

Lecture Notes in Electrical Engineering

For further volumes:
http://www.springer.com/series/7818

Massimo Conti • Simone Orcioni •

Natividad Martínez Madrid •

Ralf E. D. Seepold
Editors

Solutions on Embedded
Systems

123

Editors
Prof. Dr. Massimo Conti
Dip. di Ingegneria Biomedica

Elettronica e Telecomunicazioni
DIBET

Università Politecnica delle Marche
Via brecce bianche 12
Ancona 60131
Italy
e-mail: m.conti@univpm.it

Prof. Dr. Simone Orcioni
Dip. di Ingegneria Biomedica

Elettronica e Telecomunicazioni
DIBET

Università Politecnica delle Marche
Via brecce bianche 12
Ancona 60131
Italy
e-mail: s.orcioni@univpm.it

Prof. Dr. Natividad Martínez Madrid
Computer Science
Reutlingen University
Alteburgstr. 150
Reutlingen 72762
Germany
e-mail: Natividad.martinez@

reutlingen-university.de

Prof. Dr. Ralf E. D. Seepold
Hochschule für Technik,
Wirtschaft und Gestaltung (HTWG)
Hochschule Konstanz
Brauneggerstrasse 55
Konstanz 78462
Germany
e-mail: ralf.seepold@htwg-konstanz.de

ISSN 1876-1100 e-ISSN 1876-1119

ISBN 978-94-007-0637-8 e-ISBN 978-94-007-0638-5

DOI 10.1007/978-94-007-0638-5

Springer Dordrecht Heidelberg London New York

� Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Today electronic computation is performed mainly not in personal computers, but
in electronic systems integrated in devices that we use every day, like cars, mobile
phones, household appliances and credit cards. Embedded computing gives a
substantial added value to products. Innovation in many fields such as automotive,
industrial automation, telecommunications, consumer electronics, entertainment
and health equipment is mainly due to embedded computing.

Electronic systems give new features to the device, such as: energy manage-
ment and power reduction, safety and security, comfort and ease to use.

The use of embedded systems in many different fields may help us to find a
solution to problems that are strategic for the future of the world, such as:

• Energy production, management and delivery;
• Control and monitoring of the environment;
• Food production;
• Efficient and sustainable manufacturing;
• Traffic and mobility control and monitoring;
• Security and critical infrastructure protection;
• Home and building automation;
• Healthcare systems;
• Systems for integration of ageing and disabled people.

The book ‘‘Solutions on Embedded Systems’’ presents an overview on several
fields of applied research, like sensor networks, network on chip and multicore
systems, automotive applications, software design, system architectures, design of
low power embedded systems. Each area is covered by a separate part of the book.

v

Contents

Part I Sensor Networks

1 Performance of Gossip Algorithms in Wireless
Sensor Networks. 3
Marco Baldi, Franco Chiaraluce and Elma Zanaj

2 Using a Prioritized Medium Access Control Protocol for
Incrementally Obtaining an Interpolation of Sensor Readings . . . 17
Björn Andersson, Nuno Pereira, Eduardo Tovar
and Ricardo Gomes

3 Embedded Systems in the Poseidon MK6 Rebreather
Microcontroller Network in a Life Supporting System 33
Arne Sieber, Nigel A. Jones, Bill Stone, Richard Pyle, Bernhard Koss
and Kurt Sjöblom

4 Embedded Data Logging Platform for Research in Diving
Physiology Monitoring ECG and Blood Oxygenation
of Apnea Divers . 45
Benjamin Kuch, Remo Bedini, Antonio L’Abbate, Matthias Wagner,
Giorgio Buttazzo and Arne Sieber

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded
Systems Gas Leak Detection Case Study in H2 Vehicles 59
Sergio Saponara, Luca Fanucci and Bruno Neri

Part II Network on Chip and Multicore Systems

6 Cost-Based Deflection Routing for Intelligent NoC Switches 77
Martin Radetzki and Adán Kohler

vii

7 NOCEXplore A SystemC Platform for NoC Analysis 91
Stefano Gigli and Massimo Conti

8 Coverage-Driven Verification of HDL IP Cores Case Study
of a Router for Network-on-Chip Communication
in Embedded Systems . 105
Sergio Saponara, Francesco Vitullo, Esa Petri, Luca Fanucci,
Marcello Coppola and Riccardo Locatelli

9 A Multiprocessor Platform for Efficient Data Processing
in Electronic Musical Instruments A Case Study 121
Marco Caldari, Franco Ripa and Massimo Conti

10 A Distributed Hardware Algorithm for Scheduling Dependent
Tasks on Multicore Architectures . 135
Lorenzo Di Gregorio

Part III Automotive

11 Automotive Embedded Systems The Migration Challenges
to a Time Triggered Paradigm . 155
Eric Armengaud, Allan Tengg, Mario Driussi, Michael Karner,
Christian Steger and Reinhold Weiß

12 An Embedded Datalogger with a Fast Acquisition Rate
for In-vehicle Testing and Monitoring Automotive Testing 173
Gioacchino Fertitta, Antonio Di Stefano, Giuseppe Fiscelli
and Costantino G. Giaconia

13 Secure Gateway Interoperability . 185
Álvaro Reina, Jesús Sáez, Natividad Martínez Madrid
and Ralf Seepold

Part IV Software and System Architecture

14 Applying Bayesian Networks for Intelligent Adaptable
Printing Systems . 201
Arjen Hommersom, Peter J.F. Lucas, René Waarsing
and Pieter Koopman

viii Contents

15 Applicability of Virtualization to Embedded Systems
Tackling Complexity by ‘‘Divide and Conquer’’ 215
Robert Kaiser

16 Distributed Trading Architecture with Sensors Support
for a Secure Decision Making . 227
Javier Martínez Fernández, Ralf Seepold
and Natividad Martínez Madrid

17 Migrating from a Proprietary RTOS to the OSEK Standard
Using a Wrapper A Feasibility Study . 241
Joachim Denil, Serge Demeyer, Paul De Meulenaere, Kurt Maudens
and Kris Van Stechelman

Part V Power Aware Design

18 A Sigma–Delta Controlled Power Converter for Energy
Harvesting Applications . 257
Rocco d’Aparo, Simone Orcioni and Massimo Conti

19 Energy Efficient Data Transmission of On-Chip Serial Links
A Case Study . 271
George Kornaros

20 Powersim: Power Estimation with SystemC Computational
Complexity Estimate of a DSR Front-End Compliant to ETSI
Standard ES 202 212 . 285
Marco Giammarini, Simone Orcioni and Massimo Conti

21 Power Analysis of Embedded Systems The PKtool
Simulation Environment . 301
Giovanni B. Vece and Massimo Conti

Contents ix

Chapter 1
Performance of Gossip Algorithms
in Wireless Sensor Networks

Marco Baldi, Franco Chiaraluce and Elma Zanaj

1.1 Introduction

Ad-hoc wireless sensor networks are peer-to-peer systems formed by many small
and simple devices, able to measure some quantities and to transmit their measured
values to neighboring nodes. In such networks, nodes communicate in order to
merge their single contributions into a common result. This also occurs in aver-
aging problems, whose target is to calculate, in a distributed manner, the average
value of a quantity of interest (e.g., temperature). Because of their features, these
networks are suitable for many purposes, as environmental monitoring applica-
tions, allowing accurate control over large areas with favorable cost-to-benefit
ratio [1]. Among these applications, however, hostile environments and scenarios
of natural and man-made disasters represent great challenges, in which the net-
work availability must be ensured, in spite of a number of possible impairments.

Among the several protocols that are available nowadays for sensors commu-
nication, an increasing attention has been devoted to simple decentralized proce-
dures based on the gossip principle, through which the computational burden is
distributed among all nodes.

M. Baldi and F. Chiaraluce (&)
Dipartimento di Ingegneria Biomedica, Elettronica e Telecomunicazioni, Facoltà di
Ingegneria, Università Politecnica delle Marche, Ancona, Italy
e-mail: f.chiaraluce@univpm.it

M. Baldi
e-mail: m.baldi@univpm.it

E. Zanaj
Departamenti i Elektronikes dhe Telekomunikacionit, Fakulteti i Teknologjise se
Informacionit, Universiteti Politeknik i Tiranes, Tirana, Albania
e-mail: ezanaj@gmail.com

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_1,
� Springer Science+Business Media B.V. 2011

3

The gossip algorithm was originally conceived for telephone networks [2, 3].
When gossip is applied in sensor networks, noting by xi and xj the local measures of
the i-th and j-th nodes, an interaction among them updates one or both their values,
that are then used for a subsequent interaction. The communication protocols can be
managed either in a synchronous or in an asynchronous way, but the latter is more
practical, because of its inherent simplicity. So, in this chapter, we will limit to
consider an asynchronous time model, in which any node has a clock which ticks
independently at the times of a rate 1 Poisson process. Therefore, the inter-tick
times at any node are rate 1 exponentials, independent across nodes and over time.

Various implementations of gossip for averaging problems are possible; they all
aim at estimating the mean value of the sensed quantity. More precisely, let us denote
by N the number of nodes and by x(k) = [x1(k), x2(k), …, xN(k)]T the vector of the
estimates of all nodes after k clock ticks (superscript T denotes the transpose operation).

The target of the algorithm is to find a reliable measure of the average value xave ¼
PN

i¼1 xið0Þ
�

N in the shortest possible time, that is, maximizing the convergence speed.
In a first implementation, called ‘‘basic gossip’’ in the following, an interaction

among the i-th and j-th nodes produces as output xi(k ? 1) = xj(k ? 1) = xi(k)/
2 ? xj(k)/2, that is used by both nodes for the subsequent interaction [4]. A variant
of this proposal consists in the so-called ‘‘push-sum’’ algorithm [5]. According
with such protocol, a node forwards a share of its values, properly defined, to one
of its neighbors, randomly selected, while keeping the remaining part. The per-
formance of the push-sum algorithm depends on the choice of the share, which
therefore represents a degree of freedom to optimize.

Both the basic gossip and the push-sum algorithm are point-to-point protocols.
However, in a wireless network, when a node transmits, all nodes in its coverage
area can receive the transmitted data. This suggests implementing a ‘‘broadcast’’
algorithm to reduce the averaging time.

Although the fundamentals of the considered protocols are well known and a
number of papers on these topics already appeared in previous literature, several issues
are still open. Among them, we have mentioned above the problem of optimizing the
share values in the push-sum algorithm. In [5], the authors limited to say that the choice
of the shares may be deterministic or random, and may or may not depend on the time,
without providing, however, a numerical evidence of the impact resulting from the
different choices. The same was, at our best knowledge, in the subsequent literature.
Only very recently, in [6], we presented a first set of numerical and theoretical results
on this issue, focusing on ring and random geometric graph topologies.

Another relevant topic, rarely explored in the past, concerns the evaluation of
the performance of gossip algorithms in the presence of link failures. Actually,
when averaging algorithms are adopted in wireless sensor networks, the shadow
fading or other kinds of radio impairments could prevent some links from being
used, due to their poor quality in terms of signal-to-noise ratio.

The study of networks with link failures could seem not different from that of
non-fully-meshed networks, where, because of a limited coverage radius, each node
can reach directly only a limited set of neighbors, being linked to the others only

4 M. Baldi et al.

through multiple hops (which means to pass through intermediate nodes). Really,
the two situations are rather different; failures can be modeled as a stochastic
phenomenon, and when a percentage x of links fail, malfunctions are generally
distributed at random, without any specific correlation between distinct failures.
Obviously, in some cases, failures may be due to mechanisms involving simulta-
neously a number of nodes that are close one each other; but this appears as a
particular case, while the uncorrelation assumption seems more suitable to model
practical situations. In this chapter, the convergence speed of the selected gossip
algorithms, in presence of random link failures throughout the network, is inves-
tigated. Our analysis is mainly based on numerical simulations, but some theoret-
ical issues are also discussed, particularly in regard to the share optimization when
the push-sum approach is applied. We develop a number of comparisons, with the
aim to show the limits and potentialities of the considered techniques.

In Sect. 1.2 we define the considered gossip versions. In Sect. 1.3 we introduce
the simulation parameters and describe the graph whose performance in the
presence of link failures will be investigated afterwards. In Sect. 1.4 we face, from
a theoretical viewpoint, the problem of the share factor optimization in the push-
sum algorithm; an analytical approach is developed, based on the computation of
the potential function. In Sect. 1.5 we present a number of simulation results, first
considering the various algorithms separately, and then in comparative terms.
Most of the chapter contents were originally presented in [7].

1.2 The Considered Gossip Algorithms

1.2.1 Basic Gossip

The basic gossip algorithm is very simple, and has been briefly described in
Sect. 1.1. Its main steps are as follows:

1. Node i chooses (at random) another node, j, inside its coverage area.
2. Nodes i and j split their information into two equal parts, xi(k)/2 and xj(k)/2,

keeping one part and sending the other.
3. Nodes i and j calculate their new estimates by adding the received value to that

already stored: xi(k ? 1) = xj(k ? 1) = [xi(k) ? xj(k)]/2.

The choice of j is done according with a uniform distribution, conditioned on
the value of the Euclidean distance Dij between nodes i and j. In other words, the
probability that node i contacts node j (= i) when it is selected for transmission is
given by:

pij ¼
1
di
; Dij� r;

0; Dij [r;

�

ð1:1Þ

where di is the number of nodes within its coverage area, that is delimited by a
coverage radius r, assumed to be equal for all nodes. So, the coverage radius

1 Performance of Gossip Algorithms in Wireless Sensor Networks 5

represents the maximum distance at which a node can transmit reliably. Clearly, in
order to recognize the nodes inside the coverage area, a query session is required,
before interaction starts. We suppose that each node performs a very simple query
aimed at knowing the number of reachable neighbors, di, in its coverage area.
More sophisticated localization strategies [8] can be adopted, that permit to
implement more efficient versions of averaging algorithms. In [9], for example, a
geographic gossip has been proposed, based on greedy routing, that is potentially
able to provide remarkable gains. But applicability of this kind of protocols, where
each node must compute and compare a large number of distances from a prefixed
target, seems difficult. For this reason, we have not included these gossip versions
in our study. Alternatively, the selection probabilities could be optimized with the
final goal to maximize the convergence speed [4] but, once again, this would make
more involved the interaction while not providing, in many cases, substantial
improvements [10].

The probabilities pij can be collected in a matrix P, with N 9 N entries. This
matrix is stochastic, i.e., each of its rows sums to 1. On the other hand, if the link
between i and j fails, the corresponding pij is set equal to zero. In this case, matrix
P is no longer stochastic, and the i-th node has a probability to communicateP

j pij\1. In other words, if the link between i and j fails, at some clock tick the i-th
node tries transmitting to the j-th node without success, thus wasting the commu-
nication attempt. Obviously, this reflects on the averaging time, which increases in
a manner dependent on the number of faulty links and their distribution.

1.2.2 Push-Sum Algorithm

The push-sum protocol proceeds as follows. At the i-th node, with i = 1, 2, …, N,
two quantities are stored and updated through the interaction with the other nodes:
they are named si(k) and wi(k), respectively. These quantities satisfy the following
mass conservation properties, for any k:

XN

i¼1

siðkÞ ¼
XN

i¼1

xið0Þ ¼ Nxave;
XN

i¼1

wiðkÞ ¼ N: ð1:2Þ

When the protocol starts, that is, once having acquired the sensed values, we
have si(0) = xi(0) and wi(0) = 1, Vi. Later, if the clock of the i-th node ticks at the
k-th time instant (let us remind that transmission is asynchronous in the considered
system), it selects randomly one of its neighbors, say j, and sends to it a fraction
(1 – a) of its parameters, while it retains the remaining fraction a. So, the
parameters at nodes i and j are modified as follows:

siðk þ 1Þ ¼ asiðkÞ; wiðk þ 1Þ ¼ awiðkÞ;
sjðk þ 1Þ ¼ sjðkÞ þ ð1� aÞsiðkÞ;

wjðk þ 1Þ ¼ wjðkÞ þ ð1� aÞwiðkÞ;
ð1:3Þ

6 M. Baldi et al.

while the parameters at all the other nodes remain unchanged. This way, condi-
tions (1.2) are certainly satisfied. A new estimate at the interacted nodes is then
derived as xm(k ? 1) = sm(k ? 1)/wm(k ? 1), with m = i, j.

In [5], where, besides point-to-point communications, also broadcast trans-
missions were considered, a more general mechanism was applied, where the share
factor can be different for any node and even variable in time. This model,
however, seems too involved for practical applications; so, we prefer to consider a
single and constant a, whose value should be optimized in order to achieve the
fastest convergence speed.

On the other hand, a bidirectional version of the push-sum algorithm could also
be adopted where, every time node i contacts node j, sending to it a fraction of its
message, node j does the same, sending to node i a share of its own message. It is
possible to demonstrate (details are omitted for saving space) that, at least for a
fully-meshed network, the optimum share for this case is 1/2. So, under this
choice, such modified version of the push-sum algorithm practically becomes
identical to the basic gossip.

1.2.3 Broadcast Algorithm

The idea to implement a broadcast algorithm originates from the observation that,
when a node transmits some information, all the other nodes in its coverage area are
able to receive the transmitted data. This suggests implementing a broadcast
averaging algorithm that, at the expense of a slight increase in complexity, allows
reducing significantly the averaging time. This broadcast algorithm is unidirec-
tional, as the information flows from a transmitting node to a number of receiving
nodes (depending on the coverage radius and the random nodes distribution) but not
in the opposite sense. Similarly to the push-sum algorithm, the i-th node maintains a
sum, si(k), and a weight, wi(k). When the algorithm starts, that is for k = 0, we have
wi(0) = 1 and si(0) = xi(0), that coincides with the initial sensed value at node
i. When the i-th node’s clock ticks, say at step k, the node splits its information into
a number of parts; it may keep the first, so that [wi(k ? 1), si(k ? 1)] = ai[wi(k),
si(k)], while it sends to each neighbor j one of the remaining parts: aij[wi(k), si(k)].
Node j receives the transmission and updates its values by adding the received ones,
so that [wj(k ? 1), sj(k ? 1)] = [wj(k), sj(k)] ? aij[wi(k), si(k)]. As stated in the
expressions, this mechanism is ruled by the share parameters, ai and aij, that can be
collected in a matrix A, having aii = ai along the main diagonal. The elements of A,
that satisfy the condition Rjaij = 1, can be chosen at random or following some
suitable deterministic rule. Although different laws [11] can be adopted, in [12] we
showed that good results are obtained assuming ai = 0 and:

aij ¼
1
di

Dij� r; j 6¼ i;
0 Dij [r:

�

ð1:4Þ

1 Performance of Gossip Algorithms in Wireless Sensor Networks 7

1.3 Simulation Parameters

The convergence speed of the considered protocols is evaluated through the
computation of the normalized difference between the estimated average and the
true average. More precisely, we determine in R simulations (with R sufficiently
large) the random variable e(k) = ||x(k) – xave1||/||x(0)||, where ||x|| denotes the l2
norm of vector x and 1 is the vector of all ones. A set of R curves em(k) is obtained,
m = 1 … R, that are averaged in order to compute:

eðkÞh i ¼ 1
R

XR

m¼1

emðkÞ ð1:5Þ

which has the meaning of estimated mean curve. In order to average over possible
different initial conditions, x(0) is randomly changed at the beginning of
each simulation. According to the probability theory, it is known that

limR!1 eðkÞh i ¼ deðkÞ, where deðkÞ represents the true average of e(k). Once having
determined (1.5), the averaging time is defined as the number of clock ticks, say
k*, that permits to have a normalized difference smaller than, or equal to, a
prefixed value, for example e(k*) B 10-10.

In this chapter, simulations are done over a random geometric graph (RGG),
where nodes are randomly distributed in a unit square, according with a 2D
homogeneous Poisson point process. The number of neighbors, di, the i-th node is
linked to, gives its nodal degree. In the case of regular graphs (like the ring, for
example) di is equal for all nodes, and it is a direct measure of the connectivity
level of the network. On the other hand, in general, each node is characterized by
the coverage radius r; for the RGG, even assuming that all nodes have the same r,
the nodal degree is generally not unique. Moreover, for each value of r, the
connectivity level can vary from graph to graph. So, an average nodal degree, dh i,
must be computed for the analysis purposes. The behavior of dh i, as a function of
r, is shown in Fig. 1.1; for each value of the coverage radius, 100 RGGs have been
randomly generated, and their nodal degrees have been averaged.

As one of the objects of our study is to compare the impact of failures against
that of a limited r, we suppose to start with a fully-meshed network (that implies to

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

10

20

30

40

50

<
d>

r

Fig. 1.1 Average value of d,
computed over 100 random
geometric graphs

8 M. Baldi et al.

have r�
ffiffiffi
2
p

on the unit square) and to eliminate, at random, a fraction x of its
links. So, while in absence of failures the network connectivity is N - 1 (see
Fig. 1.1), in the new scenarios the average value of d becomes approximately:

dh i ¼ N � 1ð Þ 1� xð Þ: ð1:6Þ

The validity of (1.6) has been confirmed through simulation.

1.4 Share Factor Optimization

As mentioned in Sect. 1.2.2, for the push-sum algorithm an important issue con-
cerns optimization of the share factor a that appears in (1.3). A useful analytical
tool, in this sense, is provided by the potential function method.

Let us consider a vector vi(k) whose components, vij(k), are such that:

siðkÞ ¼
XN

j¼1

vijðkÞxjð0Þ: ð1:7Þ

The following condition holds: wiðkÞ ¼
P

j vijðkÞ. So, if vi(k) is nearly pro-
portional to the all-one vector, then xi(k) = si(k)/wi(k) is close to the true average.
The potential function at time k is defined as follows [5]:

UðkÞ ¼
XN

i¼1

XN

j¼1

vijðkÞ �
wiðkÞ

N

� �2

: ð1:8Þ

In the limit case of all nodes perfectly aware of the true average, the potential
function is null. Therefore, evaluating the mean potential function, for any k,
permits us to estimate the convergence speed of the algorithm.

More precisely, assuming that, at instant k, node l is selected as the transmitter
and node m as the receiver, the following difference between the potential func-
tions at time instants k and k ? 1 can be easily derived:

dU ¼ UðkÞ � Uðk þ 1Þ ¼ 2að1� aÞ
XN

j¼1

vljðkÞ �
wlðkÞ

N

� �2

� 2ð1� aÞ
XN

j¼1

vljðkÞ �
wlðkÞ

N

� �

� vmjðkÞ �
wmðkÞ

N

� �

: ð1:9Þ

In the following of this section we will omit, for the sake of simplicity, the
argument k. We wish to compute the average of (1.9) over all possible choices,
uniformly distributed, of the transmitting and receiving nodes. For a fully-meshed
network, through simple algebra, it is possible to find:

1 Performance of Gossip Algorithms in Wireless Sensor Networks 9

dUh i ¼ 2
N

að1� aÞ þ 1� a
N � 1

� �

U; ð1:10Þ

where U = U(k). A criterion for optimizing the value of a can consist in maxi-
mizing dUh i=U. According with its own meaning, in fact, to have a large dUh i, for
a given U, should reflect in a high convergence speed. Now, from (1.10), dUh i=U
is maximum for:

aopt ¼
N � 2

2ðN � 1Þ; ð1:11Þ

and, for N sufficiently large, such value can be approximated by 0.5.
In the case of non-fully-meshed network, instead, that can occur because of a

limited value of r and/or the appearance of link failures, Eq. 1.10 is no longer
valid, and must be replaced as follows:

dUh i ¼ 2að1� aÞ
N

Uþ 2ð1� aÞ
N

XN

j¼1

XN

l¼1

1
dl

vlj �
wl

N

� �2

� 2ð1� aÞ
N

XN

j¼1

XN

l¼1

1
dl

X

m2Cl

vlj �
wl

N

� �
vmj �

wm

N

� �
; ð1:12Þ

where Cl is the subset of nodes that includes node l and the nodes it is linked to.
The higher complexity of (1.12), with respect to (1.10), is evident. First of all, a
new contribution has been added, that is null in the case of a fully-meshed net-
work, because of the mass conservation property (1.2). Secondly, it seems not
possible to evidence, at the right side, the potential function U, that is a necessary
step toward maximization of hdUi/U.

To circumvent the problem, we introduce the position 1=dl � 1=dh i, Vl = 1…
N. Based on this approximation, Eq. 1.12 can be rewritten as:

dUh i � 2
N

að1� aÞ þ 1
d

	

1� að Þ
� �

U

� 2ð1� aÞ
N

1
d

	
XN

j¼1

XN

l¼1

X

m2Cl

vlj �
wl

N

� �
vmj �

wm

N

� �
: ð1:13Þ

However, the problem of evaluating the last term remains. An estimation of
such term can be obtained, based on the definition of Laplacian matrix [13], as
reported next. The Laplacian matrix Q(G) of a graph G(V, E), where V is the
vertex set containing the N nodes and E is the edge set, is an N 9 N matrix whose
elements are defined as follows:

Qij ¼
di if i ¼ j;
�1 if i 6¼ j and ði; jÞ 2 E;
0 otherwise:

8
<

:
ð1:14Þ

10 M. Baldi et al.

The eigenvalues of Q are called the Laplacian eigenvalues. They are all real and
non-negative, and satisfy the condition: 0 = k1 B k2 B … B kN. k2 is also known
as the algebraic connectivity, and is particularly important; it is equal to zero only
if G is disconnected. Other properties of matrix Q and its eigenvalues can be found
in the literature (see [14], for example).

Let yij = vij - wi/N, i = 1… N, be the components of a vector yj. Through
simple algebra, Eq. 1.13 can be rewritten as follows:

dUh i ¼ �2ð1� aÞ2

N
Uþ 1

d

	

2ð1� aÞ

N

XN

j¼1

yT
j Qyj: ð1:15Þ

Let us define z = (y1
T, y2

T,…, yN
T)T; it is evident that zTz = U. Moreover, let us

consider a block matrix L, with size N2 9 N2, having N repetitions of Q along the
main diagonal and all the other blocks equal to the null matrix. Also L can be
interpreted as a Laplacian matrix, whose eigenvalues coincide with those of Q, but
each appears with multiplicity N. Using these further definitions, Eq. 1.15 can be
rewritten as:

dUh i ¼ �2ð1� aÞ2

N
þ 1

d

	

2ð1� aÞ

N
RQ

" #

U; ð1:16Þ

having denoted by RQ ¼ zTLz=zTz the so-called Rayleigh quotient. So, the value
of a that maximizes dUh i=U results in:

aopt ¼ 1� 1
d

	

RQ
2
: ð1:17Þ

Because of the Courant–Fischer minimax theorem [15], we have k2�RQ� kN .
As a confirmation of the correctness of (1.17), we can observe that, in the case of a
fully-meshed network, all the eigenvalues ki, with i C 2, are equal to N and Eq.
1.17 becomes equal to Eq. 1.11. In general, the value of RQ is not easy to
determine. So, we simplify the problem by approximating RQ with the average of
the non-null eigenvalues, i.e.:

RQ �
PN

i¼2 ki

N � 1
: ð1:18Þ

In [6] we verified that the value of aopt obtainable from this assumption, in case
of r \ 0.6, can be rather different from the actual optimum value. On the contrary,
because of the hypothesis of randomly distributed failures, approximation (1.18) is
much more acceptable when the nodal degree reduction is due to faulty links. This
remark will be confirmed in Sect. 1.5.

By employing the analytical approach, for an RGG with N = 50 and
10 \ dh i\ 49, we have found 0.39 \ aopt \ 0.49. As, from (1.6), such range of
values of dh i corresponds to x \ 0.796, we can expect that aopt does not change
significantly, even for very large failure rates. This conclusion will be confirmed,

1 Performance of Gossip Algorithms in Wireless Sensor Networks 11

in the following section, through numerical simulations, and is different from that
occurring in the case of limited coverage radius, where, in the same range of dh i,
aopt can become as low as 0.2.

1.5 Results

In this section we present a number of simulation results for the RGG with
N = 50. Table 1.1 shows the values of dh i, together with the coverage radius r (for
a non-fully-meshed network with no failures) and the link failure rate x (for a
fully-meshed network affected by failures). In the table, each row specifies r and
x that determine (nearly) the same average connectivity level. So, we are able to
compare the impact of the two different mechanisms that may be responsible for
the reduction in the network connectivity. In the following, the pairs determining
the same connectivity level will be denoted by r/x.

1.5.1 Basic Gossip

The simulated curves of mean normalized error are shown in Fig. 1.2. We can fix
the attention on a specific error value and compare the k* needed. A couple of

Table 1.1 Coverage radius
and failure rates producing
nearly identical average
connectivity

Limited r (x = 0) dh i Failure rate x r�
ffiffiffi
2
p� �

0.3 11.8 0.76
0.4 18.6 0.63
0.5 26.2 0.48
0.6 32.7 0.35
0.7 38.4 0.23
0.8 43.1 0.14
0.9 46.4 0.07

0 500 1000 1500 2000 2500 3000
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

<
e(

k)
>

k

(a)

0 500 1000 1500 2000 2500 3000
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

<
e(

k)
>

k

(b)

Full mesh
x = 0.76
x = 0.63
x = 0.48
r = 0.3
r = 0.4
r = 0.5

Full mesh
x = 0.35
x = 0.23
x = 0.14
r = 0.6
r = 0.7
r = 0.8

Fig. 1.2 e kð Þh i for some values of radius and failure rate x (basic gossip algorithm)

12 M. Baldi et al.

numerical examples are shown in Table 1.2; the k* for the starting full-mesh
network with no link failures is also reported as a benchmark. We notice that both
mechanisms increase the convergence time, but the impact of the limited radius is
stronger. In other words, for a given value of dh i, to achieve the target requires a
longer time (higher k*) when the network is non-fully-meshed because of the
limited coverage radius.

1.5.2 Push-Sum Algorithm

One problem for the push-sum algorithm is the optimization of the share factor a.
The theoretical analysis developed in Sect. 1.4 gives a solid reference that,
however, needs to be verified. For this purpose, we have considered 0.1 B x B 0.9
and, for any value of the failure rate x, we have determined aopt as the value of a
minimizing the averaging time over a large number of repetitions of the random
experiment. The result obtained is shown in Fig. 1.3, as a function of the average
nodal degree. The curve is rather irregular but the optimal a is comprised between
0.43 and 0.48, which is in line with the results of the analysis in Sect. 1.4. The
theoretical approach is not able to distinguish between the case of a limited radius
and that of link failures. From the figure, we see that the actual network behavior is
well predicted by the theory when missing links are distributed at random. When
they follow from a limited coverage radius, instead, numerical simulations give
results significantly different from theoretical expectations, particularly for low
connectivity levels (see dashed line in Fig. 1.3).

Based on the simulation results, we can also say that the optimal value of a is
close to 0.5 for the case of random faults, practically for any value of dh i

Table 1.2 Number of clock
ticks required to reach
e k�ð Þh i ¼ 10�10

r/x k* (limited radius) k* (random failures)

C
ffiffiffi
2
p

/0 2,165 2,165

0.6/0.35 2,661 2,210
0.4/0.63 [3,000 2,347

10 15 20 25 30 35 40 45 50
0.20

0.25

0.30

0.35

0.40

0.45

0.50

α op
t

<d>

Theoretical
Simulation (limited radius)
Simulation (random faults)

Fig. 1.3 Simulated aopt for
the push-sum algorithm

1 Performance of Gossip Algorithms in Wireless Sensor Networks 13

(as observed, this is predicted by the theory), while smaller values should be
adopted for a in the case of limited radius, particularly when r \ 0.6. This
statement is confirmed in Fig. 1.4, where a = 0.3 and a = 0.5 have been con-
sidered for both situations.

While in case of link failures the result for a = 0.5 is better than that for
a = 0.3, if we focus on the results obtained with a significantly limited radius
(r \ 0.6), the opposite occurs for the non-fully-meshed network, where the smaller
(although not necessarily optimum) value of a reduces the convergence time. We
see that, for both values of a, the impact of faulty links is stronger than that of a
limited coverage radius. This is an important difference between the behavior of
the bidirectional algorithm (basic gossip) and the unidirectional one (push-sum).
More will be said in Sect. 1.5.4 about the comparison between the two approaches.

1.5.3 Broadcast Algorithm

The analysis developed in the previous sections has been repeated for the
broadcast algorithm. The results are shown in Fig. 1.5, for some values of dh i.
From the figure, we observe that the behavior of the broadcast algorithm is similar

0 500 1000 1500 2000 2500 3000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

10 0
<

e(
k)

>

k
0 500 1000 1500 2000 2500 3000

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10 0

<
e(

k)
>

k

(a) (b)

x = 0.76
x = 0.63
x = 0.07
r = 0.3
r = 0.4
r = 0.9

Full mesh Full mesh
x = 0.76
x = 0.63
x = 0.07
r = 0.3
r = 0.4
r = 0.9

Fig. 1.4 e kð Þh i for some values of coverage radius r and failure rate x by using the push-sum
algorithm with a a = 0.3 and b a = 0.5

0 500 1000 1500 2000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
<

e(
k)

>

k

Full mesh

x = 0.63
x = 0.07
r = 0.3
r = 0.4
r = 0.9

x = 0.76

Fig. 1.5 e kð Þh i for some
values of radius r and failure
rate x (broadcast algorithm)

14 M. Baldi et al.

to that of the basic gossip and, for the same dh i, convergence of the faulty network
is usually faster than that of the non-fully-meshed network.

1.5.4 Performance Comparison

For the sake of comparison, some results for the various algorithms and some pairs
r/x are summarized in Fig. 1.6. As expected, the broadcast algorithm exhibits the
fastest convergence to the average value, due to its point-to-multipoint nature.
However, the basic gossip algorithm is also able to achieve good performance,
though being simpler and requiring interaction only between couples of nodes. Its
loss in terms of clock ticks, with respect to the broadcast algorithm, is usually
limited within 30%. Moreover, there are situations, for very small coverage radius,
where the basic gossip outperforms the broadcast algorithm (see the case r = 0.3
in Fig. 1.6b).

Performance of the push-sum algorithm is worse. For a network with good
connectivity (see Fig. 1.6a), the push-sum algorithm requires approximately a
doubled number of clock ticks with respect to the gossip algorithm to reach the
same e kð Þh i. This can be justified by considering that, in push-sum, each inter-
action is unidirectional, while in the basic gossip it is bidirectional. If comparison
is made on the number of transmissions, the efficiencies of basic gossip and push-
sum become similar.

1.6 Conclusion

We have developed a numerical analysis of the averaging time for basic gossip,
push-sum and broadcast algorithms, taking into account the impact of link failures,
randomly distributed in the network. In spite of its practical importance, this topic
has been rarely debated in previous literature.

0 500 1000 1500 2000 2500 3000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
<

e(
k)

>

k
0 500 1000 1500 2000

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

<
e(

k)
>

k

(a) (b)
Gossip r = 0.9
Gossip x = 0.07
Push-sum r = 0.9
Push-sum x = 0.07
Broadcast r = 0.9
Broadcast x = 0.07

Gossip r = 0.3
Gossip x = 0.76
Push-sum r = 0.3
Push-sum x = 0.76
Broadcast r = 0.3
Broadcast x = 0.76

Fig. 1.6 e kð Þh i for the considered averaging algorithms in the case of ar = 0.9/x = 0.07 and
br = 0.3/x = 0.76; optimum shares have been used for push-sum

1 Performance of Gossip Algorithms in Wireless Sensor Networks 15

Some important conclusions can be drawn from our analysis. First of all, we
have demonstrated that the convergence of the algorithms is preserved, on average,
regardless of the solution adopted, up to acceptably low values of the mean nor-
malized error.

Then, we have verified that the share factor, when applicable, should be opti-
mized for taking into account the network connectivity. However, starting from the
results known for fully-meshed networks, the optimum share factor for the push-
sum algorithm is less sensitive to the failure rate than to the limited coverage
radius, which is another common reason for reduced connectivity. Moreover, the
assumption of a random distribution for the link failures makes applicable an
approximate, and inherently simple, analytical approach, based on the potential
function, that instead does not provide equally accurate solutions for the case of
limited coverage radius.

References

1. Barrenetxea G et al (2007) DemoAbstract: SensorScope, an urban environmental monitoring
network. In: 4th European conference on wireless sensor networks (EWSN 2007), Delft,
Netherlands, Jan 2007

2. Baker B, Shostak R (1972) Gossips and telephones. Discrete Math 2(3):191–193
3. Berman G (1973) The gossip problem. Discrete Math 4(1):91
4. Boyd S, Ghosh A, Prabhakar B, Shah D (2006) Randomized gossip algorithms. IEEE Trans

Inf Theory 52(6):2508–2530
5. Kempe D, Dobra A, Gehrke J (2003) Gossip based computation of aggregate information. In:

IEEE conference on foundation of computer science, Cambridge, MA, Oct 2003, pp 482–491
6. Zanaj E, Baldi M, Chiaraluce F (2009) Optimal share factors in the push-sum algorithm for

ring and random geometric graph sensor networks. J Commun Softw Syst 5(1):9–18
7. Baldi M, Chiaraluce F, Zanaj E (2009) Fault tolerance in sensor networks: performance

comparison of some gossip algorithms. In: 7th international workshop on intelligent solutions
in embedded systems (WISES 2009), Ancona, Italy, June 2009, pp 11–20

8. Patwari N, Ash JN, Kyperountas S, Hero AO III, Moses RL, Correal NS (2005) Locating the
nodes: cooperative localization in wireless sensor networks. IEEE Signal Process Mag
22(4):54–69

9. Dimakis AG, Sarwate AD, Wainwright MJ (2008) Geographic gossip: efficient averaging for
sensor networks. IEEE Trans Signal Process 56(3):1205–1216

10. Zanaj E, Baldi M, Chiaraluce F (2007) Efficiency of the gossip algorithm for wireless sensor
networks. In: 2007 international conference on software, telecommunications and computer
networks (SoftCOM 2007), Split, Dubrovnik, Croatia, Sept 2007, Paper 7072

11. Zanaj E, Baldi M, Chiaraluce F (2008) Efficiency of unicast and broadcast gossip algorithms
for wireless sensor networks. J Commun Softw Syst 4(2):105–112

12. Baldi M, Chiaraluce F, Zanaj E (2008) Comparison of averaging algorithms for wireless
sensor networks. In: International conference on information and communication
technologies (ICTTA’08), Damascus, Syria, Apr 2008, Paper TEL05_7

13. Merris R (1995) A survey of graph Laplacians. Linear Multilinear Algebra 39(1 and 2):19–31
14. Mohar B (1991) The Laplacian spectrum of graphs. In: Alavi Y, Chartrand G, Oellermann

OR, Schwenk AJ (eds) Graph theory, combinatorics, and applications, vol 2. Wiley, New
York, pp 871–898

15. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge
University Press, London

16 M. Baldi et al.

Chapter 2
Using a Prioritized Medium Access
Control Protocol for Incrementally
Obtaining an Interpolation of Sensor
Readings

Björn Andersson, Nuno Pereira, Eduardo Tovar and Ricardo Gomes

2.1 Introduction

A sensor network comprises a set of computer nodes each one equipped with a
processor, memory, sensors and a transceiver for communications over a (wired or
wireless) channel. The sensor network must obtain an accurate image of physical
phenomena and do so with a high sampling rate in both time and space. A large
number of computer nodes are needed in order to obtain a high sampling rate in
space. But this generates a large number of sensor readings and since these sensor
readings are located on different computer nodes, a significant amount of com-
munication may be necessary forcing a reduction in the sampling rate in time. For
systems with a very large number of computer nodes, it is therefore crucial to
develop techniques that make it possible to obtain a snapshot, an approximate
representation of all sensor readings, and achieve this with a time-complexity (as a
function of the number of nodes) that is small.

A simple approach for obtaining an approximate representation of sensor
readings would be to select a subset of the computer nodes at random and let the
sensor readings at those computer nodes be used for obtaining an interpolation.
Although this is fast, it has the drawback that some computer nodes with extreme
sensor readings may have a significant impact on the interpolation if they would be
selected but they may not be selected and this causes (as illustrated in [1]) the
interpolation to be a poor representation of the physical phenomenon. And this can
cause a sensor network to misperceive its physical environment.

A better approach for obtaining an approximate representation of sensor
readings would be to select a subset of the computer nodes, carefully selected to be
the ones that represent local extreme points and let the sensor readings at those

B. Andersson (&) � N. Pereira � E. Tovar � R. Gomes
CISTER/IPP-Hurray Research Unit, Polytechnic Institute of Porto, Porto, Portugal
e-mail: bandersson@dei.isep.ipp.pt

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_2,
� Springer Science+Business Media B.V. 2011

17

computer nodes be used for obtaining an interpolation. If one computer node had
knowledge of all sensor readings then such a selection would be possible of course
but in practice, a computer node only knows its own sensor reading (unless sensor
readings are communicated) and therefore it has been non-obvious how to
implement such an approach.

Recent work [1, 2] however have shown how to exploit a prioritized medium
access control (MAC) protocol for selecting local extreme points and thereby it
was shown how to quickly obtain an interpolation of sensor readings where sensor
readings were taken by different computer nodes. This work assumes that the
MAC protocol has a very large number of priority levels and that all sensor nodes
know the priority of the node that was granted the channel. Such MAC protocols
are common; the Controller Area Network (CAN) [3] bus is one such example for
wired communication (with more than 300 million units sold) and a similar
technology, WiDOM [2, 4] is available for wireless communication.

The algorithm [1, 2] which exploited a prioritized MAC protocol had a user-
selectable parameter, k, which had the role that the k sensor nodes that contribute
the most to the interpolation being a faithful representation of the physical reality
are selected and the interpolation is based on those k sensor nodes. k is selected
based on the number of local extrema of the signal as explained in [1]. With this
approach it was possible to obtain the interpolation with a time-complexity that is
O(k), that is, the time-complexity is independent of the number of sensor nodes;
yet the result of the interpolation was dependent on all sensor readings. The
algorithm was implemented and tested both in wired systems (using CAN [3]) and
in wireless systems (using WiDom [2, 4]).

The algorithm for obtaining an interpolation (i) had to run until completion and
(ii) it was designed to have no prior knowledge of the physical environment.
Unfortunately, these two facts bring two drawbacks:

1. There are situations where the delay from when the physical world changes
until the computer system can react to this change is two times the duration
required for obtaining the interpolation. (This situation occurs when the envi-
ronment changed just after the algorithm for obtaining the interpolation had
started; when this happens, the algorithm for obtaining the interpolation must
finish execution and then take new sensor readings and finally obtain an
interpolation of these new sensor readings.)

2. It is necessary that the sampling period of an application that uses the inter-
polation is O(k) or greater. If the entire physical environment changes every-
where, it may really be necessary to obtain an interpolation from scratch. But
one can expect that a change in the physical environment (such as a rapid fire,
explosion or deformation) has only local effects initially (during the first
milliseconds) and it changes the entire environment later. It would be desirable
to use a sampling rate so high that the sampling period is independent of k and
independent of the number of nodes, yet the system is able to detect extreme
local changes with a duration of two sampling periods and obtain an image of
the entire physical environment within k sampling periods.

18 B. Andersson et al.

Therefore, we presented, in a workshop paper [5], a new algorithm for
obtaining an interpolation of sensor readings which eliminates the two above
mentioned drawbacks. This chapter is an extension of that paper.

The main idea of the algorithm is that when the system starts-up, an interpo-
lation is obtained using the previously known algorithm [1, 2]. This step of the
algorithm has the time-complexity O(k), which is larger than we desire but it is
done only once. Each computer node now has the k sensor readings that can be
used to form an interpolation of all sensor readings. All computer nodes will now
periodically take sensor readings with a small period; this period is independent of
k and it is independent of the number of computer nodes. All computer nodes take
their sensor readings in parallel and then each computer node computes the
interpolated value at itself and compares it to its own sensor reading. The computer
node whose sensor reading contributes the least to the faithfulness of the inter-
polation is attempted to be deselected and the computer node whose sensor reading
contributes the most to the faithfulness of the interpolation is selected.

We believe this algorithm to be useful for detecting deviations from the
expected behavior in the physical world very quickly, for example detecting the
deformation of mechanical elements (for example in a car or aircraft) in order to
enact appropriate safety actions (such as deciding which airbag to inflate or which
fuel pump to be stopped or which valve to be closed).

The remainder of this paper is organized as follows. Section 2.2 gives pre-
liminaries, that is, the main idea of how a prioritized MAC protocol can be used
for computations and also the system model we will use. Section 2.3 discusses
how to obtain an interpolation; this discussion leads to the new interpolation
scheme. Section 2.4 gives conclusions and future work.

2.2 Preliminaries and Motivation

The basic premise for this work is the use of a prioritized MAC protocol. This
implies that the MAC protocol assures that out of all nodes contending for the
medium at a given moment, the one(s) with the highest priority gain access to it.
This is inspired by Dominance/Binary-Countdown protocols [6]. In such protocols,
messages are assigned unique priorities, and before nodes try to transmit they
perform a contention resolution phase named arbitration such that the node
requesting to transmit the highest-priority message succeeds.

During the arbitration (depicted in Fig. 2.1), each node sends the message
priority bit-by-bit, starting with the most significant one, while simultaneously
monitoring the medium. The medium must be devised in such a way that nodes
will only detect a ‘‘1’’ value if no other node is transmitting a ‘‘0’’. Otherwise,
every node detects a ‘‘0’’ value regardless of what the node itself is sending. For
this reason, a ‘‘0’’ is said to be a dominant bit, while a ‘‘1’’ is said to be a recessive
bit. Therefore, low numbers in the priority field of a message represent high
priorities. If a node contends with a recessive bit but hears a dominant bit, then it

2 Using a Prioritized Medium Access Control Protocol 19

will refrain from transmitting any further bits, and will proceed only monitoring
the medium. Finally, exactly one node reaches the end of the arbitration phase, and
this node (the winning node) proceeds with transmitting the data part of the
message. As a result of the contention for the medium, all participating nodes will
have knowledge of the winner’s priority.

The CAN bus [3] is an example of a technology that offers such a MAC
behavior. It is used in a wide range of applications, ranging from vehicles to
factory automation (the reader is referred to [7] for more examples of application
fields and figures about the use of CAN technologies). Its wide application fostered
the development of robust error detection and fault confinement mechanisms,
while at the same time maintaining its cost effectiveness. An interesting feature of
CAN is that the maximum length of a bus can be traded-off for lower data rates.
It is possible to have a CAN bus with a bit rate of 1 Mbit/s for a maximum bus
length of 30 m, or a bus 1,000 m long (with no repeaters) using a bit rate of
50 Kbit/s. While the typical number of nodes in a CAN bus is usually smaller than
100, with careful design (selecting appropriate bus-line cross section, drop line
length and quality of couplers, wires and transceivers) of the network it is possible
to go well above this value. For example, CAN networks with more than a

Fig. 2.1 Dominance/binary-countdown arbitration motivating examples. a Example of bitwise
arbitration; b example application where N1 needs to know the minimum (MIN) temperature
reading among its neighbors (N2–N6); c possible solution for the example application using a
CAN-like MAC, using fixed priorities for the messages; d possible solution for the example
application exploiting the properties of a CAN-like MAC, where priorities are assigned at
runtime according to the sensed values

20 B. Andersson et al.

thousand nodes have been deployed and they operate in a single broadcast domain
(such networks have been built; see for example [8]).

The focus of this paper is on exploiting a prioritized MAC protocol for effi-
ciently obtaining an interpolation function which approximates the sensor readings
in a geographical area. A key idea in the design of such an algorithm is the use of
a prioritized MAC protocol for performing computations—this is explained next.

2.2.1 The Main Idea

The problem of obtaining aggregated quantities in a single broadcast domain can
be solved with a naïve algorithm: every node broadcasts its sensor reading
sequentially. Hence, all nodes know all sensor readings and then they can obtain
the aggregated quantity. This has the drawback that in a broadcast domain with
m nodes, at least m broadcasts are required to be performed. Considering a network
designed for m C 100, the naïve approach can be inefficient; it causes a large
delay.

Let us consider the simple application scenario as depicted in Fig. 2.1b, where a
node (node N1) needs to know the minimum (MIN) temperature reading among its
neighbors. Let us assume that no other node attempts to access the medium before
this node. A naïve approach would imply that N1 broadcasts a request to all its
neighbors and then N1 would wait for the corresponding replies from all of them.
As a simplification, assume that nodes orderly access the medium in a time
division multiple access (TDMA) fashion, and that the initiator node knows the
number of neighbor nodes. Then, N1 can derive a waiting timeout for replies based
on this knowledge. Clearly, with this approach, the execution time depends on the
number of neighbor nodes (m). Figure 2.1c depicts another naïve approach, but
using a CAN-like MAC protocol.

Assume in that case that the priorities the nodes use to access the medium are
ordered according to the nodes’ ID, and are statically defined prior to runtime.
Note that in order to send a message, nodes have to perform arbitration before
accessing the medium. When a node wins it sends its response and stops trying to
access the medium. It is clear that using a naïve approach with CAN brings no
timing advantages as compared to the other naïve solution (Fig. 2.1b).

Consider now that instead of using their priorities to access the medium, nodes
use the value of its sensor reading as priority. Assume that the range of the analog
to digital converters (ADC) on the nodes is known, and that the MAC protocol can,
at least, represent as many priority levels. This assumption typically holds since
ADC tend to have a data width of 8, 10, 12 or 16-bit while the CAN bus offers up
to 29 priority bits. This alternative would allow an approach as depicted in
Fig. 2.1d. With such an approach, to obtain the minimum temperature among its
neighbors, node N1 needs to perform a broadcast request that will trigger all its
neighbors to contend for the medium using the prioritized MAC protocol.
If neighbors access the medium using the value of their temperature reading as the

2 Using a Prioritized Medium Access Control Protocol 21

priority, the priority winning the contention for the medium will be the minimum
temperature reading. With this scheme, more than one node can win the contention
for the medium. But, considering that at the end of the arbitration the priority of
the winner is known to all nodes, no more information needs to be transmitted by the
winning node. In this scenario, the time to obtain the minimum temperature reading
only depends on the time to perform the contention for the medium, not on m.
If, for example, one wishes that the winning node transmits information (such as
its location) in the data packet, then one can code the priority of the nodes by
adding a unique number (for example, the node ID) in the least significant bits,
such that priorities will be unique.

A similar approach can be used to obtain the maximum (MAX) temperature
reading. In that case, instead of directly coding the priority with the temperature
reading, nodes will use the bitwise negation of the temperature reading as the
priority. Upon completion of the medium access contention, given the winning
priority, nodes perform bitwise negation again to know the maximum temperature
value.

MIN and MAX are just two simple and pretty much obvious examples of how
aggregate quantities can be obtained with a minimum message complexity (and
therefore time complexity) if message priorities are dynamically assigned at
runtime upon the values of the sensed quantity. In Sect. 2.3 we will show how this
technique of using a prioritized MAC protocol for computations can be used for
obtaining an interpolation of sensor readings.

2.2.2 System Model

The network consists of m nodes that take sensor readings where a node is given a
unique identifier in the range 1… m. MAXNNODES denotes an upper bound on
m and we assume that MAXNNODES is known by the designer of the system
before run-time. Nodes do not have a shared memory and all data variables are
local to each node.

Each node has a transceiver and is able to transmit to or receive from a single
channel. Every node has an implementation of a prioritized MAC protocol with the
characteristics as described earlier. Nodes perform requests to transmit, and each
transmission request has an associated priority. Priorities are integers in the range
[0, MAXP], where lower numbers correspond to higher priorities. Let NPRIOBITS
denote the number of priority bits. This parameter has the same value for all nodes.
Since NPRIOBITS is used to denote the number of bits used to represent the
priority, the priority is a number in the range of 0–2NPRIOBITS - 1. Clearly,
MAXP = 2NPRIOBITS - 1.

A node can request to transmit an empty packet; that is, a node can request to
the MAC protocol to perform the contention for the medium, but not send any
data. This is clarified later in this section. All nodes share a single reliable
broadcast domain.

22 B. Andersson et al.

A program on a node can access the communication system via the following
interface. The send system call takes two parameters, one describing the priority
of the packet and another one describing the data to be transmitted. If a node
calling send wins the contention, then it transmits its packet and the program
making the call unblocks. If a node calling send loses the contention, then it waits
until the contention resolution phase has finished and the winner has transmitted its
packet (assuming that the winner did not send an empty packet). Then, the node
contends for the channel again. The system call send blocks until it has won the
contention and transmitted a packet. The function send_empty takes only one
parameter, which is a priority and causes the node only to perform the contention
but not to send any data after the contention. In addition, when the contention is
over (regardless of whether the node wins or loses), the function send_empty
gives the control back to the application and returns the priority of the winner.

The system call send_and_rcv takes two parameters, priority and data to be
transmitted. The contention is performed with the given priority and then the data
is transmitted if the node wins. Regardless of whether the node wins or loses, the
system call returns the priority and data transmitted by the winner and then un-
blocks the application.

A node Ni takes a sensor reading si. It is an integer in the range [0, MAXS] and
it is assumed that MAXS B MAXP.

2.3 Interpolation of Sensor Data with Location

Having seen the main idea of how to take advantage of a prioritized MAC protocol,
we are now in position to present our approach for obtaining an interpolation of
sensor readings. We will do so formally with pseudo-code; this pseudo-code returns
an upper bound on the error of the interpolation. We will first (in Sect. 2.3.1)
present the main idea of the previously known interpolation scheme.

This will lead us (in Sect. 2.3.2) to the new incremental interpolation scheme.
This new incremental interpolation scheme needs to, as an intermediate result,
evaluate the interpolation at certain geographical points. Therefore, we will (in
Sect. 2.3.3) modify this algorithm to perform calculations at those specific points
with additional speed and this results in an improvement of the new incremental
interpolation scheme.

2.3.1 Previously Known Algorithm

We assume that nodes take sensor readings, but we will also assume that a node Ni

knows its location given by two coordinates (xi, yi). With this knowledge, it is
possible to obtain an interpolation of sensor data over space. This offers a compact
representation of the sensor data and it can be used to compute virtually anything.

We let f(x, y) denote the function that interpolates the sensor data. Also let ej

denote the magnitude of the error at node Nj; that is:

2 Using a Prioritized Medium Access Control Protocol 23

ej ¼ sj � f xj; yj

� ��
�

�
� ð2:1Þ

and let e denote the global error; that is:

e ¼ maxj¼1...mej ð2:2Þ

The goal is to find f(x, y) that minimizes e subject to the following constraints: (i) the
time required for computing f at a specific point should be low; and (ii) the time
required to obtain the function f(x, y) from sensor readings should be low. The latter is
motivated by the fact that it is interesting to track physical quantities that change
quickly; it may be necessary to update the interpolation periodically in order to track,
for example, how the concentration of hazardous gases move. For this reason, we will
use weighted-average interpolation (WAI) [9–11]. WAI is defined as follows:

f x; yð Þ ¼

0 if S ¼ ;
sj if 9Nj 2 S : xj ¼ x ^ yj ¼ yP

j2S
sj�wj x;yð Þ

P
j2S

wj x;yð Þ otherwise

8
>><

>>:
ð2:3Þ

where S is a set of nodes used for interpolation. The weights wj(x, y) are given by:

wjðx; yÞ ¼
1

xj � x
� �2þ yj � y

� �2 ð2:4Þ

Intuitively, Eqs. 2.3 and 2.4 state that the interpolated value is a weighted
average of all data points in S and the weight is the inverse of the square of the
distance. There are many possible choices on how the weight should be computed

24 B. Andersson et al.

as a function of distance; the way we have selected is intended to avoid calcula-
tions of square root in order to make the execution time small on platforms that
lack hardware support for floating point calculations. This is the case for typical
sensor network platforms [12–14].

The original version [9] of weighted-average interpolation uses all available
sensor readings for interpolation. But this would imply that computing Eq. 2.3
from sensor readings has a time complexity of O(m). Fortunately, it is often the
case [15] that sensor readings exhibit spatial locality; that is, nodes that are close in
space give similar sensor readings. For this reason, the interpolation will offer a
low error even if only a small number of carefully selected nodes are in S.

Hence, the goal is now to find those nodes that contribute to producing a low
error in the interpolation as given by Eq. 2.3. We select a number of k nodes that
contribute to lowering the error of the interpolation, where k is a parameter of the
algorithm that will control the accuracy of the interpolation. Recall that a priori-
tized MAC protocol can find the maximum among sensor readings. We can exploit

Fig. 2.2 Interpolation Example 1. a The original signal that varies over space; b noise added to
the original signal; c the result of the interpolation given by our algorithm. The location of the
subset of k = 6 nodes that were selected to be used in the interpolation is indicated with vertical
lines; d example result of the interpolation when nodes are selected randomly

2 Using a Prioritized Medium Access Control Protocol 25

this feature to find k nodes that offer a low value of the error. For this, the proposed
distributed algorithm starts with an interpolation being a flat surface and then
performs k iterations, where at each iteration the node with largest magnitude of
the error between its sensor reading and the interpolated value will be the winner
of the contention.

Algorithm 1 is designed based on this principle and it is previously published [1].
It computes (on line 5) the error. This error is concatenated with the identifier of the
node (together this forms the priority of the message) ensuring that all priorities are
unique. All nodes send their messages in parallel (on line 9) and exactly one will win
the contention. Recall from Sect. 2.2.2 that when nodes call send_and_rcv, then
both the priority of the winner and the data transmitted by the winner are returned to
the application on every node. This packet is added (on line 10) to the set S, which
keeps track of all received packets related to the problem of creating an
interpolation.

Figures 2.2 and 2.3 illustrate the operation of this scheme. It can be seen that
the interpolation result is smooth and that it tracks well the original signal.
However, performing weighted-average interpolation with six randomly selected
nodes gives poor interpolation. This is illustrated in Fig. 2.2d.

Fig. 2.3 Iterations concerning interpolation Example 1. a At the beginning, there is no point
included in S. Therefore, from the definition of f(x, y) in Eq. 2.3 it results that f(x, y) = 0. This
gives a plane surface; b then, each node calculates the error between its sensor reading and the
starting plane surface. This error is used in the contention of the MAC protocol, causing the node
with the largest error to win, and thus, it is inserted into S; c–e nodes proceed similarly,
calculating their error to the current interpolated surface and adding the node with the largest
error to the interpolation, until the set S has k points; f we finally obtain the result of the final
iteration, for k = 6

26 B. Andersson et al.

2.3.2 New Algorithm

The previously proposed algorithm [1] (which was presented in previous section and
stated in Algorithm 1) obtained an interpolation from scratch every time it was run.
As mentioned in the introduction of this paper, this brings two drawbacks. It is worth-
while to counter those drawbacks and therefore we need to device a new algorithm.

Algorithm 2 shows the new interpolation scheme as pseudo-code. The algo-
rithm works as follows. First, Algorithm 1 is called and this gives us a set S with
the selected data points. Then the algorithm executes lines 4–17 periodically; it is
assumed that the execution of lines 4–17 is initiated periodically. The execution of
lines 4–17 differs from the one in Algorithm 1 in only two respects. First, only one
data point is selected instead of k data points. Second, the computation of lines
4–17 begins by removing one element in S (done at lines 5–6) and then a new
element is added (done at line 17). The rationales for these adding and deleting
rules are as follows. We desire to find the computer node whose sensor reading
contributes the least to a faithful representation of the physical world. It would be
possible to find that out using the prioritized MAC protocol but this would require
some communication. Instead, we simple remove the node which was added to
S least recently (done at lines 5–6). Then line 17 adds the element that contributes
the most to a faithful representation of the physical world.

2 Using a Prioritized Medium Access Control Protocol 27

We can distinguish between two cases. One case is that the element removed (at
lines 5–6) and the element added (at line 17) are the same. This occurs when the
new sensor readings obtained at line 4 changed very little.

Another case is that the element removed (at lines 5–6) and the element added
(at line 17) are not the same. This occurs when the new sensor readings obtained at
line 4 changed a lot and therefore it is necessary that the set S is modified to reflect
the changes in the physical environment.

Note that the lines 4–17 can be executed very quickly; only one transmission
(line 16) is needed. Executing the lines 8 and 10 have time-complexity O(k) and
this is undesirable though. Therefore, the next section will present an improved
version of Algorithm 2 which avoids this potential performance bottleneck.

2.3.3 An Improved Version of the New Algorithm

Evaluating f(xi, yi) can be performed quickly and easily if Ni [S. The result is
simply si as can be seen from Eq. 2.3. Evaluating f(xi, yi) quickly for the case
Ni 62 S requires additional improvements of the algorithm though. We can note
that each iteration of the lines 4–17 in Algorithm 2 evaluates f(xi, yi) based on
elements in the set S. Since this set has k elements, each of these evaluations has
time complexity O(k). Recall (from Eq. 2.3) that for this more complex case that
we are discussing now, f(xi, yi) is defined as:

f x; yð Þ ¼
P

j2S sj � wjðx; yÞ
P

j2S wjðx; yÞ
ð2:5Þ

Let us define numi and denomi as:

numi ¼
X

j2S

sj � wjðx; yÞ ð2:6Þ

and

denomi ¼
X

j2S

wjðx; yÞ ð2:7Þ

Hence, we can clearly (for this more complex case) write f(xi, yi) as:

f x; yð Þ ¼ numi

denomi
ð2:8Þ

We can clearly evaluate f(xi, yi) on line 8 or 10 in Algorithm 2 by calculating
f(xi, yi) from Eq. 2.8. And we can update numi and denomi whenever the set
S changes. Therefore, when we add a new node to S, we simply have to also add an
extra term to numi and denomi. Analogously, removing a node from S requires that
we subtract a term. Based on this observation, we can reformulate Algorithm 2.

28 B. Andersson et al.

2 Using a Prioritized Medium Access Control Protocol 29

Algorithm 3 shows this improved version of Algorithm 2. It can be seen that
the execution of the lines 17–44 is independent of m and it is also independent of k.
Note also that each line can execute very quickly. In particular, note that line 36,
send_and_rcv, can be executed within 3 ms if the hardware platform from [2]
is used. Because the execution of the lines 17–44 can be performed at such a high
speed we see that it is possible to build a sensor network that monitors its
environment by obtaining an interpolation as a representation of the physical world
and obtain an update of that interpolation very quickly. Any extreme localized
change in the physical environment will be detected and its position will be found
within just 3 ms. Future hardware developments may make it even faster.

2.4 Conclusions

We have presented a new approach for obtaining an interpolation based on sensor
readings. We left open the problem of analyzing the error of the interpolation and
also finding out whether smaller errors can be achieved if knowledge about the
physical phenomenon is known.

Acknowledgements This work was partially funded by CONET, the Cooperating Objects
Network of Excellence, funded by the European Commission under FP7 with contract number
FP7-2007-2-224053, the ARTISTDesign Network of Excellence on Embedded Systems Design
ICT-NoE- 214373 and by the Portuguese Science and Technology Foundation (Fundção para
Ciência e Tecnologia—FCT) and the project SmartSkin supported by ISEP.

References

1. Andersson B, Pereira N, Elmenreich W, Tovar E, Pacheco F, Cruz N (2008) A scalable and
efficient approach to obtain measurements in CAN-based control systems. IEEE Trans Ind
Inform 4(2):80–91

2. Pereira N, Gomes R, Andersson B, Tovar E (2009) Efficient aggregate computations in large-
scale dense WSN. In: 15th IEEE real-tune and embedded technology and applications
symposium (RTAS’09), San Francisco, CA, USA

3. CAN Specification, ver: 2.0 (1991) Bosch GmbH, Stuttgart
4. Pereira N, Andersson B, Tovar E (2007) Widom: a dominance protocol for wireless medium

access. IEEE Trans Ind Inform 3(2):120–130
5. Andersson B, Pereira N, Tovar E, Gomes R (2009) Using a prioritized medium access control

protocol for incrementally obtaining an interpolation of sensor readings. In: Proceedings of
the 7th workshop on intelligent solutions in embedded systems (WISES’09), Ancona, Italy

6. Mok AK, Ward S (1979) Distributed broadcast channel access. Comput Netw 3:327–335
7. (CiA), CAN in automation website [Online]. http://www.can-cia.org
8. Kimaldi, network of readers website section [Online]. http://www.kimaldi.com/kimaldi_eng/pro

ductos/lectores_de_tarjetas/red_de_lectores_can/red_de_lectores_ampliacion_de_informacion
9. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In:

Proceedings of the/96823rd ACM national conference, pp 517–524

30 B. Andersson et al.

10. Tynan R, O’Hare G, Marsh D, O’Kane D (2005) Interpolation for wireless sensor network
coverage. In: Proceedings of the second IEEE workshop on embedded networked sensors,
pp 123–131

11. Sharifzadeh M, Shahabi C (2004) Supporting spatial aggregation in sensor network
databases. In: Proceedings of the 12th annual ACM international workshop on geographic
information, pp 166–175

12. Crossbow, MICA2—wireless measurement system product datasheet. http://www.xbow.com/
products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf

13. Crossbow, MicaZ—wireless measurement system product datasheet. http://www.xbow.com/
products/product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf

14. Polastre J, Szewczyk R, Culler D (2005) Telos: enabling ultra-low power wireless research.
In: Proceedings of the fourth international conference on information processing in sensor
networks: special track on platform tools and design methods for network embedded sensors
(IPSN/SPOTS’05). IEEE Computer Society, New York, pp 364–369

15. Guestrin C, Bodik P, Thibaux R, Paskin M, Madden S (2004) Distributed regression: an
efficient framework for modeling sensor network data. In: Proceedings of the third
international conference on information processing in sensor networks (IPSNO4)

2 Using a Prioritized Medium Access Control Protocol 31

Chapter 3
Embedded Systems in the Poseidon MK6
Rebreather

Microcontroller Network in a Life Supporting
System

Arne Sieber, Nigel A. Jones, Bill Stone, Richard Pyle, Bernhard Koss
and Kurt Sjöblom

3.1 Introduction

In the past 30 years, underwater activities have registered a steep increase across
Europe, going from a few thousand people in the 1980s, when diving was preva-
lently an elite activity, to about 5 million today. The typical recreational diver uses
a self contained underwater breathing apparatus (SCUBA), where breathing gas is
stored in a tank at a pressure up to 300 bar. A one or two stage pressure regulator
reduces that pressure to ambient pressure allowing the diver to breathe. Exhaled gas
is then vented into the environment (open circuit). The first stage reduces the tank’s
pressure to an intermediate pressure around 8–10 bar higher than ambient pressure.
The second stage, also known as the regulator, reduces the intermediate pressure to
ambient pressure thus allowing the diver to breath underwater. Exhaled air is then
vented through an exhaust valve into the water. The maximum time a diver can stay
under water is mainly determined by the amount of gas he is carrying, the depth,
and the breathing volume per minute. In normal conditions during a relaxed dive a
diver only metabolizes about 0.8–2.5 bar l/min, but the overall gas consumption is

A. Sieber (&) � K. Sjöblom
Poseidon Diving Systems AB, Goeteborg, Sweden
e-mail: asieber@gmx.at

N. A. Jones
R.M.B. Consulting Inc, New Market, MD, USA

B. Stone
Stone Aerospace, Del Valle, TX, USA

R. Pyle
Bishop Museum, Honolulu, HI, USA

B. Koss
Scuola Superiore Sant’Anna, Pisa, Italy

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_3,
� Springer Science+Business Media B.V. 2011

33

much higher (circa 20 bar l/min on the surface to for example 100 bar l/min
at 40 m), the gas efficiency of such open circuit systems is very low. An alternative
with a much higher gas efficiency is so called rebreather or closed circuit diving
systems [1, 2].

The main idea of a rebreather is that exhaled gas is collected in a flexible bag,
the so called counterlung, CO2 is chemically filtered in a scrubber and metabolized
oxygen is substituted with fresh oxygen from a small tank. As the breathing gas is
recycled, only small tanks have to be carried for sufficient gas support. During
descent, the gas inside the loop is compressed, thus additional gas needs to be
added. Breathing pure oxygen is only safe to a maximum depth of 6 m, thus a
diluent gas is needed to keep the partial pressure of O2 (pO2) inside the loop below
toxic values (maximum pO2: 1.4–1.6 bar). In addition to high gas efficiency that
allows long diving times, rebreathers also offer advantages like silence (no exhaled
gas creating ‘‘loud’’ bubbles) and warm and humid breathing gas. Rebreathers are
classified into either semi-closed circuit rebreathers (SCRs) or manually or elec-
tronically controlled closed-circuit rebreathers (mCCR or eCCR; CCR). In closed
circuit rebreathers the pO2 inside the loop is measured with one or for redundancy
purposes several pO2 sensors (Fig. 3.1). Dependent on the design of the system,
the pO2 is then controlled by either manual O2 injection or electronically
controlled O2 injection, typically by using a solenoid. The electronic control
usually includes one or two microcontrollers. As well as pO2 control, the micro-
controllers usually also perform decompression calculations. In terms of safety
requirements, rebreather diving systems fall under the Personal Protective
Equipment Directive [3]. CE marking according to EN14143 (normative for
rebreather diving systems [4]) also requires a notified body.

Fig. 3.1 Standard
components of an
electronically controlled
closed circuit rebreather:
1 mouthpiece, 2 exhale
counterlung, 3 overpressure
valve, 4 carbon dioxide
scrubber, 5 oxygen cylinder,
6 diluent cylinder, 7, 8
pressure regulators, 9 manual
diluent valve, 10 solenoid,
11 pO2 sensors, 12
microprocessor, 13 inhale
counterlung, 14 display

34 A. Sieber et al.

Traditionally CCR diving requires continuous high level training and technical
understanding of the equipment so that the diver is able to safely dive and second
to detect and safely handle malfunctions of the system.

Thus most rebreathers, available on the market today, address very advanced
(mostly technical) divers. A recreational diver, with limited diving experience and
low technical understanding is most likely not able to handle such systems.

The Poseidon MK6 closed circuit rebreather is especially designed for the
recreational diver. A network of microcontrollers is the basis to assure maximum
safety of the diver and to facilitate operation. Sophisticated software monitors and
controls the system, and in the case of a failure, alarms are initiated. This allows
the user to enjoy his (recreational) dive without continuously checking instru-
ments. In the case of a problem, the user will be warned and eventually, in the case
of a severe problem, the user has to abort the dive by using the system in open
circuit mode. While the previous article in Popular Science [5] and in IEEE
spectrum [6] were presenting the idea of the Poseidon MK6 from the end users
point of view, the present paper is focusing on the embedded systems and the
algorithms incorporated in the design. The Poseidon MK6 has been briefly pre-
sented at the WISES 2009 workshop [7].

3.2 Methods

3.2.1 Mechanical Design of the System

Figure 3.2a shows the back view of the MK6. The scrubber is placed in the center.
Fast scrubber change is assured by using a pre packed scrubber instead of a user
packable one. Moreover this helps to avoid accidents that happen due to incorrect
packing techniques. Next to the scrubber the diluent tank and the O2 tank are
mounted. On top of the scrubber there sits the backpack electronics. The battery
(Fig. 3.2c) is plugged into the backpack.

Figure 3.2b shows the handset. The IrDA port is located to the right of the
LCD. Moreover there is a light sensor incorporated for automatic adjustment of the
LCD’s backlight. On the back of the handset two contacts are used as a wet-
switch; as soon as the contacts are in water the system is activated. Figure 3.2d
shows the mouthpiece with the open circuit (OC)/closed circuit (CC) switch. On
top of the mouthpiece there is the so called head up display (HUD). It includes a
red warning LED, a vibrator motor and 2 magnetic (Hall) sensors, which can
detect the position of the OC/CC switch.

3.2.2 Embedded Systems in the MK6

It is clear that malfunctions of such a life supporting system have to be seen as
potentially life threatening. The components have to be carefully selected to

3 Embedded Systems in the Poseidon MK6 Rebreather 35

achieve maximum reliability. As this is an autonomous battery powered system,
special attention has to be directed to the power consumption of each component.

Until now most of the commercially available rebreathers use at least two
separate sets of electronics to monitor and control the pO2 inside the breathing
loop. In the case of a failure of the main electronics, the second electronics is used
for manual control of the system using manual gas injection buttons.

The MK6 is designed in a different way. Instead of having two complete
separate sets of electronics, the system is based on a network of microcontrollers
(Fig. 3.3). All of them can communicate via a network. In the case of a failure,
three nodes in the network are able to warn the diver and depending on the severity
of the failure, encourage him to abort the dive using the system in the alternative
open circuit mode.

The ATmega 8 bit RISC microprocessor family from Atmel was chosen for the
design of the system as they are offered in a wide variety of package styles, have
low power consumption over a wide operation voltage range and allow excellent
code density.

