
Multi-Robot Systems. From Swarms to Intelligent Automata
Volume III

Volume III
Proceedings from the 2005 International Workshop
on Multi-Robot Systems

Edited by

LYNNE E. PARKER
The University of Tennessee,
Knoxville, TN, U.S.A.

and

FRANK E. SCHNEIDER

Multi-Robot Systems.
From Swarms to
Intelligent Automata

ALAN C. SCHULTZ
Navy Center for Applied Research in A.I.,
Naval Research Laboratory,
Washington, DC, U.S.A.

FGAN, Wachtberg, Germany

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 2005 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission from the Publisher, with the
exception of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN-13 978-1-4020-3388-9 (HB) Springer Dordrecht, Berlin, Heidelberg, New York

ISBN-10 1-4020-3388-5 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-10 1-4020-3389-3 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York

ISBN-13 978-1-4020-3389-6 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York

Contents

Preface ix

Part I Task Allocation

The Generation of Bidding Rules for Auction-Based Robot Coordination 3
Craig Tovey, Michail G. Lagoudakis, Sonal Jain, and Sven Koenig

Issues in Multi-Robot Coalition Formation 15
Lovekesh Vig and Julie A. Adams

Sensor Network-Mediated Multi-Robot Task Allocation 27
Maxim A. Batalin and Gaurav S. Sukhatme

Part II Coordination in Dynamic Environments

Multi-Objective Cooperative Control of Dynamical Systems 41
Zhihua Qu, Jing Wang, and Richard A. Hull

Levels of Multi-Robot Coordination for Dynamic Environments 53
Colin P. McMillen, Paul E. Rybski, and Manuela M. Veloso

Parallel Stochastic Hill-Climbing with Small Teams 65
Brian P. Gerkey, Sebastian Thrun, Geoff Gordon

Toward Versatility of Multi-Robot Systems 79
Colin Cherry and Hong Zhang

Part III Information / Sensor Sharing and Fusion

Decentralized Communication Strategies for Coordinated Multi-Agent Policies 93
Maayan Roth, Reid Simmons, and Manuela Veloso

Improving Multirobot Multitarget Tracking by Communicating
Negative Information

p gg
107

Matthew Powers, Ramprasad Ravichandran, Frank Dellaert, and Tucker Balch

vi MULTI-ROBOT SYSTEMS

Enabling Autonomous Sensor-Sharing for Tightly-Coupled
Cooperative Tasks

g
119

Lynne E. Parker, Maureen Chandra, and Fang Tang

Part IV Distributed Mapping and Coverage

Merging Partial Maps without Using Odometry 133

Distributed Coverage of Unknown/Unstructured Environments
by Mobile Sensor Networks

g
145

Part V Motion Planning and Control

159
James Bruce and Manuela Veloso

A Multi-Robot Testbed for Biologically-Inspired
Cooperative Control 171

Rafael Fierro, Justin Clark,kk Dean Hougen, and Sesh Commuri

Part VI Human-Robot Interaction

Task Switching and Multi-Robot Teams 185
Michael A. Goodrich, Morgan Quigley, and Keryl Cosenzo

User Modelling for Principled Sliding Autonomy in Human-Robot Teams 197
Brennan Sellner, Reid Simmons, and Sanjiv Singh

Part VII Applications

Multi-Robot Chemical Plume Tracing 211
Diana Spears, Dimitri Zarzhitsky, and David Thayer

Deploying Air-Ground Multi-Robot Teams
in Urban Environments

p y gp y g
223

L. Chaimowicz, A. Cowley, D. Gomez-Ibanez, B. Grocholsky, M. A. Hsieh,
H. Hsu, J.F. Keller, V. Kumar, R. Swaminathan, and C. J. Taylor

Part VIII Poster Short Papers

A Robust Monte-Carlo Algorithm for Multi-Robot Localization 251

A Dialogue-Based Approach to Multi-Robot Team Control 257
Nathanael Chambers, James Allen, Lucian Galescu, and Hyuckchul Jung

FrFF ancescorr Amigoni, Simone Gasparini, and Maria Gini

Ioannis Rekleitis, Ai PengPP New, and Howie Choset

Real-Time Multi-Robot Motion Planning with Safe Dynamics

Vazha Amiranashvili and Gerhard Lakemeyer

Precision Manipulation with Cooperative Robots 235
Ashleye Strorr upu e, TeTT rryrr HuHH ntstt bergrr er,rr Avi Okon, and Hrand Aghazarian

Contents vii

for Mobile Robot Teams 263
Jason Derenick, Christopher Thorne, and John Spletzer

The GNATs – Low-Cost Embedded Networks
for Supporting Mobile Robots 277

Keith J. O’Hara, Daniel B. Walker, and Tucker R. Balch

291

299

Swarming UAVS Behavior Hierarchy 269
Kuo-Chi Lin

Role Based Operations 283
Brian Satterˇ eld, Heeten Choxi, and Drew Housten

Hybrid
f

Free-Space Optics/Radio Frequency (FSO/RF) Networks
bil bb

Ergodic Dynamics by Design: A Route to Predictable Multi-Robot Systems

Author Index

Dylan A. Shell, Chris VVV Jones, and Maja J. MatariJJ ć

Preface

The Third International Workshop on Multi-Robot Systems was held in
March 2005 at the Naval Research Laboratory in Washington, D.C., USA.
Bringing together leading researchers and government sponsors for three days
of technical interchange on multi-robot systems, the workshop follows two
previous highly successful gatherings in 2002 and 2003.Like the previous two
workshops, the meeting began with presentations by various government pro-
gram managers describing application areas and programs with an interest in
multi-robot systems. U.S. Government representatives were on hand from
the Office of Naval Research and several other governmental offices.Top re-
searchers in the field then presented their current activities in many areas of
multi-robot systems. Presentations spanned a wide range of topics, includ-
ing task allocation, coordination in dynamic environments, information/sensor
sharing and fusion, distributed mapping and coverage, motion planning and
control, human-robot interaction, and applications of multi-robot systems. All
presentations were given in a single-track workshop format. This proceed-
ings documents the work presented at the workshop.The research presenta-
tions were followed by panel discussions, in which all participants interacted
to highlight the challenges of this field and to develop possible solutions. In
addition to the invited research talks, researchers and students were given an
opportunity to present their work at poster sessions.We would like to thank the
Naval Research Laboratory for sponsoring this workshop and providing the fa-
cilities for these meetings to take place.We are extremely grateful to Magdalena
Bugajska, Paul Wiegand, and Mitchell A. Potter, for their vital help (and long
hours) in editing these proceedings and to Michelle Caccivio for providing the
administrative support to the workshop.

LYNNE E. PARKER, ALAN C. SCHULTZ, AND FRANK E. SCHNEIDER

ix

I

TASK ALLOCATION

THE GENERATION OF BIDDING RULES FOR
AUCTION-BASED ROBOT COORDINATION ∗

Craig Tovey, Michail G. Lagoudakis
School of Industrial and Systems Engineering, Georgia Institute of Technology

{ctovey, michail.lagoudakis}@isye.gatech.edu

Sonal Jain, Sven Koenig
Computer Science Department, University of Southern California

{sonaljai, skoenig}@usc.edu

Abstract Robotics researchers have used auction-based coordination systems for robot
teams because of their robustness and efficiency. However, there is no research
into systematic methods for deriving appropriate bidding rules for given team
objectives. In this paper, we propose the first such method and demonstrate it by
deriving bidding rules for three possible team objectives of a multi-robot explo-
ration task. We demonstrate experimentally that the resulting bidding rules in-
deed exhibit good performance for their respective team objectives and compare
favorably to the optimal performance. Our research thus allows the designers
of auction-based coordination systems to focus on developing appropriate team
objectives, for which good bidding rules can then be derived automatically.

Keywords: Auctions, Bidding Rules, Multi-Robot Coordination, Exploration.

1. Introduction

The time required to reach other planets makes planetary surface exploration
missions prime targets for automation. Sending rovers to other planets either
instead of or together with people can also significantly reduce the danger and
cost involved. Teams of rovers are both more fault tolerant (through redun-
dancy) and more efficient (through parallelism) than single rovers if the rovers
are coordinated well. However, rovers cannot be easily tele-operated since this

∗We thank Apurva Mudgal for his help. This research was partly supported by NSF awards under contracts
ITR/AP0113881, IIS-0098807, and IIS-0350584. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, companies or the U.S. government.

3
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 3–14.
©c 2005 Springer. Printed in the Netherlands.

4 Tovey, et al.

requires a large number of human operators and is communication intensive,
error prone, and slow. Neither can they be fully preprogrammed since their
activities depend on their discoveries. Thus, one needs to endow them with the
capability to coordinate autonomously with each other. Consider, for exam-
ple, a multi-robot exploration task where a team of lunar rovers has to visit a
number of given target locations to collect rock samples. Each target must be
visited by at least one rover. The rovers first allocate the targets to themselves,
and each rover then visits the targets that are allocated to it. The rovers know
their current location at all times but might initially not know where obstacles
are in the terrain. It can therefore be beneficial for the rovers to re-allocate the
targets to themselves as they discover more about the terrain during execution,
for example, when a rover discovers that it is separated by a big crater from
its next target. Similar multi-robot exploration tasks arise for mine sweeping,
search and rescue operations, police operations, and hazardous material clean-
ing, among others.

Multi-robot coordination tasks are typically solved with heuristic methods
since optimizing the performance is often computationally intractable. They
are often solved with decentralized methods since centralized methods lack ro-
bustness: if the central controller fails, so does the entire robot team. Market
mechanisms, such as auctions, are popular decentralized and heuristic multi-
robot coordination methods (Rabideau et al., 2000). In this case, the robots
are the bidders and the targets are the goods up for auction. Every robot bids
on targets and then visits all targets that it wins. As the robots discover more
about the terrain during execution, they run additional auctions to change the
allocation of targets to themselves. The resulting auction-based coordination
system is efficient in terms of communication (robots communicate only nu-
meric bids) and computation (robots compute their bids in parallel). It is there-
fore not surprising that auctions have been shown to be effective multi-robot
coordination methods (Gerkey and Matarić, 2002, Zlot et al., 2002, Thayer´
et al., 2000, Goldberg et al., 2003). However, there are currently no systematic
methods for deriving appropriate bidding rules for given team objectives. In
this paper, we propose the first such method and demonstrate it by deriving
bidding rules for three possible team objectives of the multi-robot exploration
task. We demonstrate experimentally that the resulting bidding rules indeed
exhibit good performance for their respective team objectives and compare fa-
vorably to the optimal performance. Our research thus allows the designers of
auction-based coordination systems to focus on developing appropriate team
objectives, for which good bidding rules can then be derived automatically.

The Generation of Bidding Rules for Auction-Based Robot Coordination 5

2. The Auction-Based Coordination System

In known environments, all targets are initially unallocated. During each
round of bidding, all robots bids on all unallocated targets. The robot that
places the overall lowest bid on any target is allocated that particular target. A
new round of bidding starts, and all robots bid again on all unallocated targets,
and so on until all targets have been allocated to robots. (Note that each robot
needs to bid only on a single target during each round, namely on one of the
targets for which its bid is the lowest, since all other bids from the same robot
have no chance of winning.) Each robot then calculates the optimal path for
the given team objective for visiting the targets allocated to it and then moves
along that path. A robot does not move if no targets are allocated to it.

In unknown environments, the robots proceed in the same way but under
the optimistic initial assumption that there are no obstacles. As the robots
move along their paths and a robot discovers a new obstacle, it informs the
other robots about it. Each robot then re-calculates the optimal path for the
given team objective for visiting the unvisited targets allocated to it, taking
into account all obstacles that it knows about. If the performance significantly
degrades for at least one robot (in our experiments, we use a threshold of 10
percent difference), then the robots use auctions to re-allocate all unvisited
targets among themselves. Each robot then calculates the optimal path for the
given team objective for visiting the targets allocated to it and then moves along
that path, and so on until all targets have been visited.

This auction-based coordination system is similar to multi-round auctions
and sequential single-item auctions. Its main advantage is its simplicity and
the fact that it allows for a decentralized implementation on real robots. Each
robot computes its one bid locally and in parallel with the other robots, broad-
casts the bid to the other robots, listens to the broadcasts of the other robots,
and then locally determines the winning bid. Thus, there is no need for a
central auctioneer and therefore no single point of failure. A similar but more
restricted auction scheme has been used in the past for robot coordination (Dias
and Stentz, 2000).

3. Team Objectives for Multi-Robot Exploration

A multi-robot exploration task consists of the locations of n robots and m
targets as well as a cost function that specifies the cost of moving between loca-
tions. The objective of the multi-robot exploration task is to find an allocation
of targets to robots and a path for each robot that visits all targets allocated to
it so that the team objective is achieved. Note that the robots are not required
to return to their initial locations. In this paper, we study three team objectives:

MINISUM: Minimize the sum of the path costs over all robots.

6 Tovey, et al.

MINIMAX: Minimize the maximum path cost over all robots.

MINIAVEAA : Minimize the average per target cost over all targets.

The path cost of a robot is the sum of the costs along its path, from its initial
location to the first target on the path, and so on, stopping at the last target on
the path. The per target cost of a target is the sum of the costs along the path
of the robot that visits the target in question, from its initial location to the first
target on the path, and so on, stopping at the target in question.

Optimizing the performance for the three team objectives is NP-hard and
thus likely computationally intractable, as they resemble the Traveling Sales-
person Problem, the Min-Max Vehicle Routing Problem, and the Traveling Re-
pairperson Problem (or Minimum Latency Problem), respectively, which are
intractable even on the Euclidean plane. However, these team objectives cover
a wide range of applications. For example, if the cost is energy consumption,
then the MINISUM team objective minimizes the total energy consumed by
all robots until all targets have been visited. If the cost is travel time, then the
MINIMAX team objective minimizes the time until all targets have been visited
(task-completion time) and the MINIAVEAA team objective minimizes how long
it takes on average until a target is visited (target-visit time). The MINISUM

and MINIMAX team objectives have been used in the context of multi-robot
exploration (Dias and Stentz, 2000, Dias and Stentz, 2002, Berhault et al.,
2003, Lagoudakis et al., 2004). The MINIAVEAA team objective, on the other
hand, has not been used before in this context although it is very appropri-
ate for search-and-rescue tasks, where the health condition of several victims
deteriorates until a robot visits them. Consider, for example, an earthquake
scenario where an accident site with one victim is located at a travel time of
20 units to the west of a robot and another accident site with twenty victims
is located at a travel time of 25 units to its east. In this case, visiting the site
to the west first and then the site to the east achieves both the MINISUM and
the MINIMAX team objectives. However, the twenty victims to the east are
visited very late and their health condition thus is very bad. On the other hand,
visiting the site to the east first and then the site to the west achieves the MINI-
AVEAA team objective and results in an overall better average health condition
of the victims. This example illustrates the importance of the MINIAVEAA team
objective in cases where the targets occur in clusters of different sizes.

4. Systematic Generation of Bidding Rules

We seek to derive an appropriate bidding rule for a given team objective.
This problem has not been studied before in the robotics literature. Assume
that there are n robots r1, . . . ,rnr and m currently unallocated targets t1, . . . , tmt .
Assume further that the team objective has the structure to assign a set of tar-
gets TiTT to robot ri for all i, where the sets T = {T1TT , . . . ,TnTT } form a partition of

The Generation of Bidding Rules for Auction-Based Robot Coordination 7

all targets that optimizes the performance f
(
g(r1,T1TT), . . . ,g(rnr ,TnTT)

)
for given

functions f and g. Function g determines the performance of each robot, and
function f determines the performance of the team as a function of the perfor-
mance of the robots. The three team objectives fit this structure. For any robot
ri and any set of targets TiTT , let PC(ri,TiTT) denote the minimum path cost of robot
ri and STC(ri,TiTT) denote the minimum sum of per target costs over all targets
in TiTT if robot ri visits all targets in TiTT from its current location. Then, it holds
that

MINISUM: minT ∑ j PC(r jr ,TjT),

MINIMAX: minT max j PC(r jr ,TjT), and

MINIAVEAA : minT
1
m ∑ j STC(r jr ,TjT).

A bidding rule determines how much a robot bids on a target. We propose
the following bidding rule for a given team objective, which is directly derived
from the team objective itself.

Bidding Rule Robot r bids on target t the difference in performance for the
given team objective between the current allocation of targets to robots
and the allocation that results from the current one if robot r is allocated
target t. (Unallocated targets are ignored.)

Consequently, robot ri should bid on target t

f
(
g(r1,T

′
1TT), . . . ,g(rnr ,T ′

nTT)
)
− f

(
g(r1,T1TT), . . . ,g(rnr ,TnTT)

)
,

where T ′
iTT = TiTT ∪{t} and T ′

jT = TjT for i �=�� j. The bidding rule thus performs hill
climbing to maximize the performance and can thus suffer from local optima.
However, optimizing the performance is NP-hard for the three team objectives.
Our auction-based coordination system is therefore not designed to optimize
the performance but to be efficient and result in a good performance, and hill
climbing has these properties. One potential problem with the bidding rule
is that the robots might not have all the information needed to compute the
bids. For example, a robot may not know the locations of the other robots.
However, we will now show that a robot can calculate its bids for the three
team objectives knowing only its current location, the set of targets allocated
to it, and the cost function:

For the MINISUM team objective, robot ri should bid on target t

∑
j

PC(r jr ,T ′
jT)−∑

j
PC(r jr ,TjT) = PC(ri,TiTT ∪{t})−PC(ri,TiTT).

8 Tovey, et al.

For the MINIMAX team objective, robot ri should bid on target t

max
j

PC(r jr ,T ′
jT)−max

j
PC(r jr ,TjT) = PC(ri,TiTT ∪{t})−max

j
PC(r jr ,TjT).

This derivation uses the fact that max j PC(r jr ,T ′
jT) = PC(ri,T ′

iTT), other-
wise target t would have already been allocated in a previous round of
bidding. The term max j PC(r jr ,TjT) can be dropped since the outcomes
of the auctions remain unchanged if all bids change by a constant. Thus,
robot ri can bid just PC(ri,TiTT ∪{t}) on target t.

For the MINIAVEAA team objective, robot ri should bid on target t

1

m∑
j

STC(r jr ,T ′
jT)−

1

m∑
j

STC(r jr ,TjT) =
1

m

(
STC(ri,TiTT ∪{t})−STC(ri,TiTT)

)
.

The factor 1/m can be dropped since the outcomes of the auctions re-
main unchanged if all bids are multiplied by a constant factor. Thus,
robot ri can bid just STC(ri,TiTT ∪{t})−STC(ri,TiTT) on target t.

Thus, the bidding rules for the three team objectives are

BIDSUM: PC(ri,TiTT ∪{t})−PC(ri,TiTT),

BIDMAX: PC(ri,TiTT ∪{t}), and

BIDAVEAA : STC(ri,TiTT ∪{t})−STC(ri,TiTT).

The robots need to be able to calculate their bids efficiently but computing
PC(ri,TiTT ∪{t}) or STC(ri,TiTT ∪{t}) is NP-hard. Robot ri thus uses a greedy
method to approximate these values. In particular, it finds a good path that
visits the targets in TiTT ∪{t} for a given team objective as follows. It already
has a good path that visits the targets in TiTT . First, it inserts target t into all
positions on the existing path, one after the other. Then, it tries to improve
each new path by first using the 2-opt improvement rule and then the 1-target
3-opt improvement rule. Finally, it picks the best one of the resulting paths
for the given team objective. The 2-opt improvement rule takes a path and
inverts the order of targets in each one of its continuous subpaths in turn, picks
the best one of the resulting paths for the given team objective, and repeats
the procedure until the path can no longer be improved. The 1-target 3-opt
improvement rule removes a target from the path and inserts it into all other
possible positions on the path, picks the best one of the resulting paths for the
given team objective, and repeats the procedure until the path can no longer be
improved.

The three bidding rules are not guaranteed to achieve their respective team
objectives even if the values PC(ri,TiTT ∪{t}) and STC(ri,TiTT ∪{t}) are computed
exactly. Consider the simple multi-robot exploration task in Figure 1 with 2 ro-
bots and 2 targets and unit costs between adjacent locations. All bidding rules

The Generation of Bidding Rules for Auction-Based Robot Coordination 9

Figure 1. A simple multi-robot exploration task.

can result in the robots following the solid lines, resulting in a performance of
3 for the MINISUM team objective, a performance of 3 for the MINIMAX team
objective, and a performance of 2 for the MINIAVEAA team objective. However,
the robots should follow the dashed lines to maximize the performance for all
three team objectives, resulting in a performance of 2 for the MINISUM team
objective, a performance of 1 for the MINIMAX team objective, and a perfor-
mance of 1 for the MINIAVEAA team objective. (We rely on a particular way
of breaking ties in this multi-robot exploration example but can easily change
the edge costs by small amounts to guarantee that the bidding rules result in
the robots following the solid lines independently of how ties are broken.) In
a forthcoming paper, we analyze the performance of the three bidding rules
theoretically and show that the performance of the BIDSUM bidding rule in
the Euclidean case is at most a factor of two away from optimum, whereas no
constant-factor bound exists for the performance of the BIDMAX and BIDAVEAA
bidding rules even in the Euclidean case.

5. Experimental Evaluation

To demonstrate that the performance of the three bidding rules is indeed
good for their respective team objectives, we implemented them and then tested
them in office-like environments with rooms, doors, and corridors, as shown
in Figure 2. We performed experiments with both unclustered and clustered
targets. The locations of the robots and targets for each multi-robot exploration
task were chosen randomly in the unclustered target case. The locations of the
robots and targets were also chosen randomly in the clustered target case, but
with the restriction that 50 percent of the targets were placed in clusters of 5
targets each. The numbers in the tables below are averages over 10 different
multi-robot exploration tasks with the same settings. The performance of the
best bidding rule for a given team objective is shown in bold.

5.1 Known Environments

We mapped our environments onto eight-connected uniform grids of size
51×51 and computed all costs between locations as the shortest distances on
the grid. Our auction-based coordination system used these costs to find an

10 Tovey, et al.

allocation of targets to robots and a path for each robot that visits all targets
allocated to it. We interfaced it to the popular Player/Stage robot simulator
(Gerkey et al., 2003) to execute the paths and visualize the resulting robot
trails. Figure 2 shows the initial locations of the robots (squares) and targets
(circles) as well as the resulting robot trails (dots) for each one of the three
bidding rules for a sample multi-robot exploration task with 3 robots and 20
unclustered targets in a completely known environment. SUM, MAX and AVEAA
in the caption of the figure denote the performance for the MINISUM, MINI-
MAX and MINIAVEAA team objectives, respectively. Each bidding rule results in
a better performance for its team objective than the other two bidding rules. For
example, the BIDSUM bidding rule results in paths of very different lengths,
whereas the BIDMAX bidding rule results in paths of similar lengths. There-
fore, the performance of the BIDMAX bidding rule is better for the MINIMAX

team objective than the one of the BIDSUM bidding rule.
We compared the performance of the three bidding rules against the op-

timal performance for multi-robot exploration tasks with one or two robots
and ten targets. The optimal performance was calculated by formulating the
multi-robot exploration tasks as integer programs and solving them with the
commercial mixed integer program solver CPLEX. The NP-hardness of opti-
mizing the performance did not allow us to solve larger multi-robot exploration
tasks. Table 1 shows the performance of each bidding rule and the optimal per-
formance for each team objective. Again, each bidding rule results in a better
performance for its team objective than the other two bidding rules, with the
exception of ties between the BIDSUM and BIDMAX bidding rules for multi-
robot exploration tasks with one robot. These ties are unavoidable because the
MINISUM and MINIMAX team objectives are identical for one-robot explo-
ration tasks. The performance of the best bidding rule for each team objective
is always close to the optimal performance. In particular, the performance of
the BIDSUM bidding rule for the MINISUM team objective is within a factor of
1.10 of optimal, the performance of the BIDMAX bidding rule for the MINI-
MAX team objective is within a factor of 1.44 of optimal, and the performance
of the BIDAVEAA bidding rule for the MINIAVEAA team objective is within a factor
of 1.28 of optimal.

We also compared the performance of the three bidding rules against each
other for large multi-robot exploration tasks with one, five or ten robots and
100 targets. Table 2 shows the performance of each bidding rule. Again, each
bidding rule results in a better performance for its team objective than the other
two bidding rules, with the exception of the unavoidable ties.

The Generation of Bidding Rules for Auction-Based Robot Coordination 11

Figure 2. Player/Stage screenshots: initial locations (top left) and robot trails with the
BIDSUM (top right) [SUM=182.50, MAX=113.36 , AVEAA =48.61], BIDMAX (bottom left)
[SUM=218.12 , MAX=93.87 , AVEAA =46.01], and BIDAVEAA (bottom right) [SUM=269.27 ,
MAX=109.39 , AVEAA =45.15] bidding rules.

5.2 Unknown Environments

We compared the performance of the three bidding rules against each other
for the same large multi-robot exploration tasks as in the previous section but in
initially completely unknown environments. In this case, we mapped our envi-
ronments onto four-connected uniform grids of size 51×51 and computed all
costs between locations as the shortest distances on the grid. These grids were
also used to simulate the movement of the robots in a coarse and noise-free
simulation. (We could not use eight-connected grids because diagonal move-
ments are longer than horizontal and vertical ones, and the simulation steps
thus would need to be much smaller than moving from cell to cell.) The robots
sense all blockages in their immediate four-cell neighborhood. Table 3 shows

12 Tovey, et al.

Table 1. Performance of bidding rules against optimal in known environments.

Robots Bidding Unclustered Clustered
Rule SUM MAX AVEAA SUM MAX AVEAA

1 BIDSUM 199.95 199.95 103.08 143.69 143.69 78.65
1 BIDMAX 199.95 199.95 103.08 143.69 143.69 78.65
1 BIDAVEAA 214.93 214.93 98.66 155.50 155.50 63.12
1 OPTIMAL 199.95 199.95 98.37 143.69 143.69 63.12

2 BIDSUM 193.50 168.50 79.21 134.18 97.17 62.47
2 BIDMAX 219.15 125.84 61.39 144.84 90.10 57.38
2 BIDAVEAA 219.16 128.45 59.12 157.29 100.56 49.15
2 OPTIMAL 189.15 109.34 55.45 132.06 85.86 47.63

Table 2. Performance of bidding rules against each other in known environments.

Robots Bidding Unclustered Clustered
Rule SUM MAX AVEAA SUM MAX AVEAA

1 BIDSUM 554.40 554.40 281.11 437.25 437.25 212.81
1 BIDMAX 554.40 554.40 281.11 437.25 437.25 212.81
1 BIDAVEAA 611.50 611.50 243.30 532.46 532.46 169.20

5 BIDSUM 483.89 210.30 80.74 374.33 186.50 66.94
5 BIDMAX 548.40 130.41 58.70 450.72 112.18 50.50
5 BIDAVEAA 601.28 146.18 55.19 500.05 132.98 42.41

10 BIDSUM 435.30 136.70 45.89 318.52 102.15 35.14
10 BIDMAX 536.90 77.95 31.39 402.30 63.89 25.88
10 BIDAVEAA 564.73 88.23 30.04 437.23 71.52 22.02

the performance of each bidding rule. Again, each bidding rule results in a
better performance for its team objective than the other two bidding rules, with
the exception of the unavoidable ties and two other exceptions. The average
number of auctions is 28.37 with a maximum of 82 auctions in one case. In
general, the number of auctions increases with the number of robots. Note that
the difference in performance between known and unknown environments is
at most a factor of three. It is remarkable that our auction-based coordination
system manages to achieve such a good performance for all team objectives
since there has to be some performance degradation given that we switched
both from known to unknown environments and from eight-connected to four-
connected grids.

6. Conclusions and Future Work

In this paper, we described an auction-based coordination system and then
proposed a systematic method for deriving appropriate bidding rules for given

The Generation of Bidding Rules for Auction-Based Robot Coordination 13

Table 3. Performance of bidding rules against each other in unknown environments.

Robots Bidding Unclustered Clustered
Rule SUM MAX AVEAA SUM MAX AVEAA

1 BIDSUM 1459.90 1459.90 813.40 1139.20 1139.20 672.14
1 BIDMAX 1459.90 1459.90 813.40 1139.20 1139.20 672.14
1 BIDAVEAA 1588.50 1588.50 826.82 1164.40 1164.40 463.14

5 BIDSUM 943.60 586.90 223.47 771.40 432.90 166.60
5 BIDMAX 979.00 238.10 98.48 811.30 216.90 86.58
5 BIDAVEAA 992.10 240.10 90.54 838.30 214.10 79.36

10 BIDSUM 799.50 312.20 93.69 596.10 223.20 63.95
10 BIDMAX 885.40 123.60 48.43 677.80 110.60 37.92
10 BIDAVEAA 871.80 133.00 45.19 697.80 121.50 35.43

team objectives. We then demonstrated it by deriving bidding rules for three
possible team objectives of a multi-robot exploration task, that relate to mini-
mizing the total energy consumption, task-completion time, and average target-
visit time. (The last team objective had not been used before but we showed it
to be appropriate for search-and-rescue tasks.) Finally, we demonstrated exper-
imentally that the derived bidding rules indeed exhibit good performance for
their respective team objectives and compare favorably to the optimal perfor-
mance. In the future, we intend to adapt our methodology to other multi-robot
coordination tasks. For example, we intend to study multi-robot coordination
with auction-based coordination systems in the presence of additional con-
straints, such as compatibility constraints which dictate that certain targets can
only be visited by certain robots.

References
Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., and Kleywegt,

A. (2003). Robot exploration with combinatorial auctions. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems, pages 1957–1962.

Dias, M. and Stentz, A. (2000). A free market architecture for distributed control of a multirobot
system. In Proceedings of the International Conference on Intelligent Autonomous Systems,
pages 115–122.

Dias, M. and Stentz, A. (2002). Enhanced negotiation and opportunistic optimization for market-
based multirobot coordination. Technical Report CMU-RI-TR-02-18, Robotics Institute,
Carnegie Mellon University, Pittsburgh (Pennsylvania).

Gerkey, B. and Matarić, M. (2002). Sold!: Auction methods for multi-robot coordination.´ IEEE
Transactions on Robotics and Automation, 18(5):758–768.

Gerkey, B., Vaughan, R., Stoy, K., Howard, A., Sukhatme, G., and Matarić, M. (2003). Most´
valuable player: A robot device server for distributed control. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems, pages 1226–1231.

14 Tovey, et al.

Goldberg, D., Circirello, V., Dias, M., Simmons, R., Smith, S., and Stentz, A. (2003). Market-
based multi-robot planning in a distributed layered architecture. In Proceedings from the
International Workshop on Multi-Robot Systems, pages 27–38.

Lagoudakis, M., Berhault, M., Keskinocak, P., Koenig, S., and Kleywegt, A. (2004). Simple
auctions with performance guarantees for multi-robot task allocation. In Proceedings of the
International Conference on Intelligent Robots and Systems.

Rabideau, G., Estlin, T., Chien, S., and Barrett, A. (2000). A comparison of coordinated plan-
ning methods for cooperating rovers. In Proceedings of the International Conference on
Autonomous Agents, pages 100–101.

Thayer, S., Digney, B., Dias, M., Stentz, A., Nabbe, B., and Hebert, M. (2000). Distributed
robotic mapping of extreme environments. In Proceedings of SPIE: Mobile Robots XV and
Telemanipulator and Telepresence Technologies VII, volume 4195, pages 84–95.

Zlot, R., Stentz, A., Dias, M., and Thayer, S. (2002). Multi-robot exploration controlled by a
market economy. In Proceedings of the International Conference on Robotics and Automa-
tion, pages 3016–3023.

ISSUES IN MULTI-ROBOT COALITION
FORMATION

Lovekesh Vig
Electrical Engineering and Computer Science Department
Vanderbilt University, Nashville TN 37212

lovekesh.vig@vanderbilt.edu

Julie A. Adams
Electrical Engineering and Computer Science Department
Vanderbilt University, Nashville TN 37212

julie.a.adams@vanderbilt.edu

Abstract Numerous coalition formation algorithms exist in the Distributed Artificial In-
telligence literature. Algorithms exist that form agent coalitions in both super
additive and non-super additive environments. The employed techniques vary
from negotiation-based protocols in Multi-Agent System (MAS) environments
to those based on computation in Distributed Problem Solving (DPS) environ-
ments. Coalition formation behaviors have also been discussed in the game the-
ory literature.

Despite the plethora of multi-agent coalition formation literature, to the best
of our knowledge none of these algorithms have been demonstrated with an
actual multiple-robot system. There exists a discrepancy between the multi-
agent algorithms and their applicability to the multiple-robot domain. This work
aims to correct that discrepancy by unearthing issues that arise while attempting
to tailor these algorithms to the multiple-robot domain. A well-known multiple-
agent coalition formation algorithm has been studied in order to identify the
necessary modifications to facilitate its application to the multiple-robot domain.

Keywords: Coalition formation, fault-tolerance, multi-robot, task allocation.

1. Introduction

Multi-agent systems often encounter situations that require agents to co-
operate and perform a task. In such situations it is often beneficial to assign a
group of agents to a task, such as when a single agent cannot perform the tasks.
This paper investigates allocating tasks to disjoint robot teams, referred to as

15
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 15–26.
©c 2005 Springer. Printed in the Netherlands.

16 Vig and Adams

coalitions. Choosing the optimal coalition from all possible coalitions is an in-
tractable problem due to the size of coalition structure space (Sandholm et al.,
1999). Algorithms exist that yield solutions within a bound from the optimal
and are tractable. However these algorithms make underlying assumptions
that are not applicable to the multiple-robot domain, hence the existence of
a discrepancy between the multi-agent and multiple-robot coalition formation
literature. This paper identifies these assumptions and provides modifications
to the multi-agent coalition formation algorithms to facilitate their application
in the multiple-robot domain. Gerkey and Mataric (Gerkey and Mataric, 2004)
indicate that despite the existence of various multi-agent coalition formation
algorithms, none of these algorithms have been demonstrated in the multiple-
robot domain.

Various task allocation schemes exist. The ALLIANCE (Parker, 1998) ar-
chitecture uses motivational behaviors to monitor task progress and dynami-
cally reallocate tasks. The MURDOCH (Gerkey and Mataric, 2002) and BLE
(Werger and Mataric, 2000) systems use a Publish/ Subscribe method to al-
locate tasks that are hierarchically distributed. However, most current task
allocation schemes assume that all of the system robots are available for task
execution. These systems also assume that communication between robots is
always possible or that the system can provide motivational feedback. These
assumptions need not always hold, a set of tasks may be located at consider-
able distances from one another so that the best solution is to dispatch a robot
team to each designated task area and hope that the team can autonomously
complete the task. The robots must then coalesce into teams responsible for
each task. The focus of this work is to investigate the various issues that arise
while attempting to form multiple-robot coalitions using existing multi-agent
coalition formation algorithms. Some solutions are suggested and Shehory and
Krauss’ (Shehory and Krauss, 1998) multi-agent task allocation scheme algo-
rithm is modified to operate in the multiple-robot domain. This algorithm was
chosen because it is designed for DPS Environments, has an excellent real-time
response and has been shown to provide results within a bound from optimal.

This paper is organized as follows. Section 2 provides the related work.
Section 3 presents an overview of Shehory and Krauss’ algorithm. Section
4 identifies issues that entail modification of current coalition formation al-
gorithms. Experimental results are provided in Section 5. Finally, Section 6
discusses the conclusions and future work.

2. Related Work

Shehory and Krauss proposed a variety of algorithms for agent coalition for-
mation that efficiently yield solutions close to optimal. They describe a Ker-
nel oriented model for coalition formation in general environments (Shehory

Issues in Multi-Robot Coalition Formation 17

and Krauss, 1996) and non-super additive environments (Shehory and Krauss,
1999). They also provided a computation based algorithm for non-super ad-
ditive environments (Shehory and Krauss, 1998). Brooks and Durfee (Brooks
and Durfee, 2003) provide a novel algorithm in which selfish agents learn to
form congregations. Anderson et al. (Anderson et al., 2004) discuss the for-
mation of dynamic coalitions in robotic soccer environments by agents that
can learn each other’s capabilities. Fass (Fass, 2004) provides results for an
Automata-theoretic view of agent coalitions that can adapt to selecting groups
of agents. Li and Soh (Li and Soh, 2004) discuss the use of a reinforcement
learning approach where agents learn to form better coalitions. Sorbella et al.
(Sorbella et al., 2004) describe a mechanism for coalition formation based on
a political society.

3. Shehory and Krauss’ Algorithm

Shehory and Krauss (Shehory and Krauss, 1998) developed a multi-agent
algorithm that is designed for task allocation via agent coalition formation in
DPS environments.

3.1 Assumptions

The algorithm includes various assumptions. Assume a set of n agents,
N = A1,A2...,An. The agents communicate with each other and are aware of
all tasks to be performed. Each agent has a vector of real non-negative capabil-
ities Bi =< bi

1,b
i
2...,b

i
r >. Each capability quantifies the ability to perform an

action. In order to assess coalitions and task execution, an evaluation function
is attached to each capability type that transforms capability units into mone-
tary units. It is assumed that there is a set of m independent tasks T = t1, t2..., tmt .
A capability vector Bl =< bl

1, ...,b
l
r > is necessary for the satisfaction of each

task tl . The utility gained from performing the task depends on the capabilities
required for its execution. A coalition is a group of agents that decide to coop-
erate in order to achieve a common task. Each coalition works on a single task.
A coalition C has a capability vector Bc representing the sum of the capabilities
that the coalition members contribute to this specific coalition. A coalition C
can perform a task t only if the capability vector necessary for task fulfillment
Bt satisfies ∀0 ≤ i ≤ r,rr bt

i < bc
i .

3.2 The algorithm

The algorithm consists of two primary stages. The first calculates coalitional
values to enable comparison of coalitions. The second stage entails an itera-
tive greedy process through which the agents determine the preferred coali-
tions and form them. Stage one is the more relevant to this work. During this
stage the evaluation of coalitions is distributed amongst the agents via exten-

18 Vig and Adams

sive message passing, requiring considerable communication between agents.
After this stage, each agent has a list of coalitions for which it calculated coali-
tion values. Each agent also has all necessary information regarding the coali-
tion memberships’ capabilities. In order to calculate the coalition values, each
agent then:

1 Determines the eligible coalitions for each task execution ti by compar-
ing the required capabilities to the coalition capabilities.

2 Calculates the best-expected task outcome of each coalition (coalition
weight) and chooses the coalition yielding the best outcome.

4. Issues in Multiple-Robot Systems

The algorithm described in Section 3 yields results that are close to optimal.
The current algorithm cannot be directly applied to multiple-robot coalition
formation. This section identifies issues that must be addressed for multiple-
robot domains.

4.1 Computation vs. Communication

Shehory and Krauss’s algorithm (Shehory and Krauss, 1998) requires ex-
tensive communication and synchronization during the computation of coali-
tion values. While this may be inexpensive for disembodied agents, it is often
desirable to minimize communication in multiple-robot domains even at the
expense of extra computation. This work investigates each agent assuming re-
sponsibility for all coalitions in which it is a member and thereby eliminating
the need for communication. It is necessary to analyze how this would affect
each robots computational load. An added assumption is that a robot has a
priori knowledge of all robots and their capabilities. Robot capabilities do not
typically change; therefore this is not a problem unless a partial or total robot
failure is encountered (Ulam and Arkin, 2004). Suppose there are N identical
robots and with a perfect computational load distribution, then the number of
coalitions each robot must evaluate with communication is:

ηwith =
k

∑
r=0

(n
r)/n (1)

The algorithm distributes coalitions between agents as a ratio of their compu-
tational capabilities, adding unwanted complexity. It is unlikely that the load
will be perfectly distributed, rather some agents will complete their computa-
tions before others and remain idle until all computations are completed. The
worst case communicational load per agent is O(nk−1) during the calculation-
distribution stage. If each agent is responsible for only computation of coali-
tions in which it is a member, then the number of coalitions evaluated with no

Issues in Multi-Robot Coalition Formation 19

communication becomes:

ηwithout =
k−1

∑
r=0

(n−1
r) (2)

Equation 1 requires fewer computations to evaluate but this is not an order
of magnitude difference. In both cases, the agent’s computational load is
O(nk) per task. The communicational load per robot is O(1) in the calculation-
distribution stage. The additional computation may be compensated for by
reduced communication time. The Section 5 experiments demonstrate this
point. A desirable side effect is additional fault tolerance. If Robot A fails
during coalition list evaluation, values for coalitions containing Robot A are
lost and those coalitions are no longer considered. Thus a robot failure does
not require information retrieval from that robot. However, the other robots
must be aware of the failure so that they can delete all coalitions containing the
failed robot.

4.2 Task Format

Current multi-agent coalition formation algorithms assume that the agents
have a capability vector, < bi

1, ...,b
i
r >. Multiple-robot capabilities include

sensors (camera, laser, sonar, or bumper) and actuators (wheels or gripper).
Shehory and Krauss’s algorithm assumes that the individual agents’ resources
are collectively available upon coalition formation. The formed coalition freely
redistributes resources amongst the members. However, this is not possible in
a multiple-robot domain. Robots cannot autonomously exchange capabilities.

Correct resource distribution is also an issue. The box-pushing task can be
used to illustrate this point (Gerkey and Mataric, 2002). Three robots cooperate
to perform the task, two pushers (one bumper, one camera) and one watcher
(one laser, one camera). The total resource requirements are: two bumpers,
three cameras, and one laser. However this information is incomplete, as it
does not represent the constraints related to sensor locations. Correct task ex-
ecution requires the laser and camera reside on a single robot. Similarly it is
necessary that the bumper and laser reside on different robots. This implies
that simply possessing the adequate resources does not necessarily create a
multiple-robot coalition that can perform a task, other locational constraints
have to be represented and met.

A matrix-based constraint representation is proposed for the multiple-robot
domain in order to resolve the problem. The task is represented via a capability
matrix called a Task Allocation Matrix (TAM). Each matrix entry corresponds
to a capability pair (for example [sonar, laser]). A 1 in an entry indicates
that the capability pair must reside on the same robot while a 0 indicates that
the pair must reside on separate robots. Finally an X indicates a do not care
condition and the pair may or may not reside on the same robot. Every coalition

20 Vig and Adams

Table 1. Box-pushing task TAM.

Bumper1 Bumper2 Camera1 Camera2 Camera3 Laser1

Bumper1 X 0 1 0 0 0
Bumper2 0 X 0 1 0 0
Camera1 1 0 X 0 0 0
Camera2 0 1 0 X 0 0
Camera3 0 0 0 0 X 1
Laser1 0 0 0 0 1 X

must be consistent with the TAM if it is to be evaluated as a candidate coalition.
The box-pushing TAM is provided in Table 1. The entry (Laser1, Camera3) is
marked 1, indicating that a laser and a camera must reside on the same robot.
Similarly the (Bumper1, Laser1) entry is marked 0 indicating the two sensors
must reside on different robots.

The TAM can be represented as a Constraint Satisfaction Problem (CSP).
The CSP variables are the required sensors and actuators for the task. The do-
main values for each variable are the available robots possessing the required
sensor and actuator capabilities. Two types of constraints exist; the sensors and
actuators must reside on the same machine or different machines. A constraint
graph can be drawn with locational constraints represented as arcs labeled s
(same robot) or d (different robot). Another constraint is the resource con-
straint representing that a robot only have as many instances of a sensor and
actuator as indicated by the associated capability vector. A robot with one
camera can only be assigned one camera node in the constraint graph. Thus all
sensors and actuators of the same type have a resource constraint arc labelled
r between them.

Figure 1 provides the box-pushing task constraint graph. This task’s re-
source constraints between Bumper1 and Bumper2 are implied by their loca-
tional constraints. Since Bumper1 and Bumper2 must be assigned to different
robots, there cannot be a solution where a robot with one bumper is assigned
to both Bumper1 and Bumper2. Similarly the resource constraints between
Camera1, Camera2 and Camera3 are implied by the locational constraints be-
tween them and there is no need to test them separately. Hence the absence of
edges labeled r.

The domain values for each variable in the CSP formulation in Figure 1
are the robots that possess the capability represented by the variable. A coali-
tion can be verified to satisfy the constraints by applying arc-consistency. If a
sensor is left with an empty domain value set then the current assignment has
failed and the current coalition is deemed infeasible. A successful assignment
indicates the sub-task to which each robot was assigned.

Issues in Multi-Robot Coalition Formation 21

Figure 1. Box-pushing task constraint graph

Using the CSP formulation each candidate coalition is checked to verify
if its coalition is feasible. After constraint checking fewer coalitions remain
for further evaluation. While additional overhead is incurred during constraint
checking, this overhead is somewhat compensated for by the reduced number
of coalitions. This is verified by the experimental results in Section 5.

4.3 Coalition Imbalance

Coalition imbalance or lopsidedness is defined as the degree of unevenness
of resource contributions made by individual members to the coalition, a char-
acteristic not considered in other coalition formation algorithms. A coalition
where one or more agents have a predominant share of the capabilities may
have the same utility (coalition weight) as a coalition with evenly distributed
capabilities, since robots are unable to redistribute their resources. Therefore
coalitions with one or more dominating members (resource contributors) tend
to be heavily dependent on those members for task execution. These dominat-
ing members then become indispensable. Such coalitions should be avoided
in order to improve fault tolerance. Over reliance on dominating members can
cause task execution to fail or considerably degrade. If a robot is not a domi-
nating member then it is more likely that another robot with similar capabilities
can replace it.

Rejecting lopsided coalitions in favor of balanced ones is not straightfor-
ward. When comparing coalitions of different sizes, there can arise a subtle
trade-off between lopsidedness and the coalition size. The argument may be
made both for fault tolerance and for smaller coalition size. It may be desir-
able to have coalitions with as few robots as possible. Conversely, there may
be a large number of robots thus placing the priority on fault tolerance and bal-
anced coalitions. The Balance Coefficient metric is introduced to quantify the
coalition imbalance level. In general, if a coalition has a resource distribution
(r1,r2rr , ...,rnr), then the balance coefficient for that coalition with respect to a
particular task can be calculated as follows

BC =
r1 × r2rr × . . .rnr

[taskvalue
n]n

(3)

22 Vig and Adams

A perfectly balanced coalition has a coefficient of 1. The question is how to
incorporate the balance coefficient into the algorithm in order to select better
coalitions. As previously discussed two cases arise:

1 Sufficient number of robots and high fault tolerance: Initially the al-
gorithm proceeds as in Section 3, determining the best-valued coalition
without considering lopsidedness. As a modification, a list of all coali-
tions is maintained whose values are within a certain range (5%) of the
best coalition value. The modified algorithm then calculates the bal-
ance coefficient for all these coalitions and chooses the most balanced
coalition. This ensures that the algorithm always favors the balanced
coalition.

2 Economize on the number of robots: Maintain a list of all coalitions with
values within a bound of the best coalition value. Remove all coalitions
larger than the best coalition from the list. Select the coalition with the
highest balance coefficient.

5. Experiments

Three experiments testing the validity of the algorithm modifications were
conducted, each highlighting a suggested modification. The first experiment
measured the variation of time required to evaluate coalitions with and with-
out communication. The number of agents and maximum coalition size were
both fixed at five. Communication occurred via TCP/IP sockets over a wireless
LAN (see Figure 2). The time for coalition evaluation without communication
is significantly less than the time required for evaluation with communication.
The time without communication increases at a faster rate as the number of
tasks increases. This result occurs because the agent must evaluate a larger
number of coalitions when it forgoes communication. Presumably, the two
conditions will eventually meet and thereafter the time required with commu-
nication will be less than that required without communication. For any practi-
cal Agent/Task ratio the time saved by minimizing communication outweighs
the extra computation incurred.

The second set of experiments measured the effect of the CSP formulation
on the algorithm’s execution time. This experiment demonstrates the algo-
rithm’s scalability. Figure 3 measures the variation of execution time against
the number of agents both with and without constraint checking in the con-
straint satisfaction graph. Figure 4 shows the variation of execution time com-
pared to the number of tasks. The task complexity in these experiments was
similar to the box-pushing task. It can be seen from Figures 3 and 4 that the
CSP formulation does not add a great deal to the algorithm’s execution or run-
ning time. This implies that this formulation can be used to test the validity of
a multiple-robot coalition without incurring much overhead.

Issues in Multi-Robot Coalition Formation 23

Figure 2. Execution time with and without communication

Figure 3. Execution time vs. Number of Agents

The third set of experiments demonstrates the effect of utilizing the Balance
Coefficient to favor the creation of balanced coalitions. The Player/Stage sim-
ulation environment(Gerkey et al., 2003) was employed for this experiment.
The simple tasks required breaking up a formation of resized hockey pucks
by bumping into the formation. The degree of task difficulty was adjusted by
varying the hockey pucks’ coefficient of friction with the floor. Adjusting the
forces they could exert varied the robots’ capabilities. There are no locational
constraints on the task capability requirements. Ten simulated robots were
used for the experiment, as shown in Figure 5. The robots were numbered 1 to
10 from the top of the figure along left side. Each robot had a specific capa-
bility type: small robots had 10 units of force (robots 1, 2, 8, 9, 10), medium
sized robots had 15 units of force (robots 5, 6, 7) and large robots had 20 units
of force (robots 3, 4). Simulation snapshots are provided for a task requiring

24 Vig and Adams

Figure 4. Execution time vs. Number of Tasks

Figure 5. Two large robots and one small robot form a coalition

50 units of force. Figure 5 shows the formed coalition without balancing. The
coalition is comprised of two large robots and one small robot.

Figure 6 shows the same task incorporating the balance coefficient into the
coalition formation. This choice places a low priority on fault tolerance and
a high priority on economizing the number of robots (Case 1 from Section
4.3). The formed coalition is comprised of two medium sized robots and one
large robot. The resulting coalition is more balanced and has a higher balance
coefficient (0.972 as opposed to 0.864 for the coalition in Figure 6). Figure
7 depicts the experiment conducted with no restrictions on the coalition size
(Case 2 from Section 4.3). The resulting coalition consists of five small robots.
Thus a perfectly balanced coalition (balance coefficient = 1) is obtained when
the coalition size is unconstrained. The advantage is that a larger number of
small (less capable) robots should have higher fault tolerance. If one robot
fails, it should be easier to find a replacement as opposed to replacing a larger
(more capable) robot.

Issues in Multi-Robot Coalition Formation 25

Figure 6. One large and two medium
sized robots form a coalition

Figure 7. Five small robots form a coali-
tion

6. Conclusion and Future Work

Finding the optimal multiple-robot coalition for a task is an intractable prob-
lem. This work shows that, with certain modifications, coalition formation
algorithms provided in the multi-agent domain can be applied to the multiple-
robot domain. This paper identifies modifications and incorporates them into
an existing multi-agent coalition formation algorithm. The impact of extensive
communication between robots was shown to be severe enough to endorse re-
linquishing communication in favor of additional computation when possible.
The task format in multi-robot coalitions was modified to adequately represent
additional constraints imposed by the multiple-robot domain. The concept of
coalition imbalance was introduced and its impact on the coalition’s fault tol-
erance was demonstrated.

Further algorithm modifications will permit more complex task execution
by utilizing a MURDOCH (Gerkey and Mataric, 2002) style task allocation
scheme within coalitions. A future goal is to investigate methods of forming
coalitions within a dynamic real-time environment. The long-term goal is to
develop a highly adaptive, fault tolerant system that would be able to flexibly
handle different tasks and task environments.

References
Anderson, J. E., Tanner, B., and Baltes, J. (2004). Dynamic coalition formation in robotic soccer.

Technical Report WS-04-06, AAAI workshop.
Brooks, C. H. and Durfee, E. H. (2003). Congregation formation in multiagent systems. Au-

tonomous Agents and Multi-Agent Systems, 79:145–170.
Fass, L. (2004). An automatic-theoretic view of agent coalitions. Technical Report WS-04-06,

AAAI workshop.
Gerkey, B. and Mataric, M. (2002). Sold! auction methods for multirobot coordination. IEEE

Transactions on Robotics and Automation, 18:758–68.
Gerkey, B. and Mataric, M. (2004). A framework for studying multi-robot task allocation. In-

ternational Journal of Robotics Research. to appear.

26 Vig and Adams

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The player/stage project: Tools for multi-
robot and distributed sensor systems. In 11th Intr. Conf. on Advanced Robotics, pages 317–
323.

Li, X. and Soh, L.-K. (2004). Investigating reinforcement learning in multiagent coalition for-
mation. Technical Report WS-04-06, AAAI workshop.

Parker, L. (1998). Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE
Transactions on Robotics and Automation, 14:220–240.

Sandholm, T., Larson, K., Andersson, M., Shehory, O., and Tomhe, F. (1999). Coalition struc-
ture generation with worst case guarantees. Artificial Intelligence, 111:209–238.

Shehory, O. and Krauss, S. (1996). A kernel oriented model for coalition-formation in general
environments: Implementation and results. In AAAI, pages 134–140.

Shehory, O. and Krauss, S. (1998). Methods for task allocation via agent coalition formation.
Artificial Intelligence Journal, 101:165–200.

Shehory, O. and Krauss, S. (1999). Feasible formation of coalitions among autonomous agents
in non-super-additive environments. Computational Intelligence, 15:218–251.

Sorbella, R., Chella, A., and Arkin, R. (2004). Metaphor of politics: A mechanism of coalition
formation. Technical Report WS-04-06, AAAI workshop.

Ulam, P. and Arkin, R. (2004). When good comms go bad: Communcations recovery for multi-
robot teams. In 2004 IEEE Intr. Conf. on Robotics and Automation, pages 3727–3734.

Werger, B. and Mataric, M. (2000). Broadcast of local eligibility: Behavior-based control for
strongly-cooperative robot teams. In Autonomous Agents, pages 347–356.

SENSOR NETWORK-MEDIATED
MULTI-ROBOT TASK ALLOCATION

Maxim A. Batalin and Gaurav S. Sukhatme
Robotic Embedded Systems Laboratory
Center for Robotics and Embedded Systems
Computer Science Department
University of Southern California
Los Angeles, CA 90089, USA

maxim@robotics.usc.edu, gaurav@usc.edu

Abstract We address the Online Multi-Robot Task Allocation (OMRTA) problem. Our
approach relies on a computational and sensing fabric of networked sensors em-
bedded into the environment. This sensor network acts as a distributed sensor
and computational platform which computes a solution to OMRTA and directs
robots to the vicinity of tasks. We term this Distributed In-Network Task Allo-
cation (DINTA). We describe DINTA, and show its application to multi-robot
task allocation in simulation, laboratory, and field settings. We establish that
such network-mediated task allocation scales well, and is especially amendable
to simple, heterogeneous robots.

Keywords: Mobile robots, sensor networks, task allocation, distributed

1. Introduction

We focus on the intentional cooperation of robots toward a goal ((Parker,
1998)). Within such a setting, a natural question is the assignment of robots to
sub-goals such that the ensemble of robots achieves the overall objective. Fol-
lowing ((Gerkey and Matarict’, 2004)) we call such sub-goals, tasks, and their
assignment to robots, the Multi-Robot Task Allocation (MRTA) problem. Sim-
ply stated, MRTA is a problem of assigning or allocating tasks to (intentionally
cooperating) robots over time such that some measure of overall performance
is maximized.

We focus on the online version of the problem (OMRTA), where 1. tasks
are geographically and temporally spread, 2. a task schedule is not available
in advance, and 3. robots need to physically visit task locations to accomplish
task completion (e.g., to push an object). Our approach to OMRTA relies on
a computational and sensing fabric of networked sensors embedded into the

27
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 27–38.
©c 2005 Springer. Printed in the Netherlands.

28 Batalin and Sukhatme

environment. This sensor network acts as a distributed sensor and computa-
tional platform which computes a solution to OMRTA and directs robots to the
vicinity of tasks. To make a loose analogy, robots are routed from source to
destination locations in much the same way packets are routed in conventional
networks. We term this, Distributed In-network Task Allocation (DINTA).

There are five advantages to doing the task allocation in this manner:

1 Simplicity: Since the task-allocation is done in the network, robots
may be very simple, designed specifically for optimal task execution
(e.g., specialized end effectors) rather than computational sophistication.
Further, robots do not need conventional localization or mapping sup-
port.

2 Communication: Robots are not required to be within communication
range of each other. The network is used for propagating messages be-
tween the robots.

3 Scaling: There is no computation or communication overhead associ-
ated with increasing the number of robots.

4 Identity: Robots are not required to recognize each other.

5 Heterogeneity: Robots may be of different types, and need only a com-
mon interface to the sensor network.

In this paper we make the following contributions. We briefly review the
details of DINTA1, and demonstrate its application to a system for spatiotem-
poral monitoring of environmental variables in nature. We note that while
we study the task allocation problem in the context of mobile robots, sensor
network-mediated task allocation can also be used in other settings (e.g., in an
emergency people trying to leave a building would be guided (tasked) to the
closest exits by the network).

2. Related Work

The problem of multi-robot task allocation (MRTA) has received consider-
able attention. For an overview and comparison of the key MRTA architectures
see ((Gerkey and Matarict’, 2004)), which subdivides MRTA architectures into
behavior-based and auction-based. For example, ALLIANCE ((Parker, 1998))
is a behavior-based architecture that considers all tasks for (re)assignment at
every iteration based on robots’ utility. Utility is computed by measures of
acquiescence and impatience. Broadcast of Local Eligibility ((Werger and
Matarit’c, 2000)) is also a behavior-based approach, with fixed-priority tasks.
For every task there exists a behavior capable of executing the task and esti-
mating the utility of robot executing the task. Auction-based approaches in-
clude the M+ system ((Botelho and Alami, 2000)) and Murdoch ((Gerkey and

Sensor Network-Mediated Multi-Robot Task Allocation 29

Matarict’, 2004)). Both systems rely on the Contract Net Protocol (CNP) that
makes tasks available for auction, and candidate robots make ‘bids’ that are
their task-specific utility estimates. The highest bidder (i.e., the best-fit robot)
wins a contract for the task and proceeds to execute it. All previous MRTA
approaches in the robotics community have focused on performing the task
allocation computation on the robots, or at some centralized location external
to the robots. All the sensing associated with tasks, and robot localization, is
typically performed on the robots themselves. Our approach relies on a sen-
sor network, which performs event detection and task-allocation computation,
allowing robots to be simple and heterogeneous.

3. Distributed In-Network Task Allocation: DINTA

As an experimental substrate, we use a particular stylized monitoring sce-
nario in which robots are tasked with ‘attending’ to the environment such that
areas of the environment in which something significant happens, do not stay
unattended for long. We model this using the notion of alarms. An alarm is
spatially focused, but has temporal extent (i.e., it remains on until it is turned
off by a robot). Alarms are detected by sensor nodes embedded in the environ-
ment. For example in a natural setting, an alarm might be generated in case
an abrupt change in temperature is detected requiring inspection of the area by
the robot. The task of the team of robots is to turn off the alarms by respond-
ing to each alarm. This is done by a robot navigating to the location of the
alarm. Once the robot arrives in the vicinity of the alarm, the alarm is deac-
tivated. Thus the robot response is purely notional in that the task the robot
performs is to arrive at the appropriate location only. The goal is to minimize
the cumulative alarm On Time across all alarms, over the duration of the en-
tire experimental trial. Each alarm’s On Time is computed as the difference
between the time the alarm was deactivated by a robot and the time the alarm
was detected by one of the nodes of the network.

The basic idea of DINTA is that given a set of alarms (each corresponding
to a task) detected by the network (e.g., nodes detect motion, presence of dan-
gerous chemicals, etc.), every node in the network computes a suggested ‘best’
motion direction for all robots in its vicinity. The ensemble of suggested di-
rections computed over all nodes is called a navigation field. In case multiple
tasks arrive at the same time, multiple navigation fields (one for every task) are
maintained in the network and explicitly assigned to robots. Navigation fields
are assigned to robots using a greedy policy.

3.1 Computing Navigation Field

We assume that the network is deployed and every node stores a discrete
probability distribution of the transition probability P(s′|sC,a) (probability of

30 Batalin and Sukhatme

Algorithm 1. Adaptive Distributed Navigation Field Computation Algorithm (running
on every node).

s - current node
S - set of all nodes
A(s) - set of all actions possible from node s
C(s,a) - cost of taking an action a from node s
P(s′|s,a) - probability of arriving at node s′ given
that the robot started at node s and commanded an action a,
stored on node s
π(s) - optimal direction that robot should take at node s

Compute Direction(goal node)
if s == goal node

V0VV = some big number
else

V0VV = 0
while VtVV −VtVV −1 > ε do

Query neighbor nodes for their new values VtVV
if received new values VtVV from all neighbor nodes s′

VtVV +1(s) = C(s,a)+maxa∈A(s) ∑s′∈S−s P(s′|s,a)×VtVV (s′)
Update neighbor nodes with new value VtVV +1(s)

Query neighbor nodes for their final values V (s′)
π(s) = argmaxa∈A(s) ∑s′∈S−s P(s′|s,a)×V (s′)

the robot arriving at node s′ given that it started at node sC and was told to
execute action a). The reader is referred to ((Batalin and Sukhatme, 2004a))
for a detailed discussion on how such distributions can be obtained.

Algorithm 1 shows the pseudo code of the adaptive distributed navigation
field computation algorithm, which runs on every network node. We use value
iteration ((Koenig and Simmons, 1992)) to compute the best action at a given
node. The general idea behind value iteration is to compute the values (or
utilities) for every node and then pick the actions that yield a path towards
the goal with maximum expected value. Expected values are initialized to 0.
Since C(s,a) is the cost associated with moving to the next node, it is chosen
to be a negative number which is smaller than −(minimal reward)

k , where k is the
number of nodes. The rationale is that the robot should pay for taking an action
(otherwise any path the robot might take would have the same value), however,
the cost should not be too large (otherwise the robot might prefer to stay at the
same node).

Next, as shown in Algorithm 1, a node queries its neighbors for the latest
utility values V . Once the values are obtained from all neighbors, a node up-
dates its own utility. This process continues until the values do not change
beyond an ε (set to 10−3 in our experiments). After the latest values from

Sensor Network-Mediated Multi-Robot Task Allocation 31

all neighbors are collected, a node can compute an action policy π (optimal
direction) that a robot should take if it is in the node’s vicinity.

In combination, the optimal directions computed by individual network nodes,
constitute a global navigation field. Practical considerations for robot naviga-
tion using this approach are discussed in ((Batalin et al., 2004b)).

3.2 Task Allocation

DINTA assigns tasks in decision epochs - short intervals of time during
which only the tasks that have arrived since the end of the previous epoch are
considered for assignment. The following describes the behavior of DINTA in
a particular epoch e. Let the network detect two alarms A1 and A2 (Figure 1a)
by nodes a1 and a2 respectively in an epoch e. Both nodes a1 and a2 notify the
entire network about the new alarms and start two navigation field computa-
tions (using Algorithm 1) - one for each goal node. Next consider nodes r1 and
r2r that have unassigned robots R1 and R2 (Figure 1b) in their vicinity. r1 and r2rr
propagate the distances between the unassigned robots and the alarms A1 and
A2. Four such distances are computed and distributed throughout the network.
In the final stage, every node in the network has the same information about
the location of alarms and available robots, and distances between the robots
and each alarm. Each node in the network can now decide uniquely which nav-
igation field to assign to which robot. Figure 1c shows two navigation fields
(one for each robot) generated and assigned to the robots. A robot then simply
follows the directions suggested by network nodes.

4. MRTA Experiments in Simulation

In the first set of experiments described here we used the Player/Stage (
(Gerkey et al., 2003)) simulation engine populated with simulated Pioneer
2DX mobile robots. A network of 25 network nodes (simulated motes ((Pister
et al., 1999))) was pre-deployed in a test environment of size 576m2. The com-
munication range of the nodes and robots was set to approximately 4 meters.
Robots were required to navigate to the point of each alarm and minimize the
cumulative alarm On Time. Each alarm’s On Time is computed as the differ-
ence between the time the alarm was served by a robot and the time the alarm
was detected by one of the nodes of the sensor network. Every experiment was
conducted in the same environment with robot group sizes varying from 1 to
4, 10 trials per group. The schedule of 10 alarms was drawn from a Poisson
distribution (λ = 1

60 , roughly one alarm per minute), with uniformly distributed
nodes that detected alarms.

We measured cumulative alarm On Time for network-mediated task allo-
cation (i.e., DINTA). As a base case we compared the results to the situation
where the robots are programmed to explore the environment using directives

32 Batalin and Sukhatme

A1

A2

(a) Phase 1.

R1

R2

(b) Phase 2.

A1

A2

(c) Phase 3.

Figure 1. The three stages of DINTA in a decision epoch. a) The sensor network detects
events (marked A1 and A2) and propagates event data throughout the network. b) Next, nodes
that have unassigned robots in their vicinity propagate distances (in hop counts) from robots to
each of the alarms. c) In the final stage, every node in the network has the same information
about the location of events and available robots, and distances between robots and each event.
Hence, a unique assignment of direction suggestion at every node can occur.

from the sensor network designed only to optimize their environmental cov-
erage ((Batalin and Sukhatme, 2004a)). The comparison highlights the ben-
efits of purposeful task allocation. Figure 2 shows the OnTime comparison
for DINTA and the exploration-only case. Clearly, DINTA outperforms the
exploration-only algorithm even though as the environment becomes saturated
with robots, the difference becomes smaller. The difference is statistically sig-
nificant (the T-test p-value is less than 10−4 for every pair in the data set).
Further, the performance of DINTA is stable (small and constant variance)
whereas variances produced by the exploration-only mode change drastically
and reduce as the environment becomes saturated with robots.

