357 None raise hook to top updown

lower 357 None lower hook until

load removed

updown

updown 357 flags <1> raise or lower

0.2s

delay

FlagsFlagsFlagsFlags

The bits of the flags register have the following effects:

Bit <1> 0 = hook down; 1 = hook up.

Bit <0> 0 = stop at end of left/right/back/forward subroutines; 1 = no stop.

CB065B
page 29

Friday, 16 March 2007 09:43
Black

The Robot Builder’s Cookbook

364

Adhesives, 30

ADCON0 register, 123

ADRES and ADRESH registers, 73, 124

Aluminium stock, 26

Analogue input, 71-72

Analogue-to-digital converter, 73, 123-124, 194-

197

ANSEL and ANSELH registers, 124, 139

Assembler, 6, 108-110

Bandgap sensor, 80-81

Base, moving x-frame to, 338-339

BASIC, 7, 112

Batteries, 65-66

Bipolar junction transistors (BJTs), 61, 90-91

Bistable (multivibrator), 79

Bit, 117

Bit test instructions, 142

Bleeper board, 275

Blu-tack, 30

Branching instructions, 141-144

Brass stock, 27

Breadboard, 58

Brush, 312-313, 330, 358-359

Bumpers, 149, 273-274

C, 7

Calibrating the system, 163-164, 187-190

Camera, 315-316, 330

Circuit board, 54-55

CM1CON0 and CM2CON0 registers, 120-122

CMOS gates, 71, 77, 97

Colour detection, 78

Companion website, 7

Comparator, PIC, 76, 120-122

Comparator, op amp, 76-77

Compiler, 7

Components, 60-64

Configuration word, 118-119

Connecting wire, 55-56

Connectors, 63-64

Construction kits, 51

Controller circiuit, 67

Controller boards, 174 , 217-218, 264-266, 322-324,

325-326

Control panel, 263, 268-269

Crystal oscillator, 132

Data memory, 127-128

Data transmission, serial, 124-126

Decked chassis, 258-261

Demo board, 108

Diagnostic programming, 115

Direct drive output, 89

Distributed processing, 22, 155-157

Division, 159-160

Dry run, 114

E12 resistors, 60

EEPROM, 127-128

Equates, 134

Feedback, 17

Fixings, 29

Flash sensor, 79

Flip-flop, 79, 85, 86

Flowchart, 114

Gantry robot, 3, 16

Gantry subroutines, 361-362

Gear wheels, 40-44

General purpose registers, 116, 137

Glue gun, 30

Gray code, 84

CBindex
page 2

Friday, 16 March 2007 09:47
Black

Index

365

Greater than operator (>), 160-161

Gripper, 310-312, 329, 360-361

Hall effect sensor, 83, 88, 316-319

Handshaking, 24

H-bridge, 94-96

Hello World! program, 183-186, 200-202

High-level languages, 112

Hook, 308-310, 329, 350-358

Infrared sensor board, 271-272

Infrared probe, 272-273, 318

Input circuits, one-bit, 68-69

Insulation, 56

INTCON register, 129

Interfacing circuit, 219

Interference, 330

Laser, 313-314, 330, 359

Leader listing, 135-136, 280

Less than operator (<), 161

Light-dependent resistor (LDR), 74-75, 78, 270,

315

Light-emitting diode (LED), 78

Light seeking program, 190-194, 202-206, 287-290

Light sensors, 74-76, 147-148, 270-271

Limit switch, 17, 19, 84, 87, 306-307

Line follower program, 290-293

Location sensors, 83-84, 316-319

Look-up tables, 154-155

Machine code, 6

Machine gun sound effect, 257

Magnetic sensor, 83, 88, 316-319, 328

Mathematical operations, 157-161

Microcontroller, 5, 67

Microprocessor, 5

Microswitch, 18

Mnemonic, 6

Mobile robot, 2, 10, 36-38

Mode select routine, 140-141

Monte Carlo walk, 20

MOSFETs, 62, 92, 97

Motion sensors, 81-82

Motors, 46-50, 304-305

Motor direction control, 94-97, 175, 220, 266-267,

327-328

Motor speed control, 93-94, 252-256

Moving x-frame, to base, 338-339

to (0,0), 340-342

atob program, 345

ctod program, 346-348

scanning, 348-350

MPLAB IDE, 110-111

Multiplication, 157-159

Musical tones, 150-153

Objects, avoiding, 149, 194-200, 206-208

Objects, detecting, 147-149

Optical encoder, 84

Output circuits, 89-100