Fig. 3.2 a Scrubber housing with backpack on top and tanks; b display; c battery; d mouthpiece

36 A. Sieber et al.

3.2.2.1 Backpack

The backback (Fig. 3.2a) processor’s main function is to control the pO2 inside the
loop. The core component is an ATmega processor. A digital ambient pressure
sensor (Intersema, Switzerland) is read out via a derivative of the serial peripheral
interface (SPI). The pO2 sensors are amplified and connected to the inputs of the
analog to digital converter of the microprocessor. Two high pressure sensors are
mounted on the pressure regulators on the O2 and the diluent tank. The analog
outputs of these are already temperature compensated and amplified. These signals
can be sampled directly by the analog digital converter. The electronics is
encapsulated in polyurethane.

Fig. 3.3 Electronic
components of the system

3 Embedded Systems in the Poseidon MK6 Rebreather 37

3.2.2.2 Handset

The handset contains a custom LCD. Below this, an ATmega processor is situated.
A light intensity sensor allows automatic regulation of the backlight. An IrDA
transceiver is situated on the right of the display. An IrDA encoder is used for
interfacing the ATmega’s USART to the IrDA transceiver. A digital interface to a
PC is necessary for two reasons. Firstly it allows dive data download and post dive
analysis. Dive specific data like depth, time, pO2, and decompression data are
stored in an onboard serial memory. Secondly the interface permits reconfiguration
of the rig and firmware update. In principle also a wired connection is possible,
which requires an expensive watertight connector. Data download to a mobile
device is also desirable, thus it was decided to use a wireless link. To establish an
IrDA connection the two communication devices have to be pointed at each other.
Having several units next to each other (for example in a diving school) it is quite
unlikely that a link would be established with the wrong unit. Using Bluetooth,
where communication within a 10 m range is feasible, it is theoretically possible,
that one user connects to the wrong machine. Especially when performing firm-
ware updates or configuring the system, communication with the wrong system
could be life threatening. IrDA was chosen mainly for safety reasons. To achieve
water pressure resistance the Handset is encapsulated in a silicon gel.

3.2.2.3 Battery

The air filled watertight and pressure resistant battery pack houses one recharge-
able LiIon cell. It also incorporates an ATmega processor and a 4 MBit external
Flash memory chip. All relevant dive data are stored in that location. The battery
pack also houses a speaker and a pair of orthogonally mounted bright red warning
LEDs. The battery pack can be inserted in an external charger module. This one
also offers a USB port for dive data download.

3.2.2.4 HUD

The HUD is mounted above the mouthpiece. It has 2 main functions:

• it detects with 2 magnetic sensors if the mouthpiece switch is in OC or CC
position (the rotating cylinder in the mouthpiece is equipped with 2 magnets).
The information about the position is broadcasted on the bus;

• it alarms with a bright red LED and a vibrator motor like for example in the case
of malfunctions of the rebreather or if depth limits are exceeded.

3.2.2.5 Communication

Four processors are incorporated in the design. Each one of the processors has to be
able to communicate with the others. As detailed above, the backpack is responsible

38 A. Sieber et al.

for controlling the pO2 inside the loop and sensor signal readout. All the other
components receive data from the backpack, and in the case of a problem, alarm the
user. The communications bus allows multi-mastering and thus allows any pro-
cessor to talk to any other.

3.2.2.6 Firewall

For interfacing and upgrading the MK6 with additional hardware, a ‘‘firewall’’ can
be optionally integrated. The firewall is based on another ATmega microcontroller.
The firewall acts as an interface between the MK6 and the external hardware.
Communication between the firewall and the external hardware takes place via a
USART.

3.2.3 Algorithms

The software of the system was developed using Embedded Workbench and
visualSTATE (both from IAR systems).

3.2.3.1 State Machine

The architecture of the system is a state machine. With sufficient power, the possible
machine states can be either Running, Start up or Power Down. During start up
multiple pre dive tests (Sect. 3.2.3.2) are carried out. Running includes ‘‘ready to
dive’’, meaning that the system has successfully passed the pre-dive tests, ‘diving’
(system is under water) and ‘post dive’ (back on the surface). In the power down
state the system’s microcontrollers are in a standby mode, which while dramatically
lowering power consumption, still allows them to respond to certain inputs.

3.2.3.2 Pre-dive Checks

For a life supporting system it is essential that all the components are correctly
working. The 35 pre-dive checks of the MK6 include firstly checks of the basic
electronics and then checks of the sensors and the overall machine. The electronic
tests include:

• current consumption of electronics (parts are switched on one after the other);

– all four microcontrollers,
– solenoids,
– pressure sensors,
– alarm LED’s,

3 Embedded Systems in the Poseidon MK6 Rebreather 39

– vibrator,
– speaker:

• memory of the microcontrollers (checksums).

Most of the dive relevant data is stored twice in the internal EEPROMs, thus in
the case of a failed checksum test, information can be recovered from the second
data set. Even if the electronic check of the solenoids or the pressure sensors are
passed, correct function is not guaranteed (it was just an electronic check). In the
second part of the pre dive checks their correct function is validated:

• the tank pressures are measured;
• the battery’s capacity is checked;
• the correct detection of the OC/CC mouthpiece switch is validated;
• a positive loop pressure test is carried out (the loop is inflated to a certain

pressure) this allows checking:

– if the solenoids can pass gas,
– if the solenoids are not leaking,
– if the depth sensor can measure micro-pressure changes,
– the over pressure valve.

In the next step the pO2 sensors are calibrated. Here the oxygen sensor mem-
branes are flushed with pure oxygen. In the second part of that calibration the pO2

sensors are flushed with diluent for 20 s. This allows checking the sensors for
linearity and the correct time constant (typically pO2 sensors have a t90 time
constant of about 6 s at 20�C).

3.2.3.3 pO2 Control Algorithm

The major task of the running state is the control of the pO2 inside the loop. As
detailed earlier, the pO2 inside the loop is measured with two pO2 sensors. In the
case of a too low pO2, O2 from the O2 tank is injected via a solenoid into the loop.
The pO2 setpoint is dependent on several parameters:

• depth of the diver;
• configurable limits (pO2 min 0.35–0.9 bar, pO2 max: 0.5–1.4 bar);
• decompression ceiling (during a dive the body is exposed to an increased

pressure, thus the human body is saturated with inert gas such as nitrogen (that is
a part of the breathing gas). If the tissue saturation tensions are too high, an
immediate return to the surface might be dangerous, thus decompression stops
have to be included. A ‘‘ceiling’’ is calculated, representing the minimum depth
to which a diver can ascend safely.)

Figure 3.4 details the control of the pO2 setpoint over depth. Traditional
electronically controlled rebreathers use normally 2 setpoints, one for shallow and
the second for deeper parts of the dive. Operating such a system includes setting

40 A. Sieber et al.

the setpoints and eventual manually selecting them underwater. As the partial
pressure of a gas component in a mixture depends on its fraction and the ambient
pressure, control of the pO2 in shallow water, where large relative pressure
changes occur often, is difficult. Typical problems are that a lot of O2 is injected,
resulting in too much positive buoyancy. In order to relieve the recreational diver
from manually selecting the pO2 setpoint and difficult buoyancy control in shallow
water, instead of using fixed setpoints, the pO2 is controlled in the MK6 according
to a function detailed in Fig. 3.4.

3.2.3.4 Sensor Signal Validation

Prior to the advent of the MK6, the norm in measuring the pO2 in rebreathers was
to use three oxygen sensors and to use some form of voting logic to determine the
correct pO2. However such a scheme implicitly assumes that sensor failures are
statistically independent, or, to put it in another way, that two sensors would not
fail at the same time for the same cause. This is a very dubious assumption. The
approach taken in the MK6 is to validate the performance of the primary sensor
throughout the dive. This is done by periodically exposing the primary sensor to a
known pO2 and determining that the sensor responds correctly. This not only
allows Poseidon to determine that the sensor is behaving correctly, it also allows
them to show that the sensor is linear in the hyperoxic region. Conversely, other
rebreathers merely ‘hope’ that the sensor is operating correctly in this region. The
use of a second (truly redundant) pO2 sensor allows for detection of other classes
of failures, including leaking solenoids. More detailed information about the
principle of sensor signal validation principle can be found in [8, 9].

3.2.3.5 Controlling Resource Algorithm

Open circuit divers usually have to check their diving computers for their calculated
no decompression time (the time remaining for an ascent to the surface without
decompression stops) and the tank pressure gauge to decide when they have to start
their ascent. In the MK6 the controlling resource algorithm attempts to predict the

0

20

40

60

80

100

120

140

0 50 100 150 200

p
O

2
 (

0,
1

b
ar

)
Depth (0,1 m)

PO2 Setpoint v DepthFig. 3.4 Setpoint control

3 Embedded Systems in the Poseidon MK6 Rebreather 41

remaining dive time. It takes into account the decompression status, remaining tank
pressures, the O2 consumption rate and the battery consumption rate.

3.2.3.6 Software Update

As detailed above, an IrDA port is integrated in the handset. Via this port it is
possible to connect the MK6 to a PC. PC software was developed to allow both
easy dive data download and firmware update too. To perform a firmware update,
an encrypted data package is uploaded to the handset’s processor and then dis-
patched to the other processors in the network.

3.3 Results

The Poseidon MK6 was launched and presented to the public on the major diving
trade shows in the world. It only weights 18 kg, less than a standard 12l SCUBA
set, but allows at least 3–4 times longer diving times. A test team was using the
first units under various conditions including also decompression dives. The MK6
was certified according to EN14143.

3.4 Discussion

The MK6 is an innovative electronically controlled rebreather designed to address
the needs of a recreational diver. Automatic pre-dive checks facilitate the operation
and shorten preparation times. Continuous sensor signal validation ensures maxi-
mum safety of the system. Multiple networked microprocessors provide a distrib-
uted alarm function. All of the processors are monitoring the bus and the system
status, thus in the case of a failure, the user will be warned and then can switch the
OC/CC lever on the mouthpiece to open circuit mode and safely abort the dive.

The safe and easy operation of a rebreather is the key element for wide
acceptance on the recreational market. The MK6 with all its safety functions and
automated tests is designed to fulfill these needs and will allow the recreational
diver to enjoy silent and bubble free diving. This will allow the recreational diver
much better integration into the underwater environment compared to using open
circuit systems.

3.5 Outlook/Ongoing Work

As stated above, the MK6 was developed especially for the needs of recreational
divers. As the system is smaller, lighter and easier to prepare than other
(technical) rebreathers on the market, it also attracts the attention of technical

42 A. Sieber et al.

and professional divers. In order to safely allow deeper and longer diver dives beyond
recreational limits, an extension to the MK6 was developed together with the Scuola
Superiore Sant’Anna in Pisa, Italy and Divesystem in Massa Marittima, Italy. This
extension consists of a completely independent secondary set of electronics, also
based on an Atmel ATmega processor. It has its own decompression algorithms and
includes readout of a third pO2 sensor. Moreover via the above described firewall it
can read out the main parameters of the MK6, such as depth, pO2, ceiling, etc.

Figure 3.5 shows this upgrade. Adjacent to the electronics is a gas switch,
which offers additional redundancy:

• in the cases of the primary MK6 electronic failure, the unit pO2 in the loop can
be controlled manually (therefore the gas block is equipped with 2 manual gas
addition buttons for O2 and diluents gas);

• in the case of a failure of all pO2 sensors, the unit can be used in a self mixing
semi closed mode, where O2 and diluents gas are mixed with 2 sonic orifices.

Fig. 3.5 Gasblock

Fig. 3.6 Innovative
graphical head up display
mounted on a commercial
diving mask

3 Embedded Systems in the Poseidon MK6 Rebreather 43

For depths greater than 20 m the diver uses semi closed mode 2 (SCR2),
between 20 and 6 m the diver uses semi closed mode 1, and shallower than 6 m
the diver uses pure O2 for accelerated decompression. The orifices can be
changed by the user and adapted to different depths and gas mixtures.

Figure 3.6 shows an innovative display that can be mounted directly on a diving
mask. It consists of a 128 9 64 pixels micro OLED display. A first prototype was
discussed in [10].

This enhanced system is designed to allow diving the Poseidon MK6 with He
mixtures. In that way, dives deeper than 50 m are possible. Moreover the ability to
manually control the system (2 manual injection buttons for O2 and diluent) or to
use the unit as a semi closed rebreather offers maximum redundancy. This
increases the safety of the diver, which is especially necessary, when the diver
cannot return to the surface due to decompression obligations or because he simply
cannot due to mechanical reasons—for example during a cave or wreck dive.

References

1. U.S. Navy Diving Manual (2008) Revision 6. SS521-AG-PRO-010. Direction of commander.
Naval sea systems command, USA, vol 4

2. NOAA Diving Manual (2001) Diving for Science and Technology, 4th edn. US Department
of Commerce, National Technical Information Service, Springfield USA. Chapter 3, pp 7–8,
ISBN: 0-941332-70-5

3. Personal Protective Equipment (PPE) Directive 89/686/EEC. Available at http://ec.europa.
eu/enterprise/sectors/mechanical/documents/legislation/personal-protective-equipment/
index_en.htm. Accessed 26 Apr 2010

4. EN14143:2003. ISBN 058042738-2; 2003
5. Best of what’s new 2008 (2008) Recreation, poseidon discovery rebreather. Popular Science,

December 2008, p 94
6. Shreeves K (2009) Winner: poseidon discovery. IEEE Spectrum, 1.2009, p 3, pp 20–21
7. Sieber A, Jones NA, Stone B, Pyle R, Koss B, Sjoeblom K (2009) Embedded systems in the

poseidon MK6 rebreather. WISES 2009, Italy
8. Sieber A, Koss B, Bedini R, L’Abbate A, Dario P (2008) Novel controller for rebreather

diving systems—true sensor signal validation and safe oxygen injection. Biodevices 2008,
Funchal

9. Sieber A, L’Abbate A, Bedini R (2008) Oxygen sensor signal validation for the safety of the
rebreather diver. Diving Hyperb Med 38:38–45

10. Koss B, Bedini R, Woegerer C, L’Abbate A, Dario P, Sieber A (2008) Rebreather diving
safety: a novel graphic head up diving computer. EUBS Conference 2008, Graz, Austria

44 A. Sieber et al.

Chapter 4
Embedded Data Logging Platform
for Research in Diving Physiology

Monitoring ECG and Blood Oxygenation of
Apnea Divers

Benjamin Kuch, Remo Bedini, Antonio L’Abbate, Matthias Wagner,
Giorgio Buttazzo and Arne Sieber

4.1 Introduction

Medical concerns about professional (commercial, scientific, rescue, etc.) as well
as recreational diving safety derive from two major shortcomings: scanty
knowledge of diving physiology and lack of monitoring of vital parameters during
diving. Both deficiencies are virtually related to the total absence of instrumen-
tation suitable for underwater measurements of simple but crucial physiological
parameters such as heart rate, blood pressure, cardiac function, blood oxygen
saturation, etc. Actually, none of the available clinical devices used in everyday
clinical practice for assessing health status can be used underwater because of a
variety of problems related to the liquid environment, especially its salinity and the
high hydrostatic pressure. Thus, with regard to performance of physiological
measurements, underwater medicine is still at the level it was centuries ago.

With regards to the lack of direct measurements, the results of series of ‘models’
of underwater diving are considered as valid surrogates and inferences from the
clinical world are commonly adopted. Unfortunately, both processes are intrinsically

B. Kuch (&) � G. Buttazzo
Real-Time Systems Laboratory, Scuola Superiore Sant’Anna, Pisa, Italy
e-mail: benjamin.kuch@gmx.de

R. Bedini
CNR-Institute of Clinical Physiology, Pisa, Italy

A. L’Abbate
Extreme Center, Scuola Superiore Sant’Anna, Pisa, Italy

M. Wagner
University of Applied Science Frankfurt, Frankfurt, Germany

A. Sieber
Institute of Micro and Nanotechnology, Gothenburg, Sweden

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_4,
� Springer Science+Business Media B.V. 2011

45

uncertain and scientifically incorrect. Thus, the transfer to the underwater environ-
ment of routine clinical instruments would represent a great advancement, both in
terms of knowledge and safety, just as it has already occurred in space medicine. This
task requires designing novel underwater diagnostic and monitoring instrumentation
and developing ad hoc support infrastructure. Beyond the design of waterproof
instruments, special attention must be paid to selecting, placing and protecting the
sensors and transducers especially for long term monitoring.

Measurement of underwater blood pressure was detailed somewhere else [1].
The idea of the present work was to develop a platform that is able to record
physiological parameters, but also physical parameters like water temperature and
water pressure and store them on suitable memory. Minimum needed recording
time is 8 h [2].

With regards to diving, O2 is of special interest. Under normal conditions, more
than 98% of the O2 in the blood normally binds to Hemoglobin (Hb) in the red
blood cells. The rest is dissolved in plasma. In arterial blood, at a normal pO2 of
13 kPa, the arterial O2 saturation of Hemoglobin (saO2) is about 97.5%. In the
venous blood the pO2 drops to 5 kPa which corresponds to a venous O2 saturation
of Hemoglobin (svO2) of approximately 75%. Thus saO2 reflects the amount of O2

that the blood can deliver to the tissues. The maximum possible arterial oxygen
saturation depends on the partial pressure of O2 in the gas inside the lungs. The
critical value of pO2 inside the lungs should not fall below this value. Otherwise
the sO2 will rapidly decrease and may lead to vasoconstriction [3].

During breathhold dives in shallow waters after excessive hyperventilation, the
breathing reflex occurs with a time delay. This may help to increase the overall
possible diving time, but at the end of the dive the pO2 inside the lungs can reach
dangerously low levels that may result in a blackout. In deep breathhold dives the
pO2 inside the lungs drops rapidly during ascend. Many accidents occur during the
last meters before surfacing, because of the quick drop of the relative pressure [4].

Electrocardiography (ECG) recording underwater requires special attention to
both the recorder and the electrodes. For electrical bio-potential processing, an
amplifier with high input impedance is necessary. Water (especially sea (salt)
water) represents a good electrical (ionic) conductor means with respect to the
typical ECG electrode–skin impedance. For example the impedance between two
metal electrodes (with each a surface of about 1 cm2) may drop to some hundred X
in fresh water and to values below 10 X in salt water. From the electrical point of
view, the low resistance of water is in parallel with the amplifiers input imped-
ance—i.e., it acts like a shortcut for poorly insulated electrodes, and, as a con-
sequence, the recording of significant bio potentials becomes impossible. Thus,
without a suitable electrical insulation, ECG signal recording on a water immersed
body ranges from difficult (fresh water) to impossible (sea water), even if the diver
uses a typical humid neoprene suit. Moreover, putative field tests on large diver
cohorts require cheap electrodes and effective insulation.

Authors’ first attempts were based on the use of adhesive electrodes, clinically
used for electro-stimulation, which were well insulated with silicon grease. Signal
quality was adequate, however, several limitations manifested: the electrodes’ high

46 B. Kuch et al.

cost, the low acceptance by the divers, and the difficulty of removing silicon grease
from diving suits. Thus, we used standard ECG (self-) adhesive electrodes together
with a suitable insulation technique. The two component impression material
(Elite H–D+, Zhermack Hydrophilic Vinyl Polysiloxane) was chosen for its
suitable characteristics like fast curing abilities, biocompatibility, and water-
proofness [5].

4.2 Methods

4.2.1 Hardware

The main idea for the novel physiological data recorder was to combine a
2-channel ECG with a pulseoximeter and a pressure sensor (see Fig. 4.1). Suitable
bases for in field physiological recordings are PDAs together with exiting inter-
faces. Unfortunately PDAs are neither water nor pressure resistant and underwater
housings are not available. Additionally PDAs are bulky and have only a short
operation time. An alternative is the development of a dedicated embedded sys-
tem, which is as small as possible, so that a diver can carry it easily, without
getting disturbed during a dive. Since some field tests require long term recording,
overall power consumption is an issue. Thus a low power 8-bit microcontroller
was chosen as the core element.

4.2.2 Data Logging Module

The core component is a hardware module with an Atmel ATmega644p 8-bit
RISC microcontroller (Atmel) with the following specifications:

Fig. 4.1 Principle design of
the module

4 Embedded Data Logging Platform for Research in Diving Physiology 47

• 4 Kbytes SRAM
• 2 Kbytes EEPROM
• 64 Kbytes Flash
• Up to 20 MIPS Throughput at 20 MHz
• Power Consumption at 1 MHz–0.4 mA in Active Mode

A secure digital memory card (SD-Card) connector is connected to the serial
peripheral interface (SPI) of the microprocessor. Low-drop, linear regulators are
used to provide 3.3 V. For visualization of active data, a 16 9 3 alphanumerical
display is integrated on the board and interfaced via software SPI to dedicate the
microprocessor’s inbuilt SPI solely to the SD-Card. For depth and temperature
measurement, a digital sensor was integrated (Intersema MS5541B, Switzerland).
It is specified for a depth of 150 m, but unofficially depth measurements down to
330 m are possible. The overall low power consumption allows powering
the whole circuit via a single LiIon battery. The whole device is housed in a
lexan tube.

4.2.3 sO2 Measurement

Clinical O2 saturation (sO2) meters (pulseoximeters) are normally based on
transmissive light absorbance measurements with red and near infra-red light.
Probes are usually attached on the ear lobe or on a finger [6, 7]. sO2 while breath
holding was already investigated in [8]. There a standard transmissive pulsoxy-
meter was used.

Underwater tests were carried out using standard transmissive pulseoximeter
probes attached to the finger but did not produce significant data. Physiological
adoptions to immersion in cold water are understood under the term ‘‘diving
response’’. The vasoconstriction phenomenon, where peripheral parts are most
affected, reduces the peripheral blood flow thus inhibits sO2 measurements on a
finger. Immersions in cold water may further intensify vasoconstriction.

An alternative to transmissive pulseoximetry is reflective pulseoximetry.
Reflectance pulseoximetry is not based on transmissive absorbance anymore. A
light transmitter and receiver are situated in a probe at a short distance (like 8 mm)
next to each other. Light is transmitted into the underlying tissue and the reflected
light is received and measured. The intensity depends then on the O2 saturation of
the blood in the underlying tissues. For placing the reflective probe it is possible to
select particular parts of the head that are certainly less affected by vasocon-
striction and can be easily protected from cold water temperature (i.e. the glabellar
or temple artery zones).

For the prototype a commercial pulseoximeter module (OEM III, Nonin) is
chosen. It is interfaced to the microcontroller via USART at 9,600 bit/s. To avoid
the measurement problem caused by the ‘‘diving response’’ a reflectance probe
(8000R, Nonin) was chosen, which can be placed on the forehead or the temple.

48 B. Kuch et al.

Due to its small size, integration in a commercial diving mask is possible.
Alternatively it may also be glued directly to the skin with adhesive tape.

4.2.4 ECG Measurement

A 2-channel ECG was integrated into the design (see Fig. 4.2). The ECG signal is
picked up with three electrodes and a reference electrode. Two precision instru-
mentation amplifiers (AD620, Analog Devices) were selected as first input stage.
Advantages of these amplifiers which are especially interesting for our battery
operated devices are their low power consumption and that they can be single
supply operated starting from 3 V.

The amplification of the Instrumentation amplifiers is set to 11 (defined with R6
and R7). R8 and C5 and, respectively, R9 and C6 are high pass filters with a corner
frequency of approximately 2 Hz.

C7 and R10 and, respectively, C8 and R11 are low pass filters (100 Hz). A quad
singly supplies rail to rail operational amplifier (OP491) servers for further
amplification of the ECG signals by a factor of 32. Moreover it is also used to

Fig. 4.2 Schematics of the ECG amplifier

4 Embedded Data Logging Platform for Research in Diving Physiology 49

generate a 1.65 V reference voltage, to which the forth (reference) ECG electrode
(ECG4) is connected. The output of the amplifiers is then directly sampled with the
AD converter of the microprocessor (analogue channel 0 and 1). The operational
amplifiers, as well as the instrumentation amplifiers, are both supplied with 3.3 V
by a low dropout linear voltage regulator.

4.2.5 Software

4.2.5.1 Firmware

The main functions of the data logging module are

• To start and read out a raw temperature measurement in 1 s intervals.
• To start and read out a raw pressure measurement.
• To convert the raw temperature values into grad Celsius.
• To convert the raw pressure values into mbar.
• To read out ECG channel 1.
• To read out ECG channel 2.
• To read out heart rate and oxygen saturation.
• To store all measurements in a FAT16 Text file on SD-Card.

The firmware of the module is developed in C with the GNU C compiler under
AVR Studio 4.13 (Atmel). ECG channels are sampled with 500 Hz. Parallel read out
of several channels of the microcontroller is not possible, thus the channels are read
out one after the other in 1 ms intervals. The pressure/temperature sensor has to be
read out in 1 s intervals. Additionally every second the pulsoximeter sends the
measured heart rate and oxygen saturation via USART to the microcontroller. Quasi
in parallel to that, the data has to be visualized on the display and stored on a SD-Card.

Data storage on a SD-Card can be done in three different ways. One way is to
simply write the data into the memory blocks. This method is fast, but since this
method does not use a FAT file system, data processing afterwards is complicated.
Using a FAT file system to store measurements is more efficient, because the data
is stored in a file and the data access via PC-applications is simple. Data storage in
a FAT file system is possible in two ways—either in binary or in ASCII form. For
the prototype the latter method was chosen as it allows for easy processing. Data
are stored in a FAT16 filesystem in ASCII format in hexadecimal values and the
data are written in 512 bytes blocks. Measurements are stored in a buffer. As soon
as the buffer size reaches 512 bytes, the block is written to the SD-Card. Storage of
1 block takes up to 18 ms.

Advanced scheduling is necessary, in order to handle all these tasks within an 8
bit RISC microcontroller operating at 8 MHz. To achieve a precise timing of
analogue sampling of the ECG, the AD conversions are controlled by interrupt.
The internal Timer2 of the ATmega644p is triggered every 1 ms and creates an
interrupt. The last converted ADC value of 1-channel is then read out and stored in

50 B. Kuch et al.

a FIFO buffer and the conversion of the other channel is initiated. As soon as there
are 2 9 10 entries in the FIFO buffer, the data are stored on the SD-Card.

With a sampling frequency of 500 Hz, data storage occurs in intervals of 20 ms.
Writing a data block on the SD-Card takes up to 18 ms. To avoid resource con-
flicts between the complex data management and storage, it is important to
schedule all other procedures carefully. For each task only a small time window
can be dedicated, as in the worst case only 2 ms (20 ms intervals—18 ms for data
storage) are left.

Fortunately the other procedures do not need such a high sampling frequency
like the ECG processing. The pulseoximeter sends heart rate and oxygen saturation
every second via USART. That is the reason why all other procedures are triggered
in 1 s intervals, too. Since the time window is 2 ms and the interval time for
everything which does not correspond to ECG recording is 1 s, all other processes
are distributed into \2 ms long tasks and triggered by a scheduler within the 1 s
interval (see Fig. 4.3).

First the temperature and pressure are measured. The MS5541B needs up to
40 ls to measure the raw temperature/pressure. To increase software efficiency,
the measurement procedure is split into starting, reading and converting the
measured value into a usable value. Afterwards the display is updated in four tasks.
And last but not least, the received heart rate and oxygen saturation is appended
together with temperature and pressure to the actual ADC data block and written
on the SD-Card.

Fig. 4.3 Software scheduler to trigger time critical tasks

4 Embedded Data Logging Platform for Research in Diving Physiology 51

The system runs as long as it is switched into standby mode. This is done by an
external interrupt on INT0. A reed contact together with a magnet is used to
initiate standby mode. In underwater applications magnetic switches are preferred
as they do not require any mechanical connection to a switch thus avoiding o-
rings. To wake up the system, only an additional external interrupt via INT0 is
required. The whole program flow is shown in Fig. 4.4.

4.3 Data Processing

For post dive data visualization and processing a graphical user interface was
developed under National Instruments LabVIEW 8.5. The depth, temperature, sO2,
heart rate and the two ECG channels are detailed in six graphs.

Fig. 4.4 Program flow of the prototype

52 B. Kuch et al.

The software reads line by line the data originally stored on the SD-Card. This
data are loaded into system memory and converted from hexadecimal to decimal
values. Finally, these values are presented in six graphs.

Figure 4.5 shows a screen shot of the graphical user interface. The six graphs
visualize the measured values, which were stored on SD-Card. The first and
second graphs show both ECG channels. The third graph shows the heart rate. The
fourth and fifth graphs visualize oxygen saturation and depth. The last graph
presents the environmental temperature. The graphs are connected to each other.
By scrolling through one graph all other graphs are scrolled, too. Thus, on an
arbitrary point during a recorded dive, all measured values are visible.

4.3.1 Validation

Figure 4.6 shows the validation of the device in the public swimming pool of Pisa,
Italy. The prototype has been used by volunteer apnea divers of the Italia Apnea
Diving Academy. Measurement results were compared to processed results of a
commercial available pulseoximeter (ChipOx, Weinman Medical Technology).

Fig. 4.5 LabView software for data processing

4 Embedded Data Logging Platform for Research in Diving Physiology 53

Since a ChipOx pulseoximeter measures sO2 via a transmissive sensor at the
fingertip, which is affected by vasoconstriction, comparative measurements could
only be performed in warm water. Moreover the reference pulseoximeter was
connected via cable on a laptop and the fingertip sensor was pressure/water
resistant only up to 1 m. Thus test were only performed in static apnea.

4.4 Results

A prototype (see Fig. 4.7) was build and housed in a Lexan tube with 42 mm outer
diameter and a length of 100 mm. The tube is rated to 200 m. The device is
powered by 3 9 1.5 V rechargeable AAA batteries (900 mAh). The overall power
consumption is approximately 30 mA which allows 30 h continuous recording.

Fig. 4.6 Validation of the
pulsoximeter part of the
prototype

Fig. 4.7 First prototype in
a Lexan housing

54 B. Kuch et al.

ECG sampling frequency is 250 Hz per channel. This results in a data storage rate
of 4 kbytes/s. sO2, heart rate, depth and temperature are recorded at 1Hz.

First field tests were carried out in the 10.5 m deep research pool at Divesys-
tem, Massa Marittima, Italy (Fig. 4.8). Four electrodes were placed and carefully
sealed.

To get a clear signal, the reflectance forehead pulseoximeter sensor is fixed with
tape on the temple of the apnea diver and kept on the right position by the hood of
the diving suit.

The next generation of prototype will have a specially prepared scuba mask to
place the reflectance sensor in the right position. A series of breath hold dives were
conducted to 10.5 m for a maximum duration of 3.5 min. During all the dives the
quality of the recorded data was good, and the reflectance probe showed significant
values.

4.5 Discussion

Figure 4.9 shows a typical dive profile. After approximately 2 min of apnea at
10.5 m the sO2 starts to drop. At the beginning of the ascent the sO2 has reached a
value of approximately 90%. On the surface the values dropped to nearly 70%.
The reason for the fast decrease is that by returning from 10 m to the surface, the
pressure drops from 2 to 1 bar. Thus also the partial pressure of O2 inside the lung
decreases rapidly.

During deep breath-hold diving the alveolar pO2 increases in proportion to the
increase of environmental pressure.

So even if the fraction of O2 is low, due to the increased ambient pressure at
depth the alveolar pO2 might still be high enough. When surfacing it then drops
rapidly, particularly in the last meters before surfacing, as the relative pressure
drop per meter of depth reaches the highest values. This is one major reason for

Fig. 4.8 Field tests in the 10.5 m deep research pool

4 Embedded Data Logging Platform for Research in Diving Physiology 55

fatalities in deep breath-hold diving. Thus, it is obvious that the measurement of
sO2 can definitely contribute to a better understanding of diving physiology as well
as be an important warning factor for safety assurance.

4.6 Conclusions

The presented prototype allows simultaneous recording of 2-channel ECG, sO2,
heart rate, depth and temperature. Additional AD inputs allow easy expendability
and extension of the device with additional measurement parameters. The device
was successfully validated against a transmissive pulseoximeter. Several long time
tests were done in the laboratory and several test dives were successfully con-
ducted in the 10.5 m research pool (Dive System, Massa Maritima, Italy).
We envisage that this novel device will lead, first, to a better understanding of the
human diving physiology and, second, will provide a novel tool for adding the
physiological information necessary for a safer and more effective training.

4.7 Future Work

Future work will include the development of a dedicated apnea diving computer.
In addition to displaying and recording sO2, heart rate and depth, it will also
be capable of storing the complete plethysmogram with a sample rate of 75 Hz.

Fig. 4.9 Analysis of measured data

56 B. Kuch et al.

This then will also allow a RR-analysis and estimation of the heart rate variability
even without having ECG derivations, which is of great advantage, especially
when performing measurements in salt water.

References

1. Sieber A, Kuch B, Wagner M, L’Abbate A, Dario P, Bedini R (2008) Underwater blood
pressure measurement device. Diving Hyperb Med 38(3):128–134

2. Kuch B, Bedini R, L’Abbate A, Wagner M, Buttazzo G, Sieber A (2009) Embedded data
logging platform for research in diving physiology. In: Proceedings of the 7th workshop on
intelligent solutions in embedded systems, Ancona, Italy, pp 43–48

3. Silbernagl S, Despopoulos A (2007) Taschenatlas der Physiologie. Georg Thieme Verlag,
Stuttgart

4. Ehm OF, Hahn M, Hoffmann U, Wenzel J (2003) Tauchen noch sichere—Tauchmedizin fuer
Freizeittaucher, Berufstaucher und Aerzte. Mueller Rueschlikon Verlag AG, Cham

5. Sieber A, Bedini R, Yong X, Navarri A, Dalle Luche M, L’Abbate A, Dario P (2007) High
resolution ECG and depth data logger. Eur J Underw Hyperb Med 8(3):56–57

6. Zonios G, Shankar U, Iyer VK (2004) Pulse oximetry theory and calibration for low
saturations. IEEE Trans Biomed Eng 51(5):818–822

7. Dresher RP, Mendelson Y (2006) A new reflectance pulse oximeter housing to reduce contact
pressure effects. In: Proceedings of the IEEE 32nd Annual Northeast, Easton, USA, pp 49–50

8. Schagatay E, Lodin A, Richardson M (2007) Diving response and arterial oxygen saturation
during apnea in apneists and untrained subjects of both genders [abstract]. 33rd annual
scientific meeting of the European underwater and baromedical society, Sharm el Sheikh,
Egypt 8(3):43–44

4 Embedded Data Logging Platform for Research in Diving Physiology 57

Chapter 5
IEEE 1451 Sensor Interfacing and Data
Fusion in Embedded Systems

Gas Leak Detection Case Study in H2 Vehicles

Sergio Saponara, Luca Fanucci and Bruno Neri

5.1 Introduction

A smart transducer is the integration of an analog or digital sensor plus an
embedded system including a mixed-signal conditioning and data conversion unit,
an application processor with associated software for digital signal processing and
data fusion, calibration and diagnostics, and a communication controller. The latter
passes the measured or calculated parameters to a host or monitoring system in a
network by using of a network communication protocol [1–3]. To address the need
for standardized interfaces and architectures for networked transducers, this work
illustrates in Sect. 5.2 the architecture of a system of networked transducers and
reviews the emerging IEEE 1451 family of standards. In Sect. 5.3 an application
case study is proposed: a safety system based on hydrogen/methane sensors to
monitor the gas leak in multi-fuel and zero emissions vehicles. Section 5.4 deals
with sensor selection, modelling and compensation through data fusion.
Section 5.5 presents the design of the mixed-signal embedded system for intelli-
gent sensor interface and data fusion and show experimental results. Conclusions
are drawn in Sect. 5.6. This work extends the WISES2009 paper [3].

5.2 IEEE 1451 Smart Network Sensor System

The IEEE Instrumentation and Measurement Society’s Technical Committee on
Sensor Technology sponsored the development of a suite of smart transducer
interface standards, known as IEEE 1451, to enable Plug and Play transducers

S. Saponara (&), L. Fanucci and B. Neri
Department of Information Engineering, Università di Pisa, Pisa, Italy
e-mail: sergio.saponara@iet.unipi.it

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_5,
� Springer Science+Business Media B.V. 2011

59

networking and capabilities of self-identification, self-diagnosis, self-calibration,
location and time awareness, data processing and fusion, alert notification [2, 3].
Figure 5.1 illustrates the architecture of an IEEE 1451 smart transducer charac-
terized by the partitioning into two main components: a Network Capable
Application Processor (NCAP) and a Transducer Interface Module (TIM), con-
nected through a Transducer Independent Interface (TII). The NCAP, a network
node, performs application processing and network communication functions,
while the TIM consists of a number of sensors and actuators with the relevant
signal conditioning and data conversion circuits. The TII defines a communication
medium and a protocol for transferring sensor information. This interface provides
a set of operations, such as read and write messages, commands and responses.
The network interface (NI) defines a network communication protocol for NCAP
transactions over the network. Another key feature of the IEEE 1451 is the
introduction of the Transducer Electronic Data Sheet (TEDS) which stores
information such those provided by the manufacturer in the data sheet. The TEDS
can be read and reprogrammed depending if they are stored in a ROM, if the
content never changes, or an EEPROM, if its content can be updated. As defined in
the IEEE 1451.0 standard, four kinds of TEDS are mandatory, while the others are
optional. Among the required TEDS, the Meta TEDS gives some worst-case
timing parameters used by the NCAP to set time-out values in the communication
software to determine when the TIM is not responding. The Transducer Channel
TEDS provides detailed information about the specific transducer (measured
physical parameter, operating range, I/O characteristics, operational modes, timing
information). In the User’s Transducer Name TEDS, the user can store the
‘‘nickname’’ by which the system will know the transducer. The PHY TEDS stores
information dependent on the physical communications media connecting the TIM

Fig. 5.1 IEEE 1451 smart
transducer architecture

60 S. Saponara et al.

to the NCAP. The format of a TED foresees an header field specifying TEDS
length and type, a variable length field containing TEDS data, a final checksum for
transfer robustness. The IEEE 1451 standards family provides a suite of protocols
for wired and wireless distributed transducers applications [4–7].

The IEEE 1451.0 standard defines a set of common functionalities, commands,
and TEDS for the family of IEEE 1451 smart transducer interface standards. These
functionalities are independent from the physical communication media (1451.X)
between the transducer and the NCAP. They include the basic functions to read
from and write to the transducers, to read and write TEDS, and to send configu-
ration, control, and operation commands to the TIM. The IEEE 1451.0 helps
achieving data-level interoperability for the IEEE 1451 family when multiple
wired and wireless sensor networks are connected together. The IEEE 1451.1
defines the possible ways to access sensors and actuators in the TIM from a
network and its focus is mainly on the communications between NCAPs and
between NCAPs and other nodes in the system. The physical interface between the
NCAP and TIM is defined by the other IEEE 1451.X standard and can be (i) a
point-to-point interface that meets the IEEE Standard 1451.2 (with communication
layer based on serial interfaces such as SPI, UART or USB), (ii) a distributed
multi-drop interface that meets the IEEE Standard 1451.3, (iii) a wireless interface
that meets the IEEE Standard 1451.5 (WiFi, Bluetooth, ZigBee or Wireless Per-
sonal Area Networks), (iv) a CANopen interface that meets the IEEE Standard
1451.6, (v) an RFID interface that meets the IEEE Standard 1451.7. The interfaces
between transducers and signal conditioning and conversion circuits inside each
TIM unit are not standardized, with the exception of the IEEE 1451.4, which
specifies a low-level, mixed-mode interface for transducers. The use of TEDS and
the NCAP-TIM partitioning approach provide many benefits: a transducers can
identify and describe itself to the host or network by sending the TEDS infor-
mation; the TEDS can be updated and it can store information, such as the location
of the sensor, recalibration date, repair records and maintenance-related data thus
enabling long-term self-documentation of the transducer; the automatic transfer of
the TEDS data to the network eliminates the need of manually entering the sensor
parameters thus reducing human errors; plug-and-play capability is provided since
TIM and NCAP can be connected with a standardized physical communication
media and are able to operate without change of the host software. TIMs from
different sensor providers can interoperate with NCAPs from different network
operators through the same IEEE 1451 communication module. IEEE 1451 smart
transducers represent a step forward towards the Internet of Things paradigm.

5.3 Networked Gas Leak Sensing System

As an application case study of the above concepts of smart transducers interfacing
and IEEE 1451 sensor networks, this work presents a monitoring system for gas
leak in vehicles using hydrogen as energy vector (multi-fuel internal combustion

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems 61

engine or fuel cells), or in hydrogen storage and distribution facilities. Figure 5.2
presents the processing chain of hydrogen-based transport system (covering all
aspects of the future hydrogen economy: generation, distribution and storage, use as
propulsion gas) and a detailed view of hydrogen monitoring inside a vehicle [8–10].
The threshold for the concentration of hydrogen in air to generate an explosion
(defined as LEL, Lower Explosivity Limit) is 40,000 ppm, i.e. 4 9 10-2. This
value is similar to that of methane (CH4), also used in internal combustion engines,
whose LEL is 50,000 ppm, i.e. 5 9 10-2. For safety reasons, a LEL-warning
system able to detect the presence of hydrogen (and methane) at concentrations as
low as 10-3 is needed. Multi-fuel vehicles are also announced using both CH4 and
H2. In future storage and distribution systems for propulsion gas both CH4 and H2

may be present. Therefore, for a warning system it is important to independently
detect a leak of H2 or CH4. The risk of undetected H2 leaks is higher since this gas is
odorless and not visible.

The system architecture for the monitoring unit foresees two scenarios. First,
for gas leak monitoring inside the car few smart sensing units should be placed
near the tank, near the fuel-cells or internal combustion engine, and inside the
passenger compartment. Such smart sensing units will be connected to the already
available digital in-vehicle networks: typically a CAN backbone connecting the
main vehicle Electronic Control Units (ECU) from which there are local con-
nections to smart transducers based on low-rate serial links such as LIN or UART
or SPI [11]. As further discussed in Sect. 5.4, COTS (commercial off the shelf)
hydrogen sensors have an analog output and their response should be compensated
since they are sensitive also to methane and ambient conditions (temperature,
humidity). Therefore the smart sensing unit we have designed, see Fig. 5.3, is
composed by one hydrogen sensor plus methane and temperature compensating
sensors plus a multi-channel embedded system integrating a mixed-signal front-
end for analog signal conditioning and digital conversion, a signal processing and
sensor fusion core in the digital domain and a communication circuitry for con-
nections to the in-vehicle network through a serial link. This module is an IEEE
1451.2 compliant TIM connected to an ECU which will act as an NCAP towards

Fig. 5.2 Processing chain of the future hydrogen-based transport system

62 S. Saponara et al.

the main CAN-based vehicle network. The HW/SW design, prototyping and
experimental results on the IEEE 1451.2 compliant TIM are reported in Sects. 5.4
and 5.5. This TIM is already realized using technologies compliant with a
migration to the large volume low-cost automotive market.

Secondly, in hydrogen distribution/storage stations a wireless link has been
selected as most suited to interconnect the smart gas leak sensing nodes to the host
system. In this case the overall networked monitoring system consists of a NCAP
node connected to the main network through an Ethernet link and to the wireless
TIMs through wireless links. For prototyping purpose, see Fig. 5.4, in our work we
adopted a configuration with the NCAP realized on commercial mobile computers
using Java language (to ease the software testing) connected to a single IEEE
1451.5 wireless TIM by means of a WI-FI 802.11 protocol. For the higher
networking layers classic client–server communication models and TCP/IP pro-
tocols are used.

The wireless TIM is realized by connecting the IEEE 1451.2 TIM described in
the first scenario through the UART to a commercial mobile computer which
implements the 802.11 wireless connection towards the NCAP. Direct point-to-
point Wireless connections between the NCAP and the Wireless TIM and network
connections mediated by a commercial access point have been implemented. The
proposed prototyping configuration allows assessing the full functionality of the
system but obviously, in case of a real production scenario, the tasks implemented
on the mobile computers may be easily ported in embedded HW/SW nodes
equipped with 802.11 transceivers. Since the main innovation of this work is the

Fig. 5.3 Architecture of the smart sensing node and chip realization of the ISIF

Fig. 5.4 Smart IEEE 1451-based wireless sensing network configuration

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems 63

development of the IEEE 1451 TIM (for the NCAP and for the wireless links
commercial components are used) the rest of the work will be focused on pre-
senting its design, modeling, prototyping and experimental results.

5.4 Sensor Selection, Model and Data Fusion

From the state-of-art analysis two COTS sensors were selected whose perfor-
mances are good representatives of the available classes of H2 sensors: the FIG-
ARO TGS6812, which can be used for the detection of large leaks of hydrogen in
explosiveness warning systems and the TGS821, more suited for small H2 con-
centrations [12]. Commercial sensors from other suppliers, e.g. Synkera, Kebaili,
E2V are available with similar performances; hence the proposed approach keeps
its validity also if applied to other COTS sensors.

The TGS6812 is a catalytic resistive H2 sensor for the detection of concen-
trations up to 100% of LEL. Like other COTS sensors, the TGS6812 is sensitive
also to hydrocarbon gases, mainly CH4 which will be present in future gas-based
vehicles or storage/distribution systems using both methane and hydrogen. The
front-end reading requires a Wheatstone bridge with dummy resistors of 1 kX.
A potentiometer can be used to adjust the offset. The sensor has a linear output
(with sensitivity to H2 of about 15/4,000 mV/ppm) and is insensitive to variations
of humidity and temperature. The TGS821 is a tin dioxide (SnO2) semiconductor
sensor which has low conductivity (i.e. high resistance R0) in clean air. In the
presence of a detectable gas, the sensor’s conductivity increases (the sensor
resistance RS decreases) depending on the gas concentration in the air. Figure 5.5
shows the functions that determine the variation of output resistance (RS/R0) in
relation to the gas concentration (mainly H2 and CH4) and to environmental factors
such as relative humidity (%RH) and temperature (T). The functions in Fig. 5.5
have been obtained by curve fitting of experimental measurements on the sensor.
Such functions are used to build an accurate model that is the basis for the

Fig. 5.5 Model and sensitivity functions for the TGS821 sensor

64 S. Saponara et al.

development and prototyping of data fusion techniques. As example, Fig. 5.5
shows the block diagram of the proposed TGS821 Simulink model which takes
into account: (i) the dependence on environment conditions (temperature,
humidity); (ii) error sources such as saturation, noise, offset and sensitivity errors;
(iii) timing (and frequency) response; (iv) main dependencies on other gases. The
response of the proposed model takes into account also the statistical uncertainty
of the sensor offset and sensitivity due to technology spreading. The uncertainties
are calculated each time by an initial script, using a function that extracts a random
Gaussian number with mean equal to zero and variance equal to 1/3 of the range of
uncertainty, so the whole range of uncertainty is in ±3r. To be noted that for the
considered sensors the declared technology spreading is not negligible, up to 10%,
and hence in practical application a pre-calibration phase is always applied. The
developed model is then integrated in a test environment simulating external
conditions change and interactions with non idealities of other components:
external temperature and humidity; concentration of other gases; power supply
ripple, tolerance and errors of the circuitry needed to produce a voltage output
(VRL in Fig. 5.5, where VC is a supply voltage of 10 V and RL is 4 kX) propor-
tional to the sensor resistance RS and hence to the H2 concentration. The obtained
output signal VRL is then processed by analog circuitry before being converted in a
digital form by an ADC: for the specific TGS821 device in the analog domain the
amplitude of VRL is scaled by a factor K = 0.2 and an offset VOFF = 1 V is
subtracted. The signal is then low-pass filtered and the output VRL

* is sent to the
ADC.

Such top-down modeling approach annotated bottom-up with physical device
characteristics leads to a better trade-off between simulation accuracy and time vs.
state-of-art models which are computational intensive physical models or fast but
inaccurate linearized models [13].

The same modeling approach has been followed for the TGS6812 H2 sensor
and the relevant circuitry for output voltage reading (based on Wheatstone bridge).
Being linear in response and with negligible dependence on temperature and
humidity, the TGS6812 model is simpler than the TGS821 one. As example
Fig. 5.6 shows Simulink diagrams obtained with (a) the TGS6812 model and (b)
the TGS821 model and compared to experimental measured data (different H2

concentrations at ambient temperature conditions). As discussed above, the
TGS821 sensor was selected and modeled to be used in small leakage detection
warning systems, targeting a concentration range up to 1,000 ppm while the
TGS6812 is selected to cover larger H2 concentrations up to several thousands of
ppm. In the target ranges the modeled sensor responses show a good match with
both data sheet values and experimental data (e.g. differences within 1% between
simulated and measured results in Fig. 5.6). Although the developed sensor
models take into account all relevant interferences, the fusion algorithms proposed
in this work aim at removing the dependence of the target sensor response only on
the main interfering variables for the considered application, as a trade-off between
complexity/cost and accuracy of the measure. In fact, the correction of the mea-
sured concentration w.r.t. all possible sources of interference, including the ones

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems 65

giving just a minor contribution, would result in a too complex and too costly
fusion technique not suitable for automotive applications. Since the high sensi-
tivity of TGS821 to changes in temperature and humidity (see Fig. 5.7) can corrupt
the measured H2 concentration, compensating sensors have to be used.

Furthermore, if the vehicle or the storage/distribution system is using also
methane it is necessary to correct the measure obtained with the TGS821 and
TGS6812 sensors by using a methane-specific sensor. Moreover, given the wide
variation of sensitivity for the TGS6812 device, it is necessary to calibrate this
sensor, determining by experimental data the value of offset and sensitivity
(otherwise calibration measuring errors in the range of thousands of ppm can
occur). For TGS821 compensation a humidity sensor able to measure relative
humidity levels in a wide range and preferably with a linear output characteristic is
required. The selected commercial sensor is the SY HC1 by RHOPOINT, a linear
capacitive sensor able to measure %RH ranging from 5 to 95% with sensitivity of
0.6 pF/[%RH]. The effect of noise and the dependence on temperature and fre-
quency have been considered when modeling the humidity sensor. The used
temperature sensor for thermal compensation of the TGS821 H2 and SY HC1
sensors is a simple PT100 resistor featuring a good linearity and whose response
(following the classic Callendar–Van Dusen equation) does not depend on
humidity or gas concentration. This feature is important to reduce cross-correlation
between the sensors involved in the compensating process. The PT100 sensor has
been modeled considering the Callendar–Van Dusen law linking the output
resistance to the temperature and taking into account errors due to offset, noise,

Fig. 5.6 (a) TGS6812 and (b) TGS821: model response vs. experimental data

Fig. 5.7 Data fusion for TGS821, temperature and humidity variation

66 S. Saponara et al.

sensitivity gain. The last sensor used for compensation of both TGS6812 and
TGS821 H2 sensors is the FIGARO TGS6810, a methane sensor that can detect
concentrations up to 100% of LEL (50,000 ppm for methane in air). The TGS6810
CH4 sensor is similar to the TGS6812 H2 one in terms of structure and model,
except that TGS6810 is not influenced by H2 concentration. The dependence on
temperature and humidity of this device is zero thus avoiding cross-dependency
with the other compensating sensors.

To compensate by data fusion the TGS821 sensor the outputs of temperature,
humidity and methane sensors are first converted into voltage signals. Then, for the
three sensors, an electronic circuit adjusts the dynamics, eliminates the offsets and
applies the anti-aliasing filtering before sampling. The resulting signals are then
passed on to the A/D converter. The bandwidths of the sensors are low, and
consequently, it is possible to employ only a single A/D converter multiplexing the
signals provided by the three sensors. After sensor acquisition the following
equation is used, linking the change in resistance of the sensor output to the
parameters measured by the other three sensors (temperature, methane and
humidity; the value of the latter is first thermally compensated using the PT100
sensor):

RS ¼ R0 �
RS

R0Air

þ RS

R0H2

ðH2Þ þ
RS

R0RH

ðRHÞ þ RS

R0CH4

ðCH4Þ þ
RS

R0Temp

ðTÞ
� �

ð5:1Þ

where RS/R0 Air is the resistance ratio in air, while RS/R0 (Eq. 5.1) represents the
resistance variation caused by the interfering XX compound, by relative humidity
or by temperature (see Fig. 5.5). Figure 5.7 shows the simulation results obtained
with this algorithm, after sensor pre-calibration, for different H2 concentrations
and different temperature and humidity operating points: measurements not taking
into account the effect of temperature or humidity can be extremely inaccurate.
The same data fusion approach is also followed for the TGS6812 sensor for which
compensation is required only if the vehicle (or the distribution/storage system)
uses also methane. In this case the TGS6810 sensor has to be used to correct the
measure of hydrogen.

5.5 Embedded ISIF Design and Realization

To fast identify, trim and verify at experimental level an architecture to interface
and compensate a given sensor, a mixed-signal embedded hardware platform for
Intelligent Sensor Interface (ISIF) has been developed by University of Pisa in
collaboration with SensorDynamics AG [14]. Realized in 0.35 lm BCD (Bipolar
CMOS DMOS) technology with 3.3 V supply for the digital part and 5 V for the
analog one, the IC has been developed according to a platform based design
strategy [15], by assembling a set of analog, digital and software intellectual
property (IP) modules in the same multi-channel sensor interfacing chip.

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems 67

The architecture of the mixed-signal embedded system is sketched in Fig. 5.8. It is
composed of an analog front end and a digital processing section with a JTAG
standard interface between the two signal domains. The basic idea behind the
architecture in Fig. 5.8 is using a low-cost sensor and reducing to a minimum the
analog signal processing, while compensating non-ideality through digital signal
conditioning, since digital circuitry can be easily designed and scaled in micro-
electronics technologies. The analog front-end in Fig. 5.8 mainly accomplishes
tasks of driving sensor’s electrodes (in case of sensor requiring external excita-
tions), through couples of thermometer-type DACs and performing signal acqui-
sition by means of SAR-type ADCs and programmable-gain operational
amplifiers. It also provides a regulated power supply to the digital section. All
modules are digitally controlled since gain coefficients, offset values and reference
voltages are set by means of dedicated registers accessed via the JTAG bridge by
the digital processor. Hence, also the analog part is configurable while the digital
part is both HW-configurable and SW-programmable. The default HW configu-
ration plane and the TEDS can be stored in on-chip PROM. All non-trivial signal
processing required for sensor conditioning, i.e. filtering, function generation and
demodulation, is performed by the digital section which also monitors system
activity and handles communication with external devices. Both dedicated and
general purpose computing resources are available in the digital part for a good
trade-off between power consumption and flexibility. The HW DSP chain in
Fig. 5.8 contains dedicated circuits for digital signal processing: FIR/IIR filters to
remove noise/interference sources and a digital Phase Locked Loop (based on
numerically controlled oscillators) for demodulating the sensor response and for
function generation (e.g. sensor stimuli) based on the direct digital synthesis
concept. General purpose tasks are managed by CPU core provided in a config-
uration with on-chip program/data memories and standard parallel I/O plus UART
and SPI interfaces for communication. In this system the CPU core is in charge of
monitoring the DSP chain and managing communication/control flows among the
mixed-signal part via JTAG, the DSP unit, the internal memories and the external
devices. This basic architecture has been implemented in silicon in two configu-
rations where the main differences are the used CPU core and the amount of
on-chip memory resources. The first configuration in Fig. 5.8a is based on a

CPU
8051

SPI

JT
A

G

CPU BUS

VI

DAC ADC

VI

DAC ADC

Data Memory

TIMER

UART

Sensor

JT
A

GDSP
Chain

Program Memory

(a) (b)

INPUT CHANNEL 1INPUT CHANNEL 1

INPUT CHANNEL 2INPUT CHANNEL 2

INPUT CHANNEL 3INPUT CHANNEL 3

INPUT CHANNEL 4INPUT CHANNEL 4

JTAG - LIKE CONFIGURATION CHAINJTAG - LIKE CONFIGURATION CHAIN

TEST BUSTEST BUS

I/V
REG
I/V

REG

DACDAC

ADCADC

Analog Section Digital Section
Leon

CPU CORE
ROM

RAM

CACHE

SPI CACHE

Timer Uart

Demodulator Modulator NCO

S
E
N
S
O
R

Fig. 5.8 Architectures of the a 8051-based and b of the LEON-based ISIF

68 S. Saponara et al.

power-optimized 8051-compliant core we presented in [16, 17]. A prototype chip
has been realized in 0.35 lm BCD technology.

The architecture in Fig. 5.8a with a configuration of 32-kbit PROM and two
4-kbit SRAM memories and an 8-bit 8051 core with timer/counter, UART and SPI
has an overall area of roughly 20 mm2 and works at 20 MHz clock frequency. The
ADCs are sized for 10 bits and 100 kS/s max sample rate. The second ISIF gen-
eration targets more powerful sensor conditioning systems; it is based on a 32 bit
SPARCV8 LEON2 CPU core and is more suited for fast sensor conditioning
prototyping, or for applications requiring computation-intensive signal processing
but with less bounded limits in terms of chip size and cost. Still realized in 0.35 lm
BCD technology, this embedded platform (Fig. 5.8b) has an area of roughly
70 mm2 and enhances the first generation in Fig. 5.8a with: four multi-stage
configurable analog (instrumentation amp ? filter) acquisition channels; four 12-bit
SAR ADCs (max. 150 kS/s) and two 16-bit sigma-delta ADCs (max. 15 kS/s); six
high-precision 12-bit and six high-speed 10-bit on chip DACs; a 32 bit 20 MHz
SPARC V8 fixed-point core (LEON2); on-chip 32 kbytes EEPROM and 32 kbytes
RAM; UART/SPI interface plus 2 timer peripherals and 16-bit GPIO. For the target
sensors of this work the 8051-based ISIF embedded device is enough and ensures
lower cost and size vs. the second architecture chip. Other mixed-signal platforms
for sensor interfacing are available on the market, such as the Actel Fusion
(AFS600) based on an ARM7 core and a single 12-bit ADC [18] or the Cypress
PSOC CY8C featuring 4 ADCs and 4 DACs configurable from 6 to 14 bits and
based on 8-bit CPU. With respect to the above COTS platforms the proposed ISIF
device is preferable in the 8051-based version when the application is more ded-
icated to the conditioning of sensors with limited size and cost budgets, while the
LEON[19]-based version is preferable if high-precision ADCs or a powerful CPU
are required. From a SW and algorithmic point of view, the development flow of an
application on the ISIF platform is integrated with a system-level Simulink/Matlab
flow. The starting point is the realization of a Matlab/Simulink model of the whole
system, which is made of a set of functional blocks allowing co-simulation of the
sensor model with the analog/digital conditioning circuitry. To this aim to each
sub-block in Fig. 5.8 a simulating model of the relevant circuitry is associated
(detailing input–output transfer characteristic plus main error sources such as
saturation, offset, noise, temperature dependence, frequency response). Using such
configurable models at an early stage of the design it is possible to run a number of
simulations for identifying the critical parameters for the overall system perfor-
mance, and hence for correctly sizing the sensor signal processing circuit. A system
exploration phase, based on simulations, design iterations and functional blocks
refinements leads to a first partitioning of the system in analog and SW-pro-
grammable digital building blocks. After architecture definition and HW/SW
partitioning in the Matlab/Simulink environment, each block is modeled with the
most appropriate description language and EDA tools or proper pre-designed IPs to
be reused are selected, configured and assembled. Conventional flows are used for
the lower level design phases (VHDL-based for digital HW, VHDL-AMS and
Spice for analog circuitry and C/C ++ for SW routines). The top-down

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems 69

platform-based design flow ends up with the prototyping phase, through which the
whole system can be tested under practical operating conditions. This methodology
enables a rapid managing also of complex designs thanks to high reuse of concepts,
architectures, and IPs among different projects.

As proved in Sect. 5.4 data fusion algorithms are very important for measuring
H2 concentration both in explosion warning systems (targeting with the TGS6812
sensor a dynamic range of several thousands of ppm with a measuring resolution
of 100 ppm) and in H2 leak detection systems for early warning, targeting with the
TGS821 sensor a dynamic range up to 1,000 ppm, but with a fine grained reso-
lution. However, it must be noted that the data fusion algorithm, especially the one
for TGS821, is computationally complex. Beyond simple additions, subtractions
and products, some exponential, logarithm and division operations must be per-
formed to calculate the formulas described in Fig. 5.5 and Eq. 5.1. The use of a
DSP with Floating Point Unit is required, but this device is expensive compared to
a traditional microcontroller and it is not suited for automotive applications, which
are intended for a high-volume market. A solution relies on the use of a tabulated
form of the needed non linear analog functions, based on pre-calculated Look-Up
Tables (LUT) in the digital domain. Naturally, it is necessary to find a trade-off
between the number of levels of the tabulated functions and the related memory
cost. A coarse function approximation can lead to unacceptable measuring errors;
on the contrary, an approximation with a large number of levels and bits for their
encoding can lead to a memory resource requirement too high for the limited
budgets of embedded automotive HW. When choosing the LUT-based approach it
is necessary to use a processing platform, such as the ISIF, with a PROM that
contains the entire array describing the tabulated functions. When sizing the HW
platform, first of all the number of ADC’s bits has to be defined. For the H2 data
fusion algorithm extensive simulations in the Matlab environment have been
carried out trying to find the lower number of ADC data size and LUT levels that
ensure at system level a quantization error below a ‘quality target’ of 10 ppm for
leak detection in the range 0–1,000 ppm and below 100 ppm for explosivity
warning in a wider measuring range up to 10,000 ppm. As a result of this design
exploration activity, a 10-bit ADC was selected. It has to be noted that from our
analysis for humidity and for temperature sensors an 8-bit converter would be
sufficient. Therefore, the SAR-type 10-bit ADC of the ISIF platform can be used to
acquire the required signals: since the bandwidths of the sensors are in the order of
Hz and the sampling rate of the ADC is up to 100 kS/s, all sensor inputs can be
multiplexed on the same ADC. To reduce glitch noise when switching between
different inputs and to reduce quantization noise (thus having an effective number
of bits equal to the nominal 10 bits), the digital conversion can be performed at a
higher frequency w.r.t. the required Nyquist-rate and then the digital signal can be
cleaned by decimating the samples. This way the resolution obtained using the
SAR ADC of the ISIF platform is 2 ppm for TGS821 acquisitions and about
40 ppm for TGS6812 acquisitions.

After sizing the ADC the next choice to be made is related to the size of the
tables that will describe the various non-linear functions used for data fusion.

70 S. Saponara et al.

As example, for the TGS821 the functions in Fig. 5.5 have to be tabulated.
Hereafter we report, for each formula, the criteria for sizing the corresponding
table, emerged after extensive simulations in the Matlab environment targeting an
overall quantization error below 10 ppm. The table that represents the CH4 sen-
sitivity function is sufficiently informative if it is implemented with 256 lines of
input, divided in the range of concentration of CH4 from 0 to 4,000 ppm, with
outputs represented over 8 bits, for a total memory usage of 256 bytes. In order to
get a satisfactory approximation of the temperature and humidity sensitivity
functions it is necessary a table with 256 entries, where outputs have an 8-bit
representation. This way the memory requirement amounts to 256 bytes for each
function. The H2 sensitivity function can be calculated in tabular form, using a
table with 2,048 input lines and outputs with 8-bit precision. This table requires
2 kbytes of memory. Finally the function that extracts the hydrogen measure from
the read output voltage requires a table with 256 entries encoded on 12 bits. The
low-cost implementation of the sensor fusion compensation for the TGS6812
device is easier since its dependence on temperature and humidity is negligible and
the correlation with methane measurement is based on a linear law. Following the
above considerations, the fusion technique for both H2 sensors, TGS8612 and
TGS821, can be implemented on a mixed-signal embedded device, such as the
8051-based ISIF platform. Indeed, the required HW resources after the LUT-based
strategy and bit sizing reported above are the following: 10-bit ADC with 4
multiplexed channels (one for the hydrogen sensor, TGS6812 or TGS821
depending on the target dynamic range, while the others are for methane com-
pensation and in case of the TGS821 for temperature and humidity compensation);
on-chip memory of roughly 3 kbytes for LUT-based implementation of complex
processing functions; 8-bit CPU of few MIPS which implements only digital
samples decimation and signal control tasks at low repetition frequencies
(the sensors have bandwidth of few Hz); IEEE 1451.2 UART serial interface
towards a NCAP host controller. Figure 5.9 shows the results obtained imple-
menting data fusion for TGS821 on the ISIF platform. Both simulated data of the
overall Simulink model and experimental data (different H2 concentration points)
are illustrated. From Fig. 5.9 it can be noted the effect of the representation of
values on a limited number of bits and of the LUT-based realization of non-linear
equations. The use of LUTs and of a fixed point arithmetic allows the algorithm

Fig. 5.9 TGS821: LUT-
based implementation of
data fusion algorithm

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems 71

implementation in the low-complexity 8051-based ISIF device, instead of using a
floating point DSP, and the introduced error with respect to the ideal response
curve amounts to tens of ppm. Similar simulation and experimental analysis have
been repeated after implementing data fusion for TGS6812 on the ISIF platform.
In this case the maximum error amounts to few hundreds of ppm in a range up to
10,000 ppm.

5.6 Conclusions

The design of an IEEE 1451-compliant embedded system for sensor network
interfacing and processing is presented. The achieved results on the case study of
gas leak detection for H2-based vehicles prove that intelligent sensor interface IC
can be designed integrating on-chip the mixed-signal processing chain plus data
fusion and communication digital resources. Beside the detailed design of the
smart sensing module (IEEE 1451.2 compliant) the whole monitoring system
architecture is discussed, including network capable application processors
(NCAP) for both wired (CAN in-vehicle network) and wireless (Wi-Fi network-
ing) scenarios. This work is supported by the projects Filiera H2 (Tuscany region)
and Pollux (EU).

References

1. Elmenreich W, Pitzek S (2003) Smart transducers—principles, communications, and
configuration. In: IEEE international conference on intelligent engineering systems, vol 2,
pp 510–515

2. IEEE Instrumentation and Measurement Society’s Technical Committee on Sensor
Technology. Standards IEEE 1451.0-2007, IEEE 1451.1-1999, IEEE 1451.2-1997, IEEE
1451.3-2003, IEEE 1451.4-2004, IEEE 1451.5-2007. http://ieee1451.nist.gov/

3. Saponara S, Petri E, Fanucci L, Terreni P (2009) Smart transducer interface in embedded
systems for networked sensors based on the emerging IEEE 1451 standard: H2 detection case
study. In: IEEE WISES 2009, June, pp 49–56

4. Lee K et al (2004) IEEE-1451-based smart module for in-vehicle networking systems of
intelligent vehicles. IEEE Trans Ind Electron 51(6):1150–1158

5. Song E, Lee K (2007) Smart transducer web services based on IEEE 1451.0 standard.
In: IEEE instrumentation and measurement technology conference

6. Wobschall D (2008) Networked sensor monitoring using the universal IEEE 1451 Standard.
IEEE Instrum Meas Mag 11(2):18–22

7. Song E, Song EY (2005) Object-oriented application framework for IEEE 1451.1 standard.
IEEE Trans Instrum Meas 54:1527–1533

8. Petrecca G, Decarli M (2008) A review of hydrogen applications: technical and economic
aspects. In: IEEE MELECON 2008, May, pp 658–662

9. Saponara S et al (2011) Sensor modeling, low-complexity fusion algorithms and mixed-
signal IC prototyping for gas measures in low-emission vehicles. IEEE Trans Instrum Meas
60(2):372–384. doi: 10.1109/TIM.2010.2084230

72 S. Saponara et al.

10. Sun L, Liang R, Wang Q (2008) A serial hybrid bus with methanol-hydrogen engine. In:
IEEE VPPC2008, September, pp 1–4

11. Navet N et al (2005) Trends in automotive communication systems. Proc IEEE
93(6):1204–1223

12. Figaro TGS6812 data sheet, rev 09/06, Figaro TGS821 data sheet, rev 10/04
13. Saponara S et al (2011) Modeling, sensitivity-analysis and prototyping of low-g acceleration

acquisition systems for spacecraft testing and environmental-noise measurements. IEEE
Trans Instrum Meas 60(2):385–397. doi: 10.1109/TIM.2010.2084231

14. Volpi E et al (2010) A mixed-signal embedded platform for automotive sensor conditioning.
J Embedded Syst 2010:1–15

15. Sangiovanni-Vincentelli A, Martin G (2001) Platform-based design and software design
methodology for embedded systems. IEEE Design Test Comput 18:23–33

16. Saponara S et al (2007) Architectural-level power optimization of microcontroller cores in
embedded systems. IEEE Trans Ind Electron 54(1):680–683

17. Fanucci L, Saponara S, Morello A (2005) Power optimization of an 8051-compliant
microcontroller. IEICE Trans Electron E88-C(4):597–600

18. Tanurhan Y (2006) Processors and FPGAs Quo Vadis? IEEE Comput 39:108–110
19. Saponara S, Fancci L, Tonarelli M, Petri E (2007) Radiation tolerant space wire router for

satellite on-board networking. IEEE Trans Aerosp Eletron Syst Mag 22(5):3–12

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems 73

Chapter 6
Cost-Based Deflection Routing
for Intelligent NoC Switches

Martin Radetzki and Adán Kohler

6.1 Introduction

The continuing reduction in feature sizes of digital VLSI circuits enables the
integration of dozens, and in the future hundreds of processing elements (cores,
resources) on a single chip. Traditional on-chip buses can no longer sustain the
increasing demand for communication between these cores. In order to overcome
the performance gap, interconnection networks-on-chip (NoC) with packet-swit-
ched multi-hop communication and high-bandwidth point-to-point links between
switches are being researched.

The two-dimensional nature of current chip layout mandates the use of NoC
topologies, e.g. the two-dimensional mesh or the Spidergon [1], that have a
mapping to a planar physical implementation. While the Spidergon, based on a
ternary ring topology with cross-section shortcuts, primarily targets heterogeneous
multi-core chips, the quarternary 2d mesh (Fig. 6.1) is more suitable for homo-
geneous manycore systems. However, traffic hotspots tend to appear in the center
of 2d mesh structures. To avoid or reduce such congestion, load balancing
mechanisms have to be introduced, and network congestion has to be taken into
account when making routing decisions.

In addition to congestion, NoC communication is also distorted by faults.
Furber in [2] projects that in 2016, up to 20% of a chip’s transistors will have
production defects, and that further 10% may fail in the first year of the chip’s
lifetime. Beyond such permanent faults, the diminishing electrical charges used in
storage and transmission will be highly susceptible to soft errors, e.g. from
radiation impact. In order to avoid packet corruption and loss due to such faults,

M. Radetzki (&) � A. Kohler
Institut für Technische Informatik, Pfaffenwaldring 47, Stuttgart 70569, Germany
e-mail: martin.radetzki@informatik.uni-stuttgart.de

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_6,
� Springer Science+Business Media B.V. 2011

77

NoCs will have to perform self-diagnosis and route packets around faulty parts of
the NoC infrastructure.

Both, load balancing and fault tolerance, are active research areas. In Sect.
6.2, we give an overview of some relevant related work in these fields. The
remainder of this chapter is devoted to a novel approach which for the first
time integrates load balancing and fault tolerance in a common framework
based on an algorithm that minimizes routing cost at run-time. Section 6.3
outlines the fundamental concepts of cost based routing, and Sect. 6.4 pro-
vides details on the design of a cost function that takes basic routing func-
tionality, faults, and congestion into account. In Sect. 6.5, we present an
efficient implementation of cost-based routing. Experimental results on
achieved communication performance are provided in Sect. 6.6, Sect. 6.7
concludes our contribution.

6.2 Related Work

Due to the many feasible combinations of topologies, routing algorithms,
switching and flow control mechanisms, the NoC design space is large. Since the
subject emerged (e.g. [3]), a multitude of NoC architectures have been developed.
Of particular importance to our work is the Nostrum architecture [4], which
includes deflection routing in a 2d mesh topology with 128 bit wide links.

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

x

y

0 1 2 Nx-1

0

1

2

Ny-1

S: Switch R: Resource : Pair of unidirectional links

Fig. 6.1 Two-dimensional
mesh topology

78 M. Radetzki and A. Kohler

The network is synchronously clocked, transmits a complete 128 bit packet over a
link in a single cycle, and performs routing and switching in a combinational way.
We adopt these principles as the basis for our work. The concept of deflection—
redirecting a packet if its preferred direction is already occupied by another
packet—can also be employed for load balancing and fault tolerance, but the latter
has not yet been investigated by other authors. The performance of alternative
deflection routing policies, without consideration of load or faults, has been
investigated in depth in [5].

The field of network diagnosis is not covered in this chapter; however, diag-
nosis is an essential activity that yields the network fault status information which
is an input to our routing method. In order to react to faults that emerge during
system operation, diagnosis must be performed on-chip, and possibly concurrent
with regular network operation (online). The on-chip diagnosis algorithm pre-
sented in [6] injects directed test packets at the network boundaries and locates
faults based on lost packets. An online diagnosis method that checks error-
detecting codes at every switch to gain information on faulty links and switches
has been presented in [7]. The model of stuck-at port faults has been used [8] to
further discriminate between different faults inside a switch. In [9], faults are
pinpointed to individual connections within a crossbar switch, which yields the
information required by our routing algorithm.