5. Laboratory Experiments with NIMS

The second set of experiments we discuss use a new testbed, currently under
development - Networked Info-Mechanical System ((NIMS, 2004)). Figure 3
shows NIMS deployed in a forest reserve for continuous operation. The system
includes supporting cable infrastructure, a horizontally moving mobile robot
(the NIMS node) equipped with a camera, and a vertically mobile meteorolog-
ical sensor system carrying water vapor, temperature, and photosynthetically
active radiation (PAR) sensing capability. The purpose of NIMS is to enable
the study of spatiotemporal phenomena (e.g., humidity, carbon flux, etc.) in
natural environments. Figure 3a schematically shows NIMS with deployed sta-
tic sensor nodes (assembled in strands) in the volume surrounding the sensing

Sensor Network-Mediated Multi-Robot Task Allocation 33

1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Robots

O
n

T
im

e

Exploration

DINTA

Figure 2. Comparison between implementation of DINTA and exploration-only.

Cell 1

Cell 2

Cell 3 Cell 5

Cell 4 Cell 6

Strand 1 Strand 2 Strand 3

NIMS HN

VN

(a) NIMS horizontal (HN) and vertical (VN)
nodes and static sensors (schematically)

(b) NIMS deployed in a forest reserve

Figure 3. NIMS system deployed in the forest reserve for continuous operation.

transect. Wireless networking is incorporated to link the static sensor nodes
with the NIMS node. The NIMS system is deployed in a transect of length
70m and average height of 15m with a total area of over 1,000 m2.

The experimental NIMS system operates with a linear speed range for node
motion of 0.1 to 1 m/second. Thus, the time required to map an entire 1,000
m2 transect with 0.1 m2 resolution will exceed 104 to 105 seconds. Phenom-

34 Batalin and Sukhatme

2 4 6 8 10 12 14 16 18 20
0

5000

10000

15000

20000

25000

30000

Number of Events

O
n

T
im

e(
in

 s
ec

o
n

d
s)

TA

Raster Scan

(a) Event OnTime.

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o

n
su

m
ed

 E
n

er
g

y
(i

n
 t

.i.
m

.)

TA

Raster Scan

Number of Events

(b) Energy consumption.

Figure 4. NIMS lab experiments: task allocation vs. a raster scan.

ena that vary at a characteristic rate exceeding this scanning rate may not be
accurately represented. Hence task allocation is required to focus sampling in
specific areas depending on their scientific value. The preliminary experiments
using our in-network task allocation methodology show an order of magnitude
improvement in the time it takes to complete sampling.

We conducted experiments on a smaller version of NIMS installed in the
lab2. A network of 6 Mica2 motes was pre-deployed in the volume surrounding
the NIMS transect (similar to Figure 3a) in a test environment. Experiments
were conducted comparing a version of DINTA with a Raster Scan (RS) as a
base case. RS is an algorithm of choice when there is no information about
the phenomenon location (where the alarms are). RS scans every point of the
transect with a specified resolution. When the Raster Scan reaches the location
of an alarm, the alarm is considered to be turned off.

In our experiment, schedules of 3, 5, 7, 10 and 20 alarms (henceforth,
events) were drawn from a uniform distribution to arrive within 10 minutes,
with uniformly distributed nodes that detected the event. Note that for actual
applications we do not expect to receive/process more than 1 - 10 events in 10
minutes on average. Hence the case of 20 events shows the behavior of the
system at the limit.

Figure 4 shows experimental results comparing OnTime performance of
DINTA and RS. The number of events varies between 3 and 20. Both algo-
rithms were evaluated from 3 different starting positions of the mobile node on
the transect (drawn from a uniform distribution). The results were averaged.
As can be seen from the graph, DINTA performs 9-22 times better on the entire
interval of 3-20 events. Note also that DINTA is stable, as indicated by error

Sensor Network-Mediated Multi-Robot Task Allocation 35

bars, and hence is favored for use in this application since it provides reduced
bounds on system run time over a simple Raster Scan method.

We also compared mobility requirements for DINTA and RS methods. Specif-
ically, the use of mobility requires energy. A measure of energy for mobility is
determined for the purposes of comparison by computing the total time of the
robot motion. Figure 4 shows a comparison of energy consumption in units of
time-in-motion. As expected, DINTA outperforms Raster Scan significantly.
However as the number of events increases to infinity, DINTA will approach
Raster Scan energy consumption. Also note, that on the interval [5,20] the
slope of the Raster Scan curve is very small and the energy consumption is
insensitive to event arrival rate.

6. Field Trials using NIMS

The third, and final, set of experiments discussed here were performed in
field trials with the NIMS system. We used our task allocation system and
compared two policies - Time (tasks with smaller time stamp get priority) and
Distance (tasks closer to the robot get priority). A set of experiments was con-
ducted on a NIMS setup deployed in the James San Jacinto Mountain Reserve.
Because of space limitations, only representative graphs are presented. Fig-
ure 5 shows the representative PAR data from sensor 1 collected during the
operation of the Time policy (Figure 5a) and the Distance policy (Figure 5b).
Figure 5 also shows points in time when events were generated and serviced
by both policies for sensor 1. Note that events are generated in response to
fluctuations in PAR. As shown on Figure 5, events are generated proportion-
ally to the density of the ‘spikes’ in PAR data and cover all significant ‘spikes’
of PAR data.

Figure 5c shows the comparison between the cumulative event OnTime of
the Time policy and the Distance policy. For visualization purposes, in Fig-
ure 5c event’s OnTime is presented as a zero-mean Gaussian distribution. It
follows that the Distance policy has smaller average OnTime with smaller de-
viation.

7. Summary

We presented a novel, sensor network-mediated, approach to multi robot
task allocation. Our algorithm DINTA: Distributed In-Network Task Allo-
cation solves the online multi robot task allocation problem. This approach
allows us to combine the benefits of a sensor network with the mobility and
functionality of robots. The system computes task assignments distributively
in-network while, at the same time, providing a virtual sensor and communica-
tion device that ‘extends’ throughout the whole environment. There are several
advantages in using DINTA as opposed to traditional MRTA approaches. The

36 Batalin and Sukhatme

9:37 10:01
0

50

100

150

200

250

300

350

Time of day

P
A

R

sensor 1
event generated
event serviced

(a) Time policy.

10:42 11:03
0

100

200

300

400

500

600

700

800

Time of day
P

A
R

sensor 1
event generated
event serviced

(b) Distance policy.

−1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

p = Time
p = Distance

(c) Event OnTime.

Figure 5. NIMS field experiments for two policies. a,b) PAR data acquired by the first sensor
during one of the field experiments. Events generated and serviced are shown for Time and
Distance policies. Note that events are rendered time of occurrence vs. the PAR value of the
event. c) Event OnTime in a form of a zero-mean Gaussian distributions for Time and Distance
policies. The OnTime of events generated by all 6 sensors is considered. Dotted (blue or lighter)
graphs show the distributions at original means.

Sensor Network-Mediated Multi-Robot Task Allocation 37

sensor network allows a robot to detect a goal (alarm, event) even though the
alarm is not in the robot’s sensor range. In addition, robots can use the sensor
network to relay messages if they are not within communication range of each
other. Further, robots can be very simple and potentially heterogeneous. We
also presented physical experimental results of using DINTA for field measure-
ments in natural setting using a monitoring infrastructure composed of mobile
robots on cables and network nodes in the vicinity of the cable transect.

Acknowledgments

This work is supported in part by the National Science Foundation (NSF)
under grants IIS-0133947, EIA-0121141 and grants CCR-0120778,
ANI-00331481 (via subcontract). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

Notes

1. For implementation details of DINTA see ((Batalin and Sukhatme, 2004b).)

2. For experimental and other details see ((Batalin et al., 2004a)).

References
Batalin, M., Rahimi, M., Yu, Y., Liu, S., Kansal, A., Sukhatme, G., Kaiser, W., Hansen, M., Pot-

tie, G., Srivastava, M., and Estrin, D. (2004a). Call and Response: Experiments in Sampling
the Environment. In Proc. ACM SenSys.

Batalin, M. and Sukhatme, G. (2004a). Coverage, Exploration and Deployment by a Mobile
Robot and Communication Network. Telecommunication Systems Journal, Special Issue on
Wireless Sensor Networks, 26(2):181–196.

Batalin, M. and Sukhatme, G. (2004b). Using a Sensor Network for Distributed Multi-Robot
Task Allocation. In Proc. IEEE International Conference on Robotics and Automation, pages
158–164, New Orleans, Louisiana.

Batalin, M., Sukhatme, G., and Hattig, M. (2004b). Mobile Robot Navigation using a Sensor
Network. In Proc. IEEE International Conference on Robotics and Automation, pages 636–
642, New Orleans, Louisiana.

Botelho, S. and Alami, R. (2000). M+: A Scheme for Multi-Robot Cooperation through Negoti-
ated Task Allocation and Achievement. In Proc. IEEE International Conference on Robotics
and Automation (ICRA), pages 293–298.

Gerkey, B., Vaughan, R., and Howard, A. (2003). The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In Proc. International Conference on Advanced Ro-
botics (ICAR 2003), pages 317–323, Coimbra, Portugal.

Gerkey, B. P. and Matarict’, M. J. (2004). A Formal Analysis and Taxonomy of Task Allocation
in Multi-Robot Systems. Intl. Journal of Robotics Research, 23(9):939–954.

Koenig, S. and Simmons, R. G. (1992). Complexity Analysis of Real-Time Reinforcement
Learning Applied to Finding Shortest Paths in Deterministic Domains. Technical Report
CMU-CS-93-106, Carnegie Mellon University, School of Computer Science, Carnegie Mel-
lon University, Pittsburg, PA 15213.

38 Batalin and Sukhatme

NIMS (2004). http://www.cens.ucla.edu/portal/nims.html.
Parker, L. E. (1998). ALLIANCE: An Architecture for Fault-Tolerant Multi-Robot Cooperation.

In IEEE Transactions on Robotics and Automation, volume 14, pages 220–240.
Pister, K. S. J., Kahn, J. M., and Boser, B. E. (1999). Smart Dust: Wireless Networks of

Millimeter-Scale Sensor Nodes. Electronics Research Laboratory Research Summary.
Werger, B. B. and Matarit’c, M. J. (2000). Distributed Autonomous Robotic Systems 4, chap-

ter Broadcast of Local Eligibility for Multi-Target Observation, pages 347–356. Springer-
Verlag.

II

COORDINATION IN DYNAMIC ENVIRONMENTS

MULTI-OBJECTIVE COOPERATIVE CONTROL OF
DYNAMICAL SYSTEMS

Zhihua Qu
Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL 32816, USA ∗

qu@mail.ucf.edu

Jing Wang
Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL 32816, USA

jwang@pegasus.cc.ucf.edu

Richard A. Hull
Lockheed Martin Missiles and Fire Control,
5600 Sand Lake Road, Orlando, FL 32819, USA

Richard.A.Hull@lmco.com

Abstract In this paper, the cooperative control problem of making system’s different out-
puts converge to different steady states is studied for a general class of MIMO
dynamic systems with finite but arbitrary relative degree. A set of less-restrictive
conditions on the design of cooperative control feedback matrices are estab-
lished. In particular, the proposed design does not require either that collabora-
tive robots have a fixed communication/control structure (such as leader/followr
or nearest neighbor) or that their sensor/communication graph be irreducible.

Keywords: Cooperative control, dynamical systems, multi-objective

1. Introduction

Recently, the cooperative control problem of making the states of a group
of dynamical systems converge to same steady state has stirred a great deal
of interests since its solvability implies the solvability of general formation
stabilization problem which has direct applications in many fields requiring

∗The research is supported in part by a grant from Lockheed Martin Corporation.

41
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 41–52.
©c 2005 Springer. Printed in the Netherlands.

42 Qu, et al.

multiple inexpensive mobile systems, such as deploying a group of vehicles
for search or exploration purpose in hazardous environments.

Motivated by the flocking behavior of birds in flight, Reynolds introduced a
computer animation model for cohesion, separation and alignment in (Reynolds,
1987). Subsequently, a simple discrete-time model (Vicsek model) was given
in (Vicsek et al., 1995) for the heading alignment of autonomous particles
moving in the plane. Simulation results verified the correctness of Vicsek
model. More recently, a theoretical explanation of Vicsek model was pre-
sented in (Jadbabaie et al., 2003) by using graph theory. The conditions on
the connectivity of undirected sensor graphs are given for the overall system
convergence. This result was extended to networks with directed sensor graphs
in (Lin et al., 2004)(Moreau, 2003). Other recent relevant works include the
consensus problems in (Saber and Murray, 2003)(Ren and Beard, 2004). Most
of the aforementioned works only considered simple linear systems with sin-
gle or double integrator models. Moreover, for multiple output system, it is
desirable in practice that the system’s different outputs converge to different
steady states.

In our recent works (Qu et al., 2004a)(Qu et al., 2004b), we extend the re-
sults in (Jadbabaie et al., 2003)(Lin et al., 2004) to a general class of MIMO
dynamical systems of finite but arbitrary relative degree. In particular, a leader-
follower cooperative control strategy was analyzed in (Qu et al., 2004a) and
general leaderless cooperative control was studied in (Qu et al., 2004b). In
this paper, we continue the works in (Qu et al., 2004a)(Qu et al., 2004b), and
study the problem of making systems’ different channels (outputs) as well as
the corresponding states converge to different steady states. The proposed de-
sign does not require either that collaborative robots have a fixed communica-
tion/control structure (such as leader/followr or nearest neighbor) or that their
sensor/communication graph be irreducible. The convergence of the overall
system is rigorously proved by studying the convergence of products of a se-
quence of row stochastic matrices. An illustrative example is provided to verify
the proposed method.

2. Preliminaries

Let 1p be the p-dimensional column vector with all its elements being 1, and
Jr1×r2 ∈ ℜr1×r2 be a matrix whose elements are all 1. ImII is the m−dimensional
identity matrix. ⊗ denotes the Kronecker product. A nonnegative matrix has
all entries nonnegative. A square real matrix is row stochastic if it is non-
negative and its row sums all equal 1. For a row stochastic matrix E, define
δ(E) = max j maxi1,i2 |Ei1 j −Ei2 j|, which measures how different the rows of
E are. Also, define λ(E) = 1−mini1,i2 ∑ j min(Ei1 j,Ei2 j). Given a sequence
of nonnegative matrix E(k), the notation of E(k)
 0,k = 0,1, · · · , means

Multi-Objective Cooperative Control of Dynamical Systems 43

that, there is a sub-sequence {lv,v = 1, · · · ,∞} of {0,1,2, · · · ,∞} such that
limv→∞ lv = +∞ and E(lv) �=�� 0. A non-negative matrix E is said to be reducible

if the set of its indices, I �
= {1,2, · · · ,n}, can be divided into two disjoint non-

empty sets S �
= {i1, i2, · · · , iµi } and Sc �

= I/S = { j1, j2, · · · , jνjj } (with µ+ν = n)
such that Eiα jβ = 0, where α = 1, · · · ,µ and β = 1, · · · ,ν. Matrix E is said to be
irreducible if it is not reducible. A square matrix E ∈ ℜn×n can be used to de-
fine a directed graph with n nodes v1, · · · ,vn, and there is a directed arc from vi

to v j if and only if Ei j �=�� 0. A directed graph represented by E is strongly con-
nected if between every pair of distinct nodes vi,v j there is a directed path of
finite length that begins at vi and ends at v j. The fact that a directed graph rep-
resented by E is strongly connected is equivalent to that matrix E is irreducible
(Minc, 1988).

The following lemma provides a necessary and sufficient condition on the
irreducibility of a non-negative matrix in a special structure, which has direct
relation to the canonical system model discussed in this paper.

Lemma 2.1. (Qu et al., 2004a) Given any non-negative matrix E ∈ ℜ(qm)×(qm)

with sub-blocks Ei j ∈ ℜm×m, let E = [Ei j] ∈ ℜ(Lm)×(Lm) with L = l1 + · · ·+ lq
be defined by

Eii =
[

0 I(II li−1)⊗ ImII
Eii 0

]
, Ei j =

[
0 0

Ei j 0

]
where li ≥ 1 are positive integers for i = 1, · · · ,q. Then, E is irreducible if and
only if E is irreducible.

The classical convergence result of the infinite products of sequences of row
stochastic matrices (Wolfowitz, 1963) has been applied in the study of coor-
dination behavior of groups of mobile autonomous agents (Jadbabaie et al.,
2003)(Lin et al., 2004). In our recent works (Qu et al., 2004a)(Qu et al.,
2004b), we relaxed the condition in (Wolfowitz, 1963) and found an easy-to-
check condition on the convergence of a sequence of row stochastic matrices in
the lower-triangular structure, and also extended it to the case of the products
of lower-triangular matrices and general matrices. These new results are useful
for establishing less-restrictive conditions on the design of cooperative control
and the connectivity requirements among individual systems. In what follows,
we recall these two results without proof for briefness.

Lemma 2.2. (Qu et al., 2004a) Consider a sequence of nonnegative, row sto-
chastic matrices P(k) ∈ ℜR×R in the lower-triangular structure, where R =
∑m

i=1 ri, sub-blocks PiiPP (k) on the diagonal are square and of dimension ℜri×ri ,
sub-blocks Pi jPP (k) off diagonal are of appropriate dimensions. Suppose that
PiiPP (k) ≥ εiJri×ri for some constant εi > 0 and for all (i = 1, · · · ,m), and in the
ith row of P(k) (i > 1), there is at least one j (j < i) such that Pi jPP
 0. Then,

44 Qu, et al.

limk→∞ ∏k−1
l=0 P(k− l) = 1Rc, where constant vector c = [c1,0, · · · ,0] ∈ ℜ1×R

with c1 ∈ ℜ1×r1 .

Lemma 2.3. (Qu et al., 2004b) Given sequences of row stochastic matrices
P(k)∈ℜR×R and P′(k)∈ℜR×R, where P(k) is in the lower-triangular structure
and P′(k) satisfying P′

iiPP (k) ≥ εp > 0. Then,

lim
k→∞

k−1

∏
l=0

P(k− l)P′(k− l) = 1Rc1,

if and only if limk→∞ ∏k−1
l=0 P(k− l) = 1Rc2, where c1 and c2 are constant vec-

tors.

3. Problem Formulation

Consider a group of MIMO dynamical systems given by

ẋi = Aixi +Biui, yi = CiC xi, η̇i = gi(ηi,xi), (1)

where i = 1, · · · ,q, li ≥ 1 is an integer, xi ∈ ℜlim, ηi ∈ ℜni−lim, JkJJ is the kth
order Jordan canonical form given by

JkJJ =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢

−1 1 0 · · · 0 0

0 −1 1
. . . 0 0

...
.

...
0 0 · · · −1 1 0
0 0 0 · · · −1 1
0 0 0 · · · 0 −1

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥
∈ ℜk×k,

Ai = JlJJ i ⊗ ImII ∈ ℜ(lim)×(lim), Bi =
[

0
ImII

]
∈ ℜ(lim)×m, CiCC =

[
ImII 0

]
∈ ℜm×(lim),

ui is the cooperative control law to be designed, and subsystem η̇i = gi(ηi,xi) is
input-to-state stable. Without loss of any generality, in this paper we consider
the case that l1 = l2 = · · · = lq = l.

Remark 3.1. Model (1) defines a general class of MIMO dynamical systems
with finite but arbitrary relative degree. The system models considered in most
of recent works (Jadbabaie et al., 2003)(Lin et al., 2004)(Saber and Murray,
2003) are either single or double integrator, which can be transformed into the
given canonical model (1) with relative degree 1 or 2, respectively. In gen-
eral, for a robot whose dynamics are given by φ̇i = fiff (φi,vi), yi = hi(φi), it
is possible to find a diffeomorphic state transformation xi = TiTT (φi) and a de-
centralized control law vi(φi,ui) such that its dynamics are transformed into
(1). It is straightforward to verify that an input-output feedback linearizable

Multi-Objective Cooperative Control of Dynamical Systems 45

system with stable internal dynamics can be transformed into (1). For non-
holonomic mobile robot, it is also possible to transform its model into (1) by
using dynamic feedback linearization technique under some mild conditions.
�

The problem of making the systems’ outputs and the states of individual sys-
tems converge to the same steady state has been studied, such as in (Jadbabaie
et al., 2003)(Lin et al., 2004) for single integrator models and in (Qu et al.,
2004a)(Qu et al., 2004b) for general dynamical systems like (1). In this paper,
the objective is to synthesize a general class of cooperative controls and find
the less-restrictive conditions on the connectivity requirements such that sys-
tems’ different channels (outputs) as well as the corresponding states converge
to different steady states. For ease of reference, we call this as multi-objective
convergence.

4. Multi-Objective Cooperative Control

In general, we assume that the system sensors have a limited field of view,
such as cone like of view, in that the system can only get the information from
other systems in a relative direction and distance of itself. The control ui for
the ith system will be determined according to the output feedback informa-
tion of itself as well as that of its near neighbors. The connectivity topology
among individual systems can be represented by a signal transmission ma-
trix, S(t) = [Si j(t)] ∈ ℜq×q, where Sii = 1 which means that system always
has the information from itself; Si j = 0 if no signal is received by the ith sys-
tem from the jth system, otherwise Si j = 1. If the directed sensor graph is
strongly connected, that is, the signal transmission matrix S(t) is irreducible,
the convergence result has been obtained in (Lin et al., 2004) for linear sys-
tem with single integrator model, and it is further extended to a general class
of systems (1) (Qu et al., 2004a). However, this connectivity requirement is
still too strong for cooperative control of a group of systems considering the
limitations of sensor resources and communication burdens. This motivates us
to study whether the overall system will still converge even when the directed
sensor graphs are always not strongly connected (that is, the signal transmis-
sion matrices are reducible). When the control objective is to make all the
states of individual systems converge to the same steady state, the question has
been addressed in (Qu et al., 2004b) and a less-restrictive condition on the ir-
reducibility of signal transmission matrix was given. In this section, we will
study the multi-objective convergence problem and further extend the work in
(Qu et al., 2004b)(Qu et al., 2004a) by establishing less-restrictive conditions
on connectivity requirements and proposing a criterion for the design of coop-
erative feedback control matrices.

46 Qu, et al.

4.1 The Proposed Cooperative Control

Let the cooperative control be given by the following linear equation: for
i = 1, · · · ,q,

ui = ∑
j∈NiNN (t)

G′
i j(t)y j = Gi(t)y, (2)

where NiNN (t) denotes the set of labels of robot i’s neighbor robots at time t, G′
i j ∈

ℜm×m is the feedback gain matrix, G′
i j(t)≥ 0 and G′

i j �=�� 0, Gi =
[

Gi1 · · · Giq
]

with Gi j ∈ ℜm×m is the interconnection matrix satisfying the properties that
Gi1mq = 1m, and y = [y[[T

1 · · · yT
q]T . It is easy to see from (2) that Gi j = G′

i j if
j ∈NiNN (t), otherwise Gi j = 0. Assume that G(t) will change over time according
to physical surroundings, and Gi(t) be piecewise constant for all i.

Let {tG
kt : k = 0,1, · · ·} with tG

0t = t0tt be the sequence of time instants at which
G(t) changes. That is, G(t) = G(tG

kt) over the time interval t ∈ [tG
kt , tG

kt +1). If
there are only finite changes for G(t), that is, for t > tG

i , G(t) = G(tG
i), we

can always partition the remaining time to generate an infinite time interval
[tG

kt , tG
kt +1). Suppose that 0 < tmint ≤ tG

kt +1 − tG
kt ≤ tmaxt . It follows from (1) and (2)

that

ẋ = (A+D(t))x, (3)

where x = [x[[T
1 , · · · , xT

q]T ∈ ℜNqNN , NqNN = mql, xi = [x[[T
i1,x

T
i2, · · · ,xT

il]
T ∈ ℜml , xi j =

[x[[i j1,xi j2, · · · ,xi jm]T ∈ℜm with i = 1, · · · ,q, and j = 1, · · · , l, A = diag{A1, · · · ,
Aq}∈ℜNqNN ×NqNN , C = diag{C1, · · · , CqCC }∈ℜ(mq)×NqNN , B = diag{B1, · · · , Bq}∈
ℜNqNN ×(mq),G =

[
GT

1 · · · GT
q

]T ∈ ℜ(mq)×(mq)ℜℜ , and D = BGC.
It follows from the special structures of matrices A and D(t) that A+D(t) =

−INII qNN + D̄(t), where D̄(t) = [D̄i j(t)] with

D̄ii =
[

0 I(II l−1)⊗ ImII
Gii 0

]
∈ ℜlm×lm, D̄i j =

[
0 0

Gi j 0

]
∈ ℜlm×lm,

where i, j = 1, · · · ,q, i �=�� j. To achieve the multi-objective convergence, we
need the following assumption:

Assumption 4.1. Assume that the feedback matrix G(t) satisfying the condi-
tion that sub-blocks Gi j(t) = diag{Gi j,ss(t)},s = 1, · · · ,m for all i and j.

Let us rearrange the states of overall system and lump the different output
and its corresponding relative states together by defining a state transformation
z = T x as follows: z = [zT

1 , · · · ,zT
m]T , where zi = [zT

i1,z
T
i2, · · · ,zT

iq]
T ∈ ℜql , zi j =

Multi-Objective Cooperative Control of Dynamical Systems 47

[zi j1, · · · ,zi jl j]
T ∈ ℜl , i = 1, · · · ,m, j = 1, · · · ,q, and

zi1 : zi11 = x11i, zi j : zi j1 = x j1i, ziq : ziq1 = xq1i

zi12 = x12i zi j2 = x j2i, ziq2 = xq2i,
... · · ·

... · · ·
...

zi1l = x1li zi jl = x jli, ziql = xqli.

(4)

It is easy to see that T is a permutation matrix, which permutes the rows of x
to obtain z. It follows from (3) and (4) that

ż = −(INII qNN − D̃(t))z, (5)

where D̃
�
= T D̄T−1 = diag{D̃11, · · · , D̃mm} with (s = 1, · · · ,m)

D̃ss =

⎡⎢⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

0 IlII −1 0 0 · · · 0 0
G11,ss 0 G12,ss 0 · · · G1q,ss 0

0 0 0 IlII −1 · · · 0 0
G21,ss 0 G22,ss 0 · · · G2q,ss 0

...
...

...
...

...
...

...
0 0 0 0 · · · 0 IlII −1

Gq1,ss 0 Gq2,ss 0 · · · Gqq,ss 0

⎤⎥⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
∈ ℜql×ql.

4.2 Conditions on Multi-Objective Convergence

In this subsection, we establish a set of less-restrictive conditions on feed-
back matrix G(t) such that the multi-objective convergence is achieved when
the signal transmission matrices are reducible. It is shown in (Minc, 1988)
that, if S(t) is reducible, then there is a permutation matrix T1TT ∈ ℜq×q such that
ST1TT (t) = T T

1TT S(t)T1TT is in the lower-triangular structure, that is

ST1TT (t) =

⎡⎢⎡⎢⎢⎢⎢⎢⎢⎣⎢⎢
ST1TT ,11(t) 0 · · · 0
ST1TT ,21(t) ST1TT ,22(t) · · · 0

...
...

. . .
...

ST1TT ,k1(t) ST1TT ,k2(t) · · · ST1TT ,kk(t)

⎤⎥⎤⎥⎥⎥⎥⎥⎥⎦⎥⎥ ,

where ST1TT ,ii ∈ℜqi×qi , ∑k
i=1 qi = q, and ST1TT ,ii(t) are irreducible. Correspondingly,

we have augmented permutation matrices T2TT = T1TT ⊗ ImII ∈ ℜqm×qm and T3TT =
diag{T1TT ⊗ IlII , · · · ,T1TT ⊗ IlII } ∈ ℜqlm×qlm, such that GT2TT (t) = T T

2TT G(t)T2TT is also in
the lower-triangular structure, and the state transformation is z = T3TT ξ. To this
end, the system dynamics (5) become

ξ̇ = −(INII qNN −T T
3TT D̃T3TT)ξ. (6)

48 Qu, et al.

Remark 4.1. Generally, the case of qi �=�� 1 means that the q systems reformu-
late k subgroups with k < q. �

Example 4.1. Consider the case of 4 robots with m = 2 and l = 1. We have
NqNN = 8. For states x = [x[[T

1 ,xT
2 ,xT

3 ,xT
4]T with xi = [x[[i1,xi2]T , i = 1, · · · ,4, it is

easy to find transformation T such that z = T x = [zT
1 ,zT

2]T with
z1 = [x[[11,x21,x31,x41]T and z1 = [x[[12,x22,x32,x42]T . Thus, we have D̃ = T D̄T−1 =
diag{D̃11, D̃22}, with D̃ss = [Gi j,ss], s = 1,2, i, j = 1, · · · ,4. Let the reducible
signal transmission matrix S and permutation matrix T1TT be

S =

⎡⎢⎡⎡⎢⎢⎢⎣⎢
1 1 0 1
0 1 0 0
1 0 1 0
0 0 1 1

⎤⎥⎤⎤⎥⎥⎥⎦⎥ , T1TT =

⎡⎢⎡⎡⎢⎢⎢⎣⎢
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎤⎤⎥⎥⎥⎦⎥ .

Then we have ST1TT =
[

ST1TT ,11 0
ST1TT ,21 ST1TT ,22

]
, with

ST1TT ,11 = 1, ST1TT ,21 =

⎡⎣⎡ 1
0
0

⎤⎦⎤ , ST1TT ,22 =

⎡⎣⎡ 1 0 1
1 1 0
0 1 1

⎤⎦⎤ ,

where ST1TT ,11 and ST1TT ,22 are irreducible. To this end, four robots is reformulated
into two subgroups, that is, group 1 = {2} and group 2 = {1,3,4}. We have the

corresponding T2TT = T1TT ⊗ I2II such that GT2TT =
[

GT2TT ,11 0
GT2TT ,21 GT2TT ,22

]
, with GT2TT ,11 =

G22 and

GT2TT ,21 =

⎡⎣⎡⎡ G12

0
0

⎤⎦⎤⎤ , GT2TT ,22 =

⎡⎣⎡⎡ G11 0 G14

G31 G33 0
0 G43 G44

⎤⎦⎤⎤ .

Also, T3TT = diag{T1TT ,T1TT }, and D̃T3TT = T T
3TT D̃T3TT =

[
T T

1TT D̃11T1TT 0
0 T T

1TT D̃22T1TT

]
, where

T T
1TT D̃ssT1TT =

[
D̃sT3TT ,11 0
D̃sT3TT ,21 D̃sT3TT ,22

]
, with D̃sT3TT ,11 = G22,ss and

D̃sT3TT ,21 =

⎡⎣⎡⎡ G12,ss

0
0

⎤⎦⎤⎤ , D̃sT3TT ,22 =

⎡⎣⎡⎡ G11,ss 0 G14,ss

G31,ss G33,ss 0
0 G43,ss G44,ss

⎤⎦⎤⎤ .

�

In what follows, we present the main result of the paper and give a less-
restrictive condition on the design of cooperative control feedback matrix.

Multi-Objective Cooperative Control of Dynamical Systems 49

Assumption 4.2. Assume that the signal transmission matrix S(tG
kt) is reducible

for almost all k, and GT2TT (tG
kt) is in the lower-triangular form. Define a sub-

sequence {sv,v = 0,1, · · · ,∞} of {0,1,2, · · · ,∞}, s0 = 0 and limv→∞ sv = +∞,
such that for all time instants tG

st v
permutation matrices T2TT (tG

st v
) take the same

value. Assume that GT2TT (tG
st v
) has the following properties: (i) for the nonzero

element in the i1th row i2th column of irreducible matrix ST1TT ,ii(tG
st v
), the corre-

sponding i1th row i2th column sub-blocks of matrix GT2TT ,ii(tG
st v
) which is m×m

dimensional has all its diagonal elements positive; (ii) for every i > 1, there is
at least one j such that GT2TT ,i j(tG

st v
)
 0, j < i.

Theorem 4.1. Consider the cooperative control of system (1) using (2) under
assumptions 4.1 and 4.2. Then,

lim
t→∞

x(t) = 1ql ⊗ cx(0), (7)

c ∈ ℜm×NqNN is a constant matrix.
Proof: For briefness, we denote f (tG

kt)
�
= f (k) for symbol f . The proof of (7)

is equivalent to that of

lim
t→∞

z(t) = diag{1qlc1, · · · ,1qlcm}z(0), (8)

where c1, · · · ,cm ∈ℜ1×ql are row vectors and c = diag{c1,c2, · · · ,cm}∈ℜm×NqNN .
It follows that the solution of (6) is given by

ξ(tG
kt +1) =

k

∏
l=0

P(k− l)ξ(tG
0tt), (9)

where P(i) = e−(I−T T
3TT (i)D̃(tG

i)T3TT (i))(tG
i+1−tG

i), i = 0, · · · ,k. It follows from (9) and
z(k) = T3TT (k)ξ(k) that

z(tG
kt +1) =

k

∏
l=0

T3TT (k− l)P(k− l)T3TT (k− l)T z(tG
0tt), (10)

Since T3TT (k) = diag{T1TT , · · · ,T1TT } and D̃(k) are in the diagonal structure, we have
PssPP (i) = e−(I−T T

1TT (i)D̃ss(i)T1TT (i))(tG
i+1−tG

i), and

zs(tG
kt +1) =

k

∏
l=0

T1TT (k− l)PssPP (k− l)T1TT (k− l)T zs(tG
0tt), (11)

where s = 1, · · · ,m. Thus, we only need to show that limt→∞ zs(t) = 1qlcszs(0).
It suffices to prove that

lim
k→∞

k

∏
l=0

T1TT (k− l)PssPP (k− l)T1TT (k− l)T = 1qlcs. (12)

50 Qu, et al.

It follows from GT2TT (tG
kt) is in the lower-triangular structure that

D̃sT3TT = T T
1TT (k)D̃ss(tG

kt)T1TT (k) and PssPP (k) are also in the lower-triangular structure.
Moreover, PssPP (k) is row-stochastic matrix and its diagonal elements are lower-
bounded by a positive value (Freedman, 1983). By assumption 4.2 that the i1th
row i2th column sub-blocks GT2TT ,ii(tG

st v
) has all its diagonal elements positive and

ST1TT ,ii(tG
st v
) is irreducible, we have that D̃sT3TT ,ii(tG

st v
) is irreducible by lemma 2.1

and PssPP ,ii(sv) > 0 (Qu et al., 2004a). On the other hand, GT2TT ,i j(tG
st v
)
 0 leads

to D̃sT3TT ,i j(tG
st v
)
 0 and PssPP ,i j(sv)
 0. It then follows from assumption 4.2 and

lemma 2.2 that

lim
v→∞

PssPP (sv)PssPP (sv−1) · · ·PssPP (s0) = 1qlc
′
s, (13)

where c′s is a constant vector. Define P′
ssPP (sv) = T1TT (sv)T T1TT (sv−1)PssPP (sv−1)T T

1TT (sv−
1) · · ·T1TT (sv−1 +1)PssPP (sv−1 +1)T T

1TT (sv−1 +1)T1TT (sv−1). It then follows from (13)
and the fact that P′

ssPP (sv) has positive diagonal elements that, (12) can be proved
using lemma 2.3. This completes the proof. �

5. An Illustrative Example

Consider a group of three nonholonomic 4-wheel differential driven mobile
robots. By taking the robot “hand” position as the guide point, whose model
can be feedback linearized to a double integrator with a stable internal dynam-
ics (Qu et al., 2004a):

żi1 = zi2, żi2 = vi2,

where i = 1,2,3, zi1 = [zi11,zi12]T ∈ ℜ2 is the position of particle i, zi2 =
[zi21,zi22]T ∈ ℜ2 its velocity, and vi = [vi1,vi2]T ∈ ℜ2 its acceleration inputs.
The cooperative control objective is that all particles move to the same position
but with different horizontal and vertical coordinates value. Define the state
and input transformations xi1 = zi1, xi2 = xi1 + zi2, vi = −2x2 i2 + xi1 +ui. Then
system model can be transformed into ẋi1 = −xi1 + xi2, ẋi2 = −xi2 + ui,where
u = Gy with y = [x[[T

11,x
T
21,x

T
31]

T . To this end, the cooperative control method in
this paper can be used for the design of G. For illustration purpose, assume that
two kinds of leader-follower situations appear during the robot motion process:
(i) robot 1 as the leader, robot 2 follows robot 1 and robot 3 follows robot 2;
(ii) robot 2 as the leader, robot 1 follows robot 2 and robot 3 follows robot 1.
After permutation T1TT and T2TT , the corresponding cooperative feedback matrices
take the form

GT1TT =

⎡⎣⎡⎡ G11 0 0
G21 G22 0
0 G32 G33

⎤⎦⎤⎤ , GT2TT =

⎡⎣⎡⎡ G22 0 0
G12 G11 0
0 G31 G33

⎤⎦⎤⎤ .

Multi-Objective Cooperative Control of Dynamical Systems 51

To satisfy the condition in theorem 4.1, let GT1TT and GT2TT be chosen as⎡⎢⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢
1 0 0 0 0 0
0 1 0 0 0 0

0.2 0 0.8 0 0 0
0 0.2 0 0.8 0 0

0.2 0 0 0 0.8 0
0 0.2 0 0 0 0.8

⎤⎥⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥ .

The initial positions are [6,3]T , [2,5]T and [4,2]T , respectively. Figure 1 shows
the convergence of robots’ position, which verifies the proposed design in this
paper.

1 2 3 4 5 6

1

2

3

4

5

6

robot 1

robot 2

robot 3

Figure 1. Convergence of positions under cooperative control

6. Conclusion

In this paper, the multi-objective convergence problem has been studied for
a general MIMO dynamical systems. The obtained less-restrictive conditions
on the design of cooperative feedback matrices require neither the strong con-
nectivity of system sensor graphs nor the fixed communication structure for
robots. The proposed method can be applied to the formation stabilization and
formation tracking control of robots.

References
Freedman, D. (1983). Markov Chains. Springer-Verlag, New York.
Jadbabaie, A., Lin, J., and Morse, A. S. (2003). Coordination of groups of mobile autonomous

agents using nearest neighbor rules. IEEE Trans. on Automatic Control, 48:988–1001.
Lin, Z., Brouchke, M., and Francis, B. (2004). Local control strategies for groups of mobile

autonomous agents. IEEE Trans. on Automatic Control, 49:622–629.
Minc, H. (1988). Nonnegative Matrices. John Wiley & Sons, New York, NY.

52 Qu, et al.

Moreau, L. (2003). Leaderless coordination via bidirectional and unidirectional time-dependent
communication. In Proceedings of the 42nd IEEE Conference on Decision and Control,
Maui, Hawaii.

Qu, Z., Wang, J., and Hull, R. A. (2004a). Cooperative control of dynamical systems with ap-
plication to mobile robot formation. In The 10th IFAC/IFORS/IMACSIFIP Symposium on
Large Scale Systems: Theory and Applications, Japan.

Qu, Z., Wang, J., and Hull, R. A. (2004b). Products of row stochastic matrices and their ap-
plications to cooperative control for autonomous mobile robots. In Technique report; also
submitted to 2005 American Control Conference.

Ren, W. and Beard, R. W. (2004). Consensus of information under dynamically changing inter-
action topologies. In Proceedings of the American Control Conference, Boston.

Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model. Computer
Graphics (ACM SIGGRAPH 87 Conference Proceedings), 21(4):25–34.

Saber, R. O. and Murray, R. M. (2003). Consensus protocols for networks of dynamic agents.
In Proceedings of the American Control Conference, Denver, CO.

Vicsek, T., Czirok, A., Jacob, E. B., Cohen, I., and Shochet, O. (1995). Novel type of phase
transition in a system of self-driven particles. Physical Review Letters, 75:1226–1229.

Wolfowitz, J. (1963). Products of indecoposable, aperiodic, stochastic matrices. Proc. Amer.
Mathematical Soc., 14:733–737.

LEVELS OF MULTI-ROBOT COORDINATION
FOR DYNAMIC ENVIRONMENTS

Colin P. McMillen, Paul E. Rybski, Manuela M. Veloso
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

mcmillen@cs.cmu.edu, prybski@cs.cmu.edu, veloso@cs.cmu.edu

Abstract RoboCup, the international robot soccer competition, poses a set of extremely
difficult challenges for multi-robot systems. To be competitive in RoboCup’s
rapidly-changing, dynamic, adversarial environment, teams need to make use
of effective coordination strategies. We describe some of our experiences with
effective coordination of robots teams and introduce several levels of strategies
which encapsulate coordination from the level of individual robots to synchro-
nized coordination of the entire team.

Keywords: Adversarial environments, robot soccer, multi-robot coordination

1. Introduction

The RoboCup robot soccer competition is a domain in which teams must
address the challenges of real-time perception, cognition, and action. Robots
must be able to operate in a very dynamic environment in which they must
reason not only about the actions of their teammates, but also about the actions
of a team of adversarial agents. Teams of robots that operates without an effec-
tive teamwork strategy are likely to hamper each other’s efforts and perform as
an inferior team. Our primary research interests are in exploring the scientific
challenges of developing effective teamwork strategies for autonomous robotic
systems where all sensing and cognition is done on-board the robot.

We have had extensive experience with robot positioning ranging from early
work in simulated robot soccer players (Veloso et al., 1999) to the Sony AIBO
league (Uther et al., 2002). In this previous work, we made use of artificial
potential field methods and have found them to be a very powerful way of rep-
resenting multiple constraints when positioning robots. However, there are a
number of limitations in the kinds of behaviors that potential fields can express.
We are actively exploring other coordination strategies which we will describe
in more detail.

53
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 53–64.
©c 2005 Springer. Printed in the Netherlands.

54 McMillen, et al.

This paper focuses on developing team strategies for robots that compete
in the RoboCup (Kitano et al., 1997) legged league. We discuss various ap-
proaches for teamwork and cooperation, and describe some empirical results
from experiments.

1.1 Related Work

Potential field methods have been used very successfully for navigation
tasks such as obstacle avoidance (Khatib, 1985). This idea has been extended
such that a group of robots can maintain formations while using only local
information in their potential calculations (Balch and Arkin, 1998, Balch and
Hybinette, 2000).

Several groups have encoded domain-specific heuristics into potential fields.
In the RoboCup domain, potential fields can be constructed that guide robots
to an area near the opponent’s goal or to an open position that is well-suited
for pass reception (Castelpietra et al., 2001, Veloso et al., 1999, Weigel et al.,
2001). A behavior architecture that relies on potential fields for motion plan-
ning and action selection is described in (Laue and Röfer, 2004). Their ap-
proach has been applied to real robots, including the German Team of the
RoboCup legged league.

Potential field methods have several limitations that have been reported in
the literature, including susceptibility to local minima and oscillations (Ko-
ren and Borenstein, 1991). An approach known as forward chaining dynam-
ically reshapes the potential field using heuristics that guide the robot to the
goal through a series of subgoals or waypoints that attempt to avoid local min-
ima (Bell and Weir, 2004). The forward chaining approach is particularly in-
teresting to us because it utilizes the idea of a positioning function that changes
over time.

1.2 Coordination in Robot Soccer

We have been researching coordination strategies for the different RoboCup
robot soccer leagues for several years. RoboCup robot soccer in general (Ki-
tano et al., 1997) offers a very challenging research environment for multi-
robot systems. One of the most interesting aspects of the RoboCup leagues is
that we change the rules of the game and the playing environment every year
in order to increase the difficulty of the problem towards matching real setups
as much as possible.

Of particular interest to this paper is our work in the RoboCup legged league
with the Sony AIBO four-legged robots, which need to be fully autonomous
with on-board sensing, computation, and action. The legged league in particu-
lar has gone through several changes since 1998. Some of the most significant

Levels of Multi-Robot Coordination for Dynamic Environments 55

changes occurred in 2002 and have made the most impact in our multi-robot
research efforts.

Communicating robots: The AIBO robots are now equipped with the ability
to communicate wirelessly. In the initial years, when the robots could
not communicate, we achieved teamwork through vision of the posi-
tion of the ball – the robots’ behaviors were vision-servoed. Three at-
tacker robots searched for the ball; as soon as they saw the ball, they
would move towards it and then move the ball towards the opponent
goal. Because the ball was often not in the robots’ field of view, due
to the occlusion by other robots and the robots’ own search for local-
ization markers, not all the robots could see the ball. Teamwork was a
property that emerged due to this discontinuity of ball perception: when
one robot saw the ball, it would move toward the ball, tending to block
the ball from the view of its teammates. Because of this occlusion, the
teammates would remain spread out from the “attacker.” Now that com-
munication is available between robots, we have researched methods of
sharing information (Roth et al., 2003) and dynamically changing robot
roles and positioning (Vail and Veloso, 2003). In this paper, we discuss
the different levels of dynamic coordination necessary in the presence of
skilled opponent teams. We present the solutions that we have developed
and plan to continue researching.

World space increase: The field’s size has increased by approximately 50%
from its initial size, and the number of robots in a team has increased
from three to four. The increase in field size makes it infeasible for
robots to see across the entire field. In the initial smaller field, individual
robots could recognize objects across the complete field. Modeling the
world state is now a task that needs to combine a robot’s own perception
and the communicated information from other robots. Multiple robots
need to build an accurate world model and select joint actions that fit a
team policy.

Rules of the game: The rules of the game set constraints on the legal posi-
tioning and actions of robots. For example, only one robot is allowed
to defend the goal area. This type of rule creates hard constraints on
the dynamic positioning of team members. In addition, robots encounter
difficult motion situations when surrounded by opponent robots. In these
situations, a team member may need the help of robot teammates. This
is a challenge that requires an effective dynamic coordination algorithm
that monitors the progress of teammates. In addition, teamwork should
change as a function of the opponent team, the specific state of the field,
and the remaining time of the game.

56 McMillen, et al.

The RoboCup legged league continues to motivate our research in multi-
robot domains, inspiring incremental algorithmic successes and providing many
issues to be addressed. Interestingly, the more we work on this adversarial
multi-robot coordination problem, the more we understand how the problems
we face go well beyond robot soccer and are of relevance to multi-robot sys-
tems in complex environments. In this paper, we present our findings aiming
at such an abstract level.

2. Dynamic Multi-Robot Coordination

Over the past few years, teams have experimented with different methods of
team coordination. Many of these strategies involve keeping teammates from
running into each other and placing teammates in good locations on the field
so that they can be in good positions to receive passes or go after a free ball.
While there have been some good approaches, no one strategy has emerged as
being clearly superior to all others. One reason for this is that several different
coordination strategies are likely to be applicable in a single situation. Since
some strategies may work better than others, a team that selects the superior
strategy will be at an advantage. Thus, one of the most important problems
to address when designing a multi-robot soccer team is selecting the kind of
coordination strategy that will be used during the game. Teams may choose
to use a fixed coordination strategy defined a priori, but if chosen poorly, a
fixed strategy may not fare well against the strategy of the other team. Thus,
an important extension to the research problem of coordination strategies is the
ability for a team to dynamically change their strategy at runtime to adapt to
their opponents’ strengths and weaknesses.

Dynamically selecting a different strategy depending on the situation can be
very powerful technique, but can be very challenging to implement well. Ro-
bots that use a dynamic coordination system must be able to perceive and prop-
erly evaluate the state of the world as well as the state of their own progress.
This information is vital when making the decision to switch from a poorly
performing strategy to one that could potentially work better.

We have identified several different levels for dynamic coordination that can
be applied to a robotic team. These include:

A “first-order” approach, where the robots use a fixed coordination strat-
egy and each robot modifies the parameters of its behavior according to
the world state.

A “second-order” approach, where the robots have multiple ways of han-
dling different situations. In order to utilize a second-order strategy, the
robots must be able to evaluate the world state so that they can choose
between the different behaviors they have at their disposal.

Levels of Multi-Robot Coordination for Dynamic Environments 57

A “third-order” approach, where the robots have several different team
strategies, or “plays,” which describe the coordinated actions of all of
the robots together. Depending on the world state, different plays may
apply; the team collectively decides upon the right behavior to apply in
a given situation.

Wehave implemented methodsfor first-and second-order coordination strate-
gies, a description of which is provided below. Currently, the third level of
coordination has been implemented in our small-sized league (Bowling et al.,
2004) but not yet on the AIBOs.

2.1 Changing Single Robot Parameters

We define the first-order coordination strategy as the ability for the robots to
set their own behavior based on the state of the world. In this kind of system,
each robot is programmed with a single behavior set which is used to control
the robot’s behavior in its environment.

We have tried two different methods for representing first-order coordina-
tion strategies. The first is a potential fields approach and the other is an ap-
proach that we call constraint-based positioning. In previous work (Vail and
Veloso, 2003), we give a detailed description of our implementation of poten-
tial field-based coordination. In this approach, we use potential fields both to
determine the role that each robot plays (attacker, supporting attacker, and de-
fender) and also to determine where the supporting robots position themselves
on the field of play. On efficiency issue with potential fields occurs when they
are used to coordinate the actions of a team of robots in a very dynamic world.
In this situation, the fields may need to be recomputed for each every new
sensor reading. This does not tend to be true for implementations of poten-
tial fields that are used for navigation in more static environments. In general,
however, it’s possible for minor disturbances in the positions or strengths of
individual attraction and repulsion fields to cause fairly significant changes in
the local gradient surrounding the robot.

Constraint-based positioning is an approach to robot positioning that we
have developed in the last year for the 2004 RoboCup competition. Under this
regime, robots are still assigned roles using a potential function, but the field
positions chosen by the supporting robots are subject to a set of constraints.
This approach was developed because there are several hard constraints that
we would like to enforce on the robots’ positions which are difficult to specify
clearly with potential fields. For instance, defender robots need to avoid their
own goalie’s defense box, because entering the defense box is a violation which
will cause the robot to be removed from play for 30 seconds. Other constraints
that we would like to enforce include not crossing in front of a robot that is
about to take a shot on goal, not coming within a certain minimum distance of

58 McMillen, et al.

a teammate, and so on. Consider a situation in which a robot is near the de-
fense zone and a teammate is directly approaching it. Should the robot move
toward the goal, violating the defense-zone constraint, or stand still, violat-
ing the teammate-distance constraint? Our implementation of constraint-based
positioning allows us to prioritize the constraints, so that the robot knows that
entering the defense zone is a more serious violation than coming near a team-
mate. In theory, the priorities of these constraints could be represented as a
potential field, but we have found that debugging the complex potential fields
that result can be difficult. If no constraints are in danger of being violated, the
robot can choose to move to a specific point that is chosen based on the current
state of the world. In this case, the robot can still use potential fields to choose
an open area on the field or to choose a path to navigate around local obstacles.

Our experience with RoboCup has been that a single positioning function
defined for a particular role tends to be too limiting. Trying to capture all of
the possible actions that a robot might accomplish can cause the complexity of
the positioning function to grow beyond what is manageable. A soccer-playing
robot might have multiple ways of approaching the goal, each of which has
advantages depending on the relative position of the goalie and/or his other
players. In some situations, the robot may want to try one approach and if it
fails, try a different approach. Behaviors like these may be mutually exclusive
and as such could be very difficult for a single function to capture.

2.2 Changing Single Robot Behaviors

An alternative is to factor the problem into subproblems and make multiple
positioning functions available for the robot to use. In this case, a second-order
decision process must exist whose purpose is to evaluate the state of the world
and/or the current performance of the robot. This decision process is respon-
sible for deciding which positioning function should be used in a particular
situation.

Designing multiple behaviors such as these with potential fields requires that
an entirely new set of potential attractor/repulsor nodes be defined for each
of the new behaviors. A single set of nodes cannot be used for independent
behaviors because the individual nodes are not independent of each other. They
all affect one another.

Another challenge with potential fields is that in the case of multiple specific
and possibly exclusive behavior sets, a robot may be expected to approach a
very specific location on the field and stay there. Specifying a specific (x,y,θ)
location on the field would be fairly straightforward for a constraint-based sys-
tem to handle, but designing the potentials such that they push the robot to a
specific location on the field can be a very challenging task. An extreme solu-
tion for the potential fields approach is to have a single potential attractor that

Levels of Multi-Robot Coordination for Dynamic Environments 59

pulls the robot to the specified point. This suggests that having control over the
attraction/repulsion nodes and being able to turn them on and off as necessary
would make the potential field approach work in this situation.

In a constraint-based system, the decision process evaluates the points on the
field and chooses a specific location for the robot to reach. In both positioning
methodologies, a higher-level decision process is in charge of selecting the
specifics of the behavior set by evaluating the state of the environment and
selecting the one with the highest chance of success.

3. Experimental Results

We have performed a set of experiments that show the need for second-order
reasoning in the RoboCup domain. These experiments demonstrate that we can
improve performance by having a higher-level decision process that changes
the positioning strategy based on the environment. Specifically, we compare
the performance of two positioning strategies under differing environmental
conditions, and show that the strategy which is superior in one situation is
inferior in the other situation.

In each experimental trial, we placed the ball in one of the front corners of
the field, and two robots (on the same team) attempted to score a goal within
thirty seconds. We chose this initial position of the ball because it has tradi-
tionally been difficult to score a goal from the front corner of the field. In this
situation, it is not usually possible to score a goal by a single direct kick; try-
ing to do so will often send the ball rolling into the opposite corner. From the
other corner, the attacker may very well choose to execute another strong kick
toward the goal, which can lead to a series of “ping-pong” kicks across the goal
until the goalkeeper clears the ball or until noise in the environment causes the
ball to roll into a different area of the field. The 30-second time limit only
gives the robots enough time to execute approximately three to five kicks, so
we feel that a goal scored within that time limit indicates that the robots were
performing reasonably well during that trial.

In half of the trials, we placed a goalie robot in the defense zone, facing
the corner where the ball was initially placed. The position chosen was the
one that our own goalie would adopt if the ball were placed in that position.
However, the goalie was paused, and therefore did not attempt to clear the ball
or attempt to move from this initial position unless it was pushed by the other
robots. In the other half of the trials, no goalie was placed on the field.

One of the two robots on the team (the attacker) was placed 75cm away from
the ball, facing the corner of the field. The supporting robot was positioned
according to one of two different potential fields. Both fields simply contained
a single linear attractor that pulled the supporter to a desired point. In the side
potential field, the supporter was drawn toward a point on the opposite corner

60 McMillen, et al.

(a) (b)

Figure 1. Two of the four initial configurations used in the experimental trials. Image (a)
shows the supporter in the center position with a stationary goalie present on the field. Image
(b) shows the supporter in the side position with no goalie.

of the goal; in the center potential field, the supporter was drawn toward a
center point about 100cm from the front of the goal. See Figure 1 for pictures
of the initial configurations of the field, including the supporter positioning
induced by the two different potential fields.

We ran 40 trials for all four different possible setups (with or without goalie,
combined with center or side positioning), for a total of 160 trials. For each
trial, the success or failure of the run was recorded. If the run was a success
(i.e., it terminated in a goal), we also recorded the amount of time it took for
the robots to score the goal.

Each run started by unpausing the attacker robot; the 30-second timer was
started as soon as the attacker touched the ball. If any robot crashed or ran
out of batteries during a trial, the robot was rebooted and the trial was restarted
from the beginning. Normal RoboCup penalties, such as player pushing, goalie
pushing, and holding, were not enforced. If the ball was knocked out of the
field, it was immediately placed back in-bounds at the place where it went out,
as per the RoboCup 2004 rules.

The results of these experimental runs are summarized in Table 1. Figure 2
shows the individual completion times for every trial. Note that the results are
only shown for the runs that were counted as successes; therefore, each graph
has a different number of points plotted.

In the no-goalie case, the side positioning succeeded slightly more often
than the center positioning, and the mean time per success was significantly
lower for the side positioning. (Statistical significance of the mean time de-
termined by Student’s two-tailed t-test, with p = 0.001.) However, in the runs
with the goalie, the center positioning significantly outperformed the side posi-
tioning, with a higher number of successes and a faster mean time per success.

Levels of Multi-Robot Coordination for Dynamic Environments 61

Successes Failures Mean Time per Success
Side positioning, no goalie 31 9 9.97s
Center positioning, no goalie 27 13 16.91s
Side positioning, with goalie 12 28 23.63s
Center positioning, with goalie 17 23 18.55s

Table 1. Summary of the results obtained in the experimental trials.

(a) (b)

(c) (d)

Figure 2. Graphs showing the amount of time it took to successfully score a goal. Each trial
was stopped after 30 seconds if a goal had not yet been scored. Graphs (a) and (b) show the
results for the no-goalie case; graphs (c) and (d) show the results for the with-goalie case. Trials
are sorted from fastest to slowest completion time.

(Statistical significance of the mean time determined by Student’s two-tailed
t-test, with p = 0.047.)

The advantages and disadvantages of each position are easily explained
through a qualitative analysis. The side position does much better in the no-
goalie case because the position of the supporter puts it in a very good location
to intercept the attacker’s kick. After a successful interception, a single head
kick is usually sufficient to score a quick goal. The center positioning does not
enable the easy interception of a missed shot, so it is more likely that the ball

62 McMillen, et al.

will end up in the opposite corner and require more time before a goal can be
scored.

However, when a goalie is added to the field, the weaknesses of the side
positioning become apparent. The initial kick often bounces off the goalie and
stops close to the center of the field, instead of traveling across the field to the
other side. In this situation, the supporter positioned in the center is much more
likely to be able to assist the attacker. Furthermore, it is difficult for the side-
positioned supporter to react quickly to changes in the ball’s location, since the
supporter’s view of the ball is often occluded by the goalie. The center posi-
tioning is a more general approach that allows the supporter to chase down the
ball relatively quickly wherever it goes on the field, while the side positioning
is superior in the special case where the opposing goalie is temporarily outside
the defense box.

Though the center positioning is the approach that we would prefer the ma-
jority of the time, there is a definite benefit to being able to use side positioning
to exploit the situation when the goalie is not guarding the goal. For example,
one of the only two goals scored in the (very defensive) final game of the 2004
US Open occurred when the opposing goalie temporarily left the defense zone
and was inadvertently blocked from returning to the goal by another robot that
had gotten behind it. The results presented in this section suggest that there is
definitely a benefit to be gained from using second-order reasoning in multi-
robot systems, especially in an adversarial, dynamic environment.

4. Conclusion / Future Work

In this paper, we have proposed a classification scheme that identifies var-
ious levels of dynamic multi-robot coordination. We have provided examples
showing the limitations of first-order coordination strategies in the robot soccer
domain, and presented experimental results that show that there is a substantial
benefit to our use of second-order reasoning about team coordination.

In the future, we intend to improve upon our existing coordination strategies
by adding third-order functionality to our team. We plan to take inspiration
from the idea of using a playbook for team coordination, which has been a
successful strategy in the RoboCup small-size league (Bowling et al., 2004).
The effectiveness of playbooks in the small-size league is largely due to the
fact that this league makes use of an overhead camera and so the state of the
entire team can be very easily determined. The legged league has no such
overhead camera system and so a team state estimate must be computed in a
distributed fashion by merging the local sensory information from each of the
robots. We are actively researching methods for accomplishing this task so that
we can pursue the development of third-order coordination strategies, such as
a playbook, for our RoboCup legged league team.

Levels of Multi-Robot Coordination for Dynamic Environments 63

Acknowledgments

The authors would like to thank the other team members of CMPack’04:
Sonia Chernova (team leader), Douglas Vail, Juan Fasola, and Scott Lenser.
The authors would also like to thank James Bruce for his assistance with the
development of the team.

This work was supported by United States Department of the Interior under
Grant No. NBCH-1040007. The content of the information in this publication
does not necessarily reflect the position or policy of the Defense Advanced
Research Projects Agency (DARPA), US Department of Interior, US Govern-
ment, and no official endorsement should be inferred.

References
Balch, T. and Hybinette, M. (2000). Social potentials for scalable multirobot formations. In

Proceedings of the IEEE International Conference on Robotics and Automation, volume 1,
pages 73–80.

Balch, T. R. and Arkin, R. C. (1998). Behavior-based formation control for multiagent robot
teams. IEEE Transactions on Robotics and Automation, 14(6):926–939.

Bell, G. and Weir, M. (2004). Forward chaining for robot and agent navigation using potential
fields. In Proceedings of the 27th conference on Australian computer science, volume 26,
pages 265–274, Dunedin, New Zealand.

Bowling, M., Browning, B., Chang, A., and Veloso, M. (2004). Plays as team plans for coordi-
nation and adaptation. In Polani, D., Browning, B., Bonarini, A., and Yoshida, K., editors,
RoboCup 2003: Robot Soccer World Cup VII, volume 3020 of Lecture Notes in Computer
Science, pages 686–693. Springer Verlag, Berlin, Germany.

Castelpietra, C., Iocchi, L., Nardi, D., Piaggio, M., Scalzo, A., and Sgorbissa, A. (2001). Com-
munication and coordination among heterogeneous mid-size players: ART99. Lecture Notes
in Computer Science, 2019:86–95.

Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation, pages 500–505.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1997). RoboCup: The robot
world cup initiative. In Johnson, W. L. and Hayes-Roth, B., editors, Proceedings of the First
International Conference on Autonomous Agents (Agents’97), pages 340–347, New York.
ACM Press.

Koren, Y. and Borenstein, J. (1991). Potential field methods and their inherent limitations for
mobile robot navigation. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1398–1404, Sacramento, CA.

Laue, T. and Röfer, T. (2004). A behavior architecture for autonomous mobile robots based
on potential fields. In 8th International. Workshop on RoboCup 2004 (Robot World Cup
Soccer Games and Conferences), Lecture Notes in Artificial Intelligence, Lecture Notes in
Computer Science, Berlin, Germany. Springer Verlag.

Roth, M., Vail, D., and Veloso, M. (2003). A real-time world model for multi-robot teams with
high-latency communication. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 3, pages 2494–2499.

Uther, W., Lenser, S., Bruce, J., Hock, M., and Veloso, M. (2002). CM-Pack’01: Fast legged
robot walking, robust localization, and team behaviors. In Birk, A., Coradeschi, S., and Ta-

64 McMillen, et al.

dokoro, S., editors, RoboCup 2001: Robot Soccer World Cup V, Lecture Notes in ComputerVV
Science, pages 693–696. Springer Verlag, Berlin, Germany.

Vail, D. and Veloso, M. (2003). Dynamic multi-robot coordination. In Multi-Robot Systems:
From Swarms to Intelligent Automata, Volume II, pages 87–100. Kluwer Academic Publish-
ers.

Veloso, M., Stone, P., and Bowling, M. (1999). Anticipation as a key for collaboration in a
team of agents: A case study in robotic soccer. In Proceedings of SPIE Sensor Fusion and
Decentralized Control in Robotic Systems II, volume 3839, Boston.

Weigel, T., Auerbach, W., Dietl, M., Dümler, B., Gutmann, J.-S., Marko, K., Müller, K., Nebel,
B., Szerbakowski, B., and Thiel, M. (2001). CS Freiburg: Doing the right thing in a group.
Lecture Notes in Computer Science, 2019:52–63.

PARALLEL STOCHASTIC HILL-
CLIMBING WITH SMALL TEAMS

Brian P. Gerkey, Sebastian Thrun
Artificial Intelligence Lab
Stanford University
Stanford, CA 94305, USA

gerkey@ai.stanford.edu, thrun@stanford.edu

Geoff Gordon
Center for Automated Learning and Discovery
Carnegie Mellon University
Pittsburgh, PA 15213, USA

ggordon+@cs.cmu.edu

Abstract We address the basic problem of coordinating the actions of multiple robots
that are working toward a common goal. This kind of problem is NP-hard,
because in order to coordinate a system of n robots, it is in principle necessary
to generate and evaluate a number of actions or plans that is exponential in n
(assuming P �=�� NP). However, we suggest that many instances of coordination
problems, despite the NP-hardness of the overall class of problems, do not in
practice require exponential computation in order to arrive at good solutions. In
such problems, it is not necessary to consider all possible actions of the n robots;
instead an algorithm may restrict its attention to interactions within small teams,
and still produce high-quality solutions.

We use this insight in the development of a novel coordination algorithm that
we call parallel stochastic hill-climbing with small teams, or Parish. This algo-
rithm is designed specifically for use in multi-robot systems: it can run off-line
or on-line, is easily distributed across multiple machines, and is efficient with
regard to communication. We state and analyze the Parish algorithm present
results from the implementation and application of the algorithm for a concrete
problem: multi-robot pursuit-evasion. In this demanding domain, a team of ro-
bots must coordinate their actions so as to guarantee location of a skilled evader.

Keywords: coordination, multi-robot systems, pursuit-evasion

65
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 65–77.
©c 2005 Springer. Printed in the Netherlands.

66 Gerkey, et al.

1. Introduction

Multi-robot systems have the potential to be far more useful than single ro-
bots: multiple robots may perform a given task more efficiently than a single
robot, multiple robots may be more robust to failure than a single robot, and
multiple robots may be able to achieve tasks that are impossible for a single
robot. However, reaching that potential can be extremely difficult, especially
in the case where multiple robots make task achievement possible, rather than
simply better. The difficulty arises primarily from the combinatorial possi-
bilities inherent in the problem of coordinating the actions of multiple robots,
which is in general NP-hard ((Garey and Johnson, 1979)). Given a system of
n robots and a common goal, it may be necessary to generate and evaluate a
number of actions or plans that is exponential in n (assuming that P �=�� NP).

One common way to attack such a problem is brute-force search in the joint
state/action space. That is, treat the multi-robot system as one many-bodied
robot and look through the exponentially many possibilities until the right an-
swer is found. Though this approach will produce an optimal solution, it is only
viable on simple problems, as the necessary computation quickly becomes in-
tractable as the number of robots and/or the complexity of the problem grows.
This fact contradicts the intuition that having more robots available should
make a task easier, rather than harder, to solve. Additionally, this approach
is undesirable for most robotic applications, because it requires a centralized
planner / executive, which precludes local control decisions at the level of an
individual robot.

Another, more popular, approach is to treat the multi-robot system as a
collection of independent single robots and allow each one to make individ-
ual control decisions, irrespective of the other robots’ actions. This approach
scales very well, as it requires each robot to consider only its own possible
actions, the number of which remains constant as the number of robots grows.
Unfortunately, this technique will not necessarily produce a good solution. In
fact, if the actions of the robots must be coordinated in order to achieve a task,
then allowing them to simply make individual choices without considering or
consulting each other is unlikely to lead to any solution at all.