Photodiode, 71, 73, 75

Phototransistor, 75-76

PIC, 8

PIC16F84A, 130-132

PIC16F88, 130-132

PIC16F628A, 130-132

PIC16F690, 67, 106-107, 116-119

PIC16F690, pinout, 117

PICBASIC, 112-3

PICkit 2, 107

PIR1 and PIR2 registers, 128-129

Plastic materials, 27-28

Polling, 143-144

Port, 116, 119

Potentiometer, linear, 83

Power control board, 321-322

Power supplies, 65-66

Power supply unit, 57

Prisoner program, 293-296

Program, 6

Programming deck, 7

Program select routine, 282-283

Proximity, 84-85, 148

Proximity sensor, light, 84-85

Proximity sensor, magnetic, 87

Pseudorandom, 20

CBindex
page 3

Friday, 16 March 2007 09:47
Black

The Robot Builder’s Cookbook

366

Pulley wheels, 44-46

Radio transmitter and receiver, 100-101

Randomness, 19-20

Random number generator, 161-163

RCREG register, 125

Reed switch, 87

Reference voltage, 72

Relays, 96-97, 251-252, 327-328

Resistor, current limiting, 66

Resistor, reference voltage, 72

Robot arm, 2

Scissors, Paper, Stone program, 232-245

Sensors, 74-88

Servomotors, 49-50, 98

Simulation, 8

Sleeving, 56

Solder, 56

Soldering iron, 59

Solenoids, 50-51

Song and Dance program, 230-232

Sound effects, 251-252, 257

Sound sensors, 85-86

Speaker drive, 220-221

Special function registers, 116, 117-118, 120-129

STATUS register, 114, 138

Steering, 144-147, 167-172, 210-212, 227-230, 248-

250, 252

Stepper motors, 47-49, 98-100, 215, 220

Stripboard, 54-55

Subsumption, 21

Super glue, 30

Suppliers, 51-52, 103-104

Switching boards, 175-177

Tachometer, 87

Testing circuits, 102-103

Thermal sensor, 80-81

Thermistor, 80

Tilt switch, 81

Tools, 31-36, 57-60

Transistor switch, 90-92

Transistor switch, designing, 92

Trial and error, 20

TRISA, TRISB, TRISC registers, 119

TXSTA register, 124-5

Ultrasonic transmitter and receiver, 86-87

USART, 124-126

Velcro, 30, 262

Vibration switch, 81-83

VRCON register, 73, 121

Wanderer program, 284-287

Weak pull-ups, 139, 330

Wheels, 39-46, 167-172, 247-248

White noise, 257

Winch, 303

Wire, 55-56

Wooden materials, 28-29

Working register (w), 119

x-frame, 297, 298, 301

x-frame, moving, 340-342

y-frame, 297, 299-301

y-frame, moving, 340-342

Zener diode, 72

Zero bit, 141

CBindex
page 4

Friday, 16 March 2007 09:47
Black

	The Robot Builder's Cookbook
	Copyright Page
	Contents
	Introduction: Making a Robot
	What sort?
	Getting down to detail
	Controlling the robot
	Programming a PIC
	Simulating the PIC

	Part 1 Robot Behaviour
	Activities of mobile robots
	Activities of gantry robots
	Feedback
	Random activity
	Subsumption
	Input and output requirements
	Distributed processing

	Part 2 Robot Mechanics
	Materials
	Fixings
	Tools
	Planning a mobile robot body
	Wheels
	Motors
	Solenoids
	Construction kits
	Suppliers

	Part 3 Robot Electronics
	Materials
	Tools
	Components
	Power supplies
	The controller circuit
	Input circuits
	Output circuits
	Radio
	Testing the circuit
	Suppliers

	Part 4 PICs in Control
	Programming a PIC
	The PIC16F690
	Special functions
	Comparators
	AD converters
	Serial receiver/transmitter
	Data memory
	The PIR1 and PIR2 registers
	The INTCON register

	Other PICs

	Part 5 PIC Programming
	Program segments
	Inputs and outputs
	Mode select routine
	Branching instructions
	Steering a mobile robot
	Detecting objects
	Avoiding objects
	Musical tones
	Look-up tables
	Using two processors
	Mathematical operations
	Random numbers
	Calibrating the system
	Software replaces hardware

	Part 6 Projects
	6.1 The Scooter
	6.2 The Android
	6.3 A robotic toy
	6.4 The Quester
	6.5 The Gantry

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