Fault-tolerant routing can either employ informational redundancy—sending
replicated packets over different routes [10]—or exploit a network’s structural
redundancy to route around known faults. We concentrate on the latter in order to
avoid the performance penalty of transmitting multiple packet copies. In source
routed networks, with knowledge of the global network status, alternative routes
can be devised by the packet source, which is often a programmable processor
capable of executing complex algorithms. Fault-tolerant source routing methods
have been investigated in [11]. Distributed fault-tolerant routing has the advantage
of better scalability for large networks. Wu and Wang [12] identify convex regions
enclosing faulty network components. Given such regions, deadlock-free distrib-
uted fault-adaptive routing can be implemented, e.g. with the odd-even turn model
(e.g. [13]) or with cycle-free contours [14].

Load balancing in NoCs is usually based on distributing stress information
off-band, via dedicated signals, in the proximity of a congested switch.
Adaptive routers use this information to bypass congested areas, but need to
take special care in order to avoid deadlock situations [15]. In the Nostrum
deflection router, the load (stress) of a switch is measured by averaging the
number of packets routed in a given amount of cycles with a sliding window
method [16]. A switch is considered congested if its load is above 70% of the
maximum load. Neighbor switches avoid routing packets to the congested
switch, employing packet deflection instead. Deadlocks cannot appear since
packets never wait, and livelocks are prevented by giving older packets a
higher priority so that they can take their preferred direction instead of being
deflected indefinitely.

6 Cost-Based Deflection Routing for Intelligent NoC Switches 79

6.3 Cost Based Routing

In his analysis of deflection routing, Lu [5] distinguishes between two phases. In the
first phase, named routing algorithm, a switch computes the preferred route of each
packet, i.e., the output to which it should be switched in the ideal case. This may
lead to conflicts as multiple packets may require the same resources on their pre-
ferred route. To resolve these conflicts, packets are served in order of their priority
in a second phase. If a lower priority packet would use an occupied resource on its
preferred route, a deflection is computed according to a deflection policy.

For phase one, Lu [5] classifies routing algorithms as random, dimension XY
(x direction preferred over y), and delta XY (routing minimizes distance to target
without preferring x over y). For phase two, the following deflection policies are
distinguished:

• non-priority with random deflection,
• straight-through, where straight-through packets have higher priority than

packets that take a turn, and
• weighted priority, where priority is a weighted sum of packet age, distance from

target, deflection count, and packet type.

The two-phase approach has a disadvantage: A route selected in phase one
constrains the choices available in phase two, and may therefore lead to a sub-
optimal overall routing. Another routing algorithm, minimum deflection, combines
both phases by selecting packet routes so that the total number of packet deflec-
tions is minimized. It has, however, not been implemented in NoC so far, possibly
due to a suspected implementation overhead.

To specify minimum deflection routing, we formalize the routing done within a
switch as a permutation, a bijective mapping

p : I ! O where I ¼ O ¼ fN;E; S;Wg ð6:1Þ

represent the input and output directions of a 2d mesh switch. The definition can
easily be extended to include a local input and output, L. This is not needed in our
approach since we immediately route all incoming packets destined to the local
processing element, and since packets from L are routed only if an output is left
after serving the packets that are already in the network.

The simplest case of minimum deflection routing can be specified with a
routing cost function as follows: The cost of routing a packet from input i 2 I to
output j 2 O is

cij ¼
0 if j is preferred output for packet from i
1 else

�

ð6:2Þ

according to a given routing algorithm and deflection policy. The resulting matrix
is referred to as the cost matrix. We obtain a routing cost function by summing up
the cost of a given routing permutation:

80 M. Radetzki and A. Kohler

cðpÞ ¼
X

i2I

cipðiÞ ð6:3Þ

The cost-optimal (deflection-minimal) routing is determined by solving the
following optimization problem:

popt ¼ arg minfcðpÞjp 2 SymðfN;E; S;WgÞg ð6:4Þ

where Sym(X) represents the symmetric group of all permutations on the set X.
The solution can be computed by enumerating all permutations and evaluating

their cost function or by employing specialized optimization algorithms such as
the Hungarian method [17]. An efficient parallel hardware implementation is
devised in Sect. 6.6.

6.4 Cost Function Design

In the following, we develop a cost function for fault-tolerant and load-balancing
deflection routing step by step. We first show how a particular deflection routing
algorithm and policy are encoded in the cost function. Second, we extend the cost
function to take faults into account. Finally, we add a cost component to imple-
ment load balancing.

6.4.1 Deflection Routing

This section specifies a cost function that emulates delta XY routing with weighted
priority deflection policy. It relies on a cost matrix with entries defined as

cij ¼
2 if i ¼ j
0 if i 6¼ j ^ dði; jÞ
1 else

8
<

:
ð6:5Þ

where the predicate d(i, j) is true if and only if routing the packet from input i to
output j brings it closer to its destination. Note that the value of 2 penalizes the
reflection of a packet back to the direction from where it arrived, avoiding packet
oscillations between adjacent switches.

Packet priorities are accounted for by a weight vector w 2 {1, 2, 3, 4}|I| where
the element wi represents the priority of the packet arriving via input i and the
value 4 stands for the highest priority.

In our experiments, priorities are assigned only on the basis of packet age,
determined by a hop count field that is incremented in each cycle. More complex
weighted priorities and a larger value range can be specified.

6 Cost-Based Deflection Routing for Intelligent NoC Switches 81

We further define an I 9 O routing matrix, R, with entries

rij ¼ wicij ð6:6Þ

and modify the cost function (cf. Eq. 6.3) as follows:

cðpÞ ¼
X

i2I

ripðiÞ ð6:7Þ

Solving the optimization problem (Eq. 6.4) now reduces packet reflection and the
choice of non-minimal paths, giving priority to older packets. The resulting routing
performance is analyzed in Sect. 6.6.2; it is also significantly better than minimal
deflection (cf. Sect. 6.3), for which performance analysis is available in [5].

6.4.2 Fault-Tolerant Routing

To modify the cost function so that it takes faults into account, we assume
knowledge of the fault status of a switch and its adjacent links, which can be
obtained using the online diagnosis method detailed in [9]. Let F denote a fault
matrix with entries

fij ¼
0 if switching from i to j involves no faults
15 else

�

ð6:8Þ

The routing matrix, R, is modified as follows:

rij ¼ maxfwicij; fijg ð6:9Þ

This results in a penalty of 15 for each packet that is routed via a faulty
connection. The four bit value of 15 is larger than any product of cost and weight
(8 at maximum), giving highest priority to avoiding packet corruption or loss due
to faults. The headroom between 8 and 15 is used to express congestion cost in the
next section.

While a single entry fij of the fault matrix represents the fault status of a
crossbar connection from input i to output j, a faulty link can be represented by a
row or column filled with the value 15: if the outgoing link j is unavailable,
fij = 15 Vi 2 I. A faulty incoming link i is captured with fij = 15 Vj 2 O.

With these definitions, solving the optimization problem (Eq. 6.4) gives highest
priority to avoiding faults, in addition to following the deflection routing algorithm
and policy specified in Sect. 6.4.1.

6.4.3 Load Balancing

To perform load balancing, we count the number of packets, pt, routed by a switch
in the past t cycles, t 2 {1, ..., n}. To account for the reduced number of available

82 M. Radetzki and A. Kohler

resources, an unavailable link (faulty or tied off at the mesh boundary) is counted
as one packet. The stress level of the switch is defined as:

s ¼ 1
4

Xn

t¼1

pt ð6:10Þ

If s = n, all four network outputs (not counting the output to the local pro-
cessing element) of the switch have been utilized, in the worst case, during the past
n cycles, meaning full switch utilization.

Let sj denote the stress levels of the switches neighboring a given switch in
direction j 2 O. To penalize the routing of a packet to a congested switch, we add
a cost component to the routing matrix as follows:

rij ¼ maxfmaxfminfmþ sj � n;mg; 0g þ wicij; fijg ð6:11Þ

where m is the largest congestion penalty and the inner maximum and minimum
operations limit the penalty to the range of [0, m].

In our experiments, we have obtained good results with a sliding window of
size n = 12 and maximum penalty of m = 4, resulting in penalties shown in
Table 6.1.

6.5 Efficient Implementation

When implementing cost-based routing, we must solve the optimization problem
(Eq. 6.4) with acceptable overhead in terms of delay and area. As far as delay is
concerned, Nostrum deflection routing requires routing decisions to be taken in a
single clock cycle. This mandates a combinational implementation, evaluating all
possible routings in parallel. This section explains the design of a corresponding
datapath in which area efficiency is achieved by sharing of common subexpres-
sions and early pruning of sub-optimal routings.

The fundamental datapath structure is derived from the tree shown in Fig. 6.2.
All possible permutations of the directions {N, E, S, W}, i.e. all possible routings,
are constructed from right to left. In level 3, all routing options for the N input are
enumerated as mappings to one of the outputs {N, E, S, W}. In levels 2, 1, and 0,
the E, S, and W inputs, respectively, are mapped to the remaining outputs.

The datapath (Fig. 6.3) sums up the costs of routings (i, j) from inputs i to
outputs j, given by routing matrix entries rij. This is done starting from the leaves
of the tree from Fig. 6.2 and progressing towards its root. In each stage of the
circuit, corresponding to the levels of the tree, only the minimal cost value is

Table 6.1 Penalties for routing to congested neighbors

Stress level sj \9 9 10 11 [11
max{min{m ? sj - n, m}, 0} 0 1 2 3 4

6 Cost-Based Deflection Routing for Intelligent NoC Switches 83

selected by the min units, and all other branches are pruned. In addition, each min
unit encodes with its sel output the (i, j) mapping that corresponds to the cost-
minimal input. In stage 1 of the circuit, sel is defined as

selabðsab; sbaÞ ¼
ðS; aÞ; ðW ; bÞf g if sab� sba

ðS; bÞ; ðW ; aÞf g if sab [sba

�

; ð6:12Þ

where the two alternatives can be encoded with 0 and 1, respectively. With each
further stage, the number of alternatives increases by one. In stages 2 and 3, only
the mapping represented by the cost-minimal branch is selected and forwarded to
the next stage. This is done by multiplexers that have the additional functionality
of prepending the (i, j) decision made in their own stage, given by the respective
sel signal, to the selections received as inputs. Their functionality is specified in
Eq. 6.13 (for muxN in stage 2) and Eq. 6.14 (mux in stage 3). Like sel, the output of
mux employs a binary encoding. The rightmost mux output encodes the cost-
optimal routing permutation popt. It controls the crossbar switch of the NoC router.

muxNðselÞ ¼
selSW [ðE;EÞf g if selN ¼ 0
selEW [ðE; SÞf g if selN ¼ 1
selES [ðE;WÞf g if selN ¼ 2

8
<

:
ð6:13Þ

muxpðselÞ ¼

muxN [ðN;NÞf g if selp ¼ 0
muxE [ðN;EÞf g if selp ¼ 1
muxS [ðN; SÞf g if selp ¼ 2

muxW [ðN;WÞf g if selp ¼ 3

8
>><

>>:
ð6:14Þ

(W,W)
(W,S)
(W,W)
(W,E)
(W,S)
(W,E)
(W,W)
(W,S)
(W,W)
(W,N)
(W,S)
(W,N)
(W,W)
(W,E)
(W,W)
(W,N)
(W,E)
(W,N)
(W,S)
(W,E)
(W,S)
(W,N)
(W,E)
(W,N)

(S,S)
(S,W)
(S,E)
(S,W)
(S,E)
(S,S)
(S,S)
(S,W)
(S,N)
(S,W)
(S,N)
(S,S)
(S,E)
(S,W)
(S,N)
(S,W)
(S,N)
(S,E)
(S,E)
(S,S)
(S,N)
(S,S)
(S,N)
(S,E)

(E,E)

(E,S)

(E,W)

(E,N)

(E,S)

(E,W)

(E,N)

(E,E)

(E,W)

(E,N)

(E,E)

(E,S)

(N,N)

(N,E)

(N,S)

(N,W)

Sym({N,E,S,W})

level 0 level 1 level 2 level 3
Fig. 6.2 All possible
routings as permutations of
{N, E, S, W}

84 M. Radetzki and A. Kohler

Table 6.2 compares area cost and performance of different variants of cost-
based routing, corresponding to Sects. 6.4.1, 6.4.2, and 6.4.3 of this chapter, with
the original implementation of a Nostrum router. All designs contain not only the
routing logic, but also any error or congestion detection logic necessary for the full
functionality, but not shown here. They have been designed and synthesized with

(N,E,S,W)

(N,E,W,S)

rWW

rSS

rWS

rSW

(N,S,E,W)

(N,S,W,E)

rWW

rSE

rWE

rSW

(N,W,E,S)
(N,W,S,E)
(E,N,S,W)
(E,N,W,S)

rWW

rSN
(E,S,N,W)

(E,S,W,N)
rWN

rSW

rWS

rSN
(E,W,N,S)

(E,W,S,N)
rWN

rSS

(S,N,E,W)
(S,N,W,E)
(S,E,N,W)
(S,E,W,N)

rWE(S,W,N,E)

(S,W,E,N)

rSN

rWN

rSE

(W,N,E,S)

(W,N,S,E)

(W,E,N,S)
(W,E,S,N)

rWS

(W,S,N,E)
(W,S,E,N)

rSE

rWE

rSS

+

+

+

+

+

+

+

+

+

+

+

+

m
in

S
W

m
in

E
W

m
in

N
W

m
in

N
S

m
in

N
E

m
in

E
S

rEW +

+
rES

+
rEE

rEN +

+
rEW

+
rES

rEN +

rEE +

rEE +

+
rEN

+
rEW

rES +

m
in

N
m

in
E

m
in

W
m

in
S

+
rNN

+
rNE

+
rNS

+
rNW

m
in

m
ux

m
ux

N
m

ux
W

m
ux

S
m

ux
E

minNE

minNS

minNW

minES

minSW

minEW

selES

selSW

selEW

selNW

selNS

selNE

selSW

selEW

selN
W

selNS
selN

E

selES

opt

stage 1 stage 2 stage 3
(N,E,S,W)
routed to

selN

selE

selS

selW

sel

sWS

sSW

sWE

sEW

sWN

sNW

sSN

sNS

sEN

sNE

sSE

sES

π

π

Fig. 6.3 Cost minimizing datapath

6 Cost-Based Deflection Routing for Intelligent NoC Switches 85

RTL VHDL. Since rij inputs are restricted to 4 bits, arithmetic results can be
represented with 5 bits in stage 1 and 6 bits in stages 2 and 3.

A cost-based implementation of deflection routing (Sect. 6.4.1) requires less
area than the original Nostrum design, which employs costly sorting and selec-
tion operations on packets. The area overhead of the designs with fault tolerance
(Sect. 6.4.2) and additional load balancing (Sect. 6.4.3) stems from the detection
logic.

Performance-wise, our cost-based routing implementation suffers from
increased logic depth, compared to the original Nostrum router. Retiming during
synthesis and design of a two-stage pipelined router, as exemplified with the fault-
tolerant design, are effective in avoiding a performance penalty.

6.6 Communication Performance

We have performed extensive simulation studies to validate the intelligent, cost-
based routing approach. The most significant results are presented subsequently.

6.6.1 Experimental Setup

Our simulation experiments use a two-dimensional mesh topology (cf. Fig. 6.1) of
size Nx 9 Ny = 8 9 8. Links are 128 bit wide and transmit a complete packet in
one cycle. Switches implement deflection routing without flow control as each
incoming packet is forwarded to an output in the same cycle. Input ports are
registered for synchronous operation. Switches at the mesh boundaries are of the
same type as all other ones, but their unused inputs and outputs are tied off. The
only design parameter varied between simulations is the routing policy.

Resources in our simulation generate and receive network traffic. We have used
synthetic traffic patterns, uniform traffic with pseudo-random destination addresses

Table 6.2 Cost and timing performance

Design Area
(lm2)

Equivalent
gate count
(NAND2)

Critical
path (ns)

Maximum
operating
frequency (MHz)

Nostrum 13,570 21,695 9.36 106.8
Cost-based (Sect. 6.4.1) 12,320 19,739 10.67 93.7
Fault-tolerant (Sect. 6.4.2) 16,790 26,961 12.92 77.4
Retimed version 19,129 28,546 9.25 108.1
Pipelined version 21,580 34,738 5.45 183.5
Load balancing (Sect. 6.4.3) 17,299 27,776 13.13 76.2

86 M. Radetzki and A. Kohler

uniformly distributed over the address range, and complement traffic from resource
positioned at (x, y) to destination (Nx - 1 - x, Ny - 1 - y) for all x 2 {0, ...,
Nx - 1}, y 2 {0, ..., Ny - 1}. Packets are generated with a configurable, constant
rate, and are stored in an unbounded packet FIFO per resource. A packet is
injected into the NoC when a packet FIFO is non-empty and the attached switch
has an unused output after routing all other packets.

Simulation models have been implemented in SystemC [18] based on the
Transaction Level Modelling (TLM) extension version 2.0 [19] and the object-
oriented approach from [20]. While simulation allows switching between modes of
different accuracy in an adaptive way [21], we employ a strictly cycle-accurate
simulation here in order to obtain best possible accuracy. For each individual
parameter set, 2,000 cycles have been simulated.

6.6.2 Latency and Throughput

We evaluate the performance impact of cost-based intelligent routing by com-
paring its throughput and hop count against a traditional router with weighted
priority deflection routing. Simulation has been performed under varying load
conditions, shown here for complement traffic, with and without load balancing.
At rates below saturation (linear zone in Fig. 6.4, left), all routing methods provide
similar throughput. The cost-based intelligent deflection router reaches a higher
saturation throughput than the priority based two-stage deflection routing mech-
anism. Load balancing has small impact in case of intelligent routing, but reduces
saturation throughput significantly in conjunction with two-stage deflection. This
is because packets are unnecessarily deflected in a network that is fully congested
anyway. Cost-based intelligent routing avoids this pitfall by not favoring deflection
if stress is equally high in all directions.

Another advantage of the cost-based approach can be seen in Fig. 6.4 (right):
it reduces the average hop count significantly, compared to the priority based

0.05

0.1

0.15

0.2

0.25

0.05 0.1 0.15 0.2 0.25 0.3 0.35T
hr

ou
gh

pu
t [

pa
ck

et
s

pe
r

re
so

ur
ce

 a
nd

 c
yc

le
]

Injection rate [packets per resource and cycle]

cost driven
cost + load balancing

priority based
priority + load balancing

8

10

12

14

16

18

0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

 h
op

 c
ou

nt

Injection rate [packets per resource and cycle]

priority based
priority + load balancing

cost driven
cost + load balancing

Fig. 6.4 Packet throughput (left) and average hop count (right)

6 Cost-Based Deflection Routing for Intelligent NoC Switches 87

variant. In the sub-saturation zone, adding load balancing to priority based routing
also provides significant improvement, but it fails under saturation due to
unnecessary deflections in a fully congested network. Adding load balancing to
cost-based routing generally increases hop count slightly; however its advantage is
in the reduction of FIFO backlog (cf. Sect. 6.6.4).

6.6.3 Fault-Tolerance

Here we measure NoC performance by means of its saturation throughput
achievable in presence of faults and under uniform traffic. Faults have been sim-
ulated as permanent or transient with duration t = 1, 4, ..., 256. Figure 6.5 (left)
shows maximum packet throughput over varying failure rate, under the assumption
that a failure makes a switch fully unavailable. This is the best assumption that can
be made (and has been made by previous work) if no intelligence about the
internal switch status is available. It results in a significant negative performance
impact already at small failure rates. With increasing fault duration, performance
degrades more rapidly. In the case of permanent faults, even low failure rates can
reduce throughput to near zero.

Figure 6.5 (right) shows achievable throughput using our concept of fault
matrix. For bidirectional link faults, i.e. complete rows and columns indicating
faults, performance degrades significantly less compared to the previous case.
When assuming single crossbar connection faults, i.e. singular fault entries in the
fault matrix, performance is reduced just slightly, even at the highest failure rates.
Of course, this is because a single connection fault is much less severe than the
complete breakdown of a switch. We argue that in practice, most faults would
affect only part of a switch. In this case, using intelligence on the switch’s internal
status for making routing decisions vastly increases the performance of fault-
tolerant routing mechanisms.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50

M
ax

im
um

 th
ro

ug
hp

ut
 [p

ac
ke

ts
 p

er
 r

es
ou

rc
e

an
d

cy
cl

e]

Failure rate [%]

0 10 20 30 40 50

Failure rate [%]

t=1
t=4

t=16
t=64

t=256
permanent

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ax

im
um

 th
ro

ug
hp

ut
 [p

ac
ke

ts
 p

er
 r

es
ou

rc
e

an
d

cy
cl

e]

single conn. t=1
single conn. t=4

single conn. t=16
single conn. t=64

single conn. t=256
single conn. permanent

bidirectional t=1
bidirectional t=4

bidirectional t=16
bidirectional t=64

bidirectional t=256
bidirectional permanent

Fig. 6.5 Throughput under switch faults (left), link and crossbar faults (right)

88 M. Radetzki and A. Kohler

6.6.4 Benefits from Load Balancing

Figure 6.6 shows the average packet FIFO filling levels (backlog) at the different
positions in the mesh, without (left) and with (right) load balancing. These filling
levels have been obtained with complement traffic at a packet generation rate of
0.21, just slightly below network saturation.

Without load balancing, FIFOs in the center of the network are filled, on
average over all simulated cycles, with up to almost 10 packets. Load balancing
according to Sect. 6.4.3 significantly improves the situation at the given packet
generation rate (right). Note the different scale: the largest FIFO has an average
filling level of less than 0.6. Moreover, FIFO backlog is much better distributed
over the network than without load balancing, where it is centered in the middle.

Above results have been obtained with the parameters m = 4 and n = 12 (cf.
Sect. 6.4.3). Shorter window length, e.g. n = 4, and less differentiation through
penalty steps, e.g. m = 1, both yield inferior results.

6.7 Conclusion

We have presented an intelligent NoC routing algorithm that uses information on
the router’s and its environment’s status. This information is weighted and com-
bined in a cost function which enables the computation of locally optimized
routing permutations. The technique has been employed to combine, for the first
time in NoC, fault-avoidance and congestion avoidance as criteria for selecting
deflections. Models of the intelligent cost-based deflection router show perfor-
mance improvements over previous deflection routing variants employed in NoC.
A VHDL implementation shows that cost-based routing causes no area overhead.

0 10 0 10 1010101010100 0 0 0 0 0 0 0.6 0.60.60.60.60.60.60.60 0 0 0 0 0 0

Fig. 6.6 Average packet FIFO filling level without (left) and with load balancing (right)

6 Cost-Based Deflection Routing for Intelligent NoC Switches 89

References

1. Coppola M, Grammatikakis MD, Locatelli R, Maruccia G, Pieralisi L (2008) Design of cost-
efficient interconnect processing units—Spidergon STNoC. CRC Press, Boca Raton

2. Furber S (2006) Living with failure: lessons from nature. In: Proceedings of the European test
symposium (ETS), pp 1–4

3. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In:
Proceedings of the design automation conference (DAC), pp 684–689

4. Penolazzi S, Jantsch A (2006) A high level power model for the Nostrum NoC. In:
Proceedings of the Euromicro conference on digital system design (DSD), pp 673–676

5. Lu Z, Zhong M, Jantsch A (2006) Evaluation of on-chip networks using deflection routing.
In: Proceedings of the great lakes symposium on VLSI (GLSVLSI), pp 296–301

6. Raik J, Ubar R, Govind V (2007) Test configurations for diagnosing faulty links in NoC
switches. In: Proceedings of the European test symposium (ETS), pp 29–34

7. Grecu C, Ivanov A, Saleh R, Sogomonyan ES, Pande PP (2006) On-line fault detection and
location for NoC interconnects. In: Proceedings of the international on-line testing
symposium (IOLTS), pp 145–150

8. Alaghi A, Karimi N, Sedghi M, Navabi Z (2007) Online NoC switch fault detection and
diagnosis using a high level fault model. In: Proceedings of the international symposium on
defect and fault-tolerance in VLSI systems (DFT), pp 21–29

9. Kohler A, Radetzki M (2009) Fault-tolerant architecture and deflection routing for
degradable NoC switches. In: Proceedings of the 3rd ACM/IEEE international symposium
on networks-on-chip (NOCS), pp 22–31

10. Bogdan P, Dumitras T, Marculescu R (2007) Stochastic communication: a new paradigm for
fault-tolerant networks-on-chip. Hindawi VLSI design, p 17

11. Mediratta SD, Draper J (2007) Performance evaluation of probe-send fault-tolerant network-
on-chip router. In: Proceedings of the conference on application-specific systems,
architectures and processors (ASAP), pp 69–75

12. Wu J, Wang D (2002) Fault-tolerant and deadlock-free routing in 2-d meshes using
rectilinear-monotone polygonal fault blocks. In: Proceedings of the international conference
on parallel processing, pp 247–254

13. Hu J, Marculescu R (2004) Dyad—smart routing for networks-on-chip. In: Proceedings of the
design automation conference (DAC), pp 260–263

14. Zhang Z, Greiner A, Taktak S (2008) A reconfigurable routing algorithm for a fault-tolerant
2d-mesh network-on-chip. In: Proceedings of the design automation conference (DAC),
pp 441–446

15. Li M, Zeng Q-A, Jone W-B (2006) DyXY: a proximity congestion-aware deadlock-free
dynamic routing method for network on chip. In: Proceedings of the design automation
conference (DAC), pp 849–852

16. Nilsson E, Millberg M, Öberg J, Jantsch A (2003) Load distribution with the proximity
congestion awareness in a network on chip. In: Proceedings of the design, automation and test
in Europe (DATE), pp 1126–1127

17. Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Quart
2:83–97

18. IEEE Standard 1666 (2005) SystemC 2.1 language reference manual. IEEE Standards
Association, Piscataway

19. Open SystemC Initiative (2008) OSCI TLM-2.0 user manual. Software version TLM-2.0.
Document version JA22, http://www.systemc.org

20. Radetzki M (2006) SystemC TLM transaction modelling and dispatch for active objects. In:
Proceedings of the forum on design languages (FDL), pp 203–209

21. Radetzki M, Salimi Khaligh R (2008) Accuracy-adaptive simulation of transaction level
models. In: Proceedings of the design automation and test in Europe (DATE), pp 788–791

90 M. Radetzki and A. Kohler

Chapter 7
NOCEXplore

A SystemC Platform for NoC Analysis

Stefano Gigli and Massimo Conti

7.1 Introduction

Thanks to continuous advances in semiconductor technology, a modern System-
on-Chip (SoC) can contain a great number of modules implementing different
functionalities; more complex systems need more complex and careful design,
verification and testing, but aggressive time-to-market requirements need faster
resolution of these phases.

The re-use methodology speeds up the three design phases by re-using parts of
projects previously designed, verified and tested. The reusable modules must be
easily and efficiently tunable, in order to get the best performances in terms of
computation, communication, cost, power consumption and reuse degree.

Some issues arise on communication architectures when the number of Intel-
lectual Properties (IP) sending and receiving information increases: bandwidth
requirements increases because the number of modules increases; additional ser-
vices associated to the communication protocol can be needed, because transac-
tions of the more complex system have different priorities; the clock domain
partitioning too could be a very critical design.

The more traditional communication architecture, the bus, has an intrinsic limit
on bandwidth, so the Network-on-Chip (NoC) paradigm [1, 2] tries to overcome
this limit. NoC is the communication architecture that comes from computer and
processor networks. It is composed by three types of modules: routers, links and
interfaces. The IPs do not communicate between them directly: the messages are
sent from an IP source to a router and forwarded by this to other routers until they
will arrive to the router connected to the destination IP. Routers are connected each
other by links forming a net of chosen topology, size and connection degree.

S. Gigli � M. Conti (&)
DIBET, Universita Politecnica delle Marche, Ancona, Italy
e-mail: m.conti@univpm.it

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_7,
� Springer Science+Business Media B.V. 2011

91

NoC architecture has many degrees of freedom. Topology for regular network
can be chosen between a wide variety: the most common ones are two dimensional
mesh and torus, but examples of other topologies can be hypercubes, spidergon [3],
hexagonal [4, 5], binary tree and variants [6–8], butterfly and Benes networks [9].
Topologies affect performances like cost (router and link number), maximum and
average distance between nodes and fault-tolerance through alternative path. A
network can use circuit switching and/or packet switching techniques and can
support different Quality-of-Services (QoS) [10].

The links are characterized by the communication protocol (synchronization
between sender and receiver), width (number of bit per transmission), presence or
absence of error detecting/correction scheme and voltage scaling [11, 12]. In general
NoC links are unidirectional.

The internal structure of the router has the heaviest impact on network per-
formance. The router has input ports and output ports where messages enter into
and go out from router; each flit (FLow control digIT), that represents the infor-
mation quantum circulating in the network, is stored in internal buffers that can be
close to input ports and/or output ports; the routing module indicates to the switch
module how flits advance from input stage to output stage; contentions are
resolved by specific arbitering rules and the DPM (Dynamic Power Management)
module implements power saving policies by slowing down or speeding up or
turning off the whole router or some part of it; the flow control indicates how the
mentioned router resources are coordinated.

Buffer dimensions, structure (shift register or inserting register [13]) and par-
allelism degree are parameters that can be chosen. The switch structure could be
complete or incomplete crossbar between input and output port and/or it can have
some additional ports for delayed contention resolution [14, 15]. The routing
algorithm and DPM policy should be implemented in the cheapest and efficient
way as possible. Most common flow control techniques used in NoCs are virtual
channel [16] (VC), Virtual Cut-Through [17] (VCT), Wormhole [18] (WH), and
flit-reservation flow control [19].

Compared to bus, NoC has the following advantages:

• bandwidth increases because message transactions take place at the same time in
different part of the network;

• arbitering is distributed and it requires simpler and faster hardware;
• regular topologies make NoC scalable and the use of the same components

(routers and links) allows a high reuse degree;
• NoC, using GALS (Globally Asynchronous Locally Synchronous) synchroni-

zation paradigm, allows communication between module with different clock
domains and of the clock skew phenomenon reduction is avoided;

• the network, being a distributed architecture, can be more robust to faults
because messages forwarding can be redirected in areas not damaged and/or not
congested;

• NoC can adjust power consumption depending on the current communication
requirements.

92 S. Gigli and M. Conti

On the other hand, NoC design is a more complex than bus design. Related to
bus, new problems and trade-offs arise:

• routing algorithms should verify deadlock and livelock conditions [20–23];
• more complex and fault-tolerant routing schemes improve performances and

reliability, but they need more complex, more expensive and slower routers;
• more complex and more efficient power management schemes need addi-

tional circuitry;
• routers and interfaces must implement appropriate arbitration schemes and

must have suitable hardware in order to manage different QoSs.

Network-on-Chip configuration parameters must be carefully tuned to improve
communications, cost and power performances. Early stage tools capable to fast
explore solutions space, pruning non-optimal solutions about network and router
architecture, will help designers to obtain better time-to-market values.

7.2 The Platform

NOCEXplore (http://sourceforge.net/projects/nocexplorer/) [24] is a SystemC
library for NoC performance comparisons and investigations. It has two main
aims: to provide a platform for comparison of NoCs chosen in a high and up-
gradeable design space and to provide to designer a high level of detail of events
that happen in the network during simulation. Nevertheless, the CPU time required
for simulation and data post-processing are acceptable.

In the NOCEXplore platform models of the networks are configurable by a set
of 19 parameters that define the possible configurations of the networks. The traffic
description involves three additional parameters. Globally, the configurations
space has the 22 dimensions listed below, so the exploration of the solutions is
done over a 22 dimensional space. Each dimension could have a physical value, a
numeric value or a identification.

1. The network quality of service is an identifier and describes global network
services and main router architecture.

2. The network size is a numeric value and indicates how many modules are
connected to the network.

3. Topology is a number that identifies how routers are connected by links.
4–7. Link type, link width, link delay and number of physical link per topological

arc are four parameters that describe the link; the first one identifies link
protocol and communication scheme, the second one is the dimension of the
flit circulating in the network, the third one represents inter-router flit
latency and the last one allows to use more than one link between a couple
of routers for a topological arc.

8–9. flit_ per_ packet and packet_ per_message take into account how many flits
correspond to each packet and, in bursty communications, how many

7 NOCEXplore 93

packets are in a message. The flits of the same packet move in the same
path; different packets, even if belonging to the same message, can be
routed in different ways. The distinction between packet and message is
necessary when a huge amount of data must be transferred (bigger than the
maximum value that the network protocol can provide) from an IP to
another in an efficient way.

10. Each router, seen as a synchronous machine, has a local clock generator of a
certain frequency; each generator has its own starting delay independent from
the others.

11. Routing algorithm implemented in each router is modeled by three functions:

• the ‘‘routing function’’ is responsible of avoiding deadlock and livelock and it
can use topological information to get the distance between current node and
destination node crossing the particular output port.

• the ‘‘selection function’’ selects one of the admitted output ports carried out
by previous function: the choice can be taken considering the actual status of
the router congestion, the actual congestion of the neighbour routers and/or
the overall or partial network status based on the elaboration of control
messages produced and consumed by routers. The selection is responsible of
the degree of adaptability of the algorithm.

• the ‘‘header function’’ modifies, if necessary, some field of the header flit of
the packet.

12. Arbitering scheme solves contentions where resources are shared in the router.
The points of contention are two: different input buffers request the same
output buffer; and different output buffers request the same output port or
output channel. The arbitering scheme can be based on some user defined
fields in the header flit (transaction identifier, priority related to arrival time or
packet living time).

13. The switch structure refers to the architecture of the component that performs
the flit crossover from input stage of the router to the output stage; it affects
the number of flit crossovers that can be performed in a router in a single clock
cycle.

14. The DPM policy is a set of rules determining the router power state for getting
the best trade-off between communication performances and energy con-
sumption. Workload conditions are estimated by measuring buffer occupancy
and flit rate. The techniques considered are DVS (Dynamic Voltage Scaling)
and DFS (Dynamic Frequency Scaling). The designer must provide the power
models, the power states and status changing rules.

15. The flow control coordinates router internal resources.
16–17. Input port buffer length and input port buffer number describe the number

and the depth of the buffers in input stage: several buffers can be placed in
parallel and flit insertion in buffer can take place via insertion or shifting.

18–19. Output port buffer length and output port buffer number describe the
number and the depth of the buffers in output stage.

94 S. Gigli and M. Conti

The traffic is described by three parameters:

20. The traffic intensity is the mean value of flit injection operated by the IPs; this
value is normalized to the maximum value of one flit per clock cycle, so the
traffic offered in the entire network is given by the product of the following
three terms: traffic intensity, number of IPs connected to the network and link
width.

21. The traffic scenario describes the spatial distribution of message flows: the
tool offers a small set of traffic primitives where designers can define any
mixture message flows given by the CTG (Communication Task Graph) of the
applications under exam.

22. The burstyness is a percentage value of bursty traffic over total traffic emitted
by each source node.

The set of the 22 parameter values is defined as network configuration, the
nodes attached to the network are traffic generators and they are source and sink at
the same time.

The platform has been created for being easily upgradeable: adding a new
numeric or physical value, for example a new buffer length, simply needs to insert the
new value in the list of this parameter; adding a new behavior, for example a new
topology, designers must create a new topology class derived by the topology base
class and they must overload one or more virtual methods that describe the topology.

7.3 Investigations

The information extracted by the platform from the simulations of the network
stimulated under a defined traffic scenario can be saved in files and/or can be
submitted to the postprocessing phase. Four types of analysis can be carried out:
global statistical analysis, global and detailed probabilistic analysis, dynamic
analysis, power analysis.

7.3.1 Statistical Analysis

The statistical analysis allows a comparison between the performances of different
network configurations under identical or different scenario. We can distinguish
three types of global performances: the communication performances are based on
message delays: minimum, maximum, standard deviation and mean delay of all
steady state messages. Moreover throughput is also evaluated. A second nature of
overall performances regards collections of events like routing calls, number of
routed flits, commutations on links (seen as a parallel bus of wire of length equal to
flit length) and flit shift when the shift register structure is adopted in buffers; these
events are collected during the simulation of the network.

7 NOCEXplore 95

The third nature of global performances is related to power consumption: based
on user defined power models of router and link, an overall estimation of energy
consumption is provided taking into account all routers and all links together.
In this way, for example, the designer can verify the goodness of dynamic power
management policy on routers and links.

As an example some simulation results are reported in the following. Figure 7.1
compares message mean latency of the same network under different routing
algorithms. The network consists of 16 nodes in a 4 9 4 mesh topology. The
traffic scenario contains four hotspots, where the flows overlap themselves on three
links; the other nodes inject uniform traffic of intensity five times lower than the
others involved in the hotspots. Two routing algorithms are used: the first one is
deterministic and it performs the dimensional ordering routing; the second one is
partially adaptive and it performs the west-first algorithm. The graph indicates the
mean delay of all the packets received from and sent to all nodes in steady state
condition versus the traffic intensity. The overlapping flows yield the saturation
threshold to half link bandwidth and network saturates at the intensity of 38% of

Fig. 7.1 Example of statistical analysis of the communication performances of a 4 9 4 mesh
network subject to a overlapped hotspot and uniform traffic scenario under two different routing
algorithms: the adaptive one perform an increment of the saturation threshold of 50% about,
bringing it from 34 to 50% of traffic intensity

96 S. Gigli and M. Conti

the maximum in the case of deterministic routing; the adaptive algorithm saturates
at about 50% of the maximum intensity and with a slower slope.

7.3.2 Probabilistic Analysis

The second type of analysis is detailed and local. A probabilistic analysis of
message delays highlights the traffic flows that do not match task constraints.
A distribution of message delays is performed taking into account:

• all messages circulating in the network;
• all messages emitted by a specified source node;
• all messages consumed by a specified sink node;
• all messages emitted and consumed by a specified couple of source/sink nodes.

Moreover, the four main statistical indexes (mean value, standard deviation,
skewness and kurtosis) of each distribution are calculated. This kind of analysis
evidences message flows that satisfy specific communication performance con-
straints at a specific traffic intensity.

The example of Fig. 7.2 shows the probability density function of the delay of
the network with adaptive routing at the begin of its saturation, at traffic intensity
of 54%. Despite the more important peak occurs at low delays, the not negligible
density peaks at 40, 80, 200, 250, 320 and 500 clock cycles yield the mean value of
latency to 125 clock cycles. However, the majority of the packets are delivered in
reasonable delays.

7.3.3 Dynamic Analysis

The third type of analysis investigates the temporal evolution of some ‘‘events’’
that take place during the simulation. If the previous analysis indicates which flow
does not match constraints at the terminal part of the network, designer could
discover which part of the network are involved in the implied flows. These
‘‘events’’ are:

• utilization level of buffers of each router;
• moving average of switch transversal flit;
• moving average of link writings;
• moving average of routing activities.

Moreover, a statistical analysis of these occurrences is provided.
This kind of investigation allows the designer to discover which resources could

be oversized or undersized and which traffic conditions influence some temporal
congestion and for how long the congestion status is maintained. Each elaboration
performs overall, steady state and transient plots of utilization of the buffers.

7 NOCEXplore 97

7.3.4 Power Analysis

The power analysis of Network-on-Chip involves energy estimation and dynamic
power management and it can be performed in two possible ways depending on the
detail required and energetic models accuracy. The coarse analysis considers
routers having a power dynamic management module and a power consumption is
associated to each power state of the router.

The total energy dissipated by the network is obtained by summing up each
energy consumed in each state by each router plus the energy necessary for state
changes.

In the parameter 14 described in previous section, the DPM policy, the designer
has to define both power models and the power state machine implementing the
DPM policy.

Figure 7.3 shows a graph where the power state of each router is reported
during time: time and router identification number is reported in the x axis and
y axis, respectively. The colour indicates the state and colour-bar on the right side
indicates the legend with colours and numbers corresponding to the power states.

This analysis highlights repercussions of some router energy and performance
states on the neighbour routers and evaluates the goodness of DPM policy

Fig. 7.2 Example of probabilistic analysis of the communication performances of a 4 9 4 mesh
network subject to a overlapped hotspot and uniform traffic scenario under west-first partially
adaptive routing algorithm

98 S. Gigli and M. Conti

performed on the triple topology/routing/scenario; policy goodness is measured in
effective power saving, in sensitiveness to local and temporal congestion and
stability of power state.

The second way of evaluation of Network-on-Chip power consumption, as
mentioned above, can be done by collecting ‘‘activities’’ related to energy dissi-
pation. These activities are: commutations inside the link based on data value,
incoming to and outgoing from router of a flit, routing function calls and flit
crossings in the switch. These measures, mixed with technological constants and
power models provided by designer, give information about power consumption.

Accuracy of communication and power performances depends on the accuracy
of models. Simple models let the designer to get performance trend of architectural
choice and more detailed model will improve performance accuracy. At the
moment router model needs three clock cycles for a flit crossing without con-
tention and routing decision is done in one clock cycle; inter-router link latency
can vary from one to ten nanoseconds depending of the circuitry complexity
modeled.

Some words about simulation time. A performance profiling of the platform is
planned and the developers are aware that some performance improvement can be
done. Simulation time strongly depends on network size and traffic intensity;
SystemC simulation time strongly depends by the number of simulation kernel
context switchings.

Fig. 7.3 Example of power analysis where energetic states of the router are plotted over the
time. Darker colours means more performing and power consuming state while lighter colours
less performing and more power saving states. Router power state machine has nine power states
and it follows ACPI standard (http://www.acpi.info)

7 NOCEXplore 99

The increment of network size increases the number of modules instantiated
and consequently the number of context switchings increases causing performance
penalties. Moreover, we have registered a not negligible simulation time increment
when traffic intensity increases and when networks start to be congested; this
behaviour is due to the amount of data allocated in memory.

Actually, about 2 min is needed on a commercial notebook (64 bit—1.5 GHz
CPU with 4 GB of RAM) for simulating and postprocessing a 16 nodes and 16
routers NoC in worst case condition. We consider this computation performance
quite good because simulations are cycle accurate and user can access to lots of
event details for more detailed investigations.

7.4 NOCEXplore Usage

The platform (http://sourceforge.net/projects/nocexplorer/) includes executable
code, a library and some shell scripts to automate analysis by using few
commands.

The main executable code allows to perform a set of simulations in a unique
shell command specifying the network architecture and the ‘‘actions’’ to be
accomplish. Structured and simple text files, called session files, indicates the
models of NoC to be analysed. The ‘‘actions’’ that must be done for each simu-
lation are the following:

• create folders for the simulation;
• create the configuration file of the network architecture: it contains the values of

the 22 parameters and it completely defines the model;
• run the simulation: some intermediate data can be logged in files for further and

manual investigations; this data can be saved in text or binary access;
• run the elaboration: depending on how many options are present in the com-

mand line, designer can set the level of detail of the analysis; the first level of
detail, only the statistical analysis will be performed; the second level adds
probabilistic analysis, while the third level performs a full analysis. Increasing
the types of analysis performed, disk usage and elaboration time need increase
in a not negligible way;

• group in a text file all the statistical performances;
• group the set of simulation folders in other projects folder according to the

arrangement of analysis.

Due to the great amount of data written in a simulation that perform full
analysis, we give the following suggestions:

• define carefully the configuration space of exploration and define the sessions of
simulation;

• perform simulations of the networks with low level of detail of analysis and
without saving intermediate data. Successively, compare overall performances;

100 S. Gigli and M. Conti

• depending on the result of the previous step, create a set of other session files in
a second phase of analysis according to the subspace of exploration that should
be investigated in deeper detail; if necessary, enable the saving of temporary
data in files;

• run the simulation of this analysis;
• repeat iteratively the previous two steps until the investigation is completed.

NOCEXplore provides some diagnosis tools that allow the traceability of all
packets and messages and enable the designer to discover potential deadlock.

7.5 Post-processing

In the following the post-processing data generated by the tool will be described.
Intermediate files that can be generated in each simulation are *.log files and

they collect all the events that occur during the simulation.
Since every node connected to the network is source and sink of messages,

ip_*_source.log and ip_*_sink.log files collect events of all the messages gener-
ated and consumed by the nodes, respectively. Data are structured in records of
one line each; the fields of the record collect the identifier of the message, the time
instant of its production or consumption and its destination and length in terms of
number of packets. The filename identifies the node.

The write operation on links, operated by the routers, are logged in link_*.log
file. Each record contains the flit identifier, the time instant of the write event and a
value of the energy consumption of the transmission of that flit on the link. The
filename identifies the link.

The files named router_*_stax.log collects events of arrival and departure of
flits in the specified router; the fields of the records are the flit identifier, the time
instant of the event, the destination node of the flit, a flag indicating the direction
of the event.

The level of utilization of the buffer of each port of the router is stored in the
files router_*_buffer_ port.log. Each record contains the buffer identifier, the time
instant of the event and the level of occupancy of the buffer normalized to its
capacity.

The router_*_routing.log files collect information about routed packet, namely
which packets have been routed toward which port of the router in a
certain instant. The files router_*_demux_port*.log, router_*_switch.log and
router_*_mux_ port*.log have the traces of the contentions of the resources in the
routers between input port and input buffer, at crossbar and between output buffer
and output port, respectively. They store the identifier of the packet that must
advance, the resource contended, the result of the contention and a time stamp.

The data stored in the .log files are elaborated in the post-processing phase,
allowing an analysis of the NoC performances through synthetic parameters.

7 NOCEXplore 101

If only the statistical analysis is performed, only the file result.net is generated,
which holds global indexes on communication, energetic and activities
performances.

The file contains the mean, maximum, minimum and standard deviation of the
delays and the throughput of the messages delivered at steady state condition on
the NoC.

Based on power consumed by routers in each state, an estimation of power
consumption is done and it is normalized to the maximum power consumption if
no power management policy is adopted.

Some activities are collected during simulation: the number of packet routings,
the number of flit that have crossed a router, the number of shift in buffer if the
structure is considered as shift register and an estimate of the total number of
commutation in the links.

The probabilistic analysis elaborates the communication performances, that is
latency and throughput, for each couple of nodes connected to the network; the
analysis generates two groups of file: the former performs some statical indexes for
each flow of traffic and the latter shows the distribution of the delay of the traffic
flow.

The six files with name matrix_*_data.elab are tables and the element on the
line ‘‘i’’ and column ‘‘j’’ refers to the couple of nodes identified as ‘‘ith’’ node
source and ‘‘jth’’ sink node. The data stored are: mean and standard deviation of
latency, throughput, number of messages, packets and flit delivered. Each of these
table has an associated colour-plot for an immediate and visual trend of com-
munication performances for each flow of messages.

Data files with the name prob_source*_sink*.elab contain the distribution of
the latencies of the messages composing the traffic flow considered at steady state
condition. Each of the 200 records defines the probability ‘‘p’’ of message having
delay ‘‘d’’. Each of these function has an associated plot.

The most detailed analysis generates many postprocessing files containing data
able to describe the evolution of some parameter during the simulation. Each one
of these data file has an associated plot.

The files util_router*_inport*.elab and util_router*_outport*.elab contain the
temporal evolution of the level of occupancy of flit in a specified router in a
specified input port or output port, respectively. The files with name
util_router*_allport.elab contain the same parameter, but data are referred to flit in
all the buffers in the router.

The other parameters monitored refer to the activities related to statistical
analysis. The dynamics of the events of the crossings operated by the switch, the
routings decided by the routing module and the writings in link are elaborated with
a moving average having windows 10 clock cycles wide. The file containing these
data are: switch_ma_*.elab, routing_ma_*.elab and link_ma_*.elab, respectively;
the substring ‘‘_ma_’’ in the filenames stands for ‘‘moving average’’.

These data are saved in text and graphics mode and in three different time
intervals: transient window comprises the first 800 clock cycles; the steady state
interval is 800 clock cycles wide and it is located in the middle of the simulation;

102 S. Gigli and M. Conti

the last windows includes all events occurring from the begin to the end of the
simulation.

Further elaborations of simulation data stored in the .log files can be easily
added.

7.6 Conclusions

NOCEXplore, the Network-on-Chip simulator presented in this chapter, allows the
designer to compare the communication and power performances of many
Network-on-Chip configurations in different traffic conditions. Furthermore, it
allows the investigation on possible bottlenecks. Configuration space is easily
upgradeable and postprocessing is customizable. A huge set of network topologies
with deep level of investigation and comparison is possible and, at the same time,
simulations are performed in a reasonable CPU time. Existing tools do not perform
at the same time cycle level analysis and huge design space exploration.

On the other hand, power estimation is technology independent and power
models must be entirely provided by users.

This platform will be improved by adding following features:

• new topologies, routing algorithms and traffic scenario will be added;
• accuracy of the estimation of power and performance will be given;
• network hierarchical topologies and mixed bus-NoC architectures will be

considered;
• new TLM modules will speed-up simulations time;
• a database will be developed for easy and fast managing and performance

consulting of previously simulated networks.

References

1. de Micheli G, Benini L (2002) Networks on chip: a new paradigm for systems on chip design.
In: DATE ‘02: Proceedings of the conference on design, automation and test in Europe. IEEE
Computer Society, Washington, p 418

2. Kornaros G (2010) Multi-core embedded systems. Taylor & Francis, Boca Raton
3. Bononi L, Concer N (2006) Simulation and analysis of network on chip architectures: ring,

spidergon and 2D mesh. In: Proceedings of design, automation and test in Europe (DATE),
March

4. Dolter JW, Ramanathan P, Shin KG (1991) Performance analysis of virtual cut-through
switching in HARTS: a hexagonal mesh multicomputer. IEEE Trans Multicomput
40(6):669–680

5. Zhao Y-J, Yue Z-H, Wu JP (2008) Research on next-generation scalable routers implemented
with H-torus topology. J Comput Sci Technol 23(4):684

6. Guerrier P, Greiner A (2000) A generic architecture for on-chip packet switched
interconnections. In: Proceedings of DATE. ACM Press, pp 250–256

7 NOCEXplore 103

7. Kariniemi H, Nurmi J (2003) New adaptive routing algorithm for extended generalized fat
trees on-chip. In: Proceedings of the international symposium on system-on-chip, Tampere,
Finland, pp 113–188

8. Ohring SR, Ibel M, Das SK, Kumar M (1995) On generalized fat trees. In: Proceedings on 9th
international parallel processing symposium

9. Moussa H, Muller O, Baghdadi A, Jezequel M (2007) Butterfly and benes-based on-chip
communication networks for multiprocessor turbo decoding. In: Design automation and test
in Europe conference

10. Bolotin E, Cidon I, Ginosar R, Kolodny A (2004) QNoC: QoS architecture and design
process for network on chip. J Syst Arch Spec Issue Netw Chip 50:105–128

11. Soteriou V, Peh L-S (2004) Design-space exploration for power-aware on/off interconnection
networks. In: Proceedings of the 22nd international conference on computer design (ICCD)

12. Shang L, Peh L-S, Jha NK (2002) Power-efficient interconnection networks: dynamic voltage
scaling with links. Comput Arch Lett 1(2):1–4

13. Bhat S (2005) Energy models for network on chip components. Ph.D. dissertation,
Technische universiteit Eindhoven

14. Laffely A, Liang J, Jain P, Weng N, Burleson W, Tessier R (2001) Adaptive system on a chip
(aSoC) for lowpower signal processing. In: Thirty-fifth asilomar conference on signals,
systems, and computers, November

15. Liang J, Swaminathan S, Tessier R (2000) aSOC: a scalable, single-chip communications
architecture. In: IEEE international conference on parallel architectures and compilation
techniques, October, pp 524–529

16. Dally WJ (1990) Virtual-channel flow control. In: Proceedings of the 17th annual
international symposium on computer architecture (ISCA), Seattle, Washington, May,
pp 60–68

17. Kermani P, Kleinrock L (1979) Virtual cut-through: a new computer communication
switching technique. Comput Netw 3:267–286

18. Dally WJ, Seitz CL (1986) The torus routing chip. J Parallel Distrib Comput 1(3):187–196
19. Peh L-S, Dally WJ (2000) Flit-reservation flow control. In: Proceedings of the 6th

international symposium on high-performance computer architecture (HPCA), January,
pp 73–84

20. Dally W, Seitz C (1987) Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Trans Comput C-36(5):547–553

21. Glass C, Ni L (1994) The turn model for adaptive routing. J ACM 5:874–902
22. Duato J (1995) A necessary and sufficient condition for deadlock-free adaptive routing in

wormhole networks. IEEE Trans Parallel Distrib Process 6(10):1055–1067
23. Duato J (1996) A necessary and sufficient condition for deadlock-free routing in cut-through

and store-and-forward networks. IEEE Trans Parallel Distrib Process 7:841–854
24. Gigli S, Conti M (2009) A SystemC platform for Network-on-Chip performance/power

evaluation and comparison. In: Proceedings of the IEEE seventh international workshop on
intelligent solutions in embedded systems WISES09, pp 63–69, Ancona, Italy, June 25–26

104 S. Gigli and M. Conti

Chapter 8
Coverage-Driven Verification of HDL
IP Cores

Case Study of a Router for Network-on-Chip
Communication in Embedded Systems

Sergio Saponara, Francesco Vitullo, Esa Petri, Luca Fanucci,
Marcello Coppola and Riccardo Locatelli

8.1 Introduction

The progress of nanometric CMOS technologies and design methodologies has
fostered the development of complex digital designs, thanks to the capability of
integrating an increasing number of IP cores within a single chip. This trend made
one typical issue of the embedded and digital systems design flow to become more
and more critical: the exhaustive functional verification of complex systems.
In fact, as system complexity grows, the same is for verification tasks which have
two main crucial points: (i) generating proper testing scenarios that stress key
features of the DUT (Design Under Test) and (ii) determining the amount of
different tests needed to reach enough coverage (code and functional) to assert that
the DUT is bug free w.r.t. the foreseen utilization scenarios. While code coverage
is about ensuring that all part of the RTL netlist (statements, expressions, branches,
finite machine states, block instantiations) have been stimulated by the test vectors
(automatic measure of achieved code coverage is already supported in recent EDA
tools for HDL IP simulations), functional verification requires a major verification
engineering effort [1–5]. Indeed, functional verification is about (i) catching
functional behaviour of the DUT from the specifications document and (ii)
validating that DUT behaviour for all possible working scenarios (input traffic and
internal IP state) is consistent with its specification. To be noted that code and

S. Saponara (&) � F. Vitullo � L. Fanucci
Department of Information Engineering, Universita di Pisa, Pisa, Italy
e-mail: sergio.saponara@iet.unipi.it

E. Petri
Consorzio Pisa Ricerche- Electronic Systems and Microelectronics Division, Pisa, Italy

M. Coppola � R. Locatelli
AST Grenoble Lab, STMicroelectronics, Grenoble, France

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_8,
� Springer Science+Business Media B.V. 2011

105

functional verification, on which this work is focused, is the first step of the whole
testing flow which entails further steps for IP core emulation on prototyping
platforms (typically based on FPGA), back-end gate-level functional/timing ver-
ification and finally validation and characterization of the implemented integrated
circuit. Failure mode analysis and fault-robustness verification [6, 7] (particularly
important for designs conceived for harsh environment applications) are orthog-
onal methods not included in what discussed in this work. Today the major part of
development time and costs for a new IP core are spent on verification rather than
on HDL design. To reduce development time and design cost, reusability,
configurability and scalability of the functional verification environment have a
crucial role, also for subsequent verification steps.

Traditional verification techniques based on direct testbenches (where the test
traffic is typically hand-written in HDL as a sequence of input vectors; output
vectors are calculated a priori and then matched with the ones monitored from the
DUT) or on formal demonstrations are inefficient when dealing with complex
designs made up of multiple heterogeneous IP cores [1–5]. Direct testbenches are
applied to the DUT by means of simulation; they have a poor level of automation
since most testing traffic scenarios are usually hand-written; even using more high-
level programming languages (such as C++ or SystemC) to abstract the set of
possible significant stimuli, the problem of checking (i.e. catching DUT outputs
and establishing whether they are correct or not) is still to be solved. When direct
testbenches are used, the output checking tends to be simplified since the user
knows what to expect from the DUT; still, this approach is time consuming and
cannot be exploited for complex designs. Formal verification techniques, on the
other hand, are not based on simulations; instead, the verification engineer tries to
extract deterministic laws and relationships internal to the DUT exploiting its HDL
description. Then, under the assumption of some hypotheses (typically represented
by some set of stimuli) and with the help of an analysis tool, the formal verification
approach tries to prove one or more theorems (on those stimuli, the DUT always
behaves in the desired manner). This approach does not need simulations (though
recently also symbolic simulations have been introduced combining formal tech-
niques with standard simulation [1]) and is general enough to treat also corner
cases. However, formal verification proved to be too complex for medium or large
sized designs because the set of properties that the verification engineer needs to
formally demonstrate is huge; the well known state explosion problem limits
model checking, and the cost of theorem proving is prohibitive because of the
amount of skilled manual guidance it requires. The limitations of these verification
techniques is the lack of reusability and the excessive amount of time, if compared
to Time-To-Market needs, which is required to provide a good confidence level
that the design is bug free.

To solve the above issues, a coverage-driven methodology for functional ver-
ification based on pseudo-random simulations is discussed in Sect. 8.2 and applied
to the case study of a Router IP core for Spidergon NoC communication.
Section 8.3 briefly describes the NoC approach and presents our novel Spidergon
STNoC. Section 8.4 first describes the functionalities of the new Spidergon

106 S. Saponara et al.

STNoC Router IP and its implementation results in 65 nm CMOS technology and
than discusses how the verification methodology was customized and applied to it.
Section 8.5 comments the achieved results and draws some conclusions.

8.2 Reusable Methodology for the Functional Verification
of Platforms

Though many hybrid verification techniques have been explored, trying to
combine the strength points of different approaches, an emerging approach for
functional verification is represented by the constrained random (or pseudo-ran-
dom) simulations. It is already partially supported by tools and languages such as
SystemVerilog or the aspect-oriented [8–10] programming language e (recently
formalized in the IEEE1647 standard) with Specman by Cadence. The Specman
tool is the one used in the case study of this work. The basic idea we exploited for
functional verification is to build an eVC (Verification Component in the e
language) starting from the DUT specifications and ending up with a software able
to perform the following tasks: generating user-defined traffic patterns to be driven
into the DUT; monitoring the DUT outputs and checking them according to the
rules programmed in the eVC; parsing collected outputs into a functional coverage
scheme to let the user understand if all possible cases have been stressed. The latter
is a very important issue and enables a coverage-driven verification: i.e., the user
continues developing tests and running simulations until there are no holes left in
the defined functional coverage plan. Therefore, to achieve full functional
coverage the design of pattern generators, addressed in literature also for the target
NoC case study [11, 12], is just one of the steps of a complete verification
methodology and on its own is not enough. Figure 8.1 shows the conceptual
organization we followed to design an eVC around the DUT. To be noted that,

Fig. 8.1 Activities in a functional verification environment

8 Coverage-Driven Verification of HDL IP Cores 107

starting from DUT specifications, not only the eVC architecture, but also a test
plan and a coverage plan have to be defined.

The philosophy underlying eVCs differs significantly from traditional verifi-
cation methodologies. Rather than using thousands of directed tests, eVCs employ
automatic generation and a coverage driven methodology. Using automated sce-
narios generation, eVCs can typically achieve higher coverage percentages of the
protocol w.r.t. hand-written tests. For instance, in our work 100% code coverage
and functional coverage was achieved enhancing the test base with the addition of
few directed tests, derived after coverage analysis, which allowed to exercise the
remaining corner cases. To this aim, besides eVC development, some HDL and
scripts were also developed and HDL probes were defined to increase observ-
ability and controllability of the netlist. An eVC for a given IP core or a given
protocol can be thought as final product and it does not need to be rewritten from
project to project, allowing for significant reusability. By following proper coding
guidelines and design best practices, the eVC of an IP core can be easily extended,
reused and integrated as part of bigger eVCs for more complex designs when
moving from module to system level verification. This kind of approach to
functional verification overcomes the limitations of traditional verification tech-
niques and improves time-to-market. Figure 8.2 shows the main eVC blocks that
have to be designed to properly stimulate and check the DUT. The env block
represents an instance of the entire verification environment. The Config unit
inside it is the user front-end for the configuration of environment’s attributes and
behavior. For each port of the interface, the eVC typically implements an agent,
instantiating it in the environment. Agents can emulate the behavior of a legal

Agents are the main
modules of an eVC.

The Signal map allows the
agent to bind to the DUT’s
RTL (to drive and read
signals)

Adapt the agent to
different verification
and/or DUT needs.

Monitor capabilities are
common to Passive and
Active agents.

Coverage
definitions.

Checker module: what the
DUT must/must not do!

A Sequence is a
parameterized set of stimuli
to be sent to DUT.
A bus transaction or burst
An instruction to a CPU
An error injection

[…]

The Bus Functional Model
actually drives the stimuli
to the DUT’s RTL.

Sequences may be
composed to easily build
complex scenarios.

Fig. 8.2 Building blocks of an eVC architecture

108 S. Saponara et al.

device, and they have standard construction and functionality; they are usually
bound to a sub-set of the DUT port map and are built on top of building blocks that
implement agent specific functionality:

Config: a group of fields that allow configuration of the agent’s attributes and
behavior.

Signal Map: a unit that contains external ports for each of the HW signals that
the agent must access as it interacts with the DUT.

Sequence Driver: a unit instance that serves as a coordinator for running user-
defined tests; traffic patterns are implemented as sequences (seq).

BFM (Bus Functional Model): a unit instance that interacts with the DUT and
both drives and samples the DUT signals.

Monitor: a unit instance that passively monitors (samples) the DUT signals and
supplies interpretation of the monitored activity to the other components of the
agent. Monitors can emit events when they notice interesting things happening in
the DUT or on the DUT interface. They can also check for correct behavior or
collect coverage data.

8.3 Spidergon NoC Communication Design

NoC is an emerging design paradigm for building scalable packet-switched
communication infrastructures connecting hundreds of IP cores. Its utilization in
MPSoCs which strongly depend on the on-chip communication architecture will
overcome the scalability limitations of traditional solutions like point to point
communication and centralized on-chip busses [13–16]. In fact, as the number of
components grows, traditional interconnect systems can degrade the global system
performances in terms of area, power or throughput [15]. Beyond that, the floor-
planning of long communication wires in presence of so many IP cores is also very
problematic because bad wire routing lowers circuit timing performance. NoCs
adopt some of the networking ISO-OSI abstraction layers (physical, data-link,
network, transport) for decoupling the design of the IP cores from the physical
implementation of the interconnect infrastructure, thus speeding up the design flow
and increasing scalability and reusability, see Fig. 8.3. A NoC is a distributed
network consisting of some main building blocks, the most important of them
being the Network Interface (NI) and the Router (R). The way these blocks are
interconnected determines the NoC topology (e.g. 2D mesh and Ring have been
proposed in the past) which is responsible for packet switching efficiency between
the start and the end point of communication and must be designed to avoid traffic
congestion. Also the Quality of Service (QoS) applied to the routing policy of
packets is a key element.

The NoC infrastructure we designed, called Spidergon STNoC, is based on the
vertex-symmetric topology shown in Fig. 8.3b (note that Spidergon topology
includes the Ring one). In our design, Routers are in charge of delivering packets
towards the destination IP while providing buffering and QoS services by means of

8 Coverage-Driven Verification of HDL IP Cores 109

traffic arbitration policies and link scheduling on packets crossing their network.
All issues related to security, error management and clock frequency, bus size and
protocol conversions are managed at network boundaries by the NIs. Indeed the
NIs are the peripheral building blocks of the NoC, decoupling computation from
communication, which provide protocol abstraction by encoding in the packet’s
header all data to guarantee successful end to end data delivery between cores
(transport layer) and all QoS information needed by the router at network layer.
Figure 8.4 shows the format of the STNoC packet carrying header and payload
data which are physically split in header and payload flits; they are all routed
through the same path across the network.

Such architecture avoids many of the problems affecting older communication
systems. Since it is a distributed network, data packets switch from a building
block to another never being carried by long physical wires which are basically
split and distributed along the network. Each NI collects traffic from the core it is
connected to, independently from the others, and then converts such traffic
into packets sending them to the network of routers, where they move along

Fig. 8.4 Spidergon STNoC packet format

(a) (b)

Spidergon
Platform

R

RR

R

R

R

RR

NI

NI

NI

NI

NI

NI

NI

NI

IP

IP

IP

IP

IP

IP

IP

IP

Spidergon
Platform

R

RR

R

R

R

RR

NI

NI

NI

NI

NI

NI

NI

NI

IP

IP

IP

IP

IP

IP

IP

IP

Fig. 8.3 a Internet ISO-OSI layers and mapping onto NoC, b Spidergon STNoC architecture

110 S. Saponara et al.

different paths. This allows parallel communication flows, which was not possible
with shared on-chip bus lines. The Spidergon STNoC is also suitable to imple-
ment a globally-asynchronous-locally-synchronous (GALS) communication
paradigm [17, 18]. First of all, this means that long global clock wiring is not
needed; furthermore, each part of the SoC can be fed with a different clock source.
It is task of the distributed network to synchronize one clock domain with another
with special modules in its building blocks. In this scenario the distributed network
decouples the working frequencies of the plugged IP cores/sub-systems. Different
kinds of links (synchronous, mesochronous and asynchronous) have been designed
for the Spidergon STNoC [17]. All the problems avoided by the NoC are not
charge free and the price to pay is the complexity of the network. Indeed, it is
important that in the whole computing system the NoC only contributes to a small
percentage of overall area and power consumption. Thus the Spidergon STNoC
has been conceived as scalable, depending on the surrounding computing infra-
structure, in terms of topology, building blocks number and implemented services.
The Spidergon STNoC has been also designed to provide compatibility with
affirmed bus standards largely adopted in IP cores such as RISC processors,
microcontrollers and DSPs (e.g. STBus and AXI NIs have been designed). Such
feature ensures a smooth transition from old bus-centric systems to MPSoCs with
the novel NoC interconnect.

8.4 Verification Environment for the
Spidergon STNoC Router IP

The functional verification of Spidergon STNoC building blocks has been carried
out by building a coverage driven simulation environment. In this case study, the
DUT is a Spidergon STNoC Router IP core but the same approach has been
followed for NIs and links. In this Section, first the functional features of the
designed Router and its implementation results in submicron CMOS technology
are described and then the design of the verification environment is presented.

The Router architecture has been defined according to a parametric and mod-
ular approach using VHDL language. The Spidergon router, see Fig. 8.5, can be
connected through two unidirectional links with three other routers into directions
Right (R), Left (L) and Across (A), plus the fourth connection to the local Network
Interface, used as the network entry/exit point. The physical link consists of two
unidirectional data channels, Downstream (DS) and Upstream (US), with the
relevant handshake signals to realize a credit-based hop-by-hop flow control
(val and credit in Fig. 8.5). The router adopts wormhole packet-switching, where a
packet is subdivided into flits and all of them follow the same path reserved for the
header. The routing algorithm is deterministic, so that always the same path is
chosen between a source and a destination node, even if multiple paths exist. This
choice avoids costly flit reordering at packet reception. The idea is to move along
the ring, in the proper direction, to reach nodes which are near the source node,

8 Coverage-Driven Verification of HDL IP Cores 111

using the Across link as first or last hop to jump to a part of the network that is too
far away. The router uses a simple source-based routing: the entire path is encoded
in the packet header, so each router has just to extract the forward information,
without any need of computation or any look-up table. The routing scheme, along
with a proper QoS scheduling policy, is free of starvation issues. The router avoids
deadlock also by deploying Virtual Networks (VNs in Figs. 8.5 and 8.6, also

Fig. 8.5 S-STNoC router ports breakdown and Downstream (DS) and Upstream (US) channels
with the relevant handshake signals

Fig. 8.6 Environment adopted for the Router functional verification

112 S. Saponara et al.

called Virtual Channels, VCs). VNs provide logical links over the same shared
physical channels, by establishing a number of independently allocated flit buffers
in the corresponding transmitter/receiver nodes. Currently the two request and
response logical paths are implemented on top of two disjoint VNs for sharing the
physical link bandwidth and maximizing wire efficiency. The parametric number
of VNs supported by the router can lead to advanced routing schemes or inde-
pendent QoS traffic classes for real time and low latency flows. The credit-based
flow control works on a per flit basis. Flits can be sent in the US direction only if
there are enough credits, i.e. the DS interface of the receiving component has
enough free locations in its input buffer to store incoming flits. Output Queues on
US ports can be instantiated for enhanced performance, avoiding head-of-line
blocking. Queues are shared among input flows to limit costly time/space speed up
factors and they have the bypass feature to reduce the minimum router crossing
latency in case of low traffic conditions. The architecture also supports the
possibility of not instantiating the Output Queue for low cost implementations,
when performance or traffic types do not require output buffering. It is optionally
possible to instantiate a separate Output Queue for each input port directed to that
output. This configuration increases global network performance when a lot of
traffic is concentrated towards the considered output. The applied QoS mechanism
is the Fair Bandwidth Allocation (FBA). It allows for a flexible, scalable and low
cost management of the allocation of the available bandwidth. The requested
bandwidth value is programmed at injection point (Network Interface) and is not
explicitly linked to the path of a data flow through the router like in other NoC
architectures. It avoids complexity inside the router by providing all necessary
information in the network header and limiting the router behavior to a simple
two-step arbitration. When all data flows have the same bandwidth reservation, the
arbitration algorithm becomes one of the following: Round Robin (RR), Least
Recently Used (LRU) or fixed priority schemes, configurable by the user.

The router has been implemented for different configurations in different
(90 nm, 65 nm and 45 nm) STMicroelectronics CMOS standard-cells technolo-
gies always achieving optimal trade-off between performance and complexity.
As example in 65 nm 1.1 V standard-cells CMOS technology a full Router con-
figuration with all 4 ports enabled (Spidergon topology) and all with 2 VNs, a size
of 72 bits on VN1 (request path) and 64 bits on the VN2 (response path), using
input buffers (IB) and output queues (OQ) able to store respectively 4 and 5 flits,
with LRU arbitration and FBA management, has a circuit complexity of roughly
70 Kgates (including the flip-flop implementation of IB and OQ memory resour-
ces). It achieves a clock frequency of 500 MHz, i.e. at least 32 Gbps data transfer
for US and DS channels, with a low-leakage library version ensuring a static power
consumption less than 100 lW. By using a standard-cells library version opti-
mized for high-speed, with the same IP configuration and CMOS technology node,
clock frequencies up to 1 GHz are met, i.e. up to 64 Gbps data transfer per
channel, but with an increased static power of 1 mW. Obviously, by changing the
Router configuration different results are achieved: as example a basic Router with
3 ports (Ring topology without the Across link), 36-bit size for the flits, 1 VN,

8 Coverage-Driven Verification of HDL IP Cores 113

no OQs instantiated, has a circuit complexity lower than 9 Kgates and achieves a
clock frequency up to 1 GHz, i.e. at least 36 Gbps data rate, with a static power
consumption of roughly 200 lW (the static power is 10 lW if targeting 500 MHz
frequency).

Proper component operation should be assessed for every Router configuration.
However, only a subset of all possible configurations has been actually exploited
for assembling platforms to synthesize. For such Router configurations a full
regression set of test simulations has been carried out to check correct component
operation when stressed with several different traffic scenarios. The DUT of the
simulation was the single Router block. Figure 8.6 shows a sample Router DUT
surrounded by the corresponding verification environment; in this example, a
4–port Router with 2 VNs and both US/DS directions on each port is considered.
Each Router port has its own relevant BFM units which drive and monitor traffic
(master agents are connected to DS ports and slave agents are connected to US
ports). All BFM units are connected with both the monitor unit and the checker
unit. The former is in charge of protocol checking and data coverage, the latter
implements a scoreboard for checking correct routing and other traffic properties.
At the interface level, the following categories of checks were implemented:

• Routing: (i) each transmitted packet exits one and only one time; (ii) each
transmitted packet is output from the correct port (according to header infor-
mation); (iii) flits within a packet are kept in the correct order and are not
interleaved with flits from other packets.

• Credit-based protocol: (i) when a flit is read from the Input Buffer, a credit is
sent back by the router; the valid signal is high on an output port when a
significant flit is transmitted.

• Network Layer Header: FBA bit management (the FBA bits of a packet are
correctly updated when it exits the router).

The different BFMs may be configured to generate different kinds of traffic
scenarios so to reach the desired functional coverage. For example, configuring
properly a test file, it is possible to generate packets that are sourced from 3 ports
and all having the same destination port; this is useful for stressing arbiters and
output queues as well as for achieving some corner cases coverage points. The
developed environment discovered a number of bugs that it was not possible to
find with hand-written HDL testbenches.