We believe that between these two extremes lies fertile ground for the devel-
opment of heuristic multi-robot coordination algorithms that produce good so-
lutions yet scale well with the number of robots. In particular, we suggest that
many multi-robot problems can be solved quickly and effectively by allowing
the formation of and planning for small teams over short time horizons. That
is, rather than considering the possible actions of all n robots or of just 1 robot,
consider groups of up to t robots, where 1 ≤ t ≤ n, but prefer smaller groups,
because they are computationally cheaper to coordinate. In this paper we in-
troduce an algorithm, parallel stochastic hill-climbing with small teams, or

Parallel Stochastic Hill-Climbing with Small Teams 67

Parish, which combines the idea of small teams with the use of heuristics and
stochastic action selection. In addition to scaling well and tending to produce
good solutions to coordination problems, Parish is easily distributable, and can
be executed either on-line or off-line, both of which are desirable properties
for multi-robot algorithms.

We have implemented Parish for the problem of multi-robot pursuit-evasion,
in which a group of robots must work together to search a given environment
so as to guarantee location of a skilled mobile evader. This is a difficult prob-
lem that clearly requires coordination among the robots (a single robot is only
capable of clearing environments that are topologically equivalent to a single
hallway). And, unlike more weakly interactive tasks, like foraging, pursuit-
evasion occasionally requires very tight coordination between robots in order
to make any progress at all. We provide results from tests in simulation of
search strategies produced by Parish.

2. Background and related work

The first rigorous formulation of the pursuit-evasion problem is due to Par-
sons, who restricted his study to the case in which the environment is a discrete
graph ((Parsons, 1976)). Nothing is known about the location or motion of the
evader, who is assumed to be able to move arbitrarily fast through the graph.
The evader can occupy any edge in the graph; to find the evader, a searcher
must walk along the edge occupied by the evader and “touch” the evader. The
entire graph is initially contaminated, which means that the evader could be
anywhere. As the search progresses, an edge is cleared when it is no longer
possible for the evader to occupy that edge. Should it later happen that the
evader could have moved back to a previously clear edge, that edge is said to
be recontaminated. Using this terminology, the goal of the problem can be
restated as follows: find a trajectory for each searcher such that the an initially
contaminated graph is cleared.

More recently, a visibility-based version of the pursuit-evasion problem was
introduced ((Suzuki and Yamashita, 1992)), which changed the domain from
discrete graphs to continuous polygonal free spaces. Complete algorithms have
been described for searchers having either 1 or 2 “flashlights” ((Lee et al.,
2002)), omnidirectional vision ((Guibas et al., 1999)), and limited field-of-
view vision ((Gerkey et al., 2004)). Randomized pursuit algorithms have also
been studied, in both discrete graphs ((Adler et al., 2003)) and polygonal free
spaces ((Isler et al., 2003)).

3. Algorithm

The Parish algorithm coordinates a multi-robot system in a scalable manner
by considering the possible actions of not only single robots, but also small

68 Gerkey, et al.

teams of robots. The general form of the algorithm can be summarized as
follows:

Algorithm Parish: Parallel stochastic hill-climbing with small teams
Input: n robots; multi-robot problem M; maximum team size t ≤ n; value heuristic v(q); prob-

ability distribution P(q), P(q j) > P(qi) ⇔ v(q j) ≥ v(qi)
1. while M not done
2. do parallel for each robot s
3. do for l ← 1 to t
4. do Ql ←{q : q is a feasible l-searcher plan involving s} ⋃ {0//}
5. Sample q̂l from Ql according to P(q)
6. if q̂l �=�� 0//
7. then Execute q̂l
8. break

The value heuristic v(q) has two components: a benefit heuristic b(q) and
a cost function c(q). The benefit heuristic b estimates the (possibly negative)
marginal benefit (i.e., progress that would be made toward solution) of a given
plan. In other words, b estimates the optimal value function, which is unknown
(computing the optimal value function is equivalent to solving the original NP-
hard problem). If a plan q involves any robots that are currently part of other
teams that are engaged in other plans, then b(q) includes an estimate of the
(probably negative) benefit that will result from disbanding those teams and
halting the execution of those other plans. The function c calculates, in the
same units as b, the cost of executing a given plan. This cost can be any salient
aspect of the domain that is external to progress, such as distance moved. The
value of a plan q is then v(q) = b(q)− c(q).

Because the heuristic b is only an estimate of the true benefit of a given
plan, we cannot always select the highest-valued plan. Such a strategy will,
in all but the simplest problems, lead to local maxima of progress from which
the system will not escape. Thus we employ a stochastic selection rule: rather
than greedily selecting the apparently best plan, we sample a plan q̂l from
the set Ql of available plans, according to a probability distribution P(q) that
prefers higher-valued plans but sometimes selects an apparently worse plan.
This technique is commonly used in optimization to escape from local extrema
and is in reinforcement learning to balance exploration against exploitation.
So robots executing Parish are collectively hill-climbing according to local
progress gradients, but stochastically make lateral or downward moves to help
the system escape from local maxima.

The exact nature of the selection rule can be adjusted according to the accu-
racy of the benefit heuristic. If b is known to be a very accurate estimate of the
optimal value function, then the highest-valued plan should be selected with
accordingly high probability, and vice versa if b is known to be less accurate
(of course, if b is very inaccurate, then progress will be slow, and more effort
should likely be put toward designing a better heuristic).

Parallel Stochastic Hill-Climbing with Small Teams 69

Since the robots make plans individually, the computation of the algorithm
can easily be distributed across multiple machines, with communication re-
quired only to update the state of the problem and to form (or break up) teams.
If a good model of the environment is available, then Parish can run off-line,
with the robots interacting with this model to produce a plan for later execu-
tion. If no good model is available, or if the environment is dynamic, then
Parish can run on-line, with the robots interacting with the environment di-
rectly. Also, robots will tend select and execute single-robot plans, if good
ones can be found, because they do not require breaking up other teams. Thus
they will make individual progress as long as possible, until such time as team
formation is more beneficial.

3.1 Economic interpretation

As is the case with many multi-agent search algorithms, there is an obvious
economic interpretation of Parish. The multi-robot system can be seen as a
synthetic economy, in which individual robots can buy the services of other
robots. A robot receives (possibly negative) “reward” for making (possibly
backward) progress toward the goal. Each robot then selfishly tries to “earn”
as much reward as possible. The value, v = b− c, that a robot attaches to a
plan that it has formulated is the “price” that that robot will “pay” in order to
form the team that will help in executing the plan (the robot may offer a price
slightly less than v, in order to retain some positive profit). A robot only joins a
team when it is offered a sufficiently high price to take it away from its current
team, if any. Stochastic plan selection then corresponds to a robot occasionally
making a choice that does not maximize its reward, to account for the fact that,
because of inaccuracies in prices (i.e., values), strict reward-maximization will
not necessarily lead to a solution.

Although this economic interpretation relates our algorithm to previous work
in economically-inspired multi-robot coordination approaches (e.g., (Gerkey
and Matarić, 2002, Dias and Stentz, 2003)), we do not find it particularly help-´
ful. Coordination algorithms such as Parish can be understood and clearly
stated as instances of distributed search or optimization; economic interpreta-
tions can unnecessarily cloud the discussion by introducing misleading analo-
gies between synthetic markets as used by robots and real markets as used by
humans.

3.2 Application to multi-robot pursuit-evasion

We now make Parish concrete by explaining how we apply it to the prob-
lem of multi-robot pursuit-evasion and stating the resulting algorithm. In the
multi-robot pursuit-evasion problem, a team of n robots is required to search
an environment (of which a map is provided) so as to guarantee location of a

70 Gerkey, et al.

Figure 1. The Botrics Obot mobile robot, equipped with a SICK scanning laser range-finder,
which has a 180◦ sensor field.

(a)

n0n0

n10n10

n1n1

n12n1

n2n2

n131
n33

n14n1

n4n4

n15n15

n55

n16n16

n6n6

n17n17

n7n7

n18n18

n8n8 n9n9

(b)

Figure 2. An office-like environment, decomposed into convex regions (a) and then trans-
formed into a discrete graph (b).

skilled mobile evader. The only information available about the evader is its
size and maximum speed; no model of its initial position or subsequent tra-
jectory is given. For our purposes, a robot “finds” the evader if the evader is
detected within the robot’s sensor field. Our robots are each equipped with
a scanning laser range-finder that provides a 180◦ field of view and reliable
detection range of approximately 8 meters (Figure 1).

We first transform our problem to an instance of Parsons’s discrete graph
search problem ((Parsons, 1976)). This transformation involves decomposing
the free space in the given map into finitely many regions such that a single ro-
bot can clear a region by standing anywhere on and perpendicular to the region
border, while looking into the region. Furthermore, we want to guarantee that

Parallel Stochastic Hill-Climbing with Small Teams 71

a differential-drive robot with a 180◦ field of view can move from one border
of a region to any other border of the same region and keep the destination
border in view along the way. Two necessary and sufficient conditions for the
regions are that they each: (i) be convex, and (ii) have no dimension greater
than the maximum sensor range (8 meters). For the work presented in this
paper, the decomposition was performed manually, but the process could be
automated according to visibility constraints (e.g., (Guibas et al., 1999, Gerkey
et al., 2004)). Given such a region decomposition, we construct an undirected
graph G = (V,E), where the vertices V are the regions, and the edges E are
the borders where adjacent regions meet. An example decomposition and the
resulting graph are shown in Figure 2.

We can then apply Parish, stated below, to the graph G, and transform the
resulting solution back to the robots’ control space, with each move in the
graph becoming a move to a region border in the physical environment.

Preliminaries:

Searcher positions and edge contamination states are stored as labels in the graph.

The graph, the list of teams, and the list of plans are shared data structures: each searcher
has an identical copy of each structure, and a mutual exclusion mechanism is used to
ensure consistency when making changes.

Si denotes searcher i.

Given a list L, L[i] denotes the ith element of L.

A plan q specifies a sequence of moves for one or more searchers.

The null plan, denoted 0// , makes no moves.

Given a plan q, q.members() returns the set of searchers required to execute q.

G′ ← G+q denotes the application of plan q to graph G to produce the resulting graph
G′.

Given a team T with n members, to disband T is to separate the members of T into n
singleton teams, one individual per team.

Algorithm Parish for multi-robot pursuit-evasion
Input: Connected, undirected graph G; n searchers placed in G (if initial placement is not given,

place them randomly); maximum team size t; value heuristic v(G,q); probability distribu-
tion P(q), P(q j) > P(qi) ⇔ v(q j) ≥ v(qi)

1. T ← [] (∗ List of teams ∗)
2. A ← [] (∗ List of plans ∗)
3. for i ← 1 to n
4. do (∗ Start with singleton teams and no plans ∗)
5. T .append({Si})
6. A.append(0//)
7. while not done
8. do (∗ Each team decides what to do, in parallel ∗)
9. parallel for i ← 1 to len(T)
10. do if A[i] = 0//
11. then (∗ No plan, so this team has only one member; call it s ∗)

72 Gerkey, et al.

12. s ← s : s ∈ T [j]
13. (∗ Consider teams of increasing size, up to t ∗)
14. for l ← 1 to t
15. do (∗ Make some l-searcher plans, but also consider the null plan ∗)
16. Ql ←{q : q is a feasible l-searcher plan involving s} ⋃ {0//}
17. Sample q̂l from Ql according to P(q)
18. if q̂l = 0//
19. then (∗ We chose the null plan; keep looking ∗)
20. continue
21. else (∗ Assemble the team, maybe disbanding other teams ∗)
22. for j ← 1 to len(T), j �=�� i
23. do for r ∈ q̂l .members()
24. do if r ∈ T [j]
25. then Disband T [j]
26. T [i] = T [i]

⋃
r

27. (∗ Store the chosen plan and begin executing it ∗)
28. A[i] ← q̂l
29. G ← G + first step of A[i]
30. (∗ We have a satisfactory plan; stop looking ∗)
31. break
32. else (∗ We already have a plan, so keep executing it ∗)
33. G ← G + next step of A[i]
34. if just executed last step of A[i]
35. then (∗ This team has finished its plan; disband it ∗)
36. Disband T [i]

4. Results

We implemented Parish as stated in the previous section and tested it on
several environments. The tests were carried out using Stage, a sensor-based
multi-robot simulator; experience has shown that results in Stage can be re-
liably replicated with with physical (indoor, planar) robots ((Gerkey et al.,
2003)). Animations can be found at: http://ai.stanford.edu/∼gerkey/research/pe/.

The benefit heuristic b is the (possibly negative) number of regions that
would be cleared by executing a given plan. The cost function c is propor-
tional to distance traveled during a given plan, calculated as number of regions
traversed. The maximum team size is t = 2, and the robots are restricted to
making plans that move each team member once. Specifically, each robot Si

only considers plans of the following form:

(team size 1) Move Si to an adjacent region.

(team size 2) Move another robot S j (i �=�� j) to cover the region currently
covered by Si, then move Si into an adjacent region.

The stochastic selection rule is ε-greedy, in which the highest-valued plan is
selected with probability (1− ε), and otherwise one of the remaining options
is chosen with uniform probability. For the results presented here, ε = 0.1. We

Parallel Stochastic Hill-Climbing with Small Teams 73

Figure 3. (In color where available). Two robots searching an office-like environment. Black
circles represent robots; blue areas are clear; red areas are in view; and purple areas are
contaminated (i.e., the evader may be hiding there).

assume the environment is static, and so are free to run Parish off-line, then
execute the resulting plan with the simulated robots.

Interestingly, adding just this limited and myopic coordination is sufficient
to produce good solutions. For example, shown in Figure 3 are snapshots from
a run with 2 robots in an office-like environment. As can be seen in that figure,
the robots cooperate to clear the environment quite efficiently, without allowing
recontamination. In fact, Parish reliably produces solutions for this and similar
environments that are optimal in the total path length. (we compute optimal
solutions using brute-force A* search in the joint action/state space of all the
robots).

The effect of small-team coordination can be clearly seen in Figure 4, taken
from a simulation run in which 5 robots work together to clear one floor of

74 Gerkey, et al.

an office building, using a sensor-based map. In this sequence, a 2-robot plan
calls for the robot initially at the lower right to move up and block the central
open area so that another robot can move left and keep searching. Without such
interactions, the robots are not capable of clearing this complex environment.

5. Summary and future work

We introduced the Parish algorithm, which allows for scalable and efficient
coordination in multi-robot systems. The key insight of the algorithm is that the
combination of small teams, simple heuristics, and stochastic action selection
can be extremely effective in solving otherwise difficult multi-robot problems.
Our algorithm is easily distributable and can run on-line or off-line, making
it especially suitable for use in physical robots systems. We presented results
from simulation that demonstrate the efficacy of Parish in coordinating robots
engaged in a pursuit-evasion task.

Our current work on this algorithm follows 3 paths. First, we are moving to
physical robots, where Parish will run on-line, and fully distributed. Second,
we are rigorously analyzing Parish and comparing it to competitor algorithms,
such as non-cooperative greedy, and centralized A*. It will be important to
establish the average-case and worst-case performance of Parish, in terms of
solution quality and computational requirements (i.e., amount of the search
space that is actually explored), as compared to existing alternatives (Figure 5).
Finally, we are applying Parish to other multi-robot coordination problems.

References
Adler, M., Räcke, H., Sivadasan, N., Sohler, C., and Vöcking, B. (2003). Randomized Pursuit-

Evasion in Graphs. Combinatorics, Probability and Computing, 12(3):225–244.
Dias, M. B. and Stentz, A. (2003). TraderBots: A Market-Based Approach for Resource, Role,

and Task Allocation in Multirobot Coordination. Technical Report CMU-RI-TR-03-19,
Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman.

Gerkey, B. P. and Matarić, M. J. (2002). Sold!: Auction methods for multi-robot coordination.´
IEEE Transactions on Robotics and Automation, 18(5):758–768.

Gerkey, B. P., Thrun, S., and Gordon, G. (2004). Visibility-based pursuit-evasion with limited
field of view. In Proc. of the Natl. Conf. on Artificial Intelligence (AAAI), pages 20–27, San
Jose, California.

Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In Proc. of the Intl. Conf. on Advanced Robotics
(ICAR), pages 317–323, Coimbra, Portugal.

Guibas, L. J., Latombe, J.-C., LaValle, S. M., Lin, D., and Motwani, R. (1999). A Visibility-
Based Pursuit-Evasion Problem. Intl. J. of Computational Geometry & Applications, 9(4 &
5):471–493.

Parallel Stochastic Hill-Climbing with Small Teams 75

Isler, V., Kannan, S., and Khanna, S. (2003). Locating and capturing an evader in a polygonal
environment. Technical Report MS-CIS-03-33, Dept. of Computer Science, Univ. of Penn-
sylvania.

Lee, J.-H., Park, S.-M., and Chwa, K.-Y. (2002). Simple algorithms for searching a polygon
with flashlights. Information Processing Letters, 81:265–270.

Parsons, T. (1976). Pursuit-evasion in a graph. In Alavi, Y. and Lick, D., editors, Theory and Ap-
plications of Graphs, Lecture Notes in Mathematics 642, pages 426–441. Springer-Verlag,
Berlin.

Suzuki, I. and Yamashita, M. (1992). Searching for a mobile intruder in a polygonal region.
SIAM J. on Computing, 21(5):863–888.

76 Gerkey, et al.

Figure 4. (In color where available). An example of small-team coordination taken from
a test in which 5 robots cleared a large building. As part of a 2-robot plan, the robot that is
initially in the lower right corner moves up and left to block the central open area so the robot
that another robot can move left and keep searching.

Parallel Stochastic Hill-Climbing with Small Teams 77

-2000

0

2000

4000

6000

8000

 10000

 12000

 14000

 16000

 18000

 20000

3-triangle.3 T3.3 gates-simple.2 gates.3 sal2.2

N
od

es
 e

xp
an

de
d

du
rin

g
se

ar
ch

Environment . Number of robots

Parish
A*

(a)

10

15

20

25

30

35

40

45

50

3-triangle.3 T3.3 gates-simple.2 gates.3 sal2.2

Le
ng

th
 o

f p
at

h
(s

ol
ut

io
n

qu
al

ity
)

Environment . Number of robots

Parish
A*

(b)

Figure 5. Comparison of Parish and A* in planning pursuit strategies in various environ-
ments. Shown in (a) is the number of nodes expanded during the search, and in (b) is the length
of the solution found (smaller is better in both cases). Results for Parish, which is stochastic,
show the experimental mean and standard deviation, computed from 100 runs in each environ-
ment.

TOWARD VERSATILITY OF MULTI-ROBOT
SYSTEMS

Colin Cherry and Hong Zhang
Department of Computing Science
University of Alberta
Edmonton, Alberta Canada T6G 2E8

{colinc, zhang}@cs.ualberta.ca

Abstract This paper provides anecdotal evidence that the group behavior exhibited by a
collective of robots under reactive control is as much due to the design of their
internal behaviors as to the external conditions imposed by the environment in
which the robot collective operate. Our argument is advanced through the exami-
nation of a set of well-known collective robotics tasks that involve, in one form or
another, the movement of materials, namely, foraging, transport, and construc-
tion. We demonstrate that these seemingly different tasks can all be achieved
by one controller that employs behaviors identical across the task domains but
parameterized with a couple of task-specific constants. The implementation of
the study is conducted with the help of the TeamBots robot simulator.

1. Introduction

Collective robotics is concerned with the use of multiple robots for the per-
formance of tasks that are inefficient, difficult or impossible by robot single-
tons (Balch and Parker, 2002). A dominant and successful design approach
to multi-robot systems (MRS) is based on behavior-based control (Brooks,
1986), which uses a hierarchy of simple reflexive or reactive behaviors at the
level of individual robots whose interaction with each other as well as with
the environment can lead to the emergence of desired group-level behaviors.
Behavior-based control can be implemented with the well-known subsumption
architecture (Brooks, 1986) or motor schemas (Arkin, 1998), which is adopted
in this study. Numerous successful studies have clearly established the validity
of this design approach.

One of the cornerstones of behavior-based robotics is the recognition of the
importance of the environment on the behaviors displayed by a robot that inter-
acts with it. Given the complexity and variability of the world in which a robot
must operate, rather than attempting to model the world exactly and formulate

79
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 79–90.
©c 2005 Springer. Printed in the Netherlands.

80 Cherry and Zhang

plans and actions, a behavior-based approach uses carefully designed rules that
sense and react to the changes in the world, and this approach has proved to be
more robust and effective in many situations than the traditional deliberative
control (Gat, 1997).

In this paper, we argue that the importance of the environment can be taken
one step further, in the sense that the external behaviors displayed by a single
robot or a multi-robot collective can, to a significant extent, be attributed to
the environment in which the robots reside. We will support this argument
by demonstrating that only minimum changes need to be made to the robot
controller when the robot system is confronted with a seemingly different task.
Specifically, we will use a set of three well-known collective robotics tasks
which involve, in one form or another, the movement of materials, namely,
foraging, group transport (box-pushing), and collective construction. We will
show that, to solve all three tasks, structural change to the robot controller is
unnecessary, and that only parameters that drive the internal behaviors of the
robots need to be adjusted. This observation represents a further development
beyond the assertion that basis behaviors exist that are capable of wide variety
of tasks (Mataric, 1995).

1.1 Collective Robotic Building Tasks

The work in (Balch and Arkin, 1995) describes in detail the foraging task
and the corresponding reactive foraging controller. A number of “attractors"
litter the field, and must be brought to a home position. The attractors have
mass, and heavy attractors can be carried more quickly with more than one
robot working together. The robots can communicate, and therefore have the
ability to signal other robots to work on the same attractor as them.

Group transport, or box pushing, describes any task where robots must work
together to move one object that a single robot can not move alone. The task
modeled in this paper is most similar to the tasks investigated in (Kube and
Zhang, 1993) and (Kube and Zhang, 1997), which tackle the problem of hav-
ing robots push an attractor to a specific destination. Their work uses robots
controlled by hierarchical FSAs to push a circular box to a lit home area. The
robots are able to see both the home area and the attractor, allowing them to
determine if the attractor is between them and the goal. This notion of position-
ing so that the attractor is between the robot and the destination will become
central to the pushing strategy used later in this paper.

The problem of collective construction is studied in (Parker et al., 2003).
Robots are initially positioned in a clear area surrounded by rubble, and they
proceed to clear the debris to create a larger, circular nest, where the nest walls
are composed of the rubble. Inspired by construction by ants, (Parker et al.,
2003) takes an extreme minimalist approach to collective construction, called

Toward Versatility of Multi-Robot Systems 81

blind bulldozing. The robots being controlled in this paper, however, have
access to considerably more sensing power than those used in (Parker et al.,
2003), with the ability to sense attractors, sense a home position, and to differ-
entiate between those attractors that are in place and those that are not.

1.2 Problem Statement

The goal of our study is to design and test a single controller capable of
executing all three tasks described above. All three tasks involve moving some
number of objects from their current location to a destination. The major vari-
ables in these tasks are whether or not the robots are capable of moving indi-
vidual objects alone, and the destination for the objects. Regardless of whether
robots are working alone or in teams, pushing is always used as the method of
moving objects.

The robots’ physical capabilities and sensors remain static through all three
tasks. The only changes allowed from task to task are those in the external
environment, and adjustments to some small number of controller parame-
ters. These parameters are intended to make small, task-specific changes to
the controller: adjustments to schema weights or polarities, or to the triggers
for perceptual cues. Once designed, the controller will be implemented in the
TeamBots simulator, and tested on the three tasks.

2. Design of Versatile Controller

This section will describe the multitask controller used to conduct foraging,
group transport and nest construction tasks. Our control system will follow the
motor schema approach popularized by (Arkin, 1998). This approach uses a
perception-triggered finite state machine (FSM) to switch the robot between
states, corresponding to the major steps needed for any task.

We will begin by describing the general strategy employed in any pushing
task and the corresponding finite state machine. The behavior in each state will
then be described in terms of combinations of base behaviors. We will then
describe the perceptual cues that trigger state transitions. We end this section
with a discussion of the three parameters that are used to adjust the generic
system to favor particular tasks: the cooperation and positioning parameters (c
and p), and the building flag (b).

2.1 Generic Strategy and Finite State Machine

Viewed at a high level, the generic pushing robots tackle all material trans-
port problems with the same strategy: they must find an object to push, get
into a good pushing position, and then push object to its destination. Starting
with a foraging FSM that is similar to the one used in (Balch and Arkin, 1995),
we make small modifications to reflect the differences between the generic

82 Cherry and Zhang

Wander Position

Push

Attractor in place In position

Detect attractor

Lose attractor

Out of position

The finite state machine for the generic pushing robot.

pushing task and foraging if a gripper is available. The resulting controller is
pictured in Figure 1.

The purpose of the “Wander” state is to find an attractor to work on. Wander
produces a random walk to perform this attractor search, consisting of the four
schemas. Noise produces random motion. Avoid obstacles keeps robots from
colliding, and ensures they do not redundantly search the same area. Swirl
obstacles to noise ensures that the robot takes a smooth route around obstacles
in its current direction of travel. Finally, Draw to home, active only when the
build flag, to be described later, is set, encourages the robot to explore an area
close to home. This is the only instance where an extra schema was added to
a state for a particular task. As with any schema-based control, the outputs of
the behaviors (motor schemas) are combined in the form of a weighted sum to
produce the final actuator commands (Arkin, 1998).

The purpose of the “Position” state, not to be confused with the position
flag p, is to bring the robot into a good position for pushing the attractor to
its destination. Position causes the robot to move in a circular path around the
robot’s closest, targeted attractor, without necessarily coming into contact with
the attractor. It consists of the five schemas, including the Swirl obstacles to
noise and Noise schemas as in the Wander state. The first of the three new
schemas, Swirl target to home, produces a circular motion so the robot moves
around its closest attractor. Move to target schema moves the robot toward the
target, so it is less likely to lose sight of the target while rotating around it.
Swirl obstacles to home schema ensures a smooth path around other robots in
the current direction of travel. Finally, Watch target is active for the robot’s
turret, always drawing it toward the current target, so the robot does not lose
sight of it while rotating.

The purpose of “Push” is to have the robot to move to a destination point,
pushing an attractor in front of it. “Push” consists of the same set of schemas

Toward Versatility of Multi-Robot Systems 83

as “Position”, with the exception of Swirl obstacles to target, in place of Swirl
obstacles to home, which ensures smooth motion around an obstacle in the
robot’s current direction of travel.

2.2 Perceptual Cues

Transitions between states depend on a set of perceptual cues described in
this section. First of all, the “detect attractor” cue is triggered when an attractor
object falls within the robot’s visual sensor range. Similarly, “lose attractor” is
triggered if no attractors are currently in visual range.

Secondly, as in previous studies (Balch and Arkin, 1995), we assume that
the robot is constantly able to sense its home. For foraging and group transport,
the “in position” cue is triggered when the robot’s closest visible attractor lies
between the robot and home. Whether or not an attractor is between the robot
and its home is determined by the alignment between vector from the robot to
the attractor and that from the robot to Home.

The betweenness threshold for “out of position” is set to be more tolerant
than that of “in position”. This produces behavior where the robot is very picky
about when it starts to consider itself in position, but then allows for a fair
amount of leeway before it actively corrects its position. This prevents rapid
and ineffectual switching between the “Position” and “Push” states. When
the build parameter is set to produce building behavior, this perceptual cue is
inverted. In this case, it detects when the robot lies between home and the
attractor. See Section 2 for more details.

2.3 Task Parameters

The goal of this research is to construct a controller that is equally switches
gracefully among the tasks of foraging, group transport, and nest construction,
under the influence of only external conditions defined by the environment.
This will be accomplished with the help of the three simple parameters de-
scribed below, which are devised in order to tune the robots to be predisposed
to perform a specific task. One should note, though, that structure of the con-
troller does not change and that they affect primarily schema weights and the
direction of certain forces. In other words, the parameters have been designed
to affect the performance of the controller while maintaining its spirit.

Cooperation: c. The cooperation parameter c determines how well robots
work together, and conversely, how carefully they avoid redundant effort. It
varies in value from 0 to 1, with c = 1 indicating maximum cooperation. It
affects only the Avoid obstacle and Swirl obstacle schemas in the “Position”
and “Push” states.

84 Cherry and Zhang

Robot

Home

 Attractor
1

Home

Robot

 Attractor
 2 2

An example of pushing position with respect to robot radii

In “Position,” the avoid schemas have their weight set according to 2(1− c).
The result is that when cooperation is low, a robot will be unlikely to reach a
good pushing position (and thus enter “Push”) for an attractor that already has
another robot near by. When cooperation is high, several robots will be able to
target the same attractor easily.

Conversely, in “Push”, the avoid schemas have their weight set directly ac-
cording to c. As is described above, robots need to avoid each other when
cooperating to push a large object, or no room will be made for potentially
helpful robots. When cooperation is low, robots will ignore each other, and
concentrate on pushing. This rarely results in two robots “fighting over” the
same object, though, as they are unlikely to both target the same object due to
the high avoid weight while in the “Position” state.

Position: p. The position parameter p intuitively determines how fussy a
robot is about positioning itself before it starts pushing. A lower p indicates
that the robot requires a position that is closer to the optimal position before it
starts pushing. Numerically, p, is the number of robot radii away an attractor
is allowed to be from the point where it would be exactly on the path between
the robot and its destination. For example, take the two situations pictured in
Figure 2. In the situation on the left, a robot with p = 1 would transition into
“Push,” as would a robot with p = 2. However, in the situation on the right,
only a robot with p = 2 would transition into “Push.” Note that the transition
happens regardless of the object radius, as a robot may not be able to tell an
object’s true radius in practice.

Toward Versatility of Multi-Robot Systems 85

Build Flag: b. The build flag switches the robot from a foraging goal to a
nest building goal, pushing objects out and away from a central point, instead
of pushing them in toward the same point. It has the most dramatic effect on
the controller of all the parameters, but it is our hope that though its effect may
be large, it is conceptually a very small change: it simply reverses the polarity
of the robots’ home.

When the build flag is set, all schemas that would move the robot toward
home become moves away from home and vice-versa. This affects only the
Swirl X to home schemas in the “Position” and “Push” states. When foraging,
these schemas swirl the robot away from home, so that the robot keeps the
attractor between itself and home, and therefore pushes the attractor to home.
When constructing, these schemas swirl the robot toward home, so it stays
between home and the attractor. Therefore, it pushes the attractor away from
home. To agree with the above changes, the build flag also redefines the “(Still)
In position” perceptual cue, so that the robot checks if it is between home and
the attractor when building. Similarly, it redefines the robots’ attractor filter
so that all attractors that are a certain distance away from home are filtered
out when building, as opposed to filtering attractors sufficiently close to home
when foraging.

Finally, in the only change that is not directly tied to reversing the polarity
of home, it adds an extra schema to the “Wander” state, causing the robot to
stay close to home, and to avoid wandering in the portions of the map where
nothing needs to be done. This also has the visually pleasing effect of having
the robots peacefully “live” inside their nest after construction is complete.

Initial parameterizations for specific tasks. The parameters were created
with the intention of easily characterizing the three target tasks with parameter
values. Foraging small, light attractors was envisioned as a low-cooperation
foraging task, and therefore was characterized with the parameter settings c =
0, p = 1 and b = false. Group transport was seen as a high-cooperation forag-
ing task, and was characterized with c = 1, p = w and b = false, where w is the
minimum number of robots needed to move the heaviest attractor. Finally nest
construction with small, light attractors was seen as a low-cooperation building
task, and was characterized with c = 0, p = 1 and b = true.

3. Experimental Design

We have conducted experiments for the purpose of both proof of concept
and tests for parameter sensitivity. Only the results in the first category are
described due to the limit on the length of the paper. Proofs of concept are
designed to answer the question of whether or not the generic pushing sys-
tem is able to accomplish a given task using the reasonable parameter settings
described in Section 2.

86 Cherry and Zhang

Figure 3. An initial configuration for the foraging task where the four big circles represent
robots, the small dots represent objects to be foraged, and the square indicates the home. The
arc in front of each robot indicates the angular and linear ranges of each robot’s sensor.

3.1 Foraging Proof of Concept

The environment was set up with 10 randomly placed attractors in a 10x10
unit field. The attractors were placed according to a uniform distribution, re-
jecting (unpushable) points within 0.5 units of a wall, and positions that lie
within the home zone. Four robots began on the edges of the home zone, which
is centered at the point (0,0). The initial configuration of the robots is shown
in Figure 3, with their home zone roughly outlined with the center square. All
variables were held constant and set to c = 0, p = 1, b = false.

For each randomly generated environment configuration, 10 trials were run
with each controller, and the results were recorded in terms of both comple-
tion time (measured in simulated milliseconds), and in terms of the number
of attractors successfully foraged, called the success rate from this point on.
The simulation was set to timeout after 2,620 simulator seconds, which corre-
sponded to roughly 3 minutes of real-time when watching the simulator live.
Any incomplete runs were simply treated as having taken 2,620 simulator sec-
onds. 30 maps were generated and tested. We will report the average comple-
tion time and success rate for each controller.

Toward Versatility of Multi-Robot Systems 87

Figure 4. An intermediate (left) and final (right) configurations for the construction task of
a circular nest site. The graphic symbols have the same interpretations as those in Figure 3.
Notice the approximately circular structure that is created near the end of the task on the right.

3.2 Construction Proof of Concept

The purpose of this experiment is to determine whether or not the generic
pusher, using reasonable parameter values, can consistently complete the nest
construction task. The environment was set up with 30 randomly placed at-
tractors in a 10x10 field (shown in Figure 4). Home was defined as the point
(0,0), and construction was considered successful when all attractors were at
least 3 units from home. Attractors were placed in a uniform fashion, rejecting
any points generated less than 1 unit from home, or more than 3 units from
home. Four robots were placed near home, in the initial configuration shown
in Figure 4. The robots were controlled using the generic pusher with c = 0,
p = 1, b = true. Three random initial attractor placements were generated,
and 10 trials were run for each case. Completion time and success rate were
recorded.

3.3 Box-Pushing Proof of Concept

The environment was set up with one circular attractor of radius 1 located at
(-2,2.5). The objective was to push the attractor so its center point lies within 1
unit of home at (0,0). Between 1 and 4 robots were arrayed around the attractor,
in the configuration shown in Figure 5. A robot with label x indicates that it

88 Cherry and Zhang

Figure 5. A group transport experiment in progress with four robots and one large object to
be moved.

is present so long as at least x robots are present. One will note that all four
robots can immediately see the attractor. This removes the search component
from the task, so we are observing only whether or not they are capable of
pushing the box with the given p setting.

Three variables are manipulated during this experiment. The attractor is
given a weight w drawn from {0,1,2}. The position parameter is drawn from
{0,1,2,3,4}. Finally, the number of robots present varies from 1 to 4. All
combinations were tested, for a total of 45 valid configurations (not counting
those configurations that did not have enough robots to possibly push the at-
tractor), with 10 trials conducted on each configuration. As above, the robots
were given 2,620 simulation second to complete the task. The average success
rate was stored for each configuration. We do not concern ourselves with com-
pletion time for this experiment, as the focus is on whether or not the task is
possible at all given the configuration.

3.4 Results and Discussion

The results of the construction proof of concept test were very encouraging.
In all trials conducted on three randomly generated maps, the team of four
robots was able to accomplish the construction task in less than 505 simulation
seconds, which is well bellow our time limit of 2,620 for other tasks. The
results were pleasing on a qualitative level as well, often producing an even
ring of attractors around home.

Regarding the results for the foraging task, the maximum success rate achiev-
able was to forage all (100%) possible attractors. With cooperation c = 0 and
c = 1, the success rate did not vary much and was at 95% and 94%, respec-

Toward Versatility of Multi-Robot Systems 89

Weight 1

2

3

4
Number of Robots 0

1

2

3

4

Position Value

0

0.2

0.4

0.6

0.8

1

Success Rate

Figure 6. Success rates by parameter value and robot count for collective transport of an
attractor with weight 1.

tively. However, the average completion time with c = 0 was significantly
lower at 1,297 than with c = 1 at 1,568, both in simulation steps.

For the group transport task, for any object weight, it was always possible to
achieve a 100% success rate, provided that the position parameter p was chosen
properly and that a sufficient number of robots participated in the task. As an
example, Figure 6 shows success rate when teams of 2 to 4 robots attempt to
push a weight 1 attractor, which requires at least 2 robots to move. We can
see that the success rate becomes more sensitive to the p parameter. No teams
achieve 100% success rate at p = 0, and at p = 4 teams of 2 fail completely.
The moderate p values within [1,3] remain very safe, though.

4. Conclusions and Future Work

In this paper, we have attempted to establish the argument that environment
is indeed very much responsible for the external behavior exhibited by a group
of robots. Our supporting evidence is the successful execution of three col-
lective robotics tasks that employ essentially the same generic behavior-based
controller. The controller uses pushing as its universal method for object move-
ment, to perform foraging, group transport, and collective construction, with
only trivial adjustment of three parameters that reflect the weights or polarity
of the internal robot behaviors.

Through simulated experiments, conducted with the TeamBots simulator,
we have shown foraging to be robust to the cooperation parameter c with re-

90 Cherry and Zhang

spect to success rate. In addition, we have found the system to be quite sen-
sitive to the position parameter p when attempting group transport. Though
parameter values exist that ensure consistent task completion, it remains the
user’s burden to find and set those parameters according to object weight and
team size. Construction task presented the least challenge and was always
completed successful under a wide range of system parameters.

In the future, we would like to investigate the more general form of the
problem by considering obstacle avoidance. In such a system, a pushing robot
is actually drawn toward obstacles in order to place itself between the obsta-
cle and the attractor, and therefore push the object away from the obstacle.
This may allow for the inclusion of static obstacles. We would also like to test
whether or not lowering the weight given to obstacle avoidance when cooper-
ating to push an object would reduce the system’s sensitivity to the p parame-
ter. A general investigation into stagnation recovery techniques to eliminate
p-sensitivity from the system would also be quite useful and informative. Fi-
nally, it will be an interesting challenge to study the possibility for the robots
to identify a task domain through sensing and adjust their operating parameters
automatically.

References
Arkin, R. (1998). Behavior-Based Robotics. The MIT Press.
Balch, T. and Arkin, R. (1995). Communication in reactive multiagent robotic systems. Au-

tonomous Robots, 1(1):27–52.
Balch, T. and Parker, L. E. (2002). Robot Teams. A K Peters.
Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation, 2(1):14–23.
Gat, E. (1997). On three-layer architectures, pages 195–210. MIT/AAAI.
Kube, C. and Zhang, H. (1993). Collective robotics: From social insects to robots. Adaptive

Behavior, 2(2):189–219.
Kube, C. and Zhang, H. (1997). Task modelling in collective robotics. Autonomous Robots,

4(1):53–72.
Mataric, M. J. (1995). Designing and understanding adaptive group behavior. Adaptive Behav-

ior, 4(1):51–80.
Parker, C., Zhang, H., and Kube, R. (2003). Blind bulldozing: Multiple robot nest construction.

In IROS2003, Las Vegas.

III

INFORMATION / SENSOR SHARING AND FUSION

DECENTRALIZED COMMUNICATION
STRATEGIES FOR COORDINATED
MULTI-AGENT POLICIES

Maayan Roth, Reid Simmons, and Manuela Veloso
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

mroth@andrew.cmu.edu, reids@cs.cmu.edu, veloso@cs.cmu.edu

Abstract Although the presence of free communication reduces the complexity of multi-
agent POMDPs to that of single-agent POMDPs, in practice, communication
is not free and reducing the amount of communication is often desirable. We
present a novel approach for using centralized “single-agent” policies in decen-
tralized multi-agent systems by maintaining and reasoning over the possible joint
beliefs of the team. We describe how communication is used to integrate local
observations into the team belief as needed to improve performance. We show
both experimentally and through a detailed example how our approach reduces
communication while improving the performance of distributed execution.1

Keywords: Communication, distributed execution, decentralized POMDP

1. Introduction

Multi-agent systems and multi-robot teams can be used to perform tasks that
could not be accomplished by, or would be very difficult with, single agents.
Such teams provide additional functionality and robustness over single-agent
systems, but also create additional challenges. In any physical system, robots
must reason over, and act under, uncertainty about the state of the environment.
However, in many multi-agent systems there is additional uncertainty about
the collective state of the team. If the agents can maintain sufficient collective
belief about the state of the world, they can coordinate their joint actions to
achieve high reward. Conversely, uncoordinated actions may be costly.

Just as Partially Observable Markov Decision Problems (POMDPs) are used
to reason about uncertainty in single-agent systems, there has been recent
interest in using multi-agent POMDPs for coordination of teams of agents
(Xuan and Lesser, 2002). Unfortunately, multi-agent POMDPs are known

93
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 93–105.
©c 2005 Springer. Printed in the Netherlands.

94 Roth, et al.

to be highly intractable (Bernstein et al., 2000). Communicating (at zero
cost) at every time step reduces the computational complexity of a multi-agent
POMDP to that of a single agent (Pynadath and Tambe, 2002). Although
single-agent POMDPs are also computationally challenging, a significant body
of research exists that addresses the problem of efficiently finding near-optimal
POMDP policies (Kaelbling et al., 1998). However, communication is gener-
ally not free, and forcing agents to communicate at every time step wastes a
limited resource.

In this paper, we introduce an approach that exploits the computational
complexity benefits of free communication at policy-generation time, while
at run-time maintains agent coordination and chooses to communicate only
when there is a perceived benefit to team performance. Section 2 of this pa-
per gives an overview of the multi-agent POMDP framework and discusses
related work. Sections 3 and 5 introduce our algorithm for reducing the use
of communication resources while maintaining team coordination. Section 4
illustrates this algorithm in detail with an example and Section 6 presents ex-
perimental results that demonstrate the effectiveness of our approach at acting
in coordination while reducing communication.

2. Background and related work

There are several equivalent multi-agent POMDP formulations (i.e. DEC-
POMDP (Bernstein et al., 2000), MTDP (Pynadath and Tambe, 2002), POIPSG
(Peshkin et al., 2000)). In general, a multi-agent POMDP is an extension of a
single-agent POMDP where α agents take individual actions and receive local
observations, but accumulate a joint team reward. The multi-agent POMDP
model consists of the tuple 〈S,A,T ,Ω,O,R,γ〉γγ , where S is the set of n world
states, and A is the set of m joint actions available to the team, where each joint
action, ai, is comprised of α individual actions 〈ai

1 . . .ai
α〉. Agents are assumed

to take actions simultaneously in each time step. The transition function, T ,
depends on joint actions and gives the probability associated with starting in a
particular state si and ending in a state s j after the team has executed the joint
action ak. Although the agents cannot directly observe their current state, st ,
they receive information about the state of the world through Ω, a set of possi-
ble joint observations. Each joint observation ωi is comprised of α individual
observations, 〈ωi

1 . . .ωi
α〉. The observation function, O, gives the probability

of observing a joint observation ωi after taking action ak and ending in state s j.
The reward function R maps a start state and a joint action to a reward. This
reward is obtained jointly by all of the agents on the team, and is discounted
by the discount factor γ.γγ

Without communication, solving for the optimal policy of a multi-agent
POMDP is known to be NEXP-complete (Bernstein et al., 2000), making these

Decentralized Communication Strategies 95

problems fundamentally harder than single-agent POMDPs, which are known
to be PSPACE-complete (Papadimitriou and Tsitsiklis, 1987). A recent ap-
proach presents a dynamic programming algorithm for finding optimal policies
for these problems (Hansen et al., 2004). In some domains, dynamic program-
ming may provide a substantial speed-up over brute-force searches, but in gen-
eral, this method remains computationally intractable. Recent work focuses on
finding heuristic solutions that may speed up the computation of locally opti-
mal multi-agent POMDP policies, but these algorithms either place limitations
on the types of policies that can be discovered (e.g. limited-memory finite state
controllers (Peshkin et al., 2000)), or make strong limiting assumptions about
the types of domains that can be solved (e.g. transition-independent systems
(Becker et al., 2003)), or may, in the worst case, still have the same com-
plexity as an exhaustive search for the optimal policy (Nair et al., 2003). An-
other method addresses the problem by approximating the system (in this case,
represented as a POIPSG) with a series of smaller Bayesian games (Emery-
Montemerlo et al., 2004). This approximation is able to find locally optimal
solutions to larger problems than can be solved using exhaustive methods, but
is unable to address situations in which a guarantee of strict agent coordina-
tion is needed. Additionally, none of these approaches address the issue of
communication as a means for improving joint team reward.

Although free communication transforms a multi-agent POMDP into a large
single agent POMDP, in the general case where communication is not free,
adding communication does not reduce the overall complexity of optimal pol-
icy generation for a multi-agent POMDP (Pynadath and Tambe, 2002). Unfor-
tunately, for most systems, communication is not free, and communicating at
every time step may be unnecessary and costly. However, it has been shown
empirically that adding communication to a multi-agent POMDP may not only
improve team performance, but may also shorten the time needed to generate
policies (Nair et al., 2004).

In this paper, we introduce an algorithm that takes as input a single-agent
POMDP policy, computed as if for a team with free communication, and at run-
time, maintains team coordination and chooses to communicate only when it is
necessary for improving team performance. This algorithm makes two trade-
offs. First, it trades off the need to perform computations at run-time in order
to enable the generation of an infinite-horizon policy for the team that would
otherwise be highly intractable to compute. Secondly, it conserves communi-
cation resources, with the potential trade-off of some amount of reward.

3. Dec-Comm algorithm

Single-agent POMDP policies are mappings from beliefs to actions (π :B→
A), where a belief, b ∈ B, is a probability distribution over world states. An

96 Roth, et al.

individual agent in a multi-agent system cannot calculate this belief because
it sees only its own local observations. Even if an agent wished to calculate a
belief based only on its own observations, it could not, because the transition
and observation functions depend on knowing the joint action of the team.

A multi-agent POMDP can be transformed into a single-agent POMDP by
communicating at every time step. A standard POMDP solver can then be used
to generate a policy that operates over joint observations and returns joint ac-
tions, ignoring the fact that these joint observations and actions are comprised
of individual observations and actions. The belief over which this policy oper-
ates, which is calculated identically by each member of the team, is henceforth
referred to as the joint belief.ff

Creating and executing a policy over joint beliefs is equivalent to creating
a centralized controller for the team and requires agents to communicate their
observations at each time step. We wish to reduce the use of communication
resources. Therefore, we introduce the DEC-COMM algorithm that:

in a decentralized fashion, selects actions based on the possible joint
beliefs of the team
chooses to communicate when an agent’s local observations indicate that
sharing information would lead to an increase in expected reward

3.1 Q-POMDP: Reasoning over possible joint beliefs

The Q-MDP method is an approach for finding an approximate solution
to a large single-agent POMDP by using the value functions (VaVV (s) is the
value of taking action a in state s and henceforth acting optimally) that are
easily obtainable for the system’s underlying MDP (Littman et al., 1995).
In Q-MDP, the best action for a particular belief, b, is chosen according to
Q-MDP(b) = argmaxa ∑s∈S b(s)×VaVV (s), which averages the values of taking
each action in every state, weighted by the likelihood of being in that state as
estimated by the belief.

Analogously, we introduce the Q-POMDP method for approximating the
best joint action for a multi-agent POMDP by reasoning over the values of the
possible joint beliefs in the underlying centralized POMDP. In our approach,
a joint policy is created for the system, as described above. During execution,
each agent calculates a tree of possible joint beliefs of the team. These joint
beliefs represent all of the possible observation histories that could have been
observed by the team. We define Lt , the set of leaves of the tree at depth
t, to be the set of possible joint beliefs of the team at time t. Each Lt

i is a
tuple consisting of 〈bt ,pt ,�ωt〉, where �ωt is the joint observation history that
would lead to Lt

i , bt is the joint belief at that observation history, and pt is the
probability of the team observing that history.

Figure 1 presents the algorithm for expanding a single leaf in a tree of possi-
ble joint beliefs. Each leaf has a child leaf for every possible joint observation.

Decentralized Communication Strategies 97

For each observation, Pr(ωi|a,bt), the probability of receiving that observation
while in belief state bt and having taken action a, is calculated. The resulting
belief, bt+1, is calculated using a standard Bayesian update (Kaelbling et al.,
1998). The child leaf is composed of this new belief, bt+1, the probability
of reaching that belief, which is equivalent to the probability of receiving this
particular observation in the parent leaf times the probability of reaching the
parent leaf, and the corresponding observation history. Note that this algorithm
entirely ignores the actual observations seen by each agent, enabling the agents
to compute identical trees in a decentralized fashion.

GROWTREE(Lt
i , a)

Lt+1 ← 0//
for each ω j ∈ Ω

bt+1 ← 0//
Pr(ω j|a,bt) ← ∑s′∈SO(s′,a,ω j)∑s∈S T (s,a,s′)bt(s)
for each s’ ∈ S

bt+1(s′) ← O(s′,a,ω j∑s∈ST (s,a,s′)bt(s)
Pr(ω j|a,bt)

pt+1 ← p(Lt
i)×Pr(ω j|a,bt)

�ωt+1 ←�ω(Lt
i)◦ 〈ω j〉

Lt+1 ←Lt+1 ∪ [bt+1,pt+1,�ωt+1]
return Lt+1

Figure 1. Algorithm to grow the children of one leaf in a tree of possible beliefs

The Q-POMDP heuristic, Q-POMDP(Lt) = argmaxa ∑Lt
i ∈Lt p(Lt

i)×
Q(b(Li),a), selects a single action that maximizes expected reward over all
of the possible joint beliefs. Because this reward is a weighted average over
several beliefs, there may exist domains for which an action that is strictly
dominated in any single belief, and therefore does not appear in the policy,
may be the optimal action when there is uncertainty about the belief. We define
the Q function, Q(bt ,a) = ∑s∈SR(s,a)bt(s)+ γ∑ω∈Ω Pr(ω|a,bt)Vπ(bt+1), in
order to take these actions into account. The value function, Vπ(b), gives the
maximum attainable value at the belief b, but is only defined over those actions
which appear in the single-agent policy π. The Q function returns expected
reward for any action and belief. bt+1 is the belief that results from taking
action a in belief state bt and receiving the joint observation ω. Pr(ω|a,bt) and
bt+1 are calculated as in Figure 1.

Since all of the agents on a team generate identical trees of possible joint
beliefs, and because Q-POMDP selects actions based only on this tree, ignor-
ing the actual local observations of the agents, agents are guaranteed to select
the same joint action at each time step. However, this joint action is clearly

98 Roth, et al.

very conservative, as agents are forced to take into account all possible contin-
gencies. The DEC-COMM algorithm utilizes communication to allow agents
to integrate their actual observations into the possible joint beliefs, while still
maintaining team synchronization.

3.2 Dec-Comm: Using communication to improve
performance

An agent using the DEC-COMM algorithm chooses to communicate when
it sees that integrating its own observation history into the joint belief would
cause a change in the joint action that would be selected. To decide whether or
not to communicate, the agent computes aNC, the joint action selected by the
Q-POMDP heuristic based on its current tree of possible joint beliefs. It then
prunes the tree by removing all beliefs that are inconsistent with its own obser-
vation history and computes aC, the action selected by Q-POMDP based on
this pruned tree. If the actions are the same, the agent chooses not to commu-
nicate. If the actions are different, this indicates that there is a potential gain in
expected reward through communication, and the agent broadcasts its observa-
tion history to its teammates. When an agent receives a communication from
one of its teammates, it prunes its tree of joint beliefs to be consistent with the
observations communicated to it, and recurses to see if this new information
would lead it to choose to communicate. Because there may be multiple in-
stances of communication in each time step, agents must wait a fixed period of
time for the system to quiesce before acting. Figure 2 provides the details of
the DEC-COMM algorithm.

4. Example

To illustrate the details of our algorithm, we present an example in the two-
agent tiger domain introduced by Nair et al. (Nair et al., 2003). We use the tiger
domain because it is easily understood, and also because it is a problem that
requires coordinated behavior between the agents. The tiger problem consists
of two doors, LEFT and RIGHT. Behind one door is a tiger, and behind the
other is a treasure. S consists of two states, SL and SR, indicating respectively
that the tiger is behind the left door or the right door. The agents start out with
a uniform distribution over these states (b(SR) = 0.5).

Each agent has three individual actions available to it: OPENL, which opens
the left door, OPENR, which opens the right door, and LISTEN, an information-
gathering action that provides an observation about the location of the tiger.
Together, the team may perform any combination of these individual actions.
A joint action of 〈LISTEN, LISTEN〉 keeps the world in its current state. In
order to make this an infinite-horizon problem, if either agent opens a door,
the world is randomly and uniformly reset to a new state. The agents receive

Decentralized Communication Strategies 99

DEC-COMM(Lt ,�ωt
j)

aNC ← Q-POMDP(Lt)
L′ ← prune leafs inconsistent with �ωt

j from Lt

aC ← Q-POMDP(L′)
if aNC �=�� aC

communicate �ωt
j to the other agents

return DEC-COMM(L′,0//)
else

if communication �ωt
k was received from another agent k

Lt ← prune leafs inconsistent with �ωt
k from Lt

return DEC-COMM(Lt ,�ωt
j)

else
take action aNC

receive observation ωt+1
j

�ωt+1
j ←�ωt

j ◦ 〈ωt+1
j 〉

Lt+1 ← 0//
for each Lt

i ∈ Lt

Lt+1 ←Lt+1 ∪GROWTREE(Lt
i,aNC)

return [Lt+1,�ωt+1
j]

Figure 2. One time step of the DEC-COMM algorithm for an agent j

two observations, HL and HR, corresponding to hearing the tiger behind the
left or right door. For the purposes of our example, we modify the observation
function from the one given in Nair et al. If a door is opened, the observation is
uniformly chosen and provides no information; the probability of an individual
agent hearing the correct observation if both agents LISTEN is 0.7. (Observa-
tions are independent, so the joint observation function can be computed as the
cross-product of the individual observation functions.) This change makes it
such that the optimal policy is to hear two consistent observations (e.g. HR,
HR) before opening a door.

The reward function for this problem is structured to create an explicit coor-
dination problem between the agents. The highest reward (+20) is achieved
when both agents open the same door, and that door does not contain the
tiger. A lower reward (-50) is received when both agents open the incorrect
door. The worst case is when the agents open opposite doors (-100), or when
one agent opens the incorrect door while the other agent listens (-101). The
cost of 〈LISTEN, LISTEN〉 is -2. We generated a joint policy for this prob-
lem with Cassandra’s POMDP solver (Cassandra,), using a discount factor of
γ = 0.9. Note that although there are nine possible joint actions, all actions

100 Roth, et al.

other than 〈OPENL, OPENL〉, 〈OPENR, OPENR〉, and 〈LISTEN, LISTEN〉 are
strictly dominated, and we do not need to consider them.

Time Step 0: In this example, the agents start out with a synchronized joint
belief of b(SR) = 0.5. According to the policy, the optimal joint action at this
belief is 〈LISTEN, LISTEN〉. Because their observation histories are empty,
there is no need for the agents to communicate.

Time Step 1: The agents execute 〈LISTEN, LISTEN〉, and both agents ob-
serve HL. Each agent independently executes GROWTREE. Figure 3 shows
the tree of possible joint beliefs calculated by each agent. The Q-POMDP
heuristic, executed over this tree, determines that the best possible joint action
is 〈LISTEN, LISTEN〉.

0.5
p = 1.0

HL HL

HL H
R HR HL

HR HR

<LISTEN, LISTEN>

p = 0.29
0.5

p = 0.21
0.5

p = 0.21 p = 0.29
0.155 0.845

Figure 3. Joint beliefs after a single action

When deciding whether or not to communicate, agent 1 prunes all of the
joint beliefs that are not consistent with its having heard HL. The circled nodes
in Figure 3 indicate those nodes which are not pruned. Running Q-POMDP
on the pruned tree shows that the best joint action is still 〈LISTEN, LISTEN〉,
so agent 1 decides not to communicate. It is important to note that at this
point, a centralized controller would have observed two consistent observations
of HL and would perform 〈OPENR, OPENR〉. This is an instance in which
our algorithm, because it does not yet have sufficient reason to believe that
there will be a gain in reward through communication, performs worse than a
centralized controller.

Time Step 2: After performing another 〈LISTEN, LISTEN〉 action, each
agent again observes HL. Figure 4 shows the output of GROWTREE after the
second action. The Q-POMDP heuristic again indicates that the best joint
action is 〈LISTEN, LISTEN〉.

Agent 1 reasons about its communication decision by pruning all of the joint
beliefs that are not consistent with its entire observation history (hearing HL
twice). This leaves only the nodes that are circled in Figure 4. For the pruned
tree, Q-POMDP indicates that the best action is 〈OPENR, OPENR〉. Because
the pre-communication action, aNC, differs from the action that would be cho-

Decentralized Communication Strategies 101

p = 0.29
0.155

0.155
p = 0.06 p = 0.4

0.5
p = 0.4

0.845
p = 0.06

0.5

0.5
p = 0.21

0.5

HL H
R HR HL

<LISTEN, LISTEN><

<LISTEN, LISTEN>

HL HL HR HR

0.5
p = 0.21 p = 0.29

0.845

0.155 0.1550.033
p = 0.12 p = 0.06 p = 0.06 p = 0.04p = 0.06 p = 0.06

0.5

HL HL

H
L

H
R

H

HR HLL

H HR HR

H
L

 H
L

HL H
R HR HRHR HLL

p = 1.0

.

Figure 4. Joint beliefs after the second action

sen post-communication, aC, agent 1 chooses to communicate its observation
history to its teammate.

In the meantime, agent 2 has been performing an identical computation
(since it too observed two instances of HL) and also decides to communicate.
After both agents communicate, there is only a single possible belief remain-
ing, b(SR) = 0.033. The optimal action for this belief is 〈OPENR, OPENR〉,
which is now performed by the agents.

5. Particle filter representation

The above example shows a situation in which both agents decide to com-
municate their observation histories. It is easy to construct situations in which
one agent would choose to communicate but the other agent would not, or ex-
amples in which both agents would decide not to communicate, possibly for
many time steps (e.g. the agents observe alternating instances of HL and HR).
From the figures, it is clear that the tree of possible joint beliefs grows rapidly
when communication is not chosen. To address cases where the agents do not
communicate for a long period of time, we present a method for modeling the
distribution of possible joint beliefs using a particle filter.

A particle filter is a sample-based representation that can be used to encode
an arbitrary probability distribution using a fixed amount of memory. In the
past, particle filters have been used with single-agent POMDPs (i.e. for state
estimation during execution (Poupart et al., 2001)). We draw our inspiration
from an approach that finds a policy for a continuous state-space POMDP by
maximizing over a distribution of possible belief states, represented by a parti-
cle filter (Thrun, 2000).

In our approach, each particle, Li is a tuple of α observation histories,
〈�ωa . . .�ωα〉, corresponding to a possible observation history for each agent.
Taken together, these form a possible joint observation history, and along with
the system’s starting belief state, b0, and the history of joint actions taken by

102 Roth, et al.

the team, �a, uniquely identify a possible joint belief. Every agent stores two
particle filters, L joint , which represents the joint possible beliefs of the team,
pruned only by communication, and Lown, those beliefs that are consistent with
the agent’s own observation history. Belief propagation is performed for these
filters as described in (Thrun, 2000), with the possible next observations for
L joint taken from all possible joint observations, and the possible next obser-
vations for Lown taken only from those joint observations consistent with the
agent’s own local observation at that time step.

The DEC-COMM algorithm proceeds as described in Section 3, with L joint

used to generate aNC and Lown used to generate ac. The only complication
arises when it comes time to prune the particle filters as a result of communi-
cation. Unlike the tree described earlier that represents the distribution of pos-
sible joint beliefs exactly, a particle filter only approximates the distribution.
Simply removing those particles not consistent with the communicated obser-
vation history and resampling (to keep the total number of particles constant)
may result in a significant loss of information about the possible observation
histories of agents that have not yet communicated.

Looking at the example presented in Section 4, it is easy to see that there is a
correlation between the observation histories of the different agents. (i.e. If one
agent observes 〈HL,HL〉, it is unlikely that the other agent will have observed
〈HR,HR〉.) To capture this correlation when pruning, we define a similarity
metric between two observation histories, Figure 5. When an observation his-
tory �ωt

i has been communicated by agent i, to resample the new L joint , the
observation history in each particle corresponding to agent i is compared to�ωt

i .
The comparison asks the question, “Suppose an agent has observed �ωt

i after
starting in belief b0 and knowing that the team has taken the joint action his-
tory�at . What is the likelihood that an identical agent would have observed the
observation history �ωt

j?” The value returned by this comparison is used as a
weight for the particle. The particles are then resampled according to the calcu-
lated weights, and the agent i observation history for each particle is replaced
with �ωt

i .

6. Results and analysis

We demonstrate the performance of our approach experimentally by com-
paring the reward achieved by a team that communicates at every time step
(i.e. a centralized controller) to a team that uses the DEC-COMM algorithm to
select actions and make communication decisions. We ran our experiment on
the two-agent tiger domain as described in Section 4. In each experiment, the
world state was initialized randomly, and the agents were allowed to act for
8 time steps. The team using a particle representation used 2000 samples to

Decentralized Communication Strategies 103

SIMILARITY(�ωt
i,�ωt

j,�a
tt)

sim ← 1
b ← b0

for t′ = 1 . . . t
for each s ∈ S

b(s) ←O(s,at ′ ,ωt ′
i)b(s)

normalize b
sim ← sim×∑s∈SO(s,at ′ ,ωt ′

j)b(s)
for each s ∈ S

b(s) ← ∑s′∈ST (s′,at ′ ,s)b(s)
normalize b

return sim

Figure 5. The heuristic used to determine the similarity between two observation histories,
where �ωt

i is the true (observed) history

represent the possible beliefs. We ran 30000 trials of this experiment. Table 1
summarizes the results of these trials.

Table 1. Experimental results

µReward σReward µComm σComm

Full Comm. 17.0 37.9 16 0
DEC-COMM (tree) 8.9 28.9 2.9 1.1

DEC-COMM (particles) 9.4 30.3 2.6 1.0

It may appear at first glance as though the performance of the DEC-COMM

algorithm is substantially worse than the centralized controller. However, as
the high standard deviations indicate, the performance of even the centralized
controller varies widely, and DEC-COMM under-performs the fully communi-
cating system by far less than one standard deviation. Additionally, it achieves
this performance by using less than a fifth as much communication as the fully
communicating system. Note that the particle representation performs compa-
rably to the tree representation (within the error margins), indicating that with
a sufficient number of particles, there is no substantial loss of information.

We are currently working on comparing the performance of our approach
to COMMUNICATIVE JESP, a recent approach that also uses communica-
tion to improve the computational tractability and performance of multi-agent
POMDPs (Nair et al., 2004). However, this comparison is difficult for several
reasons. First of all, the COMMUNICATIVE JESP approach treats commu-
nication as domain-level action in the policy. Thus, if an agent chooses to

104 Roth, et al.

communicate in a particular time step, it cannot take an action. More signifi-
cantly, their approach deals only with synchronized communications, meaning
that if one agent on a team chooses to communicate, it also forces all its other
teammates to communicate at that time step.

7. Conclusion

We present in this paper an approach that enables the application of cen-
tralized POMDP policies to distributed multi-agent systems. We introduce the
novel concept of maintaining a tree of possible joint beliefs of the team, and
describe a heuristic, Q-POMDP, that allows agents to select the best action
over the possible beliefs in a decentralized fashion. We show both through a
detailed example and experimentally that our DEC-COMM algorithm makes
communication decisions that improve team performance while reducing the
instances of communication. We also provide a fixed-size method for main-
taining a distribution over possible joint team beliefs.

In the future, we are interested in looking at factored representations that
may reveal structural relationships between state variables, allowing us to ad-
dress the question of what to communicate, as well was when to communicate.
Other areas for future work include reasoning about communicating only part
of the observation history, and exploring the possibility of agents asking their
teammates for information instead of only telling what they know.

Notes

1. This work has been supported by several grants, including NASA NCC2-1243, and by Rockwell
Scientific Co., LLC under subcontract no. B4U528968 and prime contract no. W911W6-04-C-0058 with
the US Army. This material was based upon work supported under a National Science Foundation Graduate
Research Fellowship. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, by the sponsoring institutions, the U.S. Government or any other entity.

References
Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2003). Transition-independent de-

centralized Markov Decision Processes. In International Joint Conference on Autonomous
Agents and Multi-agent Systems.

Bernstein, D. S., Zilberstein, S., and Immerman, N. (2000). The complexity of decentralized
control of Markov Decision Processes. In Uncertainty in Artificial Intelligence.

Cassandra, A. R. POMDP solver software. http://www.cassandra.org/pomdp/code/index.shtml.
Emery-Montemerlo, R., Gordon, G., Schneider, J., and Thrun, S. (2004). Approximate solu-

tions for partially observable stochastic games with common payoffs. In International Joint
Conference on Autonomous Agents and Multi-Agent Systems.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming for partially
observable stochastic games. In National Conference on Artificial Intelligence.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in partially
observable domains. Artificial Intelligence.

Decentralized Communication Strategies 105

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995). Learning policies for partially
observable environments: Scaling up. In International Conference on Machine Learning.

Nair, R., Pynadath, D., Yokoo, M., Tambe, M., and Marsella, S. (2003). Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In International
Joint Conference on Artificial Intelligence.

Nair, R., Roth, M., Yokoo, M., and Tambe, M. (2004). Communication for improving pol-
icy computation in distributed POMDPs. In International Joint Conference on Autonomous
Agents and Multi-agent Systems.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of Markov Decision Processes.
Mathematics of Operations Research.