To achieve full code and functional coverage by exercising some corner cases,
for some Router configurations a deeper level of checking has been implemented
by means of internal probes (e.g. monitoring internal DUT signals). Indeed, while
some DUT functionalities may be easily checked/covered without knowledge of
timing such as the data integrity from one port to another, check rules for other
DUT functionalities depend on the timing of what is happening on the various
ports; as example, the buffers status (empty/full) depends on the rate with which
packets are injected into the DUT, besides the destination of those packets; also
the correct behavior of an arbitration algorithm depends on the timing with which
the different packets accessing the same resource are served by the Router.

114 S. Saponara et al.

Therefore, to achieve 100% functional verification, the basic coverage-driven
approach should be enhanced either through the design of a software golden model
able to predict timing-dependent properties (very time consuming approach) or
alternatively, as we have done in this work, using internal probes to rapidly
achieve detailed information about operation of internal router blocks and state
machines. An internal probe means monitoring a hardware signal within the
router: for example monitoring the inputs of an arbiter block allows to gather
extensive coverage information about arbitration scenarios and successful appli-
cation of a specific arbitration algorithm. The drawback of this approach is that
using probes requires a deep knowledge of Router VHDL implementation and it is
a hard-to-reuse solution. Figure 8.7 shows the UML diagram of the probes portion
of the Router eVC. Thanks to these additional eVC units, some internal arbitra-
tions and QoS mechanisms have been verified such as the LRU arbitration of the

get_number_of_ls(list of port_kind_t, llist of port_kind_t)()
get_links_needing_ls(list of port_kind_t, llist of port_kind_t)()

number_of_vns
list of vn_layer_u
list of link_schedulers_u

router_internals_u

parent
link
link_str
ls_type : ls_t

link_scheduler_u

1

1..4

get_my_inputs(whoami:port_kind_t,dss:port_kind_t[])()

vn_index[1]
us_links[1..4] : port_kind_t
ds_links[1..4] : port_kind_t
ni_oqs[1] : multi_oqs_t
output_queues[1..4] : output_queue_u
arbiters[1..4] : arbiter_type_u
input_buffers[1..4] : input_buffer_u

vn_layer_u

1

1..2

parent
link
link_str
queues : multi_oqs_t
vn_index

output_queue_u

base_path(is_NI_port:bool)()

vn_index[1]
us_links[1]
ds_links[1]
my_inputs[1..3] : port_kind_t
arbiter_type[1] : arbiter_type_t
queue_block[1] : output_queue_u
ls_req_filterswitch[1]
ni_oqs[1] : multi_oqs_t

arbiter_type_u

1

1..4

1

1..4

ONE_OQ output_queue_u

THREE_OQS output_queue_t

base_path()()

vn_index[1]
us_links[1]
ds_links[1]
link_type[1] : link_type_t

input_buffer_u

1

1..4

Fig. 8.7 UML diagram of the probes portion of the Router eVC

8 Coverage-Driven Verification of HDL IP Cores 115

link scheduler; furthermore, this allowed for the implementation of additional
coverage points related to arbiters and internal buffers.

To be noted that many checks must be performed independently for each port,
so the eVC architecture needs to be highly modular and configurable. It is worth
noting that all the checks and coverage points may be selectively enabled to meet
various user requirements. For example, if there is no interest in testing queue
utilization, simulations can be speeded up by disabling the internal probes portion
of the eVC (which works with cycle level accuracy), leaving only the transaction
level architecture. It is also possible to disable a single check; for example, by
disabling the check about routing the Router eVC can be used as traffic monitor on
a single US or DS bus. To conclude the verification flow, several coverage points
have been defined to describe all possible traffic scenarios that can stress the
Router; they may be conceptually grouped into the three main categories reported
in Table 8.1: Traffic flow, queue utilization, arbitration mechanisms. Some
coverage points (such as the ones in queue utilization) are available only as part of
the internal probes eVC extension, because it is possible to easily retrieve some
information only accessing the micro-architecture of some blocks.

8.5 Results and Conclusions

The developed eVC has been used to test several router configurations; enough test
cases have been implemented to achieve 100% full functional and code coverage
for all points defined in the coverage plan. Table 8.1 shows some details about the
coverage points in the plan with their corresponding range (e.g. the values that
need to be induced in the DUT) and the result achieved. In Table 8.1 we also
highlight the coverage points for which probes have been used. After the time
spent for developing the eVC software, such results were achieved in a relatively
short time thanks to the constrained-random traffic generation.

After functional and code verification by simulations, the effectiveness of the
verification flow was also demonstrated by several STNoC platforms implemented
on FPGA that were successfully emulated with real-life scenarios where multiple
ARM11 processors and memory modules were connected through the Spidergon
STNoC.

The Router eVC has also been used as a component for the functional verifi-
cation of platforms involving several NIs and Routers; different eVCs, all devel-
oped according the same paradigm, were put together obtaining a complex
platform verification environment.

Finally, it is worth noting that the Spidergon STNoC architecture has been chosen
as the inter-tile interconnect of the SHAPES MPSoC European project [17, 19– 21]
involving ATMEL, University of Pisa and STMicroelectronics. In SHAPES,
8 identical IP tiles building a complex scalable multiprocessor are interconnected by
means of a packet-switched Spidergon STNoC network. A typical SHAPES tile
contains a VLIW floating-point DSP, a RISC processor based on the ARM926 core,

116 S. Saponara et al.

T
ab

le
8.

1
Im

pl
em

en
te

d
co

ve
ra

ge
gr

ou
ps

an
d

te
st

re
su

lt
s

C
at

eg
or

y
C

ov
er

ag
e

de
sc

ri
pt

io
n

R
an

ge
R

es
ul

ts

T
ra

ffi
c

fl
ow

R
ou

ti
ng

pa
th

s
R

ou
ti

ng
pa

th
s

be
tw

ee
n

ea
ch

pa
ir

of
po

rt
s

10
0%

(8
gr

ou
ps

,
1

pe
r

po
rt

,
pe

r
V

N
)

P
ac

ke
t

le
ng

th
(2

le
ve

ls
cr

os
s,

co
m

bi
na

ti
on

of
ro

ut
in

g
pa

th
s,

nu
m

be
r

of
fl

it
s

in
a

pa
ck

et
)

1–
10

10
0%

(8
cr

os
s

gr
ou

ps
,

1
pe

r
po

rt
,

pe
r

V
N

)

R
ou

ti
ng

fi
el

ds
in

pa
ck

et
he

ad
er

(4
le

ve
ls

cr
os

s,
co

m
bi

na
ti

on
of

D
S

po
rt

s,
di

re
ct

io
ns

,
de

st
in

at
io

n
ID

a)

A
ll

ro
ut

in
g

de
ci

si
on

sc
en

ar
io

s
on

al
l

D
S

po
rt

s
10

0%
(2

cr
os

s
gr

ou
ps

,
1

pe
r

V
N

)

Q
ue

ue
ut

il
iz

at
io

n
In

pu
t

B
uf

fe
r

ut
il

iz
at

io
n

(p
ro

be
s)

E
m

pt
y–

F
ul

l
10

0%
(8

gr
ou

ps
,

1
pe

r
po

rt
,

pe
r

V
N

)
O

ut
pu

t
Q

ue
ue

ut
il

iz
at

io
n

(p
ro

be
s)

E
m

pt
y–

F
ul

l
10

0%
(8

gr
ou

ps
,

1
pe

r
po

rt
,

pe
r

V
N

)
B

yp
as

s
op

er
at

io
n

(p
ro

be
s)

Q
ue

ue
by

pa
ss

ed
/n

ot
by

pa
ss

ed
10

0%
(8

gr
ou

ps
,

1
pe

r
po

rt
,

pe
r

V
N

)
C

re
di

t
av

ai
la

bi
li

ty
(p

ro
be

s)
0…

5
10

0%
(4

gr
ou

ps
,

1
pe

r
U

S
po

rt
)

A
rb

it
ra

ti
on

m
ec

ha
ni

sm
s

F
ai

r
B

an
dw

id
th

A
ll

oc
at

io
n

(F
B

A
)

(3
le

ve
ls

cr
os

s
co

ve
r:

co
m

bi
na

ti
on

of
U

S
po

rt
,

F
B

A
st

at
us

of
in

co
m

in
g

pa
ck

et
,F

B
A

st
at

us
of

ou
tg

oi
ng

pa
ck

et
)

F
B

A
tr

an
si

ti
on

s
(0

?
0,

0
?

1,
1

?
0,

1
?

1)
10

0%
(8

cr
os

s
gr

ou
ps

,
1

pe
r

po
rt

,
pe

r
V

N
)

C
on

cu
rr

en
t

re
qu

es
ts

sc
en

ar
io

s
(p

ro
be

s)
A

ll
po

ss
ib

le
co

m
bi

na
ti

on
s

of
co

nc
ur

re
nt

pa
ck

et
re

qu
es

ts
to

th
e

ar
bi

te
rs

10
0%

(8
gr

ou
ps

,
1

pe
r

V
N

)

a
T

he
di

re
ct

io
ns

an
d

th
e

de
st

in
at

io
n

ID
ar

e
ne

tw
or

k
la

ye
r

he
ad

er
fi

el
ds

w
hi

ch
ar

e
en

co
de

d
in

th
e

he
ad

of
ea

ch
pa

ck
et

an
d

ar
e

us
ed

by
th

e
R

ou
te

r
to

ta
ke

ro
ut

in
g

de
ci

si
on

s

8 Coverage-Driven Verification of HDL IP Cores 117

a Distributed Network Processor (DNP) for extra tile communication and includes
the interface to the NoC (NI), on-chip memories and a set of peripherals for off-chip
communication. The back-end of the 8-tile SHAPES architecture in 45 nm CMOS
technology has been successfully realized.

This work has extended the WISES2009 conference paper [22].

References

1. Bhadra J, Abadir MS, Ray S, Wang L-C (2007) A survey of hybrid techniques for functional
verification. IEEE Des Test Comput 24(2):112–122

2. Bartley MG, Galpin D, Blackmore T (2002) A comparison of three verification techniques:
directed testing, pseudo-random testing and property checking. In: Proc. 39th Design
Automation Conf. (DAC02), ACM Press, New York, 2002, pp 819–823

3. OSCI (2003) SystemC Verification standard specification version 1.0e. http://www.
systemc.org, May, 2003

4. Yuan J, Shen J, Abraham J, Aziz A (1997) On combining formal and informal verification.
In: Proc. Int’l Conf. Computer-Aided Verific., LNCS 1254, Springer, Heidelberg, 1997,
pp 376–387

5. Sumners R, Bhadra J, Abraham J (2000) Automatic validation test generation using extracted
control models. In: Proc. IEEE Int’l Conf. VLSI Design, pp 312–320

6. Eghbal A et al (2009) Fault injection-based evaluation of a synchronous NoC router. In: Proc.
IEEE IOLTS’09, pp 212–214

7. Mariani R, Boschi G (2007) A systematic approach for Failure Modes and Effects Analysis of
System-On-Chips. In: Proc. IEEE IOLTS’07, pp 187–188

8. Berman V (2005) An update on IEEE P1647: the e system verification language. IEEE Des
Test Comput 22(5):484–486

9. Murphy G, Schwanninger C (2006) Guest editors’ introduction: aspect-oriented
programming. IEEE Softw 23(1):20–23

10. Palnitkar S (2003) Design verification with e. Prentice Hall, Upper Saddle River
11. Al-Badi R et al (2009) A parameterized NoC simulator using OMNet++. In: Proc. IEEE

ICUMT’09, pp 1–7
12. Wen H-H et al (2009) Design of an on-line configurable traffic generator for NoC. In: Proc.

IEEE ASID, pp 556–559
13. Benini L, De Micheli G (2002) Networks on chip: A new SoC paradigm. IEEE Comput

35(1):70–78
14. Muttersbach J, Villiger T, Fichtner W (2000) Practical design of globally-asynchronous

locally-synchronous systems. In: IEEE ASYNC pp 52–59
15. Gyu Lee H et al (2007) On-chip communication architecture exploration: a quantitative

evaluation of point-to-point, bus, and network-on-chip approaches. ACM Transactions on
Design Automation of Electronic Systems 12(3)

16. Grammatikakis MD, Coppola M, Maruccia G, Locatelli R, Pieralisi L (2008) Design of cost-
efficient interconnect processing units: Spidergon STNoC. CRC Press, Boca Raton

17. Vitullo FM, L’insalata NE, Petri E, Saponara S, Fanucci L, Casula M, Locatelli R, Coppola
M (2008) Low-complexity link microarchitecture for mesochronous communication in
networks on chip. IEEE Trans Comput 57:1196–2203

18. Rahman M et al (2009) Efficient 2DMesh Network on Chip (NoC) considering GALS
approach. In: Proc. IEEE ICCIT, pp 841–846

19. Paolucci PS, Lo Cicero F, Lonardo A, Perra M, Rossetti D, Sidore C, Vicini P, Coppola M,
Raffo L, Mereu G, Palumbo F, Fanucci L, Saponara S, Vitullo F (2007) Introduction to the
tiled HW architecture of SHAPES. Proc Int Conf Des Autom Test Eur 1:77–82

118 S. Saponara et al.

20. Paolucci PS, Jerraya A, Leupers R, Thiele L, Vicini P (2006) SHAPES: a tiled scalable
software hardware architecture platform for embedded systems. In: Proc. Fourth Int’l Conf.
Hardware/Software Codesign and System Synthesis, pp 167–172

21. Saponara S, Martina M, Casula M, Fanucci L, Masera G (2010) Motion estimation and
CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding.
Microprocess microsyst 34(7–8):316–328

22. Saponara S et al (2009) A reusable coverage-driven verification environment for Network-
on-Chip communication in embedded system platforms. In: IEEE WISES 2009, pp 71–77

8 Coverage-Driven Verification of HDL IP Cores 119

Chapter 9
A Multiprocessor Platform for Efficient
Data Processing in Electronic Musical
Instruments

A Case Study

Marco Caldari, Franco Ripa and Massimo Conti

9.1 Introduction

The market for high-end microcontrollers shows a steady growth due to the pos-
sibility of increasing performance at ever decreasing costs. Performance and cost
should not be considered simply as the computing power and the net price of the
device itself, but they should include key factors to be considered in order to take
the right choice between a wished component and another.

Two key issues are the architecture of the system and the set of peripherals
integrated in the microcontroller: only intelligent peripherals design, a reactive
interrupt system and the efficient partition of busses and memory hierarchy can
actually provide really high performance. These aspects are specific to high-end
devices, typically with 32-bit architectures; such devices are also preferential
targets of C compilers and other high-level descriptive languages that allow the
optimization of the resources needed to develop an application with the planned
performance. An advanced set of peripherals can also reduce the bill of materials,
so the final cost of the product, allowing the integration into a single chip of
various types of components (e.g. power stages, oscillators, A/D and D/A con-
verters and PWM modules), various serial and parallel communication interfaces
(e.g. I2C, SPI, CAN, USB and SD/MMC) and various types of memory with
different sizes (e.g. FLASH, E2PROM and SRAM).

It should also be considered that the specifications of a product are never really
set up until the first item leaves the warehouse and even then there are a number of
wished features to be implemented in subsequent revisions of the project.

M. Caldari (&) � F. Ripa
KORG Italy S.p.A., Osimo, Italy
e-mail: caldari@korg.it

M. Conti
DIBET, Università Politecnica delle Marche, Ancona, Italy

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_9,
� Springer Science+Business Media B.V. 2011

121

To minimize the risk, many organizations are adopting platforms with 32-bit
architecture, enabling them to develop future generations of their products while
maintaining high possibilities to expand their systems.

Based on these considerations one may think that the market for 32-bit
microcontrollers will soon begin to erode the market shares of more traditional
devices based on simpler 8- and 16-bit architectures.

In an existing platform, which already includes some microcontrollers, the
move to a device with higher performance offers the designer a supplementary
computation bandwidth that can be allocated to perform the work so far delegated
entirely to the main processor. The additional tasks may be represented by the
execution of more complex main application procedures to be assigned to each
processor, so it is important to develop an efficient method for dividing the pro-
cessing load from the application processor to peripheral controllers, when they
are not employed for routine operations.

Moreover, in a multiprocessor structure [1–4] the efficiency of the communi-
cation channel is really fundamental [5–7], consisting of the particular type of
physical interface and protocols that will be used. A kind of multiprocessor
structure is already used in KORG products, where the tasks assigned to the
peripheral MCUs are mainly simple control applications (e.g. scanning of
switches, analogue sliders and LEDs).

The purpose of this work, partially reported in [8], is to identify a multipro-
cessor architecture for the efficient management of the applications in a musical
instrument that can be an electronic keyboard or digital piano. This activity is part
of a collaboration between the Department of Biomedical Engineering, Electronics
and Telecommunications at the Università Politecnica delle Marche, with head-
quarters in Ancona, and KORG Italy S.p.A., a company established in Osimo.
KORG Italy is a design laboratory for research and experimentation in sound
technology aiming to explore new scenarios in music through the application of
KORG technology within everyday life.

9.2 Multiprocessor Architecture

The activity is conducted on the basis of an existing platform with a structure
consisting of a high-performance application controller (AP) and a set of
peripheral microcontrollers (MCUs), with reduced functionality, properly
connected through a serial communication channel, as in Fig. 9.1.

Using this type of architecture it was possible to optimize the connections
between the various boards a musical instrument is made of and at the same time it
was possible to reduce electromagnetic emissions caused by long-distance signals
with high harmonic content.

In this architecture each MCU is running a series of specific tasks: some are
executed in consequence to commands received on the bus, others are continuously

122 M. Caldari et al.

running (e.g. keys and LEDs scanning), some tasks produce data that, at the right
time, are read by the main microcontroller.

It is interesting to evaluate the possibility for the MCUs to perform some
additional functions (more complex with respect to the routines that they normally
execute) originally intended for the main controller; in this way part of its pro-
cessing bandwidth can be freed and reallocated to the execution of higher interest
tasks. The final goal of this research is to evaluate a number of possible archi-
tectures that can efficiently achieve this kind of functionality.

It was decided to model the entire architecture on an FPGA, to have the
opportunity to easily test different solutions and analyze in detail each element of
the network:

• The type of core used to model the peripheral controllers.
• The type of connection between MCUs and the AP trying to minimize the

connections between them.
• Possible strategies for routing of data packets used for communication between

different devices.

In particular to model the peripheral processors different options were possible
[9–11], but at the end it was decided to use the Xilinx MicroBlaze softcore [12]:
Harvard RISC architecture uses 32-bit, it is optimized for Xilinx FPGA family.
The board used for the development is a XUPV2P (Xilinx University Program,
Virtex-II Pro) that includes a Virtex-II Pro FPGA with two PowerPC405 hard-
cores on board, a 100 MHz system clock, some connectors to connect external
devices to the FPGA and the possibility of being configured using an USB
connection.

9.3 Developing the Communication

Initially the activity was focused on the communication between the different
processing elements, i.e., the main processor and the peripheral controllers. The
use of a set of point-to-point connections was pointed out instead of a common
bus. It was planned to model a simple communication system using VHDL starting

Fig. 9.1 Block diagram of
the multiprocessor platform

9 A Multiprocessor Platform for Efficient Data Processing 123

from the implementation of an SPI interface. It was thought that the best solution
for the connection of the various processors is the one in which the AP can
communicate with any peripheral MCU, and each MCU is in touch only with its
neighbors and with the main processor, so it must provide different SPI interfaces
in order to be able to communicate with multiple MCUs.

The focus has then been shifted on the cleverness of the different processors.
These were possible choices:

• The AP uses the MCUs as a simple extension: the AP conveys tasks and collects
data.

• The AP gives the MCUs the ability to decide how to split and share the desired
workload.

• The AP conveys instructions and commands with the possibility to distribute the
load among different MCUs.

In the first situation the MCUs have no decision-making power, their task is to
perform the operations required by the master, on data provided by itself. In the
second, each MCU can decide, depending on the complexity of the request by the
master, if to serve the request or to distribute it partially to one or more MCUs. In this
way each of them acts as the AP with respect to those it is requesting some services.

In the third situation, finally, the AP is the only processor to know whether an
operation must be conducted on a particular MCU or distributed among several
MCUs; according to the type of transaction, the AP will send the appropriate
information to the recipients. In cases where the execution has to be distributed, an
exchange of information between the peripheral MCUs is required.

The system is built on this last approach, which ensures better performance for
very complex operations with respect to the first situation where a command is
carried out by a single processor that typically has not a great computation power;
also the multitasking nature of the multiprocessor system is almost lost.

The third situation keeps the idea of the MCUs as not clever, calculating
machines. This is a limitation of the second situation in which there is a constraint
on the complexity of the various processors, which must be treated almost as the
AP, being able to take decisions in quite a similar way; furthermore the second
situation is the most complex in the planning of the entire system.

The first goal is to model an SPI communication device, based on that proposed
by Xilinx, interfaced on the OPB bus of the MicroBlaze processor. The device is
composed by three parts basically:

• An IP interface: it allows the connection of devices to the OPB bus in a standard
way.

• A set of registers: required by any device that needs to communicate with the
processor through the OPB bus. Each register is 32-bit wide and it is addressed
using the signals of the IP interface.

• The SPI module: this module is responsible for transmission and reception of
data and commands, and is basically created with a shift register, some memory
elements and suitable control elements.

124 M. Caldari et al.

It was decided to divide the SPI controller into three finite-state machines: one
responsible for the transmission, one for memory management and interrupts and
the last one that acts as a master for the other two. Design parameters that should
be evaluated are mainly represented by the length of the words to be used for
communication and the size of the buffers to be able to support different traffic
conditions; such estimations must be conducted according to the type of elabo-
ration that the platform will be requested to perform.

9.4 Exploring the Functionality

One of the most important stages of this work was to evaluate different aspects of
MicroBlaze, the softcore chosen to model the peripheral microcontroller, such as
the achievable performance, the use of its peripherals and the efficiency of the
development tools. To do so the implementation of an application typically per-
formed by an MCU in musical keyboard was planned: the scanning of all the keys
the keyboard is made of. To perform this task it was necessary to create a structure
to interface the controller with the keyboard, to implement an algorithm which
manages the scanning, to process the results and communicate them to the main
processor.

An important part of the study is to analyze these different aspects:

• The processing load due to the execution of the scanning routine, it is important
in order to estimate what is the free computational bandwidth that can be used to
perform additional tasks.

• The use of memory in terms of the size of the executable file that contains the
code/data to be loaded on MicroBlaze, this parameter determines the memory
resource that the microcontroller should provide.

• Evaluation of resources required to synthesize the hardware.

The hardware system is composed by the MicroBlaze core and some logic used
for keyboard scanning. The scanning algorithm was written in C language. The
result of the compilation of the hardware and the software part of the project is a
single file used to configure the FPGA on the board. The following Fig. 9.2 shows
the block diagram of the interfacing between the main board of a KORG keyboard,
the FPGA board and a 76-keys keyboard.

Fig. 9.2 Interfacing
diagram: main board
KORG ? FPGA
board ? 76-keys keyboard

9 A Multiprocessor Platform for Efficient Data Processing 125

In general the goal of an algorithm used to scan a music keyboard is made of
these consecutive steps:

• Scan the keyboard at regular intervals.
• Detect when a key is pressed or released.
• Measure the time between the transition released ? pressed for all keys.
• Manage the stabilization of the reading of the keyboard data lines.
• Send information to the main processor.

9.4.1 Keyboard Scanning Implementation

The hardware part (see Fig. 9.3), synthesized in the FPGA, consists of

• An instance of the MicroBlaze softcore.
• A timer that generates an interrupt at regular intervals.
• A generic I/O device (GPIO) that drives the keys matrix and reads the state of

switches (eight at a time).
• A decoder connected to GPIO lines that select one of the scanning lines of the

keyboard.
• An UART used to send data to the main-board of the musical keyboard used to

generate the sound.

Fig. 9.3 Schematic of the
components synthesized in
the FPGA

126 M. Caldari et al.

The keyboard uses a set of keys organized in a matrix typology; by convention,
the labels BR and MK will be used to indicate, respectively, the first (break) and the
second (make) contacts that are closed while a key is being pressed. The use of two
switches allows to estimate the intensity of the switch operation as it appears to be
inversely proportional to the time between the closure of the two contacts BR and MK.
If the time of the range is short, this indicates a strong intensity of pressure, while
if the time of the range is long it indicates a weak intensity of pressure.

The result of the keyboard scanning is communicated to the main processor
through the delivery of some data packets representing two events: KEY_DOWN
and KEY_UP. The KEY_DOWN event is fired when a key is pressed and the
corresponding data packet reports the key identifier and the corresponding inten-
sity parameter; the KEY_UP event is fired when a key is released and the corre-
sponding data packet simply indicates which key has been released. Two different
versions of the scanning algorithm will be presented: standard and optimized.

9.4.2 The Standard Scanning Algorithm

The main feature of this first scanning algorithm version is that within each
scanning period, all BR and MK lines enabled sequentially regardless of the current
state of the keys on the keyboard. The finite-state machine in Fig. 9.4 visually
describes this algorithm.

Initially all the keys are assumed to be in the state IDLE. As soon as a BR
switch is detected as closed for a particular key, the state of that key becomes the
state TOUCHING. From that moment a counter related to the key is periodically
updated until the closure of the MK switch is detected for that key. At that point,
the counter is no longer updated, a message related to the new KEY_DOWN event
is dispatched containing the identifier of the pressed key and the value of the
counter; the state of the key moves to the state WAITING1 used to avoid the effects
of possible key bounces. Only after a preset time period is elapsed, the state of the
key passes to the state PRESSED in this state both MK and BR switches are closed.

If in subsequent scannings the MK switch is detected as open the key state
advances to the state RELEASING. When also the BR switch is detected as open a
message related to the new KEY_UP event is dispatched containing the identifier
of the key. Then the state is advanced to the state WAITING2 to further avoid
possible key bounces. After a preset time period is elapsed, the key state can return
to the IDLE state.

9.4.3 The Optimized Scanning Algorithm

The idea that led to the study of an optimized scanning algorithm derives from the
observation that in the standard algorithm the activation of the BR and MK lines is

9 A Multiprocessor Platform for Efficient Data Processing 127

performed in any case for each set of eight keys, in order to read the corresponding
switches state; this reading is very costly in terms of time. Actually at times it may
be sufficient to consider only the reading of the lines associated with BR or MK
depending on the state of a particular switch. As can be seen in Fig. 9.4, in the
states IDLE and RELEASING only the state of BR switches is controlled, ignoring
MK lines, while in the states TOUCHING and PRESSED only the state of MK
switches is checked, ignoring BR lines.

The goal of the optimized scanning algorithm is to read the position of the
switches corresponding to BR and/or MK in a smart way, on the basis of
the current state of the keys avoiding unnecessary readings. Since the reading of
the position associated with BR or MK is performed on a group of eight keys, it is
required to read BR and MK lines even if only one in eight keys needs its state to
be updated.

In the best case, for each group of eight keys, all the keys belonging to that
group are in a state that requires the reading of the same BR or MK line. This
allows to gain 50% of the time required by the standard algorithm. In the worst
case, for each group of eight keys, there are at least two keys belonging to that
group which are in two particular states that require the reading of BR and MK.
In this case the gain compared to the standard algorithm, with respect to the time
spent for reading, is zero. In general, the gain introduced by the optimized scan-
ning algorithm over the standard one is statistically very high.

Fig. 9.4 Standard scanning algorithm FSM

128 M. Caldari et al.

It is possible to assign a particular meaning to the bits representing the states of
the FSM in Fig. 9.5:

• Bit0 identifies which switch line is needed to be checked: bit0 = 0: check the
BR line and ignore MK line; bit0 = 1: ignore the BR line and check the MK line.

• Bit1 identifies the particular state of the key: bit1 = 0: the key is being pressed;
bit1 = 1: the key is being released.

9.4.4 Some Variations to the Scanning Algorithms

In addition to the standard and optimized scanning algorithms some features were
implemented trying to maximize the efficiency of the algorithm itself. These
features may be applied to each of the two kind of algorithm and represent a
particular method of reading a switch line (BR or MK), they have been called ‘once
reading method’ and ‘voting reading method’.

Using the ‘once reading method’ a particular line is enabled and after a few
microseconds the state of the corresponding switches is read. Using the ‘voting
reading method’ a particular line is enabled and two successive readings of the
state of the corresponding switches are taken at a time interval of hundreds of
nanoseconds; if these two first readings match, then the result of the reading is
considered as good otherwise, if there is any difference in at least one bit, a third
reading is taken to define the bits that have been marked as uncertain.

Fig. 9.5 Optimized scanning algorithm FSM

9 A Multiprocessor Platform for Efficient Data Processing 129

For both the variations a buffer can be introduced to store the outgoing data
packets related to KEY_DOWN and KEY_UP events waiting to be sent to the
UART for transmission.

9.4.5 Simulations and Results

This paragraph collects the results of simulations carried out on the project of the
keyboard scanning implementation. The measurements were related to

• The duration of a full scan of the keyboard.
• The length of the ELF (Executable Linkable Format) file generated by the C

code compilation.

During the analysis it was possible to change the value of some parameters:

• The type of algorithm being used: standard or optimized.
• The scan reading method: once or voting.
• Data buffer insertion: enabled or disabled.

The different combinations of parameters of the scanning algorithm are shown
in the following Table 9.1.

The setup used to perform the different measures is reported in the following
Fig. 9.6.

With respect to both the total time required for the scanning routine and the size
of the ELF file the compilation option ‘-oS’ resulted to be the best, even if only
slightly, provided that the debugging symbols are not included, as shown in
Fig. 9.7. This parameter has been chosen for the execution of the performance
tests that follow. A comparison of the eight algorithm combinations as been
performed for different frequencies of the MicroBlaze clock: 33, 50, 66 and
100 MHz.

From the data obtained, shown in Fig. 9.8, it is possible to say that the per-
formance using a clock of 50 MHz is not acceptable because, in the perspective of
implementing the keyboard scanning task in a multiprocessor system using a
scanning period of 200 ls, the time the CPU is occupied is so high that it
impossible to do anything else between a scan and the next. The performance

Table 9.1 Different
scanning algorithm
combinations

Combination Algorithm Scan reading method Buffer

Comb1 Standard Once Disabled
Comb2 Standard Once Enabled
Comb3 Standard Voting Disabled
Comb4 Standard Voting Enabled
Comb5 Optimized Once Disabled
Comb6 Optimized Once Enabled
Comb7 Optimized Voting Disabled
Comb8 Optimized Voting Enabled

130 M. Caldari et al.

obtained with a 100 MHz system clock are surely the best among the considered
cases, however, it is important to remember that higher frequencies may create
more problems with respect to electromagnetic compatibility issues.

A further analysis was performed to derive the percentage of occupation of the
MicroBlaze computing power during the execution of the keyboard scanning task
repeated every 800 ls.

Fig. 9.6 Block diagram of
the measurement setup

Fig. 9.7 Executable.elf file length variation with respect to different compilation options

Fig. 9.8 Scanning time at
different microblaze clock
frequencies

9 A Multiprocessor Platform for Efficient Data Processing 131

This measure, whose results are presented in Fig. 9.9, is very important to
understand the availability of the microcontroller to perform additional functions,
possibly provided by the main processor.

In conclusion two types of scanning algorithms have been taken into account,
the standard and the optimized one. The second was built on the optimization of
the initial standard. In the analysis of performance several compilation options
were tested and the more efficient ‘-oS without debug symbols’ allows a reduction
of about 20% of the execution time of the scanning routine scan and a reduction of
about 30% on code size, with respect to the option ‘-o1 with debug symbols’.

Regarding the size of the ELF file the results indicate that among the eight
variations considered for the scanning algorithm, there are no remarkable differ-
ences and the binary file length is around 45 Kbytes for both the standard and
optimized algorithms.

Significant results were obtained for the timing parameter. Using the algo-
rithms implemented in this work, to obtain a scanning routine duration of less
than 200 ls, MicroBlaze should be provided with a clock frequency of more
than 33 MHz; in fact using a 50 MHz clock the minimum scanning routine
duration corresponds to around 193.6 ls. In case this application is going to
be executed with a scan period equal to 200 ls too little time remains to serve
other tasks possibly assigned by the main processor; using a clock frequency of
66 or 100 MHz performance obviously increase significantly. These results show
that it is possible to continue the research on a multiprocessor structure in which
each processing element may execute different tasks assigned by the main
controller.

Fig. 9.9 Microblaze percentage occupation during a scan period of 800 ls

132 M. Caldari et al.

9.5 Conclusion

In this paper a preliminary work was presented regarding a multiprocessor
architecture for the efficient processing of applications for electronic musical
instruments. This activity is still incomplete, but nonetheless some projects were
completed in order to understand some key elements of the architecture as the
strategy of communication between processors and their maximum achievable
performance. The results obtained so far are quite interesting and the search will
continue to integrate all elements of the architecture and to test it with real traffic
conditions generated by different kind of applications.

References

1. Xing J, Zhao W, Hu H (2008) An FPGA-based experiment platform for multi-core system.
In: The 9th international conference for young computer scientists, 18–21 November 2008,
pp 2567–2571

2. Gao RX, Fan Z (2006) Architectural design of a sensory node controller for optimized energy
utilization in sensor networks. IEEE Trans Instrum Meas 55(2):415–428

3. Maslennikov O, Shevtshenko J, Sergyienko A (2002) Configurable microcontroller array. In:
Proceedings of the international conference on parallel computing in electrical engineering,
pp 47–49

4. Marton L (2008) Distributed controller architecture for advanced robot control. In:
International symposium on industrial electronics, 30 June 2008–2 July 2008, pp 1412–1417

5. Kim S-H, Seo S-H, Kim J-H, Moon T-M, Son C-W, Hwang S-H, Jeon JW (2008) A gateway
system for an automotive system: LIN, CAN, and FlexRay. In: 6th IEEE international
conference on industrial informatics, 13–16 July 2008, pp 967–972

6. Wobschall D, Prasad HS (2002) Esbus—a sensor bus based on the SPI serial interface. In:
Proceedings of IEEE sensors vol 2. pp 1516–1519

7. Cucej Z, Gleich D, Kaiser M, Planinsi P (2004) Industrial networks. In: Proceedings of the
46th international symposium electronics in marine, 16–18 June 2004, pp 59–66

8. Paggi G, Ortolani M, Gigli S, Conti M, Caldari M, Ripa F (2009) Development of a
multiprocessor architecture for efficient processing allocation in electronic musical
instruments. In: Proceedings of the IEEE 7th international workshop on intelligent
solutions in embedded systems WISES09 Ancona, Italy, June 2009, pp 79–86

9. Berekovic M, Heistermann D, Pirsch P (1998) A core generator for fully synthesizable and
highly parameterizable RISC-cores for system-on-chip designs. In: IEEE Workshop on signal
processing systems, 8–10 October 1998, pp 561–568

10. Hempel G, Hochberger C (2007) A resource optimized processor core for FPGA based SoCs.
In: 10th euromicro conference on digital system design architectures, methods and tools,
29–31 August 2007, pp 51–58

11. Gschwind M, Salapura V, Maurer D (2001) FPGA prototyping of a RISC processor core for
embedded applications. IEEE Transac Very Large Scale Integr Syst 9(2):241–250

12. MicroBlaze core, see http://www.xilinx.com

9 A Multiprocessor Platform for Efficient Data Processing 133

Chapter 10
A Distributed Hardware Algorithm
for Scheduling Dependent Tasks
on Multicore Architectures

Lorenzo Di Gregorio

10.1 Introduction

Recently the industry has been moving toward multithreaded and multicore
architectures in the hope of exploiting parallelism rather than pushing on crude
performance: there is growing evidence across the semiconductor industry that the
number of cores per chip doubles at least every three years.

Many embedded multicore architectures resemble the block diagram of
Fig. 10.1: one control processor executes management software and delegates the
processing of data streams by dispatching tasks to a data plane of specialized
cores. It has been just the need for introducing processor cores into the data-planes
of programmable chip architectures, which has driven several developments of the
last decade in the field of embedded microprocessors. These data-plane processor
cores may be equipped with memories, accelerators or coprocessors which can be
shared within restricted local pools, hence the control flow of an application must
actually migrate across the processors and may itself dispatch further tasks to the
data-plane. Such architectures are typical of network processors and graphic
processors, but get widely employed whenever the applications provide enough
parallelism and the computation demands exceed the capabilities of standard
processors.

For programming such parallel architectures, the threads model of computation
seemed a straightforward and relatively small step from the conventional models,
but it has faced surprising difficulties in establishing itself within the mainstream
programming practices. According to Lee [1], the large amount of concurrency
allowed within the thread model is actually excessive: he points out that syn-
chronization primitives such as semaphores or barriers have turned out to be alien

L. Di Gregorio (&)
Lantiq Deutschland GmbH, Neubiberg, Germany
e-mail: Lorenzo.DiGregorio@lantiq.com

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_10,
� Springer Science+Business Media B.V. 2011

135

and deceptive to programmers, while techniques for the automatic extraction of
concurrency are still far from achieving maturity.

As a consequence of the lacking focus and magnitude in demand, multith-
reading has typically received only indispensable hardware support and most of its
problems must be handled by software layers. Rather than insisting on thread
parallelism, developers have been recently focusing on task parallelism, also
known as function parallelism. For example, the recent OpenMP 3.0 specification
introduces a task model [2].

We stress the point that the bookkeeping and sequencing activities required to
schedule tasks should be a hardware duty and to this purpose we propose a novel
hardware-based scheduling management infrastructure with a twofold purpose:

• retaining backward compatibility with legacy firmware and traditional pro-
gramming models,

• offering the possibility of a gradual transition to a different programming model,
by delegating part of the event management to the hardware layer.

We employ a distributed network of small hardware devices associated to the
processing cores of the data plane. Every processing core interacts with its asso-
ciated hardware unit by means of three operations: ‘‘declare’’, ‘‘provide’’ and
‘‘require’’. These operations are directly related to the conventional concepts of
function call, value write and value read and can be as simple as memory-mapped
accesses to the associated hardware units. Other structures for increased efficiency
are equally possible, e.g. these units can be connected to the exception mechanism
or to the context switch services of more sophisticated processor cores.

In contrast to conventional synchronization techniques, what this setup actu-
ally provides is a sequencing capability in hardware: this is key to hiding from
the software all the event passing and enforcing sequences over code chunks.
Yet, this sequencing support can still provide conventional mutex and barrier
synchronization.

Fig. 10.1 Example of
one embedded multicore
architecture

136 L. Di Gregorio

10.2 Examples

In this section we show some programming use cases. We want to schedule
functions over a generic network of processing cores and in order to operate, we
require that these functions get annotated to identify which shared resources are
accessed by them.

On issuing a function to one core of the network, we first state which resources
might need to be read within the body of the function and which resources shall be
released by the function. This purpose is served by the operation DECLARE
((p1, …, pn),(r1, …, rm)), which states that the function being entered might request
access to the resources associated to the variables r1, …, rm and at any time before
terminating it shall release the resources associated to the variables p1, …, pn. It is
legal to release a resource which has not been requested.

It is the operation REQUIRE(ri, …, rj) which actually requests access to
the resources associated to the variables ri, …, rj and stalls the execution until all
these resources are released. A non-blocking variant can be implemented as well.
The operation PROVIDE(pi, …, pj) releases the resources associated to the vari-
ables pi, …, pj.

This programming model is known as task model and every properly annotated
function is considered a task. Tasks can call other functions or further tasks.

The algorithm in Fig. 10.2 shows an example of an endless loop on a task in
charge of accessing two devices. If the iterations are distributed to parallel pro-
cessing entities, it is well known that Dijkstra’s classical dining philosophers’
problem could lead to a deadlock or a livelock in the system if the two devices are
interacting.

To prevent this situation, our algorithm ensures in hardware that whenever any
task accesses x0, that same task is guaranteed at some point in time in the future to
get access to x1 with the same task access order which has been applied to x0. In this
example we declare that in the body of the task we might require x0 and x1 and we
shall provide x0 and x1. Subsequently, we do actually require access to device 0
(REQUIRE(x0)) and release it (PROVIDE(x0)) after having used it. When we will

Fig. 10.2 Declaration,
requirements and provisions

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 137

get to the point of requiring to access device 1 (REQUIRE(x1)), we can be sure that
this access gets granted with the same task order which has been applied to device 0.

A more complex example is provided by the algorithm in Fig. 10.3: a packet
handler is triggered on packet arrivals and starts concurrently on different pro-
cessors. It must fetch the packet from an input channel, store it into a queue,
process it and forward it to an output channel. To avoid reassembly on the com-
munication peers, the departure order of the packets must be the same as their
arrival order. Still, the enqueuing and dequeuing must be carried out of order to
exploit the memory bandwidth.

We associate x3 to one input channel, x4 to one output channel and x5 to the
memory queue. x3 and x4 are handled as x0 and x1 in the algorithm of Fig. 10.2.
The repeat–until loop looks for a free entry to store the packet in a queue and
forms an exclusive lock. Nevertheless, parallel instances of this algorithm will not
deadlock while locking both the input channel and the queue because they present
mutual exclusion with respect to x5 but also present sequencing with respect to x3.
Furthermore, the packet order will not be changed, despite of different processing
times, because the sequencing on x3 also applies to x4.

10.3 Related Work

Our hardware algorithm schedules sequences of tasks of the form (pi,1, …, pi,n) =

fi (ri,1, …, ri,m) with dependencies expressed by equalities rj,x = pi,y,j [i.

Fig. 10.3 An example of
in-order processing around
a lock

138 L. Di Gregorio

Our approach merely requires that the fi get annotated with respect to the inputs
and outputs which are relevant for the synchronization.

The idea of annotating functions and scheduling them on the basis of data
dependencies, instead of scheduling threads on the basis of synchronization bar-
riers, has been proposed by Bellens et al. in [3] for extracting parallelism in the
compilation of software for the Cell BE architecture. Since our work focuses on a
hardware implementation rather than on compilation, we employ an elaboration
for multicore systems of the classical hardware algorithm by Tomasulo [4, 5].
In terms of the original algorithm’s formulation, we regard every fi as a large
microcoded instruction whose inputs are ri,1, …, ri,m and whose outputs are
pi,1, …, pi,n.

Interestingly, Duran et al. propose in [6] to extend the tasking model of
OpenMP 3.0 to dependent tasks and to detect the dependencies at runtime. For this
purpose, Perez et al. present in [7] a bundle of compiler and runtime library, called
SMPSs, which employs dependency renaming as provided by Tomasulo’s algo-
rithm. They indicate that for a good performance with their software solution, a
granularity of considerably more than 105 cycles execution time is required. While
we are aware from own experience that a much smaller granularity is well per-
forming on protocol stack workloads, Stensland et al. provide in [8] a strong
indication that, in order to reduce the overhead of the inter-core communication,
this much smaller granularity should be the one of choice also for scheduling
media applications on multicore architectures.

Within the software domain, the handling of both nested tasks and dependent
tasks is still a partially open issue: Cilk [9] (now commercially evolved in
Cilk ++), a task-based programming environment for recursive decomposition,
supports nested tasks with task dependencies, but requires barriers to return values
across the task recursion levels. OpenMP 3.0 [10] supports nested tasks but no task
dependencies, while SMPSs [7] supports task dependencies but replaces nested
tasks with conventional function calls. The hardware algorithm that we propose
supports the scheduling of nested tasks along with task dependencies and does not
strictly require barriers, although it requires including the remaining of a task after
a spawning within a subtask in order to correctly receive values from the spawned
task.

Our work is also very loosely related to the analysis of Salverda and Zilles [11]
about instruction scheduling to multiple cores from typical general purpose work-
loads: indeed one could regard our work as core fusion at the granularity of small or
medium size functions rather than at the instruction level granularity as in [11].

10.4 Algorithm

A task is described by its functionality (pi,1, …, pi,n) = fi (ri,1, …, ri,m), the times
t1
r , …, tm

r associated to the reads of its inputs ri,1, …, ri,m and the times t1
p, …, tn

p

associated to writes of its outputs pi,1, …, pi,n. The form �p ¼ f ð�rÞ represents a

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 139

function and we term its input and output variables ‘‘events’’ in accordance with
much literature on concurrent computation: we highlight that in this paper we
disregard the values of the events and are only concerned with their access times.
In the context of this work, we define as declaration of a function its issue to the
multicore data plane, as requirement the reading of ry at ty

r and as provision
the writing of px at tx

p. With this notation we can pose the scheduling problem with
the implicit requirement that tasks may not deadlock or livelock.

Definition (scheduling problem): For every pair of tasks fi and fj in an ordered
sequence f1, …, fk with i \ j, for every provision px of fi and requirement ry of fj
such that px = ry, a valid schedule must hold fj on its requirement of ry until
ty
r C tx

p. h

The scheme in Fig. 10.4 represents the components of the hardware layer for
supporting the scheduling. The DECLARE, REQUIRE and PROVIDE operations
are issued by the cores and control the M units. The M units interact with each
other and decide whether to stall their associated cores until all outstanding
requirements have been provided. The components shown in Fig. 10.4 are:

• a plurality of (virtual) processing cores, which can be a hardware accelerator, a
processor or a virtual processor, intended as thread-reduced version of the
underlying physical processor.

• a multicore unit M per processing core, which contains the proper hardware
implementation of the scheduling algorithm, based on a very small content-
addressed memory, called requirement table R, contained in M and addressed by
event.

• an event file E, which is a central store area for events to get passed across the
network of M units.

• a sequencing bus (Q-bus), which is a generic serial bus for serially issuing
declarations over the network of M units.

Fig. 10.4 Hardware units
employed for supporting
the scheduling

140 L. Di Gregorio

• a broadcasting bus (B-bus), which is a generic parallel bus for broadcasting
several provisions in any order over the network.

Two further abstract agents are necessary to get the system running:

• a communication backbone between the cores, which is any communication
structure for allowing the cores to pass data and control to each other.

• a task dispatcher, which is any software or hardware structure to dispatch tasks
to the cores, e.g. one program running on a control processor.

It is pretty straightforward to compare this structure with Tomasulo’s one and
observe that the event file plays the role of the register file, the M units the role of
the reservation stations and the B-bus the role of the common data bus. The main
differences originate from the introduction of the declaration phase, the supporting
Q-bus and from the generalization provided by the colored events, which we are
going to present.

Events are associated to the resources to be employed: in order to employ a
given shared resource, a core must require the associated event and provide it on
releasing the resource. An event e is identified by a number and bears the fol-
lowing information:

• e.provided: indication that the event has been provided
• e.src: last declared provider of the event, i.e. last task which has accessed the

Q-bus with event e among its provisions.

A colored event needs no ‘‘.src’’ field and bears the following information
instead:

• e.capacity: much like the top of a counting semaphore, it is the maximum
capacity of a shared resource to accept concurrent accesses.

• e.color: a qualifier which represents how many times this event has been
declared for provision.

Colored events are associated to resources of corresponding capacity and are
called ‘‘colored’’ because we picture that on using them, they change color and
they are considered provided when they get back to their initial color. In our
implementation we do not explicitly associate one capacity per event. Instead we
regard all events belonging to a given range as bearing one capacity and put the
‘‘.color’’ field in place of the ‘‘.src’’ field within the event file.

Colored events are a different concept than standard events, because they
provide sequencing without dependency renaming. In principle one could employ
also multiple standard events to regulate the access to shared resources, but this
approach clashes with the need to declare all events in the declaration phase of the
task. This could be circumvented again by issuing multiple declarations in a
similar way as it has been done in the example of the algorithm in Fig. 10.3 for a
lock, but the whole handling would destroy the simplicity of the task-based
scheduling which we achieve by the colored events.

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 141

In the next three sections we provide an abstract description of how the fun-
damental operations are implemented in the M units. Obviously, the physical
implementation requires additional logic for bus access etc.

10.4.1 DECLARE Operation

The operation DECLARE((p1, …, pn), (r1, …, rm)) initiates a task by stating that
the subsequent code might require events r1, …, rm and shall provide events
p1, …, pn.

On a DECLARE, M assigns to the task a unique identifier i, e.g. by reading it
from a counter and adding a unique prefix, and gains access on the Q-bus to
perform the atomic bus transfer described in the algorithm of Fig. 10.5.

This operation locks the Q-bus for one burst m ? n transaction with the event
file E: this guarantees that all DECLARE operations are seen serially by E.

DECLARE represents one entry point of a task and corresponds to the call of a
function �p ¼ f ð�rÞ. In a function, all code paths reachable from the call entry point
must belong to the function until they provide valid outputs. In the same sense, all
code paths reachable from a DECLARE and not providing all p1, …, pn must
belong to the task. In OpenMP terminology this corresponds to a task region
[10, p. 8] whose boundary is determined by the end of the structured block of the
task generating construct. This observation provides an exact definition of what a
task is and it is entirely possible for a task to call and also contain other tasks: it
just need to contain additional DECLARE operations. It is also possible for a task
to terminate (i.e. provide p1, …, pn) while called sub-tasks are still being executed.

10.4.2 REQUIRE Operation

The operation REQUIRE(ra, …, rz) holds the task until the events ra, …, rz get
provided.

Fig. 10.5 DECLARE
operation

142 L. Di Gregorio

On a REQUIRE, M shall hold the core until the condition shown in the algo-
rithm of Fig. 10.6 is met.

REQUIRE consults the local R table and not the global event file E. A task may
REQUIRE only events which have been loaded into the R table by DECLARE, but
it is not necessary to do so, e.g. the following code is legal:

10.4.3 PROVIDE Operation

The operation PROVIDE(pa, …, pz) broadcasts the notifications that the events
pa, …, pz are being provided by the task i over the B-bus to all other M units.
Furthermore it updates the event file E.

On a PROVIDE, all M units snooping on the B-bus update their R tables on
receiving an event p according to the algorithm of Fig. 10.7.

Fig. 10.7 PROVIDE
operation

Fig. 10.6 REQUIRE
operation

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 143

10.4.4 Event File

The event file E processes the provision of event p in a similar way as the M units
do, as shown in the algorithm of Fig. 10.8.

10.4.5 Migration

In order to exploit the performance acceleration of local coprocessors and increase
the reaction times of a task, we need to let the control flow migrate to different
processing cores. Since a multithreaded processor is a resource of a task, we
employ the distributed algorithm proposed in this paper to schedule migrations
over the processing cores.

Assuming that some cores Cm, …, Cn are associated to the colored events
xm, …, xn, the following code implements a migration from the core Ci to the core
Cj by first obtaining access to a processor’s context and then transferring the
context-specific contents of the M unit. This transfer could have also been
accomplished by a dedicated bus structure rather than in software.

To simplify matters, in this code we have omitted three features which we
describe here in text:

Fig. 10.8 Provision to the
event file

144 L. Di Gregorio

1. in line 7, the transfer is affected by a race condition because Ci.M.R(x) might
get provided after having been read from Ci.M but before being written into
Cj.M. This race condition can be avoided by any of several well known
techniques.

2. in line 9, on leaving the core Ci, the executing task must issue PROVIDE(xi)
only if the task had migrated onto Ci previously. A new task, which gets
initiated on Ci, has not migrated onto it and does not need to release it with a
PROVIDE(), in fact the corresponding variable xi would not be in the task’s
DECLARE().

3. on terminating, if the task has migrated at all, it issue a PROVIDE() to release
the last core it has migrated onto.

10.5 Experimental Setup

We have modeled the proposed algorithm for a generic multicore system of
multithreaded processor cores as shown in Fig. 10.9. A distributor agent dis-
patches tasks to a subset of ‘‘entry’’ processors and these tasks are then free to
migrate through the remaining ‘‘data plane’’ cores.

The figures of interest are:

• makespan: the time required to complete all the tasks divided by the total
number of scheduled tasks.

• sojourn time: the time elapsed between the start and termination of a task.
• execution time: the time necessary for executing a task, including the peripheral

access times but excluding the scheduling delays caused by thread preemption.
• CPU time: the time in which the task keeps the CPU busy.

These figures have been measured for two topologies which we have modeled:
parallel pipelines of processors and pipelines of parallel processors. Our goal has

Fig. 10.9 Scheme of the
generic multicore system
employed in simulation

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 145

been to investigate how the scheduling of tasks over these processor clusters can
be improved. The basic topology consists of four lanes with eight stages each.
Every processing core bears four contexts in its basic configuration. In the case of
parallel pipelines, tasks are not allowed to move from one lane to the next. In the
case of pipelines of parallel processors, they may do so.

With respect to Fig. 10.1, in parallel pipelines of processor, every processor Pi,j

can communicate only with Pi+1,j. In a pipeline of parallel processors, every
processor Pi,j can communicate with any processor Piþ1;k; 8 k 2 1; 2; 3; 4f g:

We have randomized most characteristics to address generality. Both migration
points and the destination of the migration are random. The context switch policy
is also completely randomized and reflects the generalized processor sharing
discipline common in many applications which process streaming data. It has the
effect of equalizing the sojourn times of the tasks within the system: if tasks T1 and
T2 are started at the same time, instead of executing task T1 as first until time D1

and subsequently task T2 until time D2, the execution of both tasks is distributed
over the time max(D1, D2), consequently the average sojourn time will be
max(D1, D2) instead of (D1 ? D2)/2.

The figures for the tasks in isolation, reported in Table 10.1, correspond to the
case in which 32 simultaneous tasks are executed on 32 parallel processors and
show that 24% of the idle time in this workload is caused by dependencies
between the tasks. Figure 10.10 shows how the sojourn time of 32 simultaneous
tasks decreases and the processor idle time increases when moving from 32
contexts on a single processor to 32 single processors. It demonstrates that the idle
time in the workload can be eliminated by multithreading.

10.6 Results

Our main results are summarized in Table 10.2. The scheduling performance
achieved by the colored events is considerably higher than the one achieved by the
standard events, i.e. pure dependency-based scheduling. Quadruplicating the width

Table 10.1 Workload characteristics

Instruction % Characteristics

Execution 88 Takes up to 2,000 instructions
Access 7 Random latency up to 8 cycles
Synchronization 3 REQUIRE up to 16 events out of 64

PROVIDE up to 32 events out of 64
Migration 1 Random migration points
Figures for the tasks in isolation
Average execution time 1,026 cycles
Average CPU time 826 cycles
Average utilization 76%

146 L. Di Gregorio

of the pipeline, and hence the number of processors, still does not cope completely
with the task congestion.

The parallel pipelines deliver a better performance than their equivalent pipe-
lines of parallel processors because there is less traffic. In the case of pipelines of
parallel processors, tasks may need to wait longer because their destinations can be
occupied by tasks from other lanes. This penalty is not compensated by the fact
that some lanes increase their availability due to the tasks which leave them.

The reason why the colored events perform better is that they allow wormhole
routing of tasks while retaining deadlock freedom. The problem is shown in
Fig. 10.11: task A may overtake task B and fill up the free context in the stage
below B. If A depends on B and B shall provide its dependency only after having
moved to the subsequent stage, a deadlock happens because B cannot move to the
next stage occupied by A and A cannot leave it without B having provided the
dependency first.

Without carrying out a finer functional partition to solve the problem ‘‘manu-
ally’’, the overtaking of tasks must be disabled to avoid deadlocks.

Instead, the colored events sequence only dependent tasks over the available
contexts; therefore they provide a less strict policy for a deadlock-free routing than
just disabling the overtaking.

Fig. 10.10 Workload
sensibility to multithreading

Table 10.2 Effect of task wormhole

Topology Makespan Sojourn Utilization (%)

Parallel pipelines (colored) 35.87 3,273.43 73
Parallel pipelines (standard) 90.05 1,697.96 29
Pipeline of parallels (colored) 40.94 3,689.08 63
Pipeline of parallels (standard) 187.32 2,477.33 14
Pipeline of parallels (double size) 91.70 2,742.70 14
Pipeline of parallels (quad size) 55.79 3,250.93 12

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 147

In Fig. 10.12 we report the effect of increasing the number of contexts in a cluster
of parallel pipelines. The makespan can be largely reduced by moving from one
context to two, but it does not improve much by adding more than three contexts:
further increases in the sojourn time of the tasks do not eliminate further idle time.

Subsequently, we have analyzed the effect of increasing the depth of several
parallel pipelines and pipelines of parallel processors. Figure 10.13 represents the
outcome of the measurements for a set of 64 processors bearing four contexts each.
The processors have been initially organized in 32 parallel groups of two stages
each and subsequently in 16, 8, 4 and 2 groups of respectively 2, 4, 8, 16 and 32
stages each. From the data in Fig. 10.13, we can estimate an increase of the
makespan by about 5% for every halving of the number of parallel groups and
doubling of the groups depth.

The additional flexibility of a pipeline of parallel processors costs from 13.5%
(narrowest configuration: 2 groups of 32 stages each) to 25% (widest configura-
tion: 32 groups of two stages each) in terms makespan for a random workload. The
sojourn time increases about 1% slower than the makespan because of the lower
utilization achieved in the last stages of the narrower configurations.

Fig. 10.11 Deadlock in
wormhole routing of tasks

Fig. 10.12 Effect of
increasing the number of
contexts on a cluster of four
parallel pipelines of eight
processors each

148 L. Di Gregorio

The results of Fig. 10.14 show the performance increase achieved by adding
stages of four processors each to a four processors wide configuration. Every
doubling of the pipeline depth leads to a performance increase of about 80%, with
the pipeline of parallel processors delivering between 13.5 and 17.5% less per-
formance than its equivalent parallel pipelines of processors.

10.7 Conclusions

We have presented a novel algorithm for scheduling tasks on multicore archi-
tectures. Its most striking feature is the hardware support for avoiding deadlocks
and livelocks. In comparison to the fundamental algorithm by Tomasulo in [4, 5],

Fig. 10.13 Effect of task
congestion in a pipeline of
parallel processors

Fig. 10.14 Delay caused by
deeper parallel pipelines

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 149

we have introduced a separated declaration stage on a dedicated serial bus (Q-bus)
and multiple requirement and provision stages. This generalization allows us to
employ the algorithm for detecting and renaming data dependencies across mul-
tiple concurrent tasks, rather than across single instructions.

The approach of employing dependency renaming for scheduling tasks has been
proposed in software by Perez et al. in [7], but it requires tasks of coarse granu-
larity (105 cycles or more) to deliver a good performance. Instead, our hardware
approach can efficiently schedule tasks of much finer granularity (down to a few
tens of cycles), which are much more performing on embedded applications like
the ones examined by Stensland et al. in [8].

Within our generalization, we have introduced the colored events for dealing
with hardware resources supporting multiple concurrent accesses.

We have applied the colored events in the scheduling of tasks over pipelines of
processors and we have shown that we can allow a deadlock-free wormhole
scheduling of tasks across multithreaded processor networks. We have presented
numerical evidence of how this scheduling can deliver more performance than a
large increase in the number of processors.

This algorithm has been validated by intensive simulation. We have also carried
out some hardware implementations, but they are not final and shall be a subject
for future work.

This approach provides a partial sequencing of tasks with regard to selected
resources, but it does not clash with other existing scheduling techniques, e.g. for
increasing performance. As the number of processing cores per chip keeps
increasing, traditional synchronization techniques will not cope with the scaling
and we believe that this approach provides a more advanced and distributed
sequencing technique, enabling a smooth transition from existing legacy code.

Acknowledgments This work has been partially supported by the German Federal Ministry
of Education and Research (BMBF) under the project RapidMPSoC, grant number
BMBF-01M3085B.

References

1. Lee EA (2006) The problem with threads. Computer 39(5):33–42
2. Ayguadé E, Copty N, Duran A, Hoeflinger J, Lin Y, Massaioli F, Teruel X, Unnikrishnan P,

Zhang G (2009) The design of OpenMP tasks. IEEE Trans Parallel Distributed Syst
20(3):404–418

3. Bellens P, Perez JM, Badia RM, Labarta J (2006) CellSs: a programming model for the Cell
BE architecture. In: SC ‘06: Proceedings of the 2006 ACM/IEEE conference on
supercomputing. ACM, New York

4. Tomasulo RM (1967) An efficient algorithm for exploiting multiple arithmetic units. IBM J
Res Dev 11(1):25–33

5. Tomasulo RM, Anderson DW, Powers DM (1969) Execution unit with a common operand
and resulting bussing system. United States Patent, August, number US3462744

6. Duran A, Pérez JM, Ayguadé E, Badia RM, Labarta J (2008) Extending the OpenMP tasking
model to allow dependent tasks. In: International workshop on OpenMP ‘08, pp 111–122

150 L. Di Gregorio

7. Perez J, Badia R, Labarta J (2008) A dependency-aware task-based programming
environment for multi-core architectures. In: IEEE international conference on cluster
computing, October 2008, pp 142–151

8. Stensland HK, Griwodz C, Halvorsen P (2008) Evaluation of multicore scheduling
mechanisms for heterogeneous processing architectures. In: NOSSDAV ‘08: Proceedings
of the 18th international workshop on network and operating systems support for digital
audio and video. ACM, New York, pp 33–38

9. Frigo M, Leiserson CE, Randall KH (1998) The implementation of the Cilk-5 multithreaded
language. In: Proceedings of the ACM SIGPLAN ‘98 conference on programming language
design and implementation, Montreal, Quebec, Canada, June, 1998, pp 212–223 (proceedings
published ACM SIGPLAN Notices, vol 33(5), May 2008)

10. OpenMP Architecture Review Board (2008) OpenMP application program interface-version
3.0. Avaliable online: http://www.openmp.org/mp-documents/spec30.pdf

11. Salverda P, Zilles C (2008) Fundamental performance constraints in horizontal fusion of
in-order cores. In: 14th international symposium on high performance computer architecture
(HPCA), pp 252–263

10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks 151

Chapter 11
Automotive Embedded Systems

The Migration Challenges to a Time Triggered
Paradigm

Eric Armengaud, Allan Tengg, Mario Driussi, Michael Karner,
Christian Steger and Reinhold Weiß

11.1 Introduction

Cars have become highly distributed systems implementing up to 70 Electronics
Control Units (ECUs) and exchanging up to 2,500 different messages (e.g. speed
sensor) [1]. The network plays a central role as communication enabler between the
ECUs and further in maintaining the system in a safe state. Former technologies
(e.g. CAN) used to rely on event-triggered communication systems. The intro-
duction of the time-triggered paradigm [2] with technologies such as FlexRay [3] or
TTP/C [4] provides different advantages with respect to system design, integration
and validation. One of its important attribute is to shift the complexity to an earlier
design phase and force the system designer to completely define the system
behavior and thus a priori solve the potential conflicts. However, the paradigm
change has different fundamental impacts with regards to the communication
concepts and to the integration within the software components.

It is the aim of the research project TEODACS1 (Test, Evaluation and Opti-
mization of Dependable Automotive Communication Systems) to gather expertise
for the deployment and validation of FlexRay based distributed systems. The
approach is based on the development of a co-simulation framework (Flex-
RayXpert.Sim) tightly interfaced to a realistic prototype (FlexRayXpert.Lab).

E. Armengaud (&) � A. Tengg � M. Driussi
Virtual Vehicle Competence Center, Graz, Austria
e-mail: eric.armengaud@v2c2.at

M. Karner � C. Steger � R. Weiß
Graz University of Technology, Graz, Austria

1 http://www.teodacs.com

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_11,
� Springer Science+Business Media B.V. 2011

155

The simulation framework, on one side, provides observability of the internal
components and thus enables the efficient analysis of the system. On the other side,
the prototype presents a real behavior both in the time and value domain. The aim
of this document is to review the philosophy behind the time-triggered architecture
and point out the deployment and integration challenges related to FlexRay. The
focus is set to the migration challenge as well and the different options for inte-
grating this new paradigm within an existing software environment. Further, we
present the development flow used within TEODACS for the efficient design and
configuration of our two platforms.

This document is organized as follows: Sect. 11.2 reviews the concepts of the
time-triggered architecture. Section 11.3 focuses on the FlexRay protocol and
the integration challenges due to the paradigm shift. Then, Sect. 11.4 presents the
software development flow enhancement for the development of the two plat-
forms. Finally, Sect. 11.5 concludes this work.

11.2 The Time-Triggered Architecture

11.2.1 The Time-Triggered Computation Model

An event-triggered architecture is characterized by the fact that all system
activities are initiated by an event [5] and consequently reacts to its environment
(an operation is started as soon as the event is received, regardless the current
processing status). On the contrary, in the time-triggered architecture, every action
is derived solely from the progression of real-time and thus follows the progression
of its environment (an operation is started at a pre-defined starting point and
processes the information that has occurred since the last computation; conflicts
about processing resources are avoided per construction).

The time-triggered computational model is based on the representation of the
controlled system as a Real-Time entity (RT entity), which represents the system
as a subset of significant state variables [6]. This RT entity can be observed at a
particular point in time. The observation is then a Real-Time image (RT image)—
a current picture of a RT entity that is an accurate representation of the RT entity,
both in the value and the time domains [6]. The communication follows a periodic
scheme where the system status (e.g. current motor speed) is updated. This differs
from event-triggered communication where event messages (e.g. motor speed
increased by 500 rpm) are transmitted using an exactly-once semantic [7]. For the
time-triggered paradigm, each node is provided with a RT image of the controlled
system, which is processed locally according to a static, a priori defined schedule.
This deterministic progression of the system enables task multiplexing in the time
domain in order to avoid conflicts and race conditions.

The static schedule is based on the concept of the sparse time base [8]. Parallel
to synchronous microchips that rely on a discrete global clock to update its reg-
isters and trigger a new computation step, the clock in the time-triggered

156 E. Armengaud et al.

architecture is made discrete and distributed within the system. The availability of
a globally agreed time base provides simultaneity property: the nodes act at about
the same time (defined by the precision of the clock synchronization) on the same
observation. This aims at keeping temporal coordination between the nodes and
avoiding unsynchronized behavior of the system. Second, it provides temporal
ordering, so that the nodes react on different observations in the temporal order of
their occurrence, thus avoiding state divergence. The time-triggered architecture
provides the four following properties:

P1 Independent node development at the architecture level. This attribute is
based on the precise specification of the node both in the time and value
domain, and on an abstract model of the node services. This information
enables independent development by different teams and supports system
integration [9].

P2 Stability of prior services at the node level, which means that the validated
services of a node—both in the value domain and in the time domain—is not
refuted by the integration of the node into an encompassing system-of-
systems [9]. This requirement aims at enabling sequential node development and
reducing the integration efforts (a module needs to be validated only once and not
after every development stage).

P3 Constructive integration of the communication system, to ensure that the
integration of the n ? 1 node will not disturb the operation of the n nodes
already integrated [2]. This requirement has implication for the management
of the network resources and assures that the timing constraints are satisfied
even at the critical instant (i.e. when all nodes request the network at the
same instant). It supports system development by avoiding sporadic failures
during the integration of additional nodes.

P4 Replica determinism is required for service replication in order to tolerate
faults and improve the system robustness. A fault tolerant unit consists of a
set of replicated nodes that are intended to produce the same results at
approximately the same time [5]. Their role is twofold [10]: they make the
system resilient to transmission errors (since the computation result is
transmitted more than once) and to measurement and computation errors
(occurring before transmission). For that, they require (1) agreement on
inputs, (2) agreement on computation time (replica coordination) and (3)
deterministic algorithms [2, 11]. Items (1) and (2) are provided by the time-
triggered architecture.

11.2.2 Time-Triggered Versus Event-Triggered Architecture

A lot of comparisons between event- and time-triggered architectures have already
been published (e.g., [12–16] for some recent ones) without having clearly

11 Automotive Embedded Systems 157

identified the ‘‘best’’ solution. In fact, the two architectures focus on different
properties. Event-triggered architectures provide flexibility and try to improve the
overall performance while the focus is set to timeliness and worst-case execution
time for the time-triggered architecture [13, 16]. The time-triggered computation
model presents different advantages for the efficient design and development of
safety-critical systems:

• the system complexity increases more than linear with the system size (number
of elements and intensity of the interaction) [17]. Structuring—the description
of a system at an abstract level—is required to cope with the complexity.
Horizontal structuring, or layering, is related to the representation of the system
at different abstraction levels and can be used both in event- and time-triggered
systems. Vertical layering, or partitioning, splits a system into a number of
nearly independent subsystems with their own resources and well-specified
interfaces, both in the temporal and value domain [6]. This concept requires the
system to be composable [9, 12] and to adhere to the four properties discussed in
Sect. 11.2.1. Event-triggered architectures are not composable, since the tem-
poral behavior of the communication system depends on the application soft-
ware [9] and on the bus load. The addition of nodes might affect the system and
the stability of prior services (properties P2 and P3).

• robustness to their environment: Time-triggered architectures are not driven by
interrupts outside their sphere of control, but instead decide autonomously when
to observe their environment. Consequently, and contrary to event-triggered
architectures, there is no possibility for a malicious device to upset a time-
triggered system [17].

• fault containment: the time-triggered architecture provides an interface free of
temporal control signals, (temporal firewall), thus providing error containment
regions within the system. This attribute increases the overall system’s
dependability since errors are contained and do not lead to a system failure.

• static schedule: all timing and data dependencies are resolved during system
design, thus simplifying the inter-task synchronization and avoiding race con-
ditions within the system. Moreover, the static schedule strongly supports timing
analysis [18].

• efficient fault detection: the periodic and a priori defined task execution can be
used for fast fault detection and the message transmission can be used as
‘‘heartbeat’’ to detect failed node [15].

• deterministic communication with guaranteed worse-case transmission time and
low jitters (required for high-performance control loop).

One important advantage of event-triggered architectures is that fewer assump-
tions are required to build a system [14]. Adding a node into a system does not require
any change in the other nodes, but can invalidate the temporal behavior of the system
[9]. This makes the event-triggered architecture more flexible and avoids a restric-
tive design process as required for the time-triggered architecture [12]. Moreover,
event-triggered systems make better use of the bandwidth due to better average
transmission time (the messages are transmitted as soon as the communication

158 E. Armengaud et al.

medium is available). This leads also to a better average system reactivity.
To conclude, event-triggered systems are well suited for sporadic transmission,
alarm, low-power sleep modes and best effort soft real-time systems. Time-triggered
systems, on the other hand, trade the flexibility for more predictability, determinism
and guaranteed latencies.

11.2.3 Time-Triggered Communication

Time-Triggered communication protocols such as TTP/C or FlexRay implement a
Time Division Multiple Access (TDMA) scheme based on a priori defined time
windows (‘‘communication slots’’), which are uniquely assigned to the nodes for
message transmission within a periodic communication cycle, see Fig. 11.1. The
messages are broadcasted above the communication medium and consequently are
available for each node of the cluster. A fundamental principle is that the trans-
mission depends only on the time progression and is not triggered by any external
(not-deterministic) event.

Communication between two systems is commonly based on a master–slave
control scheme. Data exchange can be initiated by the sender (push style) or by the
receiver (pull style). In both cases the requester generates the control flow, and
thus can start a transmission at any time. While this scheme is very comfortable for
the master, the slave has to stay available at any time, which may result in high
resource costs and difficult scheduling. Time-triggered communication protocols
are using a combination of push and pull communication model [19]. During a first
step, the transmitter implements a push style and transfers its data to a local
memory. Then, the communication service autonomously transmits the message
according to the pre-defined schedule. On the receiver side, the message is stored
into a local memory and stays available for the consumer (pull style).

Node A Node B Node DNode C

time

Periodic
communication cycles

communication slots

IDLE
Communication

Medium

Receiver A

Receiver B

Receiver C
Receiver D

A D B A D B

D B D B

A D A D

A D B A D B

A B A B

Fig. 11.1 TDMA scheme

11 Automotive Embedded Systems 159

This combination is ideal both for the sender and receiver since they can transmit
and access the data whenever they want and do not need to be watchful for
transmission request. This communication scheme is building a temporal firewall
[20], a fully specified interface for the exchange of data. Additionally to the
resource saving, this interface is free of end-to-end control signals and thus avoids
the possibility of control-error propagation.

11.3 FlexRay and the Integration Challenges

11.3.1 The FlexRay Host Interface

FlexRay defines both a static segment for deterministic communication as well as
a dynamic segment for prioritized communication. The FlexRay Controller Host
Interface (CHI—see Fig. 11.2) provides protocol and message data interface with
the host software for efficient configuration, control and data exchange.

The protocol data interface, on one side, is dedicated to the configuration and
control of the FlexRay controller. Contrary to event-triggered communication
systems, the timing behavior of time-triggered protocols is a priori defined and
must be initialized. The configuration parameters fall into two categories: global
cluster parameters, which define the communication behavior agreed within the
entire network. For FlexRay V2.1A, it consists of 39 parameters (relevant plus
related). Further, local node parameters define a specific node behavior such as
key slot number or last transmission time during the dynamic segment. FlexRay
V2.1A defines 29 local parameters that need to be individually configured for each
node.