Peshkin, L., Kim, K.-E., Meuleau, N., and Kaelbling, L. P. (2000). Learning to cooperate via
policy search. In Uncertainty in Artificial Intelligence.

Poupart, P., Ortiz, L. E., and Boutilier, C. (2001). Value-directed sampling methods for moni-
toring pomdps. In Uncertainty in Artificial Intelligence.

Pynadath, D. V. and Tambe, M. (2002). The communicative Multiagent Team Decision Prob-
lem: Analyzing teamwork theories and models. Journal of AI Research.

Thrun, S. (2000). Monte carlo pomdps. In Neural Information Processing Systems.
Xuan, P. and Lesser, V. (2002). Multi-agent policies: From centralized ones to decentralized

ones. In International Joint Conference on Autonomous Agents and Multi-agent Systems.

IMPROVING MULTIROBOT
MULTITARGET TRACKING BY
COMMUNICATING NEGATIVE
INFORMATION

Matthew Powers, Ramprasad Ravichandran, Frank Dellaert,
Tucker Balch
Borg Lab
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332–0250

{mpowers, raam, dellaert, tucker}@cc.gatech.edu

Abstract In this paper, we consider the sensor fusion problem for a team of robots, each
equipped with monocular color cameras, cooperatively tracking multiple am-
biguous targets. In addition to coping with sensor noise, the robots are unable to
cover the entire environment with their sensors and may be out numbered by the
targets. We show that by explicitly communicating negative information (i.e.
where robots don’t see targets), tracking error can be reduced significantly in
most instances. We compare our system to a baseline system and report results.

Keywords: multirobot, multitarget tracking, sensor fusion, negative information

1. Introduction

The problem of using multiple robots to track multiple targets has been ap-
proached from several angles. Some previous work (Parker, 1997),(Parker,
1999),(Werger and Matarić, 2000) deals with the problem of allocating robotic´
resources to best observe the targets, while other work (Reid, 1979),(Schulz
and Cremers, 2001),(Khan and Dellaert, 2003a) deals with probabilistically
tracking multiple targets from a single or static vantage point. In this work,
we deal with the sensor fusion problem for multiple moving observer robots
cooperatively tracking multiple ambiguous moving targets. It is assumed the
robots have a limited sensor range and the robots’ mission is not exclusively to
track the targets, but to keep track of the targets while performing other tasks
(which may or may not require accurate knowledge of the targets’ positions).
Due to this final constraint, we do not assume we may move the robots for the

107
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 107–117.
©c 2005 Springer. Printed in the Netherlands.

108 Powers, et al.

purpose of sensing, but we must make the most effective use of the informa-
tion we have. It is likely the observing robots are unable to see all the targets
simultaneously, individually or collectively.

This scenario is motivated by, although not unique to, the problem in ro-
bot soccer (http://www.robocup.org/) of keeping track of one’s opponents. In
the opponent tracking problem, a team of robots must maintain a belief about
the position of a team of identical opponent robots in an enclosed field. The
observing and target (opponent) robots are constantly moving and performing
several tasks in parallel, such as chasing the ball and localization. Observing
robots are usually unable to act in a way to optimize their observations of their
opponents since acting with respect to the ball is the primary objective. While
the observing robots may not be able to act with respect to their opponents,
it is still advantageous to accurately estimate their opponents’ positions since
that information can be used to improve the value of their actions on the ball
(e.g. passing the ball to a teammate not covered by an opponent).

We address this problem by communicating a relatively small amount of
information among a team of robots, fusing observations of multiple targets
using multiple particle filters. Importantly, negative information is communi-
cated, along with observations of targets, in the form of parameters to a sensor
model. When the robots are not able to see all the targets simultaneously, neg-
ative information allows the robots to infer information about the unobserved
targets. While each robot’s sensor model is assumed to be identical in our
experiments, heterogeneous sensor models could easily be used, allowing het-
erogeneous robot teams to function in the same way.

Our system has been tested in laboratory conditions, using moving observer
robots and targets. The data gathered was analyzed offline so that other meth-
ods could be tested on the same data. Noting prior art (Schulz and Cremers,
2001), we expect that the algorithms described in this paper can be efficiently
run on board the robot platforms used to gather data in our experiments. It is
also expected that the results of this paper will be applicable to a wide range of
multirobot, multitarget tracking problems.

2. Problem Definition

This work is concerned with the sensor fusion problem of tracking multiple
moving targets with a cooperative multirobot system. It is assumed that the
robots cannot act with respect to the targets (e.g. move so as to optimize their
view of the targets).

More formally, a team of m robots R must track a set of n targets O within
an enclosed space S. The members of R move independently of the members
of O and vice versa. R’s sensors may or may not be able to cover the entire
space S or observe all the members of O at a given timestep t. At each timestep

Improving Multirobot Multitarget Tracking 109

t, each robot ri ∈ R produces a measurement, (which may be null), zi j
t , of each

target o j ∈ O.
The robots may communicate information with their teammates to collec-

tively estimate the position of each target at each timestep. The goal of the
team is to minimize error from ground truth of each position estimate.

3. Related Work

3.1 Multirobot Sensing

In (Parker, 1997) Parker defines the problem of Cooperative Multirobot Ob-
servation of Multiple Moving Targets (CMOMMT) as follows. Given: S, a
bounded enclosed two-dimensional region; R, a team of team of m robots;
O(t), a set of n targets such that the binary function In(o j(t),S) returns true
when target o j ∈ O(t) is within the region S at time t; A(t) an m × n matrix
defined so

ai j(t) =
{

1 if robot ri is monitoring target o j(t) in S at time t
0 otherwise

(1)

and the logical OR operator defined as

k∨
i=1

hi =
{

1 if there exists an i such that hi = 1
0 otherwise

(2)

the goal of CMOMMT is to maximize the value

∑T
t=0 ∑m

j=1
∨k

i=1 ai j(t)
T ×m

(3)

This problem has been approached in several ways, with each approach
showing its own strengths. In (Parker, 1997),(Parker, 1999) the ALLIANCE
architecture was used to allocate robotic resources for the CMOMMT task.
Task allocation was done implicitly using one-way communication. In con-
trast, Werger and Mataric (Werger and Matari´ c, 2000) used explicit communi-´
cation to assign robots to targets.

While the above systems worked within relatively simple open environ-
ments, Jung and Sukhatme (Jung and Sukhatme, 2002b),(Jung and Sukhatme,
2002c),(Jung and Sukhatme, 2002a) worked in more complex environments.
Their approach was to deploy robots to different regions of the environment
using a topological map and estimates of the target density in each region.
They show that the region-based approach works well when the target density
is high or the environment is subject to occlusions.

Varying somewhat from above stated goal of CMOMMT, Stroupe and Balch
proposed MVERT (Stroupe and Balch, 2004a) as a distributed reactive system

110 Powers, et al.

to navigate robot teams so as to maximize the team’s knowledge of the envi-
ronment. They demonstrate a team of robots moving to gain information about
static targets, and then expand (Stroupe, 2003) (Stroupe and Balch, 2004b)
to demonstrate a team navigating to optimize its knowledge about a group of
moving targets.

Howard et al (Howard and Sukhatme, 2003) present a method for improving
localization of a team of robots by using the robots to observe each other and
maintain an ego-centric model of the locations of the other members of the
robot team.

3.2 Particle filters

Particle filters have been used extensively in the tracking community to rep-
resent arbitrary likelihood distributions over multidimensional space (Gordon
and Smith, 1993),(Isard and Blake, 1996),(Carpenter and Fernhead, 1997),
(Dellaert and Thrun, 1999). Particle filter theory is well-documented; (Aru-
lampalam and Clapp, 2002) and (Khan and Dellaert, 2003a) explain it well.
We give a brief review, based on (Khan and Dellaert, 2003a), to aid the under-
standing of our system.

A particle filter is a Bayesian filter, meaning that the posterior distribution is
recursively updated over the current state XtXX , (the targets’ locations) given all
observations ZtZZ = {Z1, ...,ZtZZ } up to time t (all the robots’ senor readings up to
the current time).

P(XtXX |ZtZZ) = kP(ZtZZ |XtXX)P(XtXX |ZtZZ −1) (4)

= kP(ZtZZ |XtXX)
∫

X

∫∫
tXX −1

P(XtXX |XtXX −1)P(XtXX −1|ZtZZ −1) (5)

The likelihood P(ZtZZ |XtXX) is known as the sensor or measurement model and
P(XtXX |XtXX −1) the motion model. k is a normalization factor.

Particle filters approximate the posterior P(XtXX −1|ZtZZ −1) recursively as a set of

N samples, or particles, {X (r)
tXX −1,π

(r)
t−1}N

r=1. π(r)
t−1 is the weight for particle X (r)

tXX −1.
A Monte Carlo approximation of the integral yields:

P(XtXX |ZtZZ) ≈ kP(ZtZZ |XtXX)∑
r

π(r)
t−1P(XtXX |X (r)

(t−1)) (6)

Intuitively, the filter functions recursively in two steps:
Prediction – Each particle is moved from its current location according to

a stochastic motion model.
Update – Each particle is weighted according to a sensor model. Particles

are resampled with replacement from the weighted set. While the number
of particles is maintained in the resampled set, particles that were weighted
heavily are likely to be resampled multiple times, while particles that were not
weighted heavily are likely to be not chosen at all.

Improving Multirobot Multitarget Tracking 111

3.3 Multitarget tracking

In classical multitarget tracking, targets are kept distinct by performing a
data association step after the measurement step. Trackers of this type in-
clude the multiple hypothesis tracker (Reid, 1979), and the joint probabilistic
data association filter (JPDAF) (Bar-Shalom and Scheffe, 1980),(Fortmann and
Scheffe, 1983). These data association techniques have even been adapted to
work with particle filters, as in the particle filtering version of JPDAF (Schulz
and Cremers, 2001).

When a tracking problem is likely to result in arbitrary or multimodal like-
lihood distributions, the standard particle filter can be adapted to fit multitarget
tracking (Khan and Dellaert, 2003a). The joint particle filter treats each target
as an increase in dimensionality of a single filter. Each particle represents a
proposed state for all targets being tracked. That is, if ten targets are being
tracked across the x-y plane, each particle represents a hypothesis over twenty
dimensions, (x1

t ,y
1
t ,x

2
t ,y

2
t , ...,x

10
t ,y10

t). While this method is algorithmically
simple, the number of samples needed to represent high dimensional spaces
can become intractably high.

In instances where the states represented by a joint particle filter can be di-
vided into several nearly independent subsets, the joint particle filter can be
approximated by splitting it up into several parallel filters to reduce the state
space of any given filter. In the above example, the twenty dimensions repre-
senting the ten targets being tracked over the x-y plane can be divided up into
ten nearly independent subsets, (x1,y1),(x2,y2), ...,(x10,y10). Each of these
subsets can be treated as a separate tracking problem. If the targets are known
to interact, Khan et al (Khan and Dellaert, 2003a),(Khan and Dellaert, 2003b)
demonstrate several approaches for tracking interacting targets.

4. Approach

4.1 Negative Information

Our approach to minimizing the collective target position estimate error by
the multirobot system described in Section 2 is relatively simple, and may
be applicable to other multirobot tracking systems. A separate particle filter
is used to track each target’s position, XtXX . Each robot’s observations, Zi

tZZ are
broadcast to its teammates. Observations are greedily associated with targets
by comparing to the most recent estimates of the targets’ positions, XtXX −1. Solv-
ing analytically,

P({x j
t }|{ri

trr ,Zi
tZZ }) ∝ ∏

i
L({x j

t };ri
tr ,Zi

tZZ)×P({x j
t }|{ri

trr }) (7)

112 Powers, et al.

Since O moves independently of R, and we assume that the members of O
move independently of each other,

P({x j
t }|{ri

trr ,Zi
tZZ }) ∝ ∏

i
∏

j
L(x j

t ;ri
tr ,zi j

t)×P({x j
t }) (8)

The key insight of this work is that even if target j is unobservable by robot
i, (i.e. zi j

t = φ), the information represented by zi j
t is still usable for tracking the

targets. Since it is known that n targets are in the environment, any null obser-
vation, zi j

t = φ, can be treated as a negative observation for target j. Accounting
for the special case of a negative observation,

L(x j
t ;zi j

t ,ri
trr) =

{
L−(x j

t ;ri
trr) if zi j

t = φ
L+(x j

t ;zi j
t ,ri

trr) otherwise
(9)

Because the likelihood of not seeing target j is not uniform across the envi-
ronment, this negative information still adds information to the estimate of the
target’s position.

4.2 Sensor Models

Developing appropriate sensor models is key to making use of negative in-
formation. Because sensor models necessarily vary from platform to platform,
every implementation will be unique.

We assume that each measurement Zi
tZZ consists of n sensor readings (corre-

sponding to the n targets), consisting either of a range and bearing, or, in the
case that a target is unobservable by ri, a null reading:

Zi
tZZ ∈Mn (10)

where
M = φ∪ (R×SO1) (11)

In the case that target j is observable by robot i,

zi j
t = {r,rr θ} x j

t = {xo,yo} ri
tr = {xr,yr,θr} (12)

ror =
√

(xo − xr)2 +(yo − yr)2 (13)

θo = atan2((yo − yr),(xo − xr))−θr (14)

L+(zi j
t |x j

t ,r
i
tr) ∝ e−(r−ror)/(2σ2

r)× e−(θ−θo)/(2σ2
θ) (15)

In the case of a null reading, the sensor model reflects the likelihood of not
observing target j. Here, the robots are assumed to have a maximum sensor pan
angle θmax (i.e. the robots have a limited field of view, and can not see behind

Improving Multirobot Multitarget Tracking 113

Figure 1. An example of sensor models representing positive and negative information. Fig-
ure 1a shows the locations of two robots and three targets Robot 1 can see target 1, while robot
2 can see target 1 and 2. Neither can see target 3. Figure 1b shows the likelihood functions for
the location of each target given the observations of the robots.

them). Additionally, it is assumed the robots detect the targets perfectly within
the nominal sensor range of rnomr , never detect targets beyond the maximum
range of rmaxr and detect targets with linearly degrading reliability between rnomr
and rmaxr .

L−(zi j
t = φ|x j

t ,r
i
trr) ∝

⎧⎨⎧⎧⎩⎨⎨
1 if θo > θmax or ror > rmaxr
0 if ror < rnomr

rmaxr −ror
rmaxr −rnomr otherwise

(16)

Figure 1 give a graphical representation of the above sensor models within
the context of two robots tracking three targets. Figure 1a shows the location
of the robots and targets in the environment. From its position, robot 1 can ob-
serve target 1. Robot 2 can observe targets 1 and 2. Neither robot can observe
target 3. Figure 1b shows the respective likelihood functions for the location of
each target given the observations of robot 1 and 2 and the combined observa-
tions. Note that even though target 3 is not directly observed, some information
can be inferred simply from the lack of an observation and the known position
of each observing robot.

5. Experimental Approach

5.1 Implementation

Experiments were conducted on a physical robot team of four Sony AIBO
robots. The robots used a hybrid software implementation. The filters were
implemented in Matlab on a laboratory computer. Low level image processing
and motions were implemented in C++ on the robots. CMVision was used
for image processing (Bruce and Veloso, 2000). Motion commands were sent
from Matlab to the robots and odometry and observation feedback were sent
back from the robots to Matlab. All communication was implemented using

114 Powers, et al.

TCP/IP over wireless Ethernet. A pair of calibrated overhead cameras and a
template-matching algorithm were used to establish ground truth.

The following measured values were used in the robots’ sensor model: θmax =
110◦, rnomr = 1000mm, rmaxr = 1300mm, σr = 150mm, σθ = 6◦.

5.2 Targets and Landmarks

Six bicolor landmarks of a known size (10 centimeter radius and 20 centime-
ter height) were used by the robots for localization. The four targets tracked
were also bicolor cylinders but had a radius of 8 centimeters and height of 16
centimeters. Although the targets were uniquely colored, this fact was only
used for measuring ground truth. The observer robots treated all targets as
identical. The targets were mounted on remote-controlled platforms. The size
of the environment was restricted to 2.5 meters by 2.5 meters. Figure 2 shows
the experimental setup.

5.3 Experiments

Experiments were run using combinations of 1, 2, 3 and 4 observer robots
and 1, 2, 3 and 4 targets. At each logical timestep, the targets and the ob-
server robots performed a random walk, all observing robots recorded their
observations and ground truth measurements were taken. The percent of the
field observable by the robots varied with robots’ poses at every timestep and
ranged from more than 90% to less than 20%. All targets were not necessarily
visible at a given timestep, creating an inherent loss of information.

Several trials of each class of experiment were run with each combination
of target and robot numbers. Data was analyzed off-board to allow direct com-
parisons of tracking techniques on identical data.

A baseline technique was compared against the experimental system. Work-
ing under the hypothesis that making use of negative information will improve
the error of the tracked target position, the baseline technique was identical to
the experimental system with the exception that it did not take into account the
negative information sensor model. Error between the ground truth and each
tracker was calculated for each timestep of each experiment.

6. Results

Figures 3a and b show the average tracking error over all experiments in
each configuration of 1, 2, 3 and 4 observer robots and targets, respectively,
for the baseline and experimental systems. Figure 3c shows the difference in
the tracking errors between the baseline and experimental systems. Positive
numbers in this graph show a reduction in error in the experimental system
over the baseline system.

Improving Multirobot Multitarget Tracking 115

Figure 2. The experimental setup, including four observer robots and four targets. The grid
on the ground was used to calibrate the overhead ground truth camera.

Note that the largest reductions in error occur when the observer robots are
most outnumbered by the targets. This reinforces the hypothesis that com-
municating negative information improves tracking accuracy. Teams with the
lowest robot to target ratios cover the least of the environment. Making use of
negative information affords the largest improvement in performance. Teams
with high robot to target ratios already cover the environment well, and find
little use for negative information.

7. Conclusion and Future Work

This paper has presented the theory that communication of negative infor-
mation can improve the accuracy of multirobot, multitarget tracking. The most
improvement can be seen in situations in which the observing robots are unable
to cover the entire environment. It seems likely the benefits of communicat-
ing negative information is not unique to this to this particular domain. Re-
lated work such as (Jung and Sukhatme, 2002b) or (Stroupe and Balch, 2004b)
might be improved in this way.

We are currently working on implementing a real-time multirobot multitar-
get tracking system in the form of a robot soccer team that can cooperatively
track its opponents. We are also looking at ways in which this principle can be
used in sensor networks to either improve position estimate accuracy or reduce
the number of sensors necessary to achieve a given performance goal. It is ex-
pected that this principle will easily cross domain lines, although this has not
yet been validated.

Acknowledgment

We want to acknowledge NSF grant #0347743 for funding this work.

116 Powers, et al.

Figure 3. The results of the baseline and experimental systems. Figure 3a shows the average
error of all trials of the baseline system, by number of observers and number of targets. 3b
shows the average error of all trials of the experimental system. 3c shows the reduction in error
by the experimental system over the baseline system. Positive values indicate a reduction in
error by the experimental system.

References
Arulampalam, S., M.-S. G. N. and Clapp, T. (2002). A tutorial on particle filters for on-line

non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing.
Bar-Shalom, Y., F. T. and Scheffe, M. (1980). Joint probabilistic data association for multiple

targets in clutter. In Conference on Information Sciences and Systems.
Bruce, J., B. T. and Veloso, M. (2000). Fast and inexpensive color image segmentation for inter-

active robots. In 2003 IEEE International Conference on Intelligent Robotics and Systems.
Carpenter, J., C. P. and Fernhead, P. (1997). An improved particle filter for non-linear problems.

Technical report, Department of Statistics, University of Oxford.
Dellaert, F., F. D. B. W. and Thrun, S. (1999). Monte carlo localization for mobile robots. In

IEEE International Conference on Robotics and Automation.
Fortmann, T., B.-S. Y. and Scheffe, M. (1983). Sonar tracking of multiple targets using joint

probabilistic data association. IEEE Journal of Oceanic Engineering, 8.
Gordon, N., S.-D. and Smith, A. (1993). Novel approach to nonlinear/non-gaussian bayesian

state estimation. Communication, Radar and Signal Processing, (140):107–113.
Howard, A., M.-M. and Sukhatme, G. (2003). Putting the ’i’ in ’team’: an ego-centric approach

to cooperative localization. In IEEE International Conference on Robotics and Automation.
Isard, M. and Blake, A. (1996). Contour tracking by stochastic propagation of conditional den-

sity. In European Conference on Computer Vision, pages 343–356.

Improving Multirobot Multitarget Tracking 117

Jung, B. and Sukhatme, G. (2002a). Cooperative tracking using mobile robots and environment
embedded, networked sensors. In IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation.

Jung, B. and Sukhatme, G. (2002b). A region-based approach for coopeative multi-target track-
ing in a structured environment. In IEEE International Conference Intelligent Robots and
Systems.

Jung, B. and Sukhatme, G. (2002c). Tracking targets using multiple robots: The effect of envi-
ronment occlusion. Autonoumous Robots Journal, 13(3):191–205.

Khan, Z., B.-T. and Dellaert, F. (2003a). Efficient particle filter-based tracking of multiple in-
teracting targets using an mrf-based motion model.

Khan, Z., B.-T. and Dellaert, F. (2003b). An mcmc-based particle filter for tracking multiple
interacting targets. Technical Report GIT-GVU-03-35, College of Computing GVU Center,
Georgia Institute of Technology.

Parker, L. (1997). Cooperative motion control for multi-target observation. In IEEE Interna-
tional Conference Intelligent Robots and Systems.

Parker, L. (1999). Cooperative robotics for multi-target observation. Intelligent Automation and
Soft Computing, 5(1):5–19.

Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Trans. on Automation and
Control, AC-24:84–90.

Schulz, D., B.-W. F. D. and Cremers, A. B. (2001). Tracking multiple moving targets with
a mobile robot using particle filters and statistical data association. In IEEE International
Conference on Robotics and Automation.

Stroupe, A. (2003). Collaborative Execution of Exploration and Tracking Using Move Value
Estimation for Robot Teams. PhD thesis, Carnegie Mellon University.

Stroupe, A. and Balch, T. (2004a). Value-based action selection for observation with robot teams
using probabilistic techniques. Journal of Robotics and Autonomous Systems.

Stroupe, A., R.-R. and Balch, T. (2004b). Value-based action selection for observation of dy-
namic objects with robot teams. In IEEE International Conference on Robotics and Automa-
tion.

Werger, B. and Mataric, M. (2000). Broadcast of local eligibility: Behavior-based control for´
strongly cooperative robot teams. In Distributed Autonomous Robotic Systems.

ENABLING AUTONOMOUS SENSOR-SHARING
FOR TIGHTLY-COUPLED COOPERATIVE
TASKS

Lynne E. Parker, Maureen Chandra, Fang Tang
Distributed Intelligence Laboratory, Department of Computer Science
The University of Tennessee, Knoxville, Tennessee USA

parker@cs.utk.edu, chandra@cs.utk.edu, ftang@cs.utk.edu

Abstract This paper presents a mechanism enabling robot team members to share sensor
information to achieve tightly-coupled cooperative tasks. This approach, called
ASyMTRe, is based on a distributed extension of schema theory that allows
schema-based building blocks to be interconnected in many ways, regardless
of whether they are on the same or different robots. The inputs and outputs of
schema are labeled with an information type, inspired by the theory of informa-
tion invariants. By enabling robots to autonomously configure their distributed
schema connections based on the flow of information through the system, robot
teams with different collective capabilities are able to generate significantly dif-
ferent cooperative control strategies for solving the same task. We demonstrate
the ability of this approach to generate different cooperative control strategies
in a proof-of-principle implementation on physical robots performing a simple
transportation task.

Keywords: Sensor-sharing, heterogeneous teams, multi-robot coalitions

1. Introduction

In multi-robot systems, it is advantageous to be able to treat each sensory
resource on the team as a resource available to any necessitous robot team
member, rather than being exclusively owned by an individual robot. The abil-
ity to share sensory information, appropriately translated to another robot’s
perspective, can extend the task capabilities of a given multi-robot team. In
practice, however, this is difficult to achieve because each sensory resource
is in fact fixed on a particular robot, and provides information only from that
robot’s frame of reference. Typically, mechanisms for sharing distributed sen-
sory information are developed in an application-specific manner. The human
designer might pre-define roles or subtasks, together with a list of required

119
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 119–130.
©c 2005 Springer. Printed in the Netherlands.

120 Parker, et al.

capabilities needed to accomplish each role or subtask. The robot team mem-
bers can then autonomously select actions using any of a number of common
approaches to multi-robot task allocation (see (Gerkey and Mataric, 2004) for
a comparison of various task allocation approaches), based upon their suit-
ability for the role or subtask, as well as the current state of the multi-robot
system. The shortcoming of this approach is that the designer has to consider
in advance all of the possible combinations of robot capabilities that might be
present on a multi-robot team performing a given task, and to design coopera-
tive behaviors in light of this advance knowledge.

However,asdescribedin(Parker,2003), the specific robot capabilitiespresent
on a team can have a significant impact on the approach a human designer
would choose for the team solution. The example given in (Parker, 2003) is
that of deploying a mobile sensor network, in which cooperative solutions for
the same task could involve potential-field-based dispersion, marsupial deliv-
ery, or assistive navigation, depending on the capabilities of the team members.

Our research is aimed at overcoming these challenges by designing flexi-
ble sensor-sharing mechanisms within robot behavior code that do not require
task-specific, pre-defined cooperative control solutions, and that translate di-
rectly into executable code on the robot team members. Some related work
in sensor-sharing has led to the development of application-specific solutions
that allow a robot team member to serve as a remote viewer of the actions of
other teammates, providing feedback on the task status to its teammates. In
particular, this has been illustrated by several researchers in the multi-robot
box pushing and material handling domain (Gerkey and Mataric, 2002, Adams
et al., 1995, Spletzer et al., 2001, Donald et al., 1997), in which one or more
robots push an object while a remote robot or camera provides a perspective
of the task status from a stand-off position. Our work is aimed at generating
these types of solutions automatically, to enable robot teams to coalesce into
sensor-sharing strategies that are not pre-defined in advance.

Our approach, which we call ASyMTRe (Automated Synthesis of Multi-
robot Task solutions through software Reconfiguration, pronounced “Asym-
metry”), is based on a combination of schema theory (Arkin et al., 1993) and
inspiration from the theory of information invariants (Donald et al., 1993). The
basic building blocks of our approach are collections of perceptual schemas,
motor schemas, and a simple new component we introduce, called communi-
cation schemas. These schemas are assumed to be supplied to the robots when
they are brought together to form a team, and represent baseline capabilities of
robot team members. The ASyMTRe system configures a solution by choosing
from different ways of combining these building blocks into a teaming solu-
tion, preferring the solution with the highest utility. Different combinations of
building blocks can yield very different types of cooperative solutions to the
same task.

Enabling Autonomous Sensor-Sharing 121

In a companion paper (Tang and Parker, 2005), we have described an auto-
mated reasoning system for generating solutions based on the schema build-
ing blocks. In this paper, we focus on illustrating a proof-of-principle task
that shows how different interconnections of these schema building blocks can
yield fundamentally different solution strategies for sensor-sharing in tightly-
coupled tasks. Section 2 outlines our basic approach. Section 3 defines a
simple proof of principle task that illustrates the ability to formulate signifi-
cantly different teaming solutions based on the schema representation. Sec-
tion 4 presents the physical robot results of this proof-of-principle task. We
present concluding remarks and future work in Section 5.

2. Approach

Our ASyMTRe approach to sensor-sharing in tightly-coupled cooperative
tasks includes a formalism that maps environmental, perceptual, and motor
control schemas to the required flow of information through the multi-robot
system, as well as an automated reasoning system that derives the highest-
utility solution of schema configurations across robots. This approach enables
robots to reason about how to solve a task based upon the fundamental informa-
tion needed to accomplish the objectives. The fundamental information will be
the same regardless of the way that heterogeneous team members may obtain
or generate it. Thus, robots can collaborate to define different task strategies in
terms of the required flow of information in the system. Each robot can know
about its own sensing, effector, and behavior capabilities and can collaborate
with others to find the right combination of actions that generate the required
flow of information to solve the task. The effect is that the robot team members
interconnect the appropriate schemas on each robot, and across robots, to form
coalitions (Shehory, 1998) to solve a given task.

2.1 Formalism of Approach

We formalize the representation of the basic building blocks in the multi-
robot system as follows:

A class of Information, denoted F = {F1FF ,F2FF , ...}.

Environmental Sensors, denoted ES = {ES1,ES2, ...}. The input to ESi

is a specific physical sensor signal. The output is denoted as OESi ∈ F .

Perceptual Schemas, denoted PS = {PS1,PS2, ...}. Inputs to PSi are de-
noted IPSi

kI ∈ F . The perceptual schema inputs can come from either the
outputs of communication schemas or environmental sensors. The out-
put is denoted OPSi ∈ F .

122 Parker, et al.

Communication Schemas, denoted CS = {CS1, CS2, ...}. The inputs
to CSi are denoted ICSi

kI ∈ F . The inputs originate from the outputs of
perceptual schemas or communication schemas. The output is denoted
OCSi ∈ F .

Motor Schemas, denoted MS = {MS1,MS2, ...}. The inputs to MSi are
denoted IMSII i

kII ∈ F , and come from the outputs of perceptual schemas
or communication schemas. The output is denoted OMSi ∈ F , and is
connected to the robot effector control process.

A set of n robots, denoted R = {R1,R2, ...,Rn}. Each robot is described
by the set of schemas available to that robot: Ri ={ESi, PSi, CSi, MSi},
where ESi is the set of environmental sensors available to Ri, and PSi,
CSi, MSi are the sets of perceptual, communication, and motor schemas
available to Ri, respectively.

Task = {MS1,MS2, ...}, which is the set of motor schemas that must be
activated to accomplish the task.

A valid configuration of schemas distributed across the robot team has all of
the inputs and outputs of the schemas in T connected to appropriate sources,
such that the following is true: ∀k∃iCONNECT (OSi , I

S j

kI)⇔OSi = I
S j

kII , where Si

and S j are types of schemas. This notation means that for all the inputs of S j,
there exists some Si whose output is connected to one of the required inputs.
In(Tang and Parker, 2005), we define quality metrics to enable the system to
compare alternative solutions and select the highest-quality solution. Once the
reasoning system has generated the recommended solution, each robot acti-
vates the required schema interconnections in software.

3. Proof-of-Principle Task Implementation

To show that it is possible to define basic schema building blocks to enable
distributed sensor sharing and flexible solution approaches to a tightly-coupled
cooperative task, we illustrate the approach in a very simple proof of principle
task. This task, which we call the transportation task, requires each robot
on the team to navigate to its pre-assigned, unique goal point. In order for a
robot to reach its assigned goal, it needs to know its current position relative
to its goal position so that it can move in the proper direction. In some cases,
a robot may be able to sense its current position using its own sensors. In
other cases, the robot may not have enough information to determine its current
position. In the latter case, other more capable robots can help by sharing
sensor information with the less capable robot.

As shown in Table 1, the environmental sensors available in this case study
are a laser scanner, a camera, and Differential GPS. A robot can use a laser

Enabling Autonomous Sensor-Sharing 123

Table 1. Environmental Sensors (ES) and Robot Types for proof-of-principle task.

Environmental Sensors Robot Types
Name Description Info. Type Name Available Sensors

ES1 Laser laserscanner R1 Laser
ES2 Camera ccd R2 Camera
ES3 DGPS dgps R3 DGPS

R4 Laser and Camera
R5 Laser and DGPS
R6 Camera and DGPS
R7 Laser and Camera and DGPS
R8 —

Table 2. Perceptual and Communications Schemas for proof-of-principle task.

Perceptual Schemas
Name Input Info. Type Output Info. Type
PS1 laserrange OR dgps OR curr-global-pos(self)ff curr-global-pos(self)ff

OR (curr-rel-pos(otherkr)
AND curr-global-pos(otherkr))

PS2 — curr-global-goal(self)ff
PS3 (curr-global-pos(self) ANDff curr-rel-pos(otherkr)) curr-global-pos(otherkr)
PS4 laserrange or ccd curr-rel-pos(otherkr)
PS5 curr-global-pos(other) curr-global-pos(other)

Communication Schemas
Name Input Info. Type Output Info. Type
CS1 curr-global-pos(self)ff curr-global-pos(otherkr)
CS2 curr-global-pos(otherkr) curr-global-pos(self)ff

scanner with an environmental map to localize itself and calculate its current
global position. A robot’s camera can be used to detect the position of another
robot relative to itself. The DGPS sensor can be used outdoors for localization
and to detect the robot’s current global position. Based upon these environ-
mental sensors, there are eight possible combinations of robots, as shown in
Table 1. In this paper, we focus on three types of robots – R8: a robot that
possesses no sensors; R2: robot that possesses only a camera; and R4: a robot
that possesses a camera and a laser ranger scanner (but no DGPS).

For this task, we define five perceptual schemas, as shown in Table 2. PS1

calculates a robot’s current global position. With the sensors we have defined,
this position could be determined either by using input data from a laser scan-
ner combined with an environmental map, from DGPS, or from communica-
tion schemas supplying similar data. For an example of this latter case, a robot

124 Parker, et al.

can calculate its current global position by knowing the global position of an-
other robot, combined with its own position relative to the globally positioned
robot. PS2 outputs a robot’s goal position, based on the task definition provided
by the user. PS3 calculates the current global position of a remote robot based
on two inputs – the position of the remote robot relative to itself and its own
current global position. PS4 calculates the position of another robot relative
to itself. Based on the defined sensors, this calculation could be derived from
either a laser scanner or a camera. PS5 receives input from another robot’s
communication schema, CS1, which communicates the current position of that
other robot.

Communication schemas communicate data to another robot’s perceptual
schemas. As shown in Table 2, CS1 communicates a robot’s current global
position to another robot, while CS2 communicates the current global position
of a remote robot that remote robot. Motor schemas send control signals to the
robot’s effectors to enable the robot to accomplish the assigned task. In this
case study, we define only one motor schema, MS, which encodes a go-to-goal
behavior.

The input information requirements of MS are curr-global-pos(self) andff
curr-global-goal(self). In this case, the motor schema’s output is derived basedff
on the robot’s current position received from PS1 and its goal position received
from PS2.

Figure 1 shows all the available schemas for this task and how they can be
connected to each other, based on the information labeling. The solid-line ar-
rows going into a schema represent an “OR” condition – it is sufficient for the
schema to only have one of the specified inputs to produce output. The dashed-
line arrows represent an “AND” condition, meaning that the schema requires
all of the indicated inputs for it to calculate an output. For example, PS1 can
produce output with input(s) from either ES1 (combined with the environmen-
tal Map), ES3, CS j

2 (R j’s CS2), or (PS4 and PS5).

4. Physical Robot Experiments

These schema were implemented on two Pioneer robots equipped with a
SICK laser range scanner and a Sony pan-tilt-zoom camera. Both robots also
possessed a wireless ad hoc networking capability, enabling them to commu-
nicate with each other. Experiments were conducted in a known indoor en-
vironment using a map generated using an autonomous laser range mapping
algorithm. Laser-based localization used a standard Monte-Carlo Localization
technique. The code for the implementation of PS4 makes use of prior work
by (Parker et al., 2004) for performing vision-based sensing of the relative
position of another robot. This approach makes use of a cylindrical marker
designed to provide a unique robot ID, as well as relative position and orienta-

Enabling Autonomous Sensor-Sharing 125

Figure 1. Illustration of connections between all available schemas.

tion information suitable for a vision-based analysis. Using these two robots,
three variations on sensor availability were tested to illustrate the ability of
these building blocks to generate fundamentally different cooperative behav-
iors of the same task through sensor sharing. In these experiments, the desired
interconnections of schemas were developed by hand; in subsequent work,
we can now generate the required interconnections automatically through our
ASyMTRe reasoning process (Tang and Parker, 2005).

Variation 1. The first variation is a baseline case in which both robots are of
type R4, meaning that they have full use of both their laser scanner and a cam-
era. Each robot localizes itself using its laser scanner and map and reaches
its own unique goals independently. This case is the most ideal solution but
only works if the both robots possess laser scanners and maps. If one of the
robots loses its laser scanner, this solution no longer works. Figure 2 shows
the schema instantiated on the robots for this variation. PS1 and PS2 are con-
nected to MS to supply the required inputs to the go-to-goal behavior. Also
shown in Figure 2 are snapshots of the robots performing this instantiation of
the schema. In this case, since both robots are fully capable, they move to-
wards their goals independently without the need for any sensor sharing or
communication.

126 Parker, et al.

Figure 2. Results of Variation 1: Two robots of type R4 performing the task without need for
sensor-sharing or communication. Goals are black squares on the floor. Graphic shows schema
interconnections (only white boxes activated).

Variation 2. The second variation involves a fully capable robot of type R4, as
well as a robot of type R2 whose laser scanner is not available, but still has use
of its camera. As illustrated in Figure 3, Robot R4 helps R2 by communicating
(via CS1) its own current position, calculated by PS1 using its laser scanner
(ES1) and environmental map. Robot R2 receives this communication via PS5

and then uses its camera (ES2) to detect R4’s position relative to itself (via PS4)
and calculate its own current global position (using PS1) based on R4’s relative
position and R4’s communicated global position. Once both robots know their
own current positions and goal positions, their motor schemas can calculate the
motor control required to navigation to their goal points. Figure 3 also shows
snapshots of the robots performing the Variation 2 instantiation of the schema.
In this case, R2 begins by searching for R4 using its camera. At present, we
have not yet implemented the constraints for automatically ensuring that the
correct line of sight is maintained, so we use communication to synchronize
the robots. Thus, when R2 locates R4, it communicates this fact to R4. R4

then is free to move towards its goal. If R2 were to lose sight of R4, it would
communicate a message to R4 to re-synchronize the relative sighting of R4 by

Enabling Autonomous Sensor-Sharing 127

Figure 3. Variation 2: A robot of type R4 and of type R2 share sensory information to ac-
complish their task. Here, R2 (on the left) turns toward R4 to localize R4 relative to itself. R4
communicates its current global position to R2, enabling it to determine its own global position,
and thus move successfully to its goal position.

R2. With this solution, the robots automatically achieve navigation assistance
of a less capable robot by a more capable robot.

Variation 3. The third variation involves a sensorless robot of type R8, which
has access to neither its laser scanner nor camera. As illustrated in Figure 4,
the fully-capable robot of type R4 helps R8 by communicating R8’s current
global position. R4 calculates R8’s current global position by first using its
own laser (ES1) and map to calculate its own current global position (PS1). R4

also uses its own camera (ES2) to detect R8’s position relative to itself (using
PS4). Then, based on this relative position and its own current global position,
R4 calculates R8’s current global position (using PS3) and communicates this
to R8 (via CS2). Robot R8 feeds its own global position information from R4

directly to its motor schema. Since both of the robots know their own cur-
rent and goal positions, each robot can calculate its motor controls for going
to their goal positions. Figure 4 also shows snapshots of the robots performing
the Variation 3 instantiation of the schema. With this solution, the robots auto-
matically achieve navigation assistance of a sensorless robot by a more capable
robot.

Analysis. In extensive experimentation, data on the time for task completion,
communication cost, sensing cost, and success rate was collected as an average

128 Parker, et al.

Figure 4. Variation 3: A robot of type R4 helps a robot with no sensors (type R8) by sharing
sensory information so that both robots accomplish the objective. Note how R4 (on the right)
turns toward R8 to obtain vision-based relative localization of R8. R4 then guides R8 to its goal
position. Once R8 is at its goal location, R4 then moves to its own goal position.

of 10 trials of each variation. Full details are available in (Chandra, 2004). We
briefly describe here the success rate of each variation. In all three variations,
robot R4 was 100% successful in reaching its goal position. Thus, for Variation
1, since the robots are fully capable and do not rely on each other, the robots
always succeeded in reaching their goal positions. In Variation 2, robot R2

succeeded in reaching its goal 6 times out of 10, and in Variation 3, robot R8

successfully reached its goal 9 times out of 10 tries. The failures of robots R4

and R8 in Variations 2 and 3 were caused by variable lighting conditions that
led to a false calculation of the relative robot positions using the vision-based
robot marker detection. However, even with these failures, these overall results
are better than what would be possible without sensor sharing. In Variations
2 and 3, if the robots did not share their sensory resources, one of the robots
would never reach its goal position, since it would not have enough information
to determine its current position. Thus, our sensor sharing mechanism extends
the ability of the robot team to accomplish tasks that otherwise could not have
been achieved.

Enabling Autonomous Sensor-Sharing 129

5. Conclusions and Future Work

In this paper, we have shown the feasibility of the ASyMTRe mechanism
to achieve autonomous sensor-sharing of robot team members performing a
tightly-coupled task. This approach is based on an extension to schema theory,
which allows schemas distributed across multiple robots to be autonomously
connected and executed at run-time to enable distributed sensor sharing. The
inputs and outputs to schemas are labeled with unique information types, in-
spired by the theory of information invariants, enabling any schema connec-
tions with matching information types to be configured, regardless of the lo-
cation of those schema or the manner in which the schema accomplishes its
job. We have demonstrated, through a simple transportation task implemented
on two physical robots, the ability of the schema-based methodology to gener-
ate very different cooperative control techniques for the same task based upon
the available sensory capabilities of the robot team members. If robots do not
have the ability to accomplish their objective, other team members can share
their sensory information, translated appropriately to another robot’s frame of
reference. This approach provides a framework within which robots can gener-
ate the highest-quality team solution for a tightly-coupled task, and eliminates
the need of the human designer to pre-design all alternative solution strategies.
In continuing work, we are extending the formalism to impose motion con-
straints (such as line-of-sight) needed to ensure that robots can successfully
share sensory data while they are in motion, generalizing the information label-
ing technique, and implementing this approach in more complex applications.
In addition, we are developing a distributed reasoning approach that enables
team members to autonomously generate the highest-quality configuration of
schemas for solving the given task.

References
Adams, J. A., Bajcsy, R., Kosecka, J., Kumar, V., Mandelbaum, R., Mintz, M., Paul, R., Wang,

C., Yamamoto, Y., and Yun, X. (1995). Cooperative material handling by human and ro-
botic agents: Module development and system synthesis. In Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems.

Arkin, R. C., Balch, T., and Nitz, E. (1993). Communication of behavioral state in multi-agent
retrieval tasks. In Proceedings of the 1993 International Conference on Robotics and Au-
tomation, pages 588–594.

Chandra, M. (2004). Software reconfigurability for heterogeneous robot cooperation. Master’s
thesis, Department of Computer Science, University of Tennessee.

Donald, B. R., Jennings, J., and Rus, D. (1993). Towards a theory of information invariants for
cooperating autonomous mobile robots. In Proceedings of the International Symposium of
Robotics Research, Hidden Valley, PA.

Donald, B. R., Jennings, J., and Rus, D. (1997). Information invariants for distributed manipu-
lation. International Journal of Robotics Research, 16(5):673–702.

130 Parker, et al.

Gerkey, B. and Mataric, M. (2002). Pusher-watcher: An approach to fault-tolerant tightly-
coupled robot cooperation. In Proc. of IEEE International Conference on Robotics and Au-
tomation, pages 464–469.

Gerkey, B. and Mataric, M. J. (2004). A formal analysis and taxonomy of task allocation in
multi-robot systems. Int. J. of Robotics Research, 23(9):939–954.

Parker, L. E. (2003). The effect of heterogeneity in teams of 100+ mobile robots. In Schultz,
A., Parker, L. E., and Schneider, F., editors, Multi-Robot Systems Volume II: From Swarms
to Intelligent Automata. Kluwer.

Parker, L. E., Kannan, B., Tang, F., and Bailey, M. (2004). Tightly-coupled navigation assistance
in heterogeneous multi-robot teams. In Proceedings of IEEE International Conference on
Intelligent Robots and Systems.

Shehory, O. (1998). Methods for task allocation via agent coalition formation. Artificial Intelli-
gence, 101(1-2):165–200.

Spletzer, J., Das, A., Fierro, R., Tayler, C., Kumar, V., and Ostrowski, J. (2001). Cooperative
localization and control for multi-robot manipulation. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Hawaii.

Tang, F. and Parker, L. E. (2005). ASyMTRe: Automated synthesis of multi-robot task solutions
through software reconfiguration. Submitted.

IV

DISTRIBUTED MAPPING AND COVERAGE

MERGING PARTIAL MAPS
WITHOUT USING ODOMETRY

Francesco Amigoni∗, Simone Gasparini
Dipartimento di Elettronica e Informazione
Politecnico di Milano, 20133 Milano, Italy

amigoni@elet.polimi.it, gasparin@elet.polimi.it

Maria Gini
Dept of Computer Science and Engineering
University of Minnesota, Minneapolis, USA†

gini@cs.umn.edu

Abstract Most map building methods employed by mobile robots are based on the as-
sumption that an estimate of the position of the robots can be obtained from
odometry readings. In this paper we propose methods to build a global geomet-
rical map by integrating partial maps without using any odometry information.
This approach increases the flexibility in data collection. Robots do not need
to see each other during mapping, and data can be collected by a single robot
or multiple robots in one or multiple sessions. Experimental results show the
effectiveness of our approach in different types of indoor environments.

Keywords: scan matching, map merging, distributed mapping.

1. Introduction

In this paper we show how to build a global map of an environment by
merging partial maps without using any relative position information but re-
lying only on geometrical information. The maps we consider are collections
of segments obtained from 2D laser range data. They provide a compact and
easy-to-use (for example, to plan a path) representation of the environment.
No hypothesis is made about the environment to be mapped: experiments
demonstrate that our methods work well both in regular and in scattered en-
vironments. We reduce the merging of a sequence of partial maps to the it-

∗Partial funding provided by a Fulbright fellowship and by “Progetto Giovani Ricercatori” 1999.
†Partial funding provided by NSF under grants EIA-0224363 and EIA-0324864.

133
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 133–144.
©c 2005 Springer. Printed in the Netherlands.

134 Amigoni, et al.

erated integration of two partial maps. The methods we propose are robust
to displacements between the partial maps, provided that they have at least a
common geometrical feature.

Map merging without odometry information has the advantage of being in-
dependent from how the data have been collected. It is indifferent if the partial
maps are collected during a single session or multiple sessions, by a single ro-
bot or multiple robots. Robots can be added or removed at any time, and they
do not need to know their own position. For the experiments in this paper we
used a single robot but all the results are applicable to multirobots.

This paper is structured as follows. The next section discusses the main
approaches to scan matching and map merging. Section 3 describes our scan
matching algorithm, and Section 4 our map merging methods. Experimental
results are in Section 5.

2. Previous Work

Scan matching is the process of calculating the translation and rotation of a
scan to maximize its overlap with a reference scan. A number of scan match-
ing algorithms have been presented in the last two decades; they differ for the
kind of environments in which they perform well, e.g., with straight perpen-
dicular walls (Weiss et al., 1994), for the computational effort, for the choice
of operating directly on the scan data (Lu and Milios, 1997) or on segments
approximating the data (Zhang and Ghosh, 2000). All these methods require
an initial position estimate to avoid erroneous alignments of the two scans.

The most used algorithm (Lu and Milios, 1997) iteratively minimizes an er-
ror measure by first finding a correspondence between points in the two scans,
and then doing a least square minimization of all point-to-point distances to
determine the best transformation. When the environment consists of straight
perpendicular walls matching is simpler. Cross-correlation of the histograms
of angles between the actual and previous scans provides the orientation of the
two maps, while the translation is obtained either by cross-correlation of the
distance histogram (Weiss et al., 1994) or by least square minimization (Mar-
tignoni III and Smart, 2002). These methods are sensitive to large displace-
ments between the maps and to changes in the environment.

Map merging, namely the problem of building a global map from data col-
lected by several robots, is usually solved by extending SLAM techniques (Bur-
gard et al., 2002, Ko et al., 2003, Fenwick et al., 2002), or using EM (Simmons
et al., 2000, Thrun et al., 2000).

Most map merging techniques rely on the assumption that the robot posi-
tions are known. For example, in (Simmons et al., 2000, Burgard et al., 2002)
the positions of the robots are assumed to be known at all times; in (Thrun et al.,
2000) the robots don’t know their relative start position but each robot has to

Merging Partial Maps without Using Odometry 135

start within sight of the team leader. An exception is the work in (Konolige
et al., 2003) where map merging is done using a decision theoretic approach.
The robots do not need to know their own position, but to facilitate the match
the maps have to be annotated manually with distinctive features. In (Ko et al.,
2003), particle filters are used for partial map localization and the robots have
to actively verify their relative locations before the maps are merged.

3. Method for Scan Matching

We propose a MATCH function for matching two partial maps composed of
segments. Our method is exclusively based on the geometrical information
and constraints (Grimson, 1990) contained in the partial maps. In particular,
we consider angles between pairs of segments in the partial maps as a sort of
“geometrical landmarks” on which the matching process is based. This use of
“local” geometrical features is significantly different from other related works
in map building that use “global” geometrical features (e.g., those represented
by an histogram of angle differences). MATCH integrates two partial maps into
a third one. Let’s call S1 and S2 the two partial maps and S1,2 the resulting map.
MATCH operates in three major steps:

1. Determinepossible transformations. This step first finds the angles be-
tween the segments in S1 and between the segments in S2 and then finds the
possible transformations (namely, the rotations and translations) that superim-
pose at least one angle α2 of S2 to an (approximately) equal angle α1 of S1.
Recall that angles between pairs of segments in a partial map are the geomet-
rical landmarks we adopt.

In principle, without any information about the relative positions of the two
scans, there are O(n2

1n2
2) possible transformations, where n1 and n2 are the

number of segments in S1 and S2, respectively. We have devised three heuris-
tics to speed up the computation:

a Consider Angles between Consecutive Segments. In each scan, we con-
sider only the angles between two consecutive segments; let As

1 and As
2

be the sets of such angles for S1 and S2, respectively. The number of
possible transformations drops to O(n1n2). Finding the sets As

1 and As
2 is

easy when the segments in S1 and in S2 are ordered, which is usually the
case with laser range scanners.

b Consider Angles between Randomly Selected Segments. In each scan,
we examine the angles between pairs of segments selected randomly.
We assign a higher probability to be selected to longer segments, since
they provide more precise information about the environment. Let Ar

1
and Ar

2 be the sets of the selected angles for S1 and S2, respectively. The
number of transformations generated by this method is O(a1a2), where

136 Amigoni, et al.

a1 = |Ar
1| and a2 = |Ar

2| are the number of selected angles in Ar
1 and Ar

2,
respectively.

c Consider Angles between Perpendicular Segments. In each scan, we
select only angles between perpendicular segments. This heuristic is
particularly convenient for indoor environments, where walls are often
normal to each other. The heuristic is computed from the histogram of
segments grouped by orientation. The direction where the sum of the
lengths of the segments is maximal is the principal direction. In Fig. 1,
the histogram of a scan taken in an indoor environment is shown. The
principal direction is the element L9 and the normal direction is the el-
ement L0. Let Ah

1 and Ah
2 be the sets of angles formed by a segment in

the principal direction and a segment in the normal direction of the his-
tograms of S1 and S2, respectively. The set of possible transformations is
found comparing the angles in Ah

1 and Ah
2. The number of possible trans-

formations is O(p1n1 p2n2), where pi and ni are respectively the number
of segments in the principal and in the normal directions of the histogram
of scan Si.

Figure 1. The histogram of a scan

2. Evaluate the transformations. To measure the goodness of a transfor-
mation t we transform S2 on S1 (in the reference frame of S1) according to t
(obtaining St

2), then we calculate the approximate length of the segments of S1

that correspond to (namely, match with) segments of St
2. Thus, the measure of

a transformation is the sum of the lengths of the corresponding segments that
the transformation produces. More precisely, for every pair of segments s1 ∈ S1

and st
2 ∈ St

2 we project st
2 on the line supporting s1 and compute the length l1

of the common part of s1 and the projected segment. We repeat the process
by projecting s1 on st

2, obtaining l2. The average of l1 and l2 is a measure of
how the pair of segments match. This step evaluates a single transformation by
considering all the pairs of segments of the two scans that are O(n1n2).

Merging Partial Maps without Using Odometry 137

3. Apply the best transformation and fuse the segments. Once the best
transformation t̄ has been found, this step transforms the second partial map S2

in the reference frame of S1 according to t̄ obtaining St̄
2. The map that consti-

tutes the output of MATCH is then obtained by fusing the segments of S1 with
the segments of St̄

2. The main idea behind the fusion of segments is that a set of
matching segments is substituted in the final map by a single polyline. We it-
eratively build a sequence of approximating polylines P0PP ,P1PP , . . . that converges
to the polyline P that adequately approximates (and substitutes in the resulting
map) a set of matching segments. The polyline P0PP is composed of a single seg-
ment connecting the pair of farthest points of the matching segments. Given
the polyline PnPP −1, call s the (matching) segment at maximum distance from its
corresponding (closest) segment ¯ in PnPP −1. If the distance between s and s̄ is
less than the acceptable error, then PnPP −1 is the final approximation P. Other-
wise, s substitutes s̄ in PnPP −1 and s is connected to the two closest segments in
PnPP −1 to obtain the new polyline PnPP .

4. Methods for Map Merging

We now describe methods for integrating a sequence S1,S2, . . .Sn of n partial
maps by repeatedly calling MATCH.

Sequential Method. This is the simplest method, which operates as follows.
The first two partial maps are integrated, the obtained map then is grown by
sequentially integrating the third partial map, the fourth partial map, and so on.
Eventually, the final map S1,2,...,n is constructed. In order to integrate n partial
maps, the sequential method requires n− 1 calls to MATCH. A problem with
this method is that, as the process goes on, MATCH is applied to a partial map
that grows larger and larger (it contains more and more segments). This will
cause difficulties in the integration of Si with large i, since Si could match with
different parts of the larger map.

Tree Method. To overcome the above problem, the integration of a small
partial map with a large partial map should be avoided. This is the idea un-
derlying the tree method, which works as follows. Each partial map of the
initial sequence is integrated with the successive partial map of the sequence
to obtain a new sequence S1,2, S2,3, . . . , Sn−1,n of n− 1 partial maps. Then,
each partial map of this new sequence is integrated with the successive one to
obtain a new sequence S1,2,3, S2,3,4, . . . , Sn−2,n−1,n of n− 2 partial maps. The
process continues until a single final map S1,2,...,n is produced. The tree method
always integrates partial maps of the same size, since they approximately con-
tain the same number of segments. The number of calls to MATCH required by
the tree method to integrate a sequence of n partial maps is n(n− 1)/2. Note
also that, while the sequential method can be applied in an on-line fashion (i.e.,

138 Amigoni, et al.

while the robot is moving), the most natural implementation of the tree method
is off-line. To speed up the tree method we have developed an heuristic that,
given a sequence of partial maps at any level of the tree (let us suppose at level
0 for simplicity), attempts to integrate the partial maps Si and Si+2; if the in-
tegration succeeds, the final result Si,i+2 represents the same map that would
have been obtained with three integrations: Si with Si+1 to obtain Si,i+1, Si+1

with Si+2 to obtain Si+1,i+2, and Si,i+1 with Si+1,i+2 to obtain Si,i+1,i+2. More-
over, the number of partial maps in the new sequence is reduced by one unit,
because Si,i+2 substitutes both Si,i+1 and Si+1,i+2. This heuristic is best used
when the partial maps Si and Si+2 are already the result of a number of integra-
tions performed by the tree method and their common part is significant. For
example, in the sequence produced at the level 3 of the tree technique the first
(S1,2,3,4) and the third (S3,4,5,6) partial maps have a significant common part,
since approximately half of the two partial maps overlaps.

A problem with the tree method is due to the presence of “spurious” seg-
ments in the integrated maps, namely segments that correspond to the same
part of the real environment but that are not fused together. This problem is
exacerbated in the tree method since the same parts of the partial maps are
repeatedly fused together.

Pivot Method. The pivot method combines the best features of the two
previous methods. This method starts as the tree method and constructs a se-
quence S1,2, S2,3, . . . , Sn−1,n of n− 1 partial maps. At this point, we note that
S2 is part of both S1,2 and S2,3 and that the transformation t̄1,2 used to integrate
S1 and S2 provides the position and orientation of the reference frame of S2 in
the reference frame of S1,2. It is therefore possible to transform S2,3 according

to t̄1,2 and fuse the segments of the partial maps S1,2 and S
t̄1,2
2,3 to obtain S1,2,3.

In a similar way, S1,2,3,4 can be obtained from S1,2,3 and S3,4 by applying to the

latter the transformation t̄2,3 and fusing the segments of S1,2,3 and S
t̄2,3
3,4. Iterat-

ing this process, from the sequence S1,2, S2,3, . . . , Sn−1,n the final map S1,2,...,n

is obtained. The pivot method integrates partial maps of the same size, like the
tree method, and requires n−1 calls to MATCH, like the sequential method. (In
addition it requires n−2 executions of the not-so-expensive step 3 of MATCH.)
The pivot method is naturally implementable in an on-line system. The prob-
lem of spurious segments is reduced but not completely eliminated; a way to
further reduce this problem is to fuse not S1,2 and S

t̄1,2
2,3, but S1,2 and S

t̄1,3
3 , where

t̄1,3 is the composition of t̄1,2 and t̄2,3.

5. Experimental Results

The described methods have been validated using a Robuter mobile platform
equipped with a SICK LMS 200 laser range scanner mounted in the front of the

Merging Partial Maps without Using Odometry 139

robot at a height of approximately 50cm. For these experiments we acquired
32 scans with angular resolution of 1◦ and with angular range of 180◦. Each
scan has been processed to approximate the points returned by the sensor with
segments, according to the algorithm in (Gonzáles-Baños and Latombe, 2002).
The programs have been coded in ANSI C++ employing the LEDA libraries
4.2 and they have been run on a 1GHz Pentium III processor with Linux SuSe
8.0.

The scans have been acquired in different environments (forming a loop
about 40m long) by driving the robot manually and without recording any
odometric information. We started from a laboratory, a very scattered envi-
ronment, then we crossed a narrow hallway with rectilinear walls to enter a
department hall, a large open space with long perpendicular walls, and finally
we closed the loop re-entering the laboratory (see the dashed path in Fig. 6).
The correctness of integrations has been determined by visually evaluating the
starting partial maps and the final map with respect to the real environment.

5.1 Scan Matching Experiments

1m

1m

1m

1m
1m

1m

1m

1m

1m

Figure 2. Top, left to right: scans S4, S5, S18, S19, S25, and S26; bottom, left to right: final
maps S4,5, S18,19, and S25,26

Table 1 shows the results obtained by matching three interesting pairs of
scans (see also Fig. 2). S4 and S5 were taken inside the laboratory: they contain
a large number of short segments since the environment is highly scattered. S18

and S19 were taken along the hallway: they contain fewer segments than the
previous scans and are characterized by long rectilinear segments. S25 and S26

were taken in the hall: they contain only few segments since the environment
is characterized by long rectilinear and perpendicular walls.

In general, our experimental results demonstrate that scan matching per-
forms well (Table 2), but not all the pairs can be matched. 28 pairs of scans

140 Amigoni, et al.

Table 1. Experimental results on matching pairs of scans

Scans S4 S5 S18 S19 S25 S26

of segments 47 36 24 24 10 12

Time # tried Time # tried Time # tried
All transformations 936 41,260 32 3,096 0.38 231
Consecutive segments 1.25 2 0.73 27 0.13 4
Random segments 7.69 20,000 2.51 20,000 0.78 20,000
Histogram 3.29 73 1.97 192 0.15 32

1m

1m

1m

Figure 3. Scans S1 (left), S2 (center), and S3 (right) taken in the lab entrance

1m

1m

Figure 4. Scans S27 (left) and S28 (right) taken in the hall

out of 31 have been correctly matched. Unsurprisingly, the histogram-based
heuristic worked well with scans containing long and perpendicular segments,
as those taken in the hallway and in the hall. The heuristic based on consec-
utive segments seems to work well in all three kinds of environment, even if
sometimes it needs some parameter adjustments.

For scan pairs S1−S2 and S2−S3 our method was not able to find the correct
transformation. As shown in Fig. 3, the scans are extremely rich of short seg-
ments representing scattered small objects (chairs, tables, robots, and boxes).
It is almost impossible, even for a human being, to find the correct match be-
tween these scans without any prior information about their relative positions.
Similar problems emerged in the hall. Fig. 4 shows scans S27 and S28, where
the second one has been taken after rotating the robot of about 100 degrees.
Since the environment is large and has only few objects that can be used as ref-

Merging Partial Maps without Using Odometry 141

Table 2. Results of scan matching trials using different heuristics

Successes Failures
All transformations 13 (41.9%) 18 (58.1%)
Consecutive segments 21 (67.7%) 10 (32.3%)
Random segments 10 (32.2%) 21 (67.8%)
Histogram 9 (29%) 22 (71%)

erence, a drastic change of the field of view eliminates any common reference
between scans, thus automatic matching is impossible.

5.2 Map Merging Experiments

We considered the sequence composed of 29 scans S1,S2, . . . ,S29 (Table 3).
The integration of this sequence of partial maps has been done off-line to test
and compare the three methods. In all the three methods, problems arose when
integrating the sub-sequence from S25 to S27 which represents the hall (Fig. 4).
Here, due to a drastic rotation (about 100 degrees) of the robot in such an open
and large environment, the partial maps have only one or two segments in
common. In order to close the loop and complete the experiments these partial
maps were manually integrated together in all the three methods.

Table 3. Experimental sequence of partial maps (the segment lengths are in mm)

Environment Partial maps Avg # of segments Avg length of segments
Laboratory S1 −S7,S28 −S29 38.1 259.3
Hallway S8 −S22 19.3 366.3
Hall S23 −S27 15.6 607
Total S1 −S29 24.53 374.5

Fig. 5 shows the final map (composed of 278 segments) obtained with the
sequential method. The sequential method could not integrate all the partial
maps in order to close the loop: the method suddenly failed when we tried to
integrate S21, which has only a few short segments in common with the rest of
the map.

Fig. 6 shows the final map (composed of 519 segments) obtained with the
tree method. We applied the standard tree method until level 3 of the tree,
then we applied the heuristic presented in Section 4 to speed up the process.
As we went down in the tree, the size of the maps grew larger and larger and
the execution of MATCH slowed down. For example, the integration of two
partial maps (composed of 108 and 103 segments) at level 3 of the tree requires

142 Amigoni, et al.

1m

Figure 5. The final map obtained
with the sequential method. ©c 2004 by
IEEE (Amigoni et al., 2004)

1m

Figure 6. The final map obtained
with the tree method. ©c 2004 by
IEEE (Amigoni et al., 2004)

1m

Door that has been closed after
the passage of the robot

Figure 7. The final map obtained with
the pivot method by fusing Si−1,i with

S
t̄i−1,i

i,i+1. ©c 2004 by IEEE (Amigoni et al.,
2004)

1m

Figure 8. The final map obtained with
the pivot method by fusing Si−1,i with

S
t̄i−1,i+1

i+1 . ©c 2004 by IEEE (Amigoni et al.,
2004)

12.8s. Furthermore, as already noted, when we integrate large-sized maps
with many redundant spurious segments that represent the same part of the
environment, the resulting maps are more noisy because of the error introduced
when attempting to integrate maps with many overlapping segments.

Merging Partial Maps without Using Odometry 143

Fig. 7 shows the final map, composed of 441 segments, obtained with the
pivot method by fusing the partial map Si−1,i with S

t̄i−1,i

i,i+1. The map in Fig. 8 is
composed of 358 segments and has been built by fusing the partial map Si−1,i

with S
t̄i−1,i+1
i+1 . This map presents fewer spurious segments and appears more

“clean”.

6. Conclusions

In this paper we have presented methods for matching pairs of scans com-
posed of segments and for merging a sequence of partial maps in order to build
a global map. In future research we aim at generalizing these methods to cases
where the order in which the partial maps have to be integrated is not known.
These generalized methods will provide an elegant solution to the problem of
multirobot mapping since they will work when partial maps are acquired by a
single robot at different times as well as when acquired by different robots in
different locations.

Acknowledgments

The authors would like to thank Jean-Claude Latombe for his generous hos-
pitality at Stanford University where this research was started, Héctor Gonzáles-
Baños for sharing his programs and expertise with collecting laser range scan
data, Paolo Mazzoni and Emanuele Ziglioli for the initial implementation of
the fusion algorithm.

References
Amigoni, F., Gasparini, S., and Gini, M. (2004). Scan matching without odometry information.

In Proc. of the IEEE Int’l Conference on Robotics and Automation, pages 3753–3758.
Burgard, W., Moors, M., and Schneider, F. (2002). Collaborative exploration of unknown en-

vironments with teams of mobile robots. In Advances in Plan-Based Control of Robotic
Agents, pages 52–70. Springer-Verlag.

Fenwick, J. W., Newman, P. M., and Leonard, J. J. (2002). Cooperative concurrent mapping
and localization. In Proc. of the IEEE Int’l Conference on Robotics and Automation, pages
1810–1817.

Gonzáles-Baños, H. H. and Latombe, J. C. (2002). Navigation strategies for exploring indoor
environments. Int’l Journal of Robotics Research, 21(10-11):829–848.

Grimson, W. E. L. (1990). Object recognition by computer: the role of geometric constraints.
The MIT Press.

Ko, J., Stewart, B., Fox, D., and Konolige, K. (2003). A practical, decision-theoretic approach
to multi-robot mapping and exploration. In Proc. of the IEEE/RSJ Int’l Conference on Intel-
ligent Robots and Systems, pages 3232–3238.

Konolige, K., Fox, D., Limketkai, B., Ko, J., and Stewart, B. (2003). Map merging for distrib-
uted robot navigation. In Proc. of the IEEE/RSJ Int’l Conference on Intelligent Robots and
Systems.

144 Amigoni, et al.

Lu, F. and Milios, E. (1997). Robot pose estimation in unknown environments by matching 2D
range scans. Journal of Intelligent and Robotic Systems, 18(3):249–275.