Host processor interface

Protocol engine interface

CHI services
Protocol

configuration
data

Protocol
control

data

Protocol
status
data

message
buffers

message
buffer

configuration
data

message
buffer
status
data

Host processor

Protocol engine

Fig. 11.2 FlexRay controller host interface [3]

160 E. Armengaud et al.

The control and status interface is kept quite simple since functionalities such as
wake-up, start-up, synchronization, triggering for sending/receiving message are
performed autonomously by the FlexRay controller. The control interface consists
of (1) mode change request for the FlexRay Protocol Operation Control (e.g.
between config mode, run mode, halt request), (2) medium test triggering, and
finally (3) the optional control of external clock synchronization (e.g. for syn-
chronizing different FlexRay clusters together). Status information regroups the
status of the Protocol Operation Control as well as the FlexRay global time. This
last information is relevant when the node’s software has to be synchronized with
the FlexRay network.

The message data interface is organized as a list of buffers that are configured
prior operation. Regarding transmission, the configuration consists of channel,
slot ID, header CRC information as well as communication cycle. Notice that
FlexRay supports both slot and cycle multiplexing. A frame sending point is
defined both by a slot identifier and by a cycle counter. This tuple increases the
flexibility with regards to bandwidth management. Concerning the reception,
buffers can be assigned to single frames (same as transmission) or organized as
FIFO.

11.3.2 Integration Within the Node’s Software—The Challenges

An important feature of this protocol is to support both time- and event-triggered
communication as well as to present a flexible interface for the efficient integration
within time-triggered and event-triggered software architectures. On one side,
FlexRay provides different interrupts (transmission, reception, status change) for
the integration within an event-triggered operating system. Moreover, the FIFO
based buffer configuration is well suited to event-triggered communication, where
each signal represents a value change (‘‘event’’) and should not be missed. On the
other side, the FlexRay controller provides global time information for the syn-
chronization between node’s operation and communication, as well as buffer–
frame mapping for the efficient data access (in a time-triggered architecture the
timing relations are known in advance and each node precisely knows when a
message is expected/needs to be sent).

The flexible interface makes thus different integration variants possible, with
different advantages and disadvantages, see Fig. 11.3 for an overview. Principally
we differentiate between event-triggered and time-triggered paradigms, both for
the communication architecture and for the node’s operating system. Historically,
systems used to be purely event-triggered. While providing flexibility and efficient
use of the bandwidth, these systems are extremely difficult to validate (see Sect.
11.2.2) which presents negative effects on their robustness. However, the migra-
tion from a purely event-triggered to a purely time-triggered system usually
requires a complete system re-design that is difficult to perform at once.

11 Automotive Embedded Systems 161

Two intermediate solutions exist to improve the system’s robustness (see
Fig. 11.3): (1) the integration of time-triggered communication into an event-
triggered system and (2) the migration to a time-triggered operating system with
an underlaying event-triggered communication protocol. Solution (1) improves the
communication robustness (property P3): The time-triggered protocol ensures that
the introduction of a new functionality (new set of nodes) will not influence the
existing communication. Solution (2) represents the intention of introducing a
time-triggered architecture without dedicated communication system. The differ-
ent services (e.g. synchronization) have to be implemented in software, thus
introducing an overhead for the system. Recent works relate the problematic of
making coexisting time-triggered with event-triggered schemes within a system. In
[21], the transmission latency for a system comprising a TTP/C and a CAN net-
work is analyzed. In [7], virtual networks providing both event-triggered and time-
triggered schemes are implemented on top of a TTP/C network.

The last migration step goes toward the integration of a synchronized time-
triggered communication protocol and operating system as presented in Sect.
11.2.1. The resulting system can be efficiently analyzed and different approaches
(e.g. redundancy) can be deployed to improve the system robustness. The main
drawback of this approach is the rigidity: the node’s timing behavior is related to
the communication timing (schedule) and must be correspondingly adapted from
an implementation to the other. More especially, the timing information must stay
consistent during the entire design flow. Hence, timing consistency is required at
node level between application, basic software and communication architecture
(cross layer), as well as at system level between the ECUs (cross partition). The
deployment of time-triggered architectures therefore strongly requires the for-
malization (modeling) of the system description (including timing behavior) and
the according tool chains to support efficient implementation.

Fig. 11.3 Integration variants

162 E. Armengaud et al.

11.4 TEODACS Development Process

11.4.1 TEODACS Development Platforms FlexRayXpert.Lab
and FlexRayXpert.Sim

The approach chosen within the TEODACS project is based on the parallel
development of a co-simulation environment as well as a hardware prototype
which model the entire distributed system, see Fig. 11.4. The tightly interface
between the two platforms sums up the advantages of both environments. Despite
their large differences, both platforms require a similar system and architecture
design, configuration and validation flow.

The main aims of the prototype environment FlexRayXpert.Lab are to provide a
realistic network reflecting the current car architecture and to understand the
typical design, integration and validation challenges a car supplier is confronted to.
Our prototype implements different topologies (active star, bus topology with
different cable length) and regroups different suppliers: FlexRay transceivers from
NXP (TJA1080) and austriamicrosystems (AS8221 and AS8224) as well as
standalone FlexRay controller from Fujitsu (MB88121B) and Infineon (CIC310),
and integrated solutions from Freescale (S12XF512 MCU with embedded FlexRay
controller).

The FlexRayXpert.Sim co-simulation platform combines models of the dif-
ferent network components in order to simulate the entire communication archi-
tecture. The co-simulation framework [22] creates the possibility to implement
selectable levels of accuracy according to the requested needs, thus largely
reducing the processing resources and making the analysis of such complex sys-
tems possible. In our case we are using the System Architect Designer tool from

0

0,2

0,4

0,6

0,8

1

1,2

1 6 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 6
1

1 1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1
1

0
6

1
1

1
1

1
6

1
2

1
1

2
6

1
3

1
1

3
6

1
4

1
1

4
6

1
5

1
1

5
6

1
6

1
1

6
6

1
7

1
1

7
6

1
8

1
1

8
6

1
9

1
1

9
6

2
0

1
2

0
6

2
1

1
2

1
6

2
2

1
2

2
6

2
3

1
2

3
6

2
4

1
2

4
6

2
5

1
2

5
6

2
6

1
2

6
6

2
7

1
2

7
6

2
8

1
2

8
6

2
9

1
2

9
6

Car Simulator
CarMaker /

AVL InMotionTM

(real-time)

FlexRay network:
realistic hardware prototype

Hardware prototype platform
FlexRayXpert.Lab

Co-simulation platform
FlexRayXpert.Sim

Interface testcase definition

(car environment, stimuli)

Stimulation
and analysis

Transceiver

Comm.
Controller

FlexRay network:
Co-Simulation framework CISC SyAD®

CarMaker
Interface

FlexRay Channel
FlexRay Topology

FlexRay
Node

FlexRay
node n - i

FlexRay
node n + m

Host (SystemC)

Comm.
Controller

Host

Transceiver

Comm.
Controller

FlexRay
Node

Host (SystemC)
Middleware

Transceiver

Transceiver

Transceiver

Tester Node

Transceiver

TransceiverTransceiver

Middleware
Application Application

Middleware

analog level

sample level

frame level

signal level

Car Simulator
CarMaker /

AVL InMotionTM

Fig. 11.4 TEODACS development platforms: FlexRayXpert.Lab and FlexRayXpert.Sim

11 Automotive Embedded Systems 163

CISC [23]. The simulation of the entire architecture supports the analysis of the
interactions between the single components and thus the design exploration of the
assembled system. The two platforms are stimulated by the CarMaker/AVL
InMotion simulator [24], which simulates the dynamics of a car driving on a road
and thus provides a realistic workload for the network.

11.4.2 The TEODACS Development Flow

The development flow chosen within TEODACS is illustrated in Fig. 11.5 and relies
on (1) the identification of the main development steps as well as their corresponding
meta-models, (2) the identification of the common elements between these devel-
opment steps and (3) the development of dedicated transformators to efficiently map
the information from a development step to the next one. The first step consists of
functional design and represents the design of the system functionalities indepen-
dently from the software or hardware architecture. We use for that the CapeMaster
tool [25] that enables a hierarchic description of the system and of the dependencies
between the functions. This information can be used for automated configuration
generation (e.g. configuration of communication protocols), consistency checks
(e.g. bus load checks) or for fault diagnosis (e.g. which functions are directly or
indirectly affected from a missing or corrupted information).

The second steps represents the design of the communication architecture
according to the functionalities described previously. Different data models such as
Fibex [26] and AUTOSAR [27] have been developed to cope with the growing

System design
Design of functions & interfaces (signals)

Architecture design
Mapping Signals – Frames,

Schedule configuration

Node design
Function design

(FlexRay) driver integration and configuration

Node validation
Debugging

Architecture validation
Test of the communication

Fig. 11.5 TEODACS development flow

164 E. Armengaud et al.

complexity of the communication configuration. They describe the topology
(which clusters, ECUs and communication channels exists), the communication
(mapping frame–signals), as well as the relation between the different parts (e.g.
mapping frame–channel–ECU). In our case we are using the DesignerPro tool
from Elektrobit.2 It enables the efficient configuration of the FlexRay schedule as
well as of the communication matrix. It takes as input the hardware topology
(which nodes are available), the mapping between ECU and functions as well as
the list of signals (application data such as engine speed) to be transmitted. Then,
the user is guided during the definition of a FlexRay schedule as well as for the
definition of frames and mapping between signals and frames. The output of this
tool is a Fibex file.

The following steps represents node design and validation. In the case of
TEODACS, we rely on existing starter kits from different suppliers. This diversity
enables the integration of different chips and require the parallel use of different
Integrated Development Environments (IDEs) as well as different FlexRay drivers.
This diversity represents a challenge at two levels at least. First, the different IDEs
require additional training in order to get fit for the different compilers and
environments. Second, the different FlexRay drivers present different configuration
interfaces and need to be adapted consequently. A contribution of the TEODACS
project is a tool for the efficient export of the Fibex configuration to the different
platforms as well as the enhancement of a FlexRay driver. These points are dis-
cussed in the following section.

The last step described here is the validation of the communication architecture.
It represents the validation of the inter-ECU communication using the FlexRay
network. For that, the network behavior is monitored at different abstraction levels
in parallel and each attribute (e.g. schedule, bus traffic) is tested against the stan-
dards and against the configuration. In particular, FlexRay monitoring is performed
using the tresos Inspector tool from Elektrobit. The tests from the resulting traces
include both schedule information (e.g. cycle length, slot length) and comparison
with the expected configuration (Fibex). Missing or unexpected frames can be thus
easily detected. The proposed analysis of the communication completeness is
useful for system correction and validation. Note that this approach can be easily
extended for the analysis of the application if further information about the system
functionalities is available (e.g. formal models of the components). Further infor-
mation about the proposed test approach is available in [28].

11.4.3 FIBEX Database Format

The most important entities defined by a FIBEX database are described briefly in
the following; for more details please consult the FIBEX specification [26].

2 http://www.elektrobit.com

11 Automotive Embedded Systems 165

• CLUSTER A cluster describes the ensemble of processing nodes (ECUs), which
are linked by a communication medium sharing the same communication pro-
tocol, (i.e. CAN, FlexRay, MOST, …).

• CHANNEL Some communication networks provide more than one communi-
cation channel (i.e. FlexRay channel ‘A’ and ‘B’).

• ECU An electronic control unit represents a real-world processing unit, com-
posed of one or more processors, memory and I/O ports, that execute parts of a
distributed application. Each ECU has at least one communication controller.

• CONTROLLER A communication controller is a dedicated hardware device that
allows ECUs to send and receive messages on the communication medium.

• CONNECTOR Connectors are symbolic elements, describing the bus-interface
of the ECUs and specify the send and receive behaviour of a node.

• SIGNAL Signals are input or output parameters of a function, represented by a
contiguous sequence of bits.

• FRAME A frame is the smallest piece of information that is exchanged over a
communication channel. Typically it is composed of several PDUs (protocol
data units) which are basically a collection of several SIGNALs.

• FRAME-TRIGGERING represents the condition for which a frame is trans-
mitted on the network. In case of time-triggered protocols, a frame triggering is
usually a communication slot (eventually combined with a communication cycle
number).

These different entities represent the different system views at different
abstraction levels as well as the mapping between these views. Hence, hardware
information (e.g. channels, controllers) are mapped with software information (e.g.
signals). Moreover, low level views (frames) are mapped to high level views
(signals).

11.4.4 Automated Configuration of the FlexRay
Communication Stack

The efficient export of the configuration (e.g. from Fibex) to the different platforms
represents a challenge. Hence, the correct and complete data structure for a given
target platform has to be collected and efficiently exported to a given development
environment. Within the TEODACS project, we have developed such an exporter
tool in order to automatize the configuration steps, both for the FlexRayXpert.Lab
and for the FlexRayXpert.Sim platforms [29]. This tool principally reads the Fibex
file and exports the relevant data for a given target platform. In the context of
embedded systems, resources like memory and processing power are quite limited.
Therefore it is not feasible to load the entire Fibex database onto an ECU and
browse for the needed information every time a message has to be received/sent.
Hence, a data structure is needed which is derived (offline) from a given Fibex
database and which complies with the following requirements:

166 E. Armengaud et al.

• Representation by (automatically generated) C source code
• Short and constant time to determine for a given slot-id and cycle-counter the

corresponding signals
• Suitable to prepare incoming and outgoing message buffers
• Low memory consumption
• Readable for humans

A data structure that combines all these requirements is presented in Fig. 11.6.
The structures Cluster FlexRay Parameter and ECU FlexRay Parameter are
needed to initialize the FlexRay communication controller in the startup phase.
The array Slot Usage Read/Write A/B determines for every slot-id whether it is
used or not. A value of NULL indicates that this slot is not used on this ECU and,
thus, no message buffer needs to be registered for it. Otherwise a buffer must be
registered for the appropriate direction and channel. If a slot is cycle-multiplexed,
the repetition counter value tells how many frames share this slot; the pointer to
the cycle usage array (CycXYn) specifies the frames which should be sent/received
in each cycle. It may happen that some slots have to be skipped for some cycles—
this is indicated by a Frame = NULL value. Once the correct frame is discovered,
the incoming message can be split up into its signals; the outgoing messages can
be compiled from its signals respectively.

It is easy to see that it takes constant time to find for a given slot-id and cycle
counter the corresponding frame by using this data structure. The memory
requirements of these structures are very low. Since all values and pointers can be
resolved at compile time, the linker is able to store them in the code segment, thus
conserving RAM. Because the variable names generated by our tools are chosen
carefully, it is quite easy for a human developer to understand the underlying
communication matrix even in the C-source-code.

Fig. 11.6 Structure of configuration data

11 Automotive Embedded Systems 167

A further development within the TEODACS project concerns the FlexRay
drivers. The motivation for that is to (1) efficiently import the configuration
generated, and (2) abstract the underlying communication architecture. The
advantage of this approach is that the node’s application then directly access the
variables of interest without requiring information about the communication
architecture (mapping frame–signal), and thus does not require any know-how
(or have any dependency) concerning the communication technology. This con-
cept is similar to the Virtual Functional Bus from AUTOSAR and can be used for
both event-triggered and time-triggered schemes. Only the triggering (when the
frames are transmitted, when the signals are updated) changes.

11.4.5 Implementation of the FlexRay Communication Stack

The automated configuration, as presented in the previous chapter, has been
applied to two different FlexRay evaluation boards:

• High-end automotive microcontroller: Infineon Tricore TC1797 32-bit con-
troller running at 180 MHz with FlexRay CC (CIC310) on chip—starter kit
from Infineon

• Low-cost generic microcontroller: Atmel ATMEGA128 8-bit controller running
at 16 MHz with Flexray CC (CIC310) connected via SPI—own development

Based on a simple application both implementations have been validated and
evaluated. For this simple application a FlexRay cycle time of 5 ms has been used.
The static segment was divided into 80 slots à 16 byte messages; the remaining
cycle time was configured to host dynamic slots. For this specific FlexRay con-
figuration the overall reception- and transmission-time of a single message has
been measured (see Table 11.1).

Our example application occupies four static slots for transmission and five
static slots for reception. A cpu-load of 3.4% is caused on the TC1797 controller
and 28.4% on the ATMEL respectively. The performance differences result from
the computing power differences between the two microcontrollers as well as from
the different access performances to the FlexRay communication controllers.
Hence, on-chip parallel access (TriCore platform) is more efficient than an external,
serial interface (Atmel platform). This experiment highlights two main results.
First, the proposed development flow including the FlexRay configuration stack is
suitable for different kind of microcontrollers. Second, the Atmel platform better
suits the development of intelligent sensors with low requirement on bandwidth

Table 11.1 Processing time
caused by FlexRay stack

Receive (ls) Transmit (ls)

TC1797 20.8 17.3
ATMEGA 128 179.8 130.2

168 E. Armengaud et al.

(only a few messages need to be exchanged). Dedicated microcontrollers (such as
TriCore) are required for central ECUs in order to efficiently support the full power
of FlexRay.

11.5 Conclusion

The time-triggered paradigm enhances the design flow with the early integration of
the timing behavior. This additional system view, on one side, provides interesting
properties such as independent node development, stability of prior services or
constructive integration at communication level and thus supports the development
of (timely) predictable systems. On the other side, this additional timing infor-
mation has to be efficiently managed during the entire design process. It is outmost
important to keep the timing information consistent across the component
boundaries. To that aim, seamless modeling approaches as well as the assistance of
dedicated tool chains are required to support the development process. We have
presented the design flow used within the TEODACS approach, and experimen-
tally evaluated its capacities for a high-end and for a low-cost platform.

Acknowledgments The authors wish to thank the ‘‘COMET K2 Forschungsförderungs-
Programm’’ of the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT),
the Austrian Federal Ministry of Economics and Labour (BMWA), Österreichische Forschungs-
förderungsgesellschaft mbH (FFG), Das Land Steiermark and Steirische Wirtschaftsförderung
(SFG) for their financial support.Additionally we would like to thank the supporting companies
and project partners austriamicrosystems, AVL List and CISC Semiconductor as well as Graz
University of Technology and the University of Applied Sciences FH Joanneum.

References

1. Hansen P (2005) New S-Class Mercedes: pioneering electronics. The Hansen report on
automotive electronics, vol 18, no 8, pp 1–2, Oct 2005

2. Kopetz H, Bauer G (2003) The time-triggered architecture. In: Proceedings of the IEEE,
vol 91, no 1, pp 112–126, Jan 2003

3. FlexRay Communications System—Protocol Specification V2.1 Rev A (2005). http://www.flex
ray.com, Flexray Consortium, December 2005

4. Time-triggered protocol TTP/C high level specification, Document Protocol Version 1.1,
http://www.tttech.com/technology/specification.htm, 2005

5. Kopetz H (1997) Real-time systems: design principles for distributed embedded applications.
Kluwer Academic Publishers, Norwell

6. Kopetz H (1998) The time-triggered model of computation. In: Proceedings of the 19th IEEE
Real-Time Systems Symposium, Dec 1998, pp 168–177

7. Obermaisser R (2008) Temporal partitioning of communication resources in an integrated
architecture. IEEE Transactions on Dependable and Secure Computing, vol 5, no 2,
pp 99–114

8. Kopetz H (1992) Sparse time versus dense time in distributed real-time systems. In:
Proceedings of the 12th International Conference on Distributed Computing Systems, June
1992, pp 460–467

11 Automotive Embedded Systems 169

9. Kopetz H, Obermaisser R (2002) Temporal composability. Comput Control Eng J
13(4):156–162

10. Wilwert C, Navet N, Song Y-Q, Simonot-Lion F (2004) Design of automotive X-by-wire
systems. In: Zurawski R (ed) The industrial communication technology handbook. CRC
Press, Boca Raton

11. Bauer G (2001) Transparent fault tolerance in a time-triggered architecture. Ph.D.
Dissertation, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria

12. Alber A (2004) Comparison of event-triggered and time-triggered concepts with regard to
distributed control systems. In: Embedded World, pp 235–252

13. Almeida L, Pedreiras P, Fonseca JAG (2002) The FTT-CAN Protocol: why and how. IEEE
Trans Indus Electron (TIE) 49(6):1189–1201

14. Gwaltney D, Briscoe J (2006) Comparison of communication architectures for spacecraft
modular avionics systems. NASA/TM-2006-214431

15. Navet N, Simonot-Lion F (2005) Fault tolerant services for safe in-car embedded systems.
The embedded systems handbook. CRC Press/Taylor & Francis, Boca Raton

16. Scarlett JJ, Brennan RW (2006) Re-evaluating event-triggered and time-triggered systems.
In: 11th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA’06), Sept 2006, pp 655–661

17. Kopetz H, Braun M, Ebner C, Kruger A, Millinger D, Nossal R, Schedl A (1995) The design
of large real-time systems: the time-triggered approach. In: Proceedings of the 16th IEEE
Real-Time Systems Symposium, Dec 1995, pp 182–187

18. Ebner C (1998) Efficiency evaluation of a time-triggered architecture for vehicle body-
electronics. In: Proceedings of the 10th Euromicro Workshop on Real-Time Systems, June
1998, pp 62–67

19. Elmenreich W, Bauer G, Kopetz H (2003) The time-triggered paradigm. In: Proceedings of
the Workshop on Time-Triggered and Real-Time Communication, Manno, Switzerland, Dec
2003

20. Kopetz H, Nossal R (1997) Temporal firewalls in large distributed real-time systems. In:
Proceedings of the 6th IEEE Computer Society Workshop on Future Trends of Distributed
Computing Systems, Oct 1997, pp 310–315

21. Zug S, Schulze M, Kaiser J (2008) Latency analysis for the cooperation of event and time-
triggered networks. In: IEEE International Workshop on Factory Communication Systems,
2008 (WFCS 2008), May 2008, pp 3–9

22. Kajtazovic S, Steger C, Pistauer M (2005) A HDL-independent modeling methodology for
heterogeneous system designs. In: Behavioral Modeling and Simulation Workshop, 2005.
BMAS 2005. Proceedings of the 2005 IEEE International, pp 88–93

23. System Architect Designer (SyAD�), http://www.cisc.at/SyAD, CISC Semiconductor
Design ? Consulting GmbH, Lakeside B07, 9020 Klagenfurt, Austria, www.cisc.at, March
2007

24. Schyr C, Schaden T, Schantl R (2008) New frontloading potentials through coupling of HiL-
simulation and engine test bed. In: FISITA 2008 World Automotive Congress, September
2008, pp F2008-12-317

25. Watzenig D, Pölzlbauer F, Kaiser J (2007) Fault tracking and failure effect analysis in
complex automotive control systems based on a generic modeling approach. In: SAE World
Congress 2007, Apr 2007, pp 2007-10-31

26. ASAM MCD-2 NET (2008) Fibex v3.0—data model for ECU network systems.
http://www.asam.net, ASAM

27. Fennel H, Bunzel S, Heinecke H, Bielefeld J, Fuerst S, Schnelle K-P, Grote W, Maldener N,
Weber T, Wohlgemuth F, Ruh J, Lundh L, Sanden T, Heitkaem-per P, Rimkus R, Leour J,
Gilberg A, Virnich U, Voget S, Nishikawa K, Kajio K, Lange K, Scharnhorst T, Kunkel B
(2006) Achievements and exploitation of the AUTOSAR Development Partnership.
In: Convergence 2006, October 2006, p 10

170 E. Armengaud et al.

28. Armengaud E, Tengg A, Karner M, Steger C, Weiss R, Kohl M (2009) Moving beyond the
component boundaries for efficient test and diagnosis of automotive communication
architectures: In: 14th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2009), Sept 2009, 8 pp

29. Armengaud E, Tengg A, Driussi M, Karner M, Steger C, Weiß R (2009) Automotive
software architecture: migration challenges from an event-triggered to a time-triggered
communication scheme. 7th Workshop on Intelligent solutions in Embedded Systems,
pp 95 –103

11 Automotive Embedded Systems 171

Chapter 12
An Embedded Datalogger with a Fast
Acquisition Rate for In-vehicle Testing
and Monitoring

Automotive Testing

Gioacchino Fertitta, Antonio Di Stefano, Giuseppe Fiscelli
and Costantino G. Giaconia

12.1 Introduction

The growing complexity of automotive systems and the widespread use of
electronics in almost any key vehicle component, ranging from safety critical ones,
such as airbag, engine or breaking control to passenger comfort, makes in-vehicle
testing a more and more complex task to deploy, and a very time consuming
activity to carry out. This is an important issue since the fulfilment of new stan-
dards and regulations push manufacturers to increasingly allocate bigger amount
of R&D time and budget in tests. In order to address these issues a key factor is the
choice of a suitable instrumentation capable of performing these tests. Compared
to laboratory measures, in-vehicle and ground tests present a number of challenges
and requirements not always addressed by commercial-off-the-shelf test products.
These include the need of a great versatility (i.e. adaptability to different measure
configurations and interfacing needs as well as ease of use), compact physical
dimensions, low power consumption and a rugged design in order to withstand to
strong vibrations and harsh environments. Currently available commercial prod-
ucts fall into two main categories: PC-based data acquisition systems [1] and
stand-alone dataloggers [2–4]. The former is the most common and flexible
solution but it is characterized by higher volume occupation, high power con-
sumption and moderate tolerance to vibrations (mainly due to the presence of a
laptop PC). The latter is represented by autonomous units capable of recording
signals coming from sensors or vehicle data buses. These products are usually
rugged and more compact, but their dimensions do not always allow an easy
collocation in every vehicle position. Besides this, both types of instruments

G. Fertitta � A. D. Stefano (&) � G. Fiscelli � C. G. Giaconia
Dipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni,
Universita degli Studi di Palermo, Viale delle Scienze, ed. 9, 90128 Palermo, Italy
e-mail: distefano@dieet.unipa.it

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_12,
� Springer Science+Business Media B.V. 2011

173

usually provide either few acquisition channels either moderate sampling rate
(in the order of few tens of KHz per channel). These may represent major limiting
factors when performing high demanding or complex tests.

The proposed datalogger, as previously described in [5], is designed to address
all this issues, making so possible deploying either ordinary tests, either more
complex and sophisticated measures, not performed by traditional instruments.
The most innovative features of the proposed datalogger are the simultaneous
availability of 10 analog acquisition channels, 4 high speed digital I/O, fast
acquisition rate up to 100 kHz per channel (1 MHz for digital I/Os), a rugged
structure, very small size (Fig. 12.1) and its interfacing capabilities, making
possible to deploy tests with novel approaches. As better described in the fol-
lowing paragraphs, this great flexibility and high performance is a direct result of a
particular hardware and software design and partitioning.

12.2 Application Requirements

Before describing the datalogger hardware and firmware architecture, it is worth to
consider typical requirements of the target application. The main purpose of the
datalogger is to acquire signals coming from a number of on-board sensors, during
bench or on-road tests. The number of required analog inputs usually spans from a
few to some tens, and some digital inputs are also required (either for logging
binary values, either for counting purpose). Sampled data are recorded on a high
capacity storage medium, usually based on flash memories since magnetic hard
disks can be easily damaged by in-vehicle vibrations. Recording sessions starts at
power up, by an user command or by an external trigger. A problem often found
when performing a test session is the wiring set-up. Especially when tens of
channels have to be used, setting up the wirings can be a difficult and time-con-
suming task, since different vehicle subsystems can be located quite far from the

Fig. 12.1 Datalogger
prototype

174 G. Fertitta et al.

logger position (usually set inside the passenger compartment). Moreover long
wires are easily subject to vibration issues and strong electromagnetic interferences.
Usually sampling frequencies in the range of 1 to some tens of Ksps per channel are
used, but the most demanding or complex measures, such as noise and vibration
tests, may requires higher bandwidth, up to 50 kHz. In order to address these
requirements the developed datalogger employs a radically different approach,
allowing both to satisfy these specifications and to obtain better performance. The
datalogger was designed as a small modular and scalable instrument: the device is
capable of logging 10 analog channels and 4 digital ones, and to locally store
sampled data in a flash memory. Thanks to its small physical dimensions, and to a
rugged enclosure, the datalogger can be set wherever in the vehicle, even near the
engine or powertrain, in the body or chassis. If more channels have to be monitored,
more than one logger can be used to sample the signals in parallel. This approach
gives two advantages: the loggers can be set near components to monitor, without
the need of setting up long wirings, and the acquisition rate is not decreased when
the numbers of channels grows, since it is done in parallel by all the loggers. The
loggers can be remotely synchronized, controlled and monitored through the
vehicle CAN bus [6], to which they are connected.

The datalogger offers an high acquisition throughput compared to commercial
products, sampling each of the 10 analog channels up to 100 Ksps with an ADC
resolution of 12 bit. Analog inputs are configurable as single-ended, differential
and pseudo-differential, in order to be easily connected to different sensors. The 4
digital inputs are sampled at 1 Msps so allowing to implement fast triggers and
counters too. Acquired data are stored in a local CompactFlash card that is also
used to store the logger configuration that is loaded during the instrument start-up,
thus avoiding the need of a local PC in the harsh test environment.

In order to make this approach convenient compared to conventional ones
[3, 4], a very efficient and accurate hardware and firmware design had to be carried
out, so to considerably reduce the implementation costs.

12.3 Hardware Architecture

The most challenging constraint in designing the datalogger hardware was the
quite high data throughput that had to be handled. Considering a maximum
aggregate sampling rate of about 1 Msps (100 Ksps per each of the 10 channels),
and a 12 bit resolution of converted analog data plus 4 bit of digital data, an
overall continuous data stream of 2 MB/s has to be expected. Such a throughput
may represent a significant issue for a small real-time embedded system: firstly the
CPU has to control and continuously handle the data acquisition process, so a very
little and constrained processing time is left for other tasks such as interfacing and
data storage; secondly other tasks, namely storage, become very critical since they
have to be performed faster than the data acquisition task, otherwise there will be
an increasing data accumulation, leading to a final data loss.

12 An Embedded Datalogger with a Fast Acquisition Rate 175

In the sampling phase the CPU has to scan all the selected channels while
skipping the unselected ones, properly setting them so to handle single-end and
differential channels, and transferring the converted data. Since the aggregate
maximum sampling frequency is 1 MHz, this process has to be completed in less
than 1 ls, so to reserve an adequate spare processor time for other tasks. The
proposed system employs a 32 bit ARM7TDMI [7] based microcontroller from
Analog Devices endowed with a 12 bit A/D converter operating up to 1 Msps, and
12 multiplexed input channels [8]. All the peripherals (A/D converter, GPIO,
timers, etc.) are mapped into the ARM memory space and are connected to the
same bus. This solution guarantees an adequate data throughput and processing
capability. On the other hand however, even if the CPU is capable of operating at
41.7 MHz, delivering about 41 MIPS, it was not possible to meet all the con-
straints due to the interrupt latencies and the large number of clock cycles required
to access all the memory mapped registers. As an example, when executing code
from RAM, about 20 ARM instructions only can be executed in 1 ls, and the
interrupt latency can be as long as 24 clock cycles. For this reason a multi-
processor architecture was adopted, as showed in Fig. 12.2. The second micro-
controller was a low cost 8 bit ATMega16 AVR micro from Atmel [9], working at
16 MHz. The AVR microcontroller was chosen for its computational efficiency
(about 1 MIPS/MHz), for the very low latency in instruction execution, jump,
interrupt and I/O operations. This choice allowed to completely fulfil all the
requirements at a very little cost. A special care in designing task partitioning was
however required, as explained hereafter. As shown in Fig. 12.2 the ARM
microcontroller was used to handle the data acquisition process, while the AVR

Fig. 12.2 System architecture of the datalogger

176 G. Fertitta et al.

was used as a master, controlling and coordinating the system operations, handling
the interfacing tasks and data storage with the flash card. The two CPUs need to
communicate only during boot phase and at the end of each recording section, so
only a bi-directional asynchronous serial link was used to this end. High speed data
transfer is instead obtained through a double port FIFO memory.

As already mentioned an essential requirement for proper system operations is
that the storage throughput is greater than the data acquisition one. This second
problem is closely related not only to the processing time available for this task,
but also to the storage medium used. At first a 2 MB/s throughput may seem quite
reasonable for any of the currently available storage media (see Table 12.1), but
actually this is not the case. Flash media devices specifications in fact are given
only for peak, burst or average data transfers [10–12], if real data write throughput
is considered, a substantial worst performance is obtained.

This is due to high flash cards latencies in executing commands, in particular
write commands. These delays are usually unpredictable, depending on the spe-
cific card brand and integrated flash controller, on the previous memory content
and finally on the particular address location and data block size. Even if average
delays are quite tolerable (being in the order of 100 ls), very long delays, as long
as 100 ms, can be occasionally obtained from certain cards. This poses a very
important constraint on the choice of the storage media. In order to tolerate these
unpredictable delays an asynchronous 16 KB FIFO buffer was used. The FIFO
buffer allowed the two CPU to operate in a completely asynchronous and inde-
pendent fashion. The acquisition task timings are in fact governed by the pro-
grammed acquisition rate, the storage tasks by external events or signals
(communication bus, storage card response, pushbutton etc.). FIFO status signals
(FIFO full and FIFO empty) provides an automatic handshake for coordinating the
two part of the system. The choice on the specific flash media to use was done
considering the maximum throughput, the maximum capacity, the availability of
open specifications and the availability of industrial grade components. This
analysis led to the choice of CompactFlash cards [13]. The card was interfaced
using the 8 bit IDE mode, considering that the overall throughput is limited by the
above mentioned delays rather than the bus capacity.

At system boot the AVR checks for the flash card, reads the previously stored
configuration, decodes it and configures the system, also sending the configuration
data containing the selected channels and sample rate to the ARM. The acquisition
starts according to the programmed trigger: manual click on the pushbutton,

Table 12.1 Flash media
comparison

Media Max throughput
(MB/s)

Max capacity
(GB)

Open
specifications

SD/SDHC 20 32 Partially
MEMStick 20–30 8 No
XD 9 2 No
CompactFlash 60 64 Yes
USB 40 32 Yes

12 An Embedded Datalogger with a Fast Acquisition Rate 177

external trigger or reception of a specific CAN command. Once the acquisition is
started, the ARM keeps scanning and reading the analog and digital channel values
and writing data to the FIFO, while the AVR handles data write to the Com-
pactFlash memory, check for external events (pushbutton click, command on the
CAN bus), and sends a low frequency replica of selected channel data to the CAN
bus for external logging or monitoring purposes.

The use of the CAN bus is particularly suited for this application, since it
employs a broadcast scheme to transmit packets. By exploiting this feature it is
possible to send commands to all the loggers on the bus at the same time, also
obtaining an easy synchronization and control method. When a stop condition is
verified (stop command, memory full, etc.), the AVR CPU issues a halt to the
ARM microcontroller, so stopping the data acquisition.

12.4 Firmware Description

Due to the precise and stringent timing requirements, and the hard real-time nature
of the application, the firmware design for the two microcontrollers required a
particular care and the use of some unconventional programming techniques. Both
firmware were written in ANSI C language, so easing and accelerating the
development and debug process, but the most time critical routines were written in
assembly language. The GCC tool chain was used for both firmware develop-
ments. A more detailed description of the firmware structure and operation is
provided in the following paragraphs.

12.4.1 AVR Firmware

The AVR firmware tasks and structure are shown in Fig. 12.3. The firmware was
designed trying to exploit the AVR core features. In particular, the absence of an
instruction pipeline avoid jump penalties, so the use of conditional operations is
convenient; interrupt latencies are very small, so interrupt can be used without
significantly perturbing the main tasks; registers and port operation timings are
deterministic and very fast (requiring only 1 or 2 clock cycles), allowing fast
internal data movement and efficient external bit banging operations, useful for
interface handling, especially when coupled with read-modify-writing or bit
instructions. At system boot, after the preliminary peripheral configuration, the
CompactFlash card is initialised and checked. If it is correctly inserted and ready,
the stored system configuration is read, decoded and actuated by sending acqui-
sition parameters to the ARM. Then the data write loop is entered, accomplishing
the task of reading data from the FIFO and writing them to the CompactFlash. In
order to satisfy the main constraint of a continuous writing throughput greater than
the acquisition one, this routine was optimised and coded in assembly language

178 G. Fertitta et al.

and the fastest strategy for driving the CompactFlash was used. Speeding up
memory write operations is not an easy and obvious task, in fact there are two
main delays imposed by the CompactFlash: one at the reception of the command
block and the other while executing the command once all arguments (data) have
been transferred.

CompactFlash employs ATA block command set [14] and this requires to send
an 8 byte block for each write command, hence in order to minimise these delays
either command number has to be minimised, or argument dimension (data) have
to be maximized for each command.

Since the standard command set allows different possibilities to perform write
operations and cards of different brands may implement a different command subset
or may handle in a different way standard commands, a number of commands and
command combinations were tested. In particular the following tests were

Fig. 12.3 Flow chart of the
AVR firmware

12 An Embedded Datalogger with a Fast Acquisition Rate 179

performed: ‘‘Write Sector(s)’’ command with one sector only, ‘‘Write Sector(s)’’
command with up to 256 sectors, ‘‘Write Multiple Sectors’’, ‘‘Write Sector(s) w/o
Erase’’ with and without pre-formatting. Different card models or brands gave
slightly different results, but for most of the tested cards best performances were
obtained by using the ‘‘Write Sector(s)’’ command with 256 sectors. This allowed to
write blocks of 256 9 512 bytes for each command sent. The assembly coded
routine achieved a raw data throughput of more than 4 MB/s, this allowed to tolerate
card delays and latencies, and to prevent the FIFO to overflow. Data were sequen-
tially stored in the card, as they were read from the FIFO. Session information such
as channels configuration, acquisition rate, start sector, length, etc. were also
updated at the end of the recording session in a specific area used as a directory. More
recording sessions then are possible in the same CompactFlash card. In the imple-
mented version no explicit file system was used, either for efficiency reasons, either
for the limits of the most common file systems in handling very large files (in FAT32
for example maximum file length is 4 GB) [15]. The data write was handled by the
firmware main loop while external events such as triggers, CAN data reception and
decoding has been handled instead by a small interrupt service routine. To this
purpose a relatively slow timer, with a period of about 1 ms, controlled the firmware
operation by setting some global flags. The interrupt provided reception and
transmission of CAN frames, starting and stopping the acquisition if programmed
conditions are met (triggers, CAN messages or pushbutton).

12.4.2 ARM Firmware

The ARM7TDMI has radically different characteristics compared to the AVR
core; in particular it features an instruction pipeline, long interrupt delays and quite
long access times for memory or peripheral. Moreover the execution of code from
internal flash memory is slower than the execution from RAM. These facts make

Fig. 12.4 Operation timings in case of FIFO full event

180 G. Fertitta et al.

Fig. 12.5 Flowchart of ARM firmware

12 An Embedded Datalogger with a Fast Acquisition Rate 181

the use of branches and conditional statements, as well as interrupts very ineffi-
cient. The datalogger acquisition parameters are highly configurable, in fact each
channel can be selected or not, configured as single-ended, pseudo-differential or
differential, and in these last cases it can be coupled with another channel; hence
an high number of conditional statements would be needed in each acquisition
scan. All these conditions would introduce a considerable delay and would make
impossible to meet the acquisition rate constraints of 1 Msps. Since the configu-
ration is decided at start-up only and never changes after, the optimal solution in
terms of computational efficiency would be to store in the flash a specific code
segment, without any branch, for each possible channels configuration. This
solution however would produce a very large code. For this reason a quite
unconventional programming technique was used: the main acquisition routine
(scan loop) code is generated on the fly at start-up according to the acquisition
configuration received from the AVR. This is implemented by storing in the
microcontroller code memory (flash) a set of code fragments implementing all the
required elementary operations. These fragments are selected and assembled in
the internal RAM according the received configuration so to form the main scan
routine (see Fig. 12.5b). In this case the routine only contains the exact sequence
of operations needed for the specified configuration, without any jump due to
conditional instructions. This code is executed from RAM and used to serve the
ARM fast interrupt (FIQ, Fig. 12.5c), triggered by a timer programmed according
to the desired acquisition rate. The routine basically sets the next analog channel,
starts A/D conversions, reads the converted data, formats and writes them to the
FIFO. If the FIFO is found to be full (this condition is unlikely, but may happen if
the CompactFlash card used is particularly slow) the acquisition is temporarily
suspended as shown in Fig. 12.4.

The other interrupt service routine is used to handle the UART messages from
the AVR. Even if this routine may perturb the acquisition timings due to its high
latency, it is called when the AVR sends messages to the ARM, that is at boot time
or on start or stop conditions only.

12.5 Implementations and Tests

Thanks to its simple hardware design the datalogger was realized in a small form
factor: the final implementation measures only 53 9 34 9 80 mm and was housed
in a rugged extruded aluminum enclosure (Fig. 12.1). In order to increase the
resistance against vibrations only low profile surface mount components were used
and the board was fastened to the enclosure rail with elastic silicon glue in order to
obtain a damping effect. The rear enclosure cap, used to access the CompactFlash
was endowed with a polyurethane foam coating in order to keep the CompactFlash
inserted while acting as a damper against vibrations.

The chosen enclosure features an IP65 protection rate (resistant to water and dust)
and two flanged ends in order to easily fix the datalogger to the vehicle. All the

182 G. Fertitta et al.

electrical connections (analog and digital channels, CAN bus and power) are
accessible through a Deutch automotive grade 22 pins circular connector. Power
supply can range from about 10 to 48 V, so it can be directly derived from the vehicle
battery (this voltage is internally converted to 5 V by a DC/DC converter and well
filtered so to prevent or attenuate undesired transients phenomena and noise).

Power consumption is less than 2 W, even during high speed recording. The
datalogger is configured by using a small custom software utility on a PC that allows
either to set the desired acquisition parameters, either to download acquired data.
Since recording session can easily produce huge files (up to one GB per 10 min),
tools for selecting and downloading only partial intervals and for downsampling all
the acquired data results very useful for analysis purposes. The datalogger was
extensively tested in all the configuration and working conditions and it provided the
expected results, even at the maximum acquisition rate. It has to be noted however
that card commercially rated up to 669, roughly corresponding to about 10 MB/s
maximum throughput, occasionally produced some data loss at the highest acqui-
sition rates, indicating that the FIFO overflowed due to card very long delays. Faster
cards (e.g. SanDisk Extreme III, rated 809) did not experimentally show this
problem. The datalogger was also tested in a test cell and on track by Ducati Corse; it
showed very good performance and good immunity to electromagnetic noise and
disturbance to the power supply, even when placed close to the engine.

12.6 Conclusions

It was described a fast datalogger specifically designed for in-vehicle testing in
automotive or motor sector. The designed datalogger took a radically different
approach compared to existing commercial products since it was realized as a very
small, autonomous and low-power device allowing the implementation of a dis-
tributed logging scheme, when more than one device are used. Loggers can be
remotely synchronized and controlled via CAN bus and they experimentally
featured very fast recording speed, reaching up to 100 Ksps per channel, and high
immunity to electromagnetic noise and vibrations.

These results have been obtained by using a multiprocessor architecture and an
optimized coding of the firmware. This allowed both to satisfy all the very
demanding requirements while employing low cost components. The combined
datalogger performance are, to the best of author’s knowledge, among the most
advanced available for this kind of instruments.

References

1. Kuranz E (2002) In-vehicle data acquisistion systems. PXI Test and Technology 13(Spring)
2. Lang K (2005) Rugged measurement technology with integrated video playback. VFI

Magazine, Feb 2005

12 An Embedded Datalogger with a Fast Acquisition Rate 183

3. HEIM Systems GmbH (2007) DATaRec 4—DIC6B/L technical specifications. Apr 2007
4. Elektrobit (2009) Versatile and ruggedized FlexRay, CAN and LIN interface EB 6100/EB

6110/EB 6120. Feb 2009
5. Fertitta G, Di Stefano A, Fiscelli G, Giaconia CG (2009) An embedded datalogger with a fast

acquisition rate for in-vehicle testing and monitoring. Intelligent solutions in Embedded
Systems, 2009 Seventh Workshop on, pp 105–110, 25–26 June 2009

6. ISO/DIS 11898-1/4 Standard (2003) Road vehicles—Controller area network (CAN).
International Standard Organization

7. Arm Ltd. reference manual (2007) ARM7TDMI Technical Reference Manual. Rev 4, 2007,
Jun 2007

8. Analog Device Inc. datasheet (2007) Precision analog microcontroller, 12-bit analog I/O,
ARM7TDMI MCU

9. Atmel Inc. datasheet (2007) 8-bit AVR microcontroller with 16 K bytes in-system
programmable. Aug 2007

10. Transcend Inc. website: www.transcendusa.com
11. Apacer Inc. website: www.apacer.com
12. Sony Memory Stick website: www.memorystick.com
13. CompactFlash Association specifications (2004) CF+ and CompactFlash specification

revision 3.0. Dec 2004
14. T13/ANSI 317-1998 standard (1998) Information technology—AT attachment with packet

interface extension (ATA/ATAPI-4)
15. Microsoft Co. hardware white paper (2000) Microsoft extensible firmware initiative FAT32

file system specification. Dec 2000

184 G. Fertitta et al.

Chapter 13
Secure Gateway Interoperability

Álvaro Reina, Jesús Sáez, Natividad Martínez Madrid and Ralf Seepold

13.1 Introduction

In the area of the Intelligent Transportation Systems (ITS), one challenge for
embedded systems is to provide on-board units tuned to automobile requirements,
in general to mobile environments and to emerging safety applications. Nowadays,
commercial vehicles are equipped with many electromechanical systems often
consisting of a sensor network connected by a Controller-Area Network (CAN)
bus and one or more Electronic Control Units (ECU). ECUs have such reduced
capacity of processing that it cannot be considered to support complex applica-
tions. Current tendencies use more advanced on-board units like car PCs with
higher capacities of processing and alternative communication interfaces. Differ-
ent from the CAN-bus and the ECUs, a car PC supports several network protocols
and communication technologies mainly used for intelligent environments. For
instance, a mobile Bluetooth device could connect to the car PC while the car PC
has a parallel connection to a server in the Internet through a UMTS link. Further
than supporting small stand-alone applications, in such a scenario, the car PC
supports a full featured car-gateway (CGW) which provides connectivity between
heterogeneous connected devices and it supports advanced distributed

Á. Reina � J. Sáez
Universidad Carlos III de Madrid, Avda. de la Universidad 30,
Leganes 28911, Spain

N. Martínez Madrid
Reutlingen University, Alteburgstraße 150, Reutlingen 72762,
Germany

R. Seepold (&)
University of Applied Sciences Konstanz, Brauneggerstr. 55,
Konstanz 78462, Germany
e-mail: ralf.seepold@htwg-konstanz.de

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_13,
� Springer Science+Business Media B.V. 2011

185

applications. State-of-the-art communication protocols provide connectivity up to
the transport level for most devices that could be considered as part of a vehicular
network (IEEE 802.11p [1] for V2V and V2I, Bluetooth and WiFi for PAN devices
like mobile phones or PDAs, CAN and IEEE 1451 for sensor networks, etc.).
However, how to share services between such different devices from the Vehicular
Area Network (VAN) is an open issue.

Thus, this work aims to put forward the advantages of putting together network
services and middleware platforms in vehicular networks. Specifically, this paper
deals with the interoperability between OSGi [2] (a technology for fast easy
deployment of a middleware platform in a gateway) and UPnP (a standard to
automatically discover and share services between heterogeneous devices) always
focusing on intrinsic problems derived from an open-access mobile environment,
e.g. ubiquity, reduced resources and security. Using these challenges as a guideline
for designing solutions adapted to a vehicular environment and integrating them
into a Network Service Access (NSA) layer as part of a car-gateway OSGi mid-
dleware is the main challenge of this work. An NSA system provides a solution for
matching a local service model to a distributed one. The local service model
corresponds to the OSGi middleware and the distributed one corresponds to the
UPnP network services. As it will be demonstrated, any OSGi services concepts
can be perfectly matched to the UPnP concepts. Thus, the NSA offers transparent
interoperability between OSGi and UPnP. As a consequence, any shared service
registered with an OSGi middleware is in fact an UPnP service and vice versa,
whenever it was compliant with the NSA requirements. The NSA architecture
integrates high performance add-on modules providing quality of service (QoS)
and security. In the future, it is planned that QoS will be supported also in the
UPnP QoS architecture [3].

13.2 State of the Art

Many protocols deal with services discovery and sharing. Among them, the
Universal Plug and Play Protocol (UPnP) defines an architecture that aims to
enable auto-discovery and announcement so that other devices in the network
can transparently use their capabilities. Different from other service protocols
like Devices Profile for Web Services (DPWS), UPnP is not based on a cen-
tralized client–server architecture. Instead of this, it is based on the Broker
pattern [4] for distributed systems. UPnP defines two entity types, the device and
the control point (CP). An UPnP device is an abstract representation of any kind
of network services supplier, normally a physical device like a printer, a gate-
way, a security camera and so on. The CP can be shown as the remote control of
a device. The CP automatically searches and registers devices and their services.
So, the CP is like a service registry that any user or application may request for
consuming a devices’ services. UPnP is very suitable for environments like
vehicular networks [5].

186 Á. Reina et al.

Some approaches address to integrate network services protocols into a gateway
middleware for enhancing a gateway’s connectivity capabilities. For instance, the
proposals in [6, 7] are focused on the integration of UPnP with the OSGi mid-
dleware of advanced home gateways. Other proposals as [8–11] move the gate-
way, middleware and services concepts from the home networks to the vehicular
environment. Also [12] proposes a complete gateway platform description. While
the references in this paper are mostly focused on describing an overview of a
complete system, the work presented here provides a description in depth of the
NSA component of a CGW OSGi middleware which provides transparent inter-
operability between the CGW bundles and the vehicular UPnP network.

The NSA is not just another bridge engine between OSGi and UPnP as the UPnP
Base Driver [13, 14] for the OSGi Felix distribution. While the Base Driver only
deals with bundles that fit into the standard OSGi structure of an UPnP service, the
NSA converts any bundle’s public service into an UPnP service whatever its
structure it. The NSA uses the OSGi standard data structure for the UPnP services as
a transitional state between the OSGi framework and the UPnP network. Thus, any
other implementation of the UPnP stack that would use this OSGi standard interface
(org.osgi.service.upnp) [15] will be compliant with the NSA.

13.3 Network Service Access System Overview

The Network Service Access layer provides the CGW middleware with the
capability of publishing and consuming network services as operating with local
services inside the middleware. This can be done through three complementary
interoperability models.

• Direct synchronous: The middleware modules invoke the network services
through the NSA interface. The middleware needs to be aware of the specific
underlying network services technology and the services structure.

• Direct asynchronous: The middleware subscribes the network services events
through the NSA interface. The middleware is aware of the network services
events.

• Transparent synchronous: The middleware accesses the network services as
they were services of the platform. Likewise, the middleware services are also
accessible from remote devices as they were network services. The middleware
services are not aware of the network services architecture.

While the direct synchronous approach is equivalent to an ad-hoc Application
Programming Interface (API) adapted to the underlying network services tech-
nology, the direct asynchronous and the transparent synchronous access models
abstract from the details of the specific network services technology. This means
that for each remote network service, the NSA generates and dynamically installs a
module (agent) fully compliant with the gateway middleware services model. Its
functionality consists of translating the invocations within the middleware into the

13 Secure Gateway Interoperability 187

corresponding network requests. The NSA registers into the platform the same
interface that the corresponding remote network service publishes through the
network and thus, it enables a transparent synchronous access model. On the other
hand, a centralized event manager in the NSA catches events from the network and
notifies them to the middleware subscribers. This mechanism enables a direct
asynchronous interoperability model. Different from the agents approach, the
subscription mechanism depends on the particularities of the network services
technology avoiding transparency.

Besides providing access to a network of services through the previously
defined interoperability models, the NSA transparently improves reliability and
quality in network communications and protects them against malicious user
attacks and resources starvation.

The NSA is based on some rules translating OSGi services into UPnP and vice
versa. These rules match the concepts of the ontology of both architectures.
Table 13.1 shows such equivalences.

13.4 The NSA Architecture

The core components of the NSA architecture (see Fig. 13.1) are the UPnP Stack
and the Control Point (CP).

The UPnP Stack implements the application layer protocols: SOAP, GENA,
SSDP, HTTPU and HTTPMU. Besides the basic UPnP functions, the UPnP Stack
module provides an object representation of the generic UPnP elements (CP and
devices). Thus, the NSA can build a local representation for each of the active
network devices. Once a device announces its attachment to the network, the CP
gets the service description (SSDP) from the URL the device has published. The
CP parses the SSDP and translates it into its own object model. Finally, the CP
stores the local representation of the device in a local inventory.

The CP interface towards the NSA components provides the NSA components
with functions for accessing the object representation of the UPnP devices. Spe-
cifically, the NSA components access the representation of the services and use them
for invoking network services and subscribing their asynchronous events. This can

Table 13.1 UPnP architecture and OSGi framework

UPnP OSGi Description

Device Bundle The services containers
Service Service One service of the platform. An interface
Actions Methods The service interface methods
State variable Data types The data types of the action arguments

Class attributes The variables describing the state of the service
Bundle properties Attributes containing service metadata

Events Event admin Asynchronous communication channel
Control point Service registry A registry of services

188 Á. Reina et al.

be used also for getting descriptive metadata of the service like the identifier, the
name, the device type and other values contained in the service descriptor. Any of
the actions invoked for the representing object of an UPnP service are translated by
the UPnP stack into an appropriate HTTP message. Thus, additional services of the
NSA can interoperate with a remote UPnP services like a local one.

The UPnP specification does not support security or QoS by itself. Thus, the
NSA architecture is completed by Security and QoS modules. The security module
provides privacy to the UPnP communications. The QoS module supports the CP
analyzing the resource consumption before accepting connection requests.

The NSA core enables only the direct synchronous mode. The NSA core is
complemented with the Access Modules, namely the Event Manager and the
Bridge which enable the asynchronous and the transparent synchronous mode.

13.4.1 The Control Point Behaviour

The control point searches and registers UPnP devices attached to the network. It
also subscribes to events announced by the device via a service descriptor. The
NSA enriches these two basic functionalities with QoS (via the QoS Manager
Service) and security (via the Security Manger). Security is supplied for the UPnP
transactions (messages exchanged between the CP and any UPnP devices).
Otherwise the QoS is supplied even for the derived connections. Figure 13.2
shows how the control point bundle invokes an UPnP service after enabling QoS
and security for this invocation.

The CP receives a service request and tries to forward the petition to the service
owner device. In case the invoker supplies a traffic descriptor where the resources

CAR - GATEWAY

Access ModulesCore

UPnP Stack

UPnP Control
Point

Cross-Platform
Bridge

QoSSecurity

Event
Manager

Middleware

Direct async
(events)

UPnP
network

Direct sync

Transparent
sync

Fig. 13.1 The NSA architecture: the NSA core and the Access Modules

13 Secure Gateway Interoperability 189

needed are specified, the control point tries to reserve it along the path from the
source (the car-gateway) to the destination. To do this, the control point asks the
QoS subsystem for the establishment of a flow described in the traffic descriptor.
Then, the control point receives an action from the object structure representing
the UPnP device in the local system and sets the arguments values (setArgu-
mentValue). Finally, the control point requests a secure service to the security
subsystem and sends the call description to the remote device. When the security
subsystem receives a secure service request it repeats the process of setting the
argument values into the action, but in this case, the argument values are previ-
ously ciphered. Thus, when the control point posts an action no malicious user can
decipher the transmitted information.

13.4.2 Access Modules

An additional service enables the direct asynchronous and the transparent
synchronous interoperability models. Respectively, the Event Manager and the
UPnP-OSGi bridge described below are in charge to provide these functionalities.

Data Exchange & Service Access

SecurityManagerCP Device

postActionControl()

secService(ACTION)

getService

SERVICE

getAction()

Service Action

ACTION

setArgumentValue(UNCIPHER_ARGS)

QoSManagerService

requestTraffic()

TRAFFIC_HANDLE

getArgumentValue()

ARGUMENT

setArgumentValue(CIPHER_ARGS)

OK

Fig. 13.2 The control point manages the QoS and Security

190 Á. Reina et al.

1. Event Manager: The Event Manager follows the Java event model based on
listeners and notifiers and adapts to the OSGi framework. In other words, the
middleware bundles interested in the UPnP events must implement the listener
interface that the Event Manager registers into the Services Registry. Then,
they subscribe to events through the Subscription Manager interface. This
interface allows configuring subscriptions. The Subscription Manager bundle
maintains a list of Subscription Profiles where the event listeners and their
preferences are configured. The Notification Manager bundle looks up this
Subscription Profile list in order to notify events the CP dispatches. The
Notification bundle subscribes every event since service initialization. The CP
forwards any event from the UPnP network to their subscribers that is, to the
Notification bundle. Before the Notification bundle notifies an event, it pres-
elects a subset from the Subscription Profile list only containing the listeners of
which preferences matches to the event description (eventing device, eventing
service, event type, etc.).

2. The Cross-platform Bridge: The Cross-platform Bridge imports UPnP services
into the OSGi framework so the CGW middleware can interoperate with them,
and exports OSGi services to the UPnP network. Other remote CP in the
vehicle network can invoke the CGW public services. The Cross-platform
Bridge organizes these two functions in two modules: the Importer and the
Exporter. They are joined together by a Service Inventory. The Service
Inventory is a registry for both the CGW and the vehicle network services. The
Inventory uses the OSGi (org.osgi.service.upnp) standard definition of
the UPnP services as a transitional representation of any service. The Importer
waits for further UPnP device registration events that the CP of the NSA
notifies. When such an event arrives, the Importer extracts the services from the
device description. Then, it creates one device in the OSGi representation as a
wrapper for each service. The new device is registered within the Inventory.
The Exporter listens to the OSGi Service Registry waiting for a REGISTERED
event from the OSGi framework. When such event arrives, the Exporter ana-
lyzes the further registration structure that is, the interfaces the new service
implements. In case the registered service was compliant to the bridge, the
Exporter analyzes its interface declaration and dynamically builds a device in
the OSGi representation. This device maps the middleware service’s methods
to UPnP actions. Then, the Exporter queries the UPnP stack for the publication
of the farther UPnP device and finally registers the further started device in the
Inventory.

13.5 Security in the NSA

Security in UPnP networks is an open issue. Some studies [16] state the necessity
of providing security in the service oriented architectures applied to ubiquitous
computing. The proposal is to provide a basic UPnP security service to be

13 Secure Gateway Interoperability 191

deployed over general purpose networks based on the UPnP protocol. Specifically,
in the automotive network, the service described adds security features to the
negotiation of parameters between the car-gateway and the remote UPnP devices.
One typical security application in a car-gateway is the eCall. Such application
opens a voice channel between the driver and the emergency services usually
operating from a Public-safety Answering Point (PSAP). Often, the CGW and the
PSAP server do not have the same streaming processing capabilities, so the audio
connection parameters need to be negotiated to ensure compatibility. Also the
URL where the audio streaming is emitting must be provided by both the car-
gateway and the PSAP. These parameters are sufficient for anyone to listen to the
conversation between the emergency services and the driver, so protecting this
information can be considered a critical issue in such safety applications.

The main objective of the security subsystem is to cipher the communication
between the control point and the UPnP devices trough an encryption system.
Table 13.2 shows, only the security of the communication belonging to the control
phase of the UPnP protocol will be encrypted. The discovery and the description
phases put forward the device to any control point attached to the network so that
are public phases which do not need to be encrypted.

The security service belongs to the add-on services class. This means that any
UPnP compliant device can publish them independently from what kind of device
it was. This approach is different from the quite recently published UPnP Security
Service [17]. Although, the standard service is much more extensive, it is also too
complex for vehicular environments purposes.

The proposal is based on two entities called the Security Manager and the
Security Agent (Fig. 13.3).

These entities form a complementary peer where the Security Manager repre-
sents a service consumer and the Security Agent represents the service provider
(Target Device). When a Security Agent meets a Security Manger, it sends its own
security certificate to the manager containing the agent’s public key (1: send
certificate in Fig. 13.3) that can be generated using a public-key schema as RSA.
Observing the same cryptographic schema, the manager now ciphers the service
invocation (3: request in Fig. 13.3). The Security Agent deciphers the service
invocation to be dispatched to the target device. This step must be done using a
secure channel. Once the requested operation is finished, the agent may return the
result to the manager. In this case, the Security Manager must previously share its
own public-key with the agent. This allows a secure return answer.

Table 13.2 Security issues
covered by the data exchange
and service access layer

Discovery Description Control Eventing

Key management Yes – No –
Confidentiality – – Yes –
Non-repudiation – – – –
Integrity – – Yes –
Authentication – – – –
Authorization – – – –

192 Á. Reina et al.

13.6 Security Subsystem Prototype

As a result of this work, the Security Manager and Security Agent prototypes have
been developed. Both prototypes are described below.

13.6.1 Security Manager

The Security Manager is a CP that only interacts with the UPnP Security Agent
devices. Its function consists of translating an UPnP service invocation into a secure
UPnP service invocation. A secure UPnP invocation encrypts the contents of the
arguments received by the specific action. The Security Manager implements a
public key encryption algorithm. For each remote security agent, the Security
Manger stores their correspondent public keys. Thus, the Security Manager ensures
that any other Security Agent can reverse the encryption, so the information con-
tained into the invocation never will be revealed to distrusting users.

13.6.2 Security Agent

This UPnP service is directly associated with a target device. The target device
must publish a UPnP service. The Security Agent acts as a proxy between a
Security Manager and the target services. The Security Manager deciphers the
argument values from an action call and invokes the service via any local inter-
face. The Security Agent and the target device must be located in the same
physical device and communicate through a safe channel.

Security Manager Security Agent

General Device
(GD)

Control Point

2: request GD service

1: send certificate

3: request E(GD service)

4: request GD service

Encrypts/unenc
rypts the
service
invocation

4: result

5: result

6: E(result)

Fig. 13.3 UPnP entities collaborating to complete a secure service invocation

13 Secure Gateway Interoperability 193

The implementation of the security subsystem is described in Fig. 13.4. The
ControlPoint represents a generic UPnP control point implementation. It would be
provided by the Cyberlink UPnP open libraries [18]. The class SecurityManager
implements the security manager entity of the UPnP security architecture. This
class inherits the functions of a standard CP so it is able to discover UPnP devices
and filter those which publish a security agent service. The SecurityManager stores
the security certificates provided by the security agents. Table 13.3 shows the
SecurityManager interface.

The class Certificate represents a security certificate. The fields of a certificate
are the URL and the Universal Unique Identifier (UUID) to identify the owner
UPnP device, and the public Key which will be used to cipher the
communications.

Finally, the SecurityAgent class represents the security agent service of the
UPnP Security architecture. The SecurityAgent implements the algorithm to
decipher messages from a security manager. It also manages the security certificate
for this UPnP device. Table 13.4 shows the interface.

The security subsystem theory of operation (see Fig. 13.5) is as follows. The
middleware calls the service someService with the argument values PARAMS.
The control point asks the security manager for a secure service (secService)
and supplies the target device identifier.

The security manager checks that the target device has an associated security
agent. The security manager calculates ciphered values with a cryptographic
function Epk(PARAMS). The security manager invokes someService on the
remote security agent. The security agent deciphers the argument values calcu-
lating the inverse function E’pk(PARAMS). Then, the security agent invokes
someService on the target device. In return, the device provides a response
RES. The security subsystem propagates the response to the invoker middleware
following symmetrically the previous steps.

+secService()
+registerTrustedDevice()
-encyption()

SecurityManager

+secService()

SecurityAgent1*

-Key
-URL
-UDN

Certificate

ServiceProvider

org.cybergarage.upnpControlPoint

Fig. 13.4 The Security subsystem software architecture

194 Á. Reina et al.

13.7 Event Manager Prototype

The event manager supports the direct asynchronous access to the NSA. This
means that this module publishes an interface towards the middleware for sub-
scribing to events which the UPnP network generates. The event manager archi-
tecture is a variant of the observer design pattern specialized on managing the
asynchronous events of the UPnP network.

Table 13.3 The
SecurityManager interface

Methods Description

secService Request a secure service
registerTrustedDevice Add a UPnP device to the trusted list
unregisterTrustedDevice Remove a UPnP device from

the trusted list
encryption Cipher the arguments values

of an action

Table 13.4 The
SecurityAgent interface

Methods Description

secService Implements the UPnP secService UPnP action
dechiper Dechiper the arguments values of the secService
getCertificate Implements the getCertificate UPnP action.

Return this security agent’s public key

CAR GATEWAY UPnP DEVICE
SecurityManager CP TargetDevice SecurityAgentService

someService(PARAMS)

secService(UUID,"someService",PARAMS)

secService("someService", Epk(PARAMS))

validateURL(UUID)

Middleware

calculate Epk(PARAMS)

calculate PARAMS = E'pk(PARAMS)

someService(PARAMS)

RES

calculate Epk(RES)
Epk(RES)

calculate RES = E'pk(RES)
RES

RES

Fig. 13.5 Internal and the external (UPnP) message exchange

13 Secure Gateway Interoperability 195

There are two event classes the event manager can dispatch: The events coming
from the UPnP devices; the UPnP core catches such events from the network and
propagates them up to the event manager. Secondly, the events the NSA generates.
The control point is the source of such events which are dispatched whenever a
device or a service connect, update or disconnect from the network. By gathering
together these two event classes, the event manager continuously supplies updated
information about the current state of the UPnP services and their availability.

The UPnP Events module is built from the Subscription Manager and the
Notification bundles. These two modules share libraries and the common software
architecture in the UML diagram (Fig. 13.6).

13.7.1 Subscription Manager

The EventSubscriptionService interface allows any EventListener either sub-
scribing or unsubscribing the UPnP events. By default, when an EventListener
subscribes to the SubscriptionManager this will be notified whenever the NSA
control point listens an UPnP event. But the listeners can also configure their
subscription preferences. This should be done through the configureSub-
scription method, which allows specifying a regular expression describing the
family, type or name of the devices a subscriber is interested in. In this way, a
subscriber can easily select, for example, the events coming from any QoS device,
with the next call.

The SubscriptionManager class implements a EventSubscriptionService inter-
face. It stores and updates a list of subscription profiles where the subscription

Fig. 13.6 The UPnP Event Manager software architecture

196 Á. Reina et al.

preferences for each EventListener are specified. The subscription preferences are
stored in a SubscriptionProfile object. Attributes within a profile store the fol-
lowing parameters.

• ServiceFamily: This parameter can be used to describe all the services belonging
to a UPnP standard, as for example the AV architecture, the QoS architecture, etc.

• ServiceType: The service type refers to one specific UPnP device, as for
example the QoS Manager, the QoS Policy Holder or the QoS Device, all of
them belonging to the QoS architecture family.

• ServiceName: The service name refers to the friendly name of a specific UPnP
device. This parameter usually identifies only one device in a network. The
Unique Device Name (UDN) can be used rather than the friendly name.

A subscription profile stores an array of device identifiers matching configu-
ration preferences after the subscription manager parses the regular expression.

13.7.2 Notification Manager

A notification manager gets a list of event listeners from a subscription manager
instance and notifies the subscribers. The notification manager acts as an event
listener subscribed to all the UPnP event sources. While subscribing directly from
the middleware modules and applications to the UPnP stack may cause the con-
gestion of the middleware platform and extra processing time in the subscribers,
the notification manager filters the events received and forwards them only to the
interested subscribers.

13.8 Conclusions

A Network Service Access layer enables a car-gateway middleware to share
internal services towards a VAN which has been described in detail. Such a layer
allows interoperability between the OSGi framework and the UPnP service
protocol in both directions. Furthermore, it provides the ontology that connects
OSGi to UPnP concepts. This new approach shows that quality of service and
security issues are inherent to any mobile environment but specially in vehicular
networks. In particular, a new security schema for UPnP networks is provided.

Since the NSA provides a platform for fast prototyping of mobile distributed
applications over services networks, the contributions of this approach are sig-
nificant for middleware developers as well as for any on-board embedded systems
industry. A more complex security architecture dealing with all UPnP protocol
phases is forecasted for the near future. Also it is planned to upgrade to the UPnP
Security standard.

13 Secure Gateway Interoperability 197

References

1. Jiang D, Delgrossi L (2008) IEEE 802.11p: towards an international standard for wireless
access in vehicular environments. In: Proceedings of vehicular technology conference (VTC),
May, pp 2036–2040

2. Open Service Gateway Initiative (OSGi) Alliance (2010) http://www.osgi.org, March
3. UPnP-QoS Architecture:3 (2009) http://upnp.org/specs/qos/UPnP-qos-Architecture-v3.pdf
4. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented software

architecture—a system of patterns. Wiley, Chichester
5. Santana JMS, Petrova M, Mahonen P (2006) UPnP service discovery for heterogeneous

networks. In: IEEE 17th international symposium on personal, indoor and mobile radio
communications, 11–14 Sept 2006, pp 1–5

6. Hong SG, Lee JW, Choi WS (2005) Open platform test framework for telematics terminal
platform. In: Proceedings of the IEEE 62nd vehicular technology conference, vol 4,
pp 2745–2748

7. Kang DO, Kang K, Choi S, Lee J (2005) UPnP AV architectural multimedia system with a
home gateway powered by the OSGi platform. IEEE Trans Consum Electron 51(1):87–93

8. Sun Y, Huang WL, Tang SM, Qiao X, Wang FY (2007) Design of an OSEK/VDX and OSGi-
based embedded software platform for vehicular applications. In: Proceedings of the IEEE
international conference on vehicular electronics and safety, ICVES

9. Ai Y, Sun Y, Huang W, Qiao X (2007) OSGi based integrated service platform for
automotive telematics. In: Proceedings of the IEEE international conference on vehicular
electronics and safety, ICVES

10. Li Y, Wang F, He F, Li Z (2005) OSGi-based service gateway architecture for intelligent
automobiles. In: Proceedings of IEEE intelligent vehicle symposium, May, pp 861–865

11. Zhang D, Wang XH, Hackbarth K (2004) OSGi based service infrastructure for context
aware automotive telematics. In: Proceedings of the IEEE 59th vehicular technology
conference, May, vol 5, pp 2957–2961

12. Seepold R, Martimez Madrid N, Gómez-Escalonilla JS, Reina A (2009) An embedded
software platform for distributed automotive environment management. EURASIP J Embed
Syst, vol 2009, pp 1–10. Article ID 856962 ISSN: 1687–3955

13. Dobrev P, Famolari D, Kurzke C (2002) Device and service discovery in home networks with
OSGi. Commun Mag IEEE Commun Soc 40(8):86–92, New York, August

14. UPnP Base Driver (2010) http://domoware.isti.cnr.it/documentation.html, March
15. Open Service Gateway Initiative (OSGi) Alliance (2010) Javadoc. http://www.osgi.org/

javadoc/r4v401/, March
16. Cotroneo D, Graziano A, Russo S (2004) Security requirements in service oriented

architectures for ubiquitous computing. In: Proceedings of the 2nd workshop on middleware
for pervasive and ad-hoc computing, October, pp 172–177

17. UPnP Security Ceremonies v1.0 (2009) http://upnp.org/download/standardizeddcps/
UPnPSecurityCeremonies_1_0secure.pdf

18. Konno S (2009) Cyberlink development package for UPnP devices for Java.
http://cgupnpjava.sourceforge.net/, May

198 Á. Reina et al.

Chapter 14
Applying Bayesian Networks
for Intelligent Adaptable Printing Systems

Arjen Hommersom, Peter J. F. Lucas, René Waarsing
and Pieter Koopman

14.1 Introduction

Many complex systems such as printers are required to make dynamic in-product
trade-offs between various qualities of operation at the system level, which can be
viewed as the capability to adapt. While many definitions of adaptability have
appeared in literature (see [3] for a summary), we here define adaptability to be
such system-wide trade-offs. In printing systems, system-wide qualities include the
power division, the speed of printing, the power consumption, etc. Such trade-offs
heavily depend on the system’s environment, e.g., humidity, temperature, avail-
able power, etc. Failure to adapt adequately to the environment might result in
faults or suboptimal behaviour.

The area of adaptive control has a long tradition of over 50 years. Several
approaches in this field exist. First, model-reference adaptive control (MRAC)
uses a reference model that reflects the desired behaviour of the system. On the

This paper originally appeared in the Proceedings of the Seventh Workshop on Intelligent
Solutions in Embedded Systems (WISES 2009)[9].

A. Hommersom (&) � P. J. F. Lucas � P. Koopman
Institute for Computing and Information Sciences, Radboud University Nijmegen,
Nijmegen, The Netherlands
e-mail: arjenh@cs.ru.nl

P. J. F. Lucas
e-mail: peterl@cs.ru.nl

P. Koopman
e-mail: pieter@cs.ru.nl

R. Waarsing
Océ Technologies BV, Venlo, The Netherlands
e-mail: rene.waarsing@oce.com

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_14,
� Springer Science+Business Media B.V. 2011

201

basis of the observed output and of the reference model, the system is tuned. The
second type of adaptive controllers are so called self-tuning controllers (STC),
which estimate the correct parameters of the system based on observations and
tunes the control accordingly. In the last few decades, techniques from the area of
artificial intelligence (AI), such as rule-based systems, fuzzy logic, neural net-
works, evolutionary algorithms, etc. have been used in order to determine optimal
values for control parameters (see e.g. [6]).

The problem of adaptability as defined above has two typical characteristics.
First, decisions are typically required at a low frequency, i.e., it is not necessary
and not even desirable to change the speed or energy usage many times per second.
Second, there is a lot of uncertainty involved when making decisions, in particular
about the environment, the state of the machine, but also about the exact dynamics
of the system. Complex systems usually cannot be modelled accurately, whereas
adaptability requires one to make system-wide, complex, decisions. In order to
deal with this uncertainty, techniques where probability distributions are learned
from available data seem therefore appropriate. In this paper, we explore the use of
Bayesian networks [23] to tune setpoints of local controllers of the system. The
block diagram in Fig. 14.1 offers an overview of this approach.

One advantage of Bayesian networks is that they contain a qualitative part,
which can be constructed using expert knowledge, normally yielding an under-
standable, white-box model. Moreover, the quantitative parameters of a Bayesian
network can be learned from data. Other AI learning techniques, such as neural
networks, resist providing insight into why the machine changes its behaviour, as
they are black-box models. Furthermore, rules—possibly fuzzy—are difficult to
obtain and require extensive testing in order to check whether they handle all the
relevant situations.

The purpose of the present paper is to convey some of our experience in
building Bayesian-network based controllers in the area of adaptive printing
systems, which can be looked upon as special stochastic controllers. In our view,
as systems get more and more complex, the embedded software will need to be
equipped with such reasoning capabilities for making sound decisions. The paper
is organised as follows. In the next section, we will introduce the necessary pre-
liminaries with respect to Bayesian networks. In Sect. 14.3, we will look at a

−
+

Controller Process
Setpoint

Decision engine

on behaviour
Requirements Bayesian network

control

parameters

observation

Fig. 14.1 Block diagram of
an adaptive controller using a
Bayesian network

202 A. Hommersom et al.

specific case study where we would like to estimate the optimal setpoint under
uncertainty. This example shows that some of the logic that might be needed in a
rule-based system is implicitly encoded in the probability distribution. Another
case is considered in Sect. 14.4; here the goal is to optimise the velocity of the
engine. Both cases are compared to a traditional controller. In Sect. 14.5 the results
obtained are compared to related approaches.

14.2 Preliminaries

A Bayesian network B ¼ ðG;PÞ consists of a directed acyclic graph G ¼ ðV ;EÞ;
where V is a set of vertices and E � V � V is a set of directed arcs; with the
probability distribution P is associated a set X of random variables that correspond
one-to-one to the vertices of G; i.e., each vertex v corresponds exactly to one
random variable Xv and vice versa. As the joint probability distribution P of the set
of random variables X is factored in accordance to the structure of the graph G:

PðXÞ ¼
Y

v2V

PðXv j XpðvÞÞ;

where pðvÞ is the set of parents of v;P can also be defined as a family of local
conditional probability distributions PðXv j XpðvÞÞ; for each vertex v 2 V : Bayesian
networks can encode various probability distributions. Most often the variables are
either all discrete or all continuous. Hybrid Bayesian networks, however, contain
both discrete and continuous conditional probability distributions. A commonly
used type of hybrid Bayesian network is the conditional linear Gaussian model
(see [4, 12]). Efficient exact and approximate algorithms have been developed to
infer probabilities from such networks (e.g., [2, 10, 14, 15]). Also important in the
context of embedded systems is the fact that real-time inference can be done using
Bayesian networks, i.e., produce an approximate probability at any time (cf. [8] for
a comprehensive overview).

A Bayesian network can be constructed with the help of one or more domain
experts. However, building Bayesian networks using expert knowledge, although
by now known to be feasible for some domains, can be very tedious and time
consuming. Learning a Bayesian network from data is also possible, a task which
can be separated into two subtasks: (1) structure learning, i.e., identifying the
topology of the network, and (2) parameter learning, i.e., determining the asso-
ciated joint probability distribution, P; for a given network topology. In this paper,
we employ parameter learning. This is typically done by computing the maximum
likelihood estimates of the parameters, i.e., the conditional probability distribu-
tions, associated to the networks structure given data [13].

Temporal Bayesian networks are Bayesian network where the vertices of the
graph are indexed with (discrete) time. All vertices with the same time index form
a so-called time slice. Each time slice consists of a static Bayesian network and the

14 Applying Bayesian Networks for Intelligent Adaptable Printing Systems 203

time slices are linked to represent the relationships between states in time. If the
structure and parameters of the static Bayesian network are the same at every time
slice (with the exception of the first), one speaks of a dynamic Bayesian network,
as such networks can be unrolled (cf. [21] for an overview).

14.3 Setpoint Estimation

14.3.1 Description of the Problem

For the type of printing system under consideration, various temperatures during
the printing process play an important role. Low-level controllers make sure that
the measurable temperatures are kept on setpoint. Due to design issues and con-
siderations with respect to the cost price, it is not possible to place sensors at all
places of interest; therefore, estimations have to be made.

In this section, we use a Bayesian network to estimate the appropriate setpoint
for a heating component with the goal to influence the paper temperature when we
can only measure the temperature of media (paper) that has passed this heating
component. The temperature of the paper is influenced by uncertain aspects, such
as the environmental temperature, the speed, the humidity of the paper, and the
type of paper. In this case we focus on the latter aspect and assume that the other
aspects are constant.

14.3.2 Experimental Setup

The qualitative structure of the domain was elicited from the domain experts. For
the purpose of this paper, we focus on certain relevant parts of the complete
network dealing with the specific problem of determining the correct setpoint of
the heater. The structure of the domain consisting of two time slices is presented in
Fig. 14.2.

The associated random variables for this network have been modelled as discrete
variables by discretising the values to typical values that are used in the simulation.
The setpoint variables have a domain size of 12; media temperature has a domain
size of 16 and we consider three paper types: 80; 120; and 160 g=m2 paper.

In order to acquire data and to test the system, a physical model of the system
was created using Simulink [18]. The data that was generated was used to learn the
conditional distributions of the model by calculating the parameters associated to
the qualitative structure of the Bayesian network.

The adaptive control was implemented by a low-level PID controller (see e.g.,
[22]) that controls the temperature of the heater and a Bayesian network to
manipulate the setpoint of this controller.

204 A. Hommersom et al.

14.3.3 Case 1: Keep Paper Temperature on Setpoint

First, we use a Bayesian network to choose the next setpoint such that the temperature
of the paper will be at a setpoint Tset based on observations of the paper temperature
and the setpoint at time t: Let OBSt ¼ fPaperTempt ¼ T; Setpointt ¼ SPg:We then
calculate:

SP� ¼ argmax
SP02Setpoint

PðPaperTemptþ1 ¼ Tset j OBSt; Setpointtþ1 ¼ SP0Þ

and adapt the setpoint of the heater controller to SP�: The Bayesian network is
simplified, in particular by forgetting about the history, except for the immediate
history when making decisions (first-order Markov assumption). Due to this
simplification, sometimes the interpretation of the measurements can be mis-
leading. There are several solutions to this problem. For example, we may extend
the model to incorporate additional evidence of earlier states, or we may sample
less, i.e., by waiting to the system returns to a steady situation. One simple heu-
ristic that proved to be successful in this situation is avoid making decisions when
the interpretation is highly uncertain, e.g., when:

PðPaperWeightt ¼ w j OBStÞ\k

Heater

Setpoint

Paper

Weight

Paper

Weight

Paper

Temp

Paper

Temp

pmeTpmeT

Setpoint

Heater

Fig. 14.2 Simplified Bayesian network of the print domain

14 Applying Bayesian Networks for Intelligent Adaptable Printing Systems 205

for all paperweights w and where k is some tuning constant less than 1. Of course,
such a controller can also be implemented well using a standard PID controller that
controls directly based on the measurement of the paper temperature. The results
of such a PID controller is compared to the Bayesian network approach (with
k ¼ 0:9) and is presented in Fig. 14.3. The PID controller seems smoother, which
is most likely due to the fact that we have discrete value for the setpoint in the
adaptive controlling setting. However, for the most part, the behaviour of the
adaptive controller is similar to the PID control.

For this control task, Bayesian networks do not provide much benefit over PID
controllers, and we can only hope not to do worse than these standard, well-
understood, PID controllers. We are therefore aiming at more complex controllers,
where traditional control theory starts to become more difficult. One example is
discussed in the next section.

14.3.4 Case 2: Avoid Faulty Temperatures

As mentioned earlier, in order to get high quality prints, it is of importance to have
a lower threshold for some temperatures. Figure 14.3 shows that if we try to keep
the paper at the Tset temperature, temperatures may drop below this value when the
media changes. This could lead to a system fault. One solution is to put the
setpoint at a higher temperature which provides a buffer for the media changes;
however, if it is unnecessarily high, energy is lost and it may also cause problems
at other parts of the printing process.

The advantage of Bayesian networks is that various probabilistic constraints can
be put on the control signal. In this case, we are interested in the lowest tem-
perature that ensures that we avoid dropping below Tset. Formally, to decide on the
next setpoint, we calculate the minimal SP0 such that

0 100 200 300 400 500 600 700 800 900 1000

80

120

160

w
ei

gh
t

0 100 200 300 400 500 600 700 800 900 1000

Tset

te
m

pe
ra

tu
re

0 100 200 300 400 500 600 700 800 900 1000

Tset

te
m

pe
ra

tu
re heater temperature

paper temperature

heater temperature
paper temperature

Fig. 14.3 Top figure: weight of paper that is being printed on, which changes dynamically.
Middle figure: paper temperature controlled by a PID controller. Bottom figure: paper temperature
controlled by an adaptive controller using a Bayesian network

206 A. Hommersom et al.

PðPaperTemptþ1\Tset j OBSt; Setpointtþ1 ¼ SP0Þ\�

i.e., the probability that the resulting temperature will be lower than Tset will be
less than some threshold �: The result can be found in Fig. 14.4 (with � ¼ 0:01).
What is interesting here is that the heater temperature is relatively high when the
paper weight is lower. This is because the system anticipates on paper that might
arrive with a high paper weight as this high paper weight causes a sudden large
drop in temperature. This type of logic could be modelled by any system; however,
it is interesting to see here that this is implicit in the probability distribution that
has been learned from data.

14.4 Dynamic Speed Adjustment

14.4.1 Description of the Problem

The productivity of printers is limited to the amount of power available, in par-
ticular in environments which depend on weak mains. If there is insufficient power
available, then temperature setpoints cannot be reached, which causes bad print
quality. To overcome this problem, it is either possible to decide to always print at
lower speeds or to adapt to the available power dynamically. In the section, we
explore the latter option by a dynamic speed adjustment using a Bayesian network.

14.4.2 Modelling

The structure of the fragment of the model at each time slice is shown in Fig. 14.5.
The requested power available is an observable variable that depends on low-level
controllers that aim at maintaining the right setpoint for reaching a good print
quality. The error variable models the deviation of the actual temperature from the
ideal temperature, which can be established in a laboratory situation, but not
during run-time. If this exceeds a certain threshold, then the print quality will be
below a norm that has been determined by the printer manufacturer.

Both velocity and available power influence the power that is or can be
requested by the low-level controllers. Furthermore, the combination of the

0 100 200 300 400 500 600 700 800 900 1000

Tset

te
m

pe
ra

tu
re

heater temperature
paper temperature

Fig. 14.4 Faults are avoided using an adaptive controller. Paper weight changes are the same as
in Fig. 14.3

14 Applying Bayesian Networks for Intelligent Adaptable Printing Systems 207

available power and the requested power is a good predictor of the error according
to the domain experts.

For our experiments we again use two time slices with the interconnections
between the available power—which models that the power supply on different
time slices is not independent—and requested power, which models the state of the
machine that influences the requested power.

In order to choose the family of distributions, we can consider to model the
variables as Gaussian variables. This is reasonable as most variables are normally
distributed, except for the available power (see Fig. 14.6). Fitting a Gaussian
distribution to such a distribution will typically lead to insufficient performance.
However, it can be interpreted as a mixture of two Gaussian distribution, one with
mean Plow (Watt) and one with mean Phigh (Watt) with a small variance. Such a
distribution can be modelled using a hybrid network as follows. The network is
augmented with an additional (binary) parent node S with values ‘high’ and ‘low’
for the requested power variable. For both states of this node, a Gaussian model is
associated to this variable. The marginal distribution of requested power is
obtained by basic probability theory as

PðPreqÞ ¼
X

S

PðPreq j SÞPðSÞ:

Available

Power

Error

Velocity

Requested

Power

Fig. 14.5 Structure of the
Bayesian network of each
time slice

Pmin Pmax
0

500

1000

1500

2000

2500

3000Fig. 14.6 Distribution of
requested power

208 A. Hommersom et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.95

0.96

0.97

0.98

0.99

1

false positive ratio

se
ns

iti
vi

ty

hybrid
continuous
discrete

Fig. 14.7 ROC curves of the three Bayesian networks. The hybrid and discrete versions show
the best classification performance

14.4.3 Classification

One of the main reasoning tasks of the network is to estimate the error, i.e., the
deviation from the ideal temperature, given a certain velocity and a certain
observations. We could consider this a classification performance, i.e., the print
quality is bad or good. This provides means to compare different models and see
how well it performs at distinguishing between these two possibilities. A standard
way to visualise and quantify this is by means of a Receiver Operating Charac-
teristic (ROC) curve, which shows the relation between the false positive ratio and
the true positive ratio (sensitivity). The area under the curve is a measure for its
classification performance.

We have compared three models, i.e., a discrete model, a fully continuous
model and a hybrid model for modelling the distribution of the requested power
with two Gaussians. The classification performance is outlined in Fig. 14.7. As
expected, the fully continuous model performs worse, whereas the hybrid and
discrete show a similar trend. The advantage of the discrete version is that the
probability distribution can easily be inspected and it has no underlying assump-
tions about the distribution, which makes it easier to use in practice. The hybrid
version however allows for more efficient computation as we need a large number
of discrete to describe the conditional distributions. For this reason, we have used
the hybrid version in the in following experiments.

14.4.4 Simulation of the Bayesian Controller

As the error information is not available during runtime, the marginal probability
distribution of the error in the next time slice is computed using the information
about the power available and power requested. This error is a Gaussian random
variable with mean l and standard deviation r: Given a maximum error that we
allow, denoted by Emax; we pick the highest velocity v such that the marginal

14 Applying Bayesian Networks for Intelligent Adaptable Printing Systems 209

probability distribution of PðErrortþ1Þ is such that lþ kr\Emax; where k is a
constant. Different values of k correspond to different points on the ROC curve as
depicted in Fig. 14.7. For a Gaussian variable, more than 99.73% of the real value
of the error will be within three standard deviations of the mean, so for example
k ¼ 3 would imply that PðErrortþ1\EmaxÞ[99:87%: However, the sensitivity,
i.e., the chance that the paper is warm enough, can be chosen arbitrarily, by also
increasing the false positive ratio, i.e., by reducing the overall productivity.

In order to evaluate the approach, we compared the productivity of the resulting
network with a rule-based approach that incorporates some heuristics for choosing
the right velocity. The productivity is defined here simply as

R s
0 vðtÞdt; where s is

the simulation time.
In order to smooth the signal that the network produces, we employ a FIR

(Finite Impulse Response) filter in which we average the decisions of the last 10 s.
The resulting behaviour was simulated and is presented in Fig. 14.8 (with k ¼ 3).
Compared to the rule-based approach, we improve roughly 9% in productivity
while keeping the error within an acceptable range. While it could certainly be the
case that the rules could be improved and optimised, again, the point is that the
logic underlying the controller does not have to be designed. What is required is a
qualitative model, data, and a probabilistic criterion that can be inferred.

14.5 Discussion and Conclusions

So far, adaptive controllers based on explicit Bayesian networks have not been
extensively investigated. The most closely related work is by Deventer [5], who
investigates the use of dynamic Bayesian networks for controlling linear and

0 200 400 600 800 1000 1200 1400 1600 1800 2000

vmin

vmax
ve

lo
ci

ty

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Plow

Phigh

av
ai

la
bl

e
po

w
er

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

Emax

er
ro

r
Bayesian
rule−based

Fig. 14.8 In the centre figure, the available power is plotted, which is fluctuating. At the top, we
compare the velocity of the engine which is controlled by a rule-based system and by a Bayesian
network. Below, we present the error that the controller based on the Bayesian network yields,
which is within the required limits

210 A. Hommersom et al.

nonlinear systems. The main difference with his work is that he estimates
parameters from a Bayesian network using a given model of the system. In con-
trast, we aim at using models that were learned from data. Such data can come
from measurements during design time or during run-time of the system.

Bayesian inference is well-known for trying to infer a hidden state in a dynamic
model. Typical applications are filtering, i.e., trying to infer the current hidden
state given the observations in the past and smoothing where past states are
inferred. For example, the Kalman filter [11] is well-known in stochastic control
theory (see e.g., [1] for an overview) and is a special case of a dynamic Bayesian
networks, where the model is the linear Gaussian variant of a hidden Markov
model, i.e., it describes a Markov process with noise parameters on the input and
output variables. Non-linear variants, such as the extended Kalman filter or the
unscented Kalman filter (see e.g., [19]) are approximate inference algorithms for
non-linear Gaussian models by linearisation of the model. More recently, particle
filters [16], also known as sequential Monte Carlo methods, have been proposed as
an alternative, which relies on sampling to approximate the posterior distribution.

The difference with these filtering approaches is that for Bayesian networks
there is an underlying domain model which is understandable. As Bayesian net-
works are general formalisms, they could also be used or re-used for diagnostic
purposes, where it is typically required that a diagnosis can be represented in a
human-understandable way so that proper action can be taken. Furthermore, it is
well-known that the structure of the graphical part of a Bayesian network facili-
tates the assessment of probabilities, even to the extent that reliable probabilistic
information can be obtained from experts (see [17] in the medical domain). One
other advantage compared to black-box models is that the modelled probability
distribution can be exploited for decision theory. This is particularly important if
one wants to make real trade-offs such as between productivity and energy con-
sumption. This is another direction that will be explored in the future.

With respect to the choice of the underlying distribution that is associated to a
Bayesian network, several choices can be made. For exact inference, conditional
linear Gaussian models are the standard way to deal with continuous variables in
this area as exact inference can be used; however, they are restricted to modelling
linear systems. Discrete distributions can then be used and have been successfully
applied in, for example, medicine. Another option is to model the distribution on
the basis of a mixture of truncated exponentials (MTE) [20], which allow one to
model non-linear systems and, furthermore, allows for exact inference of required
probabilities. This is a direction which we will explore in the near future. Of
course, in particle filters, sampling methods can be employed for approximating
the posterior from a wide range of non-linear distributions.

Bayesian networks have drawn attention in many different research areas, such
as AI, mathematics and statistics. In this paper, we have explored the use of
Bayesian networks for designing an adaptable printing systems. We have shown
that the approach is feasible and can help to design an intelligent system. We
believe that these techniques can have a wide application in the engineering sci-
ences in particular for control and fault detection. The latter has been investigated

14 Applying Bayesian Networks for Intelligent Adaptable Printing Systems 211

before, e.g., [7], in which Bayesian networks were applied for both consistency-
based as well as abductive diagnosis. Results of this paper provide evidence that
explicit Bayesian networks can also be useful for the development of adaptive
control systems.

Acknowledgements This work has been carried out as part of the OCTOPUS project under the
responsibility of the Embedded Systems Institute. This project is partially supported by the
Netherlands Ministry of Economic Affairs under the Embedded Systems Institute program. We
would like to thank the anonymous reviewers and the members of the OCTOPUS project for their
helpful suggestions and feedback. We also thank Marcel van Gerven for making his Bayesian
network toolbox available.

References

1. Åström KJ (1970) Introduction to stochastic control theory. Academic Press, New York
2. Casella G, Robert C (1999) Monte Carlo statistical methods. Springer, New York
3. Chmarra MK, Arts L, Tomiyama T (2008) Towards adaptable architecture. In: ASME 2008

international design engineering technical conferences DETC2008-49971
4. Cowell RG, Dawid AP, Lauritzen SL, Spiegelhalter DJ (1999) Probabilistic networks and

expert systems. Springer, New York
5. Deventer R (2004) Modeling and control of static and dynamic systems with Bayesian

networks. PhD thesis, University Erlangen-Nürnberg, Chair for Pattern recognition
6. Farrell JA, Polycarpou MM (2006) Adaptive approximation based control: unifying neural,

fuzzy and traditional adaptive approximation approaches. Adaptive and learning systems for
signal processing, communications and control series. Wiley-Interscience, Hoboken

7. Flesch I (2008) On the use of independence relations in Bayesian networks. PhD thesis,
University of Nijmegen

8. Guo H, Hsu WH (2002) A survey of algorithms for real-time Bayesian network inference. In:
Darwiche A, Friedman N (eds) AAAI/KDD/UAI02 joint workshop on real-time decision
support and diagnosis systems, Edmonton, Canada

9. Hommersom A, Lucas PJF, Waarsing R, Koopman P (2009) Applying Bayesian
Networks for Intelligent Adaptable Printing Systems. In: Proceedings of the IEEE Seventh
International Workshop on Intelligent Solutions in Embedded Systems WISES09, Ancona,
Italy, June 25-26 2009, pp 127–133

10. Jordan MI, Ghahramani Z, Jaakkola T, Saul LK (1999) An introduction to variational
methods for graphical models. Mach Learn 37(2):183–233

11. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng
82(1):35–45

12. Lauritzen SL (1992) Propagation of probabilities, means and variances in mixed graphical
association models. J Am Stat Assoc 87:1098–1108

13. Lauritzen SL (1995) The EM algorithm for graphical association models with missing data.
Comput Stat Anal 19:191–201

14. Lauritzen SL, Spiegelhalter DJ (1988) Local computations with probabilities on graphical
structures and their application to expert systems. J R Stat Soc 50:157–224

15. Lerner U, Parr R (2001) Inference in hybrid networks: theoretical limits and practical
algorithms. In: Breese J, Koller D (eds) Uncertainty in artificial intelligence, vol 17. Morgan
Kaufmann, San Francisco, pp 310–318

16. Liu JS, Chen R (1998) Sequential Monte Carlo methods for dynamic systems. J Am Stat
Assoc 93:1032–1044

212 A. Hommersom et al.

17. Lucas PJF, Boot H, Taal BG (1998) Computer-based decision-support in the management of
primary gastric non-Hodgkin lymphoma. Meth Inform Med 37:206–219

18. MATLAB (2008) The MathWorks Inc, version R2008A
19. Maybeck PS (1979) Stochastic models, estimation, and control. Academic Press, New York
20. Moral S, Rumí R, Samarón A (2001) Mixtures of truncated exponentials in hybrid Bayesian

networks. In: Sixth European conference on symbolic and quantitative approaches to
reasoning with uncertainty, vol 2143 of LNAI, pp 156–167

21. Murphy KP (2002) Dynamic Bayesian networks: representation, inference and learning. PhD
thesis, UC Berkeley

22. Ogata K (2002) Modern control engineering, 4th edn. Prentice-Hall, Inc, Upper Saddle River
23. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, San Mateo

14 Applying Bayesian Networks for Intelligent Adaptable Printing Systems 213

Chapter 15
Applicability of Virtualization
to Embedded Systems

Tackling Complexity by ‘‘Divide and Conquer’’

Robert Kaiser

15.1 Introduction

The performance of embedded system platforms has grown steadily during the
recent years. In a complex, distributed system of embedded control units (e.g. an
aircraft or a car), one single embedded computer is now powerful enough to take
on loads that previously had to be handled by multiple dedicated nodes [1, 2].
Taking advantage of this potential, there is a new tendency to reduce the total
number of embedded control units. While this trend is only in its beginnings in the
car industry [3], modern aircraft already use the ‘‘IMA’’1 concept, where a network
of uniform embedded computers is used to execute a multitude of different
applications [4, 5].

Besides reducing cost and increasing performance, this also promises less
complex hardware and thus better system reliability due to fewer components.
Software complexity, however, increases: A multitude of more or less independent
programs that previously lived each on its own dedicated node now have to share a
common machine. Thus, the system infrastructure must provide mechanisms to
prevent a program malfunction from affecting other programs in the system.

Moreover, the programs that are to be hosted by one machine may have very
diverse requirements for their operating system interfaces: Some may have to
ensure timely operation,2 some may require a rich set of operating system services,

R. Kaiser (&)
Bingen University of Applied Sciences, Bingen, Germany
e-mail: kaiser@fh-bingen.de

1 Integrated Modular Avionics.
2 Where the definition of ‘‘timely’’ as well as the degree to which it has to be ensured may vary
largely.

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_15,
� Springer Science+Business Media B.V. 2011

215

some may need to minimize their trusted code base for reasons of safety or
security. It is impossible for a single operating system to cover all these conflicting
requirements, however, traditionally, there exists only one operating system
interface per machine.

These problems are similar to those that once led to the consolidation effort in
the server field. There, virtualization was a successful solution: Virtual machines
can be instantiated multiple times. Thus, it is possible to have multiple indepen-
dent logical subsystems within a single physical machine. Programs which exist in
different subsystems can not interfere with each other, except through interfaces
which are provided (and controlled) by the virtualization environment. Also, any
resources used by the subsystems are controlled by the virtualization environment,
so a program can never exceed the resource limitations imposed on it by the
environment. This strict control over resources and communication interfaces is
the key to the safe and secure isolation by means of virtualization: Complex
system software can be broken down into manageable components, each of which
can decide for itself, which other components it depends upon.

It seems logical to apply virtualization to embedded systems now. However,
this raises the question whether existing virtualization technology can simply be
re-used ‘‘as is’’, or if any conceptual changes must be made to make it applicable
to embedded systems.

The rest of this paper is organized as follows: In Sect. 15.2, a brief overview of the
relevant virtualization techniques and their inner workings is given. Section 15.3
compares the requirements for embedded virtualization against the functionalities
offered by the different approaches. Special attention is taken with respect to the
ability of virtualization environments to support real-time applications, as this
requirement does not exist in the space of server systems, but is frequently needed for
embedded systems.

15.2 Virtualization Techniques

Virtualization is a broad term in computer science: Memory can be virtual, as can
be storage, networks or even desktops. In the context of this paper, virtualization
refers to the provision of environments (called virtual machines (VMs)), in which
programs can execute.

15.2.1 Virtual Machines

Probably the most common example of such an environment is a Java Virtual
Machine (JVM) [6]. Basically, a JVM is a program which emulates the behavior of
a hypothetical machine by interpreting byte code. The benefit of this approach is
the ability to run the same byte code program on different architectures without

216 R. Kaiser

having to recompile it. This platform independence is generally considered to be a
significant enough improvement to justify the loss of efficiency due to the inter-
pretation of byte code.

Technically, a real machine can be emulated in much the same way as a
hypothetical one. This is exemplified by the ‘‘Bochs’’ program [7] which emulates
a complete IA-32 machine to sufficient detail so as to allow execution of a full-
fledged operating system. However, compared to native code execution by a
physical processor, Boch’s binary code interpretation is very inefficient.3

If the underlying physical (host) machine features the same instruction set as
the machine that is being emulated, and if that instruction set also satisfies certain
formal criteria [8], then, instead of interpreting code, the host processor can
execute most of the instructions directly. Only a few ‘‘sensitive’’ instructions
(see below) remain to be emulated. With this native virtualization approach,
virtual machines can be nearly as efficient as physical ones. This form of virtu-
alization is therefore examined in more detail in the following text. It will be
referred to as ‘‘virtualization’’ in the rest of this text.

15.2.2 Virtual Machine Monitors

Virtualization was invented by IBM in the late 1960s [9]. At the time it was
motivated by the desire to improve the utilization of (expensive) mainframes by
making them sharable between several users and/or applications. The software
component that implemented virtualization was referred to as a Virtual Machine
Monitor (VMM).

IBM’s VMM offered multiple virtual machines which were each exact copies
of the underlying host machine. It could host multiple independent operating
systems along with their applications in different VMs within a single physical
machine. It was a requirement that a virtual machine be indistinguishable pro-
grammatically from a real one. Consequently, neither the operating systems nor
their applications needed any adaptation to the VM environment: All code that
had originally been written for the physical machine could be reused without
changes.

In [8], Popek and Goldberg state formal requirements for a computer archi-
tecture to be virtualizable in this way: They define the set of sensitive instruc-
tions as the subset of the machine’s instruction set that interrogate or modify the
resource configuration of the virtual machine. For example, a machine instruc-
tion manipulating the processor status word (PSW) would obviously qualify as
sensitive, but even just reading the PSW is a sensitive operation too as it allows
a program to make decisions based on the state of the physical machine.

3 Bochs is primarily intended as a tool for test and debug purposes, but not for productive
systems.

15 Applicability of Virtualization to Embedded Systems 217

For virtualization to be transparent, all sensitive instructions must be emulated
by the VMM, while all non-sensitive instructions can be executed directly by the
processor. To make this possible, the VMM is installed as a trap handler and the
virtualized program is executed in non-privileged mode. Provided that all sen-
sitive instructions are also privileged instructions, any attempt by the program to
execute one of them in non-privileged mode generates a trap that invokes the
VMM. The VMM then emulates the instruction transparently. Therefore,
according to Popek and Goldberg, for a machine architecture to be virtualizable,
the set of sensitive instructions must be equal to the set of privileged instructions
or a subset thereof.

This virtualization method is also referred to as ‘‘full’’ virtualization to dis-
tinguish it from the method of paravirtualization which will be described next. Full
virtualization has the advantage of being able to execute any binary code without
changes. However, it is only applicable to machine architectures that fulfill Popek
and Goldberg’s virtualizability criteria. The prevalent IA-32 architecture, for
example, is not virtualizable according to these criteria: its instruction set com-
prises 17 instructions which are sensitive but do not generate a trap [10].

15.2.3 Paravirtualization

The term paravirtualization was coined by Gribble et al. when they introduced the
‘‘Denali’’ VMM [11]. Paravirtualization gives up the requirement of binary
compatibility, at least for operating system code. The code of guest operating
systems is adapted to the virtual machine environment by replacing sensitive
instructions with appropriate system calls4 into the VMM. The adaptation can be
done manually or even automatically, e.g. by using special compilation tools [12].
It only needs to be done for programs that expect to run in privileged mode on a
physical machine (i.e. operating system kernels), whereas application programs
can be kept unchanged. Usually, the source code of an operating system kernel
must be available for it to be ‘‘paravirtualized’’ in this way. Therefore, closed
source operating systems can normally not be adapted. Today, the Xen Hypervisor
[13] is probably the most prominent VMM using paravirtualization.

As stated earlier, the IA-32 architecture is not virtualizable according to the
criteria given in [8]. However, by ‘‘creative programming’’ it was nonetheless
possible to virtualize IA-32 machines. The first virtual machine monitor to
demonstrate this was VMware [14]. The method it uses is referred to as scan
before execution: when a piece of code has been loaded into memory and before
it is executed, the program’s code is scanned and all instances of the afore-
mentioned 17 sensitive instructions are replaced by appropriate hypercalls. Thus,
although VMware is generally considered to be a full virtualization environment

4 So-called hypercalls.

218 R. Kaiser

(because operating systems are able to run in its virtual machines unchanged),
the method it uses would probably be described more suitably as ‘‘on the fly
paravirtualization’’.

Obviously, this dynamic re-writing of code leads to additional overhead, so
the approach is less efficient than the normal, ‘‘static’’ paravirtualization. Fur-
thermore, hypercalls can offer a higher level of abstraction than emulation at the
machine instruction level (i.e. the amount of useful work done by one hypercall
is usually more than that of a single emulated machine instruction), therefore, the
run-time efficiency of paravirtualization is generally better than that of full
virtualization.

15.2.4 Microkernel-Based Paravirtualization

Microkernels originate from an entirely different line of thought than VMMs:
Their goal is to reduce the complexity of operating systems by reducing the
concepts that are implemented as privileged code to a minimum. In [15], Liedtke
demands that ‘‘a concept be tolerated inside the kernel only if moving it outside
the kernel… would prevent the implementation of the system’s functionality’’.
Following this principle, a microkernel should only provide a small set of
mechanisms and ideally no policies at all. Policies are to be implemented by user-
level software, utilizing the kernel-provided mechanisms as necessary. In this way,
different, alternate policies can coexist in a common system. For example, oper-
ating system services such as I/O or memory management, which would have been
implemented by the kernel in a classical monolithic operating system, are provided
by user-level servers. The role of the microkernel is merely to establish an
infrastructure (i.e. inter process communication, or IPC) for applications to
communicate with their servers.

IPC is the one central service provided by a microkernel. It is not only used for
direct client–server communication: Hardware-generated events such as interrupts
or traps are translated by the microkernel into IPC messages which are then sent to
a responsible handler (a user level process). Thus, interrupts ‘‘look’’ like processes
sending messages when an associated event has happened. In this way, the
‘‘policy’’ portion of interrupt or trap handling can be implemented outside the
kernel, only the ‘‘mechanism’’ part remains in the kernel.

It has been demonstrated that a microkernel infrastructure such as L4 [16] can
be used as a VMM to support paravirtualized operating systems [17, 18] in much
the same way as was described in the previous subsection. Given the different roots
of VMMs and microkernels, it is remarkable to see the similarities between the
outcomes of the two lines of development. There is an ongoing academic debate
about wether or not VMMs are in fact ‘‘microkernels done right’’ (see [19, 20]).
The one point that the opponents in this debate seem to agree upon is that VMMs
share so many similarities with microkernels that they can in fact be considered a
specific form of a microkernel.

15 Applicability of Virtualization to Embedded Systems 219

15.3 Requirements (and Non-requirements)
for an Embedded VMM

We now look at the functionalities of the different virtualization approaches. These
functionalities are inherited from their previous use in the server or workstation
area, so a re-evaluation in the light of the embedded system field is necessary.

15.3.1 Isolation and Communication

The need for isolation was the initial motivation for bringing up the subject of
virtualization for embedded systems. All virtualization approaches that were
introduced in the previous section do feature strong isolation between virtual
machines. Any faults happening in one VM remain confined to that VM, they can
not spread throughout the system. For server consolidation, this strong isolation is
usually all that is needed, i.e. the individual VMs can be treated like individual
physical machines and there is no compelling need for them to interact with one
another in ways any different from real machines, i.e. via a network. In contrast, in
embedded systems, multiple subsystems may contribute to the overall function-
ality of the embedded device. Therefore, an effective, secure mechanism for inter-
VM communication is frequently required in addition to isolation.

The inter-VM communication facilities provided by most VMMs are typically
‘‘retrofitted’’ ones (e.g. pseudo network interfaces), thus communication with other
VMs or the outside world may encompasses significant protocol overhead.
Microkernels, on the other hand, are traditionally well-equipped in this respect:
The early approaches to microkernel design (e.g. the Mach mikrokernel [21]) and
their failure have shown the importance of a high-bandwidth, secure IPC mech-
anism. Second generation microkernels such as L4 have learned from these
lessons: L4 was constructed from the ground up to deliver very efficient IPC.

15.3.2 Architecture Independence

The server and desktop markets are largely dominated by the IA-32 processor
family today. Therefore, virtualization approaches (such as VMware) have been
specifically tailored for the properties of the IA-32 architecture and have gone to
great lengths to compensate for its shortcomings. In the embedded market, there is
no single dominant processor architecture and some of the more prevalent
embedded processor architectures also do not meet the virtualizability criteria in
[8]. Furthermore, the major advantage that full virtualization has over paravirtu-
alization, i.e. the ability to execute kernel code without recompilation, loses much
if its attraction in the embedded space as it is common for embedded system

220 R. Kaiser

developers to have access to the full source code to their operating systems any-
way. Thus, from the perspective of embedded systems use, paravirtualization is
preferable to full virtualization: the disadvantage of requiring an adapted OS is not
an issue, plus it performs better.

Java byte code programs are platform agnostic by definition, so a JVM-based
approach offers even better architecture independence. This level of independence
comes at a price though: it takes significantly more resources to provide a given
functionality in byte code form rather than as native code, and the byte code’s
performance is generally lower. Given that embedded systems are usually
designed to provide their functionality with minimal resources, the increased
resource requirements of JVM-based virtualization has hindered a wide adoption
of such approaches to date. Some notable exceptions exist, though, in cases where
the ability to install and uninstall services dynamically without knowing the details
of the target platform is valued higher than the cost of resources [22]. In this
context, approaches have been proposed which also leverage the isolation features
of the JVM in much the same way as the native virtualization methods we are
mainly considering in this text [23, 24]. Nevertheless, their extensive memory
consumption and their lack of real-time capabilities (see below) limits these
approaches to a small niche within the embedded systems market.

15.3.3 Size of Trusted Code Based

Any safety or security related application must consider the amount of code upon
whose correctness it relies. This trusted code base includes all privileged code
(i.e. the kernel) as well as any software modules the kernel relies upon. Depending
on the criticality of the application’s function, all trusted code may have to undergo
rigorous testing or it may even have to be mathematically proven correct. The effort
involved in these tests depends directly on the amount of trusted code, so there is a
strong need to keep the trusted code base of critical applications minimal.

Looking—for example—at the Xen hypervisor, its code base itself is already
quite large (about 100,000 lines of code), but it also requires (an relies upon) a
fully fledged Linux system in the privileged ‘‘Domain 0’’. This results in a total
trusted code base of several million lines of code for which an exhaustive test,
let alone a proof of correctness is out of the question. Some microkernels
(e.g. Mach) are known to be similar in size, however, newer approaches are
typically in the 10,000 lines of code range. So, again, microkernel-based virtual-
ization would seem like a preferable approach.

Similar to Xen, JVM-based approaches, besides their JVM, rely on the cor-
rectness of the host operating system which is needed to support them. The
(prototype) implementations presented in [23, 24] employ Linux as host OS, so the
size of trusted code again amounts to several million lines of code. However, it has
been shown that it is possible to implement a JVM on the basis of a much smaller
set of OS functionality, e.g. that of a microkernel [25].

15 Applicability of Virtualization to Embedded Systems 221

15.3.4 Superfluous Functionality

The size of the Xen and similar hypervisors is at least partly due to the imple-
mentation of certain policies inside the privileged code which will be of little use
for embedded systems. For example, Xen allows to change the resource allocation
of its virtual machines at run time as well as to do live migrations of virtual
machines. Since they are implemented inside the kernel, these policies contribute
in full to the memory footprint of the hypervisor and they also increase the trusted
code base of all applications unnecessarily.

In contrast, microkernel development efforts have generally observed the
principle of policy/mechanism separation more stringently: In a microkernel-based
system, all policies are provided by servers. Thus, each application can individ-
ually select the set of servers it wants to communicate with. Each application can
therefore make a fine-grained selection of its trusted code base based on the
services it requires.

15.3.5 Real-Time Capabilities

Deterministic timing behavior is a frequent requirement for many, but not all
embedded systems. A computing system which has to interact with a physical or
technical system must match that system’s timing.

It is difficult to guarantee deterministic timing for programs which are executed
in a generic JVM environment. Unpredictable delays due to garbage collection are
a major problem and running the JVM on top of a non-real-time, general purpose
operating system such as Linux makes matters even worse. Consequently, [23, 24]
do not discuss real-time behavior at all. This is acceptable for their specific
application domain (i.e. residential gateways). Nevertheless, deterministic timing
is an important requirement for a large portion of the embedded space and these
approaches fail to address it.

Regarding native virtualization, Popek and Goldberg postulate in [8], that a
virtual machine shows exactly the same behavior as a physical machine, however,
they explicitly exclude the machine’s temporal behavior from their considerations.
The difference in timing has several reasons: trapping and emulating sensitive
instructions is obviously more expensive than direct execution of same and
replacing instances of these instructions with hypercalls during prescan as
VMware does also requires additional effort. Nevertheless, these overheads are
predictable, i.e. they occur in the same way and amount whenever a program is
executed by the VM. Therefore it is possible for a process scheduler to take these
overheads into account.

However, if multiple VMs exist in a single system, the VMM must switch the
physical machine between the contexts of its virtual machines. Thus, besides
several other responsibilities, a VMM also acts as a scheduler, allocating portions

222 R. Kaiser

of the overall CPU capacity to its VMs. The guest operating systems hosted by the
VMs schedule their own, private set of processes. Thus, there is a two-level
hierarchy5 of schedulers in which the VMM’s scheduler forms the first level.

Most VMMs use some form of proportional share scheduling, because it reflects
the concept of a virtual machine: VMs receive a share (i.e. a percentage) of the
CPU’s computational resources. Ideally, they should all receive their CPU shares
in parallel, so each of them should be able to execute at any time, where the speed
of their virtual CPUs would be portions of the real CPU’s speed. But this is
technically not possible because a CPU is not sharable: it can only be allocated to
one activity at a time. Therefore, proportional share schedulers approximate the
idealized behavior by switching between their virtual machines cyclically, running
each of them for a finite quantum of time. The quality of this approximation
improves as the quantum is made smaller, but at the same time, context switching
cost increases.

Figure 15.1 shows the estimated context switching overhead of a system of
three VMs, as a function of quantum size. These values were obtained from a
simulation of a proportional share scheduler, where previously measured context
switch delays were taken into account (see [26]). For quantum sizes below roughly
1 ms, the overhead increases dramatically, reaching more than 90% in the worst
case. In order to stay within acceptable bounds (e.g. 10%), the quantum size would
have to be in the 1–10 ms range. Figure 15.1 also shows the delay for which a VM
may be blocked in the worst case. This delay directly adds to the jitter of real-time
programs that are hosted by virtual machines. It is proportional6 to the number of
virtual machines and the quantum size. For any quantum value yielding an
acceptable switch overhead (i.e. 1 ms), the corresponding delay is a multiple of
this quantum, i.e. several milliseconds.

There are many practical real-time applications which can accept a temporal
variation of this magnitude. Such applications can thus be executed by a virtual
machine without problems. There are, however, also applications that require
better timing predictability. For these applications, alternative scheduling
approaches at the VMM level are needed. In order to cover the whole range of
timing constraints (e.g. from microseconds to minutes) that a single embedded
system may have to support, the VMM must apply different scheduling policies
depending on the timing requirements of the particular application, or, more
precisely, the virtual machine hosting the application (see [27]).

Here again, many VMMs are problematic because the scheduling policy is built
into the VMM and thus difficult to replace.7 But flexible scheduling is also the
Achilles heel of microkernel-based solutions: L4 and its derivatives include a
simple, priority-based scheduler. The plan is to implement external, user-level

5 In principle, any of the processes hosted by a guest operating system could recursively host
multiple processes, so the hierarchy could in fact have any number of levels.
6 Note that the quantum axis in Fig. 15.1 is scaled logarithmically.
7 Xen, however, does feature a pluggable scheduler architecture.

15 Applicability of Virtualization to Embedded Systems 223

scheduling policies that dynamically modify the kernel-level task priorities to put
through their own scheduling policies. However, such user-level schedulers are
currently a research topic, no solutions are readily available at this time.

The ‘‘PikeOS’’ microkernel, which is a commercial development based on L4
concepts, features a scheduling policy that combines priority-driven and time
driven scheduling [28]. Here, the time driven schedule is in fact controlled by a
user-level scheduler, while priority ranges are assigned to tasks statically. The
time-driven part of the scheduler can be used to implement cyclic executives with
very low jitter. Also, time partitioning as required by avionics standards (i.e. [29])
can be implemented with this approach. The PikeOS scheduling approach has the
ability to run non-real-time, general purpose operating systems alongside with hard
real-time ones.

15.4 Conclusion and Outlook

Virtualization is a promising technology to deal with the problems of upcoming
complex embedded systems. By creating multiple isolated virtual machines
hosting different subsystems, the overall system becomes manageable. However,
most of the virtual machine environments available today were developed for use
in server or desktop systems. They are not very well suited for use in embedded
systems in their current form, because they lack certain important capabilities on
the one hand and because they contain functionalities that are not needed in the
embedded space on the other hand. However, this is clearly not a limitation of the
concept of virtualization as such: In many cases, virtual machine monitors have
incorporated policies which were suited for the use case at hand. These policies are
now hard to remove/replace. Microkernels, however, have been built according to
the principle of separation between policy and mechanism and they can also serve
as a foundation for paravirtualization. Due to their lack of policies, they stand a
better chance of being adaptable for the needs of embedded virtualization.

Fig. 15.1 Proportional share
switch overhead and worst-
case virtual machine delay vs.
quantum (source: [26])

224 R. Kaiser

Some approaches in this regard already exist, and we expect to see an increasing
number of use cases for these approaches in future complex embedded systems.

References

1. Greene R, Lownes G (1994) Embedded CPU target migration, doing more with less. In: TRI
Ada ‘94: Proceedings of the conference on TRI-Ada ‘94. ACM Press, New York, pp 429–436

2. Stepner D, Rajan N, Hui D (1999) Embedded application design using a real-time os. In:
DAC ‘99: Proceedings of the 36th ACM/IEEE conference on design automation. ACM Press,
New York, pp 151–156

3. Broy M (2006) Challenges in automotive software engineering. In: ICSE ‘06: Proceeding of
the 28th international conference on software engineering. ACM Press, New York, pp 33–42

4. Sanchez-Puebla MA, Carretero J (2003) A new approach for distributed computing in
avionics systems. In: ISICT ‘03: Proceedings symposium on Information and communication
technologies. Trinity College Dublin, pp 579–584

5. Bate I, Kelly T (2003) Architectural considerations in the certification of modular systems.
Reliab Eng Syst Saf 81:303–324

6. Lindholm T, Yellin F (1999) Java virtual machine specification. Addison-Wesley Longman
Publishing Co., Inc, Boston

7. Lawton KP (1996) Bochs: a portable PC emulator for Unix/X,’’ LINUX J, vol 1996, no 29es,
p 7, sep 1996

8. Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation
architectures. Commun ACM 7(7):412–421

9. Creasy RJ (1981) The origin of the VM/370 time-sharing system. IBM J Res Dev 25(5):
483–490

10. Robin J, Irvine C (2000) Analysis of the Intel Pentium’s ability to support a secure virtual
machine monitor [Online]. http://citeseer.ist.psu.edu/robin00analysis.html

11. Whitaker A, Shaw M, Gribble S (2002) Denali: lightweight virtual machines for distributed
and networked applications. University of Washington technical report 02-02-01

12. LeVasseur J, Uhlig V, Chapman M, Chubb P, Leslie B, Heiser G (2005) Pre-virtualization:
slashing the cost of virtualization. Technical report PA005520, NICTA, October

13. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A
(2003) Xen and the art of virtualization. In: ACM symposium on operating systems
principles, Bolton Landing, NY, USA

14. Muller A, Wilson S, Happe D, Humphrey GJ (2005) Virtualization with VMware ESX
server. Syngress Publishing, Inc, Rockland

15. Liedtke J (1995) On-kernel construction. In: ACM symposium on operating systems
principles, Copper Mountain Resort, CO, USA, pp 237–250

16. Liedtke J (1996) L4 reference manual—486, Pentium, Pentium Pro. http://os.inf.tu-dresden.
de/L4/l4refx86.ps.gz

17. Hartig H, Hohmuth M, Liedtke J, Schnberg S, Wolter J (1997) The performance of l-kernel-
based systems. In: 16th ACM symposium on operating system principles (SOSP), pp 66–77

18. Hartig H, Baumgartl R, Borriss M, Hamann C-J, Hohmuth M, Mehnert F, Reuther L,
Schönberg S, Wolter J (1998) DROPS: OS support for distributed multimedia applications.
In: Proceedings of the eighth ACM SIGOPS

19. Hand S, Warfield A, Fraser K, Kotsovinos E, Magenheimer D (2005) Are virtual machine
monitors microkernels done right? In: HOTOS’05: Proceedings of the 10th conference on hot
topics in operating systems. USENIX Association, Berkeley, p 1

20. Heiser G, Uhlig V, LeVasseur J (2006) Are virtual-machine monitors microkernels done
right? SIGOPS Oper Syst Rev 40(1):95–99

15 Applicability of Virtualization to Embedded Systems 225

21. Accetta M, Baron R, Bolosky W, Golub D, Rashid R, Tavanian A, Young M (1986) Mach: a
new kernel foundation for UNIX development. USENIX Summer 93–112

22. OSGi ‘‘Open Service Gateway Initiative Alliance’’ (2009) [Online]. www.osgi.org
23. Ibanez M, Martinez Madrid N, Seepold R (2007) Virtualization of residential gateways. In:

International workshop on intelligent solutions in embedded systems (WISES07), June
24. Royon Y, Frenot S, Mouel FL (2006) Virtualization of service gateways in multi-provider

environments. In: University, Vasteras, Sweden, pp 385–392
25. Hoffmann A (2005) Portierung und Validierung der Java 2 Micro Edition fur das Mikrokern-

Betriebssystem PikeOS. Diploma Thesis, Wiesbaden University of Applied Sciences, Dept.
DCSM, September

26. Kaiser R (2008) Empirische Ermittlung Cache-bedingter Umschaltverluste. GI/ITG Fach-
gruppentreffen, Wiesbaden, March

27. Kaiser R (2008) Alternatives for scheduling virtual machines in real-time embedded systems.
In: IIES ‘08: Proceedings of the 1st workshop on isolation and integration in embedded
systems. ACM, New York, April, pp 5–10

28. Kaiser R, Wagner S (2007) Evolution of the PikeOS Microkernel. MIKES 2007, Sydney,
Australia, National ICT Australia, Sydney NSW 2052, Australia, Tech Rep, January

29. Kaiser R (2009) Complex embedded systems—a case for virtualization. WISES 2009,
Ancona, Italy, June

226 R. Kaiser

Chapter 16
Distributed Trading Architecture
with Sensors Support for a Secure
Decision Making

Javier Martínez Fernández, Ralf Seepold and Natividad Martínez Madrid

16.1 Introduction

In these days, trading is under pressure due to unstable stock markets. So, traders
require to overcome own emotions during decision making. In most of the cases
stress or panic provokes wrong decisions and this should be avoided.

Therefore, it would be desirable to avoid making decisions in time of panic or
stress, decisions that are not taken in a rational way. The stock exchange system is
the representation of money; and many systems have been set up to analyze all
types of data. For example: future markets, derivatives, index, or shares. Systems
such as MetaTrader [1] or Metastock [2] provide to users all types of data and even
risks hedging using derivatives.

Besides, there are developments of expert systems for stock trading as Brown
et al. [3] developed in prolog for the buying and selling of futures in Chicago’s
market, or for stocks’ recommendation on the Spanish market, Martínez and Heyn
[4]. It is possible to see the creation of complex statistical models that try to find a
pattern in the market as Wolberg [5] or Ang and Quek [6] and even research
groups of trading systems as Cao et al. [7] and Tradingsys [8].

There are a great variety of programs that collect stock information and expert
systems and research studies that treat this information. This article tries to explain
the need to know ‘‘when’’ these systems should work and ‘‘when’’ these systems

J. Martínez Fernández
Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganes 28911, Spain

R. Seepold (&)
University of Applied Sciences Konstanz, Brauneggerstr. 55, Konstanz 78462, Germany
e-mail: ralf.seepold@htwg-konstanz.de

N. Martínez Madrid
Reutlingen University, Alteburgstraße 150, Reutlingen 72762, Germany
e-mail: Natividad.martinez@reutlingen-university.de

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_16,
� Springer Science+Business Media B.V. 2011

227

are indeed effective. It will be described a trading architecture that tracks behavior
by means of sensors to detect the moment of entering in an unsafe decision making
mode cause of stress. A platform connecting to sensors and to trading parameters
will be used to embed an expert system ready to support a trading decision. It is
crucial to detect the appropriate moment to activate the expert system and to
support the trader.

The next sections will explain how it is possible to measure the stress of a trader
and the proposal trading architecture taking advance of this acknowledgment in
more detail. Finally, conclusions are presented and some indication of the future
research work is given.

16.2 Measuring a Trader’s Stress

There are several studies of the human behavior in the short term operating and
about what variables can have influence on it. All these studies are experimental.
For example, researchers Coates and Herbert [9] detected visually whether a
financial intermediary (adviser) is qualified to deal with the vicissitudes of the
market just with their intuition.

The article reviewed dates at the end of 2006 and aims to clarify the role of the
endocrine system to assume risks in the financial field. The study focuses on a
group of male traders in the City of London and the steroid hormones. The tes-
tosterone and the UFC (urine free cortisol) are known catalysts for cognitive
responses and behavioral changes. It is intended to measure changes in levels of
both steroids, the influence on them of the events which traders face up in their
daily life and the effect caused on the norms of behavior and on the decision
making. Finally, it was planned to determine whether the responses and decisions
made in moments of strain and psychological stress are significantly influenced by
the levels of these hormones. We can see an unsatisfactory male chauvinist
approach, probably because the testosterone is a predominantly male hormone
(also produced by women though at lower levels), but there are no accused sexual
differences in cortisol.

Beginning with the testosterone, this hormone appears in sexual behavior and in
the competitive confrontation. When someone is in a competition, its levels grow in
the winner and lower in the loser. This androgenic award is known as the winner
effect. Ultimately, besides other implications on the secondary sexual characteris-
tics, testosterone causes aggressive behavior. Their highest levels in blood were
found after adolescence, they remain for about 15 years, to be gradually diminishing.

Cortisol, is produced by the adrenal glands and plays a central role in the
behavioral and physiological response to physical or psychological stress. It is very
sensitive to situations where we do not have the control, to news and uncertainties.
When a stressful situation comes up, after the emergency, hormone levels and the
physiological processes return to normal. The problem emerges when stress is
prolonged (persistent fall in the stock market). In this case, cortisol levels in the

228 J. Martínez Fernández et al.

blood are fired, altering the performance and interpretation cognitive, besides other
physiological disorders that result in a distortion of sensory perception. The
experiment runs for about 8 days and is done on the premises of a broker, by
measuring the levels of these hormones while operators perform their daily work.
They found that daily testosterone levels were significantly higher on days when
the trader wins over the daily average of the last month. In the case of cortisol,
there was not a relationship between the loss and increased levels of this steroid. It
was studied if there was any correlation between their levels and the risk. It was
found that the higher volatility (standard deviation of change in the value of a
financial instrument with a specific time horizon) of the daily trader’s profits and
losses, the highest daily levels of cortisol and the standard deviation of the daily
levels. This suggests that the individual levels of cortisol are not related to the rate
of economic return, such as testosterone, but it is related with the variable nature of
the returns. At this stage of scientific progress, nobody is surprised when it says,
quite firmly, that the response to everyday events and to uncertainty and stress
moments are measured by hormonal cascades that after millions of years of
evolution have improved responses to increase survival. It will take many gen-
erations for any kind of adaptation to this changing environment will be improved.
Because of this approach, in the stock sphere, managers for more than 25 years are
trying to deposit the responsibility of its clients’ portfolio management in the
quantitative management, mathematics and probability theory.

If testosterone is responsible for competitive fighting, its maximum level is
reached after adolescence and is stable for 15 or 20 years, so the explosive com-
bination of youth—capital management must be taken in mind. This, for example,
will affect the platform depending on the market in which we work, as the winner
effect—the youth encourages a manager to increase exposure to risk, this can go
well when the market is bullish but when the markets are falling is very dangerous.
Moving from euphoria to despair often leads to hasty and intuitive decisions, built
in spikes or valleys hormonal, usually in the worst of times. The problem with these
studies is that there is no way to measure in real time the hormone levels of traders
and translate it to suitable stress data for the trading process.

Johnston [10] Biopsychology professor at the University of New México after a
hormonal study says that the hands are testimony of the hormonal flow in the fetal
stage and through the measurement of the index and the ring fingers; it is possible
to have a degree indicator of exposure to fetal testosterone. Increased exposure is
reflected in a ring finger longer than index one. The conclusion that tries to
provide, without experimental support, is to exclude advisors with a ring finger
longer than index finger (because of its negatives implications to control moments
of panic or euphoria) and rely more on the minor asymmetry finger present,
especially if their financial intermediary is continually abusing of the intuition
(whether fundamental or technical). However, in this case, we can rule out many
traders without giving their one chance in the trading process.

It is important to obtain a stress data in the right way to allow feedback for the
trader about the stress level in real time, and biometric sensors have the answer.
According to [11] when you are experiencing stressful emotions, whether you are

16 Distributed Trading Architecture with Sensors Support 229

conscious of them or not, higher brain processes become seriously compromised.
This phenomenon is called cortical inhibition. In the same study, this cortical
inhibition is tested with the impact of stress on the cardiovascular system in real
time. The more stable the frequency and shape of the waveform of the heart rate,
the more it reflects a coherent system. In physiological terms, coherence describes
the degree to which respiration and heart rate oscillate at the same frequency.
When physiological coherence occurs, the brain associates it with feelings of
security and well-being. Figure 16.1 extracted from this study shows the difference
of the heart wave in coherence and chaos situations.

It therefore, seems to be clear that our behavior can vary depending on certain
levels, and that our objective of moving away from operating at any given time
according to our constants is not unreasonable. Sensors can support the real time
stress information, and in the next section we can see the power of this information
in a trading architecture.

16.3 Trading Architecture with Sensors Support

The architecture is designed to act in case that the user’s behaviour indicates an
outstanding situation where the stress on the person increases significantly. Fur-
thermore, it focuses on the profile of a short-term investor and a market daily worker

Fig. 16.1 Different heart rhythms (coherence/no stress and chaos/stress)

230 J. Martínez Fernández et al.

‘‘trader’’, where emotions can actually have a great impact. Obviously, the behavior
of a trader in the futures market probably is distinct of the behavior of one trader in
the stock market or in the bund market or in the commodities’ market etc. Therefore,
depending on the market, rules will be interpreted stricter or more relaxed, because
each market has an operating mode reflected by a distinct margin of error and risk.

The current implementation is designed to support a trader that is working at
home. This is quite common in the USA, but it is not restricted to that since
today’s devices can be mobile. The core of the architecture is a residential gateway
running an OSGi [12] framework. The application is designed to be fully com-
patible with other users working at the same time (in parallel) with the gateway.
So, there is no need to have exclusive access or dedication to devices. The fol-
lowing modules (bundles) will be provided on the residential gateway:

1. Biometric Module: The user’s capabilities will be monitored by a Stress
Monitor of HeartMath’s (with emWave software) [13]: A heart rate sensor put
in the ear of the person informs in real time of the stress level, named in
the software coherence level. This sensor is connected by USB pen drive where
the information is processed and sent it to the computer. Besides, we can see
the data on real time through log files.

2. My Profile Module: This module is responsible for measuring the risk profile of
the user depending on his age and experience in financial markets since the
biometric responses are also conditioned by these rules.

3. Stock Information Module: This module connects to the Internet, and it will
provide stock information in real time. An example of this module would be
Infobolsa PowerStation belonging to Infobolsa [14]. This module gathers the
next sub-modules:

• Storage Module: Various databases are needed to store stock information that
will be used later by the expert system for decision making.

• Update Databases Module: This module will be activated at the end of each
session. It stores tracking data of the stock for a proper function of the expert
system.

• Warning Module: It is responsible for detecting the right moment to trigger
the expert system. The process is continuously running and collecting data
from the stress sensor. It will activate the expert system module when the user
enters into an unsafe decision making zone, and it may even block the current
operation (depending on configuration preferences).

4. Expert System Module: This module comes into operation when the alert
module activates it, and it is responsible for the operation. In the section on
expert system, we will look in more detail. The architecture is presented in
Fig. 16.2.

Regular operation works in the following way:

A. The trader uploads his profile (age, experience, type of market in that will
operate, etc.)

16 Distributed Trading Architecture with Sensors Support 231

B. The trader connects the stress sensor
C. The stress sensor collects information that is continuously revised by the

warning module

In case the alert module triggers and the user enters in non secure decision
making and the expert system is triggered and the operation mode will be the
following:

1. Module that is running in the residential gateway activates the expert system
module and blocks the user operation.

2. The expert system retrieves data for an analysis of the situation.

2.1. Stored data is requested from the database.
2.2. Real time data are required from the real time operating system.

3. Once the database manager provides the requested information to the expert
system, the expert system sends the results to the user, who must approve the
operation.

4. The update module will be launched automatically at closing time.

DATABASE

(1)
(2)

(2.1)

(4)

(2.2)

(C)

(B)

RESIDENCIAL
GATEWAY

USER
UPDATE

DATABASES
MODULE

EXPERT SYSTEM

REAL TIME STOCK INFORMATION

HEARTMATH
STRESS
SENSOR

WARNING
MODULE

MY PROFILE

(A)

(3)

DATABASE

(1)
(2)

(2.1)

(4)

(2.2)

(C)

(B)

RESIDENCIAL
GATEWAY

USER
UPDATE

DATABASES
MODULE

EXPERT SYSTEM

REAL TIME STOCK INFORMATION

HEARTMATH
STRESS
SENSOR

WARNING
MODULE

MY PROFILE

(A)

(3)

Fig. 16.2 Distributed trading architecture with sensors support

232 J. Martínez Fernández et al.

16.4 Expert System

Common sense becomes the enemy on the stock market, and undoubtedly the
influence of external conditions, such as news, global macroeconomic structure
and even the feelings can result in an incorrect operative.

One of the inconveniences of the expert systems [15] is the lack of emotions,
quality only attributable to human reason, but in the trading process, that problem
of expert systems translates into a virtue in stressful situations, because the
emotions never interfere in the Expert System, an automatic system that complies
with rigor, with the knowledge of an expert, and that cannot be influenced by these
external agents. This knowledge will be implemented through rules of inference
based on sources as Dussauchoy and Nchatain [16], Gómez and Montes [17] and
Amat Salas [18] at the time of architecture design. The system implements the
following components of an expert system:

• The Knowledge Base: An expert system contains knowledge of the facts and the
experiences of experts in a certain domain. In the next section, this point will be
explained in detail.

• The inference mechanism of an expert system that can simulate the solving
strategy of an expert.

• The explanatory component or explanation engine, explains to the user the
solution strategy.

• The User Interface is used to enable queries in a natural language. The user
interface consists on web pages.

• Necessary databases.

The structure of the expert system follows the MYCIN model by Buchanan and
Shortliffe [19], because its understanding is very simple and its efficiency very
high, keeping high degree of parallelism with the expert system to develop.

MYCIN is an expert system used in clinic diagnostics, initiated by Ed
Feigenbaum and subsequently developed by E. Shortliffe and his colleagues. Its
function is to advise the doctors in the investigation and determination of diag-
noses in the field of infectious diseases. The MYCIN system, when it is consulted
by the doctor first asks general information about the patient: name, age, symp-
toms, etc. Once this information is known by the system, the expert system
establishes a hypothesis. First, it checks the accuracy of the premises of the rule to
verify the hypothesis. This is done by searching for the corresponding statements
in the knowledge base. Furthermore, it is done by certain questions to the user.
Here we find questions like: Have you practiced in the patient some form of
surgical intervention? With responses received, the MYCIN verifies or rejects the
hypothesis. A series of test has demonstrated that MYCIN works as well as a
doctor. The expert system is based on the MYCIN model, so the intrinsic operation
is the same as described above. Figure 16.3 shows how to relate the following
entities.

16 Distributed Trading Architecture with Sensors Support 233

16.5 Knowledge Base Structure

The Expert System builds the rules of the knowledge base based in different
analysis. A brief explication of each one is given in this section. Obviously, with a
major number of indicators, the expert system will be able to create better rules.
The intention of this point is to explain the indicators that generate the rules with
major weighting, inside each kind of analysis. It is important to take in mind that
each user configures the expert system to give the preference between the rules.

16.5.1 Technical Analysis

It is based on derived rules of a creation of charts thought to several numerical
parameters.

1. RSI: Relative Strong Index: This indicator measures the strong of the offer and
demand on the market. To calculate this indicator the system applies the next
formula:

RSI ¼ 100� 100= 1þ RSð Þð Þ

where RS is the quotient between the summation of bullish close prizes (SA) and
summation of bearish close prizes (SB) at 14 days:

RS ¼ SA=SB

with this indicator, it is possible to detect an overbought or an oversold in a share
in this way: if the indicator is lower than 30 the share is oversold, and it is possible
that indicates a possible buy. On the other hand, if the indicator is higher than 70,
the share is overbought, and it is possible that indicates a possible sell. In
Figs. 16.4 and 16.5 is shown how this indicator acts. In the expert system, the rule
will have more relevance if the lecture of RSI is more extreme as follows:

Explanation
Engine

Knowledge
Base

Inference
Engine

Database User
Interface

Fig. 16.3 Entities of an
expert system

234 J. Martínez Fernández et al.

Weighting ¼ 100� 100� RSIð Þð Þ=100

So with a RSI of 70 the Weighting will be 0.7, in case of 90 will be 0.9 and the
rule will have more relevance.

2. MACD: This indicator uses two exponential mobile averages to create a chart
with a softly tendency that avoids the abrupt movement of the shares in some
moments that far to the user of seeing the truth tendency. For example,
Fig. 16.6 shows the prize of one share and its mobile average (the solid line of
the truth tendency).

The indicator MACD is composed of two lines, the first is named MACD, and it
is the subtraction of two exponential mobile averages, one of 12 days (Mx(c, n))
and other of 26 days (Mx(c, m)):

MACD ¼ Mx c; nð Þ �Mx c;mð Þ

The second is named SIGN and is the arithmetical average of 9 days of MACD:

SIGN ¼ Mx MACD; 9ð Þ

A buy signal is produced when the line MACD crosses the line SIGN and a sell
signal is shown in the Figs. 16.7 (MACD line starts at -1.36) and 16.8 (MACD
line grows up to 0.17).

Fig. 16.4 RSI with buy
signal

Fig. 16.5 RSI with sell
signal

16 Distributed Trading Architecture with Sensors Support 235

The user specifies the system’s preference for this rule.

16.5.2 Fundamental Analysis

The fundamental analysis is based on the theoretical value of the company as a
function of the balance of the company and its book value. The variation of these

Fig. 16.6 Mobile average
against prize

Fig. 16.7 MACD with buy
signal

Fig. 16.8 MACD with sell
signal

236 J. Martínez Fernández et al.

indicators is very slow (normally each 6 month when the company presents the
results), so, in the expert system the weighting for the short term operative should
be low and it depends on the user. Some parameters that use the Expert System are:

1. PER: Price Earning Ratio. PER is a simple but effective indicator that indicates
the number of times that the profit per share is included in the prize of the share.
So, a low PER is indicating an undervalued share and a recommendation of buy
for this one. The user should assign the priority for this indicator in the Expert
System. The formula is:

PER ¼ Prize of Share=Profit per Share

2. BPA: Profit per Share (Beneficio por Acción—in Spanish): This indicator
measures the payoff in shares. It is calculated as shown

BPA ¼ Net Profit=Number of Shares

In this case, a great BPA indicates a major profit. For the Expert System it
consists in add this parameter for calculation of the final recommendation for the
user.

16.5.3 Feeling Market Analysis

Feeling Market Analysis is the most controversial analysis because it measures the
feeling of the people with the market. A pessimistic feeling on the market indicates
that the market is next to turn to bullish and vice versa.

This feeling of the market is measured with statistics that are published each
certain time, these are the direct entries for the Expert System, but with this point,
there is a problem: The veracity of a statistics; people reply to the questions to
influence statistics by their operatives and their desires, so the question is: Is there
any possibility to obtain a truth feeling of these statistics? Perhaps the reply to this
is no, but the Trading Architecture with Sensors Support fixes this problem in the
next point, where at least the user knows how is your real feeling, and this is most
important for his operative.

16.5.4 Feeling Sense of the User (with the Sensors)

While the user is operating under a great stress, and his emotions are his enemies,
obviously the stress is his major enemy. However, the track of these feelings is
measured for the HeartMath sensors connected to the user. When the stress level

16 Distributed Trading Architecture with Sensors Support 237

measurements values detect an unsafe area, our Trading Architecture shows an
alert. The decision of how the trader must manage this information depends on the
context of the trader and the Trading Architecture configuration. For example, if
the trader is a private trader, the action of stopping operative and Expert System
starts to manage the trading process or to continue in a manual way could be
managed by the own trader. However, if the context is an inversion bank where the
trader is an employee of this entity, the action could be to stop the operative and
Expert system takes the control. Anyway, in both cases, independently how the
operative is managed, now we have a stress aware trader. Therefore we have a
secure decision making.

16.6 Conclusions and Future Work

We have born our natural predisposition to dualism and theology predispose us to
believe, without the need for contrast, without questioning the habits, values, and
lessons of our adults. This predisposition leads us during adulthood to keep
believing and trusting on concepts and behaviors that are wrong, even though
evidences continually alert us. We are masters at denying the evidence and
maintain unhealthy habits, and that in times of stress is really dangerous, even
more if our work is to be a stock trader.

The paper begins with the clear objective to avoid decisions or wrong attitudes
driven by moments of stress in which we are typically unable to make right
decisions despite perhaps having the necessary tools. The question to resolve is
‘‘when’’ is the right moment to receive support. If it is possible to determine when
such moments occur, then it is possible to avoid bad decisions. In stress situations
our body change, and as we have seen, our hormone levels are altered. Biometric
parameters like heart rate variability show with suitable sensors (like HeartMath
stress sensor) our stress level. The platform has been described above can alert us
when we are facing a moment of stress. In this sense with a well-defined expert
system, we can certainly reduce the risk we face in those times when our reasoning
is interfered by our emotions.

Our system is focused to a stock trader, but it can enter in any domain. The
union of the concepts of Expert System and Telematics (networks of sensors and
monitoring) can detect this critical moment and most important, it allows to the
user to be aware of this sensitive moment and it avoids an unsafe decision making.

References

1. Metatrader (2010) http://www.metaquotes.net/metatrader
2. Metastock (2010) http://www.equis.com
3. Brown CA (1991) Holland, I y Mesch, R. ‘‘TRADER: an expert system for trading

commodities futures’’, Artificial intelligence on wall street, 1991. Proceedings, ISBN: 0-
8186-2240-7

238 J. Martínez Fernández et al.

4. Martínez J, Heyn A (2002) Sistema Experto para la Recomendación de Valores en el Ibex 35.
Master Thesis, Universidad Politécnica de Madrid, Spain

5. Wolberg JJ (2000) Expert trading systems: modeling financial markets with kernel
regression. Wiley, ISBN-10: 0471345083

6. Ang KK, Quek C (2006) Stock trading using RSPOP: a novel rough set-based neuro-fuzzy
approach. IEEE Trans Neural Netw 17(5):1301–1315

7. Cao L, Luo C, Zhang C (2007) Developing actionable trading strategies for trading agents.
In: IEEE/WIC/ACM international conference on intelligent agent technology

8. Independent Reflections on Trading Systems, (Tradingsys) (2010) http://www.tradingsys.org
9. Coates JM, Herbert J (2008) Endogenous steroids and financial risk taking on a London

trading floor. In: Proceedings of the national academy of sciences, 2008—national acad
sciences

10. Johnston VS (2000) Why we feel, ‘‘the science of human emotions’’, ISBN 0738203165
11. Cryer B, McCraty R, Childre D (2003) Pull the plug on stress. Harv Bus Rev 81(7):102–107
12. Open Service Gateway initiative (OSGi) (2010) http://www.osgi.org
13. Stress Monitor, Health Reviser (2010) http://www.healthreviser.com/content/stress-monitor
14. Infobolsa (2010) http://www.infobolsa.es
15. Sánchez y Beltrán JP (1998) Sistemas Expertos. ‘‘Una metodología de programación.

Editorial RA-MA’’, ISBN 84-86381-48-7
16. Dussauchoy A, Nchatain J (1988) Sistemas Expertos. Métodos y Herramientas. Editorial

Paraninfo, 84-283-1599-X
17. Gómez A, Montes C (1997) Ingeniería del Conocimiento’’. Editorial Centro de Estudios

Ramón Areces, S.A, 978-84-8004-269-7
18. Amat Salas O (2004) La bolsa. ‘‘Funcionamiento y técnicas para invertir’’. Editorial Deusto

S.A, ISBN: 200978-84-234-2240-1
19. Buchanan BG, Shortliffe EH (1984) Rule-based expert systems: the Mycin experiments of the

Standford Heuristic Programming Project’’. Addison Wesley Publishing Company, pp 233–262,
ISBN 9780201101720

16 Distributed Trading Architecture with Sensors Support 239

Chapter 17
Migrating from a Proprietary RTOS
to the OSEK Standard Using a Wrapper

A Feasibility Study

Joachim Denil, Serge Demeyer, Paul De Meulenaere, Kurt Maudens
and Kris Van Stechelman

17.1 Introduction

With the introduction of the AUTOSAR standard, Automotive Open System
Architecture [1], many automotive companies insist that their suppliers use stan-
dard components like an OSEK [2] (open systems and their corresponding inter-
faces for automotive electronics) compliant operating system in their products.
OSEK is a joint project of the German and French automotive industry that defines
an open software architecture for automotive control units in vehicles. According
to a study by Schoof and Wybo [3], the migration from OSEK to AUTOSAR is
easier then directly adopting AUTOSAR. Gaining knowledge and expertise with
OSEK helps understanding the philosophy behind AUTOSAR.