Martignoni III, A. and Smart, W. (2002). Localizing while mapping: A segment approach. In
Proc. of the Eighteen National Conference on Artificial Intelligence, pages 959–960.

Simmons, R. G., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., and Younes,
H. (2000). Coordination for multi-robot exploration and mapping. In Proc. of the National
Conference on Artificial Intelligence, pages 852–858.

Thrun, S., Burgard, W., and Fox, D. (2000). A real-time algorithm for mobile robot mapping
with applications to multi-robot and 3D mapping. In Proc. of the IEEE Int’l Conference on
Robotics and Automation, pages 321–328.

Weiss, G., Wetzler, C., and Puttkamer, E. V. (1994). Keeping track of position and orientation of
moving indoor systems by correlation of range-finder scans. In Proc. of the IEEE/RSJ Int’l
Conference on Intelligent Robots and Systems, pages 12–16.

Zhang, L. and Ghosh, B. (2000). Line segment based map building and localization using 2D
laser rangefinder. In Proc. of the IEEE Int’l Conference on Robotics and Automation, pages
2538–2543.

DISTRIBUTED COVERAGE OF
UNKNOWN/UNSTRUCTURED
ENVIRONMENTS BY
MOBILE SENSOR NETWORKS

Ioannis Rekleitis
Currently at the Canadian Space Agency, Canada ∗

yiannis@cim.mcgill.ca

Ai Peng New
DSO National Laboratories, Singapore

naipeng@dso.org.sg

Howie Choset
Mechanical Engineering Department, Carnegie Mellon University, USA

choset@cmu.edu

Abstract In this paper we present an algorithmic solution for the distributed, complete
coverage, path planning problem. Real world applications such as lawn mow-
ing, chemical spill clean-up, and humanitarian de-mining can be automated by
the employment of a team of autonomous mobile robots. Our approach builds on
a single robot coverage algorithm. A greedy auction algorithm (a market based
mechanism) is used for task reallocation among the robots. The robots are ini-
tially distributed through space and each robot is allocated a virtually bounded
area to cover. Communication between the robots is available without any re-
strictions.

Keywords: Multi-Robot coverage, Automated De-mining, Market-based approach, Morse
decomposition

∗Work done while at Carnegie Mellon University.

145
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 145–155.
©c 2005 Springer. Printed in the Netherlands.

146 Rekleitis, et al.

1. Introduction

The task of covering an unknown environment, common in many applica-
tions, is of high interest in a number of industries. Among them are manufac-
turers of automated vacuum/carpet cleaning machines and lawn mowers, emer-
gency response teams such as chemical or radioactive spill detection and clean-
up, and humanitarian de-mining. In addition, interesting theoretical problems
have emerged especially in the areas of path planning, task (re)allocation and
multi-robot cooperation.

The goal of complete coverage is to plan a path that would guide a robot
to pass an end-effector (in our case equivalent to the footprint of the robot)
over every accessible area of the targeted environment. In the single robot
case, previous work has produced algorithms that guarantee complete coverage
of an unknown arbitrary environment. Introducing multiple robots provides
advantages in terms of efficiency and robustness but increases the algorithmic
complexity.

Central in the multi-robot approach is the issue of communication. When
communication is restricted to close proximity (Latimer-IV et al., 2002) or line
of sight (Rekleitis et al., 2004) the robots have to remain together in order to
avoid covering the same area multiple times. When unrestricted communi-
cation is available then the robots can disperse through the environment and
proceed to cover different areas in parallel, constantly updating each other on
their progress. The challenge in this case is to allocate regions to each robot
such that no robot stays idle (thus all finish covering around the same time) and
also to reduce the amount of time spent commuting among the different regions
instead of covering. Providing an optimal solution for minimizing travel time
is an NP-hard problem as it can be mapped into a multiple traveling salesman
problem. An auction mechanism is used in order to re-allocate regions to be
covered between robots in such a way that the path traveled between regions
is reduced. The auction mechanism is a greedy heuristic based on the general
market based approach.

o
 stripe

Deployment
 vehicle

p yy(not in scale)

Robots

Figure 1 A large unknown
area is divided up in vertical
stripes. Each covering robot is
assigned a stripe to cover. A
deployment vehicle is utilized
that distributes the robots at
the beginning of the stripes.
The robots do not know the
layout at the interior of each
stripe.

Multi-Robot Distributed Coverage 147

We assume that the robots know their position and orientation with respect
to a global reference frame (e.g. via access to a GPS system). The robot sensors
are able to detect both static obstacles and mobile robots, and differentiate
between the two. The sensors have limited range and a good angular resolution.

The working paradigm in our approach is the application of humanitarian
de-mining. A team of robots is deployed along one side of a field to be cleared,
at regular intervals (as in Fig. 1). The interior of the field is unknown, partially
covered with obstacles, and divided into a number of virtual stripes equal to
the number of robots. Each robot is allocated initially the responsibility of the
stripe it is placed at, and the coverage starts.

In the next section we present relevant background on the Coverage task
and on the market based approach. Section 3 provides an overview of our
algorithm and the next Section presents our experimental results in multiple
simulated environments. Finally, Section 5 provides conclusions and future
work.

2. Related Work

This work employs a single robot coverage algorithm for each individual
robot and an auction mechanism to negotiate among robots which areas each
robot would cover. Due to space limitations we will briefly outline the major
approaches in multi-robot coverage (for a more detailed survey please refer
to (Rekleitis et al., 2004)) and then we will discuss related work on market
based mechanisms in mobile robotics. Finally, we present a brief overview
of relevant terminology used in coverage and exact cellular decomposition.
This work takes root in the Boustrophedon decomposition (Choset and Pignon,
1997), which is an exact cellular decomposition where each cell can be covered
with simple back-and-forth motions.

Deterministic approaches have been used to cover specialized environments
(Butler et al., 2001) sometimes resulting in repeat coverage (Latimer-IV et al.,
2002, Kurabayashi et al., 1996, Min and Yin, 1998). Non-deterministic ap-
proaches include the use of neural networks (Luo and Yang, 2002), chemical
traces (Wagner et al., 1999), and swarm intelligence (Ichikawa and Hara, 1999,
Bruemmer et al., 2002, Batalin and Sukhatme, 2002). The non-deterministic
approaches can not guarantee complete coverage.

2.1 Market-based Approach in Robotics

Cooperation and task allocation among mobile robots is crucial in multi-
robot applications. To facilitate task re-allocation a new methodology based
on market economy has gained popularity. For a comprehensive survey please
refer to (Dias and Stentz, 2001). Currently market based approaches have
been used to solve the multi-robot task allocation problem (Goldberg et al.,

148 Rekleitis, et al.

2003) in the domains of: exploration (Berhault et al., 2003, Dias and Stentz,
2003), failure/malfunction detection and recovery (Dias et al., 2004), and box
pushing (Gerkey and Mataric, 2002).

2.2 Boustrophedon/Morse Decomposition

Cell Boundary

Sweep Direction

slicee
Cell

Obstacle

Figure 2 Illustrates the terms
borrowed from single robot
coverage with a single robot
and one obstacle in the tar-
get environment. The robot
is performing coverage with
simple up-and-down motions.

To better describe the multi-robot coverage algorithm, we borrow the fol-
lowing terms from single robot coverage: slice, cell, sweep direction, and crit-
ical point (see Fig. 2). A slice is a subsection of a cell covered by a single,
in our case vertical, motion. A cell is a region defined by the Boustrophedon
decomposition where connectivity is constant. In our current work a cell is
further constrained by the boundaries of the stripe (the space allocated to a
robot). Sweep direction refers to the direction the slice is swept. Lastly, a crit-
ical point represents a point on an obstacle which causes a change in the cell
connectivity. The critical points have been described in length in (Acar and
Choset, 2000) (see Fig. 3a for an overview). We also borrow the concept of a
Reeb graph, a graph representation of the target environment where the nodes
are the critical points and the edges are the cells (Fig. 3b).

3. Algorithm Overview

Our approach consists of two behaviours, exploration and coverage. The
robots initially try to trace the outline of the areas assigned to them in order to
be more knowledgeable about the general layout of the free space. The con-
nectivity of the free space is recorded in a graph that consists of the Reeb graph
augmented with extra nodes (termed Steiner points) placed at the boundaries
of the assigned stripes for each robot. The edges of the graph represent areas
of accessible unexplored space and each edge belongs to a robot. During the
exploration phase the robots exchange information and if the stripe a robot has

Multi-Robot Distributed Coverage 149

Reverse

Convex

Concave

Forward

Sweep Direction

(a)

E3

E1
P1 P2

C1

C2

E2

C3

P3
E4

C4

P4

Cell Boundaries
(b)b

Figure 3. (a) Depicts the four types of critical points, based on concavity and the surface
normal vector parallel to the sweep direction. Note that the shaded areas are obstacles and the
arrows represent the normal vectors. (b) Here a simple Reeb graph is overlaid on top of a simple
elliptical world with one obstacle. P1-P4 are critical points which represent graph nodes. E1-E4
represent edges which directly map to cells C1-C4.

assigned is not fully explored, then, that robot calls an auction for the task of
exploring the remaining area of the stripe.

3.1 Cooperative Exploration

The robot uses the cycle algorithm developed in single robot Morse De-
composition for exploration of the stripe boundary. The cycle path is a simple
closed path, i.e., by executing the cycle algorithm the robot always comes back
to the point where it has started. This same cycle algorithm is used for both
exploration and coverage. Before describing the cycle algorithm, we need to
define 2 terms: lapping and wall following. Lapping is the motion along the
slices while wall following is the motion along obstacle boundaries. A simple
cycle algorithm execution will consist of forward lapping, forward wall fol-
lowing, reverse lapping and reverse wall following (as shown in Fig. 4a). This
is sufficient for exploring the stripe boundary.

To explain the cooperative exploration algorithm, we will look at an exam-
ple. Fig. 4b shows an unknown space with a single obstacle, being divided
into 6 stripes. The Reeb graph of each robot is initialized with 2 critical points
(Start and End) and 5 Steiner points (representing the stripe boundaries).

The robots access their respective stripes and perform initial exploration us-
ing the cycle algorithm (forward lapping, forward wall following, reverse lap-
ping and reverse wall following). During exploration, the robots modify their
knowledge of the environment by updating the Reeb graph as they discover
critical points and new information about the Steiner points. After completing
a cycle, each robot shares its updated partial Reeb graph with the rest of the
robots. At the end of the initial exploration, the updated global Reeb graph is
as shown in Fig. 4c.

150 Rekleitis, et al.

Reverse
Lapping

Lapping
Forward

Forward wall
Following

Reverse wall
Following

(a)

stripe boundaries

critical point

steiner point

S EInitial Augmented Reeb Graph

(b)b

1

2

3
4

5

6

1
2 6

stripe boundaries

critical point

steiner point

E
Augmented Reeb Graph After Initial Exploration

S

(c)

1

2

3
4

5

6

1
2 63

5

4

stripe boundaries

critical point

steiner point

E

S

Final Reeb Graph After Exploration is Complete

(d)dFigure 4. (a) A simple cycle path consisting of forward lapping, forward wall following,(c)() (d)(d)

reverse lapping and reverse wall following. (b) Simple environment with initial Augmented
Reeb Graph. (c) Initial exploration of stripes. (d) The final Reeb Graph after exploration is
complete.

In the process of exploration, the robots will realize that there are spaces
in their stripe that they are not able to reach easily. Those robots that are in
such a situation will formulate the unreachable portions of the stripe as auction
tasks and call auctions to re-allocate these parts of their stripe. In this manner,
cooperative exploration is achieved. Fig. 4d shows the completed Reeb Graph
after exploration is complete. Robots that do not have any exploration tasks
can start performing partial coverage of known stripes in order not to waste
time. Coverage of a cell is considered an atomic task, thus a robot that has
started covering a cell would finish covering it before starting another task.
The global Reeb graph is updated to represent the increased knowledge of the
environment.

3.2 Cooperative Coverage

After all the stripe boundaries are completely explored (fully connected
Reeb graph without Steiner points), the cells are owned by the robot that dis-
covered them. The environment is fully represented by the Reeb graph, hence it
is decomposed into a set of connected cells (the union of all the cells represents

Multi-Robot Distributed Coverage 151

the free space), and all free space is allocated to the robots. Next the robots
proceed to cover the cells under their charge. Coverage of a single cell is the
same as single robot Morse Decomposition; if there are no obstacles within the
cell, the coverage is a series of simple cycle paths. If there are obstacles within
the cell, the robot performs incremental modification of the Reeb graph within
that cell and shares the information with the other robots. If there is a robot
that is without a task it calls an auction to offer its service to other robots. If
all robots have completed their cell coverage and there are no uncovered cells
in the Reeb graph, then the robots return to their starting positions and declare
the environment covered.

3.3 Auctioning Tasks

A simple auction mechanism is used to investigate the feasibility of auction
to enable cooperation among robots. At any auction a single task is auctioned
out. In general, the auction mechanism operates as follows: (a) A robot dis-
covers a new task and calls an auction with an initial estimated cost. (b) Other
robots that are free to perform the task at a lower estimated cost, bid for the
task. (c) When the auction time ends, the auctioneer selects the robot with the
lowest bid and assigns the task. The winning robot adds the task into its task list
and confirms that it accepts the task by sending an accept-task message back
to the auctioneer. The auctioneer deletes the auction task and the task auction
process concludes. As stated in the previous sections, auction is used in two
separate ways: for cooperative exploration, and for cooperative coverage.

During exploration, a robot can encounter a situation where the stripe it is
exploring is divided into two (or more) disconnected parts (see for example
the middle stripe in Fig. 5a) because of an obstacle. The robot starts with for-
ward lapping, encounters the obstacle and performs wall following. The wall
following behaviour brings it to the stripe boundary associated with reverse
lapping. As a result, the robot infers that there exists a disconnected stripe. At
this point, it will formulate a new stripe to be explored and calls an auction for
this new exploration task. Please note that the robots generally do not have suf-
ficient information to know accurately the cost of performing the exploration
task. It can only estimate the cost based on whatever information is available.
Cost is the only parameter that decides the winning robot in an auction and it
is thus the factor that determines the quality of cooperation. The estimation of
the cost can be potentially a complex function of many variables (such as time
spent, fuel expended, priorities of the task, capabilities of the robot). For this
investigation, the task cost for the bidder is estimated based on 2 components:
(a) Access cost: Based on the bidder’s current estimated end point (the point
where its currently executing atomic task will end), this is the shortest Manhat-
tan distance to access the new stripe; (b) Exploration cost: Assuming that the

152 Rekleitis, et al.

robot can access the desired point in the stripe, this is the minimum distance
that it needs to travel in order to explore the stripe completely (as parts of the
stripe could already have been explored, the starting point of the exploration
could result in different costs for different robots).

When an initial estimate of the cells is available (exploration is complete)
the robot that has discovered a cell is initially responsible for covering it. The
robot without any tasks will offer its service by also calling an auction. Any
robot that has extra cells (less the cell that it is currently covering) will offer
one of the cells, based on the auctioneer’s position. Each robot without extra
cells will estimate the current cell workload and offer to share its cell coverage
task if it is greater than a threshold. The auctioneer prefers to takeover a cell
rather than to share coverage of a cell. It will use the estimated distance to
access the cell as a selection criteria if there are more than one cell on offer.

4. Experimental Results

The distributed coverage algorithm was implemented in simulation using
Player and Stage (Gerkey et al., 2001) with 3 robots. We adopted a highly dis-
tributed system architecture because it can quickly respond to problems involv-
ing one (or a few) robots, and is more robust to point failures and the changing
dynamics of the system. Our architecture is based on the layered approach
that has been used for many single-agent autonomous systems (Schreckeng-
host et al., 1998, Wagner et al., 2001). We are employing two layers for each
robot instead of the traditional three layers: Planning and Behaviour. The up-
per layer consists of Planner and Model and the lower layer is Behaviour.
Model is where the Reeb graph resides. Planner is where Morse Decomposi-
tion, auction mechanism, task scheduling and task monitoring take place. The
Behaviour process serves the same function as in traditional layered architec-
ture, controlling the robots to perform atomic tasks such as Goto, Follow Wall
and Lapping.

A sample environment for testing the algorithm is shown in Fig. 5a. Each
robot is allocated a stripe and the Planner of each robot receives the stripe in-
formation. The Planner determines the point where it wants to access the stripe
and sends the way-point to the Behaviour process for execution. After access-
ing the stripe, the Behaviour process sends a message to the Planner informing
the Planner that access of the stripe is completed. Based on the stripe infor-
mation and the robot pose, the Planner plans for Forward Lapping and sends
this task to the Behaviour. The Behaviour executes the forward lapping task.
For this task, the 3 robots experience different terminating conditions because
of the environment: The left and the right robots complete the exploration of
their stripes without any problems. The middle robot realizes that it can not
complete the exploration of its stripe and calls an auction. The robot on the

Multi-Robot Distributed Coverage 153

(a) (b)b (c)

Figure 5. (a) The environment and the three robots at the starting position in Stage. (b) The
traces of the robots (marked as circles which are smaller than the footprint) and the critical
points encountered. (c) The augmented Reeb graph with the critical points (circles) and the
Steiner points (crosses).

right wins the auction and proceeds to explore the remaining part of the mid-
dle stripe. In the mean time the left and middle robots start partial coverage.
Finally when exploration is complete the robots exchange cells via auction and
completely cover the environment. Fig. 5c shows the Reeb graph after ex-
ploration is completed. Fig. 5b shows the trace of the three robots plotted as
circles (the trace is smaller than the robot footprint for illustration purposes).

During our experiments the robots continuously explored and covered the
environment. After a few auctions it was impossible to predict which task was
scheduled next by each robot. It is worth noting though that the distance trav-
eled by each robot was approximately the same thus showing that the workload
was distributed evenly.

5. Summary

In this paper we presented an algorithmic approach to the distributed, com-
plete coverage, path planning problem. Under the assumption of global com-
munication among the robots, each robot is allocated an area of the unknown
environment to cover. An auction mechanism is employed in order to facilitate
cooperative behaviour among the robots and thus improve their performance.
In our approach no robot remains idle while there are areas to be covered.

For future work, we would like to compare the performance between the
distributed approach described here with the formation-based approach with
limited communication presented in (Rekleitis et al., 2004). Augmenting the
cost function to take into account individual robot capabilities (especially in
heterogeneous teams) is an important extension. Accurate localization is a
major challenge in mobile robotics; we would like to take advantage of the
meeting of the robots in order to improve the localization quality via coopera-
tive localization (Roumeliotis and Rekleitis, 2004). Finally, developing more

154 Rekleitis, et al.

accurate cost estimates for the different tasks is one of the immediate objec-
tives.

Acknowledgments

The authors wish to thank Edward Rankin for his help with the algorithm
implementation and experimentation; Vincent Lee-Shue and Sam Sonne for
providing valuable input during the early stages of this project; Bernadine Dias,
Danni Goldberg, Rob Zlot and Marc Zink for their help with the Market based
approach. Finally, Luiza Solomon provided valuable insights on the software
design and an implementation of a graph class. Furthermore, we would like to
acknowledge the generous support of the DSO National Laboratories, Singa-
pore, the Office of Naval Research, and the National Science Foundation.

References
Acar, E. U. and Choset, H. (2000). Critical point sensing in unknown environments. In Proc. of

the IEEE International Conference on Robotics & Automation.
Batalin, M. A. and Sukhatme, G. S. (2002). Spreading out: A local approach to multi-robot

coverage. In 6th International Symposium on Distributed Autonomous Robotics Systems,
Fukuoka, Japan.

Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., and Kleywegt,
A. (2003). Robot exploration with combinatorial auctions. In IEEE/RSJ Int. Conference on
Intelligent Robots and Systems, volume 2, pages 1957–1962.

Bruemmer, D. J., Dudenhoeffer, D. D., Anderson, M. O., and McKay, M. D. (2002). A robotic
swarm for spill finding and perimeter formation. Spectrum.

Butler, Z., Rizzi, A., and Hollis, R. (2001). Distributed coverage of rectilinear environments. In
Proc. of the Workshop on the Algorithmic Foundations of Robotics.

Choset, H. and Pignon, P. (1997). Coverage path planning: The boustrophedon cellular decom-
position. In International Conference on Field and Service Robotics, Canberra, Australia.

Dias, M. B. and Stentz, A. T. (2001). A market approach to multirobot coordination. Technical
Report CMU-RI -TR-01-26, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

Dias, M. B. and Stentz, A. T. (2003). Traderbots: A market-based approach for resource, role,
and task allocation in multirobot coordination. Technical Report CMU-RI -TR-03-19, Ro-
botics Institute, Carnegie Mellon University, Pittsburgh, PA.

Dias, M. B., Zinck, M., Zlot, R., and Stentz, A. T. (2004). Robust multirobot coordination
in dynamic environments. In International Conference on Robotics & Automation, pages
3435–3442, New Orleans, LA.

Gerkey, B. and Mataric, M. (2002). Sold!: auction methods for multirobot coordination. IEEE
Transactions on Robotics and Automation, 18(5):758 – 768.

Gerkey, B. P., Vaughan, R. T., StÃÿy, K., Howard, A., Sukhatme, G. S., and Mataric, M. J.
(2001). Most valuable player: A robot device server for distributed control. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2001), pages 1226–1231,
Wailea, Hawaii.

Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S. F., and Stenz, A. (2003).
Market-based multi-robot planning in a distributed layered architecture. In Multi-Robot Sys-

Multi-Robot Distributed Coverage 155

tems: From Swarms to Intelligent Automata: Proceedings from the 2003 International Work-
shop on Multi-Robot Systems, volume 2, pages 27–38. Kluwer Academic Publishers.

Ichikawa, S. and Hara, F. (1999). Characteristics of object-searching and object-fetching behav-
iors of multi-robot system using local communication. In IEEE International Conference on
Systems, Man, and Cybernetics, (IEEE SMC ’99), volume 4, pages 775 –781.

Kurabayashi, D., Ota, J., Arai, T., and Yoshida, E. (1996). Cooperative sweeping by multiple
mobile robots. In 1996 IEEE International Conference on Robotics and Automation, vol-
ume 2, pages 1744 –1749.

Latimer-IV, D., Srinivasa, S., Lee-Shue, V., Sonne, S. S., Choset, H., and Hurst, A. (2002). To-
ward sensor based coverage with robot teams. In Proc. 2002 IEEE International Conference
on Robotics & Automation,.

Luo, C. and Yang, S. (2002). A real-time cooperative sweeping strategy for multiple cleaning
robots. In IEEE Internatinal Symposium on Intelligent Control, pages 660 –665.

Min, T. W. and Yin, H. K. (1998). A decentralized approach for cooperative sweeping by mul-
tiple mobile robots. In 1998 IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 1, pages 380–385.

Rekleitis, I., Lee-Shue, V., New, A. P., and Choset, H. (2004). Limited communication, multi-
robot team based coverage. In IEEE International Conference on Robotics and Automation,
pages 3462–3468, New Orleans, LA.

Roumeliotis, S. I. and Rekleitis, I. M. (2004). Propagation of uncertainty in cooperative multi-
robot localization: Analysis and experimental results. Autonomous Robots, 17(1):41–54.

Schreckenghost, D., Bonasso, P., Kortenkamp, D., and Ryan, D. (1998). Three tier architecture
for controlling space life support systems. In IEEE Int. Joint Symposia on Intelligence and
Systems, pages 195 – 201.

Wagner, I., Lindenbaum, M., and Bruckstein, A. (1999). Distributed covering by ant-robots
using evaporating traces. IEEE Transactions on Robotics and Automation, 15(5):918–933.

Wagner, M., Apostolopoulos, D., Shillcutt, K., Shamah, B., Simmons, R., and Whittaker, W.
(2001). The science autonomy system of the nomad robot. In IEEE International Conference
on Robotics and Automation, volume 2, pages 1742 – 1749.

V

MOTION PLANNING AND CONTROL

REAL-TIME MULTI-ROBOT MOTION
PLANNING WITH SAFE DYNAMICS ∗

James Bruce and Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213, USA

{jbruce,mmv}@cs.cmu.edu

Abstract This paper introduces a motion planning system for real-time control of multiple
high performance robots in dynamic and unpredictable domains. It consists of
a randomized realtime path planner, a bounded acceleration motion control sys-
tem, and a randomized velocity-space search for collision avoidance of multiple
moving robots. The realtime planner ignores dynamics, simplifying planning,
while the motion control ignores obstacles, allowing a closed form solution.
This allows up to five robots to be controlled 60 times per second, but collisions
can arise due to dynamics. Thus a randomized search is performed in the robot’s
velocity space to find a safe action which satisfies both obstacle and dynamics
constraints. The system has been fully implemented, and empirical results are
presented.

Keywords: realtime path planning, multirobot navigation

1. Introduction

All mobile robots share the need to navigate, creating the problem of mo-
tion planning. When multiple robots are involved, the environment becomes
dynamic, and when noise or external agents are present, the environment also
becomes unpredictable. Thus the motion planning system must be able to cope
with dynamic, unpredictable domains. To take advantage of high performance
robots, and respond quickly to external changes in the domain, the system must
also run at real-time rates. Finally, navigation at high speeds means respect-
ing dynamics constraints in the robot motion to avoid collisions while staying

∗This work was supported by United States Department of the Interior under Grant No. NBCH-1040007,
and by Rockwell Scientific Co., LLC under subcontract No. B4U528968 and prime contract No. W911W6-
04-C-0058 with the US Army. The views and conclusions contained herein are those of the authors, and
do not necessarily reflect the position or policy of the sponsoring institutions, and no official endorsement
should be inferred.

159
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 159–170.
©c 2005 Springer. Printed in the Netherlands.

160 Bruce and Veloso

within the operational bounds of the robot. When multiple robots are intro-
duced, the system must find solutions where no robots collide while satisfying
each robot’s motion constraints. This paper describes a domain with these
properties, and a motion planning system which satisfies the requirements for
it. In the remainder of this section, the domain will be presented, and fol-
lowing sections will describe the three major parts of the system mentioned
above. The system will then be evaluated in its entirety as to how well it solves
navigation tasks.

Figure 1. Two teams are shown playing soccer in the RoboCup small size league (left), and
the the overall system architecture for CMDragons (right).

The motivating domain for this work is the RoboCup F180 “small size”
league (Kitano et al., 1995). It involves teams of five small robots, each up to
18cm in diameter and 15cm height. The robot teams are entered into a compe-
tition to play soccer against opponent teams fielded by other research groups.
During the game no human input is allowed, thus the two robot teams must
compete using full autonomy in every aspect of the system. The field of play is
a carpet measuring 4.9m by 3.8m, with a 30cm border around the field for po-
sitioning outside the field of play (such as for free kicks). An earlier (half size)
version of the field is pictured on the left of Figure 1. Offboard communica-
tion and computation is allowed, leading nearly every team to use a centralized
approach for most of the robot control. The data flow in our system, typical of
most teams, is shown on the right of Figure 1 (Bruce et al., 2003). Sensing is
provided by two or more overhead cameras, feeding into a central computer to
process the image and locate the 10 robots and the ball on the field 30-60 times
per second. These locations are fed into an extended Kalman filter for tracking
and velocity estimation, and then sent to a “soccer” module which implements
the team strategy using various techniques. The soccer system implements
most of its actions through a navigation module, which provides path plan-
ning, obstacle avoidance, and motion control. Finally, velocity commands are
sent to the robots via a serial radio link. Due to its competitive nature, teams

Motion Planning with Safe Dynamics 161

have pushed robotic technology to its limits, with the small robots travelling
over 2m/s, accelerations between 3−6m/s2, and kicking the golf ball used in
the game at 4− 6m/s. Their speeds require every module to run in realtime
to minimize latency, while leaving enough computing resources for the other
modules to operate. In addition, the algorithms must operate robustly due to
the full autonomy requirement.

Navigation is a critical component in the overall system described above,
and the one we will focus on in this paper. The system described here is meant
as a drop-in replacement for the navigation module used successfully by our
team since 2002, and building on experience gained since 1997 working on fast
navigation for small high performance robots (Bowling and Veloso, 1999). For
our model, we will assume a centralized system, although the interaction re-
quired between robots will be minimized which should make decentralization a
straightforward extension. It comprises of three critical parts; A path planner, a
motion control system, and a velocity space search for safe motions. Although
motivated by the specific requirements of the RoboCup domain, it should be
of general applicability to domains where several robots must navigate within
a closed space where both high performance and safety are desired.

2. Path Planning

For path planning, the navigation system models the environment in 2D,
and also ignoring dynamics constraints, which will instead be handled by a
later module. The algorithm used is the ERRT extension of the RRT-GoalBias
planner (LaValle, 1998, LaValle and James J. Kuffner, 2001). Due to the speed
of the algorithm, a new plan can be constructed each control cycle, allowing it
to track changes in the dynamic environment without the need for replanning
heuristics. A more thorough description of our previous work on ERRT can
be found in (Bruce and Veloso, 2002). Since then, a new more efficient imple-
mentation has been completed, but the underlying algorithm is the same. It is
described here in enough detail to be understood for the evaluations later in the
paper.

Rapidly-exploring random trees (RRTs) (LaValle, 1998) employ random-
ization to explore large state spaces efficiently, and form the basis for a family
of probabilistically complete, though non-optimal, kinodynamic path planners
(LaValle and James J. Kuffner, 2001). Their strength lies in that they can ef-
ficiently find plans in relatively open or high dimensional spaces because they
avoid the state explosion that discretization faces. A basic planning algorithm
using RRTs is shown in Figure 2, and the steps are as follows: Start with a
trivial tree consisting only of the initial configuration. Then iterate: With prob-
ability p, find the nearest point in the current tree and extend it toward the
goal g. Extending means adding a new point to the tree that extends from a

162 Bruce and Veloso

point in the tree toward g while maintaining whatever motion constraints exist.
Alternatively, with probability 1− p, pick a point x uniformly from the config-
uration space, find the nearest point in the current tree, and extend it toward x.
Thus the tree is built up with a combination of random exploration and biased
motion towards the goal configuration.

Start with q-init

target

extend

step 2step 1 step 8
...

Figure 2. Example growth of an RRT tree for several steps. Each iteration, a random target
is chosen and the closest node in the tree is “extended” toward the target, adding another node
to the tree.

To convert the RRT algorithm into a planner, we need two simple additions.
One is to restrict the tree to free space, where it will not collide with obstacles.
This can be accomplished by only adding nodes for extensions that will not hit
obstacles. To make the tree into a planner, we only need to stop once the tree
has reached a point sufficiently close to the goal location. Because the root of
the tree is the initial position of the robot, tracing up from any leaf gives a valid
path through free space between that leaf and the initial position. Thus finding
a leaf near the goal is sufficient to solve the planning problem.

Execution Extended RRT (ERRT) adds the notion of a waypoint cache,
which is a fixed-size lossy store of nodes from successful plans in previous
iterations of the planner. Whenever a plan is found, all nodes along the path
are added to the cache with random replacement of previous entries. Then dur-
ing planning, random targets are now chosen from three sources instead of two.
In other words, with probability p it picks the goal, with probability q it picks
a random state from the waypoint cache, and with the remaining 1− p− q it
picks a random state in the environment.

In order to implement ERRT we need an extend operator, a distance func-
tion between robot states, a distribution for generating random states in the
environment, and a way of determining the closest point in a tree to a given
target state. Our implementation uses Euclidean distance for the distance func-
tion and the uniform distribution for generating random states. The nearest
state in the tree is determined using KD-Trees, a common technique for speed-
ing up nearest neighbor queries. Finally the extend operator it simply steps a
fixed distance along the path from the current state to the target. For a planner
ignoring dynamics, this is the simplest way to guarantee the new state returned
is closer to the intermediate target than the parent. Our step size is set to the

Motion Planning with Safe Dynamics 163

minimum of the robot’s radius and the distance to the randomly chosen target.
An image of the planner running in simulation is shown in Figure 3, and a
photograph of a real robot controlled by the planner is shown in Figure 4. To
simplify input to the motion control, the resulting plan is reduced to a single
target point, which is the furthest node along the path that can be reached with
a straight line that does not hit obstacles. This simple postprocess smooths out
local non-optimalities in the generated plan.

Figure 3. A robot on the left finds a path to a goal on the right using ERRT.

Figure 4. A robot (lower left) navigating at high speed through a field of static obstacles.

3. Motion Control

Once the planner determines a waypoint for the robot to drive to in order
to move toward the goal, this target state is fed to the motion control layer.

164 Bruce and Veloso

Time

Velocity
Accel Cruise Deccel

Target

Current
State

Motion Coordinate
Frame

Figure 5. Our motion control approach uses trapezoidal velocity profiles. For the 2D case, the
problem can decomposed into two 1D problems, one along the difference between the current
state and the target state, and the other along its perpendicular.

The motion control system is responsible for commanding the robot to reach
the target waypoint from its current state, while subject to the physical con-
straints of the robot. The model we will take for our robot is a three or four
wheeled omnidirectional robot, with bounded acceleration and a maximum
velocity. The acceleration is bounded by a constant on two independent axes,
which models a four-wheeled omnidirectional robot well. In addition, deceler-
ation is a separate constant from acceleration, since braking can often be done
more quickly than increasing speed. The approach taken for motion control is
the well known trapezoidal velocity profile. In other words, to move along a
dimension, the velocity is increased at maximum acceleration until the robot
reaches its maximum speed, and then it decelerates at the maximum allowed
value to stop at the final destination (Figure 5. The area traced out by the trape-
zoid is the displacement effected by the robot. For motion in 2D, the problem
is decomposed as a 1D motion problem along the axis from the robots’ current
position to the desired target, and another 1D deceleration perpendicular to that
axis.

While the technique is well known, the implementation focuses on robust-
ness even in the presence of numerical inaccuracies, changing velocity or ac-
celeration constraints, and the inability to send more than one velocity com-
mand per cycle. First, for stability in the 2D case, if the initial and target points
are close, the coordinate frame becomes degenerate. In that case the last coor-
dinate frame above the distance threshold is used. For the 1D case, the entire
velocity profile is constructed before calculating the command, so the behavior
over the entire command period (1/60 to 1/30 of a second) can be represented.
The calculation proceeds in the following stages:

If the current velocity is opposite the difference in positions, decelerate
to a complete stop

Alternatively, if the current velocity will overshoot the target, decelerate
to a complete stop

If the current velocity exceeds the maximum, decelerate to the maximum

Motion Planning with Safe Dynamics 165

Calculate a triangular velocity profile that will close the gap

If the peak of the triangular profile exceeds the maximum speed, calcu-
late a trapezoidal velocity profile

Although these rules construct a velocity profile that will reach the target
point if nothing impedes the robot, limited bandwidth to the robot servo loop
necessitates turning the full profile into a single command for each cycle. The
most stable version of generating a command was to simply select the velocity
in the profile after one command period has elapsed. Using this method pre-
vents overshoot, but does mean that very small short motions will not be taken
(when the entire profile is shorter than a command period). In these cases it
may be desirable to switch to a position based servo loop rather than a velocity
base servo loop if accurate tracking is desired.

4. Velocity Space Safety Search

World Coordinates Velocity Space

Vx

Vy
Acceleration

Window

Obstacle

Figure 6. Example environment shown in world space and velocity space.

In the two previous stages in the overall system, the planner ignored dynam-
ics while the motion control ignored obstacles, which has no safety guarantees
in preventing collisions between the agent and the world, or between agents.
The “Dynamic Window” approach (Fox et al., 1997) is a search method which
elegantly solves the first problem of collisions between the robotic agent and
the environment. It is a local method, in that only the next velocity command
is determined, however it can incorporate non-holonomic constraints, limited
accelerations, maximum velocity, and the presence of obstacles into that deter-
mination, thus guaranteeing safe motion for a robot. The search space is the
velocities of the robot’s actuated degrees of freedom. The two developed cases
are for synchro-drive robots with a linear velocity and an angular velocity, and
for holonomic robots with two linear velocities (Fox et al., 1997, Brock and
Khatib, 1999). In both cases, a grid is created for the velocity space, reflect-
ing an evaluation of velocities falling in each cell. First, the obstacles of the
environment are considered, by assuming the robot travels at a cell’s veloc-
ity for one control cycle and then attempts to brake at maximum deceleration

166 Bruce and Veloso

while following that same trajectory. If the robot cannot come to a stop before
hitting an obstacle along that trajectory, the cell is given an evaluation of zero.
Next, due to limited accelerations, velocities are limited to a small window that
can be reached within the acceleration limits over the next control cycle (for a
holonomic robot this is a rectangle around the current velocities). An example
is shown in Figure 6. Finally, the remaining valid velocities are scored us-
ing a heuristic distance to the goal. It was used successfully in robots moving
up to 1m/s in cluttered office environments with dynamically placed obstacles
(Brock and Khatib, 1999).

Our approach first replaces the grid with randomized sampling, with mem-
ory of the acceleration chosen in the last frame. Static obstacles are handled
in much the same way, by checking if braking at maximum deceleration will
avoid hitting obstacles. The ranking of safe velocities is done by choosing the
one with the minimum Euclidean distance to the desired velocity given by the
motion control. For moving bodies (robots, in this case) we have to measure
the minimum distance between two accelerating bodies. The distance can be
computed by solving two fourth degree polynomials (one while both robots
are decelerating, and the second while one robot has stopped and the other is
still trying to stop). For simplicity however we solved the polynomials nu-
merically. Using this primitive, the velocity calculations proceeded as follows.
First, all the commands were initialized to be maximum deceleration for stop-
ping. Then as the robots chose velocities in order, they consider only velocities
that don’t hit an environment obstacle or hit the other robots based on the latest
velocity command they have chosen. The first velocity tried is the exact one
calculated by motion control. If that velocity is valid (which it normally is),
then the sampling stage can be skipped. If it is not found, first the best solution
from the last cycle is tried, followed by uniform sampling of accelerations for
the next frame. Because the velocities are chosen for one cycle, followed by
maximum deceleration, in the next cycle the robots should be safe to default
to their maximum deceleration commands. Since this “chaining” assumption
always guarantees that deceleration is an option, robots should always be able
to stop safely. In reality, numerical issues, the limitations of sampling, and the
presence of noise make this perfect-world assumption fail. To deal with this,
we can add small margins around the robot, and also rank invalid commands.
In the case where no safe velocity can be found, the velocity chosen is the
one which minimizes the interpenetration depth with other robots or obstacles.
This approach often prevents the robot from hitting anything at all, though it
depends on the chance that the other robots involved can choose commands to
avoid the collision.

Taken together, the three parts of the navigation system consisting of plan-
ner, motion control, and safety search, solve the navigation problem in a highly
factored way. That is, they depend only on the current state and expected next

Motion Planning with Safe Dynamics 167

command of the other robots. Factored solutions can be preferable to global
solutions including all robots degrees of freedom as one planning problem for
two reasons. One is that factored solutions tend to be much more efficient, and
the second is that they also have bounded communication requirements if the
algorithm needs to be distributed among agents. Each robot must know the
position and velocity of the other robots, and communicate any command it
decides, but it does not need to coordinate at any higher level beyond that.

5. Evaluation and Results

Figure 7. Multiple robots navigating traversals in parallel. The outlined circles and lines
extending from the robots represent the chosen command followed by a maximum rate stop.

The evaluation environment the same as shown in Figure 3, which matches
the size of the RoboCup small size field, but has additional large obstacles with
narrow passages in order to increase the likelihood of robot interactions. The
90mm radius robots represent the highest performance robots we have used in
RoboCup. Each has a command cycle of 1/60 sec, a maximum velocity of
2m/s, acceleration of 3m/s2, and deceleration of 6m/s2. For tests, four robots
were given the task of traveling from left to right and back again four times,
with each robot having separate goal points separated in the y axis. Because
different robots have different path lengths to travel, after a two traversals ro-
bots start interacting while trying to move in opposed directions. Figure 7
shows an example situation. The four full traversals of all the robots took
about 30 seconds of simulated time.

For the evaluation metric, we chose interpenetration depth multiplied by the
time spent in those invalid states. To more closely model a real system, vary-
ing amounts of position sensor error were added, so that the robot’s reported

168 Bruce and Veloso

position was a Gaussian deviate of its actual position. This additive random
noise represents vision error from overhead tracking systems. Velocity sensing
and action error were not modelled here for simplicity; These errors depend
heavily on the specifics of the robot and lack a widely applicable model. First,
we compared using planner and motion control but enabling or disabling the
safety search. Each data point is the average of 40 runs, representing about 20
minutes of simulated run time. Figure 8 shows the results, where it is clearly
evident that the safety search significantly decreases the total interpenetration
time. Without the safety search, increasing the vision error makes little dif-
ference in the length and depth of collisions. Next, we evaluated the safety
search using different margins of 1− 4mm around the 90mm robots, plotted
against increasing vision error (Figure 9. As one would expect, with little or
no vision error even small margins suffice for no collisions, but as the error
increases there is a benefit to higher margins for the safety search, reflecting
the uncertainty in the actual position of the robot. As far as running times, the
realtime operation of ERRT has been maintained, with a mean time of execu-
tion is 0.70ms without the velocity safety search and 0.76ms with it. These
reflect the fact that the planning problem is usually easy, and interaction with
other robots that require sampling are rare. Focusing on the longer times, the
95% percentiles are 1.96ms and 2.04ms, respectively.

Figure 8. Comparison of navigation with and without safety search. Safety search signifi-
cantly decreases the metric of interpenetration depth multiplied by time of interpenetration.

Motion Planning with Safe Dynamics 169

Figure 9. Comparison of several margins under increasing vision error.

6. Conclusion

This paper described a navigation system for the real-time control of mul-
tiple high performance robots in dynamic domains. Specifically, it addressed
the issue of multiple robots operating safely without collisions in a domain
with acceleration and velocity constraints. While the current solution is cen-
tralized, it does not rely on complex interactions and would rely on minimal
communication of relative positions, velocities, and actions to distribute the
algorithm. Like most navigation systems however, it makes demands of sensor
accuracy that may not yet be practical for multiple distributed robots with only
local sensing. Its primary contribution is to serve as an example and model of
a complete system for similar problem domains.

References
Bowling, M. and Veloso, M. (1999). Motion control in dynamic multi-robot environments.

In International Symposium on Computational Intelligence in Robotics and Automation
(CIRA’99).

Brock, O. and Khatib, O. (1999). High-speed navigation using the global dynamic window ap-
proach. In Proceedings of the IEEE International Conference on Robotics and Automation.

Bruce, J., Bowling, M., Browning, B., and Veloso, M. (2003). Multi-robot team response to a
multi-robot opponent team. In Proceedings of the IEEE International Conference on Robot-
ics and Automation.

Bruce, J. and Veloso, M. (2002). Real-time randomized path planning for robot navigation. In
Proceedings of the IEEE Conference on Intelligent Robots and Systems (IROS).

170 Bruce and Veloso

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window approach to collision avoid-
ance. IEEE Robotics and Automation Magazine, 4.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E. (1995). Robocup: The robot world
cup initiative. In Proceedings of the IJCAI-95 Workshop on Entertainment and AI/ALife.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning. In Tech-
nical Report No. 98-11.

LaValle, S. M. and James J. Kuffner, J. (2001). Randomized kinodynamic planning. In Interna-
tional Journal of Robotics Research, Vol. 20, No. 5, pages 378–400.

A MULTI-ROBOT TESTBED FOR
BIOLOGICALLY-INSPIRED
COOPERATIVE CONTROL

Rafael Fierro and Justin Clark
MARHES Laboratory
Oklahoma State University
Stillwater, OK 74078, USA

{rafael.fierro, justin.clark}@okstate.edu

Dean Hougen and Sesh Commuri
REAL Laboratory
University of Oklahoma
Norman, OK 73072, USA

{hougen, scommuri}@ou.edu

Abstract In this paper a multi-robot experimental testbed is described. Currently, the test-
bed consists of five autonomous ground vehicles and two aerial vehicles that are
used for testing multi-robot cooperative control algorithms. Each platform has
communication, on-board sensing, and computing. Robots have plug-and-play
sensor capability and use the Controller Area Network (CAN) protocol, which
maintains communication between modules. A biologically-inspired coopera-
tive hybrid system is presented in which a group of mobile robotic sensors with
limited communication are able to search for, locate, and track a perimeter while
avoiding collisions.

Keywords: Multi-robot cooperation, perimeter detection, biologically inspired hybrid sys-
tem.

1. Introduction

Control problems for teams of robots can have applications in a wide va-
riety of fields. At one end of the spectrum are multi-vehicle systems that are
not working together, but need to be coordinated to the extent that they do not
interfere with one another. Typical applications in this area are in air-traffic
control. At the other end of the spectrum are teams of robots operating cooper-
atively and moving in formations with precisely defined geometries that need

171
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 171–182.
©c 2005 Springer. Printed in the Netherlands.

172 Fierro, et al.

to react to the environment to achieve stated goals (Das et al., 2002). In the
middle ground there are groups of vehicles that have some common goals, but
may not have precisely defined desired trajectories. One control problem in
this area is robots with behavior that is analogous to the schooling or herding
behavior of animals (Jadbabaie et al., 2003).

The need for unmanned ground vehicles (UGVs) capable of working to-
gether as a sensing network for both industrial and military applications has
led to the design of the multi-vehicle MARHES testbed. The testbed consists
of five autonomous ground vehicles and two UAV’s that are used for testing
multi-agent cooperative control algorithms in applications such as perimeter
detection, search and rescue, and battlefield assessment to mention just a few.
The main goals when designing this testbed were to make it affordable, modu-
lar, and reliable. This balance of price and performance has not been available
in the commercial market yet. The plug-and-play sensor modules allow modu-
larity. Reliability is achieved with the Controller Area Network (CAN) which
maintains data integrity.

The rest of the chapter is organized as follows. The multi-robot testbed is
described in section 2. Section 3 presents a biologically-inspired cooperative
multi-robot application. Specifically, a perimeter detection and tracking prob-
lem is discussed in detail. Finally, section 4 gives some concluding remarks
and future directions.

2. The Multi-Robot Experimental Testbed

2.1 Platform Hardware

The platform consists of a R/C truck chassis from Tamiya Inc., odometer
wheel sensors, a stereo vision system, an embedded computer (e.g., , PC-104 or
laptop), a suite of sensors, actuators, and wireless communication capabilities.
The lower-level sensing, speed control, and actuator control are all networked
using the Controller Area Network (CAN) system (Etschberger, 2001). This
lower-level network is capable of controlling linear speed up to 2 m/s, angular
speed, and managing the network. Having a velocity controlled platform is
important, since many coordination approaches available in the literature (Das
et al., 2002) have been developed considering kinematic rather than dynamic
mobile robot models. Managing the network consists of detecting modules,
controlling the state of a module, and maintaining network integrity. The vehi-
cles (see Figure 1 left) are versatile enough to be used indoors, or outdoors in
good weather.

A Multi-Robot Testbed 173

Figure 1. (a) MARHES r perimeter de-multi-vehicle experimental testbed, and (b) setup for
tection.

2.2 System Architecture

The system architecture, shown in Figure 2, consists of low-level and high-ystem architecture, shown in Figure 2, consists of low-lev
level layers. The low-level layer is made up of sensors, electronics, and aers. The low-level layer is made up of sensors, electro
PCMCIA card to interface the CAN bus with the high-level PC. The high-levelA card to interface the CAN bus with the high-level PC. Th
layer is made up of PC’s and the server, all of which are using Player/Gazebomade up of PC’s and the server, all of which are using Pla
(Gerkey eet al., 2003).

IEEE 1394

Hardware Layer

Server

Client 1 Client n1

PC

Device 1 Device m1

Server

Client 1 Client nk

PC

Device 1 Device mk

CAN BusCAN Bus

Camera

IEEE 1394

Software
Layer

PLAYER

IEEE 802.11b/g

Camera

Figure 2. System architecture block diagram.

PPlayer that isis a server for robotic communication, developed by USC, t
language independent and works under UNIX-based operating systems. Ituage independent and works under UNIX-based operating system
provides an interface to controllers and sensors/actuators over TCP/IP proto-vides an interface to controllers and sensors/actuators over TCP/IP p
col. Each robot has a driver and is connected to a specified socket, which canEach robot has a driver and is connected to a specified socket, whic
readd/write nect toto all of the sensors and actuators on the robot. Users conn
the sockets through a client/robot interface and can send commands or receivesockets through a client/robot interface and can send commands or re
information from each robot. Each robot can communicate with each otherrmation from each robot. Each robot can communicate with each
or a single common client and update their information continuously to all
clients. Player is convenient in that it allows for virtual robots to be simulated
by connecting the driver to Gazebo – a 3D open source environment simulator.

The CAN protocol is a message-based bus, therefore bases and workstation
addresses do not need to be defined, only messages. These messages are recog-
nized by message identifiers. The messages have to be unique within the whole
network and define not only the content, but also its priority. Specifically, our

174 Fierro, et al.

lower-level CAN Bus system allows for sensors and actuators to be added and
removed from the system with no reconfiguration required to the higher-level
structure (c.f., (Gomez-Ibanez et al., 2004)). This type of flexible capability is
not common in commercially available mobile robotic platforms. The current
configuration of the MARHES-TXT CAN system is shown in Figure 3.

Odometer Motor Controller

Servo Controller (PWM)

Servos

8 Signal
Lines

IR Module GPS Module IMU Module

Device Manager

Ultrasonic

Low-Level (CAN Bus)

Server

Access Point

Wireless
Signal

CAN Interface

High-Level (PC)

PC-104

MARHES CANBot Control Module

Speed Controller (v, ωω)ω)ω))

Figure 3. CAN Bus diagram.

The Device Manager Module (DMM) is the CAN component which man-The Device Manager Module (DMM) is the CAN component which m
ages the bus. After start-up, the DMM checks the bus continuously to see if aes the bus. After start-up, the DMM checks the bus continuously to see
sensor has been connected/disconnected and that all components are workingnsor has been connected/disconnected and that all components are work
prooperly.

3. Biologically-Inspired Perimeter Detection and
Tracking

Perimeter detection has a wide range of uses in several areas, including: (1)Perimeter detection has a wide range of uses in several areas, including:
Millitary, e.g., mical, locating minefields or surrounding a target, (2) Nuclear/Chem
Inddustries, e.g., , tracking radiation/chemical spills, (3) Oceans, e.g., king, track
oil spills, and (4) Space, e.g., area, planetary exploration. A perimeter is an
enclosing some type of agent. We consider two types of perimeters: (1) staticclosing some type of agent. We consider two types of perimeters: (1) st
andd (2) dynamic. A static perimeter does not change over time, e.g., sibly, poss
a minefield. Dynamic perimeters are time-varying and expand/contract overminefield. Dynamic perimeters are time-varying and expand/contract o
timme, e.g., , a radiation leak.

A variety of perimeter detection and tracking approaches have been pro-
posed in the literature. Bruemmer et al., present an interesting approach in
which a swarm is able to autonomously locate and surround a water spill using
social potential fields (Bruemmer et al., 2002). Authors in (Feddema et al.,
2002) show outdoor perimeter surveillance over a large area using a swarm

A Multi-Robot Testbed 175

that investigates alarms from intrusion detection sensors. A snake algorithm to
locate and surround a perimeter represented by a concentration function is de-
veloped in (Marthaler and Bertozzi, 2004). Authors in (Savvides et al., 2004)
use mobile sensing nodes to estimate dynamic boundaries.

In perimeter detection tasks a robotic swarm locates and surrounds an agent,
while dynamically reconfiguring as additional robots locate the perimeter. Ob-
viously, the robots must be equipped with sensors capable of detecting what-
ever agent they are trying to track. Agents could be airborne, ground-based, or
underwater. See Fig. 4(a) for an example of a perimeter, an oil spill.

Perimeter

1

2

3

4

5

Boundary

Figuree 4. (a) Oil spill (Courtesy NOAA’s Office of Response and Restoration), and (b)Office of Response and Restoration), a
Bounddary, perimeter example.

In this section, a decentralized, cooperative hybrid system is presented uti-erative hybrid system is presente
lizingg biologically-inspired emergent behavior. Each controller is composedehavior. Each controller is comp
of finnite state machines, and it is assumed that the robots have a suite of sen-ed that the robots have a suite o
sors aand can communicate only within a certain range. A relay communication
schemme is used. Once a robot locates the perimeter, it broadcasts the location
to anyy robots within range. As each robot receives the perimeter location, it
too bbegins broadcasting, in effect, forming a relay. Other groups have used
the teerms perimeter and boundary interchangeably, but in this work, there is a
distinnct difference. The perimeter is the chemical agent being tracked, while
the booundary is the limit of the exploration area. Refer to Fig. 4(b).

3.1 Cooperative Hybrid Controller

Thhe theory of hierarchical hybrid systems (Alur et al., 2001, Fierro et al.,
2002)) offers a convenient framework to model the multi-robot system engaged
in a pperimeter detection and tracking task. At the higher layer of the hierarchy,
the mmulti-robot sensor system is represented by a robot-group agent. Each
robott agent is represented by a finite automaton consisting of three states as
shown in Figure 5: (1) searching, (2) moving, and (2) tracking. The next layer
of staates are: (1) collision avoidance and (2) boundary avoidance. The lower
layer is made up of elementary robot behaviors: (1) speed up, (2) slow down,

176 Fierro, et al.

(3) turn right, (4) turn left, and (5) go straight. These actions change depending
on which state the robot is in and if the sensors have detected the perimeter or
neighboring robots.

read discrete bool DetectedPoint, PerimeterDetected;

PerimeterDetected == false
DetectedPoint== true

Tracking TC

PerimeterDetected == true

Random Coverage RCC Potential Field PFC

DetectedPoint == true

PerimeterDetected == true

PerimeterDetected == false

Figure 5. Mobile robot (sensor) agent.

The MMARHES l:car-like platform is modeled with the unicycle model

ẋi = vi cosθi, ẏi = vi sinθi, θ̇i = ωi, (1)

where xii, yi, θi, vi, and ωi n angle,are the x-position, y-position, orientation
linear veelocity, and angular velocity of robot i, respectively. Note that vvi ranges
from 0 ≤≤ vi ≤ 2 m/s, while ωi ranges from −0.3 ≤ ωi ≤ 0.3 rad/s. These.
ranges coome from extensive tests of our platform.

The controllers used are: (1) Random Coverage Controller (RCC), (2) Po-controllers used are: (1) Random Coverage Controller (RCC),
tential Field Controller (PFC), and (3) Tracking Controller (TC). The RCCField Controller (PFC), and (3) Tracking Controller (TC). Th
uses a logarithmic spiral search pattern to look for the perimeter while avoid-ogarithmic spiral search pattern to look for the perimeter while
ing collisions. The PFC allows the robots to quickly move to the perimeter ifi Th PFC ll th b t t i kl t th i
the perimeter has been detected. The TC allows the robots to track the perime-
ter and avoid collisions.

Random Coverage Controller. The goal of the Random Coverage Con-
troller (RCC) is to efficiently cover as large an area as possible while searching
for the perimeter and avoiding collisions. The RCC consists of three states: (1)
Spiral Search, (2) Boundary Avoidance, and (3) Collision Avoidance. The spi-
ral search is a random search for effectively covering the area. The boundary
and collisions are avoided by adjusting the angular velocity.

The logarithmic spiral, seen in many instances in nature, is used for the
search pattern. In (Hayes et al., 2002), a spiral search pattern such as that used

A Multi-Robot Testbed 177

by moths is utilized for searching an area. It has been shown that the spiral
search is not optimal, but effective (Gage, 1993). Some examples are hawks
approaching prey, insects moving towards a light source, sea shells, spider
webs, and so forth. Specifically, the linear and angular velocity controllers are:

vi(t) = vs
(
1− e−t) , ωi(θi) = aebθi , (2)

where vs = 1 m/s, a is a constant, and b > 0. If a > 0 (< 0), then the ro-
bots move counterclockwise (clockwise). If a robot gets close to the boundary
(limit of the exploration area here), then it will turn sharply (ωi = −ωmax, with
ωmax = 0.3 rad/s) to avoid crossing the boundary. Once a certain distance
away from the boundary is reached, then the controller will return to the spiral
search.

To avoid collisions, the robots’ orientations must be taken into account so
the robots turn in the proper direction. If the robots are coming towards each
other, then they both turn in the same direction to avoid colliding. If the fol-
lower robot is about to run into the leader robot, then the follower robot will
turn, while the leader robot continues in whatever direction it was heading.

Potential Field Controller. Potential fields have been used by a number of
groups for controlling a swarm. In (Tan and Xi, 2004), virtual potential fields
and graph theory are used for area coverage. In (Parunak et al.,), a potential
field method is used that is inspired by an algorithm observed in wolf packs.

The Potential Field Controller (PFC) uses an attractive potential which al-
lows the robots to quickly move to the perimeter once it has been detected. The
first robot to detect the perimeter broadcasts its location to the other robots. If
a robot is within range, then the PFC is used to quickly move to the perimeter.
Otherwise, the robot will continue to use the RCC unless it comes within range,
at which point it will switch to the PFC. As a robot moves towards the goal, if
it detects the perimeter before it reaches the goal, it will switch to the TC. The
PFC has two states: (1) Attractive Potential and (2) Collision Avoidance.

The attractive potential, Pa(xi,yi), is

Pa(xi,yi) =
1
2

ε[(xi − xg)2 +(yi − yg)2], (3)

where (xi,yi) is the position of robot i, ε is a positive constant, and (xg,yg)
is the position of the attractive point (goal). The attractive force, Fa(xi,yi), is
derived below.

Fa(xi,yi) = −∇Pa(xi,yi) = ε
[

xg − xi

yg − yi

]
=
[

FaFF ,xi

FaFF ,yi

]
(4)

Equation (4) is used to get the desired orientation angle, θi,d , of robot i:

θi,d = arctan2

(
FaFF ,yi

FaFF ,xi

)
(5)

178 Fierro, et al.

Depending on θi and θi,d , the robot will turn the optimal direction to quickly
line up with the goal using the following proportional angular velocity con-
troller:

ωi =
{

0 θi = θi,d

±k(θi,d −θi) θi �=�� θi,d,
(6)

where k = ωmax
2π and ωmax = 0.3 rad/s.

Collisions are avoided in the same manner as in the random coverage con-
troller.

Tracking Controller. The Tracking Controller changes ω and v in order to
track the perimeter and avoid collisions, respectively. Cyclic behavior emerges
as multiple robots track the perimeter. In (Marshall et al., 2004) , cyclic pursuit
is presented in which each robot follows the next robot (1 follows 2, 2 follows
3, etc.). The robots move with constant speed and a proportional controller
is used to handle orientation. The TC differs in that each robot’s objective is
to track the perimeter, while avoiding collisions. There are no restrictions on
robot order, v is not constant, and a bang-bang controller is used to handle
orientation.

The robots move slower in this state to accurately track the perimeter coun-
terclockwise. The TC consists of two states: (1) Tracking, and (2) Cooperative
Tracking. Tracking is accomplished by adjusting the angular velocity with
a bang-bang controller. Cooperative tracking allows the swarm to distribute
around the perimeter.

A robot only enters this state if it is the only robot that has detected the
perimeter. The linear velocity is a constant 0.4 m/s. The angular velocity
controller is:

ωi =
{

−ωt inside perimeter
ωt outside perimeter,

(7)

where ωt = 0.1 rad/s. A look-ahead distance is defined to be the sensor point
directly in front of the robots. If the sensor has detected the perimeter and
the look-ahead distance is inside the perimeter, then the robot will turn right.
Otherwise, the robot turns left. This zigzagging behavior is often seen in moths
following a pheromone trail to its source.

Cooperative tracking occurs when two or more robots have sensed the perime-
ter. Equation (7) is still used, but now the linear velocity is adjusted to allow
the swarm to distribute. The robots communicate their separation distances to
each other. Each robot only reacts to its nearest neighbor on the perimeter.
The swarm will attempt to uniformly distribute around the perimeter at a de-
sired separation distance, ddesdd , using the following linear velocity proportional
controller:

vi =
{

0 |di j −ddesdd | < ε
kpk |ddesdd −di j| otherwise

(8)

A Multi-Robot Testbed 179

where di j is the distance from robot i to robot j, ε = 0.01, and kpk = vmax
|ddesdd −di j,max| �

0.06.
When the swarm is uniformly distributed, it stops. This allows each robot to

conserve its resources. If the perimeter continues to expand or robots are added
or deleted, then the swarm will reconfigure until the perimeter is uniformly
surrounded. Note that the choice of ddesdd is critical to the swarm’s behavior.
If ddesdd is too low, the swarm will not surround the perimeter. Subgroups may
also be formed since each robot only reacts to its nearest neighbor. If ddesdd is
too high, the swarm will surround the perimeter, but continue moving.

Collision avoidance is handled inherently in the controller. Since the robots
can communicate, they should never get close enough to collide.

An analysis of the system is being done in order to calculate the optimal
number of robots needed to uniformly distribute around a perimeter, assuming
a static perimeter and a constant ddesdd .

Ideally, the swarm could dynamically change ddesdd depending on the perime-
ter. This should allow the swarm to uniformly distribute around most perime-
ters, static or dynamic. We are currently investigating ways to do this.

3.2 Results

In the simulation depicted in Figure 6, Dcom, Dsen, and Dsep are the commu-
nication range, the sensor range, and the desired separation distance, respec-
tively. Five robots are shown tracking a dynamic perimeter that is expanding
at 0.0125 m/s.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

x (m)

y
(m

)

Dynamic Perimeter Detection Animation

Time = 0 s D
com

= 25 m D
sen

= 3 m D
sep

= 12 m

Perimeter

Boundaryy

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

x (m)

y
(m

)

Dynamic Perimeter Detection Animation

Time = 500 s D
com

 = 25 m D
sen

 = 3 m D
sep

= 12 m

Perimeter

Boundary

Figure 6. Five robots detecting and tracking a dynamic perimeter. (a) Initial and (b) final
configurations.

All robots are initially searching. Robot 4 locates the perimeter first. Robot
3 is within range and receives the location. As robot 4 is tracking the perimeter,
robot 2 comes within range, receives the location, and moves toward it avoid-
ing collisions with robot 4. Robots 1 and 5 locate the perimeter on their own.

180 Fierro, et al.

Subgroups are formed in this case because there are not enough robots to dis-
tribute around the perimeter. The swarm does not stop because the expanding
perimeter is never uniformly surrounded.

A Gazebo model was developed to verify the simulation results from Mat-
lab. Our platform, the Tamiya TXT-1, can be modeled in Gazebo using the
ClodBuster model. Each robot is equipped with odometers, a pan-tilt-zoom
camera, and a sonar array. Position and orientation are estimated using the
odometers. The camera is used for tracking the perimeter. It is pointed down
and to the left on each robot to allow the robots to track the perimeter at a small
offset. This way, they never drive into the perimeter. The sonar array is used
to avoid collisions.

Figure 7. Perimeter detection and tracking using Gazebo.

A simulation is shown in Figure 7 in which robots search for, locate, and
track the perimeter while avoiding collisions. The perimeter and boundary
are represented by a red cylinder and a gray wall, respectively. Since Gazebo
models the real world (sensors, robots, and the environment) fairly accurately,
the code developed in Gazebo should be easily portable to our experimental
testbed.

4. Summary

We describe a cost-effective experimental testbed for multi-vehicle coordi-
nation. The testbed can be used indoors under controlled lab environments or
outdoors. Additionally, we design a decentralized cooperative hybrid system
that allows a group of nonholonomic robots to search for, detect, and track a
dynamic perimeter with only limited communication, while avoiding collisions
and reconfiguring on-the-fly as additional robots locate the perimeter. Current
work includes optimization based sensor placement for perimeter estimation,
and implementation of the controllers presented herein on the MARHES ex-
perimental testbed.

A Multi-Robot Testbed 181

Acknowledgments

This material is based upon work supported in part by the U. S. Army Re-
search Laboratory and the U. S. Army Research Office under contract/grant
number DAAD19-03-1-0142. The first author is supported in part by NSF
Grants #0311460 and #0348637. The second author is supported in part by
a NASA Oklahoma Space Grant Consortium Fellowship. We would like to
thank Kenny Walling for his work on the mobile platform. Also, we thank
Daniel Cruz, Pedro A. Diaz-Gomez, and Mark Woehrer for their work on
Player/Gazebo.

References
Alur, R., Dang, T., Esposito, J., Fierro, R., Hur, Y., Ivancic, F., Kumar, V., Lee, I., Mishra, P.,

Pappas, G., and Sokolsky, O. (2001). Hierarchical hybrid modeling of embedded systems. In
Henzinger, T. and Kirsch, C., editors, EMSOFT 2001, volume 2211 of LNCS, pages 14–31.
Springer-Verlag, Berlin Heidelberg.

Bruemmer, D. J., Dudenhoeffer, D. D., McKay, M. D., and Anderson, M. O. (2002). A robotic
swarm for spill finding and perimeter formation. In Spectrum 2002, Reno, Nevada USA.

Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J., and Taylor, C. J. (2002). A vision-
based formation control framework. IEEE Trans. on Robotics and Automation, 18(5):813–
825.

Etschberger, K. (2001). Controller Area Network: Basics, Protocols, Chips and Applications.
IXXAT Press, Weingarten, Germany.

Feddema, J. T., Lewis, C., and Schoenwald, D. A. (2002). Decentralized control of cooper-
ative robotic vehicles: Theory and application. IEEE Trans. on Robotics and Automation,
18(5):852–864.

Fierro, R., Das, A., Spletzer, J., Esposito, J., Kumar, V., Ostrowski, J. P., Pappas, G., Taylor, C. J.,
Hur, Y., Alur, R., Lee, I., Grudic, G., and Southall, J. (2002). A framework and architecture
for multi-robot coordination. Int. J. Robot. Research, 21(10-11):977–995.

Gage, D. W. (1993). Randomized search strategies with imperfect sensing. In Proceedings of
SPIE Mobile Robots VIII, volume 2058, pages 270–279, Boston, Massachusetts USA.