Despite the success of OSEK, a lot of suppliers are still using their own pro-
prietary real-time operating system (RTOS) [4]. The ‘‘not invented here syn-
drome’’ certainly plays a role in this choice, however suppliers have often good
reasons not to adopt third party components. First of all because they have a lot
more experience with their proprietary software; secondly, because the internal
design process and tool-chain is often highly dependent on the proprietary oper-
ating system, and thirdly, because the real-time operating system is tuned and
optimized for the underlying hardware platform. This implies that switching
to third party components comes with a great risk and a considerable cost.

J. Denil (&) � S. Demeyer
Lab on Reengineering, University of Antwerp, Antwerp, Belgium
e-mail: Joachim.Denil@kdg.be

J. Denil � P. De Meulenaere
TERA-Labs, Karel de Grote University College, Antwerp, Belgium

K. Maudens � K. Van Stechelman
Spicer Off-Highway Products Division Belgium, Dana Corporation,
Brugge, Belgium

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_17,
� Springer Science+Business Media B.V. 2011

241

Hence suppliers are reluctant to introduce a new OSEK compliant operating
system in their software.

A possible way out of such a catch-22 situation is to wrap the proprietary
software with an interface that complies to the standard specification. Such a
wrapper (also known as a wrapper-façade [5] or adapter [6]) is—when feasible—
indeed a cheap way to integrate an existing component in a system that expects a
different interface. Moreover, it allows for an incremental migration strategy (the
wrapped software component can later be replaced with another component that
adheres to the interface), which reduces risk. However, introducing a wrapper also
has a performance impact as it triggers extra processor cycles and consumes more
memory. Performance is a crucial aspect of a real-time operating system, thus
must be assessed carefully.

To investigate this trade-off, we conducted a feasibility study adapting a pro-
prietary real-time operating system from an off-highway automotive company to
the current OSEK OS specifications. Afterwards, one of the applications running
on the proprietary RTOS was migrated to the interface of the OSEK OS. Our study
was guided by the following research questions:

• RQ1—Is the construction of the wrapper feasible? What are the technical
implications when building such a wrapper?

• RQ2—What is the performance impact of the wrapper? Can we quantify the
extra computation time and memory consumption caused by introducing the
wrapper?

• RQ3—How can the application be reengineered? What adaptations are neces-
sary to the application to make it compliant with the OSEK OS interface while
preserving the correct behavior?

As part of this feasibility study, we must show that the wrapped operating
system is indeed a valid OSEK implementation. In our study, we have used the
MODISTARC specifications [7] which are designed to test and assure that an
implementation conforms to the OSEK specification.

17.2 Related Work

Part of this work was previously published, this a major revision of the work
published in [8].

Since the release of the OSEK standard, a lot of commercial and academic
implementations have been realized. One academic initiative is Trampoline [4].
It offers a full OSEK operating system, communication and network management
layer for several hardware platforms. A configuration tool is provided to generate an
optimal trampoline kernel. Another academic initiative is the EMARALDS-OSEK [9].
It uses several memory and performance optimizations for efficiency. Implemen-
tation details of both these operating systems were used during the case study.
Some vendors offer an OSEK compliant wrapper for their own commercial RTOS.

242 J. Denil et al.

An example of this is the Micrium lC/OS-II OSEK extension layer [10] that
provides a certified OSEK wrapper for the lC/OS-II kernel. To the best of our
knowledge, currently few examples of wrappers for proprietary operating systems
and their impact on performance are documented in the literature.

17.3 Migration Strategy

OSEK provides a standard software architecture for distributed control units in
vehicles. It meets two stringent automotive requirements: real-time support and
small memory footprints. OSEK actually consists of a set of standards: (a) OSEK
OS specifies the behavior and APIs for a real-time operating system; (b) OSEK
COM describes an interface for transferring data between applications (through
local communication or by use of a network); (c) OSEK NM provides system wide
management functions; and (d) OSEK OIL proposes a language to configure
the OSEK system. In the scope of this feasibility study, we restrict ourselves to the
operating system because that was the primary focus for the off-highway company
requesting the feasibility study.

In Fig. 17.1, the migration mechanism is shown. The first major step is con-
structing a wrapper around the proprietary RTOS. This OSEK-wrapper is used to
implement OSEK behavior on top of the RTOS. The wrapper allows creating a
valid OSEK implementation without any significant changes to the proprietary
RTOS, as the MODISTARC specification says: ‘‘All what behaves like OSEK is
OSEK’’ [11].

After the OSEK wrapped RTOS is confirmed to be a valid OSEK implemen-
tation, the application can gradually be migrated towards this new RTOS. This
process is shown in Fig. 17.2 where during the process, some tasks still use ser-
vices from the proprietary RTOS and others use the services offered by the OSEK-
wrapped RTOS.

17.4 Construction of the Wrapper

Within OSEK, some different options can be taken: OSEK OS defines two major
conformance classes. The basic class only allows basic tasks while the extended
class offers a basic and extended task. Details of these types of tasks will be
discussed in the next section. The choice however is highly dependent on the
proprietary operating system, some RTOSs can be wrapped with an extended class

Construction of
the wrapper

Validation of the
wrapper

Conform?

No

Migrate
application

Test Done?

Test failed or migration not complete

Fig. 17.1 Proposed migration method to the OSEK-OS

17 Migrating from a Proprietary RTOS to the OSEK Standard 243

OSEK-wrapper while others are limited to the basic conformance class. This has
no impact on whether the application can be migrated, since the reengineered
application won’t need services in the wrapper that were not available in the
proprietary RTOS.

We split up the construction of the wrapper in the following isolated subparts:
(a) migration of the task model, (b) migration of the scheduler, (c) migration of the
event management, (d) migration of the resource management, (e) migration of the
interrupt services and (f) migration of the alarm functionality.

For each of these subparts of the migration, we compare the detailed mecha-
nisms from the proprietary operating system to the OSEK-specifications. If there
are major differences, the OSEK-wrapper often needs to keep state- or context
variables to translate between both OSs. If on the other hand there are only minor
differences, the OSEK wrapper can often translate between the interfaces without
the need to keep context variables.

17.4.1 Task Model

17.4.1.1 Requirements

Depending on the chosen conformance class, an OSEK compliant operating sys-
tem must allow for two sorts of tasks: the basic task and the extended task. The
basic task is the simplest type of task, switching between (a) the READY state
(indicating that the task is ready to run); (b) the RUNNING state (indicating that
the task is currently being executed) and (c) the SUSPENDED state (indicating
that a task is terminated and can be restarted later the beginning). The extended

Tasks using services from the OSEK
wrapper and the proprietary RTOS

OSEK wrapper

Proprietary RTOS

(c)

Proprietary RTOS

(b)

OSEK wrapper

Proprietary RTOS

(a)

Tasks using services from the
proprietary RTOS

Tasks using services from the OSEK
wrapper

Fig. 17.2 Gradual migration of the application. a Initial state; b while porting the application,
some services of the proprietary RTOS are still used; c result when the migration has been
completed

244 J. Denil et al.

task adds an extra WAITING state, used when a task is paused until it is released
to the READY state by means of a system call. The state-machines specifying the
legal sequences of state transitions for both the basic and extended tasks are shown
in Fig. 17.3. The Start and Preemption transitions are the responsibility of the
scheduler. The others are available as system calls in the OSEK operating system.

17.4.1.2 Wrapper Implications

If the state machine of the proprietary operating system does not match with the
state machine of the OSEK tasks, the OSEK-wrapper has to adapt the state-
machine of the proprietary operating system to the OSEK state machine. The
wrapper should: (a) introduce and/or exclude states that do not match the OSEK
model and implement the state transitions to and from these states. Implementing a
WAITING state in the wrapper, when no WAITING state is available in the
proprietary operating system seems unlikely. In this case, the wrapper can still
be targeted to a basic conformance class; (b) record and synchronize the state of
the defined tasks in the wrapper; (c) implement and translate the interface for this
new behavior. If on the other hand a one-to-one match between the OSEK state
machine and the state machine of the proprietary operating system is possible, only
the interface for manipulating the task state has to be translated.

17.4.2 The Scheduler

17.4.2.1 Requirements

The scheduler of an OSEK operating system must obey to a fixed priority scheme.
Therefore, all tasks are assigned a fixed priority at system configuration. Tasks that

RUNNING

READY

SUSPENDED

Terminate Task

Activate Task

Start PreemptionWAITING*

Wait*

Release*

Fig. 17.3 The OSEK task model, states and transitions with a * are only available to extended tasks

17 Migrating from a Proprietary RTOS to the OSEK Standard 245

are in the READY state are given time to execute on the processor. The higher
priority tasks are processed before the lower priority tasks.

17.4.2.2 Wrapper Implications

If the scheduler of the proprietary operating system is not a static priority pre-
emptive scheduler, a new scheduler must be constructed. The scheduler and all the
OSEK-tasks run within one task of the proprietary RTOS. The mechanisms for
context switching are coded in the OSEK-wrapper.

17.4.3 Events

17.4.3.1 Requirements

The event-architecture is the primary synchronization mechanism in an OSEK
operating system. Events are only available to extended tasks and are used to
initiate the transitions to and from the WAITING state. Events are not independent
objects but are assigned to extended tasks. If the required conformance class of the
OSEK-wrapped operating system aims at an extended conformance class, the
event mechanism must be available.

17.4.3.2 Wrapper Implications

The proprietary operating system should also feature some kind of event-
architecture, otherwise it is most unlikely that a wrapper interface can be
constructed. If such an event mechanism is present, the wrapper should (a) map the
event data structure from the wrapped operating system to the OSEK task records;
(b) translate the interface manipulating the events. If there is no event-architecture
available, the OSEK-wrapped operating system can be targeted to a basic con-
formance class.

17.4.4 Resources

17.4.4.1 Requirements

Protection of shared resources is done by the resource mechanism. This mecha-
nism must work according to the OSEK-PCP protocol (priority ceiling protocol).
The OSEK-PCP protocol is a variant of the original priority ceiling protocol
presented in [12]. When a task acquires a resource, the priority of the task is

246 J. Denil et al.

temporarily raised to the priority of the highest priority task that will ever use the
resource. This is called the ceiling priority of the resource. This mechanism
ensures that, while a task occupies a certain resource, other tasks that share the
same resource cannot get scheduled.

17.4.4.2 Wrapper Implications

If the proprietary operating system has a resource protection mechanism available
with a priority ceiling protocol, the wrapper should translate the interface that
manipulates these resources. Otherwise the resource mechanism must be con-
structed within the wrapper. The method is to delay the activation of tasks (i.e. the
transition of a task from SUSPENDED to READY, or from WAITING to
READY) until the resource is released.

17.4.5 Interrupts

17.4.5.1 Requirements

OSEK defines that a separate stack must be used for interrupt service routines
(ISR) that use OSEK system calls. The separate stack is introduced for reducing
the memory requirements of the OSEK system. If this stack is not available, all
run-time stacks of the tasks should be big enough to allow storage of multiple ISR-
frames (context that is saved before executing an ISR). Besides the separate stack,
an interface is defined to allow the manipulation of interrupt flags in the hardware.

17.4.5.2 Wrapper Implications

When the proprietary operating system does not provide a separate stack for
handling interrupts, a stack in the OSEK-wrapper can be used. Implementation
pointers for a stack in the wrapper can be found in [6]. The interface for manip-
ulating the interrupt flags has to be provided if these are not available in the
proprietary operating system.

17.4.6 Counters and Alarms

17.4.6.1 Requirements

The handling of recurring events in OSEK is done by a mechanism of counters and
alarms. An alarm is attached to a counter. If this counter reaches a specific value,

17 Migrating from a Proprietary RTOS to the OSEK Standard 247

the alarm is triggered. The alarm can activate a task, set an event or call a special
routine. Alarms can be set on an absolute value or relative to the current counter
value and can be cyclic or single shot.

17.4.6.2 Wrapper Implications

If no such mechanism is available in the RTOS it can easily be constructed using a
sorted linked list. The counter has access to this list using a next pointer. This
pointer always points to the alarm nearest to the current counter value. More
implementation details can be found in [4].

17.4.7 Compliance of the Wrapper

When a part of the OSEK-wrapper has been written, it can be tested using the
MODISTARC specifications [5]. The MODISTARC test suite is also used to
assure that the whole system is an OSEK compliant system. The test procedure is a
black-box test. For this, the verification of the separate stack used by the interrupt
service is not validated.

17.5 Migrating the Application

Migrating an application, to make it compliant with the OSEK interface, is done in
two steps. The first step is to identify which functions or modules need to be
reengineered (reverse engineering). In a second step, the identified modules or
functions are redesigned such that they use the services of the OSEK-wrapper
instead of the services of the proprietary RTOS. Reengineering patterns, as
described in [13], are used to structure the process.

When migrating the application it is tempting to adapt the application in a single
step. However this approach could introduce a lot of errors. To gain confidence in
the process and to detect errors earlier in the migration cycle, it is recommended to
use a gradual approach. Still it is important to keep the wrapper in a consistent state.
This can be achieved by adapting all tasks that are dependent on each other (use
shared data, activate or set events of each other) in one step. Afterwards the changes
must be tested using the integration and system tests of the application.

Another pitfall is the introduction of new OSEK-services in the application. The
architecture of the application has been designed with hardware resources and
timing behavior in mind. Introducing new services, such as restarting a task that
runs in an infinite loop or introducing other events could change the architecture of
the entire application. However, sometimes it is inevitable to use these new
services.

248 J. Denil et al.

17.6 Experimental Set-Up

Since OSEK is designed to run on small embedded systems, speed and memory
consumption are key issues in a real-time operating system. Introducing the
OSEK-wrapper around the operating system causes overhead. In the next sections
the experimental set-up for measuring this impact is described.

17.6.1 Worst Case Impact of the Wrapper

In this section the overhead of the services offered by the OSEK-wrapper are
compared to the services of the proprietary RTOS. With the results of these
measurements, an assessment can be made whether these impacts are acceptable
for the application.

17.6.1.1 Response Time Overhead of the Task Model

To assess the influence of context switching with the wrapper, we compare the
execution time of a typical configuration of tasks executing on the bare proprietary
operating system against the same configuration on the wrapped version. Therefore
two or more tasks are executed to obtain the execution times: one, the highest
priority task records the current time and then terminates. Another, the lowest
priority task calculates the difference in time. Extra care has been taken so that the
recording and output of the time does not influence the measurements. Tasks with
intermediate priorities, that only terminate, are added to see the impact of the
number of tasks.

17.6.1.2 Response Time Overhead of the Event Mechanism

The impact on the event mechanism can be measured when the wrapper is
designed for an extended conformance class. Therefore two tasks are defined. The
highest priority task waits for an event, while the lowest priority task sets this
event. This functionality is executed in a loop that loops for a predefined amount of
time. When a wait-release cycle is completed, a counter is incremented. To assess
the influence of the wrapper, we compare the number of wait-release cycles in the
proprietary operating system and the OSEK-wrapped operating system.

17.6.1.3 Response Time Overhead of the Resource Mechanism

Measuring the impact of the adapted resource mechanism is based on the
method proposed in [14]. Only a single task is used. This task gets and releases

17 Migrating from a Proprietary RTOS to the OSEK Standard 249

a resource in a loop that lasts for a predefined amount of time. When a get-
release cycle is completed, a counter is incremented. The difference in
get-release cycles between the proprietary operating system and the OSEK-
wrapped operating system is an indication of the performance loss introduced
by the wrapper.

17.6.1.4 Memory Impact of the OSEK-Wrapper

ROM consumption is measured by compiling the target without any defined tasks
and resources. The compiler optimizations are turned off, so no dead code in the
wrapper and RTOS is removed. This is done for both the proprietary RTOS and
the OSEK-wrapped RTOS. RAM consumption is quantified similar. The source
code is compiled with 0–5 tasks and 0–5 resources for both the proprietary RTOS
and the OSEK-wrapped RTOS.

17.6.2 Impact of the Wrapper on the System

The effects of the wrapper must also be assessed when porting the application.

17.6.2.1 Execution Time of Tasks

For all tasks in the original system and in the migrated system, the time is recorded
when activating the task and when the task is terminated. The difference between
the termination and the activation gives the total execution time of a task. From
these values, the best case, worst case and averages can be used to evaluate the
impact of the wrapper.

17.6.2.2 Number of Activations of a Task

In a strict interval, the number of activations of the task are recorded. This can be
used to see whether the behavior of the application remains the same. This is a
critical measurement for time-triggered tasks.

17.6.2.3 Memory Impact of the Wrapper

ROM and RAM consumption are measured for both the original system (appli-
cation with the proprietary RTOS) and the ported system (application, wrapper and
proprietary RTOS). Compiler optimizations are used as in the specifications of the
original system.

250 J. Denil et al.

17.7 Case Study

The main prerequisites when selecting the case were: (a) the whole system should
be built on a proprietary RTOS, (b) there should be differences in the behavior of
the OSEK-OS and the proprietary RTOS, (c) there should be different tasks in the
application and these tasks should use different services of the proprietary RTOS.

Our selected case study used to verify this method adheres to these prerequi-
sites. It is a control application for a transmission unit in off-highway vehicles. The
proprietary RTOS differs from the OSEK-OS in task model and event mechanism.
It does not have any support for alarms and counters. The application built on top
of this RTOS consists of several tasks. Some of these tasks run in an endless loop
and yield the processor to wait for an event. The others are time-triggered tasks
that are activated by the scheduler on predefined intervals.

17.7.1 Construction

• Task model: Two types of tasks are available in the proprietary RTOS. On the
one hand it has simple tasks that do not have a WAITING state available. The
proprietary operating system activates these tasks automatically in a time trig-
gered way. On the other hand there are tasks that allow a WAITING state but
run in a continuous loop; (they do not have a SUSPENDED state). Both the
standard and extended tasks were created using the second type of tasks. When
terminating the task in the OSEK-wrapper, the stack pointer and program
counter of the task is reset. A waiting state is used to emulate the OSEK
SUSPENDED state.

• Event mechanism: The operating system in our case study has a mechanism to
put tasks in and out of the WAITING state. By multiplexing and demultiplexing
these calls, the OSEK event mechanism is created in the OSEK-wrapper.

• Alarms and counters: A general counter and alarm mechanism was created in
the OSEK-wrapper following the proposed guidelines. The counter for these
alarms is a time-triggered task in the wrapper since all hardware counters were
used by the application or the proprietary RTOS.

• Other parts: The OSEK-wrapper translates the interfaces of all other services
and keeps the state information synchronized.

The OSEK-wrapper designed in this case study, was verified to be an extended
OSEK compliant implementation.

17.7.2 Worst Case Impact of the Wrapper

The worst case impact of the wrapper was measured using the experimental setup
of Sect. 17.6.2.

17 Migrating from a Proprietary RTOS to the OSEK Standard 251

• Impact on context switching: The context switching with the OSEK-wrapper is
3.8 times slower compared to the original case due to the reset of the program
counter and stack pointer, putting the task in a WAITING state and keeping the
OSEK-wrapper in a consistent state. Though the overhead introduced is linear.

• Impact of the resource mechanism: Speed of the event mechanism is decreased
by 37%. This is the overhead caused by the added functionality.

• Impact of the event mechanism: Due to keeping the OSEK wrapper in a con-
sistent state, the overhead for taking and releasing a resource is 40% extra.

• Memory impact: In the case study, the ROM increased by 21%. The RAM-usage
increased by less than 1% without the resources necessary for each task structure
and resource structure needed for the bookkeeping in the OSEK-wrapper.

Figure 17.4 compares the impact of the event and resource mechanisms. We
evaluated that this impact is acceptable for our case and started the reengineering
process of the application.

17.7.3 Impact of the Wrapper on the System

The application was gradually migrated to the OSEK-wrapped RTOS. Scenario-
based tests were used after every change to confirm that the changes had no effect
on the behavior of the application.

The impact on the timing behavior of individual tasks in the OSEK-wrapped
RTOS is proportional with the arrival events of the higher priority tasks. This is
can be observed since lower priority tasks are preempted by the higher priority
tasks whose running time is slightly affected by the individual overheads of the
mechanisms. This effect is apparent on a medium or low priority task that needs a
lot of computation time and is preempted by a higher priority task.

0

2000

4000

6000

8000

10000

12000

14000

Event comparison Resource comparison

Type of test

N
u

m
b

er
 o

f
cy

cl
es

OSEK-wrapped RTOS
Proprietary RTOS

Fig. 17.4 Impact of the
OSEK-wrapper on the event
and resource mechanisms

252 J. Denil et al.

We illustrate the above with three tasks shown in Table 17.1. The HPT is a
cyclic high priority task with few computations. The MPT is a cyclic medium
priority task that requires much computation time. The LPT is the lowest priority
task with almost no computations. In the application, the HPT is scheduled four
times more than the MPT and 20 times more than the LPT. The effects of the
above are apparent on the tasks shown in the table.

Still, it is confirmed that after porting the application behaves according to the
requirements of the system. In this particular case, the relative response time
overhead of all the tasks is acceptable.

The whole system (application, OSEK-wrapper and proprietary RTOS) con-
sumes less than 1% more ROM and only 0.1% more RAM.

17.7.4 Threats to Validity

17.7.4.1 Internal Validity

The migration of the proprietary RTOS is highly dependent on the developer who
conducted the case-study. Moreover, knowledge of the proprietary RTOS is key to
the success of the migration. In this case study, the proprietary RTOS is treated as
a black-box, the developer had no insights into the internals of the RTOS. This
could affect the performance and outcome of the case-study since other constructs
might have been possible with less effort and better performance characteristics.

17.7.4.2 External Validity

Though this study is based on one case study, the methods proposed can be
generalized to other proprietary real-time operating systems, since most RTOSs
have a similar functionality. The guidelines proposed for reengineering the
application can be used outside the scope of this case study. The measured per-
formance impacts are highly dependent on the case-study.

17.8 Conclusion

In this paper we have demonstrated that it is feasible to build an OSEK compliant
wrapper for a proprietary real-time operating system. No modifications to the
hardware, the original code-base nor the tools are necessary with this approach.

Table 17.1 Comparison of the average execution times (in scheduler ticks) of three tasks
between the original system and the ported system

System HPT MPT LPT

Original system 132 2944 42
Ported system 132 2949 43

17 Migrating from a Proprietary RTOS to the OSEK Standard 253

We documented the steps and necessary implications a software designer must
take into account in order to construct such an OSEK-compliant wrapper and to
port the application to this new RTOS.

The OSEK-wrapper implies a significant increase in computation time and
consumes a considerable amount of extra memory. This is caused by defining
redundant information for tasks, events and resources in the wrapper, necessary to
synchronize with the information in the proprietary real-time operating system.
In this particular case, this overhead was acceptable, but this decision depends of
course on the particular services built on top of the operating system and on the
available hardware resources.

Consequently, we conclude that, when faced with the requirement of adopting
an OSEK compliant operating system, the construction of a wrapper is a viable
alternative compared to integrating third party components. The wrapper indeed
causes a certain performance penalty, but is quite cheap to implement and reduces
the inherent risks and costs associated with adopting third party components.

References

1. Fennel H et al (2006) Achievements and exploitation of the AUTOSAR development
partnership [online]. www.autosar.org

2. Zahir A, Palmieri P (1998) OSEK/VDX-operating systems for automotive applications. IEE
seminar OSEK/VDX open systems in automotive networks

3. Schoof J, Wybo D (2006) No detour needed: getting to autosar via OSEK. SAE in-vehicle
software and hardware systems

4. Bechennec J, Briday M, Faucou S, Trinquet Y (2006) Trampoline, an open source
implementation of the OSEK/VDX RTOS. In: Proceeding of the eleventh IEEE international
conference on emerging technologies and factory automation (ETFA06)

5. Schmidt D, Stal M, Rohnert H, Buschmann F (2000) Pattern-oriented software architecture
volume 2: patterns for concurrent and networked objects. Wiley, New York

6. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable
object-oriented software. Addison Wesley, Reading

7. OS test procedure [online] (1999) www.osek-vdx.org, OSEK Std., Rev. 2.0
8. Denil J, Demeyer S, Demeulenaere P, Maudens K, Vanstechelmans K (2009) Wrapping a

real-time operating system with an OSEK compliant interface—a feasibility study. Intelligent
solutions in embedded systems, 2009 seventh workshop on, pp 157–164, 25–26 June 2009

9. Zuberi KM, Pillai P, Shin KG (1999) EMERALDS-OSEK: a small real-time operating
system for automotive control and monitoring. In: Proceedings of SAE international congress
and exhibition

10. Micrium (2009) lc/os-II rtos osek layer [online]. www.micrium.com
11. Conformance Testing Methodology [online] (1999) www.osek-vdx.org, OSEK Std., Rev. 2.0
12. Sha L, Rajkumar R, Lehoczky J (1990) Priority inheritance protocols: an approach to real-

time synchronization. IEEE Trans Comput 39(9):1175–1185
13. Lamie W (2007) To find the RTOS with the best real-time performance, you’ve got to do an

apples-to-apples comparison. DSP Design Line
14. Demeyer S, Ducasse S, Nierstrasz O (2008) Object-oriented reengineering patterns. Square

Bracket Associates, Kehrsatz

254 J. Denil et al.

Chapter 18
A Sigma–Delta Controlled Power
Converter for Energy Harvesting
Applications

Rocco d’Aparo, Simone Orcioni and Massimo Conti

18.1 Introduction

In recent years mobile technology has become an important part of today’s life.
From smart-phones to PDAs, from notebooks to entertainment multimedia devi-
ces, a great share of people do massive use of electronic technology. One of the
main target in the implementation of portable devices is the improvement of
battery life time. To this aim, semiconductor technology evolution like the tran-
sition from CMOS to very low voltage CMOS has allowed a reduction in power
consumption and then an addition in endurance.

The evolution of batteries allowed also an improvement in autonomy. Although
today’s battery are small if compared to that of some decade ago, their capacity in
term of A/h has grown. Nowadays, technology allows to make devices that can run
using a very little amount of energy. For example, modern music players do not
make use of any electric motor like they did some years ago. Other example is
about the active RFIDs that can run for years without needing any battery main-
tenance. Since the energy consumption of modern mobile devices is becoming
very low, recently some researchers are working to replace or to combine battery
with other kinds of sources taking energy from environment. The environment can
be considered like a big energy container, where energy exists in a great deal and
in many different types of physical signals: from light to electromagnetic noise,
from temperature to wind, from mechanical vibrations to acoustical noise. Energy
harvesting is becoming an important target to improve battery life time or even to
remove batteries in mobile applications. Some decades ago, the main technique

R. d’Aparo, S. Orcioni and M. Conti (&)
Dipartimento di Ingegneria Biomedica, Elettronica e Telecomunicazioni,
Università Politecnica delle Marche, 60131 Ancona, Italy
e-mail: m.conti@univpm.it

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_18,
� Springer Science+Business Media B.V. 2011

257

used to scavenge energy from the environment made use of photovoltaic effect.
The most common application was in pocket calculators.

In [1] a technique that can be used to harvest energy from electromagnetic noise
is shown. In [2] a mechanical vibrating source is used to recovery energy, while in
[3, 4] the body motion is used.

In this work, partially presented in [5], a full digital controlled switching power
supply connected to a piezoelectric transducer is proposed, to store and to manage
energy. The digital controller is based on Sigma Delta (RD) modulation, and since
all system is battery free, it stores or consumes energy depending on load energy
requirement and stored energy availability. Load alternates Power-ON status
during which it can consume more energy than that the transducer can produce,
and Stand-by status during which load power consumption is low and system can
save energy. When energy level reaches a sufficient value, load is turned ON.
During this time, the stored energy of the system can decrease. When the load
finishes its task or even the stock of energy reaches a minimum level, load is
forced in Stand-by. During this time, system saves energy. When its level reaches
a sufficient value, the load is turned ON again and the routine can restart.

Piezoelectricity is a phenomena characterising some crystals that, when sub-
jected to a mechanical stress, produce an electric field. This is a reversible phe-
nomena: such crystals, when subjected to an electric field, change their geometry
like they would be under a mechanical stress.

Modelling a piezoelectric material is not simple. Its behaviour depends upon a
great number of parameters like crystal characteristics, stress characteristics,
system geometry. Piezoelectric phenomena can be described by the so called
piezoelectric constitutive equations. Electrical models of piezoelectric generators
have been presented in different works [2, 6]. Here we will use the model like
depicted in Fig. 18.1, characterised by a current generator and a parallel capacitor.
The amplitude of input current as well as its shape depend on crystal physical and
geometric characteristics and stress acceleration. The value of the capacitor
depends only on physical and geometric characteristics.

18.2 System Specifications and Design

The proposed system stores or uses energy depending on stored energy availability
and load requirements. The system stores the energy in a tank capacitor, called in
Fig. 18.2Crect.

Fig. 18.1 Electric current
generator based piezoelectric
resonant model

258 R. d’Aparo et al.

When the reserve of energy is sufficiently high, a DC–DC switching converter
begins to give power to the load. During this time, since the power produced by the
generator can be less than the power consumed by the load, system energy reserve
can decrease. If it becomes too small, load is forced in Stand-by status during
which the stored energy into the tank capacitor Crect grows. When the stored
energy reaches a sufficient level to finish the execution of load task or it reaches
the maximum allowable level, the load is turned ON.

All system is composed by two stages. The first stage, after the piezoelectric
generator, is an AC–DC converter. The other is a digital controlled switching DC–
DC converter. To design and modelling the system, we have assumed the piezo-
electric transducer working under a stationary mechanical stimulus. We have also
assumed piezoelectric generator working at the resonance. This means that current
generator produces a sinusoidal fixed frequency signal. The complete block dia-
gram of the proposed system is shown in Fig. 18.3.

Since the power produced by the piezoelectric depends on the load, to find the
working point where piezoelectric generator produces the maximum power, the
AC–DC converter has been connected to a pure variable resistive load as shown in
Fig. 18.2.

Figure 18.4 reports the voltage across Crect (Vrect) and the value of the piezo-
electric power production in steady state condition assuming Crect big enough so
that Vrect is constant. In our piezoelectric model, current generator is sinusoidal
with an amplitude of 2.6 mA and a frequency of 50 Hz. The maximum production
of energy occurs when RL = 25 kX. Maximum power production for the proposed
model is 17 mW when Vrect = 20 V.

In the proposed system, the output of the AC–DC stage is connected to the input
of a switching power converter. It cannot be assumed as a resistive load neither its
value is 25 kX. To emulate a maximum efficiency load, the system is provided
with management blocks, depicted in dark gray in Fig. 18.3, that hold the rectified
voltage close to 20 V as possible. In this condition, the piezoelectric generator
works with the maximum efficiency and generate about 17 mW.

Fig. 18.2 Test circuit used to
characterize piezoelectric
power production

Fig. 18.3 Block diagram of overall system

18 Sigma–Delta Power Converter for Energy Harvesting Applications 259

We have also assumed that the load has two states: Power-ON and Stand-by. In
Power-ON all system requires a power of 30 mW, instead when in Stand-by, it
requires only 5 mW. Moreover, we have assumed that the load is a wireless sensor.
During the Power-ON, the sensor samples its quantity and then sends it to a server
in 50 ms. After the transmission, wireless sensor is forced in Stand-by until the
stored energy is high enough to allow the repetition of the routine. Table 18.1
reports all system specifications that have been used in the project.

18.3 AC–DC Stage

The first stage connected to the piezoelectric generator is a classical passive AC–
DC converter consisting in a bridge rectifier (B) and a tank capacitor (Crect) like
reported in Fig. 18.5.

Since the maximum efficiency is reached when Vrect is about 20 V, we have
designed a device that measures Vrect and controls that its value is as close as
possible to such a value.

We have assumed that in steady state Vrect can vary between 20 V ± D.
Calling Vi the value of Vrect, Ei the energy stored in Crect before the load is turned

ON and Vf, Ef the values of same quantities after the load task has been executed,
assuming Vi - Vf = 2�D and (Vi ? Vf)�� = 20 V, since during Power-ON

Fig. 18.4 Piezoelectric
power production and voltage
at the rectifier output for a
pure resistive load. Current
generator is sinusoidal with
amplitude 2.6 mA and
frequency 50 Hz

Table 18.1 System
specifications

V0 3.3 V
DADCmax 25 mV
P0ON 30 mW
P0OFF 5 mW
Vrppmax 1 mV
TON 50 ms

260 R. d’Aparo et al.

the wireless sensor requires more energy respect that the piezoelectric generator can
produce, we will have:

Ef ¼ Ei þ PITON � P0ON ffi EI þ PMTON � P0ONTON ð18:1Þ

where PI is the power produced by the piezoelectric generator, PM is its maximum
efficiency steady state value, TON is the time interval during which the load task is
executed and P0ON is the power consumption of load during TON. Since the energy
stored into a capacitor is E = � CV2:

TON ffi
EI � EF

P0ON � PM

¼ Crect

2
ð20þ DÞ2 � ð20� DÞ2

P0ON � PM

ð18:2Þ

then:

TON ffi
Crect

2
4D20

P0ON � PM

ð18:3Þ

After the load has accomplished its task, it goes in Standby, and stand there for
TOFF seconds. In this state, power consumption is about 5 mW. During this time,
since the energy recovered by piezoelectric generator is greater than the energy
used by load, the energy stored into Crect increases. The value of TOFF is:

TOFF ffi
EI � EF

PM � P0OFF

¼ Crect

2
ð20þ DÞ2 � ð20� DÞ2

PM � P0OFF

ð18:4Þ

Then:

TOFF ffi
Crect

2
4D20

PM � P0OFF
ð18:5Þ

Since TON = 50 ms, as reported in the system specifications of Table 18.1,
fixing D so that the piezoelectric generator works with maximum efficiency, for
example D = 2 V:

Crect ¼ 8 lF ð18:6Þ

With this choice TOFF is about 53 ms. Power-ON and Stand-by states alternate
themselves with a period of about 103 ms. Like it will be shown afterwards, this
value is close the simulated results. To maintain Vrect between 18 V and 22 V a
comparator has been used.

Fig. 18.5 AC–DC stage

18 Sigma–Delta Power Converter for Energy Harvesting Applications 261

18.4 DC–DC Stage

Switching power supply is a common choice in today’s applications because of
their high efficiency. Such characteristic can be well suited to mobile applications
where an increasing in efficiency means a battery life improvement.

In our project a step down buck converter, like that represented in Fig. 18.6, has
been used to keep output voltage at a fixed level compatible with load specifica-
tions. The output voltage V0 is maintained at 3.3 V, while Vrect changes between
18 V and 22 V.

To design the power cell, we have assumed that the power converter works in
Continuous Conduction Mode (CCM) [7].

To this aim minimum value of inductance must be chosen

LMIN ¼
V0

2FSWI0
1� V0

Vrect

� �

ð18:7Þ

where FSW is the average switching frequency of the power cell, and I0 is the load
current. In standard PWM based power converter, power cell switching frequency
is usually a system specification. The value of the inductor, as indicated in
Eq. 18.7, decreases increasing the switching frequency.

In the present work, the power cell is controlled by means of a second order RD
modulator. RD modulators cannot be characterised by a unique value of switching
frequency. RD modulators produce a pseudo random impulsive signal, whose
average switching frequency FSW is a function of duty cycle d and of the clock
frequency FCLK of the modulator [8, 9], as reported in Eq. 18.8.

FSW ¼
dFCLK d\1=2

ð1� dÞFCLK d� 1=2

�

ð18:8Þ

The duty cycle versus average switching frequency is reported in Fig. 18.7.
The minimum FSW has been chosen equal to 500 kHz, meaning that the FCLK

must be

FCLK �
FSW

dMIN

¼ 3:3 MHz ð18:9Þ

Fig. 18.6 DC–DC stage

262 R. d’Aparo et al.

Since the maximum load value is R0MAX = V0
2/P0OFF = 2,178 X, the inductor

has been chosen L = 5 mH. Capacitor in the power cell is usually designed
considering the maximum allowable voltage/current ripple on the load

CMIN ¼
V0

8LF2
SWVrpp

ð18:10Þ

To limit load transition effect on V0, the capacitor has been chosen greater than
its minimum value, C = 5 lF. Using the Space State Averaging (SSA) [10, 11]
average transfer function of power cell can be assumed as

FðsÞ ¼ v0ðsÞ
dðsÞ ¼

VIN

LCs2 þ L
R sþ 1

ð18:11Þ

Neglecting ADC delay, since linearized signal transfer function of modulator is
unitary [9], the compensator network can be designed in order to stabilise the
closed loop system. In this way, the closed loop bandwidth (BW) of the overall
system can be defined. We have assumed that the maximum bandwidth of system
is BW = 50 kHz.

One of the main problem of digital controlled switching power supply are
limit cycles. They are high amplitude low frequency (lower than switching
frequency) signals that can make the device unstable. To avoid this problem,
three are the conditions in a unitary feedback digital controlled system that must
be ensured [12]. Among these, modulator precision needs to be at least one bit
more than the ADC precision. This means that modulator must be designed so
that the quantisation step of ADC DADC must be at least double with respect to
the modulator precision, here called DV0. Like reported in system specifications,
since the precision of ADC is DADC = 15 mV, DV0 must be equal or less than
7.5 mV. Usually the modulator precision is expressed in terms of number of bit.
It can be also expressed in term of the ratio between the power of an input
sinusoidal signal with maximum amplitude so that the quantizer does not satu-
rate, and the power of quantisation noise, all expressed in dB. For a classical N
bit quantizer

SNR ¼ 1:76þ 6:02N ð18:12Þ

This means that one bit corresponds to about 6 dB in term of SNR. RD mod-
ulator used in power conversion, also if it uses a single bit quantizer, produces a

Fig. 18.7 Average switching
frequency of power cell
versus duty cycle

18 Sigma–Delta Power Converter for Energy Harvesting Applications 263

greater SNR, since it makes use of two techniques known as oversampling and
noise shaping [9].

For a second order single bit RD modulator the precision is:

SNR ¼ �5:12þ 50 log10
FCLK

2BW

� �

ð18:13Þ

where FCLK

2BW is called oversampling ratio (OSR). Since 6 dB correspond to about 1
bit in resolution, step regulation can be rewritten as:

DV0 ffi
VIN max

2SNR=6:02
ð18:14Þ

In the present project, since FCLK� 3:3 MHz; as indicated in Eq. 18.9, the
minimum OSR value is 3.3 MHz/2�50 kHz = 33. Since FCLK has been chosen
equal to 3.5 MHz, the OSR value is equal to 35. This value allows a SNR of about
72 dB corresponding to a precision greater than that reported in the system
specifications.

18.5 Dynamic OSR RD Modulation and MPPT

As just reported above, the minimum allowable switching frequency has been
taken 500 kHz. If the mechanical excitation on the piezoelectric transducer
changes in frequency and/or in amplitude, under the assumption that the generator
works in the resonance zone, the power versus load characteristic reported in
Fig. 18.4 changes its shape.

In Fig. 18.8 is reported the Power, Vrec versus load when the mechanical stress
has the same amplitude of that reported in Fig. 18.4, but a frequency of 100 Hz. If the
rectified voltage is maintained close to 20 V as made when the stimulus was at 50 Hz,

Fig. 18.8 Piezoelectric
power production and voltage
at the rectifier output for a
pure resistive load. Current
generator is sinusoidal with
amplitude 2.6 mA and
frequency 100 Hz

264 R. d’Aparo et al.

the power production of the piezoelectric sensor drops down under 5 mW. To
improve its efficiency, a Maximum Power Point Tracker (MPPT) algorithm must be
adopted to find the rectified voltage at which power production is the biggest.

In this case the maximum power production of 9 mW corresponds to a rectified
voltage of 10.5 V. From Eq. 18.3, since Crect was fixed to 8 lF and TON was fixed
to 50 ms, then D = 6.5 V so that the rectified voltage can change between 3.5 V
and 16.5 V. This means a maximum duty cycle of dMAX ¼ V0=Vrect min ¼ 0:94.
Unfortunately, the use of FCLK = 3.5 MHz can produce a FSW less than FSW min =
500 kHz for which the power cell has been designed to work. This means that the
SSA model used in the design of the loop control, could be not valid, since the
power cell can work in Discontinuous Conduction Mode (DCM). A solution to a
such problem is to ensure that under critical conditions, for example when
d = dmin (d = dmax), FSW must be greater than FSW min.

In this project, since the more critical condition is d = 94%, FSWmin should be
fixed at 500 kHz at least. Using Eq. 18.8 and accordingly to first condition on limit
cycle absence [12], FCLK can be chosen about 8.3 MHz.

Unluckily, driving the modulator with this signal, the system performances in
term of efficiency can drop down. In fact, when d is close to 0.5, FSW is above
4 MHz, increasing dynamic power switching loss and compromising system
efficiency. Good system performances can be obtained restricting FSW in a suitable
range FSW min : FSW max

� �
; for example into [0.5:1] MHz. To this aim Dynamic

OSR RD modulation can be used [13].
Figure 18.9 reports the Dynamic OSR (DOSR) RD modulator. The LookUp

Table (LUT) feeds RD modulator with duty cycle level and selects a suitable
clock. To choose the clock frequency values to be associated to each dimming
level, d = 0.5 has been associated to the maximum allowable commutation fre-
quency FSW ¼ FSW max ¼ 1MHz.

From Eq. 18.8, the first clock frequency FCLK1 to drive the modulator has been
chosen equal to 2 MHz. Such value should be used until FSW is greater than
FSWmin; then until 0:25� d� 0:75.

When duty cycle became less than 0.25 or bigger than 0.75, FCLK2 must be
used. Fixing in d = 0.75 (or d = 0.25) FSW ¼ FSW max;FCLK2 can be fixed to
4 MHz. Similarly, FCLK2 can be used until FSW is bigger than FSW min, when
0:125� d\0:25 and 0:75\d� 0:875: Proceeding in this way, the entire range
dmin : dmax½ � has been associated with appropriate FCLK values.

Fig. 18.9 Dynamic RD
modulator

18 Sigma–Delta Power Converter for Energy Harvesting Applications 265

Table 18.2 reports the clock frequencies associated with the respective duty
cycle ranges, and Fig. 18.10 reports the average switching frequency versus duty
cycle for the proposed DOSR RD modulator.

18.6 System Modelling and Simulations

System modelling and simulations have been performed using SystemC-WMS
environment [14, 15], a SystemC extension for mixed signals simulation. In Sy-
stemC-WMS, analogue blocks interact to each other exchanging energy wave
quantities instead of using current and voltage signals. As an example, Fig. 18.11
reports a SystemC-WMS schematic representation of the interconnection between
an LC filter and the load, modelled as an ideal switch with a non zero ON and OFF
resistance.

Figure 18.12 shows some code lines modelling the circuit reported in
Fig. 18.11. In Fig. 18.13 the SystemC-WMS code that declare and implement an
LC filter is reported.

Table 18.2 LUT parameters
for dynamic OSR modulation

Left range Right range Clock frequency (MHz)

0.25 B d\ 0.5 0.5 \ d B 0.75 FCLK1 = 2
0.125 B d\ 0.25 0.75 \ d B 0.875 FCLK2 = 4
0.06 B d\ 0.125 0.875 \ d B 0.94 FCLK3 = 8

Fig. 18.10 Average
switching frequency FSW

versus duty cycle magnitude
d for different clock
frequency and with DOSR

Fig. 18.11 A part of the
power cell SystemC-WMS
model

266 R. d’Aparo et al.

Figure 18.14 reports the SystemC-WMS schematic representation of the whole
system. A piezoelectric device is modelled with its resonance electric equivalent
scheme. The current generator produces a sinusoidal fixed frequency signal.

Fig. 18.12 Implementation
of the circuit reported in
Fig. 18.11

Fig. 18.13 Declaration and implementation of an LC filter in SystemC-WMS

18 Sigma–Delta Power Converter for Energy Harvesting Applications 267

Its value depends on mechanical stress intensity and on frequency as well as on
crystal physical and geometrical characteristics. Parallel capacitor Cp depends only
on crystal physical and geometrical characteristics. In our model it is supposed
Cp = 0.2 lF.

The first stage connected with the piezoelectric generator is the AC–DC con-
verter, composed by a bridge rectifier and by an output capacitor. The aim of this
stage is storing energy into Crect. Some management blocks are used to maintain
the capacitor stored energy at a suitable level so that the piezoelectric generator
can work close to the maximum efficiency point.

The final stage is a DC–DC step down converter. It holds output voltage at
3.3 V independently from load status.

In Fig. 18.15 the time diagram of the output voltage and of the output current
are reported, for different Power-ON state and Standby state transition cycles of
the wireless sensor.

Fig. 18.14 SystemC-WMS mixed signals model of proposed device

Fig. 18.15 Voltage across
and current through wireless
sensor supply pins when Ip is
at 50 Hz

268 R. d’Aparo et al.

In Fig. 18.16 the rectified voltage Vrect and the power used by the load P0 is
reported for different Power-ON and Standby state transitions. When the load is in
Power-ON and requires 30 mW, Vrect goes down, conversely when it is in Stand-
by, Vrect grows.

18.7 Conclusion

In this work a digital controlled power supply has been proposed. It recovers
environmental energy by means of a piezoelectric transducer working at its res-
onance frequency and under a stationary mechanical stress.

When the system is connected with an unknown piezoelectric device working at
its resonance frequency, an MPPT algorithm together a DOSR RD modulator
should be used. The proposed device allows to store or to supply energy depending
on load power requirements and system energy availability. The system has been
modelled at system level using SystemC-WMS. The system works without using
any battery.

References

1. Sample A, Smith JR (2009) Experimental results with two wireless power transfer systems.
www.techonline.com/learning/techpaper/2129020

2. Ottman G, Hofmann H, Bhatt A, Lesieutre G (2002) Adaptive piezoelectric energy
harvesting circuit for wireless remote power supply. In: IEEE Transactions on Power
Electronics, vol 17, no 5, pp 669–676, September 2002

3. Mateu L, Fonellosa F, Moll F (2003) Electrical characterization of a piezoelectric film-based
power generator for autonomous wearable devices. In: XVIII Conference on Design of
Circuits and Integrated Systems

Fig. 18.16 Power used by
the wireless sensors and the
rectified voltage across Crect

when Ip is at 50 Hz

18 Sigma–Delta Power Converter for Energy Harvesting Applications 269

4. Niu P, Chapman P, Riemer R, Zhang X (2004) Evaluation of motions and actuation methods
for biomechanical energy harvesting. In: Power Electronics Specialists Conference, PESC 04,
IEEE 35th, vol 3, June 2004, pp 2100–2106

5. d’Aparo R, Orcioni S, Conti M (2009) A digital controlled energy scavenger power
converter. In: Proceedings of the IEEE Seventh International Workshop on Intelligent
Solutions in Embedded Systems WISES09, 25–26 June 2009, Ancona, Italy, pp 165–170

6. Loreto Mateu NLMP, Codrea C, Spies P (2006) Energy harvesting for wireless
communication systems using thermogenerators. In: Proceedings of the 21st Conference
on Design of Circuits and Integrated Systems, Barcelona, Spain

7. Rashid MH (2010) Power electronics handbook. Butterworth Heinemann, ISBN:978-0-12-
382036-5

8. Orcioni S, d’Aparo R, Conti M (2007) A switching mode power supply with digital pulse
density modulation control. In: Circuit Theory and Design, ECCTD 2007, 18th European
Conference, Seville, Spain, Aug 2007, pp 603–606

9. Aziz P, Sorensen H, van der Spiegel J (1996) An overview of sigma-delta converters. IEEE
Signal Process Mag 13(1):61–84

10. Middlebrook RD, Cuk S (1976) A general unified approach to modelling switching-converter
power stages. In: Power Electronics Specialists Conference, Cleveland, Ohio, pp 18–34

11. Moussa W, Morris J (1990) Comparison between state space averaging and PWM switch for
switch mode power supply analysis. In: Southern Tier Technical Conference, Proceedings of
the 1990 IEEE, Apr 1990, pp 15–21

12. Peterchev A, Sanders S (2001) Quantization resolution and limit cycling in digitally
controlled PWM converters. In: Power Electronics Specialists Conference PESC 01 IEEE
32nd, vol 2, pp 465–471

13. Conti M, Orcioni S, d’Aparo R (2009) Dynamic OSR sigma delta controller for monolithic
switching converters. SPIE EUROPE, Dresden, vol 7363, p 73630W

14. Orcioni S, Biagetti G, Conti M (2005) SystemC-WMS: a wave mixed signal simulator. In:
Proceedings Forum on Specifications & Design Languages (FDL’05), Lausanne, CH,
Sep 2005, pp 61–72

15. Orcioni S, Ballicchia M, Biagetti G, d’Aparo RD, Conti M (2008) System level modelling
of RF IC in SystemC-wms. EURASIP J Embed Syst 2008:1–11. doi:10.1155/2008/371768
(Article ID 371768)

270 R. d’Aparo et al.

Chapter 19
Energy Efficient Data Transmission
of On-Chip Serial Links

A Case Study

George Kornaros

19.1 Introduction

As CMOS technology scales down, the ratio between wire and gate capacitance is
continuing to grow. In today’s ultra deep submicron (UDSM) designs, the inter-
connect wires play a major role in the timing behavior of logic gates and in the
power consumption of large Systems-on-Chip (SoC). The main reasons are: (i) the
relative scaling of cell capacitances and, (ii) the thinner and more aggressive metal
pitch of modern technologies causing the increase of inter-wire, or coupling
capacitances. The latter effect, in particular, is increasingly important in technol-
ogies below 90 nm, in which coupling capacitances between adjacent wires
become significantly larger than the capacitance between a wire and the substrate,
known as the self capacitance.

Designers argue that coupling capacitances are very important (see [1, 2])
mostly because they affect wire delays: transitions to opposite values on adjacent
wires will exhibit longer delays than for other types of transitions; in addition, the
delayed transitions are often preceded by spurious spikes. These effects are
commonly grouped under the term ‘‘crosstalk’’. Increased coupling capacitances,
however, are also critical for power consumption, because (i) for some types of
transitions will cause these large coupling capacitances to switch, and (ii) the
spurious transitions will also dissipate unnecessary power. Coupling effects are
particularly critical in long, cross-chip buses, because of the large capacitances
due to their length, and also because conventional routing algorithms tend to keep
bus wires close together, thus increasing the number of adjacent wires.

G. Kornaros (&)
Electronics & Computer Engineering Department, Technical University of Crete,
Chania, Crete, Greece
e-mail: kornaros@epp.teiher.gr, kornaros@gmail.com

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_19,
� Springer Science+Business Media B.V. 2011

271

Table 19.1 categorizes the worst-case crosstalk patterns that may occur
among three adjacent wires and cause the increase of the propagation delay.
The symbol : represents a rising transition, ; represents a falling transition and
- means that there is no transition on the wire. In the best case, when the three
wires are switching in the same direction, the delay on the victim wire is the
delay without crosstalk (i.e. when Ceff = Cs). However, the bus clock cycle
must be adapted exclusively regarding the worst-case delay (i.e. Ceff = Cs+
4.Cc) to ensure the integrity of the transmitted data. Nevertheless, the power
consumption is roughly proportional to the percentage of appearance of the
worst-case transition patterns.

The proposed schemes in this paper aim to minimize the switching activity and
crosstalk effects of the high data-rate interconnection DSM busses inside modern
embedded Systems-on-Chip (SoC) that usually integrate many IPs with long wires.
At the same time we keep the complexity of the encoder–decoder circuitry very
low so as to make it easily applicable to very large range of on-chip communi-
cation links. Furthermore, these new schemes are free of extra overheads due to
additional wires that could be used for shielding purposes. Included is a novel
scheme that can even reduce the number of required wires exhibiting time over-
head. Additionally, in modern Network-on-Chip (NoC) -based designs the benefits
come in effect due to reduced cost of wiring and also due to that encoded data need
not be transformed when switched by NoC routers.

The organization of this chapter is as follows. Section 19.2 presents briefly
related work and discussion. In Sect. 19.3 two encoding schemes are detailed,
along with exploring possible extensions and improvements. Section 19.4
presents hardware implementation results which are compared with a few
alternative schemes previously reported. Finally, Sect. 19.5 provides a summary
and conclusions.

19.2 State of the Art

Static encoding strategies for reducing activity of on-chip busses are based on
a priori knowledge of the stream of patterns that will travel on the bus, so as to

Table 19.1 Substrate capacitance (Cs) and coupling capacitance (Cc) of the victim wire due to
transitions of the adjacent aggressor wires

Type Ceff Transition patterns

1 Cs (:, :, :) (;, ;, ;)
2 Cs ? Cc (-, :, :) (-, ;, ;) (:, :,-) (;, ;,-)
3 Cs ? 2.Cc (-, :,-)

(:, :, ;)
(-, ;,-)

(:, ;, ;)
(;, :, :) (;, ;, :)

4 Cs ? 3.Cc (-, :, ;) (-, ;, :) (:, ;,-) (;, :,-)
5 Cs ? 4.Cc (:, ;, :) (;, :, ;)

272 G. Kornaros

generate an ad hoc encoder which will minimize the switching activity for that
stream [3]. Obviously, these techniques are highly application-dependent, in the
sense that their applicability is limited to cases in which it is possible to have
detailed information about the traffic on the buses. Opposing to this viewpoint the
novel scheme proposed in this work is independent from traffic characteristics.

Often, low power and crosstalk immune schemes may use extra bit-lanes, i.e.
the proposed method by Khan in [4] uses a 4-to-6 codebook for a total of 16
additional signals if a 32-bit bus is used. Another option to shield data transfers is
proposed by increasing a 16 bit bus to 27 bits, or adding separation bits [5]. Other
similar bus encoding techniques such as the variable cycle transmission with
temporal redundancy (i.e. the VCTR technique presented in [6]), uses three clock
cycles in cases of crosstalk classes 4 and 5, whereas the approach described in [7]
uses three and four clock cycles. However, with the proposed scheme only one
transition occurs per lane providing clear energy benefits. Philippe in [8] and
Najeeb in [9] also propose another temporal coding method which purges crosstalk
effects to improve delay but does not reduce mean switching activity. Shin et al.
[10] proposes encoding methods for reducing power consumption by reducing the
number of bit transitions on data buses; these techniques are variants of the
classical bit-invert method [11], where bus data is inverted prior to transmission if
the distance between the current data and the previously transmitted data is greater
than half the width of the bus.

Serialized low energy transmission coding for on-chip interconnect networks
(SILENT) presented in [12] aims at reducing the switching activity in the serial
link by employing differential encoding. This is achieved by XORing the data to
be serialized with the previous data. However, this scheme is not so effective when
the transmitted data have non-uniform statistics.

Besides the static encoding techniques mentioned so far, adaptive encoding
schemes have been proposed [13, 14] that reduce switching activity often very
efficiently, due to their adaptability to varying statistical parameters. They do not
require the a priori knowledge of statistical parameters of the data streams to be
encoded, but observe them periodically at system run time and modify the
encoding rules accordingly. However, the efficient reduction is achieved at the cost
of large hardware requirements.

Kretzschmar et al. argue in [15] that adaptive schemes could obtain up to 40%
savings, but the bus length which is required to reduce the overall power con-
sumption is not realistic for on-chip buses. However, crosstalk effects are not
considered and additionally in our case of utilizing fewer wires the capacitance is
significantly decreased. Further, if PCodec represents the power dissipated by the
codec system, then, we claim that in a modern NoC it is not necessary to account
PCodec for every intermediate router or switching component:

Switching or routing of encoded information is achieved free of the cost of
decoding-switching-and-encoding.

It is easy to design switching elements that take into account the proposed
encoding scheme and most other schemes as well. Circuit switching or even packet
switching could be easily implemented if headers are not encoded, or easily

19 Energy Efficient Data Transmission of On-Chip Serial Links 273

identified either in encoded format. Thus, the overhead of decoding, switching and
encoding is not necessary to be paid for each hop.

An associated issue with coding for energy efficiency is resilience to errors.
This concern is very essential for deep submicron technology since circuits are
more susceptible to less predictable forms of interference such as noise induced by
power grid fluctuations, electromagnetic interference, and alpha particle radiation.
Therefore, an encoding scheme is significant to feature properties that favor fault
tolerance. Error correcting codes for on-chip busses use algorithms that most times
become computationally infeasible for moderate to large bus sizes.

Moreover, retransmission based strategies perform better than those using
correction. Actually, techniques have been proposed [16], which work at lower
voltage swings because of their error detection capabilities and are more effective
from an energy viewpoint. In the same direction the first proposed scheme based
on block decoding features clear attributes that offer easy error detection (for
instance a nor gate can detect the absence of a ‘‘1’’ in the decoded block, or an
XOR gate can detect the existence of a single ‘‘1’’), but due to space limitations
this is not further analyzed.

19.3 Energy-Delay Efficient Bus Encoding

In this work a set of solutions are developed for combined reduction of the
switching activity of a bus and of the delay caused by crosstalk effects. Fault
tolerant properties of these solutions will be discussed as well.

19.3.1 Temporal Coding Using Block Decoding

One essential property inherent in the first proposed scheme is that the switching
activity is constant for each piece of information transmitted; a word will be called
hereafter. The term constant is used to describe that it is independent of the type of
information moved over the on-chip communication link. It could easily be
employed in an address bus, or convey data in a multi-core system on a chip.

Hence, the activity can be calculated accurately and independently of the
application we run over the proposed scheme. From one viewpoint it is thus
meaningless to benchmark its properties using a variety of applications, as it is
necessary for other encoding techniques that are proposed in the literature. In these
cases the featured performance and the energy consumed by the interconnection
fabric depends on the attributes of the application data transferred. Pushing an
encoding scheme to benefit from those attributes may reduce the efficiency of this
scheme if an application with a different traffic profile uses the bus. Considering
the crosstalk of adjacent wires however, the actual application data conveyed over
the bus affect the delay and energy consumed considerably and thus it is an equally

274 G. Kornaros

important factor compared with the reduction of the switching activity. It is
examined in the following paragraphs in detail.

Conceptually, the main idea is that in order to transmit a piece of information of
w bits, the optimal way to achieve the most energy efficient transmission is to
allow only one signal to make a transition. At the side of the receiver the original
word of w bits can be recognized by discovering which individual signal of the bus
appears to switch state. The original value of the transmitted word is reconstructed
by identifying the relative location of the ‘‘1’’ among the zeros. This idea is
essentially realized by a simple pair of decoder–encoder system. While the most
intuitive way to think of a decoded value is a bit vector where only one ‘‘1’’ exists,
one may consider the result of the decoding operation as a data block n by m of all
zeros except one.

Let n be the dimension that defines the available wires a designer will use and
m be the time span that the decoded block will complete its transmission. In the
sequel it is shown that although high clock frequencies can be realizable, it is not
desirable to use more clock cycles than four for the m parameter.

If the data link is w bits wide then we partition it in w/n sub-links with n bits per
sub-link. Thus, 2n bits must be transmitted from the sender to the receiver per sub-
link. Only one bit is switching, making it beneficial to use more bits to decode
since the percentage of activity is proportional to 1/2n. This however, is very costly
in wiring resources since it increases exponentially the bus width. Using temporal
distribution of the decoded information the overhead of extra signals is avoided.
Apparently, the decoded information of 2n bits must be transmitted over n con-
secutive clock cycles to avoid the overhead. Unless strict timing restrictions dictate
a violation in the operation of the developed system, a balance may be explored
between additional wiring and additional clock cycles needed to transfer the
decoded block of 2n bits.

For example, for a 4-bit lane we can use four clock cycles to transfer 16 bits,
or two clock cycles to transfer eight bits per cycle. Figure 19.1 shows an example
with two 4-bit lanes in which four words are sent in four clock cycles, or in two if
double-data-rate technique is used; however, this is beyond the scope of this paper.

Consequently, the percentage of switching activity of a bus which transfers a
word of w bits is given by Eq. 19.1.

0
0
0
0

0
0
0
0

0
1
0
0

0
0
0
0

1
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

5
C

.

.

.

.

.

.

Tx Rx

Enc

Enc

0
1
0
1
1
1
0
0

4 cc 1 cc

0
1
0
1
1
1
0
0

Dec

Dec

Fig. 19.1 Encoding of 095C
for transmission over an 8-bit
bus

19 Energy Efficient Data Transmission of On-Chip Serial Links 275

w=n� 1=w� 102 ¼ 1=n� 102 ð19:1Þ

A time interval of tdec = n is assumed, where no additional signals are used.
Compared with the activity in the original bus that is able to transfer a w-bits word
in torig, or in other words, considering the equivalent rate of information trans-
ferred, the switching activity is constant on the condition that the time interval to
send one word in both systems is equal, that is tdec = torig. This accounts for a
constant 1/n activity factor, which is most of the times distributed over n clock
cycles. Hence, the proposed scheme excels for traffic patterns that sport activity
greater than 1/n in un-encoded format or with other encoding techniques. Thus, in
the proposed scheme the switching activity is a priori known and constant.

Additionally, the property of just one ‘‘1’’ inside each decoded block of data
transferred is very resilient to errors and thus we may apply techniques to further
reduce power consumption. By lowering the Vdd supply for instance, the energy
savings would be significant, and since the proposed encoding simplifies an error
detector, this is another promising direction to be explored.

One can argue that in order to reduce activity, apparently the operation fre-
quency is increased (over-clocking) and consequently, the power consumption
which is given by P = a9Vdd29f9C cannot be improved. Actually, the clock
frequency of the encoder and decoder is increased, whereas the factors a and C in
the equation are reduced. The principle objective in this scheme is to keep the
same data bus frequency as before, and even if we over-clock the encoder and
decoder circuits the overall power consumption is reduced as shown by the sim-
ulation results in the following sections.

Due to the format of the decoded data that travel over a bus the probability of
appearance of the crosstalk classes listed in Table 19.1 is reduced. Type-4 for
example, which is one of the worst case patterns, will never appear inside a 16-bit
block of zeros with a single one. It may appear between two adjacent lanes. Let Pa
be the probability that Type-4 transitions occur between neighboring blocks. Since
the probability of a ‘‘1’’ at the boundary is � and, excluding all the combinations
of transitions that do not cause a Type-4 pattern we have:

Pa ¼
1
4
� 1

4
�
X6

1

1
16
� 1

16

� �

ð19:2Þ

0000

B0

B0

B1

B1

0000
0000
0010

0001
0000
0000
0000

Pa

Pb

Pc

Fig. 19.2 Encoded
transmission of four bytes

276 G. Kornaros

If we consider the transmission of two bytes, then, four lanes must be con-
sidered. Figure 19.2 outlines this case where each 4-bit word is encoded to a block.

Then, the probability of a Type-4 transition is given by:

P4Lane ¼ Pa � Pc þ Pa þ Pc þ Pbð1� Pa � PcÞ ð19:3Þ

From Eqs. 19.2 and 19.3 the probability P4Lane is 0.11865. Similarly, given the
transmission of four bytes the probability is 0.29. A tool is developed to analyze
data encoded with the proposed scheme and calculates the occurrence of Type-4
crosstalk patterns. Figure 19.3 shows that real data from images, mp3, mpeg,
binary code samples and database transaction traces exhibit less probability of
Type-4 transitions, with MP3 data being the most susceptible to it.

Next, the analysis is focused on the worst case of crosstalk effect (Type-5) and
how it is possible to eliminate this situation.

The worst transition pattern is Type-5, which can occur between two blocks of
bits, one sent immediately after the other, so that the last bit vector of one block
and the first bit vector of the following block may cause this case. Figure 19.4
shows all the possible cases where the tail and the head of each block inside
neighboring lanes are depicted. Symbol B-1 stands for the previous block and B for
the subsequent block in time, transferred top to bottom or upside-down, for a total
of four possible cases. Unless another redundant vector of zeros is sent so as to
eliminate this case, this situation can be alleviated with minor changes of logic.

0.14
0.145
0.15

0.155
0.16

0.165
0.17

0.175
0.18

0.185
Application

img

mp3
mpeg

binaries

In
tr

a-
la

ne

P
ro

ba
bi

lit
y

fo
r

T
yp

e4

database

Fig. 19.3 Percentage of
Type-4 coupling in encoded
4-byte data words of various
applications

Recover with
operation: the previous
word with the current.

101

010

0001 0100

0000 1000

0010 1000

0001 0000
or

B-1

B

B

B-1

If B-1LAST== “101”
&& BFIRST==“010”

If B-1LAST== “010”
&& BFIRST==“101”

1100 0011

TX

1100

0100 RX

0011

0010
xor xor

Receiver
side

Fig. 19.4 Worst case
transitions (Type-5) when
transmitting successive
blocks. The encoder (TX) can
intentionally flip one bit to
eliminate this case, while the
decoder (RX) can easily
detect and fix the original
data

19 Energy Efficient Data Transmission of On-Chip Serial Links 277

The transmitter upon detection of the two worst case transition patterns (the
conditions are shown in detail in the figure), can add one more ‘‘1’’ in the trans-
mitted 4-bit word, which is in fact an illegal encoding word. When the receiver
detects this invalid word fixes it by doing an XOR operation with the previous
word. The Type-5 transitions can be eliminated with this simple logic.

However, the counter effect of this mechanism is that in situations where
reliability is of major concern, this technique suffers as it is not easy to recognize
at the receiver side whether the flipped bit is intentional or due to coupling noise.

19.3.2 Temporal Coding Using Narrow Links

The initial approach presented in this section so as to manage power consumption
of transfers over long on-chip interconnects is to reduce transition activity. After
that, crosstalk induced issues are discussed.

The additional benefit of this novel scheme is that power consumption is
reduced due to:

i. the hardware complexity to construct routers that can manipulate directly the
encoded information is negligible,

ii. the overall size and consequently the cost in silicon of the NoC is signifi-
cantly reduced, and,

iii. the simple arithmetic performed while using this encoding scheme without
the cost in area, time and energy to perform decoding.

The principle idea of this innovative encoding scheme is that a transition of a
signal basically indicates a change of state from 0 ? 1 (or 1 ? 0) to communi-
cate with the receiver part so as to transfer one bit of useful piece of information.
The ultimate benefit from the energy perspective would be to increase the amount
of information transmitted without wasting any more energy than this of a single
transition of one wire. The apparent question is how the receiver will understand
the transfer of more bits of information from a single wire transition. An additional
characteristic of a digital signal besides the swinging from 0 ? 1 is the amplitude.
However, this requires analog signal processing, which is beyond the scope of the
current paper. Manipulating the clock frequency on the other hand, would cause
increased activity and complexity. The most prominent and attractive property of a
digital signal is ‘‘when’’ the transition will occur, or phase shift of the signal.

The motivation in this novel approach is both to reduce the number of necessary
wires to transmit an n-bit word, which is managed by a parallel-to-serial con-
version and, at the same time to reduce the number of signal swings. Modifying a
bit the way we consider transmission of information to a target, the proposed
method is based on the idea of using a one dimensional physical medium to encode
2-dimensional information.

The encoding scheme which is outlined in Fig. 19.5 is devised to support
transmission of a 4-bit piece of information with a single pulse of varying duration

278 G. Kornaros

that may appear in a time slot window of fixed duration of eight clock cycles. The
principle of moving a chunk of n-bit data, called a symbol, is to transmit a single
pulse of varying duration and varying offset on a single wire. A symbol is iden-
tified and decoded based on its position in a virtual 2-D space. The variable offset
of the rising edge identifies the x-coordinate, whilst the variable duration of the
pulse represents the y-coordinate of the symbol.

In general using a single wire to transmit a pulse of varying duration from 1
clock cycle to y = Tenc - 1 we can have a total of Tenc * (Tenc ? 1)/2 different
clock pulses. For example, Fig. 19.6 shows the ten possible pulses assuming an
encoding scheme that utilizes four clock cycles. However, in the proposed
encoding that illustrates encoding in a 2-D space, the number of utilized clock

Unencoded
(Parallel)

0
0
1
0

00000111

Encoded
(Serial)

Encoded Codewords
(Serial)

Unencoded
(Parallel)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

00000001
00000011
00000111
00001111
00000010
00000110
00001110
00011110
00000100
00001100
00011100
00111100
00001000
00011000
00111000
01111000 (a)

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001
1010
1011

1100
1101
1110
1111

TL4

Pulse
width

0 1 2 3
Clock
Cycles

y-offset

 (delay/phase shift to
start transmission)

(b)

Fig. 19.5 2-D temporal coding of a 4-bit word. a Encoding scheme to transform four bits
transmitted in parallel in one clock cycle to eight bits serially transmitted, b principle of encoding
scheme: the two most significant bits indicate when the pulse starts, and the two least significant
show the duration of the pulse

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T enc (cc)

of

 p
os

si
bl

e
pu

ls
es

0

1

2

3

4

5

6

7

8

of

 b
its

F = Tenc*(Tenc+1)/2

2(# of bits)

1
1

1

1
1 1

1 1
1 1

1 11
1 11

1 11 1

Fig. 19.6 Number of possible pulses to transmit (# of bits) in Tenc clock cycles interval; e.g., to
send five bits 7, 8, or 9 clock cycles are required using a 2-D encoding scheme, while the number
of possible pulses with two transitions is a lot more (28, 36, 45 accordingly)

19 Energy Efficient Data Transmission of On-Chip Serial Links 279

pulses which abide with scheme described above (see Fig. 19.6) is given by the
formula blog2(Tenc * (Tenc ? 1)/2)c.

Figure 19.6 shows the number of bits that can be transmitted using a single
pulse of Tenc duration in clock cycles and the total number of possible pulses. The
shaded area between the required binary combinations to send a number of bits and
the number of potential pulses that may be utilized gives headroom which allows
for developing fault tolerant techniques. This shaded area between the two lines in
the plot is very challenging in terms of identifying the right set of energy efficient
pulses with two transitions and assisting to immunity to errors; this domain is
subject for future research.

Hence, it is obvious that for data types that have inherent high switching rate
this proposed scheme is quite effective without even taking into account the
crosstalk effects.

Due to the size of modern industrial circuits it is becoming more important
factor for logic synthesis and technology mapping to satisfy performance con-
straints such as timing and power consumption while occupying minimum silicon
area. In these directions a few methodologies are proposed in the literature [17–20]
to effectively reduce the global wire-length, thus significantly improving conges-
tion across the chip. As a consequence, the total design area is also decreased due
to the reduction in wiring demands. Global routing optimizations are mainly based
on a cost function whose basic factor is the interconnect wire cost. Additional
routing algorithms have been proposed with considerations for coupling effects
and crosstalk elimination. In [19], the cost function used for optimizing the tree
routing algorithm is a global congestion function and depends on the square of the
wire length, demonstrating the significance of wiring to building large SoCs; it is
also shown that while iterating on the critical paths to achieve lower crosstalk
efforts are made to prevent delay deterioration. However, since crosstalk avoid-
ance is NP-hard problem the architectural solution of encoding to reduce wiring
and switching activity proves a valuable alternative.

19.4 Implementation and Evaluation Results

The first proposed encoding scheme based on simple block decoding was imple-
mented using FPGA technology in a Virtex-4 FX100 device, along with Bus Invert
(BI), and Coupling driven Bus Invert (CBI) techniques (as presented in [11] and
[21, 22] respectively). These two are very efficient coding schemes and various
optimizations of these have been proposed in the literature.

All proposed circuits were layout as shown in Fig. 19.7; the transmitter is
manually placed at one end of the chip and the receiver at the other end, so as to
transfer words over a four mm bus.

The speed grade was set to -11 and thus, the maximum frequency achieved is
shown in the first column of Table 19.2. The switching activity is back-annotated
in Xpower from XILINX, after simulating the gate-level netlist with uniform

280 G. Kornaros

generated traffic. All simulations were performed at 125 MHz and the data traffic
was supplied at full rate, but the same for all the three encoding schemes.
The improvement in total power consumption is small; from 4 to 9%, but the
improvement regarding the peak power dissipation reaches up to 57%.

Measurements over very large data streams were made with the aid of a custom
tool so as to build the activity profile of different types of data. Images, mp3, mpeg
and binary traffic were analyzed. The proposed encoding method using block
decoding reduces the switching activity exhibiting the following percentage
ranges:

• images/mp3 48–49%
• mpeg: 39–48%
• sample traces of binary code: 25–48%

The bus invert, on the other hand, produces an average reduction of about 17%
in total switching activity, whereas the CBI scheme resulted in less than 8% energy
savings. This was in fact achieved by modifying the majority voter that outputs
high when at least six input lines are high out of 15 inputs, instead of eight that was
in the original published implementation.

The second class of encoding scheme, which is based on 2-D temporal coding
over a narrow bus, was also modeled in VHDL and simulated with different types
of data as before. Implementation details can be found in [23]. Figure 19.8 shows
the percentage of savings per coupling type considering the un-encoded transfer of
32-bit words and the encoded transfer over 8 wires. Although the time interval is
enlarged by eight times the reduction in Type-5 and Type-4 couplings is
remarkable. Type-3 couplings are increased, but less than 20% in average.

Although it is also verified in this case of coding with narrow links that it
exhibits significant reductions in crosstalk couplings, the actual benefit of the
encoding scheme is that all cross-couplings can be eliminated by adding shielding,
or by increasing the wire spacing. In complex SoCs with very dense routing there
is now enough headroom to make it easily achievable. All the proposed encoding

Fig. 19.7 Layout of the block encoding scheme in a Virtex-4 FX100 FPGA; the encoder (Tx)
and decoder (Rx) are placed at the edges of the die spanning a 4 mm distance

Table 19.2 Implementation
in a Virtex-4 FX100 FPGA

Fmax Ptotal (mW) Ppeak (mW)

Idec 208 1,109 1,581
Bi 125 1,223 3,708
Cbi 128 1,152 3,417

19 Energy Efficient Data Transmission of On-Chip Serial Links 281

schemes were placed and routed in a 0.13 CMOS technology by UMC. The floor-
planning was done as in the FPGA implementation, for a maximum bus length of
5 mm. Although the Celtic tool by Cadence [24] was used to reduce crosstalk
effects, such as the noise effects shown below in Fig. 19.9, this is quite hard,
especially for the schemes BI, CBI, and the block decoding, considering the large
number of 32 wires. The achieved clock period is almost 4 ns.

19.5 Conclusions

Coupling effects of on-chip interconnects have become significant for Systems-on-
Chip designs in ultra deep submicron technology. Temporal redundancy is used by
a set of new proposed encoding schemes to minimize crosstalk in coupled
switching which dominate the on-chip bus power consumption. The experimental
results show significant energy savings for on-chip interconnects that can reach up
to 48%. The used encoder/decoder circuitry is very simple allowing very fast
implementations compared with other more complex methods. The temporal

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

type-5 type-4 type-3 type-2

Fig. 19.8 Reduction per
crosstalk type transferring
images, mpeg, mp3 and
executable files respectively

0

0.1

0.2

0.3

0.4

0.5

45
20

45
70

47
20

48
30

50
00

61
00

74
50 ps

V

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

45
20

46
40

47
80

50
00

64
10

76
30ps

V

Fig. 19.9 Noise effects in a 0.13 lm technology

282 G. Kornaros

redundancy is compensated for, by the high throughput that can be achieved by
increasing clock frequency if required. Finally, all the new schemes do not
necessitate wiring overhead, but on the contrary, even less number of wires can be
used.

References

1. Sotiriadis PP, Chandrakasan A (2000) Bus energy minimization by transition pattern coding
in deep sub-micron technologies. In: International conference on computer-aided design
(ICCAD), San Jose, CA, November, pp 322–328

2. Benini L, De Micheli G, Macii E, Sciuto D, Silvano C (1998) Address bus encoding
techniques for system-level power optimization. In: Design automation and test in Europe
(DATE), Paris, France, February, pp 861–866

3. Wong S-K, Tsui C-Y (2004) Re-configurable bus encoding scheme for reducing power
consumption of the cross coupling capacitance for deep sub-micron instruction bus.
In: Design automation and test in Europe (DATE)

4. Khan Z, Arslan T, Erdogan AT (2005) A novel bus encoding scheme from energy and
crosstalk efficiency perspective for AMBA based generic SoC systems. In: Proceedings of
international conference on VLSI design—4th international conference on embedded systems
design (VLSID’05)

5. Hsieh W-W, Chen P-Y, Hwang TT (2006) A bus architecture for crosstalk elimination in
high performance processor design. In: Proceedings of the 4th international conference on
hardware/software codesign and system synthesis, pp 247–252

6. Mutyam M et al (2006) Delay and energy efficient data transmission for on-chip buses.
In: Annual symposium on emerging VLSI technologies and architectures, April, 2006

7. Li L, Vijaykrishnan N, Kandemir M, Irwin MJ (2004) A crosstalk aware interconnect with
variable cycle transmission. In: Design automation and test in Europe, pp 102–107

8. Philippe JM, Pillement S, Sentieys O (2006) Area efficient temporal coding schemes for
reducing crosstalk effects. In: Proceedings of the 7th international symposium on quality
electronic design (ISQED’06)

9. Najeeb K, Gupta V, Kamakoti V, Mutyam M (2006) Delay and peak power minimization for
on-chip buses using temporal redundancy. In: GLSVLSI’06, April 30–May 2, 2006

10. Shin Y, Choi K, Chang YH (2001) Narrow bus encoding for low-power DSP systems. IEEE
Trans Very Large Scale Integration (VLSI) Syst 9(5):656–660

11. Stan MR, Burleson WP (1995) Bus-invert coding for low-power I/O. IEEE Trans VLSI Syst
3(1):49–58

12. Lee K, Lee SJ, You HJ (2004) SILENT: serialized low energy transmission coding for
on-chip interconnection networks. In: Proceedings of ICCAD, pp 448–451

13. Kretzschmar C, Siegmund R, Muller D (2002) A low overhead auto-optimizing bus encoding
scheme for low power data transmission. In: Power and timing modeling and optimization
PATMOS, LNCS, vol 2451, pp 342–352

14. Kretzschmar C, Siegmund R, Mueller D (2000) Adaptive bus encoding technique for
switching activity reduced data transfer over wide system buses. In: Workshop on power and
timing modeling and optimization PATMOS, September, pp 66–75

15. Kretzschmar C, Nieuwland AK, Muller D (2004) Why transition coding for power
minimization of on-chip buses does not work. In: Design automation and test in Europe
(DATE)

16. Bertozzi D, Benini L, Ricco B (2002) Energy-efficient and reliable low-swing signaling for
on-chip buses based on redundant coding. In: IEEE international symposium on circuits and
systems, ISCAS

19 Energy Efficient Data Transmission of On-Chip Serial Links 283

17. Xua J, Honga X, Jinga T, Zhanga L, Gu J (2006) A coupling and crosstalk-considered timing-
driven global routing algorithm for high-performance circuit design. Integration VLSI J
39:457–473

18. Pandini D, Pileggi LT, Strojwas AJ (2002) Understanding and addressing the impact of
wiring congestion during technology mapping. In: International symposium on physical
design (ISPD), US, April, 2002

19. Salek AH, Lou J, Pedram M (1999) An integrated logical and physical design flow for deep
submicron circuits. IEEE Trans CAD 18:1305–1315

20. Parakh PN, Brown RB, Sakallah KA (1998) Congestion driven quadratic placement. In:
Proceedings of the ACM/IEEE 35th design automation conference, June, pp 275–278

21. Kim K, Baek K, Shanbhag N, Liu C, Kang S (2000) Coupling-driven signal encoding scheme
for low-power interface design. In: IEEE/ACM international conference on computer aided
design, pp 318–321

22. Lindkvist T, Löfvenberg J, Gustafsson O (2004) Deep submicron bus invert coding. In: The
6th Nordic signal processing symposium, Espoo, Finland, June, 2004

23. Kornaros G (2009) Temporal coding schemes for energy efficient data transmission in
systems-on-chip. In: Proceedings of 7th IEEE workshop on intelligent solutions in embedded
systems, Ancona, Italy, June 25–26, 2009

24. Cadence Celtic, http://www.cadence.com/products/digital_ic/celtic/index.aspx

284 G. Kornaros

Chapter 20
Powersim: Power Estimation
with SystemC

Computational Complexity Estimate of a DSR
Front-End Compliant to ETSI Standard
ES 202 212

Marco Giammarini, Simone Orcioni and Massimo Conti

20.1 Introduction

The International Technology Roadmap for Semiconductors (ITRS) [1] and
MEDEA ? Roadmap [2] evidence that power and performance analysis are
becoming challenging task in current System-on-Chip (SoC) design. In recent
years, portable devices has largely spread out implementing more and more
complex applications that require a large energy amount from battery. This
increasing interest in energy and power consumption of hardware has driven to
search new design methodologies and tools to analyze and lower power con-
sumption just in the early stages of the design. To facilitate this analysis, research
has focused efforts in developing tools to be used when project is still in system-
level phase; this fact gives an estimation of power dissipated before going into
other planning levels and then optimize the system to decrease consumption.

SystemC [3, 4], now in its version 2.2.0, add a new library of C++ classes in
order to create a language for description of hardware at system-level. In 2005,
IEEE has approved a standard, named ‘‘IEEE Std. 1666-2005’’ [5], for SystemC.
Although SystemC is now considered one of the more promising languages for
system-level design, it does not encompass any functionality for power estimation.
However, the object oriented nature of SystemC, can easily be extended to cover
this lack.

This chapter extends the work presented in [6] proposing a new framework,
called Powersim, that consist of a C++ library added to SystemC, in order to
estimate the power consumption of a system described at system-level. Powersim
can estimate the power of a system interacting with arithmetic operations, logical
functions and mathematical functions of the various modules constituting the

M. Giammarini � S. Orcioni (&) � M. Conti
DIBET, Università Politecnica delle Marche, Ancona, Italy
e-mail: s.orcioni@univpm.it

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_20,
� Springer Science+Business Media B.V. 2011

285

system. Also, thanks to the fact that the Powersim monitors operator and mathe-
matical functions it is able to provide a computational complexity estimate of the
system. This feature, combined with accurate power models leads also to a good
power consumption estimate.

At the end of this chapter, we presents, an application example of the proposed
tool, the computational complexity estimate of a DSR front-end, compliant to
ETSI Standard ES 202 212 [7] and implemented at system-level in SystemC.

20.2 Powersim

Powersim [8] is a C++ class library developed to be used inside a SystemC
implementation. Its main purpose its the simulation of computational complexity
and power consumption of digital system described at system-level. Its main
characteristics are:

1. no need to change the source code describing the system;
2. easy configuration via file described in Extended BNF [9] grammar;
3. possibility to assign a different power model for each operation performed on

each data type;
4. possibility to add, in a simple way, new power models;
5. possibility to extend, in a simple way, its functionality through a fully object

oriented implementation based on C++.

Development of Powersim requested the change of some SystemC classes and
the addition of Powersim classes to SystemC library.

The next paragraphs will show in detail the Powersim classes, the changes to
SystemC, the creation and use of power models and of the configuration file.

Powersim library consists basically of four classes, in addition to power models
and error report classes. Figure 20.1 shows the structure of Powersim and how it
interacts with SystemC.

The main class of this library is ps_kernel: an object of this class is
instantiated inside the sc_main function before the modules are created. This
class, using the static methods of ps_configure, parses the configuration file and
stores the read data in a static map. The map contains an object of ps_module
class for each SystemC module used in the source code. Each object takes care to
maintain and update data on computational cost and power dissipation estimation
of the module to which it is associated. This is done using the map that each object
of ps_module class has within. The map contains ps_power_model type
pointers that point classes derived from ps_power_model. Indeed the class
ps_power_model is an interface which generalises all functions necessary to
create a new power model. So the user can implement its own power model by
extending ps_power_model and implementing all its methods.

Regarding changes to SystemC, we have acted on two types of classes: (i) sc_
module class and (ii) data-type classes. Changes to the class sc_module,

286 M. Giammarini et al.

the class that let to create a new SystemC module, consist of providing a new
method called ps_init(). This method, during simulation, calles a static
function of ps_kernel class. The static method adds the current module under
control of the Powersim kernel. Changes to data-type classes consist of providing
the necessary code to maintain in each operation the previous value of each
variable. Furthermore, the definition of each operator function has been modified
to allow the call to ps_call(). This function, during simulation, tells to the
Powersim kernel that was performed a new operation.

The power models are the instrument through which Powesim estimate the
power associated with on operator run on a SystemC data type. As mentioned, the
power models are represented by classes that extend ps_power_model class
and implement also the methods necessary to interact with Powersim kernel. These
methods have different purposes: (i) to define the model of the power dissipated by
arithmetic or logic operation and mathematical function, (ii) to set the parameters
of the power model, using the values that users provide in the configuration file,
(iii) to return the total power consumption, (iv) to manage the variables that will be
printed in the result tracing file.

Through the configuration file, the user can choose of which modules to
monitor the power dissipation. In particular, the user can decide which operators
to control the power consumption of and which power model to bind. In order to
write a configuration file, the user must follow a grammar defined in Extended

Fig. 20.1 Block scheme of Powersim

20 Powersim: Power Estimation with SystemC 287

Backus-Naur Form [9], a syntactic meta-language used to describe formal lan-
guages syntax. The rules imposed by the grammar are used by ps_configure
class to parse the input file.

20.3 Case Study

Thanks to the continuous improvement in computer performances and to the
development in Digital Signal Processing (DSP), Automatic Speech Recognition
(ASR) is spreading in many aspects of everyday life. The application fields of
speech recognition go from the help in editing by means of dictation, to command
recognition and execution in the automotive or other fields. In general, a voice
recognizer can be applied in all situations where the voice may replace hands,
including applications to provide support for people with disabilities.

Another area of application of voice recognition is the Distributed Speech
Recognition (DSR). Through a client–server based approach in combination with a
speech recognizer, DSR can offer a new chance in the field of home automation or
mobile communications, for instance, the ability to dictate the notes of a confer-
ence directly to your phone immediately after the end of the meeting and to return
to office with the text file stored on your PC ready to be edited. This new approach
revolutionizes the way of speech recognizing, allowing to replace the communi-
cation of the signal samples with a parameterized and compressed representation,
which is suitable for the recognition and for the communication over a noisy or
limited-capacity channel. In this section we presents a computational complexity
estimate, computed by Powersim, of a DSR front-end, compliant to ETSI Standard
ES 202 212 [7] and implemented at system-level in SystemC.

20.3.1 The ETSI Front-End

Accordingly to ETSI Standard ES 202 212 a DSR system is composed by a mobile
terminal, or front-end, and a server or back-end. The Front-end extracts the fea-
tures of the voice, implementing signal denoising and cepstrum coefficient
calculation. Then this features must be compressed and packaged, as show in
Fig. 20.2, before being sent to the server, where the recognition take place.

Fig. 20.2 Block scheme the
terminal side of ETSI ES 202
212

288 M. Giammarini et al.

In this work we have estimated the computational cost of the Feature
Extraction part, as defined in [7]. Figure 20.3 shows our SystemC implementation
of the Feature Extraction, divided into five main blocks: the first two blocks make
signal denoising, the third makes waveform processing, the fourth performs cep-
strum calculation, and the last executes blind equalization of cepstrum coefficients.
Before Feature Extraction, in Input Stream the signal is divided into frames of 80
samples each.

20.3.1.1 First Noise Reduction

The noise reduction consists of two cascaded stages, which, as can be seen in [7],
are almost identical. Figure 20.4 shows First Noise Reduction SystemC imple-
mentation, which consists of eight modules.

In Buffering module a four-frame long FIFO (320 samples) is used in order to
obtain in each iteration, a 200-sample frame, used to obtain the Wiener-filter
coefficients be applied to a single 80-sample long frame. To this end the module
applies a 200-sample wide window from the 260th sample to the 61th sample of
the buffer, and takes the frame to be denoised from the last but one frame of the
FIFO. The Spectrum Estimation module performs a power spectrum estimate of its
200-sample long input frame. First the input frame is windowed by Hanning
window sWðnÞ ¼ sinðnÞ � wHannðnÞ where 0 B n B Nin - 1, Nin = 200, and the
Hanning window is

wHannðnÞ ¼ 0:5� 0:5 cos
2p � ðnþ 0:5Þ

Nin

� �

: ð20:1Þ

Fig. 20.3 SystemC
schematic representation of
ETSI ES 202 212 Feature
Extraction

20 Powersim: Power Estimation with SystemC 289

Then zeros are padded, in order to apply a 256-sample wide Fast Fourier
Transform (FFT). The power spectrum is calculated by squaring the module of

FFT representation, X(bin), PðbinÞ ¼ jXðbinÞj2; 0� bin�NFFT=2:
Then the power spectrum is smoothed, as shown in the following PinðbinÞ ¼

ðPð2 � binÞ þ Pð2 � binþ 1ÞÞ=2, where 0� bin\NFFT=4 and PinðNFFT=4Þ ¼
PðNFFT=2Þ. By means of this last operation, the length of Pin is reduced to
NSPEC ¼ NFFT=4.

In the PSD Mean module, the mean of power spectral density is performed over
the last TPSD frames

Pin PSD bin; tð Þ ¼ 1
TPSD

XTPSD�1

i¼0

Pin bin; t � ið Þ ð20:2Þ

for 0� bin�NSPEC � 1, where bin is the frequency index ant t is the current frame
index. VADNest module is used to decide if the current frame is speech or not by
means of two variables. The former is the logarithmic energy of the last frame of
the input signal

frameEn ¼ 0:5þ 16
ln 2
� ln 64þ

PM�1
n¼0 sinðnÞ2

64

 !

: ð20:3Þ

This parameter is used to update the second variable meanEn. The output of this
module is the Boolean variable flagVADNest that indicates if the current frame is
speech or not.

Wiener Filter module computes the Wiener filter coefficients that are used to
reduce the amount of noise present in a signal by comparison with an estimation of
the desired noiseless signal. In the Wiener Filter First Stage the noise spectrum
estimate Pnoise

1/2 (bin, t) is calculated according to the flagVADNest. Then the

Fig. 20.4 SystemC
schematic representation of
SystemC First Noise
Reduction Module

290 M. Giammarini et al.

noiseless signal spectrum Pden
1/2 (bin, t) is estimated using a ‘‘decision-directed’’

approach and the a priori SNR g(bin, t) is computed as gðbin; tÞ ¼ Pdenðbin; tÞ=
Pnoiseðbin; tÞ.

The Wiener filter transfer function H(bin, t) is obtained according to the fol-

lowing equation Hðbin; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðbin; tÞ

p
=1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðbin; tÞ

p
and it is used to improve

the estimation of the noiseless signal spectrum Pden2
1/2 (bin, t). By the new noiseless

signal spectrum an improved a priori SNR g2(bin, t) is obtained like

g2 bin; tð Þ ¼ max
Pden2 bin; tð Þ
Pnoise bin; tð Þ; g

2
TH

� �

ð20:4Þ

where gTH corresponds to a SNR of -22 dB. Then the improved transfer
function H2(bin, t), that is the module output, is obtained as H2 bin; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 bin; tð Þ

p �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 bin; tð Þ

p
, for 0 B bin B NSPEC - 1. This function is utilized

to calculate the new improved noiseless signal spectrum Pden3
1/2 (bin, t), that will be

used to calculate Pden
1/2 (bin, t) of the next frame. The difference between the Wiener

Filter First Stage and Wiener Filter Second Stage is the method of computation of
the noise spectrum estimate Pnoise(bin, t), that in the second case does not depend
on the VADNest module.

The Wiener filter coefficients H2(bin) are smoothed and transformed to the
Mel-frequency scale by Mel Filter module. The new coefficients H2_mel(k) are
calculated by using triangular-shaped, half-overlapped frequency window applied
on H2(bin) as

H2 mel kð Þ ¼ 1
PNSPEC�1

i¼0 W k; ið Þ
XNSPEC�1

i¼0

W k; ið ÞH2 ið Þ ð20:5Þ

where k are the transformed frequency, 0 B k B KFB ? 1, with KFB = 23, and
W(k, i) is the frequency window.

In the Mel IDCT module the time-domain impulse response of Wiener filter is
computed from the Mel Wiener filter coefficient H2_mel(k) by using Mel-warped
inverse DCT.

hWF nð Þ ¼
XKFBþ1

k¼0

H2 mel kð Þ � IDCTmel k; nð Þ ð20:6Þ

for 0 B n B KFB ? 1, where IDCTmel(k, n) are Mel-warped inverse DCT, that are
obtained as

IDCTmel k; nð Þ ¼ cos
2pn � fcentr kð Þ

fsamp

� �

� df kð Þ ð20:7Þ

for 0 B k, n B KFB ? 1, where fsamp = 8,000 is the sampling frequency and fcentr

is the central frequency of each Mel band. The central frequency is computed like
fcentr kð Þ ¼ 700 � 10fmel kð Þ=2;595 � 1

� �
, 0 B k B KFB where

20 Powersim: Power Estimation with SystemC 291

fmel kð Þ ¼ k �
Mel flin samp=2
� 	

KFB þ 1
ð20:8Þ

where flin_samp is the linear sampling frequency and Mel{�} is the function that
transform a linear frequency to a Mel scale frequency as

Mel flinf g ¼ 2; 595 � log10 1þ flin=700

 �
: ð20:9Þ

The output of this module is the mirrored impulse response of Wiener filter
hWF_mirr(k).

In the last module (Apply Filter) the noise-reduced signal is produced by means
of tree steps. In the former step the causal impulse response is obtained from
previous module output. In the second the impulse response is truncated and
weighted by a Hanning window. In the latter stage the input signal is filtered like

snr nð Þ ¼
XðFL�1Þ=2

i¼� FL�1ð Þ=2

hWF w iþ FL� 1ð Þ=2ð Þsin n� ið Þ ð20:10Þ

for 0 B n B M - 1, where hWF_w is the filter impulse response, the filter length
FL equals 17 and the frame shift interval M equals 80.

20.3.1.2 Second Noise Reduction

The Second Noise Reduction, as show in Fig. 20.5, differs from the former because
VADNest is not present, instead Gain Factorization and Offset Compensation have
been added.

Fig. 20.5 SystemC
schematic representation of
SystemC Second Noise
Reduction Module

292 M. Giammarini et al.

Gain Factorization module aims to apply a more aggressive noise reduction to
purely noisy frames and less aggressive noise reduction to frames also containing
speech. To decide the degree of aggression, SNR value, based on energy values
calculated in Wiener filter stages are used. In particular in the Wiener Filter First
Stage, denoised frame signal energy is calculated by using the denoised power
spectrum Pden3(bin, t)

Eden tð Þ ¼
XNSPEC�1

bin¼0

P1=2
den3 bin; tð Þ ð20:11Þ

where t is the current frame index, instead in the Wiener Filter Second Stage, the
noise energy is computed by using the noise spectrum Pnoise(bin, t)

Enoise tð Þ ¼
XNSPEC�1

bin¼0

P1=2
noise bin; tð Þ: ð20:12Þ

Smoothed SNR SNRaver(t), is evaluated by using tree value of Eden(t) and
Enoise(t). At this point, the current SNR estimation is compared to the low SNR
tracked value, and the aggression of the second stage Wiener filter is reduced to
10% for speech and noise frames and to 80% for noise frames.

Offset Compensation module removes the DC offset by a notch filtering oper-
ation that is applied to the noise-reduced signal like snr of nð Þ ¼ snr nð Þ � snr

n� 1ð Þ þ 1� 1=1; 024ð Þ � snr of n� 1ð Þ, 0 B n B M - 1, where snr(- 1) and
snr_of(- 1) correspond to the last sample of the previous frame.

20.3.1.3 Waveform Processing

After denoising, the Waveform Processing part of the standard begins. In this
block emphasis on higher energy parts of the signal occurs by means of the action
of four blocks, as shown in Fig. 20.6.

Fig. 20.6 SystemC
schematic representation of
SystemC Waveform
Processing Module

20 Powersim: Power Estimation with SystemC 293

The first block, Buffer, stores in a 240-sample buffer the 80-sample long frames
given in output by the Second Noise Reduction. In this module a 200 (from
position 1 to position 200) samples wide window is applied to the buffer.

The second one, Smoothed Energy Contour, calculates the Teager-Kaiser
energy of the signal and smooth it by means of a FIR filter. The Teager-Kaiser
energy is computed for each input frame ETeag ¼ s2

nr of nð Þ � s2
nr of n� 1ð Þ�

�
�

snr of2 nþ1ð Þj where 0 B n B Nin - 1.

Peak Picking block finds the global maximum in the smoothed energy contour
and the maxima on the left and right side of the global maximum, so that maxima
related to the fundamental frequency are found.

Such values are used in Waveform SNR Weighting block to realize a window
function to be applied to the input signal. Indeed having the number of maxima NMAX

of the smoothed energy contour and their position posMAX, a weighting function of
length Nin is constructed and applied to the input noise-reduced frame like

sswp nð Þ ¼ 1:2 � wswp nð Þ � snr of nð Þ þ 0:8 � 1� wswp nð Þ
� �

� snr of nð Þ ð20:13Þ

where 0 B n B Nin – 1 and wswp is a weighting function that equals 1.0 for
n belonging to the following interval

posMAX nMAXð Þ � 4ð Þ; posMAX nMAXð Þ � 4ð Þ½
þ0:8 � posMAX nMAX þ 1ð Þ � posMAX nMAXð Þð Þ� ð20:14Þ

and 0 otherwise.

20.3.1.4 Cepstrum Calculation

The Cepstrum Calculation part performs the calculation of cepstrum coefficients
and the natural logarithm of the energy of the signal. The our SystemC imple-
mentation consist of seven modules, as shown in Fig. 20.7.

First a Pre-emphasis filter is applied to the output of Waveform Processing
block sswp pe nð Þ ¼ sswp nð Þ � 0:9 � sswp n� 1ð Þ followed by a Windowing, where
the following Hamming window of length Nin = 200

wswp w nð Þ ¼ 0:54� 0:46 � cos
2p � nþ 0:5ð Þ

Nin

� �

ð20:15Þ

for 0 B n B Nin - 1, is applied to the output of the previous module.
Then a Fast Fourier Transform (FFT) is applied. Each frame of Nin samples is

zero padded to create an extended frame of 256 samples. An FFT is applied to
compute the complex spectrum of the denoised signal, then a corresponding power
spectrum Pswp is calculated.

The next module, MEL-FB, recombines the information contained in the FFT
according to the Mel band representation. The FFT elements are linearly recom-
bined for each Mel Band. The useful frequency band lies between fstart and fsample/

294 M. Giammarini et al.

2. This band is divided into KFB equidistant channels in the Mel frequency domain.
Each channel has a triangular-shaped frequency window and consecutive channels
are half-overlapping. To perform an equidistant distribution of the band in the Mel
domain, the central frequency of each filter are calculated from the Mel-function
like

fcentr kð Þ ¼ Mel�1 Mel fstartf g þ k �
Mel fsample=2

� 	
�Mel fstartf g

KFB þ 1

 �

ð20:16Þ

for 0 B k B KFB, where Mel{�} is the Mel-function and it is the operator which
rescales the frequency domain, likewise Eq. 20.9. Indeed the inverse Mel-function
is Mel�1 yf g ¼ 700 � ey=1;127 � 1

� �
.

In terms of FFT index, the central frequency of the band correspond to

bincentr kð Þ ¼ index fcentr kð Þf g ¼ round
fcentr kð Þ

fsamp

NFFT

 �

ð20:17Þ

for 0 B k B KFB. For the kth Mel Band, the frequency window W(i, k) is con-
structed and divided into two parts. The former part accounts for increasing
weights, whereas the latter part accounts for decreasing weights. Each frequency
window is applied to the denoised power spectrum Pswp(bin) computed in the
previous module. The output of each Mel filter is

EFB kð Þ ¼
Xbincentr kð Þ

i¼bincentr k�1ð Þ
Wleft i; kð Þ � Pswp ið Þþ

Xbincentr kþ1ð Þ

i¼bincentr kð Þþ1

Wright i; kð Þ � Pswp ið Þ

ð20:18Þ

for 0 B k B KFB.

Fig. 20.7 SystemC
schematic representation of
SystemC Cepstrum
Calculation Module

20 Powersim: Power Estimation with SystemC 295

The Log module carries out the logarithmic function on the output of
Mel-filtering and finally the thirteen cepstral coefficients are obtained by applying
the DCT on the nonlinear transformed FFT by means DCT module. The following
equation shows how cepstrum coefficients are obtained

c ið Þ ¼
XKFB

k¼1

SFB kð Þ � cos
i � p
KFB

� k � 0:5ð Þ
� �

ð20:19Þ

where 0 B i B 12. The last module (LogE) perform a natural logarithm of the
energy of the denoised signal as

log E ¼ ln Eswp

� �
if Eswp�ETHRESH;

ln ETHRESHð Þ otherwise,

ð20:20Þ

where ETHRESH = e-50 and Eswp is calculated as Eswp ¼
PNin�1

n¼0 sswp nð Þ � sswp nð Þ.

20.3.1.5 Blind Equalization

In the last module of ETSI 202 212 Feature Extraction named Blind Equalization,
twelve cepstral coefficients (c(1), …, c(12)) are equalized according to LMS
algorithm. The final feature vector consists of thirteen cepstral coefficient and the
log-energy coefficient.

20.3.2 Computational Complexity Estimate

The aim of this section is to show the results of the estimate of the computational
complexity of the Feature Extraction as computed by Powersim. They will be
provided by means of the number values of different mathematical operations
performed by each block and by means of the total computational complexity
estimate of each block.

Table 20.1 shows the number of operations executed by each SystemC module
during a simulation with a registered voice as input. The input signal was sampled
at 8 kHz and was 6 s long for a total of 48,000 samples.

To see the computational load of each block, the relative computational com-
plexity of each operation must be estimated. The computational complexity of
each operation clearly depends on the hardware where they are executed. As a
reference for the relative complexity of operations the Intel� AtomTM N270 [10],
largely used in many netbook or embedded systems, has been chosen. The relative
cost of each operation has been estimated by simulating ad-hoc programs and
calculating the CPU time needed by the execution of each arithmetic operation and
mathematical function as implemented in the C ++ cmath library [11]. Table 20.2
reports these relative costs.

296 M. Giammarini et al.

Table 20.1 Computational cost of SystemC modules, expressed in terms of number of
operations

Macro module Module Add. Mul. Sub. Div. Nat.
log.

First noise reduction Spectrum Estimation 2,496,000 3,844,800 0 0 0
PSD Mean 39,000 39,000 0 0 0
VADNest 48,700 48,100 1,396 600 600
Wiener Filter Design 155,740 239,980 45,240 117,000 0
Mel Filter 0 975,000 0 0 0
Mel IDCT 375,000 375,000 0 0 0
Apply Filter 816,000 826,200 0 0 0

Second noise
reduction

Spectrum Estimation 2,496,000 3,844,800 0 0 0
PSD Mean 39,000 39,000 0 0 0
Wiener Filter Design 273,091 390,741 39,650 320,425 0
Mel Filter 0 975,000 0 0 0
Gain Factorization 55,600 18,600 16,200 6,000 0
Mel IDCT 375,000 375,000 0 0 0
Apply Filter 816,000 826,200 0 0 0
Offset Compensation 48,000 48,000 48,000 0 0

Waveform
processing

Smoothed En.
Contour

960,000 238,800 120,000 120,000 0

Peak Picking 4,545 0 3,129 0 0
Wavef. SNR

weighting
2,045 2,045 4,090 0 0

Cepstrum calculation Pre-Emphasis 0 120,000 120,000 0 0
Windowing 0 120,000 0 0 0
FFT 2,457,600 3,686,400 0 0 0
Mel-FB 143,400 104,400 0 0 0
Log 0 0 0 0 27,600
DCT 179,400 179,400 0 0 0
LogE 120,000 120,000 0 0 600

Blind equal. Blind Equalization 7,200 7,800 15,600 0 0

Table 20.2 Computational
cost of algebraic operations
and mathematical functions

Operation Complexity

Addition 1
Multiplication 1
Subtraction 1
Division 5
Cosine 16
Sine 16
Tangent 21
Natural Log 25
Common Log 25

20 Powersim: Power Estimation with SystemC 297

By applying the relative costs shown in Table 20.2 at Table 20.1 the data
shown in Table 20.3 has been obtained. The first data column shows the absolute
cost of each block while the second one the relative cost. The horizontal lines
group together SystemC block belonging to the same ETSI block, respectively,
First Noise Reduction, Second Noise Reduction, Waveform Processing, Cepstrum
Calculation and Blind Equalization. Furthermore, since analyzing the algorithms
performed the front-end, spectrum calculations performed by means of FFT, were
recurrent, the FFT cost has been extracted and shown in last two column of

Table 20.3 Computational cost of single SystemC modules of the ‘‘Terminal Front-End’’

Macro Module Module Comp.
Cost

Comp.Cost
(% Total)

Comp.Cost
of FFT

Comp. Cost
FFT (% row)

First Noise
Reduction

Spectrum
Estimation

6,340,800 19.05 6,144,000 96.90

PSD Mean 78,000 0.23 0 0.00
VADNest 116,196 0.35 0 0.00
Wiener Filter

Design
1,025,960 3.08 0 0.00

Mel Filter 975,000 2.93 0 0.00
Mel IDCT 750,000 2.25 0 0.00
Apply Filter 1,642,200 4.93 0 0.00

Second Noise
Reduction

Spectrum
Estimation

6,340,800 19.05 6,144,000 96.90

PSD Mean 78,000 0.23 0 0.00
Wiener Filter

Design
2,305,607 6.93 0 0.00

Mel Filter 975,000 2.93 0 0.00
Gain

Factorization
93,400 0.28 0 0.00

Mel IDCT 750,000 2.25 0 0.00
Apply Filter 1,642,200 4.93 0 0.00
Offset

Compensation
144,000 0.43 0 0.00

Waveform
Processing

Smoot. En.
Contour

1,918,800 5.77 0 0.00

Peak Picking 7,674 0.02 0 0.00
Wavef. SNR

weight.
8,180 0.02 0 0.00

Cepstrum
Calculation

Pre-Emphasis 240,000 0.72 0 0.00
Windowing 120,000 0.36 0 0.00
FFT 6,144,000 18.46 6,144,000 100.00
Mel-FB 247,800 0.74 0 0.00
Log 690,000 2.07 0 0.00
DCT 358,800 1.08 0 0.00
LogE 255,000 0.77 0 0.00

Blind Equal. Blind
Equalization

30,600 0.09 0 0.00

Total 33,278,017 100.00 18,432,000 55.39

298 M. Giammarini et al.

Table 20.3, in absolute and relative values. While the relative computational cost
of each block is calculated with respect to the total operations performed by the
front-end, the FFT relative cost is relative to each block where it is executed, i.e.
relative to each row of the table. So in the last row the cost of FFT is relative to the
total cost and it can be noticed that it amounts to the 55.39% of the total. This can
suggest the use of specialized hardware for the FFT in a low-power implemen-
tation of the front-end because of the relevance of FFT computational cost. In
Table 20.4 the computational costs of the main four blocks of the front-end are
shown.

The data shown in Table 20.1 can be seen also under another view, grouped by
operations performed instead of functional block. Table 20.5 shows this view that
reveals that the more expensive operation are respectively multiplication and
addition. Table 20.6 shows the same view, but with the FFT cost excluded. In this
case also the cost of division becomes relevant.

Table 20.4 Computational cost of the ETSI ‘‘Front-End’’

Module Computational cost Computational cost (%)

First Noise Reduction 10,928,156 32.84
Second Noise Reduction 12,329,007 37.05
Waveform Processing 1,934,654 5.81
Cepstrum Calculation 8,055,600 24.21
Blind Equalization 30,600 0.09
Total 33,278,017 100.00

Table 20.5 Computational cost by operations

Operations Number of operation Computational cost Comput. cost % total

Addition 11,907,321 11,907,321 35.78
Multiplication 17,444,266 17,444,266 52.43
Subtraction 413,305 413,305 1.24
Division 558,625 2,793,125 8.39
Natural log. 28,800 720,000 2.16
Total 30,352,317 33,278,017 100.00

Table 20.6 Computational cost by operation, FFT excluded

Operations Number of operation Computational cost Comput. cost % total

Addition 4,534,521 4,534,521 30.54
Multiplication 6,385,066 6,385,066 43.02
Subtraction 413,305 413,305 2.78
Division 558,625 2,793,125 18.81
Natural Log. 28,800 720,000 4.85
Total 11,920,317 14,846,017 100.00

20 Powersim: Power Estimation with SystemC 299

20.4 Conclusions

In this chapter we presented the Powersim, a new framework for the computational
cost and power consumption estimate of a system described in SystemC.
Furthermore, we presented, as an application example of Powersim, a computa-
tional cost estimation of standard ETSI ES 202 212. This analysis has been carried
out at system level by means of a SystemC implementation.

The analysis of computational cost of ETSI 202 212 ‘‘Front-End’’ reveals that
the major cost, with more than 55% of the total, can be assigned to the FFT
computations performed in the First Noise Reduction, Second Noise Reduction and
Cepstrum Calculation functional blocks. So particular care must be taken of this
function in a hardware implementation. If a specialized hardware for FFT is not
chosen, the more computational expensive operation are multiplication and
addition with respectively a 52.43% and 35.78% of the total cost.

References

1. ITRS, International Technology Roadmap for Semiconductors (2005) 2005 edn. Design,
December. http://public.itrs.net

2. MEDEA+ (2005) MEDEA Electronic Design Automation (EDA) Roadmap, 5th release,
September. http://www.medea.org

3. The Open SystemC Initiative—OSCI, SystemC documentation. http://www.systemc.org
4. Grötker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic

Publishers, New York
5. SystemC Language Reference Manual (2006) IEEE-Std 1666-2005, March
6. Giammarini M, Orcioni S, Conti M (2009) Computational complexity estimate of a DSR

front-end compliant to ETSI Standard ES 202 212. In: 2009 seventh workshop on intelligent
solutions in embedded systems, WISES09, June, pp 171–177

7. Speech Processing, Transmission and Quality Aspects (STQ); Distributed speech
recognition; Extended advanced front-end feature extraction algorithm; Compression
algorithms; Back-end speech reconstruction algorithm, ETSI Std. ES 202 212, Rev. 1.1.2,
November 2005

8. Powersim 0.1.0—WebSite, Documentation and Source Code. http://sourceforge.net/projects/
powersim

9. Information technology—syntactic metalanguage—extended BNF, ISO/IEC Std.14977,
December 1996

10. Intel� AtomTM Processor—WebSite and Documentation. http://www.intel.com/products/
processor/atom/index.htm

11. CMATH—C numerics library—math.h

300 M. Giammarini et al.

Chapter 21
Power Analysis of Embedded Systems

The PKtool Simulation Environment

Giovanni B. Vece and Massimo Conti

21.1 Introduction

Nowadays, microelectronic systems have reached a relevant level of complexity
and performances, and such a growth should continue its course in the future years.
In addition to great application benefits, such a progress has also caused the arising
of new problems, especially in design matters. In particular, the realization of
complex digital systems requires to handle effectively their functionalities and to
address suitable hw/sw co-design methodologies. For this purpose, new modeling
paradigms have been proposed in the last years, within the which SystemC
language [1] has reached a primary role as a consequence of its peculiar poten-
tialities. More precisely, SystemC is provided with advanced descriptive means
constituting a framework oriented to high abstraction levels. Moreover, SystemC
allows the introduction of hardware descriptive constructs within a typical C/C++
software environment, so to support properly an integrated hw/sw codesign.

Another relevant issue related to the design of embedded systems is given
by power dissipation. The impact of this factor is often crucial on the physical
reliability, when implementing complex functionalities with the demand of high
performances. Furthermore, since many embedded systems are supplied by battery
power, especially those that are used in mobile devices, the evaluation of low-power
solutions is important to increase the battery lifetime. These motivations have led to
define operative approaches able to introduce power analysis inside design process.
Such analysis should rely on suitable automation means applicable, if possible, in
the first design phases. For this need several CAD tools have appeared in the last
years; some of the most well-known examples are referenced in [2–5].

G. B. Vece � M. Conti (&)
DIBET, Università Politecnica delle Marche, Ancona, Italy
e-mail: m.conti@univpm.it

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_21,
� Springer Science+Business Media B.V. 2011

301

From all these considerations, the utility of CAD tools able to perform power
analysis in SystemC-based designs is evident, especially in the case of embedded
systems. This chapter reports an introductory description of a power analysis tool
recently made available, the PKtool environment [6, 7]. PKtool is a simula-
tion environment dedicated to power analysis for digital systems described in
SystemC/C++ language. The contents of the chapter cover a comprehensive
overview of the related features and the application modalities. The chapter is
organized as follows. Section 21.2 outlines the PKtool execution flow, while Sect. 21.3
explains how a SystemC module can be interfaced with PKtool environment.
Sections 21.4 and 21.5 take into consideration some relevant entities involved in
power estimations, i.e. power models and augmented signals. Finally, Sect. 21.6
reports an example of analysis concerning the power performances of Bluetooth
networks.

21.2 Simulative Approach and Relations with the SystemC
Kernel

The core analysis performed by PKtool is given by the power estimation of a
system described in SystemC/C++. PKtool can be directly applied on the single
modules composing the system, which are modelled in SystemC by means of
specific objects called sc_modules [8]. As final result, a PKtool simulation pro-
vides the separate estimations of the power dissipated by the single sc_modules, on
the basis of user-selected power models.

The PKtool functionality is realized by several components, among the which
the simulation engine, named Power Kernel, covers a primary role. In fact, Power
Kernel manages all the tasks involved in a PKtool simulation attending to their
synchronization and execution. A PKtool simulation takes place during an
ordinary simulation of the monitored system through the SystemC execution
kernel. More precisely, the PKtool simulation runs simultaneously with the
SystemC simulation, in the form of a complementary appendix dedicated to power
analysis. Power Kernel operates in a hidden and non intrusive way, without
affecting the correct behaviour of the SystemC kernel. With respect to an ordinary
SystemC simulation, the only visible effect might be represented by a variable
increase in CPU time. In this way, in a same simulation session, it is possible to
address two different targets: the reproduction of the system behaviour as modelled
by the SystemC description; the estimation of the power dissipation in the simu-
lated operative conditions.

The orthogonal running between PKtool and SystemC simulations can bring
important benefits in an articulated hw/sw co-design. In fact, it is possible to
preserve the original simulation workflow without forced modifications or adap-
tations for integrating the run-time functionality of PKtool. In this way, the
introduction of a power analysis does not lead to a worsening in the re-design risks
and result reliability.

302 G. B. Vece and M. Conti

21.3 Power_Modules

In order to include an sc_module in PKtool analysis, the user has to define and
instance a corresponding power_module. A power_module is a PKtool entity that
allows the interaction between the sc_module and Power Kernel, extending the
default capabilities of the sc_module in compliance with PKtool analysis. Such
enhancement mainly consists in the linkage to a power model and in additional
capabilities related to power estimation tasks. From an external point of view
(in particular with regard to I/O ports), a power_module retains the original
sc_module structure. Figure 21.1 shows the functional architecture of a
power_module, underlining the connections with a traditional sc_module.

The effective monitoring of an sc_module during PKtool simulations is enabled
by instancing a corresponding power_module. This step can be realized in flexible
and selective way, which means it can be applied to all the system sc_modules as
well as a restricted subset chosen by the user. Within complex system descriptions,
a monitorable sc_module can be a simple atomic module or a more articulated
unit, in turn structured in a submodule hierarchy. During a PKtool simulation, all
the monitored sc_modules are handled in independent way; each of them is
associated to an its own power model and is simulated as a stand-alone entity.
At the end of the simulation, the power estimation of each sc_module is reported in
a distinct text file.

These selection modalities allow to introduce a space granularity in PKtool
analysis, which can represent an important opportunity in the design of embedded
systems constituted by the aggregation of heterogeneous parts. In fact, by
instancing specific power_modules, it is possible to make a distinction among
different elaboration units and to carry out customized power analysis for each of
them. In particular, it is possible to distinguish between hardware and software
components and to examine them according to their intrinsic features.

As an example of power_module instance, let us consider a SystemC
description that models the interaction between master and slave sc_modules;

SC_MODULE

input
signals

output
signals

dynamic data
(via augmented

signals)

Power
Kernel

power model
and static data

POWER_MODULE

Fig. 21.1 Functional
architecture of a
power_module

21 Power Analysis of Embedded Systems 303

these latter are associated to two distinct classes called respectively mast_dev and
sl_dev. For explanatory reasons, let us assume to apply PKtool only on the master
sc_modules. To this end, first we must define a power_module class related to the
mast_dev class. After that, we are able to select master sc_modules for PKtool
simulations by instancing corresponding power_modules. This step is achieved by
simply replacing the instance instructions of the sc_modules with equivalent
instructions for the related power_modules.

The following code reports two versions of a SystemC main function
(sc_main). The left version is a traditional sc_main that models a top-level
architecture constituted by master and slave devices. On the right, there is the same
sc_main with the instance of power_module counterparts for the master
sc_modules.

By comparing the two functions, it is easy to see how the power_modules have
been instanced through a simple modification in the original type of the master
sc_modules. This represents the only intervention to be done in the original code;
due to the external equivalence between sc_modules and power_modules, all the
connection instructions do not have to be modified.

21.4 Power Models and Their Characterization

A power model is a formal definition of the power dissipated by a digital system,
commonly represented by an analytical/algorithmic formulation. Typically, a
power model is not aimed at providing an exact value of the power dissipation,
but rather an acceptable estimation. The estimation accuracy can rely on several
power model features, such as the reference abstraction level, the computational

304 G. B. Vece and M. Conti

complexity, the amount of data required. In the technical literature many examples
of power models can be found, based on different approaches and accuracy levels.
A wide overview is reported in [9].

The PKtool environment is not related to a particular power model, but is linked
to an its own power model library that makes available several power models.
Such library is integrated in the PKtool implementation and represents an exten-
sible framework where new power models can be defined without strict
limitations.

During a PKtool simulation, each instanced power_module has to be associated
to a specific power model, that will be applied for computing the related power
estimation. This association is carried out at the beginning of the simulation and is
based on an interactive routine, where the user is asked to select the power model
among the ones provided by the PKtool model library.

The availability of several power models and their independent applicability
constitute important features for power analysis on embedded systems. In fact, in
synergy with the space separation realized by the instance of power_modules, it is
possible to analyze different system components by applying the power models
more suitable to their specific features. This chance is further emphasized con-
sidering that hardware-based and software-based power modeling are typically
referred to different approaches and solutions [9].

The evaluation of a power model is usually based on specific data required in its
formulation (model data). Such data are often related to information characterizing
the module which the power model is applied to, such as technology, architectural
and functional features. From an operative point of view, we can subdivide model
data into two distinct categories:

• static data: known a priori and available before the beginning of a simulation;
• dynamic data: available only during the simulation, on the basis of the run-time

evolution of the system.

Typical examples of static data are technology parameters; typical examples of
dynamic data are signal information, e.g. switching activity and bit probability.

PKtool implements different solutions for the acquisition and the handling of
static and dynamic data. Static data must be communicated by the user at the
beginning of a simulation, through the same interactive modalities used for the
association between power_modules and power models. As concerns dynamic
data, PKtool makes available suitable means addressed to their handling during the
simulation running. The most important of these means is represented by dedicated
components called augmented signals.

21.5 Augmented Signals

Augmented signals are aimed at evaluating useful signal data commonly
required by many power models as dynamic data. An augmented signal can be

21 Power Analysis of Embedded Systems 305

regarded as a smart signal, able to show a traditional behaviour with additional
capabilities to compute and make available information such as bit size,
number of transitions, transition density [10]. Some of these quantities, for
example number of transitions, can be computed during a simulation, on the
basis of the run-time signal evolution. Augmented signals are realized through
a framework of types alternative to the traditional signal types used in
SystemC/C++ descriptions.

The usage of augmented signals takes place within a monitored sc_module, by
instancing objects referred to specific augmented types. As in the case of
power_module instance, this task consists in the replacement of pre-existent sig-
nals with augmented counterparts, as shown in the following example:

Considering again the mast_dev sc_module introduced in Sect. 21.3, the code
reports two different versions of the related class. The left version represents an
original definition, whereas the right one is the same class with the modifications
required for instancing two augmented signals. These latter are the output port
out_data and the internal signal ctr_2, whose original types have been replaced by
the corresponding augmented types. The conversion simply consists in adding the
ending word _aug to the name of the original types; this is a general rule for
instancing augmented signals.

Once switched into the augmented format, the signals out_data and ctr_2
become able to compute and provide useful data for power estimation, as previ-
ously explained. During a PKtool simulation involving mast_dev power_modules,
such data are used in application with the selected power models to calculate the
output power estimations. All these operations are handled by Power Kernel,
which is able to interact with the augmented signals via a nested communication
interface.

306 G. B. Vece and M. Conti

As shown by the example, augmented signals can be instanced in selective way,
with the possibility to consider an arbitrary subset of all the sc_module signals.
Actually, this choice is strictly dependent on the signal data required by the applied
power model. If, for example, such data were restricted to the input ports, only
these signal should be augmented in the sc_module class.

21.6 Application Example on Bluetooth Communication
Performances

This section presents a system level power analysis concerning the Bluetooth
communication tasks [11, 12] and realized by applying PKtool on a compliant
SystemC model. We have considered a simulation scenario constituted by one
master and three slave devices, connected through a virtual channel emulating the
wireless communication with the presence of noise. Each device has been basi-
cally realized through an sc_module called ‘‘link_controller’’, which implements
the Bluetooth baseband layer. Each link_controller module is composed by several
sub-modules; the power_module conversion has been applied to all the sub-
modules of each bluetooth devices.

The power model defined by Eq. (21.1) has been applied for estimating the
power dissipation:

E ¼ Ng

1
2

CeqV2
dd

�D

� �

ð21:1Þ

This model is an extension of the expression of the dynamic power dissipation
of a single CMOS gate. Vdd is the supply voltage, �D is the average number of
commutations of the input, output and internal signals of a module, Ng is the
number of gates of the module, Ceq is the average capacitance per gate.

The link_controller unit has been modeled also in VHDL; the synthesizable
VHDL code has allowed an estimation of the parameters Ng and Ceq required by
the power model, as illustrated in [7]. Figure 21.2 reports the complexity of each
sub-module in the link_controller, in terms of number of logic gates.

The Bluetooth standard allows the optimization of the piconet in terms of
throughput or power dissipation, by fixing some parameters of the device and the
piconet. Mainly, two types of transmissions are used in the Bluetooth standard: the
asynchronous connection-oriented (ACL) logical transport is used to carry control
signals and asynchronous user data; the synchronous connection-oriented (SCO)
logical transport is a symmetric point-to-point channel between the master and a
specific slave, typically used for encoded voice stream [11].

The ACL packet formats are reported in Fig. 21.3. The packet consists in the
following fields:

• Access Code (72 bits): it is used for synchronization and identifies all the
packets exchanged on piconet channels;

21 Power Analysis of Embedded Systems 307

• Packet Header (64 bits): it contains the slave address, a code specifying which
type of packet is used, the information on transmission errors, buffer status and
packet sequence;

• Payload Header (8–16 bits): it specifies the logical channel and the effective
length of the transmitted data;

• User Payload (0–2,712 bits): contains the effective user data;
• CRC: 16-bits cyclic redundancy check code is generated from the payload

header and user payload segments.

Six principal ACL types of packets exist (DH1, DM1, DH3, DM3, DH5, DM5),
offering a balance between robustness and bandwidth. Both DH and DM packets
use CRC to detect errors during transmission. DM packets use 2/3 FEC to correct
errors on payload header, user payload and CRC segments during transmission,
therefore they are more robust against noise but, as a consequence, the effective

Composer

FEC_tx

CRC_tx

data_tx

FHS_tx

Fig. 21.2 Complexity in
terms of logic gates of each
module of the link_controller

Fig. 21.3 ACL packet formats

308 G. B. Vece and M. Conti

bandwidth is reduced. Each block of ten information bits is encoded into a 15-bit
codeword. This code can correct all single errors and detect all double errors in
each codeword.

Table 21.1 reports some characteristics of the ACL packets: the number of time
slots used, the user payload bytes and bits per packet, the total bit sent per packet
(including access code, packet header, payload header, user payload, CRC and 2/3
FEC).

The SystemC code of the Bluetooth baseband has been used to analyse the
performances of a piconet with the master transmitting 10 kB of data to the slaves
in presence of noise. Table 21.1 reports the minimum number of time slots
required and the total bits necessary to send 10 kB of user data using the different
packets. The ratio between the total bits sent and user payload bits is also specified
in Table 21.1. The overhead is relevant for the DM packets and for the packets that
use 1 time slot, therefore in absence of noise the advantage of DH3 and DH5
packets with respect to the other types of packets is evident.

We have evaluated the power dissipated during the transmission of different
types of ACL data packets, by carrying out PKtool simulations onto the piconet
models. As simulation scenario, we have considered the transmission of the
maximum data allowed by each type of packet. The output results have been
normalized by the energy dissipated by the transmission of the DM1 packet.

Table 21.2 reports the mean value of the normalized energy dissipated by the
master baseband when transmitting the different ACL packets, the normalized
energy per transmitted bit, and the normalized energy per user payload bit.

Table 21.1 Characteristics of ACL packet types

Time
slots

Payload
bytes/
packet

Payload
bits/
packet

Total
bits/
packet

Min time slots to
send 10 kB
payload

Total sent bits to
send 10 kB
payload

Total sent
bits/payload
bits

DM1 1 17 136 366 603 220,570 2.69
DH1 1 27 216 366 380 138,920 1.70
DM3 3 121 968 1,626 254 137,670 1.68
DH3 3 183 1,464 1,622 168 90,768 1.11
DM5 5 224 1,792 2,865 229 131,023 1.60
DH5 5 339 2,712 2,870 152 86,818 1.06

Table 21.2 Normalized energy dissipated by the baseband layer for different packet types

(Energy per packet)/
(energy_DM1 per packet)

(Energy/total bits)/
(energy_DM1/total bits)

(Energy/payload bits)/
(energy_DM1/payload bits)

DM1 1.00 1.00 1.00
DH1 0.46 0.46 0.29
DM3 5.25 1.18 0.74
DH3 1.29 0.29 0.12
DM5 9.92 1.27 0.75
DH5 2.09 0.27 0.10

21 Power Analysis of Embedded Systems 309

The baseband energy dissipation while transmitting DH packets is considerably
lower than DM packets, especially if normalized by the user payload bit; this is
due to the fact that the FEC_tx block is inactive. Furthermore, packets using three
or five time slots are more energy efficient.

The Bluetooth system allows a high flexibility in the choice of the packet type.
This flexibility can be used to optimize the performances of the transmission in
presence of noise in the channel. In [13] it has been shown how the packet type can
affect the throughput in a noisy channel. In our analysis we have evaluated the
effects on the power dissipation; this kind of analysis is useful to evaluate the
power dissipated by the baseband in the optimization of the total amount of power
dissipated by the device.

The PKtool simulations have been realized with different levels of channel
noise, with the aim of identifying the best choice of the type of packet in terms of
energy dissipation. The noise has been simulated inserting the module error_gen,
which introduces randomly an error in the channel with a probability depending on
the fixed BER.

Without loss in generality, in the simulations it has been considered:

• a symmetric user asynchronous data transmission between master and slave,
with the piconet already built up;

• a signal/noise ratio constant during time and uniform in the Bluetooth trans-
mission band (2,400–2483.5 MHz);

• a constant type of information (10 kB) for each transmission independently on
the type of packet used, in order to make the results comparable.

For each packet type and for each BER many simulations have been performed
(40 for DM1, DM3 and DM5 packets and 120 for DH1, DH3 and DH5). A total of
43,000 transmissions have been examined in PKtool analysis.

Figures 21.4 and 21.5 show the mean value and the standard deviation of
the number of time slots required to send 10 kB of information in the channel
as a function of 1/BER. The standard deviation is indicated through the error
bars. The DM packets are protected by 2/3 FEC, therefore they show better
performances in terms of channel occupancy when the BER is high. On the
other hand DM-based transmissions require more packets to send the same
amount of data in absence of noise, as shown in Table 21.1. Therefore, the best
packet in terms of channel occupation depends on the level of noise in the
channel.

Figures 21.6 and 21.7 show the mean value and the standard deviation of the
energy required to send 10 kB of information normalized to the energy required by
DM1 packets as a function of 1/BER. The energy per time slot required by the DH
packets is about half the energy of the DM packets, as shown in Table 21.2,
therefore even when the time slots required by the DH packets are higher with
respect to the DM packets, the energy required is less. As a consequence, the best
packet in terms of baseband energy dissipation depends on the level of noise in the
channel, but in general it does not correspond to the best packet in terms of
channel occupation, as it can be seen comparing Figs. 21.4, 21.5, 21.6 and 21.7

310 G. B. Vece and M. Conti

Finally, Figs. 21.8 and 21.9 show the mean value and the standard deviation
of the energy per transmitted bit normalized to the energy per transmitted bit
using DM1 packets as a function of 1/BER. Figures 21.8 and 21.9, compared to
Figs. 21.6 and 21.7, evidences that the packets that use three and five time slots
dissipate less energy per bit with respect to the corresponding packets that use
only one time slot.

100

200

300

400

500

600

700

800

900

1000

16000 14000 12000 10000 8000 6000 4000

1/BER

Time-slots used
to send

10Kbytes of data

DM1

DH1

DM3
DM5

DH3

DH5

Fig. 21.4 Mean value and standard deviation of the number of time slots used to send 10 kB of
data as a function of 1/BER. The error bars indicate the standard deviation

100

200

300

400

500

600

700

800

900

1000

4000 3500 3000 2500 2000 1500 1000 500 1

1 / BER

Time-slots used
to send

10Kbytes of data DH1DH3
DH5

DM1

DM3

DM5

Fig. 21.5 Mean value and standard deviation of the number of time slots used to send 10 kB of
data as a function of 1/BER. The error bars indicate the standard deviation

21 Power Analysis of Embedded Systems 311

0

0,2

0,4

0,6

0,8

1

1,2

16000 14000 12000 10000 8000 6000 4000

1/BER

Normalized energy
DM1

DH1

DM5
DM3

DH3

DH5

Fig. 21.6 Mean value and standard deviation of the normalized energy spent to send 10 kB of
information in the channel as a function of 1/BER. The standard deviation is indicated through
the error bars

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4000 3500 3000 2500 2000 1500 1000 500 1

1 / BER

Normalized Energy

DH1
DH3DH5

DM1

DM3

DM5

Fig. 21.7 Mean value and standard deviation of the normalized energy spent to send 10 kB of
information in the channel as a function of 1/BER. The standard deviation is indicated through
the error bars

312 G. B. Vece and M. Conti

21.7 Conclusions

This work has presented the fundamental features and the application modalities
of the PKtool environment, underlining its potentialities within a SystemC-based
design context. We have provided a functional description of the main PKtool

0

0,2

0,4

0,6

0,8

1

1,2

16000 14000 12000 10000 8000 6000 4000

1/BER

Normalized Energy
DM1

DH1

DM3

DM5

DH3
DH5

Fig. 21.8 Mean value and standard deviation of the normalized energy per transmitted bit spent
to send 10 kB of information in the channel as a function of 1/BER. The error bars indicate the
standard deviation

0

0,2

0,4

0,6

0,8

1

1,2

1,4

4000 3500 3000 2500 2000 1500 1000 500 1

1 / BER

Normalized Energy

DH1

DH3
DH5

DM1

DM3

DM5

Fig. 21.9 Mean value and standard deviation of the normalized energy per transmitted bit spent
to send 10 kB of information in the channel as a function of 1/BER. The error bars indicate the
standard deviation

21 Power Analysis of Embedded Systems 313

components, supported by usage examples. As case study, PKtool has been applied
to evaluate specific power performances of Bluetooth networks. In particular,
analysis of channel throughput and baseband energy dissipation have been carried
out.

References

1. SystemC official web-site, http://www.systemc.org
2. PowerTheater, Sequence Design Inc., http://www.sequencedesign.com
3. ORINOCO, Chip Vision Design Systems, http://www.chipvision.com
4. Power Compiler, Synopsis, http://www.synopsys.com
5. PowerChecker, BullDAST s.r.l., http://www.bulldast.com
6. PKtool official web-site, http://www.deit.univpm.it/PKtool
7. Vece G, Conti M (2009) Power estimation in embedded systems within a SystemC-based

design context: the PKtool environment. In: Proceedings of the IEEE Seventh International
Workshop on Intelligent Solutions in Embedded Systems WISES09, pp 179–184, Ancona,
Italy, June 25–26 2009

8. Grotker T, Liao S, Martin G, Swan S (2002) System design with SystemC. Kluwer Academic
Publishers, Dordrecht, The Netherlands

9. Piguet C (2006) Low-power CMOS circuit (technology, logic design and CAD tools). Taylor
& Francis Group, London

10. Najm F (1993) Transition density: a new measure of activity in digital circuits. In: IEEE
Trans on computer-aided design of integrated circuits and systems, vol 12, no 2, Feb 1993,
pp 310–323

11. Bluetooth_Core v2.0, Bluetooth official web-site, http://www.bluetooth.org
12. Bray J, Sturman C (2002) Bluetooth connect without cables, 2nd edition. Prentice Hall PTR,

EnglewoodCliffs, NJ
13. Caldari M, Conti M, Crippa P, Marozzi G, Di Gennaro F, Orcioni S, Turchetti C (2003)

SystemC modeling of a Bluetooth transceiver: dynamic management of packet type in a noisy
channel. Design, automation and test in Europe Conference 2003, Munchen, pp 214–219

314 G. B. Vece and M. Conti

	Cover
	Lecture Notes in Electrical Engineering 81
	Solutions on Embedded Systems
	ISBN 9789400706378
	Preface
	Contents
	Part I Sensor Networks
	1 Performance of Gossip Algorithms in Wireless Sensor Networks
	1.1…Introduction
	1.2…The Considered Gossip Algorithms
	1.2.1 Basic Gossip
	1.2.2 Push-Sum Algorithm
	1.2.3 Broadcast Algorithm

	1.3…Simulation Parameters
	1.4…Share Factor Optimization
	1.5…Results
	1.5.1 Basic Gossip
	1.5.2 Push-Sum Algorithm
	1.5.3 Broadcast Algorithm
	1.5.4 Performance Comparison

	1.6…Conclusion
	References

	2 Using a Prioritized Medium Access Control Protocol for Incrementally Obtaining an Interpolation of Sensor Readings
	2.1…Introduction
	2.2…Preliminaries and Motivation
	2.2.1 The Main Idea
	2.2.2 System Model

	2.3…Interpolation of Sensor Data with Location
	2.3.1 Previously Known Algorithm
	2.3.2 New Algorithm
	2.3.3 An Improved Version of the New Algorithm

	2.4…Conclusions
	Acknowledgements
	References

	3 Embedded Systems in the Poseidon MK6 Rebreather
	3.1…Introduction
	3.2…Methods
	3.2.1 Mechanical Design of the System
	3.2.2 Embedded Systems in the MK6
	3.2.2.1 Backpack
	3.2.2.2 Handset
	3.2.2.3 Battery
	3.2.2.4 HUD
	3.2.2.5 Communication
	3.2.2.6 Firewall

	3.2.3 Algorithms
	3.2.3.1 State Machine
	3.2.3.2 Pre-dive Checks
	3.2.3.3 p{{{\rm{O}}_{2} }} Control Algorithm
	3.2.3.4 Sensor Signal Validation
	3.2.3.5 Controlling Resource Algorithm
	3.2.3.6 Software Update

	3.3…Results
	3.4…Discussion
	3.5…Outlook/Ongoing Work
	References

	4 Embedded Data Logging Platform for Research in Diving Physiology
	4.1…Introduction
	4.2…Methods
	4.2.1 Hardware
	4.2.2 Data Logging Module
	4.2.3 sO2 Measurement
	4.2.4 ECG Measurement
	4.2.5 Software
	4.2.5.1 Firmware

	4.3…Data Processing
	4.3.1 Validation

	4.4…Results
	4.5…Discussion
	4.6…Conclusions
	4.7…Future Work
	References

	5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded Systems
	5.1…Introduction
	5.2…IEEE 1451 Smart Network Sensor System
	5.3…Networked Gas Leak Sensing System
	5.4…Sensor Selection, Model and Data Fusion
	5.5…Embedded ISIF Design and Realization
	5.6…Conclusions
	References

	Part II Network on Chip and Multicore Systems
	6 Cost-Based Deflection Routing for Intelligent NoC Switches
	6.1…Introduction
	6.2…Related Work
	6.3…Cost Based Routing
	6.4…Cost Function Design
	6.4.1 Deflection Routing
	6.4.2 Fault-Tolerant Routing
	6.4.3 Load Balancing

	6.5…Efficient Implementation
	6.6…Communication Performance
	6.6.1 Experimental Setup
	6.6.2 Latency and Throughput
	6.6.3 Fault-Tolerance
	6.6.4 Benefits from Load Balancing

	6.7…Conclusion
	References

	7 NOCEXplore
	7.1…Introduction
	7.2…The Platform
	7.3…Investigations
	7.3.1 Statistical Analysis
	7.3.2 Probabilistic Analysis
	7.3.3 Dynamic Analysis
	7.3.4 Power Analysis

	7.4…NOCEXplore Usage
	7.5…Post-processing
	7.6…Conclusions
	References

	8 Coverage-Driven Verification of HDL IP Cores
	8.1…Introduction
	8.2…Reusable Methodology for the Functional Verification of Platforms
	8.3…Spidergon NoC Communication Design
	8.4…Verification Environment for the Spidergon STNoC Router IP
	8.5…Results and Conclusions
	References

	9 A Multiprocessor Platform for Efficient Data Processing in Electronic Musical Instruments
	9.1…Introduction
	9.2…Multiprocessor Architecture
	9.3…Developing the Communication
	9.4…Exploring the Functionality
	9.4.1 Keyboard Scanning Implementation
	9.4.2 The Standard Scanning Algorithm
	9.4.3 The Optimized Scanning Algorithm
	9.4.4 Some Variations to the Scanning Algorithms
	9.4.5 Simulations and Results

	9.5…Conclusion
	References

	10 A Distributed Hardware Algorithm for Scheduling Dependent Tasks on Multicore Architectures
	10.1…Introduction
	10.2…Examples
	10.3…Related Work
	10.4…Algorithm
	10.4.1 DECLARE Operation
	10.4.2 REQUIRE Operation
	10.4.3 PROVIDE Operation
	10.4.4 Event File
	10.4.5 Migration

	10.5…Experimental Setup
	10.6…Results
	10.7…Conclusions
	Acknowledgments
	References

	Part III Automotive
	11 Automotive Embedded Systems
	11.1…Introduction
	11.2…The Time-Triggered Architecture
	11.2.1 The Time-Triggered Computation Model
	11.2.2 Time-Triggered Versus Event-Triggered Architecture
	11.2.3 Time-Triggered Communication

	11.3…FlexRay and the Integration Challenges
	11.3.1 The FlexRay Host Interface
	11.3.2 Integration Within the Node’s Software---The Challenges

	11.4…TEODACS Development Process
	11.4.1 TEODACS Development Platforms FlexRayXpert.Lab and FlexRayXpert.Sim
	11.4.2 The TEODACS Development Flow
	11.4.3 FIBEX Database Format
	11.4.4 Automated Configuration of the FlexRay Communication Stack
	11.4.5 Implementation of the FlexRay Communication Stack

	11.5…Conclusion
	Acknowledgments
	References

	12 An Embedded Datalogger with a Fast Acquisition Rate for In-vehicle Testing and Monitoring
	12.1…Introduction
	12.2…Application Requirements
	12.3…Hardware Architecture
	12.4…Firmware Description
	12.4.1 AVR Firmware
	12.4.2 ARM Firmware

	12.5…Implementations and Tests
	12.6…Conclusions
	References

	13 Secure Gateway Interoperability
	13.1…Introduction
	13.2…State of the Art
	13.3…Network Service Access System Overview
	13.4…The NSA Architecture
	13.4.1 The Control Point Behaviour
	13.4.2 Access Modules

	13.5…Security in the NSA
	13.6…Security Subsystem Prototype
	13.6.1 Security Manager
	13.6.2 Security Agent

	13.7…Event Manager Prototype
	13.7.1 Subscription Manager
	13.7.2 Notification Manager

	13.8…Conclusions
	References

	Part IV Software and System Architecture
	14 Applying Bayesian Networks for Intelligent Adaptable Printing Systems
	14.1…Introduction
	14.2…Preliminaries
	14.3…Setpoint Estimation
	14.3.1 Description of the Problem
	14.3.2 Experimental Setup
	14.3.3 Case 1: Keep Paper Temperature on Setpoint
	14.3.4 Case 2: Avoid Faulty Temperatures

	14.4…Dynamic Speed Adjustment
	14.4.1 Description of the Problem
	14.4.2 Modelling
	14.4.3 Classification
	14.4.4 Simulation of the Bayesian Controller

	14.5…Discussion and Conclusions
	Acknowledgements
	References

	15 Applicability of Virtualization to Embedded Systems
	15.1…Introduction
	15.2…Virtualization Techniques
	15.2.1 Virtual Machines
	15.2.2 Virtual Machine Monitors
	15.2.3 Paravirtualization
	15.2.4 Microkernel-Based Paravirtualization

	15.3…Requirements (and Non-requirements) for an Embedded VMM
	15.3.1 Isolation and Communication
	15.3.2 Architecture Independence
	15.3.3 Size of Trusted Code Based
	15.3.4 Superfluous Functionality
	15.3.5 Real-Time Capabilities

	15.4…Conclusion and Outlook
	References

	16 Distributed Trading Architecture with Sensors Support for a Secure Decision Making
	16.1…Introduction
	16.2…Measuring a Trader’s Stress
	16.3…Trading Architecture with Sensors Support
	16.4…Expert System
	16.5…Knowledge Base Structure
	16.5.1 Technical Analysis
	16.5.2 Fundamental Analysis
	16.5.3 Feeling Market Analysis
	16.5.4 Feeling Sense of the User (with the Sensors)

	16.6…Conclusions and Future Work
	References

	17 Migrating from a Proprietary RTOS to the OSEK Standard Using a Wrapper
	17.1…Introduction
	17.2…Related Work
	17.3…Migration Strategy
	17.4…Construction of the Wrapper
	17.4.1 Task Model
	17.4.1.1 Requirements
	17.4.1.2 Wrapper Implications

	17.4.2 The Scheduler
	17.4.2.1 Requirements
	17.4.2.2 Wrapper Implications

	17.4.3 Events
	17.4.3.1 Requirements
	17.4.3.2 Wrapper Implications

	17.4.4 Resources
	17.4.4.1 Requirements
	17.4.4.2 Wrapper Implications

	17.4.5 Interrupts
	17.4.5.1 Requirements
	17.4.5.2 Wrapper Implications

	17.4.6 Counters and Alarms
	17.4.6.1 Requirements
	17.4.6.2 Wrapper Implications

	17.4.7 Compliance of the Wrapper

	17.5…Migrating the Application
	17.6…Experimental Set-Up
	17.6.1 Worst Case Impact of the Wrapper
	17.6.1.1 Response Time Overhead of the Task Model
	17.6.1.2 Response Time Overhead of the Event Mechanism
	17.6.1.3 Response Time Overhead of the Resource Mechanism
	17.6.1.4 Memory Impact of the OSEK-Wrapper

	17.6.2 Impact of the Wrapper on the System
	17.6.2.1 Execution Time of Tasks
	17.6.2.2 Number of Activations of a Task
	17.6.2.3 Memory Impact of the Wrapper

	17.7…Case Study
	17.7.1 Construction
	17.7.2 Worst Case Impact of the Wrapper
	17.7.3 Impact of the Wrapper on the System
	17.7.4 Threats to Validity
	17.7.4.1 Internal Validity
	17.7.4.2 External Validity

	17.8…Conclusion
	References

	Part V Power Aware Design
	18 A Sigma--Delta Controlled Power Converter for Energy Harvesting Applications
	18.1…Introduction
	18.2…System Specifications and Design
	18.3…AC--DC Stage
	18.4…DC--DC Stage
	18.5…Dynamic OSR Sigma Delta Modulation and MPPT
	18.6…System Modelling and Simulations
	18.7…Conclusion
	References

	19 Energy Efficient Data Transmission of On-Chip Serial Links
	19.1…Introduction
	19.2…State of the Art
	19.3…Energy-Delay Efficient Bus Encoding
	19.3.1 Temporal Coding Using Block Decoding
	19.3.2 Temporal Coding Using Narrow Links

	19.4…Implementation and Evaluation Results
	19.5…Conclusions
	References

	20 Powersim: Power Estimation with SystemC
	20.1…Introduction
	20.2…Powersim
	20.3…Case Study
	20.3.1 The ETSI Front-End
	20.3.1.1 First Noise Reduction
	20.3.1.2 Second Noise Reduction
	20.3.1.3 Waveform Processing
	20.3.1.4 Cepstrum Calculation
	20.3.1.5 Blind Equalization

	20.3.2 Computational Complexity Estimate

	20.4…Conclusions
	References

	21 Power Analysis of Embedded Systems
	21.1…Introduction
	21.2…Simulative Approach and Relations with the SystemC Kernel
	21.3…Power_Modules
	21.4…Power Models and Their Characterization
	21.5…Augmented Signals
	21.6…Application Example on Bluetooth Communication Performances
	21.7…Conclusions
	References