Gerkey, B. P., Vaughan, R. T., and Howard, A. (2003). The player/stage project: Tools for multi-
robot and distributed sensor systems. In Proc. IEEE/RSJ Int. Conf. on Advanced Robotics
(ICAR), pages 317–323, Coimbra, Portugal.

Gomez-Ibanez, D., Stump, E., Grocholsky, B., Kumar, V., and Taylor, C. J. (2004). The robotics
bus: A local communications bus for robots. In Proc. of SPIE, volume 5609. In press.

Hayes, A. T., Martinoli, A., and Goodman, R. M. (2002). Distributed odor source localization.
IEEE Sensors, 2(3):260–271. Special Issue on Artificial Olfaction.

Jadbabaie, A., Lin, J., and Morse, A. S. (2003). Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans. on Automatic Control, 48(6):988–1001.

Marshall, J. A., Broucke, M. E., and Francis, B. A. (2004). Unicycles in cyclic pursuit. In Proc.
American Control Conference, pages 5344–5349, Boston, Massachusetts USA.

Marthaler, D. and Bertozzi, A. L. (2004). Tracking environmental level sets with autonomous
vehicles. In Recent Developments in Cooperative Control and Optimization. Kluwer Acad-
emic Publishers.

182 Fierro, et al.

Parunak, H. V. D., Brueckner, S. A., and Odell, J. Swarming pattern detection in sensor and
robot networks. Forthcoming at the 2004 American Nuclear Society (ANS) Topical Meeting
on Robotics and Remote Systems.

Savvides, A., Fang, J., and Lymberopoulos, D. (2004). Using mobile sensing nodes for bound-
ary estimation. In Workshop on Applications of Mobile Embedded Systems, Boston, Massa-
chusetts.

Tan, J. and Xi, N. (2004). Peer-to-peer model for the area coverage and cooperative control
of mobile sensor networks. In SPIE Symposium on Defense and Security, Orlando, Florida
USA.

VI

HUMAN-ROBOT INTERACTION

TASK SWITCHING AND MULTI-ROBOT TEAMS

Michael A. Goodrich
Computer Science Department, Brigham Young University, Provo, UT, USA

mike@cs.byu.edu

Morgan Quigley
Computer Science Department, Brigham Young University, Provo, UT, USA.

Keryl Cosenzo
U.S. Army Research Laboratory, Aberdeen, MD, USA.

Abstract Determining whether it is possible for a single human to manage a team of mul-
tiple robots is an important question given current trends in robotics. Restricting
attention to managing a team of multiple robots where a single human must be
able to analyze video from each robot, we review how neglect time and inter-
action time of the interface-robot system provide a test for feasibility of a team.
We then present a feasibility test that is applicable if the cost of switching at-
tention between multiple robots or multiple tasks can become prohibitive. We
then establish that switch costs can be high, and show that different tasks impose
different switch costs.

Keywords: Switch costs, fan-out, human-robot interaction, multiple robot management

1. Introduction

Recently, there has been much discussion in the robotics community on
creating robot systems that allow a single human to perform multiple tasks,
especially managing multiple robots. The possibility for such one-to-many
human-robot teams is caused by the ever-increasing autonomy of robots. As
a robot becomes more autonomous, its human manager has more free time to
do other tasks. What better way to use this free time than to have the human
manage multiple robots or manage multiple tasks?

The potential impact of this line of reasoning includes some very desirable
consequences, but there are some clear upper bounds on the number of robots
and the number of tasks that a single human can manage. These upper bounds

185
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 185–195.
©c 2005 Springer. Printed in the Netherlands.

186 Goodrich et al.

are created by how long a single robot can be neglected. Formally, neglect
time is the expected amount of time that a robot can be ignored before its
performance drops below a threshold.

During the time that a robot is being neglected, the human manager can con-
ceivably be doing any other task. However, once the neglect time is exhausted,
the human must interact with the robot again. The average amount of time
required by the human to “retask” the robot once interaction begins is referred
to as the interaction time. Formally, interaction time is the expected amount of
time that a human must interact with a robot to bring it to peak performance.

In a problem with multiple robots, neglect time and interaction time dictate
the maximum number of robots that a single human can manage. The upper
bound on the number of robots can easily be computed when all robots are
homogeneous and independent. The idea of determining how many indepen-
dent homogenous robots can be managed by a single human is captured by
the notion of fan-out (Olsen and Goodrich, 2003). Roughly speaking, fan-out
is one plus the ratio of neglect time to interaction time. The ratio represents
the number of other robots that the human can manage during the neglect time
interval, and the “plus one” represents the original robot. Thus,

FanOut =
NT
IT

+1

where NT and IT represent neglect time and interaction time, respectively.
This idea can be extended to teams of heterogeneous robots performing in-

dependent tasks. When a team is made up of heterogeneous robots, then each
robot has its autonomy level and interface. This, in turn, implies that each ro-
bot has a given neglect time and interaction time. Let NiNN = (NTiTT , ITiTT) denote
the neglect and interaction time of robot i. A team of M robots consists of the
set T = {NiNN : i = 1 . . .M}.

To determine whether a human can manage a team of robots T , we can use
the neglect times and interaction times to determine if a team is infeasible.

T is

{
feasible if ∀i NTiTT ≥ ∑ j �=�� i ITjT

infeasible otherwise
. (1)

The key idea is to find out whether the neglect time for each robot is sufficiently
long to allow the human to interact with every other robot in the team. If not,
then the team is not feasible. If so, then there is sufficient time to support
the team, though the team performance may be suboptimal, meaning that a
different team configuration could produce higher expected performance.

Fan-out and the feasibility equation are upper bounds on the number of in-
dependent robots that can be managed by a single human. The purpose of this
paper is demonstrate that the amount of time required to switch between robots
can be substantial, and can dramatically decrease this upper bound.

Task Switching and Multi-Robot Teams 187

2. Related Literature

Approaches to measuring switch costs are usually loosely based on fun-
damental models of cognitive information processing (Meiran et al., 2002,
Leviere and Lee, 2002). These models suggest that procedural memory ele-
ments, encoded as modules in long-term memory and sometimes referred to as
mental models, dictate how particular stimuli are interpreted and acted upon
by a human. When the nature of the task changes, a required switch in mental
models is required and this switch comes at a cost even if the stimuli does not
change. Reasons for this cost include the need to prepare for the new task and
inhibit the old task.

The experimental methodology typically adopted in the cognitive science
literature has been to use the same set of stimuli but switch the task to be done
on the stimuli(Cepeda et al., 2001, Koch, 2003). For example, the digits “1 1
1”, “1”, “3 3 3”, and “3” can be randomly presented to a subject. One task
requires the subject to name the digit (one, one, three, and three, respectively),
and the other task requires the subject to count the number of digits depicted
(three, one, three, and one, respectively). Switch cost is given by the extra time
required when a trial requires a change from one task to another as compared
to a trial when the task does not change.

This approach has limited application to the human-robot interaction do-
main for two reasons. First, the absolute values of the switch costs are very
low; they are on the order of fifty milliseconds. Second, human-robot interac-
tion domains are not simple stimuli-response tasks, but rather require the use of
short term memory and the possible recruitment of multiple mental models to
solve a problem. As a result, new experimental methodologies must be created
to measure switch costs in human-robot interaction domains.

Altmann and Trafton have proposed one technique for measuring switch
costs in more complex domains (Altmann and Trafton, 2004). Their approach,
which has been applied to problems that impose a heavy burden on working
memory and cognitive processing, is to measure the amount of time between
when a switch is made to a new task and the first action is taken by the hu-
man on this new task. In their research, they measure the time between when
the working environment causes a switch to a new task and when the human
takes their first action on the new task. They have found that switch costs in
complicated multi-tasking environments can be on the order of two to four sec-
onds; this amount can impose serious limitations on the number of robots that
a single human can manage.

It is important to note that Altmann and Trafton’s research has included
a study of signaling the human of an impending interrupt. They have found
that signaling reduces switch costs (on the order of two seconds) because it
allows people to prepare to resume the primary task when the interruption is

188 Goodrich et al.

completed. Their experiments suggest that people’s preparation includes both
retrospective and prospective memory components.

Unfortunately, the experiment approach used by Altmann and Trafton does
not go far enough into naturalistic human-robot interaction domains to suit our
needs. The primary limitation is the primary-secondary task nature of their
experiments. Multi-robot control will not always have a primary robot with
a set of secondary robots. A second limitation is the use of “first action after
task resumption” as a metric for switch costs. In the multi-robot domain, a
person may not take any action when a task is resumed either because the robot
is still performing satisfactorily or because the human does not have enough
situation awareness to properly determine that an action is required. Despite
its limitations, we adopt the primary-secondary task approach to establish that
switch costs can be high. However, we use a change detection approach for
measuring recovery time.

3. Switch Costs

The preceding discussion has assumed that interaction time captures all in-
teraction costs. Unfortunately, there is a cost associated with switching be-
tween multiple activities. This cost has been studied extensively under the
name of “task switching” in the cognitive science literature, but has received
considerably less attention in the human-robot interaction literature.

The problem with the preceding discussion of fan-out and feasibility is that
it assumes no interference effects between tasks. Olsen noted this limitation in
the definition of interaction time, and used the more general notion of interac-
tion effort to include the actual time spent interacting with the robot as well as
the time required to switch between tasks (Olsen, Jr. and Wood, 2004, Olsen,
Jr. et al., 2004). Unfortunately, this work did not research the costs of task
switching and does not, therefore, allow us to make predictions about the fea-
sibility of a human-robot system or diagnose the problems with a given system.

Switch costs are important in domains where a human must manage multi-
ple robots because managing multiple robots entails the need to switch between
these robots. If the costs due to switching are significant, then the number of
robots that can be managed dramatically decreases. As autonomy increases
and interfaces become better, switch costs may become the bottleneck which
limits the number of robots that a single human can manage. For example,
suppose that a human is managing a set of robots that can be neglected for no
more than 20 seconds. If the human is asked to manage a team of robots where
each robot requires no more than five seconds of interaction time per interac-
tion event, then the human can manage no more than five robots. If, however,
switching between robots comes at a cost of, say, three extra seconds, then
rotating between the five robots requires 15 seconds of switch cost which con-

Task Switching and Multi-Robot Teams 189

sumes 75% of the total neglect time without actually performing any useful
interaction. This switch cost makes interaction effort jump from five seconds
to eight seconds, and means that the human can manage at most three robots.

Formally, we denote the cost to switch between task i and task j as SC(i, j)
where this cost has units of time; large times mean high costs. When a human
begins to neglect task k, the feasibility constraint in Equation (1) demands that
all the interaction times of all other tasks j �=�� k can be accomplished during the
neglect time for task k. Since the experiment results strongly indicate that the
switch cost can vary substantially depending on the type of secondary task, it
is necessary to address how feasibility is affected by switch costs.

To this end, it is necessary to distinguish between what constitutes an in-
teraction time and what constitutes a switch cost. The precise differentiation
between these terms could be a topic of heated debate, but for our purposes we
will use operational definitions of the two terms that are compatible with the
experiment. The term switch cost denotes the amount of time between when
one task ends and the operator demonstrates an ability to detect changes in the
environment. This relies on the association between the change detection prob-
lem and situation awareness which we will discuss shortly. A good description
of change detection can be found in Rensink (Rensink, 2002). “Change de-
tection is the apprehension of change in the world around us. The ability to
detect change is important in much of our everyday lifefor example, noticing
a person entering the room, coping with traffic, or watching a kitten as it runs
under a table.” The term interaction time denotes the amount of time that is
required for the operator to bring the robot to peak performance after a level
of situation awareness is obtained that is high enough to detect changes in the
environment.

The experiment results presented below indicate the the time to detect changes
is sensitive to the type of tasks involved. Therefore, the feasibility equation
must be modified to account for the effects of changes. The problem with do-
ing so is that the total switch costs depends on the order in which the tasks are
performed. Addressing this issue completely is an area of future work. For
now, we adopt the most constraining definition and consider worst case switch
costs.

Let S(i) = {1,2, . . . , i− 1, i + 1, ...,n} denote the set of all tasks different
from task i. Consider the set of permutations over this set,

P(i) = {permutations over S(i)},

and let π denote a particular permutation within this set; π(1) denotes the first
element in the permutation, and so on. Let SC∗

i denote the largest possible

190 Goodrich et al.

cumulative switch cost for a given set of tasks in S(i), that is

SC∗
i = max

π∈P(i)
SC(i,π(1))+

n−2

∑
k=1

SC(π(k),π(k +1))+SC(π(n−1), i).

Note that we have included both the cost to switch from primary task i to
the first permutation task in the permutation and the cost to switch from the
last task in the permutation to the primary task. This is necessary because
beginning the set of secondary tasks comes at a cost, and resuming the primary
task also comes at a cost.

Feasibility of the team is then given by

T is
{

feasible if ∀i NTiTT ≥ ∑ j �=�� i ITjT +SC∗
i . (2)

If, for all tasks, the neglect time exceeds the sum of the interaction times plus
the worst case switch costs, then the team is feasible.

In the next section, we describe an experiment that demonstrates that switch
costs can be high enough (on the order of 5 to 10 seconds) to merit their con-
sideration in determining team feasibility. We also show that type of switch is
also an important consideration because various types of secondary tasks have
substantially different switch costs.

4. The Experiment

We adopt the primary task/secondary task formulation in the experiment.
The primary task was to control a simulated ground robot using a conventional
display. This display included a video feed from the robot and a plan-view map
of the environment. The environment consisted of treeless grass with multiple
folds and hills.

Throughout the environment, there were ten geometric shapes randomly dis-
persed. Subjects used a gamepad to teleoperate the robot to within a meter of
the geometric shapes. They then cycled through a set of geometric shapes
(sphere, cube, or tetrahedron) by repeatedly clicking on one of the gamepad’s
buttons. The selected categorization was shown on the map view by placing a
corresponding symbol on the map.

We adopted a change detection approach to indirectly measuring situation
awareness. On approximately 50% of the trials (so that people will not be cued
of a change), one of the geometric shapes changes or disappears from the cam-
era view while the subject is performing the secondary task. The subject will
be informed that this may occur in some trials, and will be asked to “alert their
boss” that something has changed as soon as they detect a change. Alerting
consisted of clicking one of two buttons to indicate the presence or absence of
a change.

Task Switching and Multi-Robot Teams 191

Figure 1. The before and after shots from the task switching experiment.

The experiment setup is illustrated in Figure 1 using screen shots from the
experiment. The top figure shows the camera view (left) and map view (right)
along with the geometric shapes (camera view) and their correct categorization
(map view). In the top figure, a sphere is prominently displayed in the camera
view. The corresponding sphere is circled in the map view to highlight its
location in the map. (The circle is not shown to the subject, but is included in
the figure to help highlight an important aspect of the experiment.)

The bottom figure shows the same world after the subject returns from the
secondary task. Note how the sphere has disappeared from the camera view.
Note further that the map view retains the information about the sphere. Thus,
although the camera view has changed during the secondary task, the map view
has the same information before and after.

The subject’s task is to indicate that something changed while they were
performing the secondary task. If a person has a good situation awareness after
the secondary task, then they should be able to quickly consult the camera view
to detect a change. If the situation awareness is poor, then they will need to
compare the camera and map views to determine if something has changed.
This forces the subject to “reconstruct” situation awareness and takes longer to
perform. Secondary tasks that interfere with situation awareness should require
the subject to take a longer time to recover.

Measuring the reaction time to detect this change after the task is resumed is
an estimate of situation awareness. The time required to detect a change is an
estimate of the time to achieve Endsley’s “level 1” situation awareness (End-

192 Goodrich et al.

sley, 1997). Differences in times caused by various secondary tasks indicate
different switch costs.

When subjects indicate that a change has occurred, we inform them whether
they were correct. If they correctly identified a change, we require the subject
to generate a report of what things have changed. The time to generate this
report and the accuracy of the report will form a second measure of switch
costs that we will analyze in future work. The nature of the report will be an
updated categorization of all geometric shapes in the robot’s camera field of
view. This report will be made by removing missing shapes and recategorizing
shapes that have changed. This report will be made by requiring the subject
to (a) click on the shape in the map view that has disappeared if required, and
(b) drive to the shapes that have changed or been added and (re)categorize
them.

We experimented with four different types of secondary tasks.

Blank screen: the screen goes blank for a preselected period of time.

Tone counting: subjects are given a target tone and asked to count the
number of times this target tone occurs in a two tone sequence. At the
end of the sequence, subjects report the number of tones by clicking on
the appropriate number in the display.

Vehicle counting: subjects are asked to watch a video from a camera
mounted on a real or simulated UAV, and to count the number of unique
cars observed from the UAV. At the end of the sequence, subjects report
the number of vehicles by clicking on the appropriate number in the
display.

Spatial reasoning (tetris): subjects are asked to play a game of tetris for
a preselected period of time.

The blank screen serves as the baseline, both tone counting and vehicle count-
ing place some burden on attention and working memory, and both vehicle
counting and spatial reasoning place some burden on visual short term mem-
ory. Secondary tasks last between 10 seconds and 40 seconds. Tasks are
presented in a balanced randomized schedule, and changes are generated ran-
domly.

5. Results

For this paper, we estimate switch costs by measuring the amount of time
between when the secondary task ends and when the subject pushes the but-
ton indicating that a change has occurred. Results are presented only for those
conditions where a change occurred and the subject correctly identified the

Task Switching and Multi-Robot Teams 193

change. Future work should carefully address error rates as well as the sensi-
tivity of these error rates and switch costs to the frequency with which changes
occur.

Figure 2. Average switch costs as a function of task with 20% confidence intervals.

The results of the experiment are shown in Figure 2 which displays the aver-
age switch costs across five subjects and seven one hour experiment sessions.
Also shown are the 20% confidence intervals.

Two important things are worth noting. First, note that the average values
for the switch costs range from over five seconds to just over twelve seconds.
This is important because it indicates that switch costs can be very large. This
indicates that an evaluation of the feasibility of a multi-robot team with inde-
pendent robots should include an anaylsis of switch costs.

Second, note that the switch costs associated with the UAV are twice as large
as the switch costs associated with the tone counting and blank screen. This
indicates that there is a potentially large difference in the switch costs between
various types of tasks. In fact, a two-sided t-test indicates that the different
tasks all have statistically significant differences at the 20% level (or below)
except for the difference between tone counting and tetris which appears to
not be statistically significant. This data must be taken with a grain of salt

194 Goodrich et al.

because we only have five subjects (and seven total one-hour experiments)
and only between 22 and 33 correct detections of changes (depending on the
secondary task). However, this analysis combined with the magnitude of the
effect strongly suggests that the different secondary tasks have a substantial
influence on the switch costs.

Future work should carefully analyze why the different secondary tasks have
such different switch costs. It is apparent that the differences cannot simply be
attributed to counting since both the UAV and tone-counting tasks require the
subjects to count, but these two tasks have different switch costs. It is also
apparent that the differences cannot simply be attributed to visual overload
since both the UAV and tetris are visual tasks, but these two tasks have different
switch costs. Although there is not enough data to conclude that the duration of
the secondary tasks is unimportant, there does not appear to be a big difference
in the switch costs between tasks lasting fifteen seconds and tasks lasting thirty
seconds.

We hypothesize that the differences in switch costs are attributable to load
on working memory plus some component of spatial reasoning. This suggests
that the feasibility of a team where a single human must analyze the video from
multiple independent robots should be carefully studied.

It is important to note that at the end of the experiment, we asked subjects
to report an estimate of the relative subjective workload of the various tasks.
We did this by asking them if one secondary task was easier to recover from
than another. All subjects reported that all four tasks were equal in this regard.
We hypothesize that this estimate results from the fact that confirming when no
change was made requires an almost exhaustive search through the map-view.
Importantly, the subjective evaluations of workload did not correspond to the
actual performance on the tasks.

6. Conclusions and Future Work

The experiment suggests that switch costs can have a substantial influence
on the total cost of managing multiple tasks, and that the switch costs depend
to some extent on the nature of the secondary task. We can include the effects
of these switch costs by estimating the worst case switch cost for multiple sec-
ondary tasks. This worst case can then be used to identify obviously infeasible
teams. Future work should explore the efficient computation of these switch
costs, and the difference between the worst case feasibility and actual feasi-
bility. Future work should also explore how intelligent interfaces and robot
autonomy could be designed to minimize switch costs and support recovery
from interruptions.

Task Switching and Multi-Robot Teams 195

References
Altmann, E. M. and Trafton, J. G. (2004). Task interruption: Resumption lag and the role of

cues. In Proceedings of the 26th annual conference of the Cognitive Science Society.
Cepeda, N. J., Kramer, A. F., and de Sather, J. C. M. G. (2001). Changes in executive control

across the life span: Examination of task-switching performance. Developmental Psychol-
ogy, 37(5):715–730.

Endsley, M. R. (1997). The role of situation awareness in naturalistic decision making. In Zsam-
bok, C. E. and Klein, G., editors, Naturalistic Decision Making, chapter 26, pages 269–283.
Lawrence Erlbaum Associates, Hillsdale, N.J.

Koch, I. (2003). The role of external cues for endogenous advance reconfiguration in task
switching. Psychonomic Bulleting and Review, 10:488–492.

Leviere, C. and Lee, F. J. (2002). Intention superiority effect: A context-switching account.
Cognitive Systems Research, 3:57–65.

Meiran, N., Hommel, B., Bibi, U., and Lev, I. (2002). Consciousness and control in task switch-
ing. Consciousness and Cognition, 11:10–33.

Olsen, D. R. and Goodrich, M. A. (2003). Metrics for evaluating human-robot interactions. In
Proceedings of PERMIS 2003.

Olsen, Jr., D. R. and Wood, S. B. (2004). Fan-out: measuring human control of multiple robots.
In Proceedings of the 2004 conference on Human factors in computing systems, pages 231–
238. ACM Press.

Olsen, Jr., D. R., Wood, S. B., and Turner, J. (2004). Metrics for human driving of multiple
robots. In Proceedings of the 2004 IEEE Intl. Conf. on Robotics and Automation, volume 3,
pages 2315–2320.

Rensink, R. (2002). Change detection. Annu. Rev. Psychol., 53:245–277.

USER MODELLING FOR PRINCIPLED
SLIDING AUTONOMY IN
HUMAN-ROBOT TEAMS

Brennan Sellner, Reid Simmons, Sanjiv Singh
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213
United States of America∗

bsellner@andrew.cmu.edu, reids@cs.cmu.edu, ssingh@ri.cmu.edu

Abstract
The complexity of heterogeneous robotic teams and the domains in which

they are deployed is fast outstripping the ability of autonomous control software
to handle the myriad failure modes inherent in such systems. As a result, remote
human operators are being brought into the teams as equal members via sliding
autonomy to increase the robustness and effectiveness of such teams. A princi-
pled approach to deciding when to request help from the human will benefit such
systems by allowing them to efficiently make use of the human partner. We have
developed a cost-benefit analysis framework and models of both autonomous
system and user in order to enable such principled decisions. In addition, we
have conducted user experiments to determine the proper form for the learning
curve component of the human’s model. The resulting automated analysis is
able to predict the performance of both the autonomous system and the human
in order to assign responsibility for tasks to one or the other.

Keywords: Mixed Initiative, User Modelling, Sliding Autonomy, Multiagent, Cooperation

1. Introduction

As complex robotic systems are deployed into ever more intricate and real-
world domains, the demand for system abilities is growing quickly. Since
many tasks cannot be easily accomplished by a single machine, much research
has turned towards utilizing heterogeneous robotic teams. While this approach
multiplies the theoretical capabilities of the deployed hardware, the actual abil-

∗This work is partially supported by NASA grant NNA04CK90A.

197
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 197–208.
©c 2005 Springer. Printed in the Netherlands.

198 Sellner, et al.

ities of a team often are constrained by its control software. In complex tasks,
such as those required by automated assembly domains, it is nearly impossible
for the system designer to anticipate every possible system failure and provide
a method for recovery. While automated systems excel at rapid repetition of
precise tasks, they are weak when dealing with such unexpected failures. As
a result, research is now moving towards including a human in such teams,
leveraging the accuracy and strength of robotic teams and the flexibility of the
human mind to create a whole greater than the sum of its parts.

A great difficulty in creating these sliding autonomy systems is enabling
smooth and efficient transitions between modes of autonomy - ideally both the
human and the autonomous system should be able to initiate such transitions
as they see fit. If the system is to do so, it needs some method for making de-
cisions about when and how to involve the human in its task. The approach we
have taken is to form models of the capabilities of both the autonomous system
and the human, in order to provide a principled basis for the system to perform
cost-benefit analysis. The autonomous system does not learn to improve its
task performance, resulting in a model based on a static distribution derived
from observed data. The human model is similar, but incorporates an explicit
model of the human’s learning curve, allowing the system to predict future
performance of a human still learning a particular task. We have experimen-
tally determined that a logarithmic function provides a good fit to our subjects’
actual learning curves, with the model providing useful predictions during the
learning period. Coupled with a cost-benefit analysis framework, these models
allow the system to estimate the overall expected cost of transferring control to
the human at various points during the task, enabling it to proactively involve
the human when the human will provide the team with significant assistance.

2. Related Work

Our Syndicate architecture (Sellner et al., 2005) (Simmons et al., 2002)
(Goldberg et al., 2003) provides a flexible, tiered, multi-agent architecture
which we have extended to support sliding autonomy. Syndicate differs from
most other multi-robot architectures by allowing close coordination without
the need for a central planner. Our user modelling implementation continues
this decentralization by allowing each agent to individually form models for
itself and the human performing tasks using that agent’s hardware.

A number of other sliding autonomy systems exist, of greater or lesser sim-
ilarity to our work. (Fong et al., 2003) enable the robot to ask the operator
for help with localization and to clarify sensor readings, while the operator can
query the robot for information. This framework uses the human as an informa-
tion source, rather than a true partner, and assumes the robot’s control software
is capable of performing all tasks when provided with complete state informa-

User Modelling for Principled Sliding Autonomy in Human-Robot Teams 199

tion. Our approach allows the operator to be a partner in the completion of the
scenario, rather than simply a source of information. An architecture for slid-
ing autonomy as applied to a daily scheduler has been proposed by (Scerri and
Pynadath, 2002). The autonomous system is responsible for resolving timing
conflicts among team members, who are able to adjust the system’s autonomy
by indicating intent or willingness to perform tasks. Using similar hardware to
ours, (Kortenkamp et al., 1999) have developed and tested a software architec-
ture that allows for sliding autonomous control of a robotic manipulator. While
these projects all involve the human in the task, they do not explicitly reason
about when to request help.

Similar to our modelling approach, (Fleming and Cohen, 2001) perform
cost-benefit calculations to determine whether an agent should ask the user for
information that may allow it to generate better plans. Although the basic cost-
benefit concept is the same, our user models differ significantly. They represent
the user by a series of ad-hoc probabilities (such as the probability that the user
will have the requisite knowledge to answer a question), expected utilities, and
costs. Their work does not consider the problem of user model acquisition,
which is clearly far from trivial. In addition, their agent queries the user only
when it believes that it needs help and that the user can provide the requisite
information. There is no concept of ceding control to the user merely because
the user is better at some element of the task; instead, the user is again treated
as an information source, rather than as a partner.

Our sliding autonomy implementation allows any component of our multi-
layered system to be switched between autonomous and manual (tele-operated)
modes. The fine granularity of control over the team’s autonomy level afforded
by this approach allows many combinations of human intuition and robotic cal-
culation, rather than limiting the human to the role of oracle. This switching
may be performed in three ways: (1) pre-scripted, such as tasks which the
autonomous system had not been programmed to perform and must be com-
pleted by the operator, (2) human-initiated changes in autonomy resulting from
the operator deciding he wants to take control, and (3) system-initiated auton-
omy changes, which occur when the system’s analysis indicates the benefits
of requesting help would outweigh the costs. This allows a synergy of human
flexibility and robotic accuracy which yields a team with greater efficiency and
reliability than either a purely autonomous or purely tele-operated approach.
See (Brookshire et al., 2004) for a discussion of our implementation of sliding
autonomy and related experimental results.

3. The Task

For our work on architectures, sliding autonomy, and user modelling, we
developed several assembly scenarios that require close coordination between

200 Sellner, et al.

disparate agents. The scenario discussed here requires the team to assemble a
square from four beams and four planarly compliant nodes (Figure 1d). The
nodes are free to move about in the plane of the workspace, in a weak parallel to
orbital assembly. When a beam is inserted into a node, enough force is required
to cause an unconstrained node to roll away, rather than the beam’s latches
engaging the node. In order to provide a countervailing force, the team must
brace each node while inserting every beam. To further complicate matters,
neither of our manipulator agents possess any extrinsic sensors.

(a) (b)

(d)

(c)
Figure 1. (a) The Robocrane. The vertical sockets are used to grasp the nodes from above.

(())
(b)

Xavier, the roving eye of our work crew. (c) The mobile manipulator is composed of Bullwinkle
(the differential-drive base) and Whiplash (the 5 degree-of-freedom anthropomorphic arm). (d)
A closeup of the completed structure.

Thus, the scenario can be naturally split into three duties: docking, bracing,
and sensing. Our mobile manipulator (Figure 1c) is responsible for docking the
beams to the nodes with its 5-DOF anthropomorphic arm. The crane (Figure
1a) handles bracing, while the roving eye (Figure 1b) is responsible for pro-
viding information to the other agents about the relative positions of objects in
the workspace. Each of these three agents independently performs cost-benefit
analysis to determine whether it should ask for human assistance during the
scenario.

The scenario consists of four repetitions of the following:

a Grasp beam with mobile manipulator’s arm.

b Acquire beam and node with roving eye’s sensors.

User Modelling for Principled Sliding Autonomy in Human-Robot Teams 201

c Position and brace first node with crane.

d Insert one end of beam into first node by visually servoing mobile ma-
nipulator’s arm.

e Reposition roving eye to second end of beam and acquire beam and sec-
ond node.

f Release crane’s grasp on first node, grasp second node, position node,
and brace it.

g Insert second end of the beam into node.

h Release mobile manipulator’s grasp on beam.

i Move mobile manipulator to the square’s next side.

The team is able to accomplish the entire task autonomously, except for step
1, in which a human places the beam in the mobile manipulator’s grasp. How-
ever, the human also may become involved in any of the other steps. If during
step 3 or 6 the crane becomes stuck, the operator will need to intervene, since
the current system cannot detect this failure. In step 2 or 5, if the roving eye is
in a position such than an object of interest is obscured, the autonomous system
will be unable to acquire, and will request assistance from the user. Docking
one end of a beam to a node (steps 4 and 7) is a difficult task; the system will
often fail one or more times before succeeding or dropping the beam. This
is another opportunity to involve the operator, since an initial failure of the
autonomous system is a good predictor of future failure; this occurence often
results in a request for help after one or two failures.

Although the scenario can be accomplished autonomously, there are many
opportunities for the system to request help from the human operator to in-
crease its robustness and efficiency.

4. Using the User

The original sliding autonomy system we created was effective, but some-
what lacking in initiative. The system requested help only when told to do
so ahead of time or when the team detected a failure from which it could not
recover. This is clearly suboptimal: in the ideal case the autonomous system
should request help not only when it needs assistance, but also when assistance
would be beneficial to the reliable and efficient completion of the scenario. For
instance, if the system has a failure recovery procedure for a particular error,
but the procedure proves ineffective, it could ask the user for help after de-
termining that further attempts are likely to be useless, rather than repeatedly
attempting to blindly apply its recovery procedure. The node-beam docking ac-
tion (steps 4 and 7 above) is an excellent example of this. In addition, there are

202 Sellner, et al.

occasionally tasks which the human is often more efficient at performing via
tele-operation than the system, due to her superior ability to make inferences
from noisy observations. Such tasks within our scenario include manuvering
in cluttered environments and visually searching for partially obscured objects.

If the system is to further involve the human in the scenario, it must have
some method of reasoning about when to do so. The approach that we have
taken is to perform cost-benefit analysis at various decision points during the
scenario, using empirically derived models of the individual users and the au-
tonomous system to inform the analysis. By maintaining such individual mod-
els, the system’s requests for help may depend on the abilities and state of the
individual operator, yielding a team that adapts not only to the current state of
the environment but also to the current state of its members. Such a principled
approach allows the autonomous system to leverage the skills of the human
operator to increase both the team’s robustness and its efficiency.

4.1 Cost-Benefit Analysis

Cost-Benefit Analysis simply consists of estimating the costs and benefits
associated with various courses of action in order to choose the most beneficial
action to perform. In our domain, such decisions are binary: the system must
decide whether to request operator assistance for a particular task. Obviously,
the option with the greatest bene f it−cost value will be chosen. Given methods
for estimating the relevant variables, this provides a framework for making
principled decisions, rather than implementing arbitrary policies. Within our
robotic assembly scenarios, one form of this equation is:

cost : price(h)E(tht)+ price(rtrr)E(tht)+ price(rep)P(f catht)
bene f it : price(rar)E(tr)+ price(rep)P(f catr)

(1)

where:
E(tht) : Expected time for human to complete task
E(tr) : Expected time for autonomous system to complete task

P(f catht) : Probability of catastrophic failure while under human control
P(f catr) : Probability of catastrophic failure while under autonomous

control
price(rep): Average monetary cost of repairing a catastrophic failure

price(h): Monetary cost of operator per unit time
price(rtrr): Monetary operating cost of system per unit time while tele-

operated
price(rar): Monetary operating cost of system per unit time while under

autonomous control
The costs are those incurred during the human’s teleoperation of the system,

while the benefits consist of the cost savings associated with not running the

User Modelling for Principled Sliding Autonomy in Human-Robot Teams 203

system under autonomous control. In a real-world application, the price func-
tions would be informed by factors such as the amortized cost of the hardware,
upkeep, the salary of the human operator, and what other duties he is respon-
sible for (since assisting the system will monopolize his time). These func-
tions act as gains, with the relative values of price(h), price(rtrr), and price(rar)
encouraging or dissuading the system from asking for help, and price(rep)
adjusting how averse the system is to risk . The probability of catastrophic
failure is estimated from experimental data. Note that catastrophic failure is
distinct from the failure to perform a task in that the former results in dam-
age to the robots which must be repaired while the latter merely results in the
non-accomplishment of a particular task.

The most difficult element of these equations to estimate is the expected time
to complete a given task for both the autonomous system and the human (E(tr)
and E(tht), respectively), especially if the operator is a novice. We have built a
user model to estimate these expected times based on previous experience, as
well as a number of other factors.

4.2 User Model

A user model can consist of any collection of rules or set of assumptions that
predicts the value of interest or otherwise allows the system to decide when
to involve the user. In fact, our initial sliding autonomy system incorporated
an extremely basic user model by requesting help only when an unrecoverable
failure occurred. This simple approach allowed the user to slightly increase the
system’s robustness, but not its efficiency. A more refined model could include
fixed thresholds for when help should be requested. Such a model could assert
that if the system has failed to recover from an error twice it should ask for
help. Again, this allows the user to contribute to the system’s robustness, but
the human is likely not being utilized in an efficient manner. In order to create
an efficient overall system and take into account external constraints on the
human, a much more detailed and data-driven model is required.

The Ideal Model. We have developed predictive models for both the au-
tonomous system and the human operator; we address the system’s model first.
Since our current autonomous system does not learn, we may treat each attempt
at a task as a sample from a static distribution. The set of all observed perfor-
mances is in all likelihood multimodal. However, by segmenting the observed
attempts based on the outcome of each attempt and the number of times the
system had previously failed to perform the task during the current trial, we
may easily form a set of unimodal (or nearly unimodal) distributions. We may
then estimate E(tr) directly from these distributions:

204 Sellner, et al.

E(tr|FrFF = i) =
P(Sr|FrFF = i)E(tr|Sr,FrFF = i)

+P(¬Sr|FrFF = i)
(

E(tr|¬Sr,FrFF = i)
+E(tr|FrFF = i+1)

)
(2)

E(tr|FrFF = h) =E(tht |FhFF = 0,Rh = j,FrFF = dr +3) (3)

E(tr|FrFF = dr +1) =E(tr|FrFF = dr) (4)

E(tr|FrFF = dr +3) =0 (5)

E(tr) = min
h=max(f ,1)...dr+2

E(tr|FrFF = f) (6)

where:

E(tr|FrFF = i): Expected time to complete the task if the system performs
the next attempt, given i preceding failures.

P(S|F = i): Probability of completing the task, given i preceding fail-
ures.

E(t|S,F =
i):

Expected value of the distribution formed by all data
points in which the task was completed with i preceding
failures.

F : Number of preceding failures.
h: Number of failures after which control will pass to the

operator.
Rh: Number of previously observed human runs.
d: Max number of preceding failures for which data exists.
j: Current number of previously observed human runs.
f : Current number of preceding failures.

As can be seen from Equation 2, the expected time to complete the task if the
autonomous system performs the next attempt is a recursive sum, representing
the successive attempts made after a failure to complete the task. Equation 4
permits the autonomous system to make an attempt with one more preceding
failure than has been previously observed. As we can see from Equation 6, the
final value for E(tr) is chosen by determining the proper point in the future to
hand control to the human (h >= 1 because E(tr) represents the assignment
of the next attempt to the autonomous system). Equation 5 prevents infinite
mutual recursion, since the human’s user model includes passing control to the
autonomous system (see Equation 9).

We introduce two new elements in the human’s model: the learning curve
and the possibility of the autonomous system requesting control. If the op-
erator is inexperienced, it is inaccurate to model her performance as a sample
from a static distribution. Rather, she is still learning, and it is more appropriate
to model E(tht) by predicting the next point on the learning curve, rather than
simply taking the expected value of a distribution of past data. This learning
curve (Equation 7) is a logarithmic curve fitted to the available data. We have
conducted a series of experiments, discussed below, to determine a reasonable

User Modelling for Principled Sliding Autonomy in Human-Robot Teams 205

model of L(x) and how best to use it as a predictor of the human’s performance
in the next trial. Equation 8 represents the system’s belief that the human has
failed if they are taking too long to complete a task. This is necessary to detect
operator failure, since the human operator rarely, if ever, voluntarily gives up.
Additional factors may play a role in E(tht), such as current workload and fa-
tigue. However, they would likely play a relatively straightforward additive or
multiplicative role in Equation 7, and are thus neglected for now.

N(t) = L(xt+1|x1...t) (7)

M(s, i) = P(s|FhFF = i)−P(tht > cN(Rh)|s,FhFF = i) (8)

E(tht |FhFF = i,Rh = j,FrFF = k) =
M(Sh,FhFF)N(Rh)
+M(¬Sh,FhFF)(N(Rh)+E(tht |FhFF = i+1,Rh = j +1,FrFF = k))
+P(tht > cN(Rh))E(tr|FrFF = k)

(9)

where:
N(t): Predicted time to complete the task based on a learning

curve L fitted to all prior observations.
L(xt+1|x1...t): The value of a fitted learning curve for trial t + 1, given t

prior observations.
M(s, i): The probability of s ∈ {S,¬S} given i preceding failures,

less the probability that the autonomous system will re-
quest control, given s and i.

c: A constant which determines the time when the system
believes the human has failed and the time when it will
request control.

P(tht > cN(Rh)
|s,FhFF = i)

The probability that the human will take more than c times
the expected time to complete the task.

E

⎛⎝⎛⎛tht |
FhFF = i,

Rh = j,
FrFF = k

⎞⎠⎞⎞ Expected time to complete the task if the human performs
the i’th attempt, with j historical attempts, and k preceding
failures by the autonomous system.

The Implemented Model. When implementing any method, tradeoffs must
be made between the fidelity of the model and the difficulty involved in esti-
mating the variables involved. For our initial implementation, we set P(f catht) =
P(f catr) = 0, price(h) = price(rar), and price(rtr) = 0, collapsing Equation 1
to a straightforward comparison of E(tr) and E(tht). The model of the au-
tonomous system was implemented as described in Equations 2 - 6. However,
we chose to simplify the human model by disregarding all factors affecting the
prediction of the human’s performance except previous observations and an
estimate of the human’s learning curve. We also set c = ∞ to prevent the sys-
tem from requesting control. Since no subject ever failed to complete the task,

206 Sellner, et al.

0 5 10 15 20 25
0

50

100

150

200

250

300

Trials

T
im

e
to

 C
om

pl
et

e
T

as
k

(s
ec

on
ds

)

Sample User Time to Complete Task Learning Curves

Figure 2. The raw data and fitted logarithmic learning curves for two sample subjects -
Subject A’s raw data and fitted curve are plotted as solid lines, while Subject B’s are dashed
lines.

P(Sh|FhFF = 0) = 1.0), resulting in Equation 9 collapsing to E(tht) = L(xt+1|x1...t),
or simply the prediction of her time to complete the task based on her learning
curve and prior experience. The resulting simplified calculation directly com-
pares the system’s and human’s estimated time to complete a task in order to
assign responsibility.

4.3 Results

In order to build our initial model of the human learning curve L(x) within
our domain, we conducted a series of experiments with eight subjects to assess
and model their learning curves for direct control of the mobile manipulator’s
arm. The goal was to develop an understanding of the repeatability a human’s
time to complete a task; how many trials it would take to eliminate learning ef-
fects; and whether a single learning function could be accurately parameterized
on a per-user basis, to allow the system to attempt to predict the performance
of a user who had not been fully trained.

In order to focus purely on the skill of controlling the arm and minimize
confounding variables, the task consisted of docking one end of a beam to
a node while directly observing the workspace and controlling the arm via a
SpaceMouse (a six degree of freedom input device). Data from a representa-
tive two of our eight subjects can be found in Figure 2 — this data contains
roughly an average amount of noise. As can be seen, the raw data is quite
noisy, with large deviations between successive runs. However, it does consis-
tently trend downwards, and while examining all eight data sets, we discovered
that a logarithmic learning curve of the form L(x) = a∗ ln(x)+b, with the pa-
rameters a and b fitted to each user’s data, yielded a more predictive fit than
linear, exponential, or quadratic models. On average, 10 trials worth of data
were necessary for the parameters to settle to their final values, but the loga-

User Modelling for Principled Sliding Autonomy in Human-Robot Teams 207

rithmic model proved some predictive worth as early as trial 3. Most subjects’
performance had plateaued by trial 14.

Taking this into account, we have extended our sliding autonomy system to
include the simplified user model described in Section 4.2 for making prin-
cipled decisions about changes to the team’s autonomy levels. The model
tracks each operator (and the autonomous system) for every task in the sce-
nario. Given the instability of the initial few trials for most subjects, the model
merely predicts the average of the past observed trials for E(tht) until three trials
worth of data are accumulated. Between trials three and fourteen, a logarith-
mic curve is fit to the data and is used to predict E(tht) on the next instance of
the task. After trial fourteen, the average of the past three trials (discarding
outliers) is used, since most subjects’ performance plateaus by this point, with
the occasional outlier. This allows the autonomous system to make appropriate
use of even an inexperienced operator.

5. Future Work

A variety of opportunities to expand upon this work exist. Our simplified
model needs to be verified in our assembly system and potentially refined to
provide satisfactory predictions. The model could also be extended to extrap-
olate performance on unobserved tasks from performance on different, but re-
lated, tasks. Knowledge of upcoming tasks could also be incorporated into the
model, allowing the system to make locally inefficient decisions in order to
train a novice user to provide future benefits. Similarly, if the human fatigues
over the course of a scenario, the system could avoid asking for help when
the human only provides marginal benefit, in order to keep her rested for tasks
where she is orders of magnitude better.

6. Conclusion

We have formulated a method for making principled decisions about when
to involve a remote human operator in a multi-agent assembly task. We con-
ducted initial user experiments, determining that a parameterized logarithmic
function provides an adequate fit to users’ observed learning curves. Such a
function, tuned to each user as data is observed, provides a usable predictive
model of their future performance. Combined with our predictive model of
autonomous system performance, this simplified model has been implemented
within our sliding autonomy system, allowing the system to make principled
decisions about when to request assistance from the operator.

Acknowledgments

The authors would like to thank the many individuals who contributed to the
DIRA and Trestle projects over the years: Rob Ambrose, David Apfelbaum,

208 Sellner, et al.

Jon Brookshire, Rob Burridge, Brad Hamner, Dave Hershberger, Myung Hwangbo,
Simon Mehalek, Metrica/TRACLabs, Josue Ramos, Trey Smith, Pete Staritz,
and Paul Tompkins.

References
Brookshire, J., Singh, S., and Simmons, R. (2004). Preliminary results in sliding autonomy for

assembly by coordinated teams. In Proceedings of International Conference on Intelligent
Robots and Systems (IROS) 2004.

Fleming, M. and Cohen, R. (2001). A user modeling approach to determining system initiative
in mixed-initiative ai systems. In Proceedings of User Modeling (UM) 2001.

Fong, T., Thorpe, C., and Baur, C. (2003). Robot, asker of questions. Robotics and Autonomous
systems, 42.

Goldberg, D., Cicirello, V., Dias, M., Simmons, R., Smith, S., and Stentz, A. (2003). Market-
based multi-robot planning in a distributed layered architecture. In Multi-Robot Systems:
From Swarms to Intelligent Automata: Proceedings from the 2003 International Workshop
on Multi-Robot Systems, volume 2, pages 27–38. Kluwer Academic Publishers.

Kortenkamp, D., Burridge, R., Bonasso, P., Schrenkenghoist, D., and Hudson, M. (1999). An
intelligent osftware architecture for semi-autonomous robot control. In Autonomy Control
Software Workshop, Autonomous Agents 99.

McGeoch, G. O. and Irion, A. L. (1952). The Psychology of Human Learning. New York: Long-
mans.

Scerri, P. and Pynadath, D. (2002). Towards adjustable autonomy for the real world.
Sellner, B., Simmons, R., and Singh, S. (2005). Syndicate: A decentralized, layered architecture

for tightly coordinating heterogeneous teams. In Submitted to the International Conference
on Robotics and Automation (ICRA-05).

Simmons, R., Smith, T., Dias, M. B., Goldberg, D., Hershberger, D., Stentz, A., and Zlot, R.
(2002). A layered architecture for coordination of mobile robots. In Schultz, A. and Parker,
L., editors, Multi-Robot Systems: From Swarms to Intelligent Automata. Kluwer.

VII

APPLICATIONS

MULTI-ROBOT CHEMICAL PLUME TRACING

Diana Spears, Dimitri Zarzhitsky
Computer Science Department, University of Wyoming, Laramie WY 82071

dspears,dimzar@cs.uwyo.edu

David Thayer
Department of Physics and Astronomy, University of Wyoming, Laramie WY 82071

drthayer@uwyo.edu

Abstract This paper presents a novel and effective algorithm for the chemical plume trac-
ing (CPT) task, i.e., tracing a toxic chemical gas to its source emitter. This
algorithm is based on a firm, theoretical foundation of fluid flow physics. It as-
sumes a team of plume-tracing robots that act as a mobile, distributed, adaptive
sensing grid. In addition to presenting the foundation and the algorithm, an em-
pirical comparison is provided between our algorithm and the two most popular
alternatives, on a suite of simulated plume configurations of practical interest.

Keywords: Multi-robot, plume tracing, artificial physics

1. Introduction

The objective of this research is the development of an effective, efficient,
and robust distributed search-and-identify algorithm for a team of robots that
must locate an emitter that is releasing a toxic chemical gas. The basis for
this algorithm is a physics-based framework for distributed multi-agent con-
trol ((Spears and Gordon, 1999, Spears et al., 2004a)). This framework, called
physicomimetics or artificial physics (AP), assumes several to hundreds of sim-
ple, inexpensive mobile robotic agents with limited processing power and a
small set of on-board sensors. Using AP, the robots will configure into geomet-
ric lattice formations that are preserved as the robots navigate around obstacles
toward a source location ((Spears et al., 2004b)).

In this paper, we present a novel algorithm for chemical plume tracing (CPT)
that is built upon the AP framework. The CPT task consists of finding the
chemical, tracking the chemical to its source emitter and, finally, identifying
the emitter. Our CPT algorithm, called fluxotaxis, combines the strengths of
the two most popular chemical plume tracing techniques in use today. Further-

211
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 211–221.
©c 2005 Springer. Printed in the Netherlands.

212

more, it is founded upon theoretical principles of fluid dynamics. Our algo-
rithm assumes an AP-maintained lattice that acts as a distributed computational
fluid dynamics grid for calculating derivatives of flow-field variables, such as
fluid velocity and chemical concentration. After presenting the algorithm and
its theoretical foundation, the paper presents the comparative performance of
our algorithm against the most popular alternatives, on a suite of simulated
chemical plumes.

2. Motivation

The authors’ goal is to design control algorithms that scale well to a large
number of robots, ranging perhaps from ten agents to a thousand and beyond.
In order to achieve this goal, two things are necessary: a formal theory upon
which the algorithm is based, and a suitable task that can be used to test the
algorithm. The task of chemical plume tracing has posed problems for a num-
ber of years in a variety of manufacturing and military applications. In light
of the current national concern with security and the possibility of a chemi-
cal terrorist attack, several private and government agencies, including DHS
and DARPA, have expressed interest in updating current techniques used to
track hazardous plumes, and improving the search strategies used to locate the
toxin emitter (e.g., (Board on Atmospheric Sciences and Climate, 2003, Hsu,
2003, Cordesman, 2001, Caldwell et al., 1997)).

Because CPT involves tracing fluid flow, physics is the natural choice for
the theoretical foundation of our CPT approach. In particular, the well-studied
field of fluid dynamics is suitable for the development and validation of our
algorithms.

Another advantage of using a physics-based foundation is that computa-
tional fluid mechanics requires computational meshes for sampling and process-
ing of flow-field variable values. The lattice arrangements that emerge nat-
urally from the physicomimetics framework can be used as computational
meshes, capable of performing complex computations in real time, with the
added benefit of resilience to failure, and ability to adjust when the envi-
ronment characteristics change. Furthermore, effective robot configurations
for CPT serendipitously coincide with efficient configurations for AP. For in-
stance, the construction of hexagonal formations requires the least amount
of communication and sensor information within the AP control framework
((Spears et al., 2004a)); at the same time, a hexagonal lattice was shown (
(Carlson et al., 2003)) to have superior boundary characteristics for solving a
class of fluid mechanics problems relevant to the CPT task.

Spears, et al.

Multi-Robot Chemical Plume Tracing 213

3. Related Work

The best understood and most widely applied CPT approach is that of chemo-
taxis, which consists of following a local gradient of the chemical concentra-
tion, ρ, within a plume ((Sandini et al., 1993, Special Issue, 2002)). While
chemotaxis is very simple to perform, it frequently leads to locations of high
concentration in the plume that are not the source, such as a corner of a room.

To overcome this problem, another common approach, called anemotaxis,
has been developed. Once the chemical has been detected, an anemotaxis-
driven agent measures the direction of the fluid’s velocity, �V , and navigates
“upstream” within the plume ((Hayes et al., 2001, Special Issue, 2002)). Al-
though this can be a very effective strategy for some problems, its limitation is
that it can lead to a wind source that is not the chemical emitter.

The advantage of our novel approach is that it is built upon these two most
popular predecessors, and it outperforms them on a practical suite of plumes
(see below). In the next section, the theoretical foundation of our fluxotaxis
algorithm is presented.

4. Fluid Physics

Our approach makes use of the methods and concepts developed in the con-
text of computational fluid dynamics, so a brief review of the relevant material
will be useful. Flow of fluids is governed by three fundamental laws: the con-
servation of mass, conservation of momentum (Newton’s Second Law), and the
conservation of energy ((Anderson, 1995)). Collectively, these equations are
known as the Governing Equations. These equations come in several forms,
but we will focus on a form that is based on the time analysis of a differential
volume spatially fixed in the flow field ((Anderson, 1995)). For instance, the
simplest equation, the conservation of mass, is:

−∂ρ
∂t

= ∇ ·(ρ�V) (1)

Here, ρ denotes the mass density of the chemical, �V is the fluid’s velocity
(ρ and �V are flow-field variables), and t denotes time. For any real flow of
practical interest, an analytical solution of the Governing Equations is impos-
sible to obtain, due to the inherent non-linearity of the fluid dynamic systems.
Thus, one computational approach replaces the continuous partial derivatives
with the corresponding discretized finite-difference approximations, and com-
putes the unknown flow-field variables using a computational grid which spans
the region of interest. Our algorithm takes advantage of the lattice formations
formed by our robotic agents to simulate the computational grid, thereby al-
lowing the agents to perform a sophisticated (but computationally efficient)
analysis of the flow and make navigational decisions based on this analysis.

214

Computational efficiency of the fluxotaxis algorithm derives from local sens-
ing and communication. Robots determine the range and bearing to their im-
mediate, detected neighbors in order to calculate virtual forces that hold the
robots together in a lattice formation.1 The robots also share sensed chemical
density and wind velocity values with these neighbors in order to decide the
next direction to move for plume tracing. These flow-field variable values are
mapped (using standard coordinate transformations) to the robots’ own local
coordinate axes. Based on these values, each robot independently decides the
best direction to move to trace the plume. This direction is translated into a vir-
tual force. Finally, each robot takes the resultant vector of the plume-following
force and the lattice-preserving force – this resultant vector determines the ro-
bot’s next move. A balance of forces results in smooth movement of the lattice
as a whole toward the plume source, with avoidance of obstacles along the way
using virtual repulsion by the obstacles.

5. The Fluxotaxis Algorithm

The product ρ�V is called the mass flux ((Anderson, 1995)), and represents
the time rate of change of mass flow per unit area; dimensional analysis shows
that ρ�V is simply mass/(area · time). This flux formally combines the ρ fo-
cus of chemotaxis with the �V focus of anemotaxis, and it is the basis of our
fluxotaxis algorithm.

For the CPT task, our simulations mimic real-world laboratory robot condi-
tions as faithfully as possible. The simulated robot grid consists of six robots
in a hexagon formation with one additional robot in the middle. 2 Each robot in
the grid serves as both a sensor and a decision unit. Complex actions are mod-
eled as taking a realistically long time to complete, while the flow continues
to evolve. Robots’ maximum speed corresponds to hardware constraints. Note
that at any given time, the hexagonal robot lattice will have a specific radius,
which depends on the inter-robot distances. Initial and maximum lattice radii
are given realistic values, based on collision avoidance and communication
range constraints.

Fluxotaxis addresses all three subtasks of the CPT task: finding the chem-
ical, tracing the plume and, finally, identifying the emitter. We describe the
emitter identification subtask first, because it follows directly from the theory
just presented.

5.1 Emitter Identification Subtask

The RHS of (1) represents the divergence of mass flux within the differential
volume. Divergence is a convenient way to quantify the change of a vector field
in space. Although our approach is applicable to 3D geometries, for greater

SpS earsrr , et al.

Multi-Robot Chemical Plume Tracing 215

Algorithm: anemotaxis
while TRUE do

ensure lattice radius and location are within limits;
interrupt current lattice action if action time limit expired;
if lattice is within plume and sensors detect�V�� flow direction

then execute move upstream()
else execute cast()

end if
end while

Strategy: move upstream
average the direction of fluid flow�V�� across the lattice;
move opposite the flow�V�� direction for 1 step at maximum speed

Figure 1. The anemotaxis algorithm.

simplicity, we express the mass flux divergence in 2D Cartesian coordinates as

∇ ·(ρ�V) = u
∂ρ
∂x

+ρ
∂u
∂x

+ v
∂ρ
∂y

+ρ
∂v
∂y

(2)

where �V = uî+ v ĵ and î and ĵ are unit vectors in the x and y coordinate direc-
tions, respectively. (Recall that each robot has its own local coordinate system.)
If at some spatial point location P, ∇ ·(ρ�V) > 0, then it is said that point P is a
source of ρ�V , while ∇ ·(ρ�V) < 0 indicates a sink of ρ�V . Recall that the mass
flux, ρ�V , represents the time rate of change of mass flow per unit area. The
role of mass flux in the CPT task can be better understood with the aid of the
Divergence Theorem from vector calculus ((Hughes-Hallett et al., 1998)):∫

W

∫∫
∇ ·(ρ�V)dW =

∮
S

∮∮
(ρ�V) ·dS (3)

This equation, where W is the control volume and S is the bounding surface
of the volume, allows us to formally define the intuitive notion that a control
volume containing a source will have a positive mass flux divergence, while
a control volume containing a sink will have a negative mass flux divergence.
This result serves as our basic criterion for theoretically identifying a chemical
emitter, which is a source. In particular, (3) shows that if the robots encircle
a suspected emitter, and the total mass flux exiting the circle of robots consis-
tently exceeds some small, empirically-determined threshold, then the robots
are known to surround a true chemical emitter. To the best of our knowledge,
previous criteria for emitter identification are purely heuristic, e.g., ((Special
Issue, 2002)). Ours is the first with a firm theoretical basis.

5.2 Finding the Chemical

Prior to tracing a chemical to the source emitter, the chemical plume must
first be located. The most common method for doing this is called casting

216

Algorithm: chemotaxis
while TRUE do

ensure lattice radius and location are within limits;
interrupt current lattice action if action time limit expired;
if lattice is within plume

then execute move to max density()
else execute cast()

end if
end while

Strategy: move to max density
take the sensor reading of ρ across the lattice;
move to the location of the maximum ρ

Figure 2. The chemotaxis algorithm.

and typically consists of a zigzag or spiraling motion to increase exploration
of the region ((Hayes et al., 2001)). In this research, we extend the traditional
casting approach to improve its effectiveness. We are able to do this because
unlike prior approaches we have a lattice of several or more, rather than just
one or two, robots. In addition to translational motion, the improved casting
technique also includes lattice expansions and contractions (implemented us-
ing AP forces with local information). For the comparisons presented below,
all three algorithms (chemotaxis, anemotaxis, and fluxotaxis) use a lattice with
this improved method of casting.

5.3 Tracing the Plume

The algorithm implementations for anemotaxis and chemotaxis are direct
from the literature ((Special Issue, 2002)) other than the casting modification
described above. Figures 1–3 show the three CPT algorithms, which are com-
posed of low-level strategies.

Low-level functions ensure that the lattice never expands beyond the maxi-
mum allowed radius and environmental boundaries, and that the agents never
travel faster than the maximum speed. Also of importance is the fact that
anemotaxis and chemotaxis algorithms lack stopping criteria ((Special Issue,
2002)). Therefore, for the sake of fair comparisons, we decided not to have
fluxotaxis stop either, even when its emitter identification procedure succeeds.

6. The Plume Simulator

The majority of our research so far has been in simulation. In addition
to designing and writing our own chemical plume simulations, we have ob-
tained simulations and plume data from other sources. The experimental re-
sults reported in this paper use the most practical and well-developed of all
the simulators that we have worked with, developed by Farrell et al. (2002)
at the University of California ((Special Issue, 2002)).3 Farrell’s simulator is

SpS earsrr , et al.

Multi-Robot Chemical Plume Tracing 217

Algorithm: fluxotaxis
while emitter identification test fails do

ensure lattice radius and location are within limits;
interrupt current lattice action if action time limit expired;
if lattice is within plume

then
if more than 50% of total ρ is sensed by the center agent

then contract the lattice to minimal radius
else execute chem region()

end if
else execute cast()
end if

end while

Strategy: chem region
sense total lattice ρ over 3 different lattice radii;
compute ρ centroid CiCC where i ∈ RADIUS{inner,rr middle,outer}
if ρ increases with each radial increase

then move to the centroid of the centroids CiCC
else if outermost ρ is greater than innermost

then move to the location of the CouterCC centroid
else if ρ decreases with each increasing radius

then execute flux ring()
else execute cast()
end if

Strategy: flux ring
compute the maximum incoming flux, ρ�V�� , for 3 different lattice radii;
if maximum influx exceeds a flux threshold

then move to the location of the maximum incoming flux, ρ�V��
else

compute the maximum outgoing flux, ρ�V�� ;
if maximum outflux exceeds flux threshold

then move to the location of the maximum outgoing flux
else execute cast()

Figure 3. The fluxotaxis algorithm.

especially well-suited to our needs because it is: computationally efficient,
realistic (i.e., its transient and statistical behavior are very close to measured
actual plumes), and it is multi-scale – including both molecular diffusion of
the chemical and advective transportation by wind movement. Rather than a
continuous, time-averaged model, Farrell’s simulator models the plume as a
filament-based emission of chemical “puffs.”

7. Experiments

7.1 Design

In this section, we compare chemotaxis, anemotaxis and fluxotaxis on a
suite of simulated, realistic plume scenarios. Thirty five different scenarios/
plumes were chosen, each containing a dynamic plume evolving over a 100 sq.
ft. region, without obstacles. The plumes in our suite fall into the categories

218

Figure 4. The three general types of flow and plume configurations simulated for the CPT
experiments.

5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Maximum Expansion Factor

E
m

it
te

r
P

ro
xi

m
it

y

5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Maximum Expansion Factor

C
P

T
 S

u
cc

es
s

fluxotaxis f u

fluxotaxis fluxotaxis

chemotaxis chemotaxisa

anemotaxis e

anemotaxis anemotaxis

chemotaxis chemotaxis

Figure 5. Performance of the three CPT algorithms with respect to varying expansion factors
over 35 plumes with 200 random starting locations.

Spears, et al.

Multi-Robot Chemical Plume Tracing 219

Table 1. CPT algorithm performance averaged over 35 plumes and all parameter variations,
showing mean ± standard deviation.

Algorithm Proximity Success

Anemotaxis 0.6843 ± 0.0291 0.0667 ± 0.0362
Chemotaxis 0.6745 ± 0.0049 0.3184 ± 0.0132
Fluxotaxis 0.9235 ± 0.0089 0.7460 ± 0.0250

laminar, moderately turbulent (transitional), and turbulent (see Figure 4). An
agent is assumed to have a dimension of one sq. ft. and a speed of six inches
per second. The lattice movement as a whole is determined using way points
spaced three feet apart. We varied the maximum lattice expansion factor, be-
cause it appears to have the largest impact on performance of any of the system
parameters. For each plume and expansion factor parameter setting, there were
200 independent simulation runs, each with a different, randomly-chosen start-
ing location of the lattice. All algorithms were compared over identical runs
(e.g., identical starting locations and all other parameters the same). Each run
terminated after 5000 steps (∼ 80 minutes real time). The time limit was deter-
mined empirically as being sufficient time to find the plume with casting and
then get to the emitter. Note that the plume evolution and lattice movement are
concurrent, as in a real plume, and the lattice is driven by the resultant vector
of virtual formation and plume-tracing forces.

Because neither anemotaxis nor chemotaxis techniques specify a control
scheme for the lattice radius, but fluxotaxis does, in order to keep the evaluation
as fair as possible, anemotaxis and chemotaxis driven lattices were allowed to
expand or contract their radii at random. The initial size of the lattice radius
was fixed at 1.5 feet. The maximum expansion factor was set at 15, resulting
in a maximum lattice diameter of 45 feet.

The evaluation metric consisted of two components: proximity of the center
agent to the true location of the chemical emitter, and a Boolean measure of
emitter containment (by the lattice) at termination, which is called a success.
Success for chemotaxis and anemotaxis were determined by a global observer
algorithm, used only for performance evaluation. Note that the second metric
is influenced by the maximum radius; a larger radius implies a higher likeli-
hood of success. Results presented next show the averages over all lattices and
parameter settings, with 200 independent runs per lattice and setting.

7.2 Results

The graphs of the experimental results are shown in Figure 5. These graphs
show average performance over all plumes with respect to the maximum ex-

220

pansion factor. Note that in the graph of proximity, with a higher maximum
expansion factor, anemotaxis outperforms chemotaxis. This is due to an os-
cillation in anemotaxis at large lattice radii when the lattice moves upwind to
get closer to the emitter, overshoots it and loses the chemical, switches to cast-
ing, and then back to upwind-following behavior. In the graph plotting success
rate, all algorithms improve when the radius is larger because of the increased
likelihood of surrounding the emitter in this case. Finally, statistics averaged
over all the measures and runs are given in Table 1. A Wilcoxon rank sum
test was performed, which showed a statistically significant advantage of flux-
otaxis over both chemotaxis and anemotaxis, on both performance metrics, at
a p < 0.05 level of significance.

7.3 Conclusions

From Figure 5 and Table 1 we can see that the relative advantage of flux-
otaxis over the alternative algorithms is clear, both in terms of proximity and
success rate. In conclusion, for our chosen performance metrics, fluxotaxis
substantially outperforms the leading alternative CPT algorithms on our suite
of simulated plumes. Its success is due to the fact that it is a synergistic,
theoretically-founded combination of the two alternatives. Note that our per-
formance metric does not account for the time it takes to get to the emitter
although, if it did, fluxotaxis would be the winner in this respect also, based
on all of our experiments so far (not reported here). Future experiments will
focus on determining how the algorithms scale when obstacles are introduced
into the environment.

8. Summary and Future Work

Further algorithm development in simulation will include online learning
of thresholds, maintaining a history of observations, and modeling of sensor
characteristics (e.g., size, number, noise). An important near-term focus will
be on porting the simulation to actual robots in a laboratory plume emission
setting. The University of Wyoming Distributed Robotics Laboratory has a
team of several small robots that have successfully demonstrated robot self-
organization into lattices, obstacle avoidance, and goal seeking in formation (
(Spears et al., 2004b)). The next step is to integrate chemical sensors with the
robot processors and test the fluxotaxis algorithm with emissions of volatile
organic compound gases. For the long-term goal of this project, we plan to
transition to outdoor robots, including heterogeneous teams of ground-based
and micro-air vehicle platforms.

SpS earsrr , et al.

Multi-Robot Chemical Plume Tracing 221

Acknowledgments

The authors would like to thank Bill Spears for numerous useful comments
and suggestions.

Notes

1. The forces are based on a Lennard-Jones potential.

2. More robots would translate to better performance, but we model our laboratory, which has seven
robots.

3. We actually use a re-implementation of the original simulator from Farrell. Our re-implementation
adds efficiency and generality to the original code.

References
Anderson, J. D. (1995). Computational Fluid Dynamics. McGraw-Hill, Inc.
Board on Atmospheric Sciences and Climate (2003). Tracking and Predicting the Atmospheric

Dispersion of Hazardous Material Releases: Implications for Homeland Security. National
Academies Press.

Caldwell, S. L., D’Agostino, D. M., McGeary, R. A., Purdy, H. L., Schwartz, M. J., Weeter,
G. K., and Wyrsch, R. J. (1997). Combating terrorism: Federal agencies’ efforts to imple-
ment national policy and strategy. Congressional report GAO/NSIAD-97-254, produced by
the United States General Accounting Office.

Carlson, E. S., Sun, H., Smith, D. H., and Zhang, J. (2003). Third Order Accuracy of the 4-
Point Hexagonal Net Grid. Finite Difference Scheme for Solving the 2D Helmholtz Equation.
Technical Report No. 379-03, Department of Computer Science, University of Kentucky.

Cordesman, A. H. (2001). Defending America: Asymmetric and terrorist attacks with chemical
weapons. Report produced by the Center for Strategic and International Studies (CSIS).

Hayes, A., Martinoli, A., and Goodman, R. (2001). Swarm robotic odor localization. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’01).

Hsu, S. S. (2003). Sensors may track terror’s fallout. Washington Post, page A01.
Hughes-Hallett, D., Gleason, A. M., and et al., W. M. (1998). Calculus: Single and Multivari-

able. John Wiley and Sons.
Sandini, G., Lucarini, G., and Varoli, M. (1993). Gradient driven self-organizing systems. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’93).

Spears, W. and Gordon, D. (1999). Using artificial physics to control agents. In Proceedings of
the IEEE Conference on Information, Intelligence, and Systems (ICIIS’99).

Spears, W., Heil, R., Spears, D., and Zarzhitsky, D. (2004a). Physicomimetics for mobile ro-
bot formations. In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS-04), volume 3, pages 1528–1529.

Spears, W., Spears, D., Hamann, J., and Heil, R. (2004b). Distributed, physics-based control of
swarms of vehicles. In Autonomous Robots, volume 17(2-3).

Special Issue (2002). Chemical plume tracing. In Cowen, E., editor, Environmental Fluid Me-
chanics, volume 2. Kluwer.

DEPLOYING AIR-GROUND
MULTI-ROBOT TEAMS IN
URBAN ENVIRONMENTS

L. Chaimowicz, A. Cowley, D. Gomez-Ibanez, B. Grocholsky, M. A. Hsieh,
H. Hsu, J. F. Keller, V. Kumar, R. Swaminathan, C. J. Taylor
GRASP Laboratory – University of Pennsylvania
Philadelphia – PA – USA

Abstract We present some of the work performed in the GRASP Laboratory with the ob-
jective of deploying multi-robot teams in urban environments. Specifically, we
focus on three important issues in this type of mission: the development of tools
for providing situational awareness, the use of air and ground vehicles for coop-
erative sensing and the construction of radio maps to keep team connectivity. We
describe the main approaches that we have been using for tackling these issues
and present some preliminary results from experiments conducted with our team
of air and ground vehicles.

Keywords: Air-ground cooperation, situational awareness, radio mapping.

1. Introduction

Urban environments provide unique challenges for the deployment of multi-
robot teams. In this type of environment, buildings pose 3-D constraints on
visibility, communication network performance is difficult to predict and GPS
measurements can be unreliable or even unavailable. We believe that a network
of aerial and ground vehicles working in cooperation can have a better perfor-
mance in these type of environments. By constructing a three-dimensional
sensing network, teams of air and ground vehicles can obtain better and more
complete information and thus be more robust to the challenges posed by these
environments. For this, it is necessary to keep the network tightly integrated
at all times since vehicles have to support each other in order to function with
synergy. Also, it is important to provide ways for a human operator to com-
mand the whole network, and not individual vehicles.

In this paper, we present some of the efforts that have been done by the
GRASP Laboratory – University of Pennsylvania for deploying teams of air
and ground vehicles in urban environments as part of the MARS2020 project.

223
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 223–234.
©c 2005 Springer. Printed in the Netherlands.

224 Chaimowicz, et al.

Sponsored by DARPA, this project is focused on the development of critical
technologies required to realize network-centric control of heterogeneous plat-
forms that is strategically responsive, survivable and sustainable for reconnais-
sance, surveillance or search and rescue type missions. In this endeavor, the
University of Pennsylvania is teamed with the Georgia Institute of Technology,
the University of Southern California and BBN Technologies.

At the University of Pennsylvania, our MARS2020 research thrust is to es-
tablish the overall paradigm, modeling framework and the software architec-
ture to enable a minimum number of human operators to manage a heteroge-
neous robotic team with varying degrees of autonomy. The central features
of our approach are to organize the robotic platforms for network centric au-
tonomous operations; to develop small team communication-sensitive behav-
iors, which allow robots to perform alongside humans as full team members; to
enable the team to learn and adapt to changing terrain conditions that may im-
pact communication network performance and localization information (e.g.,
GPS, line of sight sensing, etc.); and to develop computationally distributed
strategies to provide an unprecedented level of situational awareness. The ef-
fort will result in an integrated team of UAVs and UGVs, in which the team
and the network will adapt to the needs and commands of a remotely located
human operator to provide situational awareness.

This paper is organized as follows: the next section presents our multi-robot
team. Section 3 describes some of the basic capabilities of our team in terms
of localizing and navigating in urban terrains. Sections 4 to 6 discuss our main
research thrusts, namely: situational awareness, air-ground cooperation and
cooperative radio mapping. Finally, section 7 brings the conclusion of this
paper.

2. Hardware and Software Testbed

Our multi-robot team consists of 5 unmanned ground vehicles (UGVs), 2
fixed wing aircraft and a blimp (Figure 1). The UGVs employ a commercially
available, radio controlled scale model truck with suspension and chassis mod-
ified for autonomous duty. The chassis is approximately 480 mm long and 350
mm high. Mounted in the center of the chassis is a Pentium III laptop com-
puter. Each UGV contains a specially designed Universal Serial Bus (USB)
device which controls drive motors, odometry, steering servos and a camera
pan mount with input from the PC. A GPS receiver is mounted on the top
of an antenna tower, and an inertial measurement unit (IMU) is mounted be-
tween the rear wheels. A forward-looking stereo camera pair is mounted on
a pan mount which can pivot 180 degrees to look left and right. A small em-
bedded computer with 802.11 wireless Ethernet handles network connectivity.
This junction box (JBox), developed jointly by the Space and Naval Warfare

Deploying Air-Ground Multi-Robot Teams in Urban Environments 225

Systems Center, BBN Technologies, and the GRASP Lab, handles multi-hop
routing in an ad-hoc wireless network. The UGV is powered by one or two hot
swappable lithium polymer battery packs, each with 50 watt hour capacity.

The fixed wing aircraft are quarter scale Piper Cub model aircraft equipped
with the Piccolo autopilot by Cloud Cap Technology. The autopilot provides
innerloop attitude and velocity stabilization control allowing research to focus
on guidance for mission level tasks. In addition to the sensors within the au-
topilot, the air vehicles carry a sensor pod containing a high resolution firewire
camera, inertial sensors and a 10Hz GPS receiver. A spread-spectrum radio
modem is used for communications between air vehicles and the operator base
station. Ground based system components communicate through an Ad-Hoc
802.11b network. We also have a medium sized blimp (9 meter length) that has
nearly a 3 kg payload for research equipment. It is equipped a GPS, an inertial
measurement unit capable of sensing rates and attitudes, a video camera that
can be slewed in azimuth and elevation, and the onboard computing and com-
munication hardware to be autonomous but also capable of being dynamically
redirected by a remote human operator.

Figure 1. Multi-robot team composed of air and ground vehicles.

We are using ROCI (Remote Object Control Interface) (Chaimowicz et al.,
2003, Cowley et al., 2004) for programming and tasking both the ground and
air vehicles. ROCI is a high level operating system useful for programming
and managing networks of robots and sensors. In ROCI, each robot is con-
sidered a node which contains several processing and sensing modules and
may export different types of services and data to other nodes. Each node
runs a kernel that mediates the interactions of the robots in a team. The ker-
nel is responsible for handling program allocation and injection, managing the

226 Chaimowicz, et al.

network and maintaining an updated database of other nodes in the ROCI net-
work. The control functionality needed by such a kernel is made possible by
self-contained, reusable modules. Each module encapsulates a process which
acts on data available on its inputs and presents its results on well defined out-
puts. Thus, complex tasks can be built by connecting inputs and outputs of
specific modules. A ROCI task is a way of describing an instance of a col-
lection of ROCI modules to be run on a single node, and how they interact
at runtime. It is defined in an XML file which specifies the modules that are
needed to achieve the goal, any necessary module-specific parameters, and the
connections between these modules. At runtime, these connections are made
through a pin architecture that provides a strongly typed, network transparent
communication framework.

3. Localization and Navigation

Two of the key requirements for the robots is the ability to localize them-
selves and navigate in urban environments. A Kalman filter framework is em-
ployed to estimate robot localization. Prediction is driven by wheel encoder
odometry and inertial measurements from a low cost IMU. Appropriate obser-
vation models allow various sources of position information to be incorporated.
These include on-board GPS, robot observations from external vision sensors
and landmarks observed by the on-board camera.

Our robots navigate based on a list of desired waypoints. Each waypoint is a
pair of georeferenced coordinates that specify a destination point for the robot.
The waypoints can be specified manually through a user interface or can be in-
put directly to the navigation module by other modules and tasks. Sometimes
it may be necessary to automatically generate a list of intermediary waypoints
between the robot current position and the desired destination, so that the ro-
bots will follow an specific path to their goal. One way of doing this is to
create a graph based on a Voronoi Diagram of the environment and use it as
a roadmap for planing the intermediary waypoints. The Voronoi Diagram can
be generated beforehand, using overhead imagery obtained by the air vehicles.
Another possibility is to use “mission scripts”, which will be discussed in the
next section.

A trajectory controller generates linear and angular velocities for the robot
based on its current position and the next desired waypoint. A robot considers
a waypoint reached when the distance between them is less than a threshold
ε. Local obstacle avoidance is accomplished through the use of the robot’s
stereo vision system. Images captured simultaneously from the two cameras
are used to generate a medium-density depth map through a multi-pass process
of confidence adjustment. This depth map is converted to a two-dimensional
occupancy grid centered on one of the cameras in the stereo setup. Several

Deploying Air-Ground Multi-Robot Teams in Urban Environments 227

trajectory arcs, corresponding to various vehicle movements (e.g. turn left, go
straight, or turn right) can be compared against this grid to verify if a collision
would result. The use of a finite number of discrete trajectories, rather than a
more complete shortest path solver, lets the system run at the rate of the camera
with very little processor overhead.

Figure 2 shows the trajectory performed by a robot following a sequence of
waypoints in the MOUT (Military Operations on Urban Terrain) site at Fort
Benning, the main test site for this project. The MOUT site is a replica of a
small city consisting of 17 two and three store buildings, streets and access
roads. It is configured with cameras that allow a multiple view tracking of
training missions. It also features a small airfield, making it a suitable test
ground for air-ground cooperation.

Figure 2. Trajectory of a robot navigating using a sequence of waypoints. The waypoints are
depicted as ‘*’ and the robot executes the sequence twice.

4. Situational Awareness

In our framework, the main interface between a human operator and the
robot team is the ROCI Browser. The browser displays the multi-robot network
hierarchically: the human operator can browse nodes on the network, tasks
running on each node, the modules that make up each task, and pins within
those modules. The browser’s main job is to give a user command and control
over the network as well the ability to retrieve and visualize information from
any one of the distributed nodes.

Using the browser, the user can start and stop the execution of tasks in the
robots remotely, change task parameters or send relevant control information

228 Chaimowicz, et al.

for the robots. Elaborated missions can be constructed using scripts. Mission
scripts can be generated online or offline, and specify a sequence of actions that
should be performed by a team member. For example, capturing panoramic im-
ages at different waypoints, or navigating through multiple intermediate way-
points before reaching a target site. A synchronization mechanism allows for
coordinated efforts between multiple robots, and a success/failure condition
check on the outcome of each action makes limited branching possible. We
are currently utilizing these capabilities to support a multi-robot signal strength
mapping mission with intelligent recovery behavior if at any point any of the
robots lose radio connectivity to the other members. This specific mission will
be discussed in Section 6.

The visualization and exploitation of data generated by the multi-robot team
is one of the main features of our situational awareness framework. To access
and visualize the data, a human operator interacts with the ROCI Browser, part
of which is a display generation runtime made up of a collection of plug-in
Display Modules that convert incoming pin data to raster images. Data can be
retrieved from different nodes equipped with various types of sensors such as
GPS receivers, IMU readers, cameras, etc, and can be combined to give the
user a rich view of the mission.

Figure 3 shows a snapshot of the browser during the execution of one of
our experiments in Ft. Benning. It displays an image of the MOUT site taken
previously from one of the UAVs overlayed with different information acquired
from the robots. For example, the thick lines represent signal strength of the
radio connection between the five nodes in our network. One robot can be
seen in the center of the image surrounded by a octagon that indicates the
uncertainty of its localization. As mention in Section 3 the robot position is
estimated by fusing information from several sources, in this case an on board
GPS, odometry, and an external overhead camera. If desired, these individual
observations can also be displayed on the browser.

Both users and autonomous agents also have the ability to access sensor
data through a distributed database infrastructure. The foundation of this sys-
tem is made up of instances of a Logger module that is capable of receiving,
indexing, and storing any type of pin data. Using these modules, a user can
instrument a task with loggers listening to any pin communications. This data
is primarily indexed by time (an index that is globally meaningful in the con-
text of distributed sensing), but can also be indexed by more sensor-specific
methods (such as position). By using shared indices to join multiple logs in
an on-demand fashion, human operators and programmed agents are able to
make use of data as it becomes available on the network without relying on
any pre-defined schemas. A query architecture is used to interact with this dis-
tributed database. Active queries, made up of executable code, are sent to the
nodes that are storing the relevant information in order to minimize the amount

Deploying Air-Ground Multi-Robot Teams in Urban Environments 229

Figure 3. Snapshot of the ROCI Browser during the execution of a mission. Overlayed in the
aerial picture, the thick lines represent radio connectivity between nodes and the octagon shows
the uncertainty in the localization of one of the robots.

of data that must be transferred over the network. In other words, the query
is moved to the data, rather than the other way around. This system helps to
eliminate the distinction between low-level sensor data and high-level fused
structures by removing the need to hard code every type of useful structure.

5. Air-Ground Cooperation

The use of air and ground robotic vehicles working in cooperation can be
very important in tasks involving the reconnaissance and exploration of clut-
tered urban environments where communication and GPS localization may be
unreliable. In this type of mission, groups of unmanned air vehicles (UAVs)
could significatively help the ground vehicles (UGVs) by providing localiza-
tion data and acting as communication relays.

One of our first experiments in air-ground cooperation was to try to localize
our ground vehicles using a sequence of images taken from the blimp. Basi-
cally, for each image we had to compute the projection matrix M that relates
the position of the robot in a global coordinate frame with its pixel coordinates
in the image. We compared two complementary approaches for computing M:
the first used a set of known landmarks in the image while the second relied on
the measurements from the blimp’s on board sensors (GPS/IMU) and the in-
trinsic parameters of the camera. The localization results were compared with
measurements from a GPS on board of the ground vehicle.

230 Chaimowicz, et al.

As discussed in (Chaimowicz et al., 2004), these experiments demonstrated
that none of these approaches could be applied alone if we need a localization
system that is applicable, reliable, and accurate. In spite of being very precise,
the air-ground localization using known landmarks can not always be applied
because it requires the identification of a certain number of world locations
to register the image, which is impractical in general situations. On the other
hand, the approach based on the blimp’s on board sensors did not performed
well due to the combination of different sensor errors without an adequate
fusion methodology. These preliminary results motivated us to pursue more
sophisticated methods for performing the cooperative localization. The general
idea is to fuse information from different sources in a systematic way in order
to have a more reliable and accurate localization system.

Therefore, we developed a related approach in which air and ground ve-
hicles can collaborate to localize ground features. As noted, when detecting
ground features from images taken from a blimp or an airplane, their exact
location on the ground is always subject to errors in attitude and location esti-
mates. Thus, for robust localization of ground targets, it is imperative to know
and reduce the uncertainty in their position.

This approach builds on previous endeavors in decentralized data fusion
(DDF) (Manyika and Durrant-Whyte, 1994). DDF provides a decentralized
estimation framework equivalent to the linearized Kalman filter. Decentralized
active sensor networks (Grocholsky et al., 2003) extend this to include a con-
trol layer that refines the quality of the estimates obtained. The established
architecture and methodology is used here.

As detailed in (Grocholsky et al., 2004), our methodology combines UAV
and UGV ground feature observations, actively deploying the sensor platforms
to maximize the quality of the location estimates obtained. The different per-
spective provided to sensors on-board air and ground vehicles results in sig-
nificantly different sensing accuracy and coverage qualities. A collaborative
feature search and localization example is illustrated in Figure 4. The ap-
proach exploits the complementary character of UAV and UGV sensor plat-
forms. The UAV rapidly covers the designated search area, detecting features
and providing relatively uncertain location estimates. UGVs deploy to refine
the feature location estimates. Localization accuracy beyond that achievable
by UAV sensing alone is realized without requiring the UGVs to conduct an
extensive area search.

6. Cooperative Radio-Mapping

Communication is essential for coordination in most cooperative control and
sensing paradigms. Successful deployment of multi-robot mapping and explo-
ration, surveillance, and search and rescue relies in large part on a reliable

Deploying Air-Ground Multi-Robot Teams in Urban Environments 231

−5 0 5 10 15 20 25 30 35
−10

−5

0

5

10

15

20

25

30

x (m)

y
(m

)

UAV
1st UGV
2nd UGV

Initial UGV LocationsL

UGV Trajectories V Trajectorie

Observation ConfidenceObservation

EllipsesEllipses

1st Feature t

3rd Featureu

2ndn Feature

(a)

(b)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

x (m)

y
(m

)

Initial UGV Locations nitial UGV Locations

3rd Feature

(c)

Figure 4. Details of the ground feature localization process. (a) Confidence ellipses associ-
ated with UAV and UGV feature observations. Indicating the significant uncertainty reduction
with UGV sensing distance. (b) The estimate standard deviation over time. Constant values
indicate the time between UAV spotting and UGV refinement. (c) UGV trajectories and true
feature locations.

communication network. Often times, these tasks are executed in environ-
ments that are adverse to wireless communications. Radio propagation char-
acteristics are difficult to a predict a priori since they depend upon a variety
of factors such as transmission power, terrain characteristics, 3-D geometry of
the environment, and interference from other sources (Neskovic et al., 2000).
The difficulty in accurately modeling radio propagation in urban environments
makes it difficult to design multi-agent systems such that the individual agents
operate within reliable communication range at all times. In this section, we
consider the problem of acquiring information for radio connectivity maps in
urban terrains that can be used to plan multi-robot tasks and also serve as useful
perceptual information.

A radio connectivity map is a function that returns the signal strength be-
tween any two positions in the environment. The radio connectivity construc-
tion can be formulated as a graph exploration problem for small teams of
robots. An overhead surveillance picture is used to automatically generate
roadmaps for motion planning and determine a plan to obtain the desired sig-
nal strength measurements (Hsieh et al., 2004). The plan consists of a list of
waypoints for each robot such that radio signal strength measurements for the
connectivity map is obtained as team members simultaneously traverse through
each of their respective waypoints.

232 Chaimowicz, et al.

Radio connectivity maps can be therefore used to plan multi-robot tasks to
increase the probability of a reliable communication network during the exe-
cution phase. This however will not guarantee that radio signal strength mea-
surements obtained during the exploration and execution phases will not differ
due to the sensitivity of radio propagation to environmental factors. Therefore,
to ensure reliable communication during task execution, additional recovery
behaviors such as returning to the last position the robot was able to success-
fully communicate with other team members should be included. Ideally, the
measurements obtained during the exploration phase can be used to construct
a limited model for radio propagation in the given environment such that when
coupled with additional reactive behaviors, a reliable communication network
can be maintained during deployment.

Preliminary experiments were performed using our ground vehicles to test
the radio connectivity at the Ft. Benning MOUT site. In these experiments,
each robot is individually tasked with the corresponding list of waypoints de-
termined by the algorithm described in (Hsieh et al., 2004). Team members
navigate to their designated waypoints and broadcasts an “arrival” message.
Once the robots have completed the radio signal strength measurements, they
broadcast a “ready to go” to notify each other to move on to their next targeted
location. This is repeated until every member has traversed through all the
waypoints on their list. The waypoints are selected to minimize the probability
of losing connectivity under line-of-sight conditions in the planning phase to
ensure the success of the synchronization based on line-of-sight propagation
characteristics that can be determined a priori. Figure 6 shows some measure-
ments of the radio signal strength between pairs of positions in the environ-
ment. An edge between two pairs of positions shows that the signal strength
between the two locations is above the desired threshold. The weights on the
edges (barely visible) denote the signal strength that was measured between
the two locations. In these experiments, the signal strength was measured us-
ing the JBox, described in Section 2.

In the future, we would like to incorporate more reactive behaviors so as
to be able to do some on-line mapping instead of collecting data for a set of
completely predetermined locations. Furthermore, it is often the case that the
exploration of the radio map of the scene is being carried out concurrently
with other activities such as environmental monitoring or situational aware-
ness. Thus, another area which we plan to address is pursuing the radio map-
ping with other objectives and which must be effectively balanced against the
other mission goals.

Deploying Air-Ground Multi-Robot Teams in Urban Environments 233

62
55

56

56

56

Figure 5. Preliminary experimental radio connectivity map for the MOUT site obtained using
our multi-robot testbed.

7. Conclusions

This paper presented some of the work that has been done in the GRASP
Lab. as part of the DARPA-MARS2020 project for deploying teams of robots
in urban environments. We introduced our hardware and software framework,
discussed some important issues related to situational awareness, air-ground
cooperation and cooperative radio mapping, and presented some preliminary
results obtained during field tests. This project is scheduled to culminate with a
demonstration of the performance of the integrated team of UAVs, UGVs, and
a human leader in a reconnaissance type mission at the Fort Benning McKenna
Range MOUT site in December 2004.

Acknowledgments

This work was in part supported by The Defense Advanced Research Projects
Agency (DARPA MARS NBCH1020012).

References
Chaimowicz, L., Cowley, A., Sabella, V., and Taylor, C. J. (2003). ROCI: A distributed frame-

work for multi-robot perception and control. In Proceedings of the 2003 IEEE/RJS Interna-
tional Conference on Intelligent Robots and Systems, pages 266–271.

234 Chaimowicz, et al.

Chaimowicz, L., Grocholsky, B., Keller, J. F., Kumar, V., and Taylor, C. J. (2004). Experiments
in multirobot air-ground coordination. In Proceedings of the 2004 IEEE International Con-
ference on Robotics and Automation, pages 4053–4058.

Cowley, A., Hsu, H., and Taylor, C. (2004). Distributed sensor databases for multi-robot teams.
In Proceedings of the 2004 IEEE International Conference on Robotics and Automation.

Grocholsky, B., Bayraktar, S., Kumar, V., and Pappas, G. (2004). Uav and ugv collaboration for
active ground feature search and localization. In Proc. of the AIAA 3rd "Unmanned Unlim-
ited" Technical Conference.

Grocholsky, B., Makarenko, A., Kaupp, T., and Durrant-Whyte, H. (2003). Scalable control
of decentralised sensor platforms. In Information Processing in Sensor Networks: 2nd Int
Workshop, IPSN03, pages 96–112.

Hsieh, M. A., Kumar, V., and Taylor, C. J. (2004). Constructing radio signal strength maps with
multiple robots. In Proceedings of the 2004 IEEE International Conference on Robotics and
Automation, pages 4184–4189.

Manyika, J. and Durrant-Whyte,H.(1994).DataFusionandSensorManagement: AnInformation-
Theoretic Approach. Prentice Hall.

Neskovic, A., Neskovic, N., and Paunovic, G. (2000). Modern approaches in modeling of mo-
bile radio systems propagation environment. IEEE Communications Surveys.

PRECISION MANIPULATION WITH
COOPERATIVE ROBOTS

Ashley Stroupe, Terry Huntsberger, Avi Okon, Hrand Aghazarian
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA, 91109
{Ashley.Stroupe, Terry.Huntsberger, Av{{ i.Okon, Hrand.Aghazarian}@jpl.nasa.gov

Abstract: We present a cooperative approach to robotic precision manipulation tasks in
the context of autonomous robotic construction. Precision manipulation
requires a firm grasp, which constraints the team to rigidly maintain formation
during transport and manipulation. A leader/follower approach with force
sensing to provide relative formation information and vision to provide team
position relative to construction components is applied. Our approach
demonstrates successful, reliable performance of a construction task requiring
cooperative transport and placement of structure components. Qualitative and
quantitative performance results are provided.

Keywords: Cooperative Robots, Cooperative Transport, Robot Construction

1. Introduction

The 2004 NASA vision for space exploration calls for a sustainable
presence in space, beginning with a human return to the Moon in 2020
(NASA, 2004). A sustainable robotic or human presence requires deploying
and maintaining infrastructure to provide power, living quarters, and
resource acquisition and utilization; deployment must be autonomous for
safety and reliability. Space operation places constraints on rover power,
computing, communication, and mass. JPL’s Planetary Robotics Lab (PRL)
is developing autonomous technologies to perform construction related tasks
under these constraints. One focus area is cooperative transport and
precision manipulation of large rigid components over natural terrain using

235
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 235–248.
©c 2005 Springer. Printed in the Netherlands.

236 Stroupe, et al.

fused sensor information from both robots. We present details and
quantitative results of our approach, an extension of previous work (Stroupe,
et al., 2004) and done under the CAMPOUT architecture (Huntsberger, et al.,
2003).

This work addresses several challenges of cooperative transport and
precision manipulation. Precision manipulation requires a rigid grasp, which
places a hard constraint on the relative rover formation that must be
accommodated, even though the rovers cannot directly observe their relative
poses. Additionally, rovers must jointly select appropriate actions based on
all available sensor information. Lastly, rovers cannot act on independent
sensor information, but must fuse information to move jointly; the methods
for fusing information must be determined.

2. Background and Related Work

Precision manipulation of large components requires rovers to have a
rigid grasp and therefore to remain in a fixed relative formation, even if
rovers cannot directly obtain each other’s relative position. Cooperative
transport has primarily focused on pushing on flat floors, typically relying on
direct observation or communication of relative position (Parker 1994,
Qingguo and Payandeh, 2003; Rus, et al., 1995). In some cases, robots use
forces imparted by the object to communicate, but robots adjust position to
obtain desired forces (Brown and Jennings, 1995). These approaches are not
applicable to precision manipulation in three-dimensions, rigid formations,
or operation in natural terrain. Most precision cooperative manipulation
using force feedback for implicit communication is for fixed-base
manipulators (Mukaiyama, et al., 1996), and is not applicable for
construction. Formation following typically uses potential fields, which
require observation or communication of relative pose and do not
accommodate hard constraints (Balch and Arkin, 1998; Carpin and Parker,
2002; Desay, et al., 1999). Most similar to our task is Omnimate
(Borenstein, 2000), which uses a compliant linkage between two mobile
platforms; Omnimate compensates for uneven floors and moderate wheel-
slippage by controlling wheel velocity based on observed angular difference
between the expected and observed lines of contact between the platforms.
To date, cooperative transport in rigid formation is limited to JPL’s Robot
Work Crew (Huntsberger, et al. 2004, Trebi-Ollenu, et al., 2002), and mobile
precision manipulation has not yet been demonstrated.

Precision Manipulation with Cooperative Robots 237

3. Cooperative Transport / Manipulation

3.1 Task Domain and Description

Two rovers, heterogeneous in size and arm configuration, are equipped
with a forward-facing stereo camera pair and a three-axis force-torque sensor
on the arm’s wrist. The team can cooperatively carry long beams that are
stacked and interlocked if positioned accurately. Each beam has a grasping
point at either end; the gripper lower finger passes through the grasp point
and the upper fingers close on the top of the beam. Rovers obtain beam
location from the stereo vision of three fiducials on each end. The test

is a PRL sand pit that simulates natural terrain.

GRASP

Figure 1. Left: RCC Rovers SRR (left) and SRR2K (right) are heterogeneous; note SRR2K’s
gripper is not in line the rover body center. Right: Structure composed of stacked beams;
note each beam is alternately offset laterally from the one it rests upon. The inset shows the
grasping point, the fiducials and the interlocking cones on one beam.

Tasks are in the context of building a four-sided structure by stacking
beams. The team must cooperatively transport beams from storage to the
structure and then align at the structure while remaining in formation tott
prevent dangerous forces on rover arms. Once aligned, the team must
precisely place the beam in the structure while keeping arms at appropriate
relative positions. Robots return to storage and repeat the process to build
the structure. Current work demonstrates end-to-end acquisition and
placement of a single beam; results here focus on the cooperative aspects.

environment

238 Stroupe, et al.

3.2 Cooperative Behaviors

3.2.1 Aligning with the Structure

Rovers position themselves relative to the structure based on stereo
vision of the fiducials on the beams already in the structure. To place a
beam into the structure, the rover arms must maintain separation; the rigid
grasp cannot accommodate arbitrary offsets in rover position. Thus, team
alignment with the structure must be precise (within 1 cm). Slippage, errors
in drive kinematics, and errors in estimated structure location lead to
alignment errors. Vision errors are minimized by validating observations
against the model of fiducials on the beam and repeating observations as
necessary. Additionally, the vision is calibrated relative to the arm to offset
any kinematics errors in the arm control. The team reports any
unrecoverable errors to allow corrective intervention.

INIT CRAB TO
OFFSET

CRAB TO
AVE. OFFSET

DRIVE TO
RANGE

DRIVE MINIMUM
TO RANGE

TURN TO
LOCAL ANGLE

TURN TO
GLOBAL AN GLE

CRAB TO FINAL
OFFSET

COARSE ALIGNMENT

FINE ALIGNMENT
ONE ROBOTT

SEEING STRUCTURE

TWO ROBOTS
SEEING STRUCTURES

ALIGNEDD

Figure 2. Simplified finite state machine representing the alignment process, with different
modes for action selection depending on the amount of data available.

To reduce the effects of errors, the algorithm uses an iterative process of
adjusting range, lateral offset, and heading, as illustrated in the state machine
of Figure 2 and the diagrams of Figure 3. To ensure rovers are executing
parallel motions, they share data and the leader selects an action and sends to
the follower; roles can be dynamically changed. As position is refined,
visual information becomes more accurate and errors from slip in previous
motions are corrected. If an iteration completes without corrections, the
team is properly aligned. To maximize visual accuracy, the team iteratively
aligns directly in front of structure fiducials first, and then iteratively aligns
the lateral offset appropriate for placing the beam. The leader selects an
action (movement magnitude and direction) using fused information from
both robots, if both see the structure, or the individual information from
either robot, if only one robot sees the structure.

Precision Manipulation with Cooperative Robots 239

Figure 3. Top: Iterative alignment process of crab (left), drive (center), and Ackermann turn
(right). Bottom: Aligned team (left) crabs to offset beam for placement (center) and extend

arms to place beam (right).

When only one robot sees the structure, the team must move the team so
as to allow the other rover to also see the structure. This involves attempting
to position the other rover at an appropriate range and lateral position. Due
to the linear formation constraint imposed by the beam, if one rover is
approximately aligned, the other rover should be near alignment and able to
see the structure. Thus, the observing rover approximately aligns itself to
bring the other rover into position. Driving (forward or backward) and
crabbing (lateral driving) will bring the observing rover close to desired
range (X((DXX) and zero arm lateral offset by moving the team those distances;
this is shown in (1), where (X((,XX Y) is the observed strYY ucture position andrr MYMM isY
the manipulator arm lateral offset. To bring the team parallel, the rovers
execute an Ackermann based on the observing rover’s estimate of its
heading relative to the structure; this is determined using the difference in
range to the fiducials on the left and the fiducials on the right (XTXX) and theT

known lateral distance between fiducials (YTYY). The rover turns to counter T
this angle as in (2).

=
Y

D

MY −
XX −

D (1)

()A (−= ta (((1 (2)

()GA (= tan (((1 (3)

When both robots see the structure (during fine alignment and during thedd
final lateral offset), information is fused differently for different conditions
and different motions. Driving brings one member of the team to the correct
range. The team selects to execute the shortest drive (X(() computed by (1) toXX
prevent overshooting desired range. Crabbing aligns the rovers laterally
with the structure. The team executes a crab in magnitude to satisfy both

240 Stroupe, et al.

rovers: the average offset. If the rovers are in a linear formation and aligned
with the structure, the average Y offset from (1) willY bring both rovers into
position. To bring the rovers to the same range (aligning the team and beam
parallel to the structure), an Ackermann turn is done. The turn is computed
as in (3), using the difference in range (X) for the two robots and the XX
distance between beam grasping points (YGYY); the further robot drives
forward while the closer robot drives backward, equalizing the distance.
There is one exception: if in the previous step only one rover saw the
structure and the team anticipated turning based on local rather than global
information, the follower’s range (required for determining global angle) is
not available, but instead the follower’s local angle was shared. In this case,
the turn is the average of both local angles from (2) to approximately satisfy
both. Rather than attempting to robustly identify this situation on both
rovers and resend the proper data, this approach saves additional
communication and ensures the rovers stay in parallel states. Turns too
small to execute (less than one degree) are approximated by a drive, with
each rover driving independently to the correct range from (1); these small
offsets can be tolerated in forward driving.

If both robots lose sight of the structure, they move forward in
increments of 5 cm until at least one regains observation or until a timeout is
reached.

3.2.2 Driving in Rigid Formation

As described in 3.2.1, the team performs three motions in formation:
drive, crab, and Ackermann turn. To keep the beam straight and prevent
large stresses on the arms, the team must remain at the desired lateral
separation and in-line with each other. Keeping formation allows the team
to achieve the correct relative position to place the component in the
structure. The arms can only accommodate small lateral offsets during
component placement without inducing large forces, thus accurate rover
positioning is essential. By implementing motions determined by the leader
(rather than in a distributed manner), cooperative moves are always
identical. Synchronizing cooperative moves reduces (but does not eliminate)
errors due to time offsets. Leader-controlled motion and synchronization do
not mitigate initial formation errors.

Empirical data has indicated correlations between torque about the
vertical axis and rover alignment and between force along the horizontal axis
and rover separation; the team detects errors in relative formation using
forces and torques imparted through the beam. Once a formation error is
detected it can be corrected as shown in Figure 4. By allowing the follower

Precision Manipulation with Cooperative Robots 241

to adjust its velocity, it can eliminate formation errors. For driving, the
follower speeds up if torque indicates it is behind and slows down if it is
ahead, Figure 4 illustrates the case where the follower is on the right. The
relationship between torque and force and velocity correction is dependent
on direction of motion. Currently, only velocity control is used to adjust
formation; steering adjustments to account for off-axis formation errors is in
development. To ensure forces and torques do not build up before velocity
control can compensate, the follower starts first (the leader delays 2 seconds
after synchronization). To prevent overreaction to sensor noise, the sensor is
sampled at 20 times the action selection rate and averaged.

Tz

∆V
V

Tz

∆VV ∆V∆

Fy

V

Fy

V
∆V∆

Figure 4. Left: Follower adjusts velocity to eliminate torque. The follower slows down to
reduce counterclockwise torque and recover alignment (top) or speeds up to reduce clockwise
torque and recover linear alignment (bottom). Right: Follower adjusts crabbing velocity to
eliminate force. Follower speeds up to increase spacing and reduce positive force (top) or
slows to decrease spacing and reduce negative force (bottom).

The velocity controllers are PI controllers designed to maximize response
time, minimize oscillation (particularly at the end of moves), and stop both
rovers upon failure. Parameters for control were empirically determined
based on observed performance. (4) shows the general controller, where VBVV
is the base velocity, E is the error term, E E is total accumulated error, and E

EMAXE is the magnitude limit on the accumulated error. (5) shows driveX
velocity error, where TZTT is torque about the vertical axis Z TZ0TT is the reference
torque about the vertical axis, TFYTT is torque about the vertical axis due toY
lateral forces rather than angular misalignment of the beam. Drive control
parameters are KPK = 0.4,P KIK = 0.0, and I EMAXE = 0.0. (6) shows the error for X
crabbing velocity, where FY is lateral force andY FY0 is reference lateral force.
Control parameters for crabbing are KPK = 0.6, KIK = 0.05, andI EMAXE = 6.0. X

The single-step change in velocity is limited by VMAXVV as in (7). X

242 Stroupe, et al.

EKEKVV IPB KEKV KEKNEWV ΣKEKV EKEKV KEKV KEK EK (4)

FYZZD TTTE FZZD ZZ TT TT ZZZ 0 (5)

0YYC FFE YYC YFFY (6)

otherwise
if
if

MAXLASTNEW

MAXLASTNEW

NEW

MAXLAST

MAXLAST

VVV MLASTNEW

VVV MLASTNEW

VN

VV MLAST

VV MLAST

V ∆VVLAST

∆VVLAST

∆
∆

= (7)

While only the follower uses force-torque feedback to control velocity,
both rovers monitor forces and torques. If either rover detects a sustained
force or torque larger above a threshold, failure is detected and the rover
stops driving. This quickly increases force and torque on the other (still
moving) robot past threshold, so that it also detects a failure and stops.
These thresholds are set based on empirical data. The maximum allowed
torque magnitude about the vertical axis is 4.0 N-m and the maximum
allowed lateral force magnitude is 44.6 N.

4. Experimental Results

4.1 Cooperative Transport with Adaptive Velocity

To demonstrate the team’s ability to remain in formation and keep arm
forces and torques within bounds, a series of tests were performed. For these
experiments, the rovers start in formation with the follower on the right.
Forces and torques minimized and the reference torques and forces are set to
the initial values. A drive or crab command is sent and behavior is observed.
Between repetitions of an experiment, the rovers are repositioned to reduce
forces and torques, but the reference force/torque is not reset; this
investigates ability to accommodate small initial offsets in formation. Force-
torque profiles with velocity control and fixed velocity are compared.

Table 1 and Table 2 summarize performance. The resulting mean and
standard deviation of the force or torque during nominal driving is reported
(from after initial reaction time to initiation of deceleration).

Precision Manipulation with Cooperative Robots 243

Table 1. Forward Drive Torques (N-m)

Distance Velocity Control Fixed Velocity, No Delay Fixed Velocity, Delay

300 cm

-0.04 ± 0.16
-0.05 ± 0.22
-0.04 ± 0.21
0.02 ± 0.20
-0.03 ± 0.20

-0.43 ± 0.25
-0.26 ± 0.43
-0.95 ± 0.43
-0.06 ± 0.69
-1.76 ± 0.79

-2.09 ± 1.02
-2.22 ±0.80

Failure
-2.03 ± 0.79
-2.30 ± 0.81

Table 2. Crab Drive Forces (N)
Distance Velocity Control Fixed Velocity, No Delay Fixed Velocity, Delay

80 cm
-3.76 ± 7.16
0.05 ± 5.38
-0.44 ± 4.59

3.91 ± 8.67
-1.48 ± 8.67
-5.54 ± 6.66

Failed
-14.04 ± 7.59
-7.30 ± 9.42

-80 cm
1.61 ± 6.15
-0.02 ± 3.93
-0.78 ± 4.45

-6.73 ± 12.38
6.98 ± 11.06
15.56 ± 9.86

5.27 ± 9.90
Failure

-3.56 ±9.34

Results show velocity control keeps forces and torques low (within
bounds) and with low variance despite initial offsets; fixed velocity shows
higher torques (approximately 19 times higher mean) with a high bias and
high variance. Fixed velocity may fail, particularly with start offsets, and
does fail or nears failure in nearly half of the crabbing experiments. Torque
profiles for drives with and without velocity control are compared in Figure
5. Torque remains near zero and has little variance while under adaptive
velocity control despite initial errors, while torque has large bias and large
variance without velocity control. By moving first, the follower can
immediately respond to any change in forces and torques.

0 10 20 30 40 50
--4

--2

0

2

4

Time (s)

Figure 5. Torque profiles of a 300 cm drive with velocity control and a delay (solid) and
without velocity control and no delay (dotted). Note high torques (near failure), large
variance, and large bias without control.

244 Stroupe, et al.

Crabbing demonstrates similar results (Figure 6((); velocity control keeps
forces near zero with low variance but fixed velocity nears failure and has
high variance.

0 5 10 15
50

0

50

Time (s)

Figure 6. Force profiles of an -80 cm crab with the follower on the right. Note high forces
and large variance without control (dotted) compared to velocity control (solid). Force
bounds shown dashed.

0 10 20 30 40 50
0

2

4

6

8

Figure 7. Velocity profile of a 300 cm drive with velocity control. Note that the velocity
slows to zero while the follower waits for the leader to catch up, then increases to nominal
and remains near nominal for the remainder.

Figure 7 provides a velocity profile for a 7 drive. The follower starts to
drive before the leader, leading to a torque. This drops the velocity near zero
until the leader begins to catch up. Then, the follower gradually increases
speed until the torque is minimized and velocity reaches nominal. Once at
nominal velocity, the velocity oscillates slightly compensating for small
changes in force due to slip and variation in leader velocity. A crab velocity
profile, with similar results, is shown in Figure 8.

Precision Manipulation with Cooperative Robots 245

Time (s)

0 5 10 15
0

5

110

Figure 8. Velocity profile of a -80 cm crab with velocity control. As for drive, the velocity
slows to zero while the follower waits for the leader to start moving away, then increases to

and remains near nominal until stopping.

No failures of formation occurred during cooperative transport
experiments. By using velocity control and ensuring the control begins
before forces and torques build up due to partner motion, the rigid formation
following is very robust and maintains safe forces on the manipulator arms.

4.2 Cooperative Alignment and Beam Placement

The goal of maintaining formation is to allow the team to successfully
and reliably perform the desired task: placement of the beam component into
the structure. To demonstrate the reliability of our approach, the team
repeated alignment and beam placement multiple times. Any failure was
recorded, including failures due to high arm forces or torques (formation
failure), failure to align accurately enough for proper beam placement
(alignment failure), and failure to place a beam properly due to an
unrecognized poor alignment by rover or arm (placement failure). The team
is positioned such that at least one rover can see the structure and is placed in
formation with minimal forces and torques at a variable relative angle to the
structure. Reference forces and torques are set to the initial condition.

Table 3 shows number of alignment attempts listed and number of
failures by type. The first series of experiments were run using a previous
alignment procedure that did not autonomously correct in the case of both
robots simultaneously losing sight of the structure, and coarse alignment
(only one robot seeing the structure) used a fixed angle rather than local
angle. In the second series, the described approach is used. A series of
photographs illustrating an alignment and placement is shown in Figure 9.
In this example, only SRR can initially see the structure, and the team

246 Stroupe, et al.

proceeds through coarse alignment crab, drive, and turn. After one iteration,
both rovers can see the structure and the team transitions to fine alignment.

Table 3. Team Alignment and Beam Placement Results

Number of
Alignments

Formation
Failures

Alignment
Failures

Placement
Failures

12 0 1 0
5 0 0 0

In the first set there was one failure due to both robots simultaneously
losing sight of the structure. No autonomous correction was implemented
and the operator corrected the error. There were no failures during the runs
of the improved alignment procedure, including a case in which both robots
lost sight of the structure and compensated. The iterative process allows
correction of errors and multiple checks for validating alignment, making the
cooperative transport and manipulation very robust.

Figure 9. Alignment example. Top left: Initially only SRR sees the structure. Top center:
After initial crab and drive based on SRR’s observations. Top right: Fine alignment in
progress after Ackermann turn based on both robots’ observations.. Bottom left: Final crab
to align for placement. Bottom center: Aligned for placement. Bottom right: Placing beam.

Precision Manipulation with Cooperative Robots 247

5. Conclusions and Future Work

The Robotic Construction Crew performs cooperative transport and
precision manipulation of long rigid beams in the context of a construction
task. To place these beams precisely into a structure, the team must align
accurately with the structure while remaining in formation. This process
iteratively aligns range, offset, and heading. To maintain formation during
transport, force-torque feedback is used to adjust velocity. RCC is robust to
variable initial conditions, changes in the amount and quality of information
available, synchronization errors and temporary communication loss, motion
errors due to slippage, and minor driving or arm kinematics errors.

In current and future work, we will refine velocity control for formation
following and investigate continual steering adjustments to compensate for
formation errors not in the direction of motion. Additionally, force-torque
feedback to maintain formations during turns will be included.

Acknowledgments

This work was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration. We thank Paul Schenker, Neville Marzwell and Eric
Baumgartner for supporting the RCC effort, and Matthew Robinson for
contributing to RCC development. We thank Brett Kennedy, Tony Ganino,
Mike Garrett, and Lee Magnone for platform support.

References

Balch, T., and Arkin, R. C. (1998). Behavior-based formation control for multirobot teams.
IEEE Transactions on Robotics and Automation, 14(6):926-939.

Borenstein, J. (2000). The Omnimate: A guidewire- and beacon-free AGV for highly
reconfigurable applications. International Journal of Production Research, 38(9):1993-
2010.

Brown, R. G. and Jennings, J. S. (1995) A pusher/steerer model for strongly cooperative
mobile robot manipulation. Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 3:562-568.

Carpin, S. and Parker, L. E. (2002). Cooperative leader following in a distributed multi-robot
system. Proceedings of IEEE Interernational Conference on Robotics and Automation,
3:2994-3001.

248 Stroupe, et al.

Desay, J. P., Kumar, V., and Ostrowski, P. Control of Change in Formation for a Team of
Mobile Robots. (1999). Proceedings of IEEE International Conference on Robotics and
Automation, 2:1556-1561.

Huntsberger, T. L., Trebi-Ollennu, A., Aghazarian, H., Schenker, P., Pirjanian, P. and Nayar,
H. D. (2004). Distributed Control of Multi-Robot Systems Engaged in Tightly Coupled
Tasks. Autonomous Robots, 17:79-92.

Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Nayar, H. D., Aghazarian, H., Ganino, A.,
Garrett, M., Joshi, S. S., and Schenker, P.S. (2003). CAMPOUT: A Control Architecture
for Tightly Coupled Coordination of Multi-Robot Systems for Planetary Surface
Exploration. IEEE Transactions Systems, Man & Cybernetics, Part A, 33(5): 550-559.

Mukaiyama, T., Kyunghwan, K., and Hori, Y. (1996). Implementation of cooperative
manipulation using decentralized robust position/force control. Proceedings of the 4th

International Workshop on Advanced Motion Control, 2:529-534.
NASA. (2004). Vision for Space Exploration.
Parker, L. E. (1994). ALLIANCE: an architecture for fault tolerant, cooperative control of tt

heterogeneous mobile robots. Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2:776-683.

Qingguo, L. and Payandeh, S. (2003). Multi-agent cooperative manipulation with
uncertainty: a neural net-based game theoretic approach. Proceedings of IEEE
International Conference on Robotics and Automation, 3:3607-3612.

Rus, D., Donald, B., and Jennings, J. (1995). Moving furniture with teams of autonomous
robots. Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1:235-242.

Stroupe, A., Huntsberger, T., Okon, A., Aghazarian, H., and Robinson, M. (2005). Behavior-
Based Multi-Robot Collaboration for Autonomous Construction Tasks. Submited to
IEEE International Conference on Robotics and Automation.

Trebi-Ollennu, A., Das, H., Aghazarian, H., Ganino, A., Pirjanian, P., Huntsberger, T., and
Schenker, P. (2002). Mars Rover Pair Cooperatively Transporting a Long Payload.
IEEE International Conference on Robotics and Automation.

VIII

POSTER SHORT PAPERS

A ROBUST MONTE-CARLO ALGORITHM
FOR MULTI-ROBOT LOCALIZATION

Vazha Amiranashvili
Computer Science V, RWTH Aachen
Ahornstr. 55, D-52056, Germany

vazha@i5.informatik.rwth-aachen.de

and Gerhard Lakemeyer
Computer Science V, RWTH Aachen
Ahornstr. 55, D-52056, Germany

gerhard@cs.rwth-aachen.de

Abstract This paper presents a new algorithm for the problem of multi-robot localization
in a known environment. The approach is based on the mutual refinement by
robots of their beliefs about the global poses, whenever they detect each other’s
paths. The robots try to detect the paths of other robots by comparing their
own perception sensor information to that “seen” by other robots. This way
the relative poses of the robots can be determined, which in turn enables the
exchange of the beliefs about the global poses.

Keywords: Multiple robots, Monte Carlo localization

1. Introduction

Over the last decade a number of very successful probabilistic algorithms
has been developed for the solution of the self-localization problem in the sin-
gle robot case (Fox et al., 1999b, Fox et al., 1999a, Nourbaksh et al., 1995, Sim-
mons and Koenig, 1997, Kaelbling et al., 1996, Burgard et al., 2000, Thrun
et al., 2001). All these algorithms estimate posterior distributions over the
robot’s poses given the sensor data acquired so far by the robot and certain
independence assumptions.

It is natural to try to extend the mentioned approaches to the multi-robot
case. Indeed, there is a number of works dealing with this problem (Howard
et al., 2002, Kurazume and Hirose, 2000, Roumeliotis and Bekey, 2000, Fox
et al., 2000). For example in (Roumeliotis and Bekey, 2000) the multi-robot
localization is solved by introducing one central Kalman filter for all robots.

251
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 251–256.
©c 2005 Springer. Printed in the Netherlands.

252 Amiranashvili and Lakemeyer

The method of (Fox et al., 2000) uses the information about the relative poses
of the robots to mutually refine the beliefs of the robots about the global poses.

In the approach introduced in this paper we try to solve the s.c. revisit-
ing problem (Fox et al., 2003) in order to determine the relative poses of the
robots. However in contrast to that work we deal with a global environment
(map) known to all robots.

2. Monte Carlo Localization

Monte Carlo localization (MCL) is a special case of probabilistic state esti-
mation, applied to robotic localization. We assume that robots have odometry
and perception sensors (wheel encoders and laser range finders in our case).
Our goal is to estimate the conditional probability distribution over all possible
poses of the robot given all the sensor data that the robot gathers up to the time
of the estimation. Let l = (x,y,θ) denote a robot location, where x, y and θ are
the Cartesian coordinates in the global coordinate system and the orientation
(with respect to the x-axis of this system) of a robot respectively. We seek to
estimate bel(l0:t) � p(l0:t |d0:dd t ,m) the belief that at time t the robot has made
the path l0:t and its current position is lt . Here d0:dd t = {a0:t−1,s1:t} is the set
of all odometry measurements a0:t−1 and perceptions of the environment s1:t ,
while for i < j xi: j � {xi,xi+1, ...,x j}, m is the map of the environment.

The MCL is an efficient way to compute bel(l0:t). It is based on the SIR
(sampling/importance resampling) algorithm (Rubin, 1998), which is a ver-
sion of “particle filters” (Doucet, 1998). It presents the belief function bel(l0:t)
by a set of weighted samples, or particles. Each particle is a tuple of the form

〈w, l0:t〉, where w � 0 and if there are N particles in a set,
N
∑

n=1
wn = 1. The

particles are then iteratively recomputed till they represent a sufficiently “nar-
row” distribution of robot poses (Fox et al., 1999a, Fox et al., 1999b, Thrun
et al., 2001). Here we assume that the map m is known. On the other hand, in
the SLAM problem the map is unknown and should itself be determined. Re-
cently, a Monte Carlo technique called Rao-Blackwellised particle filtering has
been applied for the solution of the SLAM problem (Doucet et al., 2000, Mon-
temerlo and Thrun, 2003). Here the map represents a function m̂(l0:t−1,s1:t−1)
and in our case m̂ places the laser range scans si at the locations li, 1 � i � t−1.
Later e make use of a simplified version of the mentioned SLAM algorithm to
solve the problem of tracking a robot’s local pose when the initial global pose
of the robot is unknown.

3. Multi-Robot Localization

Our approach to the multi-robot localization is based on determining the
relative poses of robots. We propose to compare the current perception data

A Robust Monte-Carlo Algorithm for Multi-Robot Localization 253

(laser scans) of one robot with the perception data acquired by another robot
while moving. If the data match with high probability then the first robot is
probably located on the path made by the second one.

The problem of matching perception data from different robots is a kind of
revisiting problem. A robot should decide, whether it is at a location previ-
ously visited by another robot. To realize the mentioned scenario we introduce
two functions F : S −→ P(S× S×N) and G : S× L −→ [0,1], S, L and S
are the sets of all possible laser range scans poses and sample sets over poses
respectively, N is the set of natural numbers and P denotes the power set.

Function G is defined as G(s,∆l) =
l′+∆l∫
l′−∆l

p(s|l,m)dl/
∫

p(s|l,m)dl, where ∆l is

a small interval in the space of robot poses and l′ = argmax
l∈L

{p(s|l,m)}. The

function returns the probability that a given scan s represents some limited area
[l′−∆l, l′+∆l] on the map (note that G is NOT a probability distribution). Intu-
itively G is a measure of “ambiguity” of a laser range scan s. Higher values of
G(s,∆l) indicate that s is less “ambiguous”, that is s can probably be observed
only within a small connected area in the map, while lower values mean that s
is probably observed at several unconnected areas.

F is a kind of global repository where robots can store information on their
own paths and retrieve that on the paths of other robots. Initially, F(s) = ∅

for all s ∈ S. As the robots start moving they estimate their local poses by
means of a simplified version of the Rao-Blackwellised particle filter algo-
rithm mentioned in Section II. The simplification here is that m̂(l0:t−1,s1:t−1) =
m̂(lt−1,st−1), i.e. we use only the most recent laser range scan as a map. If the
j-th robot estimates a sample set St representing its local pose and reads a laser
range scan st at time t then it sets F(st) = F(st)∪{(St ,st , j)}. In addition for
all (S′,s′,k) ∈ F(st) s.t. k �=�� j robot j first checks whether it should fuse its
belief about the global pose with that of robot k (this could be done e.g. by
comparing the entropies of both distributions) and whether the probability of
a false positive path match is low, i.e. 1−G(st ,∆l) < a, where ∆l and a are
some small (but not infinitely small) interval and threshold value respectively.
The latter condition checks whether the local beliefs St and S′ represent a same
small area. This condition can be easily extended to longer pieces of paths. We
call the latter condition “path matching of robot j with respect to robot k” for
further reference.

We learn the functions F and G in a way similar to (Thrun et al., 2001). First,
we randomly generate a sufficient number of poses in the map (one million in
our current implementation) and then by means of ray-tracing and sampling
from the perception model p(s|l,m) compute “noisy” scans corresponding to
the poses. Each scan is then transformed as mentioned above and a kd-tree
is built over the transformed scan vectors. Initially, we store at each leaf of

254 Amiranashvili and Lakemeyer

the tree the set of poses corresponding to the scan vectors making up the leaf.
Each scan is then transformed into a lower dimensional space using the Haar
wavelet transform (Jensen and la Cour-Harbo, 2001) and a kd-tree is built over
the transformed scan vectors.

Our algorithm for the multi-robot localization is summarized below. It is
easy to see, that the run-time complexity of the algorithm (after the mentioned
functions has been learned) is not significantly higher than that of single robot
approaches, because the path matching does not depend on the number of sam-
ples and is done very efficiently by looking up in a binary tree. The algorithm
is robust in the sense that in case of communication failure the robots just do
the single robot localization before they can communicate again, after which
they simply continue running the multi-robot algorithm.

Multi-MCL
1. for each robot i do
2. estimate the current global pose sample set Si by MCL;
3. estimate the current local pose sample set S′i

by the simplified Rao-Blackwellised particle filter algorithm;
4. F(si) = F(si)∪{(S′i,si, i)},

where si is the current laser range scan;
5. for each (S′j,s j, j) ∈ F(si), j �=�� i do
6. if path matching of robot i with respect to robot j

and j is localized better than i do
7. localize robot i in a small map defined by m̂((0,0,0),s j)

and compute sample set Si j representing
the relative pose of robot i with respect to robot j;

8. refine Si by setting Si = Si ∩S′′i ,
where S′′i is a sample set resulting from translating the
global pose samples of robot j by relative poses in Si j;

4. Experimental Results

We carried out a number of simulations to see how well the algorithm works
in practice. We used the robot simulation software of the Aachen RoboCup
team “AllemaniACs” (Ferrein et al., 2004). The software can produce noisy
odometry and laser scan data and therefore can very accurately simulate real
robots. We carried out several simulation runs for groups from 2 to 5 robots and
for each case computed the average time per robot required to globally localize
a robot both by the single-robot MCL and multi-robot MCL. The simulations
showed that the average localization time per robot is approximately linearly
reduced with an increased number of robots. This may be explained by the fact
that we let the robots start at locations distributed quite uniformly in the map

A Robust Monte-Carlo Algorithm for Multi-Robot Localization 255

and because the robots could determine their relative poses already at earlier
stages, they could use the considerable orthogonality in their perception data
to exclude false hypotheses (samples) faster.

5. Conclusion

We presented a new Monte Carlo localization algorithm for multi-robot sys-
tems. Our approach differs from existing ones in the field in that it does not
require the detection and identification of robots by each other for determining
their relative poses, which are used to mutually refine the posterior distrib-
utions over global poses of the robots. The simulations showed an average
reduction in the localization time linear in the number of robots.

References
Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W.,

and Thrun, S. (2000). Experiences with an interactive museum tour-guide robot. Artificial
Intelligence, 114(1-2).

Doucet, A. (1998). On sequential simulation-based methods for bayesian filtering. Technical
Report CUED/F-INFENGS/TR 310, Cambridge University, Department of Engineering,
Cambridge, UK.

Doucet, A., de Freitas, J., Murphy, K., and Russel, S. (2000). Rao-blackwellised particle fil-
tering for dynamic bayesian networks. Proc. of the Conference on Uncertainty in Artificial
Intelligence (UAI).

Ferrein, A., Fritz, C., and Lakemeyer, G. (2004). Allemaniacs 2004 team description.
http://robocup.rwth-aachen.de.

Fox, D., Burgard, W., Dellaert, F., and Thrun, S. (1999a). Monte carlo localization: Efficient po-
sition estimation for mobile robots. Proc. of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99).

Fox, D., Burgard, W., Kruppa, W., and Thrun, S. (2000). A probabilistic approach to collabora-
tive multi-robot localization. Autonomous Robotics, Special Issue on Heterogeneous Multi-
Robot Systems, 8(3):325–344.

Fox, D., Burgard, W., and Thrun, S. (1999b). Markov localization for mobile robots in dynamic
environments. Journal of Artificial Intelligence Research, (11):391–427.

Fox, D., Ko, J., Stewart, B., and Konolige, K. (2003). The revisiting problem in mobile robot
map building: A hierarchical bayesian approach. In Proc. of the Conference on Uncertainty
in Artificial Intelligence.

Howard, A., Mataric, M., and Sukhatme, G. (2002). Localization for mobile robot teams: A
distributed mle approach. In Proc.of the 8-th International Symposium in Experimental Ro-
botics (ISER’02).

Jensen, A. and la Cour-Harbo, A. (2001). Ripples in Mathematics: the Discrete Wavelet Trans-
form. Springer.

Kaelbling, L., Cassandra, A., and Kurien, J. (1996). Acting under uncertainty: Discrete bayesian
models for mobile robot navigation. In Proc. of the IEEE/RSJ Internatinal Conference on
Intelligent Robots and Systems (IROS).

Kurazume, R. and Hirose, S. (2000). An experimental study of a cooperative positioning system.
Autonomous Robots, 8(1):43–52.

256 Amiranashvili and Lakemeyer

Montemerlo, M. and Thrun, S. (2003). Simultaneous localization and mapping with unknown
data association using fastslam. Proc.of the IEEE International Conference on Robotics and
Automation (ICRA).

Nourbaksh, I., Powers, R., and Birchfield, S. (1995). Dervish an office-navigating robot. AI
Magazine, 16(2).

Roumeliotis, S. and Bekey, G. (2000). Collective localization: A distributed kalman filter ap-
proach. In Proc. of the IEEE International Conference on Robotics and Automation, 2:1800–
1087.

Rubin, D. B. (1998). Using sir algorithm to simulate posterior distributions. In Bernanrdo, M.,
van De Groot, K., Lindley, D., and Smith, A., editors, Bayesian Statistics 3. Oxford Univer-
sity Press, Oxford, UK.

Simmons, R. and Koenig, S. (1997). Probabilistic robot navigation in partially observable envi-
ronments. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI).

Thrun, S., Fox, D., Burgard, W., and Dellaert, F. (2001). Robust monte carlo localization for
mobile robots. Artificial Intelligence.

A DIALOGUE-BASED APPROACH TO
MULTI-ROBOT TEAM CONTROL

Nathanael Chambers, James Allen, Lucian Galescu, Hyuckchul Jung
Institute for Human and Machine Cognition
40 S. Alcaniz Street
Pensacola, FL 32502

{nchambers, jallen, lgalescu, hjung}@ihmc.us

Abstract This paper describes an approach to integrating a human into a team of robots
through a dialogue-based planning assistant. We describe how the Rochester
Interactive Planning System (TRIPS) is able to recognize and translate a user’s
intentions into collaborative problem solving acts. The user interacts naturally
through language and avoids complex machine interfaces as TRIPS manages the
appropriate lower level robotic commands and semantics. The system acts as a
mediator to the user, managing all coordination and agent communication for a
vast number of robots that would normally overwhelm a single user.

Keywords: agents, dialogue-based interaction, human-agent interface, mine search, multi-
robot control, teamwork

1. Introduction

This paper describes recent work attempting to naturally integrate a human
into a team of robotic agents. We describe the motivations for using a dialogue-
based planning system to assist in robot communication and management. The
system allows the user to interact with multiple robots through a single entity,
thus reducing the burden of communicating simultaneously with multiple ro-
bots.

Although we describe a scenario of a single human and multiple robotic
agents, much of this work may be extended to teams with varying numbers of
humans and agents. Controlling a team of robots is inherently more difficult
than single robot control: the human tries to manage multiple robots and to
efficiently communicate with them, and the robots try to determine how to
accomplish a global objective. As two or more robots attempt to communicate
with the human, there is often cognitive overload for the human. A system that
understands the human’s goals and assists in building plans is essential in a
framework that frees the user to work on higher level problems.

257
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 257–262.
©c 2005 Springer. Printed in the Netherlands.

258 Chambers, et al.

TRIPS acts as a mediator who collaborates with the human user to construct
plans that can achieve the user’s goals, communicating with the robots only
when necessary. Alerts, notifications, and queries coming from the robots must
go through the mediator who then presents them to the user through dialogue
and/or an appropriate graphical interface. The user is freed from monitoring
each robot, performing low-level system commands, and grasping difficult se-
mantics and communication languages that robots use. One of the most general
models of this interaction is an intent-driven, human-centered model based on
natural human-human dialogue.

An intent-driven approach to human-robot interaction is relatively new, hav-
ing been applied mainly to single software agent planners. We are abstracting
the general properties of such an approach and applying it to the new domain
of controlling and interacting with multiple agents (who may have plans of
their own).

2. Background

TRIPS is a mixed-initiative planning assistant that interacts with a single
user through dialogue and supplemental graphical interfaces. Its central com-
ponents are based on a domain independent representation of linguistic seman-
tics, illocutionary acts, and a collaborative problem-solving model. The system
is tailored to individual domains through a domain specific ontology mapper
that maps the independent into the specific domain’s semantics. The inter-
action between the core reasoning components drives the system in assisting
the user in planning and execution. Planning with the user involves creating
collaborative problem solving acts and maintaining the user’s goals, working
with him/her to accomplish their needs. Communication with robotic agents
is accomplished through a backend module that translates the user’s high level
intentions into low-level commands that robots can understand. Figure 1 gives
a brief description of the main modules. For a complete description of the
TRIPS architecture, see (Allen et al., 2001, Allen et al., 2002).

Our approach uses the KAoS (Bradshaw et al., 2004) environment for robot
communication and control. KAoS provides the physical communication frame-
work and a set of policy services that allow the user to adjust the capabilities
of agents by restricting their behavior, access to resources, and task initiative.

3. Mine Search Scenario

We have applied the TRIPS architecture to a mockup mine detection sce-
nario (using unmanned ground vehicles), an area of great concern to the Navy.
One solution to this difficult task is to deploy a (potentially large) number of
robots to quickly search and identify mines, allowing humans to then neutral-
ize them. The robots work with humans through mounted cameras to identify

A Dialogue-Based Approach to Multi-Robot Team Control 259

Interpretation Manager (IM) Coordinates the contextual interpretation of
utterances.

Behavioral Agent (BA) Maintains the collaborative problem solving
state between the user, system, and robots.

Generation Manager (GM) Realizes planned speech acts from the BA into
spoken utterances and/or GUI events.

Discourse Context Maintains discourse history to support refer-
ence and ellipsis. Identifies discourse acts,
obligations, and expectations.

Ontology Manager (OM) Maintains the domain independent logical
form (LF) and the domain specific languages
and provides a mapping between them.

SLIK Simple Logical Interface to KAoS. Pro-
vides mappings between collaborative prob-
lem solving acts and external agent commu-
nications.

Figure 1. Key modules in TRIPS for interacting with a team of robots

unknown objects. This is an excellent example of a mixed-initiative task and
requires coordination between robots and humans. The task also requires sur-
face robots to facilitate in communication from the ship to underwater robots
because of their extremely limited bandwidth. The robots need a significant
level of autonomy to act in the absence of human intervention. A sample of
our system interacting with the user can be seen in figure 2.

User: Find a clear lane through this area
<selects rectangular region on map>

TRIPS: ok
TRIPS: Alex Richard and Robert are available.

<highlights robots on the map>
Which do you want to use?

User: all three

Figure 2. A user’s interaction with TRIPS, initiating a team of robots to search an area for
mines.

4. Advantages of a Dialogue-Based Approach

We believe a model for an effective human-robot collaboration must include
a planning mediator that is able to interpret a dialogue-based interaction while

260 Chambers, et al.

SLIK

TRIPS

Interpretation
and

Planning

Low-level robot communication

GUI

Speech

multi-modal interface

Collaborative problem solving acts

Figure 3. Control flow between the user, TRIPS, and a team of robots.

hiding the user from lower-level robotic requirements. Figure 3 provides a
description of our model.

4.1 Dialogue-Based Multi-Modal

Experience with this system has shown that the user greatly benefits from
working with a single dialogue-based collaborative agent. As teams of agents
grow larger, the user has difficulty understanding who he is/should be talking
to. An assisting and planning collaborator reduces the complexity and allows
the user to place the burden on TRIPS. Direct human to agent communica-
tion can be done through speaking agent names (we used human names in this
scenario) or by selecting them on a GUI. In addition, the user can direct large
numbers of robots at once and speak of them as a group or a single entity. The
multi-modal aspect of TRIPS allows the user to speak in terms that are natural
to humans, and use GUIs for deictic reference.

Speak GUI action
’have this robot search a new leg’ <click robot icon on map>
’use these robots’ <highlight multiple robots on map>

4.2 A Planning Mediator

A significant problem in dealing with large teams of agents (or even mixed

A Dialogue-Based Approach to Multi-Robot Team Control 261

humans and agents) is that the agents don’t necessarily act as helpful collabo-
rators. They may perform complementary tasks with the human to solve a cer-
tain problem, but they don’t help the user formulate his own plan and method
of performing a task. The dialogue-based planning assistant serves as a help-
ful interface to robots, but it can also build and maintain plans collaboratively
with the user. This kind of assistant is not usually found in the other agents of
a team.

Secondly, the mine detection scenario makes it clear that the role of TRIPS
as a mediator in limiting how information is conveyed to the user is essential
to a manageable interface. While many research groups have implemented
proxies, it is important to create a mediator that not only has a representation
of the user’s desires, but also of the user’s problem-solving state in order to
effectively present and hide varying levels of information coming from the
external world.

4.3 Robot Communication

Robotic agents are often relatively primitive in their communication abil-
ities. They may be very sophisticated in regard to the task at hand, but the
communication barrier is a difficult one to overcome and is usually less of a
priority to robot developers. For these reasons, we use the Simple Logical In-
terface to KAoS (SLIK) to act as a gateway to KAoS, keeping the undesired
low level communication hidden from both TRIPS and the human user. SLIK
receives a set of collaborative problem-solving acts from the Behavioral Agent
in TRIPS and typically translates a query into an information command that is
sent to a robot (our robots, like most robots, are command driven and currently
understand OWL). The BA can send queries and receive answers from SLIK
as if the agents themselves understood them. Likewise, TRIPS receives input
from the robots as if they also communicate in higher level acts. This approach
of a single gateway is beneficial in that it can handle requests and commands
to teams of robots, not just a single one, in a high level semantic language.

5. Related Work

Most work involving one human and multiple robots use the human in a
supervisory role with an emphasis on GUIs (Blake et al., 2000, Jones et al.,
2002, Payne et al., 2000). Our approach differs in that the GUI modality is
used to supplement the interaction, not dominate it.

Several groups have developed proxies (Kortenkamp et al., 2002, Scerri
et al., 2003, Martin et al., 2003) for the human that help filter information
for the user by maintaining some sort of user model. The work by Martin et
al. is perhaps the most similar in that they use a global system planner with

262 Chambers, et al.

pre-defined plans for all the agents. Our approach contains a personal planner
driven by a model of the user’s intentions.

6. Conclusion

We have described a general approach for a dialogue-based mediator to as-
sist humans in communicating with non-human-centric robots. By understand-
ing the user’s intentions and the current problem solving state, this assistant can
reason about the status of multiple agents and lessen the cognitive load on the
user. We believe multi-modal mixed-initiative planning assistants like ours are
needed to achieve effective collaboration between a mixed team of humans and
agents.

Acknowledgments

We thank the KAoS group at IHMC for their support and helpful insight
into human-agent collaboration. This work was supported in part by ONR
grant N000140310780.

References
Allen, J., Blaylock, N., and Ferguson, G. (2002). A problem solving model for collaborative

agents. In Proceedings of AAMAS-02, Bologna, Italy.
Allen, J., Ferguson, G., and Stent, A. (2001). An architecture for more realistic conversational

systems. In Intelligent User Interfaces, pages 1–8.
Blake, M. A., Sorensen, G. A., Archibald, J. K., and Beard, R. W. (2000). Human-assisted

capture-the-flag in an urban environment. In IEEE Int. Conf. on Robotics and Automation.
Bradshaw, J. M., Jung, H., Kulkarni, S., Allen, J., Bunch, L., Chambers, N., Feltovich, P.,

Galescu, L., Jeffers, R., Johnson, M., Taysom, W., and Uszok, A. (2004). Toward trust-
worthy adjustable autonomy and mixed-initiative interaction in kaos. In Proceedings of the
AAMAS Workshop on Trust in Agent Societies.

Jones, H. L., Rock, S. M., Burns, D., and Morris, S. (2002). Autonomous robots in swat appli-
cations: Research, design, and operations challenges. In Proceedings of the 2002 Symposium
for AUVSI, Orlando, USA.

Kortenkamp, D., Schreckenghost, D., and Martin, C. (2002). User interaction with multi-robot
systems. In Workshop on Multi-Robot Systems.

Martin, C., Schreckenghost, D., Bonasso, P., Kortenkamp, D., Milam, T., and Thronesbery, C.
(2003). Aiding collaboration among humans and complex software agents. In AAAI Spring
Symposium on Human Interaction with Autonomous Systems in Complex Environments.

Payne, T., Sycara, K., Lewis, M., Lenox, T., and Hahn, S. (2000). Varying the user interaction
within multi-agent systems. Autonomous Agents.

Scerri, P., Pynadath, D. V., Johnson, L., Rosenbloom, P., Schurr, N., Si, M., and Tambe, M.
(2003). A prototype infrastructure for distributed robot-agent-person teams. In Proceedings
of AAMAS-03.

HYBRID FREE-SPACE OPTICS/RADIO
FREQUENCY (FSO/RF) NETWORKS
FOR MOBILE ROBOT TEAMS

Jason Derenick, Christopher Thorne, and John Spletzer

Lehigh University
Bethlehem, PA USA

spletzer@cse.lehigh.edu

Abstract In this paper, we introduce a hybrid free-space optics/radio frequency (FSO/RF)
networking paradigm for mobile robot teams. We believe that such a model
will emerge as a consequence of inherent limitations of RF based approaches.
FSO technology has the potential to provide tremendous increases in per-node
throughput for a mobile ad-hoc network (MANET). To motivate this paradigm,
we first provide a brief background on FSO and discuss potential applications
where its capabilities could be well leveraged. We then provide initial experi-
mental results from autonomous deployments of a hybrid FSO/RF MANET with
real-time video data routed across both optical and RF links.

Keywords: Free-space optics, FSO, MANET

1. Introduction

Over the past decade, mobile robotics research has yielded significant im-
provements in sensing and control algorithms, enabling levels of autonomy and
robustness never before realized ((Fox et al., 2000), (Dissanayake et al., 2001)).
These advances were driven in part by the maturation of the underlying tech-
nologies: the unimpeded progression of Moore’s law, improvements in sensor
and actuator technology, and the advent of wireless network communication.

Additional improvements in embedded devices and micro MEMS technol-
ogy have enabled a second related technology: wireless sensor networks (WSN).
In a WSN, each sensor node is capable of sensing its environment, and col-
lecting/processing data ((Nemeroff et al., 2001)). Ideally, the WSN is fully
connected. Each node has a minimum connectivity degree of three or four,
allowing for direct positions estimates. Node connectivity is associative, and
bandwidth constraints are insignificant compared to available computational

263
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 263–268.
©c 2005 Springer. Printed in the Netherlands.

264 Derenick, et al.

resources. When such idealisms fail to hold, the WSN is congested, discon-
nected, and incapable of localizing itself in the environment.

The ability to alleviate many weaknesses in static WSNs by introducing mo-
bility has lead to the fusion of mobile robotics and WSN technologies, and the
formation of Mobile Ad-hoc Networks (MANETs). Mobile WSN can achieve
otherwise unobtainable levels of robustness and performance ((Grossglauer
and Tse, 2001)). However, MANETs are still bound by the provable limits in
per-node throughput for radio frequency (RF) based communications ((Gupta
and Kumar, 2000)). We predict that these limitations will lead to the emergence
of hybrid free-space optics/radio frequency (FSO/RF) MANETs. While both
technologies possess significant limitations, FSO and RF are complementary
and have the potential to mitigate each other’s weaknesses.

2. Background and Related Work

2.1 Free Space Optics (FSO): A Brief Overview

FSO is a commercial technology used primarily in static configurations
for high bandwidth, wireless communication links ((Willebrand and Ghuman,
2002)). Degradations in FSO link performance from extreme atmospheric
conditions (e.g., heavy fog, smoke, etc.) lead to the development of hybrid
FSO/RF networks. This was motivated by the need to preserve carrier class
link availability (99.999%). In this paradigm, the RF link serves as a low-
bandwidth backup to the primary optical link

In FSO, an optical transceiver is placed on each side of a transmission path
to establish the network link. The transmitter is typically an infrared (IR) laser
or LED which emits a modulated IR signal. This is captured by the receiver
at the remote link side. FSO links can be full duplex, meaning that they can
transmit and receive data simultaneously.

Several transmitter/receiver link configurations are possible: directed, dif-
fuse, and hybrid (see Figure 1. The former offer the greatest link ranges, and
are used for “last mile” commercial network links ((Barry, 1994)). Diffuse
models are often used in “secure” wireless LANs, as unlike their RF counter-
parts communications can be readily be constrained to a single room. How-
ever, diffusing the transmitted signal significantly reduces transmission ranges
(to tens of meters).

2.2 Motivation

FSO offers several advantages over RF based technologies. The most signif-
icant of these is extremely high throughput across long link distances. Wide-
spread RF technologies (e.g., 802.11x) are limited to link throughputs on the
order of 10s of Mbps. Even much anticipated ultra wideband (UWB) technol-

Hybrid FSO/RF Networks for Mobile Robot Teams 265

Figure 1. FSO link geometries: directed transmitter/receiver pair (left), diffuse transmit-
ter/receivers (center), and hybrid directed transmitter with diffuse receiver (right).

ogy - with theoretical throughput of 100s Mbps - drops to levels lower than
802.11a at modest ranges (r ≥ 15m) ((Wilson, 2002)). In contrast, FSO offers
throughputs of several Gbps in currently fielded systems with link distances of
a kilometer or more. Fig. 2 highlights the range vs. throughput characteris-
tics of these three mediums. It should be noted that the achievable FSO link
distance will be a function of atmospheric conditions. Those reported here are
based upon a signal attenuation of 17 dB/km. This corresponds to extremely
heavy rainfall (10 cm/hour) or light fog conditions.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

Range (m)

T
hr

ou
gh

pu
t (

M
bp

s)

FSO/UWB/Wi−Fi Throughput vs. Range

FSO

UWB

802.11a

Figure 2. Throughput vs. range for FSO, UWB, and 802.11a technologies. Commercially
available FSO transceivers can maintain gigabit+ throughput at distances of 1 km or greater.
(Sources: Intel R&D and Canon Canonbeam DT-130).

However, in the realm of mobile networking it has lost in the mainstream
computing market to RF technology. This can be attributed to one reason: the
requirement for optical links to maintain line-of-sight (LOS). As such, FSO
cannot replace RF wireless communications. Instead, the two technologies will
serve in complementary modes in a hybrid FSO/RF network. For example, a
MANET so equipped could prove invaluable for disaster relief - when some

ture. In such an application, a team of robots could automatically deploy and
natural or man-made event (e.g., an earthquake) destroys critical infrastruc-

266 Derenick, et al.

provide carrier grade patches to a Metropolitan Area Network (MAN). This
could even be accomplished under conditions unsafe for human operators.

Other potential advantages of FSO enabled MANETs include improved
node localization. An FSO link constrains the positions of link ends through
relative bearings. These provide significantly stronger constraints on node po-
sitions than traditional range measurements alone ((Chintalapudi et al., 2004)).
FSO also offers low per-bit transmission cost. The directed nature makes it in-
herently secure, the transmission provides no RF signature, and is also immune
to jamming and electromagnetic interference ((Barry, 1994)).

3. Initial Experimental Results with a
FSO/RF MANET

To demonstrate the feasibility of approach, a series of experiments was con-
ducted using “Gollum” and “Balrog” - our in-house mobile robot research plat-
forms (Fig. 3). Each was equipped with a LaserWire 100 Mbps optical head,
alongside a traditional 802.11 based transceiver.

Figure 3. Mobile research platforms equipped with 100 Mbps FSO and 802.11g RF trans-
ceivers. “Balrog” (right) also employs an 18x pan-tilt-zoom (PTZ) system for locating link
partners at ranges up to 100 meters.

In our preliminary experiments, the objective was to deploy and instantiate a
FSO/RF network. The operational scenario is illustrated in Fig. 4, the premise
of which is a remote surveillance task. In the initial configuration, the two mo-
bile platforms were co-located at the far west (left) side of Packard Laboratory.
Upon orders from the Command Center (CC), Balrog autonomously deployed
to the far east (right) side of the building, traversing a distance of approxi-
mately 45 meters. It’s task was to transmit local video data from an area of
interest (the surveillance zone) back to the CC. The subsequent separation dis-
tances between the nodes was such that: 1) No RF link existed between Balrog
and the CC, 2) The RF link between Gollum and Balrog provided insufficient
throughput for the video stream. These facts necessitated the establishment
of an optical link between the two mobile nodes. Thus, in addition to acting
as a physical link between the RF and FSO networks, Gollum also had to be

Hybrid FSO/RF Networks for Mobile Robot Teams 267

capable of forwarding packets between the networks over the correct network
interface. This is a routing domain problem that was rectified by configuring
Gollum with a packet forwarding (routing) table. A total of 10 deployments

Figure 4. Deployment of a FSO/RF MANET. On orders from the Command Center (CC)
(upper left), Balrog deploys to west (right) side of Packard Lab. After establishing the FSO link
with Gollum, surveillance video is routed back to the CC over both FSO and RF links.

were conducted. In each, the robots were successful in deploying and instanti-
ating the hybrid network, and routing surveillance video back to the command
center. A sample trial is illustrated in Figure 5. More detailed project informa-

Figure 5. Local surveillance video captured by Balrog (left) and the remote real-time video
as viewed at the Command Center

tion can be obtained at http://www.cse.lehigh.edu/ jcd6/fso/.//

4. Conclusions and Future Work

In this paper, we introduced a hybrid FSO/RF network paradigm for mobile
robot teams. Our primary motivation is the tremendous throughput provided
by FSO over long link distances. However, the technology also offers the
potential for improved localization performance, low power consumption, and
secure/robust transmissions.

268 Derenick, et al.

To demonstrate the feasibility of this model, preliminary experiments were
conducted whereby a FSO/RF MANET was deployed and FSO/RF links es-
tablished dynamically. Our future work includes the development of a hier-
archical vision/FSO based link acquisition system (LAS), and adaptive beam
divergence to support mobile operations

References
Barry, J. (1994). Wireless Infrared Communications. Kluwer Academic Publishers.
Chintalapudi, K., Dhariwal, A., Govindan, R., and Sukhatme, G. (2004). Ad-hoc localization

using ranging and sectoring. In IEEE INFOCOM.
Dissanayake, G., Newman, P., Durrant-Whyte, H., and Csorba, M. (2001). A solution to the

simultaneous localization and map building. IEEE Transactions on Robotics and Autonoma-
tion, 17(3):229–241.

Fox, D., Burgard, W., Kruppa, H., and Thrun, S. (2000). A probablistic approach to collaborative
multi-robot localization. Autonomous Robots: Special Issue on Heterogeneous Multi-Robot
Systems, 8(3):325–344.

Grossglauer, M. and Tse, D. (2001). Mobility increases the capacity of ad-hoc wireless net-
works. In IEEE INFOCOM.

Gupta, P. and Kumar, P. (2000). The capacity of wireless networks. IEEE Transactions on In-
formation Theory.

Nemeroff, J., Garcia, L., Hampel, D., and DiPierro, S. (2001). Application of sensor network
communications. In IEEE MILCOM.

Willebrand, H. and Ghuman, B. (2002). Free Space Optics: Enabling Optical Connectivity in
Today’s Networks. Sams Publishing.

Wilson, J. (2002). Ultra-wideband / a disruptive rf technology? Technical report, Intel Research
and Development.

SWARMING UAVS BEHAVIOR HIERARCHY

Kuo-Chi Lin
University of Central Florida
3280 Progress Drive
Orlando, FL 32826, U.S.A
klin@pegasus.cc.ucf.edu

Abstract: This paper uses a behavioral hierarchy approach to reduce the mission solution
space and make the mission design easier. A UAV behavioral hierarchy is
suggested. A collection of lower level swarming behaviors can be designed
under this hierarchy. Mission design can be simplified by picking the right
combination of those swarming behaviors.

Keywords: Swarming, UAV, Multiple Agents

1. Introduction

The use of Unmanned Aerial Vehicles (UAVs) in the battlefield has
gained more and more attentions. The current operation takes a team of
human operators to control one UAV remotely. This approach becomes
impractical if a large number of UAVs is used in the same battlefield. Not
only more human operators are needed, but also the collaboration among
human teams is a difficult issue. Another problem to consider is the cost.
To deploy a group of very intelligent and multi-functional UAVs can be very
expensive.

What are the alternatives? Besides the multi-functional, fully
autonomous, highly intelligent (and therefore expensive) UAVs, at the other
end of the spectrum, the single-function, limited-intelligence low-cost ones
are also surprisingly useful. This idea is inspired by the social insects such
as ants (Bonabeau, E., et al, 1999, Lin, K. C., 2001). One ant, by itself, is
powerless; but hundreds of them working together can accomplish difficult
tasks. Some advantages of using a swarm of low-end UAVs are obvious:
they are cheaper and easier to build. Another more important feature is that

269
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 269–275.
©c 2005 Springer. Printed in the Netherlands.

270 Lin

a mission carried out by them is more robust since the loss of a few robots
due to malfunctions or damages (from enemies) may not jeopardize the
mission. However, because of the limited capability of the low-end robots,
how to make them work together remains a difficult challenge. After all,
scientists have not fully understood how ants work as a large team.

The author suggests an approach that uses the combination of the lower
level behaviors to achieve the higher level objectives. To use this approach,
the first thing needed is a hierarchy of the swarming UAVs behaviors. The
author suggests the following hierarchy:

High-level behaviors (e.g., strategic maneuvers, resources distribution)
Tactical-level behaviors (e.g., reconnaissance, surveillance (Lin, K. C.,
2001), suppression)
Swarming
Individual behaviors (e.g., avoidance, tracking, homing, following)
This paper will focus on the swarming behaviors.

2. Swarming UAV Model

The definition of “swarm”, according to Clough (Clough, B., 2002), is

“A collection of autonomous individuals relying on local sensing and
reactive behaviors interacting such that a global behavior emerges from
the interactions”.

This definition makes distinguishes between a swarm and a team. Teams
are deliberate behaviors – each member has a role to accomplish, knows
what that is, knows what the other member’s roles are, and knows how they
relate as the task is accomplished. They have a plan. For a swarm, however,
the global behaviors emerge from the collection of individual behaviors,
which are local and reactive.

Figure 1 compares these two concepts. A team of nine UAVs start with a
diamond formation. When they encounter an obstacle, each member
maneuvers around it. Afterwards, the team returns to its original formation
(Figure 1(a)). But for a swarm, each member only tries to stay close as a
swarm (Figure 1(b)). Those two examples may be simplistic, but can show
the idea.

The advantages of using a swarm over a team are
Robustness. The loss of a few UAVs due to malfunctions or damages by
the enemies may not jeopardize the mission;
Cost-effectiveness. A swarm of “dumb” UAVs can do more things than
one “very smart” UAV yet cost less;
Scalability. The missions are easier to scale up or down.

Swarming UAVS Behavior Hierarchy 271

From the definition, the UAV swarm is modeled as:
The UAV swarm is homogeneous except for a few specialists, if deeded;
Each UAV only responds to local situations or threats based on the
sensory inputs.
The UAVs are controlled by a set of behavioral rules.
Human controllers, either centralized or distributed, intervene only when
necessary.
In the model, each UAV is reactive according to the behavioral rules.

The question is how to design the rules so that these local reactive motions
can emerge the global behaviors of the swarm that can accomplish the
mission. Because of the complexity of the UAV interactions in the swarm,
the solution space may be too large to search.

Figure 1. Comparision between a team and a swarm.

3. Mission Design

The approach used in the paper is based on the following propositions. If
each UAV’s low-level behaviors are properly designed, the swarm can
exhibit proper collective low-level behaviors. The higher-level, for example,
the tactical-level, behaviors of the swarm can be the proper combination of
sequences of low-level behaviors.

Based on the propositions, the design procedure is given by:
Choose the higher-level behaviors needed for the mission;
Combine the necessary low-level behaviors to form those higher-level
behaviors;

(b) Swarm: staying close but no formation

272 Lin

Design the controls of individual UAV to have the proper low-level
behaviors;
Close the loop for the optimization.
It can be seen from this procedure, the solution space is narrowed down

to the individual UAV’s low-level behaviors.

4. Swarming Behavioral Hierarchy

The author suggests a behavioral hierarchy as shown in Figure 2. In the
boxes, the upper parts are the names of the behaviors and the lower parts are
the individual behaviors which are common to this behavior and the levels
below it. In other words, the behaviors in the lower level inherit the
common individual behaviors from their ancestors. Each behavior is
represented by its own name and its ancestors, separated by “dashes”. For
example, the behavior with a thicker box in Figure 2 is “Homing-Grouping-
Swarming”. To exhibit this behavior, all UAVs must have at least threet
individual behaviors, namely, Collision_Avoidance, Stay_Close, and
Target_Track.

Figure 2. UAV swarming behaviors hierarchy.

To substantiate those collective behaviors, each UAV is controlled by a
set of behavioral rules, such as Collision_Avoidance, Stay_Close, and
Target_Track in the above example. Each rule is assigned a priority. A high
priority rule overwrites the lower priority rules. By assigning priorities
differently, the collective behaviors will be different. Also, there are
parameters associated with the rules. For example, the Stay_Close rule has a
radius associate with it. Therefore, each behavior can have many
substantiated behaviors. In the mission design stage, the optimal

Swarming

Collision_Avoidance

Grouping

Stay _Close

Homing

Target_Track

Dispersing

Staya _Away

Trekking

Path_Follow

Wondering

Boundaryrr /Obstacle_Avoidance

Following

Leader_Follow

Individual-Level-Behavaa iors Individual-Level-Behaviors

Swarming UAVS Behavior Hierarchy 273

combinations of behaviors with the parameters associated with them are
chosen.

5. Example Behaviors

The behaviors of Wondering-Grouping-Swarming are used as examples.
The scenario is when the swarm is approaching a boundary. Figure 3(a)
shows the simulation result of the swarming behavior #1: each UAV has
three individual behaviors with priorities from high to low:
Collision_Avoidance, Boundary_Avoidance, and Stay_Close. The broken
line represents the line that the UAVs detect the boundary, which is
represented by the solid line. As shown in the figure, some UAVs go out of
boundary to avoid other UAVs. If staying inside the boundary is very
important, the Boundary_Avoidance individual behavior can be assigned the
highest priority. Figure 3(b) shows the simulation result (behavior #2).
Most UAVs have stayed inbound all the time. The tradeoff is that the
probability of collisions among UAVs may be higher.

(a) (b)

Figure 3. Wondering-Grouping-Swarming behaviors.

6. Example Mission

Figure 4 shows an example mission. A swarm of UAVs leave from the
left-side starting point to survey the rectangular area on the right, with an
area to avoid and a boundary to stay within. When the swarm first leaves the

0 50 100 150 200

300

350

400

450

500

22 33
44

55
66

77
88

99 11

33

5555
66

77

99

-50 0 50 100 150 200

300

350

400

450

500

44
55 777777

9999

111122222221111112
333333

444444

66

7777

274 Lin

starting point, Homing-Group-Swarm is used to move toward the target area.
When the area to avoid is detected, Wondering-Group-Swarming with
emphasis on obstacle_avoidance is used to avoid the area. Right after that,
the upper boundary is detected; Wondering-Grouping-Swarming with
emphasis on boundary_avoidance is used. After turning back from the
boundary, Homing-Grouping-Swarming is used to move toward the target
area. After entering the area to survey, Disperse-Swarming is used to spread
the UAVs out and survey the area. In this behavior, each UAV has the
individual behaviors of Obstacle_Avoidance and Boundary_Avoidance to
stay in the area to survey.

Figure 4. Surveillance mission.

7. Conclusion

This research has demonstrated that using the behavioral hierarchy, the
solution space can be reduced to make the mission design easier. A
collection of lower level swarming behaviors can be designed under this
hierarchy. Each behavior can have a number of variable parameters
associated with it. Mission design can be simplified by picking the right
combination of those swarming behaviors with the proper parameters.

Acknowledgements

This research is partially sponsored by National Science Foundation and
Air Force Research Laboratory.

Area to survey
Area to
avoid

Start

Homing.Group.Swarming1 Wondering.Group.Swarming2 Disperse.Swarming3

1

2

2
1 3

Boundary to stay within

Swarming UAVS Behavior Hierarchy 275

References

Bonabeau, E., et al, (1999) “Swarm Intelligence: from natural to artificial systems”, Oxford
University Press, 1999.

Clough, B., (2002) “UAV Swarming? So What are Those Swarms, What are the Implications,
and How Do We Handle Them?” Proceedings of the AUVSI Unmanned Systems
Symposium, July 2002, Orlando, FL.

Lin, K. C., (2001) “Controlling a Swarm of UCAVs~A Genetic Algorithm Approach”, Final
Report for VFRP, Information Directorate, AFRL, 2001.

THE GNATS –
LOW-COST EMBEDDED NETWORKS
FOR SUPPORTING MOBILE ROBOTS

Keith J. O’Hara, Daniel B. Walker, and Tucker R. Balch
The BORG Lab
Georgia Institute of Technology
Atlanta, GA

{kjohara, danielbw, tucker}@cc.gatech.edu

Abstract We provide an overview of the GNATs project. This project is aimed at using
tens to thousands of inexpensive networked devices embedded in the environ-
ment to support mobile robot applications. We provide motivation for building
these types of systems, introduce a development platform we have developed,
review some of our and others’ previous work on using embedded networks to
support robots, and outline directions for this line of research.

Keywords: Pervasive Computing, Sensor Networks, Multi-Robot Systems

1. Introduction

Pervasive networks of computing, communicating, and sensing devices will
be embedded in future environments. These devices will include the likes of
RFIDs, active badges, and sensor networks. For the most part, these devices are
framed in the context of enabling and supporting human activities. We posit
that these networks can also support robot systems, and particularly, mobile
robot systems. In fact, we believe these networks will be so useful for mobile
robots, that even when this infrastructure is not already available (e.g. space
exploration) robots should expend the resources to deploy them as an early part
of the mission.

Embedded networks can aid robots in completing their tasks, primarily by
providing communication and coordination services, and possibly computation
and sensing services. We feel this heterogeneous system of embedded devices
and mobile robots puts a natural constraint on the design space of multi-robot
systems. The embedded network serves as a pervasive communication, com-
putation, and coordination fabric, while the mobile robots provide sensing and
actuation.

277
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 277–282.
©c 2005 Springer. Printed in the Netherlands.

278 O’Hara, et al.

Additionally, not only can pervasive networks support mobile robots, they
can also be supported by mobile robots. The tedious tasks of deployment
and maintenance of a thousand node network is a perfect application of au-
tonomous robot technology.

One possible criticism of using embedded networks to support mobile ro-
bots is that of “engineering the environment”. Roboticists have worked tire-
lessly to make robots truly autonomous, often meaning the robots act intelli-
gently in unknown and unpredictable environments. By creating infrastructure
to support mobile robots, it may seem as though we are sidestepping this aspect
of autonomy. We believe that almost all natural autonomous creatures build
and use artifacts to support them in their daily tasks. As examples, ants lay
pheromone trails and humans create traffic light systems. We feel that mobile
robots can do the same. And if we must use the term “engineer the environ-
ment” – rather than the roboticist engineering the environment, we do believe
it is useful for the robots to engineer the environment. The robots and the em-
bedded network should have a symbiotic relationship by supporting each other,
often in an autonomous manner.

In previous simulation work we investigated the use of embedded networks
to facilitate mobile robot activities (O’Hara and Balch, 2004b). We have im-
plemented a hardware platform to realize these types of applications. The plat-
form, the GNATs1, are low cost devices, allowing us to build a large number
of them, and are highly configurable. The GNATs are intended to be used as a
massively parallel system for computation, communication, and coordination
in supporting mobile robots. The simplicity of the GNATs due to their spe-
cialization for mobile robot applications allows us to build them for a price an
order of magnitude less than the Motes. This allows us to experiment with very
large-scale systems.

2. The Hardware Platform

We have implemented a hardware platform, called the GNATs, for building
embedded networks to support mobile robots. The hardware design choices
were made explicitly to enable them to support mobile robots. The GNATs
consist of four infrared (IR) emitters, four IR receivers, two visible light LEDs,
a button, a Microchip PIC16F87 microcontroller, and a 3V battery. The plat-
form is pictured in Figure 1. The simplicity of the platform makes it very
inexpensive, allowing us to build, and experiment with, a large number of de-
vices.

Using infrared as the communication medium has multiple advantages and
some disadvantages. Infrared is short-range and line-of-sight, these character-
istics make is useful for storing environmentally sensitive information, often
the most useful to mobile robots. Because environmental information is often

The GNATs 279

Figure 1. Two GNATs

local, we need a communication medium that respects this and keeps the infor-
mation in context. This was the idea behind using infrared communication for
“World-Embedded Computation” (Payton et al., 2001). Also, infrared is less
power hungry than radio.

One disadvantage of infrared, as compared to radio, is its sensitivity to am-
bient, interfering, light sources. Many fluorescent lights (like the variety in
our lab!) radiate infrared light that interferes with the infrared communication.
Another disadvantage of infrared, as compared to radio, is its low data-rate.
In general this is an disadvantage of infrared, but we don’t feel this really im-
pacts our applications since we don’t imagine the network needing very high
data-rates.

The GNATs can dynamically change their program code, their processor
frequency, their communication output power and directionality, and turn off
large parts of their circuitry when not in use for power-saving purposes. The
GNATs also have a variety of sleep modes resulting in very long lifetimes.
During these sleep-modes the GNATs can be configured to wake-up on timer
or input (infrared activity, button) events.

Each device is less than $30 to build, enabling large-scale experimentation.
The emitters’ output power can be controlled with software allowing commu-
nication ranges of 1-5 meters. Also, the emitters can be individually addressed
when sending messages, allowing the device to send messages in any combi-
nation of directions. Finally, the devices can write to their program memory
permitting us to change the software on the devices on the fly, by a PC, or
possibly a robot or other GNATs. The programming port can also be used for
RS-232 serial communication. Using serial communication, one of the GNATs
can be used as a communication device for a mobile robot. The mobile robot
can carry a GNAT onboard to interact with other GNATs embedded throughout
the environment.

280 O’Hara, et al.

3. Supporting Mobile Robots

Although, not explicitly directed at embedded networks, Parunak developed
a technique for coordinating multiple unmanned air vehicles (UAVs) using syn-
thetic pheromones and a multi-agent system (Parunak et al., 2002a, Parunak
et al., 2002b). Inspired by pheromone communication in insects, they create
potential fields for guiding the UAVs around threats to goal locations in a dis-
tributed manner. The technique they developed used uniformly placed (tiled as
hexagons) “place” agents to store the pheromone and evaporate it over time,
and “walker” agents to spread and react to the pheromone. The walker agents
consisted of the UAV agents which physically move over the place agents and
“ghost” agents which walk over the place agents virtually. The “place” agents
could be implemented in the real world by using some kind of embedded net-
work.

Several robotics researchers have proposed using embedded networks to
support mobile robot applications. Both Batalin and Sukhatme (Batalin et al.,
2004) and Li et al.(Li et al., 2003) have developed approaches to navigation
using heterogeneous teams composed of mobile nodes and an embedded net-
work. The network of embedded nodes, creates a “Navigation field” (Batalin
and Sukhatme, 2003b), which mobile nodes can use to find the their way
around. They differ in how they compute this navigation field. Batalin and
Sukhatme use Distributed Value Iteration (Batalin and Sukhatme, 2003b). In
their approach, the embedded nodes use estimated transition probabilities be-
tween nodes to compute the best direction to suggest to a mobile robot for
moving between a start and goal node. These transition probabilities are es-
tablished during deployment and both the robots and sensor nodes have syn-
chronized direction sensors (e.g. digital compass). In addition to navigation,
Batalin and Sukhatme have applied their technique to the multi-robot task al-
location problem (Batalin and Sukhatme, 2003b).

Li et al. are able to generate an artificial potential field for navigation based
on the obstacles and goals sensed by the network (Li et al., 2003). This po-
tential field is guaranteed to deliver the mobile node to the goal location via an
danger-free (obstacle-free) path. The field is created by the embedded nodes
propagating goal-ness or danger to neighboring nodes. Both Batalin and Li
used the Motes hardware platform for their physical experimentation.

In previous simulation studies we showed an embedded network supported
effective cooperative multi-robot foraging by coordinating coverage patterns
and by providing nearly optimal path planning without the network nodes hav-
ing global knowledge or localization capabilities (O’Hara and Balch, 2004b).
The embedded network created navigation networks for guiding mobile robots
in various tasks such as coverage, recruitment, and path planning. Quantita-

The GNATs 281

tive results illustrated the sensitivity of the approach to different network sizes,
environmental complexities, and deployment configuration.

In addition, in previous work we developed and analyzed two different tech-
niques for distributed path planning when the environment is dynamic (O’Hara
and Balch, 2004a). One used global monitoring and the other focused commu-
nication. Both techniques were able to repair the plan when the environment
changed and provided paths for a mobile robot to reach a goal. The first tech-
nique was able to respond to changes in the environment very quickly but did
this at high communication cost. The second approach was able to respond to
changes in the environment at the same speed, but with far fewer messages be-
cause it concentrated the messages along the path on which the robot currently
resided.

A network of embedded nodes can also aid robots in coverage. Koenig
(Koenig et al., 2001) and Wagner (Wagner et al., 1999) devise methods for do-
ing parallel coverage using simple ant robots that communicate indirectly by
leaving indicators in the environment. An embedded device can be used as this
type of inexpensive indicator with the added advantage that they can commu-
nicate with each other. Batalin also uses communication nodes as “markers”
in aiding mobile robots in the exploration problem (Batalin and Sukhatme,
2003a). The embedded nodes offer a suggested un-explored direction for the
mobile robots to follow.

Mobile robots have also been used to support embedded networks. Lamarca
et al. use mobile robots to continually calibrate a sensor network (LaMarca
et al., 2002). Rahimi et al. present an approach for power harvesting in sensor
networks by exploiting mobility (Rahimi et al., 2003). Corke et al. use a
UAV to deploy and maintain the connectivity of a sensor network (Corke et al.,
2004).

Acknowledgments

We would like thank our collaborators on the GNATs project, Victor Bigio,
Eric Dodson, and Arya Irani. Also, we would like to acknowledge the National
Science Foundation for funding under award #0326396.

Notes

1. Georgia Tech Network/Node(s) for Autonomous Tasks

References
Batalin, M. and Sukhatme, G. (2003a). Coverage, exploration and deployment by a mobile robot

and communication network. Telecommunication Systems Journal, Special Issue on Wireless
Sensor Networks.

282 O’Hara, et al.

Batalin, M. and Sukhatme, G. (2003b). Sensor network-based multi-robot task allocation. Pro-
ceedings of International Conference on Intelligent Robots and Systems (IROS 2003).

Batalin, M., Sukhatme, G. S., and Hattig, M. (2004). Mobile robot navigation using a sensor
network. Proceedings of the IEEE International Conference on Robotics and Automation,
pages 636–642.

Corke, P. I., Hrabar, S. E., Peterson, R., Rus, D., Saripalli, S., and Sukhatme, G. S. (2004).
Autonomous deployment and repair of a sensor network using an unmanned aerial vehi-
cle. Proceedings of the IEEE International Conference on Robotics and Automation, pages
3602–3609.

Koenig, S., Szymanski, B., and Liu, Y. (2001). Efficient and inefficient ant coverage methods.
Annals of Mathematics and Artificial Intelligence, 31:41–76.

LaMarca, A., Brunette, W., Koizumi, D., Lease, M., Sigurdsson, S. B., Sikorski, K., Fox, D.,
and Borriello, G. (2002). Making sensor networks practical with robots. In International
Conference on Pervasive Computing.

Li, Q., DeRosa, M., and Rus, D. (2003). Distributed algorithms for guiding navigation across
a sensor network. The 2nd International Workshop on Information Processing in Sensor
Networks.

O’Hara, K. and Balch, T. (2004a). Distributed path planning for robots in dynamic environments
using a pervasive embedded network. In Proceedings of Third International Conference on
Autonomous Agents and Multi-Agent Systems.

O’Hara, K. and Balch, T. (2004b). Pervasive Sensor-less networks for cooperative multi-robot
tasks. In Proceedings of 7th International Symposium on Distributed Autonomous Robotic
Systems.

Parunak, H. V. D., Brueckner, S., and Sauter, J. (2002a). Synthetic pheromone mechanisms for
coordination of unmanned vehicles. In Proceedings of First International Conference on
Autonomous Agents and Multi-Agent Systems, pages 449–450.

Parunak, H. V. D., Purcell, M., and O’Connell, R. (2002b). Pheromones for autonomous co-
ordination of swarming uavs. In Proceedings of First AIAA Unmanned Aerospace Vehicles,
Systems,Technologies, and Operations Conference.

Payton, D., Daily, M., Estowski, R., Howard, M., and Lee, C. (2001). Pheromone Robotics.
Autonomous Robots, 11:319–324.

Rahimi, M., Shah, H., Sukhatme, G., Heidemann, J., and Estrin, D. (2003). Energy harvesting in
mobile sensor networks. In Proceedings of the IEEE International Conference on Robotics
and Automation, page to appear, Taipai, Taiwan. IEEE.

Wagner, I. A., Lindenbaum, M., and Bruckstein, A. M. (1999). Distributed covering by ant-
robots using evaporating traces. IEEE Transactions on Robotics and Automation, 15(05):918–
933.

ROLE BASED OPERATIONS

Brian Satterfield, Heeten Choxi, and Drew Housten
Lockhead Martin Advanced Technology Laboratoriesd
3 Executive Campus, Cherry Hill, NJ 08002
bsatterf@atl.lmco.com

Abstract: The authors present an innovative approach to teaming humans and synthetic
entities that leverages the concept of roles from research conducted in the
business sciences. A teaming framework is presented that utilizes mission and
team roles to allow for a natural integration of synthetic entities into existing
human teams. Additionally, observations from experiments conducted within a
testbed environment are described.

Keywords: Human-Robot Teaming, Roles, Autonomy, Military Application

1. Introduction

Military requirements and technology advancements are driving forces
behind recent market trends that show an increasing usage of synthetic
entities in the field. However, current state-of-the-art only allows warfighters
to control either highly capable synthetic entities at the expense of their own
effectiveness or to control much less capable synthetic entities while
remaining effective. To maximize overall effectiveness, a paradigm change
must occur which supports highly effective warfighters teaming with highly
effective synthetic entities. We define teaming as the set of behaviors a group
of entities perform while pursuing a common goal to coordinate knowledge
regarding state, capabilities, needs, activities and obligations and to
understand and reason about team structure, goals, tasks and the
dependencies and roles within the team. We apply teaming as a solution to
reduce warfighter overload, provide a force multiplier due to the addition of
synthetic capabilities to a military team, and provide a means of integrating
humans and synthetic entities that is natural to humans. There has been

283
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 283–289.
©c 2005 Springer. Printed in the Netherlands.

284 Satterfield, et al.

research in the teaming of robots and software agents with roles (Payne et al.,
2000, Lewis, et al., 2003, Partsakoulakis et al., 2003), but much effort has
been directed at multi-robot and multi-agent teaming with a smaller amount
dedicated to human-robot interaction. We distinguish our research work from
previous efforts in four ways: we enable teaming for humans, software
agents and robotic systems; we have strived to adapt synthetic entities to
humans and not vice versa; we believe synthetic entities must be realized as
full team members and not “tools;” we utilize military requirements for
teaming as a driving force for our architecture.

2. Research Question

Our research question was deceptively simple: How does one effectively
team humans and synthetic entities in a military context? The simple answer
was: by using techniques that humans have finely tuned over millennia.

Our research focus was driven by our intended application, military
operations. Is there anything about military teams and their requirements that
necessitate a change from “traditional” human teaming methods? Some
differences are obvious. Individual members of military teams have an
elevated personal risk, both physical and mental, and associated levels of
stress. They require more intimate knowledge of teammate abilities, must
adapt more quickly to internal and external events, and have a greater chance
of operating outside of optimum configuration regarding skill matching toff
tasks due to personnel loss. We set out to understand how humans, who
provide the best available example of teaming, behave in a team context and
identify any available models of human teaming.

3. Approach

We wanted an approach grounded strongly in how humans currently
perform teaming. Dr. Belbin's work on high performance management teams
provides models of human teaming (Belbin, 1993). Dr. Belbin studied some
of the top managers from around the world and their behavior patterns within
a team context over a period of nine years. After collecting data, he noticed
"clusters" of behavior, which he described in terms of roles that humans
naturally gravitate toward within a team.

We collected over 25 U.S. Defense Department operational available
scenarios involving unmanned vehicles and focused on missions related to
cooperative reconnaissance. By analyzing these scenarios we noticed
behavior “clusters” similar to the type Belbin discovered but unique to the

Role Based Operations 285

military domain. To make the distinction, mission roles are concerned with
mission execution; team roles are concerned with team management and
maintaining team cohesion. Our complete set of roles pertaining to
Cooperative Reconnaissance for mission and team are listed in Table 2.

Together, the team and mission roles define the entities in the team and
their relationships regarding both team and mission management. The
following is a set of features we have defined for roles thus far: (1) Explicit
Coordination points, (2) Skills, (3) Responsibilities, (4) Team reporting
structure, (5) Role dependencies, (6) Communication between roles.

4. Results

We have developed Role-Based Operations (RBO), a system that uses
Roles to support teaming between humans and synthetic entities. RBO is a
implemented system, similar to those covered in (Partsakoulakis et al., 2002,
Tambe, 1977). The architecture for RBO augments current capabilities of
synthetic entities to allow them to be “teamable” with humans. We
implemented an initial set of roles to perform multiple missions depending
on which roles are enabled. We conducted informal tests of our system to
determine if roles could be used to effectively support heterogeneous
teaming.

5. Research Results

Roles provide an abstraction between the type of entity—human, agent,
or robot—and their responsibilities and capabilities (Partsakoulakis et al.,
2003). The abstraction is not perfect, but it does allow humans to utilize
natural methods of teaming. By adapting synthetic entities to use roles, they
can contribute to teams and can use methods similar to humans to reason
about team behavior. In this way, synthetic entities are required to adapt to
humans in RBO.

Roles facilitate heterogeneous entity teaming by providing: (1) a
description of an entity’s capabilities, (2) a description of a team’s
expectations of the entity’s behavior, (3) increased adaptation and
responsiveness for the team, and (4) reusability for multiple missions.

286 Satterfield, et al.

Table 1. The roles we developed are based upon Dr. Belbin's research and numerous DoD
scenarios that described Cooperative Reconnaissance missions.

Role Description
Coordinator Directs the action of team members
Monitor Observes the team and makes inferences
Resource Investigator Determines what is available and what can be donet

through communication within the organization

Team Security Protects and maintains the welfare of all team assets

T
ea

m

Maintenance Performs routine tasks ensuring the proper
functioning of assets.

Observer Utilizes sensors to report or record

Weapons Executes a call for fire on a specific target

M
is

si
on

Analyzer Transforms data into information

Roles describe the capabilities of humans, robots and agents as well as the
expectations a team has of an entity, e.g. an entity performing a team security
role will have a set of expected behaviors. These expectations can be relied
upon and used to predict behavior throughout the team regardless of current
communications. Our role concept supports composition and inheritance.
The Team Security role displayed in Figure 1 is composed of an Observer,
Analyzer, and Weapons role, showing how more complex roles can be
composed of more basic roles providing a new set of responsibilities without
new development. An Observer role can be extended with child roles such as
an Electro-optical Observer. The child role inherits the capabilities and
responsibilities of their parent, but is more expressive.

In (Fong et al., 2004) a set of metrics to measure Human-Robot
Interaction are provided. Measures of Robot Performance include Self-
awareness, Human-awareness, and Autonomy. The use of roles contributes
to self-awareness and human-awareness by making a synthetic entity aware
of its responsibilities in a mission and the team’s expectations of that entity.
Our use of roles appeared promising on paper, and we created a prototype of
RBO to test its effectiveness on real heterogeneous teams.

6. Experimental Results

A heterogeneous teaming testbed was created to test if RBO can
effectively team humans and synthetic entities in a military context. The
testbed consists of four iRobot Magellan Pro robots that serve as unmanned

Role Based Operations 287

ground vehicles. Humans in our test use iPaqs equipped with a wireless card
for communication.

Figure 1. Roles can be composed of other roles to form more elaborate team and mission
behaviors.

We created a simulated “Snatch and Grab” operation using our
investigation of DoD military scenarios. We incorporated three roles in our
scenario: a Seeker, Verifier, and Coordinator. Seekers are a composed role
created by combining an Observer role with an Analyzer role. A Verifier is a
specialization of an Analyzer role. The Coordinator role is the only team role
used in our scenario; it is responsible for overseeing the operation including
the mission start and stop directives to the team. In our testbed scenario both
humans and robots are given the Seeker role, while the Verifier and
Coordinator roles are given only to humans. In Figure 3, Robot Seekers and
Human Seekers are both expected to search the area of interest. In order to
insure that the Coordinator is getting correct information, the Verifier role is
used to verify data the robot seeker sends out. If the robot correctly analyzed
its data, the Verifier forwards its analysis of the data to the Coordinator. The
Coordinator takes the data it gets and determines how to act on it.

Roles were a positive contribution to heterogeneous entity teaming in our
experiments. Humans were able to understand their roles, the robots roles,
and how the different roles were related to each other. Robots were not as
efficient and effective as humans, but this was a problem due to the
autonomous capabilities of the robots, and not the use of Roles. Also, the use
of a Verifier role provided a simple way for a human to collaborate with a
robot to increase the robot’s effectiveness. The Verifier was able to filter out
false id’s the robot made, while the robot reduced the load on the Verifier by
only sending data to the Verifier when it believed it found something, insteadn
of every time it took a picture.

POSITION
DATA

Protective
Action

ROE,
EOB,
MISSION
ORDERS

SITUATION
DATA

SENSOR DATA

TEAM SAFETY

Team
Recommendation
¥Avoid area
¥Operate stealthily
¥Evasive action

Position to strike

ANALYZER

OBSERVER

WEAPONS

288 Satterfield, et al.

7. Future Work

Our research has shown that roles are an excellent way to capture
information with respect to the team and its mission. However, we have
identified many additional features that would increase team performance
and two additional teaming concepts that we believe will provide a more
complete solution for teaming in military operations.

Human
Seeker

Robot
Seeker Verifier

Coordinator

Analyzed
Image

Verified
Image

Analyzed
Image

Figure 2. Synthetic entities perform roles suited to their sensing capabilities while humans
play roles that require cognitive skills and high-level analysis.

Increasing the intelligence and reasoning ability of roles on synthetic
entities will help increase self-awareness and team-awareness. Being able to
map entities to roles using an effectiveness and efficiency rating for required
capabilities should help facilitate planning with heterogeneous teams.
Sharing world state information between heterogeneous entities is important.
Currently we are working on the Zone Planning System that assigns semantic
data to geographic areas to fill this need. Also, incorporating modes—such as
attack mode, defense mode, and stealth mode—should be useful in
improving the adaptability of synthetic entities while constraining their
behavior to models human team members can understand.

Our future plans are to incorporate these new concepts into new
scenarios, adding additional missions to our current selection. We also plan
to conduct additional experiments that measure the performance of RBO.
One aspect of our research that the current experiment does not measure is
the effectiveness of roles in mission adaptation. Our current experiments also
use informal methods to measure success; we plan to use the common
metrics described in (Fong et al., 2004) for future experiments.

Role Based Operations 289

References

Belbin, M. (1993). Team Roles at Work, Butterworth-Heinemann.
Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., Steinfeld, A. (2004). Common

Metrics for Human-Robot Interaction. Unpublished.
Lewis, M., Sycara, K., Payne, T. (2003). Agent roles in human teams. Proceedings of the

AAMAS-03 Workshop on Humans and Multi-Agent Systems.
Partsakoulakis, I., Vouros. G. (2002). Roles in Collaborative Activity. In I. Vlahavas and C.

Spyropoulos, editors, Methods and Applications of Artificial Intelligence, Second Hellenic
Conference on AI, LNAI 2308, pages 449-460.

Partsakoulakis, I., Vouros, G. (2003). Roles in MAS: Managing the complexity of tasks and
environments. Multi-Agent Systems: An Application Science.

Payne. T., Lenox, T., Hahn, S., Sycara, K., Lewis, M. (2000). Agent-based support for
human/agent teams. Proceedings of the Software Demonstration; ACM Computer Human
Interaction Conference; The Hague, Netherlands.

Tambe, M. (1997). Towards Flexible Teamwork. Journal of Artificial Intelligence Research,
7:83-124.

ERGODIC DYNAMICS BY DESIGN: A ROUTE TO
PREDICTABLE MULTI-ROBOT SYSTEMS

Dylan A. Shell, Chris V. Jones, Maja J. Matarić
Computer Science Department, University of Southern California
Los Angeles, California 90089-0781, USA

dshell@cs.usc.edu, cvjones@cs.usc.edu, mataric@cs.usc.edu

Abstract
We define and discuss a class of multi-robot systems possessing ergodic dy-

namics and show that they are realizable on physical hardware and useful for a
variety of tasks while being amenable to analysis. We describe robot controllers
synthesized to possess these dynamics and also physics-based methodologies
that allow macroscopic structures to be uncovered and exploited for task execu-
tion in systems with large numbers of robots.

Keywords: Multi-robot systems, Ergodicity, Formal methods.

1. Introduction

Multi-robot systems can both enhance and expand the capabilities of single
robots, but robots must act in a coordinated manner. So far, examples of co-
ordinated robot systems have comprised of largely domain-specific solutions,
with few notable exceptions. In this paper we describe our ongoing work on
the development of formal methodologies for synthesis of multi-robot systems
that address these issues in a principled fashion.

We focus here on inter-robot dynamics, the roles played by those dynam-
ics toward task achievement, and their implications in feasible formal methods
for synthesis and analysis. We describe automated synthesis of controllers
that capitalize on so-called ergodic dynamics, which enable mathematical ar-
guments about system behavior to be simplified considerably. Sensor-based
simulations and physical robot implementations show that these controllers to
be feasible for real systems. We further suggest that this approach will scale to
systems with large numbers of robots.

291
L.E. Parker et al. (eds.),
Multi-Robot Systems. From Swarms to Intelligent Automata. Volume III, 291–297.
©c 2005 Springer. Printed in the Netherlands.

292 Shell, et al.

2. Related formal methodologies

Formal methodologies for synthesis and analysis of multi-robot systems dif-
fer based on the type of systems they aim to address. One successful method
for analysis of swarm systems is based on the theory of stochastic processes:
for example, in the phenomenological modeling and analysis of multi-robot
cooperative stick-pulling, a macroscopic difference equation for the rates of
change of each type of robot state is derived from the stochastic master equa-
tion and sensor-based simulations are used to estimate parameter values (Mar-
tinoli et al., 2004). An extension to the same theory (but using continuous
differential equations instead) allows adaptive systems to be modeled (Lerman
and Galstyan, 2003). When applied to foraging, the analysis enabled system
design improvements. Explicitly coordinated systems are typically addressed
at the algorithmic level, such as in the Computation and Control Language
(Klavins, 2003) and formal studies of multi-robot task allocation methodolo-
gies (Gerkey and Mataric, 2004). Also related is Donald’s (1995) Information´
Invariants Theory, and Erdmann’s (1989) studies of the advantages of proba-
bilistic controllers.

3. Behavioral configuration space and ergodicity

The physical configuration space, common in robotics for representing phys-
ical arrangements, can be augmented to include additional dimensions for each
of the robot’s internal control variables that observable behavior. We call this
the behavioral configuration space (BCS). It is a useful mental representation
for a multi-robot system and for reasoning about the overall system dynamics.
For practical applications, we will only consider particular subspaces, never
the full configuration space.

The BCS of a single robot consists of dimensions for the physical config-
uration (e.g,. the pose variables, and velocities if necessary) and dimensions
for internal state variables (continuous or discrete values within memory). The
range of each dimension is determined by constraints on state variables. The
BCS of an ensemble of robots is constructed from essentially a Cartesian prod-
uct of individuals spaces and the spaces of movable obstacles, etc. The con-
straints (e.g., two robots simultaneously occupying the same location) subtract
components from this product. Couplings between the robots via communica-
tion channels, mutual observation, etc., further restrict this space.

The global state of the multi-robot system at any specific time can be rep-
resented by a point in BCS and likewise, the time-evolution of the system,
as a trajectory. A system that exhibits ergodic dynamics completely visits all
parts of the configuration space with probability that is dependent only on the
volume of that part of the space. Long term history is unimportant in predict-
ing the dynamical behavior because the system “forgets” previous trajectories.

Ergodic Dynamics by Design 293

Time averages of some system property (over a duration longer than the under-
lying dynamics timescale), are equal to (configuration) spatial averages. Few
useful robotics systems are entirely ergodic, but various sub-parts of the BCS
may be ergodic. The next section describes one such system.

4. Automated synthesis for sequential tasks

Jones and Mataric (2004a, 2004b) have developed a framework for auto-´
matic and systematic synthesis of minimalist multi-robot controllers for se-
quential tasks. The framework consists of a suite of algorithms that take as in-
put a formal specification of the environmental effects, the task requirements,
and the capabilities of the robots. The algorithms produce either provably cor-
rect robot controllers, or point to the exact scenarios and task segments which
make (algorithmically) guaranteed task completion impossible. The type of
controller and prospect of successful task execution depend on the capabili-
ties of the individual robots. Current options include the possibly of broadcast
inter-robot communications (Jones and Mataric, 2004a), and a local memory´
on each of the robots permitting non-reactive controllers (Jones and Matarić,
2004b). Two complementary analysis techniques allow various statistical per-
formance claims to be made without the cost of a full implementation and
exhaustive experimentation.

We do not provide full details of the framework here, but instead focus on
the (non-obvious) role of ergodic dynamics in the work. The framework uses a
set of states S to denote the possible states that the (assumed to be Markovian)
world can be in. The set A contains actions which act upon the world state,
producing state transitions defined in some probabilistic manner (see Figure 1).
A particular sequence of states, say T,(T ⊂ S) makes up the task. In actuality
the robots are only interested in producing the single task sequence, and thus
only those transitions need to be stored. Thus, S is never stored or calculated,
only T need be kept, and |T | � |S|. Robots then move around the environment
making observations, perhaps consulting internal memory or listening to the
broadcast communication channel if suitably equipped. If a robot has sufficient
information to ensure that the performance of a particular action (from A) can
only result a world transition that is part of the task (i.e., result in a state in T)
then it may perform that action.

Figure 1

294 Shell, et al.

Returning to the notion of behavioral configuration space, each of the world
states in S represents entire subspaces of the overall system’s space. Figure 2
shows that the entire behavioral configuration space as it fits into this formal-
ism. A hypothetical projection of this entire (huge) configuration space sep-
arates the configurations into subspaces, each subspace representing a single
state in T . Actions (from A) evolve the world state and hence transition the
system from one subspace to another. We design the system so that within each
subspace the dynamics are ergodic. Work that has used this formal framework
ensured this property by having the robots perform randomized exploration
policies. The randomized strategy needs to have sufficient effect to overpower
other systematic biases in the system that could produce large scale effects and
ignore some part of the configuration space.

Both controllers with memory (Jones and Mataric, 2004b) and ones en-´
dowed with communication capabilities (Jones and Mataric, 2004a) were demon-´
strated in simulation and on physical hardware in a multi-robot construction
domain. The task involves the sequential placement of colored cubes into a
planar arrangement. The sequence T contains simply the required evolution of
the structure, actions A being the placement of an individual cube. Referring
back to Figure 2; in the construction domain the motions within each subspace
are random walks by the robots, and the transitions between spaces are cube
placement actions.

Analytical techniques developed in order to predict task execution are aided
by the ergodic components of the robots behavior in this domain. One example
is in the macroscopic model (Jones and Mataric, 2004b, pp. 4–5) applied to´
this formal framework. This model calculates the probability of successful task
completion by calculating a large multiplication of all possible memory states
that get set, in each possible world state, after each possible observation, calcu-
lating the probability that only the correct action will result and includes terms
for when actions may result in other, or null, world transitions. A fundamental
assumption for that calculation is that no “structure” in the world results in the
observation and action sequences that correlate. When endowed with naviga-
tional controllers that have ergodic dynamics, we know that this is true because

Figure 2

Ergodic Dynamics by Design 295

the observation of an ergodic system at N arbitrary instants in time is statisti-
cally the same as N arbitrary points within the behavioral space (McQuarrie,
1976, pp. 554).

This section has demonstrated that dynamics with a high degree of ergodic-
ity are achievable on physical robot systems. They can play a role in systems
for which analytical methods exist, and as a very simple form of dynamics they
can aid in simplifying particular aspects of system design.

5. Large-scale multi-robot systems

We consider large-scale multi-robot systems those with robots on the order
of thousands. In spite of the fact that manufacturing and tractable simulation
remain open challenges, a variety of tasks have been proposed for systems
of this type. Increasing the number of robots increases the total number of
degrees-of-freedom in a system, and results in a highly dimensional BCS. Co-
ordination approaches that couple robot interactions as loosely as possible are
most likely to scale to large sizes.

Mathematical techniques employed in statistical mechanics are useful for
establishing the relationship between microscopic behavior and macroscopic
structures (McQuarrie, 1976). Typical system sizes for classical work are sig-
nificantly larger (∼ 1023) than the numbers currently conceivable for robots. In
the case of large (or infinite) systems, interesting macroscopic structures can
result even from ergodic local dynamics. global structures like equilibrium
phases, phase transitions, coexistence lines, and critical points are widely stud-
ied in thermodynamics. Recent work attempts to reformulate many of these
classical notions for systems with fewer entities (Gross, 2001).

We are pursuing a methodology for coordination of large-scale systems
through the study of a small set of mechanisms for producing general macro-
scopic phenomena. One candidate mechanism is a protocol for achieving con-
sensus. The Potts (1952) model is illustrative; it is an archetypal magnetic spin
system that models interactions between particles at a number of fixed loca-
tions within a graph or lattice. The Ising model (a specific Potts model) has
also been used to model gas flow. Neither model is a perfect fit for robots, but
illustrates macroscopic structure from simple interactions.

Mapping the spin interactions at spin sites to robots allows for the develop-
ment of a communication algorithm that possesses ergodic dynamics (and an
energy conservation constraint) that permits the definition of a partition func-
tion Z that can be solved using a numerical method for pseudo-dynamics sim-
ulation (or in trivial cases analytically). This admits a prediction of global be-
havior because exhaustive parameter variations enable construction of a phase
diagram. In the case of the Potts and Ising models this phase diagram is well
known. Particular regions of the phase space in the Ising model represent re-

296 Shell, et al.

gions of maximal order. For robots this means unanimity; consensus is reached
through a second-order phase transition.

The ability to prescribe ergodic dynamics for large-scale robot systems makes
those analytical approaches that focus only on constraint space topology fea-
sible for predictions of global structure. This means that task directed actions
can be tackled directly from a macroscopic perspective.

6. Summary and Conclusion

We have taken a dynamics-centric approach to describing multi-robot be-
havior. This view has suggested that the notion of ergodicity may be useful
within a robotics context, something that we have demonstrated throughout
the paper. After defining a behavioral configuration space, we demonstrated
that subspaces in which the robot dynamics are essentially ergodic can be used
to produce meaningful behavior, and allow automated synthesis techniques to
focus on a small set of task-oriented states, rather then the entire ensemble
configuration space. Also, in at least one case, ergodicity simplifies analysis of
system behavior. Implementations on physical and simulated robots show that
ergodicity is indeed achievable in the real world. Future promise of this general
approach is suggested in a discussion of large-scale multi-robot systems.

Acknowledgments

This research was conducted at the Interaction Lab, part of the Robotics
Research Lab at USC and of the Center for Robotics and Embedded Systems.
It was supported by the Office of Naval Research MURI Grant N00014-01-1-
0890.

References
Donald, B. R. (1995). On information invariants in robotics. AI, 72(1-2):217–304.
Erdmann, M. A. (1989). On Probabilistic Strategies for Robot Tasks. PhD thesis, M.I.T.
Gerkey, B. P. and Mataric, M. J. (2004). A formal analysis and taxonomy of task allocation in´

multi-robot systems. International Journal of Robotics Research, 23(9):939–954.
Gross, D. H. E. (2001). Microcanonical Thermodynamics: Phase Transitions in “Small” Sys-

tems. World Scientific Lecture Notes in Physics - Volume 66. World Scientific, Singapore.
Jones, C. V. and Mataric, M. J. (2004a). Automatic Synthesis of Communication-Based Coor-´

dinated Multi-Robot Systems. In Proc. of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS-04), Sendai, Japan.

Jones, C. V. and Mataric, M. J. (2004b). Synthesis and Analysis of Non-Reactive Controllers´
for Multi-Robot Sequential Task Domains. In Proc. of the International Symposium on Ex-
perimental Robotics, Singapore.

Klavins, E. (2003). Communication Complexity of Multi-Robot Systems. In Boissonnat, J.-D.,
Burdick, J., Goldberg, K., and Hutchinson, S., editors, Algorithmic Foundations of Robotics
V, volume 7 ofVV Springer Tracts in Advanced Robotics, pages 275–292. Springer.

Ergodic Dynamics by Design 297

Lerman, K. and Galstyan, A. (2003). Macroscopic Analysis of Adaptive Task Allocation in Ro-
bots. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS-03), pages 1951–1956, Las Vegas, NV., USA.

Martinoli, A., Easton, K., and Agassounon, W. (2004). Modeling Swarm Robotic Systems: A
Case Study in Collaborative Distributed Manipulation. IJRR, 23(4):415–436.

McQuarrie, D. A. (1976). Statistical Mechanics. Harper and Row. reprinted by University Sci-
ence Books, Sausalito, CA., USA in 2000.

Potts, R. B. (1952). Some generalized order-disorder transformations. In Proc. of the Cambridge
Philosophical Society, volume 48, pages 106–109.

Author Index

Adams, Julie A., 15
Aghazarian„ 235
Allen, James, 257
Amigoni, Francesco, 133
Amiranashvili, Vazha, 251

Batalin, Maxim A., 27
Bruce, James, 159
Chaimowicz, L., 223
Chambers, Nathanael, 257
Chandra, Maureen, 119
Cherry, Colin, 79
Choset, Howie, 145
Choxi, Heeten, 283
Clark, Justin, 171
Commuri, Sesh, 171
Cosenzo, Keryl, 185
Cowley, A., 223
Dellaert, Frank, 107
Derenick, Jason, 263
Fierro, Rafael, 171
Galescu, Lucian, 257
Gasparini, Simone, 133
Gerkey, Brian P., 65
Gini, Maria, 133
Gomez-Ibanez, D., 223
Goodrich, Michael A., 185
Gordon, Geoff, 65
Grocholsky, B., 223
Hougen, Dean, 171
Housten, Drew, 283
Hsieh, M. A., 223
Hsu, H., 223
Hull,Richard A., 41
Huntsberger, Terry, 235
Jain, Sonal, 3
Jones, Chris V., 291
Jung, Hyuckchul, 257
Keller, J. F., 223

Kumar, V., 223
Lagoudakis, Michail G., 3
Lakemeyer, Gerhard, 251
Lin, Kuo-Chi, 269
Matarić, Maja J., 291´
McMillen, Colin P., 53
New, Ai Peng, 145
O’Hara, Keith J., 277
Okon, Avi, 235
Parker, Lynne E., 119
Powers, Matthew, 107
Qu, Zhihua, 41
Quigley, Morgan, 185
Ravichandran, Ramprasad, 107
Rekleitis, Ioannis, 145
Roth,Maayan, 93
Rybski, Paul E., 53
Satterfield, Brian, 283
Sellner, Brennan, 197
Shell, Dylan A., 291
Simmons, Reid, 93, 197
Singh, Sanjiv, 197
Spears, Diana, 211
Spletzer, John, 263
Stroupe, Ashley, 235
Sukhatme, Gaurav S., 27
Sven, Koenig, 3
Swaminathan, R., 223
Tang, Fang, 119
Taylor, C. J., 223
Thorne, Christopher, 263
Thrun, Sebastian, 65
Tovey, Craig, 3

Vig, Lovekesh, 15
Walker, Daniel B., 277
Wang,Jing, 41
Zarzhitsky, Dimitri, 211
Zhang, Hong, 79

Balch, TuckTT er R., 107, 277

Veloso,VV Manuela M., 53, 93, 159

299

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

